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COST, the acronym for European COoperation in the field of Scientific and Techni-
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Preface

Communication networks are a vital and crucial element of today’s world. Mobile
devices, the Internet, and all new applications and services provided by these media
have changed dramatically the way both individual lives and society as a whole are
organized. All these services depend on fast and reliable data connections, whether
wired or wireless. To meet such requirements, information and communication tech-
nology is challenged again and again to provide faster protocols, wireless interfaces
with higher bandwidth capacity, innovative mechanisms to handle failures, and so
on.

For many of those challenges a variety of mathematical disciplines contribute in
a supportive role, either in providing insights, evidence, or algorithms or as decision
support tools. In particular, the broad area of algorithmic discrete mathematics plays
a crucial role in the design and operation of communication networks. However, the
discipline is fragmented between scientific disciplines such as pure mathematics,
theoretical computer science, distributed computing, and operations research. Fur-
thermore, researchers from communication engineering utilize discrete mathemati-
cal techniques and develop their own extensions.

With the aim to bring together the above-mentioned disciplines and draw synergy
effects from it, the COST action 293 – Graphs and Algorithms in Communication
Networks – was launched in October 2004 for a period of four years. Scientists
from the above disciplines have been gathering on a regular basis to learn from each
other and to work jointly on emerging applications to the benefit of the information
and communication technology society. Also workshops and training schools have
been organized to disseminate recent advances in all subject areas. An active ex-
change programme (short-term scientific missions in COST terminology) between
the research groups has resulted in a high number of joint publications.

To document on the one hand the multidisciplinary research carried out within
COST 293 and on the other hand to encourage further collaborations between the
disciplines, this book presents a number of studies in broadband, optical, wireless,
and ad hoc networks where the techniques of algorithmic discrete mathematics have
provided highly recognized contributions.



viii Preface

The way the studies are presented, this book is particularly suited for Ph.D. stu-
dents, postdoctoral researchers in mathematics, computer science, operations re-
search, and network engineering as well as industrial researchers who would like
to investigate state-of-the-art mathematical alternatives to resolve the technological
challenges of tomorrow. An introductory chapter should ease access to the material
for researchers not familiar with the mathematical terminology used by the chapters’
authors.

As chair and vice-chair of COST 293, it has been a pleasure for us to prepare
this book. We would like to thank all authors and reviewers for the contributions.
Without their voluntary help it would have been impossible to publish this book. We
also are grateful to COST for supporting our action in general and the dissemination
of this book in particular .

Coventry/Barcelona, Arie M.C.A. Koster
March 2009 Xavier Muñoz



Contents

1 Graphs and Algorithms in Communication Networks on Seven
League Boots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Arie M. C. A. Koster and Xavier Muñoz
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Janez Žerovnik
University of Maribor, Smetanova 17, Maribor 2000, Slovenia, and
Institute of Mathematics, Physics and Mechanics, Jadranska 19, Ljubljana,
Slovenia, e-mail: janez.zerovnik@imfm.uni-lj.si



Acronyms

3-MECA Maximum Efficiency Channel Assignment with Three Channels,
Hyperbolic Formulation

3-MECAE Maximum Efficiency Channel Assignment with Three Channels,
Linear Formulation

3-MOCA Minimum Overlap Channel Assignment with three channels
3-MT-MO Integration of MTAL and 3-MOCA
3-MT-ME Integration of MTAL and 3-MECA
ABC Adaptive Broadcast Consumption
ACK Acknowledgement Frame
ADM Add/Drop Multiplexer
AODV Ad Hoc On Demand Distance Vector
AOLS All-Optical Label Switching
AP Access Point
API Average Path Interference
APX Approximable
AR Alternative Routing
AS Autonomous System
ATM Asynchronous Transfer Mode
B&C Branch-and-Cut
BEB Binary Exponential Backoff
BIP Broadcast Incremental Power
BL Basic Localization
BLP Burst Loss Probability
BSS Basic Service Set
CBWFQ Class-Based Weighted Fair Queueing
CDMA Code Division Multiple Access
CFS Cost Function Smoothing
CMAX Capacity-Competitive Algorithm
CMI Cost Minimization in Multi-interface Networks
CoS Class of Service
CR-LDP Constraint-Based Routing Label Distribution Protocol



xxiv Acronyms

CRP Contention Resolution Protocol
CS Circuit Switching
CSMA Carrier Sense Multiple Access
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CSMA/CD Carrier Sense Multiple Access with Collision Detection
CSPF Constraint Shortest Path First
CTS Clear to Send
CWDM Coarse Wavelength Division Multiplexing
DAG Directed Acyclic Graph
DCF Distributed Coordination Function
DiffServ Differentiated Services
DIFS Distributed Inter-frame Space
DPP Dedicated Path Protection
DS Distribution System
DWDM Dense Wavelength Division Multiplexing
D-LSP Distributed LSP
ECMP Equal Cost Multi-path
ECS Effective Computing System
ELS Ethernet VLAN-Label Switching
ESS Extended Service Set
EXC Electrical Cross-connect
FAP Frequency Assignment Problem
FDM Frequency Division Multiplexed
FDMA Frequency Division Multiple Access
FDPP Failure Dependant Path Protection
FEC Forwarding Equivalence Class
FIFO First-In First-Out
FIP Finite Improvement Path
FPQ Fair Packet Queueing
FSC Fiber Switching Capable
GbE Gigabit Ethernet
Gbit/s Gigabit per Second
GHz Gigahertz
GMM Generalized Multicast Multi-path
GMPLS Generalized MPLS
GNPP General Network Planning Problem
GSM General System for Mobile Communication
IBM Induced Bipartite Matching
IBSS Independent Basic Service Set
IETF Internet Engineering Task Force
IGP Interior Gateway Protocol
ILP Integer Linear Programming
IMBM Iterative Maximum-Branch Minimization
IP Internet Protocol
IPv4 Internet Protocol Version 4



Acronyms xxv

IS-IS Intermediate System to Intermediate System
ISP Inverse Shortest Path Problem
ITU International Telecommunication Union
JET Just-Enough-Time
JIT Just-In-Time
LDP Label Distribution Protocol
LER Label Edge Router
L2SC Layer 2 Switching Capable
LIB Label Information Base
LISE Low Interference Spanner Establisher
LL (Overall) Link Loss
LL-NRL Link Loss model with Non-Reduced Load
LP Linear program
LSP Label Switched Path
LSR Label Switched Router
LTE Light Termination Equipment
MAC Medium Access Control
MANET Mobile Ad Hoc Network
Mbit/s Megabit per second
MCNFP Multi-commodity Network Flow Problem
MEBR Minimum Energy Broadcast Routing
MECA Maximum Efficiency Channel Assignment, hyperbolic formulation
MERLIN Mergin Link group
MILP Mixed-Integer Linear Program
MIP Mixed-Integer Program
MIR Mixed-Integer Rounding
MIRA Minimum Interference Routing Algorithm
MLTE Multilayer Traffic Engineering
MLU Maximum Link Utilization
MOCA Minimum Overlap Channel Assignment
MOP Multi-Objective Problem
MPLS Multi-protocol Label Switching
MPLS-TE Multi-protocol Label Switching Traffic Engineering
MR Multi-path Routing
MST Minimum Spanning Tree
MSTP Minimum Spanning Tree Protocol
MT Mobile Terminal
MTBF Mean Time Between Failures
MTTR Mean Time To Repair
MT-MO Integration of MTAL and MOCA
NHLFE Next Hop Label Forwarding Entry
NL (Overall) Network Loss
NL-RL Network Loss model with Reduced Load
NL-NRL Network Loss model with Non-Reduced Load
NP Non-deterministic Polynomial



xxvi Acronyms

NRL Non-Reduced Load
NSF National Science Foundation
OBS Optical Burst Switching
OFDM Orthogonal Frequency Division Multiplexing
OSPF Open Shortest Path First protocol
OTIS Optical Transpose Interconnection System
OTN Optical Transport Network
oVPN Open Virtual Private Network
OXC Optical Cross-Connect
P2P Peer-to-peer
PCF Point Coordination Function
PIRA Path-Interfering Routing Algorithm
PSC Packet Switching Capable
PTAS Polynomial Time Approximation Scheme
QoS Quality of Service
RCFS Randomized Cost Function Smoothing
RFC Request for Comment
RIT Reservation with Just-In-Time
RL Reduced Load
RSVP Resource Reservation Protocol
RSVP-TE Resource Reservation Protocol for Traffic Engineering
RTS Request to Send
SAT Satisfiability problem
SCFQ Self-Clocked Fair Queueing
SCSP Shortcut Span Protection
SDH Synchronous Digital Hierarchy
SFQ Start-time Fair Queueing
SIFS Short Inter-Frame Space
SLP Shared Link Protection
SONET Synchronous Optical Network
SPP Shared Path Protection
SPR Shortest Path Routing
SPT Shortest Path Tree
SRG Shared Risk Group
SSP Shared Segment Protection
STEP Shortest Path Traffic Engineering Problem
STM Synchronous Transport Module
TAG Tell-And-Go
TAW Tell-And-Wait
TCP Transmission Control Protocol
TDM Time Division Multipling
TDMA Time Division Multiple Access
TE Traffic Engineering
ToA Time of Arrival
TP Test Point



Acronyms xxvii

TSC TDM Switching Capable
UDG Unit Disk Graph
UMTS Universal Mobile Telecommunications System
VLAN Virtual Local Area Network
VPN Virtual Private Network
VPλN Virtual Private Wavelength Network
VON Virtual Overlay Network
WBSC WaveBand Switching Capable
WDM Wavelength Division Multiplexing
WFQ Weighted Fair Queueing
WGP Wireless Gathering Problem
WLAN Wireless Local Access Network
WλSC Wavelength Switching Capable
XTC X Topology Control



Part I
Studies in Broadband
and Optical Networks



Chapter 1
Graphs and Algorithms in Communication
Networks on Seven League Boots

Arie M. C. A. Koster and Xavier Muñoz

Abstract This chapter provides an introduction to the mathematical techniques used
to provide insight and decision support in the design and operaton of communica-
tion networks. Techniques discussed include graph-theoretical concepts, (integer)
linear programming, and complexity theory. To illustrate the importance of these
techniques, classical applications in the area of communication networks are dis-
cussed. The wide variety and depth of the mathematics involved does not allow
an exposition highlighting all details. References for further reading are provided.
The chapter is closed with a brief description of the applications discussed in the
consecutive chapters.

Key words: combinatorial optimization, graph theory, networks, topology design,
routing, network planning, frequency assignment, network coverage

1.1 Introduction

Graphs and algorithms play a vital role in modern communication networks. With-
out the mathematical theory and algorithms developed by researchers from discrete
mathematics, algorithmics, mathematical optimization, and distributed computing,
many services of the information society like (mobile) telephony, virtual private net-
works, broadband at home, wireless Internet access, and Phone over IP are unthink-
able in their current form. At the heart of each of these, graphs are used to specify
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the networks and technological features, whereas algorithms are used to compute
solutions for cost-efficient design and smooth operation of the technologies.

The field of discrete mathematics deals with discrete structures such as graphs,
hyper-graphs, and general combinatorial designs (e.g., balanced incomplete block
designs, group divisible designs, etc.), which represent excellent instruments for
modeling complex processes such as communication networks in an abstract, con-
cise, and precise manner, concentrating on their relevant properties in order to ana-
lyze situations and elaborate problem solutions. While physical or virtual networks
naturally allow for modeling with graphs, graphs are also used to describe more
abstract relations such as the conflict between the various elements of a communi-
cation network (e.g., interference between antennae; see Section 1.5.5.1). Parame-
ters defined for these discrete structures characterize not only the structures, but also
furnish essential information on the applications being investigated. Moreover, pow-
erful tools can be developed to solve practical problems by adapting core algorithms
stemming from the discrete mathematics field.

An algorithm is a procedural step-by-step description to answer questions that
are too complex to be solved instantly. When a numerical answer is expected, the
algorithmic steps typically involve elementary computations. As the complexity of
the question increases, the need for algorithms that require as few elementary com-
putations as possible increases as well. Although modern computers allow for mil-
lions of computations in a short time frame, certain algorithms are still too time
consuming to answer practical relevant questions.

Motivated by practical problems to be solved, the study of efficient algorithms is
one of the most prolific and successful fields of computer science. Besides efficient
algorithms, it has generated several important concepts, such as the notions of ran-
domized algorithm, NP-hard optimization problem, and approximation algorithm.
Typically, the field explores the design of an efficient (deterministic or randomized)
algorithm for the problem at hand. If the problem is NP-hard, it resorts to the de-
velopment of an approximation algorithm (see Section 1.3 for further details). The
study of online versions of these algorithms has become an important stream of
research, since the problem input is not known in advance in most applications.

The field of mathematical optimization deals with the development and imple-
mentation of optimization algorithms to support (quantitative) decisions. In commu-
nication networks, mathematical optimization is primarily applied to network design
problems in wireless and broadband networks. Typical tasks for which mathemat-
ical optimization assists decision makers are the cost-effective design of network
infrastructures, the reduction of interference in wireless networks, the area-wide in-
troduction of digital broadcasting, and the determination of routing weights in OSPF
Internet routing. Mathematical optimization (as well as other fundamental areas)
also may help in identifying bottlenecks in systems and in conceiving workarounds
and suggesting possible improvements. Optimization is also important in terms of
economics and other business aspects related to communication networks.

Many (network) optimization problems can be modeled by means of a graph, and
the decisions have a discrete structure. In such cases, a combinatorial optimization
problem has to be solved. One branch of mathematical optimization focuses on the
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study of the polyhedral structure of such problems. The more that is known about
the structure of the problem, the more efficiently the problem can be solved.

The field of distributed computing is devoted to the structural and algorithmic
problems arising from the exploitation of distributed systems of computers by means
of communication networks. The range of applicability of this area of research spans
from the cluster-computing paradigm that deals with a small number of computers,
possibly within a company and connected by a high-bandwidth LAN, to the peer-to-
peer (P2P) paradigm, through which millions of computers may be connected over
the Internet. Topics under study range from basic research on impossibility results
for asynchronous systems, to the most recent advances on the survivability of P2P
networks.

All these areas are closely related. To name a few relations, mathematical op-
timization often exploits graph structures, algorithms are studied for distributed
computing systems, mathematical optimization algorithms are analyzed on their
strengths and weaknesses, and the scalability of distributed systems can be improved
using tools from graph theory. In this chapter we would like to give a brief intro-
duction to each of these tools from the mathematical toolbox. In Section 1.2, the
framework of mathematical modeling by graphs and networks, including combina-
torial and nonlinear optimization models and distributed and online problems, is in-
troduced. Next, the complexity of algorithms is discussed in Section 1.3 before the
most common methodologies to solve (combinatorial) optimization problems are
presented in Section 1.4. To illustrate the use of these techniques, Section 1.5 pro-
vides a range of classical applications of graphs and algorithms in communication
networks. Where appropriate, references are made to more advanced applications in
forthcoming chapters.

1.2 Mathematical Modeling

In this section we introduce the most common mathematical structures used to
model communication networks and their decision problems. First, concepts such
as (un)directed graphs and networks are introduced, and their substructures are de-
fined. Next, the concept of a combinatorial optimization problem is presented.

1.2.1 Sets and Parameters

The foundation of mathematical modeling lies in the definition of sets and param-
eters. A set S is an (unordered) collection of elements of the same type. The type
of the elements can be rather general, ranging from integers (e.g., S = {1,2,5,7})
to rational coordinate pairs (e.g., S = {(52.3,7.1),(58.7,23.1),(42.1,−5.2)}) to
switching locations (e.g., S = {Amsterdam, Berlin, Brussels, London}) to band-
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width capacities in an SDH (Synchronous Digital Hierarchy) network (e.g., S =
{STM-1, STM-4, STM-16, STM-64}).

Throughout this book the set of all integers is denoted by Z, the set of all non-
negative integers by Z+. Similarly, the set of rational numbers will be denoted by
Q and the set of rational and irrational numbers by R, whereas Q+ and R+ denote
their nonnegative subsets. The n-dimensional variants of these sets are denoted Z

n,
Q

n, and R
n respectively.

The cardinality of a finite set S is denoted by |S| and equals the number of ele-
ments in the set. The empty set is denoted by /0. For a finite set S, the set denoted by
2S denotes the collection of all possible subsets of S.

A parameter is an unchangeable value (integer, rational, irrational) representing
a numerical input to a problem to be solved. Parameters can be stand-alone (e.g., the
total investment budget or the signal-to-noise ratio) or defined for each element of a
set (e.g., the cost cs or the bandwidth bs in Mbit/s for installing an SDH bandwidth
capacity s ∈ {STM-1, STM-4, STM-16, STM-64}).

If we would like to associate a (nonnumerical) element of set T with every el-
ement of a set S, a function f : S �→ T is defined. Hence, a nonnegative integer
parameter bs associated with every element of the set S can also be represented by a
function b : S �→ Z+.

A set S ⊂ R
n with numerical elements is called convex if for all x,y ∈ S and any

λ ∈ [0,1], λx+(1−λ )y ∈ S as well.

1.2.2 Graphs and Networks

One of the most elementary discrete structures to model networking problems are
undirected and directed graphs.

1.2.2.1 Undirected Graphs

An undirected graph, or short graph, is a pair G = (V,E) consisting of a set of
vertices V and a set of edges E where each edge e ∈ E is a two-element unordered
subset of V . Hence, we also write {i, j} ∈ E with i, j ∈ V . We further say that an
edge {i, j} ∈ E is incident to both i and j. Figures 1(a) and 1(b) show two famous
graphs, the cycle on five vertices (denoted by C5) and the Petersen graph.

Undirected graphs are used to model relations between entities that do not have
a direction associated with them or where the direction does not play a role. In com-
munication networks, undirected graphs are used to describe, for example, the topol-
ogy of an optical fiber network, where the nodes represent the routers and an edge
exists in the graph if and only if there is a direct optical fiber connection (link) be-
tween the routers (Figure 1(c) shows the Pan-European Triangular Topology graph
defined by COST action 266). Another example is the modeling of potential con-
flicts between access points of a Wireless Local Access Network (WLAN). Here the
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(a) Graph C5 (b) Petersen graph (c) COST 266 topology graph

Fig. 1.1 Three undirected graphs: A cycle with five vertices and five edges, the Petersen graph
with ten vertices and 15 edges, and the triangular COST 266 topology graph with 28 vertices and
61 edges

nodes represent the access points and two nodes are adjacent if and only if there are
locations in the designated coverage area where the signals would interfere if both
access points would be assigned the same radio frequency (see Chapter 11 for more
information).

If not stated otherwise we assume that a graph is simple in the sense that there
are no parallel edges (identical elements of E) or loops (edges of the form {i, i}).

Two distinct vertices i, j ∈ V are called adjacent or neighbors if {i, j} ∈ E. This
concept is extended to subsets of vertices by the function N : 2V �→ 2V that assigns
to every subset S ⊆ V all neighboring vertices that are not part of the subset, i.e.,
N(S) = { j ∈ V \ S | {i, j} ∈ E, i ∈ S}. If S = {i} we simplify notation by writing
N(i) instead of N({i}). Similarly, the function δ : 2V �→ 2E assigns to every vertex
subset S the edges that connect S with V \S. The degree of a vertex is defined by the
function deg : V �→ Z+ which assigns to a vertex i ∈V the number of adjacent edges,
deg(i) = |δ(i)|. If the graph G might not be clear from the context, a subscript such
as degG is used for all three functions.

Given a graph G = (V,E), we define the complement of G as Ḡ = (V, Ē) with
Ē = {{i, j} | {i, j} �∈ E}.

A graph G = (V,E) is called bipartite if the vertex set can be partitioned into two
subsets V1,V2 such that for every edge {i, j} ∈ E, i ∈ V1 and j ∈ V2. In other words,
for all i ∈ V1, N(i) ⊆ V2 and for all i ∈ V2, N(i) ⊆ V1. Bipartite graphs are therefore
sometimes denoted by (V1,V2,E).

A graph G = (V,E) is called complete if all vertices are mutually adjacent, i.e.,
{i, j} ∈ E for all i, j ∈ V , i �= j.

A graph H = (U,F) is called a subgraph of G = (V,E) if U ⊆ V and F ⊆ E.
If F = {{i, j} ∈ E | i, j ∈ U}, G[U ] = H is the subgraph of G induced by U . The
subgraph of the Petersen graph induced by {1,2,3,4,5} is C5.

A path p in a graph G is a sequence (i0,e1, i1,e2, i2, . . . , ik−1,ek, ik) of k + 1 ver-
tices and k edges (k ≥ 1) with the property that e j = {i j−1, i j}. We write e ∈ p and
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i ∈ p for edges and vertices that are part of the path. A path is called simple if no
vertex appears more than once in the sequence (and hence no edge appears more
than once as well). A graph G is called connected if there exists a path between ev-
ery pair of vertices. A component S ⊆V of a graph G = (V,E) is a subset of vertices
that induces a maximally connected subgraph G[S].

Two vertices i, j ∈V are said to be k-edge-connected if there exist k edge-disjoint
paths between i and j in G. The edge connectivity k(G) of a graph is the minimum
over all vertex pairs of the number of edge-disjoint paths.

Similarly, two vertices i, j ∈ V are said to be k-vertex-connected if there exist
k vertex-disjoint paths between i and j (except for vertices i and j). The vertex
connectivity �(G) of a graph is the minimum over all vertex pairs of the number of
vertex-disjoint paths.

A circuit in a graph G = (V,E) is a closed path (i0,e1, i1,e2, i2, . . . , ik−1,ek, ik, i.e.,
i0 = ik. A cycle is a circuit with the additional property that all vertices (and edges)
except the start and end vertex are distinct.

A tree in a graph G = (V,E) is a cycle-free connected subgraph T = (I,L) with
I ⊆ V and L ⊆ E. Hence, there exists a unique path between every pair of nodes
i, j ∈ I. Note that in a cycle-free connected graph |L| = |I|−1. If I = V , then T is a
spanning tree.

A stable set or independent set S is a subset of the vertices such that no two
vertices have an edge in common, i.e., if i, j ∈ S, then {i, j} �∈ E. Stated otherwise,
all vertices in the graph induced by S have degree zero. For the Petersen graph
S = {1,3,7} is a stable set. Since this set cannot be extended further without losing
its stability, S is a maximal stable set. A maximum stable set is a stable set that
is maximal and no other stable set has a higher cardinality, e.g., {1,3,9,10} is a
maximum stable set.

A clique in a graph G = (V,E) is a subset S of the vertices such that G[S] is
complete. Note that S is a clique in G if and only if S is a stable set in Ḡ.

A matching M is a subset of the edges such that no two edges have a vertex in
common, i.e., if e, f ∈ M, then e∩ f = /0 (note that edges are sets of two elements).
Stated otherwise, all vertices in the subgraph (V,M) have degree at most 1. For the
Petersen graph, a (maximum) matching is given by {{1,2},{3,4},{6,8},{7,9}}.

For an arbitrary parameter bi ∈ Q for all i ∈ V , we define the cumulative weight
function b : 2V �→ Q as b(S) = ∑i∈S bi. Similarly, for an arbitrary parameter ce ∈ Q

defined for all e ∈ E, we define the cumulative weight function c : 2E �→ Q as c(L) =
∑e∈L ce.

1.2.2.2 Directed Graphs

A directed graph, or digraph, is a pair D = (V,A) consisting of a set of vertices
V and a set of arcs A where each arc a ∈ A is a two-element ordered subset of V .
Hence, we also write (i, j) ∈ A. Digraphs are used in those situations where the
direction of the relation is of importance, for example, in communication networks
in the modeling of a traffic flow from a source node to a sink node, where it is of
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Fig. 1.2 A directed graph with seven vertices and 12 arcs

importance to know in which direction the signal is transported between the routers.
Another example is the connection of wireless devices with variable transmission
power. Here, an arc (i, j) exists if and only if j represents a device that is within the
transmission reach of device i. Since each device has its own power control, device
i is not automatically in reach of device j if j is in reach of i (see Chapter 13 for
more on this application).

For digraphs, we distinguish between arcs coming in to a vertex i ∈ V and arcs
going out i. The functions N− : V �→ 2V , δ− : V �→ 2A, deg− : V �→ Z+ (or N+ :
V �→ 2V , δ+ : V �→ 2A, deg+ : V �→ Z+) associate with every vertex i ∈ V the set of
incoming neighbors, arcs, and degree (or outgoing neighbors, arcs, and degree).

A (directed) path p in a digraph D is a sequence (i0,a1, i1,a2, i2, . . . , ik−1,ak, ik)
of k +1 vertices and k arcs (k ≥ 1) with the property that a j = (i j−1, i j). We denote
a ∈ p if an arc a ∈ A is part of the path; similarly, i ∈ p. Again, a path is called simple
if vertices are not repeated in the sequence.

A digraph is called strongly connected if there exists a path from any vertex to
any other vertex. A (directed) cycle is a simple directed path with i0 = ik. A digraph
is called a directed acyclic graph or DAG if it does not contain directed cycles.

An arborescence is a digraph with the property that there is a vertex v ∈ V such
that there is exactly one directed path from v to every other vertex u ∈V . The vertex v
is called the root of the arborescence. Stated otherwise, an arborescence is a directed
rooted tree with all arcs directed away from the root.

1.2.3 Mathematical Problems

For our purpose, a mathematical problem is the assignment x : S �→ R of values to
all elements of a set S such that all constraints are satisfied. The values xi, i ∈ S, are
known as the variables of the problem. Let n = |S|. The constraints can be defined
by functions fi : R

n �→ R where a solution x is feasible if and only if fi(x) ≥ 0 for
all i = 1, . . . ,m. The functions fi can be defined in many different ways, from linear
to highly complex.

If the goal of the mathematical problem is to find a feasible solution that max-
imizes or minimizes a further function g : R

n �→ R, we speak of a mathematical
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optimization problem. Hence, the general form of such a (maximization) problem is

max g(x) (1.1a)

s.t. fi(x) ≥ 0 i = 1, . . . ,m (1.1b)

Depending on the type of constraint functions, one can identify combinatorial or
nonlinear optimization problems.

1.2.3.1 Combinatorial Optimization Problems

Many problems in the area of communication problems can be described as a com-
binatorial optimization problem. A combinatorial optimization problem consists of
three components, a finite ground set E, a weight function w : E �→ Z, and a family
F of subsets of E. The ground set is chosen in such a way that it allows for encod-
ing of and distinguishing between both feasible and infeasible solutions by selecting
elements of the ground set. The family F describes all feasible solutions, and hence
2E \F describes all infeasible solutions. The weight function is used to determine
the value of a solution. For a set E ′ ⊆ E, the solution value is the cumulative weight
of the elements, i.e., w(E ′) = ∑e∈E ′ we. The goal of a combinatorial optimization
problem is to find the best feasible solution E ′ ∈ F , i.e., the one with minimum (or
maximum) value.

The set of feasible solutions F can be very large and therefore is usually only
given implicitly, i.e., a set of rules to determine whether or not a subset E ′ is feasible.

An example of an implicitly defined set of feasible solutions is the following:
Given an undirected graph G = (V,E), let F = {E ′ ⊆ E : e∩ f = /0 ∀e, f ∈ E ′},
i.e., a subset of the edges describes a feasible solution if and only if they have no
vertex in common. Such subsets are known as matchings (cf. Section 1.2.2.1).

Another example is the maximum weighted independent set in a graph G =
(V,E). This time the ground set is V (instead of E) and a vertex weight cv is de-
fined for all vertices i ∈ V . A subset S ∈ F if and only if they form an independent
set, i.e., all vertices G[S] have degree 0. Many more examples can be found in Sec-
tion 1.5.

In many cases, the definition of feasible solutions to a combinatorial optimization
problem as subsets of a ground set E is not convenient, in the sense that E should
contain many copies of a certain element. For example, if we would like to install
fibers between two locations, normally multiple fibers can be installed. This would
imply that the ground set contains one element for every possibly installed fiber.
Alternatively, the ground set can be defined as having only one element representing
the fibers between the two locations, but this element can be selected multiple times
in a feasible solution. Hence, E ′ is not anymore a subset of E, but a multi-set.

Within the framework of constraints fi(x) and an objective function g(x), each
solution is an assignment of 0s and 1s to the variables xe, e ∈ E. The objective
g(x) = ∑e∈E wexe is a linear function of the variables, whereas the constraints fi(x)
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have to be defined in such a way that fi(x) ≥ 0 if and only if x defines a feasible
solution (including the constraints xe ∈ {0,1} for all e ∈ E). This model can be
easily extended to general integer values for xe to represent multi-sets.

1.2.3.2 Continuous and Nonlinear Optimization Problems

Not every communication networking problem can be easily described as a combi-
natorial optimization problem. If decisions can be taken within a continuous spec-
trum of possibilities, discrete or combinatorial choices do not represent the full scale
of solutions. Also the impact of certain decisions might have nonlinear effects.

If all constraint functions fi(x) and the objective g(x) are linear, the problem is
defined as a linear optimization problem. If at least one of these functions is nonlin-
ear, a nonlinear optimization problem has to be solved. In Chapter 6, network loss
models for optical burst switching are modeled with nonlinear functions, whereas
in Chapter 11 a hyperbolic (hence, nonlinear) objective function is used to model
the efficiency of a wireless local access network. Note that the requirements that
variables x must be assigned discrete values are nonlinear functions as well.

1.2.4 Distributed Problems

In emerging applications like ad hoc wireless networking or sensor networks, cen-
tralized decisions are not favored or are even impossible due to the decentralized
nature of the decision making process. In such cases, solving a mathematical op-
timization problem taking into account all possibilities of the decentralized units
might not be implementable, and hence the decentralized or distributed problem has
to be studied.

Classical combinatorial problems are centralized, i.e., there is a central control-
ling unit having complete knowledge of the input and an ability to implement de-
cisions. In a distributed system, however, there is not a central unit, but many au-
tonomous units (or processors), each having limited local knowledge of the system.
Hence, decisions have to be taken by the autonomous units in a decentralized way.
To enhance decision making, a processor can communicate with other processors,
sometimes only in the local vicinity (modeled by a graph).

The aim of a distributed algorithm is, e.g., to enable communication services
(routing in a wireless meshed network), to maintain control structures (backbone
topology in a mobile ad hoc network), or to control resources (load balancing of
processors). The quality of a distributed algorithm is usually measured by its time
complexity and its communication complexity. The time complexity is measured as
the number of communication rounds needed to realize the purpose of the algorithm.
The communication complexity is measured as the total number of messages or
volume sent by the algorithm.
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The application of distributed algorithms to broadcasting is the topic of Chap-
ter 12. We refer to [72, 78, 87] for further information on distributed computing and
algorithms.

1.2.5 Online Decision Problems

In online decision problems not all information needed to determine the guaranteed
optimal solution is available at the time of decision making. In such a case, one
has to make a decision before complete knowledge of the problem input becomes
available. The aim in such a situation is to make a decision that is best whatever the
unknown input will be. The competitive ratio measures the quality of an algorithm in
comparison to the off-line optimal solution, i.e., the optimal solution if the complete
input were known at the time of decision.

In an online optimization problem, the missing input is modeled as a sequence
of events that are unveiled one at a time. An algorithm has to be developed that
reacts to the events without knowledge of further events in the sequence. The set
I represents all considered input sequences. If for an input I ∈ I , we represent
the off-line optimal solution value with OPT (I) and the solution value of an online
algorithm A with A(I), the competitive ratio is defined as

c(A) := max
I∈I

A(I)
OPT (I)

.

Hence, the competitive ratio measures the worst-case performance of the algorithm.
A problem is called c-competitive if there exists an algorithm A with competitive
ratio c. It is sometimes possible to show for a problem that there is no constant
c ≥ 1 such that there exists an algorithm that is c-competitive.

One of the classical examples of online optimization is the paging problem. In
the paging problem, we consider two levels of computer memory, the slow mem-
ory containing N pages p1, . . . , pN and the fast memory (cache) that can store an
arbitrary subset of k < N pages. Pages loaded in the cache can be accessed directly
when requested (known as a cache hit), whereas the other pages first have to be
loaded from the slow memory into the cache (known as a cache miss). If the cache
is fully loaded and another page is requested, one of the pages in the cache must be
removed. The problem is to find an algorithm that minimizes the number of cache
misses, without knowledge of which pages are requested in the future.

Given a sequence r1, . . . ,rn of page requests, we have to decide for each cache
miss which page to remove. In the off-line setting, i.e., the complete sequence of
requests is known in advance, the Longest-Forward-Distance algorithm [13] pro-
vides an optimal solution: At every cache miss, remove the page whose next access
is most distant in the future.

In the online setting, several algorithms have been proposed, such as First-In-
First-Out, Last-In-First-Out, and Least-Recently-Used. The latter removes the page
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that has been in the cache the longest time without being requested. It can be shown
that First-In-First-Out and Least-Recently-Used are k-competitive [84]. Moreover,
it has been proved that no deterministic algorithm (i.e., an algorithm that does not
include randomized decisions) exists that is c-competitive with c < k [84].

Algorithms with a better performance can be obtained by using randomized deci-
sions. In particular, the random marking algorithm of [47] has a competitive ratio of
2Hk, where Hk = 1+ 1

2 + . . .+ 1
k is the kth Harmonic number (note that Hk ≤ 1+ lnk.

The algorithm works in phases as follows. Initially all pages in the cache are un-
marked. A phase is ended as soon as all pages in the cache are marked. In this case,
all pages are unmarked and a new phase begins. This way, we always have at least
one page unmarked upon the arrival of a request for a page p. If page p is in the
cache, it is marked. If page p is not in the cache, we randomly choose an unmarked
page in the cache to be replaced by p, and p is marked.

We refer to [52] for further reading in the area of online optimization. Applica-
tions of online optimization in communication networks can be found in Chapters 2
and 10.

1.3 Computational Complexity

Computational Complexity theory is the science that studies the computational re-
sources (time, memory, etc.) needed to solve computational problems. It is espe-
cially concerned with the distinction between tractable problems, that can be solved
with reasonable amount of resources, and intractable problems, that are beyond the
power of existing, or conceivable, computers.

Obviously the computational resources needed to solve a problem depend on the
size of the problem input data. A problem is considered efficiently tractable if the
resources needed grow at most as a polynomial function in terms of the input data,
and is considered not efficiently computable otherwise.

A complexity class is the set of problems solvable by a particular computational
model under a given set of resource constraints. Therefore, if we focus on time as
the main resource, or equivalently, the number of elementary computer operations
required to solve the problem, we define a first complexity class as follows.

P is the class of decision problems that can be solved in polynomial time on a
deterministic effective computing system (ECS). Loosely speaking, all computing
machines that currently exist in the real world are deterministic ECSs. So, P is the
class of problems that can be computed in polynomial time on real computers. A
decision problem is a problem for which the solution is a “yes” or “no” answer.

NP is the class of decision problems that can be solved in polynomial time on
non-deterministic ECSs. A non-deterministic machine is a machine which can ex-
ecute programs in a way where, whenever there are multiple choices, rather than
iterate through them one at a time it can follow all choices or paths at the same time,
and the computation will succeed if any of those paths succeed; if multiple paths
lead to success, one of them will be selected by some unspecified mechanism; we
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usually say that it will pick the first path to lead to a successful or “yes” result. The
idea of non-determinism in effective computing systems can be explained without
entering into details of non-deterministic computing machines (the reader is referred
to [8, 50] for a more detailed explanation). A decision problem whose “yes” solution
can be computed in polynomial time on a non-deterministic machine is equivalent
to a problem where a proposed “yes” solution can be verified as correct in polyno-
mial time on a deterministic machine. You can specify a non-deterministic machine
that guesses one solution, following all of those paths at once, and returning a result
whenever it finds a solution that it can verify is correct. So, if you can check a so-
lution deterministically in polynomial time (not produce a solution, but just verify
that the solution is correct), then the problem is in NP.

The distinction can become much clearer with an example. A classic problem
is the subset sum problem. In the subset sum problem, an arbitrary set of integers
is given. The question is whether there exists a nonempty subset of values in the
set whose sum is 0? It should be pretty obvious that checking a solution is in P: a
solution is a list of integers whose maximum length is the size of the entire set; to
check a potential solution, add the values in the solution, and see if the result is 0.
The computational effort of this procedure is O(n) where n is the number of values
in the set. But finding a solution is hard. The solution could be any subset of any size
larger than 0; for a set of n elements, there are 2n −1 such subsets. Even if you use
clever tricks to reduce the number of possible solutions, you are still in exponential
territory in the worse case. But you can non-deterministically guess a solution and
test it in linear time; but no one has found any way of producing a correct solution
deterministically in less thanΘ(2n) steps.

One of the great unsolved problems in theoretical computer science is does P =
NP? That is, is the set of problems that can be solved in polynomial time on a
non-deterministic machine the same as the set of problems that can be solved in
polynomial time on a deterministic machine? It is clear that that P ⊆ NP, that is,
that all problems that can be solved in polynomial time on a deterministic machine
can also be solved in polynomial time on a non-deterministic machine. Although it
is a commonly accepted hypothesis that P �= NP no one has been able to prove it to
date.

Within NP, there is a set of particularly interesting problems which are called
NP-complete. The idea of an NP-complete problem is that it is one of the hardest
problems in NP or, in other words, is one where we can prove that if there is a P-
time computation that solves the problem, it would mean that there was a P-time
solution for every problem in NP, and thus P = NP.

How do we show that a given problem is NP-complete? NP-completeness is
based on the idea of problem reduction. Given two problems S and T for which it
can be shown that any instance of S can be transformed into an instance of T in
polynomial time, it is said that S is polynomial-time reducible to T . Therefore, if an
efficient algorithm to solve problem T is known, this algorithm can also be used to
solve problem S. It can be seen as S is easier than T .

Once we know a problem T which is NP-complete, then for any other problem
U , if we can show that T is polynomial-time reducible to U , then U must be NP-
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complete as well. If we can reduce T to U , but we do not know how to reduce U to
T or we do not know if U ∈ NP, then we do not just say that U is NP-complete; we
say that it is NP-hard.

There are a lot of problems which have been proved NP-complete. So, given a
new problem, there are a lot of different NP-complete problems that can be used as
a springboard for proving that the new problem is also NP-complete.

Most NP-completeness proofs are ultimately built on top of the NP-completeness
proof of one fundamental problem, whose nature makes it particularly appropriate
as a universal reduction target and it is also the first problem that was proved to be
NP-complete. It is called the propositional satisfaction problem (a.k.a. SAT or sat-
isfiability), which was shown to be NP-complete via a rather abstract model (Cook
Theorem [50]). For any other problem, if we can show that we can translate any in-
stance of a SAT problem to an instance of some other problem in polynomial time,
then that other problem must also be NP-complete. And SAT (or one of its simpler
variations, 3-SAT) is particularly easy to work with, and it is easy to show how to
translate instances of SAT to instances of other problems.

Let us see an example. A vertex cover of an undirected graph G = (V,E) is a
subset V ′ of the vertices of the graph such that every edge in G has an endpoint in
V ′, i.e., ∀(u,v) ∈ E : u ∈ V ′ ∨ v ∈ V ′.

The vertex cover problem is the optimization problem of finding a vertex cover
of minimum size in a graph. The problem can also be stated as a decision problem:
Given a graph G and a positive integer k, is there a vertex cover of size k or less for
G?

Vertex cover is closely related to the Independent Set problem: V ′ is a vertex
cover if and only if its complement, V\V ′, is an independent set. It follows that a
graph with n vertices has a vertex cover of size k if and only if the graph has an
independent set of size n− k. Equivalently a graph G = (V,E) with n vertices has
a vertex cover of size k if and only if the complementary graph G = (V,E) have
a clique of size n− k. This equivalence shows a trivial polynomial reduction from
clique to vertex cover. Since clique (does a graph has a clique of given size?) is an
NP-complete problem (see [50]), we have shown the NP-completeness of vertex
cover.

1.4 Combinatorial Optimization Methods

Given a (classical) combinatorial optimization problem by its three components,
the ground set E, (an implicit definition of) the feasible solutions F , and a weight
function w : E �→ Z, the problem can be formulated as mathematical optimization
problem by introducing decision variables for all elements of the ground set E. For
every e ∈ E the decision variable xe can take the values 0 or 1 (and is therefore
called binary) indicating whether e is chosen (1) or not (0) in the optimal solution.
Hence, the objective can be written as ∑e∈E wexe. We further define xE ′ = (xe)e∈E

to be the incidence vector for a subset E ′ ⊆ E, i.e., xe = 1 if e ∈ E ′ and 0 otherwise.
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By defining X = {xE ′ | E ′ ∈ F}, we now can write the problem as

max
{

wT x | x ∈ X
}

. (1.2)

If convenient from the problem perspective, the above might be generalized to multi-
sets to represent decisions that can be made multiple times.

To find an optimal solution for the above problem, a number of methods are avail-
able. In the following we first introduce linear programming problems and briefly
describe algorithms to solve such problems. Next, we discuss how combinatorial
optimization problems can be solved with linear-programming-based techniques.
Alternative solution methods like graph theory, problem-specific combinatorial al-
gorithms, approximation algorithms, and heuristics are discussed in Sections 1.4.2,
1.4.3, 1.4.4, and 1.4.5 respectively. Both linear-programming-based branch-and-
bound and graph algorithms are examples of exact algorithms, i.e., they provide
the optimal solution in the end. In contrast, heuristics and approximation algorithms
provide a good but not necessarily optimal solution.

Note that the above discussion becomes more complicated as soon as more gen-
eral problems are studied. A brief discussion of nonlinear optimization methods can
be found in Section 1.4.6

1.4.1 Linear-Programming-Based Methods

1.4.1.1 Polyhedral Theory

Since the components of all vectors x ∈ X are either 0 or 1, problem (1.2) is equiva-
lent to

max
{

wT x | x ∈ P
}

,

where P = conv(X) is the convex hull of all vectors in X , i.e.,

conv(X) :=

{

y | ∃t ∈ Z+,∃x1, . . . ,xt ∈ X ,∃λ ∈ [0,1]t ,
t

∑
i=1
λi = 1,y =

t

∑
i=1
λix

i

}

A set P that can be written as the convex hull of a finite number of vectors is called a
polytope. A set P ⊂ R

n is called a polyhedron if and only if there exists m ≥ 0 such
that

P = {x ∈ R
n | Ax ≤ b},

where A is an m×n matrix and b ∈ R
m (if m = 0, P = R

n). A polytope is a bounded
polyhedron. An example is given in Figure 1.3.

So, instead of an implicit description of all feasible solutions, we can give a
polyhedral description of the solutions by a system Ax ≤ b. In fact, in the case of
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Fig. 1.3 A two-dimensional polyhedron described by a system of five inequalities

binary vectors describing the feasible solutions, the polyhedron is bounded. This fact
is the key to solving combinatorial optimization problems with linear programming
techniques.

In case the solutions are represented by multi-sets of the ground set E, a sim-
ilar approach can be followed, with the difference that the solution space may be
unbounded (in theory), and therefore we have to study a polyhedron instead of a
polytope. Although not necessary if the objective is linear, it is usually assumed that
every integer solution that can be written as a convex combination of integer feasible
solutions is also feasible. This assumption is not needed in the case of binary vec-
tors since binary vectors cannot be written as a convex combination of other binary
vectors.

1.4.1.2 Solving Linear Programming Problems

A linear program (LP) is an optimization problem satisfying the following condi-
tions

• the objective is a linear function of the variables
• all constraints are linear in the variables
• the variables can take any values (i.e., ∈ R) that satisfy the constraints

By this definition, an LP can be written w. l. o. g. in its standard maximization form
as follows

⎧
⎨

⎩

max cT x
s.t. Ax = b

x ≥ 0
(1.3)

with matrix A ∈ Q
m×n, a right-hand side b ∈ Q

m
+, and arbitrary objective values

c ∈ R
n (here, m is the number of rows and n the number of columns of A). Objectives

to be minimized can be rewritten as a maximization problem by multiplying the co-
efficients by -1. Likewise for equations with negative right-hand sides. Inequalities
can be written as equations by introducing slack variables. Upper bound constraints
for single variables are included in the coefficient matrix (with a slack variable).
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Negative lower bounds can be avoided by substituting variables, and therefore we
can assume that all variables are nonnegative.

The optimal solution of a linear program (1.3) can be found by a variety of meth-
ods developed since the 1940s. A first method is Fourier-Motzkin elimination for
solving systems of linear inequalities [82, Chapter 12], but it is computationally
rather intensive. More efficient algorithms (either in theory or practice) are provided
by the Simplex method and interior point methods.

Simplex Method

The Simplex method was developed as early as 1947 by Dantzig [36]. Assuming
there exist feasible solutions to (1.3), the Simplex algorithm exploits the fact there
exists an optimal solution that is an extreme point (vertex) of the polyhedron defined
by Ax = b and x ≥ 0. Therefore, the Simplex algorithm walks along the extreme
points of the polyhedron in such a way that the objective value of the sequentially
considered solutions is improving. For this a first extreme point of the polyhedron
has to be found. This is known as Phase I, whereas the walk along the extreme
points of the polyhedron to an optimal solution is known as Phase II. Figure 1.4
illustrates the procedure for an objective and the polyhedron of Figure 1.3.

solution
LP

objective

Phase I

Phase II

Fig. 1.4 Given an objective, at least one optimal solution is an extreme point of the polyhedron;
the Simplex method uses this property by walking along the extreme points

If b = 0, x = 0 is a feasible solution of (1.3). If b �= 0, this solution is infeasible
and Phase I consists of setting up an auxiliary linear program for which a feasible
solution can be easily found. Next, Phase II is applied to this auxiliary LP to find
a feasible solution of (1.3). The auxiliary LP is obtained by introducing variables
si ≥ 0, 1 ≤ i ≤ m. The aim is to find a solution with s = 0, and thus the auxiliary LP
reads⎧

⎨

⎩

max 1IT s
s.t. Ax+ s = b

x,s ≥ 0
(1.4)

where 1I is the all-one vector of dimension m. It holds that (1.3) has a feasible solu-
tion if and only if the optimal solution of (1.4) has s = 0. A feasible solution of (1.4)
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is given by (x,s) = (0,b) (note b ≥ 0 in (1.3)). So, we directly can start with Phase
II for this auxiliary LP. If the optimal solution (x∗,s∗) has s∗ �= 0, the polyhedron
defined by Ax = b, x ≥ 0 is empty; otherwise, x∗ is a feasible solution for (1.3).

Phase II works with basic feasible solutions. A basic solution to Ax = b (with
n ≥ m) is obtained by setting n−m variables equal to 0 (the non-basic variables) and
solving the values of the remaining m variables (the basic variables), assuming that
the columns for the remaining m variables are linearly independent. If all variables
in a basic solution are nonnegative, it is called a basic feasible solution. It can be
shown that a point in the feasible region of LP (1.3) is an extreme point if and only
if it is a basic feasible solution to Ax = b. Now, two basic feasible solutions are said
to be adjacent if their sets of basic variables have m−1 basic variables in common.

Since an LP with a nonempty feasible region always has an optimal basic feasible
solution, the solution provided by Phase I is a basic feasible solution of (1.3). Start-
ing with this solution, the Phase II of the Simplex algorithm exchanges one basic
variable for a non-basic variable in order to become a better objective value. Such
an exchange is called a pivot. As long as the basic feasible solution is not optimal,
such a pivot exists. The performance of the Simplex algorithm heavily depends on
the selection of the pivot element (including so-called cycling between basic feasi-
ble solutions with the same objective value). An optimal solution is found as soon
as none of the neighboring basic feasible solutions have a better objective value (we
omit the technical details on how to check this condition here).

Klee and Minty [67] have shown that the Simplex algorithm might take an expo-
nential number of pivots to find the optimal solution. In practice, however, revised
and dual versions the Simplex algorithm are still considered as the best algorithms
to solve linear programs [20]. For an in-depth introduction to the Simplex algorithm
we refer to [29, 88].

Interior Point Methods

The worst-case exponential behavior of the Simplex algorithm has motivated re-
search for alternative, polynomial time, algorithms to solve a linear program. Start-
ing with the work of Karmarkar [65], so-called interior point methods resolved this
question. Interior point methods basically do not follow a path along the extreme
points of the polyhedron, but go through the interior of it. If a single optimal so-
lution (which is an extreme point) exists, the algorithm approximates this solution,
and a final rounding step will result in the optimal solution. If multiple optimal
solutions exist, an interior point algorithm might approximate any convex combina-
tion of the extreme optimal solutions, and the resulting optimal solution might be
different from the optimal extreme points. We refer to [88] for a detailed discussion.
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Dynamic Column Generation

Some formulations of optimization problems as (integer) linear programs require a
very large number of variables, typically exponential in the problem input size. An
example is the set of variables representing all possible paths between two nodes in
a network; see Section 1.5.2.2. In such cases, it is irrational and often impossible to
generate and store all variables in the optimization software. The implicit handling
of such very large sets of variables is known as dynamic column generation. Instead
of all variables, only a small subset of the variables is generated in the beginning, and
the remaining variables are not considered in the first instance. For the initial subset
of variables the reduced linear program known as the master program is solved to
optimality. Next, all remaining variables (implicitly set to 0) are checked for the
capability of potentially improving the solution by adding them to the small set of
explicitly handled variables. If some candidates are found, they are added to the
linear program, and this is solved again. The procedure is repeated until no further
candidates are found. In this case, the optimal solution is found without dealing with
all variables explicitly. The problem of finding candidate variables to be included in
the master program is known as the pricing problem and usually can be formulated
as a linear or integer linear program.

1.4.1.3 Solving Mixed-Integer Linear Programming Problems

An integer linear program (ILP) is an optimization problem satisfying the following
conditions

• the objective is a linear function of the variables
• all constraints are linear in the variables
• the variables can take only integer values (i.e. ∈ Z)

By this definition, an ILP can be written w. l. o. g. in its standard maximization form
as

⎧
⎨

⎩

max cT x
s.t. Ax = b

x ∈ Z
n
+

(1.5)

with matrix A ∈ Q
m×n, a right-hand side b ∈ Q

m
+, and arbitrary objective values c ∈

R
n. A mixed-integer program (MIP) generalizes the above definition by requiring

only a subset of the variables to be integer and allowing the remaining ones to take
continuous values. The methods to solve ILPs and MIPs are basically the same, and
therefore not further distinguished in this chapter.

For the purpose of our exposition, it is more convenient to rewrite the formula-
tion (1.5) to a system of linear inequalities:

⎧
⎨

⎩

max cT x
s.t. Ax ≤ b

x ∈ Z
n
+

(1.6)
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The linear relaxation of (1.6) is obtained by replacing the integrality constraints
by nonnegativity constraints. Figure 1.5 illustrates for a given system of linear in-
equalities the integer-feasible solutions (i.e., the grid of points) as well as the LP
relaxation (the polytope).

objective

solution
LP

Fig. 1.5 Integer-feasible solutions and the LP relaxation for a system of linear inequalities

Branch-and-Bound

The most common method to solve ILPs is branch-and-bound (B&B). In a B&B
algorithm, the linear programming relaxation of (1.6) is solved multiple times, each
time with other bounds on the variables. Let z be the optimal solution value of (1.6).
The algorithm starts with solving the LP relaxation, returning a solution x̂. Since the
LP relaxation contains all integer-feasible points (cf. Figure 1.5), the value of the
LP relaxation z0

LP = cT x̂ is an upper bound on z. If x̂ ∈ Z
n
+, the solution is also valid

for (1.6), and hence we found an optimal solution. If x̂ �∈ Z
n
+, there is at least one

fractional variable x̂i. In an optimal solution, either xi ≤ �x̂i� or xi ≥ �x̂i�. There-
fore, we perform branching on xi: we replace the LP relaxation with two new sub-
problems, one with the variable bound xi ≤ �x̂i� and one with the variable bound
xi ≥ �x̂i�; see Figure 1.6 for illustration.

solution

solution

objective

new LP

new LP

Fig. 1.6 Branching on a fractional variable: two subproblems provide new optimal LP solutions
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Every optimal solution of (1.6) is in either of the new polyhedra, and thus
z = max{z1,z2} where z1 and z2 are the optimal (integer) solution values of the sub-
problems respectively. Moreover, z ≤ max{z1

LP,z2
LP}≤ z0

LP bounds the optimal value
from above, where z1

LP and z2
LP are the values of the corresponding LP relaxations.

In case the LP relaxation of the first (second) subproblem is integral, z ≥ z1
LP = z1

(z ≥ z2
LP = z2), and we can bound the optimal value from below. The procedure

can be repeated recursively for the subproblems as long as the two bounds are not
equal. For further details, we refer to [82, 92] or to any one of the many textbooks
in Operations Research.

Polyhedral Combinatorics

Polyhedral combinatorics is the study of the structure of the polytope (polyhedron)
described by the integer solutions of (1.6). Given the set of integer solutions, we
can define P as the convex hull of these points; see Figure 1.7. If we can derive
a system of linear inequalities describing this polytope, (1.6) can be solved by the
Simplex Algorithm (or interior point methods, possibly with a slight permutation of
the objective) since every extreme point is integral by definition.

objective

solution
LP

Fig. 1.7 The convex hull of integer solutions can be described by a system of linear inequalities

An inequality ax ≤ a0 is called valid if ax∗ ≤ a0 for all x∗ ∈ P. Let F(a,a0) = {x ∈
P : ax = a0} be the set of polytope points that satisfy the valid inequality with equal-
ity. If F �= /0 it describes a face of P. A valid inequality is facet-defining if F(a,a0)
is maximal, i.e., there is no other valid inequality dx ≤ d0 with F(a,a0) ⊂ F(d,d0).
Stated otherwise, the intersection of the polytope and a facet-defining valid inequal-
ity forms a face of the polytope of highest possible dimension (without having
F = P); see Figure 1.8.

A valid inequality is also called a cutting plane as it might cut off a fractional so-
lution from the integer solutions. A cutting plane algorithm follows this procedure.
First, the LP relaxation is solved. Next, if the LP solution x̂ is not integral, there
exists a valid inequality ax ≤ a0 that is violated by x̂, i.e., ax̂ > a0. This inequality is
added to the system of inequalities defining the LP relaxation, and the enlarged LP
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cutting plane

objective

new LP
solution

(a) Valid inequality

objective

facet

(b) Facet of polyhedron

Fig. 1.8 A cutting plane is a valid inequality that separates the LP relaxation from the integer-
feasible solutions; the strongest cutting planes are facets of the integer polyhedron

is resolved. This procedure is repeated until the optimal LP solution is integral. The
search for a violated inequality is known as the separation algorithm.

If all facet-defining inequalities of P are known (a so-called complete descrip-
tion), the described algorithm is guaranteed to find an optimal solution of (1.6).
However, since interior point methods find an optimal solution in polynomial time,
deriving a complete description of the convex hull of integer points is at least as
difficult as solving the optimization problem itself; i.e., if the problem is NP-hard,
deriving a complete description of size polynomial in the input is not possible, un-
less P = NP. Stated differently, if a complete description of the polytope can be
identified, the number of inequalities must be of exponential size, unless P = NP.
Further, given a fractional solution x̂ of (1.6), determining a violated valid inequal-
ity is, in general, as hard as solving the optimization problem itself. This theorem is
known as separation = optimization [53, 54]. For further details we refer to [55]. A
compact presentation of polyhedral techniques for combinatorial optimization can
be found in [1, 2].

Branch-and-Cut

If not all facet-defining inequalities of P are known, the cutting plane algorithm
might not be able to find a violated valid inequality given an LP solution x̂. Or it may
take too long to find a violated inequality. In such cases, the cutting plane algorithm
ends with a fractional solution and a (hopefully) improved upper bound. Branching
on one of the fractional variables is now an option. For each of the subproblems,
the cutting plane algorithm can be restarted to improve the bounds further. This
combination of branch-and-bound and cutting planes is known as branch-and-cut.

All modern integer linear programming solvers exploit a branch-and-cut algo-
rithm, where general purpose cutting planes like Chvátal-Gomory cuts and clique
inequalities are separated. Products like ILOG CPLEX [64] and SCIP [5] allow for
the addition of problem-specific cutting planes by the user.
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Branch-and-Price

The case where the ILP (1.5) has a very large number of variables can be handled
similarly to the linear programming case, using a master and pricing problem. How-
ever, this time such a dynamic column generation approach has to be interwoven
with the B&B algorithm. The resulting algorithm is known as branch-and-price
(B&P). Special care has to be taken to solve a problem with B&P since branching
on variables might be in conflict with the column generation, i.e., if we branch on
a variable to be bounded from above (i.e., xi ≤ �x̂i�, we should prevent the same
variable from being generated by the column generation, since otherwise the same
subproblem as before is solved. For further information on B&P, or the integration
of cutting planes, known as branch-and-cut-and-price (B&C&P), we refer to [11].

Further Reading

More on (mixed) integer linear programming methods and polyhedral theory can be
found in [76, 82, 92]. Recent progress can be found in [21], whereas [31] provides
a nice historical view.

1.4.2 Graph Theory

Graph theoreticians study the properties of particular (classes of) graphs and search
for equivalent characterizations among them. In many cases, graph-theoretical mod-
els and concepts turned out to be very relevant for communication networks, e.g.,
for interconnection networks or GSM frequency planning (see Section 1.5.5.1). But
networking problems have also turned into graph-theoretical questions and answers.
For example, the study of non-blocking multistage switching networks for telephony
networks has resulted in the so-called Clos network [30]. Here are a few other ex-
amples taken from [35]: Design of dense networks [15, 25], traffic congestion (for-
warding index) [28, 61], broadcasting algorithms and dissemination (gossiping) of
information [63], fault tolerance (surviving route graph [40] or connectivity [45]).

In the last two decades, the development of optical networking technologies has
required the solution of classical graph-theoretical problems. As observed by many
authors, the wavelength assignment problem in an all-optical network is in essence
equivalent to the vertex coloring problem in its conflict graph, e.g., [46]. Another
example is networks based on the Optical Transpose Interconnection System (OTIS)
architecture [73]. It has been shown in [34] that they have a topology which is highly
related to the very well-known families of directed graphs called Kautz and De
Bruijn graphs. Those families have been proposed many times as topologies for
interconnection networks due to their good properties.
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A number of high-quality textbooks on graph theory exist (for example, [91],
some of them available online, e.g., [22, 38]). For the theory of digraphs, we refer
to [9].

1.4.3 Combinatorial Algorithms

Many combinatorial optimization problems can be solved by specialized algorithms
in polynomial time. This is in particular true for problems with an underlying (di-
rected) graph structure. Such algorithms are called combinatorial algorithms. A
combinatorial algorithm takes the problem parameters as input and outputs the op-
timal solution for the problem at hand. We distinguish a number of different cases.

A greedy algorithm is an algorithm that constructs a solution by irrevocably se-
lecting components of the solution, i.e., once a component of the solution is se-
lected, it will not be removed anymore from the solution. An example of a greedy
algorithm is the Dijkstra-Prim algorithm for computing a minimum spanning tree;
cf. Section 1.5.1.1.

A dynamic programming algorithm uses optimal solutions to subproblems of
the original problem to compute the optimal solutions for the original problem. An
example for such an algorithm is the dynamic programming algorithm for the knap-
sack problem, where knapsack problems with fewer items and smaller volumes are
solved recursively; see [74].

Dijkstra’s algorithm for the shortest path problem (see Section 1.5.2.1) is neither
a greedy algorithm nor a dynamic programming algorithm since solution values are
updated before the optimal solution (of subproblems) is found. Such combinatorial
algorithms exist for many well-structured problems. Schrijver [83] is a great source
for problems (and the algorithms of course) that can be solved in this way. All these
problems have in common that they can be solved in polynomial time and thus
belong to the class P.

1.4.4 Approximation Algorithms

If a problem is not known to be a member of class P but rather is known to be
NP-complete, there still may exist algorithms that provide a solution in polynomial
time. However, such algorithms do not guarantee that the solution is optimal.

The class APX is the set of NPO problems (optimization problems whose deci-
sion version is in NP) that allow polynomial-time approximation algorithms with
approximation ratio bounded by a constant. An approximation algorithm is called
an α-approximation algorithm for some constant α if it can be proved that the so-
lution that the algorithm finds is at most α times worse than the optimal solution.
Here, α is called the approximation ratio. Depending on whether the problem is a
minimization or a maximization problem, this can either denote α times larger or
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α times smaller, respectively. For example, the vertex cover problem and traveling
salesman problem with triangle inequality each have simple 2-approximation algo-
rithms. In contrast to that it is proved that the traveling salesman problem with arbi-
trary edge lengths cannot be approximated with an approximation ratio bounded by
a constant, unless the Hamiltonian path problem can be solved in polynomial time.

If there is a polynomial-time algorithm to solve a problem within every fixed
constant α (with running time dependent on α), then the problem is said to have a
polynomial-time approximation scheme (PTAS). Unless P = NP, it can be shown
that there are problems that are in APX but not in PTAS; that is, problems that
can be approximated within some constant factor, but not every constant factor. A
problem is said to be APX-hard if there is a PTAS reduction from every problem in
APX to that problem. To say a problem is APX-hard is generally bad news, because
it denies the existence of a PTAS, which is the most useful sort of approximation
algorithm. For further details, we refer to [8].

1.4.5 Heuristics Without Solution Guarantee

A further class of algorithms provides a solution without any guarantee on the qual-
ity. In such a case we speak about a heuristic. Some heuristics generate a solution
from scratch and are therefore called constructive heuristics. A local search algo-
rithm takes a solution as part of the input and tries to improve this solution, e.g., by
exchange operations. A good source on local search algorithms is [4].

More computationally intensive algorithms are known under the collective term
metaheuristics, including genetic algorithms, tabu search, simulated annealing, ar-
tificial neural network, and ant colony optimization. We again refer to [4] for a
review of those methods.

1.4.6 Nonlinear Programming

For nonlinear programming problems the solution methodology is less standardized
than for linear programming problems. This is mainly due to the fact that one has to
distinguish between local optimal and global optimal solutions. A local optimal so-
lution x̂ is a solution such that for any small perturbation ε , x̂+ε is either infeasible
or its objective value is worse. However, it does not guarantee that there is no other
solution y with a better objective value. For the global optimal solution it holds that
there does not exist any other feasible solution with a better objective value.

For linear programming problems (more precisely, convex optimization prob-
lems) each local optimal solution is also globally optimal, which allows methods
like the Simplex algorithm to work. As this is not the case for general nonlinear pro-
gramming problems (non-convex to be more precise), methods usually only guaran-
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tee a local optimal solution as output. Valuable sources for the theory of nonlinear
programming are [12, 16].

1.5 Selected Classical Applications in Communication Networks

In this section a few classical applications of graphs and algorithms for communi-
cation networks are discussed. First, the design of network topologies is discussed,
as well as are some routing problems such as the shortest path and minimum cost
flow. In Section 1.5.3 basic versions of the network planning/design problem are in-
troduced. We elaborate on an application to optical network design in Section 1.5.4,
before two classical applications in wireless networks are discussed in the final Sub-
section 1.5.5.

1.5.1 Design of Network Topologies

The design of network topologies has a long tradition of providing combinatorial
optimization problems, starting with the design of tree and ring networks to meshed
network structures that guarantee multiple node- or link-disjoint paths between ev-
ery pair of network nodes.

1.5.1.1 Design of Tree Topologies

To enable communication between a pair of network nodes, either direct or via other
network nodes (serving as switches), there must exist at least one path between
them. In topology network design problems costs are associated with the usage of
a potential link between two network nodes. These costs can represent various real
cost factors such as the digging of a cable trunk, the leasing of a virtual connection,
the laying of a cable in an office building, or the installation of a configuration of a
directed radio link. Capacity of the link does not play a role as we only consider the
possibility to communicate and not the amount of communication (cf. Sections 1.5.2
and 1.5.3 for these issues).

Depending on the technology, a link may be directed or undirected. In this chap-
ter we only consider the undirected version of this problem; we refer to [83, Chapter
52] for the directed version. We abstract from the practical application by the intro-
duction of two graphs: The graph G = (V,E) describes all potential connections
between the networks nodes V . We associate with every edge i j ∈ E a cost value
κi j ∈ Q denoting the installation cost of a link between the network nodes. W. l. o. g.
we can assume that G is complete by κi j = ∞ for all not yet existing edges i j �∈ E.
A minimum cost subset of the edges L ⊆ E has to be selected as network topology.
A second graph H = (U,F) with U ⊆V encodes all required communication paths.
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An edge i j ∈ F exists if and only if the topology solution should contain a path
between the two network nodes. Three cases are distinguished in the following:

1. U ≡ V and H is complete – the minimum spanning tree problem,
2. U ⊂ V and H is complete – the minimum Steiner tree problem, and
3. H is not a complete graph – the minimum Steiner network problem.

Each of the cases is illustrated by an (artificial) example from communication net-
working.

Minimum Spanning Tree Problem

Application 1.1 In a new office building, a Wireless Local Area Network (WLAN)
has to be installed. For this a number of so-called access points (APs) have been
determined that allow for wireless coverage of the building. The APs have to be
interconnected via a wired Ethernet backbone. The cost of a direct wired connection
between two APs i and j is denoted by κi j ∈ Q. One has to design a minimum cost
wired network topology that enables communication between all APs.

In this application no other connection points than the APs exist. Hence, V denotes
the set of APs and S = V . This problem is known as the minimum cost spanning tree
problem. If a connecting path is required between all vertex pairs i, j ∈ V , at least
|V |− 1 edges have to be selected and the resulting subgraph (V,L) must be cycle-
free (otherwise certain vertices are not connected). Such subgraphs are exactly the
spanning trees in G. Thus, in this case the optimal topology is a minimum cost
spanning tree T = (V,L).

A minimum cost spanning tree in a weighted graph G = (V,E) can be found with
for example the Dijkstra-Prim algorithm [39, 81]; see Algorithm 1.1. The algorithm
selects repeatedly the minimum cost edge extending the current tree, starting with a
single vertex, and ending with a tree spanning all vertices.

Algorithm 1.1 Dijkstra-Prim algorithm to determine the minimum cost spanning
tree T = (V,L) in a graph G = (V,E) with edge cost κe.

Let L := /0
Let S := {i} for some arbitrary i ∈ V
while S �= V do

Let e = argmin{κi j | i j ∈ E, i ∈ S, j ∈ V \S}
L := L∪{e}
S := S∪{ j} with e = {i, j}, i ∈ S

return T = (V,L) with cost κ(L)

Optimality of the final spanning tree can be proved by an exchange argument:
Assume T is not optimal and let T ′ = (V,L′) be an optimal spanning tree with
|L∩L′| maximal. If T differs from T ′, there is an edge e∗ ∈ L such that L′ ∪ e∗

contains a cycle. Now, let S∗ be the vertex set in Algorithm 1.1 just before e∗ was
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added to L. Further, let i′ j′ ∈ L′ be a second edge on the cycle with i′ ∈ S∗, j′ ∈V \S∗.
Then, (V,L′ ∪{e∗}\{i′ j′}) also is a spanning tree, but κ(L′ ∪{e∗}\{i′ j′}) ≤ κ(L′).
Hence, either T ′ was not optimal or |L∩L′| was not maximal.

The time to compute a minimum cost spanning tree with the Dijkstra-Prim al-
gorithm is O(|E|+ |V | log |V |) by using a data structure such as a Fibonacci heap
for sorting the potential spanning tree edges. Hence, the problem is in P. Further,
the Dijkstra-Prim algorithm is an example of a greedy algorithm; cf. Section 1.4.3.
Another greedy algorithm for the minimum cost spanning tree problem is Kruskal’s
algorithm [69]. It starts with the trivial forest (V,L), L = /0, and repeatedly adds the
edge of minimum cost such that the new subgraph (V,L) remains a forest. After
adding |V |−1 edges a minimum cost spanning tree is found (which can be proved
by a similar argument as above).

Recently, there has been renewed interest in the minimum spanning tree problem.
However, the tree is restricted to have a bounded degree at all vertices. In contrast to
the minimum cost spanning tree problem, no polynomial-time algorithm is known
for the bounded degree minimum cost spanning tree problem [10, 51]. NP-hardness
follows from the Degree-Constrained Spanning Tree problem, where one has to
minimize the maximum degree of the spanning tree [50, Problem ND1].

Minimum Steiner Tree Problem

Application 1.2 Reconsider the situation of Application 1.1. Instead of a new office
building, we consider an existing building with a wired LAN infrastructure in place.
The new backbone for the WLAN can use this infrastructure but is not required to
do so. A set of connection points at the wired LAN network have been identified, and
the costs to connect an AP to a connection point are again denoted by κi j.

In this case the set V consists of all APs and all connection point to the wired LAN
network. Since only the APs have to be connected to each other, S consists of the
APs only and H is complete. The connection cost between any two connection
points i, j ∈ V \ S can be defined as κi, j = 0. This problem is known as the mini-
mum cost Steiner tree problem. The subset U ⊂ V are the so-called terminals that
have to be connected, whereas the remaining vertices V \U can be used as hubs to
save connection costs.

The minimum cost Steiner tree problem cannot be solved in polynomial time,
unless P = NP [66]. Even for grid graphs the problem is NP-complete [49]. The
special case where |U | = 2 requires a path between the two end nodes and is better
known as the shortest path problem; see Section 1.5.2.1.

Among the many different approaches that have been developed to find optimal,
or at least very good, solutions for the Steiner tree problem, polyhedral methods
have been particularly successful. The problem can be formulated as an integer lin-
ear program in many different ways. We present here one formulation as a warm-up
and refer to the survey by Voß [89] for further formulations.

For every e ∈ E we introduce a binary variable xe indicating whether (xe = 1) or
not (xe = 0) the edge is part of the Steiner tree. The Steiner Tree Problem now reads
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min ∑
e∈E
κexe (1.7a)

s.t. ∑
e∈δ(W )

xi j ≥ 1 ∀W ⊂ V,W ∩S �= /0,(V \W )∩S �= /0 (1.7b)

xe ∈ {0,1} ∀e ∈ E (1.7c)

The Connectivity constraints (1.7b) ensure that there is always at least one edge
selected to connect a terminals in W and terminals in V \W . This in particular guar-
antees that all terminals are connected in a feasible solution, and hence the minimum
Steiner tree can be found by solving (1.7).

Although this is not the strongest formulation (in the sense of value of the LP
relaxation, cf. [27]), the way of formulating the problem is already of help for more
complex problems like the two-layer network design problem discussed in Chap-
ter 3, where inequalities (1.7b) with |W | = 1 are used as cutting planes (cf. page
108). For further information on the Steiner tree problem we refer to Polzin [80]
and Voß [89]. SteinLIB [68] is a library with benchmark instances for the Steiner
tree problem.

Minimum Steiner Network Problem

Application 1.3 An Internet Service Provider (ISP) provides a Virtual Private Net-
work (VPN) service to its corporate customers. A VPN is a computer network that
uses virtual circuits in a larger network. For each customer a VPN has to be es-
tablished that enables communication between all the customer’s locations. The
ISP leases bandwidth connections at a telecommunication network operator. Costs
savings can be achieved by combining the requirements of multiple corporate cus-
tomers.

The remaining case generalizes the Steiner tree problem. If not all vertices in U
have to be mutually connected, the topology does not necessarily need to be a tree
spanning U . For each component of H the optimal topology will be connected, but
there is no need to connect vertices in different components. In some cases, however,
it might be beneficial to connect vertices in the same component of H via vertices
from another component. In fact, the solution will be a forest with at most the same
number of components (i.e., trees) as H. For more information on this problem and
a primal-dual approximation algorithm, we refer to [6].

1.5.1.2 Design of Ring Topologies

From a reliability point of view, a network that connects the desired vertex pairs
with exactly one path is not necessarily a good solution. If a link fails the topol-
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ogy is disconnected and no communication is possible anymore between the two
components of the network.

To improve the reliability of the network, it has been suggested to use a ring as
topology structure instead of a tree. The cheapest way to guarantee that two paths
exist between every pair of nodes is the selection of a Hamiltonian cycle (i.e., a
single cycle connecting all nodes in the network). Not only is this problem already
NP-hard to solve (it is equivalent to the traveling salesman problem) but the poten-
tial topology might not contain a Hamiltonian cycle. Further, the average path length
of the two paths is n

2 for a network of n nodes. Accordingly, communication delays
will be high. Therefore, an alternative is to design a network composed of connected
rings. Many different approaches towards this problem exist; we refer to [60] for an
introduction.

1.5.1.3 Design of Meshed Topologies

Instead of connecting the network nodes via a ring, more general configurations
can be considered that provide a higher reliability than tree or ring networks. To
simplify the presentation, we only consider link failures and undirected graphs in
the following. For this purpose, we associate with every edge {i, j} of the graph H =
(V,F) (as defined in Section 1.5.1.1) a value ri j denoting the minimum connectivity
between i and j, i.e., the minimum number of edge-disjoint paths. Now, a meshed
network topology is a subset L ⊆ E such that for all {i, j} ∈ F , i and j are ri j-
connected. The integer linear programming formulation (1.7) can be easily adapted
to this situation by replacing the right-hand side of (1.7b) with maxi∈W, j∈V\W ri j.
The minimum cost meshed network topology problem can be solved by integer
linear programming techniques. Some references are [48, 56–58].

1.5.2 Network Routing Problems

Given a network topology, communication between two nodes can be established
according to a set of rules specifying the path the signal should follow. Depending
on the technology many different routing protocols exist. In this section we discuss
some of the optimization problems providing a basis in network routing optimiza-
tion. At the end, we refer to more elaborate routing problems discussed in the chap-
ters. Network flows have been extensively studied, and [7] provides a rich collection
of results in this area.

1.5.2.1 Routing of a Single Commodity

The most elementary problem in network routing optimization is the choice of a
routing for a single commodity, e.g., one source-destination pair. This problem can
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occur at the planning stage (e.g., simultaneous planning of communication paths)
or at the operational stage (e.g., online call admission). The problem also has to be
solved in many multi-commodity network optimization problems where dynamic
column generation is used (cf. Section 1.5.3).

Shortest Path Problem

Application 1.4 Consider the operation of an optical fiber network. The call admis-
sion officer is asked to set up a new 10 Gbit/s connection between two core nodes.
To avoid re-sorting of the packets at the receiving end of the connection, a single
10 Gbit/s lightpath has to be used. To limit the packet delay to a minimum, the path
should be as short as possible.

If no further routing restrictions apply, this problem can be described as follows.
Given a digraph D = (V,A) (e.g., arc a ∈ A exists if and only if enough spare capacity
exists), a weight function w : A �→ Q (e.g., the delay) and a source-destination pair
s, t ∈ V , find a path p from s to t such that ∑a∈p wa is minimized. In general the
weight function w can represent any relevant metric, e.g., length of the network
links, delay, spare capacity, etc..

The above problem is well-known as the shortest path problem. If all weights
are nonnegative, the problem can be solved in polynomial time by a wide variety
of algorithms, the most famous one being Dijkstra’s O(|V |2) algorithm [39]; see
Algorithm 1.2. An excellent source for faster implementations of Dijkstra’s algo-
rithm and other faster algorithms for the shortest path problem is [83, Chapter 7];
see also [7].

Algorithm 1.2 Dijkstra’s algorithm to determine the shortest path p between s ∈ V
and t ∈ V in a weighted digraph D = (V,A,w).

Define d : V �→ Q+ by d(i) := 0 if i ≡ s and d(i) := ∞ otherwise
Define p : V �→ V by p(i) := i for all i ∈ V
Let S := /0
while t �∈ S do

Let i = argmin{d( j) | j ∈ V \S}
for j ∈ N+(i) do

if d(i)+wi j < d( j) then
d( j) := d(i)+wi j

p( j) := i
S := S∪{i}

if d(t) ≡ ∞ then
return No path from s to t exists

Let path p be (i0,a1, i1, . . . ,ak, ik) such that i j = p(i j+1) and i0 = s, ik = t.
return p and d(t)

The function d : V �→ Q+ keeps the shortest distance known from s to any vertex,
whereas p(i) records the previous vertex on the shortest path from s to i. Dijkstra’s
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algorithm repeatedly selects vertices i ∈ V for which the distance d(i) to the source
vertex s cannot be improved anymore and updates the distance of vertices that can
be reached in a single step from this vertex. Since all arc weights are nonnegative,
the distance to none of the vertices in S can be decreased this way, and hence as
soon as t ∈ S, the distance d(t) is final.

In case some arc weights are negative, the above algorithm cannot guarantee an
optimal solution anymore (i.e., if negatively weighted cycles exist) and the problem
can be proved to be NP-complete [50, 66]. This result is of particular importance for
optimization approaches that exploit dynamic column generation since in particular
cases negative arc weights might appear. Shortest path algorithms are used in many
situations; see, e.g., Chapters 4, 5, and 8.

Suurballe’s Problem

Application 1.5 Reconsider the situation of Application 1.4. To guarantee high
availability of the connection, two vertex-disjoint paths with minimum total delay
have to be installed. All packets are transmitted by both lightpaths. At the receiv-
ing end, the packets that arrive earliest are processed, whereas the other ones (if
arriving) are discarded.

This closely related and widely studied problem in communication networks is
known as Suurballe’s problem [86], often wrongly referred to as Suurballe’s algo-
rithm. Instead of a shortest path between s and t, a shortest cycle containing s and
t is searched for. Stated differently, and more generally, we have to find K paths
p1, . . . , pK between s and t such that ∑K

j=1∑a∈p j
wa is minimized. The paths must

be either arc-disjoint or vertex-disjoint (except for source and destination), depend-
ing on the setting. For K = 2 and vertex-disjoint paths, the problem reduces to the
shortest cycle problem.

This problem occurs in the context of 1+1 dedicated path protection, where a
working or primary path and a disjoint backup path have to be selected. From a
practical perspective there might be several reasons to balance the length of both
paths, e.g., comparable delays, or avoidance of a capacity imbalance between pri-
mary and backup capacity. In such situations we might apply a successive shortest
path computation; i.e., we first compute the shortest path between s and t and next
we compute a shortest path in the augmented digraph where all arcs (and nodes)
on the shortest path are removed. However, such a second path might not exist,
although there exists a shortest cycle; see Figure 1.9.

Specific algorithms have been developed for this problem, in particular using
Dijkstra’s algorithm; cf. [17]. Alternatively, the problem can be solved as a minimum
cost flow problem.
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A D E H

B C

F G

Fig. 1.9 A digraph with arc weights wa = 1 for all a ∈ A where the successive shortest path algo-
rithm fails to find two vertex-disjoint paths between vertices A and H

Minimum Cost Flow Problem

Application 1.6 A world-wide operating investment bank needs access to 250
Gbit/s of bandwidth between its European and US headquarters. For this it can
lease bandwidth from a number of network operators for sections of the connec-
tion, represented by a directed graph. Bandwidth on a section can be leased with a
modularity of 10 Gbit/s and is priced accordingly.

The minimum cost flow problem is defined by a digraph D = (V,A), a cost func-
tion w : A �→ Q+, a capacity function c : A �→ Z+, and a supply/demand function
d : V �→ Z. A vertex i ∈ V is called a supply vertex if di > 0, a demand vertex if
di < 0, and a transit vertex if di = 0. A flow f : A �→ Q+ is an assignment of val-
ues to the arcs of the digraph. We call a flow proper with respect to d if the flow
conservation constraints

∑
a∈δ+(i)

fa − ∑
a∈δ−(i)

fa = di (1.8)

hold for all i ∈ V . We further call a flow proper with respect to c if the capacity
constraints

fa ≤ ca (1.9)

hold for all a ∈ A. A minimum cost flow is a proper flow with respect to d and c that
minimizes

∑
a∈A

wa fa .

The description of the minimum cost flow problem is more general than Appli-
cation 1.6 requires: there is only one supply vertex and only one demand vertex.
Suurballe’s problem with arc-disjoint paths can be easily formulated as a minimum
cost flow problem by setting ca = 1 for all a ∈ A, and

di =

⎧
⎪⎨

⎪⎩

K if i = s,

−K if i = t, and

0 otherwise.
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Every proper flow with respect to d and c can now be translated to a set of K arc-
disjoint paths. For each path p j we greedily select successive arcs for which fa = 1,
starting at the source s and ending at the destination t, setting fa = 0 as soon as it is
selected.

Because of the total unimodularity of the constraint matrix in the minimum cost
flow problem, the solution is integer valued if all arc capacities ca are integral. This
property is, for example, relevant in the context of optical networks where we would
like to route a number of lightpaths between a source vertex s ∈V and a target vertex
t ∈ V .

Maximum Flow Problem

Another problem closely related to the above problems is the maximum flow prob-
lem. Here the input consists of a digraph D = (V,A), a capacity function c : A �→ Z+,
and two designated vertices, a source s ∈ V and a target t ∈ V . The objective is to
maximize the flow between s and t.

This problem solves the feasibility version of Application 1.6: can we allocate
250 Gbit/s of bandwidth between the two headquarters? It also can be used to test
whether K arc-disjoint paths between s and t exist, as requested by Suurballe’s prob-
lem.

The problem is in particular known for the famous max-flow min-cut theorem. A
cut C in a digraph D = (V,A) is a subset of the arcs such that (V,A \C) is discon-
nected. A cut is called an s− t cut if s and t are not connected anymore.

Theorem 1.7 (Dantzig and Fulkerson [37]). Let D = (V,A) be a digraph with
source node s ∈ V and target node t ∈ V . Let c : A �→ Z+. Then the maximum value
of an s− t proper flow with respect to c is equal to the minimum capacity of an s− t
cut.

Combinatorial algorithms to solve the minimum cost network flow problem or
the maximum flow problem can be found in [7, 32] or any good textbook in combi-
natorial optimization.

1.5.2.2 Routing of Multiple Commodities

In general, a commodity is a good that does not require further differentiation, either
from a practical point of view or from a mathematical point of view. The minimum
cost flow problem of the previous section is a good example of a single commodity
transportation problem. There may be multiple supply vertices and multiple demand
vertices, but there is no differentiation between the goods supplied and demanded.
Supply from any vertex can be used to fulfill the demand.
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Multi-commodity Flow Problem

In communication networks, it is usually of highest importance that goods be sent
between the right network nodes. If more than one pair of network nodes is con-
sidered simultaneously, a multi-commodity flow problem has to be solved from a
technological point of view.

Multi-commodity Edge-Flow Formulation

Application 1.8 Let D = (V,A) represent a network and the function c : A �→ Z+
denote the available bandwidth. Let a set of point-to-point demands be represented
by another weighted digraph H = (V,B) with weight function d : B �→ R+ (di j de-
notes the required bandwidth between i and j, i j ∈ B). Find a routing of the demands
such that the total spare capacity is maximized.

Depending on the real application, the routing might have to satisfy additional
requirements; see Section 1.5.2.3. For now, we assume that the routing can be bifur-
cated, i.e., it can be split among different paths from source to destination. Accord-
ingly the problem can be modeled as a linear program. For each st ∈ B, we introduce
a set of edge-flow variables f st

a to model the flow on arc a ∈ A between source i and
target j. The Multi-commodity Flow (MCF) problem now reads

min ∑
st∈B
∑
a∈A

f st
a (1.10a)

s.t. ∑
a∈δ+

D (i)

f st
a − ∑

a∈δ−
D (i)

f st
a =

⎧
⎪⎨

⎪⎩

dst if i = s

−dst if i = t

0 otherwise

i ∈ V,st ∈ B (1.10b)

∑
st∈B

f st
a ≤ ca a ∈ A (1.10c)

f st
a ≥ 0 (1.10d)

Instead of maximizing the total spare capacity, the objective (1.10a) models the
minimization of the used resources. With fixed capacities ca these objectives are
equivalent. Constraints (1.10b) model the flow conservation from source to target
for all demands, whereas (1.10c) model the capacity constraints. Compared to the
single commodity case, the latter take all commodities simultaneously into account,
whereas for the flow conservation a separate set of constraints is set up for each
commodity.

The MCF (1.10) is a linear program and therefore can be solved efficiently;
cf. Section 1.3. However, for larger networks the size of the MCF model is a reason
for concern. Assuming a demand between every node pair (i.e., H is complete), the
model has O(n2m) variables and O(n3) constraints, where n = |V | and m = |A|.

From a mathematical point of view there is no need to differentiate between
demands as long as they have either the same source or the same target. In this
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way, the size of (1.10) can be reduced to O(nm) variables and O(n2) constraints
by aggregation of demands into n commodities (instead of O(n2)). We construct a
set K of commodities from the point-to-point demands as follows. For every source
node s, we define a commodity k ∈ K by considering all demands represented by
δ+

H (s). The demand value

dk = ∑
t∈N+

H (s)

dst

of the commodity is simply defined as the total demand value of its demands. For
any node i ∈ V , let

dk
i :=

{
dk if i = s,

−dsi if i �= s

be the supply (positive) or demand (negative) for commodity k at node i. By con-
struction, the equality ∑i∈V dk

i = 0 holds for every commodity k. Now MCF can be
reformulated with continuous aggregated flow variables f k

a :

min ∑
k∈K
∑
a∈A

f k
a (1.11a)

s.t. ∑
a∈δ+

D (i)

f k
a − ∑

a∈δ−
D (i)

f k
a = dk

i i ∈ V,k ∈ K (1.11b)

∑
k∈K

f k
a ≤ ca a ∈ A (1.11c)

f k
a ≥ 0 (1.11d)

Given a solution ( f k
a )k∈K,a∈A, the routing of every point-to-point demand can be

reconstructed by greedily selecting a path between source s and target t of a point-
to-point demand, setting its value to the minimum of the demand value dst and the
minimum flow value f k

a on the arcs along the path, and reducing the flow values f k
a

on the path with this value.

Multi-commodity Path-Flow Formulation

Alternatively, one can formulate the MCF problem by variables representing the
paths between source and target. For this, let Pst denote all paths in D between
s and t and let P = ∪st∈BPst (note that there can be exponentially many paths
between two vertices). Further, let Pa = {p ∈ P : a ∈ p}. For every st ∈ B and
p ∈ Pst we define a path-flow variable yst

p denoting the flow using this path. The
MCF now reads
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min ∑
st∈B
∑

p∈Pst

yst
p (1.12a)

s.t. ∑
p∈Pst

yst
p = dst st ∈ B (1.12b)

∑
st∈B
∑

p∈Pa

yst
p ≤ ca a ∈ A (1.12c)

yst
p ≥ 0 (1.12d)

Although this formulation has an exponential number of variables, it also has its
benefits. First of all, since many variables will be 0 in an optimal solution, not all
variables have to be considered explicitly by exploiting dynamic column generation;
cf Section 1.4.1. Given the explicit consideration of the variables yst

p for a subset
P ′ ⊂ P of the paths, (1.12) is solved to optimality if and only if for all st ∈ B there
does not exist a path p ∈ Pst \P ′ with

∑
a∈p
μa < 1−πst , (1.13)

where μa and πst are the dual variables corresponding to (1.12c) and (1.12b), re-
spectively. To test whether there exists such a path p, we have to solve a shortest path
problem on D = (V,A) with weights πa ≥ 0 for all a ∈ A. If the length of the shortest
path strictly smaller than 1−πst , the variable has to be considered explicitly.

Another benefit of the path-flow formulation (1.12) is that restrictions on the
routing paths can be taken into account, e.g., paths with less than K hops (number
of arcs) or with delay below a certain threshold. If the number of paths that satisfy
such requirements is still large and dynamic column generation is deployed, the
pricing problem becomes a shortest weight-constrained path problem which is NP-
complete in general [50].

1.5.2.3 More Network Routing Problems

The MCF problem forms the basis for many more complex network routing prob-
lems occurring in practice. While capacity planning problems are presented in Sec-
tion 1.5.3, the remainder of this section contains an (author-biased) sample of rout-
ing problem variations.

Multi-commodity Flow in Undirected Graphs

Depending on the technology, the MCF problem might be defined for undirected
graphs G = (V,E) and H = (V,F) (note that source and target of a demand are
chosen arbitrarily in this case). Formulation (1.12) can be easily adapted to this case
by replacing D with G and by redefinition of Pst to be all undirected paths in G
between s and t. For the other formulations, we have to define a directed graph
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D(G) = (V,A) with A = {(i, j),( j, i) | {i, j} ∈ E}. Instead of constraints (1.10c), the
following inequality has to be satisfied:

∑
st∈F

(
f st
(i, j) + f st

( j,i)

)
≤ c{i, j} {i, j} ∈ E (1.14)

Integer Flow

In the integer flow problem we have to route every demand in integral units from
source to target. A natural prerequisite is that the demand values dst be integral as
well. This problem has to be solved in the context of optical networks [93, 94].
The demand graph represents the number of lightpaths needed between the incident
vertices. The formulations (1.10)–(1.12) can be easily adapted to this situation by
changing the domain of the variables to the nonnegative integers.

In the single-commodity case, this problem can be solved in polynomial time
as a minimum cost flow problem; see Section 1.5.2.1 (fractional capacities can be
rounded down without loss of generality). For the multi-commodity case, the prob-
lem is in general NP-complete since it contains the Disjoint Connecting Paths prob-
lem as a special case [50]. In the Disjoint Connecting Paths problem one has to
find k mutually vertex-disjoint paths in D = (V,A) connecting the disjoint vertex
pairs (s1, t1), . . . ,(sk, tk). By graph transformation and setting ca = 1 for all a ∈ A we
obtain an instance of the integer flow problem, and hence NP-completeness of the
integer flow problem is shown.

Unsplittable Flow

In the unsplittable flow or non-bifurcated flow problem we have to route every de-
mand on a single path between source and target. This problem can be modeled
by replacing the variables f st

a in (1.10) by dstxst
a , where xst

a are binary variables de-
noting the usage of a certain arc. The flow conservation constraints (1.10b) can be
simplified by dividing all coefficients by dst .

In the single commodity case, this problem is simply a shortest path problem
where all arcs with ca < dst are removed from the digraph. The multi-commodity
case is NP-complete by the same reduction as that for the integer flow problem.

If continuous instead of binary variables are used the problem is equivalent to the
multi-commodity flow problem. However, the variables describe the percentage of
flow routing along an arc, which might be beneficial in certain circumstances, e.g.,
with multiple demand graphs in the case of multi-hour routing.
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Routing of Multicasts

Usually this problem is considered in undirected graphs and no distinction between
source and targets is made. In the multicast routing problem every commodity k ∈ K
consists of a set of terminals T k and a demand value dk. A solution consists of a
spanner for every commodity k ∈ K connecting all terminals T k, i.e., a subset of
the edges forming a connected subgraph containing all terminals. This problem is
therefore known as the spanner packing problem, or in the case where the spanners
have to be trees, the Steiner tree packing problem. A study on these problems can
be found in [18]. Multicasting scenarios are also studied in Chapters 2 and 7.

1.5.3 Network Planning Problems

In many networking problems, the link capacities are not fixed but can be chosen
at certain costs. In such cases, a network planning problem (also called network de-
sign problem or network loading problem) has to be solved. Rich literature exists
discussing solution approaches for a wide variety of these problems, e.g., unsplit-
table, integral, and splittable flows, directed and undirected networks, and directed
and undirected demand graphs. A detailed discussion can be found in [79]. Here,
we restrict ourselves to splittable flows in a directed network and directed demand
graph. We discuss two different approaches before a third approach is described in
more detail for the case of optical networks (Section 1.5.4).

1.5.3.1 Linear Cost Functions

Application 1.9 A regional service provider leases bandwidth from different net-
work operators active in his area. Each of the network operators offers bandwidth
at the links of a network D = (V,A). For each of the links a ∈ A, κa denotes the rate
at which the operator cheapest for this link is offering bandwidth. Let H = (V,B)
represent the point-to-point demands with demand function d : B �→ R+. Find a
routing of the demands such that the leasing cost is minimized.

Compared to the multi-commodity flow problem of Section 1.5.2.2, this problem
has a different objective and different capacity constraints. The flow conservation
constraints (1.10b) remain the same. The new objective reads

min ∑
a∈A

κaza (1.15a)

where za is nonnegative variable denoting the bandwidth consumption of arc a ∈ A.
The capacity constraint 1.10c is replaced by
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∑
st∈B

f st
a ≤ za a ∈ A (1.15b)

Assuming dst ≥ 0, the nonnegativity constraints (1.10d) guarantee that the values of
za will also be nonnegative.

So far, this problem is not really exciting. Not only can it be solved in polynomial
time (as it is a linear program), in any optimal solution we will have za ≡ ∑st∈B f st

a .
Moreover, the point-to-point demands can be routed completely independently with-
out losing optimality. Hence, the problem consists of |B| shortest path problems,
where κa define the lengths of the arcs. Furthermore, the result will be an unsplit-
table flow and thus the problem with unsplittable flow is also solved to optimality.

The problem becomes a different game if shared protection mechanisms such
as Single Backup Path Protection (SBPP) are exploited. In SBPP the demand not
only has to be routed along a single working path, but a backup path has also to be
specified and is used if one of the links on the working path fails. By assuming that at
most one link can fail at a time, several backup paths can share bandwidth capacity
(i.e., those for which the working paths are disjoint). This problem is already NP-
hard [85] with continuous bandwidth capacity variables. Survivable networks are
studied in more detail in Chapter 5.

1.5.3.2 Discrete Cost Functions

Let us now turn to the case where capacity can only be installed in certain amounts.
The problem instantly becomes more difficult. If capacities can be installed in only
one size, the model remains the same by scaling the installed bandwidth to 1. Only
the integrality constraints of the za variables have to added.

More generally, different discrete capacities C1 < C2 < .. . < CM can be installed
against cost κ1

a < κ2
a < .. . < κM

a . In such a case, we introduce capacity variables
z1

a, . . . ,z
M
a ∈ Z+ to denote the number of times a particular bandwidth module is

installed on a particular arc. The objective now changes to

min ∑
a∈A

M

∑
m=1
κm

a zm
a (1.16a)

whereas the bandwidth capacity constraint (1.15b) now reads

∑
st∈B

f st
a ≤

M

∑
m=1

Cmzm
a a ∈ A (1.16b)

This problem is NP-hard for many special cases [19, 26]; it is, however, relevant for
a variety of technologies; see [90] for an example. Integer linear programming has
been used intensively to solve these problems (see [90] for details and references);
an alternative approach is discussed in Section 1.5.4.
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1.5.3.3 More Network Planning Problems

As already pointed out, the discussed planning problems are at the core of more
complex network design problems. In-depth discussions of these can be found in
books such as [59, 79]. Two particular cases are discussed in this book. Chapter 3
discusses a multilayer network design problem whereas Chapter 8 is devoted to
shortest path network routing and planning; see also Section 1.6.1. A good resource
for realistic network planning instances is the SNDlib website [77].

1.5.4 A Randomized Cost Smoothing Approach for Optical
Network Design

Contributed by Alpár Jüttner1

In info-communications network design, the cost of optical ports and links grows in
discrete steps as the capacity is being increased. This cost function is referred to as
“step function” or “staged capacity cost.”

In this section, we propose and compare methods that perform randomized
smoothing of these staged capacity cost functions to allow decomposition of the
network design problem into a sequence of weighted shortest path searches.

1.5.4.1 Introduction

During an optical network design, not only the topology but also the demand rout-
ing and link/port capacities have to be determined. For example, in an SDH/SONET
network the capacities, i.e., the interface speeds, take values of 155.52; 622.08;
2,488.32; 9,953.28 and 39,813.12 Mbit/s, i.e., they always multiply by exactly four.
In optical transport networks (OTNs) the capacities take values of 2,666, 10,709,
and 43,018, i.e., values always multiply by a bit more than 4 (4.017). Furthermore,
in OTN and in any other Coarse WDM (CWDM) or Dense WDM (DWDM) system
one or more wavelengths can be used in parallel for demands of larger capacity, and
the number of wavelengths to be used in a WDM system varies in steps of 8, 16,
24, 32, 40, 48, 64, 80, 96, 120, and so on, wavelengths per fiber. This shows that for
all-optical networks we face staged capacity costs.

This section proposes a simple yet efficient approximation approach to handle
this problem. The methods presented here can be used for green-field design, net-
work extension, or configuration purposes (e.g., VPN, leased λ , and leased line
services), as will be formulated in Section 1.5.4.2.

1 Alpár Jüttner
Department of Operations Research, Eötvös University, Pázmány P. s. 1/C, H-1117 Budapest, Hun-
gary, e-mail: alpar@cs.elte.hu
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1.5.4.2 General Network Planning Problem (GNPP)

The network is represented as a directed graph Gnet = (N,L) with the set N of nodes
and the set L of the possible links. The demands are also represented by a directed
graph Gdem = (N,D) over the same node set N and a function dem : D �→ R+. Each
demand is represented by an edge d ∈ D, where the tail and the head of d show
the source and the target of the demands, respectively, while dem(d) is the amount
of the demand. Moreover, we are given a monotone increasing load-dependent cost
function on each link, denoted by cost : L×R+ �→ R+, so the cost of establishing a
link � with capacity c (or upgrading � to capacity c) is cost(�,c).

Then, the task is to assign a route pd to each demand d in such a way that the
obtained configuration minimizes the total cost

∑
�∈L

cost(�, traffic(�)), where traffic(�) = ∑
d:�∈pd

dem(d). (1.17)

This definition models several usual network optimization problems. Some ex-
amples are shown below.

Routing Configuration

Let us assume that we are given a network with given link capacities cap(�) and
the set of demands we want to carry over this network while keeping the capacity
constraints or minimizing the total overload. This problem can be modeled by the
framework above by defining the following cost function.

cost(�, t) = max(0, t − cap(�)) (1.18)

If we want to minimize the number of overloaded links instead of the total overload,
we can use the following

cost(�, t) =
{

0, if t ≤ cap(�)
0, if t > cap(�) (1.19)

Network Design

This case is a green-field network planning problem: we want to plan a new network
carrying our traffic and we want to minimize the installation costs. Then L will
consist of all possible links, while cost(�, t) is defined to be the cost of installing
a link of capacity t between the source and the destination of �. As we can choose
only from some fixed capacity equipment, the cost will be a step function for each
possible link �.
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Network Extension

This case is similar to the previous one, but now we have some existing links, which
can be used with no extra installation cost. In this scenario, the cost cost(�, t) of an
existing link � with capacity cap(�) is 0 for all t ≤ cap(�).

1.5.4.3 Solution Methods

Local Search

The following simple observation plays a central role in solving GNPP.

Claim. Let us assume that we have fixed a route for all but one demand, i.e., we
have fixed pd for all d ∈ D \ d′. Then the optimal route for the last demand d′ can
be found by searching for a shortest path (using Dijkstra’s algorithm) according to
the following auxiliary length function.

len(�) = cost(�, trafficd′(�)+dem(d′))− cost(�, trafficd′(�)), (1.20)

where

trafficd′(�) = ∑
d:d �=d′∧�∈pd

dem(d). (1.21)

Using the claim above, a simple heuristic can be given as follows. We start with
an arbitrary solution; then in each iteration we remove a route from the configuration
and replace it by the locally best alternative. We repeat this process until no more
improving change is possible. We refer this as the Local Search (LS) method.

It is easy to see that this method finds the theoretically optimal solution if the cost
function is linear in the second variable. However, it works poorly for the two most
typical cost functions, the concave and the staged costs, especially for the latter one.

Cost Function Smoothing (CFS) Algorithm

The main weakness of the LS scheme is that it considers the cost function as a black
box and queries its values only for the current traffic on the links. So, it does not
take into consideration how much traffic can be still allocated on the link before we
actually reach the next stage in the cost function, or how much should be deallocated
for realizing real cost decrement.

A solution proposed by [71] is to smooth the actual cost function by convolving it
with a “Gauss-like” function. This smoothed cost function costδ (�, t) should be pa-
rameterized in such a way that for large δ values it provides a very smooth function
(close to linear for practical t values) and it approaches cost(�, t) as δ approaches 0
(see Figure 1.10).
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Then, the CFS algorithm is the same as LS with the exception that we use
costδ (�, t) instead of the original cost function. We start with a large δ value and
decrease it exponentially during the execution of the algorithm.
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Fig. 1.10 costδ (�, t) with different δ values

A concrete example for such a smoothing is the following (this is a refined ver-
sion of what is given in [71]).

costδ (�, t) = (cost ′(�, ·)∗hδ (·))(t) =
∫ ∞

−∞
cost ′(�,ξ )hδ (t −ξ )dξ , (1.22)

where

cost ′(�, t) =
{

cost(�, t) if t ≥ 0,
−cost(�,−t) otherwise,

(1.23)

hδ (t) =
1
δ

h(
t
δ

), (1.24)

and

h(t) =

⎧
⎨

⎩

1−2t2 for |t| ≤ 1/2
2(|t|−1)2 for 1/2 ≤ |t| ≤ 1
0 for 1 ≤ |t|.

(1.25)

The symmetric definition of the cost function in (1.23) ensures that costδ (�,0) = 0
holds for all δ . The advantage of smoothing function (1.25) is that the convolution
integral is a polynomial for constant or linear segments of the cost functions; thus it
is fast to evaluate for staged or piecewise linear cost functions.
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Randomized Cost Smoothing (RCFS) Algorithm

This approach is somewhat similar to the Cost Function smoothing, but instead of
modifying the cost function, we apply a random “uncertainty” when querying its
values. Namely, we change Equation (1.20) to the following.

len(�) = cost(�, trafficd′(�)+dem(d′)+Rδ )− cost(�, trafficd′(�)), (1.26)

where Rδ is a certain random variable of standard deviation δ . Natural choices for
Rδ include the Gaussian distribution N(0,δ 2) and the exponential distribution. If Rδ
can also take negative values, then len′(�) = max(0, len(�)) should be used in order
to avoid negative lengths. Note that Dijkstra’s algorithm reads the length of each
link only once, so this gives a consistent length function in each iteration.

d’tr  (l)
d’tr  (l)+dem(d)

Fig. 1.11 Randomized smoothing of cost(�, t)

Note that the expected value of cost(�, t +Rδ ) is the same as cost(�, t) smoothed
or convolved by the probabilistic distribution function of the random variable Rδ ;
thus this approach indeed performs a “randomized smoothing.” On the other hand,
an expected advantage of this scheme is that similarly to other metaheuristics such as
Simulated Annealing or the Evolutionary Algorithms, the randomness may provide
higher freedom for the algorithms when choosing replacement of a route; thus it
may have a higher chance of avoiding the local optima that are far from the global
optimum.

1.5.4.4 Evaluation

Here, we demonstrate the behavior of the algorithms on a single but representa-
tive network topology. The test network (see Figure 1.12) is a two-connected pla-
nar graph consisting of 50 nodes and 84 bidirectional links. It was generated by
lgfgen, a random graph generator of LEMON [70].

The cost function is a step function, and it is also linearly proportional to the
physical length of the link, i.e,
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Fig. 1.12 Test network example with 50 nodes and 84 links

Table 1.1 Cost obtained by the different algorithms

Homogeneous demands Big trunks
SHORTEST 91101 89575

LS 83371 72601
CFS 59890 56158

RCFS/Gauss 86722 69444
RCFS/Exp 63342 52104

cost(�, t) = length(�)step f n(t), where step f n(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 for t = 0,
1 for 0 < t ≤ 1,
2 for 1 < t ≤ 4,
4 for 4 < t ≤ 10,
8 for 10 < t ≤ 100,
M for 100 < t.

Two different types of demand matrices were chosen for the tests.

• Homogeneous demands. In this scenario, we have a homogeneous traffic matrix,
i.e., we have the same amount of traffic between any pair of nodes.

• Big trunks. In this scenario only 245 (out of the 2450 possible) random pairs
of nodes was chosen as traffic sources and destinations but the demands are 10
times larger than in the previous case.

We ran LS, CFS, and RCFS methods on these examples, and we also computed the
cost of the simple shortest path routing (SHORTEST) as a reference. In the case of
RCFS, both Gaussian and exponential randomization have been tested. The costs of
the obtained solutions are presented in Table 1.1.

The algorithms were implemented in C++, heavily based on the LEMON li-
brary [70]. The tests were made on a laptop equipped with a 2 GHz Centrino Duo
processor and running the Linux (OpenSuse 10.2) operating system.

The running times of SHORTEST (less than 0.1 second) and LS (a few seconds)
are obviously much less than those of CFS and RCFS. Actually, the running times
of these algorithms depend on the number of their iterations. Thus, the number of
iterations was chosen in such a way that the resulting running time was around
40 seconds. The other parameters were tuned to provide the best results.
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It is worth mentioning that RCFS completes around 2,000,000 iterations within
40 seconds while CFS completes only around 400,000 within the same time. This
is because the cost function calculation must be performed at each iteration of the
algorithms; thus, it turns out to be the most resource-consuming part of the algo-
rithms. Therefore, the easier calculation of the randomized cost function makes the
running time of an iteration of RCFS much smaller than that of CFS.

Considering the two versions of RCFS, the results show that the Gaussian version
performed quite poorly. In fact, in the case of homogeneous demands, this version
is even outperformed by the simple LS method. The possible explanation of the
better performance of the exponential-distribution-based version is that this cost
randomization can be interpreted as a stochastic prediction of the amount of traffic
that will be allocated on the link in the subsequent iterations.

Comparing CFS and RCFS, we obtained that for a homogeneous traffic matrix
the winner is CFS, while for uneven traffic with big trunks RCFS outperforms CFS.
The reason for this is that for a homogeneous traffic matrix, the traffic can be almost
continuously distributed on the links and the cost function smoothing seems to per-
form really well. On the other hand, if there are fewer but larger unsplittable traffic
flows, the problem becomes a combinatorial packing problem, and in this case the
RCFS method is able to scan a larger portion of the search space.

1.5.5 Wireless Networking

In wireless networking, two classical combinatorial optimization problems have re-
ceived a lot of attention. We first discuss the frequency assignment problem in wire-
less networks which is closely related to the vertex coloring problem. Second, the
maximum coverage problem is considered, a problem whose basic version can be
modeled as a set covering problem.

1.5.5.1 Assignment of Frequencies

The frequency assignment problem (FAP), or channel assignment problem, plays
an important role in all wireless networks that use the frequency division multiple
access (FDMA) technology, the most prominent example being the second genera-
tion of cellular networks based on the GSM technology. Other applications include
satellite communication, TV broadcasting, military wireless networks, WLANs, and
Orthogonal Frequency Division Multiplexing (OFDM) in future wireless networks.

Due to this wide variety of applications, there does not exist a single frequency
assignment problem, but many variations. The problem was first mentioned in the
1960s [75] when individual frequencies in the radio spectrum were licensed (and
charged) by the authorities, and operators of the first cellular phone networks could
financially benefit from intelligent frequency planning. Later, frequencies were li-
censed in blocks and the objective of the operators changed to minimize the dif-
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ference between the highest and lowest frequency to be used. In the 1990s most
frequencies were licensed and the popularity of mobile communication forced op-
erators to increase the number of antennae, significantly causing high interfer-
ence levels whenever the frequency planning was not done carefully. Accordingly
the objective changed to the minimization of interference or the maximization of
interference-free operated antennae.

All these different objectives have been addressed in a vast number of scientific
publications. For an overview on the state of the art of frequency assignment we
refer to Aardal et al. [3] and the FAP website [44]. In this section, we will restrict
ourselves to the basic modeling of the frequency assignment problem and its relation
with the vertex coloring problem in undirected graphs.

Frequency Assignment and Vertex Coloring

All variations of frequency assignment have two features in common.

1. A set of wireless transmitters must be assigned frequencies. For each transmitter
there is a set of available frequencies given.

2. The frequencies assigned to two transmitters may incur interference of one an-
other, resulting in quality loss of the signal. Two conditions must be fulfilled in
order to have interference of two signals:

• The two frequencies must be close on the electromagnetic band. Harmonics
may also interfere due to the Doppler effect, but the parts of the electromag-
netic band that are generally selected prevent this type of interference.

• Connections must be geographically close to each other, so that interfering
signals are powerful enough to disturb the quality of a signal.

Usually, data on the level of interference is provided for every quadruple of two
transmitters and two frequencies.

This rather general description is complemented by an objective to be optimized.
The problem can be modeled as a graph-theoretical problem by defining an undi-
rected interference graph G = (V,E) describing the interference relations. To sim-
plify the presentation we assume in this section that no transmitters are colocated, as
is usually the case in cellular phone networks (the description can be easily adapted
to such situations; see, for example, [41]). The set V now represents all transmitters.
The planner can choose a threshold value representing an acceptable level of inter-
ference. An edge {i, j} ∈ E exists if and only if there exists a frequency pair ( f ,g)
such that the interference level for the quadruple (i, f , j,g) exceeds the threshold.

In the most simplified case we only consider so-called co-channel interference,
i.e., an edge exists if and only if the interference level exceeds the threshold for as-
signing the same frequency to both transmitters. We further assume that the set of
frequencies is equal for all transmitters and the objective is to minimize the num-
ber of frequencies under the condition that all interference levels remain below the
threshold. In this case, FAP reduces to the well-known vertex coloring problem. In
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the vertex coloring problem, we have to color the vertices of a graph G = (V,E) such
that no two adjacent vertices get the same color. The chromatic number χ(G) is the
minimum number of colors needed in a feasible coloring of G. It is not difficult to
see that in the above-described case the minimum number of frequencies needed
equals χ(G).

From an algorithmic point of view, this problem can be either treated as a deci-
sion problem or an optimization problem. If the number of frequencies is fixed, say
K, the planner has to answer the question: “Does there exist a solution without unac-
ceptable interference using at most K frequencies?” which is equivalent to solving
the K-COLORABILITY decision problem. This problem is not only NP-hard [66] but
also hard to approximate [14]. In the case where the number of frequencies is not
yet fixed but must be determined, the optimization version of K-COLORABILITY

has to be solved.

unlimited spectrum

vertex coloring

T -coloring list coloring

list T -coloring

Minimum Span
Frequency Assignment

(MS-FAP)

fixed spectrum

k-colorability

min-k-partition
max-k-colorable

induced subgraph

Minimum Interference
Frequency Assignment

(MI-FAP)

Minimum Blocking
Frequency Assignment

(MB-FAP)

Fig. 1.13 Classification of vertex coloring and frequency assignment problems

This differentiation between choice of frequencies (unlimited spectrum) and
fixed frequencies (predetermined spectrum) also holds for more realistic frequency
assignment problems; see Figure 1.13. If we include the sets of available frequen-
cies to the vertex coloring problem, a list coloring problem has to be solved, whereas
the inclusion of interference levels between nonidentical frequencies results in a T -
coloring problem. Both these variants on the vertex coloring problem have origi-
nally been studied in the context of frequency assignment, providing perfect show-
cases of the interaction between discrete mathematics and applications.

The combination of T - and list coloring is known as List-T -coloring. If not the
number of frequencies but the difference between highest and lowest frequency has
to be minimized, the problem is known as the minimum span FAP.
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In the case of a fixed spectrum, K-COLORABILITY is generalized in two ways
in case the problem is infeasible. If the planner needs to assign a frequency to
each transmitter, some unacceptable interference has to be permitted. Otherwise,
the planner might consider leaving some transmitters unassigned to avoid unaccept-
able levels of interference. If only co-channel interference is considered, the first
case is known as the minimum K-partition problem: We associate a value cco

e ∈ Q+
with all edges e ∈ E. The minimum K-partition problem now consists of a partition
of the vertices in K subsets S1, . . . ,SK such that the sum over all subsets of the to-
tal weight cco

e of the edges in G[Si] is minimized. Stated otherwise, all vertices in
a subset are assigned the same frequency, and so the interference incurred by this
assignment is given by the sum of the weights cco

i j for all i, j ∈ Si. A solution with
total weight 0 exists if and only if the graph is K-colorable. See [42] for a solution
approach using semidefinite programming.

The second case is known as k-colorable induced subgraph. In this problem we
have to color as many vertices as possible with K colors. A solution where all ver-
tices are colored implies that the graph is K-colorable, whereas non-K-colorable
graphs have at least one vertex uncolored in any K-colorable induced subgraph so-
lution.

The inclusion of potential interference between nonidentical frequencies for
transmitter pairs results in the study of the so-called minimum blocking FAP. In-
clusion of the same information in the minimum K-partition problem results in the
minimum interference FAP.

Frequency Assignment in GSM Networks

We conclude the discussion of FAP with the formulation as integer linear program of
the minimum interference problem with co- and adjacent-channel interference, as it
occurs frequently in GSM networks.2 Usually an operator of a GSM cellular phone
network has acquired the right to use a certain spectrum of frequencies [ fmin, fmax] in
a particular geographical region, e.g., a country. The frequency band is—depending
on the technology utilized—partitioned into a set of channels, all with the same
bandwidth Δ . The available channels are here denoted by F = {1,2, . . . ,N}, where
N = ( fmax − fmin)/Δ . A transmitter pair is exposed to adjacent-channel interference
if the assigned frequencies are consecutive numbers in the spectrum.

In GSM networks, communication between mobile and base station (up-link)
as well as between base station and mobile (down-link) must be established. To
simplify the management of these networks, two separate, but paired, spectrums of
frequencies are licensed, one for up-link and one for down-link. For FAP one can re-
strict assigning down-link frequencies to the base stations, as the paired frequencies
can then be used for up-link communication.

We associate with the edges of the interference graph G = (V,E) two values
cco

i j ,c
ad
i j ∈ Q+ denoting the level of co- and adjacent-channel interference between

2 Some details are ignored; see, for example, [43] for a more detailed discussion
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the vertices. For ease of notation we introduce two subsets:

Eco = {i j ∈ E | cco
( i j) > 0}, and

Ead = {i j ∈ E | cad
( i j) > 0}.

Given a subset Fi ⊆ F for all i ∈ V , the formulation uses binary variables xi f , indi-
cating whether frequency f ∈ Fi is assigned to vertex i ∈ V . We further introduce
variables zco

i j and zad
i j to denote violation of the co-channel and adjacent-channel

constraints, respectively. Then, the integer linear program reads

min ∑
i j∈Eco

cco
i j zco

i j + ∑
i j∈Ead

cad
i j zad

i j (1.27a)

s.t. ∑
f∈Fi

xi f = 1 ∀i ∈ V (1.27b)

xi f + x j f − zco
i j ≤ 1 ∀i j ∈ Eco, f ∈ Fi ∩Fj (1.27c)

xi f + x jg − zad
i j ≤ 1 ∀i j ∈ Ead , f ∈ Fi,g ∈ Fj : | f −g| = 1

(1.27d)

xi f ,z
co
i j ,z

ad
i j ∈ {0,1} (1.27e)

If i j ∈ Eco and frequency f can be assigned to both vertices, constraint (1.27c)
assures that such a mutual assignment incurs a penalty of cco

i j . Similarly, con-
straint (1.27d) guarantees that the adjacent-channel interference is comprised of the
objective if i j ∈ Ead and the frequencies f and g differ by 1.

A major drawback of the above formulation is the difficulty to solve these
coloring-like integer linear programs to optimality. A wide range of different ap-
proaches have therefore been proposed to compute close-to-optimal solutions and/or
lower bounds on the minimum total interference; see [3] for a survey. In Chapter 11
a similar frequency assignment model is studied in more detail for the case of wire-
less local area networks (WLANs). Due to the limited number of frequencies the
drawbacks of the above formulation have less impact in this case.

Figure 1.14 shows an example of a carrier network, where the so-called DSATUR
heuristic [24] followed by a very simple local search heuristic (1-opt) is ap-
plied. This procedure improved the solution provided by a network operator by
96% [23, 43]. In the plots, transmitters are represented by dots in the Euclidean
plane according to their geographical coordinates. Two transmitters are connected
by a colored line if the assignment of frequencies results in interference. If the line
is drawn in a pale color, then the interference is small. With increasing interference,
the color of the line turns black.

1.5.5.2 Maximization of Network Coverage

Besides the frequencies on which the antennae operate, the locations of the antennae
and their configuration play an important role in the performance of the network.
In fact, these decisions are typically taken before the frequencies are considered.
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(a) operated frequency plan (b) optimized frequency plan

Fig. 1.14 Interference reduction of 96% by heuristics.

In the most simple version, the main objective is to maximize the area covered
by the installed antennae, given a certain budget; or alternatively, to minimize the
installation cost subject to the requirement of covering a certain percentage of the
area, e.g., 99%.

To measure the coverage of a wireless network within a region (e.g., building,
city center, county, country), a grid of pixels I representing small areas is laid out.
A set of possible locations for antennae A is introduced, with cost parameter ca for
installing an (omnidirectional) antenna.

For each antenna location a ∈ A, we introduce a binary variable xa ∈ {0,1} to
denote whether or not an antenna is installed at this location. To model the con-
straints, we introduce sets Ai ⊆ A defining which antennae locations would be able
to cover pixel i ∈ I (assuming a particular configuration of antenna a ∈ A). Now, the
minimum cost 100% coverage problem reads

min ∑
a∈A

caxa (1.28a)

s.t. ∑
a∈Ai

xa ≥ 1 ∀i ∈ I (1.28b)

xa ∈ {0,1} (1.28c)

This model precisely describes a minimum cost set covering problem for base set I
with subsets Ia = {i ∈ I | a ∈ Ai}. Hence, the problem is NP-hard.

Coverage rates below 100% can also be modeled with an extra set of binary
variables yi ∈ {0,1} denoting whether or not a pixel is covered. If p denotes the
percentage of pixels to be covered, the new model reads



52 A. M. C. A. Koster, X. Muñoz

min ∑
a∈A

caxa (1.29a)

s.t. ∑
a∈Ai

xa − yi ≥ 0 ∀i ∈ I (1.29b)

∑
i∈I

yi ≥ p |I| (1.29c)

xa,yi ∈ {0,1} (1.29d)

Constraints (1.29b) now require an antenna installed close to pixel i in order to set
yi to one. Constraints (1.29c) ensure that p% of the pixels are covered.

An alternative is to maximize the network coverage, given a certain budget B for
network installation cost:

max ∑
i∈I

yi (1.30a)

s.t. ∑
a∈Ai

xa − yi ≥ 0 ∀i ∈ I (1.30b)

∑
a∈A

caxa ≤ B (1.30c)

xa,yi ∈ {0,1} (1.30d)

A final generalization to be discussed here is the inclusion of a bandwidth capacity
constraint. For this, a traffic value di is estimated for each pixel i ∈ I and an antenna
capacity D is given. Since we now need to know which pixel is covered by which
antenna, we have to introduce a new set of binary variables zia ∈ {0,1} for all i ∈ I
and a ∈ Ai to denote this assignment. Without further restrictions, the model 100%
coverage problem can now be described as

min ∑
a∈A

caxa (1.31a)

s.t. ∑
a∈Ai

zia = 1 i ∈ I (1.31b)

∑
i∈Ia

dizia −Dxa ≤ 0 a ∈ A (1.31c)

xa,zia ∈ {0,1} (1.31d)

Constraints (1.31c) limit the number of test points assigned to an antennae on the
basis of demand and capacity (and only if the antenna location is chosen). This
problem is a special case of the (capacitated) facility location problem (the differ-
ence being that no assignment costs exist); see [62].

All above presented models are simplified in the sense that important issues in
wireless networks are missing. A cell in a wireless network is defined as all pixels
assigned to a single antenna. Cells are usually expected to have a certain degree of
connectedness, but this aspect is completely ignored in the above models. In fact,
the connectedness is (partly) implied by the signal strengths received at the pixel.
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The strongest signal determines the allocation of the pixel to an antenna. This and
other issues are studied in depth in Chapter 11. An approach combining frequency
assignment and network coverage is also presented.

1.6 Emerging Applications in Communication Networks

The subsequent chapters of this book are devoted to the application of graph-
theoretical concepts and algorithms to emerging communication networking ap-
plications. The chapters consider problems that have been studied in the context
of the European COST action 293 – Graphs and Algorithms in Communication
Networks [33]. According to the COST 293 working groups, Part I discusses top-
ics in the area of Broadband and Optical Networks, including multilayer networks,
whereas Part II describes studies in Wireless and Ad Hoc Networks. Here we pro-
vide a brief overview.

1.6.1 Broadband and Optical Networks

Chapter 2 presents a survey on theoretical and practical aspects of traffic groom-
ing in optical networks. Traffic grooming was one of the key research topics within
COST 293, and accordingly many participants have contributed to this chapter. The
chapter was coordinated by David Coudert. In high-speed optical networks, every
optical channel provides a huge amount of bandwidth. A single (aggregated) re-
quest usually does not require the whole bandwidth an optical channel provides.
This implies an opportunity to save devices like light termination equipment (trans-
mitters and receivers) and Add/Drop Multiplexers (ADMs) in order to reduce the
investment and operation cost of the network. Chapter 2 surveys the main theoret-
ical results for different grooming factors on various topologies, introduces an ILP
formulation for the optimization problem on general topologies, and presents some
experimental results.

Next, in Chapter 3 the closely related problem of multilayer network design
is discussed. The chapter, coordinated by Sebastian Orlowski, introduces a two-
layer network design problem which has been studied in collaboration with Nokia
Siemens Networks. A mixed-integer programming formulation is presented that
takes many practical side constraints into account, including node hardware, several
bit rates, and survivability against single physical node or link failures. The model is
solved by a branch-and-cut algorithm using problem-specific preprocessing, MIP-
based heuristics, and cutting planes. The authors show that for realistic instances
computation times can be significantly reduced compared to the black-box solution.

Multi-protocol Label Switching (MPLS) is one of the routing protocols in packet-
oriented communication networks that uses labels attached to the packets to encode
the path the packet should follow through the network. With the increasing num-
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ber of network nodes to route packets to, it is important to keep the length of the
labels small without losing their flexibility. Chapter 4 addresses this issue from an
optimization point of view. Fernando Solano was the leading author of this chapter.

Chapter 5, coordinated by José L. Marzo and Thomas Stidsen, provides a show-
case on the issue of survivability in networks. Instead of reserving dedicated paths
to assure connections are not lost in the case of a link or node failure, one might
consider the usage of a different set of protection paths for every failure situation.
This chapter formalizes this concept, provides exact and heuristic algorithms for the
online routing problem involved, and finally presents two case studies on the re-
source provisioning and connection availability for both dedicated and shared path
protection in heterogeneous network topologies.

Besides connection-oriented and packet-oriented network technologies, optical
burst switching (OBS) has been proposed as an intermediate solution for all-optical
networks. In Chapter 6 Mirosław Klinkowski and his coauthors discuss routing op-
timization in such networks where buffering is in general not possible and hence the
network is sensitive to congestion and traffic losses. Nonlinear optimization models
for three network loss models are studied and solutions are presented that reduce the
burst loss probability.

Next, the issue of dynamic bandwidth allocation is discussed in Chapter 7, led
by Xavier Hesselbach. To maintain and ensure end-to-end in-sequence routing of
packets, load balancing and bandwidth/flow allocation in MPLS-based architectures
have to be established. Traffic characteristics such as Quality of Service (QoS) and
burstiness are considered.

Chapter 8 discusses optimization problems in the context of the open shortest
path (OSPF) routing protocol for Internet traffic. The main advantage of the short-
est path routing policy is its simplicity, allowing for little administrative overhead.
From the network engineering perspective, however, shortest path routing can pose
problems in achieving satisfactory traffic handling efficiency. The chapter discusses
one of the main tasks when planning such a network: the setting of the adminis-
trative weights of the links such that a globally efficient traffic routing is achieved.
This very difficult optimization problem is considered, models are proposed, and
exact and heuristic solution methods are discussed. The chapter was coordinated by
Andreas Bley and Michał Pióro.

So far, it has been assumed in all chapters that a central authority is able to
make decisions, or coordinate such decisions that determine the performance of the
network. In Chapter 9 the scenario where such a central authority does not exist are
considered. Network users act in an uncoordinated and selfish manner, affecting the
overall system performance. Issues such as the definition of reasonable and practical
models for studying this kind of behavior or the quantification of the efficiency loss
due to the lack of users’ cooperation are discussed, and results are presented. The
chapter was coordinated by Ioannis Caragiannis.

Finally, Chapter 10 (by Ignasi Sau and Janez Žerovnik) studies the routing of
packets in a timely fashion. The goal is to minimize the number of rounds a routing
protocol needs to send a set of requests using a system of paths in the network. More
information on the network topology (e.g., hexagonal grids) or the set of requests
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(e.g., so-called permutation routing or r-central routing) allows for more accurate
results. The chapter surveys the results in the general setting and in particular cases.

1.6.2 Wireless and Ad Hoc Networks

The part on wireless and ad hoc networks starts with a study on Wireless Local Area
Network (WLAN) planning. Chapter 11, coordinated by Di Yuan, considers the op-
timization of such networks, taking into account performance measures like deploy-
ment cost, coverage, capacity, interference, data throughput, and radio resource uti-
lization. Both individual models and an integrated model for placing access points
and channel assignment are presented. Computational results are reported on the
basis of real-life data.

Broadcasting is a basic network communication task, where a message initially
held by a source node has to be disseminated to all other nodes in the network.
Broadcasting in radio networks is studied in Chapter 12. David Peleg and Tomasz
Radzik review the literature on time-efficient algorithms under a variety of models
and assumptions. They also illustrate the basic techniques to prove the obtained
results.

Chapter 13 studies similar problems from the energy consumption perspective. In
wireless networks energy is a scarce resource since many network nodes do not have
a fixed infrastructure (e.g., notebooks, PDAs, etc.). In this chapter, two problems
are studied. The aim of minimum energy broadcast routing is to route a message
from a given source to all other nodes with minimum overall energy usage. In the
Multi-interface Networks, the energy consumption is minimized by the choice of
activated interfaces on devices with multiple interfaces (e.g., Bluetooth, WiFi, etc.).
The leading author of the chapter was Alfredo Navarra.

In contrast to broadcasting, in data gathering information provided or collected
by the network nodes has to be gathered in a specific node. Due to interference,
simultaneous data communication is limited and has to be carried out in a number
of rounds. Hence, minimization of the number of rounds or similar objectives have
to be accounted for. In Chapter 14, Ralf Klasing and his coauthors consider different
interference models and discuss recent complexity results as well as approximation
algorithms.

Chapter 15, by Jérôme Galtier, focuses on another aspect of WLANs: protocols
for Medium Access Control (MAC). The transmission of a packet might fail due
to the collision with simultaneously sent packets (from other sources). To achieve a
good network performance, protocols are needed to handle the retransmission of the
packet. In this chapter, mathematical evidence is presented that the selective tourna-
ments protocol is asymptotically tight. Moreover, it is shown that in the context of
WiFi and WiMAX networks a collision reduction of 14% to 21% can be achieved
compared to the best known methods.

Finally, Chapter 16, coordinated by Lenka Carr-Motyckova and Walter Unger),
discusses topology control and routing in ad hoc networks. Mobile entities with
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the ability to communicate via radio signals may form an ad hoc network. Special
problems arising for these ad hoc networks are considered briefly: range control, the
reduction of interferences, regulation of power consumption, and localization.
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Chapter 2
Traffic Grooming: Combinatorial Results and
Practical Resolutions

Tibor Cinkler, David Coudert, Michele Flammini, Gianpiero Monaco, Luca
Moscardelli, Xavier Muñoz, Ignasi Sau, Mordechai Shalom, and Shmuel Zaks

Abstract In an optical network using the wavelength division multiplexing (WDM)
technology, routing a request consists of assigning it a route in the physical network
and a wavelength. If each request uses 1/g of the bandwidth of the wavelength, we
will say that the grooming factor is g. That means that on a given edge of the net-
work we can groom (group) at most g requests on the same wavelength. With this
constraint the objective can be either to minimize the number of wavelengths (re-
lated to the transmission cost) or minimize the number of Add/Drop Multiplexers
(shortly ADM ) used in the network (related to the cost of the nodes).

Here, we first survey the main theoretical results obtained for different grooming
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factors on various topologies: complexity, (in)approximability, optimal construc-
tions, approximation algorithms, heuristics, etc. Then, we give an ILP formulation
for multilayer traffic grooming and present some experimental results.

Key words: WDM networks, grooming, ADM, complexity, approximation algo-
rithms, heuristics, integer linear programming

2.1 Introduction

Traffic grooming refers to techniques used to organize and simplify routing and
switching in connection-oriented networks, such as WDM (wavelength division
multiplexing) or MPLS (Multi-protocol Label Switching) networks, in order to im-
prove the usage of the bandwidth and of the components, and therefore to reduce
the network cost.

Typically, when establishing a connection in an optical network, one has to install
some equipment at both extremities of the connection, that is, an optical transmitter
(laser) at its source and an optical receiver at its destination. But due to the cost of
building, installing, and maintaining devices, it is usually more interesting to use a
single kind of device that can handle both transmission and reception. Such devices
are called Light Termination Equipment, or LTE for short. Thus, every connection
will involve two distinct LTEs, and two distinct connections may share the same
LTE, provided that one ends at a node while the other starts from that same node.
In this context, traffic grooming refers to minimizing the number of LTEs that are
needed in the network to serve all connection requests. The problem of minimizing
the number of LTEs in the network being NP-Hard [58, 84], research effort has con-
centrated on the development of efficient approximation algorithms for both static
and online traffic [52, 59, 64, 65, 103]. This is the subject of Section 2.3.

At another level in the network, traffic grooming also refers to techniques used
to combine low-speed traffic streams onto high speed wavelengths in order to mini-
mize the network-wide cost in terms of electronic switching. Typically, nodes of the
network insert and/or extract the data streams on a wavelength by means of add/drop
multiplexers (ADMs). A WDM or DWDM (dense WDM) optical network can han-
dle many wavelengths, each with large bandwidth available. On the other hand, a
single user seldom needs such large bandwidth. Therefore, by using multiplexed
access such as TDMA (time-division multiple access) or CDMA (code-division
multiple access), different users can share the same wavelength, thereby optimiz-
ing the bandwidth usage of the network. By using traffic grooming, not only is the
bandwidth usage optimized, but also the cost of the network can be cut by reduc-
ing the total number of ADMs. Such techniques become increasingly important for
emerging network technologies, including SONET/WDM rings and MPLS/MPλS
backbones [108], for which traffic grooming is essential.

In this context, one ADM is needed in a node each time we want to add or drop
traffic to or from a wavelength. Therefore, one has to place one ADM in a node for
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each wavelength in which traffic is added or dropped, as can be seen in Figure 2.1.
Here, the bandwidth requirement of a traffic stream is expressed as a fraction of the
bandwidth offered by a single wavelength, which we call the grooming factor, g, and
an ADM is able to drop (or add) up to g unitary traffic streams from (or to) a given
wavelength. Thus, the traffic grooming problem is to minimize the total number of
ADMs to be installed in the network in order to accomodate all traffic streams.

Given the general traffic grooming problem of minimizing the total number of
ADMs to be installed in the network with respect to the traffic requirement being
NP-complete [21, 101], recent works focus on specific issues. Most of the algo-
rithms aim at grooming traffic in such a way that all the traffic between any given
pair of nodes is carried on a minimum number of wavelengths. However, a large part
of the network cost depends on the capacity of the multiplexing equipment required
at each node. Hence, in order to minimize the overall network cost, algorithms have
to take into account a trade-off between the number of wavelengths used and the
number of required ADMs. Indeed minimizing the number of ADMs is different
from minimizing the number of wavelengths: the number of wavelengths and the
number of ADMs cannot always be simultaneously minimized (see [11, 21, 69] for
unitary traffic). Both minimization problems have been considered by many authors.
See, for example, the surveys [3, 56] for minimization of the number of wavelengths
and [10, 69, 70, 73, 112, 115] for minimization of ADMs, and [72, 81] for online
approaches. Numerical results, heuristics, and tables might be found in [11, 113],
and extensions to multicast connection requests in [51, 107].

The reader may also refer to the surveys [27, 57, 89, 117] and books [55, 106,
118] for other aspects of traffic grooming that are not considered here; in particular,
waveband switching allows switching together a set of predetermined wavelengths
(band) issued from one fiber and going to another [18–20, 75, 116]. Various other
concepts might also been considered as traffic grooming, such as Lighttrails [114],
Lighttours [105], or bus labeling [16, 17].

In this chapter, we give an overview of the traffic grooming problems that have
been addressed within the European project COST 293 GRAAL, and we survey the
main exact and approximate results obtained so far for static and online traffic. We
present practical approaches for multilayer traffic grooming. The results have been
obtained using a large variety of mathematical tools including graph theory, design
theory, linear programming, combinatorial optimization, and game theory.

This chapter is structured as follows. We start in Section 2.2 with a general defi-
nition of the traffic grooming problem, and we give some examples. In Section 2.3
we present the modelization and the main results obtained for minimizing the num-
ber of LTEs in a network. We continue in Section 2.4 with the more general model
of minimizing the number of ADMs, for which we survey the main combinatorial
results. Then, in Section 2.5, we present an efficient ILP model for multilayer traffic
grooming on general networks subject to general traffic demands. We also present
some experimental results. We finally conclude this chapter in Section 2.6.
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Fig. 2.1 Placement of ADMs in the network: one ADM for each wavelength used in a node

2.2 Problem Definition and Examples

In this section, we first give precise descriptions and models of LTE and ADM, and
then formalize the traffic grooming problem considered here.

A Light Termination Equipment, LTE, is a device that realizes the interface be-
tween the optical domain and the electronic domain. It is constituted of one optical
receiver and one optical transmitter, so every connection involves two distinct LTEs,
one at each endpoint. In this chapter, we assume that the receiver and the transmit-
ter of an LTE are tuned on the same wavelength (other assumptions are possible).
Also, two distinct connections may share an LTE, provided that one ends at a node
while the other starts from that same node, and that both connections are assigned
the same wavelength.

An Add/Drop Multiplexer, ADM, is a device used in synchronous transmission
networks (SDHs or SONETs) to add (insert) or drop (remove) lower-data-rate chan-
nel traffic from the higher-rate aggregated channel. In optical networks, each ADM
contains an LTE to realize the interface between the optical domain (high-speed
channel) and the electronic domain (lower-speed channels). Thus, an ADM oper-
ates on a single high-speed data stream, and so a single wavelength, as can be seen
in Figure 2.1. The cost of an ADM is given by its capacity, that is, the maximum
number of low-speed channels (provided each of them has a unitary bandwidth re-
quirement) that can be added or dropped from the wavelength. The capacity of an
ADM is called the grooming factor or grooming ratio. Finally, note that with groom-
ing factor 1, an ADM is nothing other than an LTE.

In optical networks with grooming capabilities, the traffic demands are expressed
in terms of low-speed data channels. Thus, one has to assign to each connection re-
quest a path and a wavelength with the capacity constraint that at most g (grooming
factor) connection requests are assigned the same wavelength on the same link of
the network.

An instance of the traffic grooming problem is a triple (G, I,g) where G = (V,E)
is a graph modeling the network topology, I is a set of connection requests, and g is
a positive integer, namely the grooming factor.
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Given a connection request r ∈ I identified by a couple of nodes aiming to com-
municate, let Pr be the set of the paths in G connecting the two endpoints relative
to r. We have two main issues:

• the determination of a path system (or path assignment) of (G, I), that is, a func-
tion p : I �→ ⋃

r∈I Pr;
• the determination of a proper coloring (or wavelength assignment) of (G, I), that

is, a function w : I �→ N+ = {1,2, ...} such that for any edge e ∈ E at most g paths
using e are colored with the same color.

Some of the results presented in this chapter deal with both issues (Section 2.5),
while others, given a path system in the input, focus only on the determination of a
proper coloring (Sections 2.3 and 2.4).

Every colored request r ∈ I needs an ADM at each of its endpoint nodes. Follow-
ing the above description of ADMs, given a grooming factor g, at most g paths with
the same color, incident to a node through the same edge, can use the same ADM.
Furthermore, the same ADM can also be shared by at most g paths with the same
color, incident to the same node through another incident edge.

The traffic grooming problem is the optimization problem of finding a proper
coloring w of (G, I,g) minimizing the total number of ADMs used. Let A(G, I,g) be
the optimal value for such a problem.

To establish ideas we now provide two examples, for uni- and bidirectional rings,
respectively.

Unidirectional Ring

Suppose we have a unidirectional ring with four nodes {1,2,3,4} and an all-to-all
unitary traffic (one request between each pair of nodes). Since we need one ADM
at each extremity of a request, and the routing is unique, we can put requests (i, j)
and ( j, i) on the same wavelength, thus using 1/g of the capacity of that wavelength
on the ring. We call such pair of symmetric requests a circle. There are therefore
six circles (i, j) for 1 ≤ i < j ≤ 4. If there is no grooming (i.e., g = 1) we need six
wavelengths (one per circle) and a total of 12 ADMs. If we have a grooming factor
g = 2, we can put on the same wavelength two circles, using three or four ADMs ac-
cording to whether they share an end node or not. For example, we can put together
(1,2) and (2,3) on one wavelength; (1,3) and (3,4) on a second wavelength; and
(1,4) and (2,4) on a third wavelength, for a total of nine ADMs, and this is optimal.

Now, if we allow a grooming factor g = 3, we can use only two wavelengths. If
we put together on one wavelength (1,2), (2,3), and (3,4) and on the other (1,3),
(2,4), and (1,4), we need eight ADMs (solution a, Figure 2(a)); but we can do better
by putting on the first wavelength (1,2), (2,3) and (1,3) and on the second (1,4),
(2,4) and (3,4), using seven ADMs (solution b, Figure 2(b)).

More formally, in the above example with N = 4 and g = 3, solution a con-
sists of a decomposition of K4 (all circles) into two paths with four vertices each,
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(a) Solution with eight ADMs. Circles (1,2), (2,3), and (3,4) on the first
wavelength, and (1,3), (2,4), and (1,4) on the second wavelength
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(b) Solution with seven ADMs. Circles (1,2), (2,3), and (1,3) on the first
wavelength, and (1,4), (2,4), and (3,4) on the second wavelength

1

34

1 2

34

2

34

1 2
34

1 2

3

1 2

(c) Decomposition of K4 associated with the two solutions. Each edge of K4 corre-
sponds to a circle

Fig. 2.2 Traffic grooming for a unidirectional ring with four nodes, grooming factor g = 3 all-to-all
unitary traffic. Solution 2(a) with eight ADMs, solution 2(b) with seven ADMs, and corresponding
decompositions of K4
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[1,2,3,4] and [1,4,2,3], while solution b corresponds to a decomposition into a tri-
angle (1,2,3) and a star with edges (1,4), (2,4), and (3,4).

Bidirectional Ring

Consider now a bidirectional ring on five nodes {0,1,2,3,4} with all-to-all unitary
traffic modeled by the complete symmetric digraph K+

5 . In this setting, it is more
interesting to route requests (i, j) and ( j, i) on different wavelengths with shortest
path routing. For example, with grooming factor g = 3, we can put on a wavelength
routed clockwise requests (i, i+1 mod 5) and (i, i+2 mod 5), and on a wavelength
routed counterclockwise requests (i, i−1 mod 5) and (i, i−2 mod 5). We need five
ADMs on each wavelength so overall ten ADMs. But if requests (i, j) and ( j, i)
are routed on a same wavelength, then we can put at most three circles (pairs of
symmetric requests) per wavelength using at least three ADMs. Since K+

5 contains
ten circles, we need four wavelengths, three of them with three circles and at least
three ADMs and one of them with at least one circle and two ADMs, so overall 11
ADMs.

With grooming factor g = 2, we can put on one wavelength requests (i, i +
1 mod 5) and on another wavelength requests (i, i + 2 mod 5). Symmetric requests
are routed similarly in opposite direction and we obtain the partition of Figure 3(b)
using overall 20 ADMs. But we can do better by putting on a first wavelength re-
quests (i, i + 1 mod 5), (0,2) and (2,4) using five ADMs, and on a second wave-
length requests (1,3), (3,5), and (4,1) using four ADMs. We obtain the partition of
Figure 3(c) using overall 2(5+4) = 18 ADMs.
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0 4
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(a) Set of requets
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1

0 4

3

2

1
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(b) Partition using two times ten ADMs
4

1

2

3

40 0

1 3

(c) Partition using two times nine ADMs

Fig. 2.3 Two valid partitions of K+
5 when g = 2, using different number of ADMs. Symmetric

requests are routed counterclockwise and partitioned similarly.
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2.3 Minimizing the Usage of Light Termination Equipment

In this section, we concentrate on the traffic grooming problem of minimizing the
total number of LTEs that are needed in the network to serve all connection requests.
This problem is NP-hard [58, 84] in general but can be solved in polynomial time
for specific topologies. Also, efficient approximation algorithms have been proposed
for both static and online traffic.

This section is organized as follows. We first consider the path topology where
the problem can be solved in polynomial time. Then we review efficient approxi-
mation algorithms for the ring topology where the problem is already NP-hard, and
also for more general topologies. Finally, we show how game theory can be useful
to solve dynamic and online versions of the problem.

2.3.1 Path

Let the physical topology be the directed path PN with N nodes labelled 1,2, . . . ,N,
and N −1 arcs (i, i+1) for 1 ≤ i < N. Let also T TN = {(i, j), 1 ≤ i < j ≤ N} denote
a transitive tournament, that is, the set of all requests from left to right.

For any set of requests I ⊆ λT TN , where λ is a positive integer, the problem of
minimizing the number of LTEs on PN can be solved optimally in polynomial time
using a greedy algorithm. To prove that, it is sufficient to observe that the number of
LTEs needed at node i of PN is equal to max

{
d−

I (i),d+
I (i)

}
, where d−

I (i) (or d+
I (i))

denote the indegree (or outdegree) of node i in I, that is, the number of requests {u, i}
with u < i (or {i,v} with i < v). We obtain Proposition 2.1, and in Corollary 2.1 we
give the exact number of LTEs when I = T TN .

Proposition 2.1 (Bermond et al. [4]). A(PN , I,1) = ∑N−1
i=0 max

{
d−

I (i),d+
I (i)

}
.

Corollary 2.1 (Bermond et al. [4]). A(PN ,T TN ,1) = 3N2−2N−ε
4 , where ε = N mod

2.

When the physical topology is a bidirectional path, it is necessary to be precise
about how LTEs can be used. In particular, one has to be precise about whether it
is possible to share a LTE between requests (u, i) and (i,v) with u,v < i, that is, a
left-to-right request ending at i and a right-to-left request starting from i, or not. If
it is not possible, then the problem can be decomposed into two subproblems on a
directed path that will be solved independently. But when such sharing is allowed,
the problem has not been addressed in the literature and it is conjectured to be NP-
complete.
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2.3.2 Ring

The problem of minimizing the number of LTEs in optical networks was introduced
in [69] for the unidirectional ring topology. It is proved to be NP-hard independently
in [58] and [84]. The NP-hardness proofs also apply to bidirectional rings, even
when the routing of connection requests is given. An algorithm with approximation
ratio of 3

2 was presented in [52] for unidirectional and bidirectional rings with given
routing. This algorithm has a first step (called the preprocessing step) that finds
cycles in the instance and colors each cycle with a unique color. The remaining
requests are then merged to form chains. This algorithm can also be adapted to
the case where also the routing has to be determined, with the same approximation
ratio [52].

This technique was improved in [103], showing that if the preprocessing phase
tries to remove short cycles first, then an approximation ratio of 10/7 + ε can be
achieved. This is improved to 10/7 in [59] using the same technique with a more
detailed analysis.

In [13], we give exact algorithms for the all-to-all set of requests on uni- and
bidirectional rings. Surprisingly, these results are obtained using a partition of the
set of requests into cycles of lengths 3 and 4.

In [53] and [60] a variant of this problem is considered. In this variant, a path
can be broken into segments and each segment can be colored using a different
wavelength. Obviously this might incur an additional cost in terms of LTEs, but it
allows to reduce significantly the number of wavelength used.

2.3.3 General Topology

In [52] an approximation algorithm was presented for general networks. The algo-
rithm has a preprocessing phase where cycles of length at most l are included in the
solution; this algorithm was shown to have performance guarantee of OPT + 1

2 (1+
ε)N, 0 < ε ≤ 1

l+2 , where OPT is the cost of an optimal solution and N is the number
of connection requests for any given odd l. A special case of this algorithm is when
there is no preprocesing (i.e., l = 1). The analysis reduces in this case to OPT + 2

3 N.
The dominant part in the running time of the algorithm is the preprocessing phase,
which is exponential in l.

In [65] we improve the analysis of the algorithm of [52] and prove a performance
of OPT + 1

2 (1 + ε)N, where 1
2l+3 ≤ ε ≤ 1

3
2 (l+2)

. Specifically, we show that the al-

gorithm guarantees an upper bound of OPT + 1
2 (1 + ε)N for ε ≤ 1

3
2 (l+2)

, and we

demonstrate a family of instances for which the performance of the algorithm is
OPT + 1

2 (1+ ε)N for ε ≥ 1
2l+3 .

Our analysis sheds more light on the structure and properties of the algorithm
by closely examining the structural relation between the solution found by the algo-
rithm and an optimal solution for any given instance of the problem. As the running
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time of the algorithm is exponential in l, our result implies an improvement in the
analysis of the running time of the algorithm. For any given ε > 0, the exponent of
the running time needed to guarantee the approximation ratio (3 + ε)/2 is reduced
by a factor of 3/2. In addition, in the development of our bounds we address a purely
combinatorial problem, which is of interest by itself.

We also improve the analysis for the special case where there is no preprocesing.
In [64] we develop a new technique for the analysis of the upper bound and prove a
tight bound of OPT + 3

5 N for the performance of this algorithm.

2.3.4 Online Traffic

In many applications the requests arrive at the network online, and we have to assign
them wavelengths so as to minimize the switching cost. In more involved cases we
have also to determine the actual routing for these requests. In these situations, once
an assignment is made the system cannot change it, and the aim is to suggest a
strategy that will optimally utilize the network resources. Such a study is thus of
great importance in the operation of optical networks.

Formally, an online algorithm is said to be c-competitive if, for any sequence of
inputs, the cost is at most c times that of an optimal off-line algorithm (see [15]).

In [102] we present an online algorithm for the problem of minimizing the num-
ber of LTEs, and prove that its competitive ratio is 7

4 . We show that this result is the
best possible in general. Moreover, we show that even for the ring topology network
there is no online algorithm with competitive ratio better than 7

4 . We show that on
the path topology the competitive ratio of the algorithm is 3

2 . This is the best possi-
ble for this topology. The lower bound on the ring topology does not hold when the
ring is of bounded size. We analyze the triangle topology and show a tight bound
of 5

3 for it. The analysis of the upper bounds, as well as those for the lower bounds
use all a variety of proof techniques, which are of interest on their own, and which
might prove helpful in future research on the topic.

2.3.5 Price of Anarchy

Game Theory and the associated concept of Nash equilibria have recently emerged
as a powerful tool for modeling and analyzing a lack of coordination in distributed
environments. In this setting, each communication request is handled by an agent
(or player) selfishly performing moves, i.e., changing her routing strategy in order
to maximize her own benefit. A Nash equilibrium is a solution of the game in which
no agent gains by unilaterally changing her routing strategy. If Nash equilibria are
reached in a polynomial number of selfish moves, and finding an improving user
move is a problem solvable in polynomial time, such a non-cooperative process
naturally defines a distributed polynomial-time algorithm. However, due to the lack
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of cooperation among the players, Nash equilibria are known not to always optimize
the overall performance. Such a loss has been formalized by the so-called price of
anarchy (or optimistic price of anarchy), defined as the ratio between the cost of
the worst (or best) Nash equilibrium and the one of a centralized optimal solution.
The notion of Nash equilibria goes back to [91]. For about a decade the use of game
theory has gained a lot of attention in numerous computer science directions, in what
is known today as algorithmic game theory (see [92, 100]). The notion of price of
anarchy goes back to [82].

In [54] we consider non-cooperative games in all-optical networks where users
share the cost of the LTE switches used for realizing given communication patterns.
We show that the two fundamental cost sharing methods, Shapley and Egalitarian,
induce polynomial converging games with price of anarchy at most 5

3 , regardless of
the network topology. Such a bound is tight even for rings. Then, we show that if
collusion of at most k players is allowed, the Egalitarian method yields polynomially
converging games with price of collusion between 3

2 and 3
2 + 1

k . This result is very
interesting and quite surprising, as the best-known approximation ratio, that is 3

2 +ε ,
can be achieved in polynomial time by uncoordinated evolutions of collusion games
with coalitions of increasing size.

Moreover, with respect to the optimization of the optical spectrum, in [14] we
investigate the problem in which a provider must determine suitable payment func-
tions for non-cooperative agents wishing to communicate so as to induce routings
in Nash equilibria using a low number of wavelengths. We assume three differ-
ent information levels specifying the local knowledge that agents may exploit to
compute their payments. Under complete information of all the agents and their
routing requests, the network provider can compute prices where a Nash equilib-
rium is reached such that the assignment is the same as the one computed by a
centralized algorithm. If the price to an agent is based only on the wavelengths used
along connecting paths (minimal level) or along the edges (intermediate level), the
most reasonable functions either do not admit equilibria or admit equilibria with the
worst possible price of anarchy, that is, the ratio between the number of colors used
by the worst Nash equilibrium and the one used by an optimal solution. However,
by suitably restricting the network topology, a constant price of anarchy for chains
and rings and a logarithmic one for trees have been obtained under the minimal and
intermediate levels, respectively.

For more information, we refer to Chapter 9.

2.4 Minimizing the Number of Add/Drop Multiplexers

We will now concentrate on the case where the grooming factor is g > 1, for
which we gave examples in Section 2.2. We first survey the main complexity and
(in)approximability results. Then we see that for particular topologies and sets of
connection requests, it is possible to obtain optimal constructions. We also consider
the case where ADMs are placed a priori.
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Let us first clarify the difference between single-hop and multi-hop (or bifurca-
tion allowed) routing in this context. With single-hop routing, each request is routed
through the same wavelength from its source to its destination. This is used for sim-
ple network topologies such as directed paths or rings, but not for general topologies
where multi-hop routing is needed. When multi-hop routing is allowed, a request
may be switched from one wavelength to another at intermediate nodes. This gives
more flexibility for the traffic aggregation that is useful to optimize simultaneously
the number of ADMs and wavelengths (see Section 2.5).

2.4.1 Complexity and Inapproximability Results

Determining the NP-completeness of the traffic grooming problem has been an open
question for many years. It was first proved NP-complete on unidirectional rings
in [21] using a reduction from the Bin Packing problem. Another proof was also
mentioned in [112]. Later, the NP-completeness result has been refined.

More precisely, in [101] the traffic grooming problem is shown to be NP-
complete in the strong sense for a given grooming factor g ≥ 2, a network of di-
rected path (or unidirectional ring) topology, a set of demands I ⊆ KN , single-hop
routing, and an unbounded number of colors (wavelengths). It is also shown to be
NP-complete for rings and for paths for any fixed value g ≥ 2, and when the number
of colors is bounded.

The traffic grooming problem has also been proved NP-complete and hard to
approximate in star networks in [74]. These results have been extended in [62]
where a complete characterization of the traffic grooming problem complexity in
star networks is given by providing optimal polynomial-time algorithms for g ≤ 2
and proving the intractability of the problem for any fixed g > 2.

The first inapproximability result for traffic grooming with fixed values of the
grooming factor g has been obtained in [2], thus answering affirmatively the conjec-
ture of [23]. More precisely, it has been proved that traffic grooming on a unidirec-
tional ring for fixed g ≥ 1 and traffic grooming on a directed path for fixed g ≥ 2 are
APX-complete. That is, there is no polynomial-time approximation scheme (PTAS)
with constant approximation factor for these problems, unless P = NP. Both results
rely on the fact that finding the maximum number of edge-disjoint triangles in a
graph (and more generally cycles of length 2g + 1 in a graph of girth 2g + 1) is
APX-complete.

In particular, this implies that the traffic grooming problem is NP-complete in
rings for fixed g ≥ 1 and in paths for fixed g ≥ 2 for an unbounded number of
wavelengths, extending in this way the results of [101].
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2.4.2 Approximation Results

The first approximation algorithm for the traffic grooming problem has been de-
signed for the ring topology [71]. It is based on a greedy partition of the set of
connection requests into trees of width at most g and has approximation ratio

√
g.

In [63] we present an approximation algorithm for the problem of minimizing the
number of ADMs on a general network in the case where grooming is allowed. For
every value of the grooming factor g the running time of the algorithm is polynomial
in the input size. The approximation ratio of this algorithm for a wide variety of
network topologies – including the ring topology – is shown to be 2lng+o(lng). In
[62] the approximation ratio of the algorithm is shown to be 2ln(δ ·g)+o(ln(δ ·g))
for any undirected tree having fixed node degree bound δ , and 2lng + o(lng) for
unbounded degree directed trees.

As we have seen above, for general grooming factor g the best approximation
algorithm [63] for the traffic grooming on a ring achieves an approximation factor of
O(logg), but its running time is exponential in g (that is, Ng). However, in practical
applications such as SONET/SDH WDM rings, which are widely used as backbone
optical networks [57], the grooming factor is equal to 3 or 4, typically when four
655 Mbit/s streams are aggregated into one 2.5 Gbit/s wavelength.

It is also important to find good approximation algorithms with running time
polynomial in both N and g. Such approximation algorithm has been proposed
in [2], where g is considered as part of the input. To the best of our knowledge,
this is the first polynomial-time approximation algorithm for the traffic grooming
problem with an approximation ratio which does not depend on g.

Theorem 2.1 (Amini et al. [2]). There exists a polynomial-time approximation al-
gorithm that approximates the traffic grooming problem on a ring within a factor of
O(N1/3 log2 N) for any grooming factor g ≥ 1.

Theorem 2.2 (Amini et al. [2]). There exists a polynomial-time approximation al-
gorithm that approximates the traffic grooming problem on a path within a factor of
O(N1/3 log2 N) for any grooming factor g ≥ 2.

Although the performance of this algorithm seems not to be very good at first
sight, in fact it is conjectured in [2] that for the general instance of the problem it is
not possible to get rid of a factor nδ for some constant δ > 0.

Finally, in [2] it is shown that the general scheme of the algorithm yields an
O(log2 N)-approximation if the request graph excludes a fixed graph as minor, for
example, if R is planar or of bounded genus. The main theoretical contribution of
this algorithm is to relate the traffic grooming problem to the dense k-subgraph
problem [61] and the degree constrained subgraph problem [1].
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2.4.3 Specific Constructions

For specific grooming factors, sets of requests and topologies, it is possible to give
optimal constructions (assignment of requests to wavelengths that minimizes the
number of ADMs). This is typically the case with all-to-all unitary traffic (one uni-
tary request between each pair of nodes) where optimal constructions have been
obtained on simple topologies for a specific grooming factor.

In unidirectional rings, all requests are routed clockwise. Therefore, it is possible
to route requests (i, j) and ( j, i) on the same wavelength at the cost of two ADMs
and using 1

g of available bandwidth all along the ring. When the set of requests
is symmetric, this is shown to be optimal [11]. Furthermore, in this case, the set
of requests can be modeled by an undirected graph, each edge corresponding to
a circle, and a subgraph B with g edges corresponds to a valid assignment of g
circles to a wavelength. The number of nodes of B gives the number of ADMs to
use on the corresponding wavelength. Therefore, the traffic grooming problem on a
undirectional ring with symmetric traffic and grooming factor g can be modelled as
the following partition problem.

Definition 2.1 (Traffic Grooming in Unidirectional Ring with Symmetric Traf-
fic).
Input: N nodes unidirectional cycle CN , grooming factor g, and set of sym-

metric requests modeled by graph I.
Output: Partition of I into subgraphs Bw, 1 ≤ w ≤ W , such that |Bw| ≤ g.
Objective: Minimize ∑W

w=1 |V (Bw)|, and the optimum is denoted A(CN , I,g).

This problem is in general NP-complete. However, for the all-to-all unitary set of
traffic requests, I = KN , the complexity of the problem is unknown so far. Indeed,
it is clearly a difficult combinatorial problem. Using tools of Design Theory [47],
optimal constructions have been obtained for grooming factor g = 3 [5], g = 4 [11,
73], g = 5 [7], g = 6 [6], g = 7 [48], and g ≥ N(N − 1)/6 [11]. It has also been
solved for practical values of N and g [9], that is, N ≤ 16 and g = 3,4,12,16,48,64.

When the physical topology is a directed path, the problem has only been solved
for grooming factor g = 2, with all requests from left to right (transitive tourna-
ment, T TN) [4]. As for traffic grooming on a unidirectional ring, the problem can be
modeled as a graph partition problem. The main difficulty here is that the number
of connections in each subgraph is subject to high variation since, for example, all
requests (i, i + 1) may fit in the same subgraph (see [8] for the maximum value for
any g ≥ 1), and no suitable tools from graph or design theory have been developed
so far. A formal definition of the problem for any valid set of connection requests
is given in Definition 2.2, where load(Bw,e) denotes the number of requests of Bw

routed in the path through edge e.

Definition 2.2 (Traffic Grooming in Directed Path).
Input: N nodes directed path PN , grooming factor g, and set of requests I.
Output: Partition of I into subgraphs Bw, 1 ≤ w ≤W , such that load(Bw,e) ≤ g

for all e ∈ PN .
Objective: Minimize ∑W

w=1 |V (Bw)|, and the optimum is denoted A(PN , I,g).
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Table 2.1 Congruence classes of N for some g for which optimal constructions are given

k g N
1 1 All values
2 3 N ≡ 1,5 mod 12
3 6 N ≡ 1,7 mod 24
4 10 N ≡ 1,9 mod 40
5 15 N ≡ 1,9 mod 30
6 21 N ≡ 1,13 mod 84
7 28 N ≡ 1,15 mod 112
8 36 N ≡ 1,17 mod 144

Finally, when the physical topology is a bidirectional ring, the routing of the
requests has to be taken into account since shortest path routing is not always op-
timal in general. However, it has been proved in [12] that symmetric shortest path
routing allows us to obtain optimal solutions on bidirectional rings with all-to-all
unitary traffic. The main results in this case are the following: optimal construction
for the particular case g = 1 [13]; optimal construction when g = 4,8 [49, 50]; op-
timal construction when g = 3 and N ≡ 1,5 mod 12 [12] and when g = k(k + 1)/2
for some congruence classes of N summarized in Table 2.1; and construction with
approximation factor 12/11 when g = 2 [12].

2.4.4 A Priori Placement of the Equipment

In this section we study traffic grooming in unidirectional rings considering a wider
range of requests than, for example, a complete graph. The idea is to place the
ADMs in the nodes with limited knowledge of the graph of requests, for instance,
knowledge of only its maximum degree. This model helps the network designer
to take into account small traffic variations when deciding where to install ADMs,
since in many situations one cannot expect to add or remove equipment at the nodes
when the requests vary.

Namely, we consider the problem of placing the minimum number of ADMs in
the nodes of a unidirectional ring in such a way that the network could support any
request graph with maximum degree bounded by a constant Δ . Note that using this
approach, as long as the degree of each node does not exceed Δ , the network can
support a wide range of traffic demands without reconfiguring the equipment placed
at the nodes. The problem can be formally stated as follows.

Definition 2.3 (Traffic Grooming in Unidirectional Rings with Bounded-Degree
Symmetric Request Digraph).
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Table 2.2 Values of M(g,Δ) found in [90]. The case g = 4 and Δ = 3 is a conjectured value

g \ Δ 1 2 3 4 5 6 . . . Δ

1,2 1 2 3 4 5 6 . . . Δ
3 1 2 3 ≥ 3 ≥ 4 ≥ 4 . . . ≥

⌈
2Δ
3

⌉

4 1 2 2?? ≥ 3 ≥ 4 ≥ 4 . . . ≥
⌈

5Δ
8

⌉

5 1 2 2 ≥ 3 ≥ 3 ≥ 4 . . . ≥
⌈

3Δ
5

⌉

g ≥ 5 1 2 2 3 3 4 . . . ≥
⌈

g+1
g
Δ
2

⌉

Input: N nodes unidirectional cycle CN , grooming factor g, and a maximum
degree Δ .

Output: An assignment of A(v) ADMs to each node v ∈V (CN), in such a way
that for any request graph I (each edge represents a pair of symmetric
requests) with maximum degree at most Δ , there exists a partition of
I into subgraphs Bλ , 1 ≤ λ ≤Λ , such that:

(i) |E(Bλ )| ≤ g for all λ ; and
(ii) each vertex v ∈ V (CN) appears in at most A(v) subgraphs.

Objective: Minimize ∑v∈V (CN) A(v), and the optimum is denoted A(CN ,g,Δ).

This problem has been studied in [90]. It solves the cases corresponding to Δ = 2
(for all values of g) and Δ = 3 (except for g = 4), and give upper and lower bounds
for the general case. It also characterizes the function A(CN ,g,Δ), which turns out
to be linear in N.

Lemma 2.1 ( [90]). The function A(CN ,g,Δ) is of the form A(CN ,g,Δ) = MN −α ,
where M and α are natural numbers depending only on g and Δ .

A summary of the results of [90] is given in Table 2.2, where M(g,Δ) is the smallest
integer such that the inequality A(CN ,g,Δ) ≤ M(g,Δ)N holds for any N ≥ 1.

2.5 Multilayer Traffic Grooming for General Networks

In previous sections we have discussed various aspects of traffic grooming for ring
and tree networks. In this section we will discuss the case of more general network
topologies, typically referred to as mesh networks. First we give an overview of
different architectures of practical interest; then we give a survey of different graph
models used with an ILP formulation and show examples of what can these models
be used for.
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2.5.1 Multilayer Mesh Networks

If there are multiple network layers “one over the other,” we refer to this structure
as “Multilayer” network. It is also referred to as the vertical structure of networks,
in contrast to the horizontal, where multiple domains are mutually interconnected.
These network layers are not the ISO-OSI layers, where each layer defines some
network functionality, but layers that can each provide certain connections or vir-
tual connections and that can be established using the same or different network
technologies.

Examples where the same network technology is used are the old FDM (Fre-
quency Division Multiplexed) systems, different ATM (Asynchronous Transfer
Mode) networks with two layers, namely VP and VC layers, and the MPLS (Multi-
protocol Label Switching) networks where practically any number of LSPs (Label
Switched Paths) can be established, where the lower-layer paths are considered as
links in the upper-layer. In this case, the upper-layer paths share these lower-layer
paths, i.e., they are encapsulated or embedded into these paths.

Examples where different technologies are used are

• PDH over SDH
• IP over PoS/MAPOS over SDH over WDM
• IP over ATM/MPLS over SDH over WDM
• IP over GFP over SDH over OTN over WDM
• IP over PPP over Ethernet over ATM-AAL5 over SDH over OTN ...

A multilayer network consists in general of interconnected multilayer and single-
layer nodes. The single-layer nodes can be at any network layer, while multilayer
nodes are those that are attached to two or more layers and/or perform the switching
at two or more layers.

There are two general specifications of such multilayer architectures one referred
to as GMPLS (Generalized Multi-protocol Label Switching) by the IETF [86] and
the other ASTN (Automatic Switched Transport Network) by the ITU-T [76].

The IETF GMPLS framework [98] defines the following layers, this time accord-
ing to the switching capability, i.e., a layer can be established by different network-
ing technologies:

• PSC (Packet Switching Capable, e.g., IP)
• L2SC (Layer 2 Switching Capable, e.g., GbEth)
• TSC (TDM Switching Capable, e.g., SDH VC-4-4c)
• λSC (Wavelength Switching Capable)
• WBSC (WaveBand Switching Capable)
• FSC (Fiber Switching Capable)

Typically not all these layers are represented in a network, but rather only two
or three of them. Having multiple layers has both advantages and disadvantages.
The advantages are that the services can access finer bandwidth granularity and
some additional features of upper-layers only, i.e., for a small ratio of traffic only.
The drawbacks are that some functionality is multiplied across layers and that the
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complexity of operating multilayer networks is much higher than that of operating
certain layers separately.

This layered vertical structure is valid for the data plane (DP), i.e., the network
that carries the user information. However, for configuring and operating such a
network we need a management and a control plane (MP and CP respectively).

If the DP layers of this vertical structure are run by different operators or
providers, then they must communicate with each other to exchange information
necessary for routing and other purposes. This vertical communication between MP
and CP layers is referred to as Interconnection, and there are three defined Intercon-
nection Models: (1) Overlay, (2) Augmented, and (3) Peer model [98].

The Overlay model is a client-server model where the upper (client) layer al-
ways adapts to the lower (server) layer. In the case of the Peer model, all necessary
information is interchanged between the layers, and they may act together, e.g., in
routing a demand. The Augmented (or hybrid) model is somewhere in between the
Overlay and Peer models.

The DP layers in a node can be controlled either each by its own CP instance
that communicates with other layers of that node, or by a single CP instance that
controls all the DP layers of that node.

The latter case is feasible only if all the DP layers are run by a single operator
or provider, since there is no need for communication interfaces between the layers.
Therefore, a single unified integrated CP can be used for all the layers instead of
the interconnection, the so-called Integrated Model. The forwarding units of all the
layers of the data plane are connected to a single control plane unit.

Similarly, if such a multilayer network has layers or some parts of certain lay-
ers built of interconnected elements of a unique networking technology, or, rather
switching capability, then the set of these elements is defined by the CCAMP WG
of IETF as a Region. A network having multiple different regions is referred to as a
Multi-region network [93, 104].

2.5.2 On Grooming in Multilayer Mesh Networks

In switched multilayer transport networks (e.g., ASTN/GMPLS) the traffic demands
have typically bandwidth of orders of magnitude lower than the capacity of wave-
length links (λ -links). Therefore, it is not worth assigning exclusive end-to-end
wavelength paths (λ -paths) to these demands, i.e., sub-λ granularity is required.
Furthermore, the number of wavelengths per fiber is limited and costly. To increase
the throughput of a network with a limited number of wavelengths per fiber, traffic
grooming capability is required in certain nodes.

Here we assume two layers only, i.e., a Wavelength Routing Dense Wavelength
Division Multiplexing (WR-DWDM) Network and one layer built over it. In the
WR-DWDM layer, a λ -path connects two physically adjacent or distant nodes.
These two physical nodes will seem adjacent for the upper layer built over it. More
generally, we can consider this two-layer approach as two layers of a 4–6 layer GM-
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PLS/ASTN architecture [98]. However, not only is the framing and layering struc-
ture of interest, but the control plane proposed in the GMPLS/ASTN framework is
as well.

This upper layer is an “electronic” one, i.e., it can perform multiplexing differ-
ent traffic streams into a single λ -path via simultaneous time and space switching.
Similarly, it can demultiplex different traffic streams of a single λ -path. Further-
more, it can perform re-multiplexing as well: Some of the demultiplexed demands
can be again multiplexed into some other λ -paths and handled together along them.
This is often referred to as (traffic) grooming [27]. The electronic layer is required
for multiplexing packets coming from different ports (asynchronous time division
multiplexing).

This upper electronic layer can be a classical or “next generation” SDH/SONET,
MPLS, ATM, GbE, or 10 GbE, or it can be based on any other technology. However,
in all cases the network carries mostly IP traffic. The only requirement is that it
must be identical for all traffic streams that have to be demultiplexed, and then
multiplexed again, since we cannot multiplex, e.g., ATM cells with Ethernet frames
directly.

2.5.3 Graph Models for Multilayer Grooming

Optical metro and particularly core networks consist of multiple layers, where mul-
tiple different networking technologies are stacked one over the other. For simplic-
ity, here we assume two layers only, e.g., an IP/MPLS layer over an DWDM layer,
both controlled jointly by either one vertically peer-interconnected or one vertically
integrated GMPLS control plane.

To better utilize network resources, smaller, upper-layer traffic streams are mul-
tiplexed (“groomed”) into higher capacity wavelength paths in a distributed way
throughout the network.

In this section we give an overview of known graph models as well as propose
some new graph models that all allow both static and dynamic grooming while
performing design, dimensioning, configuration, routing, multicasting, traffic engi-
neering, and resilience functions.

2.5.3.1 Grooming and Wavelength Assignment for Static Routing

The aim of the Grooming and Wavelength Assignment for Static Routing problem
(or, for short, Static Grooming problem) is to find a static configuration of the virtual
(logical) topology, and to assign the upper layer demands to this topology. It is
assumed that the lower network topology, the number of wavelengths per link, the
capacity of these links, and the traffic matrix is given.



82 T. Cinkler et al.

The simplest case of static grooming is when the routing is given, and the routes
of certain demands are to be bundled (groomed together) in certain parts of the
network and assigned to a wavelength.

In [24, 31, 33], a simple model and various heuristic algorithms based on simu-
lated annealing, threshold accepting, and tabu search, as well as a genetic algorithm,
are proposed and evaluated. The idea of the model is that each part of a route along
each link can be assigned to any wavelength if that wavelength has enough free
capacity to accommodate the considered demand. The objective is to have as few
groomings and wavelength conversions as possible. The elementary heuristic step
is to try out different combinations of assigning a segment of a path to different
wavelength links, where the improvements are accepted with higher probability.

The first model for static grooming where the routing was not given in advance
but performed simultaneously with grooming and wavelength assignment was pro-
posed in [32]. Later, a method based on ILP formulation for optimal configuration
was proposed in [43], and due to complexity simple heuristic methods using the
same graph model were proposed in [44].

The wavelength graph model proposed in [32] is as follows. For each fiber link
l = (u,v) with Λ wavelengths from u to v we create Λ arcs, one per wavelength,
from vertex ul,λ to vertex vl,λ , 1 ≤ λ ≤ Λ . Thus, node u with Lin incoming links
and Lout outgoing links is associated with vertices ulin,λ and ulout ,λ , 1 ≤ lin ≤ Lin and
1 ≤ lout ≤ Lout , and a bipartite digraph from vertices

{
ulin,λ

}
to vertices

{
ulin,λ

}

modeled possible interconnections in network node u. This bipartite digraph will be
complete if it is possible to switch from any wavelength to any other.

The ILP formulation [43] uses the proposed graph model, and finds the minimal
cost multi-commodity flow over the graph according to the traffic matrix and the
costs assigned to the edges of the graph. However, the ILP can be solved optimally
for very small instances only.

Heuristics based on the decomposition into as many shortest path searches as
nonzero elements in the traffic matrix were proposed in [44]. Here, empirical
weighting of edges has been also proposed to improve the quality of results. In
contrast to the ILP that gives exact globally optimal results (for very small network
instances), this approach is an approximation only. It is however easily scalable to
very large networks, since it is based on Dijkstra’s algorithm.

In [110] a heuristic method based on decomposition and iterations has been pro-
posed that also contains elements of simulated annealing and tabu search. The idea
was that an element of a traffic matrix is a demand that goes from node a to node
c; however, instead of setting up an end-to-end wavelength path we can use two
shorter lightpaths via an intermediate node b. Then it corresponds to a new traffic
matrix, where elements a to b and b to c are increased by the bandwidth of demand
a–c while this a–c entry is decreased by its bandwidth (typically to 0). In this case a
simpler graph model was used [22] that originally did not support grooming but only
wavelength routing and assignment in a single-layer network; however, grooming
was handled through the traffic matrix transformations.

The use of Integer Linear Programming ensures that the solution is the global
optimum in terms of the given objective function. However, as the problem to be
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solved becomes more complex, and as the network size increases, ILP can become
intractable (in particular for NP-hard problems). Still, it is worth using it as a refer-
ence, at least for smaller networks. As computing capacity grows, particularly due
to the parallelism of supercomputers, GRIDs, and clusters this will also become a
viable solution.

As already mentioned, in [43] an ILP formulation for the wavelength graph has
been given. In [25, 26] the formulation has been extended for undirected graphs as
well, with protection either at the upper or at the lower layer.

2.5.3.2 Network Dimensioning and Grooming Node Placement

For a two-layer network, both the layers and the interconnection points between the
two layers must be dimensioned properly. However, due to the interactions of the
layers, all three must be dimensioned simultaneously, leading to high complexity.

In a network it is not necessary to equip all the nodes with grooming capability.
Furthermore, since the O/E (Opto-Electronic) and E/O (Electro-Optical) converters
are very expensive, their numbers should be properly determined to reduce costs
while maintaining proper operation of the network. In [94] three methods are pro-
posed for deciding which nodes should perform grooming, and to dimension their
grooming capacity. The three methods are a greedy approach, a vertex-cover-based
approach, and a heuristic approach that sorts the nodes according to their eligibility
for accommodating grooming capability. The three methods have similar perfor-
mance. In all cases the wavelength graph has been used.

In [96] a simulation-based iterative heuristic method has been proposed. Its idea
is that simulations are run for infinite grooming capability in all nodes, and statistics
(probability density functions, or pdfs) of the resource usage are compiled. Based
on these pdfs it is decided in which nodes to keep the grooming capability and how
much to reduce it. Then simulations are repeated and the whole process continued
iteratively.

In [95] the optimization objective was extended to optimise not only the groom-
ing capability, but simultaneously the number of wavelengths to be used per fiber as
well.

2.5.3.3 Grooming for Dynamic Routing

“Grooming for dynamic routing” or “dynamic grooming” means, that in an opera-
tional network the new demands arrive while the demands already routed get ter-
minated sooner or later, i.e., the network changes dynamically. In contrast to static
grooming this is a less complex problem, since a single demand has to be routed at
a time and groomed together with some existing demands; however, it is hard to say
what is the globally optimal long-term strategy.

Here we discuss some related papers.
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In [109] the information multi-domain multilayer (MD-ML) influence of delay
of advertisements and inaccuracies due to the topology and link state aggregation is
studied in an MD-ML network. The wavelength graph model has been used; how-
ever, this information is available only within the domains. Over domain boundaries
a simplified aggregated graph is advertised.

In [38, 39] the advantages and drawbacks are investigated of having both layers
switched according to user demands compared to the case where the WDM system
is fixed, and only rarely reconfigured, while over this virtual topology the demands
are dynamically routed. Here, an enhanced version of the wavelength graph is used
that we refer to as the Grooming Graph or the Fragment Graph, where a wavelength
path can be cut into two or more shorter pieces and two or more shorter wavelength
paths can be concatenated into a longer one to reduce the load of the electronic layer.

Finally, [79] gives an overview of routing demands of different traffic parameters
(e.g., very different bandwidths) over multilayer multi-domain networks.

2.5.3.4 VPN, oVPN, VPλN and VON, oVON, VOλN

Virtual Private Networks (VPNs), as well as Virtual Overlay Networks (VONs), are
virtual networks set over real physical networks by separating a part of physical
resources, e.g., link and switching capacities. We will refer to these jointly as VNs
(Virtual Networks). When multilayer networks are considered, two main options
can be differentiated: First, when the virtual topology provided by the lower layer is
shared among the VPNs or VONs of the upper layer; second, when the VNs are the
virtual topology, i.e., the wavelength paths are the links of the VNs.

In [85] multi-fiber WDM networks are considered. In this paper full wavelength
conversion capability is assumed in all nodes; therefore, no wavelength continuity
constraint has to be obeyed, but only as many parallel links as the product of the
number of existing fibers and wavelengths. Heuristics based on decomposition and
Suurballe’s shortest pair of paths algorithms (cf. Section 1.5.2.1) are used to deter-
mine the best failure-resistant VPNs either demand-by-demand or VPN-by-VPN.

In [28, 87] open VPNs (oVPNs) are optimized by using ILPs while obeying
the wavelength continuity constraint. ILP formulations for the cases without and
with protection are given. For the case with protection two sub-cases are defined:
One with external protection, where the network provider is supposed to protect
the VPN, the other with internal protection, when the VPN is configured in such a
way that if any link or node fails, the resources of the VPN are used for protection.
Finally, in [88] more physical limitations are considered for setting up wavelength
paths.

2.5.3.5 Grooming for Multicast Traffic

Services like TV or video distribution can be more efficiently provided using point-
to-multipoint tree structures rather than many point-to-point connections. These ser-
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vices have become increasingly more popular, and the bandwidth used by these ser-
vices has also grown, i.e., unlike standard definition digital video, high-definition
video is already streamed.

If not a single channel, but rather a bundle of programs is streamed simultane-
ously, this bandwidth may achieve or even exhaust the capacity of a single wave-
length channel. Therefore, performing the multicast at the optical layer via a splitter
can be a much cheaper solution than loading the electronic layer with all the multi-
casting.

In [107] multicast trees are obtained by ILP. Breadth and depth constraints are
obeyed, and it has been evaluated how many ports and how many wavelengths (re-
sources in general) are needed for electronic and optical signal branching and how
many for unicast as a reference.

The wavelength graph model has been used again; however, it had to be modified
to allow branching of the optical signal, which was not allowed for unicast demands.

In [97] methods for periodical reconfiguration of multicast trees has been pro-
posed for two-layer grooming-capable networks. Multicast trees (light trees) change
dynamically in time due to the changing of multicast endpoints, which causes degra-
dation of the tree. A significant amount of network resources can be saved by regular
reconfiguration. The benefit of reconfiguration is investigated for different routing
algorithms and reconfiguration periods.

In [45] various restoration mechanisms for multicast trees are considered.

2.5.3.6 Grooming and Resilience

In two-layer grooming-capable networks the demands can be routed over either the
upper or the lower layers, or even using both layers. The same holds for routing the
protection paths of these demands. For dedicated protection only an SRG (Shared
Risk Group) disjoint path is to be sought; however, for the case of shared path pro-
tection this becomes more complex. Namely, not only the capacity is shared, but
also are the O/E and E/O conversion ports as well as the wavelength paths.

In [25, 26] an ILP formulation for different Dedicated Protection Schemes is
presented, while in [68] a decomposition-based heuristic method has been proposed
for the same purpose. In [66] different methods based on running Dijkstra’s algo-
rithm twice or Suurballe’s algorithm for static grooming are presented (cf. Sec-
tion 1.5.2.1). In [67] the difference is that dynamic grooming is assumed, i.e., de-
mands arrive one by one and are both routed and protected instantly.

In [34] shared protection is proposed and fairness issues in terms of dependence
on bandwidth and distances are investigated.

In [41, 42] a new version of the wavelength graph model has been introduced that
allows not only setting up and tearing down lightpaths, but also fragmenting and de-
fragmenting them. The idea is that if there are no free wavelength paths in a node,
then an existing wavelength path can be cut (“fragmented”) and the new demand is
added or dropped at that point. If there are two consequent wavelength paths carry-
ing the same demand or demands, these can be concatenated, i.e., “defragmented.”
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Therefore we refer to this model as “Fragment Graph.” Here, the routing of working
and shared protection paths are considered simultaneously.

In contrast to the previous papers in [78], an Ethernet over WDM overlay is con-
sidered, where we compare different configurations of the wavelength path system
of the WDM layer and optimally set up MSTP (Multiple Spanning Tree Protocol)
trees of the Ethernet layer.

All the methods discussed in this subsection use the wavelength graph model
except the last one, which assumes an overlay model, so a simpler graph is sufficient.

2.5.3.7 Traffic Engineering for Traffic Grooming

The simplest definition of Traffic Engineering (TE) is to “put the traffic where
enough resources are available.” It can be considered as an improved adaptive rout-
ing. The adaptivity can be achieved in two ways. First, by setting edge weights in
our graph to avoid congestions and higher blocking before they occur (“a priori”).
Second, by applying wavelength path fragmentation and defragmentation as already
explained in Subsection 2.5.3.6 to resolve existing congestions for newly arriving
demands (“a posteriori”). Here we give a short overview of MLTE-(Multilayer Traf-
fic Engineering)-related papers.

A general overview of TE in GMPLS controlled multilayer networks is presented
in [111].

Several adaptive edge metrics (weights) for MLTE have been proposed and com-
pared in [99], using a simpler graph model than in [80]. Then, adaptive fragmen-
tation and defragmentation of wavelength paths is proposed in [35–37] and com-
pared to the case with no fragmentation or defragmentation and to the case with
OXCs only (i.e., no grooming capability). Next, [29] gives an overview of achieve-
ments of Routing TE and resilience in Heterogeneous-GMPLS-controlled networks,
while [77] presents experimental results from European testbeds.

Finally, we discuss three papers [30, 40, 83] that perform joint “a priori” and “a
posteriori” Traffic Engineering. The idea is that although the fragment graph (FG)
is being used for performing “a posteriori” TE, and the edge weights of the FG
are as follows. Assuming that roughly no more than half of the demands can be
terminated and O/E – E/O converted, the load should be balanced accordingly. i.e.,
if there are few demands routed over the network and therefore few wavelengths are
used, the longer wavelength paths with less electronic processing (grooming) are
made cheaper. However, if more wavelengths start to be used, but the capacity of
these wavelengths is not well utilized the cost of grooming will decrease leading to
shorter paths over more and shorter fragments.
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2.5.3.8 Cross-layer Optimization: Considering Physical Impairments While
Routing

Often, in networks it is not enough to consider the available resources, but it is also
necessary to consider the impairments that affect the signal quality at the physical
layer and cause increased Bit Error Rate for services. This is a kind of cross-layer
optimization, where the services are optimized with physical layer constraints.

The first use of grooming to repair the impaired signal was presented in [88]
where such VPNs were configured, where the signal quality was satisfactory since
the physical impairments were considered. In [120] the results were extended for
routing in general. [107, 119] present deeper results on the same topic, while [46]
gives an overview of the problem, and proposes an additional method for improving
the signal quality by increasing the power level of signals that have to go far while
decreasing the power levels of signals that go to closer destinations in order to avoid
the harmful effect of nonlinear distortions.

2.6 Conclusion

The objective of this chapter was to present an overview of traffic grooming in
connection-oriented networks (mainly in WDM networks) and the wide variety of
mathematical tools used to address this issue. Traffic grooming refers to techniques
used for an efficient sharing of the bandwitdh offers by, e.g., a wavelength, using
Time Division Multiplexing. It is usually associated with the routing of the requests
and the survivability issue in single or multiple failure scenarios. Furthermore, traf-
fic requests might be uni- or multicast, the traffic pattern may evolve with time, and
the network could be multilayer. Therefore, traffic grooming is only part of the con-
cerns addressed when designing and optimizing a network. But even when restricted
to simple physical topologies (unidirectional path or ring) where the routing is fixed
and with small grooming factor, the traffic grooming problem is difficult to solve
and to approximate. Also, when all aspects have to be taken into account (traffic
grooming, routing, survivability, and so on), problems to solve are so difficult that
exact solutions are usually no longer expected, and it is essential to develop effi-
cient heuristic algorithms. Some of them were presented in Section 2.5. Chapter 3
presents the state-of-the-art regarding exact approaches for this problem.

In this research area, several important questions are still open and further re-
search are needed. In particular, when optimizing only the number of ADMs in
SONET/SDH networks, practical values of the grooming factor are 3 and 4, but this
is reapeated several time from the slower 55 Mbit/s streams to the current 10 Gbit/s
wavelengths. So, it is important to develop efficient optimization tools for grooming
factors 3 and 4, but also to consider hierarchical problems in which unitary requests
are combined by four into streams that are themselves combined by four, and so on.

In the general context, where traffic grooming is associated with routing and sur-
vivability issues, existing heuristic algorithms provide upper bounds without guar-
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antee on the quality of the solution. Furthermore, the size of practical problems is
too huge for existing mathematical tools. Therefore, research effort has to be put into
the development of new mathematical tools allowing us to address large instances
and to obtain optimal or near-optimal solutions.
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Abstract We study a planning problem arising in SDH/WDM multilayer tele-
communication network design. The goal is to find a minimum cost installation
of link and node hardware of both network layers such that traffic demands can be
realized via grooming and a survivable routing. We present a mixed-integer pro-
gramming formulation for a predefined set of admissible logical links that takes
many practical side constraints into account, including node hardware, several bit
rates, and survivability against single physical node or link failures. This model is
solved using a branch-and-cut approach with problem-specific preprocessing, MIP-
based heuristics, and cutting planes based on either of the two layers. On several
realistic two-layer planning scenarios, we show that these ingredients can be very
useful to reduce the optimality gaps in the multilayer context.
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3.1 Introduction

Planning a telecommunication network is a nontrivial task. For a single network
layer such as MPLS, SDH, or WDM, many mathematical models and algorithmic
approaches have been proposed during the last 15 years. Links in an SDH network,
for instance, may be equipped with a bandwidth of, say, 2.5 Gbit/s or 10 Gbit/s. This
bandwidth is used to route several communication demands of lower granularity,
like 155 Mbit/s. Dimensioning the links and routing the communication demands in
the resulting network is a classical network design problem.

A practical telecommunication network, however, consists of several network
layers which are embedded in each other. The bandwidth of an SDH link, for in-
stance, can actually be realized by a capacitated lightpath in an underlying optical
fiber network. The SDH and the WDM layer are highly interdependent: first, only
a limited number of SDH links can traverse a given optical fiber, and second, the
failure of a single optical fiber can disrupt many SDH links, and even more demand
connections. In order to get a survivable network in practice, it is indispensible to
plan both layers together.

More generally, the two-layer network design problem considered in this paper
can be summarized as follows. Given is a set of network nodes together with po-
tential connections between them. This network is called the physical layer and
corresponds to the optical fiber network. On every fiber, a limited number of light-
path channels can be transmitted simultaneously, each of them corresponding to a
capacitated path in the physical network. The nodes together with the lightpath con-
nections form a so-called logical network on top of the physical one, as illustrated in
Figure 3.1. In principle, any path in the physical network can be used for a lightpath,
which leads to many parallel logical links. Even if the set of admissible lightpaths is
often restricted to several short paths between each node-pair in practice, the result-
ing logical network is still much denser than a simple complete graph, which makes
the network design problem hard to solve.

logical

physical

Fig. 3.1 Upper layer logical links (solid) correspond to paths (dashed) in the lower physical layer

Similar settings occur in many other technologies. An MPLS path, for example,
can consist of links which are MPLS paths themselves. In an ATM/SDH setting,
capacitated ATM links may be realized by an SDH radio link. Even if that radio
link seems “less physical” than an optical fiber, it is called a physical link as well
to indicate that it serves as part of a logical link. Similarly, the term “logical link”
illustrates the fact that it looks like a direct link to its end nodes: first, it can be
equipped with a discrete capacity, and second, traffic with lower granularity is sent
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into the link at one end, extracted at the other end, and cannot be accessed inside.
The actual physical representation of a logical link usually does not matter to its end
nodes.

As this work was motivated by a project with Nokia-Siemens Networks (NSN)
on SDH/WDM network planning, we will use that setting to explain our model and
algorithm, which are actually in use at NSN in the strategic planning process now.
But the concepts are more general and can, at least with slight modifications, be
applied to many technological settings.

In our SDH/WDM scenario, a lightpath can be equipped with different band-
widths, and lower-rate traffic demands have to be routed via the lightpaths without
exceeding their capacities. A demand may be 1+1-protected, i.e., twice the demand
value must be routed such that in the case of any single physical link or node failure,
at least the demand value survives. To terminate a lightpath, a sufficiently large elec-
trical cross-connect (EXC) must be installed at both end nodes. The EXC converts
the wavelength signal into an electrical SDH signal and extracts lower-rate traffic
from it. The latter is either terminated at that node or recombined with other traffic
to form new wavelength signals which are sent out on other lightpaths. This process
is called grooming. The optimization goal is to minimize total installation cost.

Like in any other publication where an integrated two-layer model is actually
used for computations, we do not explicitly assign wavelengths to the lightpaths
because finding a suitable wavelength assignment is an extremely hard problem
on its own. Instead, we make sure that the maximum number of lightpaths on each
fiber is not exceeded, and propose to solve the wavelength assignment and converter
installation problem in a subsequent step, as successfully done in [19]. It has been
shown in [20] that such an approach causes at most a marginal increase in the overall
installation cost in practical instances.

Already, the optimal design of a single layer network is a challenging task that
has been considered by many research groups; see for instance [4, 14, 28] and ref-
erences therein. A branch-and-cut algorithm enhanced by user-defined, problem-
specific cutting planes has been proved to be a very successful solution approach
in this context. The combined optimization of two layers significantly increases the
complexity of the planning task. In most previous publications, mixed-integer pro-
gramming techniques have been used for designing a logical layer with respect to
a fixed physical layer [5, 11, 12] or for solving an integrated two-layer planning
problem with some simplifying assumptions, like no node hardware or wavelength
granularity demands [15, 21]. Knippel and Lardeux [17] and Fortz and Poss [13]
have modeled the two-layer network design problem using metric inequalities for
both network layers. Recently, Belotti et al. [6] have used a Lagrangean approach
for a two-layer network design problem with simultaneous mean demand values
and nonsimultaneous peak demand values. Raghavan and Stanojevic [29] consider
the case where all logical links are eligible and develop a branch-and-price algo-
rithm with respect to a fixed physical layer for the case of unprotected demands and
one facility on the logical links. Orlowski et al. [25] present several heuristics for a
two-layer network design problem, which solve a restricted version of the original
problem as a sub-MIP within a branch-and-cut framework. In a recent paper [18],
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we have presented a mathematical model for the described planning problem with
a predefined set of logical links. It includes node hardware, several bit rates on
the logical links, and survivability against physical node and link failures. To our
knowledge, this was the first time that so many practically relevant side constraints,
and in particular, multilayer survivability, were taken into account in an integrated
two-layer planning model.

We have solved this model using a branch-and-cut approach with problem-
specific preprocessing, user-defined cutting planes, and heuristics. This chapter
combines results from [25] and [18]. In addition to the preprocessing and cutting
planes presented in [18], we have also adapted the MIP-based primal heuristics
from [25] to the full planning problem and call them at various places during the
branch-and-cut tree. The algorithm is tested on several network instances provided
by Nokia Siemens Networks. The paper is structured as follows. In Section 3.2, we
present and discuss our mixed-integer programming model. Section 3.3 describes
our MIP-based primal heuristics used within the branch-and-cut algorithm. In Sec-
tion 3.4, we describe the cutting planes used and state some known results about
their strength. Computational results are provided in Section 3.5. We conclude with
Section 3.6.

We assume that that reader has basic knowledge of mixed-integer programming
and branch-and-cut techniques; good introductions to this topic are [24] and [31].

3.2 Mathematical Model

3.2.1 Mixed-Integer Programming Model

We will now introduce the mixed-integer programming (MIP) model on which our
cutting planes are based. Afterwards, we will describe some basic preprocessing
steps that we have applied to strengthen the formulation.

Parameters

The physical network is represented by an undirected graph (V,E). The logical net-
work is modeled by an undirected graph (V,L) with the same set of nodes and a fixed
set L of admissible logical links. Each logical link represents an undirected path in
the physical network. In consequence, any two nodes i, j ∈ V may be connected by
many parallel logical links corresponding to different physical paths, collected in
the set Li j = L ji. Looped logical links are forbidden, i.e., Lii = /0 for all i ∈ V . Let
δL(i) = ∪ j∈V Li j be the set of all logical links starting or ending at i. Eventually,
Le ⊆ L denotes the set of logical links containing edge e ∈ E, and likewise, Li ⊆ L
refers to the set of logical links containing node i ∈ V as an inner node.
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We consider different types of capacities for logical links, physical links, and
nodes. Each logical link � ∈ L has a set M� of available capacity modules, each of
them with a cost of κm

� ∈ R+ and a base capacity (bit rate) of Cm
� ∈ Z+ that can be

installed on � in integer multiples. Similarly, every node i ∈ V has a set Mi of node
modules (representing different EXC types), at most one of which may be installed
at i. Module m ∈ Mi provides a switching capacity of Cm

i ∈ Z+ (e.g., in bits per
second) at a cost of κm

i ∈ R+. On a physical link e ∈ E, a fiber may be installed at a
cost of κe ∈ R+. Each fiber supports up to B ∈ Z+ lightpaths.

For the routing part, a set H of undirected point-to-point communication de-
mands is given, which may be protected or unprotected. Protected demands are
expected to survive any single physical node or link failure, whereas unprotected de-
mands are allowed to fail. Each demand h ∈ H has a source node, a target node, and
a demand value dh to be routed between these two nodes. Without loss of generality,
we may assume the demands to be directed in an arbitrary way. For 1+1-protected
demands, dh refers to twice the original demand value that would have to be routed
if the demand were unprotected. Adding constraints that limit the amount of flow
for a protected commodity through a node or physical link to 1

2 dh guarantees that at
least the original demand survives any single physical link or node failure. This sur-
vivability model, called diversification [3], is a slight relaxation of 1+1-protection,
but its solutions can often be transformed into 1+1-solutions.

From the demands, two sets K p and Ku of protected and unprotected commodi-
ties are constructed, where K = K p ∪ Ku denotes the set of all commodities. With
every commodity k ∈ K and every node i ∈ V , a net demand value dk

i ∈ Z is associ-
ated such that ∑i∈V dk

i = 0. Every protected commodity k ∈ K p consists of a single
1+1-protected point-to-point demand, i.e., dk

i �= 0 only for the source and target node
of the demand. In contrast, unprotected commodities k ∈ Ku are derived by aggre-
gating unprotected point-to-point demands at a common source node. Summarizing,
every commodity k ∈ K has a unique source node sk ∈V . Unprotected commodities
may have several target nodes, whereas protected commodities have a unique target
tk ∈ V . The (undirected) emanating demand of a node i ∈ V , i.e., the total demand
value starting or ending at node i, is given by di = ∑k∈K |dk

i |. The demand value dk

of a commodity is defined as the demand for k emanating from its source node, i.e.,
dk = dk

sk > 0. Notice that for protected commodities, this value is twice the requested
bandwidth to ensure survivability.

Variables

The model comprises four classes of variables representing the flow and different
capacity types. First, for a logical link � ∈ L and a module m ∈ M�, the logical link
capacity variable ym

� ∈ Z+ represents the number of modules of type m installed on
�. For a physical link e ∈ E, the binary physical link capacity variable ze ∈ {0,1}
indicates whether e is equipped with a fiber or not. Similarly, for a node i ∈ V and
a node module m ∈ Mi, the binary variable xm

i ∈ {0,1} denotes whether module m
is installed at node i or not. Eventually, the routing of the commodities is modeled
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by flow variables. In order to model diversification of protected commodities, we
need fractional flow variables f k

�,i j, f k
�, ji ∈ R+ representing the flow for commodity

k ∈ K on logical link � ∈ Li j directed from i to j and from j to i, respectively. For
notational convenience, f k

� = f k
�,i j + f k

�, ji denotes the total flow for k ∈ K on � ∈ Li j

in both directions.
In our model, a flow variable f k

�,i j for commodity k and logical link � ∈ Li j is

omitted if any of the following conditions is satisfied: (i) j = sk, (ii) k ∈ K p and
i = tk, and (iii) k ∈ K p and � contains the source or target node of k as an inner
node. The first two types of variables represent flow into the unique source node or
out of the unique target node of a protected commodity. They are not generated in
order to reduce cycle flows in the edge-flow formulation. For aggregated unprotected
commodities, we have to allow flow from one target node to another, and thus flow
out of target nodes. The third type of variable would allow flow to be routed through
an end node u of a protected commodity without terminating at that node, and then
back to u on another logical link. As such routings are not desired in practice, we
exclude flow variables whose logical link contains an end node of the corresponding
commodity as an inner node. Again, in the unprotected case, such variables have to
be admitted because commodities may consist of several aggregated demands.

Objective and Constraints

The objective and constraints of our MIP model read as follows:

min ∑
i∈V
∑

m∈Mi

κm
i xm

i +∑
�∈L
∑

m∈M�

κm
� ym

� +∑
e∈E
κeze (3.1a)

s.t. ∑
j∈V
∑

�∈Li j

( f k
�,i j − f k

�, ji) = dk
i ∀ i ∈ V,∀k ∈ K (3.1b)

∑
m∈M�

Cm
� ym

� − ∑
k∈K

f k
� ≥ 0 ∀� ∈ L (3.1c)

∑
�∈Li

f k
� + ∑

�∈δL(i)

1
2

f k
� ≤ 1

2
dk ∀ i ∈ V,∀k ∈ K p (3.1d)

f k
�,sk,tk ≤ 1

2
dk ∀k ∈ K p,

� = e = {sk, tk} (3.1e)

∑
m∈Mi

xm
i ≤ 1 ∀ i ∈ V (3.1f)

2 ∑
m∈Mi

Cm
i xm

i − ∑
�∈δL(i)

∑
m∈M�

Cm
� ym

� ≥ di ∀ i ∈ V (3.1g)

Bze − ∑
�∈Le

∑
m∈M�

ym
� ≥ 0 ∀e ∈ E (3.1h)

f k
�,i j, f k

�, ji ∈ R+, ym
� ∈ Z+, xm

i ,ze ∈ {0,1} (3.1i)
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The objective (3.1a) aims at minimizing the total installation cost. The flow conser-
vation (3.1b) and capacity constraints (3.1c) describe a multi-commodity flow and
modular capacity assignment problem on the logical layer. For protected commodi-
ties, the flow diversification constraints (3.1d) restrict the flow through an interme-
diate node to half the demand value. In this way, the original demand is guaranteed
to survive single node failures as well as single physical link failures, except for the
direct physical link between source sk and target tk. This exception is covered by the
variable bound (3.1e). In fact, to reduce cycle flows in the LP, we set an upper bound
of dk and 1

2 dk on all flow variables for unprotected and protected commodities, re-
spectively. The generalized upper bound constraints (3.1f) guarantee that at most
one node module is installed at each node. The node switching capacity constraints
(3.1g) ensure that the switching capacity of the network element installed at a node
is sufficient for all traffic that can potentially be switched at that node. Since all
traffic is counted twice, it is compared to twice the installed node capacity. Finally,
the physical link capacity constraints (3.1h) make sure that the maximum number
of modules on a physical link is not exceeded, and set the physical link capacity
variables to 1 whenever a physical link is used.

Discussion of the Model

Several design choices in our model deserve a brief discussion. First, we assume a
fractional multi-commodity flow on the logical layer although SDH requires an inte-
ger routing in practice. This is motivated by our observations that in good solutions,
the routing is often nearly integer even if this is not required, and that relaxing the
integrality conditions on the flow variables significantly reduces the computation
times. If an integral routing is indispensable, it can be obtained in a postprocessing
step, which usually does not deteriorate the cost of the solutions very much if prop-
erly done. Notice that the lower bound computed for the model with fractional flow
can also be used to assess the quality of the postprocessed integral solutions.

Second, we assume a predefined set of logical links for computational reasons.
Considering all possible physical paths as logical links in combination with the prac-
tical side constraints and the survivability requirements would ask for a branch-and-
cut-and-price approach with a nontrivial pricing problem already in the root node.
Such an approach can only be successful if the problem with a limited set of logi-
cal links can be solved efficiently. For a branch-and-price approach that deals with
all possible logical links on a fixed physical layer using a simplified model without
survivability, the reader is referred to [29].

3.2.2 Preprocessing

To strengthen the formulation, we now describe the preprocessing steps applied to
the model presented in Section 3.2. In addition to these steps, we have used probing
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techniques to set further bounds on variables [30]. Probing is nowadays part of any
modern MIP solver like SCIP [1] or CPLEX [16].

• If a physical link e ∈ E has zero fiber cost, the variable ze can be fixed to 1.
• Obviously, at least the emanating demand must be switched at every node. Con-

sequently, an EXC must be installed at every demand end node i ∈V , so the node
GUB inequality (3.1f) can be changed to an equality at such nodes:∑m∈Mi

xm
i = 1.

This strengthens the LP relaxation significantly.
• For the same reason, node modules whose switching capacity is smaller than

the emanating demand at a node cannot be installed at that node. Consequently,
if Cm

i < di for some node i ∈ V and a node module m ∈ Mi, the corresponding
variable xm

i can be removed from the MIP formulation. This often leads to more
integral xm

i variables in the LP relaxation and to better LP values, especially when
combined with the previous rule.

• Two bounds on logical link module variables can be derived from the fiber ca-
pacity bounds and the total demand in the network. Both bounds are usually not
tight in the LP relaxation, but may help the MIP solver in deriving further rela-
tions between the variables to strengthen other bounds.
First, as no more than B channels can be routed through a given physical link
e ∈ E, every logical link module variable can be bounded by B. Second, the
amount of flow that can be routed through any logical link � ∈ L is bounded
by the total unprotected demand plus half the protected demand in the network
(except for undesired cycle flow in the edge-flow formulation). Consequently,
the number of modules of type m ∈ M� that possibly needs to be installed on � is
bounded by

ym
� ≤

⌈
1

Cm
�

(

∑
h∈Hu

dh + ∑
h∈H p

1
2

dh

)⌉

.

• Sometimes it is evident that in any optimal solution, a small link module will not
be installed more than a given number of times on a link because a larger module
provides the same or more capacity at a lower price. More precisely, consider a
link � ∈ L and two of its capacity modules m1,m2 ∈ M� such that Cm1

� ≤ Cm2
� . If

the relation

r =
κm2

�

κm1
�

≤ Cm2
�

Cm1
�

holds, then at most r modules of type m1 will be installed in any optimal solu-
tion because r modules of type m1 incur the same cost as one unit of type m2,
but the latter provides the same or more capacity. Furthermore, even if equal-
ity holds in the above relation, one large module is preferable to several smaller
ones because every module uses one physical channel, independently of its bit
rate. Consequently, the variable bound ym1

� ≤ �r −1� can be added to the for-
mulation. It cuts off some non-optimal solutions and maybe some optimal ones
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(if equality holds), but always leaves at least one optimal solution if one exists.
Notice that the value �r −1� is exactly r −1 if r is integer, and �r� otherwise.

3.3 MIP-Based Heuristics Within Branch-and-Cut

We solve the mixed-integer programming formulation using the branch-and-cut
framework SCIP 0.90 [2]. In addition, we have implemented several heuristics to
construct feasible network configurations based on integer or fractional solutions.
At every node of the search tree, SCIP generates cutting planes and calls both our
heuristics and some of its own to identify feasible integer solutions. If a new best
solution is identified, it is added to SCIP’s solution pool such that it can be used by
other heuristics which take feasible solutions as a basis for their work. We will now
describe our heuristics and their use within the branch-and-cut framework.

Our MIP-based heuristics address two major subtasks. GROOMCAPMIP and
GROOMCAPHEUR solve the grooming and capacity installation subproblem for a
given routing exactly and heuristically, respectively, whereas REROUTINGMIP com-
putes a routing within certain link capacities, trying to reduce the required capacity
at the same time. By construction, the MIP-based heuristics can easily be adapted
to include additional planning requirements, such as node hardware or survivability
constraints.

3.3.1 Computing Capacities over a Given Flow

GROOMCAPMIP

The GROOMCAPMIP procedure addresses the grooming and capacity assignment
subproblem for a given routing by solving a MIP. For a logical link � ∈ Li j, let
f ∗
� =∑k∈K∑�∈L( f k

�,i j + f k
�, ji) be the total flow on � in an integer or LP solution (after

removing possible cycle flows). We construct a sub-MIP of the original formulation
(3.1a)–(3.1i) that contains logical and physical capacity variables but no routing
information:

min
{

(3.1a) subject to (3.1f)−(3.1h), ∑
m∈M�

Cm
� ym

� ≥� f ∗
� � ∀�∈ L, ze,y

m
� ∈ Z+

}
.

Using SCIP’s branch-and-cut algorithm, this sub-MIP is solved as an improvement
heuristic every time a new best solution is identified, trying to reduce link capacity
cost based on the given routing. As the focus of the sub-MIP is on feasible solutions
and not on the lower bound, we disable cut generation and expensive heuristics in
the subproblem and impose a node limit of 20,000 and a stall node limit of 10,000,
i.e., the sub-MIP is stopped if either a total of 20,000 branch-and-cut nodes has
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been computed or if the primal bound could not be improved during the last 10,000
nodes.

GROOMCAPHEUR

In contrast to the GROOMCAPMIP algorithm, which solves the grooming and ca-
pacity assignment problem exactly, the fast and simple GROOMCAPHEUR proce-
dure addresses this problem heuristically by decomposition. Again, let f ∗

� be the
total flow on logical link � ∈ L in an integer or LP solution after removing cycle
flows. Installing capacities on � at minimum cost with a lower bound of f ∗

� can be
formulated as an integer knapsack problem:

min
{
∑

m∈M�

κm
� ym

� subject to ∑
m∈M�

Cm
� ym

� ≥ � f ∗
� � , ym

� ∈ Z+

}
.

For |M�| = 1 this knapsack problem is trivial to solve. Otherwise, it is solved heuris-
tically for each logical link � ∈ L using a greedy algorithm, taking the maximum
capacity of each physical link into account. In a second step, node capacities are in-
stalled as much as needed for the given link capacities (if possible). As this heuristic
runs very fast, we call it at every branch-and-cut node to construct feasible solutions
from the current LP solution.

3.3.2 Rerouting Flow to Reduce Capacities

REROUTINGMIP

The REROUTINGMIP heuristic determines a routing together with a minimum-cost
capacity installation subject to an upper capacity bound on the logical links. More
precisely, given an upper bound U∗

� on the capacity of each logical link � ∈ L,
REROUTINGMIP solves the following problem using SCIP’s branch-and-cut ca-
pabilities:

min
{

(3.1a) subject to (3.1b)–(3.1i), ∑
m∈M�

Cm
� ym

� ≤ U∗
� ∀� ∈ L

}
.

With small U∗
� , this problem is much easier to solve than the original problem. By

setting U∗
� to the total capacity of link � ∈ L in an integer solution, REROUTINGMIP

can be used as an improvement algorithm that tries to reduce capacities by rerouting
flow. This generalizes the rerouting step in the iterative heuristics proposed in [15,
21], making it independent of the ordering of the demands.

We employ REROUTINGMIP not as an improvement heuristic but as a construc-
tion algorithm. Given some value κ ≥ 1 and an LP solution with total logical link
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capacities y∗
� = ∑m∈M�

Cm
� ym

�
∗, we solve the above sub-MIP with U∗

� := C0
⌈
κ

C0 y�
∗
⌉

where C0 is the smallest module capacity installable on �. If the installable capaci-
ties form a divisibility chain (which is often the case in practical applications), U∗

�
is the smallest installable integer capacity greater than or equal to κy∗

� . Obviously,
a higher value of κ augments the solution space of the subproblem, allowing for
better solutions but also making it harder to solve. Experimenting with different
values, we found that κ = 2 often allowed us to quickly determine good solutions
in the sub-MIP.

As the REROUTINGMIP algorithm consumes much more time than the other
heuristics, we restrict its application to the LP solution at the end of the branch-and-
cut root node. In the sub-MIP (as well as in the original problem), good solutions
are often found within the first few branch-and-bound nodes, whereas much time
is spent afterwards on proving optimality of the solution. Hence, we disable cut
generation and expensive heuristics in the subproblem, and we impose a node limit
of 10,000 nodes and a stall node limit of 5,000 nodes. To increase the chance of
finding good solutions, we also apply the GROOMCAPHEUR and GROOMCAPMIP

algorithms within the sub-MIP, which tends to improve the overall solution quality.

3.4 Cutting Planes

Backed by theoretical results of polyhedral combinatorics, cutting plane procedures
have proved to be a feasible approach to improve the performance of mixed-integer
programming solvers for many single-layer network design problems. In this sec-
tion we show how an appropriate selection of these inequalities can be adapted to
our problem setting. Their separation within a branch-and-cut algorithm, i.e., the
problem to find a violated inequality that cuts off a fractional LP solution or to de-
termine that no such inequality exists, is only briefly summarized here; details can
be found in [18].

3.4.1 Cutting Planes on the Logical Layer

On the logical layer, we consider cutset inequalities and flow-cutset inequalities.
These cutting planes have, for instance, been studied in [4, 8, 10, 22, 28] for a variety
of network settings (e.g., directed, undirected, and bidirected link models, single or
multiple capacity modules) and have been successfully used within branch-and-cut
algorithms for capacitated single-layer network design problems [7, 8, 14, 28].

To be precise, the inequalities on the logical layer are valid for the polyhedron P
defined by the multi-commodity flow constraints (3.1b) and the capacity constraints
(3.1c). That is,

P = conv
{
( f ,y) ∈ R

n1
+ ×Z

n2
+ | ( f ,y) satisfies (3.1b), (3.1c)

}
,
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where n1 = 2|K||L| and n2 = ∑�∈L|M�|. As P is a relaxation of the model discussed
in Section 3.2, the inequalities are also valid for that model.

We introduce the following notation. For any subset /0 �= S ⊂ V of nodes, let

LS =
{
� ∈ L | � ∈ Li j, i ∈ S, j ∈ V \S

}

be the set of logical links having exactly one end node in S. Furthermore, define dk
S =

∑i∈S dk
i ≥ 0 to be the total demand value to be routed over the cut LS for commodity

k ∈ K. By reversing the direction of demands and exchanging the corresponding flow
variables, we may w. l. o. g. assume that dk

S ≥ 0 for all k ∈ K (i.e., the commodity is
directed from S to V \S, or the end nodes of k are either all in S or all in V \S). This
reduction is done implicitly in our code. More generally, let dQ

S = ∑k∈Q dk
S denote

the total demand value to be routed over the cut LS for all commodities k ∈ Q.

Mixed-Integer Rounding (MIR)

In order to derive strong valid inequalities on the logical layer we aggregate model
inequalities and apply a strengthening of the resulting base inequalities; this is
known as mixed-integer rounding (MIR). It exploits the integrality of the capac-
ity variables. Further details on mixed-integer rounding can be found in [23], for
instance.

Let a,c,d ∈ R with c > 0 and d
c /∈ Z, and a+ = max(0,a). Furthermore, let

ra,c = a− c(
⌈

a
c

⌉
−1) > 0

be the remainder of the division of a by c if a
c /∈ Z, and c otherwise. Now assume

that d/c /∈ Z and consider the subadditive MIR functions

Fd,c : R → R : a �→
⌈

a
c

⌉
rd,c − (rd,c − ra,c)+

and F̄d,c(a) = limt↘0
Fd,c(at)

t = a+. Given any valid inequality for our problem, ap-
plying Fd,c and F̄d,c to the integer and continuous variables, respectively, yields an-
other valid inequality [24]. Moreover, the resulting coefficients are integral (if a, c,
and d are integral) and |Fd,c(a)|, |F̄d,c(a)| ≤ |a|, as shown in [28]. Both features are
desirable from a numerical point of view. For more details and explanations see [28].

Cutset Inequalities

Let LS be a cut in the logical network as defined above. Obviously, the total capacity
on the cut links LS must be sufficient to accommodate the total demand over the cut:

∑
�∈LS

∑
m∈M�

Cm
� ym

� ≥ dK
S . (3.2)
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Since all coefficients are nonnegative in inequality (3.2) and ym
� ∈ Z+, we can round

down all coefficients to the value of the right-hand side (if larger). For notational
convenience we assume from now on Cm

� ≤ dK
S for all � ∈ LS and m ∈ M�. Mixed-

integer rounding exploits the integrality of the capacity variables. Setting c > 0 to
any of the available capacities on the cut and applying the MIR function Fc = FdK

S ,c

to the coefficients and the right-hand side of inequality (3.2) results in the cutset
inequality

∑
�∈LS

∑
m∈M�

Fc(Cm
� )ym

� ≥ Fc(dK
S ). (3.3)

A crucial necessary condition for inequality (3.3) to define a facet for P is that the
two subgraphs defined by the network cut be connected, which is trivially fulfilled
if L contains logical links between all node pairs.

Given a fractional LP solution, we look for violated MIR inequalities by setting
weights on the logical links based on the primal and dual LP solutions, shrinking
the logical graph with respect to these weights until only a small number of nodes
(say, four or five) remain. In this shrunken graph, we enumerate all cuts, construct
the corresponding MIR inequality, and test it for violation. For details, the interested
reader is referred to [18].

Flow-Cutset Inequalities

Cutset inequalities can be generalized to flow-cutset inequalities, which have non-
zero coefficients also for flow variables. Like cutset inequalities, flow-cutset in-
equalities are derived by aggregating capacity and flow conservation constraints
on a logical cut LS and applying a mixed-integer rounding function to the coeffi-
cients of the resulting inequality. However, the way of aggregating the inequalities is
more general. Various special cases of flow-cutset inequalities have been discussed
in [4, 8, 10, 28]. Necessary and sufficient conditions for flow-cutset inequalities to
define a facet of P can be found in [28].

Consider fixed nonempty subsets S ⊂ V of nodes and Q ⊆ K of commodities.
Assume that logical link � ∈ LS has end nodes i ∈ S and j ∈V \S. We will denote by
f k
�,− = f k

�, ji inflow into S on � while f k
�,+ = f k

�,i j refers to outflow from S on �. We now
construct a base inequality to which a suitable mixed-integer rounding function will
be applied. First, we obtain a valid inequality from the sum of the flow conservation
constraints (3.1b) for all i ∈ S and all commodities k ∈ Q:

∑
�∈LS

∑
k∈Q

( f k
�,+ − f k

�,−) ≥ dQ
S

Given a subset L1 ⊆ LS of cut links and its complement L̄1 = LS \L1 with respect to
the cut, we can relax the above inequality by omitting the inflow variables and by
replacing the flow by the capacity on all links in L1:
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∑
�∈L1

∑
m∈M�

Cm
� ym

� + ∑
�∈L̄1

∑
k∈Q

f k
�,+ ≥ dQ

S . (3.4)

Again, we may assume Cm
� ≤ dK

S for all � ∈ L1 and m ∈ M�. Let c > 0 be the capacity
of a module available on the cut and define Fc = F

dQ
S ,c

and F̄c = F̄
dQ

S ,c
. Applying these

functions to the base inequality (3.4) results in the flow-cutset inequality

∑
�∈L1

∑
m∈M�

Fc(Cm
� )ym

� + ∑
�∈L̄1

∑
k∈Q

f k
�,+ ≥ Fc(d

Q
S ). (3.5)

Notice that F̄c(1) = 1, so the coefficients of the flow variables remain unchanged.
This inequality can be generalized to a flow-cutset inequality also containing in-
flow variables [28]. By choosing L1 = LS and Q = K, inequality (3.5) reduces to
inequality (3.3).

For separating a flow-cutset inequality, a suitable set S of nodes, a subset Q of
commodities, a capacity c, and a partition (L1, L̄1) of the cut links LS have to be
chosen. We apply two different separation heuristics. The first heuristic considers
commodity subsets Q with a single commodity k ∈ K and node sets S consisting of
one or two end nodes of k. After fixing S and k and choosing an available capacity
c > 0 on the cut, a partition of the cut links that maximizes the violation for flow-
cutset inequalities can be obtained in linear time; see [4, 18]. The second, more
time-consuming heuristic finds a most violated flow-cutset inequality for a fixed
single commodity k ∈ K and a fixed capacity c using a Min-Cut Algorithm; see [4].

3.4.2 Cutting Planes on the Physical Layer

If the fixed-charge cost values κe are zero, then the corresponding variables ze can
be assumed equal to 1 in any optimal solution. If, on the other hand, this cost is
positive, the variables will take on fractional values in linear programming (LP)
relaxations. By the demand routing requirements, we know that certain pairs of
nodes have to be connected not only on the logical layer but also on the physical
layer. Consequently, the variables ze have to satisfy certain connectivity constraints.
Note that information of the physical layer is combined with the demands here,
skipping the intermediate logical layer.

Connectivity problems have been studied on several occasions, in particular in
the context of the Steiner Tree problem and fixed-charge network design, e.g., [9,
27]. Let S ⊂ V be a set of nodes and δ (S) be the corresponding cut in the physical
network. If some demand has to cross the cut, then the inequality

∑
e∈δ (S)

ze ≥ 1 (3.6)
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ensures that at least one physical link is installed on the cut. If a protected demand
has to cross the cut, the right-hand side can even be set to 2 because the demand
must be routed on at least two physically disjoint paths.

If the demand graph (defined by the network nodes and edges corresponding to
traffic demands) has p connected components (usually p = 1), then

∑
e∈E

ze ≥ |V |− p (3.7)

is valid, because the installed physical links can consist of at most p connected
components as well, each one being at least a tree. If protected demands exist and
the demand graph is connected, inequality (3.7) can be strengthened by setting the
right-hand side to |V |. If protected demands exist for all demand end nodes, this
inequality is dominated by the inequalities (3.6) for all demand end nodes as single
node subsets.

As the number of inequalities (3.6) and (3.7) is very small, we do not separate
them but just add them all in the beginning of the branch-and-bound process.

3.5 Computational Results

3.5.1 Test Instances and Settings

For our computational experiments we used the network instances summarized in
Table 3.1. In addition to the number of nodes and physical and logical links, the
number |H| of communication demands is given, from which the commodities were
constructed (|K| = |V | − 1 if all demands are unprotected and |K| = |H| if all de-
mands are protected). Further, we report the number |Mi| of node modules instal-
lable at each node and the size of the installable logical link modules. Finally, Ta-
ble 3.1 indicates whether the instance has physical link cost or not. The first three
instances are realistic scenarios provided by Nokia Siemens Networks, whereas the
small ring network Ring7 has been constructed out of the larger instance Ring15
in order to study the effect of the cutting planes on the number of branch-and-cut
nodes, needed to prove optimality.

Table 3.1 Network instances used for testing cutting planes

instance |V | |E| |L| |H| |Mi| C1
� , C2

� , C3
� physical cost?

Germany17 17 26 674 121 16 1, 4, 16 no
Germany17-fc 17 26 564 121 16 1, 4, 16 yes
Ring15 15 16 184 78 5 16, 64, 256 no
Ring7 7 8 32 10 5 16, 64, 256 no
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Germany17 and Germany17-fc are based on a physical 17-node German network
available at SNDlib [26]. In both networks, the set of admissible logical links con-
sists of three to five short paths in the physical network between each pair of nodes.
Ring15 consists of a physical ring with a chord representing a regional subnetwork
connected to a larger national network. The set of logical links consists basically of
the two possible logical links for each node pair, one in each physical direction of
the ring. Ring7 has been constructed from Ring15 by successively removing nodes
with the smallest emanating demand value. Because in our ring instances every node
is a demand end node and the demand graph is connected, nearly all physical links
have to be used in any feasible solution. We thus do not consider ring variants with
physical link cost because doing so would only add a constant to the objective func-
tion. In all networks, up to three capacity modules corresponding to 2.5, 10, and
40 Gbit/s can be installed on each logical link depending on its physical path length.

All computations were done on a Linux-operated machine with a 2×3 GHz Intel
P4 processor and 2 GB of memory. In a first series of test runs, we assumed unpro-
tected demands with physical fibers supporting B = 40 wavelengths. In a second
series, we made all demands 1+1-protected, assuming B = 80 wavelengths in order
to allow for feasible solutions with the doubled demand values.

The focus of our computational results is on the effect of the cutting planes,
which is discussed in Section 3.5.2 for unprotected networks and in Section 3.5.3
for networks with 1+1 protection. In the corresponding tests, we have always used
the preprocessing steps described in Section 3.2.2 and the primal heuristics from
Section 3.3 unless otherwise stated. The effect of the heuristics and our preprocess-
ing is discussed in Section 3.5.4.

3.5.2 Unprotected Demands

As cutting planes are primarily thought to increase the lower bound of the LP relax-
ation, we first consider the effect of the different types of cutting planes on the lower
bound at the branch-and-bound root node. We separated the classes cutset inequal-
ities, flow-cutset inequalities, and fixed-charge inequalities on their own as well as
all together. Figure 3.2 shows the improvement over time of the lower bound in the
root node of the search tree for all test instances. The solid red line at the top marks
the value of the best-known solution, which cannot be exceeded by the dual bound
curves. The line “no cutting planes” refers to the dual bound with SCIP’s built-in
general-purpose cuts only.

It can be seen that in the two Germany17 instances and on the small ring network,
our cutting planes reduce the gap between the lower bound and the best-known so-
lution at the root node by 50%–75%. In all three problem instances, flow-cutset
inequalities performed better than cutset inequalities, which is in contrast to the
results presented by Raack et al. [28] for a single-layer problem. There might be
several reasons for this effect. A good candidate is the structural difference between
single-layer networks and the logical layer in multilayer problems: the logical layer
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Fig. 3.2 Unprotected demands: dual bound at the root node

graph (V,L) contains edges between almost all node pairs, whereas only a few links
cross a cut in single-layer graphs. Further, we have implemented our cutting planes
as callbacks in SCIP, whereas in [28], CPLEX was used as a branch-and-cut frame-
work, which means that different general-purpose cutting planes have been used.

For the problem Germany17-fc with physical cost, most of the optimality gap
comes from the ze variables whose values are highly fractional and close to 0 in
the solution of the LP relaxation. A major part of this gap is closed by the fixed-
charge inequalities that operate on the physical layer. Of course, the contribution of
these inequalities changes with the ratio of the costs of the physical fiber links to the
logical wavelength links and the node hardware.

In contrast to these three instances, the problem-specific cutting planes have only
a marginal effect on the dual bound for Ring15 compared to that of SCIP’s built-in
general-purpose cuts. This is probably due to the fact that in SCIP’s default settings,
the dual bound at the end of the root node is within 0.4 % of the optimal solution
value, so there is not much room for improvement at all. We also observed that on
this instance, our cuts seem to interfere with the c-mir and Gomory cuts separated
by SCIP, which are based on a mixed-integer rounding procedure similar to the
one described in Section 3.4. With these cuts disabled in SCIP, our inequalities
could reduce the relative distance between the root dual bound and the best-known
solution from 3.8 % to 0.4 %, thus achieving the same dual bound as that ofSCIP’s
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cutting planes. The number of violated cutting planes found in this setting is reported
in Table 3.2 for all instances.

Table 3.2 Number of violated cutset (3.3), flow-cutset (3.5), and fixed-charge inequalities (3.6)
found in root of branch-and-bound tree without separation of SCIP built-in cuts

# cuts unprotected # cuts protected
instance cutset flow-cutset fixed-charge cutset flow-cutset fixed-charge
Germany17 37 1521 - 4 940 -
Germany17-fc 34 1046 35 7 844 20
Ring15 66 652 - 26 489 -
Ring7 41 98 - 15 24 -
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Fig. 3.3 Unprotected demands: dual bound during test runs of three hours

In a second study, we have investigated the lasting effect of the cutting planes
on the dual bound in longer computations. Figure 3.3 shows the development of the
dual bound with and without all cutting planes from Section 3.4 during a compu-
tation with a time limit of three hours for all four test instances, compared to the
best-known solution. Similarly to most of SCIP’s own cutting planes, we separated
our inequalities only at the root node of the branch-and-cut tree.



3 Two-Layer Network Design 113

By applying all separators we could solve the problem Ring7 to optimality within
ten minutes, whereas without our cutting planes the computation was aborted after
nearly one hour with a nonzero optimality gap due to the memory limit of 2 GB.
The size of the search tree was 1.2 million unexplored nodes at this point (and four
million explored nodes). Figure 3.3 shows that the dual bounds obtained with our
cutting planes are very close to their maximum possible values. In fact, as the upper
bound improved in both cases, the relative gap between the dual bound and the best
solution found in that specific run (as opposed to the best solution known) could be
improved from 4 % to 0.36 % and from 12.4 % to 3.1 %, respectively. For Ring15
the improvement of the dual bound by the cutting planes was much smaller than that
for the other instances, probably for the reasons discussed above.

3.5.3 Protected Demands
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Fig. 3.4 Protected demands: lower bound in test runs of three hours

In the case of protected demands, we first of all would like to point out that
the problem size drastically increases compared to the unprotected case. Instead of
|V |−1 commodities, |H| commodities have to be routed, increasing the number of



114 S. Orlowski et al.

variables and constraints considerably. Consequently, solving the initial LP relax-
ation, as well as reoptimizing the LP after adding a cutting plane or a branching
constraint, takes more time with protection than without.

With 1+1 protected demands, the cutting planes have only a marginal effect on
the dual bound. Figure 3.4 shows the increase of the dual bound in a three-hour test
run with and without cutting planes (again, the solid red line at the top indicates the
best-known solution value). It can be seen that the dual bound always increases, but
only by a very limited amount. More detailed investigations revealed that the small
progress is mainly due to the strength of the general-purpose c-mir and Gomory
cuts generated by SCIP. Experiments where these cuts were turned off showed that
our inequalities still contribute significantly to closing the optimality gap at the root
node. Table 3.2 shows the number of violated inequalities found at the root node
in this setting. Only slightly lower numbers of violated inequalities are found with
c-mir and Gomory cuts turned on, but their impact on the dual bound is limited in
such a case; cf. Figure 3.4.

3.5.4 Preprocessing and Heuristics

(a) Unprotected instances (b) Protected instances

Fig. 3.5 Optimality gaps after three hours without cuts and heuristics; with heuristics only; and
with both cuts and heuristics

We also tested the combined effect of our primal heuristics and cutting planes
on the optimality gap after three hours. Figure 3.5 shows these gaps for each of
the networks in three settings: without cuts and heuristics; with heuristics; and with
both heuristics and cuts. The protected Ring7 network has no bars because it was
solved to optimality in all cases; we will discuss this network below.

In five out of the seven other instances, adding our cutting planes reduced the op-
timality gaps. There were two exceptions: On the protected Germany17-fc network,
separating the cuts at the root nodes took so much time that a significantly smaller
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number of branch-and-cut nodes could be solved within the time limit, leading to
a much worse upper bound and a slightly worse lower bound. On the unprotected
Ring15 network, the final dual bound was better with cuts than without, but the pri-
mal bound was a bit worse, leading to a slightly larger gap. From a practical point
of view, however, the difference is marginal.

The effect of our primal heuristics is similar. On five out of the eight instances,
the heuristics helped to reduce the optimality gap or the time needed to solve the
problem to optimality, and in one instance (unprotected Ring7) there was no differ-
ence. In fact, our heuristics found the best solution after three hours in nine out of
the 16 cases where they were called; in four of them, the best solution was found by
REROUTINGMIP at the root node. Also, on the two instances Ring15 (unprotected)
and Germany17-fc (protected), the heuristics found improving solutions early in
the branch-and-cut tree, but the resulting traversal of the search tree led to a worse
primal bound after the fixed time limit of three hours than without the heuristics.
Unfortunately, such effects are rather unpredictable.
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For the protected Ring7 network, Figure 3.6 shows that the maximum number
of unexplored nodes in the search tree was roughly reduced by 2/3 by our cutting
planes, even though they were added only in the root node. Also, the heuristics
helped in getting a smaller search tree by finding good solutions early in the search
tree. The GROOMCAPHEUR heuristic found an optimal solution after 353 nodes,
compared to 6,825 nodes without the heuristics. This caused large parts of the search
tree to be cut off. A separate run where cutting planes, heuristics, and preprocessing
were switched off is shown in the fourth curve at the top of Figure 3.6. It can be
seen that the preprocessing also significantly helped to reduce the size of the search
tree. With all our plug-ins disabled, an optimal solution was found only after 9,626
nodes, and the size of the search tree grew to more than 780,000 unexplored nodes
because of the weak lower bound.
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3.6 Conclusions

In this work, we have presented a mixed-integer programming model for a two-layer
SDH/WDM network design scenario. The model includes many practically relevant
side constraints such as many parallel logical links, various bit rates, node capaci-
ties, and survivability with respect to physical node and link failures. To accelerate
the solution process for this planning task, we have applied problem-specific prepro-
cessing, a variety of network design-specific cutting planes, and MIP-based primal
heuristics within the branch-and-cut framework SCIP. These ingredients have been
tested on several realistic planning scenarios provided by Nokia Siemens Networks.

With unprotected demands, our cutting planes significantly raised the lower
bounds to close to the optimal solution value. With 1+1 protection against physi-
cal failures, they also helped to improve the dual bounds, but less than in the un-
protected case. The preprocessing steps, although relatively simple, turned out to
be crucial for reducing the size of the branch-and-cut tree. Although the effect of
the MIP-based heuristics was not so clear, they found the optimal solution early in
the search tree in several instances, sometimes even at the root node. The fact that
these heuristics can easily be generalized to other network design problems and side
constraints makes the sub-MIP approach very flexible.

Although the presented methods could significantly reduce the computation
times for the considered realistic networks, they can still be improved. First, the
presented methods do not scale well with the network size because the edge-flow
formulation gets too large. Second, fast combinatorial routing heuristics have to be
developed in addition to the MIP-based heuristics in order to find good survivable
routings that can be used in primal solutions. Third, cutting planes are needed that
better take the inter-layer dependencies into account.

Acknowledgements This work was supported by EU COST action 293 – Graphs and Algorithms
in Communication Networks (GRAAL).

The contribution of Sebastian Orlowski was partially supported by the DFG Research Center
MATHEON “Mathematics for Key Technologies”.

The contribution of Arie Koster was partially supported by the Zuse Institute Berlin (ZIB)
and the Centre for Discrete Mathematics and its Applications (DIMAP), University of Warwick,
EPSRC award EP/D063191/1.

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin
(2007). http://opus.kobv.de/tuberlin/volltexte/2007/1611/

2. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Programming Com-
putation 1(1), 1–41 (2009). URL http://scip.zib.de/
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14. Günlük, O.: A branch-and-cut algorithm for capacitated network design problems. Mathemat-
ical Programming 86, 17–39 (1999)
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Chapter 4
Routing and Label Space Reduction in Label
Switching Networks

Fernando Solano, Luis Fernando Caro, Thomas Stidsen, and Dimitri Papadimitriou

Abstract This chapter is devoted to the analysis and modeling of some problems
related to the optimal usage of the label space in label switching networks. Label
space problems concerning three different technologies and architectures – namely
Multi-protocol Label Switching (MPLS), Ethernet VLAN-Label Switching (ELS)
and All-Optical Label Switching (AOLS) – are discussed in this chapter. Each of
these cases yields to different constraints of the general label space reduction prob-
lem. We propose a generic optimization model and, then, we describe some adap-
tations aiming at modeling each particular case. Simulation results are briefly dis-
cussed at the end of this chapter.

Key words: MPLS, AOLS, ELS, label space reduction

4.1 Introduction to Label Switching

Label switching architectures base their forwarding decisions in contiguous fixed
length identifiers referred as labels. In these architectures packets are forwarded
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through specific sequences of nodes, named Label Switched Paths (LSPs) [10]. For
this purpose each packet is marked with a label depending on the LSP through which
it is sent. Each node uses Label as the index to look up in the forwarding table both
the node where the packet needs to be forwarded and the new label used to identify
the same packet in the next node.

We refer to a label space as the set of available labels that can be bound to paths
(flows). There are many ways in which a label space can be configured [7]. In this
chapter, we treat only two of them: label space per node and label space per link
(or interface). In a label space per node, every single LSP must be identified with
a different label regardless of its incoming interface. In contrast, a label space per
interface may assign the same label to two different paths if they have different
incoming interfaces.

A packet header may contain not only a single label, but a stack of labels. In
order to handle properly this stack, there are three operations that can be performed
at every hop:

• Label SWAP: The incoming packet’s top Label value is replaced by the outgoing
Label value and the packet is switched to an interface towards the next node.

• Label SWAP and PUSH: The incoming label of a packet is swapped, and then
one or more labels are stacked, leaving the new labels on the top of the stack.

• Label POP: The top label of the packet is removed from the stack.

Depending on the specific underlying protocols and hardware architecture, all or
some of the operations may be supported. Each label switching architecture has its
own motivations and objectives for using these techniques, as we will explain in the
following section.

There are several methods that use the three label operations to allow different
LSPs sharing a label at an intermediate node, thus reducing the number of labels in
the forwarding table. Each label switching architecture has its own motivations and
objectives for using these techniques. Based on this, the label space reduction prob-
lem consists of the efficient usage of the label spaces considering the limitations of
a given particular technology (e.g., supported operations, label space configuration,
label space size).

In this chapter we study the problem of minimizing the number of labels used
in networks using three different label switching architectures. Since each of the
technologies is aimed at being used for different purposes, the objectives and re-
strictions of the problem become different in each case, while preserving the main
structure of the solution. Therefore, in Section 4.2, we give an outline of the most
important differentiating aspects of these three technologies from the point of view
of the aforementioned problem. In Section 4.3, we present two methods that can be
used for reducing the number of labels used in a network. In Section 4.4, we explain
how considering the problem of finding the routes together with reducing the usage
of the label space makes the problem harder to solve. In Section 4.5, we present an
Integer Linear Program (ILP) formulation for the most generic problem. Later, in
the same section, we present some extensions to the formulation that model each
particular previously described case. In Section 4.6, we depict simulation results for
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the problems related to each of the three technologies. A summary and conclusions
of the chapter are given in Section 4.7.

4.2 Functional Description of the Technologies

The label space reduction problem has been mainly studied for three different
label switching architectures: Multi-protocol Label Switching Traffic Engineer-
ing (MPLS-TE), All-Optical Label Swapping (AOLS), and Ethernet VLAN-Label
Switching (ELS). We give an overview of the technologies and their particular mo-
tivation for reducing label spaces in subsequent subsections.

4.2.1 Multi-protocol Label Switching Traffic Engineering
(MPLS-TE)

MPLS-TE is a technology designed to implement label switching with constraint-
based routing. MPLS-TE uses a 20-bit label and the Resource Reservation Protocol
for Traffic Engineering (RSVP-TE) for signaling LSPs [1].

The RSVP-TE protocol working principle is based on soft states. A soft state is
a variable in memory that stores all the necessary information about the flow and its
characteristics. RSVP-TE stores one soft state per path (flow) and, due to its nature,
soft states must be refreshed periodically.

RSVP-TE scalability properties are bounded as follows:

1. In order to provide QoS, resource reservation, resilience, etc., the amount of in-
formation stored per state is considerably large (resulting in memory consump-
tion),

2. Due to its soft state nature, RSVP-TE needs state refreshing, resulting in

• bandwidth usage for the transmission of refreshing messages, and
• CPU processing upon the arrival of a refreshing message from neighbors.

Since MPLS was designed for simplifying forwarding, in its most basic form,
labels are the only information that is extracted (and considered) from the packet at
forwarding. Therefore, when considering RSVP-TE, the relationship between labels
and soft states is one-to-one . Otherwise, either two flows (using different labels)
would share the same reservation, or a node would not be able to distinguish for one
flow the correct reservation state. Throughout this chapter, we study the label space
reduction problem with the main objective of reducing the number of needed soft
states by RSVP-TE.
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4.2.2 All-Optical Label Switching (AOLS)

AOLS is the name given to a set of technology proposals aiming at performing
packet label switching using purely optical signals. We consider the proposal made
in the LASAGNE [9] project since it best maps the functionality of MPLS-TE
packet label switching in this sense. Similarly to MPLS-TE, the LASAGNE pro-
posal also offers label spaces per link and per interface [10].

Even though the LASAGNE project achieves its objective, it is not scalable since
it requires a special optical device for each label used . Therefore, a cost-efficient
implementation of this technology requires a significant reduction in the usage of
the label spaces as much as is possible.

Label stripping refers to a technique that encodes the route of an LSP in the stack,
so at every hop the pertinent LSR strips off (pops) the top label and determines the
next hop based on its content. In label stripping, labels are never swapped or pushed
at core nodes. In other words, label stripping encodes the route of the path in the
header. Therefore, since all the paths use one label for every hop, every node vi must
store at most Δ(vi) labels, where Δ(vi) is the degree of the node vi ∈ V . Clearly, the
number of labels that must be encoded in the stack (henceforth the stack size) is
equal to the number of hops of the route.

The label stripping [2] strategy for label switching yields to a lower bound on the
label space usage: one label per link regardless of the number of LSPs. However, it
increases the stack size to the maximum length of any path in consideration, wasting
more bandwidth due to the need of a larger space for optical header encodings.
Therefore, better label switching strategies with less drastic trade-offs are desired.

4.2.3 Ethernet VLAN-Label Switching (ELS)

In [8] and [4] a scheme that enables an Ethernet network to create an LSP is dis-
cussed. The label is encoded in the 12-bit S-VID tag field of the 802.1ad frame.
Push and pop operations are only suported at the source and destination nodes. La-
bel swapping is implemented by using the S-VID translation operation defined in
IEEE 802.1ad. Figure 4.1 describes the label operations along an Ethernet LSP.

Given that ELS supports label swapping and uses a 12-bit S-VID Tag field as
the label, labels must be unique only in the context of a network link (labels have
link scope). Therefore, in ELS there is a limit of 4,096 (212) LSPs per link in the
network. Given that MPLS-TE has a limit of 1,048,576 (220) LSPs per link and that
label stacking is not supported, ELS might be affected by label scalability issues, in
the sense that an LSP request can be blocked due to unavailability of labels instead
of bandwidth . The label space problem in this technology is to reduce the maximum
number of labels used so it does not exceed the 12-bit limit.
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S-VID push S-VID popS-VID swap S-VID swap
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Ethernet 802.1ad Switch
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Source
Destination
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Fig. 4.1 Ethernet VLAN-Label Switching LSP example

4.3 Methods for Scaling the Usage of the Label Space

In this section we summarize the two methods considered in the literature for reduc-
ing label spaces in label switching technologies.

4.3.1 Label Merging

Label merging uses the label swapping operation to assign the same label to two
or more LSPs in a continuous and common segment that goes from any common
intermediate node to the same destination node. All LSPs must follow the same path
from the intermediate node to the destination node in order to be merged. Label
merging is able to reduce the number of labels used in a link. It can be used in label
switched networks where nodes are capable of performing label swapping (MPLS-
TE, AOLS and ELS). An example is presented in Figure 4.2, where label merging
between the two LSPs is possible at link (N5,N6) and not at link (N1,N2).

A single label is assigned to a set of LSPs in a link if either they have the same
label in the following downstream link and the downstream link is the same, or the
link is the last link for both LSPs. When label merging is applied, assigning the la-
bels to a set of established LSPs is trivial. The problem can be solved in polynomial
time, guaranteeing the optimal assignment in terms of labels used. This has been
discussed in [15].

If we consider all the paths that are forwarded in one link, it is possible to group
them according to the label they would be using, taking into account the label merg-
ing method. In the following sections we will use the term Merging Link (MERLIN)
group of Paths for each of these partitions for a given link.
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(a) No Merging

(b) Merging

Fig. 4.2 Label merging example

4.3.2 Label Stacking

As mentioned before, a packet may contain one or more labels in its stack. The stack
can be used in order to create a hierarchy of LSPs [6]. In this sense, a ‘bigger’ LSP
covers a group of ‘smaller’ LSPs, as seen in Figure 4.2 (a). Henceforth, we name the
bigger LSPs covering the smaller ones tunnels. In this chapter, we consider only two
hierarchies of LSPs. Larger hierarchies are left for further analysis. Even though a
LSP can ‘join’ a tunnel at any point, it must ‘leave’ the tunnel at the end, creating
an asymmetry in the tunnel.

This method allow us to reduce the label space since, instead of using one label
per hop per LSP, we use one label per hop per tunnel regardless of how many LSPs
are covered. Let us suppose that we have a tunnel t of length l(t) > 1 hops,1 and it
covers a set of LSPs Pt = {p0, p1, . . . , p|Lt |}. Let us assume that the tunnel t covers

1 Tunnels of 1 hop length are discouraged since, due to technological reasons, they increase the
label space by 1 in all cases.
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LSP pi in l(pi) ≤ l(t) hops. Then we can compute the reduction in the label space
reduction incurred by this tunnel as

r(t) = ∑
pi∈Pt

(l(pi)−1)− (l(t)−1)

= ∑
pi∈Pt

l(pi)− l(t)+1−|Lt |.

Given a set of LSPs P , we can define the LABEL STACKING problem as how
to create a set of tunnels (covering the given LSPs) in such a way that we reduce
the overall label space as much as possible. It is not necessary to cover all the links
of all the LSPs; however, the more LSP hops are covered, the greater the reduction
could be. Obviously, a path cannot be covered by more than one tunnel in any hop.

A solution to the problem is given by the set of tunnels used, T ∗, and a proper
mapping from LSPs P to tunnels T ∗, i.e., P → T ∗. For instance, Figure 4.3
shows two solutions to the same problem achieving different label space reductions.
Even though the problem has not been formally proved to be NP-complete, several
algorithms [11–13] have been proposed to find an optimal solution, yet without
guaranteeing it.

(a) Suboptimal solution

(b) Optimal solution

Fig. 4.3 Stacking problem example

It is worth highlighting the following theorem:
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Theorem 4.1 (Solano et al. [16]). Given a set of paths, a set of tunnels T ⊇ T ∗

can be computed in polynomial time, and this set contains the tunnels considered in
the optimal solution T ∗ for the LABEL STACKING problem.

It is worth noticing that |T | belongs to O(l3 ·n), with l representing the number
of LSPs and n the number of nodes. Yet, selecting the proper tunnels T ∗ in set T is
not trivial. Furthermore, given the proper tunnels T ∗, deciding which LSPs should
be covered by each tunnel (the mappings P → T ∗) is also not trivial.

We will consider henceforth that reducing the amount of labels used can be
achieved using both label merging and stacking methods together for the same set
of LSPs [14]. In this sense, it must be taken into account that labels can be merged
if they belong to the same hierarchy, e.g., merging labels used for path (tunnel)
identification with only those used for path (tunnel) identification (see Figure 4.4).

Fig. 4.4 Label merging at both hierarchies

4.4 Considering Routing

Previously, we have assumed that the path routes are given. However, for some
technologies (e.g., AOLS and ELS), the label space is too tightly limited, or very
expensive, and selection of the path routes might help in the label space reduction.

When considering the use of label merging and/or label stacking to reduce label
space, there is a trade-off. The trade-off is presented because these techniques give
higher reduction when paths are aggregated (sharing link capacity); however, this
incurs at the same time a higher bandwidth consumption. The reason is that the more
hops a set of paths shares, the more the profit can be obtained when a tunnel is placed
over them. In this way, a routing algorithm designed to utilize the minimum number
of labels would aim at placing the path demands over the same set of links when
possible. In this case, a routing algorithm designed to minimize link overutilization
would do the opposite.
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In Figure 4.5 we show an example. Nodes N1 and N2 are ingress and nodes N6
and N7 are egress. We set the link capacity to two units of traffic. Considering the
topology in Figure 4.5 (a) and that we want to route one unit of traffic between each
pair of ingress-egress nodes, a routing algorithm minimizing the link overutilization
would route the traffic as in Figure 4.5 (b).

(a) Network Topology. Ingress nodes are N1 and
N2. Egress nodes are N6 and N7

(b) Routing solution optimizing maximum link
utilization, using 22 labels

Fig. 4.5 Example scenario

In Figure 4.6 (a), we show the Minimum Interference Routing Algorithm (MIRA)
routing solution [5] when applying the merging and stacking techniques. The num-
ber of labels used is 20. However, in Figure 4.6 (b), we show a routing solution,
without minimizing link overutilization, that uses four labels less.

(a) Solution without label stacking using 20 la-
bels

(b) Solution with label stacking using 18 labels

Fig. 4.6 Solution to the problem considering a limit of two traffic units in the links capacity

When LSPs are being aggregated, increasing the link bandwidth can reduce link
overutilization and even reduce the number of labels used. This is illustrated in
Figure 4.7, where by increasing the bandwidth of the links between nodes N11 and
N14 to four units of traffic, the number of labels is less than those in the previous
solutions.
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(a) Solution with four traffic units as link capac-
ity and no label stacking using 16 labels

(b) Solution with four traffic units as link capac-
ity and label stacking using 12 labels

Fig. 4.7 Solution to the problem considering a limit of four traffic units in the link capacity

At this point, the network administrator is in charge of measuring whether the
label space reduction compensates the (extra) allocated bandwidth.

4.5 Generic Model

In this section we propose a generic model for the ROUTING AND LABEL SPACE

REDUCTION problem, in which given a set of demands we are asked to route them,
constrained by a link capacity, with the objective of minimizing the number of labels
used. In subsequent subsections, we give other formulations in order to consider
similar problems.

The ILP model proposed is path-based. Therefore, all feasible paths in the net-
work are initially generated using an exponential running time algorithm. Our rout-
ing solution would consist then of selecting a subset of these paths.

Considering the computed paths, all the feasible tunnels are computed as men-
tioned in Theorem 4.1.

4.5.1 Parameters and Variables

The following is a list of all the indexes used in the model.

• i, j ∈ V represent nodes in the network.
• (i, j) ∈ E ⊆ V ×V represents a link in the network.
• α ∈ P represents a generated path in the network.
• φ ∈ T represents a tunnel in the network.
• m,n ∈ N represents a MERLIN group identifier.

The parameters used in the model are the following.

• Sαi is set to 1 if node i is the source of path α .
• Dαi is set to 1 if node i is the destination of path α .
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• Ci, j is set to the total bandwidth demand between nodes i and j.
• κ is set to the minimum of the desired Maximum Link Utilization (MLU) and

the link capacity.

In addition, two parameters can be seen as functions in the model.

• Pm
(i, j) is the function that, given a path MERLIN group m and a link (i, j), evalu-

ates to the set of paths belonging to the group.
• T n

(i, j) is the function, which, given a tunnel MERLIN group n and a link (i, j),
evaluates to the set of tunnels belonging to the group.

The variables used in the model are the following.

• x̄α is set to 1 when path α is used to route any demand.
• xα is set to the bandwidth allocated on path α .
• yφ ,α is set to 1 when path α is covered by tunnel φ .
• zm

(i, j) is set to 1 when the path MERLIN group m uses a label on link (i, j).
• ẑn

(i, j) is set to 1 when the tunnel MERLIN group n uses a label on link (i, j).

4.5.2 Integer Linear Program for the Network Design Problem

The objective function is minimizing the overall number of labels used (or MERLIN
groups) in the network (for both paths and tunnels):

min ∑
(i, j)∈E

(

∑
m∈N

zm
(i, j) + ∑

n∈N

ẑn
(i, j)

)

(4.1a)

s.t. ∑
α:Sαi =Dαj =1

xα ≥ Ci, j, ∀i, j ∈ V, i �= j (4.1b)

∑
α|∃m,α∈Pm

(i, j)

xα ≤ κ, ∀i, j ∈ V, i �= j (4.1c)

κ · x̄α − xα ≥ 0, ∀α ∈ P (4.1d)

x̄α − ∑
φ :(i, j)∈φ∩α

yφ ,α ≥ 0, ∀(i, j) ∈ E,α ∈ P (4.1e)

K · ẑn
(i, j) − ∑

φ∈T n
(i, j),(i, j)∈φ∩α

yφ ,α ≥ 0, ∀(i, j) ∈ E,n ∈ N (4.1f)

K · zm
(i, j) − ∑

α∈Pm
(i, j)

⎛

⎜
⎝x̄α − ∑

φ :(i, j)∈α∩φ ,Dφj =0

yφ ,α

⎞

⎟
⎠≥ 0, ∀(i, j) ∈ E,m ∈ N (4.1g)
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Inequalities (4.1b) assure that all traffic is routed. Inequalities (4.1c) limit the ca-
pacity that can be used in every link to κ units of traffic. Each of the inequalities in
(4.1d) sets a path requiring labels if it is being used by some demand.

Inequalities (4.1e) relate the variables x̄α with yφ ,α . Since x̄α is binary, each
inequality states that at most one tunnel can be used for a path at every link. The

constant K is set to the minimum number such that K > ∑m∈N

∣
∣
∣Pm

(i, j)

∣
∣
∣,∀i, j ∈ V .

In inequalities (4.1f), the variable ẑn
(i, j) pays (i.e., is set to 1) for the use of one

label for all the active tunnels φ intersecting any active path α . Inequalities (4.1g)
work similarly, but they are concerned with paths merging. They differ from (4.1f)
in that the term ∑φ yφ ,α is added in order to avoid paying for paths that have been
covered.

4.5.3 Traffic Engineering Formulation

The formulation previously shown is appropriate for a network design problem, in
which we want to plan how many labels we need for a given traffic demand matrix.
In the following, we show how to modify it in order to solve traffic engineering
problems. In a TE problem, we are given a traffic demand matrix and we are asked
to maximize the throughput given bounds on link capacities and label space sizes.

We introduce a new variable wi, j which is set to 1 when the traffic from i to j has
been routed. Therefore, our new objective function is

max ∑
i, j∈V

Ci, j ·wi, j (4.2)

In addition, inequalities (4.1b) are relaxed in the following way:

∑
α:Sαi =Dαj =1

xα −Ci, j ·wi, j ≥ 0,∀i, j ∈ V (4.3)

The formulation in this form becomes unbounded. We proceed to bound it according
to the way in which the label space is configured.

4.5.3.1 Bounded Label Space per Node

Bounding the label space of a node to a maximum size can be done by

∑
i∈V,m,n∈N

(
zm
(i, j) + ẑn

(i, j)

)
≤ L j,∀ j ∈ V (4.4)

with L j being the maximum number of labels per node at j.
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4.5.3.2 Bounded Label Space per Interface

Similarly, bounding the label space per interface (or link) can be done by

∑
m,n∈N

(
zm
(i, j) + ẑn

(i, j)

)
≤ L(i, j),∀(i, j) ∈ E (4.5)

with L(i, j) being the maximum number of labels per link (or interface) in (i, j).

4.5.4 No Label Stacking

For the particular case of the ROUTING AND LABEL MERGING problem, the pre-
vious model can be simplified by eliminating the decision variables ẑn

(i, j) and yφ ,α .
This leads to the removal of inequalities (4.1e) and (4.1f), and the modification of
inequalities (4.1g) accordingly. This variation is mainly used for modeling ELS (see
Section 4.6.3).

4.6 Simulation Results

Since the purpose of this book is to delve into the value of mathematical formu-
lations of networking problems, in this section we give a brief explanation of the
simulation results of the aforementioned problems.

Since the motivations and objectives are different for every technology, the re-
sults are depicted in different subsections following the same order as that in Sec-
tion 4.2.

4.6.1 MPLS-TE

MPLS-TE was designed for the support of external path computation procedures
aiming at optimizing some TE metric. Therefore, it is the aim of MPLS-TE to rely
on routing protocols for path computation. Hence, for MPLS-TE, we present sim-
ulation results that do not include the routing part of the problem. That is, we are
given a set of paths and we only want to reduce the number of labels by label merg-
ing and stacking.

We want to compare how many labels can be reduced by using the stack. An
extended version of the results presented in this subsection can be found in [16].

We considered an Australian ISP topology gathered in the Rocketfuel project.
The topology consists of 28 nodes. We choose 30% of nodes as ingress and egress
and we vary the number of routed LSPs between them from 10 to 300. To generate
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the path routes, we use the k-shortest path first (k-SPF) algorithm. We have chosen
k-SPF because shortest path routing leads to the worst link utilization. As a conse-
quence, the usage of k-SPF would give us a lower bound on the usage of the label
space incurred by any of the traditional routing solutions.

Figure 4.8 shows the number of labels used when: a) no reduction method is
applied, b) label merging and no label stacking is used and, c) label merging and
stacking is used. The numerical value is found using the ILP formulations described
in the chapter. At the bottom of the figure we show the average overhead in the
packets due to the usage of the stack.
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Fig. 4.8 Comparison using one stacked label. The routes are given

We observe that, when the network load is high (300 LSPs), the label space
reduction is 70.6% using the stack, while without using the stack, label merging
achieves a reduction of 48.75% in the label space usage.

4.6.2 AOLS

The motivations for reducing the label space usage in AOLS are as strong as con-
sidering the selection of appropriate routes within the same problem. That is, to
consider the path routes that would help reduce the label space, as mentioned in
Section 4.4. Since the tendency of an ‘optimal’ routing solution is to saturate link
capacity, we summarize in this subsection results showing the trade-off between link
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capacity and the number of labels that can be saved. An extended version of these
results can be found in [11].

The results we show in this section are computed using a heuristic. However,
they are corroborated with the optimal solution of the model in smaller networks.
The gap between the heuristic and the model solutions lies within 20% of the differ-
ence when considering smaller networks. We use two routing heuristics: Constraint
Shortest Path First (CSPF) and Path-Interfering Routing Algorithm (PIRA) (specif-
ically designed for label space usage optimization) [11].

In brief, we found that the use of the stack reduces the label space four times on
average when the capacity of the links is just enough to route traffic, and almost six
times if the link capacity is doubled.

Considering the routing solutions, we noticed that while the Maximum Link Uti-
lization (MLU) of CSPF is 934 units of traffic, PIRA’s is 2,236; this is 2.5 times
more. However, we notice that this case occurs in few links. Figure 4.9 shows the
distribution of links in PIRA that are above a given ratio of CSPF’s MLU. For in-
stance, there are six links in PIRA that are using between 50% and 75% more ca-
pacity than the minimum MLU considering CSPF routing. It turns out that while
25 links (out of 114) require a higher link capacity, 74 are not used by PIRA (16 of
them are not used by CSPF either).
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We now compare the best solution without stacking (CSPF with label merging)
with the best solution using the stack (PIRA with label merging and stacking). The
maximum number of labels that the label merging solution uses is 20. This makes all
AOLS blocks sized for coding five-bit long labels. By using stacking, the maximum
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number of labels becomes 11, making the AOLS blocks sized for coding labels only
four bits long. In our results without stacking, we noticed that 11 links are causing
the five- bit long labels. However, using the stack, only four links are forbidding us
from using three-bit long labels. Even though we did not optimize the maximum
number of labels per link, it is not difficult to see that rerouting the traffic in the
three links of our solution would be easier than rerouting the traffic in the 11 links
in the label merging solution in order to reduce by one bit the label encoding size.

4.6.3 ELS

As mentioned in Section 4.2.3, the motivations to study ELS labels space are to
determine the scalability of the architecture and the available methods when using
a 12-bit label. This has been mainly studied in [3]. As in MPLS-TE, in [3], the
improvement of label space usage has not been considered as a routing objective.
Instead, the scalability of ELS was evaluated for the off-line and online routing
scenarios. Both cases, when labels have link and node scope, were considered.

For the online routing scenario, the Shortest Path First (SPF), the Constraint
Shortest Path First (CSPF), and the MIRA were implemented. Three topologies
were considered, COST266, Germany50 and Exodus(US); a capacity of 10 Gbit/s
are assigned to all the links [3]. Two sets of LSP requests were evaluated, one with
requests of low capacity (1 Mbit/s) to consider a worst case (given that label sparcity
is higher for low capacity demands) and another with requests of different capacities
(1 Mbit/s, 2 Mbit/s, 10 Mbit/s, 20 Mbit/s) to consider a more realistic case. Results
are compared in terms of the decrease in throughput given by the rejection of LSP
requests due to unavailability of labels.

• When considering homogeneous bandwidth requests of 1 Mbit/s, results show
that with the label size restricted to 12 bits per link, all evaluated algorithms
result in a decrease in throughput that ranges from 32% to 50% compared to the
scenario in which there is no limit in the label space size. With a restricted label
size but label merging enabled, the resulting throughput is identical to the one
obtained when using an unlimited label size. When the label size is restricted
to 12 bits per node, the decrease in throughput ranges from 46% to 69% and
with label merging enabled from 12% to 22%. The latter observation applies for
all the evaluated algorithms. This is an interesting result as it shows that label
merging overcomes the label size limits for a link scope even with demands of
low capacity. This is not the case when the labels have a node scope were there
are limitations even with merging.

• When considering heterogeneous bandwidth requests, with the label size re-
stricted to 12 bits per link, none of the evaluated algorithms show a decrease
in throughput higher than 1%. In addition, when label merging is applied, the
maximum number of labels used decreases considerably (from 42% to 57%).
When the label size is restricted to 12 bits per node, the decrease in throughput
ranges from 19% to 29%, and with label merging enabled, from 1% to 11%.
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For the off-line routing scenario model, a model similar to the one presented
in Section 4.5 with the no label stacking and Traffic Engineering Variations was
implemented. Results show that the highest maximum number of utilized labels
was very low compared to the unused labels for both node and link scopes. This
result shows that, even without merging, for the off-line scenario a 4,096 label value
space is not a limitation.

4.7 Conclusions and Future Work

In this chapter we have explained and modeled the LABEL SPACE REDUCTION

problem in MPLS-TE, AOLS and ELS. We reviewed two methods for reducing the
label space: label merging and label stacking. A mathematical optimization model
of the problem has been proposed, taking into account technical restrictions for each
technology.

In brief, we noticed that the usage of a label stack, when allowed by the technol-
ogy, yields to a 50% reduction in the label space usage. In scenarios in which we
can set up favorable routes, simulation experiments showed that the label space can
be reduced six times using the stack if the MLU limit (or link capacity) is increased
at least twice. If the MLU is kept to the minimum needed by the traditional CSPF
routing, the use of the stack yields up to four times label space reduction.

For the case of ELS, where the length of the label is set to 12 bits and label
stacking is not supported, simulation results show that label merging overcomes
the scalability limitations for the studied scenarios and link scope labels. However,
complementary studies considering more topologies and different scenarios need to
be done in order to fully determine the scalability of the technology.

The label reduction mechanisms proposed in this chapter are technology-specific,
i.e., for each technology a specific mechanism has been proposed and evaluated. The
next step would consist of unifying the techniques for multilayer networks (which
implies unified label management), proposing time and resource-efficient resilience
mechanisms and extending the proposed techniques for domain-wide label reuse
(shared forwarding entries are nothing more than an inverse multiplexing tree). An-
other topic for further investigation is related to the impact on traffic flowing through
label-merged data paths. Studies comprising the effect of label merging in terms of
statistical multiplexing and QoS aspects would complement the derivation of the
gain with respect to the forwarding plane resources.
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Chapter 5
Network Survivability: End-to-End Recovery
Using Local Failure Information

José L. Marzo, Thomas Stidsen, Sarah Ruepp, Eusebi Calle, Janos Tapolcai, and
Juan Segovia

Abstract This chapter presents an advanced shared protection approach called Fail-
ure Dependent Path Protection (FDPP). Under this approach, several protection
paths can be assigned to connections in the context of a shared protection frame-
work. After formalizing the survivable online routing problem, two possible imple-
mentations are compared, one based on heuristics and the other on ILP. Building
upon the concepts of routing already exposed, the chapter then presents two case
studies. The first one employs Shortcut Span Protection to examine how different
protection strategies affect resource provisioning, while the second is a thorough
analysis of the performance of path protection in terms of connection availability,
both for dedicated and shared path protection in heterogeneous network topologies.
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5.1 Basic Concepts on Network Survivability

Network survivability reflects the ability of a network to maintain service continu-
ity during and after failures. Although this ability is of relevance for any transport
network, it is essential for operators of optical networks, where a single fiber cut,
for example, can lead to severe service disruption and to loss of revenue, affecting
thousands of end users whose traffic is transported by high-capacity DWDM links.
Naturally, failures are not limited to fiber optic cables; other components such as
multiplexers, optical cross-connects (OXC), and repeaters can also fail. Moreover,
the causes of failure are equally diverse, from aging of the physical components to
natural dissasters to errors caused by human intervention.

Recovery is the name given to the sequence of events and actions taken after the
detection of a failure in order to keep the service in operation –whether in degraded
mode or not– and return the network to the preferred state upon the completion of
the repair procedures [20]. In this chapter, we consider that the unit of service of
the optical network, and therefore the subject of recovery, is a connection, i.e., the
virtual communication channel created between two designated nodes, with a given
capacity and duration. In line with the concepts of GMPLS, we assume that any
such connection is served by paths inside the network.

The body of knowledge on network recovery for optical networks is extensive.
However, as this chapter is focused on end-to-end recovery using local failure in-
formation, the reader interested in the general topic of network recovery is referred
to [13], which surveys the major techniques for next generation networks, and to [6],
which offers several options for classifying them, as well as an evaluation of their
features from the perspective of quality of service and differentiation. Nevertheless,
we will devote the following subsections to presenting essential concepts and termi-
nology on survivability, necessary for understanding the problems addressed in the
rest of the chapter as well as the applicability of the proposed solutions.

5.1.1 Protection and Restoration

The existing recovery techniques differ in objectives (i.e., offer very fast recovery
time, maximize network utilization, accomodate conflicting QoS requirements, or
a combination of several objectives) as well as approaches to specific issues such
as the provisioning method employed, the protection scope, the signaling require-
ments, and the layers, topologies and transmission technologies to which they are
applicable. Despite their differences, however, recovery generally implies that the
traffic affected by a failure is switched to a backup path. The moment in time in
which this backup path is established gives rise to two general approaches, one is
called restoration and the other is called protection. Under restoration, backup paths
are discovered on demand, and spare capacity is dynamically allocated thereafter,
whereas under protection both steps are completed at service setup time, whether
any failure arises or not later on during the service lifetime.
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In general, protection favors quality of recovery in the sense that, by doing pre-
allocation, there is guarantee that resources are readily available at failure time and
less steps are necessary to successfully complete the recovery process. But this guar-
antee comes at the expense of network utilization: capacity for recovery is essen-
tially locked even if finally it is never needed. As discussed in Section 5.1.3, net-
work utilization can be improved by sharing the resources for recovery at the cost
of losing the certainty on successful recovery.

5.1.2 The Scope of Backup Paths

The conceptually simplest method of path assignment is called global backup path
or just path protection, whereby two disjoint paths are assigned to one connection,
as illustrated in Figure 1(a). The path that carries the traffic under normal conditions
is called the working path, and it is covered by the backup path. When the working
path is affected by a failure, the connection is rerouted on an end-to-end basis, that
is, the switchover is usually performed at the source node, irrespective of the actual
failure location. Unless 1+1 protection is used (discussed in the next subsection),
the source node must be notified upon failure, which increases the recovery time as
well as the risk of losing traffic. Its advantage is that only the source node needs
switchover functionality.

(a) Global backup path

(b) Local backup path

(c) Segment-based backup path

Fig. 5.1 Scope of backup paths
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The local path method can be employed to overcome the drawbacks of using
global backup paths. As illustrated in Figure 1(b), the working path is divided into
shorter reroutable paths so that the node detecting the failure (node q in the example)
can immediately switch to the alternate path (passing through r in the example)
and route the connection around the failed element. However, this method requires
switchover functionality in every node.

An intermediate solution is offered by the segment-based method [4]. For in-
stance, if a failure is detected between nodes t and d in Figure 1(c), the failure no-
tification is sent to q, which performs the switchover. The nodes between the failed
network element and the source node of the connection are called upstream nodes,
while the ones between the failure and the destination node are called downstream
nodes.

The idea of restricting the notification to the node closer to the point of failure
is employed by the local-to-egress restoration method [2]. In this case, the affected
traffic is rerouted between the upstream node adjacent to the failure and the egress
node of the connection, combining short notification time and high resource ef-
ficiency. This form of recovery is used by the Shortcut Span Protection method
presented in Section 5.4.1.

5.1.3 Shareability of Protection Resources

Based on whether or not the sharing of network resources between connections is
allowed, a protection scheme can be categorized as shared or dedicated. An ex-
ample of dedicated protection that uses global backup path is 1+1 protection. In
1+1 protection, traffic is sent simultaneously over both the working and the backup
paths; the destination node monitors continuously the reception for choosing the
most convenient path. By not requiring failure notification, the recovery time can
be very short. Another variation is called 1:1 protection, in which, unlike in 1+1
protection, traffic is sent over the working path only until a failure is detected.

In shared protection, however, the backup paths are provisioned only at the con-
trol plane to facilitate the sharing of the recovery resources of several working paths.
It is also called soft provisioning [34] in GMPLS terminology and backup mul-
tiplexing [23] in optical transport domain. Shared protection is usually combined
with single link failure protection. This combination yields to low bandwidth uti-
lization and is relatively simple to implement. Section 5.4.4 studies the availability
of connections protected with both dedicated path protection (DPP) and shared path
protection (SPP).

The concept of shared protection is to activate a single protection path after the
interruption of working bandwidth at a preselected upstream node (a branch node
in GMPLS terminology [34]); the protection path merges back to the working route
at a preselected downstream node called merging node. In SPP, the switching node
is always the source node, while the merging node is always the destination node.
Shared Link Protection (SLP) typically protects link failures only, and the switching
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node is the neighboring upstream node, while the merging node is the neighboring
downstream node. SLP is favored for its simple and local fault recovery. For Shared
Segment Protection (SSP, a.k.a. Sub-Path Protection [25]) the working path is di-
vided into segments and the starting node of the segment is the switching node and
the last node is the merging node. The segments may be overlapped but not embed-
ded; thus, the closest upstream switching node is always the switching node of the
corresponding segment. It provides an explicit mapping between the network ele-
ment and the segment. SSP provides the finest compromise between fast restoration
time and bandwidth utilization efficiency [34].

s d

SPP

a
c

SSP

b

SLP

upstream nodes downstream nodes

Fig. 5.2 Shared path/segment/link protection

5.2 The Failure-Dependent Path Protection Method

Shared protection is a well-studied area of survivable routing and a great number
of shared protection methods have been published; however, only very few failure
dependent path protection methods were studied. One of the main reasons of the
scant proposals is that the problem can easily and efficiently be solved with a sim-
ple heuristic based on shortest path search. This simple heuristic is referred to as the
SPH approach later in this section. In [37] the problem is called partial path protec-
tion. Besides the SPH approach, in the next section an ILP formulation is given that
provides a solution with optimal bandwidth utilization in optical networks. We pro-
ceed now with detailed study of the corresponding routing problem, propose some
novel approaches, and further verify the benefits of the SPH approach.

5.2.1 Recovery Based on the Failure Scenario

A common point of shared protection is that the preselected upstream node does
not need to know which network element has failed. This approach is called failure
independent (FI) [28] or state-independent [38] protection.1 Note that SLP for single

1 The “state” means network failure state, indicating the failed network component(s).



142 J. Marzo et al.

link failures is a special case where basically the switching node has the knowledge
of the failed link; however, it is still considered as being failure independent. It is
because from the operational point of view a single protection path is assigned for
each switching node.

Alternatively, the connection may be assigned more than one protection path,
depending on the failure scenario. Upon a failure, the switching node activates a
protection path corresponding to the failed network element. Such an approach re-
quires precise knowledge of the failure in the network; hence, it is referred to as
failure-dependent (FD) [28] or state-dependent [38] protection.

Similar methods have been published related to path restoration. Contrary to all
other methods discussed, path restoration is not a preplanned protection scheme;
thus, the path computation takes place after the failure occurs. However, the re-
quired minimum spare capacity is basically determined with FD protection routing
methods. In [7] the method is called true-path restoration, in [11, 27] simply path
restoration, and in [21] and [17] path restoration with static traffic. As FD protec-
tion is tailored to specified failures, normally it requires less spare capacity than FI
protection [18]. Even though FD protection was neglected due its longer restora-
tion time and for the extended nodal processing and memory requirements [38],
the Internet Engineering Task Force (IETF) solved this problem and published RFC
4090 [26], which addresses the necessary signalling extensions to support a recov-
ery scheme called MPLS fast reroute. The IETF fast reroute defines two methods.
The first one is called one-to-one backup, where each Label Switched Path (LSP)
is protected separately. Among the FI methods, shared segment protection follows
very similar ideas. The second method is called facility backup and each facility is
protected with a single protection bypass tunnel between the potential failure points;
thus, any LSP passing through the facility is protected by the same bypass tunnel.
P-cycles can be treated as a similar approach for the FI case.

We assume that each working path is protected separately and we consider one-
to-one backup. The key advantage of MPLS fast reroute is that it provides FD pro-
tection with short restoration time. This can be done by fixing the switching node as
the first upstream adjacent node, while the merging node can be any of the down-
stream nodes. The failures of the network elements are detected by the adjacent
nodes and, since only single link failures are considered, we may assume that the
switching node has knowledge of the failed link after the failure detection time,
leading to a rapid recovery cycle. In our study we allow any upstream node to be a
switching node; however, the above limitation can simply be applied to the proposed
algorithms. In [36] the MPLS fast reroute is extended with distributed shared band-
width management, which allows sharing of recovery resources of disjoint working
paths.
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5.2.2 Path Assignment Approaches

We consider an online routing problem, without any knowledge of future request
arrivals and without applying prediction-based routing on the statistics of past re-
quests. Traffic Engineering (TE) controls traffic to assure an economical utilization
of network resources. We use link weight setting methods, which identify the bot-
tleneck links in the network and, by assigning high administrative link weights,
circumvent these links during the course of path selection. This ensures that resid-
ual capacity is always available at bottleneck links, thus facilitating the successful
routing of as many future requests as possible. The path selection schemes use the
administrative weights as their cost functions to take network-wide TE policies into
account to achieve global optimization of network resources.

We assume source routing with complete routing information scenario, where the
link state protocols disseminate all the necessity routing information to each node,
including the free and spare capacities on links, the shareability of protection routes,
and the administrative link weights.

5.2.3 General Shared Risk Groups (SRG)

A Shared Risk Group (SRG) is defined as a group of network elements (links, nodes,
physical devices, software or protocol identities, etc., or a mix of them) possibly
subject to a common risk of single failure. In practical cases, an SRG may contain
several seemingly unrelated and arbitrarily selected network elements. We say that a
working path is involved in an SRG if it traverses any network element that belongs
to the SRG.

Most of the past studies focused on the case where each single network element in
the network topology serves as an SRG. Even if this special case is widely accepted
and very common, we believe that a sterling survivable routing algorithm should be
able to cope with the general definition of SRG.

Obviously, in single-layer and single-domain networks, multiple network ele-
ments might be contained in a single SRG. However, the concepts of general SRG
particularly contributes to the development and implementation of survivable rout-
ing schemes for the modern multilayer, multi-domain, and multi-carrier public net-
works. Because the network can be multilayered, it is not straightforward to take the
network elements in the upper virtual layer and the underlying physical layer in a
common SRG, although the upper layer virtual topologies could be embedded in the
lower-layer topology. The general SRG concept simplifies this dependency by sep-
arately grouping the network elements of each layer. In the case of a multi-domain
and multi-carrier network environment, a suite of efficient and secure link state in-
formation dissemination mechanisms must be developed to support routing in the
network layer. Here, the definition of general SRGs can help the link state infor-
mation aggregation, classification, and encapsulation to achieve a resource-sharable
protection plan.
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In end-to-end FI protection (e.g., dedicated or shared path protection), the task is
to find an SRG-disjoint working and protection path-pair for a connection request,
which has been proved to be NP-complete [1, 9, 15]. Therefore, the problem is
either solved by heuristics [11, 14] or by exponential worst-case algorithms, like
Integer Linear Program (ILP) [14, 15].

The consideration of the general definition of SRGs has two impacts upon the
solving of the survivable routing problem compared to the case where there is a one-
to-one mapping between a link or node and an SRG. Firstly, solving the survivable
routing problem turns out to be solving an SRG-disjoint path-pair, which is NP-
hard. In addition to the NP-completeness, the consideration of the general definition
of SRGs may introduce an increase in the size of the spare provision matrix (SPM)
[22]. In [33] the matrix expression by Yu Liu [22] was modified to enumerate the
Spare Provision Matrix in the case of general SRG.

5.2.4 The Input of the Problem

Given a network with a set of nodes N and a set of links L, a corresponding trans-
formed graph can be produced by modeling each network element of interest in
the original network as an arc in the transformed graph. Each SRG of the original
network can be represented by a set of arcs in the transformed graph.

Let G(V,E) denote the transformed graph of the original network with a set of
arcs E and vertices V , where |E| and |V | are the number of arcs and vertices in G.
The cost for allocating a unit capacity on arc j (the administrative weight) is denoted
as c j ∀ j ∈ E. The unreserved free capacity along arc j is denoted as f j ∀ j ∈ E. The
amount of capacity reserved along arc j is denoted as v j ∀ j ∈ E. Furthermore, we
are given the source vertex s and the destination vertex d of the new demand with a
specific amount of bandwidth b. Due to the complete routing information scheme,
the full per-flow information of the network (i.e., the working and protection paths
along each link) is known. Based on the full per-flow information, the Spare Pro-
vision Matrix (SPM) can be calculated [33]. It is denoted as S and a |E| × |SRG|
matrix. The entry (i, j) of S (denoted as si, j, where i = 1 . . . |E|), j = 1 . . . |SRG|, is
the amount of non-sharable spare capacity along arc i for P if W is involved in the
jth SRG.

The feasible condition of the primary (a.k.a working) path is f j ≥ b for all arcs
j ∈W (the working path). In FDPP a backup path is assigned to each SRG involved
in W . The feasible condition of the backup path Pj assigned to the jth SRG involved
in W is fi + vi − si, j ≥ b for for all arcs i ∈ P.
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5.2.5 Two-Step Approaches

In two-step approaches the optimization is divided into two steps. First, a shortest
path is found and assigned as the working path; second, the protection paths are
identified.

Two-step approaches are widely used in shared path protection due to their sim-
plicity and decent performance, even if they cannot cope with the trap problem [39].
In the trap problem, the shortest path is such an unfortunate working route that it
has no SRG-disjoint protection path, even if there exists an SRG-disjoint path-pair
between the given source-destination pair. Due to the trap problem, the two-step
approaches have always higher blocking than approaches in which the working and
protection paths are jointly optimized.

There are two main concepts that can be applied to solve the trap problem in
failure-independent protection environments. First is the selection of a more appro-
priate path than the shortest one as working route. Usually, the shortest path that has
a disjoint counterpart [32, 39] is selected as the working path. In the case of online
routing, this can be done only with heuristics approaches, since the problem is NP-
hard [19]. The second concept is to apply a protection method other than end-to-end
protection. Segment protection is a good choice, since it is impervious to the trap
problem. In [12] it was stated that “In any network topology, whenever two disjoint
paths exist between a pair of end nodes, backup segments are guaranteed to exist for
any choice of a primary path between them. Similar guarantees cannot be provided
on the existence of end-to-end backup.”

Similarly to segment protection, the trap problem can be easily handled in FDPP.
Basically, without knowing the exact route of the working path, we are able to de-
cide whether or not a link belonging to it can be protected. This can be done by
simulating the failure of each SRG involved and searching for a feasible protection
path between the source and destination nodes of the request. If there is a feasible
protection path P after the failure of SRG a (∀e ∈ P fe + ve − se,a ≥ b), we can be
sure that P will intersect the working route in an upstream node (in the worst case
at the source node), which can be treated as the switching node, and P will also in-
tersect the working path in a downstream node (in the worst case in the destination
node), which can be treated as the merging node, and thus we can be sure that there
will be a feasible protection path. Obviously if there is no protection path that can
protect the failure of SRG a, we will not be able to protect the working path passing
through SRG a.

In the same way we can define an FDPP test that filters out all the infeasible
edges from being part of the working route, and leaves all the edges that can be
freely selected to guarantee a feasible FDPP protection solution.

Definition 5.1. FDPP test of arc a is true if there is a path P between s and d such
that fe + ve − se,a ≥ b for all e ∈ P.
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5.2.5.1 First Step

We propose two techniques for the first step of the two-step approach. The tradi-
tional way is to assign the shortest path to the working route in the graph composed
of all the links with sufficient free capacity ( fe ≥ b), with the administrative costs
assigned to the links. Since the working path cannot be shared with other requests,
it is a natural to attempt to dedicate the fewest possible resources for the working
path.

In the second technique, we solve the trap problem with the FDPP test, and first
we identify the links that can be part of the working path to get a feasible solution.
After erasing all the unusable links along with the links with insufficient free capac-
ity ( fe > b), we take the shortest path in the residual graph as the working path, with
the administrative costs assigned to the links.

5.2.5.2 Second Step

The task in the second step is to find protection routes that require the allocation of
minimal spare capacity weighted by the administrative link costs. The two-step ap-
proach is preferred for FI shared path protection due to its simplicity. In the second
step of shared path protection an optimal protection path is derived with respect to a
working path, which can be simply done by constructing a residual graph [32] com-
posed of all the links with sufficient free and sharable capacity for protecting the
working path. In this residual graph, the shortest path between the source and des-
tination nodes with link costs updated according to the resource usage status is the
optimal protection path. The administrative link cost is proportionally assigned to
the links according to the fraction of capacity that cannot be shared by other protec-
tion routes: the full administrative link cost is assigned if none of the capacity can be
shared by other protection paths, while only a very small positive cost represented
by ε is assigned if it can be fully shared [32].

The problem we face in the second step of FDPP of the two-step approach is
not that simple to solve. Conversely, the trap problem is a hard problem for shared
protection, whereas it can be easily handled for FDPP.

Instead of solving the optimal protection path problem for a given working route
in the case of FDPP, we define a generalization of the problem, which we call the
Multi-commodity Connectivity (MCC) problem. In Section 5.3 we propose several
methods for solving the MCC problem that can be applied in the second step of the
FDPP two-step approach.

5.2.6 Joint Optimization: The Greedy Approach

In joint optimization, we consider the problem of minimizing the use of new re-
sources (for both the working and the protection paths) required to accommodate
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the new call without disturbing the existing ones. We call this approach the greedy
approach. In Section 5.3.3 we formulate the traditional FDPP with ILP. This formu-
lation seeks, upon call arrival, to minimize the total amount of resources used for
establishing both primary and backup paths.

5.3 Multi-commodity Connectivity (MCC)

The input of the MCC problem is

• a graph G(V,E) with a set of edges E and vertices V
• a set of commodities C. The number of commodities is denoted by k = |C|. For

each commodity a ∈ C, the following input is defined:

– a source node sa ∈ V and a destination node da ∈ V
– a subgraph (V,Ea) with usable edges
– a cost ce,a for each edge e ∈ Ea

The objective is to find for each commodity a ∈C a single path, denoted by Pa, with
minimum overall cost, such that Pa connects sa and da on edges of Ea. The overall
cost of edge e ∈ E, denoted by ze, is the maximum of the edge costs assigned to the
commodities passing through it, i.e., maxa∈C|e∈Pa ce,a. The objective function is to
minimize ∑e∈E maxa∈C|e∈Pa ce,a.

This problem is similar to the multi-commodity flow problem. In this case, how-
ever, the commodities can share the cost when using the same edges.

FDPP is a special case of MCC, where the commodities are assigned to those
SRGs that are involved in the working path, but the SRG does not form a cut be-
tween s and d, so it can be protected. The source-destination of each commodity is
the source and destination of the connection (sa = s and da = d for all a ∈ C).2 An
SRG is assigned to each commodity, and the subgraph Ea is populated as follows:

• the edges involved in the corresponding SRG are erased from Ea

• the rest of the edges involved in the working path are added with cost equal to 0
(ce,a = 0)

• the rest of the edges with sufficient capacity to protect the corresponding SRG
added (ve − se,a + b ≤ fe) with cost of ce · (max{ve − se,a +b,ε}), where ε is a
very small positive number.

Since we are protecting single SRG failures, the spare capacity along the pro-
tection routes of FDPP can be shared, and the objective of the MCC is equal to the
amount of spare capacity required to be reserved weighted by the administrative link
cost.

2 In the case of MPLS fast reroute, the source is required to be the adjacent upstream node of the
working path.



148 J. Marzo et al.

5.3.1 Complexity of the Multi-commodity Connectivity Problem

Theorem 5.1. Finding the minimum cost MCC solution is NP-hard.

Proof. Obviously, this problem belongs to the class NP. We shall reduce 3SAT to
our problem as follows: First we construct an undirected graph G = (V,E). For each
variable xi (i = 1...n), let pi be the number of occurrences of the literal xi in the
clauses and p′

i the number of occcurrences of the literal x̄i, and construct a lobe as
shown in Figure 5.3.

Fig. 5.3 Lobe

The lobes are connected one after the other. For each clause Cj, we add two
vertices y j,z j ( j = 1...m) with edges between (u,y1),(z j,y j+1) ( j = 1...m), and
(zm,x). Finally, we connect clauses to variables by adding the following edges:

(y j, ūi
k) and (z j, v̄i

k) if the kth occurrence of variable xi is the literal xi, that is, a
literal in clause Cj

(y j,ui
k) and (z j,vi

k) if the kth occurrence of variable xi is the literal x̄i, that is, a
literal in clause Cj

For example, the graph G corresponding to the instance

(x̄1 ∨ x2 ∨ x̄3)(x1 ∨ x̄2 ∨ x3)(x1 ∨ x2 ∨ x̄3)

is depicted in Figure 5.4. E1 consists of the edges shown as solid lines, while E2

contains the ones drawn with broken lines plus the thick solid lines.
Edges have cost 0, except the ones shown with thick lines. For those edges, the

cost is 1
pi

(or 1
p′

i
respectively) for the first commodity, and 0 < ε << 1 for the second

commodity. Note that the cost of passing each lobe is 1 for the first commodity.
It is easy to see that G can be constructed in polynomial time. Therefore, it is

sufficient to show that there exists a truth assignment that simultaneously satisfies
all m clauses if and only if the cost

min

{

∑
e∈E

max
a∈C|e∈Pa

ce,a

}

≤ n

If there exists a truth assignment τ that simultaneously satisfies all m clauses,
then P1 path passes through the upper portion of the lobe if τ(xi) = f alse and passes
through the lower portion if τ(xi) = true and the cost is n. Each satisfied clause Cj

contains either a literal xi such that τ(xi) = true or literal x̄i such that τ(xi) = f alse,

v1u1

u v

x

i i

i i

u v2
i i u vp
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Fig. 5.4 Graph G corresponding to (x̄1 ∨ x2 ∨ x̄3)(x1 ∨ x̄2 ∨ x3)(x1 ∨ x2 ∨ x̄3)

which implies that there exists a subpath (y j,ui
k,v

j
k,z j) or (y j, ūi

k, v̄
j
k,z j) which can

fully share the cost with P1 and thus its cost is 0.
Hence, there exist at least m such subpaths, which, together with edges (s2,y1)

and (zm, t2), form a path P2 with cost 0. Therefore, the total cost would be n.
Conversely, suppose there exist two paths with total cost m. Path P1 must contain

edges drawn with only continuous lines, and since passing through each lobe costs
1, the cost of the path would be m. We set τ(xi) = true if P1 passes through the
lower portion of the ith lobe and τ(xi) = f alse otherwise. On the other hand, path
P2 must pass through all vertices y j and z j, and it should share the cost with edges
of P1 in order to reach t2 without requiring any additional cost. According to this
truth assignment, clause Cj is satisfied since there is an edge in the lobe between all
y j and z j in P2. Therefore, all m clauses are satisfied.

A special case of this problem is called directed Steiner Network Problem [10]
where, given a single directed graph G and source-destination node pairs (sa and da),
for each commodity the task is to find the smallest subgraph H of G that contains
a path from sa to da for all a ∈ C. MCC with Ea ≡ E and ce,a = 1 for all e ∈ E
and a ∈C represents the same problem. The latter problem in NP-hard for a general
number of commodities, since the Directed Steiner Tree problem is a special case.
However, the problem was proved to be polynomially solvable if k is any constant
number.

5.3.2 The SPH Approach

The SPH approach is a simple heuristic where an ordering of the commodities is
defined and each Pa is calculated with a shortest path search, one after the other,
such that at each step the minimum additional overall cost is added. In the imple-
mentation ze = 0 at the beginning and it is updated after a new path is calculated
(ze = max∀a|e∈Pa{ce,a}). Each path is calculated with a shortest path search in the
corresponding subgraph (for commodity a it would be (V,Ea)), where the link costs
are max{0,ce,a − ze}.

s

s

x x x t

ty z y z y z

1 1 2
3 1

2 1 1 2 2 3 3 2
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When the SPH approach is applied for FDPP, first a working path is derived
in the first step (with a shortest path search). Then a residual graph is constructed
(and can be protected) for each SRG involved in the working path. In the residual
graph the links involved in the corresponding SRG are erased and all the links in
the working path disjoint from the SRG are available at 0 cost. Besides, it consists
of all links where ve − se,a + b < fe holds. These links have costs according to the
resource usage status. In the next step a backup path is calculated (with a shortest
path search) with the objective of using the least resources on the corresponding
residual graph. Basically, the administrative link costs are proportionally assigned
according to the fraction of the spare capacity that needs to be additionally reserved
along the links: the full administrative link cost is assigned if none of the capacity
can be shared by other protection paths. However, if it can be fully shared, only a
very small positive cost represented by ε is assigned.

Note that the order in which the paths are established will affect the final solution.
In our implementation we visit the SRGs of the working path in order of traversal
from the source to the destination.

5.3.3 ILP of the Multi-commodity Connectivity Problem

Since the problem is NP-hard, we have formulated it with ILP mainly to understand
the character of the problem and facilitate the introduction of some other effective
heuristics. The following symbols are adopted to develop the ILP formulation. Let
ye,a be a binary variable assigned for all commodities a ∈ C and edges of e ∈ Ea.
Variable ye,a represents the route of commodity a, such that it is 1 if the correspond-
ing path passes through the arc e, and 0 otherwise. Let ze be a nonnegative real
variable assigned to the overall cost of edge e.

The MCC Problem reads

min∑
a∈E

ceze (5.1a)

s.t. ∑
(i, j)∈Ea

y(i, j),a − ∑
( j,i)∈Ea

y( j,i),a =

⎧
⎨

⎩

1 if i = sa

−1 if i = da

0 otherwise
∀i ∈ V,∀a ∈ C (5.1b)

ce,aye,a ≤ ze ∀e ∈ Ea,∀a ∈ C (5.1c)

where equations (5.1b) are known as the flow conservation constraints and inequal-
ities (5.1c) as the maximum cost constraints.



5 Evaluation of Network Survivability 151

5.3.4 Examples

We briefly compare the two main implementation approaches: the joint optimization
(greedy ILP) approach and the two-step (SPH) approach. Solving an ILP is compu-
tationally intensive. In contrast, since the algorithms for seeking the shortest paths,
e.g., Dijkstra’s algorithm, are polynomial-time, the shortest primary path approach
can place a new call rapidly.

Let us now consider resource efficiency. While the SPH approach may at times
require more resources for a given call, it is possible that over a number of calls,
the SPH approach may eventually result in more efficient bandwidth utilization.
Example 5.1 illustrates this phenomenon.

Example 5.1. Consider the network in Figure 5.5 and assume that FDPP is em-
ployed. The network is initially empty with a uniform administrative cost function
(all edge costs are 1) and serves three call requests, (1,4), (6,3), and (3,5) in se-
quence. Table 5.1 shows the resource assignments for the greedy approach and the
SPH approach. In this example, the SPH approach initially occupies more wave-
lengths to support the request (1,4) than does the greedy approach. However, as the
calls accumulate, the SPH approach uses fewer wavelengths to support the same
requests than the greedy one.

2

1

5
4

3

6

3

Fig. 5.5 An example network

In this example, the greedy approach endeavors to serve each request using the
minimum number of previously unused wavelengths. However, in doing so, the
greedy approach happens to choose paths with no protection sharing, harming net-
work resource utilization. In contrast, though the SPH is not optimal at first, it per-
forms better over the call arrivals by encouraging protection sharing.

5.4 Case Studies

The objective of this section is to present two case studies that employ and en-
hance some of the previously exposed concepts. The first one analyzes how dif-
ferent implementations of failure-dependent protection strategies affect the network
resources that must be provisioned, and presents a new model to overcome some
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Table 5.1 Resource usage for network employing the failure-dependent path protection scheme
implemented by different approaches in Figure 5.5

Primary Protection path Number of taken
path (protected link) unit of capacity

Greedy 1-2-3-4 1-6-5-4 (1-2-3-4) 6 (no sharing)
approach 6-5-3 6-2-3 (6-5-3) 10 (no sharing)

3-5 3-2-5 (3-5) 13 (no sharing)
Shortest 1-2-3-4 1-6-2-3-4 (1-2) 7 (share (2-3-4))

path 1-2-5-4 (2-3)
approach 1-2-5-4 (3-4)

(share (1,2))

6-5-3 6-2-3 (6-5) 10 (share (6,2))
6-2-3 (5-3)

3-5 3-2-5 (3-5) 12 (share (2,5))

of the highlighted drawbacks. The second case study is a thorough analysis of the
availability measures for connections equipped with shared and dedicated path pro-
tection in heterogeneous network topologies. It highlights the limitations of path
protection to achieve very high availability even with the most resource-intensive
method.

5.4.1 First Case Study: Shortcut Span Protection

This section presents a case study of how different protection strategies (such as
global and local-to-egress, described in Section 5.1.2) affect the total capacity that
must be provisioned in a network. With the prices for fiber (i.e., capacity) drop-
ping [30], capacity usage will become a less important factor for deciding which
protection method should be employed, whereas complexity and speed combined
with the manageability of the method are expected to be given higher priority in the
decision process.

To reduce the complexity of the protection method and the restoration time, we
want to investigate a variation of the local-to-egress protection method, which we
have termed Shortcut Span Protection (SCSP). In SCSP, the traffic is routed from the
node before the failed link directly to the endpoint, i.e., the traffic makes a shortcut.
The idea is illustrated in Figure 5.6. The SCSP method achieves the same quick
recovery time as standard span-protection, but is more relaxed with reference to the
protection routing and hence more efficient with reference to the needed protection
capacity. This improved efficiency, though, comes at the price of a more complex
protection routing problem. We compare the efficiency of SCSP with that of span
protection.
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Bundled
local-to-
egress

Fig. 5.6 Shortcut Span Protection (SCSP)

5.4.2 The Shortcut Span Protection Model

The routing in the SCSP model quickly becomes complicated, so we are forced to
make a couple of simplifications:

• We will only consider single link failures
• We will only consider the relaxed case, i.e., the routing of the paths may be

bifurcated, with both the ordinary flow and the protection flow.
• We will assume 100% protection, i.e., all traffic will be protected against any

single edge failure.

To perform the routing of the nominal flow and the backup flow, we apply Linear
Programming (LP). First we describe an LP model for SCSP and standard span pro-
tection. Then we present the result of the different protecion methods and comment
on them.

Given a network with N nodes, we index them with several different indexes:
i, j,k, l,q,r ∈ N. The indexes are used for nodes in different contexts: i, j are used
to index the flow, k, l are used to index the nodes of the demand requests, and q,r
are used to index the single link errors. Between the nodes there are bi-directional
edges E. We will index a specific edge by its end nodes: {i j} for the non-failed
edges and {qr} for the failed edges. All the flow is directed, and we hence represent
each edge {i j} with two arcs (i j) and ( ji). When an edge fails, both arcs (qr)
and (rq) fail and the flow on these arcs will have to be rerouted. We assume that
a number of communication demands are given, and the volume of the demand is

D(kl). For each demand (kl) we represent the nominal flow with a variable x(kl)
(i j) ∈ R+,

which corresponds to the flow from node i to node j of the demand request from
node k to node l. Whenever an edge {qr} fails, both the flows (qr) and (rq) needs
to be restored by a protection flow, starting from node q and node r respectively.

The protection flow is represented by yl,(qr)
(i j) , for the flow from node i to node j

of the failed arc (qr) which is destined for node l. To ease the formulation of the
model, we define an auxilliary variable ul,(qr) which represent the total flow with
end destination node l from the failed arc (qr). We are now ready to present the
complete LP model.
Shortcut span protection arc-flow LP model:
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min∑
{i j}

c{i j}z{i j} (5.2a)

s.t.∑
j

x(kl)
(i j) −∑

j
x(kl)
( ji) =

⎧
⎨

⎩

D(kl) i = k
−D(kl) i = l
0 i �= k, l

∀i,(kl) : Dkl > 0 (5.2b)

∑
k

x(kl)
(qr) = ul,(qr) ∀l,(qr) :∑

k

Dkl > 0 (5.2c)

∑
j

yl,(qr)
(i j) −∑

j
yl,(qr)
( ji) =

⎧
⎨

⎩

ul,(qr) i = k
−ul,(qr) i = l
0 i �= k, l

∀l,(qr), i :∑
k

Dkl > 0

(5.2d)

∑
(kl)

(x(kl)
(i j) + x(kl)

( ji))

+∑
l

(yl,(qr)
(i j) + yl,(qr)

( ji) )

+∑
l

(yl,(rq)
(i j) + yl,(rq)

( ji) ) ≤z{i j} ∀{i j},{qr} (5.2e)

x(kl)
(i j) ,u

l,(qr),yl,(qr)
(i j) ,z{i j} ∈R+ (5.2f)

The SCSP LP model consists of an objective function (5.2a), nominal flow con-
straints (5.2b), the constraints (5.2c) setting the auxilliary variables, the protection
flow constraints (5.2d) and capacity constraints (5.2e), and domain definitions (5.2f).
The objective function (5.2a) measure the cost of the necessary capacity in the net-
work. The nominal flow constraints (5.2b) ensure that the nominal flow is routed
from the start node k to the termination node l. The constraint setting the auxilliary
varibles (5.2c) simply sums the nominal flow across the failed arc (qr) which shares
the same termination node l. The protection flow constraints (5.2d) then use the
auxilliary variables to create a protection flow. Notice that if the identification of
the termination node in constraint (5.2d) is changed from l to q, then standard span
protection is performed.

5.4.3 Results

In order to evaluate the effectiveness of short cut protection, we test the method, by
optimizing over a set of four networks for a demand of volume 1 between all pairs
of nodes in the network, that is, only one way for each pair: D(qr) = 1 and D(qr) = 0.
Furthermore, we have set all the costs to unit values: c{i j} = 1. In Table 5.2 we
summarize data about the networks.
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Table 5.2 Network data
Network Name Number of Nodes Number of edges Average node degree
Cost239 [3] 11 26 4.73
PanEuropean 13 21 3.23
USANetwork [8] 28 45 3.21
Italy [11] 33 68 4.12

For the test networks in Table 5.2 we used the LP formulation given by the
model (5.2a)–(5.2f) to test four variants of the protection methods:

1. Shortest SCSP: Route nominal flows on shortest paths and then protect the flows
with SCSP.

2. Shortest Span: Route nominal flows on shortest paths and then protect the flows
with span protection.

3. SCSP: Perform combined routing of nominal and protection flow using SCSP.
4. Span: Perform combined routing of nominal and protection flow using Span

protection.

For each network, the required non-failure (NF) network cost is given. Furthermore,
the protection lower bound on the network cost is given, based on Complete Rerout-
ing (CR) protection [31]. For CR and the four above-described combinations of
SCSP and Span protection, we give both the absolute value of the network cost and
the relative increase compared to the non-failure network cost; see Table 5.3

Table 5.3 Performance of CR, SCP, and SP on four test networks

Network NF CR SCSP shortest Span shortest SCSP Span
Rel Abs Rel Abs Rel Abs Rel Abs Rel Abs

Cost239 86 13.4 97.6 32.5 114 39.5 120 25.3 107.7 26.8 109.0
PanEuropean 158 56.9 248 70.8 270 73.4 274 66.4 263 69.6 268
USANetwork 1273 50.3 1914.2 66.5 2120.3 71.5 2184.3 60.4 2042.5 65.9 2112.0
Italy 1718 33.8 2299.3 56.8 2693.8 62.11 2785.0 46.2 2512.9 49.9 2575.6

38.6 56.7 61.6 49.6 53.0

From the results it can be seen that the effect of SCSP is rather small; it is only an
improvement of 4% to 5% of the network cost. It turns out to be more important to
perform joint routing of the nominal flow and the protection. By combined nominal
flow planning and SCSP, the method on average only requires approximately 11%
exstra network cost compared to the CR lower bound.

It is somewhat surprising that the benefit of SCSP is not larger. Part of the the rea-
son for the difference not being larger is probably that stub-release is not included.
Stub-release means freeing the part of the nominal flow that is not being used after
a failure. This can be included in the LP model above, but the number of variables
required grows significantly, so that only the small networks can be solved, and we
have hence chosen not to include this approach here.
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5.4.4 Second Case Study: Connection Availability Under Path
Protection

The probability that a system (in this case a connection) will be found in the operat-
ing state at a random time in the future is called availability. If recovery techniques
are applied, then connection availability is an estimation of the ability of the net-
work to maintain the connection during and after a failure, i.e., it is an estimation of
survivability.

As connections are served by the physical network elements assigned to them,
the intrinsic reliability of these physical elements affects connection availability. A
well-known availability formula for a single element (or item), employed in this
study, is A = (MT BF −MT T R)/MT BF , where MT BF is the Mean Time Between
Failures and MT T R is the Mean Time To Repair. These reliability measures that can
be obtained from the manufacturer, be based on knowledgeable opinion, and so on.

The objective of the study presented in [29] is to analyze how connection avail-
ability is affected by different combinations of path protection schemes (dedicated
vs. shared) and specific topology properties such as nodal degree, link length, and
network diameter. In the following we hightlight the main results.

5.4.4.1 Context of the Study

In order to obtain heterogeneity from the point of view of topology properties, six
topologies were selected with differing average node degree, number of nodes and
links, network diameter, geographical coverage, and diversity in link lengths. Con-
nection availability was evaluated with an event-based simulator considering dy-
namic traffic, i.e., the capacity requested by a connection was allocated and re-
leased at that connection’s set up and tear-down, both events following a Poisson
process with exponentially distributed connection holding times. The traffic matrix
employed is from [24]. The demanded capacity was chosen randomly following a
uniform distribution. In such a dynamic environment, the effectively allocated ca-
pacity depends on the protection scheme applied as well as on the routing algorithm.
Therefore, an important figure of merit is restoration overbuild, that is, the extra ca-
pacity required for a given level of protection.

The simulation was carried out assuming no protection, shared path protection,
and dedicated protection for the six topologies. The results reported correspond to
an average of ten runs, and every run processed 80,000 connections.

5.4.4.2 Network Availability Model

The network availability model employed is an adaptation of the one presented
in [35], developed in the context of the IST project NOBEL. Its elements are compo-
nents of the physical layer (OXCs, transponders, fiber optic cable, amplifiers, etc.).
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The estimation of connection availability is performed assimilating a connection
to a series-parallel system. The building block in this system is the availability of
each component, computed based on its intrinsic reliability measures, i.e., its MTBF
and MTTR. The study was carried out using the conservative values of MTBF and
MTTR proposed in [35], which are based on the opinion of the consortium’s part-
ners on the reliability of the network components included in the model.

5.4.4.3 Connection Availability

The study analyzes the availability of connections protected with DPP (1+1 protec-
tion) and SPP, as defined in Section 5.1.3. The availability of a connection protected
with one backup path is, in general, A = Aw +(1−Aw)Ab, where Aw and Ab are the
availability of the primary and backup paths respectively. This formulation is di-
rectly usable with DPP, but if SPP is employed, the negative effect of sharing on the
availability must be considered: if two or more simultaneous or near-simultaneous
failures affect unrelated (disjoint) working paths, there is no guarantee that all of
them will be recovered because they might be sharing backup resources. Specifi-
cally, a successful corrective action for one of the failing connections could leave
others without the resources they need for their own recovery if the capacity for
protection is already used up. A penalty for this potential access conflict should
then be considered when using SPP, lowering the availability initially estimated. As
explained in [16], under the assumption of independent failure events and a binomi-
ally distributed failure number in a backup path sharing group, the aforementioned
penalty can be approximated with (5.3)

P = (1−Aw)Ab(1−An−1
w )

[
1− 1

2+(n−2)(1−Aw)

]
, (5.3)

where n is the size of the backup path sharing group.
With respect to restoration overbuild, further attention is also needed when SPP

is applied, as the capacity effectively allocated for backup has to be accounted for.
Equation (5.4), suggested in [5], was used to compute the backup capacity allocated
to a given connection i:

Ci =
k

∑
m=1

CTm

(
d

∑p
j=1 Cm, j

)

(5.4)

where k is the number of links in the backup path of connection i; p is the number of
backup paths that exist when this new connection is being set up; CTm is the capacity
effectively allocated for sharing purposes in link m, based on the demands of all the
connections whose protection paths traverse link m; d is the demand of connection
i; and Cm, j is the capacity required by all the backup paths that are sharing link m,
irrespective of the capacity effectively allocated.
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During the simulation, after determining the paths assigned to an accepted con-
nection, its availability was computed taking into account the specifics of the pro-
tection scheme. The values reported are averaged over all accepted connections.

5.4.4.4 Routing Strategy

Routing was carried out along the shortest path, the metric being distance (in km).
Candidate shortest paths that did not have enough capacity for the arriving demand
were filtered out. Node-disjoint working and protection paths were chosen. Block-
ing resulted when no path could be found to satisfy a demand with a given protec-
tion scheme. Dijkstra’s algorithm was used to find shortest paths, and a two-step
approach was applied to select protection paths.

5.4.4.5 Results

Table 5.4 presents the average connection availability under both DPP and SPP. In
the case of continental-size network topologies (Cost266, KL, Janos-US-CA, and
NSFnet), the average availability values are very different compared to the small
or medium size networks, where no differences can be observed, independently of
the application of DPP or SPP. In the case of SPP, however, the worst-performing
one (Janos-US-CA) has more than six times less availability than the best (KL)
one. Nonetheless, these larger topologies can only achieve a maximum of “three
nines” of availability, even when DPP is applied. On the other hand, results show that
the dominant component in the network availability model is the fiber optic cable,
due to the frequency of cable cuts and the relatively long duration of repair times.
Therefore, connection availability is dependent on the lengths of links, or in general
terms, on the link length distribution of its network topology. Figure 5.7 shows how
the mean downtime of connections in two of the studied topologies (Germany50
and COST266) increases when the link lengths are multiplied by a given factor;
Figure 7(a) shows that the average downtime increases linearly when connections
are unprotected, with different slopes for different topologies. When protection is
applied, however, the degradation rate is lower (see Figure 7(b)). With respect to
the restoration overbuild, it can be seen in Table 5.4 that DPP requires almost two
times the working capacity for protection, while DPP requires approximately the
same capacity for both working and protection paths.

Table 5.4 Average availability and average restoration overbuild under DPP and SPP

Figure of Merit DfnGwin Germany50 Cost266 KL Janos-US-CA NSFnet

DPP - Conn. Availability 0.999983 0.999985 0.999790 0.999838 0.999723 0.999620

DPP - Restoration Overbuild 2.45 2.78 2.70 2.65 2.73 2.96

SPP - Conn. Availability 0.999932 0.999884 0.998272 0.999483 0.996525 0.998842

SPP - Restoration overbuild 1.69 1.85 2.02 2.24 2.06 2.30
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Another interesting result concerns the average minimum distance, evaluated in
hops between node pairs. For topologies with a small average minimum distance,
a short total hop count can be expected in both DPP and SPP, yielding a suitable
availability value. However, other factors such as link length distribution and shar-
ing rules can modify the expected values. It has also been observed in SPP that the
sharing group size can change the expected availability values if only topology fea-
tures are considered. With respect to average node degree, it can be noted that under
DPP it improves restoration overbuild because it helps in finding disjoint paths for
backup.

(a) Unprotected connections

(b) Protected with DPP and SPP

Fig. 5.7 Average downtime as a function of scaled link length
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Abstract This chapter concerns routing optimization in optical burst switching
(OBS) networks. OBS is a photonic network technology aiming at efficient trans-
port of IP traffic. OBS architectures are in general bufferless and therefore sensitive
to burst congestion. An overall burst loss probability (BLP) which adequately rep-
resents the congestion state of the entire network is the primary metric of interest in
an OBS network. The network congestion can be reduced by using proper routing.
We consider multi-path source routing and aim at optimal distribution of traffic over
the network. In this context, we study three network loss models, a well-known loss
model of an OBS network and two original approximate models. Since the objective
function of each model is nonlinear, either linear programming formulations with
piecewise linear approximations of this function or nonlinear optimization gradient
methods can be used. The presented solution is based on nonlinear optimization;
for this purpose we provide the formulas for calculation of partial derivatives. The
main goal of this chapter is to show that the use of approximate models allows us
to speed up significantly the optimization procedure without losing much accuracy.
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Institute of Telecommunications, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-
665 Warsaw, Poland, and
Department of Electrical and Information Technology, Lund University, Box 118, SE-221 00 Lund,
Sweden, e-mail: mpp@tele.pw.edu.pl
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6.1 Introduction

Optical Burst Switching (OBS) is a photonic network technology aiming at efficient
transport of IP traffic [20]. OBS architectures are in general bufferless and as such
are sensitive to burst congestion. An overall burst loss probability (BLP) which ade-
quately represents the congestion state of the entire network is the primary metric of
interest in an OBS network. The network congestion can be reduced by using proper
routing; in this context alternative (or deflection) routing (e.g., [1]), a common rout-
ing strategy in OBS, has been considered. Although deflection routing improves
network performance under low traffic loads, it may still increase burst losses under
moderate and high loads.

In this chapter we consider another approach – multi-path source routing – and
use network optimization theory to distribute the traffic in an optimal way. This
work completes and extends our previous works [11] and [12]. We investigate three
different network loss models, a well-known loss model of an OBS network [21] and
two approximate models developed by us. As the cost function, which represents the
overall burst loss probability, is nonlinear, either linear programming formulations
with piecewise linear approximations of this function [22] or nonlinear optimization
gradient methods [7] can be used. We make use of the latter approach.

In our nonlinear optimization problem we assume that there is a preestablished
virtual path topology consisting of a limited number of paths between each pair
of source-destination nodes. Using a gradient optimization method we calculate a
traffic splitting vector that determines the distribution of traffic over these paths. In
order to support the gradient method we provide straightforward formulas for calcu-
lation of partial derivatives. The main goal of this chapter is to show that the use of
approximate models allows us to speed up significantly the optimization procedure
without losing much accuracy. Moreover, we show that our method effectively dis-
tributes the traffic over the network, and the overall BLP can be reduced compared
with both shortest path routing and alternative routing. The proposed solution can
be used, in particular, for static (preplanned) multi-path source routing, where the
traffic distribution is calculated based on a given (long-term) traffic demand matrix.
Then, either a periodic or a threshold-triggered update of the splitting vector can be
performed if the traffic demand matrix is subject to a change.

The chapter is structured as follows. In Section 6.2 we provide a description
of OBS technology and briefly review routing methods considered for OBS net-
works. In Section 6.3 we discuss OBS network loss models and introduce a multi-
path source routing model. In Section 6.4, for each of the introduced network loss
models, we formulate the objective function, calculate the partial derivatives, and
present some numerical results. In Section 6.5 we investigate the accuracy of net-
work loss models and the characteristics of the objective function, and discuss the
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computational effort of the optimization method. Finally, Section 6.6 contains the
conclusions.

6.2 OBS Technology

OBS technology is a promising solution for reducing the gap between transmis-
sion and switching speed in future networks. The principal design objective for an
OBS network is that the aggregated user data, called the burst, be carried transpar-
ently through the network as an optical signal, i.e., without any optical-to-electrical
conversion. This optical signal passes through the switches that have either none
or very limited buffering capabilities. The control information is carried on a dedi-
cated wavelength and separately from the user data. This information is delivered to
switching nodes with some offset time, prior to the data burst, so that the node can
process it and set up the switching matrix in advance. In such a network the wave-
length resources are allocated temporarily and shared between different connec-
tions. Such an operation increases network flexibility and adaptability to the bursty
characteristics of IP traffic. Moreover, the aggregation of user data helps to reduce
the scale of control information processed in the network and it relaxes the switch-
ing requirements. Since the control information and the user data are separated, they
can be encoded with different modulation formats and transmitted at different rates.
Such division improves network management and provides additional flexibility.

A conventional OBS network operates with a one-way signalling mode and it al-
locates transmission resources on the fly, a while before the burst arrives to the node.
Since there is no acknowledgement about the availability of network resources, it
may happen that two bursts want to access the same wavelength resources at the
same time. The problem of such a burst contention is crucial in OBS networks. The
conversion of wavelength is a natural mechanism used to solve this problem [4]. In
this mechanism, the carrier frequency of a contending optical signal is converted to
another available one. Deflection (or alternative) routing is another contention reso-
lution mechanism considered for OBS networks. In this case, a contending burst is
forwarded spatially, in the switching matrix, to another output port (fiber).

6.2.1 Routing Methods

Static shortest path routing based on Dijkstra’s algorithm is the primary routing
method frequently explored in OBS networks (e.g., [24]). Such routing reduces
overall network utilization when calculated with respect to the number of hops. On
the other hand, some links may be overloaded, while others may be spare, leading to
excessive burst losses. Therefore, several reactive and proactive routing strategies,
based on alternative, multi-path, and single-path routing, have been proposed with
the objective of the reduction of burst congestion.
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Although alternative routing can improve the network performance under low
traffic load conditions, it may still intensify the burst losses under moderate and
high loads [25]. Indeed the general problem of alternative routing in bufferless OBS
networks is the overutilization of link resources, which happens if an alternative path
has more hops than a primary path. Hence, whereas early proposals were based on
static route calculation and selection (e.g., [8]), as a next step some authors proposed
an optimized calculation of the set of alternative routes [15] as well as an adaptive
selection of paths [2]. The assignment of lower priorities to deflected bursts is an-
other important technique that protects against excessive burst losses on primary
paths [1].

Multi-path routing represents another group of routing strategies which aim at
traffic load balancing in OBS networks. Most of the proposals are based on a static
calculation of the set of equally important routes, usually with the Dijkstra algo-
rithm. Then the path selection is performed adaptively and according to some heuris-
tic [18] or optimized cost function [22] [16]. Both traffic splitting [14] and path
ranking [23] techniques are used in the path selection process.

The network congestion in single-path routing can be avoided thanks to a proac-
tive route calculation. Although most of the strategies proposed for OBS networks
consider centralized calculation of single routes [22], some authors still focus on
distributed routing algorithms [5]. Both optimization [26] and heuristic [3] methods
are used.

6.3 Network Modeling

We use G = (V,E) to denote the graph of an OBS network; the set of nodes is
denoted as V , and the set of links is denoted as E. Link e ∈ E comprises Ce wave-
lengths. P denotes the set of paths predefined between source s and destination t
nodes, s, t ∈ V , and s �= t. Each individual path p ∈ P is identified with a subset
p ⊆ E. Subset Pst ⊆ P identifies all paths from source s to destination t; the sets
Pst are disjoint in our model. Subset Pe ⊆ P identifies all paths that go through
link e.

The reservation (holding) times on each link are independent and identically dis-
tributed random variables with the mean equal to the mean burst duration h; for
simplicity we assume h = 1. We assume that the network is capable of full wave-
length conversion, i.e., a burst can be transmitted on any available wavelength in
each link. The demand traffic pattern is described by matrix [γst ]s,t∈V and bursts des-
tined to given node t arrive at node s according to a Poisson process of (long-term)
rate γst/h = γst .

Later we use ρp and ρe to denote the traffic offered to path p ∈ P and the traffic
offered to link e ∈ E, respectively.

In the following two subsections we deal with the modeling of the volume of
burst traffic lost in the OBS network. The procedure consists, in the first step, of the
calculation of burst loss probabilities Ee on individual links, and in the second step,
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of the calculation of BLP in the entire network. Finally, we introduce a multi-path
source routing model.

6.3.1 Link Loss Calculation

By assuming the network has full wavelength conversion capability, i.e., each wave-
length can be selected whenever it is available, the blocking probability Ee on each
link is given by the following Erlang loss formula (see [21]):

Ee = E(ρe,Ce) =
ρCe

e

Ce!

[
Ce

∑
i=0

ρ i
e

i!

]−1

, e ∈ E. (6.1)

In order to determine Ee, e ∈ E, we have to calculate the traffic load ρe offered to
individual links; recall that Ce, e ∈ E is given. Below, we provide two models of
such a calculation.

Reduced load (RL). A common loss model of an OBS network was proposed by
Rosberg et al. [21] and it makes use of a reduced load calculation. This model is an
extension of the model proposed by Kelly [9] for circuit-switching (CS) networks.
In the OBS network, it is assumed that the traffic offered to link e is obtained as a
sum of the traffic offered to all the paths that cross this link reduced by the traffic
lost in the preceding links along these paths.

This relation can be expressed as

ρe = ∑
p∈Pe

ρpΛpe, e ∈ E, (6.2)

where

Λpe = ∏
f∈rpe

(
1−E f

)
, p ∈ P,e ∈ E, (6.3)

and subset rpe ⊂ p identifies all links that precede link e along path p.
The difference between this model and the CS network model is that in the latter

the subset rpe contains all the links that succeed link e along path p, on top of all
preceding links. This difference reflects the fact that a burst offered to path p in OBS
uses a single wavelength from each link along the path until the first link where it is
being blocked or until it exists in the network. In contrast, a connection in CS either
occupies a channel in all the links along the path or is blocked.

The calculation of link loss probabilities Ee, e ∈ E, together with the calculation
of offered burst traffic ρe, given by the reduced load model (6.2), leads to a fixed-
point equation with a solution known as the Erlang fixed point. The fixed point
cannot be solved in a closed form but its approximation can be found through re-
peated substitution of (6.1) in (6.2). It is known that the fixed point exists in both
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Fig. 6.1 Link load models

CS and OBS networks (see [9] and [21], respectively). Although the fixed point is
unique in CS networks, its uniqueness has not been proved in OBS networks.

Although the traffic offered to a route is Poisson, it may still be thinned by
blocking at consecutive links and thus no longer remain Poisson. Since there is
no straightforward solution to this problem, we make a simplification that the burst
arrival process to each link is Poisson.

Non-reduced load (NRL). Formulation (6.2) may bring some computational diffi-
culty, especially with regard to the calculation of partial derivatives for optimization
purposes. Therefore, we also consider a simplified non-reduced load model, where
the traffic offered to link e is calculated as a sum of the traffic offered to all paths
that cross this link:

ρe = ∑
p∈Pe

ρp, e ∈ E. (6.4)

The rationale behind this assumption is that under low link losses E f , f ∈ E, ob-
served in a properly dimensioned network, model (6.2) can be approximated by
(6.4).

Figure 6.1 presents illustrative examples of the reduced load calculation for both
CS and OBS networks, as well as of the non-reduced load calculation.

6.3.2 Network Loss Calculation

Overall network loss (NL). The calculation of overall burst loss or blocking prob-
ability in an OBS network is presented in [21], and it uses the same formulation
as was proposed for CS networks [9]. In further discussion we name this model an
overall network loss (NL) model.

The main modeling steps include the calculation of
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1. burst loss probabilities Ee on links, given by (6.1),
2. loss probabilities Lp of bursts offered to paths

Lp = 1−∏
e∈p

(1−Ee) , p ∈ P,and (6.5)

3. the overall burst loss probability BNL,

BNL = ∑
p∈P

ρpLp

[

∑
p∈P

ρp

]−1

. (6.6)

In order to calculate the path loss probability Lp, p ∈ P , we make an assumption
that burst blocking events occur independently at the network links. Then formula
(6.5) accounts for blocking probabilities in all links e that belong to path p.

The overall burst loss probability BNL is calculated simply as the volume of burst
traffic lost in the network normalized to the volume of burst traffic offered to the
network.

Overall link loss (LL). Another method for calculation of burst losses in the entire
network is based on an overall link loss (LL) model [6]. In this method we sum up
the volumes of traffic lost on individual network links.

The main modeling steps include the calculation of

1. burst loss probabilities Ee on links, given by (6.1), and
2. BLL, a sum of the burst traffic lost on individual links relative to the overall traffic

offered to the network

LLL = ∑
e∈E
ρeEe

[

∑
p∈P

ρp

]−1

. (6.7)

LL overestimates actual burst losses given by (6.6) in NL because it counts twice
the intersection of blocking events that occur on distinct links. In fact, BLL may be
higher than 1, and thus it cannot be considered as the probability metric. Neverthe-
less, for Ee → 0, e ∈ E, the blocking events that occur simultaneously vanish rapidly,
and model (6.7) converges to model (6.6).

6.3.3 Multi-path Source Routing

We assume that the network applies source-based routing, so that the source node
determines the path of a burst that enters the network (see Figure 6.2). Moreover, the
network uses multi-path routing where each subset Pst comprises a (small) number
of paths, and a burst can follow one of them. We assume that the selection of a route
from set Pst is random for each burst and is performed according to a given traffic
splitting factor xp, such that
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Fig. 6.2 An example of OBS network with source-based routing; x1 and x2 are the traffic splitting
factors and x1 + x2 = 1

0 ≤ xp ≤ 1 p ∈ P, (6.8a)

∑p∈Pst
xp = 1 s, t ∈ V,s �= t. (6.8b)

Thus traffic ρp offered to path p ∈ Pst can be calculated as

ρp = xpτp, (6.9)

where τp = γst is the total traffic offered between s and t.
Here vector x = (x1, . . . ,x|P|) determines the distribution of traffic over the net-

work; this vector should be optimized to reduce congestion and to improve overall
performance.

6.4 Resolution Methods and Numerical Examples

6.4.1 Formulation of the Optimization Problem

Taking into account different methods of the link load and the network loss cal-
culation presented in Section 6.3, several network loss models with corresponding
objective functions can be defined.

1. NL-RL. The link load is calculated according to the RL model given by (6.2),
and the network loss is calculated according to the NL model given by (6.6), with
the objective function given by

BNL−RL(x) = ∑
p∈P

xpτpLp. (6.10)

2. NL-NRL. The link load is calculated according to the NRL model given by (6.4),
and the network loss is calculated according to the NL model given by (6.6), with
the objective function given by
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BNL−NRL(x) = ∑
p∈P

xpτpLp. (6.11)

3. LL-NRL. The link load is calculated according to the NRL model given by (6.4),
and the network loss is calculated according to the LL model given by (6.7), with
the objective function given by

BLL−NRL(x) = ∑
e∈E
ρeEe = ∑

e∈E
Ee

(

∑
p∈Pe

xpτp

)

. (6.12)

The last possible combination of the link load and the network loss calculation is
LL-RL. Because such a model does not bring much gain with respect to the NL-
RL model, as it does not avoid the complexity of fixed-point calculation, we do not
study it.

In each case the normalization factor
[
∑p∈P ρp

]−1
has been omitted because we

assume it to be a constant value.
The optimization problem is the same for each method, and is formulated as

follows:

min
x

B(x) (6.13)

subject to the multi-path routing constraints given by (6.8a) and (6.8b).
Since in each case B(x) is a nonlinear function of vector x, the optimization prob-

lem is nonlinear. Taking into account the form of both constraints (6.2) and (6.4),
a particularly convenient optimization method is the Frank-Wolfe reduced gradient
method (algorithm 5.10 in [19]); this algorithm was used for a similar problem in
circuit-switched (CS) networks [7].

6.4.2 Calculation of Partial Derivatives

In general, gradient methods are iterative methods used in the optimization of con-
vex functions. Gradient methods need to employ the calculation of partial deriva-
tives of the cost function to find the direction for its improvement. Below, we pro-
vide adequate formulas for the partial derivatives for each of the models.

NL-RL model. The partial derivative of BNL−RL with respect to xq, q ∈ P , can be
derived directly by a standard method involving the solution of a system of linear
equations. It follows from (6.2) and (6.1) that

∂ρe(x)
∂xq

= αqeτqΛqe + ∑
p∈Pe

xpτpΛpe ∑
f∈rpe

(1−E f )−1 ∂E f (x)
∂xq

, e ∈ E,q ∈ P,

(6.14)
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where αqe = 1 if e ∈ q, and αqe = 0 otherwise, and

∂Ee(x)
∂xq

= Ee

(
Ee +

Ce −ρe

ρe

)
∂ρe(x)
∂xq

, e ∈ E,q ∈ P. (6.15)

In order to solve the system of equations (6.14)–(6.15), a fixed-point calculation
procedure, i.e., repeated substitution of (6.14) in (6.15), has to be applied.

From (6.5) we have

∂Lp(x)
∂xq

= (1−Lp)∑e∈p(1−Ee)−1 ∂Ee(x)
∂xq

, p,q ∈ P, (6.16)

and finally from (6.10),

∂
∂xq

BNL−RL(x) = τqLq + ∑
p∈P

xpτp
∂Lp(x)
∂xq

, q ∈ P. (6.17)

The calculation of partial derivatives (6.14)–(6.17) in NL-NRL model is extremely
time consuming since it involves an iterative fixed-point approximation procedure.

NL-NRL model. The partial derivative of BNL−NRL with respect to xq, q ∈ P , could
be derived directly from formulas (6.1) and (6.4)–(6.6) by a standard method involv-
ing resolution of a system of linear equations, similarly to (6.14)–(6.17). Although
there is no need for a fixed-point calculation in NL-NRL model, still such a compu-
tation would be time consuming.

Therefore, we propose instead a straightforward exact calculation based on the
approach for CS networks by Kelly [10]; a detailed derivation of formulas is pre-
sented in [11]. In particular, for each path q ∈ P we have

∂
∂xq

BNL−NRL(x) = τq

[
Lq +∑e∈q ce

]
, (6.18)

where ce is calculated for each link e ∈ E as

ce = ηe∑p∈Pe
ρp(1−Lp), (6.19)

and

ηe = E(ρe,Ce −1)−E(ρe,Ce), e ∈ E. (6.20)

Due to assumption (6.4) we have managed to simplify the model (6.2) and make
the calculation of partial derivatives defined by (6.18) and (6.19) straightforward,
not involving any iterations. Indeed, once |E| of unknowns (ce) are pre-calculated
they can be used in (6.18) to obtain the partial derivatives. Calculating the gradient
in this method, therefore, is not longer an issue.
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Fig. 6.3 Validation of optimization models

LL-NRL model. The partial derivative of BLL−NRL with respect to xq, q ∈ P , can
be derived directly from formulas (6.1), (6.4), and (6.12),

∂
∂xq

BLL−NRL(x) = τq

[
∑e∈q(Ee +ηeρe(1−Ee))

]
, (6.21)

where ηe is given by equation (6.20).

6.4.3 Numerical Results

We evaluated the performance of our multi-path source routing scheme in an event-
driven simulator. In order to find a splitting vector x specifying near-optimal rout-
ing we used a solver fmincon for constrained nonlinear multivariable functions
available in the MATLAB optimization toolbox. Then we applied this vector in the
simulator.

The evaluation was performed for NSFNET, an American backbone network
topology of 15 nodes and 23 links [17]; each link had C = 32 wavelengths and the
transmission bitrate in each wavelength channel was 10 Gbit/s. Besides the results
of optimized multi-path routing (MR) we provide, for comparison, the results of
two other routing strategies: simple shortest path routing (SPR) and pure alternative
routing (AR). We considered two shortest paths per source-destination pair of nodes
in MR; they were not necessarily disjoint. In SPR only one path was available, while
in the case of AR we considered two different scenarios: with two and six paths
available. Uniform traffic matrix and exponential burst inter-arrivals and durations
were considered. All the simulation results had 99% level of confidence.

In Figure 6.3 we show the overall burst loss probability results of the MR strategy,
which was optimized with the assistance of NL-NRL, NL-RL, and LL-NRL models,
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Fig. 6.4 Performance comparison of routing strategies (simulation results)

successively. The characteristics are obtained in the function of offered traffic load,
which is normalized to the wavelength bitrate and expressed in Erlangs (e.g., 12.8
Erlangs means that each node generates 128 Gbit/s). As a reference, we provide the
results of SPR.

In the studied scenario, we can see that the burst loss probability results of opti-
mized MR evaluated in the MATLAB environment are (almost) the same regardless
of the network loss model used. Moreover, the analytical results obtained for NL-
NRL model agree very well with simulation results (’(sim)’ in Figure 6.3).

In Figure 6.4 we compare simulation results obtained for different routing sce-
narios. We see that the optimized multi-path routing outperforms the shortest path
routing in the whole range of traffic loads. Also, it offers at least as good results as
the alternative routing if the same number of routing paths is available.

6.5 Discussion

In this section we investigate the accuracy of network loss models and the charac-
teristics of the objective function. We also discuss the computational effort of the
optimization procedure.

6.5.1 Accuracy of Loss Models

We study the accurary of both NR-NRL and LL-NRL network loss approximations
relative to the NL-RL network loss model. To do that we define the approximation
error as
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ErX � BX −BNL−RL

BNL−RL
, (6.22)

where X refers to either NL − NRL or LL − NRL; so BX means the result of the
objective function for model X .

In Figure 6.5 we present the results of ErX obtained in NSFNET network, with
a different number of wavelengths per link considered and the shortest path routing
used. We can see that the accuracy of both network loss approximate models is very
strict for the blocking probability in the network BNL−RL below 10−2.

6.5.2 Properties of the Objective Function

NL-RL model. In [10], Kelly demonstrated that the reduced load loss model of a
CS network is in general not convex. Taking into account an analogy of the reduced-
load calculation in both CS and OBS networks, we can expect that function (6.10)
is not convex as well. Therefore, a solution of optimization problem (6.13) may not
be unique.

NL-NRL model. As in the case of the RL-NL model, it can be shown numerically
that the objective function (6.11) is not necessarily convex; in particular, under high
traffic load conditions, two feasible vectors x1, x2 can be found such that

BNL−NRL(λx2 +(1−λ )x2) > λBNL−NRL(x2)+(1−λ )BNL−NRL(x1), (6.23)

where 0 ≤ λ ≤ 1.
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Table 6.1 Comparison of computation times

NL-RL NL-NRL LL-NRL
Network Paths Tol. BLP OF SOLV OF SOLV OF SOLV
SIMPLE 2 10−6 2.4 ·10−3 64sec 1.5sec 0.1sec 1.4sec 0.1sec 1.5sec
SIMPLE 4 10−6 2.4 ·10−3 243sec 3sec 0.1sec 3.4sec 0.1sec 3.1sec
NSFNET 2 10−6 4.6 ·10−2 > 5h 0.38sec 22.3sec 0.37sec 24.3sec
NSFNET 4 10−6 3.1 ·10−2 > 5h 1.6sec 937sec 1.5sec 952sec

EON 2 10−6 1.76 ·10−2 > 5h 5.5sec 803sec 5.3sec 837sec
EON 2 10−3 1.77 ·10−2 > 5h 1.1sec 260sec 1.0sec 263sec

LL-NRL model. An advantageous property of the LL-NRL model is the convexity
of its objective function (6.12); a detailed proof can be found in [13]. For this reason,
a corresponding optimization problem has a unique solution.

6.5.3 Computational Effort

In Table 6.1 we compare the computation times of both the objective function (with
the partial derivatives calculation included) and the fmincon solver function of
the MATLAB environment; in the table they are denoted as OF and SOLV, respec-
tively. The evaluation is performed on a Pentium D, 3 GHz computer. The results
are obtained for SIMPLE (six nodes, eight links, and 60 paths), NSFNET (15 nodes,
23 links, and 420 paths), and EON (28 nodes, 39 links, and 1,512 paths) network
topologies; the number of wavelengths per link is 32, each source-destination pair
of nodes has two or four shortest paths available, the traffic load is equal to 25.6 Er-
langs and 19.2 Erlangs, respectively, for SIMPLE/NSFNET and EON scenarios. In
case the iterative procedure of the Erlang fixed-point approximation is used, it ends
if the maximal discrepancy between two consecutive link loss calculations is smaller
then 10−6 . The starting traffic splitting vector is x = 0.5 · (1, ...,1), meaning that the
traffic is equally distributed on the paths for each demand.

We can see that the calculation of the objective function (and of partial deriva-
tives) is highly time consuming in the NL-RL model even in a small network sce-
nario. In contrast, such a calculation is not an issue if either the NL-NRL or the
LL-NRL model is used. It is worth noting that by decreasing the value of a termi-
nation tolerance parameter (’Tol.’ in the table), which decides on the termination
of the solver function, we significantly accelerate the optimization procedure (more
than three times) without substantial decrease of routing performance (compare BLP
value in both EON scenarios). Moreover, we can see that by increasing the number
of paths the computation time of the solver function increases considerably in a
larger (NSFNET) network scenario.
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6.6 Conclusions

In this chapter we have studied a nonlinear optimization method for the multi-path
source routing problem in OBS networks. In this method we calculate a traffic split-
ting vector that determines a near-optimal distribution of traffic over routing paths.
Since a conventional network loss model of an OBS network is complex, we have in-
troduced some simplifications. The proposed models are computationally effective
and are still highly accurate compared to the basic model. The obtained formulas
for partial derivatives are straightforward and very fast to compute. It makes the
proposed nonlinear optimization method a viable alternative to linear programming
formulations based on piecewise linear approximations of the cost function.

The simulation results demonstrate that our method effectively distributes the
traffic over the network and the overall burst loss probability can be significantly
reduced compared with the shortest path routing.
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Abstract In this chapter, the analysis of the problems emerging from dynamic
bandwidth allocation in connection-oriented packet networks is considered in a mul-
tilayer scenario, considering IP protocols on top of an MPLS network over an OBS
optical network. The issue (and problem) is to maintain and ensure the end-to-end
in-sequence routing of packets, combining load balancing in packet switching ar-
chitectures and bandwidth/flow allocation in MPLS-based architectures to establish
the ordering of packets. If load balancing can be achieved by switches or routers,
this can greatly facilitate applying load balancing across the network. Traffic char-
acteristics such as QoS (delay bounds, throughput) and burstiness are considered.
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7.1 Introduction

This chapter deals with the description and analysis of the problems emerging from
dynamic bandwidth allocation in connection-oriented packet networks in a multi-
layer scenario, considering the Internet Protocol (IP) on top of an MPLS (Multi-
protocol Label Switching) network and using an optical burst switching (OBS) net-
work by means of a control plane. The bandwidth optimization problem is split into
multi-path routing, load balancing, and traffic control.

The issue and problem is to maintain and ensure the end-to-end in-sequence
routing of packets, combining load balancing in packet switching architectures and
bandwidth/flow allocation in MPLS-based architectures to establish and guarantee
the ordering of packets in a packet-switched network. Other relevant issues such
as buffer sizing, packet classification, scalability, and redundancy (i.e., in the form
of parallel switch architectures) are also of importance. If load balancing can be
achieved by switches or routers, this can greatly facilitate implementing load bal-
ancing across the network (e.g., over different paths).

With respect to the issue of bandwidth allocation and load balancing in an MPLS
network, we will examine a number of different approaches and alternatives for per-
forming load balancing optimization via assigning capacity and carrying out flow
allocation in a multi-path MPLS network. Traffic characteristics such as QoS met-
rics, e.g., delay bounds, throughput, jitter, packet loss, and burstiness (measured as
the ratio of the peak data rate over the average data rate), will be considered for
optimizing load balancing. In fact, it is determined that our solutions can be im-
plemented in any MPLS-type (e.g., flow granularity) network architecture given the
solutions’ flexibility and scalability aspects. They can also be extended to multicast
network models and models with traffic priorities.

This chapter is organized into three parts:

1. Technological perspective and challenges. We present an overview of the con-
nection-oriented technologies, MPLS networks, load balancing strategies, and
multi-path in packet networks.

2. Load Balancing strategies in a multi-path scenario.
3. Intelligent bandwidth allocation algorithms for multilayer traffic mapping with

priority provision.

7.2 Technological Perspective and Challenges

This section presents a survey of basic knowledge in technologies, protocols, and
algorithms for the next generation of networks. This is a background for the sub-
sequent sections, and exhibits actual network deployment environments where our
results can be applied.
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7.2.1 Definitions and Concepts Overview

Quality of Service (QoS) refers to the capability of a network to provide service dif-
ferentiation for certain types of traffic. The primary goal of QoS is to provide spe-
cific traffic guarantees: controlled delay and jitter, bandwidth allocation, and packet
loss characteristics. Also important is making sure that providing priority to one
type of traffic does not make other traffic fail. Fundamentally, QoS can provide for
better service to certain traffic by presenting network resource guarantees that sat-
isfy the user’s demand. A key feature of QoS is the service level, which refers to
the actual end-to-end QoS capability, meaning the capability of a network to deliver
service needed by specific network traffic from an edge node (i.e., router) to another
edge node. The services differ in their level of QoS “strictness”, which describes
how tightly the service can be bound by specific bandwidth, delay, jitter, and loss
characteristics. Three basic levels of end-to-end (e2e) QoS can be provided across a
heterogeneous network:

• Best-effort service: also known as lack of QoS, characterized by FIFO queues
which have no traffic differentiation.

• Differentiated service (also called soft QoS): some traffic is treated better than
the rest.

• Guaranteed service (also called hard QoS): an absolute reservation of network
resources for specific traffic; it is provided through bandwidth reservation mech-
anisms and the use of CBWFQ (Class-Based Weighted Fair Queueing), an ex-
tension of WFQ that can use the EXP field in the MPLS shim header format of
the packets as a criterion to allocate a different amount of resource for each CoS
(class of service).

It is clear today that IP is the dominant protocol for the vast majority of In-
ternet applications, including those that are characterized as bandwidth-demanding
and delay-sensitive (although IP was not originally intended and certainly was not
designed to support such applications). An example of an emerging Internet appli-
cation is video streaming, in particular real-time or live video. Each single stream
can consume 1 Mbit/s or so, so the aggregation of video streams uploaded or down-
loaded by millions of users can certainly overload a traditional network.

Therefore, the new generation of networks should provide a QoS (Quality of
Service) degree according to the needs of each user and enough bandwidth. The
key problem is how the traffic can be marked to belong to a certain class of traffic
or priority and, second and more important, how this huge aggregation of traffic
streams can be supported by the network. A solution for this type of problem is the
well-known differentiated services (DiffServ) framework.

Over the last few years there has been significant activity in the field of multi-
protocol label switching (MPLS), which has emerged as a new networking paradigm
that facilitates routing and can implement a form of QoS. In fact, an increasing
number of networks already implement MPLS.

MPLS provides a flexible routing mechanism based on the assignment of packets
with the same characteristics to complete end-to-end paths within an Autonomous
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Domain. “Traffic engineering” is one of the primary goals achieved by MPLS. Fur-
thermore, MPLS can allow for the aggregation of traffic streams, if needed.

MPLS has become one of the primary technologies for supporting traffic engi-
neering on the Internet [10, 12]. An MPLS network is composed of MPLS routers:
LSRs (Label Switched Routers) that represent the core of the network (backbone)
and LERs (Label Edge Routers) that are the interface between the MPLS domain
and other networks.

Fig. 7.1 Core and edge nodes in an MPLS network. A distributed LSP

An MPLS network is connection-oriented, where each connection or LSP (Label
Switching Path) is established between two LERs, the Ingress and the Egress LER,
as depicted in Figure 7.1.

In an MPLS network, multiple paths can be used to forward packets belonging to
the same “forwarding equivalent class” (FEC) by explicit routing. Each time an LSP
is established, all the LSRs that belong to it must use a label in order to identify the
LSP transiting by it, and consequently every packet of this LSP must carry this label
encoded inside it when arriving at that LSR. When a packet is received by an LSR,
the LSR must look for the packet label and search for a Next Hop Label Forwarding
Entry (NHLFE) that refers to this label in order to decide which interface will be
used to reach the next hop in the network.

Our interest focuses on the QoS operation for a single node perspective, but we
will extend this to a sequence of nodes, and so, to a complete network. One way
network elements handle an overflow of arriving traffic is by using a certain queuing
algorithm to sort the traffic and then determining some method of routing the traffic
appropriately (i.e., via prioritization) onto an outgoing link.
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7.2.2 Node Model for Packet Networks with Traffic Prioritization

There are a number of queuing tools, each one designed to solve a specific network
traffic problem and having a particular effect on network performance. In Figure 7.2
we show a network node model and its main parameters. In this model, CoS (class of
service) is defined as a traffic classification, according to a set of degrees of quality
(mainly for bandwidth, delay, and packet losses).

The parameters used to model a node are as follows:

• λIN (bit/seg) represents all incoming traffic that arrives at the router. This aggre-
gated traffic is assumed to be Poisson.

• λi (bit/seg), i = 1 . . . ,N, represents the aggregated traffic of CoSi carried by all the
LSPs which are forwarded to the current output interface. Note that this traffic
is not Poisson (as the input queue is finite), but in our analysis we have approxi-
mated it as if it were under the hypothesis that losses in the input queue are very
low.

• μPROCESS (bit/seg) models the service rate at which packets are classified.
• μi (bit/seg), i = 1, . . . ,N, represents the service class rate.

Fig. 7.2 Node model for a packet network considering prioritized differentiated services

7.2.3 QoS in IP/DiffServ/MPLS and in OBS Networks

In Optical Burst Switching (OBS), several signaling schemes have been proposed
to support QoS. The basic problem is to determine the criteria for choosing a sig-
naling method. The selection can be made according to several parameters, such
as complexity of the algorithm or optimization of a certain parameter, but what the
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user applications need is a QoS with respect to bandwidth, delay bounds, jitter, and
losses. This is what an OBS network should provide, in a way that can be managed
by the upper layers, to allocate classes of service according to existing standards for
MPLS, DiffServ, and IP traffic.

The main scheme for controlling (or administrating) the QoS in OBS is the con-
trol of the offset (the time delay introduced at the edge of the network where the
burst will be transmitted, to set up the hardware of the next node to forward the
optical burst), in order to isolate different classes of bursts, such as high- and low-
priority bursts. In this kind of method, extra offset is given to the higher priority
bursts, to reserve resources further in advance of the arrival of the burst, increasing
the probability of a successful reservation. For offset schemes, there are currently
discussions being carried out with respect to prioritization as part of the contention
resolution scheme, and also for an absolute QoS provision [14].

7.2.4 Optical Burst Switching Using MPLS

Semipermanent data pipes can be set up between different ingress-egress router
pairs using an MPLS-type technique. MPLS uses labels to make forwarding de-
cisions at the network nodes LSR, in contrast to the traditional destination-based
hop-by-hop forwarding in IP networks. In MPLS, the space of all possible forward-
ing options is partitioned into Forwarding Equivalence Classes (FECs). For exam-
ple, all the packets destined for a given egress and having the same quality of service
(QoS) may belong to the same FEC.

The packets are labeled at the ingress depending on the FEC to which they be-
long. Each of the intermediate nodes, the LSRs, uses the label of the incoming
packet to determine its next hop, and also performs label swapping (i.e., replaces the
incoming label with the new outgoing label that identifies the respective FEC for the
downstream node). Such a label-based forwarding technique reduces the processing
overhead required for routing at the LSRs, thereby improving their packet forward-
ing performance and scalability. Also, the label swapping process used in MPLS
creates multi-point-to-point packet forwarding trees, in contrast to a routing mesh
in conventional networks.

MPLS can play a major role in traffic engineering and improving the throughput
performance of an OBS-based network, as described below. Each cross-connect in
the optical backbone will have label swapping information about the precomputed
routes in its label information base (LIB).

An LIB can be set up using standard techniques such as routing protocols
with traffic engineering extensions to distribute information about the optical do-
main (available bandwidth per wavelength, number of wavelengths per fiber) and
Constraint-Based Routing Label Distribution Protocol (CR-LDP) or Resource Res-
ervation Protocol (RSVP) to distribute labels. Whenever an ingress router has a data
burst to transmit, it refers to its LIB, to determine the appropriate label. This label is
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included in the control packet that precedes this data burst. When the control packet
arrives at any of the intermediate nodes, the following actions take place:

• The label in the control packet is used to point to the data burst forwarding infor-
mation in the LIB, such as the output interface and any priority or QoS informa-
tion.

• The cross-connect is set up to switch the data burst corresponding to that con-
trol packet in the all-optical domain. For this, information in the control packet
about the length and offset of the data burst is used in addition to the forwarding
information derived from the LIB. In particular, the latter is used to determine
the mapping from the incoming fiber and wavelength to the outgoing fiber and
wavelength. In order to be able to forward successive data bursts of the same
connection (LSP) on different wavelengths in a given fiber, we propose that the
label only specify incoming-fiber-to-outgoing-fiber mapping, while the informa-
tion about the wavelength be appended to the outgoing label at every hop. The
LIB may furnish other QoS information as well. Examples include defining a
subset of candidate wavelengths on the outgoing fiber, determining the eligibil-
ity of that data burst to use wavelength conversion, stating whether (in case of
contention) the control packet is allowed to preempt some reservation already
acquired by the control packet of low-priority data burst, and so on.

• The control packet then undergoes label swapping (and wavelength information
appending) and is forwarded on the dedicated control channel of the outgoing
fiber as indicated by the LIB.

7.3 Load Balancing Strategies in a Multi-path Scenario

Load Balancing is a key mechanism in traffic engineering. The strategy of multi-
path routing with load balancing enhances the network throughput. The use of effec-
tive preordering packet functions optimizes network utilization and reduces packet
disordering and imbalance. This section presents a model to study the impact of
packet preordering in multi-path MPLS networks, and the traffic partitioning to
implement a flow partitioning based on an optimization model. Some experimen-
tal results from an optimized network are presented. A multi-objective traffic en-
gineering scheme (GMM, or Generalized Multicast Multi-path, model) [3] using
different distribution trees to multicast several flows has been proposed. Solving
the GMM model allows us to compute the flow components required at the ingress
LER mapped to the set of egress nodes assigned to each link. We present an effec-
tive hashing strategy to handle traffic partitioning from the GMM model. The GMM
model considers a network represented as a graph G(N,E), with N denoting the set
of nodes and E the set of links. The cardinality of a set is denoted as |.|; thus |N|
represents the cardinality of N. The set of flows (or commodities) is denoted as F .

Each flow f ∈ F can be split into |Kf | subflows that after normalization can be
denoted as fk, k = 1, . . . , |Kf |. In this case, fk indicates the fraction of f ∈ F it
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transports, ∑
|Kf |
k=1 fk = 1. For each flow f ∈ F we have a source s f ∈ N and a set of

destination or egress nodes Tf ⊂ N. Let t be an egress node, i.e., t ∈ Tf . Let X fkt
i j

denote the fraction of subflow fk to egress node t assigned to link (i, j) ∈ E, i.e.,
0 ≤ X fkt

i j ≤ 1. In this way, the n components of decision vector X are given by all

X fkt
i j . Note that X fkt

i j uses five indices: i, j, f , k, and t. The novel introduction of a
subflow index k gives an easy way to identify subflows and define LSPs in an MPLS
implementation. Let ci j be the capacity (in bit/s) of each link (i, j) ∈ E. Let b f be the
traffic request (measured in bit/s) of flow f ∈ F , traveling from source s f to Tf . Let

di j be the delay (in ms) of each link (i, j) ∈ E. The binary variables Y fkt
i j represent

whether a link (i, j) is being used (value 1) or not (value 0) for transporting subflow
fk to destination node t,

Y fkt
i j =

⌈
X fkt

i j

⌉
=

{
0; if X fkt

i j = 0

1; otherwise
(7.1)

where �.� denotes the ceiling function. Finally, let connectioni j be an indicator of
whether there is a link between nodes i and j. Given the above notation, the proposed
GMM model considers the following objective functions:

• Maximum link utilization:

max
(i, j)∈E

αi j (7.2)

where

αi j =
1

ci j

|F |

∑
f =1

|Kf |
∑
k=1

b f

{
max
t∈Tf

X fkt
i j

}
(7.3)

• Hop count, in several different ways, such as total hop count,

∑
(i, j)∈E

∑
f∈F
∑

k∈Kf

∑
t∈Tf

Y fkt
i j , (7.4)

average hop count,

∑
(i, j)∈E

∑
f∈F

∑
k∈Kf

∑
t∈Tf

Y fkt
i j

∑
f∈F

|Kf |
∑

k=1

∣
∣Tf

∣
∣

, (7.5)

a maximum hop count, which is useful for QoS assurance,

max
f∈F

max
k∈Kf

max
t∈Tf

∑
(i, j)∈E

Y fkt
i j , (7.6)
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or a maximum hop count variation for a flow, which is useful for jitter and queue
size calculations,

max
f∈F

max
t∈Tf

Hf t (7.7)

where

Hft = max
k∈Kf

{

∑
(i, j)∈E

Y fkt
i j

}

− min
k∈Kf

{

∑
(i, j)∈E

Y fkt
i j

}

(7.8)

• Delay measures, such as total delay,

∑
(i, j)∈E

∑
f∈F
∑

k∈Kf

∑
t∈Tf

di j ·Y fkt
i j , (7.9)

• average delay,

∑
(i, j)∈E

∑
f∈F

∑
k∈Kf

∑
t∈Tf

di j ·Y fkt
i j

∑
f∈F

|Kf |
∑

k=1

∣
∣Tf

∣
∣

, (7.10)

a maximum delay, which is useful for QoS assurance,

max
f∈F

max
k∈Kf

max
t∈Tf

∑
(i, j)∈E

di jY
fkt

i j , (7.11)

and a maximum delay variation for a flow, which is useful for jitter and queue
size calculations,

max
f∈F

max
t∈Tf

Δ f t (7.12)

where

Δ f t = max
k∈Kf

{

∑
(i, j)∈E

di j ·Y fkt
i j

}

− min
k∈Kf

{

∑
(i, j)∈E

di j ·Y fkt
i j

}

. (7.13)

• Total bandwidth consumption:

∑
(i, j)∈E

∑
f∈F
∑

k∈Kf

b f

{
max
t∈Tf

X fkt
i j

}
(7.14)

A MOP (multi-objective problem) formulation usually considers several con-
straints such as

• Flow conservation constraints:
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|N|

∑
j=1

|Kf |
∑
k=1

X fkt
s f j = 1 ∀ f ∈ F (7.15a)

|N|

∑
i=1

|Kf |
∑
k=1

X fkt
it = 1 ∀ f ∈ F, t ∈ Tf (7.15b)

|N|

∑
j=1

X fkt
i f j −

|N|

∑
i=1

X fkt
i f i = 0 ∀ f ∈ F,k ∈ Kf , t ∈ Tf , i f ∈ N \ ({s f }∪Tf )

(7.15c)

• Subflow uniformity constraints to ensure that a subflow fk always transports the
same information:

X fkt ′

i′ j′ −X fkt
i j ≤ 1−Y fkt

i j ∀ f ∈ F,k ∈ Kf ,(i, j),(i′, j′) ∈ E, t, t ′ ∈ Tf (7.16a)

X fkt
i j ≤ Y fkt

i j ∀ f ∈ F,k ∈ Kf ,(i, j) ∈ E, t ∈ Tf (7.16b)

Without this restriction, X fkt
i j > 0 may differ from X fkt ′

i′ j′ > 0. Therefore, the same
subflow fk may not transport the same data to different destinations t and t ′. As
a consequence of this new constraint, mapping subflows to LSPs becomes easy.

• Link capacity constraints:

|F |

∑
f =1

|Kf |
∑
k=1

b f

{
max
t∈Tf

X fkt
i j

}
≤ ci j ∀i, j ∈ N (7.17)

• Constraints on the maximum number of subflows:

|Kf |
∑
k=1
∑
j∈N

Y fkt
i j ≤ Nmax ∀ f ∈ F, t ∈ Tf , i ∈ N, (7.18)

or alternatively, depending on required bandwidth b f :

|Kf |
∑
k=1
∑
j∈N

Y fkt
i j ≤ b f

∑ j∈N connectioni j

∑ j∈N ci j
∀ f ∈ F, t ∈ Tf , i ∈ N (7.19)

In summary, the proposed GMM model follows the general mathematical frame-
work of any MOP. The model considers 11 objective functions and seven classes of
constraints [3]. Clearly, it is not difficult to increment the number of objectives or
constraints of the proposed model if new ones appear in the literature or they are
useful for a given situation. In fact, Packet Loss was not considered in this proposal,
but including it would be very easy. Anyway, this model is very useful for traffic
balancing, because it can provide an optimized path for the flows of data. So, let us
have a look at the Load Balancing strategy in practice.
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7.3.1 Load Balancing in Packet Networks in Multicast Multi-path
Scenarios

Load Balancing [11] provides an extremely useful mechanism for implementing
traffic engineering. The aim of load balancing is routing traffic using links that are
less congested according to well-known criteria. This can result in small delays
compared to a default flow routing. For a load balancing model to be general, uni-
cast considerations are not enough and multicast should also be considered. One
interesting solution to the balancing alternative is the multi-path approach, in which
data is transmitted through different paths inside a network. One of the most difficult
issues in load balancing is how to guarantee the end-to-end delay among several La-
bel Switched Paths (LSPs), while maintaining packet sequencing. This requirement
is especially important for the network throughput for the TCP protocol, because
packet disordering can produce false congestion detections.

The load balancing techniques can be classified in two groups, one based on
the (logical) connection established, which is represented by a small number of
parameters and where routing decisions affect the whole flow, and another based on
the packets, where decisions are made on a per packet basis and which is therefore
simpler than the first one; the latter is the technique considered here.

When an IP packet ingresses into the MPLS domain, the ingress Label Edge
Router (LER) analyzes the header. Depending on information of the destiny, type of
traffic, etc., an MPLS label is assigned. It consists of a short, fixed-length identifier
(20 bits) associated with the path that the packet will have to take into account in
order to reach the egress node.

According to the scale, the traffic engineering (TE) mechanisms are classified
into two basic types:

• Time Dependent, where the traffic control algorithms optimize the network re-
sources in response to traffic variations in a long time range.

• State Dependent, where the traffic control algorithms respond immediately to
state variations in the network. In other words, it adapts changes to a short time
range.

There are many subproblems involved in the performance optimization of opera-
tional MPLS networks. Three of the most significant problems include

1. Constraint-based routing.
2. Traffic partitioning and assignment.
3. Restoration.

It should be noted that even though these problems are well known in other appli-
cation domains, they are still in a state of infancy with respect to MPLS, and much
remains to be done.

Another important capability MPLS provides is constraint-based routing. The
ingress node, the Label Edge Router (LER), establishes an explicit route through
the network. Rather than inefficiently carrying the explicit route in each packet,
MPLS allows the explicit route to be carried only at the time the label switched path



190 X. Hesselbach et al.

(LSP) is set up. The subsequent packets traversing this path are forwarded using
packet labels. Constraint-based routing is potentially useful for traffic engineering.

In the current literature these areas are addressed in a somewhat limited way.
Constraint-based routing deals, in general, with the computation of paths for LSPs
subject to various types of constraints. The constraints themselves may be inherent
in the network (e.g., available bandwidth) or they can be administratively specified
(e.g., affinities and resource class attributes, and diversity requirements for protec-
tion and restoration). D-LSP (Distributed LSP) is constructed by partitioning an LSP
into several sub-LSPs assigned over different nodes that belong to “disjoint routes.”
The arriving traffic streams are allocated to the sub-LSP at the ingress LER. We do
not necessarily assume that each disjoint node route has the same number of hops. A
network model can be defined, and the architecture of a D-LSP is represented with
an MPLS network model. Figure 7.3 shows an example of a D-LSP established in
the MPLS network model.

The D-LSP is originated from an ingress LER and is destined for an egress LER.
A D-LSP is partitioned into sub-LSPs and spread over the disjoint node routes. The
load balancing techniques can take advantage of this scheme. Core LSRs provide
transit services inside the network, while LERs provide an interface with the exter-
nal networks. An ingress LER may assign one or more paths to a given egress to
an MPLS domain, and using these LSPs the traffic load can be balanced across a
complex topology.

The capability to divide the traffic offers several advantages, one of the most
important being the distribution of the flow and the optimization of the bandwidth.

In this research work a multicast approach is proposed. Multicast connections are
connections between one or more senders and a number of members of a group. The
aim of multicasting is to be able to concurrently send data from a (single) sender to
the (multiple) members of a group in an efficient manner. In this case, instead of
creating multiple paths to transmit a traffic flow from the ingress node to just one
egress node it is necessary to create multiple trees to transport the flow from the
ingress node to the egress node set of the multicast group.

Many multicast applications, such as audio- and videoconferencing, or even
collaborative environments and distributed interactive simulations, have multiple
quality-of-service requirements in relation to bandwidth, packet delay, packet loss,
cost, and so on. In multicast transmission, load balancing consists of traffic be-
ing split (using the multi-path approach), across multiple trees, between the ingress
node and the set of egress nodes. In multicasting (host) nodes can enter or leave the
transmission tree as they wish, which makes the connections rather dynamic.

In MPLS, unicast and multicast packets have already been assigned a different
type as indicated by the IPv4 unicast or multicast address. Therefore, MPLS routers
know whether a packet belongs to a unicast or a multicast flow. In the case of unicast
forwarding the event of an incoming flow leads to the forwarding of exactly one
flow. The packet duplication mechanism that is implemented in IP routers to support
the IP multicasting can be used to duplicate MPLS packets

MPLS routers at the bifurcation of a multicasting routing tree duplicate packets
and send copies of the same packet on different outgoing links. In this case, an
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Fig. 7.3 Example of subflow (partition of a flow) representation in an NSF network

MPLS label is pushed into the multicast packet according to next hop branching
node router. Upon arriving at a next hop branching node router, the label is pulled
out and again the same process is repeated. This process should be repeated until
the packet reaches its destination.

7.3.2 Model for Traffic Partitioning

A load balancing system is in general formed by a Traffic Splitter and several out-
going links (up to Mmax in Figure 7.4).

Fig. 7.4 Model of a traffic splitter

Conceptually, the input traffic is partitioned according to certain criteria into
Mmax bins at the MPLS ingress node. The Mmax bins are mapped onto the pre-
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established LSPs. The fraction assigned to each LSP is calculated using an opti-
mization model.

Fig. 7.5 Functional model for a multi-path load balancing

A load balancing mechanism is functionally comprised of a Splitting Function
and an Allocation Function (Figure 7.5). The Splitting Function, partitions and allo-
cates incoming traffic to the outgoing links, guaranteeing the order of packets. The
Allocation Function determines the LSP where every packet have to be forwarded
to the egress router and the time it must be delivered.

In [3] a multi-objective traffic engineering scheme (GMM model) using different
distribution trees to multicast several flows has been proposed. Solving the GMM
model allows us to compute the fraction of flow demanded from the ingress node to
the set of egress nodes assigned to each link. We propose effective hashing strategies
to handle traffic partitioning from the GMM model. The GMM model considers a
network represented as a graph G(N,E), with N denoting the set of nodes and E the
set of links. The set of flows is denoted as F . Each flow f ∈ F can be split into Kf

subflows. It can be denoted (following normalization) as fk, k = 1, . . . ,Kf , which
indicates the fraction of f transported. We have found that employing Table-based
Hashing provides better performance compared to Direct Hashing, due to the load
distribution because of the unequal weights. Hashing values are tuned according to
the x fkt

i j parameters calculated from the network optimization.
Hashing-based traffic partitioning algorithms are simple to compute and inde-

pendent of the state of the network. A good hash function satisfies the assumption
of simple uniform hashing, that is, each key is equally likely to hash to any of the
L outgoing links, independently of where any other key has hashed to. In practice,
heuristic techniques are frequently used to define a hash function that works well.
Hashing schemes for load balancing can be classified into Direct Hashing and Table-
based Hashing. The L value is the number of different paths that can be established
from the source ingress router to a certain egress router. Therefore, L depends on
the topology of the network. On the other hand, the value of Mmax can be tuned
according to the allocation function and the Load Balancing Mechanisms.
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In order to dimension the egress buffers, we turn our attention to the following
scheme, which requires a packet reordering algorithm at the egress node to pre-
vent packets from getting out of sequence and to also make egress buffering more
efficient. Taking into account that faster paths require buffer allocation in order to
synchronize packets received from slower paths, we need to calculate the buffer size
required. We define the following notation.

Consider a single flow f . For an fk subflow from this flow f to an egress node t,
the end-to-end delay is

d fkt = ∑
(i, j)∈E

di j ·Y fkt
i j (7.20)

where di j is the delay (in milliseconds) of each (i, j) link in the network.
The delay for the slowest fk belonging to the flow f to egress node t is

d fkt
slowest = max

∀k∈Kf

{d fkt}. (7.21)

Let fktslowest be the fk with a d fkt
slowest delay. Then buffer size B fkt required for each

fk flow is

B fkt =
(

d fkt
slowest −d fkt

)
·
(

b f ·X
fkt

closest link to node t

)
(7.22)

where b f ·X
fkt

closest link to node t is the bit rate arriving to node t from flow fk. Note that
a buffer for the slowest path is not required.

Now, the total buffer size in an egress node t for a single flow fk is

B ft =
|Kf |
∑
k=1

B fkt . (7.23)

7.4 Intelligent Bandwidth Allocation Algorithms for Multilayer
Traffic Mapping with Priority Provision

New OBS algorithms enable the transmission of a single optical burst at the physi-
cal layer of the network. Requirements in upper layers suggest the need of a control
plane and an efficient mapping procedure for packet encapsulation in order to orga-
nize the traffic classes according to statistical behavior and available paths.

One important issue is the design of suitable mapping algorithms for QoS guar-
antees. The significance of the offset time in the control packets is studied in order
to optimize the overall throughput of the network. The management of the offset
time leads to interesting problems of burst selection criteria and scheduling.
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7.4.1 QoS Algorithms for OBS

A number of approaches for QoS provisioning in OBS networks have been proposed
in the literature. These approaches can be classified into offset-based, strict priority,
segmentation-based, and proportional QoS. The main aim of these proposals is to
provide relative service differentiation with regard to packet loss probability. The
use of classical fair scheduling algorithms in the data plane of optical nodes has
generally been avoided in the literature. This is due to the absence of the concept of
“packet queues” in optical nodes, beyond the number of packets that can be buffered
(while in-flight) in Fiber Delay Lines.

Packets arriving at the ingress node are classified into one of the FECs already
defined by the network administrator. These packets are then shaped and a policy is
applied to conform to the QoS requirements of their FEC. Packets are then assem-
bled into bursts in the burst assembly queue. The burst assembly process is carried
out using the containerization with aggregation-timeout (CAT) algorithm. In prin-
ciple, the function of the CAT algorithm is to assemble the arriving packets into
data bursts, such that each data burst contains packets that belong to one FEC. Two
parameters control this burst assembly process in CAT, namely the maximum burst
size (Bmax) and burst assembly timeout (Tmax). The maximum burst size controls
the maximum number of packet bytes contained in a single burst. If the incoming
traffic intensity is high enough, the maximum burst size will be reached in a rela-
tively short time. If, on the other hand, the traffic has a low arrival rate, the burst
being assembled might have to be queued for a relatively long time until the max-
imum burst size is reached. In order to avoid large queuing delays for bursts, the
assembly timeout parameter is used to release the burst under assembly. Thereafter,
data bursts are inserted into the burst queue and scheduled for processing by the
reservation manager according to their QoS requirements.

We propose the use of Fair Packet Queueing (FPQ) algorithms for scheduling
the processing of data bursts by the reservation manager. The FPQ scheduling dis-
ciplines have three desirable properties:

1. they can guarantee an upper bound on delay to a token bucket-constrained ses-
sion,

2. they guarantee the upper bound on delay regardless of the behavior of other ses-
sions (isolation)

3. they can ensure relative fairness in bandwidth allocation among backlogged ses-
sions.

The particular choice of the scheduler is not imposed by the architecture. There exist
a number of FPQ algorithms in the literature. For example, Weighted Fair Queueing
(WFQ), Self-Clocked Fair Queueing (SCFQ), and Start-time Fair Queueing (SFQ)
[13].

The FPQ scheduler selects from the bursts queue the eligible data burst to be
processed by the wavelength reservation manager. There is a significant difference
between the proposed usage of the FPQ scheduler and its usage as a conventional
packet scheduler. In the latter case, the packet selected by the FPQ scheduler is
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directly sent for transmission, whereas in our architecture the FPQ scheduler reg-
ulates the access to the reservation manager. This difference appears more clearly
when calculating the queuing delay in the burst queue, since the processing delay in
the reservation manager is independent of the burst’s length.

Considering that the modes currently under investigation for the implementation
of the next generation coarse packet-switched optical networks, e.g., Burst Switch-
ing, are based on these reservation policies, we briefly present the resource reserva-
tion protocols for OBS.

Initially, two main protocols were used in OBS: Tell-And-Wait (TAW) and Tell-
And-Go (TAG). The Just-In-Time (JIT) and Just-Enough-Time (JET) protocols
were later developed.

In TAG, the burst is emitted by an ingress node even if the establishment of an
optical virtual path has not been completed. The burst follows the virtual path in
parallel with the setup phase. The data burst and the setup message are spaced by a
guard time; this time allows the optical nodes to be set before the burst arrives. When
a burst arrives at the egress node, an acknowledgment is sent back to the source
after a round-trip delay, and the burst is sent out. If the request bandwidth cannot be
granted at an intermediate node, the burst is not lost, and will be transmitted after a
backoff time. This protocol does not allow QoS or service differentiation.

In TAW the burst is emitted by an ingress node only if an optical virtual path
has been set up through the network to the egress node, by sending a short request
message and “waiting” for the acknowledge (ACK) message. When an intermedi-
ate node receives this message it makes a reservation using an available wavelength
for the requested output; if the requested bandwidth is successfully reserved on all
the links along the path, the ACK is sent back to the source after the round-trip de-
lay, and the burst is send out immediately; otherwise, a negative acknowledgment
(NACK) will return to release the previously reserved bandwidth, and the source
will have to try to make another request after a backoff time. If the request band-
width cannot be granted at an intermediate node, the resource at the previous nodes
will be wasted until the release messages arrive, but the burst is not lost, and will
be sent after a backoff time. The resource use is not efficient because reserved links
last longer than the burst duration.

In JIT a burst transmission request is sent to a central scheduler. The scheduler
then informs each requesting node of the exact time to transmit the data burst; at
the appropriate time, the source transmits its burst, and intermediate switches are
set as “just in time”, for efficient use of wavelength channels, which are set up only
for the required burst transmission time. Using computing power and communica-
tion between the switches to avoid bandwidth wastage, the central scheduler and
the burst assembly allow for providing service differentiation and traffic guarantees
over a reserved end-to-end lightpath. Centralized protocols are neither scalable nor
robust; a distributed control scheme would be preferred; however, such a scheme
relies on synchronization and fast distribution of information on the state of the net-
work, provided by a distributed version of JIT called Reservation with Just-In-Time
(RIT), which requires a copy of the request to be sent to all switches (each has a
scheduler) concurrently. The problem typically lies with the scheduler implementa-
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Table 7.1 OBS signaling protocols for QoS provisioning in IP/DiffServ/MPLS networks

Strategy Resources usage End-to-end delay Resource reservation DiffServ
TAG Efficient High Not guaranteed Not supported
TAW Not efficient Low Not guaranteed Not supported
JIT Efficient Medium Not guaranteed Supported
RIT Efficient Medium Not guaranteed Supported
JET Efficient High Near guaranteed Supported

tion, which not only needs to be synchronized in time, but also needs to share the
same global link status information.

In JET there is a setup message sent by an ingress node, where after an additional
offset time the burst is transmitted; this offset time takes into account the delays ex-
perienced by the setup message within a node. The header carries the data burst’s
length, destination, and arrival time; this allows for the reservation of the exact re-
sources required for the transmission time of the burst. This is called reserve-a-fixed
duration (RFD) scheme, where a node makes advance reservation of the capacity
needed at the corresponding output port. JET is the most prevailing distributed pro-
tocol for OBS networks today that does not require any kind of optical delays.

An approach that assigns varying additional offset times to different service
classes can provide differentiated services in terms of burst loss probability for
classes of different priorities [15]. This reduces the loss rate of high-priority traffic
at the expense of an increase in the loss rate of lower-priority traffic. The additional
offset time becomes part of the end-to-end delay. However, this extra delay does not
affect the total end-to-end delay by much, but this problem should be considered
with care. Another problem is that a high-priority burst with large offset times will
break the resource’s free periods into small pieces, and only the burst with smaller
size will have higher probability of finding a free wavelength. JET does not use an
ACK message for guaranteed the end-to-end lightpath; this causes loss of the bursts
that have to be retransmitted to an upper layer.

Table 7.1 summarizes the advantages and disadvantages of each one of the OBS
protocols described. It summarizes the general behavior of each signaling protocol
according to the requirements of the traffic to be transported. It is evident that JET is
a good candidate for those networks where delay is the key constraint, but resource
reservations are not guaranteed. Therefore, it can be somewhat less useful for con-
stant bit rate traffic with real time requirements. In this case, JIT or RIT can fulfill
these constraints but the end-to-end delay is larger than in JET. We conclude that
a new signaling protocol is required taking into account the parameters for control
packet management in OBS.
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7.5 Conclusions

The chapter surveys several recent open problems in connection-oriented packet net-
works in the broadband backbone, such as the IP/MPLS/optical technologies. The
emerging services requires some QoS degree according to the individual needs, and
so several strategies are shown from the point of view of modeling and formulation.
The new high-speed optical networks arise in similar problems but different physi-
cal technology, all of them under the traffic engineering concepts and the dynamic
(auto)provisioning and allocation, some of them shown in this chapter.
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Chapter 8
Optimization of OSPF Routing in IP Networks
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Abstract The Internet is a huge world-wide packet switching network comprised of
more than 13,000 distinct subnetworks, referred to as Autonomous Systems (ASs).
They all rely on the Internet Protocol (IP) for transport of packets across the net-
work. And most of them use shortest path routing protocols, such as OSPF or IS-IS,
to control the routing of IP packets within an AS. The idea of the routing is ex-
tremely simple — every packet is forwarded on IP links along the shortest route
between its source and destination nodes of the AS. The AS network administrator
can manage the routing of packets in the AS by supplying the so-called admin-
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and
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istrative weights of IP links, which specify the link lengths that are used by the
routing protocols for their shortest path computations. The main advantage of the
shortest path routing policy is its simplicity, allowing for little administrative over-
head. From the network engineering perspective, however, shortest path routing can
pose problems in achieving satisfactory traffic handling efficiency. As all routing
paths depend on the same routing metric, it is not possible to configure the routing
paths for the communication demands between different pairs of nodes explicitly
or individually; the routing can be controlled only indirectly and only as a whole
by modifying the routing metric. Thus, one of the main tasks when planning such
networks is to find administrative link weights that induce a globally efficient traf-
fic routing configuration of an AS. It turns out that this task leads to very difficult
mathematical optimization problems. In this chapter, we discuss and describe exact
integer programming models and solution approaches as well as practically efficient
smart heuristics for such shortest path routing problems.

Key words: telecommunication networks, shortest path routing, the Internet, OSPF,
ECMP, integer linear programming, heuristics

8.1 Introduction

Traffic routing is a key issue in the design and management of communication net-
works, including the Internet. The term “routing” has the meaning of forcing the
traffic flows to use appropriate, frequently predefined, routes. In practice, traffic
flows appear every time two end users need to communicate or an end user requires
some content from a distant server. Since the flows appear in such a dynamic way,
the routing decisions must essentially be realized by the network itself: if a new
connection is required for a traffic flow between an end user at node A and an end
user at node B, some network equipment must decide along which route from A
to B this connection must be established. This routing decision must be made in a
fraction of a second and in such a way that the user is provided satisfactory quality
of service and the consumption of network resources is minimized. This is why the
services offered by communication networks rely heavily on routing protocols.

A routing protocol is a set of rules and mechanisms implemented in a network in
order to achieve proper routing decisions. There are many different standard routing
protocols. Some of them are technology agnostic, some are designed for a particu-
lar networking technology such as optical fiber transmission networks like WDM,
SDH, and SONET and packet networks like GbE (Gigabit Ethernet), ATM and IP.
One of the major tasks of the network operations team within a telecom company is
to tune and manage parameters of the implemented version of a routing standard in
order to maximize the network’s traffic performance. These activities of the opera-
tions team, known as “Traffic Engineering” (TE in short), received a lot of attention
during the last decade, especially in the domain of the Internet [41, 75].
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In the present chapter we will focus our attention on the optimization problems
related to Internet routing. The Internet is a packet switching network, an intercon-
nection of more than 13,000 different subnetworks. It uses the Internet Protocol (IP)
to transport data packets across the network and the TCP and UDP protocols to con-
trol the flow of data packets between end users. Each individual subnetwork, also
known as an Autonomous System (AS), is managed by a single administrative en-
tity of the telecom operator. Some of these ASs are huge and deployed world-wide,
though most of them are very small and involve only a few nodes called “routers.”
The routing protocols that are implemented inside an AS and decide how to route
the traffic from one node of the AS to another are called Interior Gateway Proto-
cols (IGPs). “Classical” IGPs rely on a simple routing paradigm called shortest path
routing (SPR in short); every packet is forwarded on IP links along the shortest route
between its source and destination nodes of the AS. Although in the late 1990s, in
order to somewhat overcome what was felt at that time as a deficiency of the short-
est path protocols providing more flexibility in the design of routes, more complex
routing paradigms were proposed for the Internet, in particular in the context of the
MPLS (Multi-protocol Label Switching) technology [3, 84]; at present, SPR proto-
cols are still widely and successfully used on the Internet. Simulation experiments,
practical trials, and field deployments have shown, despite the original feeling that
it would be very difficult to control traffic efficiently through shortest path mech-
anisms, that with the shortest path routing paradigm pretty good network traffic
performance can actually be achieved. This good performance is partly due to re-
cent advances in routing optimization methods and their implementation in network
planning systems.

The most frequently deployed IGP protocols are OSPF (Open Shortest Path First,
see [61]) and IS-IS (Intermediate System to Intermediate System, see [65]). Accord-
ing to these protocols, each individual router in the AS must acquire and maintain
a complete and accurate vision of the topology of the AS (this is done by frequent
exchange of the routing protocol’s messages between routers), and appropriate in-
formation on every link of this topology. The link-related information is limited to
the administrative weight of the link, which is an integer value assigned by the net-
work administrator (within the bounds defined by the version of the routing proto-
col). Using the topology and the administrative weights of links, each router is able
to compute its shortest path tree covering the topology graph, or, in other words, a
shortest path towards every other router in the network. This information is stored
locally in the so called forwarding table and is used when forwarding incoming
packets to the outgoing links. The forwarding table determines, for each destination
router in the AS network, the outgoing link that should be used in order to reach
the next node on the shortest path to that particular destination router. The admin-
istrative weights are the only means the network administrator can use to influence
and control the routing of traffic in the network. This control is realized in an indi-
rect way: although the network administrator is interested in optimizing the paths
used by each traffic demand, with the shortest path routing protocols she cannot di-
rectly define a path and assign it to a particular flow. She has to set the values of the
weights so that the defined path becomes a shortest path, or even the unique shortest
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path, between the end nodes of the flow. This task is not so obvious as it might ap-
pear, since modifying the values of the link weights involved in defining a path for a
particular flow can change the paths that have been defined for other flows. Setting
the values of weights in an optimal way is the basic TE problem considered in the
present chapter.

Finding such weight values that all the paths in a predefined set are shortest paths
or unique shortest paths is known as the inverse shortest paths problem [10, 33].
Several variants of this problems can be considered according to the number of paths
that can be used for a demand, and to the way the routers can handle multiple short-
est paths. Going one step further, one can consider the joint problem of defining the
best possible paths (with an objective that captures a certain global performance of
the network) and a set of administrative weights compatible with these paths. Still
another set of decisions that can be embedded in a more global process are plan-
ning decisions, where the design of the network itself (including network topology,
resource capacity, traffic routing, etc.) is a part of the decision process. Certainly,
each additional level of decisions involved implies a considerable increase in the
complexity of the problem.

In the next sections of this chapter we will survey the most recent results concern-
ing network optimization problems related to shortest path routing. The chapter is
organized as follows. In Section 8.2, the main TE problem is formally described, all
the relevant notation is provided, and the related work is summarized. In Section 8.3,
an integer programming approach to the TE problem is described. The approach is
based on interlacing two phases within a branch-and-cut algorithm: the first phase
finds a routing pattern consisting of a set of routing paths, while the second phase is
devoted to finding a set of weights compatible with the routing paths selected in the
first phase. In Section 8.4, we discuss valid inequalities that can strengthen the linear
relaxations of the model that is used in the first phase of the integer programming
approach, together with separation algorithms for these inequalities. Section 8.5 is
a survey of the heuristic methods. In Section 8.6, the numerical results obtained
with the two-phase approach and with the heuristics are provided and analyzed. In
Section 8.7, a full direct mixed-integer linear programming formulation for the con-
sidered TE problem is presented, and a number of problem variants are discussed.
Then, in Section 8.8 we present historical and literature notes. Finally, Section 8.9
presents concluding remarks.

8.2 Problem Description

In this introductory section we will explain the basic notions and notations, infor-
mally discuss the shortest path routing problems studied throughout this chapter,
and summarize the related work.
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8.2.1 Basic Notions and Notations

The network graph G = (V ,E ) consists of the set of nodes V (called also vertices),
and the set of directed links E (called also arcs), where E ⊆ V |2|. Note that V |2|

denotes the set of all ordered pairs (s, t) ∈ V 2 such that s �= t, i.e., V |2| = V 2 \
{(v,v) : v ∈V }. For each node v ∈V , we define the set of links δ+(v) outgoing from
node v and the set of links δ−(v) incoming to node v, i.e., δ+(v) = {e ∈ E : a(e) = v}
and δ−(v) = {e ∈E : b(e) = v}, where a(e)∈V and b(e)∈V denote the originating
and terminating node of link e ∈ E , respectively.

Each link e ∈ E has a capacity denoted by ce. Furthermore, each link e ∈ E
is assigned a so-called link metric or (administrative) weight denoted by we. De-
pending on the context, the weight may be a constant or a variable. The vector
w = (we : e ∈ E ) is referred to as the weight system (or the weight vector, or the
weight sequence). Typically, each such link weight has to be a positive integer
bounded from above (for example, OSPF assumes that we ∈ {1,2, . . . ,K = 216 −1}).
For optimization purposes we will also consider continuous weight systems w with
1 ≤ we ≤ K,e ∈ E , assuming they are regular. A weight system w is called regular
if, for any two paths that have different lengths, these lengths differ by at least 1.
Certainly, this regularity condition is satisfied when weights are positive integers.
If the weights can possibly assume positive rational values, then multiplying all
weights we by an appropriately large positive number α will assure the regularity
while preserving the path-length relation (new path length will be equal to α times
the original length).

The traffic demand volume generated at a source node s ∈ V and destined to a
target node t ∈ V \{s} will be denoted by dst . Such demand volumes are expressed
in the same units of bandwidth as capacities of links. If there is no traffic demand for
a pair of nodes (s, t) ∈ V |2| then we simply put dst = 0. The total demand volume
destined to node t ∈ V will be denoted by Dt so that Dt = ∑s∈V \{t} dst .

The set of all elementary (i.e., loop-less) paths in the network graph is denoted by
P . Each path p ∈ P is represented by its set of links so that p ⊆ E . The length of
path p ∈ P with respect to weight system w will be denoted by w(p), and any short-
est path with respect to system w will be referred to as a w-shortest path. Clearly,
w(p) = ∑e∈pwe.

Unless stated otherwise, in the sequel we will always assume that link capacities
c = (ce : e ∈ E ) and demand volumes d = (dst : (s, t) ∈ V |2|) are fixed and given.

8.2.2 Informal Formulation

The basic problem considered in this chapter is called the shortest path traffic engi-
neering problem (STEP). Its most commonly known version assumes unique short-
est paths and consists of finding a routing pattern, i.e., set of paths P̂ = {p̂st :
(s, t) ∈ V |2|} ⊆ P where path p̂st connects source s to destination t, together with
a corresponding system of compatible weights w so that
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• each path p̂st ∈ P̂ is the unique w-shortest path from s to t in graph G .
• when the whole demand volume dst of demand (s, t) is allocated to path p̂st then

for each link the resulting link load does not exceed link capacity:

∑(s,t)∈D̂(e)dst ≤ ce, e ∈ E , (8.1)

where D̂(e) = {(s, t) ∈ V |2| : p̂st � e}.

This routing version is called unique, unsplittable, or single shortest path routing in
the literature.

Observe that the uniqueness of the shortest paths in a routing pattern is not com-
mon, since most weight systems in general induce more than one shortest path be-
tween a pair of nodes—consider for example the hop-count weight system we = 1.
If non-uniqueness is the case, i.e., if the system of administrative weights w induces
more than one shortest path for demand (s, t) ∈ V |2|, then the volume dst is split,
according to the so-called ECMP rule, among all the shortest paths from source s
to destination t. We note here that other ways of handling the shortest path non-
uniqueness are sometimes considered, as, for example, selecting one particular path
among all the shortest paths at random. When used in a real network, however, such
rules lead to traffic routing that is different from the traffic pattern assumed at the
weight design stage. Therefore, they are excluded from further considerations.

ECMP (Equal Cost Multi-path) is a specific rule to split traffic among shortest
paths: at each node v ∈ V the total flow Xvt from v destined to any node t ∈ V ,
v �= t (Xvt is composed of traffic transited via v and originated at v), is split equally
among all the links outgoing from node v that belong to the w-shortest paths from v
to t. This rule is illustrated in Figure 8.1 for a weight system with all link weights
equal to 1 (we = 1) and one demand (s, t) with dst = 1. There are three shortest paths
from s to t: s − a− c− t, s − a− d − t, and s − b− e− t. According to ECMP, the
flow in node s is split into two equal parts, the flow in node a also into two, and in
the remaining nodes the flow is not split. As the result we obtain the following link
flows: xsa = xsb = xbe = xet = 1

2 , xac = xad = xct = xdt = 1
4 . Observe that if we had

reversed the directions of all links and of the demand then the resulting ECMP link
flows would be equal to xtc = xtd = xte = xca = xda = xeb = xbs = 1

3 , xas = 2
3 .

Let xe(w) denote the ECMP flow induced by system w on link e ∈ E . For a fixed
network with given demand volumes, the flows xe(w), e ∈ E , depend only on the
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Fig. 8.1 Illustration of the ECMP rule
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weight system w. If the weight system induces unique shortest paths, then each flow
xe(w) is equal to the left-hand side of inequalitie (8.1). Imposing an upper bound on
the link weights, the STEP problem for the ECMP rule can informally be stated as
follows.

find w = (we : e ∈ E ) (8.2a)

minimizing Z (8.2b)

subject to xe(w) ≤ Zce, e ∈ E , (8.2c)

we ∈ {1,2, . . . ,K}, e ∈ E . (8.2d)

We note that objective (8.2b) minimizes the maximum link utilization—a criterion
related to link congestion. Other commonly used traffic engineering objectives are
discussed in Section 8.7.2. The above formulation is informal since the flows xe =
xe(w), e ∈ E , assigning the ECMP flows to the links for a given weight system w,
are not explicitly specified. In fact, the mapping of w to the induced flows xe(w),
e ∈ E , is not straightforward, as explained in Section 8.5.3. The computation of
flows becomes simpler for the unsplittable shortest path version of STEP, as all
traffic volume of a demand then is assigned to its unique shortest path.

An important subproblem of STEP is the so-called inverse shortest path problem,
abbreviated ISP. It consists of finding a weight system w that induces precisely the
assumed routing pattern P̂ . Different variants of ISP are considered for routing
patterns with unique shortest paths P̂ = {p̂st : (s, t) ∈ V |2|} and for the patterns
admitting multiple shortest paths for each demand (applied together with the ECMP
rule).

8.2.3 Discussion

The shortest path traffic engineering problem STEP described by the informal for-
mulation (8.2) is known to be very difficult and, needless to say, is NP-hard in
both ECMP and unsplittable versions [11, 45, 54], and is also NP-hard to approxi-
mate [11, 45].

Exact solutions of STEP can be achieved with (mixed) integer programming
methods. Using formulations that use binary routing variables to indicate whether
a link belongs to a shortest path or not (together with flow variables, path length
variables, and weight variables), such as model (8.18) in Subsection 8.7.1, STEP
can in principle be solved to optimality. Models of this kind have been considered
by many authors (see Section 8.8); unfortunately, the relation between the shortest
paths and the routing weights always leads to quadratic or very large big-M models,
which are computationally extremely hard and not suitable for solving real-world
problems.

Because of the inherent difficulty of STEP, various heuristic approaches for the
solution of network design and routing problems in shortest path networks have been
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proposed. Algorithms using local search, simulated annealing, or Lagrangian relax-
ation techniques with the routing weights as primary decision variables have been
introduced by several authors (see Section 8.8). Such methods usually work quite
well; still, they cannot guarantee optimal solutions nor do they provide means to
estimate the quality of the solution (which is the case for the integer-programming-
based approaches). In Section 8.5 we discuss the basic ideas and main challenges
for successful implementations of such heuristics.

The inverse shortest paths problem (ISP) can be formulated as a linear program
(see Section 8.3.2), and, as such, solved in polynomial time. Even if the weights
are required to take nonnegative integer values, ISP remains polynomial, because
any set of non-integer weights can be scaled easily to (possibly very large) integer
weights. There is also a simple rounding scheme (see [6]) that produces integer
weights which exceed the smallest possible maximum weight by the factor of at
most min(|V |/2, |Pmax|), where Pmax is the longest shortest path in the considered
routing pattern. The problem of finding the smallest maximum weight or weights
not exceeding a given upper bound, however, is NP-hard [12].

Finally, we mention that a lot of work has been devoted to finding necessary
conditions for a given set of routing paths to be compatible with a set of link weights.
As these conditions play a crucial role in resolution methods for STEP, we will come
back to them in Subsection 8.3.2 and Section 8.4 (see also Section 8.8 for historical
remarks).

SPR is (heavily) constrained by the shortest path requirement and hence in-
herently less efficient in bandwidth utilization than other, less constrained routing
strategies. Because of that, ECMP routing is in general less traffic efficient than its
fractional multi-commodity flow routing counterpart, which permits us to split each
demand’s traffic arbitrarily among all paths between the demand’s end nodes. Sim-
ilarly, unsplittable shortest path routing is inferior to unsplittable multi-commodity
flow routing, which must send each demand’s traffic unsplit along a single path,
but may choose the paths for different demands independently of each other. A
question that arises naturally is whether the performance gap between an optimized
shortest path routing and another, less constrained optimized routing is important
or not. Bley [11] presented several classes of examples where the best link utiliza-
tion that can be obtained with unsplittable shortest path routing exceeds the utiliza-
tion obtained with unsplittable flow routing by a factor of Ω(|V |2). On the other
hand, Fortz and Thorup [42] showed that for many real-world communication net-
works the gap between the ECMP shortest path routing version and the optimal
fractional multi-commodity flow routing is virtually negligible. Similar observa-
tions have been reported by Ben Ameur et al. [7]. Still, if survivability issues and
rerouting are taken into account, the gap can increase significantly.



8 Optimization of OSPF Routing in IP Networks 207

8.3 Integer Programming Approach

In this section, we present a two-phase approach developed in [13, 18, 20, 46, 52,
73, 78]. The approach has been successfully used in the planning of the German
national education and research network for several years [17, 19]. Similarly to
Benders’ decomposition, it decomposes the problem of finding an optimal shortest
path routing into the master problem of finding the optimal end-to-end paths in the
first phase, and the client problem of finding compatible routing weights for these
paths in the second phase. An efficient version of the two-phase approach is achieved
when the iterative use of the two phases is embedded in a branch-and-cut algorithm.

The master problem is formulated as an integer linear program and solved with
a branch-and-cut algorithm [63, 83]. Instead of using routing weight variables, the
underlying formulation contains special inequalities to exclude invalid routing pat-
terns, i.e., path sets that do not correspond to the set of all shortest paths for any
weight system. These inequalities are generated dynamically as cutting planes by
the client problem during the execution of the branch-and-cut algorithm.

8.3.1 Optimizing the Routing Paths

There are several ways to formulate the master problem of STEP as a mixed-integer
linear program. In the following, we present an aggregated node-link formulation of
STEP for the ECMP routing version.

The primary decision variables in this formulation are variables uet ∈ {0,1} for
all t ∈ V and e ∈ E \ δ+(t). These variables describe the so-called shortest path
graphs (SP graphs) to all destinations t ∈ V . Each variable uet is supposed to be
equal to 1 if, and only if, there is a shortest path from node a(e) to node t that
contains link e.

In addition, the model uses variables xet ∈ R for all t ∈ V and e ∈ E \ δ+(t)
and zvt ∈ R for all t ∈ V and v ∈ V \ {t}, and a single variable Z ∈ R. Variable
xet expresses the aggregated traffic flow that is sent across link e from all possible
origins towards destination t. If at some node v the aggregated flow towards t is
equally split and sent via several shortest paths, then this common flow value is
represented by variable zvt . In effect, the same amount zvt of flow is sent across all
links e ∈ δ+(v) that belong to at least one of these shortest paths. Finally, variable
Z represents the maximum link utilization (congestion).

With these variables the master problem is formulated as follows:

STEP Master
find
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uet binary variable indicating whether link e is on a shortest path to node t

xet flow destined to node t on link e

zvt flow destined to node t leaving node v on links on the shortest paths to t

Z maximum link utilization/congestion

minimize

Z (8.3a)

subject to

∑
e∈δ+(v)

xet − ∑
e∈δ−(v)

xet = dvt t ∈ V , v ∈ V \{t} (8.3b)

∑
t∈V \{b(e)}

xet ≤ ce Z e ∈ E (8.3c)

xet ≤ (Dt −db(e)t)uet t ∈ V , e ∈ E \δ+(t) (8.3d)

0 ≤ xet − za(e)t ≤ (Dt −db(e)t)(1−uet) t ∈ V , e ∈ E \δ+(t) (8.3e)

∑
(e,t)∈C

uet −∑
(e,t)∈C̄

uet ≤ |C|−1 (C,C̄) ∈ C (8.3f)

uet ∈ {0,1} t ∈ V , e ∈ E \δ+(t) (8.3g)

xet ≥ 0 t ∈ V , e ∈ E \δ+(t) (8.3h)

zvt ≥ 0 t ∈ V , v ∈ V \{t} (8.3i)

Z ≥ 0. (8.3j)

Subproblem (8.3a)–(8.3c) is an aggregated node-link formulation of a capacitated
multi-commodity flow problem with aggregated flows x, whose objective is to min-
imize the maximum link utilization Z. The next two constraints express the ECMP
traffic splitting rule. Inequality (8.3d) forces traffic destined to node t to use only
the links that are chosen to be shortest path links, i.e., links e ∈ E with uet = 1.
Constraint (8.3e) ensures that in each node the traffic to destination node t is split
equally among the links assigned to that destination.

Finally, the ”conflict” constraints (8.3f) ensure that each integer solution of (8.3)
is an admissible ECMP routing. Let C,C̄ ⊂ V ×E be two disjoint sets of node-link
pairs. If there exists no ECMP routing such that e is on a shortest path towards t for
all (e, t) ∈ C, and e is not on a shortest path towards t for all (e, t) ∈ C̄, we say that
the pair (C,C̄) is an ECMP conflict. The family of all such conflicts is denoted by C .
Constraints (8.3f) ensure that no solution simultaneously contains all the shortest-
path links and all the non-shortest-path links of any such conflict. This implies that
any integer solution of (8.3) is indeed an admissible shortest path routing pattern.
Figure 8.2 on page 212 illustrates three special types of these conflict constraints.
We discuss the conflict constraints in more detail in Section 8.4.

In general, the number of conflict constraints (8.3f) can be exponentially large
and the structure of the conflicts can be extremely complicated [13]. Therefore, only
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few of these constraints are included in the model initially. The majority of them are
separated via the client problem in the branch-and-cut solution process.

8.3.2 Finding Compatible Routing Weights

Now suppose we have a solution (u,x,z,Z) of formulation (8.3) or, more precisely,
of a subsystem of (8.3), which contains only those conflict constraints (8.3f) that
have been generated so far in the process, and not all conflict constraints. For each
destination t ∈V , the values of the binary variables u in this solution define a link set
At = {e ∈ E : uet = 1}. The link set At is called the shortest path graph (SP graph)
for destination t. For each t ∈ V , we want the links e ∈ At to be on a shortest path
from a(e) to t and the links e �∈ At to be not on a shortest path from a(e) to t. Link
weights we ∈ R+, e ∈ E , for which these conditions hold are said to be compatible
with the given SP graphs At .

Our goal in the client problem is to find compatible link weights we, e ∈ E , for
the SP graphs given by the master problem’s solution. However, if the given solution
(u,x,z,Z) violates some of the conflict constraints that have not yet been added to
the master formulation (8.3), then such link weights do not exist. In this case, the
task is to generate (at least) one of these violated inequalities.

The first part of this problem is just the inverse shortest paths problem, and can
be solved with linear programming techniques. A number of alternative formula-
tions for ISP have been proposed in the literature [6, 13, 68]. In the following, we
present an aggregated formulation for ISP, which fits very nicely into the aggregated
formulation of the master problem. It uses a variable we ∈ Z for the weight of each
link e ∈ E , a variable wmax ∈ Z for the maximum of these weights, and a variable
rvt ∈ R for the potential of each node v ∈ V with respect to each destination t ∈ V
and the weights w. (If rtt = 0, the smallest possible potential rvt of node v is exactly
the distance from v to t with respect to the link weights w.) With these variables, the
inverse shortest paths problem for the given SP graphs At , t ∈ V , can be formulated
as follows:

ISP Client
find

we routing weight of link e

wmax maximum routing weight

rvt potential of node v with respect to destination t and weights w

minimize

wmax (8.4a)

subject to
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we − ra(e)t + rb(e)t = 0 t ∈ V , e ∈ At (8.4b)

we − ra(e)t + rb(e)t ≥ 1 t ∈ V , e �∈ At (8.4c)

1 ≤ we ≤ wmax e ∈ E (8.4d)

rvt ∈ R t ∈ V , v ∈ V (8.4e)

we ∈ Z e ∈ E . (8.4f)

Constraints (8.4b) and (8.4c) (together with nonnegativity of the weight variables we

implied by (8.4d)) ensure that the weights we in any solution of formulation (8.4)
are compatible with the given SP graphs. The quantity we − ra(e)t + rb(e)t measures
the difference between the length of the shortest path which starts in node a(e),
goes over link e, and ends in node t, and the distance from the node of a(e) to t.
This difference must be 0 for all links that are supposed to be on a shortest path and
strictly greater than 0 for all links that are supposed to be not on a shortest path, as
expressed in constraints (8.4b) and (8.4c). Hence, formulation (8.4) has a solution
if and only if there exist compatible weights for the given family of SP graphs At ,
t ∈ V . Furthermore, there are compatible weights in the range {1,2, . . . ,K} if and
only if the optimal solution value wmax of formulation (8.4) is less than or equal to
K.

Note that formulation (8.4) is an integer program and may be computationally
hard. In fact, Bley [12] proved that it is already NP-hard to approximate its optimum
within a factor less than 9/8 in general.

In our decomposition approach, it is sufficient to solve only the linear relaxation
of (8.4) and scale and round its optimal fractional solution to an integer-feasible
solution of (8.4). It is not difficult to verify that the integer program (8.4) has a so-
lution if and only if its linear relaxation does. Using the rounding scheme proposed
by Ben-Ameur and Gourdin [6], we obtain weights that exceed the minimal ones by
a factor of at most min(|V |/2, |Pmax|), where Pmax is the longest prescribed shortest
path. For practically relevant network sizes, the weights computed with this approx-
imate method easily fit into the admissible range of all modern routing protocols.
So, we can safely ignore the integrality constraint (8.4f) in practice.

If the linear relaxation of (8.4) is infeasible, then the given solution (u,x,z,Z) of
the (incomplete) master formulation is not a valid ECMP routing. In this case, the
presumed routing contains at least one conflict (C,C̄) ∈ C with C ⊆{(e, t) : uet = 1}
and C̄ ⊆ {(e, t) : uet = 0}, whose corresponding conflict inequality (8.3f) is violated
by the given solution (u,x,z,Z). Adding this inequality to the master formulation,
one can cut off the current invalid solution.

In practice it is important to generate conflicts with small sets C and C̄, as this
leads to stronger inequalities (8.3f). Inclusion-wise minimal conflicts, i.e., conflicts
(C,C̄) ∈ C such that there is no other conflict (C′,C̄′) ∈ C with C′ ⊆ C and C̄′ ⊆ C̄,
can be computed in polynomial time using simple greedy techniques in combination
with a generalized version of the above linear programming formulation. Finding a
conflict of minimum total size |C|+ |C̄|, however, is NP-hard [13].

In Sections 8.4.1 and 8.4.2, we describe several subclasses of the conflict inequal-
ities (8.3f) that are separable in polynomial time. An algorithm to generate strongly
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violated conflict inequalities (8.3f) based on an (approximate) integer programming
formulation of the separation problem is presented in Section 8.4.3.

For the efficiency of the overall solution approach, it is important to consider
the client problem not only for those solutions of the master problem where all
variables uet are integer, but also for those solutions where some of these variables
are fractional. For each t ∈ V , the values of the variables u in the current solution
of the master problem define a second link set Āt := {e ∈ E : uet = 0}. The pair
of the two link sets (At , Āt) is called the partial SP graph for destination t. If all
variables uet are integer, then we obviously have At ∪ Āt = E \ δ+(t) for all t ∈ V .
For each t ∈ V , we want the links e ∈ At to be on a shortest path from a(e) to t
and the links e ∈ Āt to be not on a shortest path from a(e) to t. Links e ∈ E that are
neither in At nor in Āt may or may not be on a shortest path from a(e) to t. Routing
weights we ∈ R+, e ∈ E , that satisfy these conditions are said to be compatible with
the given partial SP graphs (At , Āt), t ∈ V .

The techniques presented above for the inverse shortest paths problem with com-
plete SP graphs generalize straightforwardly to the inverse shortest paths problem
with partial SP graphs. Replacing inequality (8.4c) in formulation (8.4) with the
inequalities

we − ra(e)t + rb(e)t ≥ 1 t ∈ V , e ∈ Āt (8.4c’)

and

we − ra(e)t + rb(e)t ≥ 0 t ∈ V , e ∈ E \ (At ∪ Āt) , (8.4c”)

we obtain an integer linear model for the inverse shortest paths problem with partial
SP graphs. Solving its linear relaxation, we can again decide in polynomial time
whether the given partial SP graphs can be extended to a valid shortest path routing
or not. If the linear relaxation has a solution, the same scaling and rounding approach
as that for complete SP graphs can be used to compute reasonably small integer
weights that are compatible with the given partial SP graphs. Otherwise, the solution
of the current incomplete master formulation can be cut off by a conflict inequality
(8.3f) derived from the dual relaxation of the inverse shortest paths problem, even
though not all SP variables uet are integer yet. Each assignment of 0/1 values to
those variables uet that are not integer yet would lead to an invalid routing.

8.4 Shortest Path Routing Inequalities

As we have already seen in the previous section, discovering and generating proper
cuts (valid inequalities) is crucial for effectiveness of integer programming ap-
proaches to STEP. In this section we will study this issue in more detail. We first
derive a set of cuts that follow from combinatorial/structural properties of short-
est paths. Then we discuss unobtainable cycles—a strong necessary condition on a
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set of routing paths to posses a compatible weight system. Finally, we show how
the formulations related to unobtainable cycles can be used to derive general valid
inequalities, eliminating inconsistent routing patterns from the master problem dis-
cussed in Subsection 8.3.1.

8.4.1 Combinatorial Cuts

In this section we will discuss deriving inequalities of the form (8.3f) directly from
the combinatorial properties of shortest paths. We discuss three such basic proper-
ties [71], called transit, split, and cycle (see Figure 8.2). These properties are de-
rived from the subpath consistency (also called Bellman property) of shortest paths
and describe the consistency conditions of shortest paths between different pairs of
nodes. The resulting inequalities either extend or generalize the types of combina-
torial cuts that were proposed in [20, 48] in the context of ECMP routing .

transit split cycle

uev = 1

uet = 0

u f v = 1

P

uev = 1 ugt = 1

u f v = 1

ugv = 0
P

P

Q

u f v = 1

ugv = 1

∑
f∈Pb(e)t

(1−u f v)+(1−uev)+uet ≥ 1

∑
f∈Pb(e)t

(1−u f v)+(1−uev)+(1−ugt)+ugv ≥ 1

∑
f∈Pst

(1−u f v)+ ∑
g∈Qts

(1−ugv) ≥ 1

Fig. 8.2 Different types of combinatorial valid inequalities

The transit property expresses a relation between shortest paths to a destination
and shortest paths to the transit nodes of those paths to the destination. Assume that
there is a path from node s to node t (such a path can be decomposed into the starting
link e and path Pb(e)t from b(e) to t), with all links belonging to shortest paths to
some node v. Thus, t is a transit node on a shortest path from s to v. Then, all links
between s and t on the path to v, in particular link e, must belong to a shortest path to
t, since a shorter path from s to t should have been used to v as well. The following
inequality separates vectors u which contradict this property:
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∑
f∈Pb(e)t

(1−u f v)+(1−uev)+uet ≥ 1. (8.5)

To find the most violated inequality (8.5) for given s, v, t, and e, it is enough to
find a shortest path Pb(e)t from b(e) to t using the values 1−uev for the link weights.
This inequality is stronger than the one used in [48], because it skips the values of
the variables defining shortest paths from t to v, and considers the path from s to t
and not from s to v.

The split property expresses a relation between splitting traffic among shortest
paths to a destination and splitting traffic among shortest paths to the transit nodes.
Assume the same situation as in the first case, and, additionally, that there is another
link g originating in node s which is on a shortest path to node t. Then g must be
on a shortest path to v, because there are two paths of equal length from s to t (one
starting with link g and one with link e because of the transit property), and as one
is used to reach v, the other should be used to reach v as well. The vectors u that
contradict this property can be separated using the following inequality:

∑
f∈Pb(e)t

(1−u f v)+(1−uev)+(1−ugt)+ugv ≥ 1. (8.6)

To find the most violated inequality (8.6) for given s, v, t, e, and g it is enough to
find the same path Pb(e)t as in the case of the transit property.

The cycle property expresses a relation between shortest paths to a single des-
tination. Since the values of link weights are strictly positive, on a shortest path to
a destination the distances of the consecutive nodes to that destination are decreas-
ing. Thus, the segments Pst and Qts of two such paths cannot form a cycle. The
following inequality separates vectors u which contradict this property:

∑
f∈Pst

(1−u f v)+ ∑
g∈Qts

(1−ugv) ≥ 1. (8.7)

To find the most violated inequality (8.7) for given s, t, and v, it is enough to find
a pair of shortest paths, from s to t, and from t to s, respectively, using the values
1−uev as the link weights.

To find all violated inequalities of types (8.5)–(8.7) for a given vector u, it is
thus sufficient to determine, for each destination node v, the shortest paths between
all pairs of nodes, using values 1−uev as link weights; thus, the entire process has
overall complexity of O(|V |4).

A number of combinatorial inequalities for unsplittable shortest path routing are
discussed in [6, 13, 18, 49, 73, 77]. Similarly to (8.5), the following three inequali-
ties express the transit property for unique shortest paths:



214 A. Bley et al.

xs
av − xs

at + ∑
e∈δ−(v)

xs
et ≤ 1 s,v, t ∈ V ,a ∈ E (8.8a)

xv
at − xs

at + ∑
e∈δ−(v)

xs
et ≤ 1 s,v, t ∈ V ,a ∈ E (8.8b)

1
2
(xs

av + xv
at − xs

at)+ ∑
e∈δ−(v)

xs
et ≤ 1 s,v, t ∈ V ,a ∈ E (8.8c)

These inequalities are formulated using non-aggregated flow variables xs
et . Variable

xs
et defines the fraction of flow originated in s and destined to t on link e. Then, if
∑e∈δ−(v) xs

et is greater than 0 (in case of unsplittable routing it is simply 1), node
v must be a transit node on a shortest path from s to t. But then, if, for instance,
the flow originated in s and destined to v uses some edge a, that edge must also be
used by the flow originated in s and destined to t, which is exactly the meaning of
inequality (8.8a).

To evaluate the effectiveness of the combinatorial inequalities we have performed
numerical experiments (cf. Section 8.4.3) based on solving the integrated MIP prob-
lem of routing and link weight optimization with a commercial MIP solver, apply-
ing its regular B&C procedure in two settings: using and not using user-defined cuts.
When no user-defined cuts were used, after 4,155 seconds, visiting 664,000 B&C
nodes, and generating 382 standard cuts the computation was aborted as it ran out
of memory. In contrast, when combinatorial inequalities were used as user-defined
cuts, having generated the total of 1,556 user-defined cuts and only 100 standard
cuts, after 548 seconds the computation reached the optimum, reducing the number
of visited B&C nodes to 68,700.

8.4.2 Valid Cycles

In order to find an interesting class of SP graph conflicts, we focus on whether or not
(8.4b)–(8.4e) has a feasible solution. Ignoring the boundedness and integrality of the
weights, and letting γ l

e be the dual variables to constraint sets (8.4b) and (8.4c), we
get the following LP-dual after some reformulations (including eliminating the dual
variables of we ≥ 1).

min ∑
t∈V
∑

e∈At

γ t
e (8.9a)

s.t. ∑
t∈V

γ t
e ≤ 0 e ∈ E (8.9b)

∑
e∈δ+(v)

γ t
e − ∑

e∈δ−(v)
γ t

e = 0 t ∈ V , v ∈ V (8.9c)

γ t
e ≥ 0 e ∈ E \At , t ∈ V (8.9d)
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Model (8.9a)–(8.9d) can be seen as a multi-commodity network flow problem,
with commodities indexed by t. Some flow may be negative, since γ t

e may be neg-
ative for e ∈ At . Starting at the feasible solution γ = 0, we look for an unbounded
solution to (8.9a)–(8.9d) , which would indicate that (8.4b)–(8.4e) is infeasible. Due
to constraints (8.9c), each commodity must be changed in cycles, if at all. Due to
constraints (8.9b), any increase of one commodity must be compensated for by a
decrease of another commodity.

An arc can be used forwards (positive flow) or backwards (negative flow). Con-
sider a cycle C ⊆ E , C = F ∪ B, where F means forwards and B backwards (for
commodity l′). The following is a possible change.

γ l′
i j = θ (i, j)∈ F, γ l′

i j =−θ (i, j)∈ B, γ l′′
i j =−θ (i, j)∈ F, γ l′′

i j = θ (i, j)∈ B (8.10)

Let us now define some notation. A cycle C = F ∪B is called feasible if B ⊆ At ′ and
F ⊆ At ′′ , i.e., the arcs in B lie in one SP graph and the arcs in F lie in another. The
arc (i, j) is called eligible if (i, j) ∈ (F \At ′)∪(B\At ′′). In words, an eligible arc lies
in F but not in At ′ or in B but not in At ′′ .

A cycle C = F ∪B is called valid if there exist two indices l′ and l′′ such that the
cycle is feasible and contains at least one eligible arc.

We find that flow of commodities l′ and l′′ can be changed infinitely in a valid
cycle, and the objective function value (8.9a) tends towards infinity. In other words,
a valid cycle represents an unbounded solution to (8.9a)–(8.9d) .

Proposition 8.1. If there exists a valid cycle, then there exists no compatible set of
weights.

See [28] for a proof for the spanning case. In [29] the authors prove that proposition
8.1 holds even if the SP graphs are not spanning, although then the model (8.9a)–
(8.9d) cannot be used.

Letting Sl(s, t) denote all subpaths from node s to node t in Al ; we say that Ak

and Al are subpath consistent if Sk(s, t) = Sl(s, t) for all s ∈ V and t ∈ V such that
Sk(s, t) �= /0 and Sl(s, t) �= /0. It is well-known that subpath consistency between all
SP graphs is a necessary condition for the existence of compatible weights.

We can show the following.

• A valid cycle must contain at least three nodes and three arcs.
• If all SP graphs are trees, then any feasible cycle is also valid.
• If two SP graphs are subpath inconsistent, there exists a valid cycle.

Below, we give an example of subpath consistent SP graphs that have a valid cycle,
and can conclude that the absence of a valid cycle is a stronger necessary condition
for the existence of compatible weights than subpath consistency. In Figure 8.3 we
give two SP graphs and the resulting valid cycle.

Considering the feasible set (8.9b)–(8.9d), we find the following (proved in [27]).
A valid cycle represents an extreme ray. Valid cycles represent all extreme rays that
only include two commodities. Valid cycles represent all extreme rays that use only
one cycle and its reverse.
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Fig. 8.3 Two SP graphs and a valid cycle

There are three possibilities for a set of SP graphs: compatible weights exist,
valid cycles exist, or neither exists. In the last case, the unbounded solutions of
(8.9a)–(8.9d) are of a more complicated structure than those represented by valid
cycles, and require the usage of three or more commodities.

Computational tests suggest that the last case is not so common. In [28], a total
of 1,423 different instances are solved. Of these 276 have compatible weights, 1,137
have valid cycles, and only 10 (i.e., 0.7%) have neither.

A method for finding valid cycles (called VC method) enumerates pairs of SP
graphs, and constructs a graph Ḡ, which contains the arcs in one SP graph and the
reversed arcs in the other. One could then use reductions by removing nodes and
arcs of Ḡ that cannot be a part of a valid cycle, and then try to find a feasible cycle
containing a certain eligible arc. If there exists no such cycle, the eligible arc is
removed. This is repeated until the whole graph is eliminated or a valid cycle is
found. If the graph is completely eliminated by the reductions, there exists no valid
cycle with the two SP graphs considered.

Since a valid cycle exists if and only if a strongly connected component of Ḡ
contains an eligible arc, one can also search for strongly connected components,
and remove those with less than three nodes, and those without eligible arcs.

Proposition 8.2. After a finite and polynomial number of steps, the VC algorithm
will terminate, either with a valid cycle or a proof that no valid cycle exists.

Proposition 8.2 holds even if the SP graphs are not spanning. See [28] and [29]
for details. The best complexity of a VC method is O(m2|V |2), which reduces to
O(m2|V |) if all SP graphs are trees.

Undirected paths can be converted into two SP graphs, one in each direction, and
combined, so that the undirected single path case can be handled in a polynomial
way by the VC method. This way, we have found a valid cycle in an instance that
satisfies the generalized cyclic compatibility condition [6], so the cyclic conditions
in [6] are not stronger necessary conditions for the existence of compatible weights
than the absence of valid cycles.

If it is unknown if compatible weights exist, one can first try to find compatible
weights by solving (8.4a)–(8.4e) with an LP code, and if one fails to find a feasible
solution, one can proceed with the VC method. Another possibility is to first run
the VC method, and if it fails to find a valid cycle, one can try to find the weights
by solving (8.4a)–(8.4e). Computational tests reveal that for large problems, solving
(8.4a)–(8.4e) as an LP might take more than 100 times longer than running the VC
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method, so we recommend starting with the VC method, and only solving the LP
problem (8.4a)–(8.4e) if no valid cycle exists.

Considering (8.4a), (8.4b), (8.4c’), (8.4c”), (8.4d), (8.4e), we find that the arcs in
E \(At ∪ Āt) will be included in (8.9a) and will also occur in (8.9d). This means that
the arcs in E \ (At ∪ Āt) cannot be part of F or B, and are not eligible, and so play a
very passive role in this context. Therefore, the VC methods are not changed.

Finally we note that in order to prohibit a certain valid cycle, one can introduce
constraints that either make the cycle infeasible or remove the eligible arcs in the
cycle.

8.4.3 General Inequalities

In the previous sections, we discussed special well-structured conflicts among SP
graphs. In general, however, such conflicts may be extremely complex. Now, we will
discuss methods that might discover such conflicts in a general case, and may also
generate corresponding valid inequalities based on fractional solutions to problem
(8.3). The following discussion is based on [78].

The set of all admissible binary vectors u will be denoted by U . For each e ∈ E
and t ∈ V consider the quantity δet = rb(e)t + we − ra(e)t . Clearly, link e is on a
shortest path to node t if, and only if, δet = 0. Hence, a routing vector u defines
a shortest path routing configuration if there exists a system w of positive weights
such that δet ≥ 1 if uet = 0, and δet = 0 if uet = 1. Since these conditions can be
rewritten as δet + uet ≥ 1, δetuet = 0, the following linear program in variables y,
w = (we : e ∈ E ), and r = (rst : s, t ∈ V ) can be used to check whether a given vector
u defines admissible routing:

P(u): min y (8.11a)

s.t. rb(e)t +we − ra(e)t +uet ≥ 1− y e ∈ E , t ∈ V , (8.11b)

(rb(e)t +we − ra(e)t)uet ≤ y e ∈ E , t ∈ V , (8.11c)

we ≥ 1 e ∈ E , (8.11d)

rtt = 0 t ∈ V , (8.11e)

y ≥ 0. (8.11f)

This program is similar to (8.4); however in this case, being continuous, routing
variables uet are used explicitly in the constraints. Let (w∗(u),r∗(u),y∗(u)) denote
an optimal solution of P(u). If y∗(u) = 0 then w∗(u) and r∗(u) satisfy introduced
shortest path constraints, and hence u ∈ U , i.e., u describes an admissible shortest
path routing configuration. On the other hand, if y∗(u) > 0, there is no assignment
of link weights which can generate the routing configuration u.

Now, consider the problem dual to P(u); let μ = (μet : e ∈ E , t ∈V ), π = (πet : e ∈
E , t ∈ V ), and θ = (θe : e ∈ E ) be the vectors of the dual variables corresponding
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to constraints (8.11b), (8.11c), and (8.11d), respectively. Using some algebra, we
eliminate dual variables θe, substitute variables μev with new variables ϕet = uetπet −
μet , and finally obtain the following form of the dual problem expressed in variables
ϕ = (ϕet : e ∈ E , t ∈ V ) and π = (πet : e ∈ E , t ∈ V ):

F(u): max Fu(ϕ) = ∑
e∈E
∑

t∈V

uetϕet (8.12a)

s.t. ∑
t∈V

ϕet ≥ 0 e ∈ E (8.12b)

∑
e∈δ+(v)

ϕet − ∑
e∈δ−(v)

ϕet = 0 v, t ∈ V (8.12c)

∑
e∈E
∑

t∈V

ϕet − ∑
e∈E
∑

t∈V

(uet +1)πet ≥ −1 (8.12d)

ϕet ≤ uetπet , πet ≥ 0 e ∈ E , t ∈ V . (8.12e)

Problem F(u) can be regarded as a special type of the multi-commodity flow
problem with ϕet interpreted as an amount (bounded, and possibly negative) of
(pseudo-) flow of commodity t on link e. Due to constraint (8.12c) the flow of each
commodity is circular, and due to (8.12b) the total amount of flow on each link is
nonnegative. The objective is to find the network flow with maximum total revenue
where uet can be interpreted as the unit revenue of using link e by commodity t.
Problem F(u) is a generalization of problem (8.9) from the previous section, vari-
ables ϕet corresponding to variables γet (with reversed sign). The major difference
results from the fact that with fractional routing vectors u, variables uet explicitly
appear in formulation (8.12).

Let F∗
u denote the optimal objective of (8.12). It holds that the problem is feasible,

that 0 ≤ F∗
u ≤ 1 for any u, and that a vector u defines an admissible shortest path

routing configuration if, and only if, F∗
u = 0.

From the dual test, general valid inequalities that separate non-admissible routing
vectors u can now be derived. Suppose that I 1 and I 0 are two disjoint sets of pairs
(e, t) ∈ E ×V , i.e., I 1,I 0 ⊆ E ×V , and I 1 ∩I 0 = /0. Let S denote a real-valued
function defined as follows:

S(I 1,I 0;u) = ∑
(e,t)∈I 1

(1−uet)+ ∑
(e,t)∈I 0

uet . (8.13)

We will consider valid inequalities of the following form:

S(I 1,I 0;u) ≥ 1. (8.14)

Note, that this is exactly the form of conflict-eliminating constraints (8.3f) with
I 1 = C and I 0 = C̄.

For binary u0 all terms in (8.13) are binary, so S(I 1,I 0;u0) is nonnegative and
integer. If (8.14) is not satisfied, then S(I 1,I 0;u0) = 0, and all its terms must
be equal to 0. Hence, inequality (8.14) does not hold for a binary vector u0 (i.e.,
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S(I 1,I 0;u) = 0) if, and only if, u0
et = 1 for all (e, t)∈I 1 and u0

et = 0 for all (e, t)∈
I 0. Suppose u0 is a binary vector defining a non-admissible routing configuration,
and (ϕ,π) is a solution of problem F(u0) such that Fu0(ϕ) > 0. Then, inequality
(8.14) with I 1 =I 1

+(u0) = {(e, t)∈E ×V : u0
et = 1∧ϕet > 0} and I 0 =I 0

−(u0) =
{(e, t)∈ E ×V : u0

et = 0∧ϕet < 0} separates u0 and does not separate any admissible
routing vector u (i.e., any binary u ∈ U ).

Fractional vector u0 (u with at least one strictly fractional uet always describes
a non-admissible shortest path routing configuration) can also be separated with
a general method analogous to the one used for separating non-admissible binary
shortest path routing vectors u by solving problem F(u0). Separating fractional vec-
tors is however more complex. The goal is to find sets I 1 and I 0 for which
inequality (8.14) separates u0 and does not separate any admissible routing con-
figuration, and for which these sets determine the most violated valid inequality
of the considered type. Let q = (qet : e ∈ E ,v ∈ V ) be a binary vector and de-
fine J (q) = {(e, t) ∈ E × V : qet = 1} (i.e., q is the characteristic function of
set J (q)). Suppose that I 1 = J (y) and I 0 = J (z) for two binary vectors
y = (yet : e ∈ E , t ∈ V ) and z = (zet : e ∈ E , t ∈ V ). We assume that sets I 0 and I 1

are disjoint, so yet + zet ≤ 1 must hold for all pairs (e, t). Then, function (8.13) can
be calculated as

S(I 1,I 0;u) = ∑
e∈E
∑

t∈V

((1−uet)yet +uetzet). (8.15)

Now, for a non-admissible u0, an issue arises of how to determine such vectors
y and z, such that S(J (y),J (z);u0) < 1 and all binary vectors u separated by
(8.14) correspond to non-admissible routing configurations. Consider the following
problem (where Δ is a small strictly positive constant):

G(u): min Gu(y,z) = ∑
e∈E
∑

t∈V

((1−uet)yet +uetzet) (8.16a)

s.t. (ϕ,π) ∈ Fu (8.16b)

∑
e∈E
∑

t∈V

uetϕet ≥ Δ (8.16c)

ϕet ≤ yet e ∈ E , t ∈ V (8.16d)

−ϕet ≤ yet + zet e ∈ E , t ∈ V (8.16e)

yet + zet ≤ 1 e ∈ E , t ∈ V (8.16f)

yet ,zet ∈ {0,1} e ∈ E , t ∈ V . (8.16g)

Let problem G(u0) be feasible for some (fractional) u0; denote its optimal so-
lution by (ϕ∗(u0), π∗(u0), y∗(u0), z∗(u0)), and by G∗

u0 the optimal value of the
objective function. If G∗ = G∗

u0 < 1, then inequality (8.14) with I 1 = J (y∗(u0))
and I 0 = J (z∗(u0)) separates u0, and it does not separate any admissible binary
shortest path routing configuration vector u ∈ U .
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As in the case of binary routing vectors, the cut can be made stronger by defining
a smaller set I 1. This requires appropriate modification of G(u) (cf. problem H(u)
in [78]).

In contrast to the LP problem F(u), problem G(u) is an MIP. Trying to separate
fractional vectors u more effectively, we might consider a linear relaxation of prob-
lem G(u). The definition of J (q) can be modified to cover fractional vectors q:
J (q) = {(e, t) ∈ E ×V : qet > 0}, because sets J (y∗) and J (z∗) are disjoint.
Then, inequality (8.14) is still properly defined in the sense that admissible routing
configurations are not separated.

Unfortunately, G∗
u is in general not equal to S(J (y∗),J (z∗);u). However, one

may still use an approximate separation procedure that consists of solving the linear
relaxation and evaluating the resulting value of S(J (y∗),J (z∗);u): a valid in-
equality is found if S(J (y∗),J (z∗);u) < 1. It should be noted that due to the fact
that variables ϕet describe circular flows, and constraint (8.12b) requires that neg-
ative flows are compensated for by positive flows, in practice usually all nonzero
values ϕ∗

et are equal to Δ or −Δ , for some 0 < Δ ≤ 1. When this is the case,
G∗

u = Δ · S(J (y∗),J (z∗);u), and a valid inequality separating u is thus found if
G∗

u < Δ .
Thus, we have a set of methods that generate cuts separating a fractional solution

vector u: solving problem H(u) as an MIP, solving problem G(u) as an MIP, and
solving the linear relaxation of problem G(u). These methods clearly differ with
respect to their computational complexity and also the quality of the computed cuts.
In practice however, one is not obliged to choose a single method. Instead, one
can combine the selected methods into meta-methods by running these methods in
sequence or in parallel until the first cut is found or some time limit is reached. This
gives rise to different strategies of generating cuts.

Table 8.1 Results of B&C for a six node network
Scenario After Strategy Time [sec.] Nodes Cuts

1 - CPLEX >4155 >664000∗ -
2 - MIP(G) >41800∗ >28000 >8000
3 - LR(G)/MIP(G) >72700∗ >66600 >10000
4 - CC 548 68700 1556
5 - CC/LR(G) 4081 64000 2485
6 - CC/MIP(G) 47777 65200 4696
7 - CC/LR(G)/MIP(G) 13299 24900 2785
8 - CC/LR(G)/MIP′(G) 4071 14500 1961
9 - CC/MIP(H)/LR(G)/MIP(G) 34400 43600 3114
10 - CC/(MIP(H)‖(LR(G)/MIP(G))) 7550 7200 1567
11 4 CPLEX 292 46400 1556
12 9 CPLEX 539 57100 3114
13 10 CPLEX 41 5800 1567

To evaluate the effectiveness of different methods and different strategies of gen-
erating cuts, we have performed numerical experiments using a small test network
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consisting of six nodes and 28 links with capacities ranging from 24 to 76, and all
possible 30 demands. We considered solving the integrated MIP problem of routing
and link weights optimization with a B&C method using the CPLEX 10.1 solver.
The optimal value of the objective function (the objective was to maximize the min-
imal residual link capacity) was equal to 6, while the upper bound resulting from
the linear relaxation of the problem was equal to 13. The results of the experiments
are summarized in Table 8.1. We applied a number of strategies that are defined in
column Strategy: CPLEX is relying only on standard cuts generated by the solver;
CC is generating combinatorial inequalities described in Section 8.4.1; MIP(X) is
generating cuts by solving problem X as MIP; LR(X) is generating cuts by solv-
ing problem X as LP. Symbols / and ‖ mean that the two methods given as the
arguments are run, respectively, in sequence and in parallel. The table provides the
information about the total time of the computation, the total number of visited B&C
nodes, and the total number of generated user-defined cuts. The asterisk in columns
Nodes or Time means that the computation was aborted due to, respectively, running
out of memory or reaching a time limit.

On the one hand, it is evident that there is a need to combine the MIP-based
methods of generating general inequalities with the method of generating combina-
torial cuts; that is because of the high computational cost of solving problems H(u)
and G(u) as MIPs, and of the insufficient quality of cuts resulting from solving the
linear relaxation of problem G(u). The results also suggest that the separation pro-
cedure based on solving problems H(u) or G(u), and as a result the overall B&C
approach, do not scale well with the network size, because the integer linear models
very quickly become large and hard to solve. On the other hand, however, the qual-
ity of cuts that are generated using MIP-based methods is likely to be high. This can
be examined by providing the cuts resulting from a particular scenario (cf. scenario
10) as a set of initial user-defined cuts (this fact is indicated in column After) and
solving the problem again with the CPLEX solver’s regular B&C procedure; the
quality of generated cuts can be seen from scenarios 11 through 13. Thus, constitut-
ing the only exact approach that allows separating fractional solutions, the presented
methods seem to be worth investing even more research effort into.

8.5 Heuristic Methods

As already pointed out, shortest path routing problems are NP-hard. Direct formula-
tions are extremely hard to solve, and integer programming approaches can typically
resolve only small- to medium-size problems. Moreover, in an operational setting,
additional constraints can appear that are difficult to integrate in a mixed-integer
programming formulation. Therefore, for large network instances, heuristics can be
necessary to find good feasible solutions in limited computing time. Another impor-
tant application of heuristic methods is that they provide good upper bounds for the
branch-and-cut integer programming approach of the form presented in Section 8.3.
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8.5.1 Local Search

One of the first heuristic approaches to the shortest path routing problem STEP
for its ECMP version was a local search approach developed by Fortz and Thorup
[42, 45]. Recently, a similar implementation has been made available in the open
source TOTEM toolbox [57].

A solution of the weight setting problem is completely characterized by its vector
w of weights. The local search heuristic is based on two different neighborhoods,
defined by one of the two following operations applied to w.

Single weight change. This simple modification consists in changing a single
weight in w. We define a neighbor w′ of w for each arc e ∈ E and for each
possible weight w′ �= we by setting w′

e = w′ and w′
f = w f for all f ∈ E \{e}.

Evenly balancing flows. To obtain a good routing when ECMP is applied, it is
desirable to split the flow as evenly as possible between different arcs.
More precisely, consider a target node t such that some part of the demand going
to t goes through a given node u. Intuitively, we would like OSPF routing to split
the flow to t going through u evenly along the arcs leaving u. This is the case
when every arc in δ+(u) belongs to a shortest path from u to t. More precisely, if
δ+(u) = {ai : 1 ≤ i ≤ p}, and if Pi is one of the shortest paths from the originating
node of ai to t, for i = 1,2, . . . , p, as illustrated in Figure 8.4, then we want to set
w′ such that

w′
ai

+w′(Pi) = w′
a j

+w′(Pj) 1 ≤ i, j ≤ p,

where w′(Pi) denotes the sum of the weights of the arcs belonging to Pi. A simple
way of achieving this goal is to set

w′(a) =
{

w∗ −w(Pi) if a = ai, for i = 1, . . . , p,
wa otherwise

where w∗ = 1+maxi=1,2,...,p{w(Pi)}.
A drawback of this approach is that an arc that does not belong to one of the
shortest paths from u to t may already be congested, and the modifications of
weights we propose will send more flow on this congested arc, an obviously
undesirable feature. We therefore decided to choose at random a threshold ratio
θ between 0.25 and 1, and we only modify weights for arcs in the maximal subset
B of δ+(u) such that

wai +w(Pi) ≤ wa j +w(Pj) ∀i : ai ∈ B, j : a j /∈ B,

lw
a ≤ θ ca ∀a ∈ B,

where lw
a denotes the load on a resulting from weight vector w. The last relation

implies that the utilization of an arc a ∈ B resulting from the weight vector w is
less than or equal to θ , so that we can avoid sending flow on already congested
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arcs. In this way, flow leaving u towards t can only change for arcs in B, and
choosing θ at random allows us to diversify the search.
This choice of B does not ensure that weights remain below wmax. This can
be done by adding the condition maxi:ai∈B w(Pi)−mini: ai∈B w(Pi) ≤ wmax when
choosing B.

P5

P4

t

P1

P3

P2

u

a4

a2

a5

a3

a1

Fig. 8.4 The second type of move tries to make all paths form u to t of equal length

Note that the second type of move does not apply to unsplittable flow routing. In
that case, only the first type of move is relevant. Moreover, adapting the algorithm
for unsplittable flows requires more work, as solutions with multiple shortest paths
must be rejected (or highly penalized in the objective function).

These neighborhoods are embedded in a local search heuristic where cycling is
avoided by using hashing tables (this can be seen as a particular tabu search imple-
mentation). Some effective diversification schemes have also been proposed. The
main strength of this approach is its ability to efficiently recompute the shortest
paths and the flows while exploring the neighborhood. As these efficient approaches
have also been used in subsequent works, we describe them in Subsection 8.5.3. Re-
cently, Fortz and Ümit [81] managed to significantly improve the results obtained
by the heuristic by warm-starting the local search with the dual variables of a multi-
commodity flow relaxation of the problem. The idea of using the dual variables as
heuristic weights has been concretized in the TOTEM toolbox as of version 3.2 un-
der the name of the FastIPMetric module. Klopfenstein and Mamy [56] recently
showed that the optimization problem could be made more tractable by restricting
the number of possible weight values on arcs to only a few.

One advantage of this approach is that it can be easily extended to take into
account multiple demand matrices [43] or multiple scenarios arising, for example,
from robustness issues (e.g., link or node failures) [44].

8.5.2 Other Algorithms

Ericsson et al. [37] have proposed a genetic algorithm for the same problem. Solu-
tions are naturally represented as vectors of weights, and the crossover procedure
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used is random keys, first proposed by Bean [4]. To cross and combine two par-
ent solutions p1 (elite) and p2 (non-elite), first generate a random vector r of real
numbers between 0 and 1. Let K be a cutoff real number between 0.5 and 1, which
will determine if a gene is inherited from p1 or p2. A child c is generated as fol-
lows: for all genes i, if r[i] < K, set c[i] = p1[i]; otherwise, set c[i] = p2[i]. They also
implemented a mutation operator that randomly mutates a single weight.

This approach was improved by Buriol et al. [30]. They added a local search pro-
cedure after the crossover to improve the population. This hybrid approach, com-
bined with dynamic updates of shortest paths and flows, lead to results competitive
in quality to the local search of Fortz and Thorup, with a slightly faster convergence.
Another application of genetic algorithms to SPR design can be found in [62].

A simulated annealing approach was proposed by Ben-Ameur [8] for the sin-
gle path routing case. Another line of heuristic approaches comes from using La-
grangean relaxations of the MIP models (see [9] for single path routing and [51] for
ECMP routing).

8.5.3 Effectiveness Issues

To evaluate the cost of a solution represented as a set of weights, we have to com-
pute the shortest paths for all origin-destination pairs, then send the flows along the
shortest paths according to the ECMP splitting rule. This could be a bottleneck in
the search for good solutions as computing this cost function from scratch is com-
putationally expensive.

There are two basic ways of computing the ECMP flows for a given system of
weights w. The first way consists in using an LP formulation. In such a formulation
a regular weight system w (for the notion of regularity see Section 8.2.1) is given,
and the unknowns are the accumulated link flows xet (recall that xet is the total
flow to destination node t on link e). As explained in [72], such a formulation can
be obtained as a linear program resulting from a subset of the complete problem
formulation presented in Section 8.7.1. In the formulation, variables we are fixed to
the values of the current weights, routing variables uet are made continuous, capacity
constraints (8.18d) are skipped, and the objective is changed to maximizing the
following function:

F = (|V | · |E |)∑s∈V ∑s∈V \{v}rst +∑e∈E∑t∈V \{a(e)}(1−uet). (8.17)

However, for heuristic solutions, we can also apply a fast algorithmic approach
to compute the flows. This can be done using a two-step algorithm based on the
shortest path computation. In the first step we compute all the w-shortest paths for
all node pairs, and then, in the second step, we recursively assign flows to the paths
computed in the first phase (see [45] or Algorithm 7.1 in [68]).

In most heuristic approaches, the number of changes in the shortest paths graph
and in the flows is very small between neighboring solutions. Hence, using fast
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updates of shortest paths and flows is crucial to make heuristics effective. We now
briefly review these approaches.

With respect to shortest paths, this idea is already well studied [74], and we
can apply their algorithm directly. Their basic result is that, for the recomputation,
we only spend time proportional to the number of arcs incident to nodes s whose
distance rst to t changes. In typical experiments there were only very few changes, so
the gain is substantial – in the order of factor 15 for a 100 node graph. An improved
algorithm was recently proposed by Buriol et al [31].

To update the flows, a similar approach, described in [45], can be used. Experi-
ments reported in that paper show that using dynamic updates of shortest paths and
flows make the algorithm from five to 25 times faster, with an average of 15 times
faster.

8.6 Numerical Results

In this section, we present selected numerical results obtained with the two pre-
sented optimization approaches. The exact integer programming approach described
in Section 8.3 is illustrated in Subsection 8.6.1 for the case of unsplittable shortest
path routing . In Subsection 8.6.2, we then present results for one of the local search
heuristics discussed in Section 8.5.

8.6.1 Integer Programming Approach

Several variants of the two-phase integer programming approach have been imple-
mented as part of the network optimization library DISCNET [2]. This implemen-
tation is especially designed for the unsplittable shortest path routing version and
uses only binary link-flow variables (or, alternatively, binary path variables) instead
of the SP tree variables and the aggregated flow variables to model the routing in
the master problem formulation. The corresponding conflict constraints for the un-
splittable shortest path routing version are separated via combinatorial heuristics or,
if these fail, via the client problem analogously to the conflict inequalities for the
ECMP routing version, as described in Sections 8.3 and 8.4. In addition to these
inequalities, which describe the admissible routing patterns independently of traf-
fic demands and link capacities, the DISCNET implementation also uses cutting
planes based on the induced traffic flows and the link capacities. In practice, in-
duced cover inequalities based on the precedence-constrained knapsacks defined by
a single link capacity constraint and the subpath consistency among the paths across
that link proved to be very useful [13, 18]. All data structures and algorithms are
implemented in C++ using the library LEDA 4.1 [1]; the linear programs arising in
the solution process are solved with CPLEX 11.0 [53]. Further details, including
a description of all cutting planes and separation algorithms used, of the especially
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Table 8.2 Integer programming results for unsplittable shortest path routing

Problem Nodes Links Demands LP LB Sol Nodes Gap (%) Time (s)
Atlanta 15 22 210 0.65 0.86 0.86 30 0.0 10.3
Dfn-bwin 10 45 90 0.34 0.69 0.69 89 0.0 26.5
Dfn-gwin 11 21 110 0.50 0.51 0.51 521 0.0 16.3
Di-yuan 11 42 22 0.25 0.62 0.62 33 0.0 1.8
France 25 45 300 0.60 0.71 0.74 76 5.0 10000.0
Germany50 50 88 662 0.64 0.64 0.73 56 12.7 10000.0
NewYork 16 49 240 0.44 0.62 0.62 15 0.0 54.9
Nobel-EU 28 41 378 0.44 0.44 0.45 75 0.3 10000
Nobel-GER 17 26 121 0.64 0.73 0.73 101 0.0 114.1
Nobel-US 14 21 91 0.48 0.49 0.49 77 0.0 20.4
Norway 27 51 702 0.54 0.54 0.62 99 14.9 10000.0
PDH 11 34 24 0.34 0.80 0.80 85 0.0 6.37
Pioro40 40 89 780 0.38 0.38 0.45 311 19.6 10000.0
Polska 12 18 66 0.82 0.93 0.93 2149 0.0 200.2
Sun 27 102 67 0.29 0.39 0.70 102 76.8 10000.0
TA1 24 55 396 0.30 0.93 0.93 11 0.0 289.2

tailored branching schemes, and of the problem-specific primal heuristics, can be
found in [13] and [14].

Table 8.2 shows computational results for a collection of benchmark problems
taken from the Survivable Network Design Data Library [66]. All computations
were performed on a Linux 2.6 machine with an Intel Core2 CPU running at
2.66 GHz and with 4 GByte RAM. The two-phase decomposition algorithm was
run with a total CPU time limit of 10,000 seconds on each problem instance.

The underlying networks are bidirectional and have the same capacity for both
directions of all links. The number of nodes, bidirected links, and nonzero traffic
demands is shown in the first columns of Table 8.2. Column LP shows the lower
bound obtained by solving the linear relaxation of (8.3) at the root node of the mas-
ter problem’s branch-and-bound tree. The columns LB and Sol show the best lower
bound proved and the value of the best solution found by the two-phase decomposi-
tion algorithm within the given time limit. The remaining columns show the number
of explored branch-and-bound nodes, the residual optimality gap, and the total CPU
time until either optimality was proved or the time limit exceeded.

We observe that small- and medium-size instances can be solved optimally. For
large problems optimality cannot always be achieved. Instances with dense networks
that have lots of short potential routing paths for most demand pairs are more diffi-
cult than those where the underlying networks are fairly sparse. For instances with
dense networks, lots of violated conflict constraints are separated during the execu-
tion of the algorithms, which often drastically slows down the solution of the linear
relaxation. For the most difficult instances, only few branch-and-bound nodes could
be explored.

Figure 8.5 illustrates the importance of optimizing the routing weights in prac-
tice. It shows the different link loads that would result with unsplittable shortest
path routing from three commonly used default weight settings, and those resulting
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(a) Inverse link capacities (perturbed) (b) Unit lengths (perturbed)

(c) Geographic lengths (d) Optimized routing lengths

Fig. 8.5 Link congestion values in G-WiN for several routing metrics

from the optimized routing weights in the German national research and education
network G-WiN with capacities and traffic demands of August 2001. Even with-
out using the traffic splitting possibilities of the ECMP routing version, the traffic
is distributed much more evenly for the optimized metric. The peak congestion is
not even half of that for the default settings, which significantly reduces packet de-
lays and loss rates and improves the network’s robustness against unforeseen traffic
changes and failures.

8.6.2 Heuristic Methods

In this section, we present results obtained with the TOTEM implementation, called
IGP-WO, of the local search heuristic [57] described in Section 8.5.

The instances used are the same as in Section 8.6.1, but with ECMP traffic split-
ting allowed. The heuristic tries to optimize the normalized cost function defined
in [43] (see also Section 8.7.2). As a side product, this cost function also maintains
small maximum utilization.

As proposed in [81], the heuristic is started with weights corresponding to the
values of the dual variables of a multi-commodity flow relaxation of the problem.
This relaxation also provides a lower bound on the optimal value. 100 iterations of
the local search heuristic are performed.

Results are presented in Table 8.3, where they are compared based on the max-
imum utilization and the normalized cost function from [43]. MCNF is the lower
bound obtained with the multi-commodity flow relaxation of the problem, Inv-cap is
obtained with weights inversely proportional to the link capacities (the standard used
by most operators), and Dual Values is the solution obtained by setting weights using
dual values from the MCNF relaxation. We report max-utilization for three flavors
of IGP-WO, applied starting with the dual values solution. NC is the solution after
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100 iterations of local search with the normalized cost function as objective, MU-H
after 100 iterations with max-utilization as objective, and MU-T after 1,000 iter-
ations with max-utilization as objective. Note that performing 100 iterations takes
less than five seconds on a standard desktop PC, which makes the heuristic approach
very attractive if many scenarios have to be considered, or if operators need to react
quickly to a sudden event.

Table 8.3 Heuristic results for ECMP routing

Maximum Utilization Normalized Cost
Problem MCNF Inv-cap Dual IGP-WO MCNF Inv-cap Dual IGP-WO

Values NC MU-H MU-T Values
Atlanta 0.65 0.95 0.96 0.92 0.83 0.74 0.14 0.20 0.28 0.20
Dfn-bwin 0.34 0.42 0.51 0.69 0.42 0.42 0.11 0.11 0.12 0.11
Dfn-gwin 0.50 0.67 0.83 0.56 0.52 0.50 0.11 0.11 0.13 0.11
Di-yuan 0.25 0.77 0.75 0.62 0.75 0.50 0.10 0.14 0.17 0.11
France 0.60 1.64 1.62 0.79 0.75 0.65 0.11 23.87 25.00 0.15
Germany50 0.64 1.76 1.56 0.75 0.70 0.65 0.08 8.78 19.28 0.13
NewYork 0.44 0.85 0.95 0.69 0.84 0.64 0.11 0.14 0.18 0.13
Nobel-EU 0.44 0.77 0.77 0.59 0.44 0.44 0.08 0.11 0.11 0.10
Nobel-GER 0.64 1.45 1.21 0.67 0.64 0.64 0.11 12.31 6.43 0.13
Nobel-US 0.48 0.66 0.79 0.56 0.50 0.49 0.10 0.12 0.14 0.12
Norway 0.54 0.90 1.08 0.69 0.74 0.60 0.12 0.15 0.29 0.13
PDH 0.34 1.10 3.32 0.80 0.51 0.51 0.09 1.01 124.66 0.14
Pioro40 0.38 0.71 0.56 0.48 0.40 0.38 0.09 0.10 0.10 0.09
Polska 0.82 1.04 1.08 0.90 0.91 0.87 0.25 0.53 0.54 0.25
Sun 0.29 2.04 1.89 0.67 0.71 0.34 0.09 65.06 27.99 0.13
TA1 0.33 0.89 0.76 0.66 0.35 0.32 0.09 0.14 0.13 0.10

We observe that Inv-cap and Dual Values are often very far from the lower bound,
and that IGP-WO improves this solution substantially, both for max-utilization and
the normal cost. Optimization with max-utilization as objective function performs
much better with that criterion, but at the price of a very local improvement in the
routing. For instances France, Germany50, Nobel-GER, PDH, and Sun, the im-
provement is really impressive as the heuristic is able to decrease the maximum
utilization and the normalized cost below 1, while simple heuristics lead to an over-
congested network.

Note that for most instances, the dual values perform worse than Inv-Cap. Nev-
ertheless, we observed that in practice, this solution is a better starting point for
the local search heuristic as the structure of the routing is closer to an optimal one
despite the worst objective value.
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8.7 Selected Extensions

In this section we briefly extend the presentation of the previous sections to cover
several important issues not discussed so far. In particular, we present a full mixed-
integer programming formulation of STEP (Section 8.7.1), discuss additional rout-
ing constraints and various objective functions (Section 8.7.2), show how resource
dimensioning can be taken into account (Section 8.7.3), and show how optimization
of resilient weight systems can be approached (Section 8.7.4). Finally, in Section
8.8, we give historical remarks.

8.7.1 General MIP Formulation

For completeness, a full mixed-integer programming formulation of the basic SPR
problem (STEP) considered earlier in this chapter is given below. The formulation
is explained in detail, so the knowledge of Section 8.2 is sufficient for its under-
standing.

General ECMP Traffic Engineering Problem

find
xet ECMP flow destined to node t induced by system w on link e
zvt common value of the ECMP flow destined to node t, assigned to the links

outgoing from node v and belonging to the shortest paths from v to t
uet variable indicating whether link e is on a shortest path to node t
rst length of the w-shortest path from s to t
we weight assigned to link e
Z maximum over link utilization factors

minimize

Z (8.18a)

subject to
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∑e∈δ−(t)xet = Dt t ∈ V (8.18b)

∑e∈δ+(v)xet −∑e∈δ−(v)xet = dvt t ∈ V , v ∈ V \{t} (8.18c)

∑t∈V \{a(e)}xet ≤ Zce e ∈ E (8.18d)

0 ≤ xet ≤ Dtuet e ∈ E , t ∈ V \{a(e)} (8.18e)

0 ≤ za(e)t − xet ≤ Dt(1−uet) e ∈ E , t ∈ V \{a(e)} (8.18f)

1−uet ≤ we + rb(e)t − ra(e)t e ∈ E , t ∈ V \{a(e)} (8.18g)

we + rb(e)t − ra(e)t ≤ M(1−uet) e ∈ E , t ∈ V \{a(e)} (8.18h)

rst ≥ 1 (s, t) ∈ V |2| (8.18i)

rvv = 0 v ∈ V (8.18j)

uet ∈ {0,1} e ∈ E , t ∈ V \{a(e)} (8.18k)

we ∈ {1,2, . . . ,K} e ∈ E (8.18l)

x,z,r,Z ≥ 0 (8.18m)

x,z,r,Z ∈ R (8.18n)

Above, M is a constant (”big-M”) not less than the difference in length of any two
paths in the network graph. For example, M = K · |E | would suffice. Still, for com-
puting lower bounds in the linear relaxations of problem (8.18) it is advantageous to
use an M as small as possible, so this constant can be made dependent on the pairs
of nodes (s, t), and thus potentially reduced for some node pairs.

Subproblem (8.18a)–(8.18d) minimizes the maximum link utilization factor Z
and is an aggregated node-link formulation of a capacitated multi-commodity flow
allocation problem with aggregated flows x, where xet denotes the total traffic des-
tined to node t carried on link e. The next two constraints express the ECMP rule of
traffic routing by means of binary routing variables u. Each variable uet is supposed
to be equal to 1 if, and only if, link e belongs to at least one shortest path (with
respect to weight system w) from its originating node a(e) to node t. Constraint
(8.18e) forces traffic destined to node t to use only the links allowed by the rout-
ing configuration u (i.e., links e ∈ E with uet = 1), while constraint (8.18f) ensures
that in each node the traffic to destination node t is split equally among the links
assigned to that destination. For node v ∈ V and destination t ∈ V this common
value of equal split is expressed by variable zvt . Finally, the shortest path routing
constraints (8.18g)–(8.18j) ensure that the routing vector u defines shortest paths
consistent with the weight system w. Each variable rvt is supposed to express the
distance (length of the shortest path with respect to w) from node v to node t. The
quantity qe := we + rb(e)t − ra(e)t measures the difference between the length of the
shortest path which starts in node a(e), goes over link e, and ends in node t, and the
distance from the starting node of e to t. Thus, link e is on a shortest path to node t
if, and only if, we + rb(e)t − ra(e)t = 0.

The correctness of formulation (8.18) follows easily from the discussion of the
independent STEP master and ISP client models in Section 8.3.
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Note that in formulation (8.18) the link weights can be either integer (as assumed)
or continuous in interval [1,K]. In the latter case the regularity of the weight system
resulting from (8.18) is assured by constraint (8.18g).

We would like to finally recall what has already been stated on several occasions,
that because of the intrinsic difficulty of STEP, such formulations as (8.18) are virtu-
ally impossible to solve to optimality by contemporary integer programming solvers
for medium-size network instances.

8.7.2 Additional Routing Constraints and Other Objective
Functions

The general STEP formulation (8.18) can be adjusted to a version with a limited
split of flows at the nodes, which can be useful in practice. This is done by adding
the following constraint to formulation (8.18):

∑e∈δ+(v)uet ≤ n v ∈ V , t ∈ V \{v}. (8.19)

This constraint forces at most n nonzero flows allowed to each destination t at each
node v ∈ V . Certainly, if we put n = 1, then we will force unsplittable shortest path
routing, admitting only single shortest paths.

The same adjustment can be applied to the STEP formulation (8.3) introduced
in Section 8.3.1. Adding constraint (8.19) with n = 1 and removing variables z and
constraints (8.3e) from formulation (8.3) will result in an integer progamming for-
mulation for the STEP master problem for unsplittable shortest path routing.

There can also be other objective functions used in formulation (8.18). A sim-
ple variant of such a function is the maximization of the minimum unused link
capacity, denoted by Z, with the following constraint in place of constraint (8.18d):
∑t∈V \{a(e)}xet +Z ≤ ce, for all links e ∈ E . Note that with this objective the problem
is always feasible, provided we allow solutions with Z < 0. However, a true feasible
routing solution is obtained when the resulting objective value is nonnegative.

Another important objective is obtained by using the Kleinrock delay func-
tion [47], to be minimized: F = ∑e∈E

ye
ce−ye

, where ye denotes the load of link e,
ye = ∑t∈V \{a(e)}xet . As with the previous objectives, the Kleinrock function helps
us avoid congestion by penalizing heavily loaded links. Observe that this objec-
tive function is convex, and hence can be approximated with a piecewise linear
function. This leads to linear relaxations of the corresponding convex problem, as
demonstrated in [45] (see also [68]).

As discussed in [43], an issue in these cost function formulations is that they
do not provide a universal measure of congestion. It is natural to require that the
maximum utilization remain below 1, independently of the network topology and
demand matrix. Similarly, we would like a universal cutoff value for the cost func-
tion, independently of the network topology and demand matrix. Fortz and Thorup
defined in [43] a normalized version of the cost function, for which it is natural to
say that a routing solution congests a network if the cost is greater than 1.



232 A. Bley et al.

A comparison between problems with several objective functions can be found
in [50].

8.7.3 Resource Dimensioning

So far we have been investigating versions of STEP with fixed link capacities ce,
e ∈ E . Still, it can be also important to combine SPR routing optimization with
simultaneous dimensioning of the network resources, such as link and node capaci-
ties. For example, design of an overlay IP network can typically consist in designing
IP link capacities (which will be then leased from the carrier network) and an SPR
weight system to be used to route packets in the network of leased links. The objec-
tive of such a design problem, in addition to keeping link loads reasonable, can be
minimizing the capacity, and hence the cost of the leased links.

Certainly, STEP formulation (8.18) can be extended to cover the new situation.
For that, link capacities ce, e ∈ E , are made variable, and denoted by ye, e ∈ E ,
objective Z can be moved to constraints (Z ≤ 0.8, for example), and the total link
cost ∑e∈E ξeye can be used in (8.18a) as the objective to be minimized (assuming
certain link unit costs ξe, e ∈ E , for example, the costs of leasing the link capacity
from the carrier).

Moreover, modularity of link capacity can be taken into account assuming in-
teger values for variables ye, e ∈ E , and the resulting link capacity equal to m · ye,
for some fixed module m expressed in Mbit/s. As usual, considering modularity
adds difficulty to the problem. Network design problems for SPR of this kind are
discussed in [9, 13, 16, 18, 48, 68].

8.7.4 Resilient Routing

Network elements such as links and nodes are subject to failures, and hence the
resilience issue should be taken into account when designing a weight system w.
In principle, the weight system used in an autonomous system (domain) could be
re-optimized when a failure occurs and then sent out to the routers in order to mod-
ify the packet forwarding tables so that at least the failed links are excluded from
the routing pattern. In practice, such dynamic weight updates are difficult and even
risky to implement. Therefore, another approach to weight resiliency is usually con-
sidered, where the link weights are only modified by assuming infinite weight for
the failing links. This idea and resulting optimization issues are summarized below.

Let s ∈ S denote a failure state, where S is the family of all the considered fail-
ure states (for example, all single link failures), and each failure state is determined
by the set of failing links, i.e., s ⊂ E . Now, if failure s occurs, the routers are notified
about the set s of failing links, and they locally modify the current weight system
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w to obtain a new system w′, where w′
e = we, e ∈ E \ s, and w′

e = +∞, e ∈ s, and
recompute the forwarding tables accordingly.

This weight modification strategy can be taken into account at the weight system
design stage, for example by an appropriate modification of STEP and its reso-
lution methods. In fact, it is a straightforward exercise to write down a modifica-
tion of problem (8.18) that, for example, minimizes objective Z over all non-failing
links in the normal state and in all the failure states from the assumed failure sce-
nario S [72]. Additionally, in such a formulation we can directly take into account
that demand volumes can be made different in different failure states. Certainly,
these modifications add difficulty to the considered problem (which already in its
basic version is very difficult) and to possible integer programming and heuristic
approaches.

In heuristic approaches the need of computing values of the objective function
for each failure state s ∈ S makes the evaluation of a single weight system very
expensive. To cope with this issue, Fortz and Thorup [44] adapted their local search
heuristic (see Section 8.5.1) by considering only a critical set of failure states, repre-
sentative for the whole failure scenario S . This allows us to achieve resilient weight
systems while keeping the problem manageable in size.

Certainly, resilient routing design can be combined with resource (link) dimen-
sioning; see, for example, [48]. More on design of resilient SPR routing can be
found in [13, 16, 18, 25, 35, 59, 64].

8.8 Historical and Literature Notes

Practical relevance of STEP and related shortest path routing optimization problems
has attracted attention of many researchers in operations research and telecommu-
nications during the last decade. Below, we give a historical survey of the work on
the SPR optimization issues.

Ben-Ameur and Gourdin [5, 6], Broström and Holmberg [21, 22, 27, 28], and
Bley [13] studied the properties of path sets that correspond to (undirected) shortest
path routing patterns, i.e., systems that are generated by weight systems. In partic-
ular, they revealed different necessary conditions for such sets to have a compatible
weight system. Broström and Holmberg considered path sets arising from the ECMP
shortest multi-path routing, while Ben-Ameur, Gourdin, and Bley were focusing on
the unsplittable shortest path routing case. Analyzing the linear model (in partic-
ular its dual) for finding a weight system inducing a given set of paths, Broström
and Holmberg [23, 24] have proposed strong compatibility conditions and polyno-
mial algorithms to check whether these conditions are satisfied or not. Recently, also
Tomaszewski, Pióro et al. studied these issues in [78, 79]. A complete combinatorial
description of all valid paths sets, however, is not known. Bley [13] proved that the
inclusion-wise minimal invalid path sets for unsplittable shortest path routing can
become arbitrarily large and that it is NP-hard to find the smallest conflict in a given
path set.
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The inverse shortest paths problem (ISP) was considered by Ben-Ameur and
Gourdin [5, 6], who devised linear and integer programming models for finding
a weight system that induces a prescribed set of shortest paths (or proves that no
such weights exist). Also Broström and Holmberg [22, 28] considered mixed-integer
linear programming formulations to address the ISP problem. Farago et al. [38, 39]
studied a special case of ISP where the given paths are to be the shortest paths with
respect to the number of links (hops), and the task is to find the link weights so that
all these paths are unique shortest paths. Bley [12] showed that finding a compatible
integer weight system is computationally hard if the range of admissible weights is
bounded.

Several groups studied problems similar to ISP in the context of data reengineer-
ing, where the task is to find weights that resemble (as closely as possible) the known
distances or the presumed shortest paths and deviate as little as possible from a given
set of reference link weights. Typically, it is not necessary to exactly match the pre-
sumed shortest paths or distances, and the integrality of the weights is also not an
issue in this context. Burton and Toint [32, 33] solved this problem as a continu-
ous convex quadratic programming problem, while Tong and Lam [80] proposed
a conjugate gradient method for its solution. The computational complexity of this
variant of the inverse shortest paths problem was analyzed by Fekete et al. [40].

As far as the complexity of STEP is concerned, Jüttner et al. [54] showed that it
is NP-hard to find a shortest multi-path routing pattern that splits traffic according
to the ECMP rule and whose induced traffic flows do not exceed some given fixed
link capacities. Fortz and Thorup [45] proved that the minimum congestion that
can be obtained with such a routing pattern cannot be polynomially approximated
within a factor less than 3/2, unless P = NP. Bley [11] proved that, for unsplittable
shortest path routing, the problem is inapproximable within a factor of Ω(|V |1−ε)
for any ε > 0. In [15], Bley also proposed several polynomial-time approximation
algorithms for the unsplittable shortest path routing version of STEP and studied
the approximability of the fixed charge and capacitated network design problem
with unsplittable shortest path routing.

One of the first mixed-integer programming formulations of the shortest path
routing problem was presented by Bley et al. [16], who considered a (survivable)
network design problem with unsplittable shortest path routing. This formulation
contains binary link routing variables for end-to-end routing paths, integer variables
for the link weights, and continuous variables for the distances between the node
pairs induced by the weights. The interdependencies between the routing path vari-
ables, weights, and the distance variables are expressed analogously as in formula-
tion (8.18), using a quadratic number of linear constraints with big-M coefficients
for the binary arc routing variables. The uniqueness of the shortest paths is guaran-
teed in a quite specific way by adding a predetermined perturbation to the integer
arc length variables.

Formulation (8.18) for the ECMP version (which works for unique shortest paths
as well) of STEP is due to Tomaszewski and was first published in [69] (see also
[70], and Chapter 7 in monograph [68] by Pióro and Medhi). Another mixed-integer
programming formulation of this kind was independently proposed by Holmberg



8 Optimization of OSPF Routing in IP Networks 235

and Yuan [52]. Recently, Parmar et al. [67] presented an integer programming ap-
proach for STEP using a formulation analogous to (8.18).

Among the first attempts to formulate shortest path routing problems as inte-
ger linear programs without variables for the routing weights were those made by
Staehle et al. [77] and Milbrandt [60]. They proposed mixed-integer programming
models with binary link-flow variables for finding an unsplittable shortest path rout-
ing pattern that minimizes a linear combination of the maximum and the average
link congestion. These models ensure that the computed routing paths satisfy the
subpath consistency, but they still admit invalid routing patterns as integer solutions.

To our knowledge, the first mathematically correct mixed-integer programming
approach without additional variables for the routing weights was presented by Bley
and Koch [18] for a survivable network design problem with unsplittable shortest
path routing. In their model the only binary variables, besides the link capacity vari-
ables, are link routing variables. In order to ensure that a valid unsplittable shortest
path routing pattern is obtained, they separate inequalities of type (8.3f) to cutoff
invalid routing patterns, using the basic approach presented in Section 8.3.

Since then, numerous solution approaches based on the decomposition idea dis-
cussed in Section 8.3 have been presented for different variants of shortest path rout-
ing problems by Bley [13], Bourquia et al. [20], Broström and Holmberg [23, 26]
(network design problem with ECMP based on SP graphs modeled with binary vari-
ables and with subpath consistency ensured by binary variables indicating whether
or not a node is reachable from another node in an SP graph; it is solved with a
Lagrangean heuristic, where feasible solutions are generated using a tabu search
method), Giovanni et al. [48] (minimum cost resilient fixed-charge network design
problem with ECMP; fixed link weights), Pióro et al. [69, 70] (unique shortest paths,
meta-heuristics assuring subpath consistency applied in the first phase), Eremin
et al. [36] (k-splittable routing), and Tomaszewski et al. [78, 79]. Holmberg and
Yuan [52] generalized the decomposition approach to solve a network design prob-
lem with unsplittable shortest path routing and multicast commodities. This case
was also considered by Prytz [73].

In fact, shortest path routing problems have been more frequently tackled with
heuristic methods than with integer programming methods. This is understandable,
since STEP, as discussed in this chapter, is very difficult to solve with mixed-integer
programming techniques.

A specific simple approach to finding a reasonable weight system was proposed
by Pióro et al. [69, 70, 76] and independently by Wang et al. [82]. It considers
a linear fractional multi-commodity flow allocation problem (with minimizing the
cost of routing as the objective), and uses the resulting optimal dual variables as the
link weights. A similar approach was also used by Fortz and Ümit [81] as a good
starting solution for a local search approach.

Lagrangian relaxation techniques, local search algorithms, and meta-heuristics,
such as simulated annealing, genetic algorithms, and tabu search, which all use the
link administrative weights as primary decision variables, are conceptually much
easier, and have become quite common to approximately solve shortest path routing
optimization problems. It seems that the first successful method to solve the problem
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using meta-heuristics was proposed by Fortz and Thorup [42, 45]. It was able to find
efficient weight systems for large-size networks in reasonable computing time (see
Section 8.5 for details). Other relevant heuristic methods are described in [8, 9, 16,
23, 30, 34, 37, 44, 46, 49, 51, 55, 58, 62, 68, 69].

8.9 Concluding Remarks

The chapter summarizes over a decade research in optimizing weight systems in
the Internet Protocol networks. We have concentrated on a representative problem
referred to as STEP – an optimization problem related to intra-domain traffic en-
gineering in networks based on shortest path routing protocols like OSPF or IS-IS.
Due to great practical relevance, problems of this type have been intensively stud-
ied in the literature. The presented chapter is an attempt to summarize the existing
knowledge with emphasis on the developments achieved by the chapter authors in
their previous work.

We have discussed modeling and resolutions issues of STEP, using the language
and methods of multi-commodity networks, eventually based on integer program-
ming. We have described up-to-date exact and heuristic approaches to STEP, and
summarized the theoretical results underlying the approaches.

We hope that the presented material forms a solid base for both experienced and
less-experienced researchers for getting familiar with the field and for adding their
own contributions to it.
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tute of Technology, Sweden (2007). Under revision for publication.

27. Broström, P., Holmberg, K.: On the extremal structure of an OSPF related cone. Vietnam
Journal on Mathematics 35(4), 507–522 (2007)

28. Broström, P., Holmberg, K.: Valid cycles: A source of infeasibility in OSPF routing. Networks
52(4), 206–215 (2008)

29. Broström, P., Holmberg, K.: Compatible weights and valid cycles in non-spanning OSPF rout-
ing patterns. Algorithmic Operations Research 4, 19–35 (2009)

30. Buriol, L. S., Resende, M. G. C., Ribeiro, C. C., Thorup, M.: A hybrid genetic algorithm for
the weight setting problem in OSPF/IS-IS routing. Networks 46(1), 36–56 (2005)

31. Buriol, L. S., Resende, M. G. C., Thorup, M.: Speeding Up Dynamic Shortest-Path Algo-
rithms. INFORMS Journal On Computing 20(2), 191–204 (2008)

32. Burton, D.: On the inverse shortest path problem. Ph.D. thesis, Department of Mathematics,
Facultés Universitaires ND de la Paix, Namur, Belgium (1993)

33. Burton, D., Toint, P.: On an instance of the inverse shortest paths problem. Mathematical
Programming 53, 45–61 (1992)

34. Dzida, M., Petterson, M., Duelli, M., Zagożdżon, M., Pióro, M., Menth, M., Żotkiewicz, M.:
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55. Karas, P., Pióro, M.: Optimization problems related to the assignment of administrative
weights in the IP networks routing protocols. In: Proceedings of the 1st Polish-German Tele-
traffic Symposium PGTS’2000, pp. 185–192 (2000)

56. Klopfenstein, O., Mamy, S.: Choosing weights for IP network dimensioning optimization. In:
Proc. of the International Symposium on Computers and Communications (ISCC 2006), pp.
994–999 (2006)

57. Leduc, G., Abrahamsson, H., Balon, S., Bessler, S., D’Arienzo, M., Delcourt, O., Domingo-
Pascual, J., Cerav-Erbas, S., Gojmerac, I., Masip, X., Pescaph, A., Quoitin, B., Romano, S.,
Salvatori, E., Skivée, F., Tran, H., Uhlig, S., Ümit, H.: An open source traffic engineering
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Abstract In this chapter we consider fundamental optimization problems arising in
communication networks. We consider scenarios where there is no central authority
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users act aiming to optimize their own objectives with no regard to the globally
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9.1 Introduction

In the last few years, a mutual interest between the community of computer sci-
entists and of economists is emerging, especially concerning the relationships be-
tween Distributed Systems and Game Theory. The trigger for this synergy is the
evolution of uncoordinated and non-cooperative communication networks such as
the Internet, peer-to-peer networks, and wireless ad hoc networks, and the conse-
quent diversity of the owners of the relative physical components (routers, comput-
ing devices, communication channels, etc.). This has determined a radical change
in the definition of what distributed computing means. Indeed, in the classical com-
putational model adopted in Theoretical Computer Science, processors are faithful
executors of an algorithm. Conversely, in the incentive-based model, which is the
one traditionally studied by economists, processors (usually called agents) pursue
a selfish strategy and the system evolves as a consequence of the complex interac-
tions among them. Therefore, Game Theory comes to pursue the synthesis between
two requirements: the system designer’s or operator’s (whose goal is to compute a
socially efficient solution), and the agents’ (which, in a non-cooperative scenario,
aim to maximize their own profit and, therefore, could induce the system to reach
suboptimal solutions).

Let us introduce informally the concepts studied in this chapter with an example.
Assume that we have a simple communication network in which two nodes s and t
are connected through two directed links e1 and e2 (see Figure 9.1). There are two
users, each having a unit amount of traffic. Each user wishes to route her traffic from
s to t unsplit, using one of the two links. Link e1 has a latency function de1(x) = x,
which means that the latency experienced by each user that uses this link is x when
x users in total use this link. The latency function of link e2 is de2(x) = 2+ε , where
ε is a negligible but strictly positive constant. A natural objective is to minimize
the average (or total) latency among the two users. So, from the network designer
point of view, a solution which forces one user to use link e1 and the other to use
link e2 would be the desired one with a total latency of 3 + ε . However, if each
user is selfish in the sense that she prefers to use the link which minimizes her
latency given the decision of the other user, we could never end up with this desired
solution. The user that is assigned to link e2 (where she experiences a latency of
2 + ε) has an incentive to change her strategy and use link e1 instead; then, the
latency experienced would be only 2. From this latter assignment, no user has an
incentive to unilaterally deviate; such a solution is consistent with the selfish nature
of the behavior of the users. Unfortunately, selfishness may result in deterioration
of system performance; the total latency in this latter solution is 4 since both users
experience a latency of 2 on link e1.

In the above example, we have implicitly assumed that users (called players in
the following) play a strategic game which reflects their selfish behavior. Solutions
that are consistent with this behavior are called equilibria; these notions are for-
mally defined in the next section. Issues related to the existence, the structure, the
computation, and the efficiency of equilibria in strategic games arising from opti-
mization problems are studied (among other issues) in the recently emerging field
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of Algorithmic Game Theory. In this chapter we present some basic contributions in
this fascinating emerging area related to some fundamental optimization problems
that arise in communication networks with non-cooperative users. We focus on re-
sults which we have obtained recently; the interested reader may see [39] for a more
systematic study of the recent trends in Algorithmic Game Theory.

9.2 Preliminary Notions

We begin with some necessary definitions. Given a set U , a k-tuple a = (u1, . . . ,uk)
of elements of U , an index i ∈ {1, . . . ,k}, and an element u ∈U , we write (a−i,u) =
(u1, . . . ,ui−1,u,ui+1, . . . ,uk) to denote the k-tuple obtained from a by replacing ui

with u.

Strategic games. A strategic game G is a triple G = (P,Si∈P,ωi∈P) where P is a set
of n players, Si is the set of strategies available to player i and ωi : S1 × . . .×Sn �→ IR
is her payoff function. The payoff function ωi can model either a benefit or a cost
for player i; thus each player may seek the maximization or the minimization of her
payoff. In the sequel we will always assume that the payoff functions model costs
for the players.

States and improving steps. The set S = S1 × . . .×Sn is called the set of states or
strategy profiles of G . Consider a state σ = (σ1, . . . ,σn) ∈ S. A player i cannot be
happy with her payoff in σ if there exists another state σ ′ = (σ−i,s), for some s ∈ Si,
such that ωi(σ ′) < ωi(σ). The action of changing their strategy from σi to s (with
the consequent transition of G from state σ to state σ ′) is called an improving step
or a selfish move performed by player i.

Pure Nash equilibria. A very important and challenging issue in game theory is
to characterize solutions of games which are consistent with the selfish and ratio-
nal behavior of the players. Among all the approaches proposed so far, the notion
of Nash equilibrium is the most accepted and used one. A state σ is a pure Nash
equilibrium if no player has an improving step, that is, ∀i ∈ P and ∀s ∈ Si it holds
ωi(σ−i,s) ≥ ωi(σ). A pure Nash equilibrium is a stable outcome of a game in the
sense that it is a state in which all players are satisfied with their payoff and none
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of them can improve it by unilaterally changing her strategy. The drawback of this
notion is, however, due to the fact that pure Nash equilibria are not guaranteed to
exist for any game.

Mixed strategies. A mixed strategy for player i is a probability distribution Yi de-
fined over the set Si of her pure strategies. Given a mixed strategy Yi for player i,
the support of Yi, denoted as support(Yi), is the set of strategies s ∈ Si for which
Yi(s) > 0. A mixed strategy Y = (Y1 . . . ,Yn) is an n-tuple of mixed strategies Yi for
each player i ∈ P. The support of a mixed strategy Y is defined as the set of states
support(Y ) = support(Y1)× . . .× support(Yn). The payoff of player i yielded by
a mixed strategy Y is defined as ωi(Y ) = ∑σ∈support(Y )(ωi(σ) · ProbY (σ)), where
ProbY (σ) =∏n

i=1 Yi(σi).

Mixed Nash equilibria. A mixed strategy Y is a (mixed) Nash equilibrium if
∀i ∈ P and for any probability distribution Z defined over Si it holds ωi(Y−i,Z) ≥
ωi(Y ). A fully mixed Nash equilibrium Y is a mixed Nash equilibrium such that
support(Yi) = Si for each i ∈ P. Mixed Nash equilibria are, hence, a generalization
of pure ones, obtained by allowing players to randomize on their chosen strategies
and computing the resulting payoffs in expectation. In this case the solution con-
cept becomes less reasonable (since, in practice, we are always asked to choose
pure strategies); but, on the other hand, Nash’s famous theorem [38] guarantees the
existence of at least one mixed Nash equilibrium for any game.

Price of anarchy and stability. One of the main concerns when dealing with non-
cooperative systems is to bound their inefficiencies due to the lack of coordination
among the players. More formally, given a function γ : S �→ IR, called the social
function, let σ∗ be a state optimizing γ . On the other hand, given a mixed strat-
egy Y , the social value of Y is defined as γ(Y ) = ∑σ∈support(Y )(γ(σ) · ProbY (σ)).
The price of anarchy [35] of game G for the social function γ is defined as
PoA(G ,γ) = supY∈NE(G )

γ(Y )
γ(σ∗) , while the price of stability [3] of G for the social

function γ is defined as PoS(G ,γ) = infY∈NE(G )
γ(Y )
γ(σ∗) , where NE(G ) denotes the set

of Nash equilibria of G . By restricting NE(G ) to the set of pure Nash equilibria,
similar definitions for the price of anarchy and stability are obtained for pure strate-
gies. The price of anarchy is a classical worst-case analysis and it measures the loss
of performance due to the selfish behavior of players in this case. On the other hand,
the price of stability gives us information on the minimum loss of performance a
non-cooperative system has to suffer. This issue is best understood when dealing
with games, such as network design games, in which it is possible to assume the
presence of a central authority proposing or imposing a pure Nash equilibrium to
the players. In this setting, the best Nash equilibrium represents the optimal solu-
tion among all the proposed ones from which no player would have an incentive to
defect. By extending the above definition, the price of anarchy after a best response
walk can be defined as the worst-case ratio of the social value of the last state of the
walk to the value of the social optimum.
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Nash dynamics graph. For any game G it is possible to define a graph D(G ) =
(S,A) capturing the dynamic behavior of the players in the game. The set of nodes
of D(G ) is represented by the set of states of G , and there is a directed edge between
any two nodes σ and σ ′ with label i if and only if player i has an improving step
from σ to σ ′ in G . By definition, we have that G possesses pure Nash equilibria
if and only if D(G ) has sink nodes, that is, nodes without any outgoing edge. An
important issue related to the notion of pure Nash equilibria is the finite improve-
ment path (FIP) property. A game has this property if, starting from any initial state
and letting a player perform arbitrary improving steps, a pure Nash equilibrium is
always reached, i.e., there does not exist an infinite sequence of improving steps.
Again, by definition, we have that G has the FIP property if and only if D(G ) is
acyclic, that is, a DAG (directed acyclic graph). In a given state a player i may have
more than one improving step, i.e., for a given node there may exist more than one
outgoing edge labeled i in D(G ). An improving step for player i in state σ is a best
response for i in σ if it yields the maximum improvement in i’s payoff among all
improving steps i has in σ . We define the best response dynamics graph of G as the
graph obtained from D(G ) by removing all edges not modeling best responses.

Best response walks. Any path in the best response dynamics graph is called a
best response walk. As there are games that do not have the FIP property as well as
games for which the number of best responses (or, more generally, improving steps)
needed to reach an equilibrium starting from an arbitrary state may be exponentially
large, it becomes important to evaluate the social value of states reached after a
finite number of selfish moves. To this aim, Mirrokni and Vetta [36] introduced the
following models capturing the intuitive notion of a fair sequence of moves.

Covering walk. A walk in the best response dynamics graph is a covering walk if
for each player i, it has at least one edge with label i.
k-Covering walk. A walk in the best response dynamics graph is a k-covering
walk if it can be split into k disjoint covering walks.
One-round walk. A covering walk of length n in the best response dynamics
graph is a one-round walk, that is, each player performs exactly one best re-
sponse.

Potential games. If G has the FIP property then, by exploiting the topological or-
dering of the nodes in D(G ), it is possible to define a potential function for G , that
is, a function Φ : S �→ IR always decreasing or always increasing each time an im-
proving step is performed. By generalizing this observation, it is possible to define
the class of potential games as the class of all games having a potential function and,
hence, the FIP property. Depending on the properties satisfied by Φ , three different
kinds of potential games can be defined.

1. Exact potential games, where ∀σ ∈ S and ∀s ∈ Si, it holds Φ(σ)−Φ(σ−i,s) =
ωi(σ)−ωi(σ−i,s).
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2. Weighted potential games, where ∃β = (β1, . . . ,βn) such that ∀σ ∈ S and ∀s ∈ Si,
it holds Φ(σ)−Φ(σ−i,s) = βi(ωi(σ)−ωi(σ−i,s)).

3. Ordinal potential games, where ∀σ ∈ S and ∀s ∈ Si, it holds that Φ(σ) −
Φ(σ−i,s) and ω(σ)−ω(σ−i,s) have the same sign.

Congestion games. Perhaps the most famous class of games is that of conges-
tion games. Results concerning congestion games are presented in Sections 9.3 and
9.7. Here, we present the basic related definitions. A congestion game is a 4-tuple
(P,E,Si∈P,de∈E), where P is a set of n players, E is a set of m resources, Si ⊆ 2|E| for
each i ∈ P, and de : IN �→ IR for each e ∈ E. Strictly speaking, each player in a conges-
tion game can choose among different subsets of resources; each resource e has an
associated delay (latency) function de returning the delay experienced by any player
using e in terms of the number of players using it. Once ne(σ) = |{i ∈ P : e ∈ σi}|
is defined as the number of players using resource e in state σ , the payoff function
of player i is defined as ωi(σ) = ∑e∈σi

de(ne(σ)). Congestion games were intro-
duced by Rosenthal [41], who proved that they have the FIP property by defining

the potential function Φ(σ) = ∑e∈E ∑
ne(σ)
i=1 de(i). As shown by Monderer and Shap-

ley [37], the class of congestion games is equivalent to that of exact potential games.
The class of weighted congestion games is a generalization obtained by allowing
players to have different demands. In this case the congestion of each resource e
is defined as ne(σ) = ∑i∈P:e∈σi

ri, where ri is the demand of player i. Some special
cases of congestion games are particularly interesting to computer scientists. In net-
work congestion games, resources correspond to the links of a network. Each player
i has a source si and the destination ti and her set of strategies corresponds to the set
of paths connecting si to ti. Load balancing games are congestion games in which
all possible strategies for each player are singletons.

Cost sharing games. Similarly to congestion games, a cost sharing game is a 4-
tuple (P,E,Si∈P,ce∈E), where P is a set of n players, E is a set of m resources,
Si ⊆ 2|E| for each i ∈ P, and c : E �→ IR+. In these games, each resource e has a
certain fixed cost ce, which has to be shared among the players. In particular, each
strategy profile σ requires the use of a set of resourcesΠ(σ) =

⋃n
i=1{e ∈ E : e ∈ σi}

of total cost cost(Π(σ)) = ∑e∈Π(σ) ce, and the payoffs yielded by σ are computed
by applying a certain cost sharing method M distributing cost(Π(σ)) among the
players. Depending on the definition of M , different games can be obtained. The
most important family of cost sharing games arises in network design where the
cost of a certain self-emerging network needs to be shared among its users. In this
case, there is an edge-weighted graph G = (V,E,c), with c : E �→ IR+, modeling the
set of links which can be potentially implemented, as well as their building costs.
Each player i has a source si and a destination ti that she wants to connect, and
her set of strategies corresponds to the set of paths connecting si to ti in G. This
general network cost sharing game is referred to as the multi-commodity case. An
interesting and much studied restriction is the single-commodity case, also called
the multicast case, in which there is a common source s for all players and a set
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R ⊂ V \ {s} of n receivers which need to be connected to s. The most-used cost
sharing method is the one based on the well-known Shapley value formula [45]
which equally distributes the cost of each resource among the players using it, thus
yielding ωi(σ) = ∑e∈σi

ce
ne(σ) . A cost sharing game in which the underlying cost

sharing method is the Shapley value is called a Shapley cost sharing game. As first
noted in [2] these games are also congestion games. Results related to cost sharing
games are covered in Sections 9.4 and 9.7.

9.3 Congestion Games

In this section we consider congestion games. Besides general congestion games,
we also focus on network congestion games and load balancing games.

We study issues related to the efficiency of equilibria in congestion games ac-
cording to the social cost function of the weighted total latency, i.e., the sum of
the latency experienced by each player multiplied by her demand. Formally, the
social cost of a state σ is γ(σ) = ∑i riωi(σ). An equivalent definition is γ(σ) =
∑e ne(σ)de(ne(σ)), since the sum of the demands of the players using resource e is
ne(σ) and each of them experiences a latency of de(ne(σ)) on e.

Price of anarchy. A large part of the literature related to congestion games is de-
voted to providing upper and lower bounds on the price of anarchy. What we essen-
tially want to do in this case is to relate the maximum social cost over all equilibria
to the optimal social cost. The following simple argument is the heart of most re-
lated proofs in the literature. Consider an equilibrium σ for a congestion game and
let σ∗ be the assignment of optimal social cost. Assume that the latency functions
are linear with the simple form de(x) = αex and that the demands of the players are
the same (and equal to 1). Since no player has an incentive to change her strategy in
σ , this also means that ωi(σ) ≤ ωi(σ−i,σ∗

i ), i.e., that the player i has no incentive
to change her strategy to the one it uses in σ∗. Substituting the payoff, this yields
that

∑
e∈σi

de(ne(σ)) ≤ ∑
e∈σ∗

i

de(ne(σ−i,σ∗
i )) ≤ ∑

e∈σ∗
i

de(ne(σ)+1).

The second inequality follows since (σ−i,σ∗
i ) and σ differ only in the strategy of

player i and since the latency functions are non-decreasing. Then, the social cost of
σ is
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γ(σ) =∑
i
ωi(σ)

=∑
i
∑

e∈σi

de(ne(σ))

≤∑
i
∑

e∈σ∗
i

de(ne(σ)+1)

=∑
e
∑

i:e∈σ∗
i

de(ne(σ)+1)

=∑
e

ne(σ∗)de(ne(σ)+1)

=∑
e
αe (ne(σ∗)ne(σ)+ne(σ∗)) (9.1)

The next step is to apply a simple inequality such as xy + y ≤ 1
3 x2 + 5

3 y2 for any
integer x,y ≥ 0 on the right part of (9.1) to obtain (by setting x = ne(σ) and y =
ne(σ∗))

γ(σ) ≤∑
e
αe

(
1
3

n2
e(σ)+

5
3

n2
e(σ∗)

)

=
1
3
γ(σ)+

5
3
γ(σ∗)

and, hence, γ(σ) ≤ 5
2γ(σ

∗), which means that the price of anarchy is at most 5/2.
The above bound was independently obtained by Christodoulou and Koutsoupias

[21] and Awerbuch et al. [4]. The proof can be generalized to prove that the price
of anarchy of weighted linear congestion games over mixed Nash equilibria is at
most φ 2 ≈ 2.62, where φ = 1+

√
5

2 is the golden ratio. These results are tight. Several
papers in the literature (e.g., [1, 4, 21, 46]) have applied the same technique for more
general (e.g., polynomial) latency functions.

Prior to these works, Suri et al. [46] had obtained the same bound for load balanc-
ing games. A natural question in load balancing games is whether their simplicity
(compared to congestion games) leads to better bounds on the price of anarchy.
In [15], it has been shown that this is not the case in general by proving tight lower
bounds of 2.62 and 5/2 on the price of anarchy of load balancing games with linear
latency functions and players with different or equal demands, respectively. How-
ever, there are cases where load balancing games have some special structure that
decreases the price of anarchy. For example, [15] exploits information about the
structural properties of load balancing games on machines with identical linear la-
tency functions to show an upper bound of 2.012 for the price of anarchy over pure
Nash equilibria. This result is tight; a matching lower bound had been previously
obtained in [46].

Price of stability. The argument that is used to prove upper bounds on the price of
stability is similar. Besides the use of the Nash inequality, information provided by
the potential function is also used. Essentially, we aim to relate the social cost of the
best pure Nash equilibrium σ ′ to the social cost of the optimal assignment σ∗. We
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know that the social cost of σ ′ is upper-bounded by the social cost of an equilibrium
σ which can be reached in the Nash dynamics graph by following improving steps
from σ∗. Hence, in order to compute an upper bound on the price of stability, it
suffices to compute an upper bound on the social cost of σ in terms of the optimal
social cost of σ∗. By the definition of the potential function, we know that the po-
tential of σ is smaller than the potential of σ∗, i.e., ΦR(σ) ≤ΦR(σ∗). Again, let us
assume that the latency functions have the simple linear form de(x) = αex and that
the demands of the players are the same (and equal to 1). Then, the potential of σ
can be written as

ΦR(σ) =∑
e

ne(σ)

∑
j=1

de( j) =
1
2∑e

αe
(
n2

e(σ)+ne(σ)
)

and the inequality of potentials can be used to obtain the following derivation.

γ(σ) =∑
e
αen2

e(σ)

≤∑
e
αe

(
n2

e(σ)+ne(σ)−ne(σ∗)
)

(9.2)

The main idea in the proofs of [22] and [15] is to use the information provided
by both (9.1) and (9.2) in order to bound the social cost of σ in terms of the optimal
social cost. This requires multiplying each of the two inequalities with a particular
coefficient, summing them, and then using an inequality on integers in order to
bound the right part by an expression that contains only the social cost of σ and the
optimal social cost of σ∗. In this way, an upper bound of 1 + 1√

3
≈ 1.577 on the

price of stability is proved in [15] (prior to this result, a slightly inferior bound of
1.6 had been presented in [22]). This bound is tight; a congestion game with a single
equilibrium of social cost 1 + 1√

3
times the optimal social cost has been presented

in [22].
In load balancing games with linear latency functions, the price of stability has

been proved to be much smaller, namely 4/3. The lower bound easily follows by
a simple game with two players of unit demands on two resources with latency
functions fe1(x) = x and fe2(x) = (2 + ε)x for arbitrarily small ε > 0. The state
in which both players select resource e1 is the only pure Nash equilibrium of social
cost 4 while the states in which the players select different resources have social cost
3 + ε . In order to prove the upper bound, the information provided by the potential
function is not enough. The approach followed in [15] is to provide a particular
sequence of improving steps from a state σ∗ of optimal social cost to a pure Nash
equilibrium σ . The sequence is defined in such a way that a comparison between
the social costs of σ and σ∗ is feasible. The interested reader can inspect [15] for
the details of the technique.

Independently, Anshelevich et al. [2] have shown a more general result that char-
acterizes the price of stability of any network congestion game in which players have
a common source (or a common destination). Namely, the result of [2] states that
the price of stability of these games is at most the price of anarchy of corresponding
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nonatomic congestion games [44] on the same network. The main assumption in
these games which differentiates them from the games we study in this section is
that the number of players is infinite, and each is supposed to control a negligible
amount of traffic from its source to its destination.

Performance of k-round walks. Convergence issues have been the subject of sev-
eral papers. In [24], the authors show an upper bound of Θ(n) on the price of an-
archy after one round, and a lower bound of 2O(k)√n/k after k rounds. Convergence
to a constant price of anarchy in a polynomial number of random rounds can be
inferred directly from the sink equilibria results of [36], while the 2O(k)√n/k lower
bound of [24] implies that a number of rounds at least proportional to log logn is
necessary. In [27] it is shown that the price of anarchy achieved after k rounds is
O( 2k−1√n) while the lower bound of [24] is refined toΩ( 2k−1√n/k), which is asymp-
totically matching for constant values of k. As a consequence, log logn rounds are
not only necessary, but also sufficient in order to achieve a constant price of anar-
chy, i.e., comparable to the one at Nash equilibrium. [27] also provides a new lower
bound ofΩ( 2k−1

√
n) for load balancing games, thus showing that a number of rounds

proportional to log logn is necessary and sufficient under such a restriction.

Coping with selfishness. Another line of research in congestion games aims to
cope with selfishness. There are at least four different approaches that have been
proposed in the literature: coordination mechanisms [6, 14, 23, 31], Stackelberg
strategies [42], network design or resource removal [5, 43], and taxes or tolls [16, 17,
25, 29, 32]. The general idea behind each of them is to change the congestion game
at hand in a reasonable way so that the resulting game has a small price of anarchy.
In network design [43], some of the resources are removed; this also constrains
the sets of strategies of the players. The results of Azar and Epstein [5] indicate that
even deciding whether network design can decrease the price of anarchy of weighted
network congestion games with linear latency functions to significantly less than φ 2

(the upper bound on the price of anarchy of such games) is NP-hard. Besides this,
they show that there exist games in which network design is not helpful at all.

In the following, we briefly discuss the results in [16], which seems to be the
first work dealing with taxes in atomic congestion games. In contrast, the study of
taxes in nonatomic congestion games has a long history, starting at the beginning of
the twentieth century with the work of Pigou [40]; and, besides recent contributions
from Computer Science [25, 29, 32], it contains contributions from Economics and
Transportation Science.

The model used in [16] is the following. A tax function δ : E × Q+ → Q+ is
introduced, meaning that a tax δe(w) is assigned to each player of demand w wishing
to use the resource e. In this way, an extended game is obtained in which the cost of
each player is the sum of the latency experienced and the tax she pays. The latency
functions considered in [16] are linear. By defining a potential function (similar to
the potential function for weighted linear congestion games [30]), it is shown that
the extended game always has a pure Nash equilibrium. We note that network design
can be thought of as a special kind of tax (infinite tax on some of the resources).
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In the case of symmetric load balancing games, pure optimal taxes (i.e., taxes
such that any pure Nash equilibrium of the extended game has optimal total latency)
exist and can be constructed in polynomial time. Besides this positive result, even
in simple congestion games, pure optimal taxes do not exist. Consider the following
simple congestion game with four resources e1, e2, e3, e4 with the same latency
function d(x) = x and four players of demand 1: two long players, each having
strategies {e1,e3},{e2,e4} and two short players, each having strategies {e1},{e2}.
Observe that assignments in which each of the resources e1 and e2 is used by one
long and one short player have optimal total latency 10. Consider a tax assignment
δ . It can be easily verified that if δe1 + δe3 ≤ δe2 + δe4 , the assignment where the
long players select strategy {e1,e3} and the short players select strategy {e2} is a
pure Nash equilibrium for the extended game; otherwise, the assignment where the
long players select strategy {e2,e4} and the short players select strategy {e1} is a
pure Nash equilibrium for the extended game. In any case, the total latency is 12.
Even simpler load balancing games do not admit pure optimal taxes; the reader can
inspect [16] and [17] for more such negative statements.

Since taxes cannot always force optimal system performance, the next step is
to study whether there are taxes such that the extended game has efficient equilib-
ria. The efficiency of these equilibria (mixed or pure) is assessed in two different
ways. In the case of refundable taxes, the social cost is simply the (weighted) to-
tal latency of the players. In the case of nonrefundable taxes, the social cost is the
(weighted) total latency plus the total taxes paid. Assumptions similar to those in
refundable taxes are common in the study of taxes for nonatomic congestion games
in the Economics and Transportation literature and capture the scenarios where the
collected taxes can be feasibly returned (directly or indirectly) to the players (e.g.,
as a “lump-sum refund”).

The terms ρ-pure-efficient and ρ-mixed-efficient are used to refer to taxes which
guarantee that the social cost of each equilibrium of the extended game is at most
ρ times larger than the optimal (weighted) total latency. Again, a negative result
shows that very simple symmetric load balancing games on identical machines do
not admit better than 2-mixed-efficient taxes. On the positive side, 2-mixed-efficient
refundable taxes with respect to the (weighted) total latency can be computed in
polynomial time using convex quadratic programming. The case of nonrefundable
taxes is more difficult to handle. However, there are load balancing games where
ρ-mixed-efficient nonrefundable taxes can be computed for values of ρ which are
smaller than the price of anarchy of the original game (without taxes). The interested
reader can refer to [16] and [17] for the related results, proofs, and open problems.

9.4 Multicast Cost Sharing Games

In this section, we consider multicast cost sharing games. A cost sharing method
for multicast games is a function M which, given a set of receivers R and a strat-
egy profile σ , distributes among the receivers the total cost cost(Π(σ)) in such a
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way that ∑i∈R M (R,σ , i) = cost(Π(σ)), where M (R,σ , i) =de f ωi(σ) is the cost
charged to receiver i.

Several cost sharing methods have been proposed so far, namely,

• M1 (egalitarian) equally shares the global cost among all the receivers, i.e.,

M1(R,σ , i) =
cost(Π(σ))

n
.

• M2 (path-proportional) shares the cost of each link e ∈ Π(σ) among all the
receivers j using it proportionally to the overall cost of their chosen path, i.e.,

M2(R,σ , i) = ∑
e∈Π(σi)

ce
cost(Π(σi))

∑ j:e∈Π(σ j) cost(Π(σ j))
.

• M3 (egalitarian-path-proportional) shares the overall cost among all the re-
ceivers proportionally to the cost of their chosen path, i.e.,

M3(R,σ , i) = cost(Π(σ))
cost(Π(σi))

∑ j∈R cost(Π(σ j))
.

• M4 (Shapley) equally shares the cost of each link e ∈ Π(σ) among all the re-
ceivers using it, i.e.,

M4(R,σ , i) = ∑
e∈Π(σi)

ce

ne(σ)
.

Since cost sharing games naturally arise in socioeconomic scenarios, cost sharing
methods are usually required to meet some constraining properties. The ones most
standard and used are:

• Weak budget balance. A receiver is never charged a cost share greater than the
cost of her chosen path, that is, M (R,σ , i) ≤ cost(Π(σi)).

• Strong budget balance. The cost of each link is only shared among the receivers
using it.

• Stability. The game induced by M possesses pure Nash equilibria.
• Fairness. The cost share charged to any two receivers adopting two equivalent

paths in a given strategy profile is the same, where two paths are equivalent if
they have the same cost and are shared in the same way by paths having the same
cost. More formally, let ak(e,σ) be the set of paths of cost k using edge e in σ ;
two paths p and p′ are equivalent in σ if cost(p) = cost(p′) and ∑e∈p∩ak(e,σ) ce =
∑e∈p′∩ak(e,σ) ce for any k ≥ 0.

• Separability. The cost shares of each edge are computed independently and are
completely determined by the set of receivers using it.

We call feasible any method meeting weak budget balance and fairness. Clearly,
the strong budget balance property implies the weak one. In [20] it is remarked that
the only method meeting all such properties is the Shapley value. Moreover, it is
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not difficult to see that the path proportional one meets strong budget balance and
fairness, while the egalitarian-path-proportional one meets weak budget balance and
fairness. Hence, all the above methods besides the egalitarian one are feasible.

Directed graphs. In [8] it is shown that all methods except for the path-proportional
one meet stability. The price of anarchy for the game yielded by the egalitarian
method is unbounded, while for all the other ones it is equal to n with respect to two
different social cost functions: the overall transmission cost (function γsum), which
coincides with the sum of all the shared costs, and the maximum shared cost paid
by the receivers (function γmax). As for the price of stability, in [2] it is proved that
it isΘ(logn) for the Shapley value with respect to γsum.

For any feasible method, the number of best response moves needed to reach
a Nash equilibrium starting from any strategy profile can be arbitrarily large, even
when n = 2. Motivated by these results, it becomes interesting to evaluate the price
of anarchy after a limited number of best responses. For the egalitarian and path-
proportional methods the price of anarchy is unbounded for any sequence of best
responses and one-round walks. For the Shapley value method, the price of anarchy
after a one-round walk is Θ(n2). Such a value is outperformed by the egalitarian-
path-proportional method, which achieves a price of anarchy of O(n) after a one-
round walk. This is an asymptotically optimal result since it can be shown that any
feasible method cannot achieve a price of anarchy better than n after a one-round
walk. All the above results have been determined for both γsum and γmax in [8].

For k-round walks, [26] shows that, starting from any strategy profile, the Shapley
method achieves a price of anarchy of at most O(n

√
n) after two rounds and gives

a general lower bound of Ω(n k
√

n) for any number k ≥ 2 of rounds. Similarly, when
starting from the empty strategy profile, exactly matching upper and lower bounds
equal to n are determined for any number of rounds. When starting from an arbitrary
strategy profile, both the egalitarian and the path-proportional methods can yield an
unbounded price of anarchy, while the egalitarian path-proportional achieves a price
of anarchy ofΘ(n). Finally, when starting from the empty strategy profile, all these
three methods achieve a price of anarchy ofΘ(n).

Undirected graphs. We briefly describe results related to undirected graphs by out-
lining the differences with the directed case. When not explicitly claimed, all the
presented results are taken from [8]. Deciding whether the path-proportional method
meets stability is still an open problem. The price of anarchy of the egalitarian path-
proportional method falls between 2

3 n and n. Asymptotic lower bounds equal to
1.915, 2, and 1.714 are known, respectively, for the price of stability of the path-
proportional, the egalitarian path-proportional, and the Shapley value methods with
respect to γsum [7]. The price of anarchy of the egalitarian path-proportional method
after a one-round walk at least 2

3 n. No general results on the performance of feasi-
ble methods are known. The main differences with the case of directed graphs hold
for the best-response walks. For the price of anarchy of the Shapley value, only the
trivial lower bound of Ω(n) is known for k-round walks when starting from any
arbitrary strategy profile. When starting from the empty strategy profile, in [18] an
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upper bound of O(log3 n) and a lower bound of Ω(logn) on the price of anarchy
achievable after any number of rounds is proved. For one-round walks, an improved
Ω(log2 n) lower bound is derived. For the egalitarian method we have a price of an-
archy ofΘ(logn), for the path-proportional one we have a lower bound of Ω(logn)
and an upper bound of O(n), and for the egalitarian path-proportional a lower bound
of Ω(n/ logn) and an upper bound of O(n).

Finally, finding a Nash equilibrium minimizing the potential function is NP-
hard [19], as is finding the sequence of the best responses leading to the lowest
possible social cost even after a one-round walk for both γsum and γmax.

9.5 Communication Games in All-Optical Networks

All-optical networks have been largely investigated in recent years due to the
promise of data transmission rates several orders of magnitude higher than those
of current networks. The key to high speeds in all-optical networks is to maintain
the signal in optical form, thereby avoiding the prohibitive overhead of conversion
to and from electrical form at the intermediate nodes. The high bandwidth of the
optical fiber is utilized through wavelength-division multiplexing: two signals con-
necting different source-destination pairs may share a link, provided they are trans-
mitted on carriers having different wavelengths (or colors) of light. Since the optical
spectrum is a scarce resource, a given communication pattern in optical networks is
often designed so as to minimize the total number of colors used, a measure which
is trivially lower-bounded by the maximum load, that is, the maximum number of
connecting paths sharing the same physical edge.

In [12], the following problem is investigated. An all-optical network provider
must determine suitable payment functions for non-cooperative agents wishing to
communicate so as to induce Nash equilibria using a low number of wavelengths.
More formally, an all-optical network is modeled as an undirected graph G = (V,E)
where nodes in V represent sites and undirected edges in E represent bidirectional
optical fiber links between the sites. A point-to-point communication requires us to
establish a uniquely colored path between the two nodes whose color is different
from the colors of all the other paths sharing some of its edges. Each player in the
game asks for the implementation of a certain point-to-point communication and
is charged a cost by the network provider obtained by applying a certain payment
function. Depending on the variables defining the payment function, it is possible to
distinguish among three different levels of information needed by an agent in order
to compute her cost charge.

• Minimal. Each agent i knows all the wavelengths available along any path in Si.
• Intermediate. Each agent i knows the wavelengths available along any edge in

the network.
• Complete. Each agent i knows the whole strategy profile.
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Under the complete level, suitable payment functions can be computed such that
in any Nash equilibrium the assignment of paths and colors to the agents is the same
as with the one computed by a centralized algorithm aiming to minimize the optical
spectrum, and the computational complexity is the same as that of the algorithm. For
the remaining two levels, the most reasonable payment functions either do not admit
pure Nash equilibria or induce games having the worst possible price of anarchy, that
is, always possessing a pure Nash equilibrium assigning a different color to each
agent. However, by suitably restricting the network topology, a price of anarchy of
8 has been obtained for chains and 16 for rings under the minimal level, and further
reduced respectively to 3 and 6 under the intermediate level, up to an additive factor
converging to 0 as the load increases. Finally, again under the minimal level, a price
of anarchy logarithmic in the number of agents has been determined for trees.

9.6 Beyond Nash Equilibria: An Alternative Solution Concept
for Non-cooperative Games

As witnessed by the related notions of price of anarchy and stability, pure Nash
equilibria usually generates suboptimal solutions for non-cooperative games. One
of the several reasons for this situation is the fact that players always perform selfish
moves only motivated by a transient improvement on their payoffs, without con-
sidering what will be their final payoffs when the game eventually reaches a pure
Nash equilibrium. This observation naturally yields the question of whether agents
taking decisions only based on what will be their short-term consequences, with-
out considering what these decisions will cause tomorrow, might be considered as
rational.

In [11], Bilò and Flammini propose a new definition of selfish agents by giv-
ing them a more farsighted view of their actions. An agent knows she is part of a
multiplayer game and also knows that the game will not stop right after she has
performed an improving step. Assume that in state σ player i has an improving step
and that if she performs such a move a sequence of improvements begins leading
the game toward a pure Nash equilibrium σ ′. In this scenario, player i is mostly
interested in comparing the payoff she is experiencing in σ with the one she can get
at σ ′. The idea is that, if ωi(σ ′) is worse than ωi(σ), player i is damaged by the
consequences of her improving step; hence, she had better not performed it. When
more than just one equilibrium can be reached from a particular state, by following
a classical worst-case analysis, it can be assumed that the agent will compare the
payoff in the current state with that at the equilibrium yielding the worst payoff for
her. Such a viewpoint is clearly based upon the definition of a ground set of equilib-
ria the agents will compare a generic state with. According to these comparisons, a
possible nonempty set of new equilibria may arise and the process may be iterated
recursively until a fixed point is reached and the final set of desired equilibria is
created. Such a set is called the set of Second Order equilibria. Using different defi-
nitions of equilibrium for defining the ground set, it is possible to achieve different
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sets of Second Order equilibria. [11] focuses on the definition and the evaluation
of Second Order Nash equilibria, that is, with a ground set given by the set of pure
Nash equilibria.

Consider the following generalization of the Nash dynamics graph D(G ). Given
a set of (equilibria) states E ⊆ S, let D(G ,E) = (N,A) be a directed graph in which
N = S and there exists an edge between σ and σ ′ if and only if there exists an
improving step from σ to σ ′ and σ /∈ E. Edges are still labeled with the index of
the player performing the related improving step. Clearly, D(G , /0) coincides with
the Nash dynamics graph of G . Define ρE(σ)k

i as the set of all the states of G that
can be reached starting from σ by following a path of length at most k whose first
arc is labeled with index i in the graph D(G ,E). The set ρE(σ)k =

⋃n
i=1ρE(σ)k

i will
denote the set of all states that can be reached from σ by following a path of length
at most k in D(G ,E). When E = /0, we will simply remove the subscript E from the
notation. Let us also define P(σ) as the set of players having an improving step in
σ . Assume that the payoffs of each player are costs to be minimized. [11] introduces
the following definition.

Definition 9.1. Let G be a game with the FIP property. The set Nk(G ) = {σ ∈ S :
∀i ∈ P(s) and ∀σ ′ ∈ ρ(σ)1

i , ∃σ ′′ ∈ Nk(G ) such that σ ′′ ∈ ρNk(G )(σ ′)k and ωi(σ) <

ωi(σ ′′)} is the set of all the Second Order k-Nash equilibria of G , for any integer
k ≥ 0.

Intuitively, this rather involved definition says that a state σ is a Second Order
k-Nash equilibrium, for some integer k ≥ 0, if all the players that have an improving
step in σ would experience a payoff worse than the one they get in σ in one of
the Second Order k-Nash equilibria resulting from an evolutive process of at most
k improving steps taking place after their first defection. Such a definition is clearly
recursive. However, it can be shown that it is well posed, in the sense that it admits a
unique set of solutions or fixed points. First of all, it is easy to see that N0(G ) coin-
cides with the set of pure Nash equilibria for G and that each pure Nash equilibrium
is a Second Order k-Nash equilibrium, for any integer k ≥ 1. Then, by proving that
there exists a value k∗ for which all the sets Nk(G ) become the same for any k ≥ k∗,
the following final definition can be given.

Definition 9.2. Let G be a game with the FIP property. Each state σ ∈ Nk∗
(G ) =de f

N(G ) is a Second Order Nash equilibrium.

Clearly, since N0(G ) ⊆ Nk(G ) for any k ≥ 0, we have that the price of stability
of Second Order Nash equilibria is not worse than that of pure Nash equilibria,
while the price of anarchy of pure Nash equilibria is not worse than that of Second
Order Nash equilibria. The interested reader is referred to [11] for applications of
Second Order Nash equilibria to some traditional games, as well as extensions and
variations of this notion of equilibrium.
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9.7 Coping with Incomplete Information

In highly decentralized and pervasive networks, the assumption that each agent
knows the strategy adopted by any other agent may be too optimistic or even in-
feasible. In such situations, the set of agents of which each agent knows the chosen
strategy is modeled by means of a social knowledge graph, that is, a directed graph
K = (P,E) whose set of nodes coincides with the set of players in the game, and
there is a directed edge from player i to player j if and only if i knows the strategy
adopted by j. Since i always knows her chosen strategy, it is assumed that any so-
cial knowledge graph contains all self-loops. For each game G and social knowledge
graph K, a graphical game (G ,K) is obtained by extending its definition in such a
way that the payoff of each player can be influenced only by the strategies adopted
by the adjacent ones. In the following, we discuss graphical linear congestion games
and graphical Shapley cost sharing games which have been studied in [9] and [10]
respectively.

Graphical Linear Congestion Games. In a graphical congestion game (G ,K), the
payoff of player i is defined as ωi(σ) =∑e∈σi

de(ni
e(σ ,K)), where ni

e(σ ,K) = |{ j ∈
P : e ∈σ j and (i, j)∈ E(K)}| is the number of players using e in σ that are neighbors
of i in K, including i herself.

The classical potential function defined by Rosenthal no longer applies to the
graphical case; hence, as a first approach to the problem, a complete characteriza-
tion of the cases possessing pure Nash equilibria and the FIP property needs to be
achieved. The topology of K plays a fundamental role in this issue. In particular, if
K is undirected, (G ,K) is an exact potential game and thus isomorphic to a clas-
sical congestion game; if K is directed, an equilibrium is not guaranteed to exist
in general, but (G ,K) possesses the FIP property and an equilibrium can be found
in polynomial time if K is acyclic, even if finding the best equilibrium remains an
intractable problem.

Limited knowledge of the players yields two different possible definitions for the
latencies experienced by a player in each state: The presumed latency is the one the
player believes she suffers due to the fact that she is only aware of the existence
of her neighbors, and is defined as presi(σ) = ωi(σ). The perceived latency is the
one she actually experiences due to all the players using the resource, and is defined
as perci(σ) = ∑e∈σi

de(ne(σ)). According to these definitions, four different social
functions can be asked to be minimized, namely, the sum and the maximum of the
presumed latencies and the sum and the maximum of perceived ones. Given a bound
Δ on the maximum degree of K, for all the cases in which pure Nash equilibria
are guaranteed to exist, tight lower and upper bounds on the price of stability and
asymptotically tight bounds on the price of anarchy of pure strategies have been
achieved for such social functions. These results have been also extended to load
balancing games and are summarized in Table 9.1.

Graphical Shapley Cost Sharing Games. In a graphical Shapley cost sharing game
(G ,K), the payoff of player i is defined as ωi(σ) = ∑e∈σi

ce
ni

e(σ ,K) . Again, because



258 V. Biló et al.

Table 9.1 Summary of the results on the price of anarchy and stability with respect to the presumed
and perceived social cost functions

(a) Presumed Latency

Presumed Latency PoSsum, PoSmax PoAsum, PoAmax

Undirected graph 2,Θ(Δ +1) Θ(Δ +1), Δ +1
Acyclic DAG Θ(Δ +1), Δ +1 Θ(Δ +1), Δ +1

(b) Perceived Latency in Congestion Games

Perceived Latency Congestion Games

PoSsum,PoSmax PoAsum,PoAmax

Undirected graph n, n÷n
√
Δ +1 Θ(n(Δ +1))

Acyclic DAG Θ(n(Δ +1)) Θ(n(Δ +1))

(c) Perceived Latency in Load Balancing Games

Perceived Latency Load Balancing Games

PoSsum,PoSmax PoAsum,PoAmax

Undirected graph n,Θ(n) Θ(n)
Acyclic DAG Θ(n) Θ(n)

of the fact that some receivers can be hidden to other ones, graphical Shapley cost
sharing games can no longer be isomorphic to congestion games when considering
the presence of social knowledge graphs.

If K is a directed acyclic graph (DAG), the same technique used for graphical
linear congestion games shows that (G ,K) possesses the FIP property and that an
equilibrium can be computed in polynomial time. If K is either undirected or di-
rected cyclic, existence of pure Nash equilibria is no longer guaranteed even for the
multicast case. However, when K is undirected, the restriction to the load balancing
case can be shown to be isomorphic to general potential games, and hence to have
the FIP property. This does not hold when K is a directed graph containing cycles.

The results on the price of anarchy and stability which can be achieved on the
multicast case are quite surprising. The price of stability achievable by any DAG is
at least 1

2 logn, while the price of anarchy for complete DAGs can be shown to be at
most log2 n. This result can be achieved by proving that the set of Nash equilibria in-
duced by any complete DAG K∗ on any instance I coincides with the set of solutions
obtained after a first round of best responses in which the receivers enter sequen-
tially the game I starting from the empty configuration according to their topological
ordering in K∗. The upper bound on the price of stability follows by exploiting a re-
sult presented in [18]. Putting everything together, we have that the complete DAG,
if used as a universal knowledge graph, is able to contain the price of anarchy of the
graphical Shapley multicast cost sharing game under a polylogarithmic bound.

When a particular instance of the Shapley multicast cost sharing game is fixed in
advance, we have that the price of stability achieved by any DAG must be at least

4n
n+3 . On the other side, it is possible to prove that for any instance I there always
exists a DAG K(I) achieving a price of anarchy of at most 4n

n+3 if n = 2,3 and of



9 Game-Theoretic Approaches to Optimization Problems in Communication Networks 259

at most 4(n−1)
n+1 if n ≥ 4, hence obtaining an upper bound on the price of anarchy

almost matching the lower bound on the price of stability achievable by any DAG.
Unfortunately, it is not known how to construct efficiently the graph K(I). However,
given any r-approximation of the optimal multicasting tree, it is possible to compute
in polynomial time (by using a simple depth-first search) a DAG achieving a price
of anarchy of at most 4n

n+3 r if n = 2,3 and of at most 4(n−1)
n+1 r if n ≥ 4, lowering the

price of anarchy of this game to a constant value.
These achievements are twofold: from one side, they shed some light on how

the lack of knowledge among players can have impact on the total cost of the self-
emerging networks created by the interactions of selfish users; from the other side,
they show that the idea of hiding some players to others is a powerful instrument that
a central authority managing the game can use in order to obtain solutions whose
cost may be not too far from the optimal one without interfering directly on the
choices made by the players. This situation can be seen as another evidence of the
famous Braess’ paradox [13]. According to this paradox, there are cases in which
adding fast links in a network results in a decrease of performance or, symmetrically,
hiding some fast links from the players can improve the network performance. This
naturally extends to graphical Shapley multicast cost sharing games where hiding
some of the players to other ones can yield better solutions. In this sense, the less
players know, the most they are “cooperative.”

9.8 Open Problems and Future Research

Algorithmic Game Theory is a relatively young research area. As a consequence,
it provides a wide landscape for setting new ideas, theories, and applications. Also,
lots of questions have been raised by the research conducted so far. In this section
we propose a list of the most important and interesting open problems related to the
topics covered in the chapter.

Congestion games. The price of anarchy and stability of linear congestion games
have been exactly estimated both in the general case and in the load balancing case.
Much of the current trend in the study of congestion games is thus moving towards
the characterization of more general cases allowing more complicated delay func-
tions as well as different demands; see, for instance, [1, 30]. Most of these results
are concerned with the price of anarchy when considering, as a social function, the
sum of the latencies experienced by all the players, while the study of the price of
stability and the analysis of the social function given by the maximum delay ex-
perienced by the players still deserves further investigation. Also, problems related
to the existence of pure Nash equilibria, the speed of convergence towards Nash
equilibria, and the complexity of computing Nash equilibria in various special cases
deserve further investigation.
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Multicast cost sharing games. This is a widely open research topic since one can
define several reasonable socioeconomic properties a cost sharing method should
satisfy. A first effort in this direction can be found in [7, 20]. The latter paper, in
particular, provides a complete characterization of the price of anarchy which can be
achieved by cost sharing methods satisfying certain desiderata. Such properties are
rather strong and a similar study based on weaker constraints like the ones defined
in [7] could be an interesting research direction. Moreover, fewer results are known
regarding the price of stability. In this particular setting, the major open problem
regards the characterization of the price of stability of the Shapley value method
in undirected networks, which, in spite of a constant lower bound, has been upper-
bounded by O(logn). A sublogarithmic upper bound is only known for the special
case of broadcasting games [28].

Communication games in all-optical networks. While the complete information
level has been fully understood, the main question left open under the lower lev-
els is the determination of functions that yield Nash equilibria on every topology
with performance better than the worst possible one assigning a different color to
each agent. Moreover, under incomplete information, it would be interesting to im-
prove and extend the results on specific topologies. In this latter case, moreover,
nice connections between payment functions and online algorithms, allowing us to
cope with the arbitrary order of the moves of the agents, have been shown. It would
be challenging to understand the conditions and eventual systematic methods that
could yield converging payment functions preserving online algorithm performance
under incomplete information.

Second-order Nash equilibria. A lot of open questions have been introduced by
considering the extended notion of rationality of selfish players. The first one is cer-
tainly that of giving further validation to Second Order equilibria by using them in
conjunction with other known equilibria notions and presenting good applications.
To this end, the definition of Second Order Sink equilibria seems to be a promis-
ing research direction. Moreover, there is the important issue of understanding the
power of different ordering strategies in influencing the performance of these equi-
libria. An interesting question can be also that of trying to understand if the use of
Second Order equilibria can lead sequences of improving steps towards better states.
In [11] only impatient prudent agents have been considered. A final open issue is
certainly that of analyzing the other three possible definitions for rational agents as
well as the Second Order equilibria yielded by rush agents.

Coping with incomplete information. Possible applications of social knowledge
graphs include the design of protocols and P2P systems which limit the visibility of
the other peers, or simply, at a more foundational level, the possibility of using them
as an intermediate methodological tool for defining cost shares and payoffs so as to
induce good overall performance without direct interference in user decisions.

For Graphical linear congestion games, a crucial observation is that better bounds
with respect to the ones reported in Table 9.1 can be obtained for specific social
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graphs. In fact, for the undirected complete graph, constant bounds are derived
directly from the classical linear congestion game. Many questions are left open.
Besides tightening the various constant multiplicative gaps, it would be worth clos-
ing the gap between the upper and the lower bound on the price of stability for
the maximum perceived latency social function. The investigation of the conse-
quences of a minimum degree very close to n is another interesting issue. More-
over, what about nonlinear latency functions? While the convergence for directed
acyclic graphs works for all the latency functions, in the undirected case, conver-
gence strictly relies on linearity. It would be also worth investigating the expected
price of stability and anarchy when the knowledge graph obeys some social behav-
ior, as in Kleinberg’s Small Word model [33, 34]. In general, are there universal
bounded degree social graphs always guaranteeing good performance?

For Graphical multicast cost sharing games, besides closing the gaps between the
upper and lower bounds on the price of anarchy and stability (such as the gap for the
price of anarchy in the universal case), it would be interesting to extend the study
to other graphical cost sharing games, like cost sharing congestion games. Finally,
what about the effect of social graphs on the speed of convergence, that is, on the
number of selfish moves needed to reach equilibria or on the performance achieved
after a limited number of steps?
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Chapter 10
Permutation Routing and (�,k)-Routing on
Plane Grids

Ignasi Sau and Janez Žerovnik

Abstract The packet routing problem plays an essential role in communication
networks. It consists in transferring data from some origins to some destinations
within a reasonable amount of time. In the (�,k)-routing problem, each node can
send at most � packets and receive at most k packets. Permutation routing is the
particular case � = k = 1. In the r-central routing problem, all nodes at distance at
most r from a fixed node v want to send a packet to v. Here, we survey the results on
permutation routing, the r-central routing, and the general (�,k)-routing problems
on regular plane grids, that is, square grids, triangular grids, and hexagonal grids. We
assume the store-and-forward Δ -port model with synchronous transmission, and we
consider both full and half-duplex networks.

Key words: packet routing, distributed algorithm, (�,k)-routing, plane grids, per-
mutation routing, shortest path, oblivious algorithm

10.1 Introduction

In telecommunication networks, it is essential to be able to route communications as
quickly as possible. In this context, the packet routing problem plays a capital role.
In this problem we are given a network and a set of packets to be routed through the
nodes and the edges of the network graph. A packet is characterized by an origin and
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a destination node, and typically an edge can be used by no more than one packet at
a time. The objective is to find an algorithm to compute a schedule to route all pack-
ets which minimizes the total delivery time. This problem has been widely studied
in the literature under many different assumptions. In 1988, Leighton, Maggs, and
Rao proved in [27] (see also [25]) that there exists a schedule for routing any set of
packets with edge-simple paths on a general network, in optimal time of O(C +D)
steps, where C is the congestion (maximum number of paths sharing an edge) and
D the dilation (length of a longest path), assuming that the paths are given a priori.
The proof used the Lovász Local Lemma and was nonconstructive. This result was
further improved in [24], where the same authors gave an explicit algorithm, using
Beck’s constructive version of the Local Lemma. These algorithms to compute the
optimal schedule are centralized. Then, in [34] Ostrovsky and Rabani gave a dis-
tributed randomized algorithm running in O(C + D + log1+ε(n)) steps. We give a
more detailed overview of these results in Section 10.1.1.

Although these results are asymptotically tight, they deal with a general network,
and in many cases it is possible to design more efficient algorithms by looking at
specific packet configurations or network topologies. For instance, it is natural to
bound the maximum number of messages that a node can send or receive. We focus
on this point in Section 10.1.2, where we will formally define the problem consid-
ered here. On the other hand, the structure of the network under study plays a major
role in the quality and the simplicity of the solution. For example, in a radio wire-
less environment, cellular networks are usually modeled by a hexagonal tessellation
(or hexagonal grid), where centers of cells represent base stations. The cells of the
hexagonal tessellation have good diameter to area ratio and still have a simple struc-
ture. If centers of neighboring cells are connected, the resulting structure is called
a triangular grid. Notice that hexagonal grids are subgraphs of the triangular grid.
We will talk about such networks in Section 10.1.3. In this survey we focus on the
study of the (�,k)-routing problem in convex subgraphs of the square, triangular, and
hexagonal grids. A graph is called convex if it contains all shortest paths between
any pair of vertices.

10.1.1 General Results on Packet Routing

In this section we provide a fast overview of the state of the art of the general packet
routing problem, in both the off-line and online settings, focusing mostly on the
latter. We begin by recalling three classical lower bounds for the packet routing
problem.

10.1.1.1 Classical Lower Bounds

In the packet routing problem, there are three classical types of lower bounds for the
running time of any algorithm:
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1. Distance bound. The longest distance over the paths of all packets (usually called
dilation) constitutes a lower bound on the number of steps required to route all
the packets.

2. Congestion bound. The congestion of an edge of the network is defined as the
number of paths using this edge. Then, the greatest congestion over all the edges
of the network is also a lower bound on the number of steps, since at each step
an edge can be used by at most one packet.

3. Bisection bound. Let G = (V,E) be the graph which models the network, and
C ⊆ E a cut-set dissecting G into two components G1 and G2. Let m be the
number of packets with origin in G1 and destination in G2. Then, the number of

routing steps used by any algorithm will be at least
⌈

m
|C|

⌉
.

10.1.1.2 Off-line Routing

Given a set of packets to be sent through a network, a path system is defined as
the union of the paths that each packet must follow. For a general network and
any set of n demands, we have seen in Section 10.1.1.1 that the dilation and the
congestion provide two lower bounds for the routing time. This proves that the
dilation + congestion of a path system used for the routing procedure is a lower
bound of twice the routing time. In a celebrated paper, Leighton, Maggs, and Rao
proved the following theorem:

Theorem 10.1 ( [27]). For any set of requests and a path system for these requests,
there is an off-line routing protocol that needs O(C + D) steps to route all the re-
quests, where C is the congestion and D is the dilation of the path system.

In addition, in [45] the authors show that, given the set of packets to be sent, it is
possible to find in polynomial time a path system with the value of C + D within a
factor of 4 of the optimum. Thus, Theorem 10.1 can be phrased in a more general
way:

Theorem 10.2 ( [45]). For any set of requests, there is an off-line routing protocol
that needs O(C + D) steps to route all the requests, where C + D is the minimum
congestion+dilation over all possible path systems.

Furthermore, this routing protocol uses fixed buffer size, i.e., the queue size at all
nodes is bounded by a constant at each step. Nevertheless, it is important to notice
that a huge constant may be hidden inside the O notation. As we have said in the
introduction, this result was further improved in [24], where the same authors gave
an explicit algorithm. These algorithms to compute the optimal schedule are cen-
tralized. In a distributed algorithm nodes must make their decisions independently,
based on the packets they see, without the use of a centralized scheduler. Then,
in [34] Ostrovsky and Rabani give a distributed randomized algorithm running in
O(C +D+ log1+ε(n)) steps.

We refer to Scheideler’s thesis [41] for a complete compilation of general packet
routing algorithms.
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10.1.1.3 Online Routing

In the online setting, the oldest online protocol that deviates only by a factor log-
arithmic in n path collections is the protocol presented by Leighton, Maggs and
Rao [27], running in O(C+D log(Dn)) steps with high probability. The authors call
the algorithm online, rather than distributed. This schedule assumes that the paths
are given a priori; hence, it does not focus on the problem of choosing the paths to
route the packets.

The results of [2] provide a routing algorithm that is logn-competitive with re-
spect to the congestion. In other words, it is worse than an optimal off-line algorithm
only by a factor logn. In this setting the demands arrive one by one and the algorithm
routes calls based on the current congestion on the various links in the network, so
this can be achieved only via centralized control and serializing the routing requests.
In [4] the authors gave a distributed algorithm that repeatedly scans the network so
as to choose the routes. This algorithm requires shared variables on the edges of the
network and hence is hard to implement. Note that the two online algorithms above
depend on the demands and are therefore adaptive. An oblivious routing strategy is
specified by a path system P and a function w assigning a weight to every path in
P . This function w has the property that for every source-destination pair (s, t), the
system of flow paths Ps,t for (s, t) fulfills ∑q∈Ps,t w(q) = 1. One can think of this
function as a frequency distribution among several paths going from an origin s to
a destination t. In adaptive routing, however, the path taken by a packet may also
depend on other packets or events taking place in the network during its travel. Note
that every oblivious routing strategy is obviously online and distributed.

The first paper to perform a worst-case theoretical analysis of oblivious routing
is the paper of Valiant and Brebner [50], who considered routing on specific net-
work topologies such as the hypercube. They gave a randomized oblivious routing
algorithm. Borodin and Hopcroft [6] and subsequently [19] have shown that deter-
ministic oblivious routing algorithms cannot approximate well the minimal load on
any nontrivial network.

In a recent paper, Räcke [37] gave the construction of a polylogarithmic com-
petitive oblivious routing algorithm for general undirected networks. It seems truly
surprising that one can come close to minimal congestion without any information
on the current load in the network. This result has been improved in [5]. Lower
bounds on the competitive ratio of oblivious routing have been studied for various
types of networks. For example, for the d-dimensional mesh, Maggs et al. [36] gave
an ω(C∗

d (logn)) lower bound on the competitive ratio of an oblivious algorithm,
where C∗ is the optimal congestion.

So far, the oblivious algorithms studied in the literature have focused on mini-
mizing the congestion while ignoring the dilation. In fact, the quality of the paths
should be determined by the congestion C and the dilation D. A fundamental ques-
tion is whether C and D can be controlled simultaneously. An appropriate parameter
to capture how good the dilation of a path system is is the stretch, defined as the
maximum over all packets of the ratio between the length of the path taken by the
routing protocol and the length of a shortest path from source to destination. In a re-
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cent work, Bush et al. [8] considered again the case of the d-dimensional mesh. They
presented an online algorithm for which C and D are both within O(d2) of the po-
tential optimum, i.e., D = O(d2D∗) and C = O(dC∗ log(n)), where D∗ is the optimal
dilation (note that by [36], it is impossible to have a factor better than ω(C∗

d (logn))).
There is a simple counter-example network which shows that in general the two

metrics (dilation and congestion) are orthogonal to each other: take an adjacent
pair of vertices u,v, and Θ(

√
n) disjoint paths of length Θ(

√
n) between u and v.

For packets traveling from u to v, any routing algorithm that minimizes congestion
has to use all the paths; however, in this way some packets follow long paths (i.e.,
not using the edge between u and v), giving high stretch. Nevertheless, in grids [8]
and in some special kinds of geometric networks [7] the congestion is within a poly-
logarithmic factor from optimum and stretch is constant (d being the dimension). As
mentioned before, an interesting open problem is to find other classes of networks
where the congestion and stretch are minimized simultaneously [3]. Possible can-
didates for such networks could be bounded-growth networks, or networks whose
nodes are uniformly distributed in closed polygons, which describe interesting cases
of wireless networks.

The recent paper of Maggs [30] surveys a collection of theoretical results that
relate the congestion and dilation of the paths taken by a set of packets in a network
to the time required for their delivery.

10.1.2 Routing Problems

The initial and final positioning of the packets has a direct influence on the time
needed for their routing. Considering static packet configuration, the most stud-
ied constraints refer to the maximum number of packets that a node can send and
receive. Due to their practical importance, some of these problems have specific
names:

1. Permutation routing. Each node is the origin and the destination of at most one
packet. To measure the routing capability of an interconnection network, the par-
tial permutation routing (PPR) problem is usually used as the metric.

2. (�,k)-routing. Each node is the origin of at most � packets and destination of at
most k packets. Permutation routing corresponds to the case � = k = 1 of (�,k)-
routing. Another important particular case is the (1,k)-routing, in which each
node can send at most one packet and receive at most k packets.

3. (1,any)-routing. Each node is the origin of at most one packet but there are no
constraints on the number of packets that a node can receive.

4. r-central routing. All nodes at distance at most r of a central node send one
message to this central node. This pattern is very close to the broadcast pattern.

In all these problems we are given an initial packet configuration, and the objective
is to route all packets to their respective destinations minimizing the total routing
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time, under the constraint that each edge can be used by at most one packet at the
same time.

Besides the constraints about the initial and final positions of the packets, there
also exist different routing models at the intermediate nodes of the network. For
instance, in the hot potato model no packet can be stored at the nodes of the network,
whereas in the store-and-forward at each step a packet can either stay at a node or
move to an adjacent node. Another widely used model is wormhole routing [26].

On the other hand, one can consider constraints on the number of incident edges
that each node of the network can use to send or receive packets at the same time.
In the Δ -port model [11], each node can send or receive packets through all its
incident edges at the same time. Here we study the store-and-forward Δ -port model.
In addition, we suppose that cohabitation of multiple packets at the same node is
allowed. Thus, a queue is required for each outgoing edge at each node. We also
suppose that packets move in a synchronous way and that it takes exactly one time
unit for a packet to traverse a link.

The nature of the links of the network is another factor that influences the rout-
ing efficiency. The type of link is usually one of the following: full-duplex or half-
duplex. In the full-duplex case there are two links between two adjacent nodes, one
in each direction. Hence two packets can move, one in each direction, simultane-
ously. In the half-duplex case only one packet can move between two nodes, in
either direction of the edge. In this survey we consider both half- and full-duplex
links.

10.1.3 Topologies

We now give a brief summary of various cases of (�,k)-routing and (1,any)-routing
that have been studied for several specific topologies. More precisely, we first list
the most important results for some networks which have attracted a great interest
in the literature, such as hypercubes and circulant graphs. Then we move to plane
grids. It is well known that there exist only three possible tessellations of the plane
into regular polygons [32]: squares, triangles, and hexagons. These graphs are those
which we study in this survey.

10.1.3.1 Different Network Topologies

In [14] the authors studied the permutation routing problem in low-dimensional
hypercubes (d ≤ 12). They gave optimal or “good in the worst case” oblivious algo-
rithms, i.e., algorithms in which the path used by a packet is entirely determined by
its origin and its destination. Another network widely studied in the literature is the
two-dimensional mesh with row and column buses (with point-to-point communi-
cation). This network can also be diversified according to the capacities of the buses.
In [47] Suel gave a deterministic algorithm to solve the permutation routing problem
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in such networks. It gives a schedule using at most n + o(n) steps and a queue of
size 2, where the queue is the maximum number of packets that have to be stored at
an intermediate node. He also proposed a deterministic algorithm for r-dimensional
arrays with buses working in (2 − 1

r )n + o(n) steps and still using queues of size
2. In [22], the authors studied the (�,�)-routing problem in the mesh grid with two
diagonals and gave, for � ≥ 9, a deterministic algorithm using 2�n

9 +(�n2/3) steps.
In [13], the authors introduced an algorithm called big foot algorithm. The idea of

this algorithm is to identify two types of links and to move towards the destination
using first the links of the first type and then those of the second type. The algorithms
we develop will use such a strategy. Hwang, Lin, and Jan [13] gave an optimal
algorithm for the permutation routing problem in full-duplex 2-circulant graphs.
The same algorithm is optimal for double-loop networks, i.e., oriented 2-circulant
graphs. Recall that a circulant graph is a graph on n vertices in which the ith vertex
is adjacent to the (i + j)th and (i − j)th vertices (mod n) for each j in a list l of
positive integers.

Another network of great practical importance is the double-loop network: a net-
work modeled by a graph G = (V,E) with V = {v0, . . . ,vn−1} such that there are
two integers h1 and h2 such that E = {vivi±h1 ,vivi±h2 : i = 0, . . . ,n−1} (the indices
being taken modulo n). The permutation routing problem in this network is studied
in [9]. The authors gave an algorithm for the permutation routing problem which on
average uses 1.12� steps (the expected value being empirically measured). In [10],
an optimal centralized permutation routing algorithm in k-circulant graphs (k ≥ 2)
is given (with polylogarithmic time complexity for k = 2).

The problem has been also studied for packets arriving dynamically. In [12],
the author gave an optimal online schedule for the linear array. He also gave a 2-
approximation for rings and showed that, using shortest path routing, no better ap-
proximation algorithm exists. In [18], the authors studied Cube Connected Cycles:
CCC(n,2n) (hypercubes of dimension n where each vertex is replaced by a cycle
of length n). They gave an algorithm working in O(n2) with O(1) buffers for the
online partial permutation routing (PPR).

10.1.3.2 Plane Grids

Maybe the most studied networks in the literature are the two-dimensional grids (or
plane grids), and among them in particular the n× n = N square grid has deserved
special attention. Let us briefly overview what has been previously done on (�,k)-
routing in plane grids.

In [28] the first running time 2n−2), and queues of size 1,008 appears. The queue
size is reduced in [38] to 112 and further in [44] to 81. Furthermore, in [44] the au-
thors provide another algorithm running in near-optimal time 2n+O(1) steps with a
maximum queue size of only 12. [31] gives an asymptotically optimal algorithm for
(1,k)-routing on plane grids, with queues of small constant size. They introduced
for the first time the (1,k)-routing and the (1,any)-routing problems. This result was
further improved in [43], where the authors gave a near-optimal deterministic algo-
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Fig. 10.1 Hexagonal network (�) and hexagonal tessellation (�)

rithm running in
√

k n
2 + O(n) steps. Another algorithm was given that is slightly

worse in terms of number of steps, but with queues of size only 3. In the same pa-
per, lower bounds and near-optimal randomized and deterministic algorithms were
proposed for the general problem of (�,k)-routing on square grids. The algorithms
were also extended to higher dimensional meshes which performed (�,�)-routing
in O(�n) steps, the lower bound being Ω(

√
�kn) for (�,k)-routing [43]. Finally,

in [35], the authors gave deterministic and randomized algorithms for (�,k)-routing
on square grids, with constant queue size. The running time is O(

√
�kn) steps, which

is optimal according to the bound of [43]. This work closed a gap in the literature,
since optimal algorithms were only known for � = 1 and � = k. Oblivious permuta-
tion routing algorithms were given by Iwama and Miyano [16, 17] and Litman and
Moran-Schein [29]. For generalization to d-dimensional meshes and (k,k)-routing
see [15, 23, 33]. On triangular and hexagonal grids, the best results are randomized
algorithms with good performance [42].

Nodes on a hexagonal network are placed at the vertices of a regular triangular
tessellation, so that each node has up to six neighbors. These networks have been
studied in a variety of contexts, especially in wireless and interconnection networks.
The most known application may be to model cellular networks with hexagonal
networks where nodes are base stations. Furthermore, these networks have been
also applied in chemistry to model benzenoid hydrocarbons [20, 48], and in image
processing and computer graphics [21].

In a radiocommunication wireless environment [32], the interconnection network
among base stations constitutes a hexagonal network, i.e., a triangular grid, as it is
shown in Figure 10.1.

Tessellation of the plane with hexagons may be considered as the most natural
because cells have optimal diameter to area ratio (in the sense that this ratio is greater
than in square or triangular grids). Hexagonal networks are finite subgraphs of the
triangular grid. The triangular grid can also be obtained from the basic 4-mesh by
adding NE to SW edges, which is called a 6-mesh in [49]. Here we study convex
subgraphs of the square, triangular, and hexagonal grids.

In the next section we briefly outline some results on the permutation routing
problem on hexagonal grids. Some details are given in order to illustrate the main
ideas that can be applied to other grids with some natural modifications. We use the
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store-and-forward Δ -port model, and consider both full- and half-duplex networks.
Recall that here we assume there are no bounds on the queue size.1

10.2 Optimal Permutation Routing Algorithm

10.2.1 Preliminaries

Nodes on a hexagonal network are placed at the vertices of a regular triangular
tessellation, so that each node has up to six neighbors. We deal in this section with
a hexagonal mesh network G = (V,E) with full-duplex links, that is, an edge of
the network can be crossed by two simultaneous messages, one in each direction.
Equivalently, each edge between two vertices u and v is made of two independent
arcs (u,v) and (v,u), as illustrated in Figure 10.2a.

x

y
z

b)

u v

uv

vu

a)

O=(0,0,0)

Fig. 10.2 a) Each edge consists of two independent links. b) Axis used in a hexagonal network

In [32] the authors solved the problem of routing a single message through a
hexagonal communication network. The idea (first introduced in [46]) that will be
very useful later is the representation of any address in a basis consisting of three
unitary vectors i, j, k on the directions of the three axes x,y,z with a 120◦ angle be-
tween them, intersecting on an arbitrary (but fixed) node O labeled with the address
O = (0,0,0), as depicted in Figure 10.2b.

Thus, assume that each vertex P ∈ V is labeled with an address P = (P1,P2,P3)
expressed in this basis {i, j, k} with respect to the origin O. At the beginning, each
vertex S knows the address of the destination vertex D of the message placed initially
at S, and computes the relative address

−→
SD = D−S of the message. Note that this

relative address does not depend on the choice of the origin vertex O. This relative

1 An optimal permutation routing on full-duplex hexagonal networks was first given in [40], as a
result of a STSM within COST 293.
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address is the only information that is added in the heading of the message to be
transmitted, constituting in this way the packet to be sent through the network.

Using i + j + k = 0, the key observation [32] is that if (a,b,c) and (a′,b′,c′) are
the relative addresses of two packets, then (a,b,c) = (a′,b′,c′) if and only if there
exists a d ∈ Z such that a′ = a+d, b′ = b+d, and c′ = c+d.

Definition 10.1. An address
−→
SD = (a,b,c) is of the shortest path form if there is a

path from vertex S to vertex D, consisting of a units of vector i, b units of vector j,
and c units of vector k, and this path has the shortest length.

The next result simplifies extraordinarily the routing in hexagonal networks.

Theorem 10.3 ( [32]). An address (a,b,c) is of the shortest path form if and only if
at least one component is zero, and any two components do not have the same sign.

Corollary 10.1 ( [32]). Any address has a unique shortest path form.

Thus, each address
−→
SD written in the shortest path form has at most two nonzero

components, and they have different signs. In fact, it is easy to find the shortest path
form using the next result.

Theorem 10.4 ( [32]). If
−→
SD = ai+bj+ ck, then

|−→SD| = min(|a− c|+ |b− c|, |a−b|+ |b− c|, |a−b|+ |a− c|).

10.2.2 Description of the Algorithm for Hexagonal Networks

Many communication networks are represented by graphs satisfying the following
property: for any pair of vertices u and v, the edges of a shortest path from u to v
can be partitioned into k disjoint classes according to a well-defined criterion. For
instance, we have seen in Section 10.2.1 that on a hexagonal network the edges of
a shortest path can be partitioned into positive and negative ones. Similarly, on a k-
circulant graph the edges can be partitioned into k classes according to their length.

In graphs that satisfy this property there exists a natural routing algorithm: route
all packets along one class of edges one after another. Surprisingly, in many cases
this natural algorithm turns out to be optimal. Optimality for 2-circulant graphs is
proved using a static approach in [13], and recently using a dynamic distributed
algorithm in [39]. The algorithm is called the big-foot algorithm because it routes
packets first along long hops and then along short hops in a 2-circulant graph [13].
There is no restriction on the size of the queues. On the square grid, the big-foot
idea works as is natural, i.e., an optimal algorithm consists of two phases, moving
each packet first horizontally and then vertically.

Based on the observations on the addressing scheme of hexagonal networks, it
can be proved that for hexagonal networks this algorithm turns out to be also optimal
[40].

The optimal algorithm A is completely distributed, and can be described as fol-
lows. At each node u of the network, perform:
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I. Preprocessing phase. If there is a packet at node u, the preprocessing phase con-
sists just of computing the relative address D− S of the message in the shortest
path form, and adding this information to the message to complete the packet
to be sent. Recall that because of Theorem 10.3, D − S can have no more than
one negative component. At each step, when a packet is received at u, its relative
address is updated.

II. Transmission phase. Repeat:

a) If there are packets with negative components, send them immediately along
the direction of this component.

b) If not, for each outgoing edge order the packets according to a decreasing
number of remaining steps and send the first packet of each queue.

10.2.3 Correctness, Running Time and Optimality

Algorithm A is really cheap in terms of computational cost, since the only involved
operations are integer addition and comparison among the lengths of the addresses
of the packets at each node. Let us briefly discuss correctness and give the main
ideas of the proof of optimality.

The rules given by Algorithm A define two directions of movement for each
packet. That is, first of all a packet moves along the direction of its negative com-
ponent, and then along its positive one. Obviously, if a packet has only positive
component, it always moves along this direction. The first key observation is that
packets can only wait, possibly, during their last direction. That is because if two
packets meet when their first direction is not finished yet, it is easy to check that
they must have the same origin node, a contradiction. Thus, in a) there can be at
most one packet with a negative component at each outgoing edge; hence, there is
no ambiguity. Finally, in b) the packet with maximum remaining length at each out-
going edge is unique, since all these packets are moving along their last direction
(their negative component is already finished; otherwise, they would be in a)) and
each node is the destination of at most one packet.

Using this algorithm, at every step all packets with maximum remaining distance
move, and hence at every step the maximum remaining distance over all packets
decreases by 1. Thus, the total running time is at most �max, meeting the lower
bound. More details can be found in [40]. In the case of permutation routing, we
have proved that the number of steps i at each node is at most �max, but written in this
way the algorithm can be applied in a more general routing scenario. In conclusion,
the main result can be summarized as follows.

Theorem 10.5 (see [40]). Algorithm A is an optimal permutation routing algorithm
for full-duplex hexagonal networks.

Besides minimizing the number of steps, a routing algorithm must also be easy to
implement; namely, the routing at each step should be determined efficiently. Recall
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that a routing algorithm is called oblivious if the path of a packet from v depends
only on v and its destination, although the waiting time at an intermediate node may
depend on other paths. Furthermore, a translation invariant oblivious algorithm is
completely determined by paths from the origin.

The obliviousness of A is straightforward since the routing for each packet de-
pends only on the source and destination nodes. Finally, it is clear that to route a
packet only the difference D−S between the source and destination node is needed,
and thus we have proved the invariance.

Corollary 10.2 (see [40]). Algorithm A is an oblivious, translation invariant, and
optimal permutation routing algorithm for full-duplex hexagonal mesh networks.

10.3 Extensions and Open Problems

The algorithm described in Section 10.2.2 can be extended to find optimal permu-
tation routing algorithms for all the other types of plane grids, as well as for finding
near-optimal algorithms for (�,k)-routing for all types of plane grids. The following
results can be found in [1]:

1. A tight (also including the constant factor) permutation routing algorithms in
full-duplex hexagonal grids and half-duplex triangular and hexagonal grids.

2. A tight (also including the constant factor) r-central routing algorithms in tri-
angular and hexagonal grids. It may be interesting to remark that the optimal
algorithms for r-central routing slightly deviate from the general scheme of the
permutation routing algorithms.

3. A tight (also including the constant factor) (k,k)-routing algorithms in square,
triangular, and hexagonal grids.

4. Approximation algorithms for (�,k)-routing in square, triangular, and hexagonal
grids.

Of course, there are many questions to be asked. For instance, the words approx-
imation algorithms mentioned above mean that there is no optimal (or even tight)
algorithm for (�,k)-routing known for any plane grid. This is definitely the most
challenging open problem concerning (�,k)-routing on plane grids.

There are other important avenues for further research. An important issue is to
optimize also the maximum size of the queues at the nodes. We have not addressed
this point here, mostly because often when optimizing the queue size the running
time increases. Finding the right trade-off between both parameters would be a cel-
ebrated result.

Finally, observe that all the graphs discussed in Section 10.2.2 are Cayley graphs,
with their corresponding generators. In fact, the generators of each type of graph in-
duce the partition of the shortest paths into the k mentioned sets. Therefore, it seems
natural that this idea of routing packets one class after another could be extended to
any Cayley graph, which would be a quite general result.
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1. Amini, O., Huc, F., Sau, I., Žerovnik, J.: (�,k)-Routing on Plane Grids. Rapport de Recherche
6480 INRIA (2008)

2. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual circuits with
applications to load balancing and machine scheduling. Journal of the ACM (JACM) 44(3),
486–504 (1997)

3. Aspnes, J., Busch, C., Dolev, S., Fatourou, P., Georgiou, C., Shvartsman, A.: Eight Open
Problems in Distributed Computing. Bulletin of the EATCS 90, 109–126 (2006)

4. Awerbuch, B., Azar, Y.: Local optimization of global objectives: competitive distributed dead-
lock resolution and resource allocation. In: 35th Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 240–249 (1994)

5. Azar, Y., Cohen, E., Fiat, A., Kaplan, H., Räcke, H.: Optimal oblivious routing in polynomial
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Mathematical Optimization Models for WLAN
Planning
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Abstract Wireless Local Area Networks (WLANs) based on the IEEE 802.11 stan-
dard family are used widely for wireless broadband Internet access. The perfor-
mance aspects of WLANs range from deployment cost, coverage, capacity, interfer-
ence, and data throughput to efficiency of radio resource utilization. In this chapter,
we summarize some recent advances in applying mathematical optimization models
for solving planning problems arising in placing access points (APs) and assigning
channels in WLANs. For AP location, we present an optimization model aimed at
maximizing the average user throughput. For channel assignment, we present two
modeling approaches that use different performance metrics. We also discuss inte-
grated models for joint optimization of AP location and channel assignment. We
report computational experiments with real-life data, and show the advantages of
mathematical optimization in WLAN planning.
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11.1 Introduction

WLAN (Wireless Local Area Network, also WiFi) is a technology for providing
wireless broadband Internet access. Due to their low cost and ease of use, WLANs
are widely deployed. The network layout and its configuration determine the per-
formance of a WLAN; important performance indicators are deployment cost, cov-
erage, capacity, interference, data throughput, and efficiency of radio resource uti-
lization. At present, WLANs are often installed using rules of thumb; this calls for
quantitative and systematic methods that can outperform manual approaches. This
chapter presents mathematical optimization approaches to the problems of locating
access points (APs) and assigning a channel to each of them. We show how math-
ematical models can capture the essential features of the technology and provide
superior network designs.

Most aspects of WLAN optimization resemble problems studied in mobile cel-
lular network planning. The AP positioning problem is akin to base station posi-
tioning and coverage planning in cellular networks. Due to the smaller coverage
area of WLANs, however, the number of installed APs is smaller, and the signal
propagation characteristics are different. Moreover, WLANs are mainly intended
for providing broadband access to users that are rather stationary. Channel assign-
ment for minimizing interference is needed in WLAN just as, for instance, in GSM
(see Section 1.5.5.1). The number of channels is, however, much smaller, and access
to the medium is controlled by a contention mechanism on each channel. The im-
pact of this mechanism on network performance is paramount, and requires tailored
modeling approaches.

We present several optimization models for the planning phase of deploying
WLAN. The models can use both measurements and prediction-based data. As data
are collected prior to solving the models, optimization can be performed using cen-
tralized computation. We optimize AP location using a facility location model in
which the average single-user throughput is maximized. Two modeling approaches
are considered for channel assignment: overlap graphs and contention sets. With
overlap graphs, each pair of APs is assigned a weight proportional to the area in
which the received signal strengths of the two APs are above some thresholds. Chan-
nel assignment has the objective of minimizing the total weighted overlap of APs
on the same and adjacent channels. Two integer-linear programming models for
minimum-overlap channel assignment are discussed in the chapter. For each user,
the contention set comprises all other users potentially contending for medium ac-
cess with the user. The modeling approach resulting from the concept uses a per-
formance metric, called network efficiency, that reflects the average probability of
successful access to the medium. Using contention sets, the goal is to maximize
the network efficiency metric. Because the contention sets carry information on
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medium contention of each individual user, they model WLAN medium access
more accurately than AP overlap, which represents medium contention through an
aggregated view. On the other hand, maximum-efficiency channel assignment using
contention sets leads to complex models. In the chapter, we present a hyperbolic in-
teger programming model for maximum-efficiency channel assignment, and derive
a linearization based on the enumeration of contention sets.

In addition to models for performing AP location and channel assignment sepa-
rately, we present optimization models that integrate AP location with channel as-
signment. Integrating AP location with minimum-overlap channel assignment leads
to an objective function representing a trade-off between overlap minimization and
throughput maximization. For the modeling approach using contention sets, the ob-
jective of maximizing efficiency can be used for joint AP location and channel as-
signment.

We report computational experiments for a real-life WLAN planning instance,
where the input parameters are based on real throughput measurements and detailed
signal-propagation modeling. The input data include a set of potential AP locations
in an office building, a set of available channels, a set of test points representing ex-
pected user locations, and signal propagation data between candidate AP locations
and test points. The strengths and the capabilities of both the sequential approaches
and of the integrated model are assessed. In our experiments, the WLAN designs ob-
tained from the optimization models considerably outperform the manual planning
solution which has been deployed in the network.

The remainder of the chapter is organized as follows. Some technical background
of WLANs is provided in Section 11.2; the related work on WLAN planning is re-
viewed in Section 11.3. Mathematical notation and definitions used in the chapter
are introduced in Section 11.4. Section 11.5 discusses the optimization of AP loca-
tions. The models for minimum-overlap channel assignment are presented in Sec-
tion 11.6. The concept of contention set and the resulting models are presented in
Section 11.7. The integration of AP location and channel assignment is then dis-
cussed in Section 11.8. Computational experiments are presented in Section 11.9.
Finally, Section 11.10 gives some conclusions and an outlook on future develop-
ments.

11.2 Technical Background

The WLAN technology is defined in the IEEE 802.11 standard [16], specifying a
number of possible physical-layer implementations as well as many networking as-
pects. At present, WLANs using IEEE 802.11b and the more recent IEEE 802.11g
are the most popular. (These former amendments have now been joined in the lat-
est standard.) They use different physical-layer implementations on the same fre-
quency band at 2.4 GHz. IEEE 802.11g is backward-compatible, so that hardware
implementing the two standards can interoperate.
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11.2.1 Physical Layer

WLANs employ rate adaptation to utilize the radio channel efficiently. According
to the received signal strength, the raw data rate on a link is selected from a discrete
set ranging up to 54 Mbit/s (11 Mbit/s for IEEE 802.11b). Due to protocol overhead,
however, the net data rate is much lower (see Figure 11.4).

Both the IEEE 802.11b and 802.11g standards divide the 2.4 GHz spectrum
into 13 channels.1 Two neighboring channels are separated by 5 MHz, as shown
in Figure 11.1. Channels with at least 24 MHz separation are considered to be
non-overlapping. Otherwise, they are called adjacent or overlapping channels. The
spectrum available to WLAN provides at most three non-overlapping channels (for
example, channels 1, 6, and 11; see Figure 11.1). Since the 2.4 GHz spectrum is
unlicensed, a WLAN may also be subject to the interference of external radiation
sources (e.g., other WLANs, microwave ovens, cordless telephones).

Fig. 11.1 Channels specified by the IEEE 802.11b/g standards

11.2.2 Architecture

A station is a device containing an IEEE 802.11 network interface card (NIC). A
WLAN connects stations either in ad hoc mode or in infrastructure mode. A basic
service set (BSS) is a set of stations that can communicate either directly or through
some other station. If stations are able to communicate directly, we speak of an in-
dependent basic service set (IBSS). If a self-contained network is thus formed, this
is referred to the ad hoc mode of WLAN. In graph terminology, the stations of a
WLAN in ad hoc mode form a clique, assuming that no station has been config-
ured to perform network layer routing for other stations. In the infrastructure mode,
the stations in a BSS communicate through an access point (AP), which is itself a
station. In the rest of this section, we will refer to user stations simply as users, or
mobile terminals (MTs).

1 Channel availability varies by country due to radio spectrum regulation. The 13 channels are
typically available in the European Telecommunications Standards Institute (ETSI) regulatory do-
main. One additional IEEE 802.11b channel is available in Japan. In North America, the Federal
Communications Commission (FCC) and Industry Canada (IC) restrict the spectrum usage to 11
of the 13 channels.
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In the infrastructure mode, several BSSs are typically connected to a wired Ether-
net backbone, called the distribution system (DS). The DS enables mobility support
and seamless integration of multiple BSSs. BSSs connected via the DS form an ex-
tended service set (ESS) of a WLAN; see Figure 11.2. ESSs are used for broadband
Internet access, and are the focus of this chapter. Every user accesses the DS through
one AP of the ESS, with which the user is said to be associated. To announce its
presence, an AP periodically broadcasts special messages, called beacon frames,
on the frequency channel used by the AP. A user station seeks beacon frames on
all WLAN channels, and selects one AP for association. The 802.11 standard does
not specify an algorithm for selecting which of the available APs to associate with.
Typically, the station chooses the AP from which the beacon frame is received with
the best signal strength. By this choice, the station maximizes the expected data rate
(see Section 11.4). Some research has been conducted on alternative variants [3, 24].
The frequency channel used by the AP is inherited by all its associated users.

AP1

MT1 MT2 AP2

MT3 MT4

MT5

DS

IEEE 802.x LAN

ESS

BSS1

BSS2

Fig. 11.2 Infrastructure mode of WLAN.

11.2.3 Medium Access Control

Unlike cellular networks (e.g., GSM or UMTS) where users obtain a dedicated re-
source in form of frequency, time slot, or channelization code, WLAN applies ran-
domized medium access, and uses a medium access control (MAC) mechanism to
deal with collisions and medium contention. The MAC mechanism is used in both
downlink (AP to user station) and uplink (user station to AP) directions. A collision
occurs when the signals of two or more transmitting stations overlay at either of the
receiving stations. Medium contention occurs when two (or more) stations compete
for using the medium. Stations transmitting on non-overlapping channels will not
cause collision or medium contention.

The IEEE 802.11 protocol defines two MAC mechanisms: the Distributed Coor-
dination Function (DCF) and the Point Coordination Function (PCF). PCF is cen-
tralized and can therefore, in theory, avoid collision and medium contention at the
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cost of coordination overhead. Implementing PCF is, however, optional, and DCF
is wider spread, so we focus on DCF. In DCF, stations negotiate medium access
among themselves in a distributed and randomized access scheme using a Carrier
Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol.

In CSMA, before initiating a transmission, a station first senses the medium. If
a signal from another station is detected on the same frequency channel, the station
waits for the ongoing transmission to finish before transmitting. This mechanism
avoids some collisions, but unresolved cases remain: In the hidden terminal sce-
nario, illustrated in Figure 11.3(a), a terminal (MT1 in the figure) senses the carrier
idle and starts transmission concurrently with another one (MT2). Neither of them
will detect the other’s signal because they are outside the respective radio ranges.
The result is a collision at the AP. Another interesting interference scenario is the ex-
posed terminal scenario, represented in Figure 11.3(b): A user MT2 needs to trans-
mit to its associated access point AP2, but a second access point AP1, having MT2
within the radio range, is transmitting to some other user MT1. Even though the two
transmissions could in fact take place simultaneously without collision (as MT2 is
not within radio range of MT1, and AP2 is not within radio range of AP1), MT2 is
not allowed to start transmitting, because it is exposed to an ongoing transmission.

MT1 MT2AP

(a) Hidden terminal problem

MT1 MT2AP1

AP2

(b) Exposed terminal problem

Fig. 11.3 The hidden terminal problem and the exposed terminal problem. Radio ranges are indi-
cated by dotted ovals

CA is used to further reduce the probability of collisions. A receiving station ac-
knowledges each successful transmission. The absence of acknowledgment triggers
a retransmission. To reduce the probability of repeated collision, CSMA/CA uses
an exponential backoff scheme: If a station wishing to transmit senses the channel
idle, it senses for an additional, short period of time (the Distributed Inter-Frame
Space, DIFS). If the channel gets busy during the DIFS, the station keeps sens-
ing the channel until it is idle for a DIFS, and then generates a random backoff
interval from a range called the contention window. The contention window size
is doubled after each unsuccessful attempt and reset after a successful transmis-
sion. The backoff counter is decremented as long as the channel is sensed idle,
frozen when the channel is busy, and reactivated (without resetting) when the chan-
nel is again idle for more than a DIFS. The transmission starts when the backoff
counter reaches zero. In addition to the two-way handshaking (transmission and
acknowledgment) technique, DCF defines an optional four-way handshaking tech-
nique known as CSMA/CA with Request to Send (RTS) and Clear to Send (CTS).
RTS and CTS are short packets used to reserve the channel prior to payload trans-
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mission. The RTS/CTS packet exchange, referred to as virtual carrier sensing, is
advantageous because collisions virtually occur only for these small signaling pack-
ets, and the exposed terminal problem and the hidden terminal problem are resolved
(if all stations have the same radio range).

11.2.4 Planning Tasks and Performance Aspects

The main decisions in WLAN planning are AP location and channel assignment.
These decisions should be taken with the objective of obtaining good network per-
formances. We shall now elaborate on these points.

Determining AP locations is usually the first step in a WLAN deployment pro-
cess. Locations should be chosen so that the resulting WLAN provides coverage to
the intended service area. This requires signal strength measurements and/or pre-
dictions of radio propagation. Coverage planning for large buildings with multiple
floors is more involved: An AP located on one floor of the building may provide sig-
nal coverage, but sometimes also interference, to adjacent floors of the same build-
ing, or even to other buildings [14, 15]. Potential interference from neighboring
WLANs has to be considered as well.

Distributed and online channel assignments are presently not implemented in
APs. A WLAN typically uses a static channel assignment, or each AP uses a simple
heuristic to select a channel when powered on. Typically, the heuristic searches for
the least congested channel or the channel with the least amount of interference. Us-
ing the three non-overlapping channels 1, 6, and 11 is encouraged [8], since stations
transmitting on non-overlapping channels do not cause collision or contend for the
medium. In this chapter we focus on the case where a static channel assignment is
determined during the planning.

From a user standpoint, the most important WLAN performance indicator is the
data throughput. Since the bandwidth of the DS is typically much higher than that
of the radio interface, the radio link is the performance-limiting point. The data
throughput on the radio link depends on the net throughput experienced by the user
when holding the medium (which we call single-user throughput), on the number
of users associated with the same AP and their activity, and on interference due
to users associated with other APs. The single-user throughput is essentially deter-
mined by the distance (attenuation) to the associated AP, and is easy to model. An
appropriate modeling of interference and contention, on the other hand, is the main
task in designing optimization approaches to WLAN planning. In this chapter, the
model for optimizing AP location (Section 11.5) focuses on the aspect of single-
user throughput. The model can be applied to both downlink and uplink directions.
For channel assignment, the first modeling approach (Section 11.6) uses an overlap
graph to provide an aggregated view of interference and contention. This approach
does not require us to distinguish between downlink and uplink. The second ap-
proach (Section 11.7) models in detail medium contention for every individual user,
and the resulting model is suitable for addressing performance of the uplink.
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11.3 Related Work

AP location has been occasionally studied separately [21, 32, 36], with the objective
of optimizing signal coverage and quality, and without referring to the CSMA/CA
mechanism. The WLAN channel assignment problem is related to GSM frequency
assignment problems [1, 2, 23], notably to the minimum-interference frequency as-
signment (see Section 1.5.5.1). For GSM, graph-coloring techniques are used [12];
the graph-coloring approach is applied to WLAN in static [29] and dynamic [31, 37]
settings. Some contributions [26] use a more accurate model of MAC level perfor-
mance for channel assignment. Some NP-hardness results are known [26, 29] for
the channel assignment problem.

In conjunction, channel assignment and AP location for WLAN have often
been treated sequentially [14, 39], in a multi-objective setting [17]. Search heuris-
tics are most popular for these problems. Custom algorithms have been developed
in [27, 30]. Integer programming methods are also used [25, 28, 40]. The channel
assignment is, however, typically treated as a feasibility problem constraining an es-
sentially coverage-driven approach. In this chapter, Sections 11.5, 11.6, and 11.8.1
are based on [11, 33, 34], while Sections 11.7 and 11.8.2 are based on previous
work on efficiency optimization in single- and multiple-frequency WLANs [4–6].

11.4 Notation and Definitions

Let us introduce some mathematical notation to be used in our models. The set of
candidate AP locations is denoted by A = {1, . . . ,A}, and we denote by A 2 =
{(a,b) : a,b ∈ A ,a < b} the set of ordered pairs of APs in A . Given two distinct
APs a,b, exactly one of (a,b) and (b,a) is in A 2. The maximum number of installed
APs is denoted by M. The service area is represented by a set of test points (TPs)
I = {1, . . . , I}, where each element i ∈ I represents a potential user location. In
the remainder, the size of an area is measured by the number of TPs it contains.

For each AP a ∈ A we define a serving range, so that TPs within the serving
range of an AP can be served by the AP. For every TP i ∈ I , we use Ai to denote
the set of APs for which i is within the serving ranges. Representing the same in-
formation from the AP point of view, we denote by Ia the set of TPs that can be
served (or covered) by AP a ∈ A .

For every station (AP or TP) we define a second signal range, commonly referred
to as carrier sense range. A station is within carrier sensing range from some other
station if they operate on the same frequency channel and if the former, perform-
ing carrier sensing while the latter is transmitting, senses the channel as idle. This
implies that stations within each other’s carrier sense range have to contend for the
medium. For APs, the carrier sense range is at least as large as the serving range.

As discussed in Section 11.2.4, one important WLAN performance metric is
the single-user throughput, defined as the maximum achievable throughput when
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a user communicates with its associated AP without contention. We denote by tai

the single-user throughput of TP i when it is associated with AP a.
The set of available channels is denoted by C ⊆ {1, . . . ,13}, and the dis-

tance (in MHz) between two channels c1,c2 ∈ C by |c1 − c2|. We denote by
D = {|c1 − c2| : c1,c2 ∈ C , |c1 − c2| < 24 MHz} the set of channel distances be-
tween overlapping channels. For example, if only the non-overlapping channels are
allowed, C = {1,6,11} and D = {0}, while if all the channels can be used then
C = {1, . . . ,13} and D = {0,5,10,15,20} (due to the 5 MHz channel separation).
For the sake of simplicity, we assume that C does not vary by AP.

When channel assignment is considered, the set of installed APs is denoted by
¯A ⊆ A , and the set of its pairs by ¯A 2 ⊆ A 2. We assume that each TP i ∈ I asso-

ciates with the AP providing the highest single-user throughput ti = maxa∈ ¯A {tai},
and we denote such an AP by ā(i).

At the physical layer, the value of tai (and ti) is dependent on the received signal
strength. At the radio interface, this throughput corresponds to one of the nominal
data rates defined in IEEE 802.11 standards. From an application standpoint, the
throughput should be defined as the end-to-end data throughput, for which unreli-
able radio propagation, protocol behavior, and overhead at the link layer and above
are the constraining factors. In either case, the throughput as a function of received
signal strength can be found using a predication model or experimentally. We illus-
trate the latter for IEEE 802.11g using an AP of type Cisco AP-1200/AP21G [7] and
the network benchmarking tool NETIO. The transport layer protocol is the Trans-
mission Control Protocol (TCP). The TCP end-to-end throughput is measured by
continuously transmitting segments of 1 kB in size in one minute between a laptop
and a PC connected to the DS. The results are shown in Figure 11.4. The figure
shows both the physical-layer data rates on the radio interface as well as the TCP
end-to-end throughput. Experiments also show that the results are valid for both
downlink (AP to laptop) and uplink (laptop to AP). The measurement points of the
end-to-end throughput can be interpolated by means of a best-fit polynomial (illus-
trated by the dotted curve in Figure 11.4), which we use to define tai for the instance
described in Section 11.9.
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11.5 AP Location Optimization

The AP location problem amounts to selecting a subset ¯A of the candidate locations
A for installing APs. It can be modeled as a variation of the facility location prob-
lem. A natural objective function is to maximize the total single-user throughput
over all TPs. We introduce two sets of variables:

za =
{

1 if AP a is installed,
0 otherwise.

xai =
{

1 if TP i is served by AP a,
0 otherwise.

(11.1)

The model of maximum-throughput AP location (MTAL) reads

max
1
I ∑i∈I

∑
a∈Ai

taixai (11.2a)

s. t. xai − za ≤ 0 i ∈ I ,a ∈ Ai (11.2b)

∑
a∈Ai

xai ≤ 1 i ∈ I (11.2c)

∑
a∈A

za ≤ M (11.2d)

za ∈ {0,1} a ∈ A (11.2e)

xai ∈ {0,1} i ∈ I ,a ∈ Ai (11.2f)

In MTAL, the objective function (11.2a) is to maximize the average throughput
(and equivalently the total throughput) of the TPs. Constraints (11.2b) ensure that a
TP can be served by an AP only if the latter is installed. By constraints (11.2c), a
TP can be associated with and served by at most one AP. The next constraint sets a
maximum limit on the number of installed APs.

Note that there is no constraint requiring that all TPs have to be covered. Rather,
the model encourages coverage by rewarding a higher throughput. Furthermore, in
any optimal solution each TP will always be served by the AP providing the best sig-
nal strength and equivalently the highest throughput value. Observe also that there
is always an optimal solution in which constraint (11.2d) is tight, as adding APs
to a solution does not reduce the throughput. Finally, although the combinatorial
problem represented by MTAL is generally NP-hard, in most of the practical cases
of WLAN planning the number of candidate AP locations is quite small (often less
than a hundred), and MTAL can be solved by commercial integer-linear solvers in a
short time.
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11.6 Minimum-Overlap Channel Assignment

Given a set ¯A ⊆ A of installed APs, the next step is to assign one of the available
channels to each AP. With 13 available channels as shown in Figure 11.1, two basic
selections of the set of candidate channels are the complete set C = {1, . . . ,13},
and the set of non-overlapping channels C = {1,6,11} for which only co-channel
overlap may occur. We will first present a channel assignment model for the general
case, and then a model specific to the case of three non-overlapping channels.

In this section, we treat channel assignment in a similar way as frequency as-
signment in cellular networks. Instead of trying to model CSMA/CA explicitly, we
model interference and medium contention indirectly by considering the amount of
overlap between APs operating on the same channel or adjacent channels. To do
so, we define a parameter νab to represent the number of TPs at which the received
signals of APs a and b are both detectable. More precisely, νab is the number of TPs
that lie within the carrier sense ranges of both APs and in the serving range of at
least one of them. We call νab the co-channel overlap if APs a and b are assigned
the same channel. If the two APs operate on adjacent channels at a distance d, the
parameter is scaled by a weight F(d) ∈ [0,1]. In our computational experiments we
use F(d) = 1/(1+d/5 MHz)k if d ≤ 24 MHz, and 0 otherwise. Note that F(0) = 1
and that F(0) models the impact of contention and co-channel interference on the
system performance, while F(d > 0) addresses the inter-channel interference issue,
which is less critical but may still have a significant effect on the performance when
channel distance is small. The parameter k can be used to model the impact of over-
lap due to adjacent channels; in our experiments we set k = 2. For an alternative
definition of F(d), derived empirically, see [29, 38]. Also, instead of using the size
of overlap between AP pairs, another modeling approach is to consider for each TP,
the covering APs and their signal strengths. For channel assignment in GSM, such
an approach (e.g., [18]) amounts to aggregating multiple interfering sources.

To formulate the problem, we introduce the following variables:

f c
a =

{
1 if AP a operates on channel c,
0 otherwise.

wd
ab =

{
1 if the channel distance between AP a and AP b equals d,
0 otherwise.

(11.3)

Variables wd
ab translate channel assignment into overlap. The minimum weighted-

overlap channel assignment problem (MOCA) can then be modeled as follows.
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min ∑
(a,b)∈ ¯A 2

∑
d∈D

νabF(d) wd
ab (11.4a)

s. t. ∑
c∈C

f c
a = 1 a ∈ ¯A (11.4b)

w|c1−c2|
ab ≥ f c1

a + f c2
b −1 (a,b) ∈ ¯A 2,c1,c2 ∈ C , |c1 − c2| ∈ D (11.4c)

wd
ab ∈ {0,1} (a,b) ∈ ¯A 2,d ∈ D (11.4d)

f c
a ∈ {0,1} a ∈ ¯A ,c ∈ C (11.4e)

Constraints (11.4b) ensure that one channel is chosen for each AP, and con-
straints (11.4c) relate channel assignment to the overlap variables. Recall that D
contains distances between overlapping channels only, as we do not need to consider
distances d for which F(d) = 0. The objective function (11.4a) is the total weighted
overlap over all pairs of APs. Note that the problem represented by MOCA is a type
of minimum interference frequency assignment problem that has been studied, for
example, in [1, 10, 12, 23].

If the candidate channels are non-overlapping, i.e., if D = {0}, the problem can
be alternatively formulated as a minimum K-partition problem, with K = 3. Only
variables w0

ab are used, and we drop for simplicity the index 0. The resulting formu-
lation, denoted by 3-MOCA, is the following.

min ∑
(a,b)∈ ¯A 2

νabwab (11.5a)

s. t. ∑
a,b∈Q : (a,b)∈ ¯A 2

wab ≥ 1 Q ⊆ ¯A : |Q| = 4 (11.5b)

wac ≥ wab +wbc −1 (a,b),(b,c) ∈ ¯A 2 (11.5c)

wbc ≥ wab +wac −1 (a,b),(b,c) ∈ ¯A 2 (11.5d)

wab ≥ wac +wbc −1 (a,b),(b,c) ∈ ¯A 2 (11.5e)

wab ∈ {0,1} (a,b) ∈ ¯A 2 (11.5f)

The objective function (11.5a) of 3-MOCA minimizes the total co-channel over-
lap. By (11.5b), for any group of four APs, at least two have to use the same channel.
Constraints (11.5c)–(11.5e) are referred to as the triangle inequalities. They ensure
the transitivity of channel assignment: For any group of three APs, if any two pairs
of them use the same channel, then the same is true for the third pair. To translate
a feasible solution of 3-MOCA to a channel assignment, let the APs be represented
by nodes of a graph. The graph’s edges correspond to the nonzero w-variables in the
solution. It is easy to see that the graph has at most three disconnected components,
each being a clique. The APs of every clique then operate on the same channel.

Model 3-MOCA eliminates the symmetry of MOCA (formed by the f -variables).
On the other hand, the underlying idea of 3-MOCA results in model size that grows
exponentially in the number of channels [10]. For three non-overlapping channels,
however, finding the optimum to 3-MOCA is typically computationally feasible.
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11.7 Maximum-Efficiency Channel Assignment

The AP overlap view models the CSMA/CA protocol behavior coarsely, because it
aggregates the interference and contention between users into the amount of over-
lap between APs. Hence, the contention experienced by every individual user is not
modeled explicitly. A more detailed analysis is to consider the contention sets. The
contention set of a TP is the set of test points potentially contending for medium
access with it; this set has a pivotal influence on user throughput achieved under
CSMA/CA. From the discussion in Section 11.2, two TPs will contend for the
medium if they use the same channel, or more precisely, if the APs with which they
are associated use the same channel, and if at least one of the following conditions
holds:

1. The two TPs are associated with the same AP.
2. The two TPs are located within the carrier sense range of each other, and hence

one will sense the carrier as busy when the other is transmitting.
3. One of the two TPs is within the carrier sense range of the AP with which the

other TP is associated; this corresponds to the exposed terminal problem.

If the two TPs use adjacent channels at some distance d > 0, then F(d) can be
considered as the likelihood that interference will occur (recall that F(0) = 1, and
F(d) = 0 for non-overlapping channels). We denote by d(i,h) the channel distance
between the TPs i and h (i.e., between APs ā(i) and ā(h)).

For each TP i ∈ I , let Fi = {h ∈ I \{i} : ā(h) = ā(i)} be the set of TPs which
contend for the medium with i due to condition 1, and let Pi be the set of all other
potential contending TPs. The set Pi is derived from the input data by assuming
that all APs operate on one single channel, and taking TPs h /∈ Fi for which at
least one of conditions 2 and 3 holds. Based on these contention sets, we define an
efficiency metric for every TP. Since a user can access the network only if no other
user is contending for the medium, the efficiency metric of a TP i ∈ I is defined
as the throughput ti scaled by the probability of successfully accessing the medium,
which is defined as

1
1+ |Fi|+ ∑

h∈Pi

F(d(i,h))
.

The overall network efficiency is the sum of the efficiency values over all TPs.
This leads to a maximum-efficiency channel assignment problem. Note that the con-
tention relation is symmetric for every pair of TPs. Moreover, if we consider only
non-overlapping channels, for which F gives binary values, the denominator is the
cardinality of the contending set plus the TP itself.
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11.7.1 A Hyperbolic Model and Linear Reformulations

Consider variables f c
a and wd

ab defined for MOCA. For two TPs i,h ∈I , let us denote
by ωd

ih and ωd
hi the variable wd

ab, with a = min{ā(i), ā(h)} and b = max{ā(i), ā(h)}.
A model for the problem of finding a channel assignment that maximizes the average
efficiency, denoted by MECA, reads:

max
1
I ∑i∈I

ti
1+ |Fi|+ ∑

h∈Pi

∑
d∈D

F(d)ωd
ih

s. t. (11.4b), (11.4c), (11.4d), (11.4e)

The hyperbolic objective function (sum of ratios) in MECA is the average effi-
ciency over all TPs. As for MOCA, for three non-overlapping channels we have the
alternative model 3-MECA, where wab = w0

ab and ωih = ω0
ih.

max
1
I ∑i∈I

ti
1+ |Fi|+ ∑

h∈Pi

ωih

s. t. (11.5b), (11.5c), (11.5d), (11.5e)

Problem MECA is NP-hard, even when restricted to the special case 3-MECA.
This can be shown by a polynomial-time reduction from 3-coloring. Given an undi-
rected graph G = (V,E), for each node v ∈ V we create an AP location av and a
TP iv, and define the covering set of each AP av as Iav = {iu : {v,u} ∈ E}∪{iv}.
The rates are then defined so that taviv = 1 for every v ∈ V and tauiv = ε for every
{u,v} ∈ E, with ε < 1. Hence ā(iv) = av and ti = 1. It is then easy to see that G ad-
mits a 3-coloring if and only if MECA admits a frequency assignment with objective
function value 1.

Solving the hyperbolic formulations MECA and 3-MECA is very difficult. As
these are constrained problems, solution approaches for unconstrained hyperbolic
problems (e.g., [13]) cannot be applied. It is thus justifiable to look for a linear re-
formulation. Consider problem 3-MECA. A standard way of linearizing a hyper-
bolic objective function is to introduce a new variable for each fraction. In our
case this consists of adding a continuous variable si for each TP i ∈ I , thus re-
defining the objective function as ∑i∈I tisi. The resulting hyperbolic constraint si =
1/(1+ |Fi|+∑h∈Pi

ωih) can be linearized in two ways. The first linearization is to
introduce, for each TP i ∈I , the quadratic constraint 1 = (1+ |Fi|)si +∑h∈Pi

ωihsi,
and linearize the bilinear product ωihsi by standard techniques. The second lin-
earization consists of introducing, for each TP i ∈ I and for each possible value
1/(1+ |Fi|+m) of si, a binary variable rim, for m ∈ {0 . . . |Pi|}, and including into
the formulation the following constraints:
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si =
|Pi|

∑
m=0

rim

1+ |Fi|+m
i ∈ I

|Pi|

∑
m=0

rim = 1 i ∈ I

|Pi|

∑
m=0

m · rim = ∑
h∈Pi

ωih i ∈ I ,

which guarantee that if TP i has m contending TPs among those in Pi, then rim = 1.
The linear programming (LP) relaxation of the first linearization can be improved

by exploiting a disjunctive argument. The LP relaxation of the second linearization
can be improved by removing variables rim for which the value 1/(1+m) cannot be
attained by si in any feasible solution. Even after the tightening, however, both the
LP relaxations are outperformed by that of an integer-linear model derived from an
enumeration of medium contention scenarios, which we present in the next section.

11.7.2 An Enumerative Integer Linear Model

Let us consider problem 3-MECA. A medium contention scenario for a TP i ∈ I
is defined by the set Fi and a subset of the TPs in Pi that use the same frequency
channel as i. The idea is to construct, for every TP, the set of all the possible medium
contention scenarios, i.e., the set of all the subsets of Pi. But since there could be
TPs in Pi associated with the same AP as i, not all the subsets of Pi represent
possible contention scenarios. It is therefore more efficient to enumerate the subsets
of the set Bi = {a ∈ ¯A : a = ā(h) for some h ∈ Pi} with which TPs in Pi may be
associated. Since Pi is defined on the carrier sense range of TP i, the set Bi may
have some APs that are not included in ¯Ai.

Let Si = {S : S ⊆ Bi} be the set of all contention scenarios for TP i. Note that
for every contention scenario S ∈ Si, the corresponding objective function value for
TP i, denoted by diS, is known. To represent the resulting medium contention of a
channel assignment, the following variables are introduced.

viS =

{
1 if the channel assignment results in scenario S ∈ Si for TP i,
0 otherwise.

The enumerative linearization, denoted by 3-MECAE , is the following:
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max
1
I ∑i∈I

∑
S∈Si

diSviS

s. t. (11.5b), (11.5c), (11.5d), (11.5e)

∑
S∈Si

viS = 1 i ∈ I (11.8a)

wā(i)b = ∑
S∈Si:b∈S

viS i ∈ I ,b ∈ Bi (11.8b)

viS ∈ {0,1} i ∈ I ,S ∈ Si

Constraints (11.8a) state that exactly one scenario must be chosen for every TP,
while constraints (11.8b) make sure that for every b ∈ Bi the variable wā(i)b has
value 1 if and only if the scenario selected for TP i includes AP b. This imposes
coherence among w and viS. A similar model can be derived for problem MECA. In
this case, a medium contention scenario is represented by a partition of Bi into |D |
subsets, one for each channel distance.

An obvious difficulty in the model 3-MECAE is that the number of v-variables
grows exponentially fast in the size of Bi. However, Bi is typically small in size
when planning channel assignment, since only a small number of APs are installed
out of all the possible candidate locations. Moreover, since in an optimal solution
typically only few overlapping APs share the same frequency, it is possible to create
a restricted formulation by considering only elements S ∈ Si having cardinality
less than or equal to a given parameter. An alternative approach is to apply column
generation to the LP relaxation of 3-MECAE , and to use branch-and-price to search
for an optimal solution.

11.8 Integrated Planning of AP Location and Channel
Assignment

We now introduce integrated optimization models that decide both AP locations and
channel assignments simultaneously.

11.8.1 AP Location and Minimum-Overlap Channel Assignment

Throughput and overlap have been used as objectives in the two tasks, and both ob-
jectives obviously antagonize each other. This calls for multi-criteria optimization
techniques. We use the popular weighted-sum scaling technique [9]: A trade-off pa-
rameter α ∈ (0,1) is introduced to weigh the two objectives for AP location and
channel assignment. Because the two objectives are of different dimension, we in-
troduce an additional scaling parameter K whose value is found empirically. The
integration of MTAL and MOCA (with ¯A = A ) results in the following model,
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denoted by MT-MO:

max (1−α)K ∑
i∈I
∑

a∈Ai

taixai −α ∑
(a,b)∈A

∑
d∈D

νabF(d) wd
ab

s. t. ∑
c∈C

f c
a = za a ∈ A (11.9)

(11.2b), (11.2c), (11.2d), (11.2e), (11.2f)

(11.4c), (11.4d), (11.4e).

In MT-MO, AP location and channel assignment interact in the objective function
and in (11.9); the latter states that a channel needs to be assigned to an AP if and
only if the AP is installed.

Another integrated model can be derived from MTAL and 3-MOCA (with ¯A =
A ). The resulting model will be referred to as 3-MT-MO. The constraints where
MTAL and 3-MOCA interact are as follows:

∑
(a,b)∈A 2:a,b∈Q

wab ≥ ∑
a∈Q

za −3 Q ⊆ A , |Q| = 4. (11.10)

Constraint (11.10) replaces (11.5b) in the integrated model.

11.8.2 AP Location and Maximum-Efficiency Channel Assignment

A difficulty in integrating AP location and maximum-efficiency channel assignment
is that the sets Fi and Pi for TP i depend on the set of installed APs. In order to
define an integrated model, we need to introduce additional variables to represent
this relation, and additional notation to specify the input data. For simplicity, we
will consider 3-MECA with three non-overlapping channels. A similar integration
can be obtained for the more general case.

Let ˜Ai be the set of APs within the carrier sense range of TP i. We denote by Qi

the set of TPs within the carrier sense range of TP i, and by Ri the set of TPs that
are covered by some AP a ∈ Ãi, excluding i and those in Qi. Note that Qi is the set
of TPs that are potential direct interferers to i, while Ri is the set of TPs to which i
is potentially exposed. Which users in Qi and Ri will contend for the medium with
i depends on the association (i.e., on the AP location) and the channel assignment.

We introduce the following variables:

ωih =

{
1 if TPs i,h ∈ I operate on the same channel,
0 otherwise.

yih =

{
1 if TPs i,h ∈ I contend for the medium,
0 otherwise.
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In contrast to 3-MECA, explicit variables ωih are necessary because the associations
ā(i) and ā(h) are not part of the input. We obtain the integrated model 3-MT-ME:

max
1
I ∑i∈I

∑
a∈Ai

taixai

1+ ∑
h∈I

yih
(11.11a)

s. t. (11.2b), (11.2c), (11.2d), (11.2e), (11.2f)

(11.5c), (11.5d), (11.5e), (11.5f)

(11.10)

za + ∑
b∈Ai:tai>tbi

xbi ≤ 1 i ∈ I ,a ∈ Ai (11.11b)

ωih = ∑
a∈Ai

∑
b∈Ah

xaixbhwab i,h ∈ I (11.11c)

yih ≥ ωih i ∈ I ,h ∈ Qi (11.11d)

yih ≥ ∑
a∈ ˜Ai∩Ah

ωihxah i ∈ I ,h ∈ Ri (11.11e)

yih ∈ {0,1} i,h ∈ I , i �= h

ωih ∈ {0,1} i,h ∈ I , i �= h.

In 3-MT-ME, the objective function (11.11a) is the efficiency of AP location
and channel assignment. Constraints (11.11b) state that if an AP a covering a TP
i is installed, then i is not associated with an AP b providing a lower rate than a.
Note that these constraints are not required in model MTAL because of its objective
function. Constraints (11.11c) define variables ωih: Two TPs i and h operate on the
same channel if and only if they are associated with two APs a and b that are as-
signed the same channel. Constraints (11.11d) state that a TP h within carrier sense
range of TP i contends for the medium (i.e., yih = 1) if TPs i and h operate on the
same channel, thus defining condition 2 of medium contention (see Section 11.7).
Constraints (11.11e) define condition 3, stating that a TP h to which i is exposed
contends for the medium with i, if i and h operate on the same channel, and if h is
associated with an AP within carrier sense range of i. Since the carrier sense range
is at least as large as the coverage range, constraints (11.11e) define condition 1 as
well.

Problem 3-MT-ME is very complex, due to the hyperbolic objective function
and to the large number of variables and constraints, some nonlinear. Exact and
heuristic solution approaches to this problem are currently under study by some of
the authors, but their description is beyond the scope of this chapter.
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11.9 Experimental Results

We present computational experiments for a network instance representing a part of
the WLAN deployed at Zuse Institute Berlin. There are 32 candidate AP locations
and 798 TPs distributed on two floors, as shown in Figure 11.5. All APs are of type
Cisco AP-1200/AP21G [7] and compliant with the IEEE 802.11g standard. Path loss
predictions are obtained by 3D ray-tracing methods with multiple reflections using
a 3D model of the building [19, 20].

Fig. 11.5 Candidate APs locations and pathloss predictions for AP location 22

For comparison, we define a reference planning solution, which has been de-
ployed in this network. In the reference solution there are eight installed APs using
the three non-overlapping channels 1, 6, and 11, and the additional channel 7. The
APs are installed in service rooms with thick concrete walls, located at the center of
the corridors, resulting in a rather low throughput at many TPs. In particular, single-
user throughput is below 1 Mbit/s at 22.75% of the TPs and the coverage loss is
11.5%. Figures 11.6(a), 11.7(a), and 11.9(a) show respectively single-user through-
put, channel overlap, and efficiency for the reference solution. The thickness of lines
in Figure 11.7(a) represents the amount of overlap. Note that not all TPs are covered
in the reference solution. Indeed, by applying a minimum-cardinality set covering
model, it is revealed that at least nine APs are required for full coverage. To make the
comparisons meaningful, we set M = 8 as the budget for the AP location. Moreover,
in order to apply and compare the minimum-overlap approach and the maximum-
efficiency approach for channel assignment, in our experiments we use the three
non-overlapping channels.
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20

[Mbit/s]

0
(a) Reference solution: the APs are located in the middle section of the

building, leading to large low-throughput areas

20

[Mbit/s]

0
(b) MTAL solution allows for maximum average throughput

20

[Mbit/s]

0
(c) 3-MT-MO solution (α = 0.6): some throughput is sacrificed for re-

ducing overlap

Fig. 11.6 Effect of optimization on single-user throughput
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(a) Reference solution

1 700
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500
(b) MTAL solution with 3-MOCA channel assignment: APs with large

pairwise overlap are assigned different channels

1 700

[m2]

500
(c) 3-MT-MO solution (α = 0.6): the AP positioning has very little

overlap to begin with, and the channel assignment further reduces it

Fig. 11.7 Overlap graph and channel assignment
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(a) Channel assignment for minimum
overlap

(b) Channel assignment for maximum
efficiency: a slight change enables
higher efficiency in the service areas of
some APs

0.22

[Mbit/s]

0.00

Fig. 11.8 Channel assignment by optimizing overlap vs. efficiency, evaluated in the latter metric
(APs are positioned for maximum throughput)

(a) Reference configuration: many test
points have low efficiency

(b) Integrated optimization makes for bet-
ter efficiency

0.22

[Mbit/s]

0.00

Fig. 11.9 Effect of integrated optimization on efficiency

The experiments are organized as follows. First, model MTAL is applied to find
a solution of AP location that maximizes the single-user throughput. Then channel
assignment is performed, with both the minimum-overlap approach (3-MOCA) and
the maximum-efficiency approach (3-MECA). Finally, we illustrate integrated AP
location and channel assignment by model 3-MT-MO.

Model MTAL is implemented using ZIMPL [22] and solved with ILOG CPLEX
10.0 [35]. The computational time is a few seconds. The single-user throughput of
the optimal solution to MTAL is shown in Figure 11.6(b). It is possible to observe
that each AP in this solution serves some areas on both floors, while in the reference
solution the service area of each AP is mostly limited to the floor where the AP is
installed. The total coverage loss in the optimized solution is only 1.71%. There is
a significant improvement in the single-user throughput distribution in comparison
to the reference solution. The average throughput is 23.11% higher, and the size of
areas that either are not covered or suffer from low throughput (below 1 Mbit/s) is
reduced by a factor of 3.5.
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Table 11.1 Performance evaluation of the optimization results. For each network plan we eval-
uate the single-user throughput, the co-channel overlap, the pairwise co-channel overlap (MOCA

objective function), and the network efficiency (MECA objective function)

Model
Throughput Overlap Pairwise overlap Efficiency

[Mbit/s] [%] (MOCA) (MECA)

Reference solution 10.69 48.93 14.38 89.55
MTAL + 3-MOCA 13.16 37.55 7.03 96.93
MTAL + 3-MECA 13.16 44.08 7.39 102.82
3-MT-MO, α = 0.1,0.2 13.16 31.56 2.11 103.13
3-MT-MO, α = 0.3,0.4,0.5 13.10 21.41 1.39 107.17
3-MT-MO, α = 0.6,0.7 13.06 20.59 1.23 106.09
3-MT-MO, α = 0.8 12.66 18.30 0.95 110.98
3-MT-MO, α = 0.9 12.41 18.37 0.87 108.68
3-MT-MO, α = 1.0 12.19 24.06 0.87 104.08

The next step is channel assignment. In Figure 11.7(b) we show the channel as-
signment obtained by solving model 3-MOCA, reporting its overlap graph (which is
optimal for the given AP location), and in Figure 11.8(a) its evaluation in terms of
the efficiency metric. For this network instance model, 3-MOCA can be solved very
rapidly (in less than one second). Comparing the overlap graph of this solution with
that of the reference solution (Figure 11.7(a)), it is easy to see that the former con-
tains fewer links with high overlap. The improvement upon the reference solution
in the average efficiency is 6.29%, although much of this improvement is due to the
higher single-user throughput of the AP location obtained with model MTAL.

Figure 11.8(b) reports the efficiency metric evaluation for the channel assignment
obtained by solving model 3-MECA. The model can be solved for this instance in
a few seconds. The improvement in efficiency with respect to the channel assign-
ment obtained with 3-MOCA is 6.07%, with an increase in overlap of 5.08%. The
improvement in efficiency with respect to the reference solution is 12.75%.

We end the presentation of computational experiments by considering integrated
AP location and channel assignment using model 3-MT-MO. We let α vary in the
interval (0,1) with step size 0.1. Small values of α emphasize throughput maximiza-
tion, while values close to 1.0 put more weight on overlap minimization. Note also
that for a sufficiently small value of α the problem becomes equivalent to solving
MTAL and 3-MOCA in two sequential steps.

In Table 11.1 we compare the reference solution to the results obtained from the
models MTAL, 3-MOCA, 3-MECA, as well as from the combined model 3-MT-MO.
The throughput column shows the single-user throughput averaged over the TPs that
are within the serving range of at least one AP. The overlap performance metric is
the fraction (in %) of the total area where the serving AP overlaps with at least one
other AP from which the received signal is above the carrier sense threshold. Note
that the latter is a performance evaluation metric and has not been taken into account
explicitly in the optimization models. The last two columns show values of the two
objective functions (MOCA and MECA) for each of the solutions.
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From Table 11.1, we observe that, as for two-step optimization, the solution of
the integrated model 3-MT-MO outperforms the reference solution for all values of
α . The improvement in throughput declines when α grows, but the degradation is
significant only if α is very close to 1. Up to α = 0.7, throughput is hardly sacrificed
when pursuing the goal of reducing overlap. The improvement over the two-step op-
timization is significant. The loss in throughput is very small, while the gain in both
overlap and efficiency (even if 3-MT-MO is not designed to optimize efficiency) is
remarkable, as it can be appreciated from Figure 11.9. This observation supports ap-
plying the integrated optimization to WLAN planning, whenever the computational
complexity required can be afforded, and using the two-step optimization when a
lower computational effort is required.

From Table 11.1 we conclude that α = 0.6 appears as a good trade-off between
the two objectives. The single-user throughput for the corresponding solution is
shown in Figure 11.6(c), while the overlap map and the efficiency evaluation are
shown respectively in Figures 11.7(c) and 11.9(b).

11.10 Conclusions and Perspectives

Designing wireless LANs for seamless coverage and high capacity in large office
buildings is a challenge. On the one hand, good coverage and high throughput ide-
ally call for a high density of APs. On the other hand, the availability of only three
non-overlapping channels (out of 13 in total) suggests placing APs far apart. Other
constraints and considerations, such as that APs typically need a wired network con-
nection and that they should not be too easily accessible to prevent manipulation or
damage, further complicate the planning task.

The challenge has been addressed in this chapter by means of mathematical opti-
mization. The two aspects, providing coverage and controlling interference, can be
addressed either in a two-step approach solving AP location and channel assignment
separately, or with an integrated approach. These approaches have been compared in
a real-life planning scenario for two adjacent floors of an office building. The man-
ual design of the network, used as a reference, employs the same AP location pattern
on both floors. Interference is limited by using four, partially overlapping channels.
The optimized solutions clearly reveal a strong dependency among the AP locations
and channel assignments across the two floors. Moreover, optimization significantly
improves the coverage.

Comparing the optimization results with respect to the overlap of AP service
areas using the same channel, solutions from the combined model are superior to
those from the two-step approach. The difference, however, is not large enough to
clearly justify the use of the much larger and more complex combined model. An
appropriate trade-off between network performance and problem tractability must
therefore be decided according to the needs and will change from case to case.

The network efficiency measure, which aggregates throughput and overlap, turns
out to be quite consistent with the pairwise overlap measure in terms of the result-
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ing networks. Indeed, the channel assignment of the solutions obtained from the
combined model for alpha greater than or equal to 0.3 are optimal for the network
efficiency measure. A more precise comparison of the networks resulting from these
alternative objective functions would, however, require us to consider more network
performance parameters.

AP service area overlap is used as a measure of interference in some of the chan-
nel assignment models. The actual interference situation cannot be properly com-
pared on the basis of the mathematical models presented here. In fact, the effects of
using overlapping channels in the reference design need to be assessed in a detailed
simulation study, which is beyond the scope of this chapter.

In case overlapping channels can safely be deployed under sufficiently general
conditions, the presented models are applicable, although at a higher computational
price. When increasing the number of channels from three to as many as 13, spe-
cialized solution methods as well as heuristics are likely to be more successful than
the plain application of an MIP solver.
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17. Jaffrès-Runser, K., Gorce, J. M., Ubéda, S.: QoS constrained wireless LAN optimization
within a multiobjective framework. IEEE Wireless Communications 13(6), 26–33 (2006)

18. Jeavons, P., Dunkin, N., Bater, J.: Why higher order constraints are necessary to model fre-
quency assignment problems. In: ECAI’98 Workshop on Non-binary constraints (1998)

19. Jemai, J., Piesiewicz, R., Kürner, T.: Calibration of an indoor radio propagation prediction
model at 2.4 GHz by measurements of the IEEE 802.11b preamble (2002). COST 273 TD,
Duisburg, Germany

20. Jemai, J., Reimers, U.: Channel modeling for in-home wireless networks. In: Proc. of IEEE
Intl. Symposium on Consumer Electronics (ISCE02), pp. F123–F129. Erfurt, Germany (2002)

21. Kamenetsky, M., Unbehaun, M.: Coverage planning for outdoor wireless LAN. In: Proc. of
Intl. Zurich Seminar on Broadband Communications, 2002. Access, Transmission, Network-
ing (IZS). Zurich, Switzerland (2002)

22. Koch, T.: Rapid mathematical programming. Ph.D. thesis, TU Berlin, Germany (2004). Avail-
able at http://www.zib.de/Publications/abstracts/ZR-04-58/, ZIMPL is
available at http://www.zib.de/koch/zimpl

23. Koster, A. M. C. A.: Frequency assignment – models and algorithms. Ph.D. thesis, Maastricht
University (1999)

24. Kumar, A., Kumar, V.: Optimal Association of Stations and APs in an IEEE 802.11 WLAN.
In: Proc. National Conference on Communications (NCC). India (2005)

25. Lee, Y., Kim, K., Choi, Y.: Optimization of AP placement and channel assignment in wireless
LANs. In: Proc. of the 27th Annual IEEE Conference on Local Computer Networks (LCN’02)
(2002)

26. Leung, K. K., Kim, B. J.: Frequency assignment for IEEE 802.11 wireless networks. In: Proc.
of the 58th IEEE Vehicular Technology Conference (VTC2003-Fall). Orlando, FL (2003)

27. Ling, X., Yeung, K. L.: Joint access point placement and channel assignment for 802.11 wire-
less LANs. In: Proc. of IEEE Wireless Communications and Networking Conference (WCNC
2005). New Orleans, LA (2005)

28. Mateus, G. R., Loureiro, A. A. F., Rodrigues, R. C.: Optimal network design for wireless local
area network. Annals of Operations Research 106(331-345) (2001)

29. Mishra, A., Banerjee, S., Arbaugh, W.: Weighted coloring based channel assignment for
WLANs. ACM SIGMOBILE Mobile Computing and Communications Review 9(3), 19–31
(2005)

30. Prommak, C., Kabara, J., Tipper, D., Charnsripinyo, C.: Next generation wireless LAN system
design. In: Proc. of the IEEE Military Conference (MILCOM 2002), vol. 1, pp. 473–477
(2002)

31. Riihijärvi, J., Petrova, M., Mähönen, P.: Frequency allocation for WLANs using graph colour-
ing techniques. In: Proc. of the Second Annual Conference on Wireless On-Demand Network
Systemsand Services (WONS ’05). St. Moritz, Switzerland (2005)

32. Sherali, H. D., Pendyala, C. M., Rappaport, T. S.: Optimal location of transmitters for micro-
cellular radio communication system design. IEEE Journal on Selected Areas in Communi-
cations 14(4), 662–673 (1996)

33. Siomina, I.: Wireless LANs planning and optimization. STSM Technical Report, COST Ac-
tion TIST 293 (2005)



11 Mathematical Optimization Models for WLAN Planning 309

34. Siomina, I., Yuan, D.: Optimization of channel assignment and access point transmit power for
minimizing contention in Wireless LANs. In: Proc. of the 5th Intl. Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt 2007) (2007)

35. ILOG, Inc: ILOG CPLEX 10.0, User’s manual (2006)
36. Unbehaun, M., Kamenetky, M.: On the deployment of picocellular wireless infrastructure.

IEEE Wireless Communications 10 (2003)
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Chapter 12
Time-Efficient Broadcast in Radio Networks

David Peleg and Tomasz Radzik

Abstract Broadcasting is a basic network communication task, where a message
initially held by a source node has to be disseminated to all other nodes in the net-
work. Fast algorithms for broadcasting in radio networks have been studied in a wide
variety of different models and under different requirements. Some of the main pa-
rameters giving rise to the different variants of the problem are the accessibility of
knowledge about the network topology, the availability of collision detection mech-
anisms, the wake-up mode, the topology classes considered, and the use of random-
ness. This chapter introduces the problem, reviews the literature on time-efficient
broadcasting algorithms for radio networks under a variety of models and assump-
tions, and illustrates some of the basic techniques.

Key words: radio networks, broadcasting, broadcasting sequence, selective fami-
lies, unit disk graphs

12.1 Introduction

12.1.1 The Problem

A radio network consists of nodes, each equipped with a device enabling it to trans-
mit and receive messages. At any given time, each node decides whether to act as
a transmitter or as a receiver. Reception conditions are modeled by a network con-
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necting the nodes, where the existence of a (directed) edge from a node v to a node
u indicates that transmissions of v can reach u directly.

A node acting as a transmitter in a given time step transmits a message that
reaches all of its outgoing neighbors in the network in the same time step. However,
its being within range of a transmitting node does not necessarily ensure that its
transmitted message is received successfully. A node acting as a receiver in a given
step successfully hears a message if and only if exactly one of its incoming neigh-
bors transmits in this step. If two or more incoming neighbors v and v′ of u transmit
simultaneously in a given step, then neither of their messages is heard by u. In this
case we say that a collision occurred at u.

This chapter considers broadcasting in radio networks, which is the following ba-
sic communication task. Initially, one distinguished node s, called the source, has a
message M that has to be delivered to all other nodes in the network. Remote nodes,
which cannot receive the transmissions of s directly, have to get M via intermediate
nodes.

The model considered in most of the literature on broadcasting algorithms in
radio networks is synchronous. All nodes have individual clocks that tick at the
same rate, measuring time steps, also referred to as rounds. Any execution of a
broadcasting operation can be described as a sequence 〈T1, . . . ,Tt〉, hereafter referred
to as a broadcasting sequence, where each Ti is a transmission set consisting of the
nodes that acted as transmitters in time step i. The execution time of a broadcasting
algorithm in a given radio network is the number of rounds it takes since the first
transmission until all nodes of the network hear the source message, or in other
words, the length of the corresponding broadcast sequence.

The current chapter reviews the literature on time-efficient broadcasting algo-
rithms for radio networks under a variety of models and assumptions.

The question of time-efficient broadcasting has been examined from two related
but distinct viewpoints. The first, more mathematical, viewpoint concerns investi-
gating the absolute optimum time required for broadcasting. For a radio network G,
let b(G) denote the length of the shortest possible execution of the broadcasting op-
eration for G. The study of broadcasting time from this viewpoint concentrated on
the abstract question of identifying or tightly bounding the function b, and thus fo-
cused on establishing the existence or nonexistence of short broadcasting sequences
for a given network, using a variety of algorithmic, probabilistic, and nonconstruc-
tive methods.

To bound the function b(G), it was necessary to identify the graph-theoretic
parameters governing its behavior. Clearly, the radius of a network G from the
source s, denoted R(G,s) (i.e., the largest distance between s and any other node
in G), serves as a lower bound for the length of any broadcasting sequence on G.
For uniformity over the different sources, we use the network diameter D (i.e., the
largest distance between any two nodes in G) instead. (Note that D/2 ≤ R(G,s) ≤ D
for every node s in G.) It also stands to reason that n, the number of nodes in
the network, plays a role in the cost of broadcasting. Consequently, let us define
b̂(n,D) = maxb(G), where the maximum is taken over all radio networks G of n
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nodes and diameter D. The mathematical problem stated above now becomes iden-
tifying the function b̂(n,D).

The second viewpoint deals with the more algorithmic question of developing
protocols for time-efficient broadcasting in realistic settings. This question can be
studied in a variety of models. To begin, one may consider a centralized setting. In
this setting, we assume that the graph topology is known in advance, and the goal
is to design, in an off-line preprocessing stage, an optimal (time-minimal) or near-
optimal solution for the broadcasting problem. Such a solution can sometimes be
represented in the form of a fixed schedule, which essentially describes the optimal
execution, i.e., specifies a broadcasting sequence 〈T1, . . . ,Tt〉. The schedule can be
applied as a broadcast procedure in the natural way: In step i, every node v ∈ Ti

which already holds a copy of the source message M transmits it. A node v ∈ Ti that
does not have a copy yet remains silent. The schedule S is a broadcast schedule for
the source s in G if after applying it, every node in the network has a copy of M.

While the question of determining the minimum length of broadcasting sched-
ules for radio networks is very basic and of considerable theoretical interest, in
reality such schedules are hardly ever used, for a variety of practical reasons. For in-
stance, such centrally computed fixed schedules are only useful when the network is
relatively stable; in dynamic environments, where the network topology constantly
changes, such schedules are hard to construct, maintain, and update.

The common practice is therefore to employ distributed broadcasting protocols,
which generate the broadcasting sequence “on the fly,” while performing the broad-
casting operation itself. This approach has obvious advantages in terms of simplicity
and flexibility. On the down side, the typical situation in the distributed context is
that nodes are unaware of the topology of the network and have limited or no knowl-
edge of other parameters of the network, such as its diameter or size. They may not
even be aware of their immediate neighborhood, namely, the identity of their neigh-
bors. Networks in which the nodes have such limited knowledge are often called ad
hoc networks. This lack of centralized knowledge rules out the efficient design of
optimal or even near-optimal execution sequences. In fact, distributed broadcasting
algorithms that rely on partial knowledge of the topology must usually involve trial-
and-error, possibly incurring wasteful (but unavoidable) collisions, and are generally
expected to generate significantly slower broadcasting sequences. Hence the focus
in this area is on developing efficient algorithms that quickly adapt to the network
at hand, possibly through learning its topology or some of its properties, and man-
age to tailor a relatively short execution sequence for it. Let b̂DD(n,D) (respectively,
b̂DR(n,D)) denote the time required for broadcasting on an n-node radio network of
diameter D by a distributed deterministic (or randomized) algorithm. (Clearly, this
function depends on the precise model and class of networks under consideration.)

Interestingly, despite the obvious advantages of adaptivity, which advocate the
use of fully distributed, local, online, and dynamically adapting solutions, in some
cases the best algorithms currently known are essentially oblivious, in the sense that
the actions taken by each node depend only on its identity and the current time
step, but not on the history of the execution. Such algorithms can be thought of as
requiring the nodes to follow fixed precomputed schedules, designed by a central
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authority. Note, though, that there is an inherent difference between these oblivious
schedules and the ones mentioned earlier. Our previous discussion concerned indi-
vidualized schedules, especially tailored for every given radio network separately,
relying on a complete knowledge of its topology. In contrast, the approach of using
oblivious schedules provides a general distributed solution, applicable in situations
where no knowledge of the network topology is available. In particular, this implies
that the oblivious schedules provided by the construction algorithm must be univer-
sal, i.e., efficiently applicable for broadcasting on every network, regardless of its
topology.

A well-studied technique developed for constructing such universal schedules is
based on the combinatorial notion of selection sequences and selective families of
transmission sequences for broadcasting. Subsequently, selective families, and the
related structures of strongly selective families, cover-free families, superimposed
codes, and selectors, were used for broadcasting as well as for other communication
tasks in radio networks, such as wakeup and synchronization.

12.1.2 Model Parameters

The complexity of broadcasting in radio networks critically depends on the par-
ticular setting and model parameters, and may change significantly depending on
whether or not the nodes know the network, how their actions are coordinated,
what mechanisms are available to the network nodes, and so on. Let us give a brief
overview of the main parameters affecting the performance of broadcasting algo-
rithms in radio networks.
Collision detection. In the event of a collision of two or more transmissions, one
of a number of possibilities might occur at each of the receiving nodes. Three main
alternatives are the following.

(C1) The receiving node hears nothing, and cannot tell if a collision occurred
or none of its neighbors transmitted, i.e., it cannot distinguish a collision from
silence.
(C2) The receiving node detects the fact that a collision has occurred.
(C3) The signal of exactly one of the transmitted messages prevails, and that
message is received correctly by the receiving node.

The most commonly studied model in the literature on broadcasting algorithms in
radio networks is the “collision-as-silence” model, which assumes that possibility
(C1) always occurs, namely, the effect of a collision is the same as that of a step
in which no transmissions took place. Certain papers consider the alternative colli-
sion detection model, which assumes that possibility (C2) always occurs, namely,
the receiving nodes always recognize collisions. A third model, which is just as rea-
sonable but has received even less attention, is the flaky collision model, in which
at any receiver, the result of a collision may be either of the possibilities (C1) and
(C3), i.e., some collisions result in one message getting through, while some others
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result in the effect of silence. One may envision an even weaker variant of the flaky
model, again rather reasonable, where the outcome of a collision could be any of
three possibilities. In practice, more elaborate models can be considered, such as
different interference and transmission ranges, or models allowing for the availabil-
ity of carrier sensing mechanisms.
Wakeup model. The way the nodes join the broadcasting process can be modeled
in two different ways. Most of the existing literature on broadcasting algorithms in
radio networks considers the conditional wakeup model, where the nodes other than
the source are initially idle and cannot transmit until they receive the source message
for the first time and subsequently wake up. Namely, the clock of a node starts in
the round when the node first receives the source message (the clock of the source
starts at the beginning of the execution). One may assume without loss of generality
that the number of rounds that have passed since the beginning of the execution is
appended to every message, so that all nodes can emulate the source’s clock.

Alternatively, one may consider the spontaneous wakeup model, where all nodes
are assumed to be awake when the source transmits for the first time, and may con-
tribute to the broadcasting process by transmitting control messages even before
they receive the source message. In other words, the clocks of all nodes start simul-
taneously, in the round when the source transmits for the first time. In this model,
nodes far away from the source can utilize their waiting time to perform some pre-
processing stage during which they can gather necessary information and possibly
construct some auxiliary structures in the network (a sparse spanner, for example),
facilitating faster message propagation at a later stage.

The task of broadcasting in the conditional wakeup model can in fact be inter-
preted as activating the network from a single source, and is related to the task
of waking up the network. In this latter task, some nodes spontaneously wake up
and have to wake up other nodes by sending messages. Thus, broadcasting in the
conditional wakeup model, i.e., activating the network from a single source, is
equivalent to waking up the network when exactly one node (the source) wakes
up spontaneously. The broadcasting models with spontaneous wakeup and condi-
tional wakeup have also been called broadcasting with and without spontaneous
transmissions, respectively.
Directionality. Most papers in the area assume that the radio network at hand is
undirected, i.e., for every two nodes u and v, if v is within range of u’s transmissions
then u is within range of v as well. However, some papers consider also a model
for radio networks based on a directed graph, allowing us to model asymmetric
situations. (Such asymmetry can result from topographic conditions or from differ-
ences in the strength of the transmission equipment at different nodes.) Throughout
most of what follows we will consider undirected graphs, except where mentioned
otherwise.
Graph classes. In addition to the study of general (arbitrary topology) radio net-
works, some recent interest arose concerning a special subclass, referred to as UDG
radio networks, where the network is modeled as a unit disk graph (UDG) whose
nodes are represented as points in the Euclidean plane. Two nodes are joined by an
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edge if their distance is at most 1. The node transmitters have power enabling them
to transmit to distance 1.
Randomness. Both deterministic and randomized broadcasting algorithms were
considered in the literature. Randomized algorithms can also be oblivious, in which
case the actions of the nodes depend on their identity and the time as well as on the
outcomes of their random choices, but not on the execution history.
The harsh model. In most of the literature on algorithms for radio networks, the
effects of transmission collisions are modeled by the collision-as-silence model,
and the wakeup pattern of the network nodes is assumed to follow the conditional
wakeup model. Consequently, we will focus on a model assuming both conditional
wakeup and collision-as-silence, except where mentioned otherwise. We hereafter
refer to this model as the harsh model for radio networks. Note that it is typically
easier to establish lower bounds on broadcasting time in this model, although the
resulting bounds will not apply to the other models. On the other hand, algorithms
working in the harsh model will clearly apply also in models supporting collision
detection or allowing spontaneous wakeup.

12.2 Efficient Schedules and Bounds on b(G) and b̂(n,D)

The literature concerning algorithmic aspects of radio broadcasting can be divided
into two subareas, one dealing with centralized communication, in which it is as-
sumed that nodes have complete knowledge of the network topology, and hence
can simulate a central transmission scheduler (cf. [1, 23–25, 49, 58, 62, 81]), and
the other assuming only limited, usually local, knowledge of topology and studying
distributed communication in such networks.

The first papers to formulate the abstract model of radio networks and address the
question of broadcasting in radio networks were [23, 24]. These papers described
methods for the centralized design of a broadcasting schedule in radio networks, as-
suming complete knowledge of the network topology. In [23], it was also shown that
the problem of finding a shortest broadcasting schedule (or alternatively, computing
the minimum broadcasting time b(G)) for an arbitrary input graph G is NP-hard.
As often happens, this hardness result has led to the development of two research
directions, concerning global bounds and approximations.

The study of global bounds on broadcasting time was initiated in [25], which es-
tablished an upper bound of b̂(n,D) = O(D log2(n/D)) on broadcasting time. This
upper bound was proved by presenting a deterministic algorithm for generating a
broadcasting schedule of length O(D log2 n) for every n-node network of diame-
ter D. Shortly afterwards, a randomized algorithm completing broadcasting in time
O(D logn + log2 n) with high probability was presented in [10]. This, in turn, im-
plied that b̂(n,D) = O(D logn+ log2 n). Note, however, that this proof of the upper
bound on b̂(n,D) is probabilistic, or nonconstructive. A deterministic construction
for such schedules of length O(D logn+ log2 n) was later presented in [77].
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On the other hand, it was proved in [1] that there exists a family of n-node net-
works of radius 2, for which any broadcasting schedule requires Ω(log2 n) commu-
nication rounds. This lower bound holds even assuming that the nodes have com-
plete knowledge of the network and there are no restrictions on the coordination
mechanism. Given that the diameter D is also a lower bound on broadcasting time,
as mentioned earlier, it followed that b̂(n,D) ≥ D +Ω(log2 n). Note, though, that
there is a fine distinction between these two lower bounds. The diameter D is a
global or universal lower bound, in the sense that b(G) ≥ D for every graph G of
diameter D. In contrast, the Ω(log2 n) lower bound of [1] is specific or existential,
in the sense that it only implies that b(G) ≥ log2 n for some low diameter graphs;
clearly, there are also low diameter graphs G for which b(G) ! log2 n, and in fact,
there are O(1) diameter graphs G for which b(G) = O(1).

This gap between the upper and lower bounds established in [10] and [1]
raised the intriguing question, formulated in [1, 83], of whether further pipelin-
ing may be possible, leading to a separation of the D and logn terms in the upper
bound. This has motivated a succession of improvements of the upper bound on
b̂(n,D). The separation was first achieved in [58], which established a bound of
b̂(n,D) = D +O(log5 n). This was again done via a nonconstructive proof, by pre-
senting a randomized algorithm for constructing short broadcasting schedules (of
length D+O(log5 n)) with high probability. This algorithm is based on partitioning
the underlying graph into low-diameter clusters and coloring them with O(logn)
colors, and subsequently constructing a broadcasting schedule in each cluster sepa-
rately, by applying the construction algorithm of [10] as a subprocedure. (Using the
algorithm of [25] as the subprocedure instead, the resulting construction algorithm is
deterministic but the broadcasting schedule it constructs is of length D+O(log6 n).)
The clustering method from [58] has next been improved in [49], which reduced
the upper bound on b̂(n,D) to D +O(log4 n), again using a randomized algorithm
and hence yielding a nonconstructive proof. (Using the algorithm of [25] as the
subprocedure instead, the resulting algorithm is deterministic but the constructed
broadcasting schedules are of length D+O(log5 n).)

Finally, the optimal bound of D + O(log2 n), yielding the sought b̂(n,D) =
D +Θ(log2 n), was established in [62]. This bound was once again established via
a probabilistic (nonconstructive) proof, although based on a different construction
method (whose deterministic version yielded only broadcasting schedules of length
D + O(log3 n)). That paper still left open the question of constructing broadcast-
ing schedules of length D+O(log2 n) deterministically. While this question has not
been completely answered yet, explicit constructions of broadcasting schedules of

length O(D + log2 n) and D +O( log3 n
loglogn ) were recently presented in [81] and [34]

respectively.
The study of approximations for optimal broadcasting time has so far led mostly

to negative results. It has been proved in [47] that approximating the broadcasting
time b(G) for arbitrary n-node network G by a multiplicative factor of o(logn) is
impossible under the assumption that NP ⊆ BPT IME(nO(log logn)). Under the same
assumption, it was also proved in [48] that there exists a constant c such that there is
no polynomial-time algorithm which produces, for every n-node graph G, a broad-
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casting schedule of length at most b(G) + c log2 n. (Naturally, since D is a global
lower bound on b(G), the algorithm of [25] can be thought of also as an approxima-
tion algorithm for b(G), with ratio O(log2(n/D)).)

12.3 Distributed Broadcasting Algorithms

12.3.1 Deterministic Distributed Algorithms

The study of distributed broadcasting in radio networks was initiated in [10]. The
model studied therein assumed that nodes have limited knowledge of the topology,
and specifically, that they know only their own identity and that of their neighbors.
Under these assumptions, even in the harsh model, broadcasting can be achieved
deterministically by a simple linear time algorithm based on depth-first search [4],
establishing that b̂DD(n,D) = O(n). Obtaining a matching lower bound on b̂DD(n,D)
proved to be more elusive than previously anticipated. The highest lower bound
to date is b̂DD(n,D) = Ω(n1/4), due to [78], where a class of graphs of diameter
4 is constructed, such that every broadcasting algorithm requires time Ω(n1/4) on
at least one of these graphs. A linear lower bound, b̂DD(n,D) = Ω(n), was proved
in [10] on a class of radio networks of diameter 3; however, it turns out that the
proof applies only to the flaky collisions model. In the collision detection model,
the question of establishing matching upper and lower bounds for distributed deter-
ministic broadcasting was posed as an open problem in [10], and its status remains
practically unchanged to date. (The best upper bound currently known in this model
is still O(n); in addition, the problem has been resolved for some specific graph
classes, as discussed later in Section 12.4.2.)

A number of subsequent papers [1, 18, 26, 28, 33, 37, 45, 80] studied deter-
ministic distributed broadcasting in ad hoc radio networks, i.e., under the more
strict assumption that nodes know only their own identities but not those of their
neighbors, and that the topology of the network is unknown. A lower bound of
b̂DD(n,D) =Ω(D logn) on broadcasting time in the harsh model was proved in [18],
and this lower bound was subsequently sharpened to b̂DD(n,D) = Ω(n logn

log(n/D) ) in
[79]. The two fastest distributed deterministic algorithms to date in this model, pre-
sented in [42] and [79], achieve broadcasting in time O(n log2 D) and O(n logn)
respectively. The algorithm of [79] was constructed by first defining an algorithm in
a model allowing collision detection, and then applying a technique for simulating
collision detection in the collision-as-silence model, developed in [78]. In contrast,
the algorithm of [42] is oblivious and makes use of efficient deterministic selec-
tion sequences. (Note, though, that this and similar deterministic algorithms are not
“fully oblivious,” in the sense that they do make use of global time information re-
ceived from their neighbors upon starting.) Combining these two algorithms thus
yields b̂DD(n,D) = O(nmin{log2 D, logn}), leaving a small gap between the best
upper and lower bounds currently known.
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The problem was considered also in the spontaneous wakeup model. A determin-
istic algorithm completing broadcast in time O(n) for arbitrary n-node networks is
presented in [26]. For this model, a matching lower bound of b̂DD(n,D) = Ω(n) on
deterministic broadcasting time, even for the class of networks of constant radius,
was proved in [80], by an adaptation of the proof of [10].

Again, it is not clear whether allowing a collision detection mechanism can be
used to improve broadcasting time. In particular, it is not known whether allowing
both spontaneous wakeup and collision detection may lead to sublinear time broad-
casting algorithms.

12.3.2 Randomized Distributed Algorithms

The first paper to study randomized distributed broadcasting algorithms in radio
networks was [10]. The model does not assume knowledge of the network topology
or availability of distinct identities. The paper presents a randomized broadcasting
algorithm with expected time O(D logn+ log2 n).

Hence, in view of the lower bounds of [10, 78], there is an exponential gap
between determinism and randomization in the time of radio broadcasting, in the
collision-as-silence and flaky collisions models, for low diameter networks.

Lower bounds for randomized distributed broadcasting were given in [1, 83].
In [83] it was shown that for any (deterministic or randomized) broadcasting algo-
rithm and parameters D ≤ n, there exists an n-node network of diameter D requiring
expected time Ω(D log(n/D)) to execute this algorithm, yielding a lower bound of
b̂DR(n,D) = Ω(D log(n/D)) in the harsh model. The Ω(log2 n) lower bound of [1],
for some networks of radius 2, rules out the existence of schedules shorter than
c log2 n for some constant c > 0; hence, it implies also that for randomized algo-
rithms, b̂DR(n,D) = Ω(log2 n). Let us remark that this lower bound holds also in
models with collision detection or spontaneous wakeup. Subsequently, randomized
algorithms working in expected time O(D log(n/D)+ log2 n), and thus matching the
above lower bounds, were obtained independently in [42, 79], establishing a tight
bound of b̂DR(n,D) =Θ(D log(n/D)+ log2 n). These algorithms are oblivious, using
techniques based on universal selection sequences, and subsequently they operate in
the harsh model.

It is currently unclear what happens if the model is not harsh, and specifically,
whether the upper bound can be improved in a model allowing collision detection,
spontaneous wakeup, or both. The left part of the lower bound may possibly still
hold even assuming collision detection or spontaneous wakeup. Conversely, the
right part of the lower bound holds for schedule length; hence, it certainly holds
in any distributed model, including non-harsh ones, and it is tight even in the harsh
model, in view of the matching upper bound
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12.3.3 Randomized Broadcasting: Main Techniques

We illustrate the main techniques used in randomized distributed broadcasting in ad
hoc radio networks by describing and analyzing an O(D logn + log2 n)-time algo-
rithm. This algorithm works for directed networks and is essentially the algorithm
given in [10] but with some modifications suggested later (for example, in [42, 79])
to simplify analysis. Throughout this and the next subsections, a neighbor of a node
v means an in-neighbor, that is, a node which can transmit to v.

The main issue in organizing communication in a radio network of unknown
topology is breaking the symmetry which arises when a number of neighbors of
a node v consider transmitting, not knowing about each other. Node v receives a
message only if its neighbors manage to select exactly one of them to proceed with
transmission. If nodes have access to random bits, then such a selection can be at-
tempted in the following way. Each node which wants to transmit decides randomly,
and independently of the decisions made by the other nodes, whether it should trans-
mit. If the probabilities of transmitting are chosen appropriately, then there may be
a good chance that exactly one neighbor of node v transmits (and node v receives a
message).

As an example, assume that the nodes in the network which want to transmit
include k ≥ 1 neighbors w1,w2, . . . ,wk of node v. If during the current step each
node which wants to transmit does so with probability 1/k (and remains silent with
probability 1−1/k), then node v receives a message with probability at least e−1:

Prob(v receives a message)
= Prob(exactly one node w ∈ {w1,w2, . . . ,wk} transmits)

= k
1
k

(
1− 1

k

)k−1

≥ e−1.

The probability of transmission does not have to be exactly 1/k for node v to re-
ceive a message with positive constant probability. For example, node v receives a
message with probability at least 1/4, if each node which wants to transmit does so
with probability 1/k′ and k′/2 ≤ k ≤ k′:

Prob(v receives a message) = k
1
k′

(
1− 1

k′

)k−1

≥ k
k′

[(
1− 1

k′

)k′]k/k′

≥ min
1/2≤x≤1

{
x

(
1
4

)x}
≥ 1

4
. (12.1)

If the nodes do not have any estimate on how many of them may currently be
competing to transmit to the same node (different nodes may have different num-
bers of neighbors which want to transmit), then the nodes can try different proba-
bilities of transmission in different steps. Consider a round of �logn� steps given
in Figure 12.1, where the probability of transmission decreases geometrically in
each step. Node v receives a message during this round (from one of its neighbors
w1,w2, . . . ,wk) with probability at least 1/4:
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Prob(v receives a message in one round)
≥ Prob(v receives a message in step �log(k +1)� of this round)

≥ 1
4
, (12.2)

where the last inequality is Inequality (12.1) with k′ = 2�log(k+1)�.

for each node v in parallel do
if v wants to transmit in this round then

for i = 1 to �logn� do
v transmits with probability 1/2i

Fig. 12.1 One round of the randomized broadcasting algorithm

The round of �logn� steps given in Figure 12.1 is the basic tool in designing ran-
domized distributed algorithms for broadcasting as well as for other communication
tasks in radio networks. We consider algorithm RANDOMIZEDBROADCAST which
is a sequence of such rounds. The active nodes are the nodes which have already
received the source message. The nodes which want to transmit in the current round
are the nodes which are active at the beginning of this round. An inactive node can
only listen and becomes active when it receives a message. Note that when a node
becomes active, it does not immediately join the computation but waits until the
beginning of the next round (assume that messages contain the step count, so an
activated node knows when the next round will start). This waiting is not essential,
but simplifies the analysis. We now show a bound on the number of rounds needed
to complete broadcasting.

Bounds on the running times of randomized algorithms are usually given either
as bounds on the expected running time or as bounds which hold with high probabil-
ity (w.h.p.), and “high probability” means normally a probability of at least 1−1/n,
where n is the size of input. For the RANDOMIZEDBROADCAST algorithm, these
two types of bounds are asymptotically the same (as commonly happens with ran-
domized algorithms). We first show that the number of rounds in our algorithm is
O(D+ logn) w.h.p., and then we use this result to show that the expected number of
rounds is of the same order. Each round consists of �logn� steps, so an O(D+ logn)
bound on the number of rounds implies an O(D logn + log2 n) bound on the total
number of steps.

Let V denote the set of nodes and let Tv be the round when a node v becomes
active. The broadcasting completes in T = maxv∈V{Tv} rounds. We show there is a
constant c such that for each node v ∈ V ,

Prob(Tv > c(d(v)+ logn)) ≤ 1
n2 , (12.3)

where d(v) is the shortest-path distance from the source node s to v. Inequality (12.3)
implies that the number of rounds is O(D+ logn) w.h.p.:
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Prob(T > c(D+ logn)) = Prob(Tv > c(D+ logn), for some v ∈ V )

≤ ∑
v∈V

Prob(Tv > c(d(v)+ logn)) ≤ 1
n
.

To show that (12.3) holds, we take an arbitrary node u ∈ V \ {s} other than the
source and a shortest path P = (s = v0,v1,v2, . . . ,vd = u) from s to u, where d = d(u),
and analyze the progression of the source message along this path. We view the
sequence of rounds as a sequence A of trials to deliver a message to the nodes on
this path in the order in which they appear on the path. Let a node vi be the waiting
node in the current round (node v1 is the waiting node in round 1). We say that this
round is successful if node vi receives a message during this round. If the round is
successful, then the waiting node in the next round is the next node vi+1 on the path
(even if vi+1 is already active). Otherwise, node vi remains the waiting node.

Let t0 = 0, and for i ≥ 1, let ti be the round with the ith success, that is, the first
round after round ti−1 when node vi receives a message. Clearly Tu ≤ td , since node
u receives a message in round td but might have received a message earlier, along a
path other than P. To show (12.3), we show that td = O(d + logn) with probability
at least 1−1/n2.

The outcome of the current round is not independent of the outcomes of the pre-
vious rounds, but (12.2) implies that the probability of success is always at least 1/4.
This implies easily that td = O(d logn) with probability at least 1 − 1/n2. Indeed,
for sufficiently large constant c,

Prob(td > cd logn)
≤ Prob(c logn succesive failures after the ith success, for some 0 ≤ i < d)

≤
d−1

∑
i=0

Prob(c logn succesive failures after the ith success)

≤ n

(
3
4

)c logn

≤ 1
n2 .

The above O(d logn) bound on td gives only an O(D log2 n) bound on the run-
ning time of the algorithm RANDOMIZEDBROADCAST. To get a stronger bound on
td , observe first that the expected value of td is at most 4d because (12.2) implies
that the expected number of rounds we have to wait for the next success is at most
4. Thus, showing that td = O(d + logn) with probability at least 1− 1/n2 reduces
to showing that the probability of a large deviation of td from its expected value is
small.

A technical issue in this analysis is the fact that the trials in the sequence A
are not independent. However, since the lower bound of 1/4 on the probability of
success in each trial in A holds for every pattern of outcomes in the previous trials,
one can define a sequence of trials B with the following properties. The probability
of success in each trial in B is equal to p = 1/4 independently of the outcomes
of the previous trials (so B is a sequence of binomial trials), and the success in a
trial t in B implies the success in trial t in A . More precisely, let q(a1,a2, . . . ,at−1)
denote the probability of success in trial t in A given a sequence (a1,a2, . . . ,at−1)
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of possible (positive probability) outcomes of the first t − 1 trials, which is always
at least p, and let Uj ∼ U(0,1), for j ≥ 1, be independent uniform (continuous)
random variables. For any sequence (a1,a2, . . . ,at) of possible outcomes of the first
t trials in A , declare trial t in B a success if and only if at is the success and
Ut ≤ p/q(a1,a2, . . . ,at−1). Thus, given the outcomes (a1,a2, . . . ,at−1) of the first
t − 1 trials in A and the values of random variables Uj for j ≤ t − 1 (denote this
condition by C), we know exactly the outcomes of the first t − 1 trials in B, while
the conditional probability of the success in trial t in B is equal to:

Prob(success in trial t in B | C)
= Prob(success in trial t in A and Ut ≤ p/q(a1, . . . ,at−1) | C)
= Prob(success in trial t in A | Ut ≤ p/q(a1, . . . ,at−1) and C)

×Prob(Ut ≤ p/q(a1, . . . ,at−1) | C)
= Prob(success in trial t in A | (a1, . . . ,at−1))×Prob(Ut ≤ p/q(a1, . . . ,at−1))
= q(a1, . . . ,at−1) · p/q(a1, . . . ,at−1) = p.

This means that the probability of success in trial t in B is equal to p and does not
depend on the outcomes of trials 1, 2, . . ., t −1.

Denoting by Xi the trial in B with the ith success, we have Xi ≥ ti, since when-
ever a trial in B is successful, the corresponding trial in A is also successful. The
expected value of Xd is 4d, and there are constants γ > 4 and 1 > δ > 0 such that
for all x ≥ γd,

Prob(Xd > x) = Prob(fewer than d successes in the first x trials in B)

=
d−1

∑
i=0

(
x
i

)
pi(1− p)x−i ≤ d

(xe
d

)d
(

3
4

)x

≤ 2−δx. (12.4)

The first inequality holds because

(
m
k

)
≤
(me

k

)k
for all m ≥ k ≥ 1. Now we have

Prob(td ≥ (γ/δ )(d + logn)) ≤ Prob(Xd ≥ (γ/δ )(d + logn))

≤ 2−γ(d+logn) ≤ 1
n2 . (12.5)

Thus td = O(d+ logn) with probability at least 1−1/n2, implying that the algorithm
RANDOMIZEDBROADCAST completes broadcasting in T = O(D + logn) rounds
with probability at least 1−1/n.

To bound the expected value of T , observe that (12.4) implies that for x ≥ γd,
Prob(T ≥ x) ≤ n2−δx. Thus,

E(T ) ≤ (γ/δ )(D+ logn) + ∑
x≥(γ/δ )(D+logn)

Prob(T ≥ x)

≤ O(D+ logn) + ∑
x≥(γ/δ )(D+logn)

n2−δx = O(D+ logn).
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12.3.4 Using Selective Families in Deterministic Distributed
Broadcasting

In randomized distributed broadcasting in ad hoc radio networks, the selection of ex-
actly one node from the k ≥ 1 active neighbors of a node v is achieved by steps when
each active node transmits with probability 1/Θ(k). O(logn) such steps ensure that
node v receives a message from its neighbor with high probability. In deterministic
distributed broadcasting, the selection of exactly one neighbor of v is based on the
notion of selective families of sets. We illustrate how these combinatorial structures
are used by describing the O(n log2 n)-step deterministic broadcasting algorithm
proposed in [33]. We call this algorithm DETERMINISTICBROADCAST.

We say that a family R of subsets of {1,2, . . . ,n} is k-selective, for a positive
integer k, if for any nonempty set Z ⊆ {1,2, . . . ,n} with k/2 ≤ |Z| ≤ k, there is a
set R ∈ R such that |R∩Z| = 1. A k-selective sequence S = (S1,S2, . . . ,Sq) is an
(arbitrary) linear order of the sets of a k-selective family. In a radio network, if the
nodes in a set W transmit according to a k-selective sequence S (a node w ∈ W
transmits in step i, if and only if w ∈ Si) while the nodes not in W remain silent, Z
is the set of neighbors of a node v which are in W , and k/2 ≤ |Z| < k, then for some
step i, |Si ∩Z| = 1 and node v receives a message. Note that the above definition of
a k-selective family is slightly different than the definition used in the deterministic
broadcasting algorithm in [33].

It can be shown by a simple probabilistic argument that for each positive k ≤ n,
there exists a k-selective family of size O(k logn) [37]. An explicit construction of
a k-selective family of size O(k logO(1) n) was shown in [70]. Observe the large gap
between the upper bounds on the number of steps required by the randomized and
deterministic selections of (exactly) one node from an arbitrary group of k nodes:
O(logn) steps (with high probability) for the randomized selection but O(k logn)
steps for the deterministic selection. There is no hope for any significant improve-
ment of the latter (deterministic) bound since a k-selective family is not only suffi-
cient but also necessary in this context, and it was shown in [37] that the size of any
k-selective family must be Ω(k log(n/k)).

In the RANDOMIZEDBROADCAST algorithm, the issue of potentially varied sizes
of the active neighborhoods is dealt with by using different probabilities of trans-
mission in different steps. These probabilities are 1/2i, for i = 1, 2, . . ., �logn�, and
the steps when the active nodes transmit with probability 1/2i take care of the active
neighborhoods with sizes in [2i−1,2i]. The DETERMINISTICBROADCAST algorithm
uses 2i-selective sequences S (i) of size O(2i logn), for i = 1, 2, . . ., �logn�, apply-
ing them in an interleaved manner. The 2i-selective sequence takes care of the active
neighborhoods with sizes in [2i−1,2i].

The algorithm is a sequence of T rounds, and each round consists of �logn�
steps; see Figure 12.2. The transmissions in steps i of each round are governed by
the 2i-selective sequence S (i). More precisely, the transmissions in step i of round
j, for j = 1, 2, . . ., |S (i)|, are governed by the jth set in S (i). Then a new repetition
of S (i) begins and the transmissions in step i of round |S (i)|+ j, for j = 1, 2, . . .,
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|S (i)|, are governed by the jth set in S (i), and so on. Sequence S (i) is iterated in
this way until the termination of the algorithm. If S(i) denotes the set in S (i) which
governs the transmissions in step i of the current round, then a node v transmits
in this step if and only if v ∈ S(i) and v was active already at the beginning of the
current repetition of sequence S (i).

The analysis below shows that the bound T on the number of rounds can be
set to be O(n logn), implying an O(n log2 n) bound on the total number of steps.
To simplify the analysis, we assume that for some integral constant c, |S (i)| =
c2i�logn�, for each i = 1, 2, . . ., �logn�. Thus |S (i)| is a multiplier of |S ( j)|, for
each j < i).

for each node v in parallel do
for i = 1 to �logn� do

S(i) = the next set in the 2i-selective sequence S (i)

{ if the end of S (i) is reached, then repeat S (i) from the beginning }
if v was active at the beginning of the current repetition of S (i) then

v transmits, if v ∈ S(i)

Fig. 12.2 One round of algorithm DETERMINISTICBROADCAST

For a node v ∈ V , let N (v) denote the set of the neighbors of v, and let Tv be
the round when v becomes active. The broadcasting is completed in maxv∈V{Tv}
rounds. We take an arbitrary node v other than the source and show that Tv =
O(n logn). Let P = (s = v0,v1,v2, . . . ,vd = v) be a shortest path from s to v. Let

Ld = {vd},

Li = N (vi+1)\
d⋃

j=i+1

L j, for i = d −1, d −2, . . ., 0.

Figure 12.3 illustrates the definition of sets Li. Observe that sets Li are pairwise
disjoint, vi ∈ Li, for each 0 ≤ i ≤ d, and N (vi+1) ⊆⋃d

j=i L j, for each 0 ≤ i ≤ d −1.

vi+1

L
i

v  = s
0

vi v  = v
d

Fig. 12.3 A shortest path from s to v and sets Li
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Let ti be the first round when a node in
⋃d

j=i L j becomes active. We have t0 =
0 < t1 ≤ t2 ≤ ·· · ≤ td = Tv. We consider an arbitrary index i, 0 ≤ i ≤ d − 1, and
show that ti+1 − ti = O(|Li| logn). Assume that ti+1 > ti. Thus, in round ti a node in
Li becomes active but all nodes in

⋃d
j=i+1 L j are still inactive. Let t > ti be the first

round after round ti when a new repetition of S (p) starts, where p = �log |Li|�, and
let 1 ≤ q ≤ p be such that the number of active nodes in Li at the beginning of round
t is in [2q−1,2q]. Note that round t is also the first round of a new repetition of S (q).
Since a new repetition of S (p) starts every |S (p)| = c2p�logn� rounds, we have

t ≤ ti + |S (p)| = ti + c2p�logn�.

Since only the nodes in Li which are active at the beginning of round t participate in
the repetition of S (q) which starts at this round, and S (q) is a 2q-selective sequence,
there is a round t ′, t ≤ t ′ < t + |S (q)|, such that exactly one node w in Li transmits
in the qth step of this round. If ti+1 ≥ t ′, then no node in N (vi+1)\Li ⊆

⋃d
j=i+1 L j

is active at the beginning of round t ′, so node vi+1 ∈ ⋃d
j=i+1 L j receives a message

in this round (from node w) and we must have ti+1 = t ′. Thus, ti+1 ≤ t ′, so

ti+1 ≤ t ′ < t + |S (q)| ≤ ti + c2p�logn�+ c2q�logn� ≤ ti + c2p+1�logn�
≤ ti +4c|Li|�logn�. (12.6)

Inequality (12.6) holds for each i = 0, 1, . . ., d −1, implying

Tv = td ≤ 4c�logn�
d−1

∑
i=0

|Li| ≤ 4cn�logn� = O(n logn),

where the last inequality follows from the fact that sets |Li| are pairwise disjoint.

12.4 Other Variants

12.4.1 Directed Graphs

A model based on directed graphs was used in [12, 18, 21, 22, 26, 28, 33, 37, 42, 45,
76]. The aim of these papers was to construct broadcasting algorithms working as
fast as possible in arbitrary directed radio networks without knowing their topology.
It turned out that in the directed setting, the complexity of broadcasting may depend
on an additional parameter, namely, the maximum node degree Δ .

The randomized algorithms of [10, 42] apply also to directed networks; hence,
broadcasting can be performed on directed networks in the harsh model by a ran-
domized algorithm in time O(D log(n/D)+ log2 n), just as on undirected networks
[42].

Deterministic broadcasting protocols in ad hoc radio networks were dealt with
in [12, 13, 21, 22, 37, 46]. A scheme based on polynomials over finite fields was
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presented in [21]. This scheme achieves broadcast in time O(D Δ2

log2Δ log2 n), for ar-

bitrary n-node networks with diameter D and maximum degree Δ . (The result was
stated for undirected graphs, but it holds also for arbitrary directed graphs, defining
D as the source radius, namely, the maximum distance from the source to any other
node.) This direction was studied further in [13, 22]. A protocol completing broad-
cast in time O(DΔ loglogΔ n) was constructed in [12]. Finally, an O(DΔ logα n)-time
protocol, for any α > 2, was described in [37]. The protocol works for arbitrary di-
rected graphs, and the exponent α can be decreased to 2 if the nodes are assumed to
know n, and to 1 if the nodes know n and Δ . The above algorithms are efficient for
networks with low diameter and node degrees. However, if D and Δ are large (say,
linear in n), then the broadcasting time becomes Ω(n2).

The first deterministic algorithm relying on universal selective families of se-
quences and avoiding the dependency on Δ , presented in [26], required O(n11/6)
time. Successively faster algorithms were then developed in [28, 33, 45]. The fastest
deterministic broadcasting algorithm currently available for directed networks in the
harsh model has time O(n log2 D) [42]. The algorithm is oblivious and makes use
of efficient deterministic selection sequences. On the other hand, a lower bound of
Ω(n logD) on deterministic broadcasting time was proved in [37] for directed net-
works. This lower bound holds also in a model allowing spontaneous wakeup (but
still assuming collision-as-silence). See also [18, 26, 79].

It is worth noting that following the introduction of selective families in [26], a
variety of probabilistic, combinatorial, and coding-based techniques were developed
for constructing selective families and related structures such as strongly selective
families, cover-free families, superimposed codes, and selectors, and these struc-
tures were used for broadcasting and other communication tasks in radio networks,
such as wakeup and synchronization [28–30, 37–39, 42, 61, 70]. For a recent review
of selection sequences and their uses, see [30].

12.4.2 Unit Disk Graphs

A more specific model of radio networks that has recently received considerable
attention is based on assuming that the network nodes are placed in the two-
dimensional plane and representing these nodes by their geometric positions in the
plane. The underlying graph is thus no longer arbitrary. Rather, the transmission
range of each node v is characterized as some region R(v) around its location, and
a node u can receive the transmissions of v if it belongs to R(v). The regions are
often assumed to be unit disks, implying that the transmission range of each node
includes all nodes at distance at most 1 from it. In this case, the resulting network
is a unit disk graph (UDG), where two nodes are joined by an edge if and only
if their Euclidean distance is at most 1. Another common alternative is to allow a
generalized representation as a (directed) disk graph, where radii of disks represent-
ing reachability regions may differ from node to node [43]. Reachability areas of
arbitrary shapes were considered in [46, 82].
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Broadcasting in such geometric radio networks and some of their variations was
considered in [43, 46, 82, 88, 90].
Broadcasting schedules and bounds on b̂(n,D). In [90] it is proved that computing
an optimal broadcasting schedule is NP-hard even when restricted to such graphs.
That paper also gives an O(n logn) algorithm for constructing an optimal broadcast
schedule when the nodes are situated on a straight line. In [88] broadcasting was
considered in networks with nodes randomly placed on a straight line. Fault-tolerant
broadcasting in radio networks arising from regular locations of nodes on the line
and in the plane, with reachability regions being squares and hexagons, rather than
circles, is discussed in [82]. Broadcasting with restricted knowledge was considered
in [46], but only the special case of nodes situated on the line was analyzed.

The problem of bounding b̂(n,D) becomes easier in the setting of UDG net-
works, and admits tight bounds of b̂(n,D) =Θ(D). The lower bound is trivial, and
the upper bound follows, e.g., from [65, 75], but can also be derived directly in a
straightforward manner.

Distributed broadcasting algorithms in unknown topology. The first paper to
study deterministic distributed broadcasting in arbitrary geometric radio networks
with restricted knowledge of topology was [43]. Several models were studied as-
suming a positive knowledge radius, i.e., assuming that the knowledge available to
a node concerns other nodes inside some disk around it. In the case of knowledge
radius 0, an O(n) time broadcasting algorithm is shown for the spontaneous wakeup
model, assuming that nodes are labeled by consecutive integers.

In the distributed context, where nodes are unaware of the network topology
(including their immediate neighborhood), the efficiency of broadcasting turns out
to depend not only on the diameter but also on one additional parameter, namely,
the spacing among nodes [50]. Let d be a lower bound on the Euclidean distance
between any two nodes of the network. Then, broadcasting time depends inversely
on d, or in other words, it depends on the network granularity, g = 1/d. Assume
each node of the network initially knows only its own coordinates in the Euclidean
plane and the parameter d. Considering only deterministic broadcasting algorithms,
the decisions made by a node at each round are based entirely on its coordinates
and on the messages it received so far. An algorithm for broadcasting in the harsh
model is presented in [50], completing broadcast in time O(Dg) in any UDG radio
network of diameter D and granularity g. A matching lower bound is presented
in [51]. It should be noted that in a network of diameter D and granularity g, n may
be as large as O(D2g2); hence, O(Dg) is generally an improvement over the O(n)
bound that follows from the algorithm of [43].

The problem was studied also for the spontaneous wakeup model (still assuming
collision-as-silence). Two different broadcasting algorithms are given in [50], one
working in time O(D+g2) and the other in time O(D logg). Depending on parame-
ter values, one or the other of these algorithms may be more efficient. The combined
algorithm obtained by interleaving these two algorithms completes broadcast in time
O(min{D + g2,D logg}). A matching lower bound of Ω(min{D + g2,D logg}) on
broadcasting time for this model is established as well. These results give a provable
separation between the conditional and the spontaneous wakeup models for broad-
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casting in UDG radio networks; for networks of small diameter (e.g., D bounded or
polylogarithmic in g) the lower bound for the conditional wakeup model is signifi-
cantly larger than the upper bound for the spontaneous wakeup model.

One may consider also a variant of the model based on restricted network con-
figurations, where the nodes must be deployed on the points of a d-spaced grid in
the plane. This variant has also been examined in [50, 51] within the harsh model.
A lower bound of Ω(D

√
g) on the time required by any broadcasting algorithm is

established in [50], and an algorithm achieving broadcast in time O(Dg5/6 logg) is
presented in [51]. This implies a separation between the arbitrary deployment set-
ting and the grid deployment setting in the harsh model, showing that broadcasting
in the former setting is strictly harder.

The problem is studied in [75] in the spontaneous wakeup model with a more
elaborate reception model (with different interference and transmission ranges, and
a carrier sensing mechanism allowing some form of collision detection). The broad-
cast algorithm described therein is based on initially constructing a connected dom-
inating set and subsequently a constant density spanner for the network (in expected
time O(Δ logΔ logn+ log4 n)), and then using this spanner to disseminate the broad-
cast message with high probability in overall time O(D+ logn).

12.4.3 Related Work

This concluding section briefly reviews some of the results appearing in the litera-
ture on variations of the problem, the model, or the type of solution, that do not fall
under the categories discussed so far.

As mentioned earlier, one may distinguish a special class of algorithms, referred
to as oblivious distributed algorithms, where the actions taken by each node depend
only on its identity and the time but not on the history of the execution. Oblivious
algorithms for broadcasting are studied in [80], where it is shown that obliviousness
degrades the time efficiency of broadcast. In particular, it is shown that there are
oblivious randomized algorithms completing broadcast in O(nmin{D, logn}) time,
and every such algorithm requires Ω(n) expected time for broadcasting. Matching
bounds ofΘ(nmin{D,

√
n}) are given for broadcasting time by oblivious determin-

istic algorithms.
Much of the literature on broadcasting algorithms concerns the static case, where

the network topology is fixed through time. In practice, there are applications where
the network nodes are mobile, and their movements affect also the topology of the
network, since a moving node exits the transmission range of some of its previous
neighbors and enters the transmission range of some new nodes. For discussions
of broadcasting techniques and protocols for mobile wireless ad hoc networks, see
[92, 93].

The broadcast operation has been studied extensively in other (wired) types of
communication networks, e.g., message passing networks (cf. [6, 7, 15, 55, 68, 87,
89]) and telephone networks (cf. [53, 54] and the surveys [57, 67]).



330 D. Peleg, T. Radzik

The literature reviewed herein considers broadcast as a single operation. In many
cases, there is a need to perform a long sequence of message broadcasts repeatedly.
Such settings were studied in [23], and later in [11], which presents a preprocessing
stage such that subsequently, repeated broadcast operations can be performed at an
average throughput of a broadcast operation every O(logΔ logn) time slots, where
Δ is the maximum degree of the network. Using a preconstructed spanner to speed
up broadcasting was proposed in [5].

A related communication task that has been thoroughly studied in all types of
communication networks is gossiping, where each of the nodes of the network (in
parallel) must broadcast its local information to all the other nodes [20, 33, 41, 60,
62, 64, 66, 67, 85]. Also related is the task of repetitious communication, where
each node repeatedly exchanges information with its neighbors [2, 56].

Yet another related type of distributed operation is the wakeup problem. In the
context of radio networks, this problem was first studied in [61] for single-hop net-
works (modeled by complete graphs), and then in [27, 29, 32] for arbitrary networks.
Randomized wakeup algorithms for radio networks were studied in [71]. In all these
papers it was assumed that a subset of all nodes wake up spontaneously, possibly at
different times, and have to wake up the other (initially dormant) nodes.

The model as defined herein assumes synchronous communication. The broad-
casting problem has been studied also in the asynchronous model. In particular,
upper and lower bounds for broadcasting time in asynchronous radio networks are
established in [31] under a variety of possible adversarial models.

A number of papers study other complexity measures for broadcasting, such as
the total number of transmissions [65] or the total energy requirements [3, 19, 35, 36,
52, 91]. These measures are sometimes studied in combination with time complexity
[14, 44, 63].

In certain variants of broadcast, the problem definition includes some element
of termination detection, e.g., they may require the source node to receive an ac-
knowledgement informing it that the broadcasting process has completed. Issues of
termination detection and acknowledgement delivery in radio networks are studied
in [26, 59].

Fault-tolerant broadcasting in radio networks was considered in a number of pa-
pers [8, 9, 16, 17, 40, 73, 74, 82, 84, 86]. See [85] for a survey of earlier results con-
cerning fault-tolerant protocols in communication networks, which includes models
related to radio networks.
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Chapter 13
Energy Consumption Minimization in Ad Hoc
Wireless and Multi-interface Networks

Alfredo Navarra, Ioannis Caragiannis, Michele Flammini, Christos Kaklamanis,
and Ralf Klasing

Abstract This chapter deals with energy consumption issues in wireless networks.
In such networks, energy is a scarce resource and, hence, it must be used efficiently.
Under these circumstances, we consider two interesting combinatorial optimization
problems: Minimum Energy Broadcast Routing and Cost Minimization in Multi-
interface Networks. The goal of the first problem is to perform broadcasting from
a given source while minimizing the overall energy required for communication.
The second problem refers to the choice of activating a set of available communica-
tion interfaces at the network nodes in order to satisfy the required connections in a
wireless multi-interface network with minimum total cost. While Minimum Energy
Broadcast Routing has been studied extensively during recent years, Cost Minimiza-
tion in Multi-interface Networks is rather new. For both problems we survey recent
complexity results and approximation algorithms under different assumptions.
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13.1 Introduction

In recent years wireless networks have been widely deployed, mostly because of
the recent drop in equipment prices and due to the features provided by the new
technologies. Unlike traditional wired networks where signals pass from one device
to another through physical cables, in wireless networks data transmissions from
each node (station) occur in the open air and within a given coverage area. In this
scenario, considerable attention has been devoted to the so-called ad hoc wireless
networks, due to their potential applications in emergency disaster relief, on the
battlefield, in impervious areas, and so on [29, 44]. Ad hoc wireless networks do not
require any fixed infrastructure. The network is simply a collection of devices that
can communicate with each other according to proximity and available common
protocols and interfaces.

In this chapter we consider two important problems arising in the context of ad
hoc wireless networks: Minimum Energy Broadcast Routing and Cost Minimization
in Multi-interface Networks. The first problem considers the need of broadcasting
information from a given source to all other network nodes when the network nodes
are equipped with omnidirectional antennas. The second problem aims at establish-
ing connections among heterogeneous nodes equipped with a set of interfaces that
can be activated at a different cost.

The common objective in both the above scenarios is to minimize the total energy
consumption in order to keep the network alive as long as possible. Energy is in fact
a scarce resource in wireless ad hoc networks, and communication strongly depends
on it.

The chapter is organized as follows. Section 13.2 is devoted to the Minimum En-
ergy Broadcast Routing problem. First, some motivation for the problem is provided
and, then, it is formally defined. Several results are surveyed and details are given
for interesting analysis techniques. Section 13.3 is devoted to Cost Minimization
in Multi-interface Networks. Again, the problem is first motivated, then formally
defined, and a list of results is presented emphasizing some interesting techniques.
Finally, Section 13.4 provides conclusive remarks and interesting directions of fu-
ture research.

13.2 Minimum Energy Broadcast Routing

The study of a basic communication pattern such as broadcasting is of main inter-
est in the context of wireless ad hoc networks. Broadcasting can in fact be used to
set up the network or to rapidly spread useful information. The wireless environ-
ment allows all devices in the range of a transmitter x to receive messages sent by
x. The range of transmissions basically depends on the environment where devices
are distributed. According to the widely used power attenuation model [42], when
a station s transmits with power Ps, a station r can receive messages from s if and
only if Ps > βdist(s,r)α , where dist(s,r) is the Euclidean distance between s and



13 Minimization of Energy Consumption 337

r, α is a parameter which depends on the environment with typical values between
2 and 6, and β is a positive parameter known as the reception quality threshold.
For the sake of simplicity, from now on we normalize parameter β to 1. Due to
the nonlinearity of power attenuation, multi-hop transmission of messages through
intermediate devices may result in energy conservation. The main property of wire-
less ad hoc networks is usually the lack of a fixed infrastructure for routing purposes.
A natural issue arising in this setting is that of supporting broadcasting with min-
imum total energy consumption. This problem, called Minimum Energy Broadcast
Routing (MEBR), is well-known in the literature and it has been extensively studied
(see [1, 2, 5, 7–9, 12, 13, 16, 19, 20, 24–26, 31, 33, 36, 41]).

13.2.1 Definitions and Notation

Given a set of stations S, let G(S) be the complete weighted directed graph whose
nodes are the stations in S and in which the weight w(x,y) of each edge (x,y) is the
power required at x in order to transmit correctly to node y. A power assignment for
S is a function p : S → R+ assigning a transmission power p(x) to every station x in
S. A power assignment p for S yields a directed communication graph Gp = (S,A)
such that, for each directed edge (x,y) of G(S), (x,y) belongs to A if and only if
p(x) ≥ w(x,y), i.e., if x can correctly transmit to y. In this case, we say that y is
within the range of x. The total cost of a power assignment p is then

cost(p) =∑
x∈S

p(x).

MEBR takes as input G(S) together with a source station s ∈ S and consists of
finding a power assignment p of minimum cost such that Gp contains a directed
spanning tree rooted at s (and directed towards the leaves). We call such a power
assignment an optimal power assignment and denote its cost by m∗(S,s).

The weight function w : E �→ R+ is usually symmetric (i.e., w(x,y) = w(y,x)
for each pair of stations x, y ∈ S). Nonsymmetric weight functions can be used to
capture the irregularity of the environment or situations where stations use batteries
of different types which may operate on different fixed energy levels. An important
case of symmetric weight functions arises in the geometric version of MEBR. In this
case, the stations of S correspond to points in a d−dimensional Euclidean space and
the weight function is defined as w(x,y) = dist(x,y)α , where dist is the Euclidean
distance and α ≥ 1 is a positive parameter. Equivalently, in this case, we seek a range
assignment r : S → R+ such that the range r(x) of a station x denotes the maximum
Euclidean distance from x at which signals can be correctly received. Again, a range
assignment r for S yields a directed communication graph Gr = (S,A) such that the
directed edge (x,y) belongs to A if and only if y is at distance at most r(x) from x.
We use the notation Gα(S) and m∗

α(S,s) to denote the input graph and the cost of
the optimal range assignment in the geometric case.
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13.2.2 The Geometric Version of MEBR

We first study the geometric version of MEBR. In general, the geometric version
of MEBR is NP-hard, while it is solvable in polynomial time when α = 1 or
d = 1 [13, 20]. Many heuristics and corresponding experimental results can be
found in the literature. We can find the Shortest Paths Tree (SPT), the Minimum
Spanning Tree (MST), and the Broadcast Incremental Power (BIP) in [42]; the It-
erative Maximum-Branch Minimization (IMBM) in [37]; the Adaptive Broadcast
Consumption (ABC) in [33]; a refined BIP version in [43]; and many Integer Lin-
ear Programming approaches like the ones in [22, 30, 33, 43] (see also [2] for a
comparative experimental study).

While such heuristics have been observed experimentally to perform pretty well
on random instances of MEBR, the only one for which extended analytical studies
were done is the MST heuristic. It is based on the idea of tuning ranges so that the
communication graph contains a minimum spanning tree (see Section 1.5.1.1) of the
cost graph G(S). More precisely, denote by T (S) a minimum spanning tree of G(S).
The MST heuristic considers T (S) rooted at the source station s, directs the edges
of T (S) towards the leaves, and sets the power p(x) of every internal station x of
T (S) with k > 0 children x1, . . . ,xk in such a way that p(x) = maxi=1,...,kw(x,xi). In
other words, p is the power assignment of minimum cost inducing the directed tree
derived from T (S), and is such that cost(p) ≤ c(T (S)), where c(T (S)) denotes the
total cost of the edges in T (S). Therefore, the approximation ratio of the heuristic is
bounded by the ratio between the cost of a minimum spanning tree of G(S) and the
optimal power cost m∗(S,s).

s

1

1

1

1

1

1

Fig. 13.1 The lower bound of 6 for the MST heuristic. On this instance, there is a source station
s and six additional stations, five of which are on the circumference of a circle of radius 1 + ε
centered at s. The MST heuristic produces a tree (path) consisting of six edges of total cost 6. The
optimal solution is a star connecting s to the other six nodes at a cost of 1+ ε . The approximation
ratio can become arbitrarily close to 6 by selecting ε to be arbitrarily small

For the two-dimensional case (which is actually the case that has been given
most attention in the literature), a lower bound of 6 on the approximation ratio of
the MST heuristic was provided in [42] (see Figure 13.1). The first constant upper
bound was provided in [19]. The analysis led to an approximation ratio of 40 for
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MST, immediately reduced to 20 by the same authors. The general idea behind the
analysis is to represent each edge of G(S) chosen by the MST heuristic by a two-
dimensional shape and evaluate the area occupied by all such shapes, since the cost
of a solution provided by the MST heuristic (for α = 2) is proportional to the con-
sidered area. The 40-approximation was obtained by associating with each edge e a
circle whose diameter is the length of e (see Figure 13.2.a). The 20-approximation
arises by associating a circle with each edge e whose center is the middle point of e
and diameter is half the length of e (see Figure 13.2.b). A further improvement ob-
tained by using the same technique but varying the shape was given in [33, 41]. The
obtained approximation ratio is 12.15 and the shape associated with each edge e is
a rhombus whose bigger diagonal coincides with e, and the angles at its endpoints
formed by the sides of the rhombus are 60 degrees (see Figure 13.2.c). Note that the
third shape implies an interesting property for which no overlap occurs among two
shapes associated with two different edges of the minimum spanning tree. By re-
fining the geometrical arguments but without changing the rhombus shape, a better
bound of 10.86 was obtained in [8].

c)

Oe e e

a) b)

60

Fig. 13.2 The three shapes associated with an edge e of a spanning tree. The choice of shape a)
leads to a 40-approximation, b) to 20, and c) to 12.15.

A different method was used in [24, 31]. A new process to evaluate the approxi-
mation factor of the MST heuristic was introduced, leading first to an upper bound
of 8 and then to 6.33 by more refined geometrical arguments. The basic idea, which
will be explained in detail in the next section, is to grow one circle centered at
each node of the network until all the circles belong to the same connected compo-
nent, that is, the union of all the circles forms one and only one delimited area. The
bounds of the MST heuristic were then determined by evaluating the covered area by
such a process. This method was also extended to the more general d-dimensional
case for which a (3d − 1)-approximation ratio has been obtained. It is worth men-
tioning that, for any Euclidean dimension d and power α ≥ d, the MST heuristic
is lower-bounded by the so-called d-dimensional kissing number [19]. More pre-
cisely, the d-dimensional kissing number is the maximum number of mutually dis-
joint d-spheres (or hyperspheres) of a given radius r that can simultaneously touch
a d-sphere of the same radius r in the d-dimensional Euclidean space [21]. For the
three-dimensional Euclidean space, for instance, the kissing number is 12 while the
upper bound provided by [24, 31] is 26. Such a bound has been improved in [38]
to 18.8 by extending to the three-dimensional space arguments similar to the ones
that led the upper bound for the two-dimensional case from 8 to 6.33. In [1] the gap
between the lower bound of 6 and the upper bound of 6.33 for the MST heuristic
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in the two-dimensional case was finally closed by decreasing the upper bound to 6.
The author provided a new analysis technique based on the Delaunay triangulation.

An interesting direction for providing worst-case scenarios and studying the per-
formance of the MST or other heuristics was given in [26]. By means of a random-
ized procedure, the approach showed an almost tight 4-approximation ratio of the
MST heuristic in the case of uniform high-density distributions of the radio stations.

13.2.3 An 8-Approximation Upper Bound for the MST Heuristic

In this section, we present the main ideas that can be used in the analysis of the MST
heuristic. The particular arguments used in the following yield an upper bound of 8
on the approximation ratio and are relatively easy to follow. The improved results
in [31] and [1] follow significantly more involved analysis.

Given a graph G and a weight function w defined on its edges, for any c ∈ R+,
let N(G,c) be the number of connected components in the graph obtained from G
by keeping only the edges e ∈ E such that w(e) ≤ c. Then, the cost MST (G) of a
minimum spanning tree for G is given by the following lemma.

Lemma 13.1 (Frieze and McDiarmid [27]). MST (G) =
∫ ∞

0 (N(G,c)−1)dc.

For any subset of stations Q ⊆ S, let Gα(Q) be the subgraph of Gα(S) induced by
Q. Also, let n(Q,r) = N(Gα(Q),rα), that is, the number of connected components
in Gα(Q) obtained by maintaining only the edges between the nodes at distance at
most r in Q. Recalling that each edge (x,y) has cost w(x,y) = dist(x,y)α and ex-
ploiting Lemma 13.1 by substituting the variable c with rα , we obtain the following
corollary.

Corollary 13.1 (Klasing et al. [31]). For any subset of stations Q ⊆ S, MST (Gα(Q))
= α

∫ ∞
0 (n(Q,r)−1)rα−1dr.

Now, the main argument in the proof is the following. We address the case α = 2
since the upper bound for α ≥ 2 can be directly inferred [24, 31]. Consider an
optimal power assignment of cost m∗(S,s) in which k stations x1, ...,xk are assigned
nonzero power. For i = 1, ...,k, denote by ri the range of station xi and let Qi be the
set of stations within the range of station xi. We will show that MST (Gα(Qi))≤ 8rαi .
In this way, we will obtain that

MST (Gα(S)) ≤
k

∑
i=1

MST (Gα(Qi)) ≤ 8
k

∑
i=1

rαi = 8m∗(S,s),

thus proving the upper bound. Without loss of generality, we consider a set of sta-
tions Q ⊆ S such that there exists a station x ∈ Q with maxy∈Q dist(x,y) = 1. Thus,
all the points of Q belong to a circle of radius 1 in the plane, from now on denoted
by C1, and the cost of each edge of the weighted complete graph representing the
input network is proportional to the square of the distance between its endpoints.
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For simplicity of notation, for any set of stations Q, G2(Q) is denoted simply as
G(Q).

Let G(Q,r) be the graph obtained by considering only the edges of G(Q) of
length at most r, or equivalently of cost at most r2, and let CC(Q,r) be the set of the
connected components of G(Q,r). Let rmax be the minimum r such that G(Q,r) is
connected (i.e., n(Q,rmax) = |CC(Q,rmax)| = 1). Then, directly from Corollary 13.1,

MST (G) = 2
∫ rmax

0
(n(Q,r)−1)rdr.

For the sake of readability, from now Q is dropped from the notation, so that G,
G(r) CC(r), n(r), and rmax will denote G(Q), G(Q,r) CC(Q,r), n(Q,r) and rmax(Q),
respectively.

Theorem 13.1 ( [31]). Given any subset of stations Q ⊆ S within a circle of radius
1, MST (G(Q)) ≤ 8.

|CC(rmax)| = 1,

1+ rmax
2

1

x

xx

x

r = r2
2|CC(r2)| = 5,

r = rmax
2

r = r1
2|CC(r1)| = 6,r = 0|CC(0)| = 7,

Fig. 13.3 The expanding process described in Theorem 13.1

The proof of Theorem 13.1 considers a growing process in which circles of equal
radii centered at the stations of Q are synchronously grown starting from a radius
r = 0 till r = rmax

2 ≤ 1
2 ; i.e., the process ends when G(2r) becomes connected. This

is accomplished by increasing at any infinitesimal step the current radii, all equal to
a given r, by dr.
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For a set of stations P and a radius r, let P(r) be the set of the points in the plane
contained in the union of all the circles of radius r associated with the stations of P.
Let a(P,r) be the area of P(r).

Suitable lower and upper bounds on the total area a(Q, rmax
2 ) covered by all the

circles related to Q at the end of the process, that is, when all the radii are equal to
rmax

2 , can be determined as follows.
Consider a connected component P ∈ CC(2r) of G(2r). Then, since two circles

of radius r centered in two stations at distance at most 2r touch each other, P(r)
corresponds to a closed region of the plane having perimeter p(P,r) equal to at least
2πr, that is, equal to at least the perimeter of a single circle of radius r centered
in a station of P. Thus, the increase p(P,r)dr of a(P,r) when r is increased by an
infinitesimal step dr is at least 2πrdr.

If P ∈CC(2r) and R ∈CC(2r) are two different connected components of G(2r),
P(r)∩R(r) = /0, as any point belonging to the intersection would contradict the fact
that the distance between any station in P and any station in R is strictly greater than
2r. Therefore,

a(Q,
rmax

2
) =

∫ rmax
2

0
∑

P∈CC(2r)
p(P,r)dr

≥
∫ rmax

2

0
n(2r)2πrdr

=
1
4

2π
∫ rmax

0
n(r)rdr

=
1
4

2π
∫ rmax

0
(n(r)−1)rdr +

1
4

2π
∫ rmax

0
rdr

=
π
4

MST (G)+
π
4

r2
max.

Moreover, the total region of the plane covered by the union of all the circles
related to Q of radius rmax

2 , that is, Q( rmax
2 ), is included in a circle of radius 1+ rmax

2
centered at the station x such that dist(x,y) ≤ 1 for every y ∈ Q (see Figure 13.3), so
that a(Q, rmax

2 ) ≤ π+( rmax
2 )2. Therefore,

π
4

MST (G)+
π
4

r2
max ≤ a(Q,

rmax

2
) ≤ π(1+

rmax

2
)2

and thus, since rmax ≤ 1,

MST (G) ≤ 4(1+
rmax

2
)2 − r2

max = 4(1+ rmax) ≤ 8.
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13.2.4 Experimental Studies with the MST Heuristic

We now show an interesting technique from [26] for obtaining “bad” instances for
the MST heuristic. The goal is to maximize the cost of a possible MST inside C1

considering its center s as the source. This was done in order to better understand the
actual quality of the performance of the MST heuristic over interesting instances that
are more representative of real-world applications. Starting from random instances,
the maximization consists of slight movements of the nodes according to some use-
ful properties of the MST construction. For instance, if we want to increase the cost
of an edge of the MST, the easiest idea is to increase the distance of its endpoints.
Let us now consider a node v �= s of a generic instance given as input. We consider
the degree of such a node in the undirected tree obtained from the MST heuristic
before assigning the directions. Let N(v) = {v1,v2, . . . ,vk} be the set of the neigh-
bors of v in such a tree. We evaluate the median point p = (x,y), whose coordinates
are given by the average of the corresponding coordinates of the nodes in N(v). The
idea is then to move the node v farther from p but, of course, inside the considered
circle. In general this should augment the cost of the MST on the edge connecting
the node v to the rest of the tree (see Figure 13.4).

p v

v

p
v

p

Fig. 13.4 Augmenting the edge costs when a node has one or more neighbors and when it is on
the circumference of C1

It can also happen that such a movement completely changes the structure of
the MST, reducing the initial cost. In that case we do not validate the movement.
Given an instance, the augmenting algorithm performs this computation for each
node twisting over all the nodes but s, until no movements are allowed. Therefore, in
order to give to a node a “second chance” to move, we can repeat such computations
for a fixed number of rounds. Note that when a node reaches the border that is the
circumference of C1, the only allowed movement is over such a circumference.

Another way to increase the cost of the MST is to try to delete a node. The
chosen candidate is the node with the highest degree. The idea behind this choice
is that the highest degree node could be considered as the intermediary node to
connect its neighbors, so removing it, a “big hole” will probably appear. On the one
hand, this means that the distances to connect the remaining disjoint subtrees should
increase the overall cost. On the other hand, we are creating more space for further
movements. After a deletion, the algorithm starts again with the movements. Indeed,
the deletion can be considered as a movement in which two nodes coincide. If the
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deletion does not increase the cost of the current MST, it is not validated. In such a
case, the next step will be the deletion of the second highest degree node and so on.
The whole procedure is repeated until no movements and no deletions are allowed.
Note that eventually the algorithm can be repeated several times in order to obtain
more accurate results. Sometimes, in fact, it can happen that the algorithm is stuck
in some local maximum. Due to its randomness on the movements, the more it is
executed, the higher is the probability to exit from such a situation.

The algorithm was evaluated over hundreds of instances from five up to 100
nodes. Table 13.1 shows the average and the maximum costs obtained on random
instances using and not using the augmenting method (ε represents the maximum
distance allowed for movements).

Table 13.1 The average and the maximum costs obtained on standard random instances and using
the previous augmenting algorithm on instances of five up to 100 nodes and ε equal to 0.1 and 0.5.

n Random Augmented, ε = .5 Augmented, ε = .1
Average Max Average Max Average Max

5 1.301 2.875 3.645 4.000 3.627 4.000
7 1.480 2.479 4.545 5.738 4.560 5.879

20 1.854 2.618 4.281 5.090 4.131 5.122
50 1.812 1.971 3.732 3.890 3.633 3.759

100 1.683 1.883 3.567 3.722 3.490 3.812

Compared to the standard random generated instances, the average costs were
almost tripled while the maximum costs were almost doubled. The numerical results
obtained are very interesting since they show that standard random instances are
not really representative when studying the bounds of the MST heuristic for the
MEBR problem. Moreover, as a “side effect” of such experiments, another very
interesting property concerns the topologies obtained in the augmented instances.
Whereas for instances up to around 20 nodes the method modifies the distribution of
nodes, collapsing them to the hexagon shape of Figure 13.1, increasing the number
of nodes makes things more interesting.

In Figure 13.5 an instance of 100 nodes is given before and after the movements
and deletions. What follows from those experiments is an evident regularity on the
final obtained instances. As shown in Figure 13.5, in general, after the augmentation,
nodes look like they are being disposed of on some kind of regular grid, and this
reflects the lower bound given by the regular hexagon shape.

13.2.5 Solving More General Instances of MEBR

In non-geometric versions of MEBR, the MST heuristic can be easily shown to have
a poor approximation ratio. Better algorithms exist in both cases, where the weight
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(a) before (b) after

Fig. 13.5 A random instance of 100 nodes before and after applying the augmenting method. The
number of nodes decreased from 100 to 65, while the cost increased from 1.877 to 3.681

function is symmetric and nonsymmetric. For the former case, [13–15] present al-
gorithms with a logarithmic (in the number of nodes) approximation ratio. The
main idea is to reduce instances of the problem to instances of the problem Node-
Weighted Connected Dominating Set [13, 14] or Node-Weighted Steiner Tree [15].
Such instances can be approximated within a logarithmic factor [28], which car-
ries over as the approximation factor of the original instance. For nonsymmetric
instances, [15] exploits a reduction due to Liang [36] of instances of MEBR to
instances of Directed Steiner Tree. The obtained instances have some special prop-
erties, which allow for logarithmic approximations using techniques of Zosin and
Khuller [45] for approximating special instances of Directed Steiner Tree. Similar
results using different techniques have been obtained independently by Calinescu et
al. [9]. All these results are the best possible; a matching inapproximability result
has been presented in [19].

In the following, we discuss a recent algorithm from [12] for symmetric instances
of MEBR, which has important implications for the geometric version of MEBR as
well. The algorithm starts with the solution computed by the MST heuristic and
gradually performs improvements on this solution according to a well-selected cri-
terion. At the end, the solution obtained has significantly smaller cost than the initial
one.

Before presenting the algorithm, we give some necessary definitions. Given a
power assignment p and a station x ∈ S, let E(p,x) = {(x,y)|w(x,y) ≤ p(x)} be the
set of the undirected edges induced by p at x, and E(p) =

⋃
x∈S E(p,x) the set of

all the undirected edges induced by p. For every subset of undirected edges F ⊆ E
of a weighted graph G = (S,E), we denote as c(F) the overall cost of the edges in
F , that is, the total sum of their weights. For the sake of simplicity, we will identify
trees with their corresponding sets of edges. A swap set for a spanning tree T of an
undirected graph G(S,E) and a set of edges F with endpoints in S is any subset F ′

of edges that must be removed from the multigraph T ∪ F so that T ∪ F \ F ′ is a
spanning tree of G.

We are now ready to describe the algorithm by first giving the basic underlying
idea. Starting from a spanning tree T of G(S), if the cost of T is significantly higher
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than the one of an optimal solution for performing broadcasting from a given source
node s ∈ S, then there must exist a cost-efficient contraction of T . Namely, it must
be possible to set the transmission power p(x) of at least one station x in such a way
that p(x) is much lower than the cost of some swap set A(p,x) for T and E(p,x).
The algorithm then repeatedly chooses at each step p(x) in such a way that, starting
from the current spanning tree, c(A(p,x))/p(x) is maximized. The final tree will be
such that, considering the correct orientation of the edges according to the final as-
signment p, some edges will be in the reverse direction, i.e., from the leaves towards
the source s. However, the transmission powers can then be properly set with low
additional cost in order to obtain the right orientation from s to the other stations.

At any intermediate step of the algorithm in which p and T are the current power
assignment and maintained tree, respectively, consider a contraction at a given sta-
tion x consisting of setting the transmission power of x to p′(x), and let p′ be the
resulting power assignment. Then, a maximum cost swap set A(p′,x) to be attributed
to the contraction can be trivially determined by letting A(p′,x) contain the edges
that are removed when determining a minimum spanning tree in the multigraph
T ∪E(p′,x) with the cost of all the edges in E(p′,x) set equal to 0. We call the ratio
c(A(p′,x))

p′(x) the cost-efficiency of the contraction.
Formally, the algorithm performs the following steps:

• Set the transmission power p(x) of every station in x ∈ S equal to 0.
• Let T = T (S) be a minimum spanning tree of G(S).
• While there exists at least one contraction of cost-efficiency strictly greater than

2

– Perform a contraction of maximum cost-efficiency, and let p′(x) be the corre-
sponding increased power at a given station x, and p′ be the resulting power
assignment.

– Set the weight of all the edges in E(p′,x) equal to 0.
– Let T ′ = T ∪E(p′,x)\A(p′,x).
– Set T = T ′ and p = p′.

• Orient all the edges of T from the source s toward all the other stations.
• Return the transmission power assignment p that induces such a set of oriented

edges.

For any instance of the problem where the minimum spanning tree of the cost
graph G(S) is guaranteed to cost at most ρ times the cost of an optimal solution
for MEBR, the algorithm achieves an approximation ratio bounded by ρ if ρ ≤ 2
and by 2lnρ − 2ln2 + 2 if ρ > 2, which exponentially improves upon the MST
heuristic. Surprisingly, the algorithm and analysis do not make use of any geomet-
ric arguments, and still the results significantly improve the previously best-known
approximation factor for Euclidean instances of the problem. The corresponding
approximation ratio is reduced (when α ≥ d) from 6 [1] to 4.2 for d = 2, from
18.8 [38] to 6.49 for d = 3, and in general from 3d −1 [24] to 2.2d +0.61 for d > 3.
In the two-dimensional case, the achieved approximation is even less than the lower
bound of 13/3 on the approximation ratio of the BIP heuristic [41]. In arbitrary
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(i.e., non-Euclidean) cost graphs, it is not difficult to see that the cost of the mini-
mum spanning tree is at most n−1 times the cost of an optimal solution for MEBR;
hence, the algorithm achieves a logarithmic approximation for arbitrary symmetric
weight functions matching the results in [9, 15].

13.3 Cost Minimization in Multi-interface Networks

Nowadays wireless devices hold multiple radio interfaces, allowing switching from
one communication network to another according to required connectivity and re-
lated quality. The selection of the “best” radio interface for a specific connection
might depend on various factors, namely, its availability in specific devices, the
required communication bandwidth, the cost (in terms of energy consumption) of
maintaining an active interface, the available neighbors, and so forth. While manag-
ing such connections, a lot of effort must be devoted to energy consumption issues.
Devices are, in fact, usually battery-powered and network survivability might de-
pend on their persistence in the network. This introduces a challenging and natural
optimization problem that must take care of different variables at the same time.
Generally speaking, given a set of k interfaces and a graph G = (V,E), where V rep-
resents the set of wireless devices and E the set of required connections according
to the proximity of the devices and the available interfaces that they may share, the
problem can be stated as follows. What is the cheapest way, i.e., which subset of
available interfaces in each node must be activated, to satisfy (cover) all the con-
nections described by E? Note that a connection is satisfied when the endpoints of
the corresponding edge share at least one active interface. Moreover, for each node
v ∈V there is a set of available interfaces, from now on denoted as W (v).

⋃
v∈V W (v)

determines the set of all the possible interfaces available in the network whose car-
dinality is denoted by k. An example of a network instance is shown in Figure 13.6.

Depending on whether k is a priori bounded or not, two different problems arise.
The first one is called Cost Minimization in Multi-interface Networks (k-CMI for
short). The second one is called Cost Minimization in Unbounded Multi-interface
Networks (CMI for short). In this section, we report results about the complexity of
both k-CMI and CMI in various scenarios. The problems turn out to be very hard
in general; hence, we also consider possible approximation algorithms. We deal
with two main variations of the problem: the case in which the cost of activating
an interface is the same for each interface (uniform case), and the more general
case in which such a cost may differ (non-uniform case). Indeed, the first model is
equivalent to asking for the minimum total number of activated interfaces inside the
network to cover all the connections. We also consider different graph classes that
are of interest from both theoretical and practical points of view, namely, graphs
with bounded degree, since in real-world scenarios users are normally connected to
a limited number of nodes; planar graphs, since the induced graph of joining users
in a network is likely to be planar; trees, since middleware strategies are heavily
based on this kind of structure (see, for instance, [10]); and complete graphs, since
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Fig. 13.6 The composed network according to available interfaces and proximities

this is one of the main structures used for modeling peer-to-peer networks (see for
instance [18]).

Here we consider the bounded and the unbounded version of the problem. The
two models reflect two different feasible cases, where available interfaces are ei-
ther known a priori or not, respectively. Since nowadays devices support many and
different interfaces, it makes sense either to assume the number of interfaces that
may occur in a composed network as given, or to not. It might depend, in fact, on
the number of nodes participating in the network. Regardless, k reflects the network
dynamics.

The problems originated from [11], where a slightly different model of k-CMI is
introduced. That model considers bandwidth constraints and also the possibility of
having mutually exclusive interfaces, i.e., interfaces that, if activated, preclude the
activation of some other interfaces. The motivation is quite technical. For instance,
the WiFi interface can operate in different modalities: Infrastructure and Ad Hoc.
If a device activates WiFi in the Infrastructure modality, it cannot satisfy connec-
tions that require Ad Hoc modality, and vice versa. This further constraint is not
introduced here since the problem, although of practical interest, is not easily solv-
able. Other related problems were recently addressed in [23, 35] and [4], concerning
connectivity and shortest path issues, respectively.

13.3.1 Definitions and Notation

Unless otherwise stated, the network graph G = (V,E) is always assumed to be sim-
ple (i.e., without multiple edges), undirected, and connected. Moreover, we always
denote by n and m the cardinality of the sets V and E respectively. The degree of
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node v ∈V is denoted by deg(v) and the set of its neighbors by N(v). The maximum
node degree of graph G is denoted by Δ(G).

A global characterization of interfaces of respective nodes from V is given in
terms of an appropriate interface assignment function W , according to the following
definition.

Definition 13.1. A function W : V → 2{1,...,k} is said to cover graph G = (V,E) if
for each {u,v} ∈ E the set W (u)∩W (v) �= /0.

The cost of activating an interface for a node is assumed to be identical for all
nodes and given by cost function c : {1, . . . ,k} → Z+, i.e., the cost of interface i is
written as ci. The considered k-CMI optimization problem is formulated as follows.

k-CMI: Cost Minimization in Multi-interface Networks

Input: A graph G = (V,E), a positive integer k, an allocation of available in-
terfaces W : V → 2{1,...,k} covering graph G, an interface cost function
c : {1, . . . ,k} → R+.

Solution: An allocation of active interfaces WA : V → 2{1,...,k} covering graph G
such that WA(v) ⊆ W (v) for all v ∈ V .

Goal: Minimize the total cost of the active interfaces, c(WA) =
∑v∈V ∑i∈WA(v) ci.

The considered CMI optimization problem is formulated as follows.

CMI: Cost Minimization in Unbounded Multi-interface Networks

Input: A graph G = (V,E), an allocation of available interfaces W : V →
2{1,...,k} covering graph G, an interface cost function c : {1, . . . ,k} →
R+.

Solution: An allocation of active interfaces WA : V → 2{1,...,k} covering graph G
such that WA(v) ⊆ W (v) for all v ∈ V .

Goal: Minimize the total cost of the active interfaces, c(WA) =
∑v∈V ∑i∈WA(v) ci.

13.3.2 Results for k-CMI

Table 13.2 summarizes known results for k-CMI [32]. The problem is polynomially
solvable for k = 2 but it is already APX-hard when k grows. If the underlying graph
is complete or a tree, then k-CMI is still polynomial while for planar graphs it is
NP-hard but admits a PTAS.
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Table 13.2 Hardness and approximability of the k-CMI problem

Graph class Interfaces Complexity of k-CMI
non-uniform costs uniform costs

General graphs k = 2 O(n3) O(nm)
k ≥ 3 (k−1)-approx,

APX-hard
min{� k+1

2 �, 2m
n }-approx,

APX-hard
Graphs of bounded
degree Δ

k ≥ 3 Δ -approx,
APX-hard for Δ ≥ 5

Δ+1
2 -approx,

APX-hard for Δ ≥ 5
Planar graphs k ≥ 3 NP-hard, PTAS NP-hard, PTAS

Trees any k O(n) O(n)
Complete graphs any k O(n2) O(n2)

The proof that provides the APX-hardness for k ≥ 3 considers a polynomial trans-
formation from the well-known VERTEX COVER problem on subcubic graphs1 to
k-CMI. On those instances VERTEX COVER is known to be APX-hard [39]. The
transformation works as follows. Given a subcubic graph G = (V,E), it is known
that, in general, its chromatic number is at most 3 [6]. Nodes can then be partitioned
into three subsets V1, V2, and V3 according to an optimal coloring in such a way that
V1

⋃
V2

⋃
V3 ≡V and for each edge e = {x,y} ∈ E, x and y do not belong to the same

subset Vi for every i = 1, 2, or 3.

2V1

{2}
{3}

{3}

V1

{1}

{2}

{1}
{3}

{1,2,3}

{1,2,3}

{2}

{1} {2}
{2,3}

{1,2}

{1,3}
{1}

{3}

V

{1,2,3}
G

{1,2,3}

{1,2,3}

{1,2,3}

V

V2

3 3

V

Fig. 13.7 On the left, the graph G subdivided into three node subsets according to a 3-coloring and
the three possible kinds of edges. On the right are the modifications obtained for each kind of edge
belonging to G and the interfaces associated with the related nodes

As illustrated in Figure 13.7, with each node v ∈V , three interfaces, namely 1, 2,
and 3 are associated. Moreover, to each v ∈ V there are two new nodes connected.
Those new nodes have only one interface: 2 and 3 (1 and 3 or 1 and 2 respectively)
if v ∈ V1 (v ∈ V2 or v ∈ V3). For each edge of G a further node is added. With such
a node there are associated two interfaces. If the considered edge connects V1 and
V2 (V1 and V3 or V2 and V3) then interfaces 1 and 2 (1 and 3 or 2 and 3 respectively)
are associated with the added node. Considering for instance an edge e = {x,y} ∈ E
such that x ∈ V1 and y ∈ V2, in order to solve k-CMI on the new graph of maximum
degree 5 built from G, a solution necessarily has to activate interfaces 2 and 3 in

1 Graphs with maximum degree bounded by 3.
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x, and 1 and 3 in y. In order for both x and y to be able to communicate with the
new intermediate node, either such a node must activate both its interfaces, or one
among x and y has to activate its third available interface. Both the solutions are
locally equivalent. On the other hand, activating the third interface for either x or y
may lead to a decrease in the number of activated interfaces in the global solution.
This is implied by the fact that the neighborhood of the added intermediate node
between x and y is constituted by only x and y, while both x and y may have many
other connections. This implies that one can look for solutions where for each edge
of the original graph at least one endpoint has all its three interfaces activated. Note
that this reflects exactly the requirement of VERTEX COVER.

k-CMI can be approximated within a factor of k−1. A greedy algorithm activates
interfaces among the nodes. It starts from the cheapest interface 1, and it activates it
in each node that has a neighbor holding that interface. Let V1 ⊆V be the set of nodes
in which the algorithm activated interface 1 and let E(V1) be the corresponding set
of covered edges. Note that the optimal solution restricted to E(V1) (i.e., the set of
activated interfaces of an optimal solution at the endpoints of the edges belonging to
E(V1)) clearly costs at least as much as the cost of the algorithm. In the second step,
the same is done for the next cheapest interface 2 among the remaining connections
E \E(V1). Again, the cost of the optimal solution restricted to E(V2) is at least the
price paid by the algorithm. This is implied by the fact that any connection belonging
to E(V2) cannot be covered by interface 1; otherwise, the algorithm would have
covered it in the previous step. This process is continued for all the interfaces in a
non-decreasing cost order, but for the last two interfaces. Referring to Table 13.2,
when k = 2, k-CMI is polynomially solvable. Hence, when the two most expensive
interfaces remain, the optimal algorithm for k = 2 can be applied. Since each step
costs at most as much as the optimal solution, the (k − 1)-approximation holds by
observing that the whole process requires k−1 steps.

Concerning the uniform cost case, an easy approximation algorithm for solving
k-CMI leads to a factor of 2m

n . The algorithm simply chooses one interface for each
edge of the input graph in order to satisfy the required connection. This means that
for each edge at most one interface in each endpoint is activated. It follows that for
m edges it activates at most 2m interfaces for n nodes. The � k+1

2 �-approximation
mentioned in Table 13.2 is instead obtained by suitably applying a hitting set algo-
rithm.

13.3.3 Results for CMI

Table 13.3 summarizes results obtained for CMI [34]. When k depends on the in-
stance, i.e., it is not set a priori, the problem becomes harder even for complete
graphs and trees. In general, CMI is hard to approximate within a factor of O(logk),
even when restricted to the unit cost interface case. The proof proceeds by reduction
to the MINIMUM HITTING SET problem. We recall that for a collection of non-
empty subsets C1,C2, . . . ,Cl ⊆ {1,2, . . . ,k}, set S ⊆ {1,2, . . . ,k} is called a hitting
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set if for all i ∈ [1, . . . , �], Ci ∩ S �= /0. The problem of minimizing the cardinality
of the hitting set is as hard as the MINIMUM SET COVER problem [3], and conse-
quently, hard to approximate within a factor of O(logk) [40].

Concerning the
√

n(1 + lnn)-approximation factor, this is obtained by means
of a polynomial transformation of the problem to the well-known WEIGHTED

MINIMUM SET COVER problem. This leads to the claim that the existence of
any a-approximation algorithm for WEIGHTED MINIMUM SET COVER leads to
an (a

√
n)-approximation algorithm for CMI. Since WEIGHTED MINIMUM SET

COVER admits a (1+ lnn)-approximation [17],
√

n(1+ lnn) is obtained.

Table 13.3 Hardness and approximability of the CMI problem. Entries marked by (*) follow from
k-CMI results
Graph class Complexity of CMI

non-uniform costs uniform costs
General graphs (k−1)-approx (*)

(
√

n(1+ lnn))-approx
not approx within O(logk)

� k+1
2 �-approx (*)

2m
n -approx (*)

not approx within O(logk)
Graphs of bounded
degree Δ

Δ -approx (*)
APX-hard for Δ ≥ 5, k ≥ 3 (*)

Δ+1
2 -approx (*)

APX-hard for Δ ≥ 5, k ≥ 3 (*)
Planar graphs 6-approx

APX-hard
6-approx
APX-hard

Trees 2-approx
APX-hard

2-approx
APX-hard

Complete graphs not approx within O(logk) not approx within O(logk)

13.4 Conclusion and Future Work

The chapter surveys recent results obtained for two interesting problems arising in
the field of wireless ad hoc networks. Both the problems deal with the minimization
of the overall energy needed to perform desired communication protocols. In par-
ticular, the Minimum Energy Broadcast Routing problem expresses the necessity to
perform the basic broadcast pattern of communication from a given source, and the
network is composed of homogeneous nodes equipped with omnidirectional radio
antennas. The Cost Minimization in Multi-interface Networks expresses the need
of establishing connections among heterogeneous nodes equipped with different
subsets of interfaces, each associated with some activation cost. Many interesting
directions for future work arise from both problems. These include the extensions
of the studies to different communication protocols, to different objective functions,
and to distributed environments.
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23. Faragó, A., Basagni, S.: The Effect of Multi-Radio Nodes on Network Connectivity—A Graph
Theoretic Analysis. In: Proceedings of the 19th International IEEE Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), 2008

24. Flammini, M., Klasing, R., Navarra, A., Perennes, S.: Improved approximation results for
the Minimum Energy Broadcasting Problem. In: Proceedings of ACM Joint Workshop on
Foundations of Mobile Computing (DIALM-POMC), pp. 85–91, 2004

25. Flammini, M., Klasing, R., Navarra, A., Perennes, S.: Tightening the upper bound for the
Minimum Energy Broadcasting. Wireless Networks, Vol. 14(5), pp. 959-669, 2008

26. Flammini, M., Navarra, A., Perennes, S.: The “real” approximation factor of the MST heuristic
for the minimum energy broadcasting. ACM Journal of Experimental Algorithmics, 11,
2006. Preliminary version in: Proceedings of the 4th International Workshop on Efficient and
Experimental Algorithms (WEA), LNCS 3503, Springer, pp. 22–31, 2005

27. Frieze, A. M., McDiarmid, C. J. H.: On Random Minimum Length Spanning Trees. Combi-
natorica, 9:363–374, 1989

28. Guha, S., Khuller, S.: Improved Methods for Approximating Node Weighted Steiner Trees
and Connected Dominating Sets. Information and Computation, 150(1), pp. 57–74, 1999

29. Hac, A.: Wireless sensor network designs. John Wiley & Sons, Ltd, 2003
30. Kang, I., Poovendran, R.: Iterated local optimization for minimum energy broadcast. In:

Proceedings of the 3rd International Symposium on Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks (WiOpt), pp. 332–341, 2005

31. Klasing, R., Flammini, M., Navarra, A., Perennes, S.: Improved approximation results for the
Minimum Energy Broadcasting Problem. Algorithmica, 49(4):318–336, 2007

32. Klasing, R., Kosowski, A., Navarra, A.: Cost minimisation in multi-interface networks. In:
Proceedings of the 1st EuroFGI International Conference on Network Control and Optimiza-
tion (NET-COOP), LNCS 4465, Springer, pp. 276–285, 2007

33. Klasing, R., Navarra, A., Papadopoulos, A., Perennes, S.: Adaptive Broadcast Consumption
(ABC), a new heuristic and new bounds for the minimum energy broadcast routing prob-
lem. In: Proceedings of the 3rd IFIP-TC6 International Networking Conference, LNCS 3042,
Springer, pp. 866–877, 2004

34. Kosowski, A., Navarra, A.: Cost minimisation in unbounded multi-interface networks. In:
Proceedings of the 2nd PPAM Workshop on Scheduling for Parallel Computing (SPC), Lec-
ture Notes in Computer Science 4967, Springer-Verlag, pp. 1039-1047, 2007



13 Minimization of Energy Consumption 355

35. Kosowski, A., Navarra, A., Pinotti, M. C.: Connectivity in Multi-Interface Networks. In:
Proceedings of the 4th International Symposium on Trustworthy Global Computing (TGC),
LNCS, Springer, 2008

36. Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc networks. In:
Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), ACM Press, pp. 112–122, 2002

37. Li, F., Nikolaidis, I.: On minimum-energy broadcasting in all-wireless networks. In: Pro-
ceedings of the 26th Annual IEEE Conference on Local Computer Networks (LCN), IEEE
Computer Society, p. 193, 2001

38. Navarra, A.: 3-D Minimum Energy Broadcasting problem. Ad Hoc Networks, Vol. 6(5), pp.
734-743, 2008

39. Papadimitriou, C. H., Yannakakis, M.: Optimization, approximation, and complexity classes.
Journal of Computer and System Sciences, 43:425–440, 1991

40. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-
probability PCP characterization of NP. In: Proceedings of the 29th Anuual ACM Symposium
on Theory of Computing (STOC), pp. 475–484, 1997

41. Wan, P. J., Calinescu, G., Li, X., Frieder, O.: Minimum energy broadcasting in static ad hoc
wireless networks. Wireless Networks, 8(6):607–617, 2002

42. Wieselthier, J. E., Nguyen, G. D., Ephremides, A.: On the construction of energy-efficient
broadcast and multicast trees in wireless networks. In: Proceedings of the 19th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM), IEEE Com-
puter Society, pp. 585–594, 2000

43. Yuan, D.: Computing Optimal or Near-Optimal Trees for Minimum-Energy Broadcasting in
Wireless Networks. In: Proceedings of the 3rd International Symposium on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 323–331, 2005

44. Zhao, F., Guibas, L.: Wireless sensor networks: an information processing approach. Morgan
Kaufmann, 2004

45. Zosin, L., Khuller, S.: On Directed Steiner Trees. In: Proceedings of the 13th Annual
ACM/SIAM Symposium on Discrete Algorithms (SODA), pp. 59-63, 2002



Chapter 14
Data Gathering in Wireless Networks

Vincenzo Bonifaci, Ralf Klasing, Peter Korteweg, Leen Stougie, and Alberto
Marchetti-Spaccamela

Abstract In this chapter, we address the problem of gathering information in a
specific node of a radio network when interference constraints are present. Nodes
can communicate data using a radio device; we consider a synchronous time model,
where time is divided into rounds. The interference constraints limit the possibility
of simultaneous data communication of nodes to the same region of the network.
The survey focuses on two interference models, the general interference model and
the distance-2 interference model. We survey recent complexity results and approx-
imation algorithms for several variants of the problem. We consider several inter-
ference scenarios, the uniform and non-uniform data models, different optimization
parameters, and the off-line and online settings of the problem. The objective func-
tions we consider are the minimization of maximum completion time, maximum
flow time, and average flow time.
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CNRS - LaBRI - Université Bordeaux 1, France, e-mail: klasing@labri.fr

Peter Korteweg
Department of Mathematics and Computer Science, Eindhoven University of Technology, The
Netherlands, e-mail: peterkorteweg@hotmail.com

Leen Stougie
Department of Economics and Business Administration, Free University, De Boelelaan 1105, 1081
HV Amsterdam, The Netherlands, and
CWI, Amsterdam, The Netherlands, e-mail: lstougie@feweb.vu.nl

Alberto Marchetti-Spaccamela
Dipartimento di Informatica e Sistemistica, Sapienza Università di Roma, Italy, e-mail:
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14.1 Introduction

The wireless gathering problem was proposed by FRANCE TELECOM in the con-
text of providing wireless Internet access to villages [12]. The houses of a village are
equipped with a computer, and the computers are interconnected through a wireless
local network. To provide Internet access to each of the houses, the computers have
to send (and receive) information to a gateway, or sink node, which connects the vil-
lage with the Internet. This creates a special many-to-one information flow demand
in which access to the gateway must be provided through multi-hop communication.
The radio transmissions which are necessary for data communication are subject to
different interference constraints. We are interested in providing interference-free
data gathering, minimizing a function of the time required to do so. The underlying
problem of gathering data under interference constraints is a fundamental problem
in wireless communication, and is also an important building block in more complex
communication problems [1, 4]. We call this class of problems wireless gathering
problems (WGPS). In this chapter we present an overview of recent models and
results that are related to WGP.

First, we briefly describe several important features which influence models for
wireless gathering in radio networks. These features are all related to the use of radio
signals to communicate data, which distinguishes WGP from gathering problems in
wired networks.

In radio networks nodes communicate with each other using a radio transmitter.
A node broadcasts data to a region surrounding its radio transmitter; the radio signals
are transmitted at a certain frequency or within a certain range of frequencies, called
the broadcast channel. We restrict our discussion to WGP models with a single
broadcast channel.

There are two types of transmitters, based on the antennas being either unidi-
rectional or omnidirectional. In the omnidirectional case the signal is broadcast in
every direction. In this case, under ideal circumstances, the broadcast region can be
described as a ball centered at the sender node. In the unidirectional case, the an-
tenna is pointed in a specific direction; hence, the broadcast region can be described
as a narrow cone centered at the sender node.

There are two models for radio communication. There is thehalf-duplex model,
in which at any instant a node can either send or receive data, and there is the full-
duplex model, in which a node can both send and receive data simultaneously. We
only consider WGP in the half-duplex model. When two nodes communicate, we
assume that there is a sender node, which has data to send, and a receiver node
which wishes to receive the data. Data is communicated from the sender node to the
receiver node, but the receiver node may use acknowledgement packets (ACKs) to
confirm the data reception.
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Radio signals have two important properties: fading and interference. Fading is
the effect of radio signal loss due to physical circumstances. These circumstances
are the composition of the space between the sender and receiver nodes, e.g., free
space or obstacles, and the distance between the sender and receiver nodes. The
strength of a radio signal is a decreasing function of the distance d between the
sender node and the receiver node, and the function is in the order of d−2 to
d−6 [1, 18, 37]. For a transmitter to receive data, the radio signal should be of a
certain strength. As a consequence of this minimum signal strength and fading, the
reachable broadcast region can be described as a closed ball centered at the sender
node, where the radius of the ball is called the communication radius.

Interference, also called collision, is the effect of radio signal loss due to the fact
that multiple nodes communicate simultaneously on the same broadcast channel,
within the same geographical region. As with data communication, interference oc-
curs if the radio signal is strong enough. When a node broadcasts data, its radio
signal is propagated to a region surrounding this node. This interference region is
a closed ball centered at the sender node, similarly to the transmission region. We
call the radius of this ball the interference radius. Note that if a node sends data
at a certain power, the interference radius is at least as large as the communication
radius, but may be larger, with typical factors between 2 and 3 [22, 37]. A typical
assumption is that if a node receives signals from multiple nodes, all data is lost. In
some scenarios it could be possible to detect that a collision has occurred, but in this
chapter we will assume that no such a collision detection mechanism is available.

The properties of fading and interference highly influence the design of wireless
networks and communication algorithms. On the one hand, fading makes communi-
cation over long distances costly, and interference limits the data throughput of the
network. On the other hand, fading allows multiple nodes to use the same broadcast
channel simultaneously, as long as the receiver nodes are sufficiently far apart. This
is known as spatial frequency reuse [33, 34].

We assume that not all nodes can communicate directly with the sink, either
due to physical constraints or because such communication is too costly in terms
of energy usage. We assume nodes use multi-hop communication to communicate
data to the sink node. We also assume that the routing network is given. Typically,
this routing network is set up via some distributed algorithm [32].

Another feature of many problems is the distinction between a uniform and a
non-uniform data model [7, 13, 22, 25]. In a uniform data model one assumes that
each node has the same demand for data communication, and offers the same supply
of data communication. In the case of gathering problems this translates into the
assumption that each node, except the sink, has an equal number of packets to send;
we focus on the case where each node has exactly one packet to communicate to the
sink. A non-uniform data model does not impose any restrictions on data demand.
Also, most of the models studied in the literature allow the buffering of packets
at each node of the network. For a study of gathering protocols in a model where
buffering is not allowed see [9].

We present an overview of recent advances in wireless gathering problems. As
even recent literature on wireless networks is vast, we have to limit the scope of
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the models that we consider. In particular, we will mostly consider the case of om-
nidirectional antennas, which is where the interference constraints play a key role.
When we consider unidirectional antennas we will explicitly say so.

WGP consists of finding an interference-free schedule, in which packets are sent
to the sink as fast as possible. We use completion times and flow times as per-
formance measures for the schedule. A completion time model is appropriate for
wireless networks which partition data reception and data communication into two
phases [22, 25], while a flow time model is appropriate for wireless networks where
data reception and communication occur simultaneously.

We focus on theoretical results, which consist of complexity results and worst-
case analyses of algorithms using approximation theory and competitive analysis.
For complexity theory we refer to Garey and Johnson [23] and Papadimitriou [31].
For a background on approximation theory see the books of Ausiello et al. [2],
Hromkovič [26], and Vazirani [39]. For a background on online algorithms and
competitive analysis see Borodin and El-Yaniv [17]. We do not consider any empir-
ical studies.

The outline of this chapter is the following. In Section 14.2 we formulate the
basic wireless gathering problem mathematically. In Section 14.3 we analyze the
complexity of several variants of the problem. In Section 14.4 we present online
algorithms for several variants and we analyze their performance using approxima-
tion theory and competitive analysis. In Section 14.5 we summarize the models and
results presented in this chapter, and outline some interesting open problems.

14.2 The Mathematical Model

The communication model for the wireless gathering problem is a generalization of
the classic packet radio network model [3, 4, 7, 8]. Given are a graph G = (V,E)
with |V | = n, a sink s ∈ V , and a set of packets J = {1,2, . . . ,m}. We assume that
each edge has unit length. For each pair of nodes u,v ∈ V we define the distance
between u and v, denoted by d(u,v), as the length of a shortest path from u to v in
G. We have integers dT and dI , for the communication radius and interference radius
respectively, where naturally we have dI ≥ dT . Each packet j ∈ J has a release node
v j ∈ V and a release date r j ∈ Z+ at which it enters the network. We consider the
case where r j = 0 for all j as a special case, which we refer to as WGP without
release dates. If there is a single packet j released at each node v ∈ V \{s}, the data
is said to be uniform; otherwise, it is said to be non-uniform.

We assume that time is discrete; we call a time unit a round. The rounds are
numbered 0,1, . . .. During each round a node may be sending a packet, be receiving
a packet, or be inactive. If d(u,v) ≤ dT then u can send some packet j to v during a
round. If node u sends a packet j to v in some round, then the pair (u,v) is called a
call of packet j during that round.

We consider two interference models: the general interference model and the
distance-2 interference model. In the general interference model two calls (u,v) and
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(u′,v′) interfere if d(u′,v) ≤ dI or d(u,v′) ≤ dI ; otherwise, the calls are compati-
ble [7, 8, 13]. The case dT = dI = 1 is a special case [3, 4]. In the distance-2 inter-
ference model [29] one assumes unit communication radius, and two calls (u,v) and
(u′,v′) are compatible only if minx∈{u,v},y∈{u′,v′} d(x,y) ≥ 2; that is, nodes involved
in different calls should be apart at distance at least 2, so at any given round the set
of calls forms a matching in the underlying graph. We observe the following relation
between the distance-2 interference model and the general interference model: each
feasible distance-2 interference schedule is a feasible general interference schedule
for dT = 1 and dI = 1, and each feasible general interference schedule for dT = 1
and dI = 2 is a feasible distance-2 interference schedule.

A solution to WGP is a schedule of compatible calls such that all packets are sent
to the sink. In principle, each radio transmission could broadcast the same packet
to multiple nodes, but in the gathering problem, having more than one copy of each
packet does not help – it suffices to keep the one that will arrive first at the sink.
Thus, we assume that at any time there is a unique copy of each packet. Also, we
assume that packets cannot be aggregated at nodes.

Given a schedule, let vt
j be the unique node holding packet j at the beginning of

round t. The completion time of a packet j is Cj = min{t : vt
j = s}. A packet j can

be sent for the first time in round r j. The flow time of a packet j is Fj = Cj − r j.
We consider the minimization of max j Cj, called the makespan, the minimization of
max j Fj, and the minimization of∑ j Fj. We refer to WGP minimizing the maximum
completion time as CMAX-WGP, to WGP minimizing the maximum flow time as
FMAX-WGP, and to WGP minimizing the total or average flow time as FSUM-
WGP.

14.3 Complexity and Lower Bounds

We give an overview of complexity results and lower bounds on the competitive
ratio for WGP.

14.3.1 Minimizing Makespan

The first NP-hardness proof for CMAX-WGP has been given by Bermond et al.
[7, 8] by means of a reduction from a satisfiability problem. Here we give a proof
that gives more insight into the graph-theoretical nature of the gathering problem.
It is based on a reduction from the well-known NP-hard problem of determining
the chromatic number of a graph [23] (a similar proof, but within a more general
interference model, has been given by Coleri [20]). The chromatic number of a
graph is the minimum number of colors needed to color all vertices of the graph so
that no two adjacent vertices have the same color.
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CHROMATIC NUMBER

Instance: a graph G and an integer k.
Question: does G have chromatic number at most k?

Theorem 14.1. CMAX-WGP is NP-hard in the general interference model.

Proof. Consider an instance of CHROMATIC NUMBER, that is, an integer k and
a graph G, with vertex set V (G) = {v1, . . . ,vn}. Let H be the graph consisting of
n isolated vertices {u1, . . . ,un}. We construct a graph G′ with vertex set V (G′) =
V (H)∪V (G)∪{s} and edge set E(G′) = E(G)∪{[ui,vi] : i = 1, . . . ,n}∪ {[vi,s] :
i = 1, . . . ,n} (see Figure 14.1). There is one packet in each vertex of H, the sink is
the vertex s, dT = 1, and dI = 2.

We prove the theorem by showing that if G has chromatic number at most k, then
there is a schedule for the CMAX-WGP instance on G′ with makespan at most k+n,
while if G has chromatic number at least k +1, then every schedule for the CMAX-
WGP instance on G′ has makespan at least k + n + 1. The theorem then follows
since CHROMATIC NUMBER is NP-hard.

Suppose G has chromatic number at least k+1. We claim that at any round, in any
schedule, the vertices in V (G) that are acting as receivers must form an independent
set in G. To see this, notice that any useful transmission to vertex vi must come from
vertex ui. But then, if (ui,vi) and (u j,v j) are compatible calls, it must be the case
that [vi,v j] is not an edge of G; otherwise, interference would occur. Thus, at least
k+1 rounds are needed to transmit all the packets to vertices in V (G). Additionally,
when a vertex vi transmits to s, no other vertex v j can receive a packet, because v j

is at distance 2 from vi. So, calls of the type (vi,s) are not compatible with calls of
the type (u j,v j), and a total of k +1+n rounds is needed to gather all packets.

Assume now that G has chromatic number at most k. In a single round, we can
forward from V (H) to V (G) any set of packets that corresponds to an independent
set of G. Thus, in k rounds we can forward each packet to a vertex of V (G). The
remaining n rounds can be used to collect all packets at the sink, one by one. #$

s

H

G

Fig. 14.1 The construction in the proof of Theorem 14.1

The complexity of uniform CMAX-WGP has been analyzed by Korteweg [28].
Kumar et al. [29] presented an inapproximability proof for packet routing in the
distance-2 interference model; packet routing is a generalization of WGP in which
each packet has to be sent from an arbitrary origin to an arbitrary destination. For
both interference models, the NP-hardness of CMAX-WGP can be established by
a reduction from the well-known problem of determining the chromatic number of
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a graph [23]. The following theorems can be shown to hold using proof ideas and
techniques from Korteweg [28] and Kumar et al. [29].

Theorem 14.2. Uniform CMAX-WGP is NP-hard.

Theorem 14.3. CMAX-WGP is NP-hard in the distance-2 interference model.

We now discuss lower bounds on the approximability and competitive ratio of
CMAX-WGP. The following proposition, proved by Korteweg [28], provides a
lower bound on the competitive ratio of any online algorithm for CMAX-WGP. No-
tice that, as is usual in lower bounds for online algorithms, the bound is independent
of any hardness assumption.

Proposition 14.1. No online algorithm for CMAX-WGP is better than 7/6-compe-
titive, even if dI = dT .

Proof. We give the proof for dI = dT = 1, the generalization to larger values being
straightforward. Consider the graph depicted in Figure 14.2. The adversary releases
packet 1 at u at time 0. Observe that for any algorithm that does not send packet
1 in the first round the lemma trivially holds. We assess both deterministic and
randomized algorithms by applying Yao’s minimax principle [40]. The adversary
releases a second packet in round 1 either at u3 or u4, each with probability 1/2.
Now, the expected number of rounds for any algorithm that sends a packet in the
first round is 1/2 ·4 + 1/2 ·3. In the optimal schedule packet 1 is sent to u2 (u1) in
the first round if the adversary releases a packet at u3 (u4), which yields a makespan
of 3. #$

u s

u1

u2

u3

u4

Fig. 14.2 No online algorithm for CMAX-WGP is better than 7/6-competitive (dT = dI = 1)

It is interesting to note that the example of Proposition 14.1 contains three pack-
ets, and there are no known constant lower bound results which hold for instances
with an arbitrary number of packets.

Bonifaci et al. provided lower bounds on the approximability of shortest paths
following algorithms [13]. A shortest paths following algorithm is an algorithm
where each packet is sent over some shortest path towards the sink. This is a natu-
ral class of algorithms for routing problems, and in case of packet routing without
interference it has been demonstrated that for some well-known greedy algorithms
there is a gap between the completion times of routing over arbitrary paths and over
shortest paths, in favor of routing over shortest paths [19]. The algorithms for WGP
that we describe in the next section are shortest paths following. Following [13], for
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such algorithms we present a lower bound of 4 − 16/(m + 4) on their approxima-
tion ratio for solving CMAX-WGP on m packets using a shortest paths following
algorithm, in the case where dT = 1 and dI = 2.

Consider Figure 14.3. The nodes u1, . . ., um have one packet each. Any shortest
paths following algorithm sends all packets via u, yielding max j Cj = 4m. There is
a solution with no packet passing u that implies max j C∗

j ≤ 4+m. The example can
easily be extended for arbitrary dT ,dI = 2dT , such that no shortest path following
algorithm is better than 4-approximate. In Section 14.4 we discuss a matching upper
bound.

u s
u1

. . .

um

Fig. 14.3 No shortest paths following algorithm is better than 4-approximate for CMAX-WGP
(dT = 1,dI = 2)

14.3.2 Minimizing Flow Times

Bonifaci et al. [15, 16] considered the problems FMAX-WGP and FSUM-WGP. For
these versions even stronger results are possible than the one of Theorem 14.1. We
present the result for FMAX-WGP.

The lower bound is based on the induced matching problem. A matching M in a
graph G is an induced matching if no two edges in M are joined by an edge of G.
The following rather straightforward relation between compatible calls in a bipartite
graph and induced matchings will be crucial in the proof.

Proposition 14.2. Let G = (U,V,E) be a bipartite graph with node sets (U,V ) and
edge set E. Then, a set M ⊆ E is an induced matching if and only if the calls corre-
sponding to edges of M, directed from U to V , are all pairwise compatible, assuming
dT = dI = 1.

INDUCED BIPARTITE MATCHING (IBM)
Instance: a bipartite graph G and an integer k.
Question: does G have an induced matching of size at least k?

The proof by Bonifaci et al. uses the fact that the optimization version of IBM
is hard to approximate: there exists an α > 1 such that it is NP-hard to distinguish
between graphs with induced matchings of size k and graphs in which all induced
matchings are of size at most k/α . The current best bound for α is 6600/6599 [21].
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Theorem 14.4. Unless P = NP, no polynomial-time algorithm can have approxima-
tion ratio better than Ω(m1/3) for FMAX-WGP in the general interference model,
even when dT = dI = 1.

Proof. Let (G,k) be an instance of IBM, G = (U,V,E). We construct a four-layer
network with a unique source o (first layer), a clique on U and a clique on V (middle
layers), and a sink s (last layer). Source o is adjacent to each node in U , and s to
each node in V . The edges between U and V are the same as in G (see Figure 14.4).
We set dT = dI = 1.

o

s

G

U

V

Fig. 14.4 The construction in the proof of Theorem 14.4

The FMAX-WGP instance consists of m = (1 − 1/α)−1(1 + k/α)(2k + 1)k =
Θ(k3) packets with origin o. They are divided into m/k groups of size k. Each packet
in the hth group has release date (k + 1)h, h = 0, . . ., m/k − 1. Rounds (k + 1)h to
(k +1)(h+1)−1 together are a phase.

We prove that if G has an induced matching of size k, there is a gathering schedule
of cost 2k + 1, while if G has no induced matching of size more than k/α , every
schedule has cost at least (2k + 1)k = (2k + 1)Θ(m1/3). The theorem then follows
directly.

Assume G has an induced matching M of size k, say (ui,vi), i = 0 . . .k−1. Then
consider the following gathering schedule. In each phase, the k new packets at o are
transmitted, necessarily one by one, to layer U while old packets at layer V (if any)
are absorbed at the sink; then, in a single round, the k new packets move from U
to V via the matching edges. More precisely, each phase can be scheduled in k + 1
rounds as follows:

1. for i = 0, . . ., k−1 execute in round i the two calls (o,ui) and (vi+1 mod k,s);
2. in round k, execute simultaneously all the calls (ui,vi), i = 0, . . ., k−1.

The maximum flow time of the schedule is 2k + 1, as a packet released in phase h
reaches the sink before the end of phase h+1.

In the other direction, assume that each induced matching of G is of size at most
k/α . By Proposition 14.2, at most k/α calls can be scheduled in any round from
layer U to layer V . We ignore potential interference between calls from o to U and
calls from V to s; doing so may decrease the cost of a schedule. As a consequence,
we can assume that each packet follows a shortest path from o to s. Notice however
that, due to the cliques on the layers U and V , no call from U to V is compatible
with a call from o to U , or with a call from V to s.
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Let mo and mU be the number of packets at o and U , respectively, at the beginning
of a given phase. Also, let β = 1 + k/α . We associate with the phase a potential
value ψ = βmo + mU , and we show that at the end of the phase the potential will
have increased proportionally to k. Let co and cU denote the number of calls from o
to U and from U to V , respectively, during the phase. Since a phase consists of k+1
rounds, and in each round at most k/α calls are scheduled from U to V , we have
co + cU/(k/α) ≤ k +1, or, equivalently since k/α = β −1,

(β −1)co + cU ≤ (β −1)(k +1). (14.1)

If m′
o, m′

U are the number of packets at o and U at the beginning of the next phase,
and ψ ′ = βm′

o +m′
U is the new potential, we have

m′
o = mo + k− co

m′
U = mU + co − cU

ψ ′ −ψ = β (m′
o −mo)+m′

U −mU

= β (k− co)+ co − cU

= βk− (β −1)co − cU

≥ βk− (β −1)(k +1)
= k− (β −1)
= (1−1/α)k

where the inequality uses (14.1).
Thus, consider the situation after m/k phases. The potential has become at least

Ψ = (1 − 1/α)m. By definition of the potential, this implies that at least Ψ/β =
(1 − 1/α)(1 + k/α)−1m = (2k + 1)k packets reside at either o or U ; in particular,
they have been released but not yet absorbed at the sink. Since the sink cannot
receive more than one packet per round, this clearly implies a maximum flow time
of (2k +1)k = (2k +1)Θ(m1/3) for one of these packets. #$

A similar construction shows that the same problem with minimization of total
flow time FSUM-WGP cannot be approximated within a ratio better than Ω(m1−ε)
for any 0 < ε < 1 [15]. We also notice that a similar instance as that used in Sec-
tion 14.3.1 constructed for proving inapproximability of shortest paths following
algorithms for CMAX-WGP can be constructed here to prove that shortest paths
following algorithms cannot approximate optimal solutions of FMAX-WGP and
FSUM-WGP within a ratio better than Ω(m).

For the distributed model, Bonifaci et al. [14] provided lower bounds for FMAX-
WGP which do not depend on the assumption P �= NP. They consider a scenario in
which the network is partitioned into layers based on distance to the sink. They as-
sume that interference conflicts between transmissions from one layer of the tree to
the next are resolved randomly: whenever several transmissions from a layer occur
in the same round, only a uniformly chosen one succeeds; this is called the random
selection model. This assumption seems natural for distributed algorithms, as they
have no simple means of coordinating the transmitting nodes (or more precisely,
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coordinating the transmitting nodes is as hard as the original communication task).
For distributed algorithms following a random selection model they present the fol-
lowing lower bound.

Theorem 14.5. In the random selection model the approximation ratio of any algo-
rithm for FMAX-WGP is at least Ω(logm).

In fact, Bonifaci et al. [14] argue that even resource augmentation using speed as a
resource is not likely to improve this lower bound. The reason is that the lower bound
is due to an adversarial selection of which packet to advance; and the probability of
obtaining such a selection depends on the number of packets, and not on the speed
of the algorithm.

14.4 Online Algorithms

14.4.1 Minimizing Makespan

14.4.1.1 Omnidirectional Antennas

Several authors have presented centralized online algorithms for omnidirectional
WGP. The first algorithm, PIPELINE, was presented by Bermond et al. [7, 8]. The
algorithm was analyzed in an off-line context, but can be implemented in an online
setting. The idea of the algorithm is to pipeline packets towards the sink by parti-
tioning the graph into intervals. The lengths of the intervals are chosen such that
packets can advance in parallel without interfering with each other.

First, we introduce some notation to facilitate the exposition of the algorithm.
An important concept used in this and other algorithms is that of critical radius.
The critical radius R∗ is the greatest integer R such that no two nodes at distance
at most R from s can receive a packet in the same round. It is not hard to show
that R∗ ≥

⌊ dI−dT
2

⌋
(see, for example, [7, 8]). The critical region is the ball centered

at s of radius R∗. Thus, at any round at most one node in the critical region can
receive a packet. We define K∗ =

⌈
R∗+1

dT

⌉
≥ 1 and K = 1+

⌈ dI+1
dT

⌉
. Roughly stated,

K gives an upper bound on the number of rounds during which a packet needs to be
forwarded before a new packet can be safely forwarded from the same origin over
the same path, while K∗ gives a lower bound on the number of rounds during which
a packet has to move inside the critical region, assuming it starts outside. We also
let K0 = 1+

⌈
R∗
dT

⌉
, Rad = maxu∈V d(u,s), and L = 1+

⌈Rad−K0dT
KdT

⌉
.

The algorithm partitions the set of distances to the sink [1,Rad] into L intervals
I0, . . ., IL−1. These are defined by I0 = [1,K0dT ] and, for i = 1, . . ., L − 1, Ii =
[K0dT +1+(i−1)KdT ,K0dT + iKdT ].

Additionally, each Ii is split into areas of length dT , so I0 is split into K0 areas
I j
0 = [K0dT + 1 − jdT ,K0dT − ( j − 1)dT ], j = 1, . . ., K0; and Ii, i = 1, . . ., L − 1 is

split into K areas I j
i = [K0dT + 1 + iKdT − jdT ,K0dT + iKdT − ( j − 1)dT ], j = 1,
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. . ., K. We denote the set of vertices whose distance is in Ii (respectively I j
i ) by Vi

(respectively V j
i ). Figure 14.5 shows a partition with K = 4,K0 = 3,dT = 2.

$I_2$

1 2 3 4 6 7 9 11 12 13 14 15 16 1785 1810

$I_0^3$ $I_0^2$ $I_0^1$ $I_1^4$ $I_1^3$ $I_1^2$ $I_1^1$ $I_2^4$ $I_2^3$

$I_0$ $I_1$

Fig. 14.5 Partitioning of distance intervals for K = 4,K0 = 3,dT = 2

We are now in position to describe the algorithm (Algorithm 14.1).

Algorithm 14.1 PIPELINE

The algorithm works in phases. Each phase, except possibly the last, consists of K rounds t j ,
j = 1, . . . ,K. The algorithm uses the concepts of intervals and areas to construct a set of feasible
calls in each round.

for each phase do
for each round t j , j = 1,2, . . . ,K do

Select in each interval Ii a vertex u j
i in V j

i with an available packet to transmit (if such

a vertex exists). Vertex u j
i calls the closest vertex in the preceding area, i.e., if d(u j

i ,s) =
K0dT +1+ iKdT − jdT +α for some 0 ≤α < dT , then u j

i calls a vertex v such that d(v,s) =
K0dT + iKdT − jdT . This means that if i = 0 and j < K0 (or i > 0 and j < K) then v ∈V j+1

i ,
if i > 0 and j = K then v ∈ V 1

i−1, and if i = 0 and j = K0 then v = s.

We claim that PIPELINE creates a feasible schedule for WGP. First, let us show
that for any round the calls scheduled by PIPELINE are all pairwise compatible. In-
deed, consider two calls (u,v) �= (u′,v′) of the same round t j. Then d(u,s) = K0dT +
1+ iKdT − jdT +α , for some i ≥ 0,0 ≤ α < dT , and d(v′,s) = K0dT + i′KdT − jdT

for some i′ �= i (as v �= v′). Therefore, d(u,v′)≥ |(i′− i)KdT −1−α| ≥ dI +dT −α ≥
dI +1. Similarly one can show d(u′,v) ≥ dI +1, and the calls are compatible. To see
why the algorithm delivers all the packets, observe that after a phase of K rounds,
the protocol ensures that if a vertex of Vi contains a packet, then the last vertex of
Vi−1 has received a new packet.

To illustrate PIPELINE we show one phase of the algorithm in Figure 14.6.
Bonifaci et al. [13] presented a class of online centralized algorithms for CMAX-

WGP, called PRIORITY GREEDY. In a PRIORITY GREEDY algorithm each packet
is assigned a unique priority based on some algorithm-specific rules, and the priority
ordering does not change over time. Then, in each round, packets are considered in
order of decreasing priority and are sent towards the sink as far as possible while
avoiding interference with higher priority packets. Thus, the schedule output by the
algorithm is feasible by construction.
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15 16 1785 1810

I3
0 I2

0 I1
0 I4

1 I3
1 I2

1 I1
1 I4

2 I3
2

I0 I1
I2

1s 2 3 4 6 7 9 11 12 13 14

Fig. 14.6 A phase of PIPELINE, consisting of K = 4 rounds. Here, packets are represented as small
balls. Notice that packets in the same cell are at the same distance from the sink, but they can be in
different vertices

Algorithm 14.2 PRIORITY GREEDY

for each round t = 0,1,2, . . . do
Consider the available packets in order of decreasing priority, and send each packet as far as
possible along a shortest path from its current node to the sink, without causing interference
with any higher-priority packet.

Both Bermond et al. and Bonifaci et al. use similar concepts to derive upper
bounds on their algorithms, as well as a lower bound on the makespan of an off-line
optimal solution [7, 8, 13].

The lower bound on the completion time of any schedule is based on the obser-
vation that at most one packet can be sent from a node within the critical region. Let

δ j =
⌈ d(v j ,s)

dT

⌉
, the minimum number of calls required for packet j to reach s. Define

also π j = min{δ j,K∗} and R j = r j + δ j − π j. Informally, π j gives the number of
rounds during which packet j has to move inside the critical region (irrespective of
whether it originated inside or outside of it); R j is the first possible time at which
packet j can reach the border of the critical region. The following bound on the cost
of an optimal solution can be proved by considering only the processing that has to
be done inside the critical region [13].

Lemma 14.1. Let S ⊆ J be a nonempty set of packets, and let C∗
i denote the com-

pletion time of packet i in some feasible schedule. Then there is k ∈ S such that
maxi∈S C∗

i ≥ Rk +∑i∈S πi.

We sketch the idea behind the upper bound on the completion times; the sketch
is based on the upper bound proof of the PRIORITY GREEDY algorithm. The idea is
that if a packet is delayed, i.e., it is not sent as far as possible in each round until it
reaches the sink, then this packet must be close to some other packet that is sent in
that round. As a result we can provide a bound on the completion time of a packet
by relating it to the completion time of another packet that delays this packet. This
provides an upper bound on the makespan of a set of packets. Formally, we say that
packet j is blocked in round t if t ≥ r j but j is not sent over distance dT in round
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t. Note that in a PRIORITY GREEDY algorithm a packet can only be blocked due to
interference with a higher priority packet. We define the following blocking relation
on a PRIORITY GREEDY schedule: k ≺ j if in the last round in which j is blocked,
k is the packet closest to j that is sent in that round and has a priority higher than j
(ties broken arbitrarily). The blocking relation induces a directed graph F = (J,A)
on the packet set J with an arc (k, j) for each k, j ∈ J such that k ≺ j. Observe that,
for any PRIORITY GREEDY schedule, F is a directed forest and the root of each tree
of F is a packet which is never blocked. For each j, let T ( j) ⊆ F be the tree of F
containing j, b( j) ∈ J be the root of T ( j), and P( j) be the set of packets along the
path in F from b( j) to j.

Lemma 14.2. For each packet j ∈ J in a PRIORITY GREEDY schedule, Cj ≤ Rb( j) +
(K/K∗) ·∑i∈P( j)πi.

Bonifaci et al. [13] considered a particular PRIORITY GREEDY algorithm called
RPG in which packet j has higher priority than packet k if R j < Rk (ties broken
arbitrarily). Combining Lemmas 14.1 and 14.2 they proved the following theorem.

Theorem 14.6. RPG is K/K∗-competitive for CMAX-WGP.

Similarly, Bermond et al. [7] presented the following theorem.

Theorem 14.7. PIPELINE is K/K∗-competitive for CMAX-WGP without release
dates.

The exact ratio depends on dT and dI , but is always bounded: it is straightforward
to verify that 2 ≤ K/K∗ ≤ 4 for all dT and dI , while K/K∗ ≤ 3 for dI = dT . Similarly,
Korteweg [28] proved that PRIORITY GREEDY is (K/K∗ + 1)-competitive for any
fixed priority on the packets, using Lemmas 14.1 and 14.2. An interesting open
problem is whether there exists a polynomial-time approximation scheme, or a (1+
ε)-approximation algorithm for general graphs for small values of ε > 0.

Notice that the algorithms PIPELINE and PRIORITY GREEDY can be imple-
mented using only local information. Namely, it suffices that a node is informed
about the state of nodes within distance dI +1.

Kumar et al. [29] presented a decentralized algorithm for packet routing under the
distance-2 interference model. The authors presented an O(Δ log2 n)-approximation
algorithm, where Δ is the maximum graph degree and n is the number of nodes.
Their algorithm assumes that each node knows upper bounds on the maximum num-
ber of packets per node and the network diameter. The first assumption seems re-
strictive from a practical point of view, where packets arrive online over time. The
algorithm proceeds in phases, and at the start of each phase nodes communicate with
nodes up to a distance 3 to determine interference-free schedules for the round in
the next phase. As such the algorithm, like those discussed above, is decentralized,
but not distributed in the sense that nodes use information about neighboring nodes.

Bar-Yehuda et al. [4] considered a distributed algorithm for CMAX-WGP in the
special case where dT = dI = 1 and there are no release dates. We refer to their
algorithm as DISTRIBUTED GREEDY (DG). The idea behind DG is the following.
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To reduce interference between nodes, DG partitions nodes into layers, and assigns
a label to nodes in a layer. A layer is a set of all nodes at the same distance from the
sink. A node at distance d from the sink is assigned label d mod 3. Each node can
be either active during a round or inactive; only active nodes will transmit a packet.
A node will not be active if its packet buffer is empty.

DG uses a procedure to establish communication from a set of active nodes. The
procedure, first introduced and studied by Bar-Yehuda, Goldreich, and Itai [3], is
called DECAY and requires 2 logΔ rounds; the time needed for a single execution of
the procedure is called a phase.

Algorithm 14.3 DECAY(u,v)
for j = 1,2, . . . ,2logΔ do

u sends to v the oldest packet from its buffer;
u deactivates itself for the rest of the phase with probability 1/2.

In fact, the original description does not describe which packet v to advance from
the buffer, because for the analysis of completion times the choice of this packet is
not relevant. For flow times the choice can be relevant; hence, we choose to advance
the oldest packet. We now present the description of the DISTRIBUTED GREEDY

algorithm (Algorithm 14.4).

Algorithm 14.4 DISTRIBUTED GREEDY (DG)
for each phase k = 1,2, . . . do

Activate each node with label k mod 3 that has a nonempty packet buffer;
Execute DECAY(u,parent(u)) in parallel for each active node u.

Although the algorithm does not model acknowledgement of packets explicitly,
it is easy to include them, e.g., by doubling the number of rounds, having com-
munication in odd rounds and acknowledgements in even rounds, as observed by
Bar-Yehuda et al. Using this, we can assume that successful receipt of a packet (by
the parent of the sending node in the communication tree) is acknowledged imme-
diately. Only at that time does it get removed from the sender’s buffer.

By the transmission protocol in DG, where in phase k only nodes of layer k
mod 3 transmit, if two nodes transmit, then either they are at the same layer or they
are at least distance 3 apart. Hence, in DG two nodes can only interfere if both
sender nodes are in the same layer.

A superphase consists of three consecutive phases. Another important ingredient
in the analysis of DG is the following, proved by Bar-Yehuda et al. [4].

Theorem 14.8. Let i be any layer of the tree containing some packet at the beginning
of a superphase. There is probability at least μ = e−1(1 − e−1) that during this
superphase DG sends successfully a packet from at least one node u in layer i to the
parent node of u in the communication tree.
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This theorem shows that, during a superphase, each nonempty layer forwards
a packet with probability μ to the following layer. Notice however that there is
no guarantee on which particular packet is advanced. The use of superphases and
labels, i.e., a synchronous model, is essential to the proof of Theorem 14.8. If the
DECAY procedure is applied in an asynchronous model, it is not clear whether a
similar constant probability μ is attainable.

Theorem 14.8 suffices to bound the completion time of packets in a schedule
constructed by DG.

Theorem 14.9. DISTRIBUTED GREEDY is in expectation O(logΔ)-competitive for
CMAX-WGP without release dates, and dI = dT = 1.

14.4.1.2 Special Topologies

The hardness results for CMAX-WGP on general graphs of Section 14.3 motivate
the study of specific topologies, such as the path, balanced stars, and the two-
dimensional grid. With the additional assumption that the data is uniform (every
node holds exactly one packet) it is possible to provide algorithms whose perfor-
mance differs only by an additive constant from the theoretical minimum. We are
not aware of studies for specific topologies in the case of non-uniform data (in par-
ticular, it is unknown whether optimal polynomial-time algorithms are possible for
path or tree topologies), although it is certainly possible to at least improve the ap-
proximation guarantees in this setting.

As an example of the uniform data model on a specific topology, Figure 14.7
shows an optimal gathering schedule using 18 rounds for a path of seven vertices
(each having one data packet), with dT = 1, dI = 2, and s = 0. The schedule has
a regular structure and this regularity can be exploited to give a general algorithm
for paths whose cost differs by the optimal one only by an additive constant term
(though the constant may depend on dT and dI).
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Fig. 14.7 A gathering schedule in the path when dT = 1, dI = 2, and every vertex has one packet
to send to the sink s = 0

In fact, the uniform model has first been studied in the case of specific graph
topologies for specific values of dI and dT . In particular, the case dT = 1 was studied
in [5] for the case where the graph is a path, and in [10] for the case where the graph
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is the two-dimensional square grid. An optimal algorithm for trees when dT = dI = 1
is given by Bermond and Yu [11].

Bermond et al. [6, 30] consider the uniform model for paths and grids, for any
value of dT . Even though their algorithms do not match the lower bounds, they are
again larger by an additive constant that depends only on dI and dT . The authors
also study the case of stars and show that the general lower bound of [7, 8] is tight
up to a constant that does not depend on the size of the network. Table 14.1 shows
the main results of Bermond et al. [6, 30]. The notation is the following:

• LB (UB) is a lower bound (upper bound) on the number of rounds for gathering
in the corresponding topology.

• Pn is the path with n vertices 0,1, . . . ,n − 1. Vertex i is adjacent to vertex i + 1
for any i = 1, . . ., n − 2. Therefore, the sink s is simply an integer such that
0 ≤ s ≤ n−1.

• SK,l is the balanced spider graph with K branches. SK,l consists of K copies of Pl

(called branches) sharing a common extreme, the sink s.
• G2(p,q) is the two-dimensional grid, i.e., the graph G = (V,E) where V = {(i, j) :

−p ≤ i ≤ p,−q ≤ j ≤ q}. So n = (2p + 1)(2q + 1), and (x,y) and (x′,y′) are
connected when |x − x′|+ |y − y′| = 1. We assume that p,q ≥ dI + dT + 1 and
s = (0,0).

In Table 14.1, O(1) is used to denote a constant that may depend on dI and dT

but not on the size n of the network.

Table 14.1 Approximation results for gathering in specific topologies

Topology LB UB

Pn
dI+dT +1

dT
max[s,n− s]−O(1) dI+dT +1

dT
max[s,n− s]+O(1)

SK,l , �dI/dT � odd 1
2 (1+ �dI/dT �)n−O(1) 1

2 (1+ �dI/dT �)n+O(1)

SK,l , �dI/dT � even 1
2 �dI/dT �n+ n

K −O(1) 1
2 �dI/dT �n+ n

K +O(1)

G2(p,q), �dI/dT � odd 1
2 (1+ �dI/dT �)n−O(1) 1

2 (1+ �dI/dT �)n+O(1)

G2(p,q), �dI/dT � even 1
2 �dI/dT �n+ n

4 −O(1) 1
2 �dI/dT �n+ n

4 +O(1)

14.4.1.3 Unidirectional Antennas

We discuss here some results for gathering problems with unidirectional antennas.
Florens et al. [22] study makespan minimization in a model where each each node
is equipped with directional antennas and has no buffering capacity. Furthermore,
it is assumed that a node cannot receive and send simultaneously, that the com-
munication radius is 1, and that there is no interference but each node can only
receive one message at a time. Under these assumptions, Florens et al. give optimal
(polynomial-time) gathering algorithms for path and tree networks. Their work has
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been extended to general graphs in the uniform case by Gargano and Rescigno [25].
Other results for specific topologies are discussed by Revah and Segal [35, 36] and
Segal and Yedidsion [38].

A discussion of some algorithmic and graph-theoretic problems related to wire-
less data gathering with minimum makespan is contained in [24]. Finally, another
related model can be found in Klasing et al. [27], where the authors study the case
in which steady-state flow demands between each pair of nodes have to be satisfied.

14.4.2 Minimizing Flow Times

Most literature on gathering problems focuses on minimizing completion times. In
this subsection we highlight some results on minimizing flow times. First, we con-
sider the centralized model. Bonifaci et al. [16] analyzed FMAX-WGP in the general
interference model. For this version they analyzed the performance of a particular
PRIORITY GREEDY algorithm. Because it follows from Theorem 14.4 that there is
no constant approximation algorithm for this problem, unless P = NP, they used
resource augmentation to analyze the quality of the algorithm. They study a variant
of PRIORITY GREEDY which orders packets based on release dates, i.e., packet j
precedes k if r j ≤ rk; ties (r j = rk) are broken arbitrarily. They call this variant FIFO
after the well known first-in-first-out algorithm in scheduling theory, although in this
case the term FIFO refers to the priority ordering; observe that the first packet in the
system does not have to arrive earliest at the sink using FIFO. They use FIFO as
a sub-routine in an algorithm which can be used in a resource augmentation setting
based on speed. The algorithm is the so-called σ -speed algorithm, where the pa-
rameter σ denotes the ratio between the clock speed of the algorithm and the clock
speed of the optimal solution to which the algorithm is compared. The algorithm is
the following (Algorithm 14.5).

Algorithm 14.5 σ -FIFO
1. Create a new instance I ′ by multiplying release dates: r′j = σr j;
2. Run FIFO on I ′;
3. Speed up the schedule thus obtained by a factor of σ .

The schedule constructed by σ -FIFO is a feasible σ -speed solution to the orig-
inal problem because of step 1. Bonifaci et al. [16] prove that this algorithm is
optimal for some σ which depends on K and K∗, but is never larger than 5.

Theorem 14.10. For σ ≥ K/K∗ + 1, σ -FIFO is a σ -speed optimal algorithm for
FMAX-WGP in the general interference model.

In [15] complementary and indeed similar results have been obtained for the prob-
lem with the average completion time as objective, FSUM-WGP.
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For the distributed model, for WGP minimizing flow times in the general inter-
ference model, the performance of algorithm DG is studied by Bonifaci et al. [14].
Again, the performance of the algorithm was studied in a resource augmentation
setting with an increase in speed of factor σ , similarly to the centralized model.
We refer to this version as σ -speed DG, although the algorithm is identical to DIS-
TRIBUTED GREEDY. Also, they focused on minimizing average flow times instead
of minimizing maximum flow times. The motivation for this objective over the ob-
jective minimizing maximum flow times is based on the proof of the lower bound
of Theorem 14.5. As described above the proof indicates that for a general class of
distributed algorithms, i.e., algorithms which base decisions on random selection,
it is rather unlikely that there exists a constant competitive algorithm for this prob-
lem, even if one allows resource augmentation using extra speed. The same authors
presented the following positive result.

Theorem 14.11. Let 0 < ε ≤ 1 and σ = 6μ−1 · logΔ · ln(δ/ε). Then σ -speed DG
is in expectation (1+3ε)-competitive when minimizing the average flow time.

14.5 Conclusion

The chapter surveys recent complexity results and approximation algorithms for
several variants of the wireless gathering problem. It considers different interference
models, the uniform and non-uniform data models, different optimization parame-
ters, and the off-line and online settings of the problem.

Many interesting directions of future work arise from the considered problems.
These include the attempt to close the existing gaps between the upper and lower
bounds for the specific problems. Where good solutions on general graphs are not
possible or not available, the focus on graph classes that are of interest from a prac-
tical point of view is of high importance. In the non-uniform data model many im-
portant questions are still to be resolved. Also, more work remains to be done on
unidirectional antennas with or without buffering capabilities at the nodes. Finally,
especially from a practical perspective, the study of distributed algorithms needs to
be further intensified.
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Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications, pp. 103–
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Chapter 15
Tournament Methods for WLAN: Analysis and
Efficiency

Jérôme Galtier

Abstract In the context of radio distributed networks, we present a generalized ap-
proach for Medium Access Control (MAC) with a fixed congestion window. Our
protocol is quite simple to analyze and can be used in a lot of different situations.
We give mathematical evidence showing that our performance is asymptotically
tight. We also place ourselves in the WiFi and WiMAX frameworks, and discuss
experimental results showing collision reduction of 14% to 21% compared to the
best-known methods. We discuss channel capacity improvement and fairness con-
siderations.

Key words: WLAN, MAC protocol, tournament, CSMA, WiFi, WiMAX

15.1 Introduction and Related Works

Radio networks have received in the past few years a growing interest for their abil-
ity to offer relatively wide band radio networking. Applications cover a large area
of domains, including computer network wireless infrastructures and high speed
Internet access for rural areas.

For instance, in WiFi and WiMAX norms, the underlying mechanism [1, 2] (see
also [19]) is a 2-layer protocol whose first part relies on a derivative of the Binary
Exponential Backoff protocol (BEB). The principle is that when a failure occurs, the
transmission protocol delays the following retransmission by some penalty factor.
The protocol uses a contention window (CW ) mechanism to realize this backoff
mechanism. Roughly speaking, the probability of trying an access to the channel
is 1/CW . When a transmission fails, the station increases CW in order to be less
demanding for future accesses.
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Fig. 15.1 A view of the general frame structure

Already much research work has been done to model the CW increase or de-
crease process. Strong simplifying assumptions are at the basis of some models [8],
while other researchers focus on an individual station while considering that the
effect of the several contending terminals on the channel can be represented by an
occupancy probability pocc (see [5, 22, 23]), following an earlier popular approach
on CSMA [4, 18].

In fact, those studies show that on average, the contention window mechanism
draws the stations to access the channel with some probability that converges to a
value noted pacc(n) which depends on the number of stations simultaneously will-
ing to access the channel. Therefore, several studies have shown that the optimal
behavior is when pacc(n) = O(1/n), and proposed some alternative mechanisms to
increase and decrease the contention window in order to reach this value. In [6, 7],
the authors aim at guessing the total number of stations trying to emit in order to
directly set the value CW . In [12], an optimization of the increase or decrease pa-
rameters is done to converge to the optimal channel efficiency in terms of capacity.
In [13] the authors use the observation of idle slots to deduce the probable number
of competing stations. In [14], however, strong evidence is given that, with a dy-
namic number of stations, all the aforementioned studies should be questioned as
the guess for the number of contending stations becomes less and less accurate.

A different branch of CSMA protocols has been initiated by the Hiperlan protocol
[20], a twin standard of 802.11a developed in the same period. In this protocol, the
contention phase is bounded. The contention phase begins for each terminal with the
emission of a burst whose length follows a truncated geometric distribution, and the
terminal having the longest burst wins the right to transmit. If several terminals have
the same longest burst, this results in a collision. A very similar protocol developed
in the context of sensor networks has been called Sift [16].

Another related protocol is the Contention Tree Algorithm [9, 10, 17], or CTA
for short, also called Stack Algorithm [11, 21], which uses a tree to solve contention
problems. Although we also use a tree, our protocol is completely different. This al-
gorithm is basically based on feedback, that is, evidence that a collision occured. In
the radio context, a feedback is costly since it requires an acknowledgement packet.
Instead, we rely on evidence of occupation, that is, the fact that a silent terminal can
detect that one or more terminals are signaling their presence.

In Figure 15.1 we explain how our protocol, the selective tournaments, works. As
in the standard 802.11 approach, the transmission begins with a period of sensing
after the last emission (either a packet or an ACK). After observing a sufficiently
long period with no emission (the DIFS period), the system operates a contention
resolution protocol (CRP) that is supposed to select one station, and only one. Then
the packet is transmitted. If it is correctly received, the receiving station emits an
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ACK after an SIFS period. This is the end of a transmission period and a new trans-
mission period can begin. If no ACK is received back, the new transmission period
begins immediately after the failed packet, and the stations start the CRP mechanism
just after the DIFS period (note that SIFS < DIFS).

How does the CRP work? In our protocol the time is subdivided into time slots
that correspond to rounds of selection. At the beginning, each terminal emits a signal
on the first time slot with a certain probability. In the case where the station does
not emit, it listens to other signals, and, in the case where it hears at least one other
signal, it retires itself from the selection. This process, called round, is repeated an
appropriate number of times, in order to leave only one remaining station at the end
with the highest probability. This method is used in [3].

15.2 Description of the Tournament Method

The present article generalizes this last method, and presents a mathematical frame-
work to analyze its strenghts and weaknesses. As a result, the improved method
presents a reduction of collision between 13.9% and 21.1%, resulting in a system-
atic gain with respect to the original throughput. The gain to the original 802.11b
norm is as high as 34.1%, achieving the best-known throughput for this family of
protocols. More than that, the new protocol keeps excellent fairness characteristics,
as the Jain index indicates.

More than that, we do not use a fixed number of rounds in the tournament as is
done in CONTI (in [3] a fixed number of six rounds is assumed). We use a variable
number of slots of selection, depending on what was previously heard on the chan-
nel. We tune our experiments to the case where the amount of contending stations
is often between 10 and 100, but our analysis can be very easily extended to any
number of contending stations. By adding a sufficient number of minislots, we can
reduce the number of collisions to an arbitrarily low level. Since adding a minislot
can be statistically more penalizing from the throughput point of view than retrans-
mitting a packet in the case of a collision, a clever balance should be computed to
obtain an optimal throughput. In the following, an entry of our protocol will be the
variable E f (r(1), . . . ,r(k)), which states whether the collision resolution protocol
should be stopped at round k or not.

The key for obtaining good results is in the choice of the probabilities with which
a station will decide to keep silent or emit a signal in the CRP phase. Each station
takes into account whether signals were emitted or not in the previous rounds to
adapt its probability of emission.

In the following, we call try-bit and denote by r(t) the information that at least
one station has emitted a signal on the tth round.

In Figure 15.2, we show how the choice of p – the probability that a station emits
at a given round of selection – evolves in the course of the rounds of selection and
in the function of the previous try-bits chosen by the terminal. The first value (in
Figure 15.2, p = 0.02) is unique for all the terminals. During the second round, if
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the terminal has emitted a signal in the first round (which we denote r(1) = 1), the
protocol chooses the left part of the tree, and uses p1 = 0.33 for the second round. If
on the other hand the terminal did not emit, and did not hear any signal from other
terminals (r(1) = 0), then the protocol chooses the right part of the tree and uses
p0 = 0.12 for the second round. In the case where the terminal did not emit and
actually hears a signal from another station, it retires and leaves to other stations the
right to send the following packet. As a result, the probability in the second round
is necessarily pr(1). The realization of the second round will determine the value of
r(2), and the third round will be governed by the probability pr(1)r(2) in the tree of
Figure 15.2. We plot the whole process in Figure 15.3. Note that each station has a
local try-bit R(t) at round t which equals r(t) as long as the station is not eliminated.
In Figure 15.3, we also make use of the p f and E f functions. p f is a function
that, given the values R(1) . . .R(t − 1) of the previous rounds of the tournament,
outputs a probability P[R(t)] of emission of a signal during the actual round. In the
following, we will note w = “R(1)′′ . . .“R(t)′′ as the word containing the history of
the tournament and use the notation pw to model what will be p f [R(1), . . . ,R(t −1)].
Also E f is a function of R(1) . . .R(t) which indicates to the terminal that in the case
of success for round t, it has to proceed to emit the packet (E f = yes) or start another
round of selection (E f = no). Note also that in the bottom-left part of Figure 15.2,
only three rounds of elimination are performed, while four are requested in the other
parts of the tree. Depending on the previous states, that is, on r(1),r(2), . . . ,r(t),
our protocol can decide to perform the transmission. In the case of Figure15.2, until
the third round, three successive signals have been emitted, so the system forsees
that one station is attempting to communicate with high priority, and proceeds to
transmission.

We manage to find a tight approximation of the behavior of this protocol when
the number of rounds increases. More precisely, if we denote by qn the probability
that n stations try to emit in the system, and if we introduce the function

fourth round

p=0.02

r(2)

r(3)

1 0 1

1 10 0

0

r(1) 1 0

p11=0.45 p10=0.39 p01=0.32 p00=0.25

p1=0.33 p0=0.12

p101=0.45 p100=0.44 p011=0.43 p010=0.43 p010=0.42 p010=0.42

01

}
}
}

round

first

round

third

second

round

Fig. 15.2 Choice of the values of p in the course of the rounds of selection
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Fig. 15.3 Global diagram for the rounds of selection in a terminal

f (x) = ∑
n≥1

qnxn, (15.1)

then we can show that, tuning the p coefficients to this probability space, the rate of
collision 1−ρ observed if the protocols stops after k rounds will be fairly approxi-
mated by

1−ρ ≈

(∫ 1
0

√
f ′′(t)dt

)2

2k+1 .

The article is organized as follows. A mathematical modeling in the next section
investigates analytically the optimization issues raised by the problem of the choice
of the p’s, and gives some tight bounds for this question. The reader that desires
to know the protocol without the mathematics can skip this section. A practical
implementation of the mathematical ideas, allowing the computation of the values
of the p’s, is given in Section 15.3, which gives a new protocol for the WiFi/WiMAX
networks. Here again, the reader will not need to program the whole framework to
implement and reproduce our protocol, which is described in terms of parameters in
Table 15.2. Finally, our protocol is compared with other ones in Section 15.4, where
some numerical results are presented. A summary of the notations used throughout
the chapter is given in Table 15.1.

15.3 Mathematical Analysis

During the mathematical part of the analysis, we study the case where the CRP stops
after k rounds. In the following we denote by m the number 2k.
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Table 15.1 Notations used in this chapter

k Number of rounds of selection. zi Riemann steps for f ′ in [0,1], i ∈ {0, . . . ,m}.
m 2k. ϕ Continuous function in [0,1] to be approxi
r(t) Try-bit at the tth round of selection, -mated.

t ∈ {1, . . . ,k}. ψ Piecewise constant function that approximate
R(t) Local try-bit (at a station) at the tth ϕ .

round of selection, t ∈ {1, . . . ,k}. cm Best approximation gap for the approximation
qn Probability that n station try to emit. of ϕ with m pieces.
w Word in the alphabet {0,1}. σ Increasing function from IN to IN that
l(w) Length of the word w. emphasizes extraction.
#(w) Binary value represented by w A Function of IRm+1 to IR that reaches approxi-
p Probability that a station emits a sig- mation for ϕ .

nal at the first round of selection. h̄ Density step function defined after z·, see equa
pw Probability that a non-eliminated sta- tion (15.6).

tion emits a signal at the round h∗ Density function that minimizes
l(w)+1, given that the preceding

∫ 1
0 f ′′(t)/h(t)dt, see Proposition 15.2.

try-bits where r(1), . . . ,r(l(w)) = w. ĥ Density function taken for the algorithmic
f Generating function of q., see equation choices of z·, ĥ(x) =

√
f ′′(x).

(15.1). M Large number compared to m.
fw Generating function of the number of L Level variable (L = 2k−l(w)−1).

non-eliminated stations, in the event w. N Maximum number of foreseen stations.
g Generating function of the number of α Parameter to set the values of q·, see equa-

non-eliminated stations after k rounds. tion (15.13).
ρ Success rate (as opposed to the colli- xi In the experiments, amount of packets that an

sion rate). individual station has emitted.
δw Local step, see equation (15.2). πw In the experiments, the probability that the se-
yw Cumulative step, see equation (15.3). quence w will be used for signaling.

We denote by qn the probability that n stations try to emit in the system. We have
necessarily qn ≥ 0 and ∑n≥1 qn = 1. We introduce f , which in the following we will
call the generating function of the distribution of stations, defined by:

f (x) = ∑
n≥1

qnxn.

We try now to characterize the distribution after the transmission on the first
mini-slot. Let f1 and f0 be generating functions for the number of stations still in
contention depending, respectively, on whether or not there was a transmission in the
previous slot. If every station emits a signal with probability p, then the probability
that n stations emit is given by

P[n stations emit a signal] =∑
i≥n

( i
n)qi p

n(1− p)i−n.

Therefore, the distribution of the number of stations that emit is characterized by a
function f1 analog of f , defined by

f1(x) =∑
i≥1

P[i stations emit a signal]xi,

and we deduce logically that
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f1(x) = ∑
n≥1
∑

1≤i≤n

(n
i )qn pi(1− p)n−ixi

= ∑
n≥1

qn[(px+1− p)n − (1− p)n]

= f (px+1− p)− f (1− p).

Similarly, in the event where no signal has been emitted in the first round, we can
deduce some information on the distribution of the number of stations. Indeed, the
probability that n stations remain silent is (1− p)n. Therefore, if we write

f0(x) =∑
i≥0

P[i stations are present and remain silent]xi

then we obtain

f0(x) =∑
i≥0

qix
i(1− p)i = f ((1− p)x).

And we see that at the end of the first round of selection, the distribution of the
whole set of surviving station can be known by the mathematical function f0 + f1.
We can also note that the distribution in the case where the event r(0) occurs (either
0 or 1) is given by fr(0)/ fr(0)(1).

By extension, if we let w be a word in the alphabet {0,1}, and w0 (or w1) the
same word to which the letter “0” (or “1”) is added, and if we let pw and fw, re-
spectively, be the probability and generating function corresponding to step w, then
(setting f /0 = f ) the following inductive formulas hold:

{
fw1(x) = fw(pwx+1− pw)− fw(1− pw)
fw0(x) = fw((1− pw)x)

We observe that the probability of the event of the choice w = r(1) . . .r(t) is
fw(1). Given that the event w occurs, the distribution of the number of stations is
characterized by fr(1)...r(k)/ fr(1)...r(k)(1). If we denote by l(w) the length of the word
w, then the global distribution g for all the event space after k rounds of selection is
given by the sum of all the fw’s that correspond to an event after k rounds (this is
true if and only if l(w) = k, since E f (w) is true when l(w) reaches k), and therefore,

g(x) = ∑
w:l(w)=k

fw(x).

The probability of success ρ of the rounds of selection is the probability that only
one station remains. It is given by the first term of the integral series of g, that is,
g′(0). Therefore,

ρ = ∑
w:l(w)=k

f ′
w(0).

In the following we evaluate the value of f ′
w(0). We therefore denote, for any word

w in the alphabet {0,1}, the quantity defined inductively by δ /0 = 1 and
{
δw0 = (1− pw)δw

δw1 = pwδw
(15.2)
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Then we note wa < wb if their corresponding binary values verify inequality (15.2),
and, using the convention y /0 = 0, we set

yw = ∑
v<w:l(v)=l(w)

δv. (15.3)

Lemma 15.1. yw0 = yw.

Proof. It is easy to see that δw1 +δw0 = δw. Therefore,

yw0 = ∑
v<w0:l(v)=l(w0)

δv = ∑
u<w:l(u)=l(w)

(δu0 +δu1) = ∑
u<w:l(u)=l(w)

δu = yw

#$
Lemma 15.2. f ′

w(x) = δw f ′(yw +δwx) for all x ∈ [0,1].

Proof. Obviously δ /0 f ′(y /0 +δ /0x) = f ′(x) = f ′
/0. Then we apply another induction on

w. We suppose that the statement is established for w and show that it is true for w0
and w1. Indeed

f ′
w0(x) = (1− pw) f ′

w((1− pw)x)
= (1− pw)δw f ′(yw +δw(1− pw)x)
= δw0 f ′(yw0 +δw0x);

moreover, noticing from equation (15.3) that yw1 = yw0 +δw0, we have,

f ′
w1(x) = pw f ′

w(pwx+1− pw),
= pwδw f ′(yw +δw(pwx+1− pw)),
= δw1 f ′(yw0 +δw0 +δw1x),
= δw1 f ′(yw1 +δw1x).

#$
And therefore

ρ = ∑
w:l(w)=k

δw f ′(yw).

This formula exactly says that we aim at approximating the integral of f ′ by
a Riemann integral. In other words, if we are given m − 1 = 2k − 1 real numbers
z1, . . . ,zm−1 in (0,1), with 0 = z0 < z1 < · · · < zm−1 < zm = 1, then the quantity

ρ = ∑
i∈{1,...,m}

(zi − zi−1) f ′(zi−1)

is the approximation of the integral of f ′ by a piecewise constant function having m
steps. This fact is illustrated by Figure 15.4. In this figure we draw the f ′ function, of
which the integral between 0 and 1 exactly equals 1 (since f (1)− f (0) = 1). Points
have been chosen to approximate this integral by a lower bound piecewise constant
function. The rate of collision of our protocol will be exactly equal to the area in
gray in Figure 15.4, which is also the approximation default. Therefore, if we have
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f’

x

y

0 1

Fig. 15.4 Interpretation of the collision rate in terms of Riemann integral

the best values of z0, . . . ,zm for this integral, it is sufficient to set yw = z#(w), where
#(w) is the numerical binary value that is represented by w. The reader can verify
that this is obtained by setting L = 2k−lw−1 and

pw =
zL(2#(w)+2) − zL(2#(w)+1)

zL(2#(w)+2) − zL2#(w)
.

Theorem 15.1. For all protocols of selection governed by a series of selective
rounds as indicated in Figure 15.2, we can associate a series of m+1 real numbers
z0, . . . ,zm in [0,1] with 0 = z0 < z1 < · · · < zm−1 < zm = 1, such that the probability
of success (non-collision) of the protocol is given by

ρ = ∑
i∈{1,...,m}

(zi − zi−1) f ′(zi−1). (15.4)

In this case, the probabilities chosen to operate the different rounds of selection are
given by L = 2k−lw−1 and

pw =
zL(2#(w)+2) − zL(2#(w)+1)

zL(2#(w)+2) − zL2#(w)
. (15.5)

Conversely, with every family of real numbers z0, . . . ,zm verifying

0 = z0 < z1 < · · · < zm−1 < zm = 1,

we can associate a protocol of selection whose probability of success and probabil-
ities are given by equations (15.4) and (15.5).

So we are now left with the problem of finding optimal values for z. Analyzing a
little further the value of ρ , we obtain the formula

1−ρ =
∫ 1

0
f ′(t)dt − ∑

i∈{1,...,m}
(zi − zi−1) f ′(zi−1)

= ∑
i∈{1,...,m}

f (zi)− f (zi−1)− (zi − zi−1) f ′(zi−1).
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Three lemmas will allow us to analyze it.

Lemma 15.3. Let h̄ be the piecewise constant function defined by

h̄ : x �→ 1
m(zi − zi−1)

for x ∈ [zi−1;zi[. (15.6)

We have
∫ 0

1 h̄(t)dt = 1 and

1
2m

∫ 1

0

f ′′(t)
h̄(t)

dt = ∑
i∈{1,...,m}

∫ zi

zi−1

zi − zi−1

2
f ′′(t)dt

= ∑
i∈{1,...,m}

(zi − zi−1)( f ′(zi)− f ′(zi−1))
2

.

Moreover,

1−ρ− 1
2m

∫ 1

0

f ′′(t)
h̄(t)

dt ≥ − 1
12 ∑

i∈{1,...,m}
(zi − zi−1)3 f ′′′(zi) (15.7)

and

1−ρ− 1
2m

∫ 1

0

f ′′(t)
h̄(t)

dt ≤ − 1
12 ∑

i∈{1,...,m}
(zi − zi−1)3 f ′′′(zi−1). (15.8)

Proof.

1 − ρ− 1
2m

∫ 1

0

f ′′(t)
h̄(t)

dt

= ∑
i∈{1,...,m}

f (zi)− f (zi−1)− (zi − zi−1) f ′(zi−1)−
(zi − zi−1)( f ′(zi)− f ′(zi−1))

2

= ∑
i∈{1,...,m}

f (zi)− f (zi−1)− (zi − zi−1)
f ′(zi)+ f ′(zi−1)

2
.

But f is a harmonic function with positive coefficients, and with radius of conver-
gence at least 1; therefore,

f (zi) = ∑
j≥0

(zi − zi−1) j

j!
f ( j)(zi−1)

f ′(zi) = ∑
j≥1

(zi − zi−1) j−1

( j −1)!
f ( j)(zi−1)

and we have
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f (zi)− f (zi−1)−
zi − zi−1

2
( f ′(zi)+ f ′(zi−1))

= (zi − zi−1)3∑
j≥3

(zi − zi−1) j−3
[

1
j!

− 1
2( j −1)!

]
f ( j)(zi−1),

= −(zi − zi−1)3∑
j≥3

(zi − zi−1) j−3 1
( j −1)!

[
1
2
− 1

j

]
f ( j)(zi−1).

We note that all the derivatives of f are positive, and therefore all the terms of this
series are non-positive. Hence, the inequality (15.8). Moreover,

∑
j≥3

(zi − zi−1) j−3
[

1
2( j −1)!

− 1
j!

]
f ( j)(zi−1)

= ∑
j≥3

(zi − zi−1) j−3 j −2
2( j!)

f ( j)(zi−1)

≤ ∑
j≥3

(zi − zi−1) j−3 1
12( j −3)!

f ( j)(zi−1)

≤ 1
12

f ′′′(zi)

#$
Lemma 15.4. Suppose f ′′(0) > 0. Let the real numbers z0, . . . ,zm in [0,1], with 0 =
z0 < z1 < · · · < zm−1 < zm = 1, achieve the maximum value of ρ = ∑i∈{1,...,m}(zi −
zi−1) f ′(zi−1). Then we have

∑
i∈{1,...,m}

(zi − zi−1)2 ≤ 2
m f ′′(0)

, (15.9)

and

zi − zi−1 ≤
√

2
f ′′(0)

1√
m

∀i ∈ {1, . . . ,m}. (15.10)

Proof. We have

1−ρ = ∑
i∈{1,...,m}

f (zi)− f (zi−1)− (zi − zi−1) f ′(zi−1),

and by Taylor expansion, there exists bi−1 in the interval (zi−1,zi) such that

f (zi)− f (zi−1) = (zi − zi−1) f ′(zi−1)+
(zi − zi−1)2

2
f ′′(bi−1).

Therefore, 1−ρ = ∑
i∈{1,...,m}

(zi − zi−1)2

2
f ′′(bi−1). Since ρ is a maximum value for

all the choices of zi, necessarily
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1−ρ ≤ 1/m (15.11)

(indeed, if we take zi = i/m, we obtain a solution verifying 1−ρ ≤ 1/m). Therefore,
zi − zi−1 tends to 0 when m tends to infinity. The inequality (15.11) taken term by

term gives zi − zi−1 ≤
√

2
f ′′(0)

1√
m , and since all the f ′′(bi) are bounded below by

f ′′(0), we obtain

∑
i∈{1,...,m}

(zi − zi−1)2 ≤ 2
m f ′′(0)

.

#$

Lemma 15.5. If f ′′ is piecewise continuous, the minimum of the value
∫ 1

0
f ′′(t)
h(t) dt

on the functions h piecewise continuous and verifying
∫ 1

0 h(t)dt = 1 is obtained by

h∗ : x �→
√

f ′′(x)
∫ 1

0

√
f ′′(t)dt

, and therefore equals
(∫ 1

0

√
f ′′(t)dt

)2
.

The proof of Lemma 15.5 is easily obtained if f ′′ is a piecewise constant function,
and we use uniform convergence of piecewise constant functions to piecewise con-
tinuous functions.

Theorem 15.2. If f ′′(0) > 0, whatever the series of m values of z. used, we have

1−ρ ≥

(∫ 1
0

√
f ′′(t)dt

)2

2m
− f ′′(1)

3
√

2 f ′′(0)3/2

1

m3/2
.

Proof. By Lemma (15.3) we have:

1−ρ ≥ 1
2m

∫ 1

0

f ′′(t)
h̄(t)

dt − 1
12 ∑

i∈{1,...,m}
(zi − zi−1)3 f ′′′(zi).

Then, applying Lemma (15.5) for h̄ = h gives

1−ρ ≥ 1
2m

∫ 1

0

f ′′(t)
h̄(t)

dt − 1
12 ∑

i∈{1,...,m}
(zi − zi−1)3 f ′′′(zi).

Then, the inequality (15.10) of Lemma (15.4) gives

1−ρ ≥ 1
2m

∫ 1

0

f ′′(t)
h̄(t)

dt − 1
12

√
m

√
2

f ′′(0) ∑
i∈{1,...,m}

(zi − zi−1)2 f ′′′(zi).

Since f ′′′(zi) ≤ f ′′′(0), it gives

1−ρ ≥ 1
2m

∫ 1

0

f ′′(t)
h̄(t)

dt − f ′′′(0)
12

√
m

√
2

f ′′(0) ∑
i∈{1,...,m}

(zi − zi−1)2.

Finally, the inequality (15.9) of Lemma (15.4) gives

1−ρ ≥ 1
2m

∫ 1

0

f ′′(t)
h̄(t)

dt − f ′′′(0)
12

√
m

√
2

f ′′(0)
2

m f ′′(0)
.

Hence the result.
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#$

This result clearly shows the limit in efficiency of the protocol whatever the cho-
sen values of probabilities, and therefore the maximum we can asymptotically ex-
pect, which is

1−ρ ≈

(∫ 1
0

√
f ′′(t)dt

)2

2m
.

The strategy of approaching h by a piecewise constant function therefore gives a
result asymptotically optimal.

We note also that as the number of rounds increases, the collision rate systemat-
ically decreases, and this factor of division converges to 2 as the number of rounds
increases. It means that we can reduce the collision rate to an arbitrary low level by
using a reasonably small number of additional rounds. For applications that suffer
from retransmissions (and jitter) this property can have considerable impact.

However, further experiments showed that in the 802.11b framework, where the
jitter is not important and the throughput is to be optimized, a good number of
minislots to use is between six and eight.

Some more results on the approximation of a function by Riemann integrals are
worth noting. We are interested in the following problem:

15.1. Let ϕ be a non-decreasing function from [0,1] to [0,1], with ϕ(0) = 0 and
ϕ(1) = 1. We are looking for a piecewise constant function ψ , with m + 1 pieces,
such that ψ(z) ≤ ϕ(z) for all z ∈ [0,1] and

∫ 1

0
(ϕ(z)−ψ(z))dz

is minimum.

Clearly, this problem is the optimization formulation of the preceding issue when,
for z ∈ [0,1], ϕ(z) = f ′(z)/ f ′(1).

Theorem 15.3. If z �→ zϕ(z) is convex, m = 1, and ϕ is continuously derivable, then
the minimum for g is reached with a step z verifying (1− z)ϕ ′(z) = ϕ(z).

Proof. If the step is z ∈ [0,1], then
∫ 1

0
(ϕ(t)−ψ(t))dt =

∫ 1

0
ϕ(t)dt − (1− z)ϕ(z).

Note that necessarily there is some z∗ ∈ (0,1) such that ϕ(z∗) > 0, and this particular
z∗ does better than z = 0 or z = 1. The best z necessarily then verifies d

dz (1−z)ϕ(z) =
0. #$

Theorem 15.4. For a fixed m, for any ϕ function, there is a ψ function that reaches
the minimum. This minimum will be noted cm.
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Proof. Set

cm = inf

{∫ 1

0
(ϕ(t)−ψ(t))dt : ψ piecewise constant with m+1 pieces, and ψ ≤ ϕ

}
.

Let ψp be a series of piecewise constant functions, with m+1 pieces, such that

lim
p→∞

∫ 1

O
(ϕ(t)−ψp(t))dt = cm.

Let z(1)
p ≤ ·· · ≤ z(m)

p be the points of non-constancy of ψp. Since [0,1] is compact,

let us extract a converging series z(1)
σ1(p) (that is, σ1 is an increasing function from IN

to IN such that the series z(1)
σ1(p), p ∈ IN, is converging), and σ2 such that z(2)

σ2(σ1(p))

is converging, and so on until σm such that z(m)
σmo...oσ1(p) is converging. Setting σ =

σm ◦ · · · ◦σ1 we have that σ is increasing from IN to IN, and for each i ∈ {1, . . . ,m},

z(i)
σ(p), p ∈ IN is converging.

Let us then note z(i)
∗ = limp→∞ z(i)

σ(p), for i ∈ {1, . . . ,m}, z(0)
∗ = 0, z(m+1)

∗ = 1, and

ψ∗ such that for i ∈ {1, . . . ,m+1}, and z ∈ [z(i−1)
∗ ,z(i)

∗ ), ψ∗(z) = ϕ(z(i−1)
∗ ).

Let ε > 0 be a real number. There is an η > 0 such that for all i ∈ {1, . . . ,m},

|z−z(i)
∗ | < η implies |ϕ(z)−ϕ(z(i)

∗ )| < ε . If η > ε , set η = ε . Then there is a P ∈ IN

such that p ≥ P implies |z(i)
∗ − z(i)

σ(p)| ≤ η .

We see that for each i ∈ {1, . . . ,m},

ψ∗(z
(i)
∗ ) = ϕ(z(i)

∗ ) ≥ ϕ(z(i)
p )− ε = ψp(z

(i)
p )− ε

for p ≥ P, and therefore
∫ 1

0
(ψ∗(t)−ψp(t))dt ≥ −ε−mη ≥ −(m+1)ε.

This is true for all ε > 0, and so
∫ 1

0 ψ∗(t)dt ≥ cm. #$
Theorem 15.5. Let A be the function from IRm to IR given by

A(z1, . . . ,zm) =
i=m

∑
i=2

(zi − zi−1)ϕ(zi−1)+(1− zm)ϕ(zm).

Then

max
(z1,...,zm)∈[0,1]m

A(z1, . . . ,zm) = cm.

Proof. It suffices to show that for the maximum we have z1 ≤ ·· · ≤ zm. Note that if
α < β , then

(β −α)ϕ(α)+(1−β )ϕ(β ) > (α−β )ϕ(β )+(1−α)ϕ(α).

It follows that

A(z1, . . . ,zi−1,α,β ,zi+1, . . . ,zm) ≥ A(z1, . . . ,zi−1,β ,α,zi+1, . . . ,zm).

Therefore, ordering the arguments of A maximizes its results (use, for instance,
bubble sort). #$

Those results open tools for promising optimization.
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15.4 Practical Implementation

The basic principles of an optimization based on our mathematical analysis are as
follows. A preliminary step consists in fixing a scenario, that is, the probabilities
that a given number of stations appears. For instance, we set, as previously,

P[Number of emitting stations = n] = qn.

15.4.1 Setting the Approximation Points

We consider

f (x) = ∑
n≥1

qnxn.

Then we have an ĥ function defined by ĥ(x) =
√

f ′′(x) (ĥ is the equivalent of h∗ in
the previous section, but without the normalization

∫ 1
0 h∗(t)dt = 1). And we take a

number M largely greater than m = 2k. We compute H as follows

H(0) = 0

H(i+1) = H(i)+ ĥ

(
i+1/2

M

)
.

We define z j for j ∈ {0, . . . ,m} by

z j =

⎧
⎪⎪⎨

⎪⎪⎩

0, if j = 0
1
M min

{
i : H(i)

H(M−1] ≥
j

m

}
if j ∈ {1, . . . ,m−1},

1 if j = m.

Finally, we set L = 2k−lw−1 and

pw =
zL(2#(w)+2) − zL(2#(w)+1)

zL(2#(w)+2) − zL2#(w)
, (15.12)

where w is a word in the {0,1} alphabet, #(w) represents the numerical binary value
denoted by w, and l(w) is the length of the word w.

15.4.2 Defining Varying Number of Rounds

In order to know whether a supplementary round of CRP would be necessary, it is
necessary to take into account the time slot interval for the CRP (which turns out to
be τsi f s = 20μs in practice, following 802.11b standards) and the entire time devoted
to a collision (τc = 1371μs taking 802.11b at 11 Mbit/s and packets of 1,500 bytes).
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We need to compare, for some w with l(w) < k − 1, the probability of loss in two
cases:

• the loss of having an additional minislot after word w, that is, with L = 2k−lw−1,

lw
si f s = τsi f s( f (zL(2#(w)+1))− f (zL(2#(w)+2)))

• the loss due to the possible collision if we decide instead to drop the round of
selection,

lw
c = τc( f ′(zL(2#(w)+1))− f ′(zL(2#(w))))(zL(2#(w)+2) − zL(2#(w)+1)).

The round will be performed only if lw
c > lw

si f s; otherwise, the rounds after w (that
is, w0, w1, and the possible following ones) will not be performed. Note also that if,
further, for a prefix of w noted v we have lv

c ≤ lv
si f s, the rounds after v (including w)

will not be performed.

15.5 Numerical Results

In a first part of this section, we optimize our throughput, in order to obtain some
fixed values for the pw’s. Then we compare our protocol to a set of other ones.
Along with the native 802.11b protocol [1], we compare it to three high-performing
protocols, the Idle Sense protocol [13], the additive congestion window increase/de-
crease protocol [12], and CONTI [3]. Finally we concentrate on fairness issues for
these different schemes, based on the Jain index [15].

15.5.1 Tuning of the Probabilities

An essential step is to set the values of qn. One idea is to set a preferred interval of
operation, say {2, . . . ,N}, and fix, for n ∈ {2, . . . ,N} and some α ∈ [0,1],

qn =
n−α

∑i=N
i=2 i−α

. (15.13)

This distribution allows us to take into account in a balanced way loaded or non-
loaded networks. In Figure 15.5, we show different curves of throughput obtained
for N = 100 and various values of α .

Experts in 802.11b can notice that throughputs achieved by these functions are
performing remarkably well with respect to the other protocols. The value α = 0
allows us to give equal weights to all the events. In practice, we see that this global
optimization tends to pay more attention to the cases where more stations are present
(50 to 100) at the price of more collisions when two to five stations are present in the
system. In contrast, α = 1 performs well when a small number of stations are present
at the price of worse performance for over 60 stations. A good value seems to be
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α = .7, where the troughput varies between 8.0 and 7.6 Mbit/s in Figure 15.5. In the
following we will set α = .7. For the sake of completeness, we give in Table 15.2 our
probability values so that the reader can replicate our experiments without further
consideration of the choice of α . Note that in Table 15.2, the probabilities π of
issuing a sequence are given. Such probabilities can be obtained by

πr0r1...rt = p pr0 pr0r1 . . . pr0r1...rt

or equivalently, from equation (15.12),

πw = zL(2#(w)+2) − zL(2#(w)+1).

The value of π111111 does not appear, which means that if the protocol expe-
riences five times a minislot of signaling, it immediately sends the packet, without
performing a sixth round. We note that a value appears for π1010000. It means that af-
ter the seventh minislot of selection, if the sequence “101000” appears, then another
set of selection will be performed. A last remark is that the “last positive signal” is
replaced by the direct sending of the packet. Hence, instead of signaling “00001”, a
terminal will signal “0000” and then will proceed to send.

This behavior is indeed in agreement with what was expected. When the first
rounds of selections show “a lot of zeros” (the order in which the zeros appear
is of course important), the system evaluates that fewer stations are present than
were expected, and tries more rapidly to send the packet. If conversely, the first
rounds show that a lot of stations are competing, then more rounds of selection are
performed. As a consequence, the total number of rounds adapts between six and
eight.
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Table 15.2 Values obtained for the π·s for α = .7 and N = 100

π11111 = .0009040 π1001110 = .0013427 π0100110 = .0068607 π00100100 = .0094375
π111110 = .0009326 π100110 = .0013847 π0100101 = .0035533 π0010001 = .0096912
π11110 = .0009632 π1001100 = .0014324 π01001010 = .0036392 π00100010 = .0099525
π111100 = .0009956 π100101 = .0014820 π0100100 = .0037250 π0010000 = .0102233
π11101 = .0010299 π1001010 = .0015316 π01001000 = .0038146 π00100000 = .0104999
π111010 = .0010681 π100100 = .0015869 π0100011 = .0039081 π0001111 = .0107879
π11100 = .0011043 π1001000 = .0016441 π01000110 = .0040016 π00011110 = .0110836
π111000 = .0011463 π100011 = .0017032 π0100010 = .0041007 π0001110 = .0113868
π11011 = .0011901 π1000110 = .0017662 π01000100 = .0041999 π00011100 = .0117015
π110110 = .0006122 π100010 = .0018310 π0100001 = .0043010 π0001101 = .0120239
π1101100 = .0006256 π1000100 = .0019016 π01000010 = .0044078 π00011010 = .0123558
π110101 = .0006370 π100001 = .0019721 π0100000 = .0045166 π0001100 = .0127010
π1101010 = .0006504 π1000010 = .0020503 π01000000 = .0046272 π00011000 = .0130558
π110100 = .0006637 π100000 = .0021324 π0011111 = .0047416 π0001011 = .0134201
π1101000 = .0006790 π1000000 = .0022163 π00111110 = .0048599 π00010110 = .0137977
π110011 = .0006923 π011111 = .0023040 π0011110 = .0049800 π0001010 = .0141849
π1100110 = .0007076 π0111110 = .0023994 π00111100 = .0051040 π00010100 = .0145854
π110010 = .0007228 π011110 = .0024967 π0011101 = .0052318 π0001001 = .0149993
π1100100 = .0007400 π0111100 = .0025997 π00111010 = .0053634 π00010010 = .0154266
π110001 = .0007572 π011101 = .0027103 π0011100 = .0054988 π0001000 = .0158653
π1100010 = .0007743 π0111010 = .0028228 π00111000 = .0056381 π00010000 = .0163192
π110000 = .0007915 π011100 = .0029449 π0011011 = .0057811 π0000111 = .0167865
π1100000 = .0008125 π0111000 = .0030708 π00110110 = .0059280 π00001110 = .0172710
π101111 = .0008316 π011011 = .0032024 π0011010 = .0060787 π0000110 = .0177688
π1011110 = .0008525 π0110110 = .0033435 π00110100 = .0062332 π00001100 = .0182838
π101110 = .0008735 π011010 = .0034904 π0011001 = .0063953 π0000101 = .0188159
π1011100 = .0008964 π0110100 = .0036430 π00110010 = .0065574 π00001010 = .0193634
π101101 = .0009193 π011001 = .0038051 π0011000 = .0067291 π0000100 = .0199298
π1011010 = .0009441 π0110010 = .0039749 π00110000 = .0069007 π00001000 = .0205135
π101100 = .0009689 π011000 = .0041561 π0010111 = .0070819 π0000011 = .0211181
π1011000 = .0009956 π0110000 = .0043430 π00101110 = .0072650 π00000110 = .0217418
π101011 = .0010242 π010111 = .0045394 π0010110 = .0074558 π0000010 = .0223865
π1010110 = .0010528 π0101110 = .0047492 π00101100 = .0076503 π00000100 = .0230484
π101010 = .0010833 π010110 = .0049686 π0010101 = .0078525 π0000001 = .0237388
π1010100 = .0011157 π0101100 = .0051975 π00101010 = .0080585 π00000010 = .0244464
π101001 = .0011501 π010101 = .0054397 π0010100 = .0082721 π0000000 = .0251789
π1010010 = .0011825 π0101010 = .0056972 π00101000 = .0084915 π00000000 = .0259380
π101000 = .0012207 π0101000 = .0062465 π00100110 = .0089511
π1010000 = .0012588 π010011 = .0065460 π0010010 = .0091896
π100111 = .0012989 π010100 = .0059642 π0010011 = .0087165
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15.5.2 Comparative Bandwidth

We set the general parameters as follows, according to the IEEE 802.11b norm. The
SIFS and DIFS times are set to 20μs and 50μs respectively. The time slot interval
for CRP is set to 20μs. The size of the payload of a packet is set to 1,500 bytes.
A packet (either regular or ACK) contains a physical heading of 96μs. The MAC
head and tail, are equal to 19 bytes in a regular packet and 14 bytes in an ACK one,
are transmitted at the maximum speed, that is, 11 Mbit/s. Our simulator was written
from scratch in C, and supposes perfect pairwise communication. We now further
describe the specifics of each protocol.

• The 802.11b norm [1]. Each station has a CW parameter. At the beginning, a
station chooses a κ – called backoff counter – in the interval {0, . . . ,CW −1}. If
κ = 0, the transmission begins immediately. Otherwise, if an empty time slot
is observed, κ is decreased by one. At the end of a transmission, the value
of CW itself is updated to CWMin if the transmission was successful, and to
min(CWMax,2 ∗ CW ) if a collision occurred. We have set, as in the norm,
CWMin = 32 and CWMax = 1024.

• The Idle Sense method [13]. At the end of a transmission, successful or not, the
terminal stores the number of idle time slots before its transmission. After five
transmissions, the terminal computes the average number of time slots waited
for. If this number is inferior to 5.68, the congestion window is updated by

CW = min(CWMax,CW ∗1.2).

Otherwise, the new CW is given by

CW = max(CWMin,2∗CW/(2+1e−3∗CW )).

• The additive congestion window increase/decrease [12]. At the end of an unsuc-
cessful transmission, CW is set to min(CWmax,CW +32). If the transmission is
successful, the station flips a biased coin, and with probability 0.1809 updates
CW by

CW = max(CWmin,CW −32),

and otherwise does not change CW .
• The CONTI method [3]. At each step a CRP of six time slots is applied with the

probabilities given by Table 15.3. The surviving stations transmit.
• Our method – Selective tournaments. We apply a CRP of six to eight time slots.

We have used the probabilities of Table 15.2. A station uses sequence w for sig-
naling with probability πw.

Our results are presented in Figure 15.6. In this figure, we plot for various num-
bers of stations the total throughput observed in the system. We clearly see that all
the proposed methods improve significantly the original IEEE 802.11b mechanism.
The methods based on adaptive tuning of the congestion window, namely [12, 13],
achieve quite close performances. The CONTI method performs very well. Our
method gives the best performance in all cases, and has a total improvement of
as much as 34.1% for 100 stations over the original norm.
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15.5.3 Fairness Considerations

We undertake in this part more consideration of fairness issues. For each of the
experiments, we have observed a series of 10,000 successful transmissions, and
assigned to each station i the number xi of packets it managed to transmit. In order
to evaluate the fairness, we use the Jain index [15], defined by

Index =
(∑xi)

2

n∑x2
i

.

This index is always between 0 and 1, and closer to 1 if the system is more fair. Our
results are given in Figure 15.7. Note that our method is equivalent to the CONTI
method from the fairness point of view. The results plotted are averages obtained
after a series of 10 tests.

Table 15.3 Values taken by CONTI

l(w) 0 1 2 3 4 5
pw 0.07 0.2 0.25 0.33 0.4 0.5



15 Tournament Methods for WLAN 399

The results show different behaviors. We observe as in [13] that slow conges-
tion window methods tend to generate some unfairness. We also notice that the new
method hardly improves the quality of the original IEEE 802.11b norm. Note, any-
way, that our method achieves the best fairness performance.

15.6 Conclusion

In this chapter we have demonstrated the efficiency of selective tournaments in the
wireless context. We have determined their limits in terms of avoidance of colli-
sion, and shown that they perform very well in terms of fairness. The tuning that we
propose achieves to our knowledge the best throughput performance in the 802.11b
framework. This advocates for a more extensive use of these methods, and the build-
ing of devices including this new access control mode. This is not necessarily a sim-
ple task, since the proposed scheme is not compatible with the previous ones, except
with CONTI, but is a promising way to achieve better wireless networks.

Acknowledgements I would like to thank Sara Alouf for her helpful comments. Note also that
this paper benefited from the INRIA/Univ. Nice/CNRS Mascotte project, of which the author is
also a member.
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Chapter 16
Topology Control and Routing in Ad Hoc
Networks

Lenka Carr-Motyckova, Alfredo Navarra, Tomas Johansson, and Walter Unger

Abstract Mobile nodes with the ability to communicate with radio signals may
form an ad hoc network. In this chapter special problems arising for these ad hoc
networks are considered. These include range control, the reduction of interferences,
regulation of power consumption, and localization.

Key words: ad hoc networks, Bluetooth networks, energy saving, power consump-
tion, energy effective routing, interference, clustering, cluster heads, scatternet, pi-
conet, distributed algorithms

16.1 Introduction

Mobile nodes with the ability to communicate with radio signals may form an ad
hoc network. This chapter starts with a brief discussion of important concepts with
respect to topology control and routing in ad hoc networks.

A Mobile Ad hoc Network (MANET) consists of mobile platforms: routers, mul-
tiple hosts, and wireless communication devices which are free to move about arbi-
trarily. The system may operate in isolation, or may have gateways to and interface
with a fixed network. MANETs have several characteristics: dynamic topologies,
bandwidth-constrained links, variable capacity links, energy-constrained operation.
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The following is a list of desirable qualitative properties of MANET control algo-
rithms: distributed operation, loop freedom, on-demand-based operations or pro-
active operations, unidirectional link support.

Sensors

In a MANET, there is no necessity to fix the position of a battery or a solar-powered
wireless device. This advantage is utilized in many applications, i.e., in areas of
missing or too expensive infrastructure, or in areas where the devices have to be
placed randomly, or where the devices are in private environments, like offices
or meeting places [11, 38]. The wireless devices (or sensors) form a so-called ad
hoc wireless network. At start-up, ad hoc wireless networks do not have a known
structure. There is just a collection of devices that may communicate with some
of its neighbors using a common protocol. Consequently, several problems of self-
organizing and economizing with the resources have to be considered for these net-
works.

Range Control and Localization

If the devices are equipped with range control technology, they could choose the
power of the transmission signal to limit the engendered interference without losing
too much of the transmission range. This prolongs also the lifetime of the batteries.
Another problem is the unknown structure of the network at start-up. A protocol for
routing the messages to the designated destinations has to be provided. One way to
accomplish this is by localization; the nodes use some local information, e.g., the
set of reachable neighbors, to compute a rough picture of the relative positions. This
information could be used to solve further problems.

Topology Control

Routing is considered to be one of the most important problems in ad hoc wireless
networks as it is influenced by specific features of these networks: limited battery
power and communication through relaying by intermediate nodes. A transmission
graph is defined by signal propagation and the interference caused by simultane-
ous transmissions to the same node. A transmitting edge disturbs all nodes in its
vicinity. Each node is assumed to have a transmission radius that is needed to reach
all its neighbors in a spanning tree. The interference must be minimized but at the
same time the topology graph must be connected. Topology control algorithms are
used to create subgraphs like spanners or low degree or sparse graphs. These topolo-
gies are known to have limited interference and power consumption. Creating such
subgraphs is done by selecting a subset of the available links in the network graph
G = (V,E) to form a reduced graph GTC = (V,ETC). The general approach of a
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topology control algorithm is to remove long links from the network in order to
force the nodes to use several short hops instead. A routing algorithm has to find a
minimum power path: because the energy consumption grows quadratically with the
distance, we need to use small hops. A short hop can be realized by relatively low
transmission power. On the other hand, if a wrong selection of edges is removed, the
paths become unacceptably long with respect to the number of hops, or the network
may even become disconnected.

The routing objective might be to minimize the energy consumed for each mes-
sage, to minimize the ratio of energy cost per packet, to minimize the maximum
node energy cost (over the entire network), to maximize the lifetime of the network,
to maximize the time to the earliest time a message cannot be sent, or to maximize
the total number of messages successfully carried by the network.

Another energy saving strategy, lazy scheduling, allows the lowest possible trans-
mit power for the longest possible time. Therefore, we observe a trade-off connec-
tivity and sparseness: a sparse topology allows for some nodes to go to a sleep mode,
but this harms the connectivity that is needed for small hop routing. Hence, trans-
mission power of other nodes should be adjusted to topological changes. Usually
ad hoc network models are based on unit disk graphs: nodes are connected by a
link if and only if the Euclidean distance is at most 1. A trade off between scaling
and spanning properties can be observed. Scaling requires that nodes have a con-
stant number of neighbors. This implies that the resulting graph is sparse and nodes
might be connected over a longer path than strictly necessary. A similar trade off
works with nodes: too few nodes cause high energy cost, but too many nodes cause
interference.

Clustering

Clustering constitutes a special kind of topology control. The purpose of cluster-
ing is to find a subset of nodes (cluster heads) such that the rest of the nodes are
visible to at least one cluster head. Cluster heads are defined either as a maximum
independent set [32] or a connected dominating set, or other criteria are applied. A
virtual backbone built of cluster heads is responsible for routing. A routing graph
consists of edges connecting clients with cluster heads and cluster heads with gate-
ways. Data packets in the cluster graph are routed between gateways and cluster
heads. The cluster structure of a network allows local or hierarchical routing that
cuts down routing overhead and interference during transmissions.

Outline

In the following sections we consider problems that are typical for ad hoc networks.
In Section 16.2 we consider the issue of reducing interference by means of topology
control in an ad hoc network. Low interference prohibits retransmissions, which
means a lower consumption of resources in intermediate nodes. Section 16.3 ex-
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plains the energy-aware scatternet formation and routing in Bluetooth networks.
Bluetooth networks require a special topology that is necessary for proper func-
tioning of the network. In Section 16.4 we deal with the bandwidth-constrained
routing. We focus on creating a cluster topology which organizes inter-cluster and
intra-cluster communication separately. This kind of a hierarchical routing saves
energy in the network, because nodes communicate mainly with the cluster-heads.
Cluster-heads create a wireless backbone that accomplishes the inter-cluster com-
munication. The hierarchical routing decreases the size of the routing tables, the
number of routing updates, and therefore the energy needed for routing. The issue
of the self-localization problem for each device is presented in Section 16.5.

16.2 Reducing Interference in Ad Hoc Networks

A collection of topology control algorithms that reduce interference in ad hoc net-
works will be presented in this section. Different metrics for interference will be dis-
cussed. Especially, the API algorithm (considering a routing issue) will be stressed
here.

Transmitting nodes influence the ability of other nodes to receive data. A node
is not able to receive data from its neighbor if another neighbor is transmitting at
the same time. This mutual disturbance of communication is called interference.
Reducing interference in the network leads to fewer collisions and packet retrans-
missions, which indirectly reduces power consumption and extends the lifetime of
the network. Therefore, reducing the interference is an important goal for topology
control and energy saving algorithms. This is achieved by selecting only a subset of
the available links to be used for transmission to reduce the amount of interference.

An important question is how the amount of interference in a network should be
measured. Let us recall that a transmission graph of a network is defined by signal
propagation of every node in a network. A set of neighbors of node u is defined as
a set of nodes that are able to receive a signal from u. The interference of the entire
network is defined as the maximum edge coverage Cov(e) in [4]: the maximum
number of nodes affected by one specific link in the network. The authors show that
there is no local algorithm to find the topology that gives the lowest maximum edge
coverage, since knowledge of the entire network topology is needed. However, they
present the algorithm LISE (Low Interference Spanner Establisher) that solves a
similar problem: find the graph with the lowest possible maximum edge coverage
that also is a t-spanner, where t is a constant that can be chosen freely.A t-spanner S
for graph G is a subgraph such that distance dS(p,q) ≤ tdG(p,q), for any two vertices
p, q of G.

This work is expanded upon in [28], where an alternative, receiver-centric, inter-
ference model is introduced. Unit disk graph UDG is used as a network graph: two
nodes are connected with an edge if and only if they are at distance at most 1. In this
model, the coverage of a node v in the UDG G is defined as the number of nodes
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covering v with their disks induced by their transmission ranges. The interference of
the entire network is defined by the maximum coverage for any node in the network.

In [24] an alternative interference metric that corresponds to the average interfer-
ence of the entire network is presented. The interference is defined as the sum of the
edge coverage of all edges in the network, divided by the number of nodes in the
network n.

I(G) = ∑
u,v∈V

Cov(e)/n

A different interference model is presented in [13]. This metric also takes the
transmission power into account. If the number of neighbors is constant when a node
increases or decreases its transmission power level from P1 to P2, the interference
measure should increase or decrease as well. Also, if two nodes N1 and N2 are using
the same transmission power level, but have different numbers of neighbors, the
interference measures of the two nodes should differ to reflect the difference in the
number of neighbors.

Other topology control algorithms are often based on computational geometry
structures, such as the minimum spanning tree [27], or the Delaunay triangulation
[12]. In [29], Rodoplu and Meng present an algorithm that keeps all energy-optimal
paths. Their topology, which takes an energy model as input, is a general version of
the Gabriel graph [8]. The XTC topology control algorithm [34] is shown to produce
a subgraph of the original graph such that an edge between nodes u and v cannot
exist if a node w exists such that dist(uv) ≥ max(dist(uw),dist(vw)).

In this section we discuss the Average Path Interference (API) topology control
algorithm, originally introduced in [16]. API is a topology control algorithm that
minimizes the average path interference. The average path interference of a graph is
defined as the sum of interference for all interference-optimal paths between node
pairs, divided by the number of all node pairs in the graph. The interference-optimal
path between nodes u and v is the path IoptPuv = {e1,e2, . . . ,ek} between u and
v that has the lowest interference, according to the following definition: the inter-
ference of a path is defined as the sum of the coverage of all edges in the path,
according to the definition of edge coverage in [4]. In other words TotIoptPI(G)
is a sum of interferences of interference-optimal paths between all node pairs in a
graph.

TotIoptPI(G) = ∑
u,v∈V

∑
e∈IoptPuv

Cov(e)

If the resulting value is divided by the total number of node pairs that are con-
nected in G, we will get the average interference for all minimum-interference paths.
A metric that considers the interference when shortest path routing is used can be
obtained by replacing the interference-optimal path IoptPuv with the shortest path
SPuv:
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TotSPI(G) = ∑
u,v∈V

∑
e∈SPuv

Cov(e)

In other words TotSPI(G) is a sum of interferences of shortest paths (in the num-
ber of hops) between all node pairs in a graph. The average interference for all short-
est paths is defined as TotSPI(G) divided by the number of node pairs connected in
G.

The maximum interference difference metric is defined as the largest difference
in interference between IoptPuv in the original graph and IoptPuv in the graph that
is the output of a topology control algorithm.

The Average Path Interference (API) algorithm [16] consists of two steps: First a
Gabriel subgraph of the original graph is computed. A Gabriel Graph is defined as
follows: there is an edge between u and v if there is no vertex w in the circle with
diameter chord (u,v). The next step is to remove links that lead to high interference.
The coverage of each link can be calculated locally. If a link can be replaced with
two links that together have smaller coverage, it is removed. The graph produced by
the algorithm is an energy spanner. For the proof we refer to [16]. The API algorithm
was compared to XTC and LISE algorithms by simulations. The API topology gives
results close to those of the XTC algorithm, and far better than LISE in the following
measures:

Using the average interference-optimal path metric, the API algorithm generally
gives the best results. Both the LISE and the API algorithms preserve almost all
interference-optimal paths (cf. Figure 16.1). When considering the average path in-
terference with respect to the shortest path, API and XTC give a lower interference
than LISE (cf. Figure 16.2). Using the maximum interference difference metric, the
API topology has lower interference than both LISE and, especially, XTC algo-
rithms (cf. Figure 16.3).

Fig. 16.1 The average interference-optimal path interference
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Fig. 16.2 The average shortest-path interference

Fig. 16.3 The biggest difference between interference in a interference-optimal path compared to
the interference-optimal path in the original topology

16.3 Energy Aware Scatternet Formation and Routing

In this section we consider energy-efficient routing in Bluetooth networks. These
networks must obey certain rules imposed on their topology. Whenever two Blue-
tooth devices communicate, one must assume the role of a master and the other the
role of a slave. Together they form a piconet. Each piconet consists of one master
and an unlimited number of slaves, but there can only be at most seven active slaves
simultaneously. If there are more than seven slaves in a piconet, some of them must
therefore be parked, i.e., inactive. A collection of piconets is called a scatternet.
In order to communicate between piconets, two nodes from neighboring piconets
must get connected. A node can switch between master and slave mode on the time
bases. In the same manner, a node can change a membership in different piconets at
different time slots.

Recently, there has been an increased interest in routing algorithms in ad hoc
networks that take the energy levels of the nodes into account. An example of
an energy-aware routing algorithm is the Capacity-competitive (CMAX) algorithm
[17], where each link in the network is assigned a weight. The weight of a link in-
creases with the energy consumed by the sending of a unit message over the link,
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and with the increase of energy utilization of the node when it transmits message
m over the link. The shortest path with respect to link weights is selected by the
CMAX algorithm. This algorithm requires that each node knows the energy utiliza-
tion of the other nodes in the network. In order to spread the power information
through the network, each node periodically broadcasts its power information to the
nearest nodes.

The max-min zPmin algorithm [20] finds paths that avoid nodes with only a small
fraction of their battery power remaining. The goal is to find the path with the max-
imal minimal fraction of remaining power after the message is transmitted. How-
ever, the path must also not use more power than a constant factor of the smallest
possible power consumption Pmin. This results in finding a path that avoids using up
the power of individual nodes, while still maintaining an upper bound on the total
power consumption of the path.

Both of the above algorithms require that each node have full knowledge of the
topology of the network, an assumption that is not realistic in larger networks.

Another approach is to extend existing on-demand algorithms in order to com-
pute energy-efficient paths. On-demand routing algorithms create a route only after
a demand for the routing of a message. The authors in [25] enhance the Ad hoc On
Demand Distance Vector (AODV) routing protocol by adding energy information
in the route request messages. In this way, the destination node can decide on the
path with the lowest energy cost. The extended AODV algorithm only considers to-
tal energy cost and estimated bit error rates in order to select the path; it does not
consider the amount of energy that remains in the nodes.

Wang et al. [33] present a power-aware on-demand routing protocol that takes
the remaining energy of the nodes into account. The routing algorithm anticipates
energy requirements of a transmission and makes energy reservation for it. The
metric used for a path selection takes to account the shortest path and the maximum
lifetime of the network.

Routing in Bluetooth networks presents more challenges than routing in general
ad hoc networks. For every communication between two Bluetooth devices they
must form a master-slave relationship. A Bluetooth node can only take part in one
such relationship at a time. Therefore, creating a path between two Bluetooth nodes
is not a trivial problem, especially if there are several simultaneous communications
in the network that intersect each other. A proactive algorithm that creates a routing
path in scatternet formation before there is a demand for transmission is described
in [37]. A single node initiates the construction of a Bluetree. The root node assumes
the role of master and selects all its neighbors as slaves, and the slaves in turn assign
themselves as masters in new piconets and search for unassigned neighbors to be
their slaves. This procedure is repeated until the entire network is covered by the
Bluetree.

In [21] the authors use location information in order to produce a planar sub-
graph, which can improve the performance of routing algorithms. This optional step
is followed by assigning roles to the Bluetooth nodes.

Recently, there has been work that aims to extend the lifetime of scatternets by
considering the amount of power remaining for each node [36]: when a node wants
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to initiate a communication, it sends out a route request to the destination by flood-
ing the network. When the destination receives the request it responds with a route
reply. To form the temporary scatternet between the source and the destination, the
destination sets its role to master, and for the rest of the nodes in the path every
other node is a master while the other nodes are slaves in two different piconets.
No node needs to know about the topology of the entire network. This approach
has a relatively simple mechanism to avoid low-powered nodes: either a node has
enough energy to forward a message or it does not. When a node is reached by a
route request there is no way to know from which path the packet comes and what
the energy condition of the entire path is.

In the following paragraph we consider routing data between scatternets in a
Bluetooth network over a path that consumes less energy compared to other possi-
ble paths [15]. The two main differences between the algorithm presented in [15]
and Wang’s algorithm is that the latter does not take the total power cost of paths
into account, and the cost metric does not change over time to reflect the changing
amount of energy in the nodes. In [15] a creation of a routing path over a piconet
sequence is considered. The on-demand scatternet formation and routing algorithm
create a local, temporary scatternet that forms a path between the sending and re-
ceiving nodes for the duration of the data transfer. The scatternet is created just for
the purpose of a single transmission between the sender and the receiver, and the
existence of the scatternet (a sequence of piconets) is limited just to the time of data
transmission. It means that the topology (definition of piconets) is disregarded after
the transmission is completed.

The routing algorithm starts by flooding the network with a request for a route
(route request procedure). Several alternative paths between the source and the des-
tination are found, while measuring the energy parameters for each path. The idea
is to choose a path that avoids nodes that have a small amount of energy left, while
still keeping the total energy cost of the path as low as possible. When evaluating
the quality of a path (with respect to the energy levels in the nodes), the following
definitions will be used:

• the potential remaining power of every link (i, j) in the path as

rpi j = pi − e(m)i j

where pi is the power level at node i, and e(m)i j is the power needed to send the
message m directly from i to j.

• the amount of energy needed to send the message m over the path P: the metric
that represents the energy consumption of the path P is defined as

Pow(P) =
n

∑
i=1

e(m)li

where n is a sequence number of the last node in the path and li is the ith link in
the path.
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The minimum Min(P) = minl∈P rpl value for each path received during the route
request procedure S is computed as the minimum potential remaining power of all
links in path P. The threshold value rpthreshold is defined as a median of Min(P) over
all received paths in S. The basic idea is to avoid nodes which would be drained of
power if they were to forward the data message. In order to achieve that, all paths
P ∈ S such that

Min(P) < rpthreshold

are canceled. Of the remaining paths in S, the path P with the lowest Pow(P) is
chosen.

In order to evaluate the algorithm, simulations were performed to compare it with
a routing algorithm that always selects the path that consumes the least amount of
energy. Each node started with the same amount of energy. At every time step, data
transmissions between randomly selected sender and receiver nodes were generated.
This was repeated until the first node in the network had depleted all its power. The
results from the simulations showed that the algorithm in [15] extends the lifetime of
the network compared to choosing energy-optimal paths without taking the power
level of the nodes into account. Figure 16.4 show the average distribution of energy
in the network when the first node had depleted its power. The presented algorithm,
represented by the dashed line in the graph, had consumed more energy (at least
partly due to the fact that it had routed more messages), but the load had been spread
somewhat more evenly through the network.

Fig. 16.4 Remaining energy in nodes
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16.4 Bandwidth-Constrained Clustering

The purpose of clustering algorithms is to divide the original network graph into
non-overlapping subgraphs. The resulting structure is used for different control
functions, including routing. The control functions decrease interference and the
amount of global traffic, and therefore decrease energy consumption of the network.

In this paragraph we consider only clusters, where the slaves are direct neighbors
of its cluster head. Recent work in clustering for wireless networks began with the
work of Gerla and Tzu-Chieh Tsai [10]. In their algorithms, if a node hears from a
cluster head with a lower ID than itself, it resigns and uses that node as a cluster head
instead. Another version uses the degree of the nodes. The idea is that nodes with a
high degree are good candidates for cluster heads, since the resulting clusters will
be larger. However, even small changes in the network topology can result in large
changes in the degree of the nodes. This means that the cluster heads are not likely to
stay as cluster heads for a long time, and the clustering structure becomes unstable.
On the other hand, using the Lowest-ID algorithm, the nodes with a low ID stay
as cluster heads most of the time. This results in an unfair distribution of load that
could lead to some nodes losing power prematurely. Amis and Prakash [1] present
additions to these clustering mechanisms that help avoid cluster head exhaustion by
providing virtual IDs to the nodes.

An algorithm that makes it possible to choose clusters with a radius r larger than
1 (the slaves are r hops away from its head) is presented in [2]. This algorithm pro-
duces large clusters that are relatively stable compared to the previously mentioned
algorithms. This algorithm also uses the node’s ID values when forming the clusters.
First, the nodes set their winner value (possible leader ID) to be their ID number,
and broadcast it. If one node receives a larger winner value than its own, it switches
to the new winner value instead. This procedure is repeated r times. The result is
that the larger ID values spread through the network. The process is repeated, ex-
cept that lower winner values now overtake larger ones. The purpose is to achieve
a balance in the cluster sizes, instead of having the clusters with the largest IDs be
much larger than the others. If clusters of constant size is the primary objective,
this algorithm is the only one that guarantees the property. In [9], another algorithm
creates a cluster structure that is, with high probability, a constant approximation of
the optimal solution. In this case, an optimal cluster structure is the one that uses the
lowest number of clusters of radius r to cover the network at this time.

McDonald and Znati [23] present an algorithm that forms clusters of nodes that
have sufficient probability to stay connected during a specific time interval. The al-
gorithm requires that movements of nodes in an ad hoc network are predictable,
something which might not always be true. In [22], Lin and Gerla present an al-
gorithm that dynamically maintains clusters in a dynamic environment. A cluster-
based energy conservation algorithm including the cluster formation is described in
Xu et al. [35]. Ryu, Song, and Cho [30] suggest that by using a distributed heuris-
tic clustering scheme, the transmission power can be minimized. A similar problem
of power control supported by clustering is solved in Kawadia and Kumar [18]. A
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hierarchical clustering proposed by Bandyopadhyay and Coyle [3] is used to save
energy in wireless sensor networks.

Most existing clustering algorithms create new clustering structures from scratch
after a specified time interval in order to maintain cluster structure properties. In [14]
the maintenance function is interleaved with the traditional clustering function. The
algorithm consists of two parts, the clustering part, where a clustering structure is
created from scratch, and the maintenance part, where the existing clustering struc-
ture is modified where necessary.

The clustering part of the algorithm starts with a broadcast phase. Nodes broad-
cast their leader values (initialized to the node’s ID) to all the neighbors, and wait
for broadcasts from all of them. When a node receives a value that is higher than its
own, it sets its leader value to the received value. When all nodes have exchanged
their messages, one round of the broadcast phase is completed. There are r broad-
cast phases, where r, a parameter of the algorithm, is the maximum radius of the
clusters that are created. At the end of the last broadcast phase, the larger ID values
have spread through the network.

Once the clustering part is completed, the maintenance part of the algorithm is
performed. If the path to the cluster leader, which is checked by regular messages,
does not exist anymore, the node will try to find a new path to a cluster leader
through one of its reachable neighbors. Otherwise, it becomes an orphan node and
starts up the clustering part of the algorithm.

The algorithm by Johansson and Carr [14] has time complexity of O(r), where
no node is more than r hops away from the cluster head. Since r is likely to be a very
small constant, this is an acceptable complexity. The overall message complexity is
low, due to the nature of the algorithm and the maintenance part of the algorithm.

The number of messages depends largely on the radius of the clusters created.
While it might be advantageous to create clusters with radius larger than 1, it is
important to avoid unnecessary broadcasting. The algorithm only uses one broad-
cast phase. Clusters created by the algorithm have limited radius. The properties of
different clustering algorithms covered here are summarized in Table 16.1.

16.5 Localizing Using Arrival Times

In this section, the problem of localizing random sensor networks is considered.
There are two approaches: the first one uses information about the reachable neigh-
bors and the second one uses the arrival times of messages within the network.

We shortly explain the first approach. If the sensors of a network are laid out on
the plane, then some of the nodes form the outer boundary of the network. There
may be more boundaries within the network, due to some holes. These boundary
nodes may be identified, because they have a lower degree than the inner nodes. In
a second step each node may compute the minimal number of hops to any border
node. The nodes where the distance to the border is maximal compared to the local
neighbors form the backbone of the structure of the network. Now disjoint groups
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Table 16.1 Summary of different clustering algorithms

Algorithm Properties Complexity Strengths Weaknesses

Lowest-ID
(LCA2) [10]

Cluster head
selection based on
node ID.
Cluster head is
directly linked to
any other node in
the cluster.

Constant time
complexity,
message
complexity
increase with
denseness of
graphs.

Fast and simple
algorithm.
Relatively stable
clusters.

Small clusters.
Some cluster
heads likely to
remain for long
time.

Highest-
connectivity
[10]

Cluster head
selection based on
highest degree,
otherwise same as
LCA2.

Same as LCA2. The nodes with
highest degree are
good candidates
for cluster heads.

Very unstable
clusters.

Max-min d-
cluster [2]

Cluster radius d,
where d is a
constant.

O(d) time and
storage
complexity.

Large and stable
clusters.

High number of
messages sent.

Discrete mobile
centers. [9]

One-radius
clusters are
produced. The
number of clusters
is a constant-factor
approximation of
the smallest
possible number.

O(sn) storage
complexity, where
s is usually small,
but can be up to n.
Time complexity
O(log logn).

Close to optimal
clustering structure
with respect to
number of clusters.

No simulations to
show cluster
stability of the
algorithm.

Hierarchical
[31]

No fixed diameter
of each cluster.
Cluster size
< k,2k−1 >,
where k is a
constant.

Time complexity
O(E).

Guaranteed upper
and lower bound
on cluster size.

Slow algorithm.
Cluster radius can
be up to k.

Adaptive clus-
ters [23]

Created clusters
should be
connected in time t
with probability α .

Undefined. α and t can be
varied in order to
adapt to different
mobility rates.

Difficult to predict
future
connectivity.

Maintenance Added
maintenance
phase.

O(r) where r is
the radius of the
clusters.

Repairs lost
connections.

Small clusters.

of nodes may be formed using some of the backbone nodes. There are two reasons
to form these disjoint groups. The first is that each node has precisely one leader.
Secondly, it is now a more simple task to get the overall topology of the network.
The topology of the groups provides enough information to localize the nodes of the
network. This nice technique is presented in a series of papers [5–7, 19].

A second approach is presented in [26]. Random instances of sensor networks
are studied inside a square area. The power of transmission Ps is fixed for each sen-
sor. A small percentage of the sensors called Anchors are assumed to be equipped
with GPS capabilities. Hence, those sensors have the knowledge of their actual po-
sition; all other ones are assigned a random estimation of their position. Moreover,
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sensors are equipped with Time of Arrival (ToA) capabilities, i.e., they are able to es-
timate their distances to the corresponding neighbors. The network is asynchronous.
Hence, sensors can be in one of two different operational states: sleep and wake. In
the sleep state a sensor can receive the position communications from other sensors,
and computes its new position accordingly. In the wake state a sensor communicates
the information concerning its estimated position to its neighborhood. Each sensor
is assumed to operate for a predetermined time interval.

anchors masses springs the composed system

Fig. 16.5 Mass-spring system. Circles on the board of the composed system represent the real
position of the corresponding masses

The modeling can be seen like a mass-spring system; see Figure 16.5. Sensors
are masses. Masses representing anchors are well positioned in the area, while all
others have a random estimation of their actual position. When a sensor performs a
transmission, receivers can derive the distance at which the sender should be. This is
accomplished by connecting senders and receivers by means of springs. The resting
length of the spring is the length estimated by the ToA equipment, while the length
assigned is equivalent to the distance of the estimated positions of the masses. Due
to this, masses are subject to a set of forces generated by the springs. These forces
tend to move the whole system to a final configuration of equilibrium. This is ac-
complished by means of successive transmissions from each sensor of its estimated
position until the desired equilibrium is reached. That is, forces acting on the masses
are smaller than a fixed threshold. As in a real mass-spring system, the algorithm
makes use of two main parameters, i.e., the damper and the elastic constants of the
springs. The former reflects the stability of springs with respect to oscillations. The
latter reflects the ability of springs to recover and return to their original shape after
being stressed or deformed. Those two parameters must be well tuned in order to
obtain good performances of the convergence process to the equilibrium.

The Localization Algorithm exploits a framework that computes the dynamics of
mass-spring systems. The algorithm, from now on called Basic Localization algo-
rithm (BL), is composed of two phases: an Initialization phase and an Propagation
phase.

In particular, in the Initialization phase a random distribution of sensors and an-
chors is simulated. Each sensor si computes the set Nsi of sensors within its trans-
mission range. Then, for each s j ∈ Nsi , a spring with endpoints si and s j is created.
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Initially, every anchor ai communicates its position to each sensor s j ∈ Nai in
order to give a first rough estimation of the sensors’ positions. Then, each informed
sensor communicates its estimated position to its neighbors that have not estimated
their position yet. The Initialization phase ends when all sensors have an estimation
of their positions. The obtained configuration will be referred as the Initial Config-
uration.

The Propagation phase computes the dynamics of the mass-spring system. Each
mass si is subject to an internal force Fsi that is the result of the forces generated
by each spring connected to si. At each time step, each mass si modifies its position
according to the internal force Fsi . At the end of the Propagation phase, the final con-
figuration of the mass-spring system approximates the Target Configuration, where
the Fsi acting on each mass si is close to zero. The Propagation phase ends when
the force acting on each mass is less than a given threshold Ftoll .

The BL algorithm can be modified in order to minimize the number of sensor
transmissions needed to compute the Target Configuration. The gain with respect to
the time required by BL to converge is even more considerable when a ±1% error
of the sensors’ ToA equipment is considered.

The following sensor localization strategies were proposed in order to improve
the BL algorithm:

• AAD, Ad Hoc Anchor Deployment strategy: a limited number λ of anchors are
deployed on the border of the square area.

• DES, Dynamic Elastic constant Strengthening strategy: springs connecting at
least one anchor have the elastic constants increased by a factor γ > 1. Therefore,
anchors have more influence in the localization problem computation.

• VA, Virtual Anchors strategy: if a sensor does not change its position for a given
successive number of steps T , its status is moved to anchor.

• CA, Computed Anchors strategy: if a sensor has some fixed number K of anchors
in its neighborhood, it computes its position from the positions of those anchors
and becomes an anchor itself.

In [26], comparisons among strategies and combinations of such strategies have
been evaluated for hundreds of instances under different assumptions with respect
to the density of the network and the percentage of anchors.

16.6 Conclusions

In this chapter we have discussed selected algorithmic topics in the area of mobile
ad hoc networking. In total, four topics were discussed.

In contrast to most of the related work, we studied in Section 16.2 at the interfer-
ence of entire paths instead of interference of individual edges or nodes. Three new
interference metrics that aim to reflect the interference of the entire network have
been presented. A new topology control algorithm that produces an energy-spanning
graph is also presented.
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Clustering presents one of the approaches to decrease power consumption in ad
hoc networks. In Section 16.4 an overview of different approaches to clustering in
ad hoc networks is presented. We review a new bandwidth-constrained clustering
algorithm that minimizes communication overhead, while still producing relatively
large and stable clusters.

In Section 16.3 we presented the case of energy-aware scatternet formation that
is used for routing in Bluetooth networks. The algorithm requires more traffic over-
head compared to algorithms that do not take the power consumption into account.
On the other hand, the algorithm distributes the data traffic as evenly as possible
among all nodes in the network.

In Section 16.5 several localization algorithms are presented. For all these sec-
tions, good strategies and algorithms are presented. The consideration of the com-
bination of the above problems remains open; also, a nice theoretical background is
missing.
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19. Kröller, A.: Algorithms for topology-aware sensor networks. Ph.D. thesis, TU Braunschweig
(2008)

20. Li, Q., Aslam, J., Rus, D.: Online power-aware routing in wireless ad-hoc networks. In: In
MOBICOM, pp. 97–107 (2001)

21. yang Li, X., Stojmenovic, I., Wang, Y.: Partial delaunay triangulation and degree limited lo-
calized bluetooth scatternet formation. In: in IEEE Transactions on Parallel and Distributed
Systems, pp. 17–32 (2003)

22. Lin, C. R., Gerla, M.: Adaptive clustering for mobile wireless networks. IEEE Journal on
Selected Areas in Communications 15, 1265–1275 (1997)

23. Mcdonald, A. B., Znati, T.: A mobility based framework for adaptive clustering in wireless
ad-hoc networks. IEEE Journal on Selected Areas in Communications 17, 1466–1487 (1999)

24. Moaveni-Nejad, K., Li, X. Y.: Low-interference topology control for wireless ad hoc networks.
In: ACM Wireless Networks, pp. 41–64. IEEE Press (2005)

25. Nadeem, T., Banerjee, S., Misra, A., Agrawala, A.: Energy-efficient reliable paths for on-
demand routing protocols. In: Sixth IFIP IEEE International Conference on Mobile and Wire-
less Communication Networks (2004)

26. Navarra, A., Tofani, A.: Distributed localization strategies for sensor networks. In: 4th IEEE
International Conference on Mobile Ad hoc and Sensor Systems (MASS), pp. 1–3 (2007)

27. Ramanathan, R., Rosales-Hain, R.: Topology control of multihop wireless networks using
transmit power adjustment. In: INFOCOM 2000. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies, pp. 404–413. IEEE (2000)

28. von Rickenbach, P., Schmid, S., Wattenhofer, R., Zollinger, A.: A robust interference model
for wireless ad-hoc networks. In: IPDPS ’05: Proceedings of the 19th IEEE International Par-
allel and Distributed Processing Symposium (IPDPS’05) - Workshop 12, p. 239.1. IEEE Com-
puter Society, Washington, DC, USA (2005). DOI http://dx.doi.org/10.1109/IPDPS.2005.65

29. Rodoplu, V., Meng, T. H.: Minimum energy mobile wireless networks. IEEE Journal on
Selected Areas in Communications 17, 1333–1344 (1999)

30. Ryu, J., S. H.Song, Cho, D.: New clustering schemes for energy conservation in two-tiered
mobile ad hoc networks. In: IEEE transactions on vehicular technology, vol. 51, pp. 1661–
1668 (2002)

31. S.Banerjee, Khuller, S.: A clustering scheme for hierarchical control in multi-hop wireless
networks. Tech. Rep. CS-TR 4103, University of Maryland, College Park (2000)

32. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set algorithm for
growth-bounded graphs. In: PODC ’08: Proceedings of the twenty-seventh ACM symposium
on Principles of distributed computing, pp. 35–44. ACM, New York, NY, USA (2008). DOI
http://doi.acm.org/10.1145/1400751.1400758

33. Wang, K., long Xu, Y., liang Chen, G., feng Wu, Y.: Power-aware on-demand routing pro-
tocol for MANET. In: ICDCSW ’04: Proceedings of the 24th International Conference on



418 L. Carr-Motyckova et al.

Distributed Computing Systems Workshops - W7: EC (ICDCSW’04), pp. 723–728. IEEE
Computer Society, Washington, DC, USA (2004)

34. Wattenhofer, R., Zollinger, A.: XTC: A practical topology control algorithm for ad-hoc net-
works. In: Proc. of the 4 th Int. Workshop on Algorithms for Wireless, Mobile, Ad Hoc and
Sensor Networks (WMAN (2004)

35. Xu, Y., Bien, S., Mori, Y., Heidemann, J., Estrin, D.: Topology control protocols to conserve
energy in wireless ad hoc networks. Tech. rep., Center for Embedded Networked Computing
Technical Report 6 (2003)

36. Y.Liu, M. J.Lee, T. N.Saadawi: A bluetooth scatternet route structure for multihop ad hoc
networks. IEEE Journal on Selected Areas in Communications 21, 229–239 (2003)

37. Zaruba, G. V., Basagni, S., Chlamtac, I.: Bluetrees-scatternet formation to enable bluetooth
based ad hoc networks. Communications, 2001. ICC 2001. IEEE International Conference on
1, 273–277 (2001)

38. Zhao, F., Guibas, L.: Wireless sensor networks: an information processing approach. Morgan
Kaufmann (2004)



Index

(l,k)-routing, 265
1+1 protection, 139, 140
1:1 protection, 140
3-coloring, 296

ABC, 338
ad hoc network, 55, 401–416
adaptive broadcast consumption, 338
add/drop multiplexer, 63, 73
adjacent-channel interference, 49, 286, 293
ADM, 63
administrative weight, 201, 203, 204, 235
aggregated

node-link formulation, 99, 207, 208, 230
traffic flow, 35, 207

algorithm, 2
approximation, 23, 71–72, 75, 77, 271,

338–342, 351–352, 372–373
branch-and-bound, 19
branch-and-cut, 21, 111, 202, 207
branch-and-cut-and-price, 22
branch-and-price, 22
deterministic, 11
distributed, 9, 318–319
efficient, 2
exact, 14
greedy, 23
local search, 24, 42, 50
randomized, 11, 319–323, 378–400

algorithmic game theory, 243
all-optical network

communication game, 260
ant colony optimization, 24
AOLS, 121, 122
AP, 286–287
AP location problem, 289, 292
API, 405

approximation algorithm, 23, 71–72, 75, 77,
271, 338–342, 351–352, 372–373

approximation ratio, 23
approximation scheme, 24
APX, 23
arborescence, 7

root, 7
artificial neural network, 24
AS, 199
ASTN, 79
ATM, 79, 200
autonomous system, 199, 201
availability, 156
average path interference, 405

backup path, 31, 138
bandwidth utilization, 206
Bellman property, 212
Benders’ decomposition, 207
best response walk, 245
big-M, 230

coefficients, 234
models, 205

binary variable, 13
BIP, 338
Bluetooth, 407

piconet, 407
scatternet, 407

branch-and-bound algorithm, 19, 226
branch-and-cut algorithm, 21, 202, 207, 209,

221
branch-and-cut-and-price algorithm, 22
branch-and-price algorithm, 22
broadcast incremental power, 338
broadcasting, 311

radio network, 311
broadcasting schedule, 313



420 Index

broadcasting sequence, 312

cellular phone network, 46, 49
centralized system, 9
channel, 49
channel assignment problem, 46, 284, 289,

293–298
chromatic number, 48, 362
circuit

undirected graph, 6
clique, 6
Clos network, 22
clustering, 403, 411–412
Cmax-WGP, 361
co-channel interference, 47, 49, 293
collision, 287, 359
collision avoidance, 378–400
collision detection, 314
collision-as-silence, 314
combinatorial algorithm, 23
combinatorial optimization problem, 8
commodity, 33, 99
communication complexity, 9
communication game, 260
communication radius, 359
competitive ratio, 10
completion time, 361
complexity class, 11
component, 6
computational complexity, 11

APX, 23
APX-hard, 24
NP, 11
NP-complete, 12
NP-hard, 12
NPO, 23
P, 11

conditional wakeup, 315
congestion, 266
congestion game

graphical linear, 257
congestion game, 246, 259
connected graph, 6
connection, 138
connectivity, 29

edge, 6
vertex, 6

constraint
adjacent-channel interference, 50
assignment, 50
budget, 52
capacity, 32, 34, 39, 52, 224

link, 188
logical link, 100

node, 100
physical link, 100

co-channel interference, 50
conflict, 208, 209, 225, 226
conflict-eliminating, 218
connectivity, 28
coverage, 51, 52
flow conservation, 32, 34, 38, 100, 187
linear, 234
link diversification, 100
node diversification, 100
routing, 229
shortest path, 217
shortest path routing, 230
subflow uniformity, 188

contention sets, 284
contention window, 379
convex hull, 14
convex optimization problem, 24
convex set, 4
coordination mechanism, 250
CoS, 183
cost function smoothing algorithm, 42

randomized, 44
cost sharing game, 246

graphical Shapley, 257
multicast, 260

cost sharing method, 251
egalitarian, 252
egalitarian-path-proportional, 252
path-proportional, 252
Shapley value, 252

coverage planning, 284
critical radius, 367
critical region, 367
cross-layer optimization, 87
CSMA-CA, 287–289, 378–400
cut, 33, 106
cutting plane, 20, 207, 225

connectivity cuts, 108
cutset inequalities, 106
flow cutset inequalities, 107

cycle
directed graph, 7
undirected graph, 6

cycle property, 213

D-LSP, 190
data gathering problem, 358
data throughput, 284
De Bruijn graph, 22
decision problem, 11
decision variable, 13
dedicated protection, 140



Index 421

demand
point-to-point, 34

demand volume, 203, 204
design theory, 76
deterministic effective computing system, 11
DiffServ, 181
digraph, 6

cycle, 7
path, 7
strongly connected, 7

Dijkstra’s algorithm, 23, 30
Dijkstra-Prim algorithm, 26
dilation, 266
directed acyclic graph, 7
directed cycle, 7
directed graph, 6
directed links, 203
DISCNET, 225
discrete mathematics, 2
disjoint connecting paths problem, 37
distributed algorithm, 9, 318–319
distributed computing, 3
distributed system, 9
down-link, 49
DSATUR heuristic, 50
dynamic column generation, 18, 36
dynamic programming, 23

ECMP, 204
edge connectivity, 6
efficient algorithm, 2
ELS, 121, 122
energy-efficient routing, 407
equal cost multi-path, 204
Erlang fixed point, 167
exact algorithm, 14
extreme ray, 215

facility location problem, 52, 284
fading, 359
fairness, 252, 397–399
FAP, 46
FDMA, 46
Fibonacci heap, 27
flow, 32

ECMP, 204, 229
negative, 215
positive, 215

flow conservation, 32, 187
flow time, 361
Fmax-WGP, 361
forest, 27, 28
forwarding table, 201, 232
FPQ, 194

frequency assignment problem, 46, 293, 294
minimum blocking, 49
minimum interference, 49
minimum span, 48

Fsum-WGP, 361
full-duplex, 270, 358
function, 4

G-WiN, 227
game theory, 242
gathering problem, 358
general network planning problem, 41
generating function, 383–384
genetic algorithm, 24, 223
gigabit ethernet, 200
global backup path, 139
global optimal solution, 24
GMPLS, 79
gossiping, 330

radio network, 330
gradient method, 164
graph, 4

bipartite, 5
circuit, 6
complement, 5
component, 6
connected, 6
cycle, 6
directed, 6
path, 5
spanner, 38
spanning tree, 6

minimum cost, 26
tree, 6
undirected, 4

graph theory, 2, 22
greedy algorithm, 23, 27
grooming, 64, 66, 97

bidirectional ring, 77
cross-layer optimization, 87
directed path, 76
dynamic grooming, 83
engineering, 86
multilayer, 78
multilayer mesh network, 79
resilience, 85
unidirectional ring, 76

grooming factor, 65, 66
grooming ratio, 66
GSM, 46, 49

half-duplex, 270, 358
Hamiltonian cycle, 29
hashing tables, 223



422 Index

heuristic, 24
constructive, 24
local search, 24

hexagonal network, 274
hitting set, 352
hop-count weight system, 204
hyperbolic integer programming, 296–298

IEEE 802.11, 285–289
IGP, 201
IMBM, 338
incidence vector, 13
incomplete information, 257
independent set, 6

maximum weighted, 8
induced matching, 364
integer flow problem, 37
integer linear program, 18, 98–101, 128–131,

150–151, 207–211, 221, 234, 292–294,
297–298

integer linear programming
branch-and-bound, 19
branch-and-cut, 21
branch-and-price, 22
complete description, 21
cutting plane, 20, 105, 207, 225
heuristics, 103
linear relaxation, 19
preprocessing, 101
separation algorithm, 21
valid inequality, 20

interconnection network, 22
interference, 47, 284, 293, 359, 404, 411

adjacent-channel, 49, 286, 293
co-channel, 47, 49, 293

interference graph, 47
interference radius, 359
interior gateway protocol, 201
interior point method, 17
intermediate system to intermediate system,

201
internet protocol, 199, 236
inverse shortest path problem, 202, 205, 206,

209, 211, 234
IP, 79, 180, 199
ISP, 206
iterative maximum-branch minimization, 338

Jain index, 397–399

k-colorable induced subgraph, 49
Kautz graph, 22
kissing number, 339
Kleinrock delay function, 231

Kruskal’s algorithm, 27

label
considering routing, 126
definition of, 119
forwarding using, 120
label merging, 123
label space definition, 120
label stacking, 124
label stripping, 122
MERLIN groups, 123
MPLS, 121
operations, 120
scalability problems

in AOLS, 122
in ELS, 122
with RSVP-TE, 121

stack, 120
label space, 120

scopes of, 120
label switched path, 120
Lagrangian relaxation, 235
lazy scheduling, 403
LER, 182
light termination equipment, 66, 70
lightpath, 97
linear program, 15
linear programming

dynamic column generation, 18
formulation, 210
Fourier-Motzkin elimination, 16
interior point methods, 17
Simplex method, 16
techniques, 209

linear relaxation, 19, 210, 211, 220, 221, 226
link

logical link, 96
physical link, 96

link capacities, 203
fixed, 232, 234

link metric, 203
link utilization, 206
link weight optimization

with a commercial MIP solver, 214
link weights

are strictly positive, 203, 213
equal to 1, 204
fixed, 235

link weights optimization
with a B&C method, 221

LISE, 404
list coloring problem, 48
list-T-coloring problem, 48
load balancing game, 246



Index 423

local optimal solution, 24
local path, 140
local search algorithm, 24, 42, 50
localization, 402, 412–415
low interference spanner establisher, 404

MAC, 379
MANET, 401
mass-spring system, 414
master program, 18
matching, 6, 8
mathematical optimization, 2
mathematical optimization problem, 8, 13
max-flow min-cut theorem, 33
maximum flow, 33
maximum link utilization, 205, 207, 208, 230
MEBR, 337
medium access control, 287
medium contention, 287, 293
meshed network topology, 29
metaheuristic, 24
minimum k-partition problem, 49, 294
minimum cost flow problem, 31
minimum energy broadcast routing, 335
minimum spanning tree, 26, 338
mixed-integer linear program, see integer

linear program
mixed-integer program, see integer linear

program
mixed-integer rounding, 106
Mobile Ad Hoc Network, 401
MPLS, 64, 79, 96, 180, 201
MPLS-TE, 121
MST, 26, 338
multi-commodity connectivity, 147
multi-commodity flow, 34

flow relaxation, 223
integer flow problem, 37
multicast routing problem, 38
network flow problem, 215
non-bifurcated flow problem, 37
unsplittable flow problem, 37
unsplittable routing, 206

multi-interface network
cost minimization, 335

multi-protocol label switching, 64, 201
multicast routing problem, 38
multilayer network, 79, 96
multiple demand matrices, 223

Nash dynamics graph, 245
Nash equilibrium, 243

second order, 260
neighborhood, 222

network
congestion, 164
cut, 33
flow, 32
loss model, 164
multilayer, 96
optical burst switching, 164
optical network, 97
wireless, 378–400

network coverage problem, 50
network design, 250

mesh, 96
multilayer, 96
topology, 25
tree, 25

network design problem, 38, 41
network efficiency, 284
network extension problem, 42
network flow, 29
network layer

logical layer, 96
physical layer, 96

network loading problem, 38
network planning problem, 38, 41
network routing, 29, 41
network topology design, 25
non-bifurcated flow problem, 37
non-cooperative networks, 242
non-deterministic machine, 11
nonlinear optimization model, 9, 164, 298–300
nonlinear programming, 24
nonnegative

integer values, 206
nonzero flows, 231
NP, 11
NP-complete, 12
NP-hard, 12, 210, 221, 233
NPO, 23
number of collisions, 383–392

objective, 13
oblivious algorithm, 268, 313

radio network, 313
OBS, 164, 180
OFDM, 46
off-line routing, 267
omnidirectional antennas, 358
on-demand algorithm, 408
online call admission, 30
online optimization, 10
online routing, 268
open shortest path first, 201
open source, 222
optical burst switching, 164



424 Index

optical network, 53
optical network design, 40
optimal power assignment, 337
optimistic price of anarchy, 73
OSPF, 201
overlap graphs, 284
overlapping channels, 286

P, 11
packet routing, 265
paging problem, 10

first-in-first-out algorithm, 10
last-in-first-out algorithm, 10
least-recently-used algorithm, 10
longest-forward-distance algorithm, 10

parameter, 4
path

directed graph, 7
undirected graph, 5

path protection, 139
PDH, 79
permutation routing, 269
Petersen graph, 4
piconet, 407
plane grid, 271
point-to-point demand, 34
polyhedral combinatorics, 20, 105
polyhedron, 14
polynomial-time approximation scheme, 24
polynomial-time reducible, 12
polytope, 14
potential game, 245
price of anarchy, 72, 244, 247
price of stability, 244, 248
pricing problem, 18
primary path, 31
probability of collision, 385
problem reduction, 12
protection

1+1 dedicated path protection, 31, 97
dedicated, 140
failure dependent, 141
shared, 140
shortcut span, 152

PTAS, 24

QoS, 181, 194

radio network, 311, 378–400
ad hoc, 318
broadcasting, 311
collision, 312
collision detection, 314
collision-as-silence, 314

gossiping, 330
mobile, 329
oblivious algorithm, 313
UDG, 315
wakeup mode, 315

conditional, 315
spontaneous, 315

wakeup problem, 330
radio resource utilization, 284
randomized algorithm, 319–323
randomized cost smoothing algorithm, 44
range control, 402
recovery, 138

protection, 138
restoration, 138

resilience, 85
resource removal, 250
restoration

local-to-egress, 140
Riemann integral, 387
routing

with label space usage constraints, 126
metric, 200
multi-path, 164
of IP packets, 199
protocol, 29

routing patterns
(undirected) shortest path, 233
inconsistent, 212
invalid, 207, 235
with unique shortest paths, 205

routing protocol, 29, 200, 201, 210
RSVP-TE, 121

SBPP, 39
scatternet, 407
SCIP, 103
SDH, 66, 79, 96, 200
selective family, 314, 324
selfish users, 250
semidefinite programming, 49
sensor, 402
sensor network, 412
separability, 252
separation algorithm, 21
set, 3

convex, 4
set covering problem, 51
Shapley value, 247, 252
shared protection, 140
shared risk group, 143
shortest path

inverse problem, 205
unsplittable routing, 206



Index 425

shortest cycle problem, 31
shortest path

dynamic updates of, 225
inverse problem, 202, 206, 209, 211, 234
multiple, 205, 223
successive, 31
unique, 202, 203, 205, 213, 234
unsplittable routing, 213, 225, 226, 231,

233, 235
shortest path graph, 209
shortest path problem, 27, 30, 36, 39

weight-constrained, 36
shortest path routing

problems, 200, 202, 221, 235
protocols, 199, 201

shortest path traffic engineering problem, 203,
205

shortest path tree, 201, 338
shortest weight-constrained path problem, 36
Simplex method, 16
simulated annealing, 24, 224, 235
single backup path protection, 39
sink node, 358
SNDlib, 40, 110
social function, 244
SONET, 66, 200
spanner, 38, 404
spanner packing problem, 38
spanning tree, 6

bounded degree, 27
minimum, 26, 338

split property, 213
spontaneous wakeup, 315
SPT, 338
SRG, 143
stability, 252
stable set, 6
Stackelberg strategy, 250
Steiner tree

minimum cost, 27
packing problem, 38

SteinLIB, 28
STEP, 203, 205
strategic game, 243
strong budget balance, 252
strongly connected digraph, 7
subflow uniformity, 188
subgraph, 5

induced, 5
subset sum problem, 12
successive shortest path, 31
survivability, 138, 206
Suurballe’s problem, 31
switching network, 22

T-coloring problem, 48
tabu search, 24, 223, 235
taxes or tolls, 250
time complexity, 9
time of arrival, 414
ToA, 414
topology control, 402, 404–406
topology design, 25
totally unimodular matrix, 33
TOTEM, 222, 223, 227
tournament, 378–400
traffic

demand, 201, 203
engineering, 200, 205, 236
routing, 200, 202, 204, 230
splitting, 208, 227

traffic engineering, 86, 236
traffic grooming, 53, 64, 66

bidirectional ring, 77
cross-layer optimization, 87
directed path, 76
dynamic grooming, 83
engineering, 86
multilayer, 78
multilayer mesh network, 79
resilience, 85
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