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Preface

Communication networks are a vital and crucial element of today’s world. Mobile
devices, the Internet, and all new applications and services provided by these media
have changed dramatically the way both individual lives and society as a whole are
organized. All these services depend on fast and reliable data connections, whether
wired or wireless. To meet such requirements, information and communication tech-
nology is challenged again and again to provide faster protocols, wireless interfaces
with higher bandwidth capacity, innovative mechanisms to handle failures, and so
on.

For many of those challenges a variety of mathematical disciplines contribute in
a supportive role, either in providing insights, evidence, or algorithms or as decision
support tools. In particular, the broad area of algorithmic discrete mathematics plays
a crucial role in the design and operation of communication networks. However, the
discipline is fragmented between scientific disciplines such as pure mathematics,
theoretical computer science, distributed computing, and operations research. Fur-
thermore, researchers from communication engineering utilize discrete mathemati-
cal techniques and develop their own extensions.

With the aim to bring together the above-mentioned disciplines and draw synergy
effects from it, the COST action 293 — Graphs and Algorithms in Communication
Networks — was launched in October 2004 for a period of four years. Scientists
from the above disciplines have been gathering on a regular basis to learn from each
other and to work jointly on emerging applications to the benefit of the information
and communication technology society. Also workshops and training schools have
been organized to disseminate recent advances in all subject areas. An active ex-
change programme (short-term scientific missions in COST terminology) between
the research groups has resulted in a high number of joint publications.

To document on the one hand the multidisciplinary research carried out within
COST 293 and on the other hand to encourage further collaborations between the
disciplines, this book presents a number of studies in broadband, optical, wireless,
and ad hoc networks where the techniques of algorithmic discrete mathematics have
provided highly recognized contributions.



viii Preface

The way the studies are presented, this book is particularly suited for Ph.D. stu-
dents, postdoctoral researchers in mathematics, computer science, operations re-
search, and network engineering as well as industrial researchers who would like
to investigate state-of-the-art mathematical alternatives to resolve the technological
challenges of tomorrow. An introductory chapter should ease access to the material
for researchers not familiar with the mathematical terminology used by the chapters’
authors.

As chair and vice-chair of COST 293, it has been a pleasure for us to prepare
this book. We would like to thank all authors and reviewers for the contributions.
Without their voluntary help it would have been impossible to publish this book. We
also are grateful to COST for supporting our action in general and the dissemination
of this book in particular .

Coventry/Barcelona, Arie M.C.A. Koster
March 2009 Xavier Muiioz
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Chapter 1

Graphs and Algorithms in Communication
Networks on Seven League Boots

Arie M. C. A. Koster and Xavier Muioz

Abstract This chapter provides an introduction to the mathematical techniques used
to provide insight and decision support in the design and operaton of communica-
tion networks. Techniques discussed include graph-theoretical concepts, (integer)
linear programming, and complexity theory. To illustrate the importance of these
techniques, classical applications in the area of communication networks are dis-
cussed. The wide variety and depth of the mathematics involved does not allow
an exposition highlighting all details. References for further reading are provided.
The chapter is closed with a brief description of the applications discussed in the
consecutive chapters.

Key words: combinatorial optimization, graph theory, networks, topology design,
routing, network planning, frequency assignment, network coverage

1.1 Introduction

Graphs and algorithms play a vital role in modern communication networks. With-
out the mathematical theory and algorithms developed by researchers from discrete
mathematics, algorithmics, mathematical optimization, and distributed computing,
many services of the information society like (mobile) telephony, virtual private net-
works, broadband at home, wireless Internet access, and Phone over IP are unthink-
able in their current form. At the heart of each of these, graphs are used to specify
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the networks and technological features, whereas algorithms are used to compute
solutions for cost-efficient design and smooth operation of the technologies.

The field of discrete mathematics deals with discrete structures such as graphs,
hyper-graphs, and general combinatorial designs (e.g., balanced incomplete block
designs, group divisible designs, etc.), which represent excellent instruments for
modeling complex processes such as communication networks in an abstract, con-
cise, and precise manner, concentrating on their relevant properties in order to ana-
lyze situations and elaborate problem solutions. While physical or virtual networks
naturally allow for modeling with graphs, graphs are also used to describe more
abstract relations such as the conflict between the various elements of a communi-
cation network (e.g., interference between antennae; see Section 1.5.5.1). Parame-
ters defined for these discrete structures characterize not only the structures, but also
furnish essential information on the applications being investigated. Moreover, pow-
erful tools can be developed to solve practical problems by adapting core algorithms
stemming from the discrete mathematics field.

An algorithm is a procedural step-by-step description to answer questions that
are too complex to be solved instantly. When a numerical answer is expected, the
algorithmic steps typically involve elementary computations. As the complexity of
the question increases, the need for algorithms that require as few elementary com-
putations as possible increases as well. Although modern computers allow for mil-
lions of computations in a short time frame, certain algorithms are still too time
consuming to answer practical relevant questions.

Motivated by practical problems to be solved, the study of efficient algorithms is
one of the most prolific and successful fields of computer science. Besides efficient
algorithms, it has generated several important concepts, such as the notions of ran-
domized algorithm, NP-hard optimization problem, and approximation algorithm.
Typically, the field explores the design of an efficient (deterministic or randomized)
algorithm for the problem at hand. If the problem is NP-hard, it resorts to the de-
velopment of an approximation algorithm (see Section 1.3 for further details). The
study of online versions of these algorithms has become an important stream of
research, since the problem input is not known in advance in most applications.

The field of mathematical optimization deals with the development and imple-
mentation of optimization algorithms to support (quantitative) decisions. In commu-
nication networks, mathematical optimization is primarily applied to network design
problems in wireless and broadband networks. Typical tasks for which mathemat-
ical optimization assists decision makers are the cost-effective design of network
infrastructures, the reduction of interference in wireless networks, the area-wide in-
troduction of digital broadcasting, and the determination of routing weights in OSPF
Internet routing. Mathematical optimization (as well as other fundamental areas)
also may help in identifying bottlenecks in systems and in conceiving workarounds
and suggesting possible improvements. Optimization is also important in terms of
economics and other business aspects related to communication networks.

Many (network) optimization problems can be modeled by means of a graph, and
the decisions have a discrete structure. In such cases, a combinatorial optimization
problem has to be solved. One branch of mathematical optimization focuses on the
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study of the polyhedral structure of such problems. The more that is known about
the structure of the problem, the more efficiently the problem can be solved.

The field of distributed computing is devoted to the structural and algorithmic
problems arising from the exploitation of distributed systems of computers by means
of communication networks. The range of applicability of this area of research spans
from the cluster-computing paradigm that deals with a small number of computers,
possibly within a company and connected by a high-bandwidth LAN, to the peer-to-
peer (P2P) paradigm, through which millions of computers may be connected over
the Internet. Topics under study range from basic research on impossibility results
for asynchronous systems, to the most recent advances on the survivability of P2P
networks.

All these areas are closely related. To name a few relations, mathematical op-
timization often exploits graph structures, algorithms are studied for distributed
computing systems, mathematical optimization algorithms are analyzed on their
strengths and weaknesses, and the scalability of distributed systems can be improved
using tools from graph theory. In this chapter we would like to give a brief intro-
duction to each of these tools from the mathematical toolbox. In Section 1.2, the
framework of mathematical modeling by graphs and networks, including combina-
torial and nonlinear optimization models and distributed and online problems, is in-
troduced. Next, the complexity of algorithms is discussed in Section 1.3 before the
most common methodologies to solve (combinatorial) optimization problems are
presented in Section 1.4. To illustrate the use of these techniques, Section 1.5 pro-
vides a range of classical applications of graphs and algorithms in communication
networks. Where appropriate, references are made to more advanced applications in
forthcoming chapters.

1.2 Mathematical Modeling

In this section we introduce the most common mathematical structures used to
model communication networks and their decision problems. First, concepts such
as (un)directed graphs and networks are introduced, and their substructures are de-
fined. Next, the concept of a combinatorial optimization problem is presented.

1.2.1 Sets and Parameters

The foundation of mathematical modeling lies in the definition of sets and param-
eters. A set S is an (unordered) collection of elements of the same type. The type
of the elements can be rather general, ranging from integers (e.g., S = {1,2,5,7})
to rational coordinate pairs (e.g., S = {(52.3,7.1),(58.7,23.1),(42.1,—5.2)}) to
switching locations (e.g., S = {Amsterdam, Berlin, Brussels, London}) to band-
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width capacities in an SDH (Synchronous Digital Hierarchy) network (e.g., S =
{STM-1, STM-4, STM-16, STM-64}).

Throughout this book the set of all integers is denoted by Z, the set of all non-
negative integers by Z.. Similarly, the set of rational numbers will be denoted by
Q and the set of rational and irrational numbers by R, whereas Q and R denote
their nonnegative subsets. The n-dimensional variants of these sets are denoted Z",
Q", and R" respectively.

The cardinality of a finite set S is denoted by |S| and equals the number of ele-
ments in the set. The empty set is denoted by 0. For a finite set S, the set denoted by
25 denotes the collection of all possible subsets of S.

A parameter is an unchangeable value (integer, rational, irrational) representing
a numerical input to a problem to be solved. Parameters can be stand-alone (e.g., the
total investment budget or the signal-to-noise ratio) or defined for each element of a
set (e.g., the cost ¢, or the bandwidth by in Mbit/s for installing an SDH bandwidth
capacity s € {STM-1, STM-4, STM-16, STM-64}).

If we would like to associate a (nonnumerical) element of set T with every el-
ement of a set S, a function f:S— T is defined. Hence, a nonnegative integer
parameter b, associated with every element of the set S can also be represented by a
functionb: S+ Z.

A set S C R" with numerical elements is called convex if for all x,y € S and any
A €[0,1], Ax+ (1 —A)y € S as well.

1.2.2 Graphs and Networks

One of the most elementary discrete structures to model networking problems are
undirected and directed graphs.

1.2.2.1 Undirected Graphs

An undirected graph, or short graph, is a pair G = (V,E) consisting of a set of
vertices V and a set of edges E where each edge e € E is a two-element unordered
subset of V. Hence, we also write {i, j} € E with i,j € V. We further say that an
edge {i,j} € E is incident to both i and j. Figures 1(a) and 1(b) show two famous
graphs, the cycle on five vertices (denoted by Cs) and the Petersen graph.
Undirected graphs are used to model relations between entities that do not have
a direction associated with them or where the direction does not play a role. In com-
munication networks, undirected graphs are used to describe, for example, the topol-
ogy of an optical fiber network, where the nodes represent the routers and an edge
exists in the graph if and only if there is a direct optical fiber connection (link) be-
tween the routers (Figure 1(c) shows the Pan-European Triangular Topology graph
defined by COST action 266). Another example is the modeling of potential con-
flicts between access points of a Wireless Local Access Network (WLAN). Here the
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(a) Graph Cs (b) Petersen graph (c) COST 266 topology graph

Fig. 1.1 Three undirected graphs: A cycle with five vertices and five edges, the Petersen graph
with ten vertices and 15 edges, and the triangular COST 266 topology graph with 28 vertices and
61 edges

nodes represent the access points and two nodes are adjacent if and only if there are
locations in the designated coverage area where the signals would interfere if both
access points would be assigned the same radio frequency (see Chapter 11 for more
information).

If not stated otherwise we assume that a graph is simple in the sense that there
are no parallel edges (identical elements of E) or loops (edges of the form {i,i}).

Two distinct vertices i, j € V are called adjacent or neighbors if {i, j} € E. This
concept is extended to subsets of vertices by the function N : 2 +— 2V that assigns
to every subset S C V all neighboring vertices that are not part of the subset, i.e.,
N(S)={jeV\S|{i,j} € E,i e S}. If S = {i} we simplify notation by writing
N(i) instead of N({i}). Similarly, the function & : 2" ~ 2F assigns to every vertex
subset S the edges that connect S with V'\ S. The degree of a vertex is defined by the
function deg : V +— Z, which assigns to a vertex i € V the number of adjacent edges,
deg (i) = |06(i)|. If the graph G might not be clear from the context, a subscript such
as degg is used for all three functions.

Given a graph G = (V,E), we define the complement of G as G = (V,E) with
E={{i,j}|{ij} ¢E}.

A graph G = (V,E) is called bipartite if the vertex set can be partitioned into two
subsets Vi,V such that for every edge {i, j} € E, i € V| and j € V,. In other words,
for all i € V;, N(i) C V, and for all i € V, N(i) C V;. Bipartite graphs are therefore
sometimes denoted by (V, V5, E).

A graph G = (V,E) is called complete if all vertices are mutually adjacent, i.e.,
{i,j}€Eforalli,jeV,i#].

A graph H = (U, F) is called a subgraph of G= (V,E) if U CV and F C E.
If F={{i,j} €E|i,je U}, GIU] =H is the subgraph of G induced by U. The
subgraph of the Petersen graph induced by {1,2,3,4,5} is Cs.

A path p in a graph G is a sequence (ig,e1,i1,€2,i2,---,ik_1,¢k, ix) of k+ 1 ver-
tices and k edges (k > 1) with the property that e; = {i;_1,i;}. We write e € p and
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i € p for edges and vertices that are part of the path. A path is called simple if no
vertex appears more than once in the sequence (and hence no edge appears more
than once as well). A graph G is called connected if there exists a path between ev-
ery pair of vertices. A component S C'V of a graph G = (V, E) is a subset of vertices
that induces a maximally connected subgraph G[S].

Two vertices i, j € V are said to be k-edge-connected if there exist k edge-disjoint
paths between i and j in G. The edge connectivity k(G) of a graph is the minimum
over all vertex pairs of the number of edge-disjoint paths.

Similarly, two vertices i, j € V are said to be k-vertex-connected if there exist
k vertex-disjoint paths between i and j (except for vertices i and j). The vertex
connectivity £(G) of a graph is the minimum over all vertex pairs of the number of
vertex-disjoint paths.

A circuitin a graph G = (V, E) is a closed path (g, e1,i1,€2,i2, ..., ix—1, €k, ik, 1.€.,
iop = ix. A cycle is a circuit with the additional property that all vertices (and edges)
except the start and end vertex are distinct.

A tree in a graph G = (V,E) is a cycle-free connected subgraph & = (I,L) with
I CV and L C E. Hence, there exists a unique path between every pair of nodes
i,j € I. Note that in a cycle-free connected graph |L| = |I| — 1. If I =V, then J is a
spanning tree.

A stable set or independent set S is a subset of the vertices such that no two
vertices have an edge in common, i.e., if i, j € S, then {i, j} & E. Stated otherwise,
all vertices in the graph induced by S have degree zero. For the Petersen graph
S ={1,3,7} is a stable set. Since this set cannot be extended further without losing
its stability, S is a maximal stable set. A maximum stable set is a stable set that
is maximal and no other stable set has a higher cardinality, e.g., {1,3,9,10} is a
maximum stable set.

A clique in a graph G = (V,E) is a subset S of the vertices such that G[S] is
complete. Note that S is a clique in G if and only if S is a stable set in G.

A matching M is a subset of the edges such that no two edges have a vertex in
common, i.e., if e, f € M, then eN f = 0 (note that edges are sets of two elements).
Stated otherwise, all vertices in the subgraph (V, M) have degree at most 1. For the
Petersen graph, a (maximum) matching is given by {{1,2},{3,4},{6,8},{7,9}}.

For an arbitrary parameter b; € Q for all i € V, we define the cumulative weight
function b : 2 + Q as b(S) = ¥;c¢b;. Similarly, for an arbitrary parameter ¢, € Q
defined for all e € E, we define the cumulative weight function ¢ : 2F +— Qas ¢(L) =
2eelL Ce-

1.2.2.2 Directed Graphs

A directed graph, or digraph, is a pair D = (V,A) consisting of a set of vertices
V and a set of arcs A where each arc a € A is a two-element ordered subset of V.
Hence, we also write (i, j) € A. Digraphs are used in those situations where the
direction of the relation is of importance, for example, in communication networks
in the modeling of a traffic flow from a source node to a sink node, where it is of
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Fig. 1.2 A directed graph with seven vertices and 12 arcs

importance to know in which direction the signal is transported between the routers.
Another example is the connection of wireless devices with variable transmission
power. Here, an arc (i, j) exists if and only if j represents a device that is within the
transmission reach of device i. Since each device has its own power control, device
i is not automatically in reach of device j if j is in reach of i (see Chapter 13 for
more on this application).

For digraphs, we distinguish between arcs coming in to a vertex i € V and arcs
going out i. The functions N~ : V — 2V, 8§~ : V24, deg™ : V — Z, (or N*:
V=2V, 8% :V =24, degt : V — 7Z,) associate with every vertex i € V the set of
incoming neighbors, arcs, and degree (or outgoing neighbors, arcs, and degree).

A (directed) path p in a digraph D is a sequence (i, ay,i1,a2,i,- .., ix—1,dk, i)
of k+ 1 vertices and k arcs (k > 1) with the property that a; = (i;_1,i;). We denote
a € pifanarc a € A is part of the path; similarly, i € p. Again, a path is called simple
if vertices are not repeated in the sequence.

A digraph is called strongly connected if there exists a path from any vertex to
any other vertex. A (directed) cycle is a simple directed path with ip = i. A digraph
is called a directed acyclic graph or DAG if it does not contain directed cycles.

An arborescence is a digraph with the property that there is a vertex v € V such
that there is exactly one directed path from v to every other vertex u € V. The vertex v
is called the root of the arborescence. Stated otherwise, an arborescence is a directed
rooted tree with all arcs directed away from the root.

1.2.3 Mathematical Problems

For our purpose, a mathematical problem is the assignment x : S — R of values to
all elements of a set S such that all constraints are satisfied. The values x;, i € S, are
known as the variables of the problem. Let n = |S|. The constraints can be defined
by functions f; : R" — R where a solution x is feasible if and only if f;(x) > 0 for
alli=1,...,m. The functions f; can be defined in many different ways, from linear
to highly complex.

If the goal of the mathematical problem is to find a feasible solution that max-
imizes or minimizes a further function g : R” — R, we speak of a mathematical
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optimization problem. Hence, the general form of such a (maximization) problem is

max  g(x) (1.1a)
st. filx) >0 i=1,....m (1.1b)

Depending on the type of constraint functions, one can identify combinatorial or
nonlinear optimization problems.

1.2.3.1 Combinatorial Optimization Problems

Many problems in the area of communication problems can be described as a com-
binatorial optimization problem. A combinatorial optimization problem consists of
three components, a finite ground set E, a weight function w : E +— Z, and a family
7 of subsets of E. The ground set is chosen in such a way that it allows for encod-
ing of and distinguishing between both feasible and infeasible solutions by selecting
elements of the ground set. The family .# describes all feasible solutions, and hence
2E\ .# describes all infeasible solutions. The weight function is used to determine
the value of a solution. For a set E/ C E, the solution value is the cumulative weight
of the elements, i.e., w(E') = ¥, we. The goal of a combinatorial optimization
problem is to find the best feasible solution E’ € .%, i.e., the one with minimum (or
maximum) value.

The set of feasible solutions .% can be very large and therefore is usually only
given implicitly, i.e., a set of rules to determine whether or not a subset £ is feasible.

An example of an implicitly defined set of feasible solutions is the following:
Given an undirected graph G = (V,E),let & ={E' CE:enf=0 Ve,f€E'},
i.e., a subset of the edges describes a feasible solution if and only if they have no
vertex in common. Such subsets are known as matchings (cf. Section 1.2.2.1).

Another example is the maximum weighted independent set in a graph G =
(V,E). This time the ground set is V (instead of E) and a vertex weight ¢, is de-
fined for all vertices i € V. A subset S € .7 if and only if they form an independent
set, i.e., all vertices G[S] have degree 0. Many more examples can be found in Sec-
tion 1.5.

In many cases, the definition of feasible solutions to a combinatorial optimization
problem as subsets of a ground set E is not convenient, in the sense that £ should
contain many copies of a certain element. For example, if we would like to install
fibers between two locations, normally multiple fibers can be installed. This would
imply that the ground set contains one element for every possibly installed fiber.
Alternatively, the ground set can be defined as having only one element representing
the fibers between the two locations, but this element can be selected multiple times
in a feasible solution. Hence, E’ is not anymore a subset of E, but a multi-set.

Within the framework of constraints f;(x) and an objective function g(x), each
solution is an assignment of Os and 1s to the variables x., e € E. The objective
g(x) = X.cg WeX, is a linear function of the variables, whereas the constraints f;(x)
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have to be defined in such a way that f;(x) > 0 if and only if x defines a feasible
solution (including the constraints x, € {0,1} for all e € E). This model can be
easily extended to general integer values for x, to represent multi-sets.

1.2.3.2 Continuous and Nonlinear Optimization Problems

Not every communication networking problem can be easily described as a combi-
natorial optimization problem. If decisions can be taken within a continuous spec-
trum of possibilities, discrete or combinatorial choices do not represent the full scale
of solutions. Also the impact of certain decisions might have nonlinear effects.

If all constraint functions f;(x) and the objective g(x) are linear, the problem is
defined as a linear optimization problem. If at least one of these functions is nonlin-
ear, a nonlinear optimization problem has to be solved. In Chapter 6, network loss
models for optical burst switching are modeled with nonlinear functions, whereas
in Chapter 11 a hyperbolic (hence, nonlinear) objective function is used to model
the efficiency of a wireless local access network. Note that the requirements that
variables x must be assigned discrete values are nonlinear functions as well.

1.2.4 Distributed Problems

In emerging applications like ad hoc wireless networking or sensor networks, cen-
tralized decisions are not favored or are even impossible due to the decentralized
nature of the decision making process. In such cases, solving a mathematical op-
timization problem taking into account all possibilities of the decentralized units
might not be implementable, and hence the decentralized or distributed problem has
to be studied.

Classical combinatorial problems are centralized, i.e., there is a central control-
ling unit having complete knowledge of the input and an ability to implement de-
cisions. In a distributed system, however, there is not a central unit, but many au-
tonomous units (or processors), each having limited local knowledge of the system.
Hence, decisions have to be taken by the autonomous units in a decentralized way.
To enhance decision making, a processor can communicate with other processors,
sometimes only in the local vicinity (modeled by a graph).

The aim of a distributed algorithm is, e.g., to enable communication services
(routing in a wireless meshed network), to maintain control structures (backbone
topology in a mobile ad hoc network), or to control resources (load balancing of
processors). The quality of a distributed algorithm is usually measured by its time
complexity and its communication complexity. The time complexity is measured as
the number of communication rounds needed to realize the purpose of the algorithm.
The communication complexity is measured as the total number of messages or
volume sent by the algorithm.
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The application of distributed algorithms to broadcasting is the topic of Chap-
ter 12. We refer to [72, 78, 87] for further information on distributed computing and
algorithms.

1.2.5 Online Decision Problems

In online decision problems not all information needed to determine the guaranteed
optimal solution is available at the time of decision making. In such a case, one
has to make a decision before complete knowledge of the problem input becomes
available. The aim in such a situation is to make a decision that is best whatever the
unknown input will be. The competitive ratio measures the quality of an algorithm in
comparison to the off-line optimal solution, i.e., the optimal solution if the complete
input were known at the time of decision.

In an online optimization problem, the missing input is modeled as a sequence
of events that are unveiled one at a time. An algorithm has to be developed that
reacts to the events without knowledge of further events in the sequence. The set
& represents all considered input sequences. If for an input / € .#, we represent
the off-line optimal solution value with OPT (I) and the solution value of an online
algorithm A with A(7), the competitive ratio is defined as

A(l)

cd) = 107 OPT ()"

Hence, the competitive ratio measures the worst-case performance of the algorithm.
A problem is called c-competitive if there exists an algorithm A with competitive
ratio c. It is sometimes possible to show for a problem that there is no constant
¢ > 1 such that there exists an algorithm that is c-competitive.

One of the classical examples of online optimization is the paging problem. In
the paging problem, we consider two levels of computer memory, the slow mem-
ory containing N pages pi,...,pn and the fast memory (cache) that can store an
arbitrary subset of k < N pages. Pages loaded in the cache can be accessed directly
when requested (known as a cache hit), whereas the other pages first have to be
loaded from the slow memory into the cache (known as a cache miss). If the cache
is fully loaded and another page is requested, one of the pages in the cache must be
removed. The problem is to find an algorithm that minimizes the number of cache
misses, without knowledge of which pages are requested in the future.

Given a sequence r1,...,r, of page requests, we have to decide for each cache
miss which page to remove. In the off-line setting, i.e., the complete sequence of
requests is known in advance, the Longest-Forward-Distance algorithm [13] pro-
vides an optimal solution: At every cache miss, remove the page whose next access
is most distant in the future.

In the online setting, several algorithms have been proposed, such as First-In-
First-Out, Last-In-First-Out, and Least-Recently-Used. The latter removes the page
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that has been in the cache the longest time without being requested. It can be shown
that First-In-First-Out and Least-Recently-Used are k-competitive [84]. Moreover,
it has been proved that no deterministic algorithm (i.e., an algorithm that does not
include randomized decisions) exists that is c-competitive with ¢ < k [84].

Algorithms with a better performance can be obtained by using randomized deci-
sions. In particular, the random marking algorithm of [47] has a competitive ratio of
2H;, where H, =1+ % +...+ % is the kth Harmonic number (note that H;, < 1+1nk.
The algorithm works in phases as follows. Initially all pages in the cache are un-
marked. A phase is ended as soon as all pages in the cache are marked. In this case,
all pages are unmarked and a new phase begins. This way, we always have at least
one page unmarked upon the arrival of a request for a page p. If page p is in the
cache, it is marked. If page p is not in the cache, we randomly choose an unmarked
page in the cache to be replaced by p, and p is marked.

We refer to [52] for further reading in the area of online optimization. Applica-
tions of online optimization in communication networks can be found in Chapters 2
and 10.

1.3 Computational Complexity

Computational Complexity theory is the science that studies the computational re-
sources (time, memory, etc.) needed to solve computational problems. It is espe-
cially concerned with the distinction between tractable problems, that can be solved
with reasonable amount of resources, and intractable problems, that are beyond the
power of existing, or conceivable, computers.

Obviously the computational resources needed to solve a problem depend on the
size of the problem input data. A problem is considered efficiently tractable if the
resources needed grow at most as a polynomial function in terms of the input data,
and is considered not efficiently computable otherwise.

A complexity class is the set of problems solvable by a particular computational
model under a given set of resource constraints. Therefore, if we focus on time as
the main resource, or equivalently, the number of elementary computer operations
required to solve the problem, we define a first complexity class as follows.

P is the class of decision problems that can be solved in polynomial time on a
deterministic effective computing system (ECS). Loosely speaking, all computing
machines that currently exist in the real world are deterministic ECSs. So, P is the
class of problems that can be computed in polynomial time on real computers. A
decision problem is a problem for which the solution is a “yes” or “no” answer.

NP is the class of decision problems that can be solved in polynomial time on
non-deterministic ECSs. A non-deterministic machine is a machine which can ex-
ecute programs in a way where, whenever there are multiple choices, rather than
iterate through them one at a time it can follow all choices or paths at the same time,
and the computation will succeed if any of those paths succeed; if multiple paths
lead to success, one of them will be selected by some unspecified mechanism; we
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usually say that it will pick the first path to lead to a successful or “yes” result. The
idea of non-determinism in effective computing systems can be explained without
entering into details of non-deterministic computing machines (the reader is referred
to [8, 50] for a more detailed explanation). A decision problem whose “yes” solution
can be computed in polynomial time on a non-deterministic machine is equivalent
to a problem where a proposed “yes” solution can be verified as correct in polyno-
mial time on a deterministic machine. You can specify a non-deterministic machine
that guesses one solution, following all of those paths at once, and returning a result
whenever it finds a solution that it can verify is correct. So, if you can check a so-
lution deterministically in polynomial time (not produce a solution, but just verify
that the solution is correct), then the problem is in NP.

The distinction can become much clearer with an example. A classic problem
is the subset sum problem. In the subset sum problem, an arbitrary set of integers
is given. The question is whether there exists a nonempty subset of values in the
set whose sum is 0? It should be pretty obvious that checking a solution is in P: a
solution is a list of integers whose maximum length is the size of the entire set; to
check a potential solution, add the values in the solution, and see if the result is O.
The computational effort of this procedure is &'(n) where n is the number of values
in the set. But finding a solution is hard. The solution could be any subset of any size
larger than O; for a set of n elements, there are 2" — 1 such subsets. Even if you use
clever tricks to reduce the number of possible solutions, you are still in exponential
territory in the worse case. But you can non-deterministically guess a solution and
test it in linear time; but no one has found any way of producing a correct solution
deterministically in less than ©(2") steps.

One of the great unsolved problems in theoretical computer science is does P =
NP? That is, is the set of problems that can be solved in polynomial time on a
non-deterministic machine the same as the set of problems that can be solved in
polynomial time on a deterministic machine? It is clear that that P C NP, that is,
that all problems that can be solved in polynomial time on a deterministic machine
can also be solved in polynomial time on a non-deterministic machine. Although it
is a commonly accepted hypothesis that P = NP no one has been able to prove it to
date.

Within NP, there is a set of particularly interesting problems which are called
NP-complete. The idea of an NP-complete problem is that it is one of the hardest
problems in NP or, in other words, is one where we can prove that if there is a P-
time computation that solves the problem, it would mean that there was a P-time
solution for every problem in NP, and thus P = NP.

How do we show that a given problem is NP-complete? NP-completeness is
based on the idea of problem reduction. Given two problems S and T for which it
can be shown that any instance of S can be transformed into an instance of T in
polynomial time, it is said that S is polynomial-time reducible to T . Therefore, if an
efficient algorithm to solve problem 7 is known, this algorithm can also be used to
solve problem S. It can be seen as S is easier than T .

Once we know a problem 7" which is NP-complete, then for any other problem
U, if we can show that T is polynomial-time reducible to U, then U must be NP-
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complete as well. If we can reduce T to U, but we do not know how to reduce U to
T or we do not know if U € NP, then we do not just say that U is NP-complete; we
say that it is NP-hard.

There are a lot of problems which have been proved NP-complete. So, given a
new problem, there are a lot of different NP-complete problems that can be used as
a springboard for proving that the new problem is also NP-complete.

Most NP-completeness proofs are ultimately built on top of the NP-completeness
proof of one fundamental problem, whose nature makes it particularly appropriate
as a universal reduction target and it is also the first problem that was proved to be
NP-complete. It is called the propositional satisfaction problem (a.k.a. SAT or sat-
isfiability), which was shown to be NP-complete via a rather abstract model (Cook
Theorem [50]). For any other problem, if we can show that we can translate any in-
stance of a SAT problem to an instance of some other problem in polynomial time,
then that other problem must also be NP-complete. And SAT (or one of its simpler
variations, 3-SAT) is particularly easy to work with, and it is easy to show how to
translate instances of SAT to instances of other problems.

Let us see an example. A vertex cover of an undirected graph G = (V,E) is a
subset V' of the vertices of the graph such that every edge in G has an endpoint in
Vi ie,V(u,v)eE:uecV'vveV.

The vertex cover problem is the optimization problem of finding a vertex cover
of minimum size in a graph. The problem can also be stated as a decision problem:
Given a graph G and a positive integer k, is there a vertex cover of size k or less for
G?

Vertex cover is closely related to the Independent Set problem: V' is a vertex
cover if and only if its complement, V\V’, is an independent set. It follows that a
graph with n vertices has a vertex cover of size k if and only if the graph has an
independent set of size n — k. Equivalently a graph G = (V,E) with n vertices has
a vertex cover of size k if and only if the complementary graph G = (V,E) have
a clique of size n — k. This equivalence shows a trivial polynomial reduction from
clique to vertex cover. Since clique (does a graph has a clique of given size?) is an
NP-complete problem (see [50]), we have shown the NP-completeness of vertex
cover.

1.4 Combinatorial Optimization Methods

Given a (classical) combinatorial optimization problem by its three components,
the ground set E, (an implicit definition of) the feasible solutions .#, and a weight
function w : E — Z, the problem can be formulated as mathematical optimization
problem by introducing decision variables for all elements of the ground set E. For
every e € E the decision variable x, can take the values O or 1 (and is therefore
called binary) indicating whether e is chosen (1) or not (0) in the optimal solution.
Hence, the objective can be written as Y ,cg wex.. We further define xg/ = (x,).ck
to be the incidence vector for asubset E' C E, i.e., x, = 1 if e € E’ and 0 otherwise.
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By defining X = {xz/ | E' € .#}, we now can write the problem as
max{wa|x€X}. (1.2)

If convenient from the problem perspective, the above might be generalized to multi-
sets to represent decisions that can be made multiple times.

To find an optimal solution for the above problem, a number of methods are avail-
able. In the following we first introduce linear programming problems and briefly
describe algorithms to solve such problems. Next, we discuss how combinatorial
optimization problems can be solved with linear-programming-based techniques.
Alternative solution methods like graph theory, problem-specific combinatorial al-
gorithms, approximation algorithms, and heuristics are discussed in Sections 1.4.2,
1.4.3, 1.4.4, and 1.4.5 respectively. Both linear-programming-based branch-and-
bound and graph algorithms are examples of exact algorithms, i.e., they provide
the optimal solution in the end. In contrast, heuristics and approximation algorithms
provide a good but not necessarily optimal solution.

Note that the above discussion becomes more complicated as soon as more gen-
eral problems are studied. A brief discussion of nonlinear optimization methods can
be found in Section 1.4.6

1.4.1 Linear-Programming-Based Methods

1.4.1.1 Polyhedral Theory

Since the components of all vectors x € X are either 0 or 1, problem (1.2) is equiva-
lent to

max {wa |xe P},
where P = conv(X) is the convex hull of all vectors in X, i.e.,

t

t
conv(X) := {y |Fr ez, A, K ex,INelo, 1Y 4i=1,y= Zl,-x’}
i=1 i=1

A set P that can be written as the convex hull of a finite number of vectors is called a
polytope. A set P C R" is called a polyhedron if and only if there exists m > 0 such
that

P={xeR"|Ax<b},

where A is an m X n matrix and b € R™ (if m = 0, P = R"). A polytope is a bounded
polyhedron. An example is given in Figure 1.3.

So, instead of an implicit description of all feasible solutions, we can give a
polyhedral description of the solutions by a system Ax < b. In fact, in the case of
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Fig. 1.3 A two-dimensional polyhedron described by a system of five inequalities

binary vectors describing the feasible solutions, the polyhedron is bounded. This fact
is the key to solving combinatorial optimization problems with linear programming
techniques.

In case the solutions are represented by multi-sets of the ground set E, a sim-
ilar approach can be followed, with the difference that the solution space may be
unbounded (in theory), and therefore we have to study a polyhedron instead of a
polytope. Although not necessary if the objective is linear, it is usually assumed that
every integer solution that can be written as a convex combination of integer feasible
solutions is also feasible. This assumption is not needed in the case of binary vec-
tors since binary vectors cannot be written as a convex combination of other binary
vectors.

1.4.1.2 Solving Linear Programming Problems

A linear program (LP) is an optimization problem satisfying the following condi-
tions

o the objective is a linear function of the variables
e all constraints are linear in the variables
e the variables can take any values (i.e., € R) that satisfy the constraints

By this definition, an LP can be written w. 1. 0. g. in its standard maximization form
as follows

max ¢’ x

st.Ax=05b (1.3)
x>0

with matrix A € Q"*", a right-hand side b € Q}, and arbitrary objective values
¢ € R" (here, m is the number of rows and n the number of columns of A). Objectives
to be minimized can be rewritten as a maximization problem by multiplying the co-
efficients by -1. Likewise for equations with negative right-hand sides. Inequalities
can be written as equations by introducing slack variables. Upper bound constraints
for single variables are included in the coefficient matrix (with a slack variable).
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Negative lower bounds can be avoided by substituting variables, and therefore we
can assume that all variables are nonnegative.

The optimal solution of a linear program (1.3) can be found by a variety of meth-
ods developed since the 1940s. A first method is Fourier-Motzkin elimination for
solving systems of linear inequalities [82, Chapter 12], but it is computationally
rather intensive. More efficient algorithms (either in theory or practice) are provided
by the Simplex method and interior point methods.

Simplex Method

The Simplex method was developed as early as 1947 by Dantzig [36]. Assuming
there exist feasible solutions to (1.3), the Simplex algorithm exploits the fact there
exists an optimal solution that is an extreme point (vertex) of the polyhedron defined
by Ax = b and x > 0. Therefore, the Simplex algorithm walks along the extreme
points of the polyhedron in such a way that the objective value of the sequentially
considered solutions is improving. For this a first extreme point of the polyhedron
has to be found. This is known as Phase I, whereas the walk along the extreme
points of the polyhedron to an optimal solution is known as Phase II. Figure 1.4
illustrates the procedure for an objective and the polyhedron of Figure 1.3.

Objective

b
J Lp

4/ solution

Phase |

Phase IT

=X 7

Fig. 1.4 Given an objective, at least one optimal solution is an extreme point of the polyhedron;
the Simplex method uses this property by walking along the extreme points

If b =0, x =0 is a feasible solution of (1.3). If b # 0, this solution is infeasible
and Phase I consists of setting up an auxiliary linear program for which a feasible
solution can be easily found. Next, Phase II is applied to this auxiliary LP to find
a feasible solution of (1.3). The auxiliary LP is obtained by introducing variables
si >0, 1 <i<m. The aim is to find a solution with s = 0, and thus the auxiliary LP
reads

max 175
st.Ax+s=0>b (1.4)
x,5§ >0

where 1I is the all-one vector of dimension . It holds that (1.3) has a feasible solu-
tion if and only if the optimal solution of (1.4) has s = 0. A feasible solution of (1.4)
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is given by (x,s) = (0,b) (note b > 0 in (1.3)). So, we directly can start with Phase
II for this auxiliary LP. If the optimal solution (x*,s*) has s* # 0, the polyhedron
defined by Ax = b, x > 0 is empty; otherwise, x* is a feasible solution for (1.3).

Phase II works with basic feasible solutions. A basic solution to Ax = b (with
n > m) is obtained by setting n — m variables equal to O (the non-basic variables) and
solving the values of the remaining m variables (the basic variables), assuming that
the columns for the remaining m variables are linearly independent. If all variables
in a basic solution are nonnegative, it is called a basic feasible solution. It can be
shown that a point in the feasible region of LP (1.3) is an extreme point if and only
if it is a basic feasible solution to Ax = b. Now, two basic feasible solutions are said
to be adjacent if their sets of basic variables have m — 1 basic variables in common.

Since an LP with a nonempty feasible region always has an optimal basic feasible
solution, the solution provided by Phase I is a basic feasible solution of (1.3). Start-
ing with this solution, the Phase II of the Simplex algorithm exchanges one basic
variable for a non-basic variable in order to become a better objective value. Such
an exchange is called a pivot. As long as the basic feasible solution is not optimal,
such a pivot exists. The performance of the Simplex algorithm heavily depends on
the selection of the pivot element (including so-called cycling between basic feasi-
ble solutions with the same objective value). An optimal solution is found as soon
as none of the neighboring basic feasible solutions have a better objective value (we
omit the technical details on how to check this condition here).

Klee and Minty [67] have shown that the Simplex algorithm might take an expo-
nential number of pivots to find the optimal solution. In practice, however, revised
and dual versions the Simplex algorithm are still considered as the best algorithms
to solve linear programs [20]. For an in-depth introduction to the Simplex algorithm
we refer to [29, 88].

Interior Point Methods

The worst-case exponential behavior of the Simplex algorithm has motivated re-
search for alternative, polynomial time, algorithms to solve a linear program. Start-
ing with the work of Karmarkar [65], so-called interior point methods resolved this
question. Interior point methods basically do not follow a path along the extreme
points of the polyhedron, but go through the interior of it. If a single optimal so-
lution (which is an extreme point) exists, the algorithm approximates this solution,
and a final rounding step will result in the optimal solution. If multiple optimal
solutions exist, an interior point algorithm might approximate any convex combina-
tion of the extreme optimal solutions, and the resulting optimal solution might be
different from the optimal extreme points. We refer to [88] for a detailed discussion.
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Dynamic Column Generation

Some formulations of optimization problems as (integer) linear programs require a
very large number of variables, typically exponential in the problem input size. An
example is the set of variables representing all possible paths between two nodes in
a network; see Section 1.5.2.2. In such cases, it is irrational and often impossible to
generate and store all variables in the optimization software. The implicit handling
of such very large sets of variables is known as dynamic column generation. Instead
of all variables, only a small subset of the variables is generated in the beginning, and
the remaining variables are not considered in the first instance. For the initial subset
of variables the reduced linear program known as the master program is solved to
optimality. Next, all remaining variables (implicitly set to 0) are checked for the
capability of potentially improving the solution by adding them to the small set of
explicitly handled variables. If some candidates are found, they are added to the
linear program, and this is solved again. The procedure is repeated until no further
candidates are found. In this case, the optimal solution is found without dealing with
all variables explicitly. The problem of finding candidate variables to be included in
the master program is known as the pricing problem and usually can be formulated
as a linear or integer linear program.

1.4.1.3 Solving Mixed-Integer Linear Programming Problems

An integer linear program (ILP) is an optimization problem satisfying the following
conditions

e the objective is a linear function of the variables
e all constraints are linear in the variables
o the variables can take only integer values (i.e. € Z)

By this definition, an ILP can be written w. 1. 0. g. in its standard maximization form
as

max ¢’ x
st.Ax=0>b (1.5)
xeZ

with matrix A € Q™*", a right-hand side b € Q", and arbitrary objective values ¢ €
R". A mixed-integer program (MIP) generalizes the above definition by requiring
only a subset of the variables to be integer and allowing the remaining ones to take
continuous values. The methods to solve ILPs and MIPs are basically the same, and
therefore not further distinguished in this chapter.

For the purpose of our exposition, it is more convenient to rewrite the formula-
tion (1.5) to a system of linear inequalities:

max ¢’ x

st Ax <b (1.6)
xezZl
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The linear relaxation of (1.6) is obtained by replacing the integrality constraints
by nonnegativity constraints. Figure 1.5 illustrates for a given system of linear in-
equalities the integer-feasible solutions (i.e., the grid of points) as well as the LP
relaxation (the polytope).

Objective

solution

Fig. 1.5 Integer-feasible solutions and the LP relaxation for a system of linear inequalities

Branch-and-Bound

The most common method to solve ILPs is branch-and-bound (B&B). In a B&B
algorithm, the linear programming relaxation of (1.6) is solved multiple times, each
time with other bounds on the variables. Let z be the optimal solution value of (1.6).
The algorithm starts with solving the LP relaxation, returning a solution £. Since the
LP relaxation contains all integer-feasible points (cf. Figure 1.5), the value of the
LP relaxation z0, = ¢7 % is an upper bound on z. If £ € Z"., the solution is also valid
for (1.6), and hence we found an optimal solution. If £ & Z" , there is at least one
fractional variable £;. In an optimal solution, either x; < |£;| or x; > [£;]. There-
fore, we perform branching on x;: we replace the LP relaxation with two new sub-
problems, one with the variable bound x; < |£;| and one with the variable bound
x; > [%i]; see Figure 1.6 for illustration.

objective

ey
new LP
solution

new LP
solution

\ /

Fig. 1.6 Branching on a fractional variable: two subproblems provide new optimal LP solutions
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Every optimal solution of (1.6) is in either of the new polyhedra, and thus
z=max{z!,z?} where z! and 7 are the optimal (integer) solution values of the sub-
problems respectively. Moreover, z < max{z} p,z7p} < 27 p bounds the optimal value
from above, where z} » and z7 are the values of the corresponding LP relaxations.
In case the LP relaxation of the first (second) subproblem is integral, z > z} p = 2!
(z> z%P = 7%), and we can bound the optimal value from below. The procedure
can be repeated recursively for the subproblems as long as the two bounds are not
equal. For further details, we refer to [82, 92] or to any one of the many textbooks
in Operations Research.

Polyhedral Combinatorics

Polyhedral combinatorics is the study of the structure of the polytope (polyhedron)
described by the integer solutions of (1.6). Given the set of integer solutions, we
can define P as the convex hull of these points; see Figure 1.7. If we can derive
a system of linear inequalities describing this polytope, (1.6) can be solved by the
Simplex Algorithm (or interior point methods, possibly with a slight permutation of
the objective) since every extreme point is integral by definition.

Fig. 1.7 The convex hull of integer solutions can be described by a system of linear inequalities

An inequality ax < ay is called valid if ax* < ag for all x* € P. Let F(a,ap) = {x €
P:ax =ap} be the set of polytope points that satisfy the valid inequality with equal-
ity. If F # 0 it describes a face of P. A valid inequality is facet-defining if F(a,a)
is maximal, i.e., there is no other valid inequality dx < dy with F(a,a0) C F(d,dp).
Stated otherwise, the intersection of the polytope and a facet-defining valid inequal-
ity forms a face of the polytope of highest possible dimension (without having
F = P); see Figure 1.8.

A valid inequality is also called a cutting plane as it might cut off a fractional so-
lution from the integer solutions. A cutting plane algorithm follows this procedure.
First, the LP relaxation is solved. Next, if the LP solution £ is not integral, there
exists a valid inequality ax < ag that is violated by %, i.e., aX > ap. This inequality is
added to the system of inequalities defining the LP relaxation, and the enlarged LP
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objective

cutting plane

new LP
solution

(a) Valid inequality (b) Facet of polyhedron

Fig. 1.8 A cutting plane is a valid inequality that separates the LP relaxation from the integer-
feasible solutions; the strongest cutting planes are facets of the integer polyhedron

is resolved. This procedure is repeated until the optimal LP solution is integral. The
search for a violated inequality is known as the separation algorithm.

If all facet-defining inequalities of P are known (a so-called complete descrip-
tion), the described algorithm is guaranteed to find an optimal solution of (1.6).
However, since interior point methods find an optimal solution in polynomial time,
deriving a complete description of the convex hull of integer points is at least as
difficult as solving the optimization problem itself; i.e., if the problem is NP-hard,
deriving a complete description of size polynomial in the input is not possible, un-
less P = NP. Stated differently, if a complete description of the polytope can be
identified, the number of inequalities must be of exponential size, unless P = NP.
Further, given a fractional solution £ of (1.6), determining a violated valid inequal-
ity is, in general, as hard as solving the optimization problem itself. This theorem is
known as separation = optimization [53, 54]. For further details we refer to [55]. A
compact presentation of polyhedral techniques for combinatorial optimization can
be found in [1, 2].

Branch-and-Cut

If not all facet-defining inequalities of P are known, the cutting plane algorithm
might not be able to find a violated valid inequality given an LP solution £. Or it may
take too long to find a violated inequality. In such cases, the cutting plane algorithm
ends with a fractional solution and a (hopefully) improved upper bound. Branching
on one of the fractional variables is now an option. For each of the subproblems,
the cutting plane algorithm can be restarted to improve the bounds further. This
combination of branch-and-bound and cutting planes is known as branch-and-cut.

All modern integer linear programming solvers exploit a branch-and-cut algo-
rithm, where general purpose cutting planes like Chvdtal-Gomory cuts and clique
inequalities are separated. Products like ILOG CPLEX [64] and SCIP [5] allow for
the addition of problem-specific cutting planes by the user.
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Branch-and-Price

The case where the ILP (1.5) has a very large number of variables can be handled
similarly to the linear programming case, using a master and pricing problem. How-
ever, this time such a dynamic column generation approach has to be interwoven
with the B&B algorithm. The resulting algorithm is known as branch-and-price
(B&P). Special care has to be taken to solve a problem with B&P since branching
on variables might be in conflict with the column generation, i.e., if we branch on
a variable to be bounded from above (i.e., x; < |£;], we should prevent the same
variable from being generated by the column generation, since otherwise the same
subproblem as before is solved. For further information on B&P, or the integration
of cutting planes, known as branch-and-cut-and-price (B&C&P), we refer to [11].

Further Reading

More on (mixed) integer linear programming methods and polyhedral theory can be
found in [76, 82, 92]. Recent progress can be found in [21], whereas [31] provides
a nice historical view.

1.4.2 Graph Theory

Graph theoreticians study the properties of particular (classes of) graphs and search
for equivalent characterizations among them. In many cases, graph-theoretical mod-
els and concepts turned out to be very relevant for communication networks, e.g.,
for interconnection networks or GSM frequency planning (see Section 1.5.5.1). But
networking problems have also turned into graph-theoretical questions and answers.
For example, the study of non-blocking multistage switching networks for telephony
networks has resulted in the so-called Clos network [30]. Here are a few other ex-
amples taken from [35]: Design of dense networks [15, 25], traffic congestion (for-
warding index) [28, 61], broadcasting algorithms and dissemination (gossiping) of
information [63], fault tolerance (surviving route graph [40] or connectivity [45]).

In the last two decades, the development of optical networking technologies has
required the solution of classical graph-theoretical problems. As observed by many
authors, the wavelength assignment problem in an all-optical network is in essence
equivalent to the vertex coloring problem in its conflict graph, e.g., [46]. Another
example is networks based on the Optical Transpose Interconnection System (OTIS)
architecture [73]. It has been shown in [34] that they have a topology which is highly
related to the very well-known families of directed graphs called Kautz and De
Bruijn graphs. Those families have been proposed many times as topologies for
interconnection networks due to their good properties.
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A number of high-quality textbooks on graph theory exist (for example, [91],
some of them available online, e.g., [22, 38]). For the theory of digraphs, we refer
to [9].

1.4.3 Combinatorial Algorithms

Many combinatorial optimization problems can be solved by specialized algorithms
in polynomial time. This is in particular true for problems with an underlying (di-
rected) graph structure. Such algorithms are called combinatorial algorithms. A
combinatorial algorithm takes the problem parameters as input and outputs the op-
timal solution for the problem at hand. We distinguish a number of different cases.

A greedy algorithm is an algorithm that constructs a solution by irrevocably se-
lecting components of the solution, i.e., once a component of the solution is se-
lected, it will not be removed anymore from the solution. An example of a greedy
algorithm is the Dijkstra-Prim algorithm for computing a minimum spanning tree;
cf. Section 1.5.1.1.

A dynamic programming algorithm uses optimal solutions to subproblems of
the original problem to compute the optimal solutions for the original problem. An
example for such an algorithm is the dynamic programming algorithm for the knap-
sack problem, where knapsack problems with fewer items and smaller volumes are
solved recursively; see [74].

Dijkstra’s algorithm for the shortest path problem (see Section 1.5.2.1) is neither
a greedy algorithm nor a dynamic programming algorithm since solution values are
updated before the optimal solution (of subproblems) is found. Such combinatorial
algorithms exist for many well-structured problems. Schrijver [83] is a great source
for problems (and the algorithms of course) that can be solved in this way. All these
problems have in common that they can be solved in polynomial time and thus
belong to the class P.

1.4.4 Approximation Algorithms

If a problem is not known to be a member of class P but rather is known to be
NP-complete, there still may exist algorithms that provide a solution in polynomial
time. However, such algorithms do not guarantee that the solution is optimal.

The class APX is the set of NPO problems (optimization problems whose deci-
sion version is in NP) that allow polynomial-time approximation algorithms with
approximation ratio bounded by a constant. An approximation algorithm is called
an ¢-approximation algorithm for some constant ¢ if it can be proved that the so-
lution that the algorithm finds is at most o times worse than the optimal solution.
Here, o is called the approximation ratio. Depending on whether the problem is a
minimization or a maximization problem, this can either denote o times larger or
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o times smaller, respectively. For example, the vertex cover problem and traveling
salesman problem with triangle inequality each have simple 2-approximation algo-
rithms. In contrast to that it is proved that the traveling salesman problem with arbi-
trary edge lengths cannot be approximated with an approximation ratio bounded by
a constant, unless the Hamiltonian path problem can be solved in polynomial time.

If there is a polynomial-time algorithm to solve a problem within every fixed
constant ¢ (with running time dependent on ¢), then the problem is said to have a
polynomial-time approximation scheme (PTAS). Unless P = NP, it can be shown
that there are problems that are in APX but not in PTAS; that is, problems that
can be approximated within some constant factor, but not every constant factor. A
problem is said to be APX-hard if there is a PTAS reduction from every problem in
APX to that problem. To say a problem is APX-hard is generally bad news, because
it denies the existence of a PTAS, which is the most useful sort of approximation
algorithm. For further details, we refer to [8].

1.4.5 Heuristics Without Solution Guarantee

A further class of algorithms provides a solution without any guarantee on the qual-
ity. In such a case we speak about a heuristic. Some heuristics generate a solution
from scratch and are therefore called constructive heuristics. A local search algo-
rithm takes a solution as part of the input and tries to improve this solution, e.g., by
exchange operations. A good source on local search algorithms is [4].

More computationally intensive algorithms are known under the collective term
metaheuristics, including genetic algorithms, tabu search, simulated annealing, ar-
tificial neural network, and ant colony optimization. We again refer to [4] for a
review of those methods.

1.4.6 Nonlinear Programming

For nonlinear programming problems the solution methodology is less standardized
than for linear programming problems. This is mainly due to the fact that one has to
distinguish between local optimal and global optimal solutions. A local optimal so-
lution X is a solution such that for any small perturbation &, X+ € is either infeasible
or its objective value is worse. However, it does not guarantee that there is no other
solution y with a better objective value. For the global optimal solution it holds that
there does not exist any other feasible solution with a better objective value.

For linear programming problems (more precisely, convex optimization prob-
lems) each local optimal solution is also globally optimal, which allows methods
like the Simplex algorithm to work. As this is not the case for general nonlinear pro-
gramming problems (non-convex to be more precise), methods usually only guaran-
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tee a local optimal solution as output. Valuable sources for the theory of nonlinear
programming are [12, 16].

1.5 Selected Classical Applications in Communication Networks

In this section a few classical applications of graphs and algorithms for communi-
cation networks are discussed. First, the design of network topologies is discussed,
as well as are some routing problems such as the shortest path and minimum cost
flow. In Section 1.5.3 basic versions of the network planning/design problem are in-
troduced. We elaborate on an application to optical network design in Section 1.5.4,
before two classical applications in wireless networks are discussed in the final Sub-
section 1.5.5.

1.5.1 Design of Network Topologies

The design of network topologies has a long tradition of providing combinatorial
optimization problems, starting with the design of tree and ring networks to meshed
network structures that guarantee multiple node- or link-disjoint paths between ev-
ery pair of network nodes.

1.5.1.1 Design of Tree Topologies

To enable communication between a pair of network nodes, either direct or via other
network nodes (serving as switches), there must exist at least one path between
them. In topology network design problems costs are associated with the usage of
a potential link between two network nodes. These costs can represent various real
cost factors such as the digging of a cable trunk, the leasing of a virtual connection,
the laying of a cable in an office building, or the installation of a configuration of a
directed radio link. Capacity of the link does not play a role as we only consider the
possibility to communicate and not the amount of communication (cf. Sections 1.5.2
and 1.5.3 for these issues).

Depending on the technology, a link may be directed or undirected. In this chap-
ter we only consider the undirected version of this problem; we refer to [83, Chapter
52] for the directed version. We abstract from the practical application by the intro-
duction of two graphs: The graph G = (V,E) describes all potential connections
between the networks nodes V. We associate with every edge ij € E a cost value
K;; € Q denoting the installation cost of a link between the network nodes. W.1. 0. g.
we can assume that G is complete by k;; = oo for all not yet existing edges ij ¢ E.
A minimum cost subset of the edges L C E has to be selected as network topology.
A second graph H = (U, F) with U C V encodes all required communication paths.
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An edge ij € F exists if and only if the topology solution should contain a path
between the two network nodes. Three cases are distinguished in the following:

1. U =V and H is complete — the minimum spanning tree problem,
2. U CV and H is complete — the minimum Steiner tree problem, and
3. H is not a complete graph — the minimum Steiner network problem.

Each of the cases is illustrated by an (artificial) example from communication net-
working.

Minimum Spanning Tree Problem

Application 1.1 In a new office building, a Wireless Local Area Network (WLAN)
has to be installed. For this a number of so-called access points (APs) have been
determined that allow for wireless coverage of the building. The APs have to be
interconnected via a wired Ethernet backbone. The cost of a direct wired connection
between two APs i and j is denoted by x;; € Q. One has to design a minimum cost
wired network topology that enables communication between all APs.

In this application no other connection points than the APs exist. Hence, V denotes
the set of APs and S = V. This problem is known as the minimum cost spanning tree
problem. If a connecting path is required between all vertex pairs i, j € V, at least
[V| — 1 edges have to be selected and the resulting subgraph (V,L) must be cycle-
free (otherwise certain vertices are not connected). Such subgraphs are exactly the
spanning trees in G. Thus, in this case the optimal topology is a minimum cost
spanning tree .7 = (V,L).

A minimum cost spanning tree in a weighted graph G = (V, E) can be found with
for example the Dijkstra-Prim algorithm [39, 81]; see Algorithm 1.1. The algorithm
selects repeatedly the minimum cost edge extending the current tree, starting with a
single vertex, and ending with a tree spanning all vertices.

Algorithm 1.1 Dijkstra-Prim algorithm to determine the minimum cost spanning
tree 7 = (V,L) in a graph G = (V, E) with edge cost k..
LetL:=0
Let S := {i} for some arbitrary i € V
while S #V do
Lete =argmin{x;; |ij€ E,i€§,j€V\S}
L:=LuU{e}
S:=8SU{j} withe={i,j},ieS
return 7 = (V,L) with cost k(L)

Optimality of the final spanning tree can be proved by an exchange argument:
Assume 7 is not optimal and let ' = (V,L’) be an optimal spanning tree with
|[LNL'| maximal. If 7 differs from .7, there is an edge e* € L such that L' U e*
contains a cycle. Now, let S* be the vertex set in Algorithm 1.1 just before e* was
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added to L. Further, let // j € L’ be a second edge on the cycle with i’ € §*, j/ € V\ §*.
Then, (V,L'U{e*}\ {/'j'}) also is a spanning tree, but k(L' U{e*}\ {/'j'}) < x(L).
Hence, either .7’ was not optimal or [LN L’| was not maximal.

The time to compute a minimum cost spanning tree with the Dijkstra-Prim al-
gorithm is € (|E|+ |V |log|V|) by using a data structure such as a Fibonacci heap
for sorting the potential spanning tree edges. Hence, the problem is in P. Further,
the Dijkstra-Prim algorithm is an example of a greedy algorithm; cf. Section 1.4.3.
Another greedy algorithm for the minimum cost spanning tree problem is Kruskal’s
algorithm [69]. It starts with the trivial forest (V,L), L = 0, and repeatedly adds the
edge of minimum cost such that the new subgraph (V,L) remains a forest. After
adding |V| — 1 edges a minimum cost spanning tree is found (which can be proved
by a similar argument as above).

Recently, there has been renewed interest in the minimum spanning tree problem.
However, the tree is restricted to have a bounded degree at all vertices. In contrast to
the minimum cost spanning tree problem, no polynomial-time algorithm is known
for the bounded degree minimum cost spanning tree problem [10, 51]. NP-hardness
follows from the Degree-Constrained Spanning Tree problem, where one has to
minimize the maximum degree of the spanning tree [50, Problem ND1].

Minimum Steiner Tree Problem

Application 1.2 Reconsider the situation of Application 1.1. Instead of a new office
building, we consider an existing building with a wired LAN infrastructure in place.
The new backbone for the WLAN can use this infrastructure but is not required to
do so. A set of connection points at the wired LAN network have been identified, and
the costs to connect an AP to a connection point are again denoted by ;.

In this case the set V consists of all APs and all connection point to the wired LAN
network. Since only the APs have to be connected to each other, S consists of the
APs only and H is complete. The connection cost between any two connection
points i, j € V'\ S can be defined as k; ; = 0. This problem is known as the mini-
mum cost Steiner tree problem. The subset U C V are the so-called terminals that
have to be connected, whereas the remaining vertices V \ U can be used as hubs to
save connection costs.

The minimum cost Steiner tree problem cannot be solved in polynomial time,
unless P = NP [66]. Even for grid graphs the problem is NP-complete [49]. The
special case where |U| = 2 requires a path between the two end nodes and is better
known as the shortest path problem; see Section 1.5.2.1.

Among the many different approaches that have been developed to find optimal,
or at least very good, solutions for the Steiner tree problem, polyhedral methods
have been particularly successful. The problem can be formulated as an integer lin-
ear program in many different ways. We present here one formulation as a warm-up
and refer to the survey by Vol [89] for further formulations.

For every e € E we introduce a binary variable x, indicating whether (x, = 1) or
not (x, = 0) the edge is part of the Steiner tree. The Steiner Tree Problem now reads
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min Y Kexe (1.7a)
ecE
s.t. Y xij>1 YW CV,WNS#0,(V\W)NS#0 (1.7b)
ecS(W)
x. € {0,1} Vec E (1.7¢)

The Connectivity constraints (1.7b) ensure that there is always at least one edge
selected to connect a terminals in W and terminals in V \ W. This in particular guar-
antees that all terminals are connected in a feasible solution, and hence the minimum
Steiner tree can be found by solving (1.7).

Although this is not the strongest formulation (in the sense of value of the LP
relaxation, cf. [27]), the way of formulating the problem is already of help for more
complex problems like the two-layer network design problem discussed in Chap-
ter 3, where inequalities (1.7b) with |W| = 1 are used as cutting planes (cf. page
108). For further information on the Steiner tree problem we refer to Polzin [80]
and VoB [89]. SteinLIB [68] is a library with benchmark instances for the Steiner
tree problem.

Minimum Steiner Network Problem

Application 1.3 An Internet Service Provider (ISP) provides a Virtual Private Net-
work (VPN) service to its corporate customers. A VPN is a computer network that
uses virtual circuits in a larger network. For each customer a VPN has to be es-
tablished that enables communication between all the customer’s locations. The
ISP leases bandwidth connections at a telecommunication network operator. Costs
savings can be achieved by combining the requirements of multiple corporate cus-
tomers.

The remaining case generalizes the Steiner tree problem. If not all vertices in U
have to be mutually connected, the topology does not necessarily need to be a tree
spanning U. For each component of H the optimal topology will be connected, but
there is no need to connect vertices in different components. In some cases, however,
it might be beneficial to connect vertices in the same component of H via vertices
from another component. In fact, the solution will be a forest with at most the same
number of components (i.e., trees) as H. For more information on this problem and
a primal-dual approximation algorithm, we refer to [6].

1.5.1.2 Design of Ring Topologies

From a reliability point of view, a network that connects the desired vertex pairs
with exactly one path is not necessarily a good solution. If a link fails the topol-
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ogy is disconnected and no communication is possible anymore between the two
components of the network.

To improve the reliability of the network, it has been suggested to use a ring as
topology structure instead of a tree. The cheapest way to guarantee that two paths
exist between every pair of nodes is the selection of a Hamiltonian cycle (i.e., a
single cycle connecting all nodes in the network). Not only is this problem already
NP-hard to solve (it is equivalent to the traveling salesman problem) but the poten-
tial topology might not contain a Hamiltonian cycle. Further, the average path length
of the two paths is 5 for a network of n nodes. Accordingly, communication delays
will be high. Therefore, an alternative is to design a network composed of connected
rings. Many different approaches towards this problem exist; we refer to [60] for an
introduction.

1.5.1.3 Design of Meshed Topologies

Instead of connecting the network nodes via a ring, more general configurations
can be considered that provide a higher reliability than tree or ring networks. To
simplify the presentation, we only consider link failures and undirected graphs in
the following. For this purpose, we associate with every edge {i, j} of the graph H =
(V,F) (as defined in Section 1.5.1.1) a value r;; denoting the minimum connectivity
between i and j, i.e., the minimum number of edge-disjoint paths. Now, a meshed
network topology is a subset L C E such that for all {i,j} € F, i and j are r;j-
connected. The integer linear programming formulation (1.7) can be easily adapted
to this situation by replacing the right-hand side of (1.7b) with max;ew jev\w 7ij-
The minimum cost meshed network topology problem can be solved by integer
linear programming techniques. Some references are [48, 56-58].

1.5.2 Network Routing Problems

Given a network topology, communication between two nodes can be established
according to a set of rules specifying the path the signal should follow. Depending
on the technology many different routing protocols exist. In this section we discuss
some of the optimization problems providing a basis in network routing optimiza-
tion. At the end, we refer to more elaborate routing problems discussed in the chap-
ters. Network flows have been extensively studied, and [7] provides a rich collection
of results in this area.

1.5.2.1 Routing of a Single Commodity

The most elementary problem in network routing optimization is the choice of a
routing for a single commodity, e.g., one source-destination pair. This problem can
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occur at the planning stage (e.g., simultaneous planning of communication paths)
or at the operational stage (e.g., online call admission). The problem also has to be
solved in many multi-commodity network optimization problems where dynamic
column generation is used (cf. Section 1.5.3).

Shortest Path Problem

Application 1.4 Consider the operation of an optical fiber network. The call admis-
sion officer is asked to set up a new 10 Gbit/s connection between two core nodes.
To avoid re-sorting of the packets at the receiving end of the connection, a single
10 Gbit/s lightpath has to be used. To limit the packet delay to a minimum, the path
should be as short as possible.

If no further routing restrictions apply, this problem can be described as follows.
Given a digraph D = (V,A) (e.g., arc a € A exists if and only if enough spare capacity
exists), a weight function w : A — Q (e.g., the delay) and a source-destination pair
s,t €V, find a path p from s to 7 such that },c,w, is minimized. In general the
weight function w can represent any relevant metric, e.g., length of the network
links, delay, spare capacity, etc..

The above problem is well-known as the shortest path problem. If all weights
are nonnegative, the problem can be solved in polynomial time by a wide variety
of algorithms, the most famous one being Dijkstra’s € (\V\z) algorithm [39]; see
Algorithm 1.2. An excellent source for faster implementations of Dijkstra’s algo-
rithm and other faster algorithms for the shortest path problem is [83, Chapter 7];
see also [7].

Algorithm 1.2 Dijkstra’s algorithm to determine the shortest path p between s € V
and 7 € V in a weighted digraph D = (V,A,w).

Define d : V +— Q4 by d(i) := 0 if i = s and d(i) := e otherwise
Define p:V — V by p(i):=iforallicV
LetS:=0
while 7 ¢ S do
Leti=argmin{d(j) | j€V\S}
for j € N*(i) do
if d(i) +wij < d(j) then
d(j) = d(i) +w;
p(j) =i
S:=Su{i}
if d(t) = o then
return No path from s to 7 exists
Let path p be (io,a1,i1,...,ak,ix) such that i; = p(ij11) and ip = s, iy =1¢.
return p and d()

The function d : V — Q keeps the shortest distance known from s to any vertex,
whereas p(i) records the previous vertex on the shortest path from s to i. Dijkstra’s
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algorithm repeatedly selects vertices i € V for which the distance d(i) to the source
vertex s cannot be improved anymore and updates the distance of vertices that can
be reached in a single step from this vertex. Since all arc weights are nonnegative,
the distance to none of the vertices in S can be decreased this way, and hence as
soon as t € S, the distance d(¢) is final.

In case some arc weights are negative, the above algorithm cannot guarantee an
optimal solution anymore (i.e., if negatively weighted cycles exist) and the problem
can be proved to be NP-complete [50, 66]. This result is of particular importance for
optimization approaches that exploit dynamic column generation since in particular
cases negative arc weights might appear. Shortest path algorithms are used in many
situations; see, e.g., Chapters 4, 5, and 8.

Suurballe’s Problem

Application 1.5 Reconsider the situation of Application 1.4. To guarantee high
availability of the connection, two vertex-disjoint paths with minimum total delay
have to be installed. All packets are transmitted by both lightpaths. At the receiv-
ing end, the packets that arrive earliest are processed, whereas the other ones (if
arriving) are discarded.

This closely related and widely studied problem in communication networks is
known as Suurballe’s problem [86], often wrongly referred to as Suurballe’s algo-
rithm. Instead of a shortest path between s and ¢, a shortest cycle containing s and
t is searched for. Stated differently, and more generally, we have to find K paths
P1,--.,pk between s and ¢ such that Zle Sac p;jWa is minimized. The paths must
be either arc-disjoint or vertex-disjoint (except for source and destination), depend-
ing on the setting. For K = 2 and vertex-disjoint paths, the problem reduces to the
shortest cycle problem.

This problem occurs in the context of /+1 dedicated path protection, where a
working or primary path and a disjoint backup path have to be selected. From a
practical perspective there might be several reasons to balance the length of both
paths, e.g., comparable delays, or avoidance of a capacity imbalance between pri-
mary and backup capacity. In such situations we might apply a successive shortest
path computation; i.e., we first compute the shortest path between s and ¢ and next
we compute a shortest path in the augmented digraph where all arcs (and nodes)
on the shortest path are removed. However, such a second path might not exist,
although there exists a shortest cycle; see Figure 1.9.

Specific algorithms have been developed for this problem, in particular using
Dijkstra’s algorithm; cf. [17]. Alternatively, the problem can be solved as a minimum
cost flow problem.
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Fig. 1.9 A digraph with arc weights w, = 1 for all a € A where the successive shortest path algo-
rithm fails to find two vertex-disjoint paths between vertices A and H

Minimum Cost Flow Problem

Application 1.6 A world-wide operating investment bank needs access to 250
Gbit/s of bandwidth between its European and US headquarters. For this it can
lease bandwidth from a number of network operators for sections of the connec-
tion, represented by a directed graph. Bandwidth on a section can be leased with a
modularity of 10 Gbit/s and is priced accordingly.

The minimum cost flow problem is defined by a digraph D = (V,A), a cost func-
tion w : A — Q4, a capacity function ¢ : A — Z, and a supply/demand function
d:V — 7. A vertex i €V is called a supply vertex if d; > 0, a demand vertex if
d; < 0, and a transit vertex if d; = 0. A flow f:A+— Q. is an assignment of val-
ues to the arcs of the digraph. We call a flow proper with respect to d if the flow
conservation constraints

S fam Y fa=d; (1.8)

acdt(i)  acd (i)

hold for all i € V. We further call a flow proper with respect to c if the capacity
constraints

Ja<ca (1.9)

hold for all a € A. A minimum cost flow is a proper flow with respect to d and c that
minimizes

z Wafa-

acA

The description of the minimum cost flow problem is more general than Appli-
cation 1.6 requires: there is only one supply vertex and only one demand vertex.
Suurballe’s problem with arc-disjoint paths can be easily formulated as a minimum
cost flow problem by setting ¢, = 1 for all a € A, and

K ifi=s,
di=<—-K ifi=t, and
0 otherwise.



1 Graphs and Algorithms in Communication Networks on Seven League Boots 33

Every proper flow with respect to d and ¢ can now be translated to a set of K arc-
disjoint paths. For each path p; we greedily select successive arcs for which f, =1,
starting at the source s and ending at the destination ¢, setting f, = 0 as soon as it is
selected.

Because of the total unimodularity of the constraint matrix in the minimum cost
flow problem, the solution is integer valued if all arc capacities ¢, are integral. This
property is, for example, relevant in the context of optical networks where we would
like to route a number of lightpaths between a source vertex s € V and a target vertex
teV.

Maximum Flow Problem

Another problem closely related to the above problems is the maximum flow prob-
lem. Here the input consists of a digraph D = (V,A), a capacity functionc: A — Z,
and two designated vertices, a source s € V and a target ¢ € V. The objective is to
maximize the flow between s and ¢.

This problem solves the feasibility version of Application 1.6: can we allocate
250 Gbit/s of bandwidth between the two headquarters? It also can be used to test
whether K arc-disjoint paths between s and ¢ exist, as requested by Suurballe’s prob-
lem.

The problem is in particular known for the famous max-flow min-cut theorem. A
cut C in a digraph D = (V,A) is a subset of the arcs such that (V,A\ C) is discon-
nected. A cut is called an s — ¢ cut if s and ¢ are not connected anymore.

Theorem 1.7 (Dantzig and Fulkerson [37]). Let D = (V,A) be a digraph with
source node s €V and target nodet € V. Let ¢ : A — Z_.. Then the maximum value
of an s —t proper flow with respect to c is equal to the minimum capacity of an s —t
cut.

Combinatorial algorithms to solve the minimum cost network flow problem or
the maximum flow problem can be found in [7, 32] or any good textbook in combi-
natorial optimization.

1.5.2.2 Routing of Multiple Commodities

In general, a commodity is a good that does not require further differentiation, either
from a practical point of view or from a mathematical point of view. The minimum
cost flow problem of the previous section is a good example of a single commodity
transportation problem. There may be multiple supply vertices and multiple demand
vertices, but there is no differentiation between the goods supplied and demanded.
Supply from any vertex can be used to fulfill the demand.
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Multi-commodity Flow Problem

In communication networks, it is usually of highest importance that goods be sent
between the right network nodes. If more than one pair of network nodes is con-
sidered simultaneously, a multi-commodity flow problem has to be solved from a
technological point of view.

Multi-commodity Edge-Flow Formulation

Application 1.8 Let D = (V,A) represent a network and the function ¢ : A — Z
denote the available bandwidth. Let a set of point-to-point demands be represented
by another weighted digraph H = (V,B) with weight function d : B — Ry (d;; de-
notes the required bandwidth between i and j, ij € B). Find a routing of the demands
such that the total spare capacity is maximized.

Depending on the real application, the routing might have to satisfy additional
requirements; see Section 1.5.2.3. For now, we assume that the routing can be bifur-
cated, i.e., it can be split among different paths from source to destination. Accord-
ingly the problem can be modeled as a linear program. For each st € B, we introduce
a set of edge-flow variables f' to model the flow on arc a € A between source i and
target j. The Multi-commodity Flow (MCF) problem now reads

min Y Y f (1.10a)

steEBacA
dy ifi=s

st Y = Y fil=Q-dy ifi=t icV,stecB  (1.10b)
acdy (i) a€dp (i) 0 otherwise
Y fi <ca ac€A (1.10c)
steB
5> () (1.10d)

Instead of maximizing the total spare capacity, the objective (1.10a) models the
minimization of the used resources. With fixed capacities c, these objectives are
equivalent. Constraints (1.10b) model the flow conservation from source to target
for all demands, whereas (1.10c) model the capacity constraints. Compared to the
single commodity case, the latter take all commodities simultaneously into account,
whereas for the flow conservation a separate set of constraints is set up for each
commodity.

The MCF (1.10) is a linear program and therefore can be solved efficiently;
cf. Section 1.3. However, for larger networks the size of the MCF model is a reason
for concern. Assuming a demand between every node pair (i.e., H is complete), the
model has & (n?m) variables and &' (n?) constraints, where n = |V| and m = |A|.

From a mathematical point of view there is no need to differentiate between
demands as long as they have either the same source or the same target. In this
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way, the size of (1.10) can be reduced to ¢'(nm) variables and ¢'(n*) constraints
by aggregation of demands into n commodities (instead of &'(n?)). We construct a
set K of commodities from the point-to-point demands as follows. For every source
node s, we define a commodity k € K by considering all demands represented by
871 (s). The demand value

=3 dy

tENG (s)

of the commodity is simply defined as the total demand value of its demands. For
any node i € V, let

g dk ifi=s,
P\ —dy ifi#s

be the supply (positive) or demand (negative) for commodity k at node i. By con-
struction, the equality Y ;cy d{‘ = 0 holds for every commodity k. Now MCF can be
reformulated with continuous aggregated flow variables fX:

min Y Y f¥ (1.11a)
keK acA

st. Y i Y fi=df ieVkek (1.11b)
a8t (i) acéy (i)
Y fi<ea acA (1.11¢)
keK
f5>0 (1.11d)

Given a solution ( ffj)keK’aGA, the routing of every point-to-point demand can be
reconstructed by greedily selecting a path between source s and target ¢ of a point-
to-point demand, setting its value to the minimum of the demand value dy and the
minimum flow value £ on the arcs along the path, and reducing the flow values f¥
on the path with this value.

Multi-commodity Path-Flow Formulation

Alternatively, one can formulate the MCF problem by variables representing the
paths between source and target. For this, let 7¥ denote all paths in D between
s and ¢ and let & = Ugep P (note that there can be exponentially many paths
between two vertices). Further, let &, = {p € & : a € p}. For every st € B and
p € Py we define a path-flow variable yf,’ denoting the flow using this path. The
MCEF now reads
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min > >y (1.12a)
A‘IGBpeﬁaS[

st Y yh=dy stE€B (1.12b)
pePt
> Y v <ca acA (1.12¢)
steBpe P,
yy =0 (1.12d)

Although this formulation has an exponential number of variables, it also has its
benefits. First of all, since many variables will be 0 in an optimal solution, not all
variables have to be considered explicitly by exploiting dynamic column generation;
cf Section 1.4.1. Given the explicit consideration of the variables yj,’ for a subset
P’ C P of the paths, (1.12) is solved to optimality if and only if for all st € B there
does not exist a path p € 2%\ &’ with

Y opa<1—m", (1.13)

acp

where 1, and 7% are the dual variables corresponding to (1.12¢) and (1.12b), re-
spectively. To test whether there exists such a path p, we have to solve a shortest path
problem on D = (V,A) with weights ¢ > 0 for all a € A. If the length of the shortest
path strictly smaller than 1 — %, the variable has to be considered explicitly.

Another benefit of the path-flow formulation (1.12) is that restrictions on the
routing paths can be taken into account, e.g., paths with less than K hops (number
of arcs) or with delay below a certain threshold. If the number of paths that satisfy
such requirements is still large and dynamic column generation is deployed, the
pricing problem becomes a shortest weight-constrained path problem which is NP-
complete in general [50].

1.5.2.3 More Network Routing Problems

The MCF problem forms the basis for many more complex network routing prob-
lems occurring in practice. While capacity planning problems are presented in Sec-
tion 1.5.3, the remainder of this section contains an (author-biased) sample of rout-
ing problem variations.

Multi-commodity Flow in Undirected Graphs

Depending on the technology, the MCF problem might be defined for undirected
graphs G = (V,E) and H = (V,F) (note that source and target of a demand are
chosen arbitrarily in this case). Formulation (1.12) can be easily adapted to this case
by replacing D with G and by redefinition of £ to be all undirected paths in G
between s and ¢. For the other formulations, we have to define a directed graph
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D(G) = (V,A) withA = {(i, ), (j,i) | {i, j} € E}. Instead of constraints (1.10c), the
following inequality has to be satisfied:

> (fiy+ 1) e {i,j} €E (1.14)

steF

Integer Flow

In the integer flow problem we have to route every demand in integral units from
source to target. A natural prerequisite is that the demand values dy; be integral as
well. This problem has to be solved in the context of optical networks [93, 94].
The demand graph represents the number of lightpaths needed between the incident
vertices. The formulations (1.10)—(1.12) can be easily adapted to this situation by
changing the domain of the variables to the nonnegative integers.

In the single-commodity case, this problem can be solved in polynomial time
as a minimum cost flow problem; see Section 1.5.2.1 (fractional capacities can be
rounded down without loss of generality). For the multi-commodity case, the prob-
lem is in general NP-complete since it contains the Disjoint Connecting Paths prob-
lem as a special case [50]. In the Disjoint Connecting Paths problem one has to
find & mutually vertex-disjoint paths in D = (V,A) connecting the disjoint vertex
pairs (s1,1),. .., (s, ). By graph transformation and setting ¢, = 1 for all a € A we
obtain an instance of the integer flow problem, and hence NP-completeness of the
integer flow problem is shown.

Unsplittable Flow

In the unsplittable flow or non-bifurcated flow problem we have to route every de-
mand on a single path between source and target. This problem can be modeled
by replacing the variables /3 in (1.10) by dyx, where x' are binary variables de-
noting the usage of a certain arc. The flow conservation constraints (1.10b) can be
simplified by dividing all coefficients by d,.

In the single commodity case, this problem is simply a shortest path problem
where all arcs with ¢, < dy are removed from the digraph. The multi-commodity
case is NP-complete by the same reduction as that for the integer flow problem.

If continuous instead of binary variables are used the problem is equivalent to the
multi-commodity flow problem. However, the variables describe the percentage of
flow routing along an arc, which might be beneficial in certain circumstances, e.g.,
with multiple demand graphs in the case of multi-hour routing.
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Routing of Multicasts

Usually this problem is considered in undirected graphs and no distinction between
source and targets is made. In the multicast routing problem every commodity k € K
consists of a set of terminals 7% and a demand value d*. A solution consists of a
spanner for every commodity k € K connecting all terminals 7%, i.e., a subset of
the edges forming a connected subgraph containing all terminals. This problem is
therefore known as the spanner packing problem, or in the case where the spanners
have to be trees, the Steiner tree packing problem. A study on these problems can
be found in [18]. Multicasting scenarios are also studied in Chapters 2 and 7.

1.5.3 Network Planning Problems

In many networking problems, the link capacities are not fixed but can be chosen
at certain costs. In such cases, a network planning problem (also called network de-
sign problem or network loading problem) has to be solved. Rich literature exists
discussing solution approaches for a wide variety of these problems, e.g., unsplit-
table, integral, and splittable flows, directed and undirected networks, and directed
and undirected demand graphs. A detailed discussion can be found in [79]. Here,
we restrict ourselves to splittable flows in a directed network and directed demand
graph. We discuss two different approaches before a third approach is described in
more detail for the case of optical networks (Section 1.5.4).

1.5.3.1 Linear Cost Functions

Application 1.9 A regional service provider leases bandwidth from different net-
work operators active in his area. Each of the network operators offers bandwidth
at the links of a network D = (V,A). For each of the links a € A, K, denotes the rate
at which the operator cheapest for this link is offering bandwidth. Let H = (V,B)
represent the point-to-point demands with demand function d : B — R,. Find a
routing of the demands such that the leasing cost is minimized.

Compared to the multi-commodity flow problem of Section 1.5.2.2, this problem
has a different objective and different capacity constraints. The flow conservation
constraints (1.10b) remain the same. The new objective reads

min Y KuZa (1.15a)

acA

where z, is nonnegative variable denoting the bandwidth consumption of arc a € A.
The capacity constraint 1.10c is replaced by
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Y <z acA (1.15b)

steB

Assuming dy; > 0, the nonnegativity constraints (1.10d) guarantee that the values of
z4 will also be nonnegative.

So far, this problem is not really exciting. Not only can it be solved in polynomial
time (as it is a linear program), in any optimal solution we will have z, = X, cp fi.
Moreover, the point-to-point demands can be routed completely independently with-
out losing optimality. Hence, the problem consists of |B| shortest path problems,
where ¥, define the lengths of the arcs. Furthermore, the result will be an unsplit-
table flow and thus the problem with unsplittable flow is also solved to optimality.

The problem becomes a different game if shared protection mechanisms such
as Single Backup Path Protection (SBPP) are exploited. In SBPP the demand not
only has to be routed along a single working path, but a backup path has also to be
specified and is used if one of the links on the working path fails. By assuming that at
most one link can fail at a time, several backup paths can share bandwidth capacity
(i.e., those for which the working paths are disjoint). This problem is already NP-
hard [85] with continuous bandwidth capacity variables. Survivable networks are
studied in more detail in Chapter 5.

1.5.3.2 Discrete Cost Functions

Let us now turn to the case where capacity can only be installed in certain amounts.
The problem instantly becomes more difficult. If capacities can be installed in only
one size, the model remains the same by scaling the installed bandwidth to 1. Only
the integrality constraints of the z, variables have to added.

More generally, different discrete capacities C! < C? < ... < CM can be installed
against cost k! < k2 < ... < kM. In such a case, we introduce capacity variables
zl,...,2" € Z to denote the number of times a particular bandwidth module is

installed on a particular arc. The objective now changes to

M
min Y, Y K (1.16a)

acAm=1

whereas the bandwidth capacity constraint (1.15b) now reads

M
o<y oy acA (1.16b)
m=1

steB

This problem is NP-hard for many special cases [19, 26]; it is, however, relevant for
a variety of technologies; see [90] for an example. Integer linear programming has
been used intensively to solve these problems (see [90] for details and references);
an alternative approach is discussed in Section 1.5.4.
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1.5.3.3 More Network Planning Problems

As already pointed out, the discussed planning problems are at the core of more
complex network design problems. In-depth discussions of these can be found in
books such as [59, 79]. Two particular cases are discussed in this book. Chapter 3
discusses a multilayer network design problem whereas Chapter 8 is devoted to
shortest path network routing and planning; see also Section 1.6.1. A good resource
for realistic network planning instances is the SNDIib website [77].

1.5.4 A Randomized Cost Smoothing Approach for Optical
Network Design

Contributed by Alpar Jiittner!'

In info-communications network design, the cost of optical ports and links grows in
discrete steps as the capacity is being increased. This cost function is referred to as
“step function” or “staged capacity cost.”

In this section, we propose and compare methods that perform randomized
smoothing of these staged capacity cost functions to allow decomposition of the
network design problem into a sequence of weighted shortest path searches.

1.5.4.1 Introduction

During an optical network design, not only the topology but also the demand rout-
ing and link/port capacities have to be determined. For example, in an SDH/SONET
network the capacities, i.e., the interface speeds, take values of 155.52; 622.08;
2,488.32; 9,953.28 and 39,813.12 Mbit/s, i.e., they always multiply by exactly four.
In optical transport networks (OTNs) the capacities take values of 2,666, 10,709,
and 43,018, i.e., values always multiply by a bit more than 4 (4.017). Furthermore,
in OTN and in any other Coarse WDM (CWDM) or Dense WDM (DWDM) system
one or more wavelengths can be used in parallel for demands of larger capacity, and
the number of wavelengths to be used in a WDM system varies in steps of 8, 16,
24,32, 40, 48, 64, 80, 96, 120, and so on, wavelengths per fiber. This shows that for
all-optical networks we face staged capacity costs.

This section proposes a simple yet efficient approximation approach to handle
this problem. The methods presented here can be used for green-field design, net-
work extension, or configuration purposes (e.g., VPN, leased A, and leased line
services), as will be formulated in Section 1.5.4.2.

1 Alpar Jiittner
Department of Operations Research, Eotvos University, Pizmany P. s. 1/C, H-1117 Budapest, Hun-
gary, e-mail: alpar@cs.elte.hu
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1.5.4.2 General Network Planning Problem (GNPP)

The network is represented as a directed graph G,.; = (N, L) with the set N of nodes
and the set L of the possible links. The demands are also represented by a directed
graph Gy, = (N, D) over the same node set N and a function dem : D — R . Each
demand is represented by an edge d € D, where the tail and the head of d show
the source and the target of the demands, respectively, while dem(d) is the amount
of the demand. Moreover, we are given a monotone increasing load-dependent cost
function on each link, denoted by cost : L x R, — R, so the cost of establishing a
link ¢ with capacity ¢ (or upgrading ¢ to capacity c) is cost (¢, ¢).

Then, the task is to assign a route p; to each demand d in such a way that the
obtained configuration minimizes the total cost

Y cost (¢, traffic(£)), where traffic(() = Y, dem(d). (1.17)

lel dlepy

This definition models several usual network optimization problems. Some ex-
amples are shown below.

Routing Configuration

Let us assume that we are given a network with given link capacities cap(¢) and
the set of demands we want to carry over this network while keeping the capacity
constraints or minimizing the total overload. This problem can be modeled by the
framework above by defining the following cost function.

cost(£,t) = max(0,t — cap(¥)) (1.18)

If we want to minimize the number of overloaded links instead of the total overload,
we can use the following

0, ift < cap(f)

cost(£,t) = {07 it > cap(() (1.19)

Network Design

This case is a green-field network planning problem: we want to plan a new network
carrying our traffic and we want to minimize the installation costs. Then L will
consist of all possible links, while cost(£,¢) is defined to be the cost of installing
a link of capacity ¢ between the source and the destination of ¢. As we can choose
only from some fixed capacity equipment, the cost will be a step function for each
possible link £.
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Network Extension

This case is similar to the previous one, but now we have some existing links, which
can be used with no extra installation cost. In this scenario, the cost cost(¢,t) of an
existing link ¢ with capacity cap(¥) is O for all # < cap(¥).

1.5.4.3 Solution Methods
Local Search

The following simple observation plays a central role in solving GNPP.

Claim. Let us assume that we have fixed a route for all but one demand, i.e., we
have fixed p, for all d € D\ d'. Then the optimal route for the last demand d’ can
be found by searching for a shortest path (using Dijkstra’s algorithm) according to
the following auxiliary length function.

len(l) = cost({,trafficy (£) +dem(d')) — cost (¢, trafficy (£)), (1.20)
where
trafficy(O)= Y, dem(d). (1.21)
d:d#d"\epy

Using the claim above, a simple heuristic can be given as follows. We start with
an arbitrary solution; then in each iteration we remove a route from the configuration
and replace it by the locally best alternative. We repeat this process until no more
improving change is possible. We refer this as the Local Search (LS) method.

It is easy to see that this method finds the theoretically optimal solution if the cost
function is linear in the second variable. However, it works poorly for the two most
typical cost functions, the concave and the staged costs, especially for the latter one.

Cost Function Smoothing (CFS) Algorithm

The main weakness of the LS scheme is that it considers the cost function as a black
box and queries its values only for the current traffic on the links. So, it does not
take into consideration how much traffic can be still allocated on the link before we
actually reach the next stage in the cost function, or how much should be deallocated
for realizing real cost decrement.

A solution proposed by [71] is to smooth the actual cost function by convolving it
with a “Gauss-like” function. This smoothed cost function costg(¢,t) should be pa-
rameterized in such a way that for large 6 values it provides a very smooth function
(close to linear for practical ¢ values) and it approaches cost(¢,t) as § approaches 0
(see Figure 1.10).
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Then, the CFS algorithm is the same as LS with the exception that we use
costg(€,t) instead of the original cost function. We start with a large § value and
decrease it exponentially during the execution of the algorithm.

delta=10 ——
fas delta=5

Original

L L L
[ 5 10 15 20

Fig. 1.10 costg(¢,t) with different § values

A concrete example for such a smoothing is the following (this is a refined ver-
sion of what is given in [71]).

costs(t.1) = (cost (€ xhs())(1) = [ _cost(6,E)hs(t — E)dE, (122)
where
/ ~ fcost(l,r) ift>0,
cost (£,t) = { —cost({,—t) otherwise, (1.23)
1. ¢
hs(t) = Sh(55), (1.24)
and
1-22  fort| < 1/2
h(t) =< 2([t| = 1) for 1/2<Jt] <1 (1.25)

0 for 1 < [z].

The symmetric definition of the cost function in (1.23) ensures that costg(¢,0) =0
holds for all §. The advantage of smoothing function (1.25) is that the convolution
integral is a polynomial for constant or linear segments of the cost functions; thus it
is fast to evaluate for staged or piecewise linear cost functions.
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Randomized Cost Smoothing (RCFS) Algorithm

This approach is somewhat similar to the Cost Function smoothing, but instead of
modifying the cost function, we apply a random “uncertainty” when querying its
values. Namely, we change Equation (1.20) to the following.

len(¢) = cost ({,trafficy (£) +dem(d’) + Rs) — cost (¢, traffic ; (£)), (1.26)

where Rg is a certain random variable of standard deviation §. Natural choices for
Rs include the Gaussian distribution N(0, 5%) and the exponential distribution. If R
can also take negative values, then len’(¢) = max(0,len(£)) should be used in order
to avoid negative lengths. Note that Dijkstra’s algorithm reads the length of each
link only once, so this gives a consistent length function in each iteration.

try () tr, ()+dem(d)

Fig. 1.11 Randomized smoothing of cost(¢,1)

Note that the expected value of cost({,t + Rs) is the same as cost(£,t) smoothed
or convolved by the probabilistic distribution function of the random variable Rg;
thus this approach indeed performs a “randomized smoothing.” On the other hand,
an expected advantage of this scheme is that similarly to other metaheuristics such as
Simulated Annealing or the Evolutionary Algorithms, the randomness may provide
higher freedom for the algorithms when choosing replacement of a route; thus it
may have a higher chance of avoiding the local optima that are far from the global
optimum.

1.5.4.4 Evaluation

Here, we demonstrate the behavior of the algorithms on a single but representa-
tive network topology. The test network (see Figure 1.12) is a two-connected pla-
nar graph consisting of 50 nodes and 84 bidirectional links. It was generated by
lgfgen, a random graph generator of LEMON [70].

The cost function is a step function, and it is also linearly proportional to the
physical length of the link, i.e,
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Fig. 1.12 Test network example with 50 nodes and 84 links

Table 1.1 Cost obtained by the different algorithms

Homogeneous demands Big trunks

SHORTEST 91101 89575
LS 83371 72601
CFS 59890 56158
RCFS/Gauss 86722 69444
RCFS/Exp 63342 52104
0 fort =0,
I forO<t <1,
2 forl<t<4,
cost(£,t) = length({)step_fn(t), where step_fn(t) = 4 ford << 10,
8 for 10 < ¢ <100,
M for 100 < ¢.

Two different types of demand matrices were chosen for the tests.

e Homogeneous demands. In this scenario, we have a homogeneous traffic matrix,
i.e., we have the same amount of traffic between any pair of nodes.

e Big trunks. In this scenario only 245 (out of the 2450 possible) random pairs
of nodes was chosen as traffic sources and destinations but the demands are 10
times larger than in the previous case.

We ran LS, CFS, and RCFS methods on these examples, and we also computed the
cost of the simple shortest path routing (SHORTEST) as a reference. In the case of
RCFS, both Gaussian and exponential randomization have been tested. The costs of
the obtained solutions are presented in Table 1.1.

The algorithms were implemented in C++, heavily based on the LEMON li-
brary [70]. The tests were made on a laptop equipped with a 2 GHz Centrino Duo
processor and running the Linux (OpenSuse 10.2) operating system.

The running times of SHORTEST (less than 0.1 second) and LS (a few seconds)
are obviously much less than those of CFS and RCFS. Actually, the running times
of these algorithms depend on the number of their iterations. Thus, the number of
iterations was chosen in such a way that the resulting running time was around
40 seconds. The other parameters were tuned to provide the best results.
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It is worth mentioning that RCFS completes around 2,000,000 iterations within
40 seconds while CFS completes only around 400,000 within the same time. This
is because the cost function calculation must be performed at each iteration of the
algorithms; thus, it turns out to be the most resource-consuming part of the algo-
rithms. Therefore, the easier calculation of the randomized cost function makes the
running time of an iteration of RCFS much smaller than that of CFS.

Considering the two versions of RCFS, the results show that the Gaussian version
performed quite poorly. In fact, in the case of homogeneous demands, this version
is even outperformed by the simple LS method. The possible explanation of the
better performance of the exponential-distribution-based version is that this cost
randomization can be interpreted as a stochastic prediction of the amount of traffic
that will be allocated on the link in the subsequent iterations.

Comparing CFS and RCFS, we obtained that for a homogeneous traffic matrix
the winner is CFS, while for uneven traffic with big trunks RCFS outperforms CFS.
The reason for this is that for a homogeneous traffic matrix, the traffic can be almost
continuously distributed on the links and the cost function smoothing seems to per-
form really well. On the other hand, if there are fewer but larger unsplittable traffic
flows, the problem becomes a combinatorial packing problem, and in this case the
RCFS method is able to scan a larger portion of the search space.

1.5.5 Wireless Networking

In wireless networking, two classical combinatorial optimization problems have re-
ceived a lot of attention. We first discuss the frequency assignment problem in wire-
less networks which is closely related to the vertex coloring problem. Second, the
maximum coverage problem is considered, a problem whose basic version can be
modeled as a set covering problem.

1.5.5.1 Assignment of Frequencies

The frequency assignment problem (FAP), or channel assignment problem, plays
an important role in all wireless networks that use the frequency division multiple
access (FDMA) technology, the most prominent example being the second genera-
tion of cellular networks based on the GSM technology. Other applications include
satellite communication, TV broadcasting, military wireless networks, WLANSs, and
Orthogonal Frequency Division Multiplexing (OFDM) in future wireless networks.

Due to this wide variety of applications, there does not exist a single frequency
assignment problem, but many variations. The problem was first mentioned in the
1960s [75] when individual frequencies in the radio spectrum were licensed (and
charged) by the authorities, and operators of the first cellular phone networks could
financially benefit from intelligent frequency planning. Later, frequencies were li-
censed in blocks and the objective of the operators changed to minimize the dif-



1 Graphs and Algorithms in Communication Networks on Seven League Boots 47

ference between the highest and lowest frequency to be used. In the 1990s most
frequencies were licensed and the popularity of mobile communication forced op-
erators to increase the number of antennae, significantly causing high interfer-
ence levels whenever the frequency planning was not done carefully. Accordingly
the objective changed to the minimization of interference or the maximization of
interference-free operated antennae.

All these different objectives have been addressed in a vast number of scientific
publications. For an overview on the state of the art of frequency assignment we
refer to Aardal et al. [3] and the FAP website [44]. In this section, we will restrict
ourselves to the basic modeling of the frequency assignment problem and its relation
with the vertex coloring problem in undirected graphs.

Frequency Assignment and Vertex Coloring

All variations of frequency assignment have two features in common.

1. A set of wireless transmitters must be assigned frequencies. For each transmitter
there is a set of available frequencies given.

2. The frequencies assigned to two transmitters may incur interference of one an-
other, resulting in quality loss of the signal. Two conditions must be fulfilled in
order to have interference of two signals:

e The two frequencies must be close on the electromagnetic band. Harmonics
may also interfere due to the Doppler effect, but the parts of the electromag-
netic band that are generally selected prevent this type of interference.

e Connections must be geographically close to each other, so that interfering
signals are powerful enough to disturb the quality of a signal.

Usually, data on the level of interference is provided for every quadruple of two
transmitters and two frequencies.

This rather general description is complemented by an objective to be optimized.
The problem can be modeled as a graph-theoretical problem by defining an undi-
rected interference graph G = (V,E) describing the interference relations. To sim-
plify the presentation we assume in this section that no transmitters are colocated, as
is usually the case in cellular phone networks (the description can be easily adapted
to such situations; see, for example, [41]). The set V now represents all transmitters.
The planner can choose a threshold value representing an acceptable level of inter-
ference. An edge {i, j} € E exists if and only if there exists a frequency pair (f,g)
such that the interference level for the quadruple (i, f, j, g) exceeds the threshold.
In the most simplified case we only consider so-called co-channel interference,
i.e., an edge exists if and only if the interference level exceeds the threshold for as-
signing the same frequency to both transmitters. We further assume that the set of
frequencies is equal for all transmitters and the objective is to minimize the num-
ber of frequencies under the condition that all interference levels remain below the
threshold. In this case, FAP reduces to the well-known vertex coloring problem. In
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the vertex coloring problem, we have to color the vertices of a graph G = (V, E) such
that no two adjacent vertices get the same color. The chromatic number y(G) is the
minimum number of colors needed in a feasible coloring of G. It is not difficult to
see that in the above-described case the minimum number of frequencies needed
equals y(G).

From an algorithmic point of view, this problem can be either treated as a deci-
sion problem or an optimization problem. If the number of frequencies is fixed, say
K, the planner has to answer the question: “Does there exist a solution without unac-
ceptable interference using at most K frequencies?”” which is equivalent to solving
the K-COLORABILITY decision problem. This problem is not only NP-hard [66] but
also hard to approximate [14]. In the case where the number of frequencies is not
yet fixed but must be determined, the optimization version of K-COLORABILITY
has to be solved.

unlimited spectrum fixed spectrum

vertex coloring k-colorability

| T-coloring | | list coloring |

I@I max-k-colorable
P induced subgraph

list T-coloring

Minimum Span Minimum Interference Minimum Blocking
Frequency Assignment Frequency Assignment Frequency Assignment
(MS-FAP) (MI-FAP) (MB-FAP)

Fig. 1.13 Classification of vertex coloring and frequency assignment problems

This differentiation between choice of frequencies (unlimited spectrum) and
fixed frequencies (predetermined spectrum) also holds for more realistic frequency
assignment problems; see Figure 1.13. If we include the sets of available frequen-
cies to the vertex coloring problem, a list coloring problem has to be solved, whereas
the inclusion of interference levels between nonidentical frequencies results in a 7'-
coloring problem. Both these variants on the vertex coloring problem have origi-
nally been studied in the context of frequency assignment, providing perfect show-
cases of the interaction between discrete mathematics and applications.

The combination of 7- and list coloring is known as List-T-coloring. If not the
number of frequencies but the difference between highest and lowest frequency has
to be minimized, the problem is known as the minimum span FAP.
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In the case of a fixed spectrum, K-COLORABILITY is generalized in two ways
in case the problem is infeasible. If the planner needs to assign a frequency to
each transmitter, some unacceptable interference has to be permitted. Otherwise,
the planner might consider leaving some transmitters unassigned to avoid unaccept-
able levels of interference. If only co-channel interference is considered, the first
case is known as the minimum K-partition problem: We associate a value c¢5° € Q4
with all edges e € E. The minimum K-partition problem now consists of a partition
of the vertices in K subsets Si,...,Sk such that the sum over all subsets of the to-
tal weight ¢<° of the edges in GI[S;] is minimized. Stated otherwise, all vertices in
a subset are assigned the same frequency, and so the interference incurred by this
assignment is given by the sum of the weights ¢{? for all i, j € S;. A solution with
total weight O exists if and only if the graph is K-colorable. See [42] for a solution
approach using semidefinite programming.

The second case is known as k-colorable induced subgraph. In this problem we
have to color as many vertices as possible with K colors. A solution where all ver-
tices are colored implies that the graph is K-colorable, whereas non-K-colorable
graphs have at least one vertex uncolored in any K-colorable induced subgraph so-
lution.

The inclusion of potential interference between nonidentical frequencies for
transmitter pairs results in the study of the so-called minimum blocking FAP. In-
clusion of the same information in the minimum K-partition problem results in the
minimum interference FAP.

Frequency Assignment in GSM Networks

We conclude the discussion of FAP with the formulation as integer linear program of
the minimum interference problem with co- and adjacent-channel interference, as it
occurs frequently in GSM networks.? Usually an operator of a GSM cellular phone
network has acquired the right to use a certain spectrum of frequencies [ fyuin, finax] in
a particular geographical region, e.g., a country. The frequency band is—depending
on the technology utilized—partitioned into a set of channels, all with the same
bandwidth A. The available channels are here denoted by F = {1,2,...,N}, where
N = (fmax — fmin)/A. A transmitter pair is exposed to adjacent-channel interference
if the assigned frequencies are consecutive numbers in the spectrum.

In GSM networks, communication between mobile and base station (up-link)
as well as between base station and mobile (down-link) must be established. To
simplify the management of these networks, two separate, but paired, spectrums of
frequencies are licensed, one for up-link and one for down-link. For FAP one can re-
strict assigning down-link frequencies to the base stations, as the paired frequencies
can then be used for up-link communication.

We associate with the edges of the interference graph G = (V,E) two values

o cf‘]d € Q4 denoting the level of co- and adjacent-channel interference between

Ci]’

2 Some details are ignored; see, for example, [43] for a more detailed discussion
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the vertices. For ease of notation we introduce two subsets:
E“ ={ijeE| cf"ij) > 0}, and
E“ = {ij € E | c{!ij) > 0}.
Given a subset F; C F for all i € V, the formulation uses binary variables x;¢, indi-

cating whether frequency f € F; is assigned to vertex i € V. We further introduce

variables z;7 and z?]f" to denote violation of the co-channel and adjacent-channel
constraints, respectively. Then, the integer linear program reads

min Y cijzii + Y c?;lz?f (1.27a)
ijeE®© ijeEad
s.t. Y xip=1 VieVv (1.27b)
ek
xXip+xjr—zy <1 Vij € E€,f € FNF; (1.27¢)
Xif +xjg— 2 <1 Vije E“ feF,gcF;: |f—gl=1
(1.27d)
xif 257,24 € {0,1} (1.27¢)

If ij € E“° and frequency f can be assigned to both vertices, constraint (1.27c)
assures that such a mutual assignment incurs a penalty of cfj” Similarly, con-
straint (1.27d) guarantees that the adjacent-channel interference is comprised of the
objective if ij € E! and the frequencies f and g differ by 1.

A major drawback of the above formulation is the difficulty to solve these
coloring-like integer linear programs to optimality. A wide range of different ap-
proaches have therefore been proposed to compute close-to-optimal solutions and/or
lower bounds on the minimum total interference; see [3] for a survey. In Chapter 11
a similar frequency assignment model is studied in more detail for the case of wire-
less local area networks (WLANSs). Due to the limited number of frequencies the
drawbacks of the above formulation have less impact in this case.

Figure 1.14 shows an example of a carrier network, where the so-called DSATUR
heuristic [24] followed by a very simple local search heuristic (1-opt) is ap-
plied. This procedure improved the solution provided by a network operator by
96% [23, 43]. In the plots, transmitters are represented by dots in the Euclidean
plane according to their geographical coordinates. Two transmitters are connected
by a colored line if the assignment of frequencies results in interference. If the line
is drawn in a pale color, then the interference is small. With increasing interference,
the color of the line turns black.

1.5.5.2 Maximization of Network Coverage
Besides the frequencies on which the antennae operate, the locations of the antennae

and their configuration play an important role in the performance of the network.
In fact, these decisions are typically taken before the frequencies are considered.
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(a) operated frequency plan (b) optimized frequency plan

Fig. 1.14 Interference reduction of 96% by heuristics.

In the most simple version, the main objective is to maximize the area covered
by the installed antennae, given a certain budget; or alternatively, to minimize the
installation cost subject to the requirement of covering a certain percentage of the
area, e.g., 99%.

To measure the coverage of a wireless network within a region (e.g., building,
city center, county, country), a grid of pixels / representing small areas is laid out.
A set of possible locations for antennae A is introduced, with cost parameter ¢, for
installing an (omnidirectional) antenna.

For each antenna location a € A, we introduce a binary variable x, € {0,1} to
denote whether or not an antenna is installed at this location. To model the con-
straints, we introduce sets A; C A defining which antennae locations would be able
to cover pixel i € I (assuming a particular configuration of antenna a € A). Now, the
minimum cost 100% coverage problem reads

min z CaXa (1.28a)
acA

st Y xg>1 Viel (1.28b)
acA;

x, €{0,1} (1.28¢)

This model precisely describes a minimum cost set covering problem for base set /
with subsets I, = {i € I | a € A;}. Hence, the problem is NP-hard.

Coverage rates below 100% can also be modeled with an extra set of binary
variables y; € {0,1} denoting whether or not a pixel is covered. If p denotes the
percentage of pixels to be covered, the new model reads
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min Y CaXq (1.292)
acA
st Y xa—yi>0 Viel (1.29b)
aEA,'
> vi>pli| (1.29¢)
i€l
Xa,yi €{0,1} (1.29d)

Constraints (1.29b) now require an antenna installed close to pixel i in order to set
y; to one. Constraints (1.29c) ensure that p% of the pixels are covered.

An alternative is to maximize the network coverage, given a certain budget B for
network installation cost:

max zyi (1.30a)
iel
st Y xa—yi>0 viel (1.30b)
acA;
z CcaXg < B (1.30c¢)
acA
Xa,yi €{0,1} (1.30d)

A final generalization to be discussed here is the inclusion of a bandwidth capacity
constraint. For this, a traffic value d; is estimated for each pixel i € I and an antenna
capacity D is given. Since we now need to know which pixel is covered by which
antenna, we have to introduce a new set of binary variables z;, € {0,1} for all i €
and a € A; to denote this assignment. Without further restrictions, the model 100%
coverage problem can now be described as

min Y CaxXq (1.31a)
acA

st Y zia=1 icl (1.31b)
acA;
Y dizia—Dx, <0 acA (1.31¢)
i€l
Xa;Zia € {0, 1} (1.31d)

Constraints (1.31c) limit the number of test points assigned to an antennae on the
basis of demand and capacity (and only if the antenna location is chosen). This
problem is a special case of the (capacitated) facility location problem (the differ-
ence being that no assignment costs exist); see [62].

All above presented models are simplified in the sense that important issues in
wireless networks are missing. A cell in a wireless network is defined as all pixels
assigned to a single antenna. Cells are usually expected to have a certain degree of
connectedness, but this aspect is completely ignored in the above models. In fact,
the connectedness is (partly) implied by the signal strengths received at the pixel.
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The strongest signal determines the allocation of the pixel to an antenna. This and
other issues are studied in depth in Chapter 11. An approach combining frequency
assignment and network coverage is also presented.

1.6 Emerging Applications in Communication Networks

The subsequent chapters of this book are devoted to the application of graph-
theoretical concepts and algorithms to emerging communication networking ap-
plications. The chapters consider problems that have been studied in the context
of the European COST action 293 — Graphs and Algorithms in Communication
Networks [33]. According to the COST 293 working groups, Part I discusses top-
ics in the area of Broadband and Optical Networks, including multilayer networks,
whereas Part II describes studies in Wireless and Ad Hoc Networks. Here we pro-
vide a brief overview.

1.6.1 Broadband and Optical Networks

Chapter 2 presents a survey on theoretical and practical aspects of traffic groom-
ing in optical networks. Traffic grooming was one of the key research topics within
COST 293, and accordingly many participants have contributed to this chapter. The
chapter was coordinated by David Coudert. In high-speed optical networks, every
optical channel provides a huge amount of bandwidth. A single (aggregated) re-
quest usually does not require the whole bandwidth an optical channel provides.
This implies an opportunity to save devices like light termination equipment (trans-
mitters and receivers) and Add/Drop Multiplexers (ADMs) in order to reduce the
investment and operation cost of the network. Chapter 2 surveys the main theoret-
ical results for different grooming factors on various topologies, introduces an ILP
formulation for the optimization problem on general topologies, and presents some
experimental results.

Next, in Chapter 3 the closely related problem of multilayer network design
is discussed. The chapter, coordinated by Sebastian Orlowski, introduces a two-
layer network design problem which has been studied in collaboration with Nokia
Siemens Networks. A mixed-integer programming formulation is presented that
takes many practical side constraints into account, including node hardware, several
bit rates, and survivability against single physical node or link failures. The model is
solved by a branch-and-cut algorithm using problem-specific preprocessing, MIP-
based heuristics, and cutting planes. The authors show that for realistic instances
computation times can be significantly reduced compared to the black-box solution.

Multi-protocol Label Switching (MPLS) is one of the routing protocols in packet-
oriented communication networks that uses labels attached to the packets to encode
the path the packet should follow through the network. With the increasing num-
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ber of network nodes to route packets to, it is important to keep the length of the
labels small without losing their flexibility. Chapter 4 addresses this issue from an
optimization point of view. Fernando Solano was the leading author of this chapter.

Chapter 5, coordinated by José L. Marzo and Thomas Stidsen, provides a show-
case on the issue of survivability in networks. Instead of reserving dedicated paths
to assure connections are not lost in the case of a link or node failure, one might
consider the usage of a different set of protection paths for every failure situation.
This chapter formalizes this concept, provides exact and heuristic algorithms for the
online routing problem involved, and finally presents two case studies on the re-
source provisioning and connection availability for both dedicated and shared path
protection in heterogeneous network topologies.

Besides connection-oriented and packet-oriented network technologies, optical
burst switching (OBS) has been proposed as an intermediate solution for all-optical
networks. In Chapter 6 Mirostaw Klinkowski and his coauthors discuss routing op-
timization in such networks where buffering is in general not possible and hence the
network is sensitive to congestion and traffic losses. Nonlinear optimization models
for three network loss models are studied and solutions are presented that reduce the
burst loss probability.

Next, the issue of dynamic bandwidth allocation is discussed in Chapter 7, led
by Xavier Hesselbach. To maintain and ensure end-to-end in-sequence routing of
packets, load balancing and bandwidth/flow allocation in MPLS-based architectures
have to be established. Traffic characteristics such as Quality of Service (QoS) and
burstiness are considered.

Chapter 8 discusses optimization problems in the context of the open shortest
path (OSPF) routing protocol for Internet traffic. The main advantage of the short-
est path routing policy is its simplicity, allowing for little administrative overhead.
From the network engineering perspective, however, shortest path routing can pose
problems in achieving satisfactory traffic handling efficiency. The chapter discusses
one of the main tasks when planning such a network: the setting of the adminis-
trative weights of the links such that a globally efficient traffic routing is achieved.
This very difficult optimization problem is considered, models are proposed, and
exact and heuristic solution methods are discussed. The chapter was coordinated by
Andreas Bley and Michat Pi6ro.

So far, it has been assumed in all chapters that a central authority is able to
make decisions, or coordinate such decisions that determine the performance of the
network. In Chapter 9 the scenario where such a central authority does not exist are
considered. Network users act in an uncoordinated and selfish manner, affecting the
overall system performance. Issues such as the definition of reasonable and practical
models for studying this kind of behavior or the quantification of the efficiency loss
due to the lack of users’ cooperation are discussed, and results are presented. The
chapter was coordinated by Ioannis Caragiannis.

Finally, Chapter 10 (by Ignasi Sau and Janez Zerovnik) studies the routing of
packets in a timely fashion. The goal is to minimize the number of rounds a routing
protocol needs to send a set of requests using a system of paths in the network. More
information on the network topology (e.g., hexagonal grids) or the set of requests
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(e.g., so-called permutation routing or r-central routing) allows for more accurate
results. The chapter surveys the results in the general setting and in particular cases.

1.6.2 Wireless and Ad Hoc Networks

The part on wireless and ad hoc networks starts with a study on Wireless Local Area
Network (WLAN) planning. Chapter 11, coordinated by Di Yuan, considers the op-
timization of such networks, taking into account performance measures like deploy-
ment cost, coverage, capacity, interference, data throughput, and radio resource uti-
lization. Both individual models and an integrated model for placing access points
and channel assignment are presented. Computational results are reported on the
basis of real-life data.

Broadcasting is a basic network communication task, where a message initially
held by a source node has to be disseminated to all other nodes in the network.
Broadcasting in radio networks is studied in Chapter 12. David Peleg and Tomasz
Radzik review the literature on time-efficient algorithms under a variety of models
and assumptions. They also illustrate the basic techniques to prove the obtained
results.

Chapter 13 studies similar problems from the energy consumption perspective. In
wireless networks energy is a scarce resource since many network nodes do not have
a fixed infrastructure (e.g., notebooks, PDAs, etc.). In this chapter, two problems
are studied. The aim of minimum energy broadcast routing is to route a message
from a given source to all other nodes with minimum overall energy usage. In the
Multi-interface Networks, the energy consumption is minimized by the choice of
activated interfaces on devices with multiple interfaces (e.g., Bluetooth, WiFi, etc.).
The leading author of the chapter was Alfredo Navarra.

In contrast to broadcasting, in data gathering information provided or collected
by the network nodes has to be gathered in a specific node. Due to interference,
simultaneous data communication is limited and has to be carried out in a number
of rounds. Hence, minimization of the number of rounds or similar objectives have
to be accounted for. In Chapter 14, Ralf Klasing and his coauthors consider different
interference models and discuss recent complexity results as well as approximation
algorithms.

Chapter 15, by Jérome Galtier, focuses on another aspect of WLANS: protocols
for Medium Access Control (MAC). The transmission of a packet might fail due
to the collision with simultaneously sent packets (from other sources). To achieve a
good network performance, protocols are needed to handle the retransmission of the
packet. In this chapter, mathematical evidence is presented that the selective tourna-
ments protocol is asymptotically tight. Moreover, it is shown that in the context of
WiFi and WiMAX networks a collision reduction of 14% to 21% can be achieved
compared to the best known methods.

Finally, Chapter 16, coordinated by Lenka Carr-Motyckova and Walter Unger),
discusses topology control and routing in ad hoc networks. Mobile entities with
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the ability to communicate via radio signals may form an ad hoc network. Special
problems arising for these ad hoc networks are considered briefly: range control, the
reduction of interferences, regulation of power consumption, and localization.
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Chapter 2

Traffic Grooming: Combinatorial Results and
Practical Resolutions

Tibor Cinkler, David Coudert, Michele Flammini, Gianpiero Monaco, Luca
Moscardelli, Xavier Muiioz, Ignasi Sau, Mordechai Shalom, and Shmuel Zaks

Abstract In an optical network using the wavelength division multiplexing (WDM)
technology, routing a request consists of assigning it a route in the physical network
and a wavelength. If each request uses 1/g of the bandwidth of the wavelength, we
will say that the grooming factor is g. That means that on a given edge of the net-
work we can groom (group) at most g requests on the same wavelength. With this
constraint the objective can be either to minimize the number of wavelengths (re-
lated to the transmission cost) or minimize the number of Add/Drop Multiplexers
(shortly ADM ) used in the network (related to the cost of the nodes).

Here, we first survey the main theoretical results obtained for different grooming
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factors on various topologies: complexity, (in)approximability, optimal construc-
tions, approximation algorithms, heuristics, etc. Then, we give an ILP formulation
for multilayer traffic grooming and present some experimental results.

Key words: WDM networks, grooming, ADM, complexity, approximation algo-
rithms, heuristics, integer linear programming

2.1 Introduction

Traffic grooming refers to techniques used to organize and simplify routing and
switching in connection-oriented networks, such as WDM (wavelength division
multiplexing) or MPLS (Multi-protocol Label Switching) networks, in order to im-
prove the usage of the bandwidth and of the components, and therefore to reduce
the network cost.

Typically, when establishing a connection in an optical network, one has to install
some equipment at both extremities of the connection, that is, an optical transmitter
(laser) at its source and an optical receiver at its destination. But due to the cost of
building, installing, and maintaining devices, it is usually more interesting to use a
single kind of device that can handle both transmission and reception. Such devices
are called Light Termination Equipment, or LTE for short. Thus, every connection
will involve two distinct LTEs, and two distinct connections may share the same
LTE, provided that one ends at a node while the other starts from that same node.
In this context, traffic grooming refers to minimizing the number of LTEs that are
needed in the network to serve all connection requests. The problem of minimizing
the number of LTEs in the network being NP-Hard [58, 84], research effort has con-
centrated on the development of efficient approximation algorithms for both static
and online traffic [52, 59, 64, 65, 103]. This is the subject of Section 2.3.

At another level in the network, traffic grooming also refers to techniques used
to combine low-speed traffic streams onto high speed wavelengths in order to mini-
mize the network-wide cost in terms of electronic switching. Typically, nodes of the
network insert and/or extract the data streams on a wavelength by means of add/drop
multiplexers (ADMs). A WDM or DWDM (dense WDM) optical network can han-
dle many wavelengths, each with large bandwidth available. On the other hand, a
single user seldom needs such large bandwidth. Therefore, by using multiplexed
access such as TDMA (time-division multiple access) or CDMA (code-division
multiple access), different users can share the same wavelength, thereby optimiz-
ing the bandwidth usage of the network. By using traffic grooming, not only is the
bandwidth usage optimized, but also the cost of the network can be cut by reduc-
ing the total number of ADMs. Such techniques become increasingly important for
emerging network technologies, including SONET/WDM rings and MPLS/MPAS
backbones [108], for which traffic grooming is essential.

In this context, one ADM is needed in a node each time we want to add or drop
traffic to or from a wavelength. Therefore, one has to place one ADM in a node for
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each wavelength in which traffic is added or dropped, as can be seen in Figure 2.1.
Here, the bandwidth requirement of a traffic stream is expressed as a fraction of the
bandwidth offered by a single wavelength, which we call the grooming factor, g, and
an ADM is able to drop (or add) up to g unitary traffic streams from (or to) a given
wavelength. Thus, the traffic grooming problem is to minimize the total number of
ADMs to be installed in the network in order to accomodate all traffic streams.

Given the general traffic grooming problem of minimizing the total number of
ADMs to be installed in the network with respect to the traffic requirement being
NP-complete [21, 101], recent works focus on specific issues. Most of the algo-
rithms aim at grooming traffic in such a way that all the traffic between any given
pair of nodes is carried on a minimum number of wavelengths. However, a large part
of the network cost depends on the capacity of the multiplexing equipment required
at each node. Hence, in order to minimize the overall network cost, algorithms have
to take into account a trade-off between the number of wavelengths used and the
number of required ADMs. Indeed minimizing the number of ADM:s is different
from minimizing the number of wavelengths: the number of wavelengths and the
number of ADMs cannot always be simultaneously minimized (see [11, 21, 69] for
unitary traffic). Both minimization problems have been considered by many authors.
See, for example, the surveys [3, 56] for minimization of the number of wavelengths
and [10, 69, 70, 73, 112, 115] for minimization of ADMs, and [72, 81] for online
approaches. Numerical results, heuristics, and tables might be found in [11, 113],
and extensions to multicast connection requests in [51, 107].

The reader may also refer to the surveys [27, 57, 89, 117] and books [55, 106,
118] for other aspects of traffic grooming that are not considered here; in particular,
waveband switching allows switching together a set of predetermined wavelengths
(band) issued from one fiber and going to another [18-20, 75, 116]. Various other
concepts might also been considered as traffic grooming, such as Lighttrails [114],
Lighttours [105], or bus labeling [16, 17].

In this chapter, we give an overview of the traffic grooming problems that have
been addressed within the European project COST 293 GRAAL, and we survey the
main exact and approximate results obtained so far for static and online traffic. We
present practical approaches for multilayer traffic grooming. The results have been
obtained using a large variety of mathematical tools including graph theory, design
theory, linear programming, combinatorial optimization, and game theory.

This chapter is structured as follows. We start in Section 2.2 with a general defi-
nition of the traffic grooming problem, and we give some examples. In Section 2.3
we present the modelization and the main results obtained for minimizing the num-
ber of LTEs in a network. We continue in Section 2.4 with the more general model
of minimizing the number of ADMs, for which we survey the main combinatorial
results. Then, in Section 2.5, we present an efficient ILP model for multilayer traffic
grooming on general networks subject to general traffic demands. We also present
some experimental results. We finally conclude this chapter in Section 2.6.
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Fig. 2.1 Placement of ADMs in the network: one ADM for each wavelength used in a node

2.2 Problem Definition and Examples

In this section, we first give precise descriptions and models of LTE and ADM, and
then formalize the traffic grooming problem considered here.

A Light Termination Equipment, LTE, is a device that realizes the interface be-
tween the optical domain and the electronic domain. It is constituted of one optical
receiver and one optical transmitter, so every connection involves two distinct LTEs,
one at each endpoint. In this chapter, we assume that the receiver and the transmit-
ter of an LTE are tuned on the same wavelength (other assumptions are possible).
Also, two distinct connections may share an LTE, provided that one ends at a node
while the other starts from that same node, and that both connections are assigned
the same wavelength.

An Add/Drop Multiplexer, ADM, is a device used in synchronous transmission
networks (SDHs or SONETS) to add (insert) or drop (remove) lower-data-rate chan-
nel traffic from the higher-rate aggregated channel. In optical networks, each ADM
contains an LTE to realize the interface between the optical domain (high-speed
channel) and the electronic domain (lower-speed channels). Thus, an ADM oper-
ates on a single high-speed data stream, and so a single wavelength, as can be seen
in Figure 2.1. The cost of an ADM is given by its capacity, that is, the maximum
number of low-speed channels (provided each of them has a unitary bandwidth re-
quirement) that can be added or dropped from the wavelength. The capacity of an
ADM is called the grooming factor or grooming ratio. Finally, note that with groom-
ing factor 1, an ADM is nothing other than an LTE.

In optical networks with grooming capabilities, the traffic demands are expressed
in terms of low-speed data channels. Thus, one has to assign to each connection re-
quest a path and a wavelength with the capacity constraint that at most g (grooming
factor) connection requests are assigned the same wavelength on the same link of
the network.

An instance of the traffic grooming problem is a triple (G,1,g) where G = (V,E)
is a graph modeling the network topology, I is a set of connection requests, and g is
a positive integer, namely the grooming factor.
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Given a connection request r € [ identified by a couple of nodes aiming to com-
municate, let P, be the set of the paths in G connecting the two endpoints relative
to . We have two main issues:

e the determination of a path system (or path assignment) of (G,I), that is, a func-
tion p: I— U,/ P

e the determination of a proper coloring (or wavelength assignment) of (G, 1), that
is, a function w: I — N = {1,2,...} such that for any edge e € E at most g paths
using e are colored with the same color.

Some of the results presented in this chapter deal with both issues (Section 2.5),
while others, given a path system in the input, focus only on the determination of a
proper coloring (Sections 2.3 and 2.4).

Every colored request r € I needs an ADM at each of its endpoint nodes. Follow-
ing the above description of ADMs, given a grooming factor g, at most g paths with
the same color, incident to a node through the same edge, can use the same ADM.
Furthermore, the same ADM can also be shared by at most g paths with the same
color, incident to the same node through another incident edge.

The traffic grooming problem is the optimization problem of finding a proper
coloring w of (G,1,g) minimizing the total number of ADMs used. Let A(G,1,g) be
the optimal value for such a problem.

To establish ideas we now provide two examples, for uni- and bidirectional rings,
respectively.

Unidirectional Ring

Suppose we have a unidirectional ring with four nodes {1,2,3,4} and an all-to-all
unitary traffic (one request between each pair of nodes). Since we need one ADM
at each extremity of a request, and the routing is unique, we can put requests (i, j)
and (j,7) on the same wavelength, thus using 1/g of the capacity of that wavelength
on the ring. We call such pair of symmetric requests a circle. There are therefore
six circles (i, j) for 1 <i < j < 4. If there is no grooming (i.e., g = 1) we need six
wavelengths (one per circle) and a total of 12 ADMs. If we have a grooming factor
g =2, we can put on the same wavelength two circles, using three or four ADMs ac-
cording to whether they share an end node or not. For example, we can put together
(1,2) and (2,3) on one wavelength; (1,3) and (3,4) on a second wavelength; and
(1,4) and (2,4) on a third wavelength, for a total of nine ADMs, and this is optimal.

Now, if we allow a grooming factor g = 3, we can use only two wavelengths. If
we put together on one wavelength (1,2), (2,3), and (3,4) and on the other (1,3),
(2,4), and (1,4), we need eight ADMs (solution a, Figure 2(a)); but we can do better
by putting on the first wavelength (1,2), (2,3) and (1,3) and on the second (1,4),
(2,4) and (3,4), using seven ADMs (solution b, Figure 2(b)).

More formally, in the above example with N = 4 and g = 3, solution a con-
sists of a decomposition of K4 (all circles) into two paths with four vertices each,
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4 ADM 4 ADM
(a) Solution with eight ADMs. Circles (1,2), (2,3), and (3,4) on the first
wavelength, and (1,3), (2,4), and (1,4) on the second wavelength

3 ADM 4 ADM
(b) Solution with seven ADMs. Circles (1,2), (2,3), and (1,3) on the first
wavelength, and (1,4), (2,4), and (3,4) on the second wavelength

1
*—4

2 1 2
]
4 3 4 3
2 1 2
3 4 3

(c) Decomposition of Ky associated with the two solutions. Each edge of Ky corre-
sponds to a circle

Fig. 2.2 Traffic grooming for a unidirectional ring with four nodes, grooming factor g = 3 all-to-all
unitary traffic. Solution 2(a) with eight ADMs, solution 2(b) with seven ADMs, and corresponding

decompositions of Ky
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[1,2,3,4] and [1,4,2,3], while solution b corresponds to a decomposition into a tri-
angle (1,2,3) and a star with edges (1,4), (2,4), and (3,4).

Bidirectional Ring

Consider now a bidirectional ring on five nodes {0, 1,2,3,4} with all-to-all unitary
traffic modeled by the complete symmetric digraph K; . In this setting, it is more
interesting to route requests (Z, j) and (j,7) on different wavelengths with shortest
path routing. For example, with grooming factor g = 3, we can put on a wavelength
routed clockwise requests (i,i+ 1 mod 5) and (i,i+2 mod 5), and on a wavelength
routed counterclockwise requests (i,i — 1 mod 5) and (i,i —2 mod 5). We need five
ADMs on each wavelength so overall ten ADMs. But if requests (i, j) and (j,i)
are routed on a same wavelength, then we can put at most three circles (pairs of
symmetric requests) per wavelength using at least three ADMs. Since K;r contains
ten circles, we need four wavelengths, three of them with three circles and at least
three ADMs and one of them with at least one circle and two ADMs, so overall 11
ADMs.

With grooming factor g = 2, we can put on one wavelength requests (i,i +
1 mod 5) and on another wavelength requests (i,i+ 2 mod 5). Symmetric requests
are routed similarly in opposite direction and we obtain the partition of Figure 3(b)
using overall 20 ADMs. But we can do better by putting on a first wavelength re-
quests (i,i4+ 1 mod 5), (0,2) and (2,4) using five ADMs, and on a second wave-
length requests (1,3), (3,5), and (4, 1) using four ADMs. We obtain the partition of
Figure 3(c) using overall 2(5+4) = 18 ADMs.

(a) Set of requets

o%]o o%lo o%

\ \ <,

(b) Partmon using two times ten ADMs (c) Partition using two times nine ADMs

Fig. 2.3 Two valid partitions of K;’ when g = 2, using different number of ADMs. Symmetric
requests are routed counterclockwise and partitioned similarly.
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2.3 Minimizing the Usage of Light Termination Equipment

In this section, we concentrate on the traffic grooming problem of minimizing the
total number of LTEs that are needed in the network to serve all connection requests.
This problem is NP-hard [58, 84] in general but can be solved in polynomial time
for specific topologies. Also, efficient approximation algorithms have been proposed
for both static and online traffic.

This section is organized as follows. We first consider the path topology where
the problem can be solved in polynomial time. Then we review efficient approxi-
mation algorithms for the ring topology where the problem is already NP-hard, and
also for more general topologies. Finally, we show how game theory can be useful
to solve dynamic and online versions of the problem.

2.3.1 Path

Let the physical topology be the directed path Py with N nodes labelled 1,2,... N,
and N —1arcs (i,i+ 1) for 1 <i<N.Letalso TTy = {(i,j), 1 <i< j <N} denote
a transitive tournament, that is, the set of all requests from left to right.

For any set of requests I C AT Ty, where A is a positive integer, the problem of
minimizing the number of LTEs on Py can be solved optimally in polynomial time
using a greedy algorithm. To prove that, it is sufficient to observe that the number of
LTEs needed at node i of Py is equal to max {d; (i),d;" (i)}, where d; (i) (or d; (i))
denote the indegree (or outdegree) of node i in I, that is, the number of requests {u, i}
with u < i (or {i,v} with i < v). We obtain Proposition 2.1, and in Corollary 2.1 we
give the exact number of LTEs when I = T'Ty.

Proposition 2.1 (Bermond et al. [4]). A(Py,1,1) = ¥ ' max {d; (i),d; (i) }.

Corollary 2.1 (Bermond et al. [4]). A(Py,TTy, 1) = 31\/2_#, where € = N mod
2.

When the physical topology is a bidirectional path, it is necessary to be precise
about how LTEs can be used. In particular, one has to be precise about whether it
is possible to share a LTE between requests (u,i) and (i,v) with u,v < i, that is, a
left-to-right request ending at i and a right-to-left request starting from i, or not. If
it is not possible, then the problem can be decomposed into two subproblems on a
directed path that will be solved independently. But when such sharing is allowed,
the problem has not been addressed in the literature and it is conjectured to be NP-
complete.
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2.3.2 Ring

The problem of minimizing the number of LTEs in optical networks was introduced
in [69] for the unidirectional ring topology. It is proved to be NP-hard independently
in [58] and [84]. The NP-hardness proofs also apply to bidirectional rings, even
when the routing of connection requests is given. An algorithm with approximation
ratio of % was presented in [52] for unidirectional and bidirectional rings with given
routing. This algorithm has a first step (called the preprocessing step) that finds
cycles in the instance and colors each cycle with a unique color. The remaining
requests are then merged to form chains. This algorithm can also be adapted to
the case where also the routing has to be determined, with the same approximation
ratio [52].

This technique was improved in [103], showing that if the preprocessing phase
tries to remove short cycles first, then an approximation ratio of 10/7 4 € can be
achieved. This is improved to 10/7 in [59] using the same technique with a more
detailed analysis.

In [13], we give exact algorithms for the all-to-all set of requests on uni- and
bidirectional rings. Surprisingly, these results are obtained using a partition of the
set of requests into cycles of lengths 3 and 4.

In [53] and [60] a variant of this problem is considered. In this variant, a path
can be broken into segments and each segment can be colored using a different
wavelength. Obviously this might incur an additional cost in terms of LTEs, but it
allows to reduce significantly the number of wavelength used.

2.3.3 General Topology

In [52] an approximation algorithm was presented for general networks. The algo-
rithm has a preprocessing phase where cycles of length at most / are included in the
solution; this algorithm was shown to have performance guarantee of OPT + %(1 +
e)N,0<e< 1%2’ where OPT is the cost of an optimal solution and N is the number
of connection requests for any given odd /. A special case of this algorithm is when
there is no preprocesing (i.e., [ = 1). The analysis reduces in this case to OPT + %N .
The dominant part in the running time of the algorithm is the preprocessing phase,
which is exponential in /.

In [65] we improve the analysis of the algorithm of [52] and prove a performance

of OPT + %(1 + €)N, where Tia <e< %(zhz)' Specifically, we show that the al-
1

gorithm guarantees an upper bound of OPT + %(1 +€)N for € < 5 D)
b

demonstrate a family of instances for which the performance of the algorithm is
OPT + 5(1+¢)N for € > 5.

Our analysis sheds more light on the structure and properties of the algorithm
by closely examining the structural relation between the solution found by the algo-

rithm and an optimal solution for any given instance of the problem. As the running

, and we
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time of the algorithm is exponential in /, our result implies an improvement in the
analysis of the running time of the algorithm. For any given € > 0, the exponent of
the running time needed to guarantee the approximation ratio (3 + €)/2 is reduced
by a factor of 3/2. In addition, in the development of our bounds we address a purely
combinatorial problem, which is of interest by itself.

We also improve the analysis for the special case where there is no preprocesing.
In [64] we develop a new technique for the analysis of the upper bound and prove a
tight bound of OPT + %N for the performance of this algorithm.

2.3.4 Online Traffic

In many applications the requests arrive at the network online, and we have to assign
them wavelengths so as to minimize the switching cost. In more involved cases we
have also to determine the actual routing for these requests. In these situations, once
an assignment is made the system cannot change it, and the aim is to suggest a
strategy that will optimally utilize the network resources. Such a study is thus of
great importance in the operation of optical networks.

Formally, an online algorithm is said to be c-competitive if, for any sequence of
inputs, the cost is at most ¢ times that of an optimal off-line algorithm (see [15]).

In [102] we present an online algorithm for the problem of minimizing the num-
ber of LTEs, and prove that its competitive ratio is %. We show that this result is the
best possible in general. Moreover, we show that even for the ring topology network
there is no online algorithm with competitive ratio better than ZT' We show that on
the path topology the competitive ratio of the algorithm is % This is the best possi-
ble for this topology. The lower bound on the ring topology does not hold when the
ring is of bounded size. We analyze the triangle topology and show a tight bound
of % for it. The analysis of the upper bounds, as well as those for the lower bounds
use all a variety of proof techniques, which are of interest on their own, and which
might prove helpful in future research on the topic.

2.3.5 Price of Anarchy

Game Theory and the associated concept of Nash equilibria have recently emerged
as a powerful tool for modeling and analyzing a lack of coordination in distributed
environments. In this setting, each communication request is handled by an agent
(or player) selfishly performing moves, i.e., changing her routing strategy in order
to maximize her own benefit. A Nash equilibrium is a solution of the game in which
no agent gains by unilaterally changing her routing strategy. If Nash equilibria are
reached in a polynomial number of selfish moves, and finding an improving user
move is a problem solvable in polynomial time, such a non-cooperative process
naturally defines a distributed polynomial-time algorithm. However, due to the lack
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of cooperation among the players, Nash equilibria are known not to always optimize
the overall performance. Such a loss has been formalized by the so-called price of
anarchy (or optimistic price of anarchy), defined as the ratio between the cost of
the worst (or best) Nash equilibrium and the one of a centralized optimal solution.
The notion of Nash equilibria goes back to [91]. For about a decade the use of game
theory has gained a lot of attention in numerous computer science directions, in what
is known today as algorithmic game theory (see [92, 100]). The notion of price of
anarchy goes back to [82].

In [54] we consider non-cooperative games in all-optical networks where users
share the cost of the LTE switches used for realizing given communication patterns.
We show that the two fundamental cost sharing methods, Shapley and Egalitarian,
induce polynomial converging games with price of anarchy at most %, regardless of
the network topology. Such a bound is tight even for rings. Then, we show that if
collusion of at most & players is allowed, the Egalitarian method yields polynomially
converging games with price of collusion between % and % + % This result is very
interesting and quite surprising, as the best-known approximation ratio, that is % +&,
can be achieved in polynomial time by uncoordinated evolutions of collusion games
with coalitions of increasing size.

Moreover, with respect to the optimization of the optical spectrum, in [14] we
investigate the problem in which a provider must determine suitable payment func-
tions for non-cooperative agents wishing to communicate so as to induce routings
in Nash equilibria using a low number of wavelengths. We assume three differ-
ent information levels specifying the local knowledge that agents may exploit to
compute their payments. Under complete information of all the agents and their
routing requests, the network provider can compute prices where a Nash equilib-
rium is reached such that the assignment is the same as the one computed by a
centralized algorithm. If the price to an agent is based only on the wavelengths used
along connecting paths (minimal level) or along the edges (intermediate level), the
most reasonable functions either do not admit equilibria or admit equilibria with the
worst possible price of anarchy, that is, the ratio between the number of colors used
by the worst Nash equilibrium and the one used by an optimal solution. However,
by suitably restricting the network topology, a constant price of anarchy for chains
and rings and a logarithmic one for trees have been obtained under the minimal and
intermediate levels, respectively.

For more information, we refer to Chapter 9.

2.4 Minimizing the Number of Add/Drop Multiplexers

We will now concentrate on the case where the grooming factor is g > 1, for
which we gave examples in Section 2.2. We first survey the main complexity and
(in)approximability results. Then we see that for particular topologies and sets of
connection requests, it is possible to obtain optimal constructions. We also consider
the case where ADMs are placed a priori.
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Let us first clarify the difference between single-hop and multi-hop (or bifurca-
tion allowed) routing in this context. With single-hop routing, each request is routed
through the same wavelength from its source to its destination. This is used for sim-
ple network topologies such as directed paths or rings, but not for general topologies
where multi-hop routing is needed. When multi-hop routing is allowed, a request
may be switched from one wavelength to another at intermediate nodes. This gives
more flexibility for the traffic aggregation that is useful to optimize simultaneously
the number of ADMs and wavelengths (see Section 2.5).

2.4.1 Complexity and Inapproximability Results

Determining the NP-completeness of the traffic grooming problem has been an open
question for many years. It was first proved NP-complete on unidirectional rings
in [21] using a reduction from the Bin Packing problem. Another proof was also
mentioned in [112]. Later, the NP-completeness result has been refined.

More precisely, in [101] the traffic grooming problem is shown to be NP-
complete in the strong sense for a given grooming factor g > 2, a network of di-
rected path (or unidirectional ring) topology, a set of demands I C Ky, single-hop
routing, and an unbounded number of colors (wavelengths). It is also shown to be
NP-complete for rings and for paths for any fixed value g > 2, and when the number
of colors is bounded.

The traffic grooming problem has also been proved NP-complete and hard to
approximate in star networks in [74]. These results have been extended in [62]
where a complete characterization of the traffic grooming problem complexity in
star networks is given by providing optimal polynomial-time algorithms for g < 2
and proving the intractability of the problem for any fixed g > 2.

The first inapproximability result for traffic grooming with fixed values of the
grooming factor g has been obtained in [2], thus answering affirmatively the conjec-
ture of [23]. More precisely, it has been proved that traffic grooming on a unidirec-
tional ring for fixed g > 1 and traffic grooming on a directed path for fixed g > 2 are
APX-complete. That is, there is no polynomial-time approximation scheme (PTAS)
with constant approximation factor for these problems, unless P = NP. Both results
rely on the fact that finding the maximum number of edge-disjoint triangles in a
graph (and more generally cycles of length 2g + 1 in a graph of girth 2g 4 1) is
APX-complete.

In particular, this implies that the traffic grooming problem is NP-complete in
rings for fixed g > 1 and in paths for fixed g > 2 for an unbounded number of
wavelengths, extending in this way the results of [101].
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2.4.2 Approximation Results

The first approximation algorithm for the traffic grooming problem has been de-
signed for the ring topology [71]. It is based on a greedy partition of the set of
connection requests into trees of width at most g and has approximation ratio ,/g.

In [63] we present an approximation algorithm for the problem of minimizing the
number of ADMs on a general network in the case where grooming is allowed. For
every value of the grooming factor g the running time of the algorithm is polynomial
in the input size. The approximation ratio of this algorithm for a wide variety of
network topologies — including the ring topology — is shown to be 2Ing+o(Ing). In
[62] the approximation ratio of the algorithm is shown to be 21n(8-g) +o(In(5 - g))
for any undirected tree having fixed node degree bound 8, and 2Ing + o(Ing) for
unbounded degree directed trees.

As we have seen above, for general grooming factor g the best approximation
algorithm [63] for the traffic grooming on a ring achieves an approximation factor of
O (log g), but its running time is exponential in g (that is, N¥). However, in practical
applications such as SONET/SDH WDM rings, which are widely used as backbone
optical networks [57], the grooming factor is equal to 3 or 4, typically when four
655 Mbit/s streams are aggregated into one 2.5 Gbit/s wavelength.

It is also important to find good approximation algorithms with running time
polynomial in both N and g. Such approximation algorithm has been proposed
in [2], where g is considered as part of the input. To the best of our knowledge,
this is the first polynomial-time approximation algorithm for the traffic grooming
problem with an approximation ratio which does not depend on g.

Theorem 2.1 (Amini et al. [2]). There exists a polynomial-time approximation al-
gorithm that approximates the traffic grooming problem on a ring within a factor of
O(N'310g? N) for any grooming factor g > 1.

Theorem 2.2 (Amini et al. [2]). There exists a polynomial-time approximation al-
gorithm that approximates the traffic grooming problem on a path within a factor of
O(N'310g? N) for any grooming factor g > 2.

Although the performance of this algorithm seems not to be very good at first
sight, in fact it is conjectured in [2] that for the general instance of the problem it is
not possible to get rid of a factor n® for some constant § > 0.

Finally, in [2] it is shown that the general scheme of the algorithm yields an
% (log2 N)-approximation if the request graph excludes a fixed graph as minor, for
example, if R is planar or of bounded genus. The main theoretical contribution of
this algorithm is to relate the traffic grooming problem to the dense k-subgraph
problem [61] and the degree constrained subgraph problem [1].
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2.4.3 Specific Constructions

For specific grooming factors, sets of requests and topologies, it is possible to give
optimal constructions (assignment of requests to wavelengths that minimizes the
number of ADMs). This is typically the case with all-to-all unitary traffic (one uni-
tary request between each pair of nodes) where optimal constructions have been
obtained on simple topologies for a specific grooming factor.

In unidirectional rings, all requests are routed clockwise. Therefore, it is possible
to route requests (i, j) and (j,i) on the same wavelength at the cost of two ADMs
and using 1 of available bandwidth all along the ring. When the set of requests
is symmetric, this is shown to be optimal [11]. Furthermore, in this case, the set
of requests can be modeled by an undirected graph, each edge corresponding to
a circle, and a subgraph B with g edges corresponds to a valid assignment of g
circles to a wavelength. The number of nodes of B gives the number of ADMs to
use on the corresponding wavelength. Therefore, the traffic grooming problem on a
undirectional ring with symmetric traffic and grooming factor g can be modelled as
the following partition problem.

Definition 2.1 (Traffic Grooming in Unidirectional Ring with Symmetric Traf-
fic).

Input: N nodes unidirectional cycle Cy, grooming factor g, and set of sym-
metric requests modeled by graph 1.
Output: Partition of I into subgraphs B,,, 1 <w < W, such that |B,,| < g.

Objective: ~ Minimize ¥V_, [V (B,,)|, and the optimum is denoted A(Cy, I, g).

This problem is in general NP-complete. However, for the all-to-all unitary set of
traffic requests, I = K, the complexity of the problem is unknown so far. Indeed,
it is clearly a difficult combinatorial problem. Using tools of Design Theory [47],
optimal constructions have been obtained for grooming factor g = 3 [5], g =4 [11,
73], g=517],g=061[6], g =7 [48], and g > N(N — 1)/6 [11]. It has also been
solved for practical values of N and g [9], thatis, N < 16 and g =3,4,12,16,48,64.

When the physical topology is a directed path, the problem has only been solved
for grooming factor g = 2, with all requests from left to right (transitive tourna-
ment, T7y) [4]. As for traffic grooming on a unidirectional ring, the problem can be
modeled as a graph partition problem. The main difficulty here is that the number
of connections in each subgraph is subject to high variation since, for example, all
requests (i,i+ 1) may fit in the same subgraph (see [8] for the maximum value for
any g > 1), and no suitable tools from graph or design theory have been developed
so far. A formal definition of the problem for any valid set of connection requests
is given in Definition 2.2, where load(B,,,e) denotes the number of requests of B,,
routed in the path through edge e.

Definition 2.2 (Traffic Grooming in Directed Path).

Input: N nodes directed path Py, grooming factor g, and set of requests /.

Output: Partition of [ into subgraphs B,,, 1 <w < W, such that load(B,,,¢) < g
for all e € Py.

Objective: ~ Minimize ¥V_, [V (B,,)|, and the optimum is denoted A(Py,1,g).
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Table 2.1 Congruence classes of N for some g for which optimal constructions are given

k g N

1 1 All values

2 3 N=1,5 modl2
3 6 N=1,7 mod24
4 10 N=1,9 mod40
5 15 N=1,9 mod30
6 21 N=1,13 mod84
7 28 N=1,15 modl112
8 36 N =1,17 mod144

Finally, when the physical topology is a bidirectional ring, the routing of the
requests has to be taken into account since shortest path routing is not always op-
timal in general. However, it has been proved in [12] that symmetric shortest path
routing allows us to obtain optimal solutions on bidirectional rings with all-to-all
unitary traffic. The main results in this case are the following: optimal construction
for the particular case g = 1 [13]; optimal construction when g = 4,8 [49, 50]; op-
timal construction when g =3 and N = 1,5 mod 12 [12] and when g = k(k+1)/2
for some congruence classes of N summarized in Table 2.1; and construction with
approximation factor 12/11 when g =2 [12].

2.4.4 A Priori Placement of the Equipment

In this section we study traffic grooming in unidirectional rings considering a wider
range of requests than, for example, a complete graph. The idea is to place the
ADMs in the nodes with limited knowledge of the graph of requests, for instance,
knowledge of only its maximum degree. This model helps the network designer
to take into account small traffic variations when deciding where to install ADMs,
since in many situations one cannot expect to add or remove equipment at the nodes
when the requests vary.

Namely, we consider the problem of placing the minimum number of ADMs in
the nodes of a unidirectional ring in such a way that the network could support any
request graph with maximum degree bounded by a constant A. Note that using this
approach, as long as the degree of each node does not exceed A, the network can
support a wide range of traffic demands without reconfiguring the equipment placed
at the nodes. The problem can be formally stated as follows.

Definition 2.3 (Traffic Grooming in Unidirectional Rings with Bounded-Degree
Symmetric Request Digraph).
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Table 2.2 Values of M(g,A) found in [90]. The case g =4 and A = 3 is a conjectured value

g\ A 1 2 3 4 5 6 A
1,2 1 2 3 4 5 6 A
3 1 2 3 >3 >4 >4 > [2]
1 1 2 277 >3 4 > >3]
5 1 2 2 >3 >3 >4 > [34]
gtl A
g>5 1 2 2 3 3 4 > [ . J
Input: N nodes unidirectional cycle Cy, grooming factor g, and a maximum
degree A.
Output: An assignment of A(v) ADMs to each node v € V(Cy), in such a way

that for any request graph I (each edge represents a pair of symmetric
requests) with maximum degree at most A, there exists a partition of
I into subgraphs B;, 1 <A < A, such that:

(i) |E(By)|<gforall A;and
(ii) each vertex v € V(Cy) appears in at most A(v) subgraphs.

Objective: ~ Minimize ¥.,cy (c,)A(v), and the optimum is denoted A(Cy, g,4).

This problem has been studied in [90]. It solves the cases corresponding to A =2
(for all values of g) and A = 3 (except for g =4), and give upper and lower bounds
for the general case. It also characterizes the function A(Cy,g,A), which turns out
to be linear in N.

Lemma 2.1 ([90]). The function A(Cy,g,A) is of the form A(Cy,g,A) = MN — «,
where M and o are natural numbers depending only on g and A.

A summary of the results of [90] is given in Table 2.2, where M (g, A) is the smallest
integer such that the inequality A(Cy,g,A) < M(g,A)N holds for any N > 1.

2.5 Multilayer Traffic Grooming for General Networks

In previous sections we have discussed various aspects of traffic grooming for ring
and tree networks. In this section we will discuss the case of more general network
topologies, typically referred to as mesh networks. First we give an overview of
different architectures of practical interest; then we give a survey of different graph
models used with an ILP formulation and show examples of what can these models
be used for.
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2.5.1 Multilayer Mesh Networks

If there are multiple network layers “one over the other,” we refer to this structure
as “Multilayer” network. It is also referred to as the vertical structure of networks,
in contrast to the horizontal, where multiple domains are mutually interconnected.
These network layers are not the ISO-OSI layers, where each layer defines some
network functionality, but layers that can each provide certain connections or vir-
tual connections and that can be established using the same or different network
technologies.

Examples where the same network technology is used are the old FDM (Fre-
quency Division Multiplexed) systems, different ATM (Asynchronous Transfer
Mode) networks with two layers, namely VP and VC layers, and the MPLS (Multi-
protocol Label Switching) networks where practically any number of LSPs (Label
Switched Paths) can be established, where the lower-layer paths are considered as
links in the upper-layer. In this case, the upper-layer paths share these lower-layer
paths, i.e., they are encapsulated or embedded into these paths.

Examples where different technologies are used are

PDH over SDH

IP over PoS/MAPOS over SDH over WDM

IP over ATM/MPLS over SDH over WDM

IP over GFP over SDH over OTN over WDM

IP over PPP over Ethernet over ATM-AALS over SDH over OTN ...

A multilayer network consists in general of interconnected multilayer and single-
layer nodes. The single-layer nodes can be at any network layer, while multilayer
nodes are those that are attached to two or more layers and/or perform the switching
at two or more layers.

There are two general specifications of such multilayer architectures one referred
to as GMPLS (Generalized Multi-protocol Label Switching) by the IETF [86] and
the other ASTN (Automatic Switched Transport Network) by the ITU-T [76].

The IETF GMPLS framework [98] defines the following layers, this time accord-
ing to the switching capability, i.e., a layer can be established by different network-
ing technologies:

PSC (Packet Switching Capable, e.g., IP)

L2SC (Layer 2 Switching Capable, e.g., GbEth)
TSC (TDM Switching Capable, e.g., SDH VC-4-4c)
ASC (Wavelength Switching Capable)

WBSC (WaveBand Switching Capable)

FSC (Fiber Switching Capable)

Typically not all these layers are represented in a network, but rather only two
or three of them. Having multiple layers has both advantages and disadvantages.
The advantages are that the services can access finer bandwidth granularity and
some additional features of upper-layers only, i.e., for a small ratio of traffic only.
The drawbacks are that some functionality is multiplied across layers and that the
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complexity of operating multilayer networks is much higher than that of operating
certain layers separately.

This layered vertical structure is valid for the data plane (DP), i.e., the network
that carries the user information. However, for configuring and operating such a
network we need a management and a control plane (MP and CP respectively).

If the DP layers of this vertical structure are run by different operators or
providers, then they must communicate with each other to exchange information
necessary for routing and other purposes. This vertical communication between MP
and CP layers is referred to as Interconnection, and there are three defined Intercon-
nection Models: (1) Overlay, (2) Augmented, and (3) Peer model [98].

The Overlay model is a client-server model where the upper (client) layer al-
ways adapts to the lower (server) layer. In the case of the Peer model, all necessary
information is interchanged between the layers, and they may act together, e.g., in
routing a demand. The Augmented (or hybrid) model is somewhere in between the
Overlay and Peer models.

The DP layers in a node can be controlled either each by its own CP instance
that communicates with other layers of that node, or by a single CP instance that
controls all the DP layers of that node.

The latter case is feasible only if all the DP layers are run by a single operator
or provider, since there is no need for communication interfaces between the layers.
Therefore, a single unified integrated CP can be used for all the layers instead of
the interconnection, the so-called Integrated Model. The forwarding units of all the
layers of the data plane are connected to a single control plane unit.

Similarly, if such a multilayer network has layers or some parts of certain lay-
ers built of interconnected elements of a unique networking technology, or, rather
switching capability, then the set of these elements is defined by the CCAMP WG
of IETF as a Region. A network having multiple different regions is referred to as a
Multi-region network [93, 104].

2.5.2 On Grooming in Multilayer Mesh Networks

In switched multilayer transport networks (e.g., ASTN/GMPLYS) the traffic demands
have typically bandwidth of orders of magnitude lower than the capacity of wave-
length links (A-links). Therefore, it is not worth assigning exclusive end-to-end
wavelength paths (A-paths) to these demands, i.e., sub-A granularity is required.
Furthermore, the number of wavelengths per fiber is limited and costly. To increase
the throughput of a network with a limited number of wavelengths per fiber, traffic
grooming capability is required in certain nodes.

Here we assume two layers only, i.e., a Wavelength Routing Dense Wavelength
Division Multiplexing (WR-DWDM) Network and one layer built over it. In the
WR-DWDM layer, a A-path connects two physically adjacent or distant nodes.
These two physical nodes will seem adjacent for the upper layer built over it. More
generally, we can consider this two-layer approach as two layers of a 4-6 layer GM-
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PLS/ASTN architecture [98]. However, not only is the framing and layering struc-
ture of interest, but the control plane proposed in the GMPLS/ASTN framework is
as well.

This upper layer is an “electronic” one, i.e., it can perform multiplexing differ-
ent traffic streams into a single A-path via simultaneous time and space switching.
Similarly, it can demultiplex different traffic streams of a single A-path. Further-
more, it can perform re-multiplexing as well: Some of the demultiplexed demands
can be again multiplexed into some other A-paths and handled together along them.
This is often referred to as (traffic) grooming [27]. The electronic layer is required
for multiplexing packets coming from different ports (asynchronous time division
multiplexing).

This upper electronic layer can be a classical or “next generation” SDH/SONET,
MPLS, ATM, GbE, or 10 GbE, or it can be based on any other technology. However,
in all cases the network carries mostly IP traffic. The only requirement is that it
must be identical for all traffic streams that have to be demultiplexed, and then
multiplexed again, since we cannot multiplex, e.g., ATM cells with Ethernet frames
directly.

2.5.3 Graph Models for Multilayer Grooming

Optical metro and particularly core networks consist of multiple layers, where mul-
tiple different networking technologies are stacked one over the other. For simplic-
ity, here we assume two layers only, e.g., an IP/MPLS layer over an DWDM layer,
both controlled jointly by either one vertically peer-interconnected or one vertically
integrated GMPLS control plane.

To better utilize network resources, smaller, upper-layer traffic streams are mul-
tiplexed (“‘groomed”) into higher capacity wavelength paths in a distributed way
throughout the network.

In this section we give an overview of known graph models as well as propose
some new graph models that all allow both static and dynamic grooming while
performing design, dimensioning, configuration, routing, multicasting, traffic engi-
neering, and resilience functions.

2.5.3.1 Grooming and Wavelength Assignment for Static Routing

The aim of the Grooming and Wavelength Assignment for Static Routing problem
(or, for short, Static Grooming problem) is to find a static configuration of the virtual
(logical) topology, and to assign the upper layer demands to this topology. It is
assumed that the lower network topology, the number of wavelengths per link, the
capacity of these links, and the traffic matrix is given.
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The simplest case of static grooming is when the routing is given, and the routes
of certain demands are to be bundled (groomed together) in certain parts of the
network and assigned to a wavelength.

In [24, 31, 33], a simple model and various heuristic algorithms based on simu-
lated annealing, threshold accepting, and tabu search, as well as a genetic algorithm,
are proposed and evaluated. The idea of the model is that each part of a route along
each link can be assigned to any wavelength if that wavelength has enough free
capacity to accommodate the considered demand. The objective is to have as few
groomings and wavelength conversions as possible. The elementary heuristic step
is to try out different combinations of assigning a segment of a path to different
wavelength links, where the improvements are accepted with higher probability.

The first model for static grooming where the routing was not given in advance
but performed simultaneously with grooming and wavelength assignment was pro-
posed in [32]. Later, a method based on ILP formulation for optimal configuration
was proposed in [43], and due to complexity simple heuristic methods using the
same graph model were proposed in [44].

The wavelength graph model proposed in [32] is as follows. For each fiber link
I = (u,v) with A wavelengths from u to v we create A arcs, one per wavelength,
from vertex u; ; to vertex v; 3, 1 <A < A. Thus, node u with L;, incoming links
and L, outgoing links is associated with vertices u;, ; and u; , ;,1<1l;, <L; and
1 < lpw < Low and a bipartite digraph from vertices {u;, ; } to vertices {u;, 2}
modeled possible interconnections in network node u. This bipartite digraph will be
complete if it is possible to switch from any wavelength to any other.

The ILP formulation [43] uses the proposed graph model, and finds the minimal
cost multi-commodity flow over the graph according to the traffic matrix and the
costs assigned to the edges of the graph. However, the ILP can be solved optimally
for very small instances only.

Heuristics based on the decomposition into as many shortest path searches as
nonzero elements in the traffic matrix were proposed in [44]. Here, empirical
weighting of edges has been also proposed to improve the quality of results. In
contrast to the ILP that gives exact globally optimal results (for very small network
instances), this approach is an approximation only. It is however easily scalable to
very large networks, since it is based on Dijkstra’s algorithm.

In [110] a heuristic method based on decomposition and iterations has been pro-
posed that also contains elements of simulated annealing and tabu search. The idea
was that an element of a traffic matrix is a demand that goes from node a to node
c; however, instead of setting up an end-to-end wavelength path we can use two
shorter lightpaths via an intermediate node b. Then it corresponds to a new traffic
matrix, where elements a to b and b to ¢ are increased by the bandwidth of demand
a—c while this a—c entry is decreased by its bandwidth (typically to 0). In this case a
simpler graph model was used [22] that originally did not support grooming but only
wavelength routing and assignment in a single-layer network; however, grooming
was handled through the traffic matrix transformations.

The use of Integer Linear Programming ensures that the solution is the global
optimum in terms of the given objective function. However, as the problem to be
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solved becomes more complex, and as the network size increases, ILP can become
intractable (in particular for NP-hard problems). Still, it is worth using it as a refer-
ence, at least for smaller networks. As computing capacity grows, particularly due
to the parallelism of supercomputers, GRIDs, and clusters this will also become a
viable solution.

As already mentioned, in [43] an ILP formulation for the wavelength graph has
been given. In [25, 26] the formulation has been extended for undirected graphs as
well, with protection either at the upper or at the lower layer.

2.5.3.2 Network Dimensioning and Grooming Node Placement

For a two-layer network, both the layers and the interconnection points between the
two layers must be dimensioned properly. However, due to the interactions of the
layers, all three must be dimensioned simultaneously, leading to high complexity.

In a network it is not necessary to equip all the nodes with grooming capability.
Furthermore, since the O/E (Opto-Electronic) and E/O (Electro-Optical) converters
are very expensive, their numbers should be properly determined to reduce costs
while maintaining proper operation of the network. In [94] three methods are pro-
posed for deciding which nodes should perform grooming, and to dimension their
grooming capacity. The three methods are a greedy approach, a vertex-cover-based
approach, and a heuristic approach that sorts the nodes according to their eligibility
for accommodating grooming capability. The three methods have similar perfor-
mance. In all cases the wavelength graph has been used.

In [96] a simulation-based iterative heuristic method has been proposed. Its idea
is that simulations are run for infinite grooming capability in all nodes, and statistics
(probability density functions, or pdfs) of the resource usage are compiled. Based
on these pdfs it is decided in which nodes to keep the grooming capability and how
much to reduce it. Then simulations are repeated and the whole process continued
iteratively.

In [95] the optimization objective was extended to optimise not only the groom-
ing capability, but simultaneously the number of wavelengths to be used per fiber as
well.

2.5.3.3 Grooming for Dynamic Routing

“Grooming for dynamic routing” or “dynamic grooming” means, that in an opera-
tional network the new demands arrive while the demands already routed get ter-
minated sooner or later, i.e., the network changes dynamically. In contrast to static
grooming this is a less complex problem, since a single demand has to be routed at
a time and groomed together with some existing demands; however, it is hard to say
what is the globally optimal long-term strategy.

Here we discuss some related papers.
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In [109] the information multi-domain multilayer (MD-ML) influence of delay
of advertisements and inaccuracies due to the topology and link state aggregation is
studied in an MD-ML network. The wavelength graph model has been used; how-
ever, this information is available only within the domains. Over domain boundaries
a simplified aggregated graph is advertised.

In [38, 39] the advantages and drawbacks are investigated of having both layers
switched according to user demands compared to the case where the WDM system
is fixed, and only rarely reconfigured, while over this virtual topology the demands
are dynamically routed. Here, an enhanced version of the wavelength graph is used
that we refer to as the Grooming Graph or the Fragment Graph, where a wavelength
path can be cut into two or more shorter pieces and two or more shorter wavelength
paths can be concatenated into a longer one to reduce the load of the electronic layer.

Finally, [79] gives an overview of routing demands of different traffic parameters
(e.g., very different bandwidths) over multilayer multi-domain networks.

2.5.3.4 VPN, oVPN, VPAN and VON, oVON, VOAN

Virtual Private Networks (VPNs), as well as Virtual Overlay Networks (VONSs), are
virtual networks set over real physical networks by separating a part of physical
resources, e.g., link and switching capacities. We will refer to these jointly as VNs
(Virtual Networks). When multilayer networks are considered, two main options
can be differentiated: First, when the virtual topology provided by the lower layer is
shared among the VPNs or VONSs of the upper layer; second, when the VNs are the
virtual topology, i.e., the wavelength paths are the links of the VNs.

In [85] multi-fiber WDM networks are considered. In this paper full wavelength
conversion capability is assumed in all nodes; therefore, no wavelength continuity
constraint has to be obeyed, but only as many parallel links as the product of the
number of existing fibers and wavelengths. Heuristics based on decomposition and
Suurballe’s shortest pair of paths algorithms (cf. Section 1.5.2.1) are used to deter-
mine the best failure-resistant VPN either demand-by-demand or VPN-by-VPN.

In [28, 87] open VPNs (0VPNs) are optimized by using ILPs while obeying
the wavelength continuity constraint. ILP formulations for the cases without and
with protection are given. For the case with protection two sub-cases are defined:
One with external protection, where the network provider is supposed to protect
the VPN, the other with internal protection, when the VPN is configured in such a
way that if any link or node fails, the resources of the VPN are used for protection.
Finally, in [88] more physical limitations are considered for setting up wavelength
paths.

2.5.3.5 Grooming for Multicast Traffic

Services like TV or video distribution can be more efficiently provided using point-
to-multipoint tree structures rather than many point-to-point connections. These ser-
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vices have become increasingly more popular, and the bandwidth used by these ser-
vices has also grown, i.e., unlike standard definition digital video, high-definition
video is already streamed.

If not a single channel, but rather a bundle of programs is streamed simultane-
ously, this bandwidth may achieve or even exhaust the capacity of a single wave-
length channel. Therefore, performing the multicast at the optical layer via a splitter
can be a much cheaper solution than loading the electronic layer with all the multi-
casting.

In [107] multicast trees are obtained by ILP. Breadth and depth constraints are
obeyed, and it has been evaluated how many ports and how many wavelengths (re-
sources in general) are needed for electronic and optical signal branching and how
many for unicast as a reference.

The wavelength graph model has been used again; however, it had to be modified
to allow branching of the optical signal, which was not allowed for unicast demands.

In [97] methods for periodical reconfiguration of multicast trees has been pro-
posed for two-layer grooming-capable networks. Multicast trees (light trees) change
dynamically in time due to the changing of multicast endpoints, which causes degra-
dation of the tree. A significant amount of network resources can be saved by regular
reconfiguration. The benefit of reconfiguration is investigated for different routing
algorithms and reconfiguration periods.

In [45] various restoration mechanisms for multicast trees are considered.

2.5.3.6 Grooming and Resilience

In two-layer grooming-capable networks the demands can be routed over either the
upper or the lower layers, or even using both layers. The same holds for routing the
protection paths of these demands. For dedicated protection only an SRG (Shared
Risk Group) disjoint path is to be sought; however, for the case of shared path pro-
tection this becomes more complex. Namely, not only the capacity is shared, but
also are the O/E and E/O conversion ports as well as the wavelength paths.

In [25, 26] an ILP formulation for different Dedicated Protection Schemes is
presented, while in [68] a decomposition-based heuristic method has been proposed
for the same purpose. In [66] different methods based on running Dijkstra’s algo-
rithm twice or Suurballe’s algorithm for static grooming are presented (cf. Sec-
tion 1.5.2.1). In [67] the difference is that dynamic grooming is assumed, i.e., de-
mands arrive one by one and are both routed and protected instantly.

In [34] shared protection is proposed and fairness issues in terms of dependence
on bandwidth and distances are investigated.

In [41, 42] a new version of the wavelength graph model has been introduced that
allows not only setting up and tearing down lightpaths, but also fragmenting and de-
fragmenting them. The idea is that if there are no free wavelength paths in a node,
then an existing wavelength path can be cut (“fragmented”) and the new demand is
added or dropped at that point. If there are two consequent wavelength paths carry-
ing the same demand or demands, these can be concatenated, i.e., “defragmented.”
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Therefore we refer to this model as “Fragment Graph.” Here, the routing of working
and shared protection paths are considered simultaneously.

In contrast to the previous papers in [78], an Ethernet over WDM overlay is con-
sidered, where we compare different configurations of the wavelength path system
of the WDM layer and optimally set up MSTP (Multiple Spanning Tree Protocol)
trees of the Ethernet layer.

All the methods discussed in this subsection use the wavelength graph model
except the last one, which assumes an overlay model, so a simpler graph is sufficient.

2.5.3.7 Traffic Engineering for Traffic Grooming

The simplest definition of Traffic Engineering (TE) is to “put the traffic where
enough resources are available.” It can be considered as an improved adaptive rout-
ing. The adaptivity can be achieved in two ways. First, by setting edge weights in
our graph to avoid congestions and higher blocking before they occur (“a priori”).
Second, by applying wavelength path fragmentation and defragmentation as already
explained in Subsection 2.5.3.6 to resolve existing congestions for newly arriving
demands (“‘a posteriori”). Here we give a short overview of MLTE-(Multilayer Traf-
fic Engineering)-related papers.

A general overview of TE in GMPLS controlled multilayer networks is presented
in [111].

Several adaptive edge metrics (weights) for MLTE have been proposed and com-
pared in [99], using a simpler graph model than in [80]. Then, adaptive fragmen-
tation and defragmentation of wavelength paths is proposed in [35-37] and com-
pared to the case with no fragmentation or defragmentation and to the case with
OXCs only (i.e., no grooming capability). Next, [29] gives an overview of achieve-
ments of Routing TE and resilience in Heterogeneous-GMPLS-controlled networks,
while [77] presents experimental results from European testbeds.

Finally, we discuss three papers [30, 40, 83] that perform joint “a priori” and “a
posteriori” Traffic Engineering. The idea is that although the fragment graph (FG)
is being used for performing “a posteriori” TE, and the edge weights of the FG
are as follows. Assuming that roughly no more than half of the demands can be
terminated and O/E — E/O converted, the load should be balanced accordingly. i.e.,
if there are few demands routed over the network and therefore few wavelengths are
used, the longer wavelength paths with less electronic processing (grooming) are
made cheaper. However, if more wavelengths start to be used, but the capacity of
these wavelengths is not well utilized the cost of grooming will decrease leading to
shorter paths over more and shorter fragments.
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2.5.3.8 Cross-layer Optimization: Considering Physical Impairments While
Routing

Often, in networks it is not enough to consider the available resources, but it is also
necessary to consider the impairments that affect the signal quality at the physical
layer and cause increased Bit Error Rate for services. This is a kind of cross-layer
optimization, where the services are optimized with physical layer constraints.

The first use of grooming to repair the impaired signal was presented in [88]
where such VPNs were configured, where the signal quality was satisfactory since
the physical impairments were considered. In [120] the results were extended for
routing in general. [107, 119] present deeper results on the same topic, while [46]
gives an overview of the problem, and proposes an additional method for improving
the signal quality by increasing the power level of signals that have to go far while
decreasing the power levels of signals that go to closer destinations in order to avoid
the harmful effect of nonlinear distortions.

2.6 Conclusion

The objective of this chapter was to present an overview of traffic grooming in
connection-oriented networks (mainly in WDM networks) and the wide variety of
mathematical tools used to address this issue. Traffic grooming refers to techniques
used for an efficient sharing of the bandwitdh offers by, e.g., a wavelength, using
Time Division Multiplexing. It is usually associated with the routing of the requests
and the survivability issue in single or multiple failure scenarios. Furthermore, traf-
fic requests might be uni- or multicast, the traffic pattern may evolve with time, and
the network could be multilayer. Therefore, traffic grooming is only part of the con-
cerns addressed when designing and optimizing a network. But even when restricted
to simple physical topologies (unidirectional path or ring) where the routing is fixed
and with small grooming factor, the traffic grooming problem is difficult to solve
and to approximate. Also, when all aspects have to be taken into account (traffic
grooming, routing, survivability, and so on), problems to solve are so difficult that
exact solutions are usually no longer expected, and it is essential to develop effi-
cient heuristic algorithms. Some of them were presented in Section 2.5. Chapter 3
presents the state-of-the-art regarding exact approaches for this problem.

In this research area, several important questions are still open and further re-
search are needed. In particular, when optimizing only the number of ADMs in
SONET/SDH networks, practical values of the grooming factor are 3 and 4, but this
is reapeated several time from the slower 55 Mbit/s streams to the current 10 Gbit/s
wavelengths. So, it is important to develop efficient optimization tools for grooming
factors 3 and 4, but also to consider hierarchical problems in which unitary requests
are combined by four into streams that are themselves combined by four, and so on.

In the general context, where traffic grooming is associated with routing and sur-
vivability issues, existing heuristic algorithms provide upper bounds without guar-
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antee on the quality of the solution. Furthermore, the size of practical problems is
too huge for existing mathematical tools. Therefore, research effort has to be put into
the development of new mathematical tools allowing us to address large instances
and to obtain optimal or near-optimal solutions.
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Abstract We study a planning problem arising in SDH/WDM multilayer tele-
communication network design. The goal is to find a minimum cost installation
of link and node hardware of both network layers such that traffic demands can be
realized via grooming and a survivable routing. We present a mixed-integer pro-
gramming formulation for a predefined set of admissible logical links that takes
many practical side constraints into account, including node hardware, several bit
rates, and survivability against single physical node or link failures. This model is
solved using a branch-and-cut approach with problem-specific preprocessing, MIP-
based heuristics, and cutting planes based on either of the two layers. On several
realistic two-layer planning scenarios, we show that these ingredients can be very
useful to reduce the optimality gaps in the multilayer context.
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3.1 Introduction

Planning a telecommunication network is a nontrivial task. For a single network
layer such as MPLS, SDH, or WDM, many mathematical models and algorithmic
approaches have been proposed during the last 15 years. Links in an SDH network,
for instance, may be equipped with a bandwidth of, say, 2.5 Gbit/s or 10 Gbit/s. This
bandwidth is used to route several communication demands of lower granularity,
like 155 Mbit/s. Dimensioning the links and routing the communication demands in
the resulting network is a classical network design problem.

A practical telecommunication network, however, consists of several network
layers which are embedded in each other. The bandwidth of an SDH link, for in-
stance, can actually be realized by a capacitated lightpath in an underlying optical
fiber network. The SDH and the WDM layer are highly interdependent: first, only
a limited number of SDH links can traverse a given optical fiber, and second, the
failure of a single optical fiber can disrupt many SDH links, and even more demand
connections. In order to get a survivable network in practice, it is indispensible to
plan both layers together.

More generally, the two-layer network design problem considered in this paper
can be summarized as follows. Given is a set of network nodes together with po-
tential connections between them. This network is called the physical layer and
corresponds to the optical fiber network. On every fiber, a limited number of light-
path channels can be transmitted simultaneously, each of them corresponding to a
capacitated path in the physical network. The nodes together with the lightpath con-
nections form a so-called logical network on top of the physical one, as illustrated in
Figure 3.1. In principle, any path in the physical network can be used for a lightpath,
which leads to many parallel logical links. Even if the set of admissible lightpaths is
often restricted to several short paths between each node-pair in practice, the result-
ing logical network is still much denser than a simple complete graph, which makes
the network design problem hard to solve.

- a» logical
————— i N

O,’ Q, physical
s SC @b

Fig. 3.1 Upper layer logical links (solid) correspond to paths (dashed) in the lower physical layer

Similar settings occur in many other technologies. An MPLS path, for example,
can consist of links which are MPLS paths themselves. In an ATM/SDH setting,
capacitated ATM links may be realized by an SDH radio link. Even if that radio
link seems “less physical” than an optical fiber, it is called a physical link as well
to indicate that it serves as part of a logical link. Similarly, the term “logical link”
illustrates the fact that it looks like a direct link to its end nodes: first, it can be
equipped with a discrete capacity, and second, traffic with lower granularity is sent
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into the link at one end, extracted at the other end, and cannot be accessed inside.
The actual physical representation of a logical link usually does not matter to its end
nodes.

As this work was motivated by a project with Nokia-Siemens Networks (NSN)
on SDH/WDM network planning, we will use that setting to explain our model and
algorithm, which are actually in use at NSN in the strategic planning process now.
But the concepts are more general and can, at least with slight modifications, be
applied to many technological settings.

In our SDH/WDM scenario, a lightpath can be equipped with different band-
widths, and lower-rate traffic demands have to be routed via the lightpaths without
exceeding their capacities. A demand may be 1+1-protected, i.e., twice the demand
value must be routed such that in the case of any single physical link or node failure,
at least the demand value survives. To terminate a lightpath, a sufficiently large elec-
trical cross-connect (EXC) must be installed at both end nodes. The EXC converts
the wavelength signal into an electrical SDH signal and extracts lower-rate traffic
from it. The latter is either terminated at that node or recombined with other traffic
to form new wavelength signals which are sent out on other lightpaths. This process
is called grooming. The optimization goal is to minimize total installation cost.

Like in any other publication where an integrated two-layer model is actually
used for computations, we do not explicitly assign wavelengths to the lightpaths
because finding a suitable wavelength assignment is an extremely hard problem
on its own. Instead, we make sure that the maximum number of lightpaths on each
fiber is not exceeded, and propose to solve the wavelength assignment and converter
installation problem in a subsequent step, as successfully done in [19]. It has been
shown in [20] that such an approach causes at most a marginal increase in the overall
installation cost in practical instances.

Already, the optimal design of a single layer network is a challenging task that
has been considered by many research groups; see for instance [4, 14, 28] and ref-
erences therein. A branch-and-cut algorithm enhanced by user-defined, problem-
specific cutting planes has been proved to be a very successful solution approach
in this context. The combined optimization of two layers significantly increases the
complexity of the planning task. In most previous publications, mixed-integer pro-
gramming techniques have been used for designing a logical layer with respect to
a fixed physical layer [5, 11, 12] or for solving an integrated two-layer planning
problem with some simplifying assumptions, like no node hardware or wavelength
granularity demands [15, 21]. Knippel and Lardeux [17] and Fortz and Poss [13]
have modeled the two-layer network design problem using metric inequalities for
both network layers. Recently, Belotti et al. [6] have used a Lagrangean approach
for a two-layer network design problem with simultaneous mean demand values
and nonsimultaneous peak demand values. Raghavan and Stanojevic [29] consider
the case where all logical links are eligible and develop a branch-and-price algo-
rithm with respect to a fixed physical layer for the case of unprotected demands and
one facility on the logical links. Orlowski et al. [25] present several heuristics for a
two-layer network design problem, which solve a restricted version of the original
problem as a sub-MIP within a branch-and-cut framework. In a recent paper [18],
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we have presented a mathematical model for the described planning problem with
a predefined set of logical links. It includes node hardware, several bit rates on
the logical links, and survivability against physical node and link failures. To our
knowledge, this was the first time that so many practically relevant side constraints,
and in particular, multilayer survivability, were taken into account in an integrated
two-layer planning model.

We have solved this model using a branch-and-cut approach with problem-
specific preprocessing, user-defined cutting planes, and heuristics. This chapter
combines results from [25] and [18]. In addition to the preprocessing and cutting
planes presented in [18], we have also adapted the MIP-based primal heuristics
from [25] to the full planning problem and call them at various places during the
branch-and-cut tree. The algorithm is tested on several network instances provided
by Nokia Siemens Networks. The paper is structured as follows. In Section 3.2, we
present and discuss our mixed-integer programming model. Section 3.3 describes
our MIP-based primal heuristics used within the branch-and-cut algorithm. In Sec-
tion 3.4, we describe the cutting planes used and state some known results about
their strength. Computational results are provided in Section 3.5. We conclude with
Section 3.6.

We assume that that reader has basic knowledge of mixed-integer programming
and branch-and-cut techniques; good introductions to this topic are [24] and [31].

3.2 Mathematical Model

3.2.1 Mixed-Integer Programming Model

We will now introduce the mixed-integer programming (MIP) model on which our
cutting planes are based. Afterwards, we will describe some basic preprocessing
steps that we have applied to strengthen the formulation.

Parameters

The physical network is represented by an undirected graph (V, E). The logical net-
work is modeled by an undirected graph (V, L) with the same set of nodes and a fixed
set L of admissible logical links. Each logical link represents an undirected path in
the physical network. In consequence, any two nodes i, j € V may be connected by
many parallel logical links corresponding to different physical paths, collected in
the set L;; = Lj;. Looped logical links are forbidden, i.e., L;; = 0 for all i € V. Let
oL(i) =U jevLij be the set of all logical links starting or ending at i. Eventually,
L, C L denotes the set of logical links containing edge e € E, and likewise, L; C L
refers to the set of logical links containing node i € V' as an inner node.
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We consider different types of capacities for logical links, physical links, and
nodes. Each logical link ¢ € L has a set M, of available capacity modules, each of
them with a cost of k" € R and a base capacity (bit rate) of Cj' € Z that can be
installed on ¢ in integer multiples. Similarly, every node i € V has a set M; of node
modules (representing different EXC types), at most one of which may be installed
at i. Module m € M; provides a switching capacity of C/* € Z, (e.g., in bits per
second) at a cost of k7" € R. On a physical link e € E, a fiber may be installed at a
cost of k, € R.. Each fiber supports up to B € Z lightpaths.

For the routing part, a set H of undirected point-to-point communication de-
mands is given, which may be protected or unprotected. Protected demands are
expected to survive any single physical node or link failure, whereas unprotected de-
mands are allowed to fail. Each demand % € H has a source node, a target node, and
a demand value dj, to be routed between these two nodes. Without loss of generality,
we may assume the demands to be directed in an arbitrary way. For 1+1-protected
demands, dj, refers to twice the original demand value that would have to be routed
if the demand were unprotected. Adding constraints that limit the amount of flow
for a protected commodity through a node or physical link to %dh guarantees that at
least the original demand survives any single physical link or node failure. This sur-
vivability model, called diversification [3], is a slight relaxation of 1+1-protection,
but its solutions can often be transformed into 1+1-solutions.

From the demands, two sets K” and K* of protected and unprotected commodi-
ties are constructed, where K = K” U K" denotes the set of all commodities. With
every commodity k € K and every node i € V, a net demand value d{‘ € Z is associ-
ated such that Yoy df‘ = 0. Every protected commodity k € KP consists of a single
1+1-protected point-to-point demand, i.e., d{‘ # 0 only for the source and target node
of the demand. In contrast, unprotected commodities k € K* are derived by aggre-
gating unprotected point-to-point demands at a common source node. Summarizing,
every commodity k € K has a unique source node s* € V. Unprotected commodities
may have several target nodes, whereas protected commodities have a unique target
¥ € V. The (undirected) emanating demand of a node i € V, i.e., the total demand
value starting or ending at node i, is given by d; = Zkek|dﬂ. The demand value d*
of a commodity is defined as the demand for k emanating from its source node, i.e.,
dk = dfk > (. Notice that for protected commodities, this value is twice the requested
bandwidth to ensure survivability.

Variables

The model comprises four classes of variables representing the flow and different
capacity types. First, for a logical link ¢ € L and a module m € M,, the logical link
capacity variable yj' € Z, represents the number of modules of type m installed on
£. For a physical link e € E, the binary physical link capacity variable z, € {0,1}
indicates whether e is equipped with a fiber or not. Similarly, for a node i € V and
a node module m € M;, the binary variable x]" € {0,1} denotes whether module m
is installed at node i or not. Eventually, the routing of the commodities is modeled
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by flow variables. In order to model diversification of protected commodities, we
need fractional flow variables fe’i ij> fék, i € R, representing the flow for commodity
k € K on logical link ¢ € L;; directed from i to j and from j to i, respectively. For
notational convenience, flk = f/_ff ijT fé‘) i denotes the total flow for k € Kon £ € L;;
in both directions.

In our model, a flow variable f/ﬁi j for commodity k and logical link ¢ € L;; is

omitted if any of the following conditions is satisfied: (i) j = s*, (ii) k € K” and
i = t*, and (iii) k € K” and ¢ contains the source or target node of k as an inner
node. The first two types of variables represent flow into the unique source node or
out of the unique target node of a protected commodity. They are not generated in
order to reduce cycle flows in the edge-flow formulation. For aggregated unprotected
commodities, we have to allow flow from one target node to another, and thus flow
out of target nodes. The third type of variable would allow flow to be routed through
an end node u of a protected commodity without terminating at that node, and then
back to u on another logical link. As such routings are not desired in practice, we
exclude flow variables whose logical link contains an end node of the corresponding
commodity as an inner node. Again, in the unprotected case, such variables have to
be admitted because commodities may consist of several aggregated demands.

Objective and Constraints

The objective and constraints of our MIP model read as follows:

min Z z Kﬁ)ﬁi"—kz z Ky —&—ZKeze (3.1a)

icV meM; leLmeM, ecE
st X D (fly—fi) =d  VieVVkeKk (.lb)
jeveeL,;
PRV >0 Viel (3.1¢)
meM,y kekK
k 1 k 1 k .
SH+ Y 5f < —d VieV\VkeKk? (3.1d)
i, a2 2
1 Vk € KP
k k )
S st i < Ed (—e—{s ) (3.1e)
Y, A <1 VieVv (3.19)
mEMi
2y =Y Y oy >4 Viev 3.1g)
meM; 0e8y (iymeMy
Bz,— Y, Y W/ >0 VecE (3.1h)
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The objective (3.1a) aims at minimizing the total installation cost. The flow conser-
vation (3.1b) and capacity constraints (3.1c) describe a multi-commodity flow and
modular capacity assignment problem on the logical layer. For protected commodi-
ties, the flow diversification constraints (3.1d) restrict the flow through an interme-
diate node to half the demand value. In this way, the original demand is guaranteed
to survive single node failures as well as single physical link failures, except for the
direct physical link between source s* and target #*. This exception is covered by the
variable bound (3.1e). In fact, to reduce cycle flows in the LP, we set an upper bound
of d* and %dk on all flow variables for unprotected and protected commodities, re-
spectively. The generalized upper bound constraints (3.1f) guarantee that at most
one node module is installed at each node. The node switching capacity constraints
(3.1g) ensure that the switching capacity of the network element installed at a node
is sufficient for all traffic that can potentially be switched at that node. Since all
traffic is counted twice, it is compared to twice the installed node capacity. Finally,
the physical link capacity constraints (3.1h) make sure that the maximum number
of modules on a physical link is not exceeded, and set the physical link capacity
variables to 1 whenever a physical link is used.

Discussion of the Model

Several design choices in our model deserve a brief discussion. First, we assume a
fractional multi-commodity flow on the logical layer although SDH requires an inte-
ger routing in practice. This is motivated by our observations that in good solutions,
the routing is often nearly integer even if this is not required, and that relaxing the
integrality conditions on the flow variables significantly reduces the computation
times. If an integral routing is indispensable, it can be obtained in a postprocessing
step, which usually does not deteriorate the cost of the solutions very much if prop-
erly done. Notice that the lower bound computed for the model with fractional flow
can also be used to assess the quality of the postprocessed integral solutions.

Second, we assume a predefined set of logical links for computational reasons.
Considering all possible physical paths as logical links in combination with the prac-
tical side constraints and the survivability requirements would ask for a branch-and-
cut-and-price approach with a nontrivial pricing problem already in the root node.
Such an approach can only be successful if the problem with a limited set of logi-
cal links can be solved efficiently. For a branch-and-price approach that deals with
all possible logical links on a fixed physical layer using a simplified model without
survivability, the reader is referred to [29].

3.2.2 Preprocessing

To strengthen the formulation, we now describe the preprocessing steps applied to
the model presented in Section 3.2. In addition to these steps, we have used probing
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techniques to set further bounds on variables [30]. Probing is nowadays part of any
modern MIP solver like SCIP [1] or CPLEX [16].

e If a physical link e € E has zero fiber cost, the variable z, can be fixed to 1.

e Obviously, at least the emanating demand must be switched at every node. Con-
sequently, an EXC must be installed at every demand end node i € V, so the node
GUB inequality (3.1f) can be changed to an equality at such nodes: 3,5, X" = 1.
This strengthens the LP relaxation significantly.

e For the same reason, node modules whose switching capacity is smaller than
the emanating demand at a node cannot be installed at that node. Consequently,
if C" < d; for some node i € V and a node module m € M;, the corresponding
variable x* can be removed from the MIP formulation. This often leads to more
integral x]" variables in the LP relaxation and to better LP values, especially when
combined with the previous rule.

e Two bounds on logical link module variables can be derived from the fiber ca-

pacity bounds and the total demand in the network. Both bounds are usually not
tight in the LP relaxation, but may help the MIP solver in deriving further rela-
tions between the variables to strengthen other bounds.
First, as no more than B channels can be routed through a given physical link
e € E, every logical link module variable can be bounded by B. Second, the
amount of flow that can be routed through any logical link ¢ € L is bounded
by the total unprotected demand plus half the protected demand in the network
(except for undesired cycle flow in the edge-flow formulation). Consequently,
the number of modules of type m € M, that possibly needs to be installed on ¢ is
bounded by

felzez)]
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e Sometimes it is evident that in any optimal solution, a small link module will not
be installed more than a given number of times on a link because a larger module
provides the same or more capacity at a lower price. More precisely, consider a
link ¢ € L and two of its capacity modules my,m; € My such that CZ“ < CZ’Z. If
the relation

my myo
_K G
r= K_I‘Vl| — My
4 l

holds, then at most » modules of type m; will be installed in any optimal solu-
tion because r modules of type m; incur the same cost as one unit of type m;,
but the latter provides the same or more capacity. Furthermore, even if equal-
ity holds in the above relation, one large module is preferable to several smaller
ones because every module uses one physical channel, independently of its bit
rate. Consequently, the variable bound ;"' < [r—1] can be added to the for-
mulation. It cuts off some non-optimal solutions and maybe some optimal ones
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(if equality holds), but always leaves at least one optimal solution if one exists.
Notice that the value [r— 1] is exactly r — 1 if r is integer, and | r| otherwise.

3.3 MIP-Based Heuristics Within Branch-and-Cut

We solve the mixed-integer programming formulation using the branch-and-cut
framework SCIP 0.90 [2]. In addition, we have implemented several heuristics to
construct feasible network configurations based on integer or fractional solutions.
At every node of the search tree, SCIP generates cutting planes and calls both our
heuristics and some of its own to identify feasible integer solutions. If a new best
solution is identified, it is added to SCIP’s solution pool such that it can be used by
other heuristics which take feasible solutions as a basis for their work. We will now
describe our heuristics and their use within the branch-and-cut framework.

Our MIP-based heuristics address two major subtasks. GROOMCAPMIP and
GROOMCAPHEUR solve the grooming and capacity installation subproblem for a
given routing exactly and heuristically, respectively, whereas REROUTINGMIP com-
putes a routing within certain link capacities, trying to reduce the required capacity
at the same time. By construction, the MIP-based heuristics can easily be adapted
to include additional planning requirements, such as node hardware or survivability
constraints.

3.3.1 Computing Capacities over a Given Flow

GROOMCAPMIP

The GROOMCAPMIP procedure addresses the grooming and capacity assignment
subproblem for a given routing by solving a MIP. For a logical link ¢ € L;;, let
I =Zrex Zeer( f/k it f[k ji) be the total flow on £ in an integer or LP solution (after
removing possible cycle flows). We construct a sub-MIP of the original formulation
(3.1a)—(3.11) that contains logical and physical capacity variables but no routing
information:

min { (3.1a) subject to (3.10— (3.1h), 3 €Yy > [f7] Ve, ze,y’gfe@}.

meMy

Using SCIP’s branch-and-cut algorithm, this sub-MIP is solved as an improvement
heuristic every time a new best solution is identified, trying to reduce link capacity
cost based on the given routing. As the focus of the sub-MIP is on feasible solutions
and not on the lower bound, we disable cut generation and expensive heuristics in
the subproblem and impose a node limit of 20,000 and a stall node limit of 10,000,
i.e., the sub-MIP is stopped if either a total of 20,000 branch-and-cut nodes has
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been computed or if the primal bound could not be improved during the last 10,000
nodes.

GROOMCAPHEUR

In contrast to the GROOMCAPMIP algorithm, which solves the grooming and ca-
pacity assignment problem exactly, the fast and simple GROOMCAPHEUR proce-
dure addresses this problem heuristically by decomposition. Again, let f; be the
total flow on logical link ¢ € L in an integer or LP solution after removing cycle
flows. Installing capacities on £ at minimum cost with a lower bound of f; can be
formulated as an integer knapsack problem:

min{ T k) subjectto S Py > [£7], yZ"EZ+}.
mEM[ mEMé

For |My| = 1 this knapsack problem is trivial to solve. Otherwise, it is solved heuris-
tically for each logical link ¢ € L using a greedy algorithm, taking the maximum
capacity of each physical link into account. In a second step, node capacities are in-
stalled as much as needed for the given link capacities (if possible). As this heuristic
runs very fast, we call it at every branch-and-cut node to construct feasible solutions
from the current LP solution.

3.3.2 Rerouting Flow to Reduce Capacities

REROUTINGMIP

The REROUTINGMIP heuristic determines a routing together with a minimum-cost
capacity installation subject to an upper capacity bound on the logical links. More
precisely, given an upper bound U; on the capacity of each logical link ¢ € L,
REROUTINGMIP solves the following problem using SCIP’s branch-and-cut ca-
pabilities:

min { (3.1a) subject to (3.1b)-(3.1i), ¥, CYI < U} Ve e L}.

meMy

With small U/, this problem is much easier to solve than the original problem. By
setting U/ to the total capacity of link £ € L in an integer solution, REROUTINGMIP
can be used as an improvement algorithm that tries to reduce capacities by rerouting
flow. This generalizes the rerouting step in the iterative heuristics proposed in [15,
21], making it independent of the ordering of the demands.

We employ REROUTINGMIP not as an improvement heuristic but as a construc-
tion algorithm. Given some value k¥ > 1 and an LP solution with total logical link
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capacities y; = X,,cy, CJ'y;'", we solve the above sub-MIP with U; := (o [C—KO yg*-‘

where C? is the smallest module capacity installable on £. If the installable capaci-
ties form a divisibility chain (which is often the case in practical applications), U/
is the smallest installable integer capacity greater than or equal to ky;. Obviously,
a higher value of x augments the solution space of the subproblem, allowing for
better solutions but also making it harder to solve. Experimenting with different
values, we found that k¥ = 2 often allowed us to quickly determine good solutions
in the sub-MIP.

As the REROUTINGMIP algorithm consumes much more time than the other
heuristics, we restrict its application to the LP solution at the end of the branch-and-
cut root node. In the sub-MIP (as well as in the original problem), good solutions
are often found within the first few branch-and-bound nodes, whereas much time
is spent afterwards on proving optimality of the solution. Hence, we disable cut
generation and expensive heuristics in the subproblem, and we impose a node limit
of 10,000 nodes and a stall node limit of 5,000 nodes. To increase the chance of
finding good solutions, we also apply the GROOMCAPHEUR and GROOMCAPMIP
algorithms within the sub-MIP, which tends to improve the overall solution quality.

3.4 Cutting Planes

Backed by theoretical results of polyhedral combinatorics, cutting plane procedures
have proved to be a feasible approach to improve the performance of mixed-integer
programming solvers for many single-layer network design problems. In this sec-
tion we show how an appropriate selection of these inequalities can be adapted to
our problem setting. Their separation within a branch-and-cut algorithm, i.e., the
problem to find a violated inequality that cuts off a fractional LP solution or to de-
termine that no such inequality exists, is only briefly summarized here; details can
be found in [18].

3.4.1 Cutting Planes on the Logical Layer

On the logical layer, we consider cutset inequalities and flow-cutset inequalities.
These cutting planes have, for instance, been studied in [4, 8, 10, 22, 28] for a variety
of network settings (e.g., directed, undirected, and bidirected link models, single or
multiple capacity modules) and have been successfully used within branch-and-cut
algorithms for capacitated single-layer network design problems [7, 8, 14, 28].

To be precise, the inequalities on the logical layer are valid for the polyhedron P
defined by the multi-commodity flow constraints (3.1b) and the capacity constraints
(3.1¢). That is,

P=conv{(f,y) R} xZ? | (f,y) satisfies (3.1b),(3.1¢)},
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where n; = 2|K||L| and np = X yc; |My|. As P is a relaxation of the model discussed
in Section 3.2, the inequalities are also valid for that model.
We introduce the following notation. For any subset @ # S C V of nodes, let

Ls={leL|leLj icS, jeV\S}

be the set of logical links having exactly one end node in S. Furthermore, define d =
Yies dll‘ > 0 to be the total demand value to be routed over the cut Lg for commodity
k € K. By reversing the direction of demands and exchanging the corresponding flow
variables, we may w. 1. 0. g. assume that d% > 0 for all k € K (i.e., the commodity is
directed from S to V'\ S, or the end nodes of k are either all in S or all in V' \ S). This
reduction is done implicitly in our code. More generally, let dSQ = 2keQ d’§ denote
the total demand value to be routed over the cut Lg for all commodities k& € Q.

Mixed-Integer Rounding (MIR)

In order to derive strong valid inequalities on the logical layer we aggregate model
inequalities and apply a strengthening of the resulting base inequalities; this is
known as mixed-integer rounding (MIR). It exploits the integrality of the capac-
ity variables. Further details on mixed-integer rounding can be found in [23], for
instance.

Leta,c,d € R with ¢ > 0 and % ¢ Z, and a” = max(0,a). Furthermore, let

rac=a—c([4]-1)>0

be the remainder of the division of a by c if % ¢ Z, and ¢ otherwise. Now assume
that d/c ¢ Z and consider the subadditive MIR functions

Fir:R—R:a— {%1 tae— (Fae—Trae)t
and Fy .(a) = limp o M = a*. Given any valid inequality for our problem, ap-
plying F; . and Fy . to the integer and continuous variables, respectively, yields an-
other valid inequality [24]. Moreover, the resulting coefficients are integral (if a, c,

and d are integral) and |Fy .(a)|,|Fu.(a)| < |a|, as shown in [28]. Both features are
desirable from a numerical point of view. For more details and explanations see [28].

Cutset Inequalities

Let Lg be a cut in the logical network as defined above. Obviously, the total capacity
on the cut links Lg must be sufficient to accommodate the total demand over the cut:

> Y oy =df. (3.2)

leLgmeMy
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Since all coefficients are nonnegative in inequality (3.2) and y;' € Z,, we can round
down all coefficients to the value of the right-hand side (if larger). For notational
convenience we assume from now on Cj' < df for all £ € Lg and m € M,. Mixed-
integer rounding exploits the integrality of the capacity variables. Setting ¢ > 0 to
any of the available capacities on the cut and applying the MIR function F, = F, K
to the coefficients and the right-hand side of inequality (3.2) results in the cutset
inequality

D 2 R(Chy) > Fu(ds). (3.3)

leLgmeMy

A crucial necessary condition for inequality (3.3) to define a facet for P is that the
two subgraphs defined by the network cut be connected, which is trivially fulfilled
if L contains logical links between all node pairs.

Given a fractional LP solution, we look for violated MIR inequalities by setting
weights on the logical links based on the primal and dual LP solutions, shrinking
the logical graph with respect to these weights until only a small number of nodes
(say, four or five) remain. In this shrunken graph, we enumerate all cuts, construct
the corresponding MIR inequality, and test it for violation. For details, the interested
reader is referred to [18].

Flow-Cutset Inequalities

Cutset inequalities can be generalized to flow-cutset inequalities, which have non-
zero coefficients also for flow variables. Like cutset inequalities, flow-cutset in-
equalities are derived by aggregating capacity and flow conservation constraints
on a logical cut Lg and applying a mixed-integer rounding function to the coeffi-
cients of the resulting inequality. However, the way of aggregating the inequalities is
more general. Various special cases of flow-cutset inequalities have been discussed
in [4, 8, 10, 28]. Necessary and sufficient conditions for flow-cutset inequalities to
define a facet of P can be found in [28].

Consider fixed nonempty subsets S C V of nodes and O C K of commodities.
Assume that logical link £ € Lg has end nodes i € S and j € V'\ S. We will denote by
fi_ = f} ;;inflow into S on £ while f} , = f},, refers to outflow from S on ¢. We now
construct a base inequality to which a suitable mixed-integer rounding function will
be applied. First, we obtain a valid inequality from the sum of the flow conservation
constraints (3.1b) for all i € S and all commodities k € Q:

Y XS =df

leLgkeQ

Given a subset L C Lg of cut links and its complement L; = Lg \ L with respect to
the cut, we can relax the above inequality by omitting the inflow variables and by
replacing the flow by the capacity on all links in L1:
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Y X O+ Y Y Sy >df (3.4)

teLy meMy (el k€Q

Again, we may assume Cj' < d¥ forall £ € Ly and m € M;. Let ¢ > 0 be the capacity
of a module available on the cut and define F. = F o and F.=F 0 .- Applying these
s € s €

functions to the base inequality (3.4) results in the flow-cutset inequality

S S REYr+ Y S ff > Fdf). (3.5)

leLy meMy el keQ

Notice that F.(1) = 1, so the coefficients of the flow variables remain unchanged.
This inequality can be generalized to a flow-cutset inequality also containing in-
flow variables [28]. By choosing L; = Lg and Q = K, inequality (3.5) reduces to
inequality (3.3).

For separating a flow-cutset inequality, a suitable set S of nodes, a subset Q of
commodities, a capacity ¢, and a partition (L1, L) of the cut links Lg have to be
chosen. We apply two different separation heuristics. The first heuristic considers
commodity subsets Q with a single commodity k € K and node sets S consisting of
one or two end nodes of k. After fixing S and k and choosing an available capacity
¢ > 0 on the cut, a partition of the cut links that maximizes the violation for flow-
cutset inequalities can be obtained in linear time; see [4, 18]. The second, more
time-consuming heuristic finds a most violated flow-cutset inequality for a fixed
single commodity k € K and a fixed capacity c using a Min-Cut Algorithm; see [4].

3.4.2 Cutting Planes on the Physical Layer

If the fixed-charge cost values x, are zero, then the corresponding variables z, can
be assumed equal to 1 in any optimal solution. If, on the other hand, this cost is
positive, the variables will take on fractional values in linear programming (LP)
relaxations. By the demand routing requirements, we know that certain pairs of
nodes have to be connected not only on the logical layer but also on the physical
layer. Consequently, the variables z, have to satisfy certain connectivity constraints.
Note that information of the physical layer is combined with the demands here,
skipping the intermediate logical layer.

Connectivity problems have been studied on several occasions, in particular in
the context of the Steiner Tree problem and fixed-charge network design, e.g., [9,
27]. Let S C V be a set of nodes and &(S) be the corresponding cut in the physical
network. If some demand has to cross the cut, then the inequality

Y ze>1 (3.6)

€d(s)
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ensures that at least one physical link is installed on the cut. If a protected demand
has to cross the cut, the right-hand side can even be set to 2 because the demand
must be routed on at least two physically disjoint paths.

If the demand graph (defined by the network nodes and edges corresponding to
traffic demands) has p connected components (usually p = 1), then

Yz>|V|-p (3.7)

ecE

is valid, because the installed physical links can consist of at most p connected
components as well, each one being at least a tree. If protected demands exist and
the demand graph is connected, inequality (3.7) can be strengthened by setting the
right-hand side to |V|. If protected demands exist for all demand end nodes, this
inequality is dominated by the inequalities (3.6) for all demand end nodes as single
node subsets.

As the number of inequalities (3.6) and (3.7) is very small, we do not separate
them but just add them all in the beginning of the branch-and-bound process.

3.5 Computational Results

3.5.1 Test Instances and Settings

For our computational experiments we used the network instances summarized in
Table 3.1. In addition to the number of nodes and physical and logical links, the
number |H| of communication demands is given, from which the commodities were
constructed (|K| = |V|—1 if all demands are unprotected and |K| = |H| if all de-
mands are protected). Further, we report the number |M;| of node modules instal-
lable at each node and the size of the installable logical link modules. Finally, Ta-
ble 3.1 indicates whether the instance has physical link cost or not. The first three
instances are realistic scenarios provided by Nokia Siemens Networks, whereas the
small ring network Ring7 has been constructed out of the larger instance Ringl5
in order to study the effect of the cutting planes on the number of branch-and-cut
nodes, needed to prove optimality.

Table 3.1 Network instances used for testing cutting planes

instance \4 |E] |L] |H| |M;| cl,cz,c; physical cost?
Germany17 17 26 674 121 16 1,4, 16 no
Germany17-fc 17 26 564 121 16 1,4,16 yes
Ringl5 15 16 184 78 5 16, 64, 256 no

Ring7 7 8 32 10 5 16, 64, 256 no
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Germany17 and Germany 17-fc are based on a physical 17-node German network
available at SNDIib [26]. In both networks, the set of admissible logical links con-
sists of three to five short paths in the physical network between each pair of nodes.
Ring15 consists of a physical ring with a chord representing a regional subnetwork
connected to a larger national network. The set of logical links consists basically of
the two possible logical links for each node pair, one in each physical direction of
the ring. Ring7 has been constructed from Ring15 by successively removing nodes
with the smallest emanating demand value. Because in our ring instances every node
is a demand end node and the demand graph is connected, nearly all physical links
have to be used in any feasible solution. We thus do not consider ring variants with
physical link cost because doing so would only add a constant to the objective func-
tion. In all networks, up to three capacity modules corresponding to 2.5, 10, and
40 Gbit/s can be installed on each logical link depending on its physical path length.

All computations were done on a Linux-operated machine with a 2 x 3 GHz Intel
P4 processor and 2 GB of memory. In a first series of test runs, we assumed unpro-
tected demands with physical fibers supporting B = 40 wavelengths. In a second
series, we made all demands 1+1-protected, assuming B = 80 wavelengths in order
to allow for feasible solutions with the doubled demand values.

The focus of our computational results is on the effect of the cutting planes,
which is discussed in Section 3.5.2 for unprotected networks and in Section 3.5.3
for networks with 1+1 protection. In the corresponding tests, we have always used
the preprocessing steps described in Section 3.2.2 and the primal heuristics from
Section 3.3 unless otherwise stated. The effect of the heuristics and our preprocess-
ing is discussed in Section 3.5.4.

3.5.2 Unprotected Demands

As cutting planes are primarily thought to increase the lower bound of the LP relax-
ation, we first consider the effect of the different types of cutting planes on the lower
bound at the branch-and-bound root node. We separated the classes cutset inequal-
ities, flow-cutset inequalities, and fixed-charge inequalities on their own as well as
all together. Figure 3.2 shows the improvement over time of the lower bound in the
root node of the search tree for all test instances. The solid red line at the top marks
the value of the best-known solution, which cannot be exceeded by the dual bound
curves. The line “no cutting planes” refers to the dual bound with SCIP’s built-in
general-purpose cuts only.

It can be seen that in the two Germany 17 instances and on the small ring network,
our cutting planes reduce the gap between the lower bound and the best-known so-
lution at the root node by 50%—75%. In all three problem instances, flow-cutset
inequalities performed better than cutset inequalities, which is in contrast to the
results presented by Raack et al. [28] for a single-layer problem. There might be
several reasons for this effect. A good candidate is the structural difference between
single-layer networks and the logical layer in multilayer problems: the logical layer
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Fig. 3.2 Unprotected demands: dual bound at the root node

graph (V, L) contains edges between almost all node pairs, whereas only a few links
cross a cut in single-layer graphs. Further, we have implemented our cutting planes
as callbacks in SCIP, whereas in [28], CPLEX was used as a branch-and-cut frame-
work, which means that different general-purpose cutting planes have been used.

For the problem Germany17-fc with physical cost, most of the optimality gap
comes from the z, variables whose values are highly fractional and close to O in
the solution of the LP relaxation. A major part of this gap is closed by the fixed-
charge inequalities that operate on the physical layer. Of course, the contribution of
these inequalities changes with the ratio of the costs of the physical fiber links to the
logical wavelength links and the node hardware.

In contrast to these three instances, the problem-specific cutting planes have only
a marginal effect on the dual bound for Ring15 compared to that of SCIP’s built-in
general-purpose cuts. This is probably due to the fact that in SCIP’s default settings,
the dual bound at the end of the root node is within 0.4 % of the optimal solution
value, so there is not much room for improvement at all. We also observed that on
this instance, our cuts seem to interfere with the c-mir and Gomory cuts separated
by SCIP, which are based on a mixed-integer rounding procedure similar to the
one described in Section 3.4. With these cuts disabled in SCIP, our inequalities
could reduce the relative distance between the root dual bound and the best-known
solution from 3.8 % to 0.4 %, thus achieving the same dual bound as that of SCIP’s
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cutting planes. The number of violated cutting planes found in this setting is reported
in Table 3.2 for all instances.

Table 3.2 Number of violated cutset (3.3), flow-cutset (3.5), and fixed-charge inequalities (3.6)
found in root of branch-and-bound tree without separation of SCIP built-in cuts

# cuts unprotected # cuts protected
instance cutset  flow-cutset  fixed-charge  cutset  flow-cutset fixed-charge
Germany17 37 1521 - 4 940 -
Germany17-fc 34 1046 35 7 844 20
Ringl5 66 652 - 26 489 -
Ring7 41 98 - 15 24 -
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Fig. 3.3 Unprotected demands: dual bound during test runs of three hours

In a second study, we have investigated the lasting effect of the cutting planes
on the dual bound in longer computations. Figure 3.3 shows the development of the
dual bound with and without all cutting planes from Section 3.4 during a compu-
tation with a time limit of three hours for all four test instances, compared to the
best-known solution. Similarly to most of SCIP’s own cutting planes, we separated
our inequalities only at the root node of the branch-and-cut tree.
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By applying all separators we could solve the problem Ring7 to optimality within
ten minutes, whereas without our cutting planes the computation was aborted after
nearly one hour with a nonzero optimality gap due to the memory limit of 2 GB.
The size of the search tree was 1.2 million unexplored nodes at this point (and four
million explored nodes). Figure 3.3 shows that the dual bounds obtained with our
cutting planes are very close to their maximum possible values. In fact, as the upper
bound improved in both cases, the relative gap between the dual bound and the best
solution found in that specific run (as opposed to the best solution known) could be
improved from 4 % to 0.36 % and from 12.4 % to 3.1 %, respectively. For Ring15
the improvement of the dual bound by the cutting planes was much smaller than that
for the other instances, probably for the reasons discussed above.

3.5.3 Protected Demands
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Fig. 3.4 Protected demands: lower bound in test runs of three hours

In the case of protected demands, we first of all would like to point out that
the problem size drastically increases compared to the unprotected case. Instead of
|V| -1 commodities, |H| commodities have to be routed, increasing the number of



114 S. Orlowski et al.

variables and constraints considerably. Consequently, solving the initial LP relax-
ation, as well as reoptimizing the LP after adding a cutting plane or a branching
constraint, takes more time with protection than without.

With 1+1 protected demands, the cutting planes have only a marginal effect on
the dual bound. Figure 3.4 shows the increase of the dual bound in a three-hour test
run with and without cutting planes (again, the solid red line at the top indicates the
best-known solution value). It can be seen that the dual bound always increases, but
only by a very limited amount. More detailed investigations revealed that the small
progress is mainly due to the strength of the general-purpose c-mir and Gomory
cuts generated by SCIP. Experiments where these cuts were turned off showed that
our inequalities still contribute significantly to closing the optimality gap at the root
node. Table 3.2 shows the number of violated inequalities found at the root node
in this setting. Only slightly lower numbers of violated inequalities are found with
c-mir and Gomory cuts turned on, but their impact on the dual bound is limited in
such a case; cf. Figure 3.4.

3.5.4 Preprocessing and Heuristics

B no cuts, no heur

B no cuts, no heur
B no cuts, with heur s
O with cuts and heur

0

(a) Unprotected instances (b) Protected instances

Fig. 3.5 Optimality gaps after three hours without cuts and heuristics; with heuristics only; and
with both cuts and heuristics

We also tested the combined effect of our primal heuristics and cutting planes
on the optimality gap after three hours. Figure 3.5 shows these gaps for each of
the networks in three settings: without cuts and heuristics; with heuristics; and with
both heuristics and cuts. The protected Ring7 network has no bars because it was
solved to optimality in all cases; we will discuss this network below.

In five out of the seven other instances, adding our cutting planes reduced the op-
timality gaps. There were two exceptions: On the protected Germany17-fc network,
separating the cuts at the root nodes took so much time that a significantly smaller
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number of branch-and-cut nodes could be solved within the time limit, leading to
a much worse upper bound and a slightly worse lower bound. On the unprotected
Ring15 network, the final dual bound was better with cuts than without, but the pri-
mal bound was a bit worse, leading to a slightly larger gap. From a practical point
of view, however, the difference is marginal.

The effect of our primal heuristics is similar. On five out of the eight instances,
the heuristics helped to reduce the optimality gap or the time needed to solve the
problem to optimality, and in one instance (unprotected Ring7) there was no differ-
ence. In fact, our heuristics found the best solution after three hours in nine out of
the 16 cases where they were called; in four of them, the best solution was found by
REROUTINGMIP at the root node. Also, on the two instances Ringl15 (unprotected)
and Germanyl7-fc (protected), the heuristics found improving solutions early in
the branch-and-cut tree, but the resulting traversal of the search tree led to a worse
primal bound after the fixed time limit of three hours than without the heuristics.
Unfortunately, such effects are rather unpredictable.

10000
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Fig. 3.6 Number of unexplored branch-and-cut nodes on the protected Ring7 network

For the protected Ring7 network, Figure 3.6 shows that the maximum number
of unexplored nodes in the search tree was roughly reduced by 2/3 by our cutting
planes, even though they were added only in the root node. Also, the heuristics
helped in getting a smaller search tree by finding good solutions early in the search
tree. The GROOMCAPHEUR heuristic found an optimal solution after 353 nodes,
compared to 6,825 nodes without the heuristics. This caused large parts of the search
tree to be cut off. A separate run where cutting planes, heuristics, and preprocessing
were switched off is shown in the fourth curve at the top of Figure 3.6. It can be
seen that the preprocessing also significantly helped to reduce the size of the search
tree. With all our plug-ins disabled, an optimal solution was found only after 9,626
nodes, and the size of the search tree grew to more than 780,000 unexplored nodes
because of the weak lower bound.



116 S. Orlowski et al.

3.6 Conclusions

In this work, we have presented a mixed-integer programming model for a two-layer
SDH/WDM network design scenario. The model includes many practically relevant
side constraints such as many parallel logical links, various bit rates, node capaci-
ties, and survivability with respect to physical node and link failures. To accelerate
the solution process for this planning task, we have applied problem-specific prepro-
cessing, a variety of network design-specific cutting planes, and MIP-based primal
heuristics within the branch-and-cut framework SCIP. These ingredients have been
tested on several realistic planning scenarios provided by Nokia Siemens Networks.

With unprotected demands, our cutting planes significantly raised the lower
bounds to close to the optimal solution value. With 1+1 protection against physi-
cal failures, they also helped to improve the dual bounds, but less than in the un-
protected case. The preprocessing steps, although relatively simple, turned out to
be crucial for reducing the size of the branch-and-cut tree. Although the effect of
the MIP-based heuristics was not so clear, they found the optimal solution early in
the search tree in several instances, sometimes even at the root node. The fact that
these heuristics can easily be generalized to other network design problems and side
constraints makes the sub-MIP approach very flexible.

Although the presented methods could significantly reduce the computation
times for the considered realistic networks, they can still be improved. First, the
presented methods do not scale well with the network size because the edge-flow
formulation gets too large. Second, fast combinatorial routing heuristics have to be
developed in addition to the MIP-based heuristics in order to find good survivable
routings that can be used in primal solutions. Third, cutting planes are needed that
better take the inter-layer dependencies into account.
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Chapter 4

Routing and Label Space Reduction in Label
Switching Networks

Fernando Solano, Luis Fernando Caro, Thomas Stidsen, and Dimitri Papadimitriou

Abstract This chapter is devoted to the analysis and modeling of some problems
related to the optimal usage of the label space in label switching networks. Label
space problems concerning three different technologies and architectures — namely
Multi-protocol Label Switching (MPLS), Ethernet VLAN-Label Switching (ELS)
and All-Optical Label Switching (AOLS) — are discussed in this chapter. Each of
these cases yields to different constraints of the general label space reduction prob-
lem. We propose a generic optimization model and, then, we describe some adap-
tations aiming at modeling each particular case. Simulation results are briefly dis-
cussed at the end of this chapter.

Key words: MPLS, AOLS, ELS, label space reduction

4.1 Introduction to Label Switching

Label switching architectures base their forwarding decisions in contiguous fixed
length identifiers referred as labels. In these architectures packets are forwarded
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through specific sequences of nodes, named Label Switched Paths (LSPs) [10]. For
this purpose each packet is marked with a label depending on the LSP through which
it is sent. Each node uses Label as the index to look up in the forwarding table both
the node where the packet needs to be forwarded and the new label used to identify
the same packet in the next node.

We refer to a label space as the set of available labels that can be bound to paths
(flows). There are many ways in which a label space can be configured [7]. In this
chapter, we treat only two of them: label space per node and label space per link
(or interface). In a label space per node, every single LSP must be identified with
a different label regardless of its incoming interface. In contrast, a label space per
interface may assign the same label to two different paths if they have different
incoming interfaces.

A packet header may contain not only a single label, but a stack of labels. In
order to handle properly this stack, there are three operations that can be performed
at every hop:

e Label SWAP: The incoming packet’s top Label value is replaced by the outgoing
Label value and the packet is switched to an interface towards the next node.

e Label SWAP and PUSH: The incoming label of a packet is swapped, and then
one or more labels are stacked, leaving the new labels on the top of the stack.

e Label POP: The top label of the packet is removed from the stack.

Depending on the specific underlying protocols and hardware architecture, all or
some of the operations may be supported. Each label switching architecture has its
own motivations and objectives for using these techniques, as we will explain in the
following section.

There are several methods that use the three label operations to allow different
LSPs sharing a label at an intermediate node, thus reducing the number of labels in
the forwarding table. Each label switching architecture has its own motivations and
objectives for using these techniques. Based on this, the label space reduction prob-
lem consists of the efficient usage of the label spaces considering the limitations of
a given particular technology (e.g., supported operations, label space configuration,
label space size).

In this chapter we study the problem of minimizing the number of labels used
in networks using three different label switching architectures. Since each of the
technologies is aimed at being used for different purposes, the objectives and re-
strictions of the problem become different in each case, while preserving the main
structure of the solution. Therefore, in Section 4.2, we give an outline of the most
important differentiating aspects of these three technologies from the point of view
of the aforementioned problem. In Section 4.3, we present two methods that can be
used for reducing the number of labels used in a network. In Section 4.4, we explain
how considering the problem of finding the routes together with reducing the usage
of the label space makes the problem harder to solve. In Section 4.5, we present an
Integer Linear Program (ILP) formulation for the most generic problem. Later, in
the same section, we present some extensions to the formulation that model each
particular previously described case. In Section 4.6, we depict simulation results for
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the problems related to each of the three technologies. A summary and conclusions
of the chapter are given in Section 4.7.

4.2 Functional Description of the Technologies

The label space reduction problem has been mainly studied for three different
label switching architectures: Multi-protocol Label Switching Traffic Engineer-
ing (MPLS-TE), All-Optical Label Swapping (AOLS), and Ethernet VLAN-Label
Switching (ELS). We give an overview of the technologies and their particular mo-
tivation for reducing label spaces in subsequent subsections.

4.2.1 Multi-protocol Label Switching Traffic Engineering
(MPLS-TE)

MPLS-TE is a technology designed to implement label switching with constraint-
based routing. MPLS-TE uses a 20-bit label and the Resource Reservation Protocol
for Traffic Engineering (RSVP-TE) for signaling LSPs [1].

The RSVP-TE protocol working principle is based on soft states. A soft state is
a variable in memory that stores all the necessary information about the flow and its
characteristics. RSVP-TE stores one soft state per path (flow) and, due to its nature,
soft states must be refreshed periodically.

RSVP-TE scalability properties are bounded as follows:

1. In order to provide QoS, resource reservation, resilience, etc., the amount of in-
formation stored per state is considerably large (resulting in memory consump-
tion),

2. Due to its soft state nature, RSVP-TE needs state refreshing, resulting in

e bandwidth usage for the transmission of refreshing messages, and
e CPU processing upon the arrival of a refreshing message from neighbors.

Since MPLS was designed for simplifying forwarding, in its most basic form,
labels are the only information that is extracted (and considered) from the packet at
forwarding. Therefore, when considering RSVP-TE, the relationship between labels
and soft states is one-to-one . Otherwise, either two flows (using different labels)
would share the same reservation, or a node would not be able to distinguish for one
flow the correct reservation state. Throughout this chapter, we study the label space
reduction problem with the main objective of reducing the number of needed soft
states by RSVP-TE.
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4.2.2 All-Optical Label Switching (AOLS)

AOLS is the name given to a set of technology proposals aiming at performing
packet label switching using purely optical signals. We consider the proposal made
in the LASAGNE [9] project since it best maps the functionality of MPLS-TE
packet label switching in this sense. Similarly to MPLS-TE, the LASAGNE pro-
posal also offers label spaces per link and per interface [10].

Even though the LASAGNE project achieves its objective, it is not scalable since
it requires a special optical device for each label used . Therefore, a cost-efficient
implementation of this technology requires a significant reduction in the usage of
the label spaces as much as is possible.

Label stripping refers to a technique that encodes the route of an LSP in the stack,
so at every hop the pertinent LSR strips off (pops) the top label and determines the
next hop based on its content. In label stripping, labels are never swapped or pushed
at core nodes. In other words, label stripping encodes the route of the path in the
header. Therefore, since all the paths use one label for every hop, every node v; must
store at most A (v;) labels, where A (v;) is the degree of the node v; € V. Clearly, the
number of labels that must be encoded in the stack (henceforth the stack size) is
equal to the number of hops of the route.

The label stripping [2] strategy for label switching yields to a lower bound on the
label space usage: one label per link regardless of the number of LSPs. However, it
increases the stack size to the maximum length of any path in consideration, wasting
more bandwidth due to the need of a larger space for optical header encodings.
Therefore, better label switching strategies with less drastic trade-offs are desired.

4.2.3 Ethernet VLAN-Label Switching (ELS)

In [8] and [4] a scheme that enables an Ethernet network to create an LSP is dis-
cussed. The label is encoded in the 12-bit S-VID tag field of the 802.1ad frame.
Push and pop operations are only suported at the source and destination nodes. La-
bel swapping is implemented by using the S-VID translation operation defined in
IEEE 802.1ad. Figure 4.1 describes the label operations along an Ethernet LSP.

Given that ELS supports label swapping and uses a 12-bit S-VID Tag field as
the label, labels must be unique only in the context of a network link (labels have
link scope). Therefore, in ELS there is a limit of 4,096 (2'2) LSPs per link in the
network. Given that MPLS-TE has a limit of 1,048,576 (220) LSPs per link and that
label stacking is not supported, ELS might be affected by label scalability issues, in
the sense that an LSP request can be blocked due to unavailability of labels instead
of bandwidth . The label space problem in this technology is to reduce the maximum
number of labels used so it does not exceed the 12-bit limit.
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E-LER E-LSR E-LSR E-LER

S-VID push S-VID swap S-VID swap S-VID pop

@ Ethernet Switch or IP router -iEthernet 802.1ad frame

- Ethemet 802.1ad Switch B Ethemet frame

m----m Ethernet LSP

Fig. 4.1 Ethernet VLAN-Label Switching LSP example

4.3 Methods for Scaling the Usage of the Label Space

In this section we summarize the two methods considered in the literature for reduc-
ing label spaces in label switching technologies.

4.3.1 Label Merging

Label merging uses the label swapping operation to assign the same label to two
or more LSPs in a continuous and common segment that goes from any common
intermediate node to the same destination node. All LSPs must follow the same path
from the intermediate node to the destination node in order to be merged. Label
merging is able to reduce the number of labels used in a link. It can be used in label
switched networks where nodes are capable of performing label swapping (MPLS-
TE, AOLS and ELS). An example is presented in Figure 4.2, where label merging
between the two LSPs is possible at link (N5,N6) and not at link (N1,N2).

A single label is assigned to a set of LSPs in a link if either they have the same
label in the following downstream link and the downstream link is the same, or the
link is the last link for both LSPs. When label merging is applied, assigning the la-
bels to a set of established LSPs is trivial. The problem can be solved in polynomial
time, guaranteeing the optimal assignment in terms of labels used. This has been
discussed in [15].

If we consider all the paths that are forwarded in one link, it is possible to group
them according to the label they would be using, taking into account the label merg-
ing method. In the following sections we will use the term Merging Link (MERLIN)
group of Paths for each of these partitions for a given link.



124 F. Solano et al.

N3

b
/"C: swap D
H:swap I

G: swap H
LSP1 —»
LSP 2 ------- >
(a) No Merging
N3

e swap D
H: swap D

(b) Merging

Fig. 4.2 Label merging example

4.3.2 Label Stacking

As mentioned before, a packet may contain one or more labels in its stack. The stack
can be used in order to create a hierarchy of LSPs [6]. In this sense, a ‘bigger’ LSP
covers a group of ‘smaller’ LSPs, as seen in Figure 4.2 (a). Henceforth, we name the
bigger LSPs covering the smaller ones tunnels. In this chapter, we consider only two
hierarchies of LSPs. Larger hierarchies are left for further analysis. Even though a
LSP can ‘join’ a tunnel at any point, it must ‘leave’ the tunnel at the end, creating
an asymmetry in the tunnel.

This method allow us to reduce the label space since, instead of using one label
per hop per LSP, we use one label per hop per tunnel regardless of how many LSPs
are covered. Let us suppose that we have a tunnel ¢ of length /() > 1 hops,' and it
covers a set of LSPs P, = {po, p1,.- ., PiL| }. Let us assume that the tunnel 7 covers

! Tunnels of 1 hop length are discouraged since, due to technological reasons, they increase the
label space by 1 in all cases.
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LSP p; in I(p;) < I(t) hops. Then we can compute the reduction in the label space
reduction incurred by this tunnel as

r(t)= Y, (I(pi) = 1) = (I(r) — 1)

pi€h

= 2 Upi) —1(0)+1-|L].

pi€h

Given a set of LSPs &2, we can define the LABEL STACKING problem as how
to create a set of tunnels (covering the given LSPs) in such a way that we reduce
the overall label space as much as possible. It is not necessary to cover all the links
of all the LSPs; however, the more LSP hops are covered, the greater the reduction
could be. Obviously, a path cannot be covered by more than one tunnel in any hop.

A solution to the problem is given by the set of tunnels used, .7, and a proper
mapping from LSPs &2 to tunnels 7%, i.e., & — 7 *. For instance, Figure 4.3
shows two solutions to the same problem achieving different label space reductions.
Even though the problem has not been formally proved to be NP-complete, several
algorithms [11-13] have been proposed to find an optimal solution, yet without
guaranteeing it.

LSPA
N1 N2 N3 N4 N5 N6
LSP B - .
LspC
LSPD .
A:swap A1l Al:swapA2 A2 swapA3 A3:swapA4 Ad:swap.. Bil:swap..
B:swapB1, X:swap X1 X1:swap X2 X2:swap X3 X3: pop C1:swap ...
push X D: swap D1, D1:swap ...
C: swap C1, push X3
push X
(a) Suboptimal solution
LSPA
N1 N2 N3 N4 N6

TSI TR W .
LSPC
A: swap A1, LSPD
push X X2: pop Al:swap .. B2:swap...
B:swap B1, XiswapX1 XiiswapX2 'y B1:swapB2 C2:swap ...
push X ’ C1:swap C2 D2:swap ...
C: swap C1, D1: swap D2
push X

(b) Optimal solution

Fig. 4.3 Stacking problem example

It is worth highlighting the following theorem:
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Theorem 4.1 (Solano et al. [16]). Given a set of paths, a set of tunnels T O T*
can be computed in polynomial time, and this set contains the tunnels considered in
the optimal solution T* for the LABEL STACKING problem.

It is worth noticing that |T| belongs to &(I3 - n), with [ representing the number
of LSPs and n the number of nodes. Yet, selecting the proper tunnels .7 * in set .7 is
not trivial. Furthermore, given the proper tunnels .7, deciding which LSPs should
be covered by each tunnel (the mappings & — .77*) is also not trivial.

We will consider henceforth that reducing the amount of labels used can be
achieved using both label merging and stacking methods together for the same set
of LSPs [14]. In this sense, it must be taken into account that labels can be merged
if they belong to the same hierarchy, e.g., merging labels used for path (tunnel)
identification with only those used for path (tunnel) identification (see Figure 4.4).

B A: swap X3,
push U1 s

B:swap Y3, B’ e
push U1 L

X3: swap X4 .

B
i U1: swap W1 . . e
c N2 V2 owap g Wiliswapwz  W2ipop Y3: swap Y4 - N8
N N -
C: swap X3,
push V2
N D: swap Y3, \GHE
D- push V2

Fig. 4.4 Label merging at both hierarchies

4.4 Considering Routing

Previously, we have assumed that the path routes are given. However, for some
technologies (e.g., AOLS and ELS), the label space is too tightly limited, or very
expensive, and selection of the path routes might help in the label space reduction.

When considering the use of label merging and/or label stacking to reduce label
space, there is a trade-off. The trade-off is presented because these techniques give
higher reduction when paths are aggregated (sharing link capacity); however, this
incurs at the same time a higher bandwidth consumption. The reason is that the more
hops a set of paths shares, the more the profit can be obtained when a tunnel is placed
over them. In this way, a routing algorithm designed to utilize the minimum number
of labels would aim at placing the path demands over the same set of links when
possible. In this case, a routing algorithm designed to minimize link overutilization
would do the opposite.
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In Figure 4.5 we show an example. Nodes N1 and N2 are ingress and nodes N6
and N7 are egress. We set the link capacity to two units of traffic. Considering the
topology in Figure 4.5 (a) and that we want to route one unit of traffic between each
pair of ingress-egress nodes, a routing algorithm minimizing the link overutilization
would route the traffic as in Figure 4.5 (b).

NI0 N9 Ng NIO No N8
\ A
NI N7 N1 N7
N1l Ni12 NI13 N14
N2 6 N6

l N3 N4 N5 D_vl
e @ @

(a) Network Topology. Ingress nodes are N1 and (b) Routing solution optimizing maximum link
N2. Egress nodes are N6 and N7 utilization, using 22 labels

Fig. 4.5 Example scenario

In Figure 4.6 (a), we show the Minimum Interference Routing Algorithm (MIRA)
routing solution [5] when applying the merging and stacking techniques. The num-
ber of labels used is 20. However, in Figure 4.6 (b), we show a routing solution,
without minimizing link overutilization, that uses four labels less.

NI10 N9 N8
A A
N1 N7
- c2:-
. N14 -
B -
- push X1 B !
-7 B:swap B1, e
e B, push X1 1
N2 Cc ESERELpiaepwz  W2ipop  rioeep- . N6 )

N2

o i
C:swap C1, P
push W1
N6
N3 N4 N5 . 7

. b. S N3 vimeve N4 vEmeevs NS Ve v
. . . - push Vi _-7 Ciswmc2

EEEREEE R - D: swap D1, PR D1:-

push Y1 -

(a) Solution without label stacking using 20 la- (b) Solution with label stacking using 18 labels
bels

Fig. 4.6 Solution to the problem considering a limit of two traffic units in the links capacity

When LSPs are being aggregated, increasing the link bandwidth can reduce link
overutilization and even reduce the number of labels used. This is illustrated in
Figure 4.7, where by increasing the bandwidth of the links between nodes N11 and
N14 to four units of traffic, the number of labels is less than those in the previous
solutions.
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N1 . ' . N7

N2 o070 ASWEDX! XiiswapXe  xzewapXs X3 swapXd

.' ‘D 2: 2::‘;;1 YiiswapY2 Y2 swapY3  Y3:swap Y4 .
D1:swap Y1

1 N3 N4 N5 . P N3 N4 N5

(a) Solution with four traffic units as link capac- (b) Solution with four traffic units as link capac-
ity and no label stacking using 16 labels ity and label stacking using 12 labels

Xiswapxs " H
VaswapYs D

N6

W Wiiswapwz2  W2ipop

Fig. 4.7 Solution to the problem considering a limit of four traffic units in the link capacity

At this point, the network administrator is in charge of measuring whether the
label space reduction compensates the (extra) allocated bandwidth.

4.5 Generic Model

In this section we propose a generic model for the ROUTING AND LABEL SPACE
REDUCTION problem, in which given a set of demands we are asked to route them,
constrained by a link capacity, with the objective of minimizing the number of labels
used. In subsequent subsections, we give other formulations in order to consider
similar problems.

The ILP model proposed is path-based. Therefore, all feasible paths in the net-
work are initially generated using an exponential running time algorithm. Our rout-
ing solution would consist then of selecting a subset of these paths.

Considering the computed paths, all the feasible tunnels are computed as men-
tioned in Theorem 4.1.

4.5.1 Parameters and Variables

The following is a list of all the indexes used in the model.

i, j € V represent nodes in the network.

(i,j) € E CV x V represents a link in the network.
o € & represents a generated path in the network.
¢ € T represents a tunnel in the network.

m,n € N represents a MERLIN group identifier.

The parameters used in the model are the following.

e S¥issetto 1 if node i is the source of path a.
e DY issetto 1 if node i is the destination of path c.
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e (;; is set to the total bandwidth demand between nodes i and ;.
e K is set to the minimum of the desired Maximum Link Utilization (MLU) and
the link capacity.

In addition, two parameters can be seen as functions in the model.

° P(’?j) is the function that, given a path MERLIN group m and a link (i, j), evalu-

ates to the set of paths belonging to the group.
. T(’l?‘j) is the function, which, given a tunnel MERLIN group » and a link (i, j),

evaluates to the set of tunnels belonging to the group.
The variables used in the model are the following.

X% is set to 1 when path « is used to route any demand.

x% is set to the bandwidth allocated on path o.

y%:% is set to 1 when path ¢ is covered by tunnel ¢.

ZZ’? ;) is set to 1 when the path MERLIN group m uses a label on link (i, ))-

LJ

2?;‘ N is set to 1 when the tunnel MERLIN group n uses a label on link (i, j).

4.5.2 Integer Linear Program for the Network Design Problem

The objective function is minimizing the overall number of labels used (or MERLIN
groups) in the network (for both paths and tunnels):

min Y (2 2+ %2@7 j)> (4.1a)

(i,j)eE \meN
st. Y x*>Gy, Vi,jeV,i#j (4.1b)
a:S?‘:D?‘:l
x* <k, Vi,jeV,i#j (4.1¢c)
ocEIm,oceP('?‘j)
K-x%—x% >0, Yo e & (4.1d)
-y >0, V(i,j) €EE, 0 € P (4.1e)
(b:(i,j)eq)ﬂoc
K2 ) — Y ¥ % >0, V(i,j)€E,neN 4.1f)

OET; (i ))epne

K-zip— 2 X~ > el >0, Vij)eEmeN @l
G 0:(i./)eane.D?=0
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Inequalities (4.1b) assure that all traffic is routed. Inequalities (4.1c) limit the ca-
pacity that can be used in every link to x units of traffic. Each of the inequalities in
(4.1d) sets a path requiring labels if it is being used by some demand.

Inequalities (4.1e) relate the variables ¥* with y?*. Since ¥ is binary, each
inequality states that at most one tunnel can be used for a path at every link. The
Vi, jev.

In inequalities (4.1f), the variable ZA?[,/) pays (i.e., is set to 1) for the use of one
label for all the active tunnels ¢ intersecting any active path ¢c. Inequalities (4.1g)
work similarly, but they are concerned with paths merging. They differ from (4.1f)
in that the term 3, y%:% is added in order to avoid paying for paths that have been
covered.

constant K is set to the minimum number such that K > 3, - ’P(’l’,f].)

4.5.3 Traffic Engineering Formulation

The formulation previously shown is appropriate for a network design problem, in
which we want to plan how many labels we need for a given traffic demand matrix.
In the following, we show how to modify it in order to solve traffic engineering
problems. In a TE problem, we are given a traffic demand matrix and we are asked
to maximize the throughput given bounds on link capacities and label space sizes.

We introduce a new variable w; ; which is set to 1 when the traffic from i to j has
been routed. Therefore, our new objective function is

max Y, G j-wi; 4.2)
i,jev

In addition, inequalities (4.1b) are relaxed in the following way:

Y x*=Cijowij=>0VijeV 4.3)

a:s¥ =Df;‘ =1
The formulation in this form becomes unbounded. We proceed to bound it according
to the way in which the label space is configured.
4.5.3.1 Bounded Label Space per Node

Bounding the label space of a node to a maximum size can be done by

> (ZE'E, » j)) <L;VjeV (4.4)

ieV.mneN

with L; being the maximum number of labels per node at j.
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4.5.3.2 Bounded Label Space per Interface

Similarly, bounding the label space per interface (or link) can be done by

> (Zz’;,j) Jrf?i,j)) <Lj),v(i.j) €E (4.5)

m,neN

with L; j being the maximum number of labels per link (or interface) in (i, j).

4.5.4 No Label Stacking

For the particular case of the ROUTING AND LABEL MERGING problem, the pre-
vious model can be simplified by eliminating the decision variables 2’(11.‘1.) and y®%.
This leads to the removal of inequalities (4.1e) and (4.1f), and the modification of

inequalities (4.1g) accordingly. This variation is mainly used for modeling ELS (see
Section 4.6.3).

4.6 Simulation Results

Since the purpose of this book is to delve into the value of mathematical formu-
lations of networking problems, in this section we give a brief explanation of the
simulation results of the aforementioned problems.

Since the motivations and objectives are different for every technology, the re-
sults are depicted in different subsections following the same order as that in Sec-
tion 4.2.

4.6.1 MPLS-TE

MPLS-TE was designed for the support of external path computation procedures
aiming at optimizing some TE metric. Therefore, it is the aim of MPLS-TE to rely
on routing protocols for path computation. Hence, for MPLS-TE, we present sim-
ulation results that do not include the routing part of the problem. That is, we are
given a set of paths and we only want to reduce the number of labels by label merg-
ing and stacking.

We want to compare how many labels can be reduced by using the stack. An
extended version of the results presented in this subsection can be found in [16].

We considered an Australian ISP topology gathered in the Rocketfuel project.
The topology consists of 28 nodes. We choose 30% of nodes as ingress and egress
and we vary the number of routed LSPs between them from 10 to 300. To generate



132 F. Solano et al.

the path routes, we use the k-shortest path first (k-SPF) algorithm. We have chosen
k-SPF because shortest path routing leads to the worst link utilization. As a conse-
quence, the usage of k-SPF would give us a lower bound on the usage of the label
space incurred by any of the traditional routing solutions.

Figure 4.8 shows the number of labels used when: a) no reduction method is
applied, b) label merging and no label stacking is used and, ¢) label merging and
stacking is used. The numerical value is found using the ILP formulations described
in the chapter. At the bottom of the figure we show the average overhead in the
packets due to the usage of the stack.
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Fig. 4.8 Comparison using one stacked label. The routes are given

We observe that, when the network load is high (300 LSPs), the label space
reduction is 70.6% using the stack, while without using the stack, label merging
achieves a reduction of 48.75% in the label space usage.

4.6.2 AOLS

The motivations for reducing the label space usage in AOLS are as strong as con-
sidering the selection of appropriate routes within the same problem. That is, to
consider the path routes that would help reduce the label space, as mentioned in
Section 4.4. Since the tendency of an ‘optimal’ routing solution is to saturate link
capacity, we summarize in this subsection results showing the trade-off between link
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capacity and the number of labels that can be saved. An extended version of these
results can be found in [11].

The results we show in this section are computed using a heuristic. However,
they are corroborated with the optimal solution of the model in smaller networks.
The gap between the heuristic and the model solutions lies within 20% of the differ-
ence when considering smaller networks. We use two routing heuristics: Constraint
Shortest Path First (CSPF) and Path-Interfering Routing Algorithm (PIRA) (specif-
ically designed for label space usage optimization) [11].

In brief, we found that the use of the stack reduces the label space four times on
average when the capacity of the links is just enough to route traffic, and almost six
times if the link capacity is doubled.

Considering the routing solutions, we noticed that while the Maximum Link Uti-
lization (MLU) of CSPF is 934 units of traffic, PIRA’s is 2,236; this is 2.5 times
more. However, we notice that this case occurs in few links. Figure 4.9 shows the
distribution of links in PIRA that are above a given ratio of CSPF’s MLU. For in-
stance, there are six links in PIRA that are using between 50% and 75% more ca-
pacity than the minimum MLU considering CSPF routing. It turns out that while
25 links (out of 114) require a higher link capacity, 74 are not used by PIRA (16 of
them are not used by CSPF either).
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Underused Links s
Overused Links
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50 B
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Number of Links
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Links Overusing MLU of CSPF = 25
I

CSPF=16
IS
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0% 25% 50% 75% 100% 125% 150% 175% 200% 225% 250%
Relative Link Usage Distribution respect to CSPF Minimum MLU

Fig. 4.9 Distribution of links in PIRA that are exceeding CSPF’s MLU

We now compare the best solution without stacking (CSPF with label merging)
with the best solution using the stack (PIRA with label merging and stacking). The
maximum number of labels that the label merging solution uses is 20. This makes all
AOLS blocks sized for coding five-bit long labels. By using stacking, the maximum
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number of labels becomes 11, making the AOLS blocks sized for coding labels only
four bits long. In our results without stacking, we noticed that 11 links are causing
the five- bit long labels. However, using the stack, only four links are forbidding us
from using three-bit long labels. Even though we did not optimize the maximum
number of labels per link, it is not difficult to see that rerouting the traffic in the
three links of our solution would be easier than rerouting the traffic in the 11 links
in the label merging solution in order to reduce by one bit the label encoding size.

4.6.3 ELS

As mentioned in Section 4.2.3, the motivations to study ELS labels space are to
determine the scalability of the architecture and the available methods when using
a 12-bit label. This has been mainly studied in [3]. As in MPLS-TE, in [3], the
improvement of label space usage has not been considered as a routing objective.
Instead, the scalability of ELS was evaluated for the off-line and online routing
scenarios. Both cases, when labels have link and node scope, were considered.

For the online routing scenario, the Shortest Path First (SPF), the Constraint
Shortest Path First (CSPF), and the MIRA were implemented. Three topologies
were considered, COST266, Germany50 and Exodus(US); a capacity of 10 Gbit/s
are assigned to all the links [3]. Two sets of LSP requests were evaluated, one with
requests of low capacity (1 Mbit/s) to consider a worst case (given that label sparcity
is higher for low capacity demands) and another with requests of different capacities
(1 Mbit/s, 2 Mbit/s, 10 Mbit/s, 20 Mbit/s) to consider a more realistic case. Results
are compared in terms of the decrease in throughput given by the rejection of LSP
requests due to unavailability of labels.

e When considering homogeneous bandwidth requests of 1 Mbit/s, results show
that with the label size restricted to 12 bits per link, all evaluated algorithms
result in a decrease in throughput that ranges from 32% to 50% compared to the
scenario in which there is no limit in the label space size. With a restricted label
size but label merging enabled, the resulting throughput is identical to the one
obtained when using an unlimited label size. When the label size is restricted
to 12 bits per node, the decrease in throughput ranges from 46% to 69% and
with label merging enabled from 12% to 22%. The latter observation applies for
all the evaluated algorithms. This is an interesting result as it shows that label
merging overcomes the label size limits for a link scope even with demands of
low capacity. This is not the case when the labels have a node scope were there
are limitations even with merging.

e When considering heterogeneous bandwidth requests, with the label size re-
stricted to 12 bits per link, none of the evaluated algorithms show a decrease
in throughput higher than 1%. In addition, when label merging is applied, the
maximum number of labels used decreases considerably (from 42% to 57%).
When the label size is restricted to 12 bits per node, the decrease in throughput
ranges from 19% to 29%, and with label merging enabled, from 1% to 11%.
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For the off-line routing scenario model, a model similar to the one presented
in Section 4.5 with the no label stacking and Traffic Engineering Variations was
implemented. Results show that the highest maximum number of utilized labels
was very low compared to the unused labels for both node and link scopes. This
result shows that, even without merging, for the off-line scenario a 4,096 label value
space is not a limitation.

4.7 Conclusions and Future Work

In this chapter we have explained and modeled the LABEL SPACE REDUCTION
problem in MPLS-TE, AOLS and ELS. We reviewed two methods for reducing the
label space: label merging and label stacking. A mathematical optimization model
of the problem has been proposed, taking into account technical restrictions for each
technology.

In brief, we noticed that the usage of a label stack, when allowed by the technol-
ogy, yields to a 50% reduction in the label space usage. In scenarios in which we
can set up favorable routes, simulation experiments showed that the label space can
be reduced six times using the stack if the MLU limit (or link capacity) is increased
at least twice. If the MLU is kept to the minimum needed by the traditional CSPF
routing, the use of the stack yields up to four times label space reduction.

For the case of ELS, where the length of the label is set to 12 bits and label
stacking is not supported, simulation results show that label merging overcomes
the scalability limitations for the studied scenarios and link scope labels. However,
complementary studies considering more topologies and different scenarios need to
be done in order to fully determine the scalability of the technology.

The label reduction mechanisms proposed in this chapter are technology-specific,
i.e., for each technology a specific mechanism has been proposed and evaluated. The
next step would consist of unifying the techniques for multilayer networks (which
implies unified label management), proposing time and resource-efficient resilience
mechanisms and extending the proposed techniques for domain-wide label reuse
(shared forwarding entries are nothing more than an inverse multiplexing tree). An-
other topic for further investigation is related to the impact on traffic flowing through
label-merged data paths. Studies comprising the effect of label merging in terms of
statistical multiplexing and QoS aspects would complement the derivation of the
gain with respect to the forwarding plane resources.
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Chapter 5

Network Survivability: End-to-End Recovery
Using Local Failure Information

José L. Marzo, Thomas Stidsen, Sarah Ruepp, Eusebi Calle, Janos Tapolcai, and
Juan Segovia

Abstract This chapter presents an advanced shared protection approach called Fail-
ure Dependent Path Protection (FDPP). Under this approach, several protection
paths can be assigned to connections in the context of a shared protection frame-
work. After formalizing the survivable online routing problem, two possible imple-
mentations are compared, one based on heuristics and the other on ILP. Building
upon the concepts of routing already exposed, the chapter then presents two case
studies. The first one employs Shortcut Span Protection to examine how different
protection strategies affect resource provisioning, while the second is a thorough
analysis of the performance of path protection in terms of connection availability,
both for dedicated and shared path protection in heterogeneous network topologies.
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5.1 Basic Concepts on Network Survivability

Network survivability reflects the ability of a network to maintain service continu-
ity during and after failures. Although this ability is of relevance for any transport
network, it is essential for operators of optical networks, where a single fiber cut,
for example, can lead to severe service disruption and to loss of revenue, affecting
thousands of end users whose traffic is transported by high-capacity DWDM links.
Naturally, failures are not limited to fiber optic cables; other components such as
multiplexers, optical cross-connects (OXC), and repeaters can also fail. Moreover,
the causes of failure are equally diverse, from aging of the physical components to
natural dissasters to errors caused by human intervention.

Recovery is the name given to the sequence of events and actions taken after the
detection of a failure in order to keep the service in operation —whether in degraded
mode or not— and return the network to the preferred state upon the completion of
the repair procedures [20]. In this chapter, we consider that the unit of service of
the optical network, and therefore the subject of recovery, is a connection, i.e., the
virtual communication channel created between two designated nodes, with a given
capacity and duration. In line with the concepts of GMPLS, we assume that any
such connection is served by paths inside the network.

The body of knowledge on network recovery for optical networks is extensive.
However, as this chapter is focused on end-to-end recovery using local failure in-
formation, the reader interested in the general topic of network recovery is referred
to [13], which surveys the major techniques for next generation networks, and to [6],
which offers several options for classifying them, as well as an evaluation of their
features from the perspective of quality of service and differentiation. Nevertheless,
we will devote the following subsections to presenting essential concepts and termi-
nology on survivability, necessary for understanding the problems addressed in the
rest of the chapter as well as the applicability of the proposed solutions.

5.1.1 Protection and Restoration

The existing recovery techniques differ in objectives (i.e., offer very fast recovery
time, maximize network utilization, accomodate conflicting QoS requirements, or
a combination of several objectives) as well as approaches to specific issues such
as the provisioning method employed, the protection scope, the signaling require-
ments, and the layers, topologies and transmission technologies to which they are
applicable. Despite their differences, however, recovery generally implies that the
traffic affected by a failure is switched to a backup path. The moment in time in
which this backup path is established gives rise to two general approaches, one is
called restoration and the other is called protection. Under restoration, backup paths
are discovered on demand, and spare capacity is dynamically allocated thereafter,
whereas under protection both steps are completed at service setup time, whether
any failure arises or not later on during the service lifetime.
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In general, protection favors quality of recovery in the sense that, by doing pre-
allocation, there is guarantee that resources are readily available at failure time and
less steps are necessary to successfully complete the recovery process. But this guar-
antee comes at the expense of network utilization: capacity for recovery is essen-
tially locked even if finally it is never needed. As discussed in Section 5.1.3, net-
work utilization can be improved by sharing the resources for recovery at the cost
of losing the certainty on successful recovery.

5.1.2 The Scope of Backup Paths

The conceptually simplest method of path assignment is called global backup path
or just path protection, whereby two disjoint paths are assigned to one connection,
as illustrated in Figure 1(a). The path that carries the traffic under normal conditions
is called the working path, and it is covered by the backup path. When the working
path is affected by a failure, the connection is rerouted on an end-to-end basis, that
is, the switchover is usually performed at the source node, irrespective of the actual
failure location. Unless I+ protection is used (discussed in the next subsection),
the source node must be notified upon failure, which increases the recovery time as
well as the risk of losing traffic. Its advantage is that only the source node needs
switchover functionality.

backup path

working path

(a) Global backup path

backup path

working path

(b) Local backup path

working path

(c) Segment-based backup path

Fig. 5.1 Scope of backup paths
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The local path method can be employed to overcome the drawbacks of using
global backup paths. As illustrated in Figure 1(b), the working path is divided into
shorter reroutable paths so that the node detecting the failure (node ¢ in the example)
can immediately switch to the alternate path (passing through r in the example)
and route the connection around the failed element. However, this method requires
switchover functionality in every node.

An intermediate solution is offered by the segment-based method [4]. For in-
stance, if a failure is detected between nodes ¢ and d in Figure 1(c), the failure no-
tification is sent to g, which performs the switchover. The nodes between the failed
network element and the source node of the connection are called upstream nodes,
while the ones between the failure and the destination node are called downstream
nodes.

The idea of restricting the notification to the node closer to the point of failure
is employed by the local-to-egress restoration method [2]. In this case, the affected
traffic is rerouted between the upstream node adjacent to the failure and the egress
node of the connection, combining short notification time and high resource ef-
ficiency. This form of recovery is used by the Shortcut Span Protection method
presented in Section 5.4.1.

5.1.3 Shareability of Protection Resources

Based on whether or not the sharing of network resources between connections is
allowed, a protection scheme can be categorized as shared or dedicated. An ex-
ample of dedicated protection that uses global backup path is 7+ protection. In
1+1 protection, traffic is sent simultaneously over both the working and the backup
paths; the destination node monitors continuously the reception for choosing the
most convenient path. By not requiring failure notification, the recovery time can
be very short. Another variation is called 1:1 protection, in which, unlike in 1+1
protection, traffic is sent over the working path only until a failure is detected.

In shared protection, however, the backup paths are provisioned only at the con-
trol plane to facilitate the sharing of the recovery resources of several working paths.
It is also called soft provisioning [34] in GMPLS terminology and backup mul-
tiplexing [23] in optical transport domain. Shared protection is usually combined
with single link failure protection. This combination yields to low bandwidth uti-
lization and is relatively simple to implement. Section 5.4.4 studies the availability
of connections protected with both dedicated path protection (DPP) and shared path
protection (SPP).

The concept of shared protection is to activate a single protection path after the
interruption of working bandwidth at a preselected upstream node (a branch node
in GMPLS terminology [34]); the protection path merges back to the working route
at a preselected downstream node called merging node. In SPP, the switching node
is always the source node, while the merging node is always the destination node.
Shared Link Protection (SLP) typically protects link failures only, and the switching
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node is the neighboring upstream node, while the merging node is the neighboring
downstream node. SLP is favored for its simple and local fault recovery. For Shared
Segment Protection (SSP, a.k.a. Sub-Path Protection [25]) the working path is di-
vided into segments and the starting node of the segment is the switching node and
the last node is the merging node. The segments may be overlapped but not embed-
ded; thus, the closest upstream switching node is always the switching node of the
corresponding segment. It provides an explicit mapping between the network ele-
ment and the segment. SSP provides the finest compromise between fast restoration
time and bandwidth utilization efficiency [34].

upstream nodes downstream nodes
O " 0—®
SLP
SSp
SPP

Fig. 5.2 Shared path/segment/link protection

5.2 The Failure-Dependent Path Protection Method

Shared protection is a well-studied area of survivable routing and a great number
of shared protection methods have been published; however, only very few failure
dependent path protection methods were studied. One of the main reasons of the
scant proposals is that the problem can easily and efficiently be solved with a sim-
ple heuristic based on shortest path search. This simple heuristic is referred to as the
SPH approach later in this section. In [37] the problem is called partial path protec-
tion. Besides the SPH approach, in the next section an ILP formulation is given that
provides a solution with optimal bandwidth utilization in optical networks. We pro-
ceed now with detailed study of the corresponding routing problem, propose some
novel approaches, and further verify the benefits of the SPH approach.

5.2.1 Recovery Based on the Failure Scenario

A common point of shared protection is that the preselected upstream node does
not need to know which network element has failed. This approach is called failure
independent (FT) [28] or state-independent [38] protection.! Note that SLP for single

! The “state” means network failure state, indicating the failed network component(s).
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link failures is a special case where basically the switching node has the knowledge
of the failed link; however, it is still considered as being failure independent. It is
because from the operational point of view a single protection path is assigned for
each switching node.

Alternatively, the connection may be assigned more than one protection path,
depending on the failure scenario. Upon a failure, the switching node activates a
protection path corresponding to the failed network element. Such an approach re-
quires precise knowledge of the failure in the network; hence, it is referred to as
failure-dependent (FD) [28] or state-dependent [38] protection.

Similar methods have been published related to path restoration. Contrary to all
other methods discussed, path restoration is not a preplanned protection scheme;
thus, the path computation takes place after the failure occurs. However, the re-
quired minimum spare capacity is basically determined with FD protection routing
methods. In [7] the method is called true-path restoration, in [11, 27] simply path
restoration, and in [21] and [17] path restoration with static traffic. As FD protec-
tion is tailored to specified failures, normally it requires less spare capacity than FI
protection [18]. Even though FD protection was neglected due its longer restora-
tion time and for the extended nodal processing and memory requirements [38],
the Internet Engineering Task Force (IETF) solved this problem and published RFC
4090 [26], which addresses the necessary signalling extensions to support a recov-
ery scheme called MPLS fast reroute. The IETF fast reroute defines two methods.
The first one is called one-to-one backup, where each Label Switched Path (LSP)
is protected separately. Among the FI methods, shared segment protection follows
very similar ideas. The second method is called facility backup and each facility is
protected with a single protection bypass tunnel between the potential failure points;
thus, any LSP passing through the facility is protected by the same bypass tunnel.
P-cycles can be treated as a similar approach for the FI case.

We assume that each working path is protected separately and we consider one-
to-one backup. The key advantage of MPLS fast reroute is that it provides FD pro-
tection with short restoration time. This can be done by fixing the switching node as
the first upstream adjacent node, while the merging node can be any of the down-
stream nodes. The failures of the network elements are detected by the adjacent
nodes and, since only single link failures are considered, we may assume that the
switching node has knowledge of the failed link after the failure detection time,
leading to a rapid recovery cycle. In our study we allow any upstream node to be a
switching node; however, the above limitation can simply be applied to the proposed
algorithms. In [36] the MPLS fast reroute is extended with distributed shared band-
width management, which allows sharing of recovery resources of disjoint working
paths.
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5.2.2 Path Assignment Approaches

We consider an online routing problem, without any knowledge of future request
arrivals and without applying prediction-based routing on the statistics of past re-
quests. Traffic Engineering (TE) controls traffic to assure an economical utilization
of network resources. We use link weight setting methods, which identify the bot-
tleneck links in the network and, by assigning high administrative link weights,
circumvent these links during the course of path selection. This ensures that resid-
ual capacity is always available at bottleneck links, thus facilitating the successful
routing of as many future requests as possible. The path selection schemes use the
administrative weights as their cost functions to take network-wide TE policies into
account to achieve global optimization of network resources.

We assume source routing with complete routing information scenario, where the
link state protocols disseminate all the necessity routing information to each node,
including the free and spare capacities on links, the shareability of protection routes,
and the administrative link weights.

5.2.3 General Shared Risk Groups (SRG)

A Shared Risk Group (SRG) is defined as a group of network elements (links, nodes,
physical devices, software or protocol identities, etc., or a mix of them) possibly
subject to a common risk of single failure. In practical cases, an SRG may contain
several seemingly unrelated and arbitrarily selected network elements. We say that a
working path is involved in an SRG if it traverses any network element that belongs
to the SRG.

Most of the past studies focused on the case where each single network element in
the network topology serves as an SRG. Even if this special case is widely accepted
and very common, we believe that a sterling survivable routing algorithm should be
able to cope with the general definition of SRG.

Obviously, in single-layer and single-domain networks, multiple network ele-
ments might be contained in a single SRG. However, the concepts of general SRG
particularly contributes to the development and implementation of survivable rout-
ing schemes for the modern multilayer, multi-domain, and multi-carrier public net-
works. Because the network can be multilayered, it is not straightforward to take the
network elements in the upper virtual layer and the underlying physical layer in a
common SRG, although the upper layer virtual topologies could be embedded in the
lower-layer topology. The general SRG concept simplifies this dependency by sep-
arately grouping the network elements of each layer. In the case of a multi-domain
and multi-carrier network environment, a suite of efficient and secure link state in-
formation dissemination mechanisms must be developed to support routing in the
network layer. Here, the definition of general SRGs can help the link state infor-
mation aggregation, classification, and encapsulation to achieve a resource-sharable
protection plan.
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In end-to-end FI protection (e.g., dedicated or shared path protection), the task is
to find an SRG-disjoint working and protection path-pair for a connection request,
which has been proved to be NP-complete [1, 9, 15]. Therefore, the problem is
either solved by heuristics [11, 14] or by exponential worst-case algorithms, like
Integer Linear Program (ILP) [14, 15].

The consideration of the general definition of SRGs has two impacts upon the
solving of the survivable routing problem compared to the case where there is a one-
to-one mapping between a link or node and an SRG. Firstly, solving the survivable
routing problem turns out to be solving an SRG-disjoint path-pair, which is NP-
hard. In addition to the NP-completeness, the consideration of the general definition
of SRGs may introduce an increase in the size of the spare provision matrix (SPM)
[22]. In [33] the matrix expression by Yu Liu [22] was modified to enumerate the
Spare Provision Matrix in the case of general SRG.

5.2.4 The Input of the Problem

Given a network with a set of nodes N and a set of links L, a corresponding trans-
formed graph can be produced by modeling each network element of interest in
the original network as an arc in the transformed graph. Each SRG of the original
network can be represented by a set of arcs in the transformed graph.

Let G(V,E) denote the transformed graph of the original network with a set of
arcs E and vertices V, where |E| and |V| are the number of arcs and vertices in G.
The cost for allocating a unit capacity on arc j (the administrative weight) is denoted
as ¢cj Vj € E. The unreserved free capacity along arc j is denoted as f; Vj € E. The
amount of capacity reserved along arc j is denoted as v; Vj € E. Furthermore, we
are given the source vertex s and the destination vertex d of the new demand with a
specific amount of bandwidth b. Due to the complete routing information scheme,
the full per-flow information of the network (i.e., the working and protection paths
along each link) is known. Based on the full per-flow information, the Spare Pro-
vision Matrix (SPM) can be calculated [33]. It is denoted as S and a |E| x |SRG]|
matrix. The entry (i, j) of S (denoted as s; ;, where i = 1...|E]), j=1...|SRG|, is
the amount of non-sharable spare capacity along arc i for P if W is involved in the
Jjth SRG.

The feasible condition of the primary (a.k.a working) path is f; > b for all arcs
Jj € W (the working path). In FDPP a backup path is assigned to each SRG involved
in W. The feasible condition of the backup path P; assigned to the jth SRG involved
inWis fi+v;—s; j > b for for all arcs i € P.
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5.2.5 Two-Step Approaches

In two-step approaches the optimization is divided into two steps. First, a shortest
path is found and assigned as the working path; second, the protection paths are
identified.

Two-step approaches are widely used in shared path protection due to their sim-
plicity and decent performance, even if they cannot cope with the trap problem [39].
In the trap problem, the shortest path is such an unfortunate working route that it
has no SRG-disjoint protection path, even if there exists an SRG-disjoint path-pair
between the given source-destination pair. Due to the trap problem, the two-step
approaches have always higher blocking than approaches in which the working and
protection paths are jointly optimized.

There are two main concepts that can be applied to solve the trap problem in
failure-independent protection environments. First is the selection of a more appro-
priate path than the shortest one as working route. Usually, the shortest path that has
a disjoint counterpart [32, 39] is selected as the working path. In the case of online
routing, this can be done only with heuristics approaches, since the problem is NP-
hard [19]. The second concept is to apply a protection method other than end-to-end
protection. Segment protection is a good choice, since it is impervious to the trap
problem. In [12] it was stated that “In any network topology, whenever two disjoint
paths exist between a pair of end nodes, backup segments are guaranteed to exist for
any choice of a primary path between them. Similar guarantees cannot be provided
on the existence of end-to-end backup.”

Similarly to segment protection, the trap problem can be easily handled in FDPP.
Basically, without knowing the exact route of the working path, we are able to de-
cide whether or not a link belonging to it can be protected. This can be done by
simulating the failure of each SRG involved and searching for a feasible protection
path between the source and destination nodes of the request. If there is a feasible
protection path P after the failure of SRG a (Ve € P f, + Ve — Seq > b), we can be
sure that P will intersect the working route in an upstream node (in the worst case
at the source node), which can be treated as the switching node, and P will also in-
tersect the working path in a downstream node (in the worst case in the destination
node), which can be treated as the merging node, and thus we can be sure that there
will be a feasible protection path. Obviously if there is no protection path that can
protect the failure of SRG a, we will not be able to protect the working path passing
through SRG a.

In the same way we can define an FDPP test that filters out all the infeasible
edges from being part of the working route, and leaves all the edges that can be
freely selected to guarantee a feasible FDPP protection solution.

Definition 5.1. FDPP test of arc a is true if there is a path P between s and d such
that f, +v, —S.q > bforall e € P.
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5.2.5.1 First Step

We propose two techniques for the first step of the two-step approach. The tradi-
tional way is to assign the shortest path to the working route in the graph composed
of all the links with sufficient free capacity (f, > b), with the administrative costs
assigned to the links. Since the working path cannot be shared with other requests,
it is a natural to attempt to dedicate the fewest possible resources for the working
path.

In the second technique, we solve the trap problem with the FDPP test, and first
we identify the links that can be part of the working path to get a feasible solution.
After erasing all the unusable links along with the links with insufficient free capac-
ity (f. > b), we take the shortest path in the residual graph as the working path, with
the administrative costs assigned to the links.

5.2.5.2 Second Step

The task in the second step is to find protection routes that require the allocation of
minimal spare capacity weighted by the administrative link costs. The two-step ap-
proach is preferred for FI shared path protection due to its simplicity. In the second
step of shared path protection an optimal protection path is derived with respect to a
working path, which can be simply done by constructing a residual graph [32] com-
posed of all the links with sufficient free and sharable capacity for protecting the
working path. In this residual graph, the shortest path between the source and des-
tination nodes with link costs updated according to the resource usage status is the
optimal protection path. The administrative link cost is proportionally assigned to
the links according to the fraction of capacity that cannot be shared by other protec-
tion routes: the full administrative link cost is assigned if none of the capacity can be
shared by other protection paths, while only a very small positive cost represented
by € is assigned if it can be fully shared [32].

The problem we face in the second step of FDPP of the two-step approach is
not that simple to solve. Conversely, the trap problem is a hard problem for shared
protection, whereas it can be easily handled for FDPP.

Instead of solving the optimal protection path problem for a given working route
in the case of FDPP, we define a generalization of the problem, which we call the
Multi-commodity Connectivity (MCC) problem. In Section 5.3 we propose several
methods for solving the MCC problem that can be applied in the second step of the
FDPP two-step approach.

5.2.6 Joint Optimization: The Greedy Approach

In joint optimization, we consider the problem of minimizing the use of new re-
sources (for both the working and the protection paths) required to accommodate
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the new call without disturbing the existing ones. We call this approach the greedy
approach. In Section 5.3.3 we formulate the traditional FDPP with ILP. This formu-
lation seeks, upon call arrival, to minimize the total amount of resources used for
establishing both primary and backup paths.

5.3 Multi-commodity Connectivity (MCC)

The input of the MCC problem is

e agraph G(V,E) with a set of edges E and vertices V
e a set of commodities C. The number of commodities is denoted by k = |C|. For
each commodity a € C, the following input is defined:

— asource node s, € V and a destination node d, € V
— asubgraph (V,E,) with usable edges
— acostc., for each edge e € E,

The objective is to find for each commodity a € C a single path, denoted by F,, with
minimum overall cost, such that P, connects s, and d, on edges of E,. The overall
cost of edge e € E, denoted by z,, is the maximum of the edge costs assigned to the
commodities passing through it, i.e., maX,ccjeep, Ce,a- The objective function is to
minimize ¥,cp MaXgcclecp, Ce.a-

This problem is similar to the multi-commodity flow problem. In this case, how-
ever, the commodities can share the cost when using the same edges.

FDPP is a special case of MCC, where the commodities are assigned to those
SRGs that are involved in the working path, but the SRG does not form a cut be-
tween s and d, so it can be protected. The source-destination of each commodity is
the source and destination of the connection (s, = s and d, = d for all a € C).2 An
SRG is assigned to each commodity, and the subgraph E, is populated as follows:

e the edges involved in the corresponding SRG are erased from E,

e the rest of the edges involved in the working path are added with cost equal to 0
(Ce,u =0

o the rest of the edges with sufficient capacity to protect the corresponding SRG
added (ve — Seq +b < f,) with cost of ¢, - (max{v, —se.+b,€}), where € is a
very small positive number.

Since we are protecting single SRG failures, the spare capacity along the pro-
tection routes of FDPP can be shared, and the objective of the MCC is equal to the
amount of spare capacity required to be reserved weighted by the administrative link
cost.

2 In the case of MPLS fast reroute, the source is required to be the adjacent upstream node of the
working path.
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5.3.1 Complexity of the Multi-commodity Connectivity Problem

Theorem 5.1. Finding the minimum cost MCC solution is NP-hard.

Proof. Obviously, this problem belongs to the class NP. We shall reduce 3SAT to
our problem as follows: First we construct an undirected graph G = (V, E). For each
variable x; (i = 1...n), let p; be the number of occurrences of the literal x; in the
clauses and p§ the number of occcurrences of the literal x;, and construct a lobe as
shown in Figure 5.3.

Fig. 5.3 Lobe

The lobes are connected one after the other. For each clause C;, we add two
vertices y;,z; (j = 1...m) with edges between (u,y1),(zj,yj+1) (j = 1...m), and
(zm, x). Finally, we connect clauses to variables by adding the following edges:

(vj,iit) and (z;,¥)  if the kth occurrence of variable x; is the literal x;, that is, a

literal in clause C;
(vj,ul) and (z;,vi) if the kth occurrence of variable x; is the literal &;, that is, a
literal in clause C;
For example, the graph G corresponding to the instance

(F1 Vxa Vi) (x) VI Vas)(x Vg Vi3)

is depicted in Figure 5.4. E; consists of the edges shown as solid lines, while E;
contains the ones drawn with broken lines plus the thick solid lines.

Edges have cost 0, except the ones shown with thick lines. For those edges, the
cost 1s = (or A respectively) for the first commodity, and 0 < € << 1 for the second

commodlty Note that the cost of passing each lobe is 1 for the first commodity.

It is easy to see that G can be constructed in polynomial time. Therefore, it is
sufficient to show that there exists a truth assignment that simultaneously satisfies
all m clauses if and only if the cost

min Z max cCeq p <n
eeEaEC\eEPH

If there exists a truth assignment 7 that simultaneously satisfies all m clauses,
then P; path passes through the upper portion of the lobe if 7(x;) = false and passes
through the lower portion if 7(x;) = true and the cost is n. Each satisfied clause C;
contains either a literal x; such that 7(x;) = true or literal x; such that 7(x;) = false,
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Fig. 5.4 Graph G corresponding to (%] Vxz V%3)(x1 VX2 Vx3)(x1 Vay V 3)

which implies that there exists a subpath (yj,u};,vi,z ;) or (y j,ﬁ;{,ﬁi,zj) which can
fully share the cost with P; and thus its cost is O.

Hence, there exist at least m such subpaths, which, together with edges (s2,y1)
and (z,12), form a path P, with cost 0. Therefore, the total cost would be 7.

Conversely, suppose there exist two paths with total cost m. Path P; must contain
edges drawn with only continuous lines, and since passing through each lobe costs
1, the cost of the path would be m. We set T(x;) = true if P passes through the
lower portion of the ith lobe and 7(x;) = false otherwise. On the other hand, path
P> must pass through all vertices y; and z;, and it should share the cost with edges
of Py in order to reach 7, without requiring any additional cost. According to this
truth assignment, clause C; is satisfied since there is an edge in the lobe between all
y; and z; in P>. Therefore, all m clauses are satisfied.

A special case of this problem is called directed Steiner Network Problem [10]
where, given a single directed graph G and source-destination node pairs (s, and d;),
for each commodity the task is to find the smallest subgraph H of G that contains
a path from s, to d, for all a € C. MCC with E, =FE and ¢, = 1 forall e € E
and a € C represents the same problem. The latter problem in NP-hard for a general
number of commodities, since the Directed Steiner Tree problem is a special case.
However, the problem was proved to be polynomially solvable if k is any constant
number.

5.3.2 The SPH Approach

The SPH approach is a simple heuristic where an ordering of the commodities is
defined and each P, is calculated with a shortest path search, one after the other,
such that at each step the minimum additional overall cost is added. In the imple-
mentation z, = 0 at the beginning and it is updated after a new path is calculated
(ze = Maxyg|ecp, {¢ce,a}). Each path is calculated with a shortest path search in the
corresponding subgraph (for commodity a it would be (V, E,)), where the link costs
are max{0,ceq —Ze }-
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When the SPH approach is applied for FDPP, first a working path is derived
in the first step (with a shortest path search). Then a residual graph is constructed
(and can be protected) for each SRG involved in the working path. In the residual
graph the links involved in the corresponding SRG are erased and all the links in
the working path disjoint from the SRG are available at 0 cost. Besides, it consists
of all links where v, — 5., +b < f, holds. These links have costs according to the
resource usage status. In the next step a backup path is calculated (with a shortest
path search) with the objective of using the least resources on the corresponding
residual graph. Basically, the administrative link costs are proportionally assigned
according to the fraction of the spare capacity that needs to be additionally reserved
along the links: the full administrative link cost is assigned if none of the capacity
can be shared by other protection paths. However, if it can be fully shared, only a
very small positive cost represented by € is assigned.

Note that the order in which the paths are established will affect the final solution.
In our implementation we visit the SRGs of the working path in order of traversal
from the source to the destination.

5.3.3 ILP of the Multi-commodity Connectivity Problem

Since the problem is NP-hard, we have formulated it with ILP mainly to understand
the character of the problem and facilitate the introduction of some other effective
heuristics. The following symbols are adopted to develop the ILP formulation. Let
Ye.a be a binary variable assigned for all commodities a € C and edges of e € E,.
Variable y, , represents the route of commodity a, such that it is 1 if the correspond-
ing path passes through the arc e, and 0 otherwise. Let z, be a nonnegative real
variable assigned to the overall cost of edge e.

The MCC Problem reads
min Z CeZe (5.1a)
acE
l1ifi=s,
St Yija— X Yina=9{ —lifi=ds  VieV,NaeC (5.1b)
(i,j)€Eq (j,i)€E, 0 otherwise
CeaYe,a <z Ve € E;,Vae C (5.1¢c)

where equations (5.1b) are known as the flow conservation constraints and inequal-
ities (5.1c) as the maximum cost constraints.
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5.3.4 Examples

We briefly compare the two main implementation approaches: the joint optimization
(greedy ILP) approach and the two-step (SPH) approach. Solving an ILP is compu-
tationally intensive. In contrast, since the algorithms for seeking the shortest paths,
e.g., Dijkstra’s algorithm, are polynomial-time, the shortest primary path approach
can place a new call rapidly.

Let us now consider resource efficiency. While the SPH approach may at times
require more resources for a given call, it is possible that over a number of calls,
the SPH approach may eventually result in more efficient bandwidth utilization.
Example 5.1 illustrates this phenomenon.

Example 5.1. Consider the network in Figure 5.5 and assume that FDPP is em-
ployed. The network is initially empty with a uniform administrative cost function
(all edge costs are 1) and serves three call requests, (1,4), (6,3), and (3,5) in se-
quence. Table 5.1 shows the resource assignments for the greedy approach and the
SPH approach. In this example, the SPH approach initially occupies more wave-
lengths to support the request (1,4) than does the greedy approach. However, as the
calls accumulate, the SPH approach uses fewer wavelengths to support the same
requests than the greedy one.

Fig. 5.5 An example network

In this example, the greedy approach endeavors to serve each request using the
minimum number of previously unused wavelengths. However, in doing so, the
greedy approach happens to choose paths with no protection sharing, harming net-
work resource utilization. In contrast, though the SPH is not optimal at first, it per-
forms better over the call arrivals by encouraging protection sharing.

5.4 Case Studies

The objective of this section is to present two case studies that employ and en-
hance some of the previously exposed concepts. The first one analyzes how dif-
ferent implementations of failure-dependent protection strategies affect the network
resources that must be provisioned, and presents a new model to overcome some
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Table 5.1 Resource usage for network employing the failure-dependent path protection scheme
implemented by different approaches in Figure 5.5

Primary Protection path Number of taken
path  (protected link) unit of capacity
Greedy 1-2-3-4 1-6-5-4 (1-2-3-4) 6 (no sharing)
approach 6-5-3  6-2-3 (6-5-3) 10 (no sharing)
3-5 3-2-5 (3-5) 13 (no sharing)
Shortest 1-2-3-4  1-6-2-3-4 (1-2) 7 (share (2-3-4))

path 1-2:54 (2-3)
approach 1-2-5-4 (3-4) (share (1,2))
6-5-3 6-2-3(6-5) 10 (share (6,2))
6-2-3 (5-3)

3-5 3-2-5 (3-5) 12 (share (2,5))

of the highlighted drawbacks. The second case study is a thorough analysis of the
availability measures for connections equipped with shared and dedicated path pro-
tection in heterogeneous network topologies. It highlights the limitations of path
protection to achieve very high availability even with the most resource-intensive
method.

5.4.1 First Case Study: Shortcut Span Protection

This section presents a case study of how different protection strategies (such as
global and local-to-egress, described in Section 5.1.2) affect the total capacity that
must be provisioned in a network. With the prices for fiber (i.e., capacity) drop-
ping [30], capacity usage will become a less important factor for deciding which
protection method should be employed, whereas complexity and speed combined
with the manageability of the method are expected to be given higher priority in the
decision process.

To reduce the complexity of the protection method and the restoration time, we
want to investigate a variation of the local-to-egress protection method, which we
have termed Shortcut Span Protection (SCSP). In SCSP, the traffic is routed from the
node before the failed link directly to the endpoint, i.e., the traffic makes a shortcut.
The idea is illustrated in Figure 5.6. The SCSP method achieves the same quick
recovery time as standard span-protection, but is more relaxed with reference to the
protection routing and hence more efficient with reference to the needed protection
capacity. This improved efficiency, though, comes at the price of a more complex
protection routing problem. We compare the efficiency of SCSP with that of span
protection.
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Bundled
local-to-
egress

Fig. 5.6 Shortcut Span Protection (SCSP)

5.4.2 The Shortcut Span Protection Model

The routing in the SCSP model quickly becomes complicated, so we are forced to
make a couple of simplifications:

e We will only consider single link failures

e We will only consider the relaxed case, i.e., the routing of the paths may be
bifurcated, with both the ordinary flow and the protection flow.

o We will assume 100% protection, i.e., all traffic will be protected against any
single edge failure.

To perform the routing of the nominal flow and the backup flow, we apply Linear
Programming (LP). First we describe an LP model for SCSP and standard span pro-
tection. Then we present the result of the different protecion methods and comment
on them.

Given a network with N nodes, we index them with several different indexes:
i,j,k,0,q,r € N. The indexes are used for nodes in different contexts: i, j are used
to index the flow, k,/ are used to index the nodes of the demand requests, and g, r
are used to index the single link errors. Between the nodes there are bi-directional
edges E. We will index a specific edge by its end nodes: {ij} for the non-failed
edges and {gr} for the failed edges. All the flow is directed, and we hence represent
each edge {ij} with two arcs (ij) and (ji). When an edge fails, both arcs (gr)
and (rg) fail and the flow on these arcs will have to be rerouted. We assume that
a number of communication demands are given, and the volume of the demand is

D) For each demand (kI) we represent the nominal flow with a variable ng]l; ERT,
which corresponds to the flow from node i to node j of the demand request from
node k to node /. Whenever an edge {gr} fails, both the flows (gr) and (rg) needs
to be restored by a protection flow, starting from node ¢ and node r respectively.

The protection flow is represented by yl(’l.(j’jr), for the flow from node i to node j

of the failed arc (gr) which is destined for node . To ease the formulation of the
model, we define an auxilliary variable u"(4") which represent the total flow with
end destination node / from the failed arc (gr). We are now ready to present the
complete LP model.

Shortcut span protection arc-flow LP model:
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min Y’ ¢(ij2(ij) (5.22)
{ij}
DW=k
smzﬁgfzﬁ% = _pW) j—y Vi, (kl) : DK > 0 (5.2b)
J J 0 ikl
Kl .
%xgqr)) = ulv(q ) Vi, (qr) : %Dkl >0 (5.20)
ub(ar) i=k
Zy<l(jq> ) _ Zy<;(iq)r) = —yblar) l:: [ Vi, (gr),i: szl >0
J J 0 i#k,l k
(5.2d)

1,(qr) 1,(qr)
+;WWJ+WM)

+;<y’(;.§gq> ) <z Wit Aary  (5.20)
(kD) 1(gr) (ar)
x(,’j)a“ @ )7}’(”% »Z{ij} eRy (5.2f)

The SCSP LP model consists of an objective function (5.2a), nominal flow con-
straints (5.2b), the constraints (5.2c) setting the auxilliary variables, the protection
flow constraints (5.2d) and capacity constraints (5.2¢), and domain definitions (5.2f).
The objective function (5.2a) measure the cost of the necessary capacity in the net-
work. The nominal flow constraints (5.2b) ensure that the nominal flow is routed
from the start node k to the termination node /. The constraint setting the auxilliary
varibles (5.2¢) simply sums the nominal flow across the failed arc (¢r) which shares
the same termination node /. The protection flow constraints (5.2d) then use the
auxilliary variables to create a protection flow. Notice that if the identification of
the termination node in constraint (5.2d) is changed from [ to g, then standard span
protection is performed.

5.4.3 Results

In order to evaluate the effectiveness of short cut protection, we test the method, by
optimizing over a set of four networks for a demand of volume 1 between all pairs
of nodes in the network, that is, only one way for each pair: D) = 1 and D4") = 0.
Furthermore, we have set all the costs to unit values: clijy = 1. In Table 5.2 we
summarize data about the networks.



5 Evaluation of Network Survivability 155

Table 5.2 Network data
Network Name Number of Nodes Number of edges Average node degree

Cost239 [3] 11 26 4.73
PanEuropean 13 21 3.23
USANetwork [8] 28 45 321
Ttaly [11] 33 68 4.12

For the test networks in Table 5.2 we used the LP formulation given by the
model (5.2a)—(5.2f) to test four variants of the protection methods:

1. Shortest SCSP: Route nominal flows on shortest paths and then protect the flows
with SCSP.

2. Shortest Span: Route nominal flows on shortest paths and then protect the flows

with span protection.

SCSP: Perform combined routing of nominal and protection flow using SCSP.

4. Span: Perform combined routing of nominal and protection flow using Span
protection.

et

For each network, the required non-failure (NF) network cost is given. Furthermore,
the protection lower bound on the network cost is given, based on Complete Rerout-
ing (CR) protection [31]. For CR and the four above-described combinations of
SCSP and Span protection, we give both the absolute value of the network cost and
the relative increase compared to the non-failure network cost; see Table 5.3

Table 5.3 Performance of CR, SCP, and SP on four test networks

Network  NF CR SCSP shortest Span shortest ~ SCSP Span
Rel Abs Rel Abs Rel Abs Rel Abs Rel Abs
Cost239 86 13.4 97.6 32.5 114 395 120 25.3 107.7 26.8 109.0

PanEuropean 158 56.9 248 70.8 270 734 274664 263 69.6 268

USANetwork 1273 50.3 1914.2 66.5 2120.3 71.5 2184.3 60.4 2042.5 65.9 2112.0

Italy 1718 33.8 2299.3 56.8  2693.8 62.11 2785.0 46.2 2512.9 49.9 2575.6
38.6 56.7 61.6 49.6 53.0

From the results it can be seen that the effect of SCSP is rather small; it is only an
improvement of 4% to 5% of the network cost. It turns out to be more important to
perform joint routing of the nominal flow and the protection. By combined nominal
flow planning and SCSP, the method on average only requires approximately 11%
exstra network cost compared to the CR lower bound.

It is somewhat surprising that the benefit of SCSP is not larger. Part of the the rea-
son for the difference not being larger is probably that stub-release is not included.
Stub-release means freeing the part of the nominal flow that is not being used after
a failure. This can be included in the LP model above, but the number of variables
required grows significantly, so that only the small networks can be solved, and we
have hence chosen not to include this approach here.
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5.4.4 Second Case Study: Connection Availability Under Path
Protection

The probability that a system (in this case a connection) will be found in the operat-
ing state at a random time in the future is called availability. If recovery techniques
are applied, then connection availability is an estimation of the ability of the net-
work to maintain the connection during and after a failure, i.e., it is an estimation of
survivability.

As connections are served by the physical network elements assigned to them,
the intrinsic reliability of these physical elements affects connection availability. A
well-known availability formula for a single element (or item), employed in this
study, is A = (MTBF —MTTR)/MTBF, where MTBF is the Mean Time Between
Failures and MT TR is the Mean Time To Repair. These reliability measures that can
be obtained from the manufacturer, be based on knowledgeable opinion, and so on.

The objective of the study presented in [29] is to analyze how connection avail-
ability is affected by different combinations of path protection schemes (dedicated
vs. shared) and specific topology properties such as nodal degree, link length, and
network diameter. In the following we hightlight the main results.

5.4.4.1 Context of the Study

In order to obtain heterogeneity from the point of view of topology properties, six
topologies were selected with differing average node degree, number of nodes and
links, network diameter, geographical coverage, and diversity in link lengths. Con-
nection availability was evaluated with an event-based simulator considering dy-
namic traffic, i.e., the capacity requested by a connection was allocated and re-
leased at that connection’s set up and tear-down, both events following a Poisson
process with exponentially distributed connection holding times. The traffic matrix
employed is from [24]. The demanded capacity was chosen randomly following a
uniform distribution. In such a dynamic environment, the effectively allocated ca-
pacity depends on the protection scheme applied as well as on the routing algorithm.
Therefore, an important figure of merit is restoration overbuild, that is, the extra ca-
pacity required for a given level of protection.

The simulation was carried out assuming no protection, shared path protection,
and dedicated protection for the six topologies. The results reported correspond to
an average of ten runs, and every run processed 80,000 connections.

5.4.4.2 Network Availability Model

The network availability model employed is an adaptation of the one presented
in [35], developed in the context of the IST project NOBEL. Its elements are compo-
nents of the physical layer (OXCs, transponders, fiber optic cable, amplifiers, etc.).
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The estimation of connection availability is performed assimilating a connection
to a series-parallel system. The building block in this system is the availability of
each component, computed based on its intrinsic reliability measures, i.e., its MTBF
and MTTR. The study was carried out using the conservative values of MTBF and
MTTR proposed in [35], which are based on the opinion of the consortium’s part-
ners on the reliability of the network components included in the model.

5.4.4.3 Connection Availability

The study analyzes the availability of connections protected with DPP (1+1 protec-
tion) and SPP, as defined in Section 5.1.3. The availability of a connection protected
with one backup path is, in general, A = A,, + (1 — A,,)Ap, where A,, and A, are the
availability of the primary and backup paths respectively. This formulation is di-
rectly usable with DPP, but if SPP is employed, the negative effect of sharing on the
availability must be considered: if two or more simultaneous or near-simultaneous
failures affect unrelated (disjoint) working paths, there is no guarantee that all of
them will be recovered because they might be sharing backup resources. Specifi-
cally, a successful corrective action for one of the failing connections could leave
others without the resources they need for their own recovery if the capacity for
protection is already used up. A penalty for this potential access conflict should
then be considered when using SPP, lowering the availability initially estimated. As
explained in [16], under the assumption of independent failure events and a binomi-
ally distributed failure number in a backup path sharing group, the aforementioned
penalty can be approximated with (5.3)

1
2+ (n—2)(1-A,) ]’

P=(1-A)A,(1-A1) |1 (5.3)

where n is the size of the backup path sharing group.

With respect to restoration overbuild, further attention is also needed when SPP
is applied, as the capacity effectively allocated for backup has to be accounted for.
Equation (5.4), suggested in [5], was used to compute the backup capacity allocated
to a given connection i:

& d

m=1 j=1

where k is the number of links in the backup path of connection i; p is the number of
backup paths that exist when this new connection is being set up; CT;, is the capacity
effectively allocated for sharing purposes in link m, based on the demands of all the
connections whose protection paths traverse link m; d is the demand of connection
i; and C,, ; is the capacity required by all the backup paths that are sharing link m,
irrespective of the capacity effectively allocated.
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During the simulation, after determining the paths assigned to an accepted con-
nection, its availability was computed taking into account the specifics of the pro-
tection scheme. The values reported are averaged over all accepted connections.

5.4.4.4 Routing Strategy

Routing was carried out along the shortest path, the metric being distance (in km).
Candidate shortest paths that did not have enough capacity for the arriving demand
were filtered out. Node-disjoint working and protection paths were chosen. Block-
ing resulted when no path could be found to satisfy a demand with a given protec-
tion scheme. Dijkstra’s algorithm was used to find shortest paths, and a two-step
approach was applied to select protection paths.

5.4.4.5 Results

Table 5.4 presents the average connection availability under both DPP and SPP. In
the case of continental-size network topologies (Cost266, KL, Janos-US-CA, and
NSFnet), the average availability values are very different compared to the small
or medium size networks, where no differences can be observed, independently of
the application of DPP or SPP. In the case of SPP, however, the worst-performing
one (Janos-US-CA) has more than six times less availability than the best (KL)
one. Nonetheless, these larger topologies can only achieve a maximum of “three
nines” of availability, even when DPP is applied. On the other hand, results show that
the dominant component in the network availability model is the fiber optic cable,
due to the frequency of cable cuts and the relatively long duration of repair times.
Therefore, connection availability is dependent on the lengths of links, or in general
terms, on the link length distribution of its network topology. Figure 5.7 shows how
the mean downtime of connections in two of the studied topologies (Germany50
and COST266) increases when the link lengths are multiplied by a given factor;
Figure 7(a) shows that the average downtime increases linearly when connections
are unprotected, with different slopes for different topologies. When protection is
applied, however, the degradation rate is lower (see Figure 7(b)). With respect to
the restoration overbuild, it can be seen in Table 5.4 that DPP requires almost two
times the working capacity for protection, while DPP requires approximately the
same capacity for both working and protection paths.

Table 5.4 Average availability and average restoration overbuild under DPP and SPP

Figure of Merit DfnGwin Germany50 Cost266 KL Janos-US-CA NSFnet
DPP - Conn. Availability 0.999983 0.999985 0.999790 0.999838 0.999723 0.999620
DPP - Restoration Overbuild 245 2.78 2.70 2.65 2.73 2.96

SPP - Conn. Availability 0.999932  0.999884 0.998272 0.999483 0.996525 0.998842
SPP - Restoration overbuild 1.69 1.85 2.02 2.24 2.06 2.30
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Another interesting result concerns the average minimum distance, evaluated in
hops between node pairs. For topologies with a small average minimum distance,
a short total hop count can be expected in both DPP and SPP, yielding a suitable
availability value. However, other factors such as link length distribution and shar-
ing rules can modify the expected values. It has also been observed in SPP that the
sharing group size can change the expected availability values if only topology fea-
tures are considered. With respect to average node degree, it can be noted that under
DPP it improves restoration overbuild because it helps in finding disjoint paths for
backup.

X Germany50 4 Cost266
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(a) Unprotected connections

"- Germany50/DPP -® Cost266/DPP X Germany50/SPP 4 Cost266/SPP

180
160 A/

Average Downtime (hoursl/year)
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(b) Protected with DPP and SPP

Fig. 5.7 Average downtime as a function of scaled link length
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Chapter 6

Routing Optimization in Optical Burst
Switching Networks: a Multi-path Routing
Approach

Mirostaw Klinkowski, Marian Marciniak, and Michat Pioro

Abstract This chapter concerns routing optimization in optical burst switching
(OBS) networks. OBS is a photonic network technology aiming at efficient trans-
port of IP traffic. OBS architectures are in general bufferless and therefore sensitive
to burst congestion. An overall burst loss probability (BLP) which adequately rep-
resents the congestion state of the entire network is the primary metric of interest in
an OBS network. The network congestion can be reduced by using proper routing.
We consider multi-path source routing and aim at optimal distribution of traffic over
the network. In this context, we study three network loss models, a well-known loss
model of an OBS network and two original approximate models. Since the objective
function of each model is nonlinear, either linear programming formulations with
piecewise linear approximations of this function or nonlinear optimization gradient
methods can be used. The presented solution is based on nonlinear optimization;
for this purpose we provide the formulas for calculation of partial derivatives. The
main goal of this chapter is to show that the use of approximate models allows us
to speed up significantly the optimization procedure without losing much accuracy.
Moreover we show that our method effectively distributes the traffic over the net-
work, and the overall BLP can be reduced compared with both shortest path routing
and alternative routing.
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6.1 Introduction

Optical Burst Switching (OBS) is a photonic network technology aiming at efficient
transport of IP traffic [20]. OBS architectures are in general bufferless and as such
are sensitive to burst congestion. An overall burst loss probability (BLP) which ade-
quately represents the congestion state of the entire network is the primary metric of
interest in an OBS network. The network congestion can be reduced by using proper
routing; in this context alternative (or deflection) routing (e.g., [1]), a common rout-
ing strategy in OBS, has been considered. Although deflection routing improves
network performance under low traffic loads, it may still increase burst losses under
moderate and high loads.

In this chapter we consider another approach — multi-path source routing — and
use network optimization theory to distribute the traffic in an optimal way. This
work completes and extends our previous works [11] and [12]. We investigate three
different network loss models, a well-known loss model of an OBS network [21] and
two approximate models developed by us. As the cost function, which represents the
overall burst loss probability, is nonlinear, either linear programming formulations
with piecewise linear approximations of this function [22] or nonlinear optimization
gradient methods [7] can be used. We make use of the latter approach.

In our nonlinear optimization problem we assume that there is a preestablished
virtual path topology consisting of a limited number of paths between each pair
of source-destination nodes. Using a gradient optimization method we calculate a
traffic splitting vector that determines the distribution of traffic over these paths. In
order to support the gradient method we provide straightforward formulas for calcu-
lation of partial derivatives. The main goal of this chapter is to show that the use of
approximate models allows us to speed up significantly the optimization procedure
without losing much accuracy. Moreover, we show that our method effectively dis-
tributes the traffic over the network, and the overall BLP can be reduced compared
with both shortest path routing and alternative routing. The proposed solution can
be used, in particular, for static (preplanned) multi-path source routing, where the
traffic distribution is calculated based on a given (long-term) traffic demand matrix.
Then, either a periodic or a threshold-triggered update of the splitting vector can be
performed if the traffic demand matrix is subject to a change.

The chapter is structured as follows. In Section 6.2 we provide a description
of OBS technology and briefly review routing methods considered for OBS net-
works. In Section 6.3 we discuss OBS network loss models and introduce a multi-
path source routing model. In Section 6.4, for each of the introduced network loss
models, we formulate the objective function, calculate the partial derivatives, and
present some numerical results. In Section 6.5 we investigate the accuracy of net-
work loss models and the characteristics of the objective function, and discuss the
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computational effort of the optimization method. Finally, Section 6.6 contains the
conclusions.

6.2 OBS Technology

OBS technology is a promising solution for reducing the gap between transmis-
sion and switching speed in future networks. The principal design objective for an
OBS network is that the aggregated user data, called the burst, be carried transpar-
ently through the network as an optical signal, i.e., without any optical-to-electrical
conversion. This optical signal passes through the switches that have either none
or very limited buffering capabilities. The control information is carried on a dedi-
cated wavelength and separately from the user data. This information is delivered to
switching nodes with some offset time, prior to the data burst, so that the node can
process it and set up the switching matrix in advance. In such a network the wave-
length resources are allocated temporarily and shared between different connec-
tions. Such an operation increases network flexibility and adaptability to the bursty
characteristics of IP traffic. Moreover, the aggregation of user data helps to reduce
the scale of control information processed in the network and it relaxes the switch-
ing requirements. Since the control information and the user data are separated, they
can be encoded with different modulation formats and transmitted at different rates.
Such division improves network management and provides additional flexibility.

A conventional OBS network operates with a one-way signalling mode and it al-
locates transmission resources on the fly, a while before the burst arrives to the node.
Since there is no acknowledgement about the availability of network resources, it
may happen that two bursts want to access the same wavelength resources at the
same time. The problem of such a burst contention is crucial in OBS networks. The
conversion of wavelength is a natural mechanism used to solve this problem [4]. In
this mechanism, the carrier frequency of a contending optical signal is converted to
another available one. Deflection (or alternative) routing is another contention reso-
lution mechanism considered for OBS networks. In this case, a contending burst is
forwarded spatially, in the switching matrix, to another output port (fiber).

6.2.1 Routing Methods

Static shortest path routing based on Dijkstra’s algorithm is the primary routing
method frequently explored in OBS networks (e.g., [24]). Such routing reduces
overall network utilization when calculated with respect to the number of hops. On
the other hand, some links may be overloaded, while others may be spare, leading to
excessive burst losses. Therefore, several reactive and proactive routing strategies,
based on alternative, multi-path, and single-path routing, have been proposed with
the objective of the reduction of burst congestion.
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Although alternative routing can improve the network performance under low
traffic load conditions, it may still intensify the burst losses under moderate and
high loads [25]. Indeed the general problem of alternative routing in bufferless OBS
networks is the overutilization of link resources, which happens if an alternative path
has more hops than a primary path. Hence, whereas early proposals were based on
static route calculation and selection (e.g., [8]), as a next step some authors proposed
an optimized calculation of the set of alternative routes [15] as well as an adaptive
selection of paths [2]. The assignment of lower priorities to deflected bursts is an-
other important technique that protects against excessive burst losses on primary
paths [1].

Multi-path routing represents another group of routing strategies which aim at
traffic load balancing in OBS networks. Most of the proposals are based on a static
calculation of the set of equally important routes, usually with the Dijkstra algo-
rithm. Then the path selection is performed adaptively and according to some heuris-
tic [18] or optimized cost function [22] [16]. Both traffic splitting [14] and path
ranking [23] techniques are used in the path selection process.

The network congestion in single-path routing can be avoided thanks to a proac-
tive route calculation. Although most of the strategies proposed for OBS networks
consider centralized calculation of single routes [22], some authors still focus on
distributed routing algorithms [5]. Both optimization [26] and heuristic [3] methods
are used.

6.3 Network Modeling

We use G = (V,E) to denote the graph of an OBS network; the set of nodes is
denoted as V, and the set of links is denoted as E. Link e € E comprises C, wave-
lengths. &7 denotes the set of paths predefined between source s and destination ¢
nodes, s,¢ € V, and s # t. Each individual path p € & is identified with a subset
p C E. Subset &, C & identifies all paths from source s to destination 7; the sets
Py are disjoint in our model. Subset &, C &7 identifies all paths that go through
link e.

The reservation (holding) times on each link are independent and identically dis-
tributed random variables with the mean equal to the mean burst duration /; for
simplicity we assume & = 1. We assume that the network is capable of full wave-
length conversion, i.e., a burst can be transmitted on any available wavelength in
each link. The demand traffic pattern is described by matrix [Yy]s,ev and bursts des-
tined to given node ¢ arrive at node s according to a Poisson process of (long-term)
rate Y /h = Y-

Later we use p, and p, to denote the traffic offered to path p € & and the traffic
offered to link e € E, respectively.

In the following two subsections we deal with the modeling of the volume of
burst traffic lost in the OBS network. The procedure consists, in the first step, of the
calculation of burst loss probabilities E, on individual links, and in the second step,
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of the calculation of BLP in the entire network. Finally, we introduce a multi-path
source routing model.

6.3.1 Link Loss Calculation

By assuming the network has full wavelength conversion capability, i.e., each wave-
length can be selected whenever it is available, the blocking probability E, on each
link is given by the following Erlang loss formula (see [21]):

e

Ee = E(pe7 e

-1
2 ] , eckE. (6.1)

e

In order to determine E,, e € E, we have to calculate the traffic load p, offered to
individual links; recall that C,, e € E is given. Below, we provide two models of
such a calculation.

Reduced load (RL). A common loss model of an OBS network was proposed by
Rosberg et al. [21] and it makes use of a reduced load calculation. This model is an
extension of the model proposed by Kelly [9] for circuit-switching (CS) networks.
In the OBS network, it is assumed that the traffic offered to link e is obtained as a
sum of the traffic offered to all the paths that cross this link reduced by the traffic
lost in the preceding links along these paths.

This relation can be expressed as

Pe= Y, PpApe; €EE, 6.2)
PEZe
where
Ape=[] (1-Ef), peP,eckE, (6.3)
SfErpe

and subset . C p identifies all links that precede link e along path p.

The difference between this model and the CS network model is that in the latter
the subset rp, contains all the links that succeed link e along path p, on top of all
preceding links. This difference reflects the fact that a burst offered to path p in OBS
uses a single wavelength from each link along the path until the first link where it is
being blocked or until it exists in the network. In contrast, a connection in CS either
occupies a channel in all the links along the path or is blocked.

The calculation of link loss probabilities E,, e € E, together with the calculation
of offered burst traffic p,, given by the reduced load model (6.2), leads to a fixed-
point equation with a solution known as the Erlang fixed point. The fixed point
cannot be solved in a closed form but its approximation can be found through re-
peated substitution of (6.1) in (6.2). It is known that the fixed point exists in both
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Fig. 6.1 Link load models

CS and OBS networks (see [9] and [21], respectively). Although the fixed point is
unique in CS networks, its uniqueness has not been proved in OBS networks.

Although the traffic offered to a route is Poisson, it may still be thinned by
blocking at consecutive links and thus no longer remain Poisson. Since there is
no straightforward solution to this problem, we make a simplification that the burst
arrival process to each link is Poisson.

Non-reduced load (NRL). Formulation (6.2) may bring some computational diffi-
culty, especially with regard to the calculation of partial derivatives for optimization
purposes. Therefore, we also consider a simplified non-reduced load model, where
the traffic offered to link e is calculated as a sum of the traffic offered to all paths
that cross this link:

Pe= 3, Pp, €EE. (6.4)

pPEP,

The rationale behind this assumption is that under low link losses Ef, f € E, ob-
served in a properly dimensioned network, model (6.2) can be approximated by
(6.4).

Figure 6.1 presents illustrative examples of the reduced load calculation for both
CS and OBS networks, as well as of the non-reduced load calculation.

6.3.2 Network Loss Calculation

Overall network loss (NL). The calculation of overall burst loss or blocking prob-
ability in an OBS network is presented in [21], and it uses the same formulation
as was proposed for CS networks [9]. In further discussion we name this model an
overall network loss (NL) model.

The main modeling steps include the calculation of
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1. burst loss probabilities E, on links, given by (6.1),
2. loss probabilities L,, of bursts offered to paths

L,=1-J][](1-E.), pe Z,and (6.5)

ecp

3. the overall burst loss probability Byr,

-1
By = Z PpLp [ 2 Pp} . (6.6)

peEP peEP

In order to calculate the path loss probability L,, p € &2, we make an assumption
that burst blocking events occur independently at the network links. Then formula
(6.5) accounts for blocking probabilities in all links e that belong to path p.

The overall burst loss probability By is calculated simply as the volume of burst
traffic lost in the network normalized to the volume of burst traffic offered to the
network.

Overall link loss (LL). Another method for calculation of burst losses in the entire
network is based on an overall link loss (LL) model [6]. In this method we sum up
the volumes of traffic lost on individual network links.

The main modeling steps include the calculation of

1. burst loss probabilities E, on links, given by (6.1), and
2. By, a sum of the burst traffic lost on individual links relative to the overall traffic
offered to the network

-1
Ly, = z PeEe l z pp] . (67)

eckE peP

LL overestimates actual burst losses given by (6.6) in NL because it counts twice
the intersection of blocking events that occur on distinct links. In fact, By, may be
higher than 1, and thus it cannot be considered as the probability metric. Neverthe-
less, for E, — 0, e € E, the blocking events that occur simultaneously vanish rapidly,
and model (6.7) converges to model (6.6).

6.3.3 Multi-path Source Routing

We assume that the network applies source-based routing, so that the source node
determines the path of a burst that enters the network (see Figure 6.2). Moreover, the
network uses multi-path routing where each subset &, comprises a (small) number
of paths, and a burst can follow one of them. We assume that the selection of a route
from set & is random for each burst and is performed according to a given traffic
splitting factor x,,, such that
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Fig. 6.2 An example of OBS network with source-based routing; x; and x, are the traffic splitting
factors and x; +xp = 1

0<x,<1 pE P, (6.82)
Z,,g,% xp=1 s,tEV,s#t. (6.8b)

Thus traffic p, offered to path p € &y can be calculated as
Pp = XpTps 6.9)

where 7, = v, is the total traffic offered between s and 7.

Here vector x = (x1,...,X»|) determines the distribution of traffic over the net-
work; this vector should be optimized to reduce congestion and to improve overall
performance.

6.4 Resolution Methods and Numerical Examples

6.4.1 Formulation of the Optimization Problem

Taking into account different methods of the link load and the network loss cal-
culation presented in Section 6.3, several network loss models with corresponding
objective functions can be defined.

1. NL-RL. The link load is calculated according to the RL model given by (6.2),
and the network loss is calculated according to the NL model given by (6.6), with
the objective function given by

BNLfRL(x) = z XPT[,L[,. (610)
pe?
2. NL-NRL. The link load is calculated according to the NRL model given by (6.4),

and the network loss is calculated according to the NL model given by (6.6), with
the objective function given by
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BNLfNRL(x) = Z x[,TI,L[,. (611)
peP

3. LL-NRL. The link load is calculated according to the NRL model given by (6.4),
and the network loss is calculated according to the LL model given by (6.7), with
the objective function given by

BLLfNRL(x) = z peEe = z Eg ( Z XI,”L'I,> . (612)

eck eck pPEP,

The last possible combination of the link load and the network loss calculation is
LL-RL. Because such a model does not bring much gain with respect to the NL-
RL model, as it does not avoid the complexity of fixed-point calculation, we do not
study it.

In each case the normalization factor [Z peP pp] ! has been omitted because we
assume it to be a constant value.

The optimization problem is the same for each method, and is formulated as
follows:

rr;inB(x) (6.13)
subject to the multi-path routing constraints given by (6.8a) and (6.8b).

Since in each case B(x) is a nonlinear function of vector x, the optimization prob-
lem is nonlinear. Taking into account the form of both constraints (6.2) and (6.4),
a particularly convenient optimization method is the Frank-Wolfe reduced gradient
method (algorithm 5.10 in [19]); this algorithm was used for a similar problem in
circuit-switched (CS) networks [7].

6.4.2 Calculation of Partial Derivatives

In general, gradient methods are iterative methods used in the optimization of con-
vex functions. Gradient methods need to employ the calculation of partial deriva-
tives of the cost function to find the direction for its improvement. Below, we pro-
vide adequate formulas for the partial derivatives for each of the models.

NL-RL model. The partial derivative of By; gy With respect to x;, ¢ € &, can be
derived directly by a standard method involving the solution of a system of linear
equations. It follows from (6.2) and (6.1) that

9pPe(x)
dxg

9Ey(x)
oxg

= OgeTgAge + 2 XpTpApe (1- Ef)7l
pEZ, fErpe

e€E,qge P,

(6.14)
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where oy, = 1 if e € g, and oy, = 0 otherwise, and

Ce — pe '\ 9IPe(x)
dxg

JE.(x)
dxq

=E, (Eﬁ— , ecEqeP. (6.15)

e

In order to solve the system of equations (6.14)—(6.15), a fixed-point calculation
procedure, i.e., repeated substitution of (6.14) in (6.15), has to be applied.
From (6.5) we have

ILp(x)

x4

_10E.(x
=(1-Lp) Y, (1-E) ' =", pge 2, (6.16)
q

and finally from (6.10),

d dL,(x)
afmfmm:%@+g%gi;,qe@. (6.17)
peZ q
The calculation of partial derivatives (6.14)—(6.17) in NL-NRL model is extremely
time consuming since it involves an iterative fixed-point approximation procedure.

NL-NRL model. The partial derivative of By;ngL With respect to x,, g € 2, could
be derived directly from formulas (6.1) and (6.4)—(6.6) by a standard method involv-
ing resolution of a system of linear equations, similarly to (6.14)—(6.17). Although
there is no need for a fixed-point calculation in NL-NRL model, still such a compu-
tation would be time consuming.

Therefore, we propose instead a straightforward exact calculation based on the
approach for CS networks by Kelly [10]; a detailed derivation of formulas is pre-
sented in [11]. In particular, for each path g € & we have

0
quBNL—NRLOC) =1 |:Lq +ze€q Ce} ) (6.18)

where c, is calculated for each link e € E as

Ce=Ne X, e, Pp(1=Lp), (6.19)
and
Ne = E(pe,Ce — 1) —E(pe,C.), e€E. (6.20)

Due to assumption (6.4) we have managed to simplify the model (6.2) and make
the calculation of partial derivatives defined by (6.18) and (6.19) straightforward,
not involving any iterations. Indeed, once |E| of unknowns (c,) are pre-calculated
they can be used in (6.18) to obtain the partial derivatives. Calculating the gradient
in this method, therefore, is not longer an issue.
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Fig. 6.3 Validation of optimization models

LL-NRL model. The partial derivative of By, ygrr with respect to x,, g € P, can
be derived directly from formulas (6.1), (6.4), and (6.12),

d
TBLL—NRL(X) =17 {zeeq(Ee +Nepe(1—Ee)) |, (6.21)
*q

where 1, is given by equation (6.20).

6.4.3 Numerical Results

We evaluated the performance of our multi-path source routing scheme in an event-
driven simulator. In order to find a splitting vector x specifying near-optimal rout-
ing we used a solver fmincon for constrained nonlinear multivariable functions
available in the MATLAB optimization toolbox. Then we applied this vector in the
simulator.

The evaluation was performed for NSFNET, an American backbone network
topology of 15 nodes and 23 links [17]; each link had C = 32 wavelengths and the
transmission bitrate in each wavelength channel was 10 Gbit/s. Besides the results
of optimized multi-path routing (MR) we provide, for comparison, the results of
two other routing strategies: simple shortest path routing (SPR) and pure alternative
routing (AR). We considered two shortest paths per source-destination pair of nodes
in MR; they were not necessarily disjoint. In SPR only one path was available, while
in the case of AR we considered two different scenarios: with two and six paths
available. Uniform traffic matrix and exponential burst inter-arrivals and durations
were considered. All the simulation results had 99% level of confidence.

In Figure 6.3 we show the overall burst loss probability results of the MR strategy,
which was optimized with the assistance of NL-NRL, NL-RL, and LL-NRL models,
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successively. The characteristics are obtained in the function of offered traffic load,
which is normalized to the wavelength bitrate and expressed in Erlangs (e.g., 12.8
Erlangs means that each node generates 128 Gbit/s). As a reference, we provide the
results of SPR.

In the studied scenario, we can see that the burst loss probability results of opti-
mized MR evaluated in the MATLAB environment are (almost) the same regardless
of the network loss model used. Moreover, the analytical results obtained for NL-
NRL model agree very well with simulation results (’(sim)’ in Figure 6.3).

In Figure 6.4 we compare simulation results obtained for different routing sce-
narios. We see that the optimized multi-path routing outperforms the shortest path
routing in the whole range of traffic loads. Also, it offers at least as good results as
the alternative routing if the same number of routing paths is available.

6.5 Discussion

In this section we investigate the accuracy of network loss models and the charac-
teristics of the objective function. We also discuss the computational effort of the
optimization procedure.

6.5.1 Accuracy of Loss Models

We study the accurary of both NR-NRL and LL-NRL network loss approximations
relative to the NL-RL network loss model. To do that we define the approximation
erTor as
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By — By
Ery & BX=BNL-kL (6.22)
Byr—RL

where X refers to either NL — NRL or LL — NRL; so Bx means the result of the
objective function for model X.

In Figure 6.5 we present the results of Ery obtained in NSFNET network, with
a different number of wavelengths per link considered and the shortest path routing
used. We can see that the accuracy of both network loss approximate models is very
strict for the blocking probability in the network By —gr below 1072,

6.5.2 Properties of the Objective Function

NL-RL model. In [10], Kelly demonstrated that the reduced load loss model of a
CS network is in general not convex. Taking into account an analogy of the reduced-
load calculation in both CS and OBS networks, we can expect that function (6.10)
is not convex as well. Therefore, a solution of optimization problem (6.13) may not
be unique.

NL-NRL model. As in the case of the RL-NL model, it can be shown numerically
that the objective function (6.11) is not necessarily convex; in particular, under high
traffic load conditions, two feasible vectors X;, X, can be found such that

Bnr-nrL(AX2 + (1 —A)X2) > ABni—nrL(X2) + (1 — A)Byr—nre(X1), (6.23)

where 0 < A < 1.
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Table 6.1 Comparison of computation times

NL-RL NL-NRL LL-NRL
Network Paths Tol. BLP OF SOLV OF SOLV OF SOLV
SIMPLE 2 107° 2.4-107° 64sec 1.5sec O.lsec l.4sec 0O.Isec 1.5sec

SIMPLE 4 107° 2.4-107° 243sec 3sec 0.Isec 3.4sec 0.lsec 3.Isec
NSENET 2 10°° 4.6-102 > 5h 0.38sec 22.3sec 0.37sec 24.3sec
NSENET 4 10°° 3.1-107 > 5h 1.6sec 937sec 1.5sec 952sec
EON 2 107° 1.76-1072 > 5h 5.5sec 803sec 5.3sec 837sec
EON 2 1077 1.77-102 > 5Sh 1.1sec 260sec 1.0sec 263sec

LL-NRL model. An advantageous property of the LL-NRL model is the convexity
of its objective function (6.12); a detailed proof can be found in [13]. For this reason,
a corresponding optimization problem has a unique solution.

6.5.3 Computational Effort

In Table 6.1 we compare the computation times of both the objective function (with
the partial derivatives calculation included) and the fmincon solver function of
the MATLAB environment; in the table they are denoted as OF and SOLYV, respec-
tively. The evaluation is performed on a Pentium D, 3 GHz computer. The results
are obtained for SIMPLE (six nodes, eight links, and 60 paths), NSFNET (15 nodes,
23 links, and 420 paths), and EON (28 nodes, 39 links, and 1,512 paths) network
topologies; the number of wavelengths per link is 32, each source-destination pair
of nodes has two or four shortest paths available, the traffic load is equal to 25.6 Er-
langs and 19.2 Erlangs, respectively, for SIMPLE/NSENET and EON scenarios. In
case the iterative procedure of the Erlang fixed-point approximation is used, it ends
if the maximal discrepancy between two consecutive link loss calculations is smaller
then 10%. The starting traffic splitting vector is x = 0.5-(1,..., 1), meaning that the
traffic is equally distributed on the paths for each demand.

We can see that the calculation of the objective function (and of partial deriva-
tives) is highly time consuming in the NL-RL model even in a small network sce-
nario. In contrast, such a calculation is not an issue if either the NL-NRL or the
LL-NRL model is used. It is worth noting that by decreasing the value of a termi-
nation tolerance parameter ("Tol.” in the table), which decides on the termination
of the solver function, we significantly accelerate the optimization procedure (more
than three times) without substantial decrease of routing performance (compare BLP
value in both EON scenarios). Moreover, we can see that by increasing the number
of paths the computation time of the solver function increases considerably in a
larger (NSFNET) network scenario.



6 Routing Optimization in OBS Networks 177

6.6 Conclusions

In this chapter we have studied a nonlinear optimization method for the multi-path
source routing problem in OBS networks. In this method we calculate a traffic split-
ting vector that determines a near-optimal distribution of traffic over routing paths.
Since a conventional network loss model of an OBS network is complex, we have in-
troduced some simplifications. The proposed models are computationally effective
and are still highly accurate compared to the basic model. The obtained formulas
for partial derivatives are straightforward and very fast to compute. It makes the
proposed nonlinear optimization method a viable alternative to linear programming
formulations based on piecewise linear approximations of the cost function.

The simulation results demonstrate that our method effectively distributes the
traffic over the network and the overall burst loss probability can be significantly
reduced compared with the shortest path routing.
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Problems in Dynamic Bandwidth Allocation in
Connection Oriented Networks
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Abstract In this chapter, the analysis of the problems emerging from dynamic
bandwidth allocation in connection-oriented packet networks is considered in a mul-
tilayer scenario, considering IP protocols on top of an MPLS network over an OBS
optical network. The issue (and problem) is to maintain and ensure the end-to-end
in-sequence routing of packets, combining load balancing in packet switching ar-
chitectures and bandwidth/flow allocation in MPLS-based architectures to establish
the ordering of packets. If load balancing can be achieved by switches or routers,
this can greatly facilitate applying load balancing across the network. Traffic char-
acteristics such as QoS (delay bounds, throughput) and burstiness are considered.
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7.1 Introduction

This chapter deals with the description and analysis of the problems emerging from
dynamic bandwidth allocation in connection-oriented packet networks in a multi-
layer scenario, considering the Internet Protocol (IP) on top of an MPLS (Multi-
protocol Label Switching) network and using an optical burst switching (OBS) net-
work by means of a control plane. The bandwidth optimization problem is split into
multi-path routing, load balancing, and traffic control.

The issue and problem is to maintain and ensure the end-to-end in-sequence
routing of packets, combining load balancing in packet switching architectures and
bandwidth/flow allocation in MPLS-based architectures to establish and guarantee
the ordering of packets in a packet-switched network. Other relevant issues such
as buffer sizing, packet classification, scalability, and redundancy (i.e., in the form
of parallel switch architectures) are also of importance. If load balancing can be
achieved by switches or routers, this can greatly facilitate implementing load bal-
ancing across the network (e.g., over different paths).

With respect to the issue of bandwidth allocation and load balancing in an MPLS
network, we will examine a number of different approaches and alternatives for per-
forming load balancing optimization via assigning capacity and carrying out flow
allocation in a multi-path MPLS network. Traffic characteristics such as QoS met-
rics, e.g., delay bounds, throughput, jitter, packet loss, and burstiness (measured as
the ratio of the peak data rate over the average data rate), will be considered for
optimizing load balancing. In fact, it is determined that our solutions can be im-
plemented in any MPLS-type (e.g., flow granularity) network architecture given the
solutions’ flexibility and scalability aspects. They can also be extended to multicast
network models and models with traffic priorities.

This chapter is organized into three parts:

1. Technological perspective and challenges. We present an overview of the con-
nection-oriented technologies, MPLS networks, load balancing strategies, and
multi-path in packet networks.

2. Load Balancing strategies in a multi-path scenario.

3. Intelligent bandwidth allocation algorithms for multilayer traffic mapping with
priority provision.

7.2 Technological Perspective and Challenges

This section presents a survey of basic knowledge in technologies, protocols, and
algorithms for the next generation of networks. This is a background for the sub-
sequent sections, and exhibits actual network deployment environments where our
results can be applied.
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7.2.1 Definitions and Concepts Overview

Quality of Service (QoS) refers to the capability of a network to provide service dif-
ferentiation for certain types of traffic. The primary goal of QoS is to provide spe-
cific traffic guarantees: controlled delay and jitter, bandwidth allocation, and packet
loss characteristics. Also important is making sure that providing priority to one
type of traffic does not make other traffic fail. Fundamentally, QoS can provide for
better service to certain traffic by presenting network resource guarantees that sat-
isfy the user’s demand. A key feature of QoS is the service level, which refers to
the actual end-to-end QoS capability, meaning the capability of a network to deliver
service needed by specific network traffic from an edge node (i.e., router) to another
edge node. The services differ in their level of QoS “strictness”, which describes
how tightly the service can be bound by specific bandwidth, delay, jitter, and loss
characteristics. Three basic levels of end-to-end (e2e) QoS can be provided across a
heterogeneous network:

e Best-effort service: also known as lack of QoS, characterized by FIFO queues
which have no traffic differentiation.

e Differentiated service (also called soft QoS): some traffic is treated better than
the rest.

e Guaranteed service (also called hard QoS): an absolute reservation of network
resources for specific traffic; it is provided through bandwidth reservation mech-
anisms and the use of CBWFQ (Class-Based Weighted Fair Queueing), an ex-
tension of WFQ that can use the EXP field in the MPLS shim header format of
the packets as a criterion to allocate a different amount of resource for each CoS
(class of service).

It is clear today that IP is the dominant protocol for the vast majority of In-
ternet applications, including those that are characterized as bandwidth-demanding
and delay-sensitive (although IP was not originally intended and certainly was not
designed to support such applications). An example of an emerging Internet appli-
cation is video streaming, in particular real-time or live video. Each single stream
can consume 1 Mbit/s or so, so the aggregation of video streams uploaded or down-
loaded by millions of users can certainly overload a traditional network.

Therefore, the new generation of networks should provide a QoS (Quality of
Service) degree according to the needs of each user and enough bandwidth. The
key problem is how the traffic can be marked to belong to a certain class of traffic
or priority and, second and more important, how this huge aggregation of traffic
streams can be supported by the network. A solution for this type of problem is the
well-known differentiated services (DiffServ) framework.

Over the last few years there has been significant activity in the field of multi-
protocol label switching (MPLS), which has emerged as a new networking paradigm
that facilitates routing and can implement a form of QoS. In fact, an increasing
number of networks already implement MPLS.

MPLS provides a flexible routing mechanism based on the assignment of packets
with the same characteristics to complete end-to-end paths within an Autonomous
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Domain. “Traffic engineering” is one of the primary goals achieved by MPLS. Fur-
thermore, MPLS can allow for the aggregation of traffic streams, if needed.

MPLS has become one of the primary technologies for supporting traffic engi-
neering on the Internet [10, 12]. An MPLS network is composed of MPLS routers:
LSRs (Label Switched Routers) that represent the core of the network (backbone)
and LERs (Label Edge Routers) that are the interface between the MPLS domain
and other networks.

Edge

LERs LSRs . / . LERs
—_[LSP /> B
Incoming \ o v p 6 5 = /
flows /I\\ / H\RZ )—-—-——b R'2 '_h ( -
(_-_.—u._\ o - h4!.-.xﬁ\
A ¥ ougoing
flows
Core
nodes |~

Access network

Access Network

Network backbone

Fig. 7.1 Core and edge nodes in an MPLS network. A distributed LSP

An MPLS network is connection-oriented, where each connection or LSP (Label
Switching Path) is established between two LERs, the Ingress and the Egress LER,
as depicted in Figure 7.1.

In an MPLS network, multiple paths can be used to forward packets belonging to
the same “forwarding equivalent class” (FEC) by explicit routing. Each time an LSP
is established, all the LSRs that belong to it must use a label in order to identify the
LSP transiting by it, and consequently every packet of this LSP must carry this label
encoded inside it when arriving at that LSR. When a packet is received by an LSR,
the LSR must look for the packet label and search for a Next Hop Label Forwarding
Entry (NHLFE) that refers to this label in order to decide which interface will be
used to reach the next hop in the network.

Our interest focuses on the QoS operation for a single node perspective, but we
will extend this to a sequence of nodes, and so, to a complete network. One way
network elements handle an overflow of arriving traffic is by using a certain queuing
algorithm to sort the traffic and then determining some method of routing the traffic
appropriately (i.e., via prioritization) onto an outgoing link.
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7.2.2 Node Model for Packet Networks with Traffic Prioritization

There are a number of queuing tools, each one designed to solve a specific network
traffic problem and having a particular effect on network performance. In Figure 7.2
we show a network node model and its main parameters. In this model, CoS (class of
service) is defined as a traffic classification, according to a set of degrees of quality
(mainly for bandwidth, delay, and packet losses).

The parameters used to model a node are as follows:

o Ay (bit/seg) represents all incoming traffic that arrives at the router. This aggre-
gated traffic is assumed to be Poisson.

e ; (bit/seg),i=1...,N, represents the aggregated traffic of CoS; carried by all the
LSPs which are forwarded to the current output interface. Note that this traffic
is not Poisson (as the input queue is finite), but in our analysis we have approxi-
mated it as if it were under the hypothesis that losses in the input queue are very
low.

Uprockess (bit/seg) models the service rate at which packets are classified.
u; (bit/seg), i =1,...,N, represents the service class rate.
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Fig. 7.2 Node model for a packet network considering prioritized differentiated services

7.2.3 QoS in IP/DiffServ/MPLS and in OBS Networks

In Optical Burst Switching (OBS), several signaling schemes have been proposed
to support QoS. The basic problem is to determine the criteria for choosing a sig-
naling method. The selection can be made according to several parameters, such
as complexity of the algorithm or optimization of a certain parameter, but what the
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user applications need is a QoS with respect to bandwidth, delay bounds, jitter, and
losses. This is what an OBS network should provide, in a way that can be managed
by the upper layers, to allocate classes of service according to existing standards for
MPLS, DiftServ, and IP traffic.

The main scheme for controlling (or administrating) the QoS in OBS is the con-
trol of the offset (the time delay introduced at the edge of the network where the
burst will be transmitted, to set up the hardware of the next node to forward the
optical burst), in order to isolate different classes of bursts, such as high- and low-
priority bursts. In this kind of method, extra offset is given to the higher priority
bursts, to reserve resources further in advance of the arrival of the burst, increasing
the probability of a successful reservation. For offset schemes, there are currently
discussions being carried out with respect to prioritization as part of the contention
resolution scheme, and also for an absolute QoS provision [14].

7.2.4 Optical Burst Switching Using MPLS

Semipermanent data pipes can be set up between different ingress-egress router
pairs using an MPLS-type technique. MPLS uses labels to make forwarding de-
cisions at the network nodes LSR, in contrast to the traditional destination-based
hop-by-hop forwarding in IP networks. In MPLS, the space of all possible forward-
ing options is partitioned into Forwarding Equivalence Classes (FECs). For exam-
ple, all the packets destined for a given egress and having the same quality of service
(QoS) may belong to the same FEC.

The packets are labeled at the ingress depending on the FEC to which they be-
long. Each of the intermediate nodes, the LSRs, uses the label of the incoming
packet to determine its next hop, and also performs label swapping (i.e., replaces the
incoming label with the new outgoing label that identifies the respective FEC for the
downstream node). Such a label-based forwarding technique reduces the processing
overhead required for routing at the LSRs, thereby improving their packet forward-
ing performance and scalability. Also, the label swapping process used in MPLS
creates multi-point-to-point packet forwarding trees, in contrast to a routing mesh
in conventional networks.

MPLS can play a major role in traffic engineering and improving the throughput
performance of an OBS-based network, as described below. Each cross-connect in
the optical backbone will have label swapping information about the precomputed
routes in its label information base (LIB).

An LIB can be set up using standard techniques such as routing protocols
with traffic engineering extensions to distribute information about the optical do-
main (available bandwidth per wavelength, number of wavelengths per fiber) and
Constraint-Based Routing Label Distribution Protocol (CR-LDP) or Resource Res-
ervation Protocol (RSVP) to distribute labels. Whenever an ingress router has a data
burst to transmit, it refers to its LIB, to determine the appropriate label. This label is
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included in the control packet that precedes this data burst. When the control packet
arrives at any of the intermediate nodes, the following actions take place:

e The label in the control packet is used to point to the data burst forwarding infor-
mation in the LIB, such as the output interface and any priority or QoS informa-
tion.

e The cross-connect is set up to switch the data burst corresponding to that con-
trol packet in the all-optical domain. For this, information in the control packet
about the length and offset of the data burst is used in addition to the forwarding
information derived from the LIB. In particular, the latter is used to determine
the mapping from the incoming fiber and wavelength to the outgoing fiber and
wavelength. In order to be able to forward successive data bursts of the same
connection (LSP) on different wavelengths in a given fiber, we propose that the
label only specify incoming-fiber-to-outgoing-fiber mapping, while the informa-
tion about the wavelength be appended to the outgoing label at every hop. The
LIB may furnish other QoS information as well. Examples include defining a
subset of candidate wavelengths on the outgoing fiber, determining the eligibil-
ity of that data burst to use wavelength conversion, stating whether (in case of
contention) the control packet is allowed to preempt some reservation already
acquired by the control packet of low-priority data burst, and so on.

e The control packet then undergoes label swapping (and wavelength information
appending) and is forwarded on the dedicated control channel of the outgoing
fiber as indicated by the LIB.

7.3 Load Balancing Strategies in a Multi-path Scenario

Load Balancing is a key mechanism in traffic engineering. The strategy of multi-
path routing with load balancing enhances the network throughput. The use of effec-
tive preordering packet functions optimizes network utilization and reduces packet
disordering and imbalance. This section presents a model to study the impact of
packet preordering in multi-path MPLS networks, and the traffic partitioning to
implement a flow partitioning based on an optimization model. Some experimen-
tal results from an optimized network are presented. A multi-objective traffic en-
gineering scheme (GMM, or Generalized Multicast Multi-path, model) [3] using
different distribution trees to multicast several flows has been proposed. Solving
the GMM model allows us to compute the flow components required at the ingress
LER mapped to the set of egress nodes assigned to each link. We present an effec-
tive hashing strategy to handle traffic partitioning from the GMM model. The GMM
model considers a network represented as a graph G(N, E), with N denoting the set
of nodes and E the set of links. The cardinality of a set is denoted as |.|; thus |N]|
represents the cardinality of N. The set of flows (or commodities) is denoted as F'.
Each flow f € F can be split into |Ky| subflows that after normalization can be
denoted as fi, k = 1,...,|Ky|. In this case, f; indicates the fraction of f € F it
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transports, Zk | fi = 1. For each flow f € F we have a source sy € N and a set of
destination or egress nodes Ty C N. Let ¢ be an egress node, i.e., t € Tr. Let Xij;"t
denote the fraction of subflow f; to egress node ¢ assigned to link (i, j) € E, i.e.,
0<L Xf K < 1. In this way, the n components of decision vector X are given by all
Xf ¥ Note that X;j i yses five indices: i, j, f, k, and t. The novel introduction of a
subﬂow index k glves an easy way to identify subflows and define LSPs in an MPLS
implementation. Let ¢;; be the capacity (in bit/s) of each link (i, j) € E. Let by be the
traffic request (measured in bit/s) of flow f € F, traveling from source sy to Ty. Let
d;; be the delay (in ms) of each link (i, j) € E. The binary variables Yl-j;"t represent
whether a link (i, j) is being used (value 1) or not (value 0) for transporting subflow
fi to destination node z,

Loae i
v = [xf] = 0 X =0 (7.1)
1; otherwise

where [.] denotes the ceiling function. Finally, let connection;; be an indicator of
whether there is a link between nodes i and j. Given the above notation, the proposed
GMM model considers the following objective functions:

e Maximum link utilization:

max o;; 7.2
(L)EE 72

where
1 7l K7l Y
— k
aj=—2 3 by {fg}xx } (7.3)
1 f=1k=1 f

e Hop count, in several different ways, such as total hop count,

PEDIDID B 7 (7.4)

(i,j))EE fEF keK €Ty

average hop count,

DDA
E fe S te
(i,))e ity ’ (7.5)
|Ks|
3 3 |Tyl
fEF k=1
a maximum hop count, which is useful for QoS assurance,
it
max max max Z Y; ]" , (7.6)

feF kEKf tETf (i,j) cE
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or a maximum hop count variation for a flow, which is useful for jitter and queue
size calculations,

H 7.7
R 0
where
Hjy; = max z Yfk — min z Yl-];kt (7.8)
keKr injyee keKr Ve

e Delay measures, such as total delay,

XYY dyr, (7.9)

(i,j))EE fEF keKpteTy

e average delay,

> 33 Sdjy)

(i.j)EE fEF keK teTy

) (7.10)
|Ks|
3 |Ty]
fEF k=1
a maximum delay, which is useful for QoS assurance,
max max max z d; Ylf"t, (7.11)
FEF keKy 1€l (2 p ]

and a maximum delay variation for a flow, which is useful for jitter and queue
size calculations,

maxmax A (7.12)
fEF Z‘GTf
where
Sit St
Af = max di; Y min d;;i- Y/ 7.13
" "EKf{ ,jZéE vy } E’(f{ uZéE vy } 7

e Total bandwidth consumption:
>yY bf{maxxfk} (7.14)
(i.j)€E fEF keK 1€Ty

A MOP (multi-objective problem) formulation usually considers several con-
straints such as

e Flow conservation constraints:
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R
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o Subflow uniformity constraints to ensure that a subflow f;, always transports the
same information:

!
X;,';,’ —x' <1-Y} VfeFkeky(i,)),(.j) €El €Ty (1.16a)
X/ <y VfeFkeKy,(i,j) €Et €Ty (7.16b)

Without this restriction, Xl/;’(t > 0 may differ from X f“/ > 0. Therefore, the same

i'j
subflow f; may not transport the same data to different destinations ¢ and #’. As
a consequence of this new constraint, mapping subflows to LSPs becomes easy.

e Link capacity constraints:
IF| |Kr| t
D be{maxXiJ;"} <cij Vi,jEN (7.17)
f=1k=1 = Ut€Ty =~ '

e Constraints on the maximum number of subflows:
|Ks|
IR < Niax VfeFteTsieN, (7.18)
k=1 jeN

or alternatively, depending on required bandwidth by:

|5 i

icy connection;;
> Yk < by TN Y VfeFteTnieN (119
k=1 jeN 2 jeN Cij

In summary, the proposed GMM model follows the general mathematical frame-
work of any MOP. The model considers 11 objective functions and seven classes of
constraints [3]. Clearly, it is not difficult to increment the number of objectives or
constraints of the proposed model if new ones appear in the literature or they are
useful for a given situation. In fact, Packet Loss was not considered in this proposal,
but including it would be very easy. Anyway, this model is very useful for traffic
balancing, because it can provide an optimized path for the flows of data. So, let us
have a look at the Load Balancing strategy in practice.
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7.3.1 Load Balancing in Packet Networks in Multicast Multi-path
Scenarios

Load Balancing [11] provides an extremely useful mechanism for implementing
traffic engineering. The aim of load balancing is routing traffic using links that are
less congested according to well-known criteria. This can result in small delays
compared to a default flow routing. For a load balancing model to be general, uni-
cast considerations are not enough and multicast should also be considered. One
interesting solution to the balancing alternative is the multi-path approach, in which
data is transmitted through different paths inside a network. One of the most difficult
issues in load balancing is how to guarantee the end-to-end delay among several La-
bel Switched Paths (LSPs), while maintaining packet sequencing. This requirement
is especially important for the network throughput for the TCP protocol, because
packet disordering can produce false congestion detections.

The load balancing techniques can be classified in two groups, one based on
the (logical) connection established, which is represented by a small number of
parameters and where routing decisions affect the whole flow, and another based on
the packets, where decisions are made on a per packet basis and which is therefore
simpler than the first one; the latter is the technique considered here.

When an IP packet ingresses into the MPLS domain, the ingress Label Edge
Router (LER) analyzes the header. Depending on information of the destiny, type of
traffic, etc., an MPLS label is assigned. It consists of a short, fixed-length identifier
(20 bits) associated with the path that the packet will have to take into account in
order to reach the egress node.

According to the scale, the traffic engineering (TE) mechanisms are classified
into two basic types:

e Time Dependent, where the traffic control algorithms optimize the network re-
sources in response to traffic variations in a long time range.

e State Dependent, where the traffic control algorithms respond immediately to
state variations in the network. In other words, it adapts changes to a short time
range.

There are many subproblems involved in the performance optimization of opera-
tional MPLS networks. Three of the most significant problems include

1. Constraint-based routing.
2. Traffic partitioning and assignment.
3. Restoration.

It should be noted that even though these problems are well known in other appli-
cation domains, they are still in a state of infancy with respect to MPLS, and much
remains to be done.

Another important capability MPLS provides is constraint-based routing. The
ingress node, the Label Edge Router (LER), establishes an explicit route through
the network. Rather than inefficiently carrying the explicit route in each packet,
MPLS allows the explicit route to be carried only at the time the label switched path
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(LSP) is set up. The subsequent packets traversing this path are forwarded using
packet labels. Constraint-based routing is potentially useful for traffic engineering.

In the current literature these areas are addressed in a somewhat limited way.
Constraint-based routing deals, in general, with the computation of paths for LSPs
subject to various types of constraints. The constraints themselves may be inherent
in the network (e.g., available bandwidth) or they can be administratively specified
(e.g., affinities and resource class attributes, and diversity requirements for protec-
tion and restoration). D-LSP (Distributed LSP) is constructed by partitioning an LSP
into several sub-LSPs assigned over different nodes that belong to “disjoint routes.”
The arriving traffic streams are allocated to the sub-LSP at the ingress LER. We do
not necessarily assume that each disjoint node route has the same number of hops. A
network model can be defined, and the architecture of a D-LSP is represented with
an MPLS network model. Figure 7.3 shows an example of a D-LSP established in
the MPLS network model.

The D-LSP is originated from an ingress LER and is destined for an egress LER.
A D-LSP is partitioned into sub-LSPs and spread over the disjoint node routes. The
load balancing techniques can take advantage of this scheme. Core LSRs provide
transit services inside the network, while LERs provide an interface with the exter-
nal networks. An ingress LER may assign one or more paths to a given egress to
an MPLS domain, and using these LSPs the traffic load can be balanced across a
complex topology.

The capability to divide the traffic offers several advantages, one of the most
important being the distribution of the flow and the optimization of the bandwidth.

In this research work a multicast approach is proposed. Multicast connections are
connections between one or more senders and a number of members of a group. The
aim of multicasting is to be able to concurrently send data from a (single) sender to
the (multiple) members of a group in an efficient manner. In this case, instead of
creating multiple paths to transmit a traffic flow from the ingress node to just one
egress node it is necessary to create multiple trees to transport the flow from the
ingress node to the egress node set of the multicast group.

Many multicast applications, such as audio- and videoconferencing, or even
collaborative environments and distributed interactive simulations, have multiple
quality-of-service requirements in relation to bandwidth, packet delay, packet loss,
cost, and so on. In multicast transmission, load balancing consists of traffic be-
ing split (using the multi-path approach), across multiple trees, between the ingress
node and the set of egress nodes. In multicasting (host) nodes can enter or leave the
transmission tree as they wish, which makes the connections rather dynamic.

In MPLS, unicast and multicast packets have already been assigned a different
type as indicated by the IPv4 unicast or multicast address. Therefore, MPLS routers
know whether a packet belongs to a unicast or a multicast flow. In the case of unicast
forwarding the event of an incoming flow leads to the forwarding of exactly one
flow. The packet duplication mechanism that is implemented in IP routers to support
the TP multicasting can be used to duplicate MPLS packets

MPLS routers at the bifurcation of a multicasting routing tree duplicate packets
and send copies of the same packet on different outgoing links. In this case, an
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Fig. 7.3 Example of subflow (partition of a flow) representation in an NSF network

MPLS label is pushed into the multicast packet according to next hop branching
node router. Upon arriving at a next hop branching node router, the label is pulled
out and again the same process is repeated. This process should be repeated until
the packet reaches its destination.

7.3.2 Model for Traffic Partitioning

A load balancing system is in general formed by a Traffic Splitter and several out-
going links (up to Mp,x in Figure 7.4).

Traffic
Splitter | .

Fig. 7.4 Model of a traffic splitter

Conceptually, the input traffic is partitioned according to certain criteria into
Mmax bins at the MPLS ingress node. The M, bins are mapped onto the pre-
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established LSPs. The fraction assigned to each LSP is calculated using an opti-
mization model.

________________________ LSPs

!
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Fig. 7.5 Functional model for a multi-path load balancing

A load balancing mechanism is functionally comprised of a Splitting Function
and an Allocation Function (Figure 7.5). The Splitting Function, partitions and allo-
cates incoming traffic to the outgoing links, guaranteeing the order of packets. The
Allocation Function determines the LSP where every packet have to be forwarded
to the egress router and the time it must be delivered.

In [3] a multi-objective traffic engineering scheme (GMM model) using different
distribution trees to multicast several flows has been proposed. Solving the GMM
model allows us to compute the fraction of flow demanded from the ingress node to
the set of egress nodes assigned to each link. We propose effective hashing strategies
to handle traffic partitioning from the GMM model. The GMM model considers a
network represented as a graph G(N, E), with N denoting the set of nodes and E the
set of links. The set of flows is denoted as F. Each flow f € F' can be split into K
subflows. It can be denoted (following normalization) as fi, k = 1,...,K¢, which
indicates the fraction of f transported. We have found that employing Table-based
Hashing provides better performance compared to Direct Hashing, due to the load
distribution because of the unequal weights. Hashing values are tuned according to
the xl{;’?t parameters calculated from the network optimization.

Hashing-based traffic partitioning algorithms are simple to compute and inde-
pendent of the state of the network. A good hash function satisfies the assumption
of simple uniform hashing, that is, each key is equally likely to hash to any of the
L outgoing links, independently of where any other key has hashed to. In practice,
heuristic techniques are frequently used to define a hash function that works well.
Hashing schemes for load balancing can be classified into Direct Hashing and Table-
based Hashing. The L value is the number of different paths that can be established
from the source ingress router to a certain egress router. Therefore, L depends on
the topology of the network. On the other hand, the value of Mp,x can be tuned
according to the allocation function and the Load Balancing Mechanisms.
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In order to dimension the egress buffers, we turn our attention to the following
scheme, which requires a packet reordering algorithm at the egress node to pre-
vent packets from getting out of sequence and to also make egress buffering more
efficient. Taking into account that faster paths require buffer allocation in order to
synchronize packets received from slower paths, we need to calculate the buffer size
required. We define the following notation.

Consider a single flow f. For an f; subflow from this flow f to an egress node ¢,
the end-to-end delay is

=Y dy- yl,-;kt (7.20)
(i,))€E

where d;; is the delay (in milliseconds) of each (i, ) link in the network.
The delay for the slowest f; belonging to the flow f to egress node ¢ is

e = Jnax {a™}. (7.21)

Let fitsiowest be the fi with a dg;"otwest delay. Then buffer size B/ required for each
fi flow is

Jit
B = (dgi)lwest — dfk’) . (bf -Xclkosest,link,to,node,t) (7.22)

where b -Xcllk(;sest link_to_node_¢ 18 the bit rate arriving to node ¢ from flow f;. Note that
a buffer for the slowest path is not required.
Now, the total buffer size in an egress node ¢ for a single flow f; is

B/'=Y Bl (7.23)

7.4 Intelligent Bandwidth Allocation Algorithms for Multilayer
Traffic Mapping with Priority Provision

New OBS algorithms enable the transmission of a single optical burst at the physi-
cal layer of the network. Requirements in upper layers suggest the need of a control
plane and an efficient mapping procedure for packet encapsulation in order to orga-
nize the traffic classes according to statistical behavior and available paths.

One important issue is the design of suitable mapping algorithms for QoS guar-
antees. The significance of the offset time in the control packets is studied in order
to optimize the overall throughput of the network. The management of the offset
time leads to interesting problems of burst selection criteria and scheduling.



194 X. Hesselbach et al.

7.4.1 QoS Algorithms for OBS

A number of approaches for QoS provisioning in OBS networks have been proposed
in the literature. These approaches can be classified into offset-based, strict priority,
segmentation-based, and proportional QoS. The main aim of these proposals is to
provide relative service differentiation with regard to packet loss probability. The
use of classical fair scheduling algorithms in the data plane of optical nodes has
generally been avoided in the literature. This is due to the absence of the concept of
“packet queues” in optical nodes, beyond the number of packets that can be buffered
(while in-flight) in Fiber Delay Lines.

Packets arriving at the ingress node are classified into one of the FECs already
defined by the network administrator. These packets are then shaped and a policy is
applied to conform to the QoS requirements of their FEC. Packets are then assem-
bled into bursts in the burst assembly queue. The burst assembly process is carried
out using the containerization with aggregation-timeout (CAT) algorithm. In prin-
ciple, the function of the CAT algorithm is to assemble the arriving packets into
data bursts, such that each data burst contains packets that belong to one FEC. Two
parameters control this burst assembly process in CAT, namely the maximum burst
size (Bmax) and burst assembly timeout (Tiax). The maximum burst size controls
the maximum number of packet bytes contained in a single burst. If the incoming
traffic intensity is high enough, the maximum burst size will be reached in a rela-
tively short time. If, on the other hand, the traffic has a low arrival rate, the burst
being assembled might have to be queued for a relatively long time until the max-
imum burst size is reached. In order to avoid large queuing delays for bursts, the
assembly timeout parameter is used to release the burst under assembly. Thereafter,
data bursts are inserted into the burst queue and scheduled for processing by the
reservation manager according to their QoS requirements.

We propose the use of Fair Packet Queueing (FPQ) algorithms for scheduling
the processing of data bursts by the reservation manager. The FPQ scheduling dis-
ciplines have three desirable properties:

1. they can guarantee an upper bound on delay to a token bucket-constrained ses-
sion,

2. they guarantee the upper bound on delay regardless of the behavior of other ses-
sions (isolation)

3. they can ensure relative fairness in bandwidth allocation among backlogged ses-
sions.

The particular choice of the scheduler is not imposed by the architecture. There exist
a number of FPQ algorithms in the literature. For example, Weighted Fair Queueing
(WFQ), Self-Clocked Fair Queueing (SCFQ), and Start-time Fair Queueing (SFQ)
[13].

The FPQ scheduler selects from the bursts queue the eligible data burst to be
processed by the wavelength reservation manager. There is a significant difference
between the proposed usage of the FPQ scheduler and its usage as a conventional
packet scheduler. In the latter case, the packet selected by the FPQ scheduler is
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directly sent for transmission, whereas in our architecture the FPQ scheduler reg-
ulates the access to the reservation manager. This difference appears more clearly
when calculating the queuing delay in the burst queue, since the processing delay in
the reservation manager is independent of the burst’s length.

Considering that the modes currently under investigation for the implementation
of the next generation coarse packet-switched optical networks, e.g., Burst Switch-
ing, are based on these reservation policies, we briefly present the resource reserva-
tion protocols for OBS.

Initially, two main protocols were used in OBS: Tell-And-Wait (TAW) and Tell-
And-Go (TAG). The Just-In-Time (JIT) and Just-Enough-Time (JET) protocols
were later developed.

In TAG, the burst is emitted by an ingress node even if the establishment of an
optical virtual path has not been completed. The burst follows the virtual path in
parallel with the setup phase. The data burst and the setup message are spaced by a
guard time; this time allows the optical nodes to be set before the burst arrives. When
a burst arrives at the egress node, an acknowledgment is sent back to the source
after a round-trip delay, and the burst is sent out. If the request bandwidth cannot be
granted at an intermediate node, the burst is not lost, and will be transmitted after a
backoff time. This protocol does not allow QoS or service differentiation.

In TAW the burst is emitted by an ingress node only if an optical virtual path
has been set up through the network to the egress node, by sending a short request
message and “waiting” for the acknowledge (ACK) message. When an intermedi-
ate node receives this message it makes a reservation using an available wavelength
for the requested output; if the requested bandwidth is successfully reserved on all
the links along the path, the ACK is sent back to the source after the round-trip de-
lay, and the burst is send out immediately; otherwise, a negative acknowledgment
(NACK) will return to release the previously reserved bandwidth, and the source
will have to try to make another request after a backoff time. If the request band-
width cannot be granted at an intermediate node, the resource at the previous nodes
will be wasted until the release messages arrive, but the burst is not lost, and will
be sent after a backoff time. The resource use is not efficient because reserved links
last longer than the burst duration.

In JIT a burst transmission request is sent to a central scheduler. The scheduler
then informs each requesting node of the exact time to transmit the data burst; at
the appropriate time, the source transmits its burst, and intermediate switches are
set as “just in time”, for efficient use of wavelength channels, which are set up only
for the required burst transmission time. Using computing power and communica-
tion between the switches to avoid bandwidth wastage, the central scheduler and
the burst assembly allow for providing service differentiation and traffic guarantees
over a reserved end-to-end lightpath. Centralized protocols are neither scalable nor
robust; a distributed control scheme would be preferred; however, such a scheme
relies on synchronization and fast distribution of information on the state of the net-
work, provided by a distributed version of JIT called Reservation with Just-In-Time
(RIT), which requires a copy of the request to be sent to all switches (each has a
scheduler) concurrently. The problem typically lies with the scheduler implementa-
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Table 7.1 OBS signaling protocols for QoS provisioning in IP/DiffServ/MPLS networks

Strategy Resources usage End-to-end delay Resource reservation — DiftServ

TAG Efficient High Not guaranteed  Not supported
TAW  Not efficient Low Not guaranteed  Not supported
T Efficient Medium Not guaranteed Supported
RIT Efficient Medium Not guaranteed Supported
JET Efficient High Near guaranteed Supported

tion, which not only needs to be synchronized in time, but also needs to share the
same global link status information.

In JET there is a setup message sent by an ingress node, where after an additional
offset time the burst is transmitted; this offset time takes into account the delays ex-
perienced by the setup message within a node. The header carries the data burst’s
length, destination, and arrival time; this allows for the reservation of the exact re-
sources required for the transmission time of the burst. This is called reserve-a-fixed
duration (RFD) scheme, where a node makes advance reservation of the capacity
needed at the corresponding output port. JET is the most prevailing distributed pro-
tocol for OBS networks today that does not require any kind of optical delays.

An approach that assigns varying additional offset times to different service
classes can provide differentiated services in terms of burst loss probability for
classes of different priorities [15]. This reduces the loss rate of high-priority traffic
at the expense of an increase in the loss rate of lower-priority traffic. The additional
offset time becomes part of the end-to-end delay. However, this extra delay does not
affect the total end-to-end delay by much, but this problem should be considered
with care. Another problem is that a high-priority burst with large offset times will
break the resource’s free periods into small pieces, and only the burst with smaller
size will have higher probability of finding a free wavelength. JET does not use an
ACK message for guaranteed the end-to-end lightpath; this causes loss of the bursts
that have to be retransmitted to an upper layer.

Table 7.1 summarizes the advantages and disadvantages of each one of the OBS
protocols described. It summarizes the general behavior of each signaling protocol
according to the requirements of the traffic to be transported. It is evident that JET is
a good candidate for those networks where delay is the key constraint, but resource
reservations are not guaranteed. Therefore, it can be somewhat less useful for con-
stant bit rate traffic with real time requirements. In this case, JIT or RIT can fulfill
these constraints but the end-to-end delay is larger than in JET. We conclude that
a new signaling protocol is required taking into account the parameters for control
packet management in OBS.
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7.5 Conclusions

The chapter surveys several recent open problems in connection-oriented packet net-
works in the broadband backbone, such as the IP/MPLS/optical technologies. The
emerging services requires some QoS degree according to the individual needs, and
so several strategies are shown from the point of view of modeling and formulation.
The new high-speed optical networks arise in similar problems but different physi-
cal technology, all of them under the traffic engineering concepts and the dynamic
(auto)provisioning and allocation, some of them shown in this chapter.
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Chapter 8
Optimization of OSPF Routing in IP Networks

Andreas Bley, Bernard Fortz, Eric Gourdin, Kai Holmberg, Olivier Klopfenstein,
Michat Pidéro, Artur Tomaszewski, and Hakan Umit

Abstract The Internet is a huge world-wide packet switching network comprised of
more than 13,000 distinct subnetworks, referred to as Autonomous Systems (ASs).
They all rely on the Internet Protocol (IP) for transport of packets across the net-
work. And most of them use shortest path routing protocols, such as OSPF or IS-IS,
to control the routing of IP packets within an AS. The idea of the routing is ex-
tremely simple — every packet is forwarded on IP links along the shortest route
between its source and destination nodes of the AS. The AS network administrator
can manage the routing of packets in the AS by supplying the so-called admin-
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istrative weights of IP links, which specify the link lengths that are used by the
routing protocols for their shortest path computations. The main advantage of the
shortest path routing policy is its simplicity, allowing for little administrative over-
head. From the network engineering perspective, however, shortest path routing can
pose problems in achieving satisfactory traffic handling efficiency. As all routing
paths depend on the same routing metric, it is not possible to configure the routing
paths for the communication demands between different pairs of nodes explicitly
or individually; the routing can be controlled only indirectly and only as a whole
by modifying the routing metric. Thus, one of the main tasks when planning such
networks is to find administrative link weights that induce a globally efficient traf-
fic routing configuration of an AS. It turns out that this task leads to very difficult
mathematical optimization problems. In this chapter, we discuss and describe exact
integer programming models and solution approaches as well as practically efficient
smart heuristics for such shortest path routing problems.

Key words: telecommunication networks, shortest path routing, the Internet, OSPF,
ECMP, integer linear programming, heuristics

8.1 Introduction

Traffic routing is a key issue in the design and management of communication net-
works, including the Internet. The term “routing” has the meaning of forcing the
traffic flows to use appropriate, frequently predefined, routes. In practice, traffic
flows appear every time two end users need to communicate or an end user requires
some content from a distant server. Since the flows appear in such a dynamic way,
the routing decisions must essentially be realized by the network itself: if a new
connection is required for a traffic flow between an end user at node A and an end
user at node B, some network equipment must decide along which route from A
to B this connection must be established. This routing decision must be made in a
fraction of a second and in such a way that the user is provided satisfactory quality
of service and the consumption of network resources is minimized. This is why the
services offered by communication networks rely heavily on routing protocols.

A routing protocol is a set of rules and mechanisms implemented in a network in
order to achieve proper routing decisions. There are many different standard routing
protocols. Some of them are technology agnostic, some are designed for a particu-
lar networking technology such as optical fiber transmission networks like WDM,
SDH, and SONET and packet networks like GbE (Gigabit Ethernet), ATM and IP.
One of the major tasks of the network operations team within a telecom company is
to tune and manage parameters of the implemented version of a routing standard in
order to maximize the network’s traffic performance. These activities of the opera-
tions team, known as “Traffic Engineering” (TE in short), received a lot of attention
during the last decade, especially in the domain of the Internet [41, 75].
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In the present chapter we will focus our attention on the optimization problems
related to Internet routing. The Internet is a packet switching network, an intercon-
nection of more than 13,000 different subnetworks. It uses the Internet Protocol (IP)
to transport data packets across the network and the TCP and UDP protocols to con-
trol the flow of data packets between end users. Each individual subnetwork, also
known as an Autonomous System (AS), is managed by a single administrative en-
tity of the telecom operator. Some of these ASs are huge and deployed world-wide,
though most of them are very small and involve only a few nodes called “routers.”
The routing protocols that are implemented inside an AS and decide how to route
the traffic from one node of the AS to another are called Interior Gateway Proto-
cols (IGPs). “Classical” IGPs rely on a simple routing paradigm called shortest path
routing (SPR in short); every packet is forwarded on IP links along the shortest route
between its source and destination nodes of the AS. Although in the late 1990s, in
order to somewhat overcome what was felt at that time as a deficiency of the short-
est path protocols providing more flexibility in the design of routes, more complex
routing paradigms were proposed for the Internet, in particular in the context of the
MPLS (Multi-protocol Label Switching) technology [3, 84]; at present, SPR proto-
cols are still widely and successfully used on the Internet. Simulation experiments,
practical trials, and field deployments have shown, despite the original feeling that
it would be very difficult to control traffic efficiently through shortest path mech-
anisms, that with the shortest path routing paradigm pretty good network traffic
performance can actually be achieved. This good performance is partly due to re-
cent advances in routing optimization methods and their implementation in network
planning systems.

The most frequently deployed IGP protocols are OSPF (Open Shortest Path First,
see [61]) and IS-IS (Intermediate System to Intermediate System, see [65]). Accord-
ing to these protocols, each individual router in the AS must acquire and maintain
a complete and accurate vision of the topology of the AS (this is done by frequent
exchange of the routing protocol’s messages between routers), and appropriate in-
formation on every link of this topology. The link-related information is limited to
the administrative weight of the link, which is an integer value assigned by the net-
work administrator (within the bounds defined by the version of the routing proto-
col). Using the topology and the administrative weights of links, each router is able
to compute its shortest path tree covering the topology graph, or, in other words, a
shortest path towards every other router in the network. This information is stored
locally in the so called forwarding table and is used when forwarding incoming
packets to the outgoing links. The forwarding table determines, for each destination
router in the AS network, the outgoing link that should be used in order to reach
the next node on the shortest path to that particular destination router. The admin-
istrative weights are the only means the network administrator can use to influence
and control the routing of traffic in the network. This control is realized in an indi-
rect way: although the network administrator is interested in optimizing the paths
used by each traffic demand, with the shortest path routing protocols she cannot di-
rectly define a path and assign it to a particular flow. She has to set the values of the
weights so that the defined path becomes a shortest path, or even the unique shortest
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path, between the end nodes of the flow. This task is not so obvious as it might ap-
pear, since modifying the values of the link weights involved in defining a path for a
particular flow can change the paths that have been defined for other flows. Setting
the values of weights in an optimal way is the basic TE problem considered in the
present chapter.

Finding such weight values that all the paths in a predefined set are shortest paths
or unique shortest paths is known as the inverse shortest paths problem [10, 33].
Several variants of this problems can be considered according to the number of paths
that can be used for a demand, and to the way the routers can handle multiple short-
est paths. Going one step further, one can consider the joint problem of defining the
best possible paths (with an objective that captures a certain global performance of
the network) and a set of administrative weights compatible with these paths. Still
another set of decisions that can be embedded in a more global process are plan-
ning decisions, where the design of the network itself (including network topology,
resource capacity, traffic routing, etc.) is a part of the decision process. Certainly,
each additional level of decisions involved implies a considerable increase in the
complexity of the problem.

In the next sections of this chapter we will survey the most recent results concern-
ing network optimization problems related to shortest path routing. The chapter is
organized as follows. In Section 8.2, the main TE problem is formally described, all
the relevant notation is provided, and the related work is summarized. In Section 8.3,
an integer programming approach to the TE problem is described. The approach is
based on interlacing two phases within a branch-and-cut algorithm: the first phase
finds a routing pattern consisting of a set of routing paths, while the second phase is
devoted to finding a set of weights compatible with the routing paths selected in the
first phase. In Section 8.4, we discuss valid inequalities that can strengthen the linear
relaxations of the model that is used in the first phase of the integer programming
approach, together with separation algorithms for these inequalities. Section 8.5 is
a survey of the heuristic methods. In Section 8.6, the numerical results obtained
with the two-phase approach and with the heuristics are provided and analyzed. In
Section 8.7, a full direct mixed-integer linear programming formulation for the con-
sidered TE problem is presented, and a number of problem variants are discussed.
Then, in Section 8.8 we present historical and literature notes. Finally, Section 8.9
presents concluding remarks.

8.2 Problem Description

In this introductory section we will explain the basic notions and notations, infor-
mally discuss the shortest path routing problems studied throughout this chapter,
and summarize the related work.
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8.2.1 Basic Notions and Notations

The network graph & = (¥, &) consists of the set of nodes ¥ (called also vertices),
and the set of directed links & (called also arcs), where & C 121 Note that 712l
denotes the set of all ordered pairs (s,¢) € #2 such that s # 1, i.e., ¥l = ¥2\
{(v,v): v€ ¥ }.Foreachnode v € ¥, we define the set of links 6 (v) outgoing from
node v and the set of links 6~ (v) incoming tonode v, i.e., 67 (v) ={e € & :ale) =v}
and 6~ (v) ={e€ & :b(e) =v}, where a(e) € ¥ and b(e) € ¥ denote the originating
and terminating node of link e € &, respectively.

Each link e € & has a capacity denoted by c,. Furthermore, each link e € &
is assigned a so-called link metric or (administrative) weight denoted by w,. De-
pending on the context, the weight may be a constant or a variable. The vector
w= (w, :e € &) is referred to as the weight system (or the weight vector, or the
weight sequence). Typically, each such link weight has to be a positive integer
bounded from above (for example, OSPF assumes that w, € {1,2,...,K = 216 _ 1.
For optimization purposes we will also consider continuous weight systems w with
1 <w, <K,e €&, assuming they are regular. A weight system w is called regular
if, for any two paths that have different lengths, these lengths differ by at least 1.
Certainly, this regularity condition is satisfied when weights are positive integers.
If the weights can possibly assume positive rational values, then multiplying all
weights w, by an appropriately large positive number o will assure the regularity
while preserving the path-length relation (new path length will be equal to o times
the original length).

The traffic demand volume generated at a source node s € ¥ and destined to a
target node 7 € ¥\ {s} will be denoted by dy. Such demand volumes are expressed
in the same units of bandwidth as capacities of links. If there is no traffic demand for
a pair of nodes (s,t) € ¥l then we simply put dy, = 0. The total demand volume
destined to node t € ¥ will be denoted by D; so that D; = ¥\ (1) dsr-

The set of all elementary (i.e., loop-less) paths in the network graph is denoted by
Z. Each path p € &2 is represented by its set of links so that p C &. The length of
path p € & with respect to weight system w will be denoted by w(p), and any short-
est path with respect to system w will be referred to as a w-shortest path. Clearly,
w(p) = ZeEpWe'

Unless stated otherwise, in the sequel we will always assume that link capacities
¢ =(c,: e € &) and demand volumes d = (d,; : (s,7) € ¥1?/) are fixed and given.

8.2.2 Informal Formulation

The basic problem considered in this chapter is called the shortest path traffic engi-
neering problem (STEP). Its most commonly known version assumes unique short-
est paths and consists of finding a routing pattern, i.e., set of paths P = {Ps :
(s,r) € ¥PI} C 2 where path p; connects source s to destination 7, together with
a corresponding system of compatible weights w so that
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e cach path py € P is the unique w-shortest path from s to 7 in graph ¢.
e when the whole demand volume dy, of demand (s,¢) is allocated to path py, then
for each link the resulting link load does not exceed link capacity:

Xnededs Sce,  €EE, 8.1)

where Z(e) = {(s,1) € VP py 3 €}.

This routing version is called unique, unsplittable, or single shortest path routing in
the literature.

Observe that the uniqueness of the shortest paths in a routing pattern is not com-
mon, since most weight systems in general induce more than one shortest path be-
tween a pair of nodes—consider for example the hop-count weight system w, = 1.
If non-uniqueness is the case, i.e., if the system of administrative weights w induces
more than one shortest path for demand (s,#) € 12| then the volume dy is split,
according to the so-called ECMP rule, among all the shortest paths from source s
to destination . We note here that other ways of handling the shortest path non-
uniqueness are sometimes considered, as, for example, selecting one particular path
among all the shortest paths at random. When used in a real network, however, such
rules lead to traffic routing that is different from the traffic pattern assumed at the
weight design stage. Therefore, they are excluded from further considerations.

ECMP (Equal Cost Multi-path) is a specific rule to split traffic among shortest
paths: at each node v € ¥ the total flow X,, from v destined to any node ¢t € 7,
v # t (X, is composed of traffic transited via v and originated at v), is split equally
among all the links outgoing from node v that belong to the w-shortest paths from v
to 7. This rule is illustrated in Figure 8.1 for a weight system with all link weights
equal to 1 (w, = 1) and one demand (s,7) with d; = 1. There are three shortest paths
fromstot:s—a—c—t,s—a—d—t,and s — b — e —t. According to ECMP, the
flow in node s is split into two equal parts, the flow in node a also into two, and in
the remaining nodes the flow is not split. As the result we obtain the following link
flows: Xy = Xgp = Xpe = Xor = % Xge = Xgd = Xet = Xgp = }T. Observe that if we had
reversed the directions of all links and of the demand then the resulting ECMP link
flows would be equal to X;c = X1y = Xpe = Xeq = Xdga = Xebp = Xps = %, Xas = %

Let x.(w) denote the ECMP flow induced by system w on link e € &. For a fixed
network with given demand volumes, the flows x.(w), e € &, depend only on the

Fig. 8.1 Illustration of the ECMP rule
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weight system w. If the weight system induces unique shortest paths, then each flow
Xe(w) is equal to the left-hand side of inequalitie (8.1). Imposing an upper bound on
the link weights, the STEP problem for the ECMP rule can informally be stated as
follows.

find w=(we:e€d) (8.2a)
minimizing Z (8.2b)
subject to xe(w) < Zc,, ecé, (8.2¢)

we €{1,2,...,K}, e€éd. (8.2d)

We note that objective (8.2b) minimizes the maximum link utilization—a criterion
related to link congestion. Other commonly used traffic engineering objectives are
discussed in Section 8.7.2. The above formulation is informal since the flows x, =
Xe(w), e € &, assigning the ECMP flows to the links for a given weight system w,
are not explicitly specified. In fact, the mapping of w to the induced flows x.(w),
e € &, is not straightforward, as explained in Section 8.5.3. The computation of
flows becomes simpler for the unsplittable shortest path version of STEP, as all
traffic volume of a demand then is assigned to its unique shortest path.

An important subproblem of STEP is the so-called inverse shortest path problem,
abbreviated ISP. It consists of finding a weight system w that induces precisely the
assumed routing pattern &. Different variants of ISP are considered for routing
patterns with unique shortest paths & = {Ps : (s,£) € ¥II} and for the patterns
admitting multiple shortest paths for each demand (applied together with the ECMP
rule).

8.2.3 Discussion

The shortest path traffic engineering problem STEP described by the informal for-
mulation (8.2) is known to be very difficult and, needless to say, is NP-hard in
both ECMP and unsplittable versions [11, 45, 54], and is also NP-hard to approxi-
mate [11, 45].

Exact solutions of STEP can be achieved with (mixed) integer programming
methods. Using formulations that use binary routing variables to indicate whether
a link belongs to a shortest path or not (together with flow variables, path length
variables, and weight variables), such as model (8.18) in Subsection 8.7.1, STEP
can in principle be solved to optimality. Models of this kind have been considered
by many authors (see Section 8.8); unfortunately, the relation between the shortest
paths and the routing weights always leads to quadratic or very large big-M models,
which are computationally extremely hard and not suitable for solving real-world
problems.

Because of the inherent difficulty of STEP, various heuristic approaches for the
solution of network design and routing problems in shortest path networks have been
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proposed. Algorithms using local search, simulated annealing, or Lagrangian relax-
ation techniques with the routing weights as primary decision variables have been
introduced by several authors (see Section 8.8). Such methods usually work quite
well; still, they cannot guarantee optimal solutions nor do they provide means to
estimate the quality of the solution (which is the case for the integer-programming-
based approaches). In Section 8.5 we discuss the basic ideas and main challenges
for successful implementations of such heuristics.

The inverse shortest paths problem (ISP) can be formulated as a linear program
(see Section 8.3.2), and, as such, solved in polynomial time. Even if the weights
are required to take nonnegative integer values, ISP remains polynomial, because
any set of non-integer weights can be scaled easily to (possibly very large) integer
weights. There is also a simple rounding scheme (see [6]) that produces integer
weights which exceed the smallest possible maximum weight by the factor of at
most min (|¥]/2, |Pmax|), where Pyax is the longest shortest path in the considered
routing pattern. The problem of finding the smallest maximum weight or weights
not exceeding a given upper bound, however, is NP-hard [12].

Finally, we mention that a lot of work has been devoted to finding necessary
conditions for a given set of routing paths to be compatible with a set of link weights.
As these conditions play a crucial role in resolution methods for STEP, we will come
back to them in Subsection 8.3.2 and Section 8.4 (see also Section 8.8 for historical
remarks).

SPR is (heavily) constrained by the shortest path requirement and hence in-
herently less efficient in bandwidth utilization than other, less constrained routing
strategies. Because of that, ECMP routing is in general less traffic efficient than its
fractional multi-commodity flow routing counterpart, which permits us to split each
demand’s traffic arbitrarily among all paths between the demand’s end nodes. Sim-
ilarly, unsplittable shortest path routing is inferior to unsplittable multi-commodity
flow routing, which must send each demand’s traffic unsplit along a single path,
but may choose the paths for different demands independently of each other. A
question that arises naturally is whether the performance gap between an optimized
shortest path routing and another, less constrained optimized routing is important
or not. Bley [11] presented several classes of examples where the best link utiliza-
tion that can be obtained with unsplittable shortest path routing exceeds the utiliza-
tion obtained with unsplittable flow routing by a factor of €(|7'|?). On the other
hand, Fortz and Thorup [42] showed that for many real-world communication net-
works the gap between the ECMP shortest path routing version and the optimal
fractional multi-commodity flow routing is virtually negligible. Similar observa-
tions have been reported by Ben Ameur et al. [7]. Still, if survivability issues and
rerouting are taken into account, the gap can increase significantly.
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8.3 Integer Programming Approach

In this section, we present a two-phase approach developed in [13, 18, 20, 46, 52,
73, 78]. The approach has been successfully used in the planning of the German
national education and research network for several years [17, 19]. Similarly to
Benders’ decomposition, it decomposes the problem of finding an optimal shortest
path routing into the master problem of finding the optimal end-to-end paths in the
first phase, and the client problem of finding compatible routing weights for these
paths in the second phase. An efficient version of the two-phase approach is achieved
when the iterative use of the two phases is embedded in a branch-and-cut algorithm.

The master problem is formulated as an integer linear program and solved with
a branch-and-cut algorithm [63, 83]. Instead of using routing weight variables, the
underlying formulation contains special inequalities to exclude invalid routing pat-
terns, i.e., path sets that do not correspond to the set of all shortest paths for any
weight system. These inequalities are generated dynamically as cutting planes by
the client problem during the execution of the branch-and-cut algorithm.

8.3.1 Optimizing the Routing Paths

There are several ways to formulate the master problem of STEP as a mixed-integer
linear program. In the following, we present an aggregated node-link formulation of
STEP for the ECMP routing version.

The primary decision variables in this formulation are variables u,; € {0,1} for
allt € ¥ and e € &\ 87 (r). These variables describe the so-called shortest path
graphs (SP graphs) to all destinations ¢ € #". Each variable u,, is supposed to be
equal to 1 if, and only if, there is a shortest path from node a(e) to node ¢ that
contains link e.

In addition, the model uses variables x,, € R for all t € ¥ and e € &\ 67 (¢)
and z,;, € R for all t € ¥ and v € ¥\ {t}, and a single variable Z € R. Variable
X expresses the aggregated traffic flow that is sent across link e from all possible
origins towards destination ¢. If at some node v the aggregated flow towards ¢ is
equally split and sent via several shortest paths, then this common flow value is
represented by variable z,,. In effect, the same amount z,, of flow is sent across all
links e € 6 (v) that belong to at least one of these shortest paths. Finally, variable
Z represents the maximum link utilization (congestion).

With these variables the master problem is formulated as follows:

STEP Master
find
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u,; binary variable indicating whether link e is on a shortest path to node ¢
xo flow destined to node ¢ on link e
7y flow destined to node ¢ leaving node v on links on the shortest paths to ¢

Z maximum link utilization/congestion

minimize
7 (8.3a)
subject to
Y Xet— Y, Xer =dy re¥,vev\{t} (8.3b)
ecdt(v) e (v)
Z Xt < CoZ ecéd (8.3¢)
1€/ \{b(e)}
Xer < (Dy = dp(e)) Uer teV,ec&E\ST(t) (8.3d)
0 <Xer —Zg(ey < (Dy _db(e)t) (1 —ugy) teV,ecE\ST(t) (8.3e)
S st — Y, ue < 1C| -1 (c,6) e (8.3f)
(e1)C  (ex)eC
ug €{0,1} teV,ec&E\ST (1) (8.3g)
Xer 20 teV,ec&\ST(t) (8.3h)
Zw >0 te¥,ve ¥ \{t} (8.31)
Z>0. (8.3)

Subproblem (8.3a)—(8.3c) is an aggregated node-link formulation of a capacitated
multi-commodity flow problem with aggregated flows x, whose objective is to min-
imize the maximum link utilization Z. The next two constraints express the ECMP
traffic splitting rule. Inequality (8.3d) forces traffic destined to node ¢ to use only
the links that are chosen to be shortest path links, i.e., links e € & with u,, = 1.
Constraint (8.3e) ensures that in each node the traffic to destination node ¢ is split
equally among the links assigned to that destination.

Finally, the “conflict” constraints (8.3f) ensure that each integer solution of (8.3)
is an admissible ECMP routing. Let C,C C ¥ x & be two disjoint sets of node-link
pairs. If there exists no ECMP routing such that e is on a shortest path towards ¢ for
all (e,t) € C, and e is not on a shortest path towards ¢ for all (e,t) € C, we say that
the pair (C,C) is an ECMP conflict. The family of all such conflicts is denoted by %
Constraints (8.3f) ensure that no solution simultaneously contains all the shortest-
path links and all the non-shortest-path links of any such conflict. This implies that
any integer solution of (8.3) is indeed an admissible shortest path routing pattern.
Figure 8.2 on page 212 illustrates three special types of these conflict constraints.
We discuss the conflict constraints in more detail in Section 8.4.

In general, the number of conflict constraints (8.3f) can be exponentially large
and the structure of the conflicts can be extremely complicated [13]. Therefore, only
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few of these constraints are included in the model initially. The majority of them are
separated via the client problem in the branch-and-cut solution process.

8.3.2 Finding Compatible Routing Weights

Now suppose we have a solution (u,x,z,Z) of formulation (8.3) or, more precisely,
of a subsystem of (8.3), which contains only those conflict constraints (8.3f) that
have been generated so far in the process, and not all conflict constraints. For each
destination 7 € ¥, the values of the binary variables u in this solution define a link set
A, ={e€ & :u, = 1}. The link set A, is called the shortest path graph (SP graph)
for destination t. For each t € ¥, we want the links e € A; to be on a shortest path
from a(e) to  and the links e ¢ A, to be not on a shortest path from a(e) to ¢. Link
weights w, € Ry, e € &, for which these conditions hold are said to be compatible
with the given SP graphs A;.

Our goal in the client problem is to find compatible link weights w,, ¢ € &, for
the SP graphs given by the master problem’s solution. However, if the given solution
(u,x,z,Z) violates some of the conflict constraints that have not yet been added to
the master formulation (8.3), then such link weights do not exist. In this case, the
task is to generate (at least) one of these violated inequalities.

The first part of this problem is just the inverse shortest paths problem, and can
be solved with linear programming techniques. A number of alternative formula-
tions for ISP have been proposed in the literature [6, 13, 68]. In the following, we
present an aggregated formulation for ISP, which fits very nicely into the aggregated
formulation of the master problem. It uses a variable w, € Z for the weight of each
link e € &, a variable wp,,x € Z for the maximum of these weights, and a variable
ry € R for the potential of each node v € ¥ with respect to each destination t € ¥
and the weights w. (If r;; = 0, the smallest possible potential r,, of node v is exactly
the distance from v to ¢ with respect to the link weights w.) With these variables, the
inverse shortest paths problem for the given SP graphs A;, t € ¥/, can be formulated
as follows:

ISP Client
find
We routing weight of link e
Wnax maximum routing weight
Tyt potential of node v with respect to destination # and weights w
minimize

Wnax (8.4a)

subject to
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We = Fa(e)r T Tp(e)y =0 teV, ecA (8.4b)
We = Fa(e) T Tp(e) = 1 teV,ed A (8.4¢)
I <we < Wimax ecé (8.4d)

r €ER teV,veyV (8.4¢)

We € 7 ecéd . (8.4f)

Constraints (8.4b) and (8.4c) (together with nonnegativity of the weight variables w,
implied by (8.4d)) ensure that the weights w, in any solution of formulation (8.4)
are compatible with the given SP graphs. The quantity w, — r4(e); + rp(c), measures
the difference between the length of the shortest path which starts in node a(e),
goes over link e, and ends in node ¢, and the distance from the node of a(e) to z.
This difference must be O for all links that are supposed to be on a shortest path and
strictly greater than O for all links that are supposed to be not on a shortest path, as
expressed in constraints (8.4b) and (8.4c). Hence, formulation (8.4) has a solution
if and only if there exist compatible weights for the given family of SP graphs A;,
t € ¥. Furthermore, there are compatible weights in the range {1,2,...,K} if and
only if the optimal solution value wp,x of formulation (8.4) is less than or equal to
K.

Note that formulation (8.4) is an integer program and may be computationally
hard. In fact, Bley [12] proved that it is already NP-hard to approximate its optimum
within a factor less than 9/8 in general.

In our decomposition approach, it is sufficient to solve only the linear relaxation
of (8.4) and scale and round its optimal fractional solution to an integer-feasible
solution of (8.4). It is not difficult to verify that the integer program (8.4) has a so-
lution if and only if its linear relaxation does. Using the rounding scheme proposed
by Ben-Ameur and Gourdin [6], we obtain weights that exceed the minimal ones by
a factor of at most min (|%'|/2, | Pmnax|), Where Pmay is the longest prescribed shortest
path. For practically relevant network sizes, the weights computed with this approx-
imate method easily fit into the admissible range of all modern routing protocols.
So, we can safely ignore the integrality constraint (8.4f) in practice.

If the linear relaxation of (8.4) is infeasible, then the given solution (u,x,z,Z) of
the (incomplete) master formulation is not a valid ECMP routing. In this case, the
presumed routing contains at least one conflict (C,C) € ¢ with C C {(e,) : upy = 1}
and C C {(e,?) : uer = 0}, whose corresponding conflict inequality (8.3f) is violated
by the given solution (u,x,z,Z). Adding this inequality to the master formulation,
one can cut off the current invalid solution.

In practice it is important to generate conflicts with small sets C and C, as this
leads to stronger inequalities (8.3f). Inclusion-wise minimal conflicts, i.e., conflicts
(C,C) € € such that there is no other conflict (C',C’) € € with C' C C and C' C C,
can be computed in polynomial time using simple greedy techniques in combination
with a generalized version of the above linear programming formulation. Finding a
conflict of minimum total size |C| + |C|, however, is NP-hard [13].

In Sections 8.4.1 and 8.4.2, we describe several subclasses of the conflict inequal-
ities (8.3f) that are separable in polynomial time. An algorithm to generate strongly
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violated conflict inequalities (8.3f) based on an (approximate) integer programming
formulation of the separation problem is presented in Section 8.4.3.

For the efficiency of the overall solution approach, it is important to consider
the client problem not only for those solutions of the master problem where all
variables u,; are integer, but also for those solutions where some of these variables
are fractional. For each ¢ € ¥, the values of the variables u in the current solution
of the master problem define a second link set A = {e € & : uy = 0}. The pair
of the two link sets (A;,A,) is called the partial SP graph for destination t. If all
variables u,, are integer, then we obviously have A, UA, = &\ 6" (¢) forallt € 7.
For each r € ¥/, we want the links e € A; to be on a shortest path from a(e) to ¢
and the links e € A, to be not on a shortest path from a(e) to ¢. Links e € & that are
neither in A, nor in A; may or may not be on a shortest path from a(e) to ¢. Routing
weights w, € R, e € &, that satisfy these conditions are said to be compatible with
the given partial SP graphs (A;,A,),t € V.

The techniques presented above for the inverse shortest paths problem with com-
plete SP graphs generalize straightforwardly to the inverse shortest paths problem
with partial SP graphs. Replacing inequality (8.4c) in formulation (8.4) with the
inequalities

We = Ta(e)t T Tp(ey = 1 tEYV, ecA (8.4¢)
and
We = Fa(e)r + Tp(e)r = 0 teV,ec&\(AUA,), (8.4¢”)

we obtain an integer linear model for the inverse shortest paths problem with partial
SP graphs. Solving its linear relaxation, we can again decide in polynomial time
whether the given partial SP graphs can be extended to a valid shortest path routing
or not. If the linear relaxation has a solution, the same scaling and rounding approach
as that for complete SP graphs can be used to compute reasonably small integer
weights that are compatible with the given partial SP graphs. Otherwise, the solution
of the current incomplete master formulation can be cut off by a conflict inequality
(8.3f) derived from the dual relaxation of the inverse shortest paths problem, even
though not all SP variables u,, are integer yet. Each assignment of 0/1 values to
those variables u,; that are not integer yet would lead to an invalid routing.

8.4 Shortest Path Routing Inequalities

As we have already seen in the previous section, discovering and generating proper
cuts (valid inequalities) is crucial for effectiveness of integer programming ap-
proaches to STEP. In this section we will study this issue in more detail. We first
derive a set of cuts that follow from combinatorial/structural properties of short-
est paths. Then we discuss unobtainable cycles—a strong necessary condition on a
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set of routing paths to posses a compatible weight system. Finally, we show how
the formulations related to unobtainable cycles can be used to derive general valid
inequalities, eliminating inconsistent routing patterns from the master problem dis-
cussed in Subsection 8.3.1.

8.4.1 Combinatorial Cuts

In this section we will discuss deriving inequalities of the form (8.3f) directly from
the combinatorial properties of shortest paths. We discuss three such basic proper-
ties [71], called transit, split, and cycle (see Figure 8.2). These properties are de-
rived from the subpath consistency (also called Bellman property) of shortest paths
and describe the consistency conditions of shortest paths between different pairs of
nodes. The resulting inequalities either extend or generalize the types of combina-
torial cuts that were proposed in [20, 48] in the context of ECMP routing .

transit split cycle
A 12
uev:1 ugt:1 vaf 1 L
ug, =0 2
g, =1
upy =1 ©@
(O] ®@
Y (=up) + (1 —ttey) + ey > 1 S —up)+ Y (1—ug)>1
FE€Pyen fePy $€2ss

S (U —up) + (1= uey) + (1 —ug) gy > 1
fE€Pyen

Fig. 8.2 Different types of combinatorial valid inequalities

The transit property expresses a relation between shortest paths to a destination
and shortest paths to the transit nodes of those paths to the destination. Assume that
there is a path from node s to node ¢ (such a path can be decomposed into the starting
link e and path &), from b(e) to t), with all links belonging to shortest paths to
some node v. Thus, ¢ is a transit node on a shortest path from s to v. Then, all links
between s and ¢ on the path to v, in particular link e, must belong to a shortest path to
t, since a shorter path from s to ¢ should have been used to v as well. The following
inequality separates vectors # which contradict this property:
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Z (T—upy) + (1 —ttey) +tter > 1. (8.5)
fez%,(g),

To find the most violated inequality (8.5) for given s, v, t, and e, it is enough to
find a shortest path &7, from b(e) to t using the values 1 — u,, for the link weights.
This inequality is stronger than the one used in [48], because it skips the values of
the variables defining shortest paths from ¢ to v, and considers the path from s to ¢
and not from s to v.

The split property expresses a relation between splitting traffic among shortest
paths to a destination and splitting traffic among shortest paths to the transit nodes.
Assume the same situation as in the first case, and, additionally, that there is another
link g originating in node s which is on a shortest path to node 7. Then g must be
on a shortest path to v, because there are two paths of equal length from s to ¢ (one
starting with link g and one with link e because of the transit property), and as one
is used to reach v, the other should be used to reach v as well. The vectors u that
contradict this property can be separated using the following inequality:

S (I —up)+ (1= tter) + (1 — ttgy) + gy > 1. (8.6)
fet@b(e)r

To find the most violated inequality (8.6) for given s, v, ¢, e, and g it is enough to
find the same path &, as in the case of the transit property.

The cycle property expresses a relation between shortest paths to a single des-
tination. Since the values of link weights are strictly positive, on a shortest path to
a destination the distances of the consecutive nodes to that destination are decreas-
ing. Thus, the segments & and 2, of two such paths cannot form a cycle. The
following inequality separates vectors u which contradict this property:

Y (—up)+ Y, (1—ug)>1. (8.7)

f€Py 8€%ss

To find the most violated inequality (8.7) for given s, ¢, and v, it is enough to find
a pair of shortest paths, from s to ¢, and from ¢ to s, respectively, using the values
1 — u,, as the link weights.

To find all violated inequalities of types (8.5)—(8.7) for a given vector u, it is
thus sufficient to determine, for each destination node v, the shortest paths between
all pairs of nodes, using values 1 — u,, as link weights; thus, the entire process has
overall complexity of &'(|7|*).

A number of combinatorial inequalities for unsplittable shortest path routing are
discussed in [6, 13, 18, 49, 73, 77]. Similarly to (8.5), the following three inequali-
ties express the transit property for unique shortest paths:
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X=X+ Y, <1 swteV,acé (8.82)
ecd(v)
Xy —x Y, x <1 sswtet,acé (8.8b)
ecd~(v)
1
i(xfw—i-x;t -0+ Y, <1 swteV,acé (8.8¢)
ecd=(v)

These inequalities are formulated using non-aggregated flow variables x},. Variable
x5, defines the fraction of flow originated in s and destined to ¢ on link e. Then, if
2ecs-(v)Xer 18 greater than O (in case of unsplittable routing it is simply 1), node
v must be a transit node on a shortest path from s to 7. But then, if, for instance,
the flow originated in s and destined to v uses some edge a, that edge must also be
used by the flow originated in s and destined to ¢, which is exactly the meaning of
inequality (8.8a).

To evaluate the effectiveness of the combinatorial inequalities we have performed
numerical experiments (cf. Section 8.4.3) based on solving the integrated MIP prob-
lem of routing and link weight optimization with a commercial MIP solver, apply-
ing its regular B&C procedure in two settings: using and not using user-defined cuts.
When no user-defined cuts were used, after 4,155 seconds, visiting 664,000 B&C
nodes, and generating 382 standard cuts the computation was aborted as it ran out
of memory. In contrast, when combinatorial inequalities were used as user-defined
cuts, having generated the total of 1,556 user-defined cuts and only 100 standard
cuts, after 548 seconds the computation reached the optimum, reducing the number
of visited B&C nodes to 68,700.

8.4.2 Valid Cycles

In order to find an interesting class of SP graph conflicts, we focus on whether or not
(8.4b)—(8.4e) has a feasible solution. Ignoring the boundedness and integrality of the
weights, and letting yi be the dual variables to constraint sets (8.4b) and (8.4c), we
get the following LP-dual after some reformulations (including eliminating the dual
variables of w, > 1).

min > N (8.92)

teV ecA;
s.t. Y 1% <0 ecé& (8.9b)
ey
- Y %=0 teV,vev (8.9¢)
ecdt(v) ecd(v)

%.>0 ec E\ALteV (8.9d)
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Model (8.92)—(8.9d) can be seen as a multi-commodity network flow problem,
with commodities indexed by 7. Some flow may be negative, since ¥, may be neg-
ative for e € A;. Starting at the feasible solution y = 0, we look for an unbounded
solution to (8.9a)—(8.9d) , which would indicate that (8.4b)—(8.4e) is infeasible. Due
to constraints (8.9¢), each commodity must be changed in cycles, if at all. Due to
constraints (8.9b), any increase of one commodity must be compensated for by a
decrease of another commodity.

An arc can be used forwards (positive flow) or backwards (negative flow). Con-
sider a cycle C C &, C = F UB, where F means forwards and B backwards (for
commodity ['). The following is a possible change.

Yi=0(i.))eF, j=—0(.,j)eB, v; =0, j)€F, ;=0 (i, j) B (8.10)

Let us now define some notation. A cycle C = F UB is called feasible if B C Ay and
F C Ay, ie., the arcs in B lie in one SP graph and the arcs in F' lie in another. The
arc (i, j) is called eligible if (i, j) € (F \Ay) U (B\ A ). In words, an eligible arc lies
in F but not in A, or in B but not in A,».

A cycle C = F UB is called valid if there exist two indices I’ and [” such that the
cycle is feasible and contains at least one eligible arc.

We find that flow of commodities /' and !” can be changed infinitely in a valid
cycle, and the objective function value (8.9a) tends towards infinity. In other words,
a valid cycle represents an unbounded solution to (8.9a)—(8.9d) .

Proposition 8.1. If there exists a valid cycle, then there exists no compatible set of
weights.

See [28] for a proof for the spanning case. In [29] the authors prove that proposition
8.1 holds even if the SP graphs are not spanning, although then the model (8.9a)-
(8.9d) cannot be used.

Letting S;(s,#) denote all subpaths from node s to node 7 in A;; we say that A
and A; are subpath consistent if Si(s,t) = S;(s,t) for all s € ¥ and t € ¥ such that
Si(s,t) # 0 and S;(s,#) # 0. It is well-known that subpath consistency between all
SP graphs is a necessary condition for the existence of compatible weights.

We can show the following.

e A valid cycle must contain at least three nodes and three arcs.
o If all SP graphs are trees, then any feasible cycle is also valid.
o If two SP graphs are subpath inconsistent, there exists a valid cycle.

Below, we give an example of subpath consistent SP graphs that have a valid cycle,
and can conclude that the absence of a valid cycle is a stronger necessary condition
for the existence of compatible weights than subpath consistency. In Figure 8.3 we
give two SP graphs and the resulting valid cycle.

Considering the feasible set (8.9b)—(8.9d), we find the following (proved in [27]).
A valid cycle represents an extreme ray. Valid cycles represent all extreme rays that
only include rwo commodities. Valid cycles represent all extreme rays that use only
one cycle and its reverse.
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Fig. 8.3 Two SP graphs and a valid cycle

There are three possibilities for a set of SP graphs: compatible weights exist,
valid cycles exist, or neither exists. In the last case, the unbounded solutions of
(8.92)—(8.9d) are of a more complicated structure than those represented by valid
cycles, and require the usage of three or more commodities.

Computational tests suggest that the last case is not so common. In [28], a total
of 1,423 different instances are solved. Of these 276 have compatible weights, 1,137
have valid cycles, and only 10 (i.e., 0.7%) have neither.

A method for finding valid cycles (called VC method) enumerates pairs of SP
graphs, and constructs a graph G, which contains the arcs in one SP graph and the
reversed arcs in the other. One could then use reductions by removing nodes and
arcs of G that cannot be a part of a valid cycle, and then try to find a feasible cycle
containing a certain eligible arc. If there exists no such cycle, the eligible arc is
removed. This is repeated until the whole graph is eliminated or a valid cycle is
found. If the graph is completely eliminated by the reductions, there exists no valid
cycle with the two SP graphs considered.

Since a valid cycle exists if and only if a strongly connected component of G
contains an eligible arc, one can also search for strongly connected components,
and remove those with less than three nodes, and those without eligible arcs.

Proposition 8.2. After a finite and polynomial number of steps, the VC algorithm
will terminate, either with a valid cycle or a proof that no valid cycle exists.

Proposition 8.2 holds even if the SP graphs are not spanning. See [28] and [29]
for details. The best complexity of a VC method is & (m?|#|?), which reduces to
O(m?|7|) if all SP graphs are trees.

Undirected paths can be converted into two SP graphs, one in each direction, and
combined, so that the undirected single path case can be handled in a polynomial
way by the VC method. This way, we have found a valid cycle in an instance that
satisfies the generalized cyclic compatibility condition [6], so the cyclic conditions
in [6] are not stronger necessary conditions for the existence of compatible weights
than the absence of valid cycles.

If it is unknown if compatible weights exist, one can first try to find compatible
weights by solving (8.4a)—(8.4e) with an LP code, and if one fails to find a feasible
solution, one can proceed with the VC method. Another possibility is to first run
the VC method, and if it fails to find a valid cycle, one can try to find the weights
by solving (8.4a)—(8.4e). Computational tests reveal that for large problems, solving
(8.4a)—(8.4e) as an LP might take more than 100 times longer than running the VC
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method, so we recommend starting with the VC method, and only solving the LP
problem (8.4a)—(8.4e) if no valid cycle exists.

Considering (8.4a), (8.4b), (8.4c’), (8.4c”), (8.4d), (8.4e), we find that the arcs in
&\ (A, UA,) will be included in (8.9a) and will also occur in (8.9d). This means that
the arcs in &\ (A, UA,) cannot be part of F or B, and are not eligible, and so play a
very passive role in this context. Therefore, the VC methods are not changed.

Finally we note that in order to prohibit a certain valid cycle, one can introduce
constraints that either make the cycle infeasible or remove the eligible arcs in the
cycle.

8.4.3 General Inequalities

In the previous sections, we discussed special well-structured conflicts among SP
graphs. In general, however, such conflicts may be extremely complex. Now, we will
discuss methods that might discover such conflicts in a general case, and may also
generate corresponding valid inequalities based on fractional solutions to problem
(8.3). The following discussion is based on [78].

The set of all admissible binary vectors u will be denoted by % . For each ¢ € &
and ¢ € 7 consider the quantity 8 = rp(); + We — Iy(e)- Clearly, link e is on a
shortest path to node ¢ if, and only if, 8, = 0. Hence, a routing vector u defines
a shortest path routing configuration if there exists a system w of positive weights
such that 8,; > 1 if u,, =0, and 6,; = 0 if u., = 1. Since these conditions can be
rewritten as Oy + ey > 1, Oprtter = 0, the following linear program in variables y,
w=(w,:e€&),andr=(ry :s,t €¥) can be used to check whether a given vector
u defines admissible routing:

P(x): min y (8.11a)
s.t. Th(e) +We = Ta(eyy +lder = 1=y ecEte, (8.11b)

(Tb(e) T We = Ta(ey)Uer <y ecé& e, (8.11¢c)

we > 1 ecé, (8.11d)

=0 rev, (8.11e)

y>0. (8.11f)

This program is similar to (8.4); however in this case, being continuous, routing
variables u,; are used explicitly in the constraints. Let (w*(u), " (u),y*(u)) denote
an optimal solution of P(u). If y*(u) = 0 then w*(u) and r*(u) satisfy introduced
shortest path constraints, and hence u € 7%, i.e., u describes an admissible shortest
path routing configuration. On the other hand, if y*(u) > 0, there is no assignment
of link weights which can generate the routing configuration u.

Now, consider the problem dual to P(u); let g = (U e € Et €Y ), = (T : € €
&, e¥),and 0 = (6, : e € &) be the vectors of the dual variables corresponding
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to constraints (8.11b), (8.11c), and (8.11d), respectively. Using some algebra, we
eliminate dual variables 6,, substitute variables L., with new variables Qo = te; Ter —
Uer, and finally obtain the following form of the dual problem expressed in variables
0= (Qg:ec&te¥)andn=(n,:e €8t €Y):

F(u): max Fu(@) =Y Y tter Per (8.12a)
ecEteV

s.t. D 0a>0  ecd (8.12b)

tey
S 0= D 0u=0 vieV (8.12¢)

ecd+(v) ecd—(v)
SN 0= Y (e + 1) > —1 (8.12d)

ec&rey ecEteV

Qer < UetTery Ter > 0 ec&,teV. (8.12)

Problem F(u) can be regarded as a special type of the multi-commodity flow
problem with ¢, interpreted as an amount (bounded, and possibly negative) of
(pseudo-) flow of commodity ¢ on link e. Due to constraint (8.12c) the flow of each
commodity is circular, and due to (8.12b) the total amount of flow on each link is
nonnegative. The objective is to find the network flow with maximum total revenue
where u,, can be interpreted as the unit revenue of using link e by commodity ¢.
Problem F(u) is a generalization of problem (8.9) from the previous section, vari-
ables ¢,; corresponding to variables 7,; (with reversed sign). The major difference
results from the fact that with fractional routing vectors u, variables u,, explicitly
appear in formulation (8.12).

Let F}; denote the optimal objective of (8.12). It holds that the problem is feasible,
that 0 < F;; <1 for any u, and that a vector u defines an admissible shortest path
routing configuration if, and only if, F}; = 0.

From the dual test, general valid inequalities that separate non-admissible routing
vectors u can now be derived. Suppose that .# ! and .#? are two disjoint sets of pairs
(e,t) €EX Y, ie., I, 70CE XY, and #'N .70 = 0. Let S denote a real-valued
function defined as follows:

S = Y (I—ua)+ Y, da (8.13)
(e)es! (e,r)es0

We will consider valid inequalities of the following form:
S(7Y, 7% u) > 1. (8.14)

Note, that this is exactly the form of conflict-eliminating constraints (8.3f) with
I'=Cand #°=C.

For binary u” all terms in (8.13) are binary, so S(.#!,.#°;u°) is nonnegative and
integer. If (8.14) is not satisfied, then S(.#!, #%u%) = 0, and all its terms must
be equal to 0. Hence, inequality (8.14) does not hold for a binary vector u° (i.e.,
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S(#1,.#%u) = 0) if, and only if, ud, = 1 for all (e,z) € .#" and u, = 0 for all (e,t) €
#9. Suppose u” is a binary vector defining a non-admissible routing configuration,
and (¢, 7) is a solution of problem F(u°) such that F,,0(¢) > 0. Then, inequality
®.14) with #1 = 7L (W) ={(e,t) €EXV :ud, = 1A @y >0} and I° = 70 (u0) =
{(e;t) € &<V :ul, = 0A @y < 0} separates u® and does not separate any admissible
routing vector u (i.e., any binary u € %).

Fractional vector u® (u with at least one strictly fractional u,; always describes
a non-admissible shortest path routing configuration) can also be separated with
a general method analogous to the one used for separating non-admissible binary
shortest path routing vectors u by solving problem F(u"). Separating fractional vec-
tors is however more complex. The goal is to find sets .#!' and .#° for which
inequality (8.14) separates u” and does not separate any admissible routing con-
figuration, and for which these sets determine the most violated valid inequality
of the considered type. Let ¢ = (ger : € € &,v € ¥') be a binary vector and de-
fine 7(q) = {(e;t) € & X ¥ : g = 1} (i.e., ¢ is the characteristic function of
set _#(q)). Suppose that #! = #(y) and #° = #(z) for two binary vectors
y=0u:ecEtc¥)andz=(z,:e € &, t € V). We assume that sets .#° and .#!
are disjoint, S0 y + ze < 1 must hold for all pairs (e,). Then, function (8.13) can
be calculated as

S I%u) =YD (1= tter)yer + therzen)- (8.15)
ec&tey

Now, for a non-admissible u°, an issue arises of how to determine such vectors
y and z, such that S(_Z (y), #(z);u®) < 1 and all binary vectors u separated by
(8.14) correspond to non-admissible routing configurations. Consider the following
problem (where A is a small strictly positive constant):

G(u):  min GU y’ Z Z — Uet yet+uetzct) (8.16a)
ecEtey

s.t. (p,m) € Fy (8.16b)

DD U > A (8.16¢)
ecEtey

Qet < Yer ec& eV (8.16d)

—Qot <Yer+zes ec€EtEV  (8.16¢)

Vet +2Zer < 1 ec&te¥y  (8.160)

Yet,Zer € {0, 1} ec& eV, (8.16g)

Let problem G(u°) be feasible for some (fractional) u°; denote its optimal so-
lution by (¢*(u°), 7*(u°), y*(u®), z*(u®)), and by G, the optimal value of the
objective function. If G* = G;, < 1, then inequality (8.14) with .¥ L= 7))
and .#° = #(z*(u°)) separates u’, and it does not separate any admissible binary
shortest path routing configuration vector u € % .
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As in the case of binary routing vectors, the cut can be made stronger by defining
a smaller set . |. This requires appropriate modification of G(u) (cf. problem H(u)
in [78]).

In contrast to the LP problem F(u), problem G(u) is an MIP. Trying to separate
fractional vectors u more effectively, we might consider a linear relaxation of prob-
lem G(u). The definition of _#(g) can be modified to cover fractional vectors g:
F(q) ={(e,t) € & XV : g > 0}, because sets _Z (y*) and ¢ (z*) are disjoint.
Then, inequality (8.14) is still properly defined in the sense that admissible routing
configurations are not separated.

Unfortunately, G, is in general not equal to S(_# (y*), # (z*);u). However, one
may still use an approximate separation procedure that consists of solving the linear
relaxation and evaluating the resulting value of S(_# (y*), # (z*);u): a valid in-
equality is found if S(_# (y*), # (z*);u) < 1. It should be noted that due to the fact
that variables ¢,; describe circular flows, and constraint (8.12b) requires that neg-
ative flows are compensated for by positive flows, in practice usually all nonzero
values @, are equal to A or —A, for some 0 < A < 1. When this is the case,

w=A4-S(Z ("), #(z");u), and a valid inequality separating u is thus found if
Gj, < A.

Thus, we have a set of methods that generate cuts separating a fractional solution
vector u: solving problem H(x) as an MIP, solving problem G(u) as an MIP, and
solving the linear relaxation of problem G(u). These methods clearly differ with
respect to their computational complexity and also the quality of the computed cuts.
In practice however, one is not obliged to choose a single method. Instead, one
can combine the selected methods into meta-methods by running these methods in
sequence or in parallel until the first cut is found or some time limit is reached. This
gives rise to different strategies of generating cuts.

Table 8.1 Results of B&C for a six node network

Scenario After Strategy Time [sec.] Nodes Cuts
1 - CPLEX >4155  >664000* -
2 - MIP(G) >41800*  >28000 >8000
3 - LR(G)/MIP(G) >72700*  >66600 >10000
4 - CcC 548 68700 1556
5 - CC/LR(G) 4081 64000 2485
6 - CC/MIP(G) 47777 65200 4696
7 - CC/LR(G)/MIP(G) 13299 24900 2785
8 - CC/LR(G)/MIP'(G) 4071 14500 1961
9 - CC/MIP(H)/LR(G)/MIP(G) 34400 43600 3114
10 - CC/MIP(H)|(LR(GYMIP(G))) 7550 7200 1567
11 4 CPLEX 292 46400 1556
12 9 CPLEX 539 57100 3114
13 10 CPLEX 41 5800 1567

To evaluate the effectiveness of different methods and different strategies of gen-
erating cuts, we have performed numerical experiments using a small test network
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consisting of six nodes and 28 links with capacities ranging from 24 to 76, and all
possible 30 demands. We considered solving the integrated MIP problem of routing
and link weights optimization with a B&C method using the CPLEX 10.1 solver.
The optimal value of the objective function (the objective was to maximize the min-
imal residual link capacity) was equal to 6, while the upper bound resulting from
the linear relaxation of the problem was equal to 13. The results of the experiments
are summarized in Table 8.1. We applied a number of strategies that are defined in
column Strategy: CPLEX is relying only on standard cuts generated by the solver;
CC is generating combinatorial inequalities described in Section 8.4.1; MIP(X) is
generating cuts by solving problem X as MIP; LR(X) is generating cuts by solv-
ing problem X as LP. Symbols / and || mean that the two methods given as the
arguments are run, respectively, in sequence and in parallel. The table provides the
information about the total time of the computation, the total number of visited B&C
nodes, and the total number of generated user-defined cuts. The asterisk in columns
Nodes or Time means that the computation was aborted due to, respectively, running
out of memory or reaching a time limit.

On the one hand, it is evident that there is a need to combine the MIP-based
methods of generating general inequalities with the method of generating combina-
torial cuts; that is because of the high computational cost of solving problems H(u)
and G(u) as MIPs, and of the insufficient quality of cuts resulting from solving the
linear relaxation of problem G(u). The results also suggest that the separation pro-
cedure based on solving problems H(u) or G(u), and as a result the overall B&C
approach, do not scale well with the network size, because the integer linear models
very quickly become large and hard to solve. On the other hand, however, the qual-
ity of cuts that are generated using MIP-based methods is likely to be high. This can
be examined by providing the cuts resulting from a particular scenario (cf. scenario
10) as a set of initial user-defined cuts (this fact is indicated in column After) and
solving the problem again with the CPLEX solver’s regular B&C procedure; the
quality of generated cuts can be seen from scenarios 11 through 13. Thus, constitut-
ing the only exact approach that allows separating fractional solutions, the presented
methods seem to be worth investing even more research effort into.

8.5 Heuristic Methods

As already pointed out, shortest path routing problems are NP-hard. Direct formula-
tions are extremely hard to solve, and integer programming approaches can typically
resolve only small- to medium-size problems. Moreover, in an operational setting,
additional constraints can appear that are difficult to integrate in a mixed-integer
programming formulation. Therefore, for large network instances, heuristics can be
necessary to find good feasible solutions in limited computing time. Another impor-
tant application of heuristic methods is that they provide good upper bounds for the
branch-and-cut integer programming approach of the form presented in Section 8.3.
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8.5.1 Local Search

One of the first heuristic approaches to the shortest path routing problem STEP
for its ECMP version was a local search approach developed by Fortz and Thorup
[42, 45]. Recently, a similar implementation has been made available in the open
source TOTEM toolbox [57].

A solution of the weight setting problem is completely characterized by its vector
w of weights. The local search heuristic is based on two different neighborhoods,
defined by one of the two following operations applied to w.

Single weight change. This simple modification consists in changing a single
weight in w. We define a neighbor w' of w for each arc e € & and for each
possible weight w’ # w, by setting w, = w" and w; = wy forall f € &\ {e}.

Evenly balancing flows. To obtain a good routing when ECMP is applied, it is

desirable to split the flow as evenly as possible between different arcs.
More precisely, consider a target node ¢ such that some part of the demand going
to ¢ goes through a given node u. Intuitively, we would like OSPF routing to split
the flow to ¢ going through u evenly along the arcs leaving u. This is the case
when every arc in § 7 (u) belongs to a shortest path from u to . More precisely, if
6% (u) ={a;:1<i< p},andif P is one of the shortest paths from the originating
node of g; to ¢, fori =1,2,..., p, as illustrated in Figure 8.4, then we want to set
w’ such that

Wo, W (B) =w,, +w(P)  1<ij<p,

where w'(P;) denotes the sum of the weights of the arcs belonging to P;. A simple
way of achieving this goal is to set

*—w(P)ifa=a;, fori=1,...
W (a) = w*—w(P,) ifa aj, for i yeees D
Wa otherwise

where w* = 1 +max;—12__,{w(P)}.

A drawback of this approach is that an arc that does not belong to one of the
shortest paths from u to # may already be congested, and the modifications of
weights we propose will send more flow on this congested arc, an obviously
undesirable feature. We therefore decided to choose at random a threshold ratio
0 between 0.25 and 1, and we only modify weights for arcs in the maximal subset
B of 6 (u) such that

Wa; +W(P) < wa; +w(Pj) Vi:a;€B, j:a;¢B,
IV <8 c, Va € B,
where [}’ denotes the load on a resulting from weight vector w. The last relation

implies that the utilization of an arc a € B resulting from the weight vector w is
less than or equal to 6, so that we can avoid sending flow on already congested
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arcs. In this way, flow leaving u towards ¢ can only change for arcs in B, and
choosing 0 at random allows us to diversify the search.

This choice of B does not ensure that weights remain below w,,,,. This can
be done by adding the condition max;.q;cp w(P;) — min;. 4,cp W(P;) < Wyar When
choosing B.

Fig. 8.4 The second type of move tries to make all paths form u to ¢ of equal length

Note that the second type of move does not apply to unsplittable flow routing. In
that case, only the first type of move is relevant. Moreover, adapting the algorithm
for unsplittable flows requires more work, as solutions with multiple shortest paths
must be rejected (or highly penalized in the objective function).

These neighborhoods are embedded in a local search heuristic where cycling is
avoided by using hashing tables (this can be seen as a particular tabu search imple-
mentation). Some effective diversification schemes have also been proposed. The
main strength of this approach is its ability to efficiently recompute the shortest
paths and the flows while exploring the neighborhood. As these efficient approaches
have also been used in subsequent works, we describe them in Subsection 8.5.3. Re-
cently, Fortz and Umit [81] managed to significantly improve the results obtained
by the heuristic by warm-starting the local search with the dual variables of a multi-
commodity flow relaxation of the problem. The idea of using the dual variables as
heuristic weights has been concretized in the TOTEM toolbox as of version 3.2 un-
der the name of the FastIPMetric module. Klopfenstein and Mamy [56] recently
showed that the optimization problem could be made more tractable by restricting
the number of possible weight values on arcs to only a few.

One advantage of this approach is that it can be easily extended to take into
account multiple demand matrices [43] or multiple scenarios arising, for example,
from robustness issues (e.g., link or node failures) [44].

8.5.2 Other Algorithms

Ericsson et al. [37] have proposed a genetic algorithm for the same problem. Solu-
tions are naturally represented as vectors of weights, and the crossover procedure
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used is random keys, first proposed by Bean [4]. To cross and combine two par-
ent solutions p; (elite) and p, (non-elite), first generate a random vector r of real
numbers between 0 and 1. Let K be a cutoff real number between 0.5 and 1, which
will determine if a gene is inherited from p; or p,. A child c is generated as fol-
lows: for all genes i, if r[i] < K, set c[i] = pi[i]; otherwise, set c[i] = p2[i]. They also
implemented a mutation operator that randomly mutates a single weight.

This approach was improved by Buriol et al. [30]. They added a local search pro-
cedure after the crossover to improve the population. This hybrid approach, com-
bined with dynamic updates of shortest paths and flows, lead to results competitive
in quality to the local search of Fortz and Thorup, with a slightly faster convergence.
Another application of genetic algorithms to SPR design can be found in [62].

A simulated annealing approach was proposed by Ben-Ameur [8] for the sin-
gle path routing case. Another line of heuristic approaches comes from using La-
grangean relaxations of the MIP models (see [9] for single path routing and [51] for
ECMP routing).

8.5.3 Effectiveness Issues

To evaluate the cost of a solution represented as a set of weights, we have to com-
pute the shortest paths for all origin-destination pairs, then send the flows along the
shortest paths according to the ECMP splitting rule. This could be a bottleneck in
the search for good solutions as computing this cost function from scratch is com-
putationally expensive.

There are two basic ways of computing the ECMP flows for a given system of
weights w. The first way consists in using an LP formulation. In such a formulation
a regular weight system w (for the notion of regularity see Section 8.2.1) is given,
and the unknowns are the accumulated link flows x,, (recall that x,; is the total
flow to destination node ¢ on link e). As explained in [72], such a formulation can
be obtained as a linear program resulting from a subset of the complete problem
formulation presented in Section 8.7.1. In the formulation, variables w, are fixed to
the values of the current weights, routing variables u,; are made continuous, capacity
constraints (8.18d) are skipped, and the objective is changed to maximizing the
following function:

F=(|7] |g|)zs€'7/25€'1/\{v}rst +Ze€£2t€‘i/\{a(e‘)}(1 — Uer). (8.17)

However, for heuristic solutions, we can also apply a fast algorithmic approach
to compute the flows. This can be done using a two-step algorithm based on the
shortest path computation. In the first step we compute all the w-shortest paths for
all node pairs, and then, in the second step, we recursively assign flows to the paths
computed in the first phase (see [45] or Algorithm 7.1 in [68]).

In most heuristic approaches, the number of changes in the shortest paths graph
and in the flows is very small between neighboring solutions. Hence, using fast
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updates of shortest paths and flows is crucial to make heuristics effective. We now
briefly review these approaches.

With respect to shortest paths, this idea is already well studied [74], and we
can apply their algorithm directly. Their basic result is that, for the recomputation,
we only spend time proportional to the number of arcs incident to nodes s whose
distance ry to f changes. In typical experiments there were only very few changes, so
the gain is substantial — in the order of factor 15 for a 100 node graph. An improved
algorithm was recently proposed by Buriol et al [31].

To update the flows, a similar approach, described in [45], can be used. Experi-
ments reported in that paper show that using dynamic updates of shortest paths and
flows make the algorithm from five to 25 times faster, with an average of 15 times
faster.

8.6 Numerical Results

In this section, we present selected numerical results obtained with the two pre-
sented optimization approaches. The exact integer programming approach described
in Section 8.3 is illustrated in Subsection 8.6.1 for the case of unsplittable shortest
path routing . In Subsection 8.6.2, we then present results for one of the local search
heuristics discussed in Section 8.5.

8.6.1 Integer Programming Approach

Several variants of the two-phase integer programming approach have been imple-
mented as part of the network optimization library DISCNET [2]. This implemen-
tation is especially designed for the unsplittable shortest path routing version and
uses only binary link-flow variables (or, alternatively, binary path variables) instead
of the SP tree variables and the aggregated flow variables to model the routing in
the master problem formulation. The corresponding conflict constraints for the un-
splittable shortest path routing version are separated via combinatorial heuristics or,
if these fail, via the client problem analogously to the conflict inequalities for the
ECMP routing version, as described in Sections 8.3 and 8.4. In addition to these
inequalities, which describe the admissible routing patterns independently of traf-
fic demands and link capacities, the DISCNET implementation also uses cutting
planes based on the induced traffic flows and the link capacities. In practice, in-
duced cover inequalities based on the precedence-constrained knapsacks defined by
a single link capacity constraint and the subpath consistency among the paths across
that link proved to be very useful [13, 18]. All data structures and algorithms are
implemented in C++ using the library LEDA 4.1 [1]; the linear programs arising in
the solution process are solved with CPLEX 11.0 [53]. Further details, including
a description of all cutting planes and separation algorithms used, of the especially
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Table 8.2 Integer programming results for unsplittable shortest path routing
Problem Nodes Links Demands LP LB Sol Nodes Gap (%) Time (s)

Atlanta 15 22 210 0.65 0.86 0.86 30 0.0 10.3
Dfn-bwin 10 45 90 0.34 0.69 0.69 89 0.0 26.5
Dfn-gwin 11 21 110 0.50 0.51 0.51 521 0.0 16.3
Di-yuan 11 42 22 0.25 0.62 0.62 33 0.0 1.8
France 25 45 300 0.60 0.71 0.74 76 5.0 10000.0
Germany50 50 88 662 0.64 0.64 0.73 56 12.7 10000.0
New York 16 49 240 0.44 0.62 0.62 15 0.0 54.9
Nobel-EU 28 41 378 0.44 0.44 045 75 0.3 10000
Nobel-GER 17 26 121 0.64 0.73 0.73 101 0.0 1141
Nobel-US 14 21 91 0.48 0.49 0.49 71 0.0 20.4
Norway 27 51 702 0.54 0.54 0.62 99 14.9 10000.0
PDH 11 34 24 0.34 0.80 0.80 85 0.0 6.37
Pioro40 40 &9 780 0.38 0.38 045 311 19.6 10000.0
Polska 12 18 66 0.82 093 093 2149 0.0 200.2
Sun 27 102 67 0.29 039 0.70 102 76.8 10000.0
TA1 24 55 396 0.30 0.93 0.93 11 0.0 289.2

tailored branching schemes, and of the problem-specific primal heuristics, can be
found in [13] and [14].

Table 8.2 shows computational results for a collection of benchmark problems
taken from the Survivable Network Design Data Library [66]. All computations
were performed on a Linux 2.6 machine with an Intel Core2 CPU running at
2.66 GHz and with 4 GByte RAM. The two-phase decomposition algorithm was
run with a total CPU time limit of 10,000 seconds on each problem instance.

The underlying networks are bidirectional and have the same capacity for both
directions of all links. The number of nodes, bidirected links, and nonzero traffic
demands is shown in the first columns of Table 8.2. Column LP shows the lower
bound obtained by solving the linear relaxation of (8.3) at the root node of the mas-
ter problem’s branch-and-bound tree. The columns LB and Sol show the best lower
bound proved and the value of the best solution found by the two-phase decomposi-
tion algorithm within the given time limit. The remaining columns show the number
of explored branch-and-bound nodes, the residual optimality gap, and the total CPU
time until either optimality was proved or the time limit exceeded.

We observe that small- and medium-size instances can be solved optimally. For
large problems optimality cannot always be achieved. Instances with dense networks
that have lots of short potential routing paths for most demand pairs are more diffi-
cult than those where the underlying networks are fairly sparse. For instances with
dense networks, lots of violated conflict constraints are separated during the execu-
tion of the algorithms, which often drastically slows down the solution of the linear
relaxation. For the most difficult instances, only few branch-and-bound nodes could
be explored.

Figure 8.5 illustrates the importance of optimizing the routing weights in prac-
tice. It shows the different link loads that would result with unsplittable shortest
path routing from three commonly used default weight settings, and those resulting
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Fig. 8.5 Link congestion values in G-WiN for several routing metrics

from the optimized routing weights in the German national research and education
network G-WiN with capacities and traffic demands of August 2001. Even with-
out using the traffic splitting possibilities of the ECMP routing version, the traffic
is distributed much more evenly for the optimized metric. The peak congestion is
not even half of that for the default settings, which significantly reduces packet de-
lays and loss rates and improves the network’s robustness against unforeseen traffic
changes and failures.

8.6.2 Heuristic Methods

In this section, we present results obtained with the TOTEM implementation, called
IGP-WO, of the local search heuristic [57] described in Section 8.5.

The instances used are the same as in Section 8.6.1, but with ECMP traffic split-
ting allowed. The heuristic tries to optimize the normalized cost function defined
in [43] (see also Section 8.7.2). As a side product, this cost function also maintains
small maximum utilization.

As proposed in [81], the heuristic is started with weights corresponding to the
values of the dual variables of a multi-commodity flow relaxation of the problem.
This relaxation also provides a lower bound on the optimal value. 100 iterations of
the local search heuristic are performed.

Results are presented in Table 8.3, where they are compared based on the max-
imum utilization and the normalized cost function from [43]. MCNF is the lower
bound obtained with the multi-commodity flow relaxation of the problem, Inv-cap is
obtained with weights inversely proportional to the link capacities (the standard used
by most operators), and Dual Values is the solution obtained by setting weights using
dual values from the MCNF relaxation. We report max-utilization for three flavors
of IGP-WO, applied starting with the dual values solution. NC is the solution after
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100 iterations of local search with the normalized cost function as objective, MU-H
after 100 iterations with max-utilization as objective, and MU-T after 1,000 iter-
ations with max-utilization as objective. Note that performing 100 iterations takes
less than five seconds on a standard desktop PC, which makes the heuristic approach
very attractive if many scenarios have to be considered, or if operators need to react
quickly to a sudden event.

Table 8.3 Heuristic results for ECMP routing

Maximum Utilization Normalized Cost
Problem  MCNF Inv-cap Dual IGP-WO MCNF Inv-cap Dual IGP-WO
Values NC MU-H MU-T Values
Atlanta 0.65 095 0.96 092 0.83 074 0.14 020 0.28 0.20

Dfn-bwin 034 042 051 069 042 042 0.11 011 0.12 0.11
Dfn-gwin 050 0.67 0.83 056 052 050 011 011 0.13 0.11
Di-yuan 025 077 0.75 062 075 050 0.10 0.14 0.17 0.11
France 060 1.64 1.62 079 075 0.65 0.11 23.87 25.00 0.15
Germany50 0.64 1.76 1.56 075 0.70 0.65 0.08 8.78 19.28 0.13
New York 044 085 095 069 0.84 0.64 0.11 0.14 0.18 0.13
Nobel-EU 044 077 0.77 059 044 044 008 0.11 0.11 0.10
Nobel-GER  0.64 145 121 0.67 0.64 064 0.11 1231 6.43 0.13
Nobel-US 048 0.66 0.79 056 050 049 0.10 0.12 0.14 0.12

Norway 0.54 090 1.08 069 074 060 012 015 029 0.13
PDH 034 1.10 332 0.80 051 051 0.09 1.01 124.66 0.14
Pioro40 038 0.71 0.56 048 040 038 0.09 0.10 0.10 0.09
Polska 0.82 1.04 1.08 090 091 087 025 053 054 0.25
Sun 029 204 1.89 0.67 0.71 034 0.09 6506 27.99 0.13
TA1 033 089 0.76 066 035 032 009 014 0.13 0.10

We observe that Inv-cap and Dual Values are often very far from the lower bound,
and that IGP-WO improves this solution substantially, both for max-utilization and
the normal cost. Optimization with max-utilization as objective function performs
much better with that criterion, but at the price of a very local improvement in the
routing. For instances France, Germany50, Nobel-GER, PDH, and Sun, the im-
provement is really impressive as the heuristic is able to decrease the maximum
utilization and the normalized cost below 1, while simple heuristics lead to an over-
congested network.

Note that for most instances, the dual values perform worse than Inv-Cap. Nev-
ertheless, we observed that in practice, this solution is a better starting point for
the local search heuristic as the structure of the routing is closer to an optimal one
despite the worst objective value.
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8.7 Selected Extensions

In this section we briefly extend the presentation of the previous sections to cover
several important issues not discussed so far. In particular, we present a full mixed-
integer programming formulation of STEP (Section 8.7.1), discuss additional rout-
ing constraints and various objective functions (Section 8.7.2), show how resource
dimensioning can be taken into account (Section 8.7.3), and show how optimization
of resilient weight systems can be approached (Section 8.7.4). Finally, in Section
8.8, we give historical remarks.

8.7.1 General MIP Formulation

For completeness, a full mixed-integer programming formulation of the basic SPR
problem (STEP) considered earlier in this chapter is given below. The formulation
is explained in detail, so the knowledge of Section 8.2 is sufficient for its under-
standing.

General ECMP Traffic Engineering Problem

find
xes ECMP flow destined to node ¢ induced by system w on link e

zy+ common value of the ECMP flow destined to node ¢, assigned to the links
outgoing from node v and belonging to the shortest paths from v to ¢

ue; variable indicating whether link e is on a shortest path to node ¢

ry length of the w-shortest path from s to ¢

w, weight assigned to link e

Z maximum over link utilization factors

minimize
7 (8.18a)

subject to
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2ecs—(1)Xet =Dy tev (8.18b)
e+ (v)Xet = Lecs—(v)Xet = du re¥,ve¥\{t} (8.18¢c)
Yie\{a(e)}Xer < Zce eEE (8.18d)

0 <xer < Diter ec&,te ¥ \{ale)} (8.18e)

0 < Zg(eyr — Xer < Di(1 — 1) ec&, tc¥\{ale)} (8.18f)
L=ty SWe+Tpey —Taey €€E, 1€V \{ale)} (8.18g)

We +Tpe)r = Ta(eyy < M (1 — ttr) ec &, te v \{ale)} (8.18h)
rg > 1 (s,) € ¥V (8.181)

Fow =0 ver (8.18))

ue €{0,1} ec &, re¥\{ale)} (8.18k)

we. €4{1,2,...,K} ee& (8.18)

x,2,r,Z>0 (8.18m)
xzrZcR (8.18n)

Above, M is a constant ("big-M”") not less than the difference in length of any two
paths in the network graph. For example, M = K - |&| would suffice. Still, for com-
puting lower bounds in the linear relaxations of problem (8.18) it is advantageous to
use an M as small as possible, so this constant can be made dependent on the pairs
of nodes (s,t), and thus potentially reduced for some node pairs.

Subproblem (8.18a)—(8.18d) minimizes the maximum link utilization factor Z
and is an aggregated node-link formulation of a capacitated multi-commodity flow
allocation problem with aggregated flows x, where x,,; denotes the total traffic des-
tined to node ¢ carried on link e. The next two constraints express the ECMP rule of
traffic routing by means of binary routing variables u. Each variable u,, is supposed
to be equal to 1 if, and only if, link e belongs to at least one shortest path (with
respect to weight system w) from its originating node a(e) to node 7. Constraint
(8.18e) forces traffic destined to node ¢ to use only the links allowed by the rout-
ing configuration u (i.e., links e € & with u,; = 1), while constraint (8.18f) ensures
that in each node the traffic to destination node ¢ is split equally among the links
assigned to that destination. For node v € ¥ and destination ¢ € ¥ this common
value of equal split is expressed by variable z,,. Finally, the shortest path routing
constraints (8.18g)—(8.18j) ensure that the routing vector u defines shortest paths
consistent with the weight system w. Each variable r,, is supposed to express the
distance (length of the shortest path with respect to w) from node v to node ¢. The
quantity ge := We + Ip(e); — 'a(e)r measures the difference between the length of the
shortest path which starts in node a(e), goes over link e, and ends in node ¢, and the
distance from the starting node of e to . Thus, link e is on a shortest path to node ¢
if, and only if, we + rp(e); — Fa(eyr = 0.

The correctness of formulation (8.18) follows easily from the discussion of the
independent STEP master and ISP client models in Section 8.3.
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Note that in formulation (8.18) the link weights can be either integer (as assumed)
or continuous in interval [1, K]. In the latter case the regularity of the weight system
resulting from (8.18) is assured by constraint (8.18g).

We would like to finally recall what has already been stated on several occasions,
that because of the intrinsic difficulty of STEP, such formulations as (8.18) are virtu-
ally impossible to solve to optimality by contemporary integer programming solvers
for medium-size network instances.

8.7.2 Additional Routing Constraints and Other Objective
Functions

The general STEP formulation (8.18) can be adjusted to a version with a limited
split of flows at the nodes, which can be useful in practice. This is done by adding
the following constraint to formulation (8.18):

2665*(\))“& <n Ve 7/7 te 7/\{‘}} (8.19)

This constraint forces at most n nonzero flows allowed to each destination ¢ at each
node v € ¥ Certainly, if we put n = 1, then we will force unsplittable shortest path
routing, admitting only single shortest paths.

The same adjustment can be applied to the STEP formulation (8.3) introduced
in Section 8.3.1. Adding constraint (8.19) with n = 1 and removing variables z and
constraints (8.3e) from formulation (8.3) will result in an integer progamming for-
mulation for the STEP master problem for unsplittable shortest path routing.

There can also be other objective functions used in formulation (8.18). A sim-
ple variant of such a function is the maximization of the minimum unused link
capacity, denoted by Z, with the following constraint in place of constraint (8.18d):
ie\{a(e)}¥et +Z < ce, for all links e € &. Note that with this objective the problem
is always feasible, provided we allow solutions with Z < 0. However, a true feasible
routing solution is obtained when the resulting objective value is nonnegative.

Another important objective is obtained by using the Kleinrock delay func-
tion [47], to be minimized: F = Y, 0 Cl‘%}g, where y, denotes the load of link e,
Ye = 2te¥\{a(e)}Xer- As With the previous objectives, the Kleinrock function helps
us avoid congestion by penalizing heavily loaded links. Observe that this objec-
tive function is convex, and hence can be approximated with a piecewise linear
function. This leads to linear relaxations of the corresponding convex problem, as
demonstrated in [45] (see also [68]).

As discussed in [43], an issue in these cost function formulations is that they
do not provide a universal measure of congestion. It is natural to require that the
maximum utilization remain below 1, independently of the network topology and
demand matrix. Similarly, we would like a universal cutoff value for the cost func-
tion, independently of the network topology and demand matrix. Fortz and Thorup
defined in [43] a normalized version of the cost function, for which it is natural to
say that a routing solution congests a network if the cost is greater than 1.
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A comparison between problems with several objective functions can be fo