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Preface

Graphics & Visualization: Principles and Algorithms is aimed at undergraduate
and graduate students taking computer graphics and visualization courses. Stu-
dents in computer-aided design courses with emphasis on visualization will also
benefit from this text, since mathematical modeling techniques with parametric
curves and surfaces as well as with subdivision surfaces are covered in depth. It
is finally also aimed at practitioners who seek to acquire knowledge of the fun-
damental techniques behind the tools they use or develop. The book concentrates
on established principles and algorithms as well as novel methods that are likely
to leave a lasting mark on the subject.

The rapid expansion of the computer graphics and visualization fields has led
to increased specialization among researchers. The vast nature of the relevant lit-
erature demands the cooperation of multiple authors. This book originated with a
team of four authors. Two chapters were also contributed by well-known special-
ists: Chapter 16 (Global Illumination Algorithms) was written by P. Dutré. Chap-
ter 8 (Subdivision for Graphics and Visualization) was coordinated by A. Nasri
(who wrote most sections), with contributions by F. A. Salem (section on Anal-
ysis of Subdivision Surfaces) and G. Turkiyyah (section on Subdivision Finite
Elements).

A novelty of this book is the integrated coverage of computer graphics and
visualization, encompassing important current topics such as scene graphs, subdi-
vision surfaces, multi-resolution models, shadow generation, ambient occlusion,
particle tracing, spatial subdivision, scalar and vector data visualization, skeletal
animation, and high dynamic range images. The material has been developed,
refined, and used extensively in computer graphics and visualization courses over
a number of years.

Some prerequisite knowledge is necessary for a reader to take full advantage
of the presented material. Background on algorithms and basic linear algebra

xi
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xii Preface

Some prerequisite knowledge is necessary for a reader to take full advantage
of the presented material. Background on algorithms and basic linear algebra
principles are assumed throughout. Some, mainly advanced, sections also require
understanding of calculus and signal processing concepts. The appendices sum-
marize some of this prerequisite material.

Each chapter is followed by a list of exercises. These can be used as course as-
signments by instructors or as comprehension tests by students. A steady stream
of small, low- and medium-level of difficulty exercises significantly helps under-
standing. Chapter 3 (2D and 3D Coordinate Systems and Transformations) also
includes a long list of worked examples on both 2D and 3D coordinate transfor-
mations. As the material of this chapter must be thoroughly understood, these
examples can form the basis for tutorial lessons or can be used by students as
self-study topics.

The material can be split between a basic and an advanced graphics course,
so that a student who does not attend the advanced course has an integrated view
of most concepts. Advanced sections are indicated by an asterisk �. The visual-
ization course can either follow on from the basic graphics course, as suggested
below, or it can be a standalone course, in which case the advanced computer-
graphics content should be replaced by a more basic syllabus.

Course 1: Computer Graphics–Basic. This is a first undergraduate course in
computer graphics.

• Chapter 1 (Introduction).

• Chapter 2 (Rasterization Algorithms).

• Chapter 3 (2D and 3D Coordinate Systems and Transformations). Sec-
tion 3.9 (Quaternions) should be excluded.

• Chapter 4 (Projections and Viewing Transformations). Skip Section 4.5
(Extended Viewing Transformation).

• Chapter 5 (Culling and Hidden Surface Elimination Algorithms). Skip Sec-
tion 5.4 (Occlusion Culling). Restrict Section 5.5 (Hidden Surface Elimi-
nation) to the Z-buffer algorithm.

• Chapter 6 (Model Representation and Simplification).

• Chapter 7 (Parametric Curves and Surfaces). Bézier curves and tensor prod-
uct Bézier surfaces.
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• Chapter 9 (Scene Management).

• Chapter 11 (Color in Graphics and Visualization).

• Chapter 12 (Illumination Models and Algorithms). Skip the advanced top-
ics: Section 12.3 (The Lambert Illumination Model), Section 12.7 (The
Cook–Torrance Illumination Model), Section 12.8 (The Oren–Nayar Illu-
mination Model), and Section 12.9 (The Strauss Illumination Model), as
well as Section 12.10 (Anisotropic Reflectance) and Section 12.11 (Ambi-
ent Occlusion).

• Chapter 13 (Shadows). Skip Section 13.4 (Shadow Maps).

• Chapter 14 (Texturing). Skip Section 14.4 (Texture Magnification and Mini-
fication), Section 14.5 (Procedural Textures), Section 14.6 (Texture Trans-
formations), Section 14.7 (Relief Representation), Section 14.8 (Texture
Atlases), and Section 14.9 (Texture Hierarchies).

• Chapter 17 (Basic Animation Techniques). Introduce the main animation
concepts only and skip the section on interpolation of rotation (page 622),
as well as Section 17.3 (Rigid-Body Animation), Section 17.4 (Skeletal
Animation), Section 17.5 (Physically-Based Deformable Models), and Sec-
tion 17.6 (Particle Systems).

Course 2: Computer Graphics–Advanced. This choice of topics is aimed at
either a second undergraduate course in computer graphics or a graduate course;
a basic computer-graphics course is a prerequisite.

• Chapter 3 (2D and 3D Coordinate Systems and Transformations). Review
this chapter and introduce the advanced topic, Section 3.9 (Quaternions).

• Chapter 4 (Projections and Viewing Transformations). Review this chapter
and introduce Section 4.5 (Extended Viewing Transformation).

• Chapter 5 (Culling and Hidden Surface Elimination Algorithms). Review
this chapter and introduce Section 5.4 (Occlusion Culling). Also, present
the following material from Section 5.5 (Hidden Surface Elimination): BSP
algorithm, depth sort algorithm, ray-casting algorithm, and efficiency is-
sues.

• Chapter 7 (Parametric Curves and Surfaces). Review Bézier curves and
tensor product Bézier surfaces and introduce B-spline curves, rational B-
spline curves, interpolation curves, and tensor product B-spline surfaces.
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• Chapter 8 (Subdivision for Graphics and Visualization).

• Chapter 12 (Illumination Models and Algorithms). Review this chapter
and introduce the advanced topics, Section 12.3 (The Lambert Illumina-
tion Model), Section 12.7 (The Cook–Torrance Illumination Model), Sec-
tion 12.8 (The Oren–Nayar Illumination Model), and Section 12.9 (The
Strauss Illumination Model), as well as Section 12.10 (Anisotropic Re-
flectance) and Section 12.11 (Ambient Occlusion).

• Chapter 13 (Shadows). Review this chapter and introduce Section 13.4
(Shadow Maps).

• Chapter 14 (Texturing). Review this chapter and introduce Section 14.4
(Texture Magnification and Minification), Section 14.5 (Procedural Tex-
tures), Section 14.6 (Texture Transformations), Section 14.7 (Relief Repre-
sentation), Section 14.8 (Texture Atlases), and Section 14.9 (Texture Hier-
archies).

• Chapter 15 (Ray Tracing).

• Chapter 16 (Global Illumination Algorithms).

• Chapter 17 (Basic Animation Techniques). Review this chapter and in-
troduce the section on interpolation of rotation (page 620), as well as Sec-
tion 17.3 (Rigid-Body Animation), Section 17.4 (Skeletal Animation), Sec-
tion 17.5 (Physically-Based Deformable Models), and Section 17.6 (Parti-
cle Systems).

Course 3: Visualization. The topics below are intended for a visualization
course that has the basic graphics course as a prerequisite. Otherwise, some of the
sections suggested below should be replaced by sections from the basic graphics
course.

• Chapter 6 (Model Representation and Simplification). Review this chapter.

• Chapter 3 (2D and 3D Coordinate Systems and Transformations). Review
this chapter.

• Chapter 11 (Color in Graphics and Visualization). Review this chapter.

• Chapter 8 (Subdivision for Graphics and Visualization).

• Chapter 15 (Ray Tracing).
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• Chapter 17 (Basic Animation Techniques). Review this chapter and in-
troduce Section 17.3 (Rigid-Body Animation) and Section 17.6 (Particle
Systems).

• Chapter 10 (Visualization Principles).

• Chapter 18 (Scientific Visualization Algorithms).

About the Cover

The cover is based on M. Denko’s rendering Waiting for Spring, which we have
renamed The Impossible. Front cover: final rendering. Back cover: three aspects
of the rendering process (wireframe rendering superimposed on lit 3D surface, lit
3D surface, final rendering).
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1
Introduction

There are no painting police—just have fun.
—Valerie Kent

1.1 Brief History
Out of our five senses, we spend most resources to please our vision. The house
we live in, the car we drive, even the clothes we wear, are often chosen for their
visual qualities. This is no coincidence since vision, being the sense with the
highest information bandwidth, has given us more advance warning of approach-
ing dangers, or exploitable opportunities, than any other.

This section gives an overview of milestones in the history of computer graph-
ics and visualization that are also presented in Figures 1.1 and 1.2 as a time-line.
Many of the concepts that first appear here will be introduced in later sections of
this chapter.

1.1.1 Infancy

Visual presentation has been used to convey information for centuries, as images
are effectively comprehensible by human beings; a picture is worth a thousand
words. Our story begins when the digital computer was first used to convey vi-
sual information. The term computer graphics was born around 1960 to describe
the work of people who were attempting the creation of vector images using a
digital computer. Ivan Sutherland’s landmark work [Suth63], the Sketchpad sys-
tem developed at MIT in 1963, was an attempt to create an effective bidirectional
man-machine interface. It set the basis for a number of important concepts that
defined the field, such as:

1
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in computer graphics
and visualization
(Part 1).

• hierarchical display lists;

• the distinction between object space and image space;

• interactive graphics using a light pen.

At the time, vector displays were used, which displayed arbitrary vectors from
a display list, a sequence of elementary drawing commands. The length of the
display list was limited by the refresh rate requirements of the display technology
(see Section 1.6.1).

As curiosity in synthetic images gathered pace, the first two computer art
exhibitions were held in 1965 in Stuttgart and New York.

The year 1967 saw the birth of an important modeling concept that was to rev-
olutionize computer-aided geometric design (CAGD). The Coons patch [Coon67],
developed by Steven Coons of MIT, allowed the construction of complex surfaces
out of elementary patches that could be connected together by providing continu-
ity constraints at their borders. The Coons Patch was the precursor to the Bézier
and B-spline patches that are in wide CAGD use today.

The first computer graphics related companies were also formed around that
time. Notably, Evans & Sutherland was started in 1968 and has since pioneered
numerous contributions to graphics and visualization.

As interest in the new field was growing in the research community, a key
conference ACM SIGGRAPH was established in 1969.

1.1.2 Childhood

The introduction of transistor-based random access memory (RAM) around 1970
allowed the construction of the first frame buffers (see Section 1.5.2). Raster
displays and, hence, raster graphics were born. The frame buffer decoupled the
creation of an image from the refresh of the display device and thus enabled the
production of arbitrarily complicated synthetic scenes, including filled surfaces,
which were not previously possible on vector displays. This sparked the interest in
the development of photo-realistic algorithms that could simulate the real visual
appearance of objects, a research area that has been active ever since.

The year 1973 saw an initial contribution to the visualization of multidimen-
sional data sets, which are hard to perceive as our brain is not used to dealing with
more than three dimensions. Chernoff [Cher73] mapped data dimensions onto
characteristics of human faces, such as the length of the nose or the curvature
of the mouth, based on the innate ability of human beings to efficiently “read”
human faces.
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Edward Catmull introduced the depth buffer (or Z-buffer) (see Section 1.5.3)
in 1974, which was to revolutionize the elimination of hidden surfaces in synthetic
image generation and to become a standard part of the graphics accelerators that
are currently used in virtually all personal computers.

In 1975, Benoit Mandelbrot [Mand75] introduced fractals, which are objects
of non-integer dimension that possess self-similarity at various scales. Fractals
were later used to model natural objects and patterns such as trees, leaves, and
coastlines and as standard visualization showcases.

1.1.3 Adolescence

The increased interest for computer graphics in Europe led to the establishment
of the Eurographics society in 1980. Turner Whitted’s seminal paper [Whit80]
set the basis for ray tracing in the same year. Ray tracing is an elegant image-
synthesis technique that integrates, in the same algorithm, the visualization of
correctly depth-sorted surfaces with elaborate illumination effects such as reflec-
tions, refractions, and shadows (see Chapter 15).

The year 1982 saw the release of TRON, the first film that incorporated ex-
tensive synthetic imagery. The same year, James Clark introduced the Geometry
Engine [Clar82], a sequence of hardware modules that undertook the geometric
stages of the graphics pipeline (see Section 1.4), thus accelerating their execution
and freeing the CPU from the respective load. This led to the establishment of a
pioneering company, Silicon Graphics (SGI), which became known for its revo-
lutionary real-time image generation hardware and the IrisGL library, the prede-
cessor of the industry standard OpenGL application programming interface. Such
hardware modules are now standard in common graphics accelerators.

The spread in the use of computer graphics technology, called for the es-
tablishment of standards. The first notable such standard, the Graphical Kernel
System (GKS), emerged in 1975. This was a two-dimensional standard that was
inevitably followed by the three-dimensional standards ANSI PHIGS and ISO
GKS-3D, both in 1988.

The year 1987 was a landmark year for visualization. A report by the US
National Science Foundation set the basis for the recognition and funding of the
field. Also a classic visualization algorithm, marching cubes [Lore87], appeared
that year and solved the problem of visualizing raw three-dimensional data by
converting them to surface models. The year 1987 was also important for the
computer graphics industry, as it saw the collapse of established companies and
the birth of new ones.
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Two-dimensional graphics accelerators (see Section 1.6.1) became widely
available during this period.

1.1.4 Early Adulthood

The 1990s saw the release of products that were to boost the practice of computer
graphics and visualization. IBM introduced the Visualization Data Explorer in
1991 that was similar in concept to the Application Visualization System (AVS)
[Upso89] developed by a group of vendors in the late 1980s. The Visualization
Data Explorer later became a widely used open visualization package known as
OpenDX [Open07a]. OpenDX and AVS enabled non-programmers to combine
pre-defined modules for importing, transforming, rendering, and animating data
into a re-usable data-flow network. Programmers could also write their own re-
usable modules.

De-facto graphics standards also emerged in the form of application program-
ming interfaces (APIs). SGI introduced the OpenGL [Open07b] API in 1992 and
Microsoft developed the Direct3D API in 1995. Both became very popular in
graphics programming.

Figure 1.3. The rise of graphics accelerators: the black line shows the number of
transistors incorporated in processors (CPU) while the gray line shows the number
of transistors incorporated in graphics accelerators (GPU).
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Three-dimensional graphics accelerators entered the mass market in the mid-
1990s.

1.1.5 Maturity

The rate of development of graphics accelerators far outstripped that of processors
in the new millenium (see Figure 1.3). Sparked by increased demands in the
computer games market, graphics accelerators became more versatile and more
affordable each year.

In this period, 3D graphics accelerators are established as an integral part
of virtually every personal computer. Many popular software packages require
them. The capabilities of graphics accelerators were boosted and the notion of
the specialized graphics workstation died out. State-of-the-art, efficient synthetic
image generation for graphics and visualization is now generally available.

1.2 Applications
The distinction between applications of computer graphics and applications of
visualization tends to be blurred. Also application domains overlap, and they
are so numerous that giving an exhaustive list would be tedious. A glimpse of
important applications follows:

Special effects for films and advertisements. Although there does not appear to
be a link between the use of special effects and box-office success, spe-
cial effects are an integral part of current film and spot production. The
ability to present the impossible or the non-existent is so stimulating that, if
used carefully, it can produce very attractive results. Films created entirely
out of synthetic imagery have also appeared and most of them have met
success.

Scientific exploration through visualization. The investigation of relationships be-
tween variables of multidimensional data sets is greatly aided by visual-
ization. Such data sets arise either out of experiments or measurements
(acquired data), or from simulations (simulation data). They can be from
fields that span medicine, earth and ocean sciences, physical sciences, fi-
nance, and even computer science itself. A more detailed account is given
in Chapter 10.

Interactive simulation. Direct human interaction poses severe demands on the
performance of the combined simulation-visualization system. Applica-
tions such as flight simulation and virtual reality require efficient algorithms
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and high-performance hardware to achieve the necessary interaction rates
and, at the same time, offer appropriate realism.

Computer games. Originally an underestimated area, computer games are now
the largest industry related to the field. To a great extent, they have influ-
enced the development of graphics accelerators and efficient algorithms that
have delivered low-cost realistic synthetic image generation to consumers.

Computer-aided geometric design and solid modeling. Physical product design
has been revolutionized by computer-aided geometric design (CAGD) and
solid modeling, which allows design cycles to commence long before the
first prototype is built. The resulting computer-aided design, manufactur-
ing, and engineering systems (CAD/CAM/CAE) are now in wide-spread
use in engineering practice, design, and fabrication. Major software com-
panies have developed and support these complex computer systems. De-
signs (e.g., of airplanes, automobiles, ships, or buildings) can be developed
and tested in simulation, realistically rendered, and shown to potential cus-
tomers. The design process thus became more robust, efficient, and cost-
effective.

Graphical user interfaces. Graphical user interfaces (GUIs) associate abstract
concepts, non-physical entities, and tasks with visual objects. Thus, new
users naturally tend to get acquainted more quickly with GUIs than with
textual interfaces, which explains the success of GUIs.

Computer art. Although the first computer art exhibitions were organized by sci-
entists and the contributions were also from scientists, computer art has
now gained recognition in the art community. Three-dimensional graphics
is now considered by artists to be both a tool and a medium on its own for
artistic expression.

1.3 Concepts
Computer graphics harnesses the high information bandwidth of the human visual
channel by digitally synthesizing and manipulating visual content; in this manner,
information can be communicated to humans at a high rate.

An aggregation of primitives or elementary drawing shapes, combined with
specific rules and manipulation operations to construct meaningful entities, con-
stitutes a three-dimensional scene or a two-dimensional drawing. The scene usu-
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ally consists of multiple elementary models of individual objects that are typically
collected from multiple sources. The basic building blocks of models are prim-
itives, which are essentially mathematical representations of simple shapes such
as points in space, lines, curves, polygons, mathematical solids, or functions.

Typically, a scene or drawing needs to be converted to a form suitable for
digital output on a medium such as a computer display or printer. The majority of
visual output devices are able to read, interpret, and produce output using a raster
image as input. A raster image is a two-dimensional array of discrete picture
elements (pixels) that represent intensity samples.

Computer graphics encompasses algorithms that generate (render), from a
scene or drawing, a raster image that can be depicted on a display device. These
algorithms are based on principles from diverse fields, including geometry, math-
ematics, physics, and physiology. Computer graphics is a very broad field, and no
single volume could do justice to its entirety.

The aim of visualization is to exploit visual presentation in order to increase
the human understanding of large data sets and the underlying physical phenom-
ena or computational processes. Visualization algorithms are applied to large
data sets and produce a visualization object that is typically a surface or a volume
model (see below). Graphics algorithms are then used to manipulate and display
this model, enhancing our understanding of the original data set. Relationships
between variables can thus be discovered and then checked experimentally or
proven theoretically. At a high level of abstraction, we could say that visualiza-
tion is a function that converts a data set to a displayable model:

model = visualization (data set).

Central to both graphics and visualization is the concept of modeling, which
encompasses techniques for the representation of graphical objects (see Chapters
6, 7 and 8). These include surface models, such as the common polygonal mesh
surfaces, smoothly-curved polynomial surfaces, and the elegant subdivision sur-
faces, as well as volume models. Since, for non-transparent objects, we can only
see their exterior, surface models are more common because they dispense with
the storage and manipulation of the interior.

Graphics encompasses the notion of the graphics pipeline, which is a se-
quence of stages that create a digital image out of a model or scene:

image = graphics pipeline (model).

The term graphics pipeline refers to the classic sequence of steps used to produce
a digital image from geometric data that does not consider the interplay of light
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8 1. Introduction

between objects of the scene and is differentiated in this respect from approaches
such as ray-tracing and global illumination (see Chapters 15 and 16). This ap-
proach to image generation is often referred to as direct rendering.

1.4 Graphics Pipeline

A line drawing, a mathematical expression in space, or a three-dimensional scene
needs to be rasterized (see Chapters 2 and 5), i.e., converted to intensity values
in an image buffer and then propagated for output on a suitable device, a file, or
used to generate other content. To better understand the necessity of the series of
operations that are performed on graphical data, we need to examine how they are
specified and what they represent.

From a designer’s point of view, these shapes are expressed in terms of a co-
ordinate system that defines a modeling space (or “drawing” canvas in the case of
2D graphics) using a user-specified unit system. Think of this space as the desk-
top of a workbench in a carpenter’s workshop. The modeler creates one or more
objects by combining various pieces together and transforming their shapes with
tools. The various elements are set in the proper pose and location, trimmed, bent,
or clustered together to form sub-objects of the final work (for object aggregations
refer to Chapter 9). The pieces have different materials, which help give the result
the desired look when properly lit. To take a snapshot of the finished work, the
artist may clear the desktop of unwanted things, place a hand-drawn cardboard or
canvas backdrop behind the finished arrangement of objects, turn on and adjust
any number of lights that illuminate the desktop in a dramatic way, and finally
find a good spot from which to shoot a digital picture of the scene. Note that
the final output is a digital image, which defines an image space measured in and
consisting of pixels. On the other hand, the objects depicted are first modeled in
a three-dimensional object space and have objective measurements. The camera
can be moved around the room to select a suitable viewing angle and zoom in or
out of the subject to capture it in more or less detail.

For two-dimensional drawings, the notion of rasterization is similar. Think
of a canvas where text, line drawings, and other shapes are arranged in specific
locations by manipulating them on a plane or directly drawing curves on the can-
vas. Everything is expressed in the reference frame of the canvas, possibly in
real-world units. We then need to display this mathematically defined document
in a window, e.g., on our favorite word-processing or document-publishing appli-
cation. What we define is a virtual window in the possibly infinite space of the
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Figure 1.4. Rasterization steps for a two-dimensional document.

document canvas. We then “capture” (render) the contents of the window into an
image buffer by converting the transformed mathematical representations visible
within the window to pixel intensities (Figure 1.4).

Thinking in terms of a computer image-generation procedure, the objects are
initially expressed in a local reference frame. We manipulate objects to model a
scene by applying various operations that deform or geometrically transform them
in 2D or 3D space. Geometric object transformations are also used to express all
object models of a scene in a common coordinate system (see Figure 1.5(a) and
Chapter 3).

We now need to define the viewing parameters of a virtual camera or win-
dow through which we capture the three-dimensional scene or rasterize the two-
dimensional geometry. What we set up is a viewing transformation and a projec-
tion that map what is visible through our virtual camera onto a planar region that
corresponds to the rendered image (see Chapter 4). The viewing transformation
expresses the objects relative to the viewer, as this greatly simplifies what is to
follow. The projection converts the objects to the projection space of the camera.
Loosely speaking, after this step the scene is transformed to reflect how we would
perceive it through the virtual camera. For instance, if a perspective projection
is used (pinhole-camera model), then distant objects appear smaller (perspective
shortening; see Figure 1.5(b)).
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10 1. Introduction

Figure 1.5. Operations on primitives in the standard direct rendering graphics
pipeline. (a) Geometry transformation to a common reference frame and view
frustum culling. (b) Primitives after viewing transformation, projection, and back-
face culling. (c) Rasterization and (d) fragment depth sorting: the darker a shade,
the nearer the corresponding point is to the virtual camera. (e) Material color
estimation. (f) Shading and other fragment operations (such as fog).
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Efficiency is central to computer graphics, especially so when direct user in-
teraction is involved. As a large number of primitives are, in general, invisible
from a specific viewpoint, it is pointless to try to render them, as they are not go-
ing to appear in the final image. The process of removing such parts of the scene
is referred to as culling. A number of culling techniques have been developed to
remove as many such primitives as possible as early as possible in the graphics
pipeline. These include back-face, frustum, and occlusion culling (see Chapter 5).
Most culling operations generally take place after the viewing transformation and
before projection.

The projected primitives are clipped to the boundaries of the virtual camera
field of view and all visible parts are finally rasterized. In the rasterization stage,
each primitive is sampled in image space to produce a number of fragments, i.e.,
elementary pieces of data that represent the surface properties at each pixel sam-
ple. When a surface sample is calculated, the fragment data are interpolated from
the supplied primitive data. For example, if a primitive is a triangle in space,
it is fully described by its three vertices. Surface parameters at these vertices
may include a surface normal direction vector, color and transparency, a number
of other surface parameters such as texture coordinates (see Chapter 14), and, of
course, the vertex coordinates that uniquely position this primitive in space. When
the triangle is rasterized, the supplied parameters are interpolated for the sample
points inside the triangle and forwarded as fragment tokens to the next processing
stage. Rasterization algorithms produce coherent, dense and regular samples of
the primitives to completely cover all the projection area of the primitive on the
rendered image (Figure 1.5(c)).

Although the fragments correspond to the sample locations on the final image,
they are not directly rendered because it is essential to discover which of them are
actually directly visible from the specified viewpoint, i.e., are not occluded by
other fragments closer to the viewpoint. This is necessary because the primitives
sent to the rasterization stage (and hence the resulting fragments) are not ordered
in depth. The process of discarding the hidden parts (fragments) is called hidden
surface elimination (HSE; see Figure 1.5(d) and Chapter 5).

The fragments that successfully pass the HSE operation are then used for the
determination of the color (Chapter 11) and shading of the corresponding pixels
(Figure 1.5(e,f)). To this effect, an illumination model simulates the interplay of
light and surface, using the material and the pose of a primitive fragment (Chap-
ters 12 and 13). The colorization of the fragment and the final appearance of the
surface can be locally changed by varying a surface property using one or more
textures (Chapter 14). The final color of a fragment that corresponds to a ren-
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Figure 1.6. Three-dimensional graphics pipeline stages and data flow for direct
rendering.

dered pixel is filtered, clamped, and normalized to a value that conforms to the
final output specifications and is finally stored in the appropriate pixel location in
the raster image.

An abstract layout of the graphics pipeline stages for direct rendering is shown
in Figure 1.6. Note that other rendering algorithms do not adhere to this sequence
of processing stages. For example, ray tracing does not include explicit fragment
generation, HSE, or projection stages.

1.5 Image Buffers

1.5.1 Storage and Encoding of a Digital Image

The classic data structure for storing a digital image is a two-dimensional array
(either row-major or column-major layout) in memory, the image buffer. Each
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Figure 1.7. Paletted image representation. Indexing of pixel colors in a look-up
table.

cell of the buffer encodes the color of the respective pixel in the image. The
color representation of each pixel (see Chapter 11) can be monochromatic (e.g.,
grayscale), multi-channel color (e.g., red/green/blue), or paletted. For an image
of w×h pixels, the size of the image buffer is at least1 w×h×bpp/8 bytes, where
bpp is the number of bits used to encode and store the color of each pixel. This
number (bpp) is often called the color depth of the image buffer.

For monochromatic images, usually one or two bytes are stored for each pixel
that map quantized intensity to unsigned integer values. For example, an 8 bpp
grayscale image quantizes intensity in 256 discrete levels, 0 being the lowest in-
tensity and 255 the highest.

In multi-channel color images, a similar encoding to the monochromatic case
is used for each of the components that comprise the color information. Typically,
color values in image buffers are represented by three channels, e.g., red, green,
and blue. For color images, typical color depths for integer representation are 16,
24 and 32 bpp.

The above image representations are often referred to as true-color, a name
that reflects the fact that full color intensity information is actually stored for each
pixel. In paletted or indexed mode, the value at each cell of the image buffer
does not directly represent the intensity of the image or the color components
at that location. Instead, an index is stored to an external color look-up table
(CLUT), also called a palette. An important benefit of using a paletted image is

1In some cases, word-aligned addressing modes pose a restriction on the allocated bytes per pixel,
leading to some overhead. For instance, for 8-bit red/green/blue color samples, the color depth may
be 32 instead of 24 (3× 8) because it is faster to address multiples of 4 than multiples of 3 bytes in
certain computer architectures.
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Figure 1.8. Typical memory representation of an image buffer.

that the bits per pixel do not affect the accuracy of the displayed color, but only
the number of different color values that can be simultaneously assigned to pixels.
The palette entries may be true-color values (Figure 1.7). A typical example is
the image buffer of the Graphics Interchange Format (GIF), which uses 8 bpp
for color indexing and 24-bit palette entries. Another useful property of a palette
representation is that pixel colors can be quickly changed for an arbitrarily large
image. Nevertheless, true-color images are usually preferred as they can encode
2bpp simultaneous colors (large look-up tables are impractical) and they are easier
to address and manipulate.

An image buffer occupies a contiguous space of memory (Figure 1.8). As-
suming a typical row-major layout with interleaved storage of color components,
an image pixel of BytesPerPixel bytes can be read by the following simple
code:

unsigned char * GetPixel( int i, int j, int N, int M,

int BytesPerPixel, unsigned char * BufferAddr )

{

// Index-out-of-bounds checks can be inserted here.

return BufferAddr + BytesPerPixel*(j*N+i);

}

Historically, apart from the above scheme, color components were stored con-
tiguously in separate “memory planes.”
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1.5.2 The Frame Buffer

During the generation of a synthetic image, the calculated pixel colors are stored
in an image buffer, the frame buffer, which has been pre-allocated in the main
memory or the graphics hardware, depending on the application and rendering
algorithm. The frame buffer’s name reflects the fact that it holds the current frame
of an animation sequence in direct analogy to a film frame. In the case of real-
time graphics systems, the frame buffer is the area of graphics memory where all
pixel color information from rasterization is accumulated before being driven to
the graphics output, which needs constant update.

The need for the frame buffer arises from the fact that rasterization is primitive-
driven rather than image-driven (as in the case of ray tracing, see Chapter 15) and
therefore there is no guarantee that pixels will be sequentially produced. The
frame buffer is randomly accessed for writing by the rasterization algorithm and
sequentially read for output to a stream or the display device. So pixel data are
pooled in the frame buffer, which acts as an interface between the random write
and sequential read operations.

In the graphics subsystem, frame buffers are usually allocated in pairs to fa-
cilitate a technique called double buffering,2 which will be explained below.

1.5.3 Other Buffers

We will come across various types of image buffers that are mostly allocated in the
video memory of the graphics subsystem and are used for storage of intermediate
results of various algorithms. Typically, all buffers have the same dimensions as
the frame buffer, and there is a one-to-one correspondence between their cells and
pixels of the frame buffer.

The most frequently used type of buffer for 3D image generation (other than
the frame buffer) is the depth buffer or Z-buffer. The depth buffer stores distance
values for the fragment-sorting algorithm during the hidden surface elimination
phase (see Chapter 5). For real-time graphics generation, it is resident in the
memory of the graphics subsystem.

Other specialized auxiliary buffers can be allocated in the graphics subsystem
depending on the requirements of the rendering algorithm and the availability of

2Quad buffering is also utilized for the display of stereoscopic graphics where a pair of double-
buffered frame buffers is allocated, corresponding to one full frame for each eye. The images from
such buffers are usually sent to a single graphics output in an interleaved fashion (“active” stereoscopic
display).
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16 1. Introduction

video RAM. The stencil buffer (refer to Chapter 13 for a detailed description)
and the accumulation buffer are two examples. Storage of transparency values of
generated fragments is frequently needed for blending operations with the existing
colors in the frame buffer. This is why an extra channel for each pixel, the alpha
channel, is supported in most current graphics subsystems. A transparency value
is stored along with the red (R), green (G) and blue (B) color information (see
Chapter 11) in the frame buffer. For 32-bit frame buffers, this fourth channel,
alpha (A), occupies the remaining 8 bits of the pixel word (the other 24 bits are
used for the three color channels).

1.6 Graphics Hardware
To display raster images on a matrix display, such as a cathode ray tube (CRT) or
a digital flat panel display, color values that correspond to the visible dots on the
display surface are sequentially read. The input signal (pixel intensities) is read in
scanlines and the resulting image is generated in row order, from top to bottom.
The source of the output image is the frame buffer, which is sequentially read by
a video output circuit in synchrony with the refresh of the display device. This
minimum functionality is provided by the graphics subsystem of the computer
(which is a separate board or circuitry integrated on the main board). In certain
cases, multiple graphics subsystems may be hosted on the same computing system
to drive multiple display devices or to distribute the graphics processing load for
the generation of a single image. The number of rows and the number of pixels
per row of the output device matrix display determines the resolution at which the
frame buffer is typically initialized.

1.6.1 Image-Generation Hardware

Display adapters. The early (raster) graphics subsystems consisted of two main
components, the frame buffer memory and addressing circuitry and the output
circuit. They were not unreasonably called display adapters; their sole purpose
was to pool the randomly and asynchronously written pixels in the frame buffer
and adapt the resulting digital image signal to a synchronous serial analog signal
that was used to drive the display devices. The first frame buffers used paletted
mode (see Section 1.5.1). The CPU performed the rasterization and randomly
accessed the frame buffer to write the calculated pixel values. On the other side of
the frame buffer a special circuit, the RAMDAC (random access memory digital-
to-analog converter), was responsible for reading the frame buffer line by line
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and for the color look-up operation using the color palette (which constituted the
RAM part of the circuit). It was also responsible for the conversion of the color
values to the appropriate voltage on the output interface. The color look-up table
progressively became obsolete with the advent of true color but is still integrated
or emulated for compatibility purposes. For digital displays, such as the ones
supporting the DVI-Digital and HDMI standard, the digital-to-analog conversion
step is not required and is therefore bypassed. The output circuit operates in a
synchronous manner to provide timed signaling for the constant update of the
output devices. An internal clock determines its conversion speed and therefore
its maximum refresh rate. The refresh rate is the frequency at which the display
device performs a complete redisplay of the whole image. Display devices can be
updated at various refresh rates, e.g., 60, 72, 80, 100, or 120 Hz. For the display
adapter to be able to feed the output signal to the monitor, its internal clock needs
to be adjusted to match the desired refresh rate. Obviously, as the output circuit
operates on pixels, the clock speed also depends on the resolution of the displayed
image. The maximum clock speed determines the maximum refresh rate at the
desired resolution. For CRT-type displays the clocking frequency of the output
circuit (RAMDAC clock) is roughly fRAMDAC = 1.32 ·w ·h · frefresh, where w and
h are the width and height of the image (in number of pixels) and frefresh is the
desired refresh rate. The factor 1.32 reflects a typical timing overhead to retrace
the beam of the CRT to the next scanline and to the next frame (see Section 1.6.2
below).

Double buffering. Due to the incompatibility between the reading and writing
of the frame buffer memory (random/sequential), it is very likely to start reading
a scanline for output that is not yet fully generated. Ideally, the output circuit
should wait for the rendering of a frame to finish before starting to read the frame
buffer. This cannot be done as the output image has to be constantly updated
at a very specific rate that is independent of the rasterization time. The solution
to this problem is double buffering. A second frame buffer is allocated and the
write and read operations are always performed on different frame buffers, thus
completely decoupling the two processes. When buffer 1 is active for writing
(this frame buffer is called the back buffer, because it is the one that is hidden,
i.e., not currently displayed), the output is sequentially read from buffer 2 (the
front buffer). When the write operation has completed the current frame, the roles
of the two buffers are interchanged, i.e., data in buffer 2 are overwritten by the
rasterization and pixels in buffer 1 are sequentially read for output to the display
device. This exchange of roles is called buffer swapping.
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Buffer swaps can take place immediately after the data in the back buffer
become ready. In this case, if the sequential reading of the front buffer has not
completed a whole frame, a “tearing” of the output image may be noticeable if
the contents of the two buffers have significant differences. To avoid this, buffer
swapping can be synchronously performed in the interval between the refresh of
the previous and the next frame (this interval is known as vertical blank interval,
or VBLANK, of the output circuit). During this short period, signals transmitted
to the display device are not displayed. Locking the swaps to the VBLANK period
eliminates this source of the tearing problem but introduces a lag before a back
buffer is available for writing.3

Two-dimensional graphics accelerators. The first display adapters relied on
the CPU to do all the rendering and buffer manipulation and so possessed no
dedicated graphics processors. Advances in VLSI manufacturing and the stan-
dardization of display algorithms led to the progressive migration of rasterization
algorithms from the CPU to specialized hardware. As graphical user interfaces
became commonplace in personal computers, the drawing instructions for win-
dows and graphical primitives and the respective APIs converged to standard sets
of operations. Display drivers and the operating systems formed a hardware ab-
straction layer (HAL) between API-supported operations and what the underlying
graphics subsystem actually implemented. Gradually, more and more of the op-
erations supported by the standard APIs were implemented in hardware. One of
the first operations that was included in specialized graphics hardware was “blit-
ting,” i.e., the efficient relocation and combination of “sprites” (rectangular image
blocks). Two-dimensional primitive rasterization algorithms for lines, rectangles,
circles, etc., followed. The first graphical applications to benefit from the ad-
vent of the (2D) graphics accelerators were computer games and the windowing
systems themselves, the latter being an obvious candidate for acceleration due to
their standardized and intensive processing demands.

Three-dimensional graphics accelerators. A further acceleration step was
achieved by the standardization of the 3D graphics rendering pipeline and the
wide adoption of the Z-buffer algorithm for hidden surface elimination (see Chap-
ter 5). 3D graphics accelerators became a reality by introducing special processors
and rasterization units that could operate on streams of three-dimensional prim-
itives and corresponding instructions that defined their properties, lighting, and
global operations. The available memory on the graphics accelerators was in-

3This is a selectable feature on many graphics subsystems.
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creased to support a Z-buffer and other auxiliary buffers. Standard 3D APIs such
as OpenGL [Open07b] and Direct3D focused on displaying surfaces as polygons,
and the hardware graphics pipeline was optimized for this task. The core elements
of a 3D graphics accelerator expanded to include more complex mathematical op-
erations on matrices and vectors of floating-point data, as well as bitmap address-
ing, management, and paging functionality. Thus, special geometry processors
could perform polygon set-up, geometric transformations, projections, interpola-
tion, and lighting, thus completely freeing the CPU from computations relating to
the display of 3D primitives. Once an application requests a rasterization or 3D
set-up operation on a set of data, everything is propagated through the driver to the
graphics accelerator. A key element to the success of the hardware acceleration of
the graphics pipeline is the fact that operations on primitives and fragments can
be executed in a highly parallel manner. Modern geometry processing, rasteri-
zation, and texturing units have multiple parallel stages. Ideas pioneered in the
1980s for introducing parallelism to graphics algorithms have found their way to
3D graphics accelerators.

Programmable graphics hardware. Three-dimensional acceleration transferred
the graphics pipeline to hardware. To this end, the individual stages and algo-
rithms for the various operations on the primitives were fixed both in the order
of execution and in their implementation. As the need for greater realism in
real-time graphics surpassed the capabilities of the standard hardware implemen-
tations, more flexibility was pursued in order to execute custom operations on
the primitives but also to take advantage of the high-speed parallel processing of
the graphics accelerators. In modern graphics processing units (GPUs), see Fig-
ure 1.9, both the fixed geometry processing and the rasterization stages of their
predecessors were replaced by small, specialized programs that are executed on
the graphics processors and are called shader programs or simply shaders.

Two types of shaders are usually defined. The vertex shader replaces the
fixed functionality of the geometry processing stage and the fragment shader pro-
cesses the generated fragments and usually performs shading and texturing (see
Chapter 12 for some shader implementations of complex illumination models).
Vendors are free to provide their specific internal implementation of the GPU so
long as they remain compliant with a set of supported shader program instruc-
tions. Vertex and fragment shader programs are written in various shading lan-
guages, compiled, and then loaded at runtime to the GPU for execution. Vertex
shaders are executed once per primitive vertex and fragment shaders are invoked
for each generated fragment. The fixed pipeline of the non-programmable 3D
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Figure 1.9. Typical consumer 3D graphics accelerator. The board provides multi-
ple output connectors (analog and digital). Heat sinks and a cooling fan cover the
on-board memory banks and GPU, which operate at high speeds.

graphics accelerators is emulated via shader programs as the default behavior of
a GPU.

1.6.2 Image-Output Hardware

Display monitors are the most common type of display device. However, a variety
of real-time as well as non-real-time and hard-copy display devices operate on
similar principles to produce visual output. More specifically, they all use a raster
image. Display monitors, regardless of their technology, read the contents of
the frame buffer (a raster image). Commodity printers, such as laser and inkjet
printers, can prepare a raster image that is then directly converted to dots on the
printing surface. The rasterization of primitives, such as font shapes, vectors, and
bitmaps, relies on the same steps and algorithms as 2D real-time graphics (see
Section 1.4).

Display monitors. During the early 2000s, the market of standard raster image-
display monitors made a transition from cathode ray tube technology to liquid
crystal flat panels. There are other types of displays, suitable for more specialized
types of data and applications, such as vector displays, lenticular autostereoscopic
displays, and volume displays, but we focus on the most widely available types.

Cathode ray tube (CRT) displays (Figure 1.10 (top right)) operate in the fol-
lowing manner: An electron beam is generated from the heating of a cathode of a
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Figure 1.10. Color display monitors. (Top left) TFT liquid crystal tile arrangement.
(Bottom left) Standard twisted nematic liquid crystal display operation. (Top right)
Cathode ray tube dot arrangement. (Bottom right) CRT beam trajectory.

special tube called an electron gun that is positioned at the back of the CRT. The
electrons are accelerated due to voltage difference towards the anodized glass of
the tube. A set of coils focuses the beam and deflects it so that it periodically
traces the front wall of the display left to right and top to bottom many times per
second (observe the trajectory in Figure 1.10 (bottom right)). When the beam
electrons collide with the phosphor-coated front part of the display, the latter is
excited, resulting in the emission of visible light. The electron gun fires elec-
trons only when tracing the scanlines and remains inactive while the deflection
coils move the beam to the next scanline or back to the top of the screen (vertical
blank interval). The intensity of the displayed image depends on the rate of elec-
trons that hit a particular phosphor dot, which in turn is controlled by the voltage
applied to the electron gun as it is modulated by the input signal. A color CRT dis-
play combines three closely packed electron guns, one for each of the RGB color
components. The three beams, emanating from different locations at the back
of the tube, hit the phosphor coating at slightly different positions when focused
properly. These different spots are coated with red, green, and blue phosphor, and
as they are tightly clustered together, they give the impression of a combined ad-
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ditive color (see Chapter 11). Due to the beam-deflection principle, CRT displays
suffer from distortions and focusing problems, but provide high brightness and
contrast as well as uniform color intensity, independent of viewing angle.

The first liquid crystal displays (LCDs) suffered from slow pixel intensity
change response times, poor color reproduction, and low contrast. The invention
and mass production of color LCDs that overcame the above problems made LCD
flat panel displays more attractive in many ways to the bulky CRT monitors. To-
day, their excellent geometric characteristics (no distortion), lightweight design,
and improved color and brightness performance have made LCD monitors the
dominant type of computer display.

The basic twisted nematic (TN) LCD device consists of two parallel transpar-
ent electrodes that have been treated so that tiny parallel grooves form on their
surface in perpendicular directions. The two electrode plates are also coated with
linear polarizing filters with the same alignment as the grooves. Between the two
transparent surfaces, the space is filled with liquid crystal, whose molecules nat-
urally align themselves with the engraved (brushed) grooves of the plates. As the
grooves on the two electrodes are perpendicular, the liquid crystal molecules form
a helix between the two plates. In the absence of an external factor such as volt-
age, light entering from the one transparent plate is polarized and its polarization
gradually changes as it follows the spiral alignment of the liquid crystal (Fig-
ure 1.10 (bottom left)). Because the grooves on the second plate are aligned with
its polarization direction, light passes through the plate and exits the liquid crys-
tal. When voltage is applied to the electrodes, the liquid crystal molecules align
themselves with the electric field and their spiraling arrangement is lost. Polarized
light entering the first electrode hits the second filter with (almost) perpendicular
polarization and is thus blocked, resulting in black color. The higher the voltage
applied, the more intense the blackening of the element. LCD monitors consist
of tightly packed arrays of liquid crystal tiles that comprise the “pixels” of the
display (Figure 1.10 (top left)). Color is achieved by packing three color-coated
elements close together. The matrix is back-lit and takes its maximum brightness
when no voltage is applied to the tiles (a reverse voltage/transparency effect can
also be achieved by rotating the second polarization filter). TFT (thin-film transis-
tor) LCDs constitute an improvement of the TN elements, offering higher contrast
and significantly better response times and are today used in the majority of LCD
flat panel displays.

In various application areas, where high brightness is not a key issue, such
as e-ink solutions and portable devices, other technologies have found ground to
flourish. For instance, organic light-emitting diode (OLED) technology offers an
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attractive alternative to TFT displays for certain market niches, mostly due to the
fact that it requires no backlight illumination, has much lower power consump-
tion, and can be literally “printed” on thin and flexible surfaces.

Projection systems. Digital video projectors are visual output devices capa-
ble of displaying real-time content on large surfaces. Two alternative methods
exist for the projection of an image, rear projection and front projection. In rear-
projection set-ups, the projector is positioned at the back of the display surface
relative to the observer and emits light, which passes through the translucent ma-
terial of the projection medium and illuminates its surface. In front-projection
set-ups, the projector resides at the same side as the observer and illuminates a
surface, which reflects light to the observer.

There are three major projector technologies: CRT, LCD, and DLP (digital
light processing). The first two operate on the same principles as the correspond-
ing display monitors. DLP projectors, characterized by high contrast and bright-
ness, are based on an array of micro-mirrors embedded on a silicon substrate (dig-
ital micromirror devices (DMD)). The mirrors are electrostatically flipped and act
as shutters which either allow light to pass through the corresponding pixel or
not. Due to the high speed of these devices, different intensities are achieved
by rapidly flipping the mirrors and modulating the time interval that they remain
shut. High quality DLP systems use three separate arrays to achieve color display,
while single-array solutions require a transparent color wheel to alternate between
color channels. In the latter case, the time available for each mirror to perform the
series of flips required to produce a shade of a color is divided by three, resulting
in lower color resolutions.

Printer graphics. The technology of electronic printing has undergone a series
of major changes and many types of printers (such as dot-matrix and daisywheel
printers and plotters) are almost obsolete today. The dominant mode of operation
for printers is graphical, although all printers can also work as “line printers,”
accepting a string of characters and printing raw text line by line. In graphics
mode, a raster image is prepared that represents a printed page or a smaller portion
of it, which is then buffered in the printer’s memory and is finally converted to dots
on the printing medium.

The generation of the raster image can take place either in the computing sys-
tem or inside the printer itself, depending on its capabilities. The raster image cor-
responds to the dot pattern that will be printed. Inexpensive printers have very lim-
ited processing capabilities and therefore the rasterization is done by the CPU via
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the printer driver. Higher-end printers (usually laser printers) are equipped with
raster image processing units (common microprocessors are often used for this
task) and enough memory to prepare the raster image of a whole page locally. The
vector graphics and bitmaps are directly sent to the printer after conversion to an
appropriate page description language that the raster image processor can under-
stand, such as Adobe PostScript [Adob07]. PostScript describes two-dimensional
graphics and text using Bézier curves (see Chapter 7), vectors, fill patterns, and
transformations. A document can be fully described by this printing language,
and PostScript was adopted early on as a portable document specification across
different platforms as well. Once created, a PostScript document can be directly
sent for printing to a PostScript printer or converted to the printer’s native vector
format if the printer supports a different language (e.g., Hewlett-Packard’s PCL).
This process is done by a printer driver. The PostScript document can also be
rasterized by the computer in memory for viewing or printing, using a PostScript
interpreter application.

Apart from the dynamic update of the content, an important difference be-
tween the image generated by a display monitor and the one that is printed is
that color intensity on monitors is modulated in an analog fashion by changing
an electric signal. A single displayed pixel can be “lit” at a wide range of inten-
sities. On the other hand, ink is either deposited on the paper or other medium
or not (although some technologies do offer a limited control of the ink quantity
that represents a single dot). In Chapter 11, we will see how the impression of
different shades of a color can be achieved by halftoning, an important printing
technique where pixels of different intensity can be printed as patterns of colored
dots from a small selection of color inks.

Printer technology. The two dominant printing technologies today are inkjet
and laser. Inkjet printers form small droplets of ink on the printing medium by
releasing ink through a set of nozzles. The flow of droplets is controlled either by
heating or by the piezoelectric phenomenon. The low cost of inkjet printers, their
ability to use multiple color inks (four to six) to form the printed pixel color varia-
tions (resulting in high quality photographic printing), and the acceptable quality
in line drawings and text made them ideal for home and small-office use. On the
other hand, the high cost per page (due to the short life of the ink cartridges),
low printing speed, and low accuracy make them inappropriate for demanding
printing tasks, where laser printers are preferable.

Laser printers operate on the following principle: a photosensitive drum is
first electrostatically charged. Then, with the help of a mechanism of moving
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mirrors and lenses, a low-power laser diode reverses the charge on the parts of
each line that correspond to the dots to be printed. The process is repeated while
the drum rotates. The “written” surface of the drum is then exposed to the toner,
which is a very fine powder of colored or black particles. The toner is charged
with the same electric polarity as the drum, so the charged dust is attracted and de-
posited only on the drum areas with reversed charge and repelled by the rest. The
paper or other medium is charged opposite to the toner and rolled over the drum,
causing the particles to be transferred to its surface. In order for the fine particles
of the toner to remain on the printed medium, the printed area is subjected to in-
tense heating, which fuses the particles with the printing medium. Color printing
is achieved by using three (color) toners and repeating the process three times.
The high accuracy of the laser beam ensures high accuracy line drawings and
halftone renderings. Printing speed is also superior to that of the inkjet printers
and toners last far longer than the ink cartridges of the inkjet devices. A varia-
tion of the laser printer is the light-emitting diode (LED) printer: a dense row of
fixed LEDs shines on the drum instead of a moving laser head, while the rest of
the mechanism remains identical. The fewer moving parts make these printers
cheaper, but they cannot achieve the high resolution of their laser cousins.

1.7 Conventions
The following mathematical notation conventions are generally used throughout
the book.

• Scalars are typeset in italics.

• Vector quantities are typeset in bold. We distinguish between points in Ek,
which represent locations, and vectors in Rk, which represent directions;
see also Appendix A. Specifically,

– points in Ek are typeset in upright bold letters, usually lowercase, e.g.,
a, b;

– vectors in Rk are typeset in upright bold letters, usually lowercase,
with an arrow on top, e.g., −→a ,

−→
b ,
−→
Oa;

– unit vectors are typeset in upright bold letters, usually lowercase, with
a “hat” on top, e.g., ê1, n̂.

• Matrices are typeset in uppercase upright bold letters, e.g., M, Rx.
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Column vectors are generally used; row vectors are marked by the “trans-
pose” symbol, e.g., −→v T = [0,1,2]. However, for ease of presentation, the
alternative notation (x,y,z) will also be used for points.

• Functions are typeset as follows:

– Standard mathematical functions and custom functions defined by the
authors are in upright letters, e.g., sin(θ).

– Functions follow the above conventions for scalar and vector quanti-
ties, e.g.,

−→
F (−→x ) is a vector function of a vector variable, −→g (x) is a

vector function of a scalar variable, etc.

• Norms are typeset with single bars, e.g., |−→v |.
• Standard sets are typeset using “black board” letters, e.g., R, C.

Algorithm descriptions are given in pseudocode based on standard C and C++.
However, depending on the specific detail requirements of each algorithm, the
level of description will vary.

Advanced sections are marked with an asterisk � and are aimed at advanced
courses.
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Rasterization Algorithms

A line is a dot that went for a walk.
—Paul Klee

2.1 Introduction
Two-dimensional display devices consist of a discrete grid of pixels, each of
which can be independently assigned a color value. Rasterization1 is the process
of converting two-dimensional primitives2 into a discrete pixel representation. In
other words, the pixels that best describe the primitives must be determined.

Given that we want to rasterize P primitives for a particular frame, and as-
suming that each primitive consists of an average of p pixels, the complexity of
rasterization is in general O(Pp). Previous stages in the graphics pipeline (e.g.,
transformations and culling) work with the vertices of primitives only. In general,
the complexity of these previous stages is O(Pv), where v is the average number
of vertices of a primitive. Usually p � v, so we must ensure that rasterization
algorithms are extremely efficient in order to avoid making the rasterization stage
a bottleneck in the graphics pipeline.

The pixels of a raster device form a two-dimensional regular grid. There are
two main ways of viewing this grid (Figure 2.1).

1Scan-conversion is a synonym.
2E.g., lines and polygons.

27
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Figure 2.1. Two ways to view a pixel.

• Half-integer centers. Pixels are separated by imaginary horizontal and ver-
tical border lines, just like graph paper. The border lines are at integer
coordinates; hence, pixel centers are at half-integer coordinates.

• Integer centers. When the pixel grid is considered as a set of samples, it is
natural to place sampling points (pixel centers) at integer coordinates.

We shall use the integer centers metaphor here. When considering a pixel as a
point (e.g., a point in primitive inclusion tests) we shall be referring to the center
of a pixel.

An important concept in rasterization is that of connectedness. What does
it mean for a set of pixels to form a connected curve or area? For example, if a
curve-drawing algorithm steps from a pixel to its diagonal neighbor, is there a gap
in the curve? The key question to answer is, which are the neighbors of a pixel?
There are two common approaches to this: 4-connectedness and 8-connectedness
(Figure 2.2). In 4-connectedness the neighbors are the 4 nearest pixels (up, down,
left, right) while in 8-connectedness the neighbors are the 8 nearest pixels (they
include the diagonal pixels). Whichever type of connectedness we use, we must
make sure that our rasterization algorithms consistently output curves that obey
it. We shall use 8-connectedness.

There are two main challenges in designing a rasterization algorithm for a
primitive:

1. to determine the pixels that accurately describe the primitive;

2. to be efficient.

Figure 2.2. 4-connectedness and 8-connectedness.
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The first challenge is essential for correctness, and it implies that a rasterization
algorithm modifies the pixels that best describe a primitive, that it modifies only
these pixels, and that it modifies the values of these pixels correctly. The second
challenge is also extremely important, as our scenes may be composed of very
large numbers of primitives and a real-time requirement may exist.

This chapter provides the mathematical principles and the algorithms neces-
sary for the rasterization of common scene primitives: line segments, circles, gen-
eral polygons, triangles, and closed areas. It also explains perspective correction
and antialiasing which improve the result of the rasterization process. Finally, it
deals with clipping algorithms that determine the intersection of a primitive and a
clipping object and that are useful, among other things, in culling primitives that
lie outside the field of view.

2.2 Mathematical Curves and Finite Differences
Among the mathematical forms that can be used to define two-dimensional primi-
tive curves, the implicit and the parametric forms are most useful in rasterization.
In the implicit form, a curve is defined as a function f (x,y) that produces three
possible types of result:

f (x,y)

⎧⎨⎩ < 0, implies point (x,y) is inside the curve;
= 0, implies point (x,y) is on the curve;
> 0, implies point (x,y) is outside the curve.

The terms inside and outside have no special significance, and in some cases
(e.g., a line) they are entirely symmetrical. A curve thus separates the plane into
two distinct regions: the inside region and the outside region.

For example, the implicit form of a line is

l(x,y)≡ ax+by+ c = 0, (2.1)

where a, b, and c are the line coefficients. Points (x,y) on the line have l(x,y) = 0.
For a line from p1 = (x1,y1) to p2 = (x2,y2), we have a = y2− y1, b = x1− x2

and c = x2y1− x1y2. The line divides the plane into two half-planes; points with
l(x,y) < 0 are on one half-plane, while points with l(x,y) > 0 are on the other.

The implicit form of a circle with center c = (xc,yc) and radius r is

c(x,y)≡ (x− xc)2 +(y− yc)2− r2 = 0. (2.2)

A point (x,y) for which c(x,y) = 0 is on the circle; if c(x,y) < 0 the point is inside
the circle, while if c(x,y) > 0 the point is outside the circle.
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The parametric form defines the curve as a function of a parameter t, which
roughly corresponds to arc length along the curve. For example, the parametric
form of a line defined by p1 = (x1,y1) and p2 = (x2,y2) is

l(t) = (x(t),y(t)), (2.3)

where
x(t) = x1 + t(x2− x1), y(t) = y1 + t(y2− y1).

As t goes from 0 to 1, the line segment from p1 to p2 is traced; extending t beyond
this range traces the line defined by p1 and p2.

Similarly, a parametric equation for a circle with center (xc,yc) and radius r is

c(t) = (x(t),y(t)),

where
x(t) = xc + r cos(2πt), y(t) = yc + r sin(2πt).

As t goes from 0 to 1 the circle is traced; if the values of t are extended beyond
this range, the circle is retraced.

The functions that define primitives often need to be evaluated on the pixel
grid, for example, as part of the rasterization process or in eliminating hidden sur-
faces. Simply evaluating a function for each pixel independently is wasteful. For
example, the evaluation of the implicit line function costs two multiplications and
two additions, while the circle function costs three multiplications and four addi-
tions per point (pixel). Fortunately, since the pixel grid is regular, it is possible to
cut this cost by taking advantage of the finite differences of the functions [Krey06].
The first forward difference of a function f at xi is defined as

δ fi = fi+1− fi,

where fi = f (xi). Similarly, its second forward difference at xi is

δ 2 fi = δ fi+1−δ fi,

and, generalizing, its kth forward difference is defined recursively

δ k fi = δ k−1 fi+1−δ k−1 fi.

For a polynomial function of degree n, all differences from the nth and above will
be constant (and those from (n+1)th and above will be 0). Take the implicit line
equation (2.1). Let us calculate its forward differences for a step in the x direction,
i.e., from pixel x to pixel x+1. Since the line equation is of degree 1 in x, we only
need to compute the (constant) first forward difference along x:

δxl(x,y) = l(x+1,y)− l(x,y) = a, (2.4)
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where δx stands for the forward difference on the x parameter. Similarly δyl(x,y)
= b. We can thus evaluate the line function incrementally, from pixel to pixel. To
go from its value l(x,y) at pixel (x,y) to its value at pixel (x + 1,y), we simply
compute l(x,y)+ δxl(x,y) = l(x,y)+ a, while to go from (x,y) to (x,y + 1), we
compute l(x,y)+ δyl(x,y) = l(x,y)+ b. Each incremental evaluation of the line
function thus costs only one addition.

Let us compute the forward differences on the x parameter for the circle equa-
tion (2.2). Since it has degree 2, there will be a first and a second forward differ-
ence. Evaluating them for a point (x,y) gives

δxc(x,y) = c(x+1,y)− c(x,y) = 2(x− xc)+1,

δ 2
x c(x,y) = δxc(x+1,y)−δxc(x,y) = 2.

(2.5)

To incrementally compute the circle function from c(x,y) to c(x + 1,y) we need
two additions:

δxc(x,y) = δxc(x−1,y)+δ 2
x c(x,y);

c(x+1,y) = c(x,y)+δxc(x,y).

Similarly, we can incrementally compute its value from c(x,y) to c(x,y + 1) by
adding δyc(x,y) and δ 2

y c(x,y).
To rasterize a primitive, we must determine the pixels that accurately describe

it. One way of doing this is to define a Boolean-valued mathematical function
that, given a pixel (x,y), decides if it belongs to the primitive or not. Implicit
functions can be used for this purpose. For example, the distance of a pixel (x,y)
from a line described by the implicit function (2.1) is

|l(x,y)|√
a2 +b2

.

A test for the inclusion of pixel (x,y) in the rasterized line could thus be

|l(x,y)|< e,

where e is related to the required line width. Unfortunately, it is rather costly
to evaluate such functions blindly over the pixel grid, even if done incrementally
using their finite differences. Instead methods that track a primitive are usually
more efficient.
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2.3 Line Rasterization
To design a good line-rasterization3 algorithm, we must first decide what it means
for such an algorithm to be correct (i.e., satisfy the accuracy requirement). Since
the pixel grid has finite resolution, it is not possible to select pixels that are exactly
on the mathematical path of the line; it is necessary to approximate it. The desired
qualities of a line-rasterization algorithm are:

1. selection of the nearest pixels to the mathematical path of the line;

2. constant line width, independent of the slope of the line;

3. no gaps;

4. high efficiency.

The derivation of line-rasterization algorithms will follow the exposition of
Sproull [Spro82], Harris [Harr04], and Rauber [Raub93].

Suppose that we want to draw a line starting at pixel ps = (xs,ys) and ending at
pixel pe = (xe,ye) in the first octant4 (Figure 2.3). If we let s = (ye−ys)/(xe−xs)
be the slope of the line, then the pixel sequence we select can be derived from the
explicit line equation

y = ys + round(s · (x− xs));

x = xs, ...,xe.

ps

pe

1

23

4

5

6 7

8

Figure 2.3. The eight octants with an example line in the first octant.

3In this section we liberally use the term “line” to refer to “line segment.” “Line drawing” is often
used as a synonym for “line rasterization.”

4The other seven octants can be treated in a similar manner, as discussed at the end of this section.
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Figure 2.4. Using the line1 algorithm in the first and second octants.

The line1 algorithm selects the above pixel sequence:

line1 ( int xs, int ys, int xe, int ye, color c ) {

float s; int x,y;

s=(ye-ys) / (xe-xs);

(x,y)=(xs,ys);

while (x <= xe) {

setpixel(x,y,c);

x=x+1;

y=ys + round(s * (x-xs));

}

}

The while loop is based on the variable of the major axis of the line (x). The
major axis is x if |xe− xs| > |ye− ys|; otherwise it is y. The non-major axis is
called the minor axis. If the line1 algorithm is used to draw a line whose major
axis is y, then gaps appear (Figure 2.4). Instead, a variant which runs the while
loop on the y variable should be used in that case. Also note that we should check
for the condition xe− xs = 0 to avoid a division by 0; line rasterization becomes
trivial in this case.

The value being rounded is increased by s at every iteration of the loop. The
expensive round operation can be avoided if we split the y value into an integer
and a float part e and compute its value incrementally. The line2 algorithm does
this:

line2 ( int xs, int ys, int xe, int ye, color c ) {

float s,e; int x,y;
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e=0;

s=(ye-ys) / (xe-xs);

(x,y)=(xs,ys);

while (x <= xe) {

/* assert -1/2 <= e < 1/2 */

setpixel(x,y,c);

x=x+1;

e=e+s;

if (e >= 1/2) {

y=y+1;

e=e-1;

}

}

}

Notice how the line2 algorithm resembles the leap-year calculation. The
slope is added to the e variable at each iteration until it makes up more than half
a unit, and then the line leaps up by 1; the integer y variable is incremented and e
is correspondingly reduced, so that the sum of the two variables is unchanged. In
a similar manner, there are approximately 365.25 days per year, but calendars are
designed with an integer number of days. Hence we add a day every fourth year
to make up for the error being accumulated [Harr04].

With suitable scaling, the floating point variables in line2 can be replaced by
integer variables. Multiplying the leap-decision variables by dx = xe− xs makes
s and e integers. The leap decision becomes e≥ dx/2, but since e is now integer,
we can replace dx/2 by the integer value �dx/2�, which can be computed by a
numerical shift without changing the algorithm semantics. We can also replace
the test e≥ �dx/2� by e≥ 0 (which is more efficient) using an initial subtraction
of �dx/2� from e. We thus arrive at the Bresenham algorithm [Bres65]:

line3 ( int xs, int ys, int xe, int ye, color c ) {

int x,y,e,dx,dy;

e=-(dx >> 1);

dx=(xe-xs);

dy=(ye-ys);

(x,y)=(xs,ys);

while (x <= xe) {

/* assert -dx <= e < 0 */

setpixel(x,y,c);

x=x+1;

e=e+dy;

if (e >= 0) {
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y=y+1;

e=e-dx;

}

}

}

where >> stands for the right shift integer operator (right shifting by 1 bit is equiv-
alent to dividing by 2 and taking the floor). The algorithm line3 is suitable for
lines in the first octant. The major axis for each of the eight octants and the action
on the variable of the minor axis are given in Table 2.1.

Octant Major axis Minor axis variable
1 x increasing
2 y increasing
3 y decreasing
4 x increasing
5 x decreasing
6 y decreasing
7 y increasing
8 x decreasing

Table 2.1. Line-rasterization requirements per octant.

Lines in the eighth octant can be handled by decrementing the y value in the
loop and negating dy so that it is positive. Lines in the fourth and fifth octants are
dealt with by swapping their endpoints, thus converting them to the eighth and first
octants, respectively. Lines in the second, third, sixth, and seventh octants have y
as the major axis and use a symmetrical version of the algorithm which runs the
while loop on the y variable. An optimized Bresenham line-rasterization code
usually contains two versions, one for when x is the major axis and one for when
y is the major axis.

Notice how the Bresenham algorithm meets the requirements of a good line-
rasterization algorithm. First, it selects the closest pixels to the mathematical path
of the line since it is equivalent to line1 which rounded to the nearest pixel to the
value of the mathematical line. Second, the major axis concept ensures (roughly)
constant width and no gaps in an 8-connected sense. Third, it is highly efficient
since it uses only integer variables and simple operations on them (additions, sub-
tractions, and shifts).
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y

x

( , )x y

( )xy,

( )xy, -

( , )x -y

( , )-x y

( , )-x -y

( )x-y,

( )x-y, -

Figure 2.5. 8-way symmetry of a circle.

2.4 Circle Rasterization

The circle is mainly used as a primitive in design and information presentation
applications, and we shall now explore how to efficiently rasterize the perimeter
of a circle. Circles possess 8-way symmetry (Figure 2.5), and we take advan-
tage of this in the rasterization process. Essentially, we only compute the pixels
of one octant, and the rest are derived using the 8-way symmetry (by taking all
combinations of swapping and negating the x and y values).

We shall give a variation of Bresenhem’s circle algorithm [Bres77] due to
Hanrahan [Hanr98]. Suppose that we draw a circular arc that belongs to the sec-
ond octant (shown shaded in Figure 2.5) of a circle of radius r centered at the
origin, starting with pixel (0,r). In the second octant, x is the major axis and
−y the minor axis, so we increment x at every step and sometimes we decre-
ment y. The algorithm traces pixels just below the circle, incrementing x at every
step; if the value of the circle function becomes non-negative (pixel not inside the

- -

-

-

-

+

+

+

-

-

--

Figure 2.6. Tracing the circle in the second octant.



�

�

�

�

�

�

�

�

2.4. Circle Rasterization 37

circle)5 y is decremented (Figure 2.6). The value of the circle function is always
kept updated for the current pixel in variable e.

As described, the algorithm treats inside and outside pixels asymmetrically.
To center the selected pixels on the circle, we use a circle function which is dis-
placed by half a pixel upwards; the circle center becomes (0, 1

2 ):

c(x,y) = x2 +(y− 1
2
)2− r2 = 0.

The following algorithm results:

circle ( int r, color c ) {

int x,y,e;

x=0

y=r

e=-r

while (x <= y) {

/* assert e == x^2 + (y - 1/2)^2 - r^2 */

set8pixels(x,y,c);

e=e+2*x+1;

x=x+1;

if (e >= 0) {

e=e-2*y+2;

y=y-1;

}

}

}

The error variable must be initialized to

c(0,r) = (r− 1
2
)2− r2 =

1
4
− r,

but since it is an integer variable, the 1
4 can be dropped without changing the

algorithm semantics. For the incremental evaluation of e (which keeps the value
of the implicit circle function), we use the finite differences of that function for
the two possible steps that the algorithm takes:

c(x+1,y)− c(x,y) = (x+1)2− x2 = 2x+1;

c(x,y−1)− c(x,y) = (y− 3
2
)2− (y− 1

2
)2 =−2y+2.

5The implicit circle function c(x,y) (Equation (2.2)) evaluates to 0 for points on the circle, takes
positive values for points outside the circle, and negative values for points inside the circle.
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The above algorithm is very efficient, as it uses only integer variables and
simple operations (additions / subtractions and multiplications by powers of 2)
and only traces 1

8 of the circle’s circumference. The other 7
8 are computed by

symmetry :

set8pixels ( int x,y, color c ) {

setpixel(x,y,c);

setpixel(y,x,c);

setpixel(y,-x,c);

setpixel(x,-y,c);

setpixel(-x,-y,c);

setpixel(-y,-x,c);

setpixel(-y,x,c);

setpixel(-x,y,c);

}

2.5 Point-in-Polygon Tests
Perhaps the most common building block for surface models is the polygon and,
in particular, the triangle. Polygon rasterization algorithms that rasterize the
perimeter as well as the interior of a polygon, are based on the condition necessary
for a point (pixel) to be inside a polygon. We shall define a polygon as a closed
piecewise linear curve in R2. More specifically, a polygon consists of a se-
quence of n vertices v0,v1, ...,vn−1 that define n edges that form a closed curve
v0v1,v1v2, ...,vn−2vn−1,vn−1v0. The Jordan Curve Theorem [Jord87] states that
a continuous simple closed curve in the plane separates the plane into two distinct
regions, the inside and the outside. (If the curve is not simple, i.e., it intersects
itself, then the inside and outside regions are not necessarily connected). In order
to efficiently rasterize polygons we need a test which, for a point (pixel) p(x,y)
and a polygon P, decides if p is inside P (discussed here) and efficient algorithms
for computing the inside pixels (see Section 2.6).

p

6 5 4 3 2 1 0

Figure 2.7. The parity test for a point in a polygon.
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φ

p

P

Figure 2.8. The winding number.

There are two well-known inclusion tests, which decide if a point p is inside a
polygon P. The first is the parity test and states that if we draw a half-line from p
in any direction such that the number of intersections with P is finite, then if that
number is odd, p is inside P; otherwise, it is outside. This is demonstrated in
Figure 2.7 for a horizontal half-line.

The second test is the winding number. For a closed curve P and a point p,
the winding number ω(P,p) counts the number of revolutions completed by a
ray from p that traces P once (Figure 2.8). For every counterclockwise revolution
ω(P,p) is incremented and for every clockwise revolution ω(P,p) is decremented:

ω(P,p) =
1

2π

∫
dϕ.

If ω(P,p) is odd then p is inside P, otherwise it is outside (Figure 2.9). A
simple way to compute the winding number counts the number of right-handed
minus the number of left-handed crossings of a half-line from p, performed by
tracing P once (Figure 2.10).

2

1

1 1

1 1
0

Figure 2.9. The winding-number test
for a point in a polygon.

p
+1 1

Figure 2.10. Simple computation of the
winding number.
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<0l 1

<0l 2
<0l 3

>0l 1

>0l 2

>0l 3

Figure 2.11. The sign test for a point in a convex polygon.

In the special case of a convex polygon whose n edges are defined by lines
l0...ln−1, a simpler test can be used. If all edges are given in a consistent walk
around the convex polygon (i.e., clockwise or counterclockwise), we can define
the associated line functions so that points on the inside half-plane of every edge
give evaluations of the same sign. If all edge functions have the same sign for a
pixel p, then p is inside the convex polygon:

sign(l0(p)) = sign(l1(p)) = . . . = sign(ln−1(p)). (2.6)

For example, if the line coefficients a, b, and c are derived as for Equation
(2.1), and assuming a counterclockwise polygon traversal, inside points will give
negative values to the line functions (Figure 2.11). If the line functions of all
edges are negative for a point p, then p is inside the convex polygon.

2.6 Polygon Rasterization

We shall first consider algorithms suitable for rasterizing arbitrary polygons (as
defined in the previous section) and then specialized algorithms for triangles. Tri-
angles are, in practice, the most widespread primitive. The triangle algorithms are
simpler, and variants of them can be found implemented on graphics accelerators.
For general polygons, the rasterization algorithms of Sections 2.6.1, 2.6.3, and
2.6.4 can be used, or alternatively, such polygons can be split into triangles using
triangulation algorithms. Area-filling algorithms work directly on the contents of
the frame buffer and are suitable for some 2D drawing applications.
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1 2 3 4 5 6 7 8

1
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3

4

5

6

y

x

v6

v4
v3

v2

v1v0

v5

I0

I2

I1

I3

span

Figure 2.12. Spans and singularities.

2.6.1 Basic Polygon-Rasterization Algorithm

This is a simple algorithm based on the parity test. The steps are:

1. Compute the intersections I(x,y) of every polygon edge with all the scan-
lines it intersects and store them in a list.

2. Sort the intersections by (y,x).

3. Extract spans (pairs of successive intersection points) from the list and set
the pixels between them.

The basic algorithm computes the intersections of the polygon edges with the
scanlines, sorts them with y (scanline) as the primary key and x as the secondary
key, and then extracts them in pairs from the sorted list and sets the pixels between
each such pair. A pair of successive intersection points in the sorted list is called
a span and represents a sequence of pixels that are inside the polygon, according
to the parity test (Figure 2.12). The simple setting of the pixels of a span may be
replaced by the interpolation of a property, such as color.

2.6.2 Singularities

Figure 2.12 shows some problematic cases in polygon rasterization. If a polygon
vertex falls exactly on a scanline, does it count as 2, 1, or 0 intersections? Unfortu-
nately, none of these choices will work universally. For example, vertices v2−v6

should be treated differently. For correct rasterization results, vertex v2 should
count as 1 intersection, vertices v5 and v6 should count as 0 or 2 intersections,
and vertices v3 and v4 as 1 or 0 intersections. What is the general rule?
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)

[

Figure 2.13. Rule for treating intersection singularities.

A simple solution is to regard a polygon edge as closed on the vertex with the
minimum y- and open on the vertex with the maximum y-coordinate; horizontal
edges are ignored (Figure 2.13). Thus, in the example of Figure 2.12, v2 would
count as 1 intersection (with edge v2v3), v5 as 2, v6 as 0, and v3 and v4 also as 0
intersections since v3v4 is a horizontal edge. The singularities problem is solved,
but the polygon is then rasterized asymmetrically in the y direction: horizontal
edges on the upper part of the polygon and vertices that represent local maxima
are rasterized while horizontal edges on the lower part of the polygon and ver-
ticies that represent local minima are not rasterized. However this will hardly
be noticeable in practice. The effect of this rule on the singularities is shown in
Figure 2.14.

scanline2 0 1 2 0 1

Figure 2.14. Effect of singularities rule on singularities.

2.6.3 Scanline Polygon-Rasterization Algorithm

The basic polygon rasterization algorithm is inefficient. Intersection computations
are costly. Fortunately it is possible to take advantage of scanline coherence and
edge coherence in order to improve efficiency. Scanline coherence exploits the
fact that there is usually little change between the polygon edges that intersect
successive scanlines. It therefore makes sense to cache these intersection points
and update them incrementally for each scanline. This cache is called the active
edge table (AET) .

Edge coherence refers to the fact that an edge changes in a predictable manner
over its length; specifically, the edge-scanline intersection point can be incremen-
tally computed from scanline to scanline by adding the inverse slope of the line
defined by the edge (1

s = ∆x
∆y ).
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Figure 2.15. A polygon and its edge table.

An edge table (ET) is used to bucket-sort the polygon edges in order to aid
the incremental update of the AET. Each bucket in the ET corresponds to a scan-
line (Figure 2.15). A record containing the necessary information for an edge is
inserted in the bucket of its minimum y-coordinate.

The steps of the scanline algorithm are as follows:

1. Construct the ET for the polygon containing the maximum y, the minimum
x and the inverse slope of each edge (ymax,xmin,

1
s ). The record of an edge

is inserted in the bucket of its minimum y-coordinate.

2. For every scanline y that intersects the polygon in an upward sweep:

(a) Update the AET edge intersections for the current scanline: x = x+ 1
s .

y =2

y =3

y =4 [4] 1/48 [13/5] 3/5

3 1

1/4

v2

v1

v3v0

ymax x /∆ ∆
x

8 3/5

[3]

[2]

8

4

4 1/4

[17/4]

[9/2]

v3v0

v0

v2

v3

v1

v2v1

AET y

_

_

_

Figure 2.16. Example states of the AET.
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scanline
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Figure 2.17. Updating the AET.

(b) Insert edges from the y bucket of ET into AET.

(c) Remove edges from AET whose ymax ≤ y.

(d) Re-sort AET on x.

(e) Extract spans from the AET and set their pixels.

Three examples of the state of the AET for scanlines 2, 3, and 4 are shown in
Figure 2.16.

In the scanline algorithm, the edges that populate the AET change at polygon
vertices according to Figure 2.17. A local maximum will remove two edges, a
local minimum will insert two edges, and other vertices will result in the replace-
ment of an edge.

2.6.4 Critical Points Polygon-Rasterization Algorithm

In the previous algorithm we noted that new edges are only inserted at polygon
vertices that are local minima. The sole purpose of the ET is to maintain edge
information for insertion in the AET during the processing of the proper scanline.
The critical points algorithm [Gord94] makes the ET redundant and avoids its ex-
pensive creation by using the local minima explicitly. The local minima (polygon
vertices that are local minima with respect to their y-coordinate) are called critical
points.

The main steps of the critical points polygon-rasterization algorithm are:

1. Find and store the critical points of the polygon.

2. For every scanline y that intersects the polygon in an upward sweep:

(a) For every critical point c(cx,cy) | (y−1 < cy ≤ y) track the perime-
ter of the polygon in both directions starting at c. Tracking stops if
scanline y is intersected or a local maximum is found. For every inter-
section with scanline y, create an AET record (v,±1,x) containing the
start vertex number v of the intersecting edge, the tracking direction
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Figure 2.18. The critical points polygon-rasterization algorithm. An example poly-
gon (above) and the contents of the AET for 3 scanlines (below) are shown.

along the perimeter of the polygon (−1 or +1 depending on whether
it is clockwise or counterclockwise), and the x-coordinate of the point
of intersection.

(b) For every AET record that pre-existed step (a), track the polygon
perimeter in the direction stored within it. If an intersection with
scanline y is found, the record’s start vertex number and intersection
x-coordinate are updated. If a local maximum is found, the record is
deleted from the AET.

(c) Sort the AET on x if necessary.

(d) Extract spans from the AET and set their pixels.

Figure 2.18 shows a polygon being rasterized and the contents of the AET for
three successive scanlines.

2.6.5 Triangle-Rasterization Algorithms

The triangle is the simplest polygon and is guaranteed, by definition, to be both
planar and convex. Triangles are the most common building block of our models,
and algorithms exist for the conversion of most surface representations (e.g., bi-
cubic surfaces, volumetric isosurfaces) into triangle meshes. Hence, triangles
deserve special attention.
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One way of determining the pixels covered by a triangle is to perform an inside
test on all the pixels in the triangle’s bounding box. Since the triangle is a convex
polygon, the inside test can be the evaluation of the three line functions defined
by the triangle edges. For each pixel p of the bounding box, if the three line
functions give results of the same sign, then p is inside the triangle. This test can
be specialized to an all-positive or all-negative check if the order of the vertices
is fixed to clockwise or counterclockwise. For efficiency, the line functions are
incrementally evaluated using their forward differences.

triangle1 ( vertex v0, v1, v2, color c ); {

line l0, l1, l2;

float e0, e1, e2, e0t, e1t, e2t;

/* Compute the line coefficients (a,b,c) from the vertices */

mkline(v0, v1, &l0);

mkline(v1, v2, &l1);

mkline(v2, v0, &l2);

/* Compute bounding box of triangle */

bb_xmin = min(v0.x, v1.x, v2.x);

bb_xmax = max(v0.x, v1.x, v2.x);

bb_ymin = min(v0.y, v1.y, v2.y);

bb_ymax = max(v0.y, v1.y, v2.y);

/* Evaluate linear functions at (bb_xmin, bb_ymin) */

e0 = l0.a * bb_xmin + l0.b * bb_ymin + l0.c;

e1 = l1.a * bb_xmin + l1.b * bb_ymin + l1.c;

e2 = l2.a * bb_xmin + l2.b * bb_ymin + l2.c;

for (y=bb_ymin; y<=bb_ymax; y++) {

e0t = e0; e1t = e1; e2t = e2;

for (x=bb_xmin; x<=bb_xmax; x++) {

if (sign(e0)==sign(e1)==sign(e2)) setpixel(x,y,c);

e0 = e0 + l0.a;

e1 = e1 + l1.a;

e2 = e2 + l2.a;

}

e0 = e0t + l0.b;

e1 = e1t + l1.b;

e2 = e2t + l2.b;

}

}
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If the bounding box is large compared to the area of a triangle (e.g., thin diag-
onal triangle) then the triangle1 algorithm will be wasteful as it will evaluate
the line functions for a large number of outside pixels. Another approach to trian-
gle rasterization is edge walking. Three Bresenham line-rasterization algorithms
are used to walk the edges of the triangle. The tracing is done per scanline by
synchronizing the line rasterizers. Thus, the endpoints of a span of inside pixels
are computed for every scanline that intersects the triangle, and the pixels of the
span are set. Special attention must be paid to special cases, e.g., if the triangle
has one horizontal edge, then only two line rasterizers must be used.

The simplicity of the above algorithms makes them ideal for hardware imple-
mentation, and variants of them can be found implemented on graphics accelera-
tors.

2.6.6 Area-Filling Algorithm

A simple way to set the pixels covered by a closed polygon (or indeed any closed
curve) is to first draw its perimater and then flood-fill it starting from a seed point
inside it. Area-filling algorithms work directly on the contents of the frame buffer
and are suitable for some 2D drawing applications:

1. Draw the perimeter of the polygon/curve.

2. Identify or specify a seed pixel inside it.

3. Recursively set the inside pixels by expanding from the seed pixel in all
directions until the perimeter is met.

In pseudocode the algorithm is as follows:

flood_fill ( polygon P, color c ); {

point s;

draw_perimeter ( P, c );

s = get_seed_point ( P );

flood_fill_recur ( s, c );

}

flood_fill_recur ( point (x,y), color fill_color ); {

color c;

c = getpixel(x,y); /* read current pixel color */

if (c != fill_color) {

setpixel(x,y,fill_color);

flood_fill_recur ( (x+1,y), fill_color );

flood_fill_recur ( (x-1,y), fill_color );

flood_fill_recur ( (x,y+1), fill_color );
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flood_fill_recur ( (x,y-1), fill_color );

}

}

Simple variants of the flood-fill algorithm use a different color for the perime-
ter and the interior or fill while a specific color or other criteria are met. The type
of connectedness assumed is critical to this algorithm. For 4-connected areas the
above four recursive calls are sufficient. For 8-connected areas, four more recur-
sive calls in the diagonal directions must be added: (x+1,y+1), (x+1,y-1),

(x-1,y+1), and (x-1,y-1). The perimeter must also be carefully drawn en-
suring that no 4-connected/8-connected holes exist; otherwise, the flood-fill algo-
rithm will escape the intended area.

A basic problem with the flood-fill algorithm is its inefficiency. A pixel may
be visited up to 4 times (4-connected) or 8 times (8-connected); the large number
of recursive calls introduces delays and may result in stack overflow. A non-
recursive version involves marking visited pixels and is more efficient.

2.7 Perspective Correction
The rasterization process for lines, polygons, and other objects is performed in
2D screen space while the properties of objects are associated with 3D object ver-
tices. Such properties include texture values (u,v), color values (r,g,b), normals,
and depth values. Unfortunately, the general projection transformation does not
preserve ratios of distances (see figure in margin and also Figure 4.2). It is there-
fore incorrect to linearly interpolate the values of properties in screen space. For
example, looking again at the figure, b is the midpoint of the line segment ad
in 3D space, but b′ will not necessarily be the midpoint of a′d′ in screen space.
Thus, the value of a property at b′ should not be halfway between its value at a′

and d′.
Perspective correction can be used to obtain the correct value at a projected

point [Heck91]. This is based on the fact that projective transformations preserve
cross-ratios (see Chapter 4). For the same example line,

ac
cd
ab
bd

=
a′c′
c′d′
a′b′
b′d′

, (2.7)

which means that we can obtain the complete image of the line by projecting
three points. Suppose that, apart from its endpoints, we also project its midpoint
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b onto b′. Then for a point c′ on the image of the line, we want to find the corre-
sponding point c on the 3D line, or equivalently the ratio ac

cd for the interpolation.

Since b is the midpoint of ad and b′ is its known projection, ab
bd = 1; let a′b′

b′d′ = q.

We can also compute a′c′
c′d′ from the screen coordinates of c′. Thus, we can solve

(2.7) for ac
cd obtaining the perspective correction formula

ac
cd

=
a′c′

q c′d′
. (2.8)

Heckbert [Heck91] provides an efficient solution to perspective correction by
showing that a property must go through perspective division (see Chapter 4) just
like the position coordinates. Let the pre perspective division coordinates of a
vertex be [x,y,z,c,w]T, where c is the value of a property. After the perspective
division by w, we store [ x

w , y
w , z

w , c
w , 1

w ]T for the projected vertex. Interpolation in
screen coordinates then takes place, on both the property values c

w and the 1
w value

of each vertex. After interpolation, the property values are adjusted for each pixel
by dividing them by the interpolated value of 1

w .

2.8 Spatial Antialiasing
The primitive rasterization algorithms presented in the previous sections make a
binary decision as to whether a pixel belongs to a primitive or not. However,
pixels are not mathematical points; they have a small area. The binary decision
was based on the positioning of the pixel center with regard to the primitive being
rasterized; in other words, the pixel was represented as a point. A number of
adverse visible aliasing effects can result out of this simplification [SIGG01]:

1. Lines and polygon edges (and, in general, the silhouettes of objects) can
appear jagged (Figure 2.19).

Figure 2.19. The jagged appearance of object silhouettes.
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2. Small objects can be improperly rasterized, appearing too small, too large,
or of the wrong shape (Figure 2.20). Even worse, animated small objects
may appear and disappear from frame to frame, depending on whether they
fall on pixel centers.

Figure 2.20. Improperly rasterized small objects.

3. Fine detail, such as texture, can be incorrectly rasterized (Figure 2.21).

Figure 2.21. Incorrectly rasterized detail.

In sampling theory, the aliasing problem is well known and occurs when
the signal being sampled contains frequencies higher than half the sampling fre-
quency (Nyquist theorem), see Appendix E. In computer graphics, the signal
being sampled is the mathematical model of the image6 (consisting, for example,
of lines and polygons) and the sampling frequency is the resolution of the pixel
grid. The pixel centers are the sampling points. While it is not easy to measure the
exact maximum frequency of the mathematical model of an image, antialiasing
techniques founded on sampling theory can be applied; their result can be judged
from their visual effect.

Essentially antialiasing trades intensity resolution to gain spatial resolution,
which is the opposite of the halftoning technique discussed in Chapter 11.

6A still image is assumed here with spatial dimensions x and y, hence the name spatial antialiasing.
Aliasing also occurs across frames in animation (i.e., in the time dimension); temporal antialiasing
techniques are used there (see Chapter 17).
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Depending on the approach for handling high frequencies, antialiasing tech-
niques are divided into two categories:

• Pre-filtering which extract high frequencies before sampling; essentially
the pixel is treated as a finite area and the percentage contribution of each
primitive that overlaps the pixel area is computed.

• Post-filtering which extract the high frequencies after sampling; essentially
the sampling frequency is increased and the results are averaged down.

2.8.1 Pre-Filtering Antialiasing Methods

Catmull’s algorithm for antialiased polygon rasterization. Catmull [Catm78]
suggested that each pixel be considered as a square window against which all
overlapping polygons are clipped (see Section 2.9.3). After removing the hidden
surfaces, the visible area of each polygon is estimated, as a percentage of pixel
coverage, and this is the contribution of the respective polygon’s color to the color
value of the pixel (Figure 2.22). Specifically, the following steps are needed:

A0

AB

A2

A1

Figure 2.22. Example pixel coverage by polygons.

1. Clip all polygons against the pixel window; let the surviving polygon pieces
be P0...Pn−1.

2. Eliminate hidden surfaces; this can be achieved by depth-ordering the poly-
gons P0...Pn−1 and clipping against the area formed by subtracting the poly-
gons from the (remaining) pixel window in depth order. Let the visible parts
of polygons be P0...Pm−1, and their respective areas be A0...Am−1.

3. Compute the final pixel color as A0C0 + A1C1 + ... + Am−1Cm−1 + ABCB

where Ci is the color of polygon i and AB and CB represent the area of the
background (not covered by any polygon) and its color, respectively.
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Figure 2.23. Successive clipping windows.

A general polygon-clipping algorithm, such as the Greiner-Hormann, is needed
for the second step (see Section 2.9.3). The successive clipping windows for the
second step using the above example are shown in Figure 2.23.

Catmull’s algorithm can be considered as the ideal against which to evaluate
antialiasing algorithms but, in most cases, is not practically viable due to its ex-
traordinary computational requirements. It also assumes that each polygon has a
constant color within the area of a pixel, an assumption which is no longer valid
given the use of texture-mapping techniques.

A discrete version of Catmull’s algorithm is the A-buffer [Carp84]. It uses
masks and logical operators to discretely approximate the pixel coverage compu-
tations, avoiding the expensive general clipping algorithms.

Antialiased line rasterization. Lines drawn using the Bresenham algorithm have
a jagged appearance (Figure 2.24 (left)); the same is true for polygon edges. This
jaggedness results from the binary decision made when selecting the closest pixel
to the mathematical path of the line. However, for drawn lines to be visible, they
must have a certain width and could be modelled as long thin parallelograms. In
this case, it is wrong to select pixels in a binary manner; pixels should rather ac-
quire a color value that is proportional to the part of them that is covered by the
line (Figure 2.24 (right)).

Let us again consider a line in the first octant and the two pixels that it partially
covers at a certain (horizontal) step in its path. Figure 2.25 shows the relationship
between the top boundary of the parallelogram, which represents the line and the

Figure 2.24. Jagged (left) versus antialiased (right) line.



�

�

�

�

�

�

�

�

2.8. Spatial Antialiasing 53

A1

A2

sd

Figure 2.25. Relationship between first octant line and two pixels in its path.

two pixels. Assume that the thickness of the parallelogram is enough to fully
cover the part of the lower pixel below the top boundary of the parallelogram.
Considering the pixels as unit-area squares, we must determine the portions of
unit area A1 and A2 covered by the triangles shown. The top pixel will then
acquire the color of the line at a portion A2 while the bottom pixel at a portion
1−A1. Let the slope of the line be s =− a

b (see Equation (2.1)). The areas of the
two triangles are then

A1 =
d2

2s
,

A2 =
(s−d)2

2s
.

As the evaluation of the above expressions is expensive, incremental approx-
imations have been developed. Pitteway and Watkinson [Pitt80] is one such ap-
proximation suitable for lines that represent polygon edges. Unfortunately this in-
cremental algorithm only adjusts the value of one pixel (not two as shown above);
it uses the Bresenham error term to adjust the pixel that would be selected by the
Bresenham line-rasterization algorithm at each step.

2.8.2 Post-Filtering Antialiasing Methods

In post-filtering,7 we take more than one sample per pixel. This corresponds to
creating the image at a higher resolution. The extra samples are taken at regularly

7Super-sampling is a synonym.
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s

s

.
.

.

.
.

.

Virtual Image Final Image

Figure 2.26. Post-filtering example.

spaced intervals, which form a denser grid than the pixel grid. The results are
then averaged down to the resolution of the pixel grid. For example, to create an
image of resolution 1024×1024 we may take 3072×3072 samples, correspond-
ing to nine samples per pixel (three horizontally times three vertically); the nine
samples are then averaged to compute the final color for a pixel (Figure 2.26).
Post-filtering is the most common antialiasing technique, due to its simplicity.

More formally, post-filtering can be described as a three-step algorithm:

1. The continuous image is sampled at s times the final pixel resolution
(s horizontally × s vertically) creating a virtual image Iv.

2. The virtual image is low-pass filtered to eliminate the high frequencies that
cause aliasing.

3. The filtered virtual image is re-sampled at the pixel resolution to produce
the final image I f .

Usually, rather than simply averaging the s× s virtual image pixels that corre-
spond to a final image pixel, an s× s convolution filter h (see Appendix E) is used
for the low-pass filtering. A typical convolution operation takes place: the filter
is placed over the virtual image pixels that correspond to a final image pixel, its
weights are multiplied by the virtual image pixel values, and summed to produce
the final image pixel value. The filter is then moved by s virtual image pixels in
scanline order. Thus,

I f (i, j) =
s−1

∑
p=0

s−1

∑
q=0

Iv(i∗ s+ p, j ∗ s+q) ·h(p,q).

Examples of practical convolution filters for post-filtering are shown in Fig-
ure 2.27 [Crow81]. These filters give more weight to the central virtual image
pixel, and the weights fade out as one moves away from the center. Odd dimen-
sions are used (s = 2k +1) in order to allow for a central sample. To avoid color
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1 2 1
2 4 2
1 2 1

1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1

1 2 3 4 3 2 1
2 4 6 8 6 4 2
3 6 9 12 9 6 3
4 8 12 16 12 8 4
3 6 9 12 9 6 3
2 4 6 8 6 4 2
1 2 3 4 3 2 1

3 3x 5 5x 7 7x

Figure 2.27. Examples of convolution filters useful in antialiasing.

shifts, the weights of the convolution filter should be normalized:8

s−1

∑
p=0

s−1

∑
q=0

h(p,q) = 1.

There are thus two parameters that drive the basic post-filtering algorithm: the
size s of the convolution filter and the choice of weights. The larger s is, the better
the results.

The main drawbacks of the post-filtering algorithm are

1. Increasing s raises proportionately the image-generation time and the amount
of memory required to store the virtual image. Thus, in practice, s is a small
number.

2. Theoretically, since the frequencies in an image are unlimited, no matter
how big s becomes, the aliasing problem will remain; the Nyquist limit is
only pushed to a higher frequency. Practically, if the human eye is content
then the method is successful.

3. Post-filtering is not sensitive to image complexity; the resolution is blindly
increased by s regardless of whether it is necessary. Thus, a lot of wasted
computations may be performed.

Adaptive post-filtering only increases the sampling rate in parts of the image
where high frequencies exist. However, this algorithm is more complex.

Stochastic post-filtering [Cook89] samples the continuous image at non-
uniformly spaced positions (Figure 2.28). Aliasing effects (spurious low frequen-
cies that result from sampling high-frequencies above the Nyquist limit) are then
converted to noise which is naturally ignored by the human eye.

8This can be easily seen by considering an area of constant color in the virtual image; only a
normalized filter will preserve this color in the final image.
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Regular Stochastic

Figure 2.28. Regular versus stochastic sampling.

2.9 Two-Dimensional Clipping Algorithms
Clipping algorithms arose out of the need to avoid giving out-of-range values to a
display device. For example, requesting the rasterization of a line from (−10,3)
to (8,4) can create problems if the range of addresses of the display pixels start
at 0. The display device is usually, but not necessarily, modelled as a rectangular
parallelogram which defines the within-range values and is called the clipping
object.9 In what follows, let subject refer to a line, polygon, or other primitive of
a model scene.

An important application of clipping algorithms is the frustum-culling stage
of the graphics pipeline. 3D clipping algorithms are used there (clipping after
projection is theoretically incorrect (see Section 4.6)). We shall start by presenting
2D clipping algorithms, which are easier to describe and have useful applications
in 2D graphics. Their generalization to 3D is relatively straightforward.

When rasterizing a subject there are three possible ways that it may relate to
the clipping object:

1. The subject is entirely inside the clipping object. In this case, the subject is
rasterized in its entirety and nothing needs to be done.

2. The subject is entirely outside the clipping object. In this case, the subject
is not rasterized and nothing needs to be done.

3. The subject intersects the clipping object. The intersection of the two must
be computed and rasterized.

Clipping algorithms deal with the third case, as the other two cases are trivial.
Thus they may be regarded as geometrical intersection algorithms, and theoreti-
cally it makes no difference which is the clipping object and which is the subject,
since intersection is a commutative operation. In practice, however, they pose re-
strictions on both objects in order to gain efficiency (e.g., the clipping object must

9In two-dimensional clipping, if the clipping object is an axis-aligned rectangular parallelogram,
it is often called the clipping window.
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be a parallelogram, and the subject must be a convex polygon). Practical clipping
algorithms are designed for a single type of subject, and we shall explore three
such categories here: point, line, and polygon.

2.9.1 Point Clipping

Point clipping is trivial. We merely need to establish if the subject point p(x,y)
is inside the clipping object. If the clipping object is a rectangular parallelogram
defined by its two opposite vertices (xmin,ymin),(xmax,ymax), then the inclusion
test is simply

xmin ≤ x≤ xmax and ymin ≤ y≤ ymax.

2.9.2 Line Clipping

The line-clipping algorithms that follow are suitable for clipping a line segment
(subject) against an axis-aligned rectangular parallelogram (clipping window).
Some of them generalize easily to any convex clipping window.

Cohen-Sutherland algorithm. The philosophy of the Cohen-Sutherland (CS)
line-clipping algorithm is to first perform a low-cost test that, in most cases, de-
cides if a line segment is entirely inside or entirely outside the clipping window.
This test uses the overlap of the x-extents and the y-extents of the line segment and
the window. For example, in Figure 2.29, line segment ab is easily established to
be entirely outside, cd to be entirely inside, but the decision for ef and gh is not
trivial.

ymax

ymin

xmaxxmin

g j
k

h

a

b

d

c

e

i
f

Figure 2.29. Examples of line segments to be clipped.
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ymax

ymin

xmaxxmin

00000001 0010

10001001 1010

0101 0100 0110

Clipping window

Figure 2.30. Region codes in the CS algorithm.

If the extents test is not conclusive, we compute the intersection of the line
segment with one of the lines defined by the window boundary. The line segment
is thus split into two, and the CS algorithm is recursively applied to both parts.
For example, the ef line segment of Figure 2.29 can be split by the line y = ymin

into the parts ei and if.
To perform the extent tests efficiently, the plane of the clipping window is

divided into nine regions and each region is assigned a 4-bit binary code, as shown
in Figure 2.30. The code of a region is determined by the relationship of the region
to the clipping window. Each of the four lines that define the clipping window
divides the plane into two half-planes: the inside half-plane, which includes the
clipping window, and the outside half-plane. The four code bits are set according
to the following rules:

• First bit. Set to 1 for y > ymax, else set to 0;

• Second bit. Set to 1 for y < ymin, else set to 0;

• Third bit. Set to 1 for x > xmax, else set to 0;

• Fourth bit. Set to 1 for x < xmin, else set to 0.

Each endpoint (x,y) of the line segment to be clipped is assigned a 4-bit region
code according to the above rules. The four bits, respectively, correspond to the
sign of the expressions (ymax − y), (y− ymin), (xmax − x), and (x− xmin). Let the
4-bit codes of the endpoints of a line segment be c1 and c2. Then the extent tests
are:
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• If c1∨ c2 = 0000, then the line segment is entirely inside.

• If c1∧ c2 = 0000, then the line segment is entirely outside.

If the extent tests are not conclusive, we estimate an intersection point between
the line segment and one of the lines that define the clipping window. We select a
clipping window line that corresponds to a bit with different values in c1 and c2
and compute the intersection of the line segment with that line. Then, we recurse
with the inside part of the line segment (i.e., the part that had the 0-valued bit).
For example, referring to Figure 2.29, the 4-bit code assignments are:

Endpoint Code Endpoint Code
a 0001 e 0100
b 0101 f 0010
c 0000 g 0001
d 0000 h 1010

Segment ab is entirely outside since 0001∧0101 = 0000; cd is entirely inside
since 0000∨ 0000 = 0000. For ef and gh, the extent tests are not conclusive, so
we have to compute intersection points. We intersect ef with the line y = ymin

since the second bit of the code is different at e and f. Next, we recurse with the if
line segment since the second bit of of the code of the f vertex has value 0 (inside).
Similarly, for gh we compute one of the intersection points (say k) and recurse
with gk which then computes the intersection j and recurses with a trivial inside
decision for jk. The CS pseudocode follows:

CS_Clip ( vertex p1, p2, float xmin, xmax, ymin, ymax ); {

int c1, c2;

vertex i;

edge e;

c1=mkcode (p1);

c2=mkcode (p2);

if ((c1 | c2) == 0) /* p1p2 is inside */

else if ((c1 & c2) != 0) /* p1p2 is outside */

else {

e= /* window line with (c1 bit != c2 bit) */

i = intersect_lines (e, (p1,p2));

if outside (e, p1) CS_Clip(i, p2, xmin, xmax, ymin, ymax);

else CS_Clip(p1, i, xmin, xmax, ymin, ymax);

}

}



�

�

�

�

�

�

�

�

60 2. Rasterization Algorithms

Two auxiliary routines are used. The intersect lines routine computes the
intersection of the line segment from p1 to p2 with the window line e. The planar
line-line intersection problem is discussed in Appendix C. The outside routine
decides if a point lies on the inside or the outside half-plane of window edge e

and, for an axis-aligned edge, it involves a simple comparison.
The CS algorithm is efficient when most line segments can be handled by the

low-cost extent tests. Its recursive case is rather costly.

Skala algorithm. Skala [Skal05] showed that it is possible to achieve a gain in
efficiency over the CS algorithm by additionally classifying the vertices of the
clipping window relative to the line segment being clipped. To this end, a binary
code ci is assigned to each clipping window vertex vi = (xi,yi) according to the
rule

ci =
{

1, l(xi,yi)≥ 0;
0, otherwise,

where l(x,y) is the function defined by the line segment to be clipped from p1 to
p2, as per Equation (2.1). The code ci essentially indicates which side of the line
segment the vertex vi lies on. If the codes are computed by taking the vertices
in a consistent order around the clipping window (e.g., counterclockwise), then a
clipping-window edge is intersected by the line segment for every change in the
coding of the vertices (from 0 to 1 or from 1 to 0). For example, if the code vector
for clipping window vertices (v0,v1,v2,v3) is (0,0,1,0), then the line segment
intersects clipping window edges v1v2 and v2v3.10 A pre-computed table directly
gives the clipping window edges intersected by the line segment from the code
vector (c0,c1,c2,c3), and this replaces the recursive case of the CS algorithm. In
the example of Figure 2.29, the Skala algorithm can immediately decide the fate
of line segments ef and gh.

Liang-Barsky algorithm. The Liang-Barsky (LB) algorithm [Lian84] solves the
line-clipping problem in a direct way, avoiding the possible recursive calls of the
CS algorithm. Tests have shown that LB provides more than 30% performance
increase over CS for typical scenes. In its basic form, it is suitable for clipping
a line segment against an axis-aligned rectangular parallelogram, but it can be
extended to any convex 2D or 3D clipping object.

The LB algorithm is based on the parametric equation of the line segment to
be clipped from p1(x1,y1) to p2(x2,y2) (see Equation (2.3)). For t ∈ [0,1], the

10Actually, the line defined by the line segment has these intersections; the line segment may end
sooner and this case requires special handling.
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ymax

ymin

xmaxxmin

1 2

4

3

p''  1

p''  2 p' 1

p 1

p'2
p 2

outside
half-plane
for line 1

inside
half-plane
for line 1

Figure 2.31. Extended clipping window and line segments to be clipped.

line segment from p1 to p2 is traced. For t ∈ [−∞,+∞] the entire line through p1

and p2 is defined. Now consider the extended clipping window which consists
of the lines defined by the clipping window edges (Figure 2.31). The directed
line segment from p1 to p2 is incoming or outgoing with respect to each clipping-
window line, depending on whether its direction is from the outside to the inside
half-plane or vice versa. If the two are parallel, the clipping problem becomes
trivial. For example, in Figure 2.31, line segments p1p2 and p′′1p′′2 are incoming
with respect to line 1 while line segment p′1p′2 is outgoing.

An important observation that leads to the LB algorithm is that, for a point
on the line segment to be inside the clipping window, it has to be on the inside
half-plane of every clipping-window line. Thus, if we imagine travelling on the
line from p1 to p2, we should not “exit” with respect to any window line before
“entering” with respect to another. For example, the sequence of intersections [en-
ter, enter, exit, exit] signifies intersection with the clipping window (Figure 2.32
(left)) while the sequence [enter, exit, enter, exit] does not (Figure 2.32 (right)).

If a line segment intersects the clipping window, it will enter it at its inter-
section point with a window line for which it is incoming and leave it at its in-
tersection point with a window line for which it is outgoing, with the exception
of endpoints within the clipping window. The LB algorithm computes the max-
imum parametric value of the incoming intersections tin and the minimum para-
metric value of the outgoing intersections tout. It then checks if these parametric
values correspond to points on the line segment (i.e., fall in the range [0,1]) and,
if not, they are replaced by 0 and 1, respectively. If tin ≤ tout, then an intersec-
tion of the line segment and the window exists (the intersection order is of type
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p1

p2

t i1
i2t

o1t

o2t

p1

p2

t i1

i2t
to1

o2t

Figure 2.32. Ordering the intersections.

[enter, enter, exit, exit]); otherwise, it does not (the intersection order is of type
[enter, exit, enter, exit]). In the examples of Figure 2.32, ti1 and ti2 represent
the incoming intersections, while to1 and to2 represent the outgoing intersections;
tin = max(ti1, ti2) = ti2 and tout = min(to1, to2) = to1. In the left part of the figure,
tin < tout, so the line segment intersects the clipping window, while in the right
part tin > tout, so there is no intersection.

More formally, the theory behind the LB algorithm is the following. Define
∆x = x2− x1, ∆y = y2− y1 for the line segment from p1(x1,y1) to p2(x2,y2). The
part of the line segment that is inside the clipping window satisfies (see Equa-
tion (2.3) and Figure 2.31)

xmin ≤ x1 + t∆x≤ xmax,

ymin ≤ y1 + t∆y≤ ymax,

or

−t∆x≤ x1− xmin,

t∆x≤ xmax− x1,

−t∆y≤ y1− ymin,

t∆y≤ ymax− y1.

These inequalities have the common form

t pi ≤ qi, i : 1..4,
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where
p1 =−∆x, q1 = x1− xmin;

p2 = ∆x, q2 = xmax− x1;

p3 =−∆y, q3 = y1− ymin;

p4 = ∆y, q4 = ymax− y1.

Each inequality corresponds to the relationship between the line segment and
the respective clipping-window edge, where the edges are numbered according to
Figure 2.31. Note the following:

• If pi = 0 the line segment is parallel to window edge i and the clipping
problem is trivial.

• If pi = 0 the parametric value of the point of intersection of the line segment
with the line defined by window edge i is qi

pi
.

• If pi < 0 the (directed) line segment is incoming with respect to window
edge i.

• If pi > 0 the (directed) line segment is outgoing with respect to window
edge i.

Therefore, tin and tout can be computed as

tin = max({ qi

pi
| pi < 0, i : 1..4}∪{0}),

tout = min({ qi

pi
| pi > 0, i : 1..4}∪{1}).

The sets {0} and {1} are added to the above expressions in order to clamp
the starting and ending parametric values at the endpoints of the line segment.
If tin ≤ tout the parametric values tin and tout are plugged into the parametric line
equation to get the endpoints of the clipped line segment; otherwise, there is no
intersection with the clipping window.

Example 2.1 (Liang-Barsky.) Use the LB algorithm to clip the line segment de-
fined by p1(x1,y1) = (0.5,0.5) and p2(x2,y2) = (3,3) by the window with xmin =
ymin = 1 and xmax = ymax = 4 (see Figure 2.33).

• Compute ∆x = 2.5 and ∆y = 2.5.

• Compute the pi’s and qi’s:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p1 =−2.5, q1 =−0.5;

p2 = 2.5, q2 = 3.5;

p3 =−2.5, q3 =−0.5;

p4 = 2.5, q4 = 3.5.
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y

x1 2 3 4 5

5
4
3
2
1

p (0.5 ,0.5)1

p (3,3)2

Figure 2.33. Liang-Barsky example.

• Compute

tin = max({ q1

p1
,

q3

p3
}∪{0}) = 0.2,

tout = min({ q2

p2
,

q4

p4
}∪{1}) = 1.

• Since tin < tout compute the endpoints p1
′(x′1,y

′
1) and p2

′(x′2,y
′
2) of the

clipped line segment using the parametric line equation

x′1 = x1 + tin∆x = 0.5+0.2 ·2.5 = 1,

y′1 = y1 + tin∆y = 0.5+0.2 ·2.5 = 1,

x′2 = x1 + tout∆x = 0.5+1 ·2.5 = 3,

y′2 = y1 + tout∆y = 0.5+1 ·2.5 = 3.

2.9.3 Polygon Clipping

In two-dimensional polygon clipping, the subject and the clipping object are both
polygons. The clipping object is sometimes restricted to a convex polygon or
a clipping window. We shall refer to the two polygons as subject polygon and
clipping polygon.

A natural first question to ask is why are special polygon-clipping algorithms
required at all? Why do we not simply consider the subject polygon as a set of
line segments and use line-clipping algorithms to clip these line segments inde-
pendently? The example of Figure 2.34 should answer this. If we simply clip a
polygon as a set of line segments, we can get the wrong result. In the example, the
results of clipping the edges of the triangle v0v1v2 against the clipping polygon
are the line segments v0vi0 and v0vi1. First, these do not represent a closed poly-
gon. And second, assuming that we draw the closing line segment vi0vi1, they
represent the wrong polygon; the result should be the polygon v0vi0vwvi1 and not
v0vi0vi1. The problem with line-clipping algorithms is that they regard a subject
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v0

v2

v1

vw

vi1

vi0

Clipping window

Subject

polygon

Figure 2.34. Polygon clipping cannot be regarded as multiple line clipping.

polygon as a set of line segments. Instead, a subject polygon should be regarded
as the area that it covers, and a polygon-clipping algorithm must compute the
intersection of the subject polygon area with the area of the clipping polygon.

Specialized polygon-clipping algorithms are thus required, and we shall see
two such algorithms here. The Sutherland-Hodgman algorithm is an efficient
and widespread polygon-clipping algorithm which poses the restriction that the
clipping polygon must be convex. The Greiner-Hormann algorithm is a general
polygon-clipping algorithm.

A polygon is given as a sequence of n vertices v0,v1, ...,vn−1 that define n
edges that form a closed curve v0v1,v1v2, ...,vn−2vn−1,vn−1v0. The vertices are
given in a consistent direction around the polygon; we shall assume a counter-
clockwise traversal here.

Sutherland-Hodgman algorithm. The Sutherland-Hodgman (SH) algorithm
[Suth74a] clips an arbitrary subject polygon against a convex clipping polygon. It
has m pipelined stages which correspond to the m edges of the clipping polygon.
Stage i | i : 0...m− 1 clips the subject polygon against the line defined by edge i
of the clipping polygon11 (it essentially computes the intersection of the area of
the subject polygon with the inside half-plane of clipping line i). This is why the
clipping polygon must be convex: it is regarded as the intersection of the m inside
half-planes defined by its m edges. The input to stage i | i : 1...m−1 is the output
of stage i−1. The subject polygon is input to stage 0 and the clipped polygon is
the output of stage m−1. An example is shown in Figure 2.35.

11We shall refer to this line as clipping line i.
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Clipping
polygon

Subject

polygon

Stage 0 Stage 1

Stage 2

Stage 3

0
1

2

3

Figure 2.35. Sutherland-Hodgman example.

inside outside

Clipping
Line

Case 1: 1 output
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vk+1

Case 2: 1 output
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Case 3: 0 outputs Case 4: 2 outputs

vk
vk+1

output vertex

Figure 2.36. The four possible relationships between a clipping line and an input
(subject) polygon edge vkv+1.

Clipping
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Figure 2.37. One stage of the SH algorithm in detail.
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vk vk+1 Case Output
v0 v1 2 i1
v1 v2 3 -
v2 v3 4 i2,v3
v3 v4 2 i3
v4 v5 3 -
v5 v6 4 i4,v6
v6 v0 1 v0

Table 2.2. Stage 1 of the algorithm for the example of Figure 2.35.

We shall next describe the operation of a single stage of the SH pipeline. Each
edge vkvk+1 of the input polygon is considered in relation to the clipping line of
the stage. There are four possibilities which result in four different appendages to
the output polygon list of vertices. From zero to two vertices are added as shown
in Figure 2.36.

Table 2.2 traces stage 1 of the SH algorithm for the example of Figure 2.35.
The situation at this stage is shown in more detail in Figure 2.37.

The pseudocode for the SH algorithm follows:

polygon SH_Clip ( polygon C, S ); { /*C must be convex*/

int i,m;

edge e;

polygon InPoly, OutPoly;

m=getedgenumber(C);

InPoly=S;

for (i=0; i<m; i++) {

e = getedge(C,i);

SH_Clip_Edge(e,InPoly,OutPoly);

InPoly = OutPoly

}

return OutPoly

}

SH_Clip_Edge ( edge e, polygon InPoly, OutPoly ); {

int k,n;

vertex vk, vkplus1, i;

n=getedgenumber(InPoly);

for (k=0; k<n; k++) {

vk=getvertex(InPoly,k);

vkplus1=getvertex(InPoly,(k+1) mod n);
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if (inside(e, vk) and inside(e, vkplus1))

/* Case 1 */

putvertex(OutPoly,vkplus1)

else if (inside(e, vk) and !inside(e, vkplus1)) {

/* Case 2 */

i=intersect_lines(e, (vk,vkplus1));

putvertex(OutPoly,i)

}

else if (!inside(e, vk) and !inside(e, vkplus1))

/* Case 3 */

else {

/* Case 4 */

i=intersect_lines(e, (vk,vkplus1));

putvertex(OutPoly,i);

putvertex(OutPoly,vkplus1)

}

}

}

Two auxiliary routines are used. The intersect lines routine was de-
scribed in the Cohen-Sutherland algorithm and the mathematical details of the
planar line-line intersection problem are discussed in Appendix C.

The inside routine decides if a point lies on the inside or the outside half-
plane of clipping line e and, if e is axis-aligned, it involves a simple comparison.
In the general case, the sign of the evaluation of the line equation (2.1) for the
coordinates of the point can be checked.

The complexity of the SH algorithm is O(mn) where m and n are the num-
bers of vertices of the clipping and subject polygons, respectively. However, the
m stages can be pipelined in hardware, since the clipping polygon is, in general,
constant. No complex data structures or operations are required so the SH algo-
rithm is quite efficient.

Greiner-Hormann algorithm. The Greiner-Hormann (GH) algorithm [Grei98]
is suitable for general polygons.12 Both the clipping polygon (C) and the subject
polygon (S) can be arbitrary closed polygons, even self-intersecting. In fact the
GH algorithm views the S and C polygons symmetrically; since their area of
intersection is computed it does not matter which is which.

The GH algorithm is based on the winding-number test for a point in a poly-
gon (see Section 2.5). The winding number ω(P,p) of a point p with respect to a
polygon P does not change as long as the topological relation of the two remains

12An earlier solution to general polygon clipping was given by Vatti [Vatt92].



�

�

�

�

�

�

�

�

2.9. Two-Dimensional Clipping Algorithms 69

( a ) ( b )

( c ) ( d )

S

C C

C

S

S

Figure 2.38. Greiner-Hormann example: (a) the initial S and C polygons; (b) after
Step 1 of GH; (c) after Step 2 of GH; (d) the final result.

constant. If p crosses P then ω(P,p) is incremented or decremented. If ω(P,p) is
odd then p is inside P; otherwise, it is outside. Thus, every time a moving point
crosses P it switches from the inside to the outside of P or vice versa.

Consider the S and C polygons of Figure 2.38 (a). The GH algorithm has three
steps:

1. Trace the perimeter of S starting from a vertex vs0. An imaginary stencil
toggles between an on and an off state every time the perimeter of C is
crossed. Its initial state is on if vs0 is inside C and off otherwise. It thus
computes the part of the perimeter of S that is inside C (Figure 2.38 (b)).
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2. Similar to Step 1 but reverse the roles of S and C. The part of the perimeter
of C that is inside S is thus computed (Figure 2.38 (c)).

3. The union of the results of Steps 1 and 2 is the result of clipping S against
C (or equivalently C against S) (Figure 2.38 (d)).

The output of the GH algorithm may be composed of disconnected compo-
nents. The implementation suggested in the original paper proposes the use of
doubly linked lists for the vertices of C and S with extra pointers for the linkage
of the disconnected components.

The toggling of the stencil state described in the algorithm essentially involves
the computation of all intersections between the edges of S and C. These intersec-
tions can be computed by the intersect lines routine mentioned in previous
clipping algorithms and Appendix C. The complexity of step 1 (and 2) is O(mn),
where m and n are the numbers of vertices of the C and S polygons, respectively,
and this is the overall complexity of the GH algorithm. In practice, the complex
data structures used make it less efficient than the SH algorithm.

As described, the GH algorithm computes the intersection of the areas of the
two polygons, C ∩ S. It easily generalizes to compute C ∪ S, C− S and S−C
by changing the initial states of the stencils for S and C (there are four possible
combinations of initial state). These generalizations are not useful for the clipping
problem.

2.10 Exercises
1. Generalize the line3 algorithm so that it works in all octants.

2. Implement the line1, line2, and line3 algorithms and compare their
performance by timing them on a large set of line segments.

3. Modify the line3 algorithm so that it includes an extra parameter
thickness which defines the thickness of the line, in pixels. Thickness
is measured on the minor axis.

4. Change the circle algorithm so that it draws circles with arbitrary integer
center (xc,yc).

5. The triangle1 algorithm can be generalized to convex1 which rasterizes
arbitrary convex polygons, by incrementally evaluating their edge (line)
functions at all pixels within their bounding box. Implement this algorithm.



�

�

�

�

�

�

�

�

2.10. Exercises 71

6. Design a non-recursive flood-filling algorithm. Hints: think of ways to
fill multiple pixels simultaneously; ‘branching’ points (where filling on a
neighboring scanline can commence) may have to be stored in a list.

7. Implement an antialiased line-rasterization algorithm, ignoring performance.
The line width should be given as a real-valued parameter in pixel units.

8. Define a simple two-dimensional scene using a small set of triangles, and
associated colors. Use the triangle1 algorithm to rasterize the scene.
Rasterize it again at three times the resolution (s = 3) and then post-filter it
using

(a) the 3×3 convolution filter given in Section 2.8.2;

(b) a 3×3 filter with all weights equal.

Compare the results. Note: the weights of both filters should be normalized.

9. Implement the CS and LB line-clipping algorithms and compare their per-
formance. To this end you will have to construct an experiment which
includes a generator that produces arbitrary line segments.

10. Implement the SH and GH polygon-clipping algorithms and compare their
performance. To this end you will have to construct an experiment which
includes a generator that produces arbitrary polygons.

11. Generalize the GH algorithm to compute

• C∪S;

• C−S;

• S−C.

12. Implement the SH clipping algorithm for a rectangular clipping polygon
using a pipeline of four stages, running on a pipeline of four processors.
Compute the speed-up over the sequential implementation. You must run
the algorithms on a large number of input polygons to allow the pipeline-
filling cost to become negligible.
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3
2D and 3D Coordinate

Systems and Transformations

There is nothing wrong with change, if it is in the right direction.
—Winston Churchill

3.1 Introduction
In computer graphics, it is often necessary to change the form of objects or, equiv-
alently, change the coordinate system. For example the digitized form of a car
may be used in several instances in the model of a scene, positioned at various
points and directions, and in different sizes. In animation, an object may be trans-
formed from frame to frame; this transformation may involve its position, orien-
tation, size, or even shape. Also, as objects traverse the graphics pipeline, their
coordinate system is changed several times, e.g., from object coordinates to world
coordinates, from world coordinates to eye coordinates, etc.

All the above changes use a common element for their implementation: co-
ordinate transformations. Coordinate transformations are the most important and
classic topic in computer graphics; they are the tools of change.

73
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z

x

y

Figure 3.1. Right-handed coordinate system.

In this book we shall represent points1 in three-dimensional Euclidean space
E3 as 3×1 column vectors

p =

⎡⎣ px

py

pz

⎤⎦ .

Linear transformations are represented by 3×3 matrices which are post-multiplied
by a point to produce another point⎡⎣ p′x

p′y
p′z

⎤⎦=

⎡⎣ m1 m2 m3

m4 m5 m6

m7 m8 m9

⎤⎦ ·
⎡⎣ px

py

pz

⎤⎦ .

Note that if points were represented by 1× 3 row vectors, then the transpose of
the above matrices should be pre-multiplied by the point:

[
p′x p′y p′z

]
=
[

px py pz
] ·
⎡⎣ m1 m4 m7

m2 m5 m8

m3 m6 m9

⎤⎦ .

Throughout this book we make use of right-handed three-dimensional coordi-
nate systems (Figure 3.1).

3.2 Affine Transformations
In mathematics, a transformation is defined as a mapping whose domain and
range are the same set; for example, from E3 to E3. In computer graphics and

1For a formal definition of points and vectors, see Section A.2.
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visualization we are mainly interested in affine transformations, those which pre-
serve important geometric properties of the objects being transformed (see Sec-
tion 3.10). In particular they preserve affine combinations (which include line
segments and convex polygons: the building blocks of our models).

An affine combination of points p0,p1, ...,pn ∈ E3 is a point p ∈ E3 defined
as

p =
n

∑
i=0

aipi, (3.1)

with a0,a1, ...,an ∈R and ∑n
i=0 ai = 1. The a0,a1, ...,an are the affine coordinates

of p with respect to p0,p1, ...,pn. An affine combination is convex if all the affine
coordinates ai are non-negative; in this case the affine combination p is within the
convex hull of the original points p0,p1, ...,pn.2

Instances of affine combinations are line segments, triangles, and tetrahedra
(the usual buildings blocks of our models). A line segment between points p1

and p2 can be defined as the set of points p which satisfy p = a1 · p1 + a2 · p2

with 0≤ a1 ≤ 1 and a2 = 1−a1. Thus, a1 +a2 = 1 and a1,a2 ≥ 0, so we have a
convex affine combination. Similarly, a triangle with vertices p1, p2, and p3 can
be defined as the set of points p which satisfy p = a1 ·p1 +a2 ·p2 +a3 ·p3 with 0≤
a1,a2,a3 ≤ 1 and a1 +a2 +a3 = 1, which is another convex affine combination.

An affine transformation is defined as a transformation which preserves affine
combinations; that is, a transformation which retains the inter-relationship of the
points of the affine combination. In mathematical terms, a transformation Φ :
E3→ E3 is affine if

Φ(p) =
n

∑
i=0

aiΦ(pi), (3.2)

where p = ∑n
i=0 aipi is an affine combination. In other words, the result of the

application of an affine transformation onto the result p of an affine combination
should equal the affine combination of the result of performing the affine transfor-
mation on the defining points, with the same weights ai. For example, an affine
transformation will convert the midpoint of a line segment to the midpoint of the
transformed line segment.

The above definition has an extremely important practical consequence; to
perform an affine transformation on an affine combination, internal points of the
affine combination need not be transformed; it suffices to transform the defining
points. Thus, to perform an affine transformation on a triangle, it is theoretically

2Informally, the convex hull is defined as the minimum convex shape that encloses the given points.
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correct to transform its three vertices, and it is not necessary to transform its
(infinite) interior points.

Mappings of the form
Φ(p) = A ·p+

−→
t , (3.3)

where A is a 3×3 matrix and
−→
t is a 3×1 vector, are affine transformations in E3.

Proof: We shall show that transformation (3.3) preserves affine combinations:

Φ(
n

∑
i=0

aipi) = A(
n

∑
i=0

aipi)+
−→
t

=
n

∑
i=0

aiApi +
n

∑
i=0

ai
−→
t

=
n

∑
i=0

ai(Api +
−→
t )

=
n

∑
i=0

aiΦ(pi).
�

The four basic affine transformations of translation, scaling, rotation, and
shear are special cases of Equation (3.3), as we shall see in Section 3.3.

3.3 2D Affine Transformations
We shall start by describing the basic two-dimensional (2D) affine transformations
for reasons of simplicity; it is much easier to show the effect of 2D transforma-
tions on the 2D pages of a book. The previous discussion on three-dimensional
(3D) affine transformations holds true for the 2D case and the 2D results readily
generalize to three dimensions.

The affine transformations that we shall describe transform a point into an-
other point. To transform an object, we simply transform all the points that define
it (e.g., the vertices of its polygons). The defining property of affine transforma-
tions (preservation of affine combinations) ensures that the result is valid, and it
is not necessary to transform all the internal points of the objects.

3.3.1 2D Translation

Translation defines movement by a certain distance in a certain direction, both
specified by the translation vector. The translation of a 2D point p = [x,y]T by a
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d

dx
dy

y

x

p

p´

Figure 3.2. 2D translation.

vector
−→
d = [dx,dy]T gives another point p′ = [x′,y′]T which is the result of adding−→

d to p:
p′ = p+

−→
d . (3.4)

This is an instantiation of the general affine transformation of Equation (3.3),
where A = I and

−→
t =

−→
d (I is the 2× 2 identity matrix). Figure 3.2 shows the

effect of a translation on a simple object.

3.3.2 2D Scaling

The scaling transformation changes the size of objects. The change of size in
each dimension is specified by the respective scaling factor; for two dimensions
we have two scaling factors, sx and sy, which are multiplied by the respective
coordinates of a 2D point p = [x,y]T to give p′ = [x′,y′]T

p′ = S(sx,sy) ·p (3.5)

where

S(sx,sy) =
[

sx 0
0 sy

]
.

It is not possible to observe the effect of scaling on a single point; Figure 3.3
shows its effect on a simple object. Notice that scaling is an instantiation of the
general affine transformation of Equation (3.3), where A = S(sx,sy) and

−→
t =

−→
0 .

If a scaling factor is less than 1, the object’s size is reduced in the respective
dimension, while if it is greater than 1 it is increased.

Scaling has a translation side-effect that is proportional to the scaling factor;
notice how the object of Figure 3.3 has moved toward the origin on the x-axis
(scaling factor < 1) and away from the origin on the y-axis (scaling factor > 1).
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y

x

y

x

S(1/2,2)

Figure 3.3. 2D scaling.

A scaling transformation is called isotropic, if all the scaling factors are equal.3

In the two-dimensional case this implies sx = sy. Isotropic scaling preserves the
similarity of objects (angles) whereas non-isotropic scaling does not (see also
Section 3.10).

Mirroring about an axis can be described as a special case of the scaling trans-
formation, using a −1 scaling factor. Mirroring about the x-axis is S(1,−1), and
mirroring about the y-axis is S(−1,1).

3.3.3 2D Rotation

The rotation transformation has the effect of turning objects about the origin. The
distance from the origin does not change, only the orientation changes. We follow
the convention that a counterclockwise rotation is positive; thus in Figure 3.4 (a),
the object is rotated by +90◦.

Looking at Figure 3.4 (b), we can estimate p′ = [x′,y′]T from p = [x,y]T:

x′ = l cos(φ +θ) = l(cosφ cosθ − sinφ sinθ) = x cosθ − y sinθ ;

y′ = l sin(φ +θ) = l(cosφ sinθ + sinφ cosθ) = x sinθ + y cosθ .

Thus,

p′ = R(θ) ·p, (3.6)

3This is also referred to as uniform scaling. By contrast, when sx = sy, we have non-uniform
scaling.
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[x', y' ]

y

x

R(+90 )o

(a)
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x
(b)

θ

l
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[x,y]p
T

T

φ

Figure 3.4. 2D rotation.

where

R(θ) =
[

cosθ −sinθ
sinθ cosθ

]
.

Rotation is an instantiation of the general affine transformation of Equation (3.3),
where A = R(θ) and

−→
t =

−→
0 .

3.3.4 2D Shear

The shear is the final basic affine transformation and has the effect of increasing
one of the object’s coordinates by an amount equal to the other coordinate times
a shearing factor.4 A physical example can be observed by placing a stack of
cards flat on a table and then taking a hard book, placing it vertically adjacent
to the stack of cards and tilting it against them. The higher up a card’s original
position is, the more it will be ‘sheared’; note that a card’s vertical position will
not change but its horizontal position will change by an amount proportional to
its vertical position (unless the stack topples over!). Figure 3.5 shows the effect
of a shear along the x-axis by a shear factor of 2.

The shear of a point p = [x,y]T along the x-axis results in p′ = [x′,y′]T, defined
by

x′ = x+ay, y′ = y,

while the shear along the y-axis is

x′ = x, y′ = bx+ y,

4In higher (say d) dimensions, as we shall see in Section 3.7 for the 3D case, shear increases d−1
coordinates by an amount equal to one coordinate times the respective shearing factors.
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y

x

Figure 3.5. 2D shear.

where a and b are the respective shear factors. In matrix form, the x-axis shear is

p′ = SHx(a) ·p, (3.7)

where

SHx(a) =
[

1 a
0 1

]
,

while the y-axis shear is
p′ = SHy(b) ·p, (3.8)

where

SHy(b) =
[

1 0
b 1

]
.

The shear is an instantiation of the general affine transformation of Equation (3.3),
where A = SHx(a) or A = SHy(b) and

−→
t =

−→
0 .

3.4 Composite Transformations
Useful transformations in computer graphics and visualization rarely consist of
a single basic affine transformation; they typically consist of two or more steps
(see the 2D and 3D examples of Sections 3.6 and 3.8). Such transformations must
typically be applied to objects of a scene that are defined by thousands or even
millions of vertices.

For example, suppose that we wish to rotate a 2D object by 45◦ and then
isotropically scale it by a factor of 2. We must first apply the rotation matrix

R(45◦) =

[ √
2

2 −
√

2
2√

2
2

√
2

2

]
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and then the scaling matrix

S(2,2) =
[

2 0
0 2

]
to every vertex of the object.

While it is possible to apply the matrices sequentially to every vertex p:
S(2,2) · (R(45◦) · p), it is more efficient to exploit the associative property5 of
matrix multiplication and apply the pre-computed composite matrix that describes
the composite transformation to the vertices: (S(2,2) ·R(45◦)) ·p. The compos-
ite transformation is only computed once and the composite matrix is applied to
the vertices, which generally saves a large amount of computation (see Exercises,
Section 3.11).

Matrix multiplication is not in general commutative,6 so the order of mul-
tiplying the transformation matrices is important. Having chosen the column
representation of points (which implies that transformation matrices are right-
multiplied by the points), we must write the matrix composition in the reverse of
the order of application. In the above example, we compute the composite matrix
S(2,2) ·R(45◦) to apply the rotation first and the scaling second. In general, to
apply the sequence of transformations T1,T2, ...,Tm, we compute the composite
matrix Tm · ... ·T2 ·T1.

Unfortunately, there is a problem with the translation transformation. Trans-
lation can not be described by a linear transformation matrix, i.e., it can not be
described as x′ = ax +by and y′ = cx +dy. Thus, translation can not be included
in a composite transformation. Fortunately there is a simple solution to this prob-
lem: homogeneous coordinates.

3.4.1 Homogeneous Coordinates

Homogeneous coordinates use one additional dimension than the space that we
want to represent. In the two-dimensional case, homogeneous points have the
form ⎡⎣ x

y
w

⎤⎦ ,

where w is the new coordinate that corresponds to the extra dimension, with w = 0.
Fixing w = 1 maintains our original dimensionality by taking the slice w = 1.

In the 2D case, we use the plane w = 1 instead of the xy-plane (Figure 3.6). Points

5(A ·B) ·C = A · (B ·C).
6A ·B = B ·A.



�

�

�

�

�

�

�

�

82 3. 2D and 3D Coordinate Systems and Transformations

=1w

w

x

y

1

[x,y,w] T

[x/w,y/w,1]T

Figure 3.6. 2D homogeneous coordinates.

whose homogeneous coordinates are multiples of each other are equivalent. Thus
[1,2,3]T and [2,4,6]T represent the same point; the actual point that they represent
is given by their unique basic representation, which has w = 1 and is obtained by
dividing all coordinates by w: [x/w,y/w,w/w]T = [x/w,y/w,1]T. For example, the
above pair of equivalent points has the basic representation [ 1

3 , 2
3 ,1]T. Equivalent

points (i.e., points with the same basic representation) lie on the same line through
the origin, (Figure 3.6). In general, we use the basic representation for points, and
we ensure that our transformations preserve this property.

Let us see how homogeneous coordinates help homogenize the treatment of
the translation transformation. We take advantage of the fact that points have
w = 1, in order to represent the translation of a point p = [x,y,w]T by a vector−→
d = [dx,dy]T, as a linear transformation

x′ = 1x+0y+dxw = x+dx,

y′ = 0x+1y+dyw = y+dy,

w′ = 0x+0y+1w = 1.

(3.9)

The transformation on the w-coordinate ensures that the resulting point p′ =
[x′,y′,w′]T has w′ = 1. The above linear expressions can be encapsulated in matrix
form as we shall see in the next section, thus treating translation in the same way
as the other basic affine transformations.

For the simple affine transformation matrices of Section 3.3, the origin [0,0]T

is a fixed point, i.e., a point that does not change under transformation:[
a b
c d

]
·
[

0
0

]
=
[

0
0

]
.
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A secondary positive effect of homogeneous coordinates is that there is no fixed
point under homogeneous affine transformations, because the 2D origin is now
[0,0,1]T which is not a fixed point for the homogeneous affine-transformation
matrices. The [0,0,0]T point is outside the w = 1 plane and, furthermore, is disal-
lowed since it has w = 0.

In Section 3.5, points will be represented by homogeneous coordinates. The
homogeneous representation of a 2D point will thus be [x,y,1]T and that of a 3D
point will be [x,y,z,1]T. For brevity of presentation we shall often omit the ho-
mogeneous coordinate. Coercion7 between homogeneous and non-homogenous
matrices, points, and vectors will be assumed.

3.5 2D Homogeneous Affine Transformations
The linear expressions (3.9) that define 2D translation can be represented as a
homogeneous matrix:

T(
−→
d ) =

⎡⎣ 1 0 dx

0 1 dy

0 0 1

⎤⎦ . (3.10)

Thus, p′ = T(
−→
d ) ·p and translation is treated by matrix composition, like the

other basic affine transformations. The last row of a homogeneous transformation
matrix is always [0,0,1] in order to preserve the unit value of the w-coordinate.
Homogeneous matrices can be obtained for the other basic affine transformations.
2D homogeneous scaling matrix:

S(sx,sy) =

⎡⎣ sx 0 0
0 sy 0
0 0 1

⎤⎦ . (3.11)

2D homogeneous rotation matrix:

R(θ) =

⎡⎣ cosθ −sinθ 0
sinθ cosθ 0

0 0 1

⎤⎦ . (3.12)

2D homogeneous shear matrices:

SHx(a) =

⎡⎣ 1 a 0
0 1 0
0 0 1

⎤⎦ ; (3.13)

7Coercion is implicit type conversion.
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SHy(b) =

⎡⎣ 1 0 0
b 1 0
0 0 1

⎤⎦ . (3.14)

It is often necessary to reverse a transformation, as will become evident in the
examples that follow. To this end, it is useful to have the inverse of the basic affine
transformations. A translation is reversed by negating the translation vector:

T−1(
−→
d ) = T(−−→d ) =

⎡⎣ 1 0 −dx

0 1 −dy

0 0 1

⎤⎦ . (3.15)

A scaling is reversed by inverting the scaling factors:

S−1(sx,sy) = S(
1
sx

,
1
sy

) =

⎡⎢⎣ 1
sx

0 0
0 1

sy
0

0 0 1

⎤⎥⎦ . (3.16)

A rotation is reversed by negating the rotation angle:

R−1(θ) = R(−θ) =

⎡⎣ cosθ sinθ 0
−sinθ cosθ 0

0 0 1

⎤⎦ . (3.17)

A shear is reversed by negating the shear factor:

SH−1
x (a) = SHx(−a) =

⎡⎣ 1 −a 0
0 1 0
0 0 1

⎤⎦ ; (3.18)

SH−1
y (b) = SHy(−b) =

⎡⎣ 1 0 0
−b 1 0
0 0 1

⎤⎦ . (3.19)

Applying a transformation on an object (object transformation) is equivalent
to the application of the inverse transformation on the coordinate system (axis
transformation). For example, isotropically scaling an object by 2 is equivalent to
isotropically scaling the coordinate system axes by 1

2 (shrinking).
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Some simple but useful properties of homogeneous affine transformation ma-
trices under composition are:

• T(
−→
d1) ·T(

−→
d2) = T(

−→
d2) ·T(

−→
d1) = T(

−→
d1+

−→
d2);

• S(sx1,sy1) ·S(sx2,sy2) = S(sx2,sy2) ·S(sx1,sy1) = S(sx1 · sx2,sy1 · sy2);

• R(θ1) ·R(θ2) = R(θ2) ·R(θ1) = R(θ1+θ2);

• S(sx,sy) ·R(θ) = R(θ) ·S(sx,sy) for isotropic scaling only, i.e., for sx = sy.

Similar homogeneous matrices can be obtained for 3D affine transformations
as we shall see in Section 3.7.

3.6 2D Transformation Examples

Example 3.1 (Rotation about an Arbitrary Point.) Determine the transforma-
tion matrix R(θ ,p) required to perform rotation about an arbitrary point p by
an angle θ (Figure 3.7).

The 2D rotation matrix R(θ) (Equation (3.12)) rotates graphical objects about
the origin. To rotate about an arbitrary point p = [px, py]T, we first have to trans-
late p to the origin, rotate about the origin, and finally undo the translation.

x

y

p

Q

Q΄

θ

Figure 3.7. Rotation about an arbitrary point.
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Step 1. Translate by −−→p , T(−−→p ).

Step 2. Rotate by θ , R(θ).

Step 3. Translate by −→p , T(−→p ).

R(θ ,p) =

⎡⎣ 1 0 px

0 1 py

0 0 1

⎤⎦ ·
⎡⎣ cosθ −sinθ 0

sinθ cosθ 0
0 0 1

⎤⎦ ·
⎡⎣ 1 0 −px

0 1 −py

0 0 1

⎤⎦
=

⎡⎣ cosθ −sinθ px− px cosθ + py sinθ
sinθ cosθ py− px sinθ − py cosθ

0 0 1

⎤⎦ .

Example 3.2 (Rotation of a Triangle about a Point.) Rotate the triangle �abc
by 45◦ about the point p = [−1,−1]T, where a = [0,0]T,b = [1,1]T and c = [5,2]T.

The triangle can be represented by a matrix T, the columns of which contain
the homogeneous coordinates of its vertices:

T =

⎡⎣ 0 1 5
0 1 2
1 1 1

⎤⎦ .

We shall apply the R(θ ,p) matrix of Example 3.1 to the triangle

R(45◦, [−1,−1]T) ·T =

⎡⎢⎣
√

2
2 −

√
2

2 −1√
2

2

√
2

2

√
2−1

0 0 1

⎤⎥⎦ ·
⎡⎣ 0 1 5

0 1 2
1 1 1

⎤⎦

=

⎡⎢⎣ −1 −1 3
2

√
2−1√

2−1 2
√

2−1 9
2

√
2−1

1 1 1

⎤⎥⎦ .

The rotated triangle is thus�a′b′c′ with

a′ = [−1,
√

2−1]T,

b′ = [−1,2
√

2−1]T, and

c′ = [
3
2

√
2−1,

9
2

√
2−1]T.
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xx

y

p

Figure 3.8. Scaling about an arbitrary point.

Example 3.3 (Scaling about an Arbitrary Point.) Determine the transformation
matrix S(sx,sy,p) required to perform scaling by sx and sy about an arbitrary
point p (Figure 3.8).

The 2D scaling matrix S(sx,sy) (Equation (3.11)) scales about the origin; in
particular, its translation side-effect is relative to the origin. To scale about an
arbitrary point p = [px, py]T, we first have to translate p to the origin, scale about
the origin, and finally undo the translation.

Step 1. Translate by −−→p , T(−−→p ).

Step 2. Scale by sx,sy, S(sx,sy).

Step 3. Translate by −→p , T(−→p ).

S(sx,sy,p) =

⎡⎣ 1 0 px

0 1 py

0 0 1

⎤⎦ ·
⎡⎣ sx 0 0

0 sy 0
0 0 1

⎤⎦ ·
⎡⎣ 1 0 −px

0 1 −py

0 0 1

⎤⎦
=

⎡⎣ sx 0 px− pxsx

0 sy py− pysy

0 0 1

⎤⎦ .

Example 3.4 (Scaling of a Triangle about a Point.) Double the lengths of the
sides of triangle �abc keeping its vertex c fixed. The coordinates of its vertices
are a = [0,0]T,b = [1,1]T and c = [5,2]T.

Since this is the same triangle as in Example 3.2, it can be represented by the
matrix T. We shall apply the matrix S(sx,sy,p) of Example 3.3 to the
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triangle�abc, setting the scaling factors equal to 2 and p = c:

S(2,2, [5,2,1]T) ·T =

⎡⎣ 2 0 −5
0 2 −2
0 0 1

⎤⎦ ·
⎡⎣ 0 1 5

0 1 2
1 1 1

⎤⎦
=

⎡⎣ −5 −3 5
−2 0 2

1 1 1

⎤⎦ .

The scaled triangle is thus �a′b′c′ with a′ = [−5,−2]T,b′ = [−3,0]T, and
c′ = [5,2]T. A simple calculation reveals that the lengths of its sides have indeed
doubled.

Example 3.5 (Axis Transformation.) Suppose that the coordinate system is trans-
lated by the vector −→v = [vx,vy]T. Determine the matrix that describes this effect.

This is an example of an axis transformation, i.e., a transformation of the
coordinate system. The coordinate system is translated by −→v = [vx,vy]T relative
to the objects (Figure 3.9).

The required transformation matrix must produce the coordinates of the ob-
jects with respect to the new coordinate system. This is achieved by applying the
inverse translation to the objects; that is,

T(−−→v ) =

⎡⎣ 1 0 −vx

0 1 −vy

0 0 1

⎤⎦ .

xx

y

v x'

y'

object

Figure 3.9. Axis translation.
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A similar argument holds for any other axis transformation; its effect is en-
capsulated by applying the inverse transformation to the objects.

Example 3.6 (Mirroring about an Arbitrary Axis.) Determine the transforma-
tion matrix required to perform mirroring about an axis specified by a point
p = [px, py]T and a direction vector −→v = [vx,vy]T (Figure 3.10).

We shall proceed as follows. First, the general axis will be made to coincide
with the x-axis, then we shall perform x-axis mirroring, and finally the axis will
recover its original position. Making the general axis coincide with the x-axis
requires two simple steps: a translation by −−→p and a rotation by the angle θ
formed between −→v and the x-axis. It can easily be seen that

sinθ =
vy√

v2
x + v2

y

and cosθ =
vx√

v2
x + v2

y

.

The required steps are the following:

Step 1. Translate by −−→p , T(−−→p ).

Step 2. Rotate by −θ (negative as it is clockwise), R(−θ).

Step 3. Perform mirroring about the x-axis, S(1,−1).

Step 4. Rotate by θ , R(θ).

Step 5. Translate by −→p , T(−→p ).

x

y

p

v

a a'

a

θ
v

Figure 3.10. Mirroring about a general axis.
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MSYM =

⎡⎣ 1 0 px

0 1 py

0 0 1

⎤⎦ ·
⎡⎣ cosθ −sinθ 0

sinθ cosθ 0
0 0 1

⎤⎦
·
⎡⎣ 1 0 0

0 −1 0
0 0 1

⎤⎦ ·
⎡⎣ cosθ sinθ 0
−sinθ cosθ 0

0 0 1

⎤⎦ ·
⎡⎣ 1 0 −px

0 1 −py

0 0 1

⎤⎦
=

⎡⎣ cos2 θ − sin2 θ 2sinθ cosθ px− px(cos2 θ − sin2 θ)−2py sinθ cosθ
2sinθ cosθ sin2 θ − cos2 θ py− py(sin2 θ − cos2 θ)−2px sinθ cosθ

0 0 1

⎤⎦ .

Example 3.7 (Mirror Polygon.) Given a polygon, determine its mirror polygon
with respect to (a) the line y = 2 and (b) the axis specified by the point p = [0,2]T

and the vector −→v = [1,1]T. The polygon is given by its vertices a = [−1,0]T,
b = [0,−2]T, c = [1,0]T and d = [0,2]T.

The polygon can be represented by a 3× 4 matrix Π, the columns of which
are the homogeneous coordinates of its vertices:

Π =

⎡⎣ −1 0 1 0
0 −2 0 2
1 1 1 1

⎤⎦ .

We shall pre-multiply the MSYM matrix of Example 3.6 by the matrix of the
vertices Π.

In case (a), p = [0,2]T and −→v = [1,0]T; thus θ = 0◦, sinθ = 0, cosθ = 1, and
we have

Π′ = MSYM ·Π

=

⎡⎣ 1 0 0
0 −1 4
0 0 1

⎤⎦ ·
⎡⎣ −1 0 1 0

0 −2 0 2
1 1 1 1

⎤⎦
=

⎡⎣ −1 0 1 0
4 6 4 2
1 1 1 1

⎤⎦ .
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In case (b), p = [0,2]T and −→v = [1,1]T, so sinθ = cosθ = 1√
2
, and we have

Π′ = MSYM ·Π

=

⎡⎣ 0 1 −2
1 0 2
0 0 1

⎤⎦ ·
⎡⎣ −1 0 1 0

0 −2 0 2
1 1 1 1

⎤⎦
=

⎡⎣ −2 −4 −2 0
1 2 3 2
1 1 1 1

⎤⎦ .

Example 3.8 (Window-to-Viewport Transformation.) A common transforma-
tion in computer graphics and visualization but also in entertainment is the
window-to-viewport transformation, where the contents of a 2D “window” must
be transferred to a 2D “viewport” (Figure 3.11). The window and the viewport
are both rectangular parallelograms with sides parallel to the x- and y-axes. For
example, the window/viewport pair may be a theater-sized screen (16 : 9) and a
television-sized screen (4 : 3), respectively. Determine the window to viewport
transformation matrix. Also determine how objects are deformed by this transfor-
mation.

Suppose that the window and the viewport are defined by two opposite ver-
tices [wxmin,wymin]T, [wxmax,wymax]T and [vxmin,vymin]T, [vxmax,vymax]T of the win-
dow and viewport, respectively (Figure 3.11).

The window-to-viewport transformation MWV can be implemented in three
basic steps:

y

x

y

x
Window Viewport

Step 1 Step 2 Step 3

x

y

x

y

[w       ,w       ]
T

xmax ymax

[w       ,w       ]
T

xmin ymin

[v       ,v       ]
T

xmax ymax

[v       ,v       ]
T

xmin ymin

Figure 3.11. Window-to-viewport transformation.
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Step 1. Translate [wxmin,wymin]T to the origin, using T(−−→w min) where −→w min =
[wxmin,wymin]T.

Step 2. Scale the window to the size of the viewport, using S(sx,sy) where

sx = vxmax−vxmin
wxmax−wxmin

and sy = vymax−vymin
wymax−wymin

.

Step 3. Translate to the minimum viewport vertex [vxmin,vymin]T, using T(−→v min)
where −→v min = [vxmin,vymin]T.

MWV = T(−→v min) ·S(sx,sy) ·T(−−→w min)

=

⎡⎣ 1 0 vxmin

0 1 vymin

0 0 1

⎤⎦ ·
⎡⎢⎣

vxmax−vxmin
wxmax−wxmin

0 0

0
vymax−vymin
wymax−wymin

0

0 0 1

⎤⎥⎦ ·
⎡⎣ 1 0 −wxmin

0 1 −wymin

0 0 1

⎤⎦

=

⎡⎢⎣
vxmax−vxmin
wxmax−wxmin

0 vxmin−wxmin
vxmax−vxmin
wxmax−wxmin

0
vymax−vymin
wymax−wymin

vymin−wymin
vymax−vymin
wymax−wymin

0 0 1

⎤⎥⎦ .

(3.20)

Since the MWV transformation contains non-isotropic scaling (sx = sy) objects
will be deformed during the transition from the window to the viewport (angles
will change). Thus, a circle will become an ellipse, and a square will become a
rectangular parallelogram. The aspect ratios of the window and the viewport are
defined as the ratios of their x- to their y-sizes:

aw = wxmax−wxmin
wymax−wymin

, av = vxmax−vxmin
vymax−vymin

.

If aw = av then objects will be deformed. A simple way to avoid this deforma-
tion is to use the largest part of the viewport which has the same aspect ratio as the
window. For example, we can change the vxmax or the vymax boundary of the view-
port in the following manner: if (av > aw) then vxmax = vxmin +aw∗(vymax−vymin)
else if (av < aw) then vymax = vymin + (vxmax−vxmin)

aw
.

Example 3.9 (Window-to-Viewport Transformation Instances.) Determine the
window to viewport transformation from the window [wxmin,wymin]T = [1,1]T,

[wxmax,wymax]T = [3,5]T to the viewport [vxmin,vymin]T = [0,0]T, [vxmax,vymax]T =
[1,1]T. If there is deformation, how can it be corrected?
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Direct application of the MWV matrix of Example 3.8 for the window and
viewport pair gives

MWV =

⎡⎢⎣
1
2 0 − 1

2

0 1
4 − 1

4

0 0 1

⎤⎥⎦ .

Now aw = 1
2 and av = 1

1 , so there is distortion since (av > aw). It can be cor-
rected by reducing the size of the viewport by setting vxmax = vxmin +aw∗(vymax−
vymin) = 1

2 .

Example 3.10 (Tilted Window–to-Viewport Transformation.) Suppose that the
window is tilted as in Figure 3.12 and given by its four vertices a = [1,1]T, b =
[5,3]T, c = [4,5]T, and d = [0,3]T. Determine the transformation MTILT

WV that maps
it to the viewport [vxmin,vymin]T = [0,0]T, [vxmax,vymax]T = [1,1]T.

y

x

d

a

c

b

θ 4
2

Figure 3.12. Tilted window to viewport.

The angle θ formed by side ab of the window and the horizontal line through
a has sinθ = 1√

5
and cosθ = 2√

5
. The required transformation MTILT

WV will be the
composition of the following steps:

Step 1. Rotate the window by angle −θ about point a. For this we shall use the
matrix R(θ ,p) of Example 3.1, instantiating it as R(−θ ,a).

Step 2. Apply the window to viewport transformation MWV to the rotated win-
dow.

Before we can apply Step 2 we must determine the maximum x- and y-coordinates
of the rotated window by computing

c′ = R(−θ ,a) · c =

⎡⎣ 1+2
√

5
1+

√
5

1

⎤⎦ .



�

�

�

�

�

�

�

�

94 3. 2D and 3D Coordinate Systems and Transformations

Thus, [wxmin,wymin]T = a, [wxmax,wymax]T = c′, and we have

MTILT
WV = MWV ·R(−θ ,a) =

⎡⎢⎢⎣
1

2
√

5
0 − 1

2
√

5

0 1√
5

− 1√
5

0 0 1

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

2√
5

1√
5

1− 3√
5

− 1√
5

2√
5

1− 1√
5

0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
1
5

1
10 − 3

10

− 1
5

2
5 − 1

5

0 0 1

⎤⎥⎥⎦ .

3.7 3D Homogeneous Affine Transformations
In three dimensions homogeneous coordinates work in a similar way to two di-
mensions (see Section 3.4.1). An extra coordinate is added to create the quadru-
plet [x,y,z,w]T, where w is the coordinate that corresponds to the additional di-
mension. Again, points whose homogeneous coordinates are multiples of each
other are equivalent, e.g., [1,2,3,2]T and [2,4,6,4]T are equivalent. The (unique)
basic representation of a point has w = 1 and is obtained by dividing by w:

[x/w,y/w,z/w,w/w]T = [x/w,y/w,z/w,1]T

where w = 0. For example for the above pair of equivalent points,

[
1
2
,
2
2
,
3
2
,
2
2
]T = [

2
4
,
4
4
,
6
4
,
4
4
]T = [

1
2
,1,

3
2
,1]T.

By setting w = 1 (basic representation) we obtain a 3D projection of 4D space.
Since points are represented by 4× 1 vectors, transformation matrices are

4× 4. As in the 2D case, for brevity of presentation we shall often omit the
homogeneous coordinate, but it will be assumed. All the transformations that
follow are affine transformations.

3.7.1 3D Homogeneous Translation

Three-dimensional translation is specified by a three-dimensional vector
−→
d =

[dx,dy,dz]T and is encapsulated in matrix form as

T(
−→
d ) =

⎡⎢⎢⎣
1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

⎤⎥⎥⎦ . (3.21)
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As in two dimensions, the main advantage of homogeneous coordinates is that
the translation matrix can be combined with other affine transformation matrices
by matrix multiplication.

For the inverse translation we use the inverse of the translation matrix
T−1(

−→
d ) = T(−−→d ).

3.7.2 3D Homogeneous Scaling

Three-dimensional scaling is entirely analogous to two-dimensional scaling. We
now have three scaling factors, sx, sy, and sz. If a scaling factor is less than 1, then
the object’s size is reduced in the respective dimension, while if it is greater than
1 it is increased. Again, scaling has a translation side-effect which is proportional
to the scaling factor. The matrix form is

S(sx,sy,sz) =

⎡⎢⎢⎣
sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤⎥⎥⎦ . (3.22)

A scaling transformation is called isotropic, if sx = sy = sz. Isotropic scaling
preserves the similarity of objects (angles).

Mirroring about one of the major planes (xy, xz, or yz) can be described as
a special case of the scaling transformation, by using a −1 scaling factor. For
example, mirroring about the xy-plane is S(1,1,−1).

For the inverse scaling we use the inverse of the scaling matrix S−1(sx,sy,sz)=
S( 1

sx
, 1

sy
, 1

sz
).

3.7.3 3D Homogeneous Rotation

Three-dimensional rotation is quite different from the two-dimensional case as the
object about which we rotate is an axis and not a point. The axis of rotation can be
arbitrary, but the basic rotation transformations rotate about the three main axes
x, y, and z. It is possible to combine them in order to describe a rotation about an
arbitrary axis, as will be shown in the examples that follow. In our right-handed
coordinate system, we specify a positive rotation about an axis a as one which is
in the counterclockwise direction when looking from the positive part of a toward
the origin. Figure 3.13 shows the direction of positive rotation about the y-axis.

In three-dimensional rotation, the distance from the axis of rotation of the
object being rotated does not change; thus, rotation does not affect the coordinate
that corresponds to the axis of rotation. Simple trigonometric arguments, similar
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z

x

y

Figure 3.13. Positive rotation about the y -axis.

to the two-dimensional case, result in the following rotation matrices about the
main axes x, y, and z:

Rx(θ) =

⎡⎢⎢⎣
1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

⎤⎥⎥⎦ ; (3.23)

Ry(θ) =

⎡⎢⎢⎣
cosθ 0 sinθ 0

0 1 0 0
−sinθ 0 cosθ 0

0 0 0 1

⎤⎥⎥⎦ ; (3.24)

Rz(θ) =

⎡⎢⎢⎣
cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (3.25)

For the inverse rotation transformations, we use the inverse of the rotation
matrices R−1

x (θ) = Rx(−θ), R−1
y (θ) = Ry(−θ) and R−1

z (θ) = Rz(−θ).
Rotations can also be expressed using quaternions as will be described in Sec-

tion 3.9.

3.7.4 3D Homogeneous Shear

The three-dimensional shear transformation “shears” objects along one of the ma-
jor planes. In other words it increases two coordinates by an amount equal to the
third coordinate times the respective shearing factors. We therefore have three
cases of shear in three dimensions, which correspond to the three major planes
xy, xz, and yz.
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The xy shear increases the x-coordinate by an amount equal to the z-coordinate
times the shear factor a and the y-coordinate by an amount equal to the z-coordin-
ate times the shear factor b:

SHxy(a,b) =

⎡⎢⎢⎣
1 0 a 0
0 1 b 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (3.26)

The xz and yz shears are similar:

SHxz(a,b) =

⎡⎢⎢⎣
1 a 0 0
0 1 0 0
0 b 1 0
0 0 0 1

⎤⎥⎥⎦ ; (3.27)

SHyz(a,b) =

⎡⎢⎢⎣
1 0 0 0
a 1 0 0
b 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (3.28)

The inverse of a shear is obtained by negating the shear factors: SH−1
xy (a,b) =

SHxy(−a,−b), SH−1
xz (a,b) = SHxz(−a,−b), SH−1

yz (a,b) = SHyz(−a,−b).

3.8 3D Transformation Examples
Example 3.11 (Composite Rotation.) We use the term “bending” to define a ro-
tation about the x-axis by θx followed by a rotation about the y-axis by θy. Com-
pute the bending matrix and determine whether the order of the rotations matters.

From its definition, the bending matrix is computed as

MBEND = Ry(θy) ·Rx(θx)

=

⎡⎢⎢⎣
cosθy 0 sinθy 0

0 1 0 0
−sinθy 0 cosθy 0

0 0 0 1

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

1 0 0 0
0 cosθx −sinθx 0
0 sinθx cosθx 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
cosθy sinθx sinθy cosθx sinθy 0

0 cosθx −sinθx 0
−sinθy sinθx cosθy cosθx cosθy 0

0 0 0 1

⎤⎥⎥⎦ .
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To determine whether the order of the rotations matters, we shall compute the
composition in reverse order:

M′
BEND = Rx(θx) ·Ry(θy)

=

⎡⎢⎢⎣
1 0 0 0
0 cosθx −sinθx 0
0 sinθx cosθx 0
0 0 0 1

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

cosθy 0 sinθy 0
0 1 0 0

−sinθy 0 cosθy 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
cosθy 0 sinθy 0

sinθx sinθy cosθx −sinθx cosθy 0
−cosθx sinθy sinθx cosθx cosθy 0

0 0 0 1

⎤⎥⎥⎦ .

Since MBEND = M′
BEND, we deduce that the order of the rotations matters.

Note that in a composite rotation about the x−,y− and z− axes, a problem
known as gimbal lock may be encountered; see Section 17.2.1.

Example 3.12 (Alignment of Vector with Axis.) Determine the transformation
A(−→v ) required to align a given vector −→v = [a,b,c]T with the unit vector k̂ along
the positive z-axis.

The initial situation is shown is Figure 3.14 (a). One way of accomplishing
our aim uses two rotations:

Step 1. Rotate about x by θ1 so that −→v is mapped onto −→v1 which lies on the
xz-plane (Figure 3.14 (b)), Rx(θ1).

Step 2. Rotate −→v1 about y by θ2 so that it coincides with k̂ (Figure 3.14 (c)),
Ry(θ2).

The alignment matrix A(−→v ) is then

A(−→v ) = Ry(θ2) ·Rx(θ1).

We need to compute the angles θ1 and θ2. Looking at Figure 3.14 (b), angle θ1

is equal to the angle formed between the projection of−→v onto the yz-plane and the
z-axis. For the tip p of−→v , we have p = [a,b,c]T, therefore the tip of its projection
on yz is p′ = [0,b,c]T. Assuming that b and c are not both equal to 0, we get

sinθ1 =
b√

b2 + c2
, cosθ1 =

c√
b2 + c2

.
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z

x

y

(a)

z

x

y

z

x

y

(c)(b)

o
v1

k p

o o

p'

p

θ1

θ1
v1

2

v
v

θ

Figure 3.14. Alignment of an arbitrary vector with k̂.

Thus,

Rx(θ1) =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 c√

b2+c2
− b√

b2+c2
0

0 b√
b2+c2

c√
b2+c2

0

0 0 0 1

⎤⎥⎥⎥⎥⎦ .

We next apply Rx(θ1) to −→v 8 in order to get its xz projection −→v1 :

−→v1 = Rx(θ1) ·−→v = Rx(θ1) ·

⎡⎢⎢⎣
a
b
c
1

⎤⎥⎥⎦=

⎡⎢⎢⎣
a
0√

b2 + c2

1

⎤⎥⎥⎦ .

Note that |−→v1 | = |−→v | = √
a2 +b2 + c2. From Figure 3.14 (c), we can now

compute

sinθ2 =
a√

a2 +b2 + c2
cosθ2 =

√
b2 + c2

√
a2 +b2 + c2

.

Thus,

Ry(θ2) =

⎡⎢⎢⎢⎢⎢⎢⎣

√
b2+c2√

a2+b2+c2
0 a√

a2+b2+c2
0

0 1 0 0

− a√
a2+b2+c2

0
√

b2+c2√
a2+b2+c2

0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

8This is equivalent to rotating the tip of the vector p.
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The required matrix A(−→v ) can now be computed:

A(−→v ) = Ry(θ2) ·Rx(θ1) =

⎡⎢⎢⎢⎢⎣
λ
|−→v | − ab

λ |−→v | − ac
λ |−→v | 0

0 c
λ − b

λ 0
a
|−→v |

b
|−→v |

c
|−→v | 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ , (3.29)

where |−→v |=√a2 +b2 + c2 and λ =
√

b2 + c2.
We shall also compute the inverse matrix A(−→v )−1 as it will prove useful in

Example 3.13:

A−1(−→v ) = (Ry(θ2) ·Rx(θ1))−1 = Rx(θ1)−1 ·Ry(θ2)−1

= Rx(−θ1) ·Ry(−θ2) =

⎡⎢⎢⎢⎢⎣
λ
|−→v | 0 a

|−→v | 0

− ab
λ |−→v |

c
λ

b
|−→v | 0

− ac
λ |−→v | − b

λ
c
|−→v | 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ .

If b and c are both equal to 0, then −→v coincides with the x-axis, and we only
need to rotate about y by 90◦ or −90◦, depending on the sign of a. In this case,
we have

A(−→v ) = Ry(−θ2) =

⎡⎢⎢⎣
0 0 − a

|a| 0
0 1 0 0
a
|a| 0 0 0
0 0 0 1

⎤⎥⎥⎦ .

Example 3.13 (Rotation about an Arbitrary Axis using Two Translations and
Five Rotations.) Find the transformation which performs a rotation by an angle
θ about an arbitrary axis specified by a vector −→v and a point p (Figure 3.15).

Using the A(−→v ) transformation, we can align an arbitrary vector with the z-
axis. We thus reduce the problem of rotation about an arbitrary axis to a rotation
around z. Specifically, we perform the following composite transformation:

Step 1. Translate p to the origin, T(−−→p ).

Step 2. Align −→v with the z-axis using the A(−→v ) matrix of Example 3.12.

Step 3. Rotate about the z-axis by the desired angle θ , Rz(θ).

Step 4. Undo the alignment, A−1(−→v ).

Step 5. Undo the translation, T(−→p ).
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z

x

v

p
θ

y

Figure 3.15. Rotation about an arbitrary axis.

Thus the required transformation is

MROT−AXIS = T(−→p ) ·A−1(−→v ) ·Rz(θ) ·A(−→v ) ·T(−−→p ). (3.30)

Example 3.14 (Coordinate System Transformation using One Translation and
Three Rotations.) Determine the transformation MALIGN required to align a
given 3D coordinate system with basis vectors (l̂,m̂, n̂) with the xyz coordinate
system with basis vectors (î, ĵ, k̂); the origin of the first coordinate system relative
to xyz is Olmn.

Note that this is an axis transformation; aligning the (l̂,m̂, n̂) basis to the
(î, ĵ, k̂) basis corresponds to changing an object’s coordinate system from (î, ĵ, k̂)
to (l̂,m̂, n̂). The solution is a simple extension of the A(−→v ) transformation de-
scribed in Example 3.12. Three steps are required:

Step 1. Translate by −Olmn to make the two origins coincide, T(−−→O lmn).

Step 2. Use A(−→v ) of Example 3.12 to align the n̂ basis vector with the k̂ basis
vector. The new situation is depicted in Figure 3.16. Transformation matrix
A(n̂).

Step 3. Rotate by ϕ around the z-axis to align the other two axes, Rz(ϕ).

MALIGN = Rz(ϕ) ·A(n̂) ·T(−−→O lmn) (3.31)

It is necessary to transform the l̂ or the m̂ vector by A(n̂) in order to be able to
subsequently estimate ϕ: e.g., m̂′ = A(n̂) ·m̂. The sinϕ and cosϕ values required
for the rotation are then just the x and y components of m̂′, respectively.
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n
l

i

m

k

φ

φ

j

Figure 3.16. Aligning two coordinate systems.

Let us take a concrete example. Suppose that the orthonormal basis vectors of
the two coordinate systems are

î =

⎡⎣ 1
0
0

⎤⎦ , ĵ =

⎡⎣ 0
1
0

⎤⎦ , k̂ =

⎡⎣ 0
0
1

⎤⎦ ;

l̂ =

⎡⎢⎢⎣
3√
29
4√
29
2√
29

⎤⎥⎥⎦ , m̂ =

⎡⎢⎢⎣
− 32√

1653
25√
1653

− 2√
1653

⎤⎥⎥⎦ , n̂ =

⎡⎢⎢⎣
− 2√

57

− 2√
57
7√
57

⎤⎥⎥⎦ ,

and that the origins of the two coordinate systems coincide (Olmn = [0,0,0]T).
The basis vectors of the second system are expressed in terms of the first. Then,
from the coordinates of n̂, a = − 2√

57
, b = − 2√

57
, c = 7√

57
and λ =

√
b2 + c2 =√

(− 2√
57

)2 +( 7√
57

)2 (see Example 3.12).

Thus,

A(n̂) =

⎡⎢⎢⎢⎢⎢⎢⎣

√
53
57 − 4√

3021
14√
3021

0

0 7√
53

2√
53

0

− 2√
57

− 2√
57

7√
57

0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and

m̂′ = A(n̂) · m̂ = A(n̂) ·

⎡⎢⎢⎢⎢⎢⎣
− 32√

1653
25√
1653

− 2√
1653

1

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
− 32√

1537

3
√

57
1537

0
1

⎤⎥⎥⎥⎥⎦ ,
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so

sinϕ =− 32√
1537

and cosϕ = 3

√
57

1537
.

Hence,

Rz(ϕ) =

⎡⎢⎢⎢⎢⎢⎣
3
√

57
1537

32√
1537

0 0

− 32√
1537

3
√

57
1537 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ .

Finally, since the origins of the two coordinate systems coincide, Equation
(3.31) becomes

MALIGN = Rz(ϕ) ·A(n̂) · ID

=

⎡⎢⎢⎢⎢⎢⎣
3
√

57
1537

32√
1537

0 0

− 32√
1537

3
√

57
1537 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣

√
53
57 − 4√

3021
14√
3021

0

0 7√
53

2√
53

0

− 2√
57

− 2√
57

7√
57

0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
3√
29

4√
29

2√
29

0

− 32√
1653

25√
1653

− 2√
1653

0

− 2√
57

− 2√
57

7√
57

0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ .

Example 3.15 (Change of Basis.) Determine the transformation MBASIS re-
quired to change the orthonormal basis of a coordinate system from B1 = (î1, ĵ1, k̂1)
to B2 = (î2, ĵ2, k̂2) and vice versa.

Let the coordinates of the same vector in the two bases be −→v B1 and −→v B2,
respectively. If the coordinates of the î2, ĵ2, and k̂2 basis vectors in B1 are

î2,B1 =

⎡⎣ a
b
c

⎤⎦ , ĵ2,B1 =

⎡⎣ d
e
f

⎤⎦ , and k̂2,B1 =

⎡⎣ p
q
r

⎤⎦ ,

then it is simple to show that (see Exercises, Section 3.11)

−→v B1 =

⎡⎣ a d p
b e q
c f r

⎤⎦ ·−→v B2. (3.32)
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Thus,

M−1
BASIS =

⎡⎣ a d p
b e q
c f r

⎤⎦ .

Since B2 is an orthonormal basis, M−1
BASIS is an orthogonal matrix, and, there-

fore its inverse equals its transpose. Thus,

MBASIS = (M−1
BASIS)

T =

⎡⎣ a b c
d e f
p q r

⎤⎦ ,

whose homogeneous form is

MBASIS =

⎡⎢⎢⎣
a b c 0
d e f 0
p q r 0
0 0 0 1

⎤⎥⎥⎦ . (3.33)

Example 3.16 (Coordinate System Transformation using Change of Basis.)
Use the change-of-basis result of Example 3.15 to align a given 3D coordinate sys-
tem with basis vectors (l̂,m̂, n̂) with the xyz-coordinate system with basis vectors
(î, ĵ, k̂); the origin of the first coordinate system relative to xyz is Olmn [Cunn90].

As in Example 3.14, the required transformation is an axis transformation; it
corresponds to changing an object’s coordinate system from (î, ĵ, k̂) to (l̂,m̂, n̂).
The change of basis can replace the three rotational transformations of Example
3.14. Thus, the steps required in order to align the former coordinate system with
the latter are:

Step 1. Translate by −Olmn to make the two origins coincide, T(−−→O lmn).

Step 2. Use MBASIS to change the basis from (î, ĵ, k̂) to (l̂,m̂, n̂).

MALIGN2 = MBASIS ·T(−−→O lmn)

=

⎡⎢⎢⎣
a b c −(a ox +b oy + c oz)
d e f −(d ox + e oy + f oz)
p q r −(p ox +q oy + r oz)
0 0 0 1

⎤⎥⎥⎦ ,
(3.34)

where the basis vectors (l̂,m̂, n̂) expressed in the basis (î, ĵ, k̂) are l̂ = [a,b,c]T,
m̂ = [d,e, f ]T, n̂ = [p,q,r]T, and Olmn = [ox,oy,oz]T.
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For a concrete example, let us take the numerical values of Example 3.14 for
the (î, ĵ, k̂) and (l̂,m̂, n̂) bases. No translation is required since the two origins co-
incide. The latter basis is expressed in terms of the former, so we can immediately
write down the change of basis matrix as

MBASIS =

⎡⎢⎢⎢⎣
3√
29

4√
29

2√
29

− 32√
1653

25√
1653

− 2√
1653

− 2√
57

− 2√
57

7√
57

⎤⎥⎥⎥⎦ ,

whose homogeneous form is

MBASIS =

⎡⎢⎢⎢⎢⎢⎣
3√
29

4√
29

2√
29

0

− 32√
1653

25√
1653

− 2√
1653

0

− 2√
57

− 2√
57

7√
57

0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ ,

which is equivalent to the MALIGN matrix of Example 3.14 for the same basis
vectors.

Example 3.17 (Rotation about an Arbitrary Axis using Change of Basis.) Use
the change-of-basis result of Example 3.15 to find an alternative transformation
which performs a rotation by an angle θ about an arbitrary axis specified by a
vector −→v and a point p (Figure 3.15) [Cunn90].

Let

−→v =

⎡⎣ a
b
c

⎤⎦ and p =

⎡⎣ xp

yp

zp

⎤⎦ .

Then the equation of the plane perpendicular to −→v through p is

a(x− xp)+b(y− yp)+ c(z− zp) = 0.

Let q be a point on that plane, such that q = p (this can be trivially obtained
from the plane equation by selecting an x and a y value and solving for z). Also
let−→m = q−p and

−→
l =−→m×−→v . We normalize the vectors

−→
l ,−→m and−→v to define

a coordinate system basis (l̂,m̂, v̂) with one axis being −→v and the other two axes
on the given plane. It is thus possible to use the MBASIS transformation in order
to align it with the xyz-coordinate system and then perform the desired rotation
by θ around the z-axis. The required steps therefore are:
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Step 1. Translate p to the origin, T(−−→p ).

Step 2. Align the (l̂,m̂, v̂) basis with the (î, ĵ, k̂) basis, MBASIS.

Step 3. Rotate about the z-axis by the desired angle θ , Rz(θ).

Step 4. Undo the alignment, M−1
BASIS.

Step 5. Undo the translation, T(−→p ).

MROT−AXIS2 = T(−→p ) ·M−1
BASIS ·Rz(θ) ·MBASIS ·T(−−→p ). (3.35)

Compared to the geometrically derived MROT−AXIS matrix, the algebraic deri-
vation of the MROT−AXIS2 matrix is conceptually simpler.

Example 3.18 (Rotation of a Pyramid.) Rotate the pyramid defined by the ver-
tices a = [0,0,0]T, b = [1,0,0]T, c = [0,1,0]T and d = [0,0,1]T by 45◦ about the
axis defined by c and the vector −→v = [0,1,1]T (Figure 3.17).

The pyramid can be represented by a matrix P whose columns are the homo-
geneous coordinates of its vertices:

P =
[

a b c d
]
=

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

⎤⎥⎥⎦ .

z

x

v

a

b

c

d

45
0

y

Figure 3.17. Rotation of a pyramid about an axis.
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We shall use the MROT−AXIS matrix (Equation (3.30)) to rotate the pyramid.
The required submatrices are

T(−−→c ) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , A(−→v ) =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1

⎤⎥⎥⎥⎥⎦ ,

Rz(45◦) =

⎡⎢⎢⎢⎢⎣
1√
2
− 1√

2
0 0

1√
2

1√
2

0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦ , A−1(−→v ) =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 1√

2
1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1

⎤⎥⎥⎥⎥⎦ ,

T(−→c ) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

The above are combined according to Equation (3.30) giving

MROT−AXIS =

⎡⎢⎢⎢⎢⎢⎢⎣

√
2

2 − 1
2

1
2

1
2

1
2

2+
√

2
4

2−√2
4

2−√2
4

− 1
2

2−√2
4

2+
√

2
4

√
2−2
4

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and the rotated pyramid is computed as

P′ = MROT−AXIS ·P =

⎡⎢⎢⎢⎢⎢⎢⎣

1
2

1+
√

2
2 0 1

2−√2
4

4−√2
4 1 2−√2

2
√

2−2
4

√
2−4
4 0

√
2

2

1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Thus the vertices of the rotated pyramid are a′ = [ 1
2 , 2−√2

4 ,
√

2−2
4 ]T, b′ =

[ 1+
√

2
2 , 4−√2

4 ,
√

2−4
4 ]T, c′ = [0,1,0]T and d′ = [1, 2−√2

2 ,
√

2
2 ]T.
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3.9 Quaternions�

Rotations around an arbitrary axis have been already described in Examples 3.13
and 3.17. In this section, we will present yet another alternative way to express
such rotations, using quaternions. As we shall see, this expression of rotations
has interesting properties, and, most importantly, it is very useful when animating
rotations, as will be described in Section 17.2.1. Quaternions were conceived by
Sir William Hamilton in 1843 as an extension of complex numbers.

3.9.1 Mathematical Properties of Quaternions

A quaternion q consists of four real numbers,

q = (s,x,y,z),

of which s is called the scalar part of q and −→v = (x,y,z) is called the vector part
of q; thus, we also write q as

q = (s,−→v ). (3.36)

Quaternions can be viewed as an extension of complex numbers in four dimen-
sions: using “imaginary units” i, j, and k such that i2 = j2 = k2 =−1 and i j = k,
ji =−k, and so on by cyclic permutation, the quaternion q may be written as

q = s+ xi+ y j + zk. (3.37)

A real number u corresponds to the quaternion (u,
−→
0 ); an ordinary vector −→v

corresponds to the quaternion (0,−→v ) and, similarly, a point p to the quaternion
(0,p).

Let qi = (si,
−→v i).

Addition between quaternions is defined naturally as

q1 +q2 = (s1,
−→v 1)+(s2,

−→v 2) = (s1 + s2,
−→v 1 +−→v 2). (3.38)

Multiplication between quaternions is more complex, and its result can be
obtained by using the form (3.37) of the quaternions and the properties of the
imaginary units. Below are some useful formulas for the quaternion product:

q1 ·q2 = (s1s2−−→v 1 ·−→v 2, s1
−→v 2 + s2

−→v 1 +−→v 1×−→v 2)

= (s1s2− x1x2− y1y2− z1z2, s1x2 + x1s2 + y1z2− z1y2,

s1y2 + y1s2 + z1x2− x1z2,

s1z2 + z1s2 + x1y2− y1x2).

(3.39)
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Multiplication between quaternions is associative; however, it is not commutative,
as manifested by the first of the above formulas, since the cross product−→v 1×−→v 2

is involved.
The conjugate quaternion of q is defined as

q = (s,−−→v ), (3.40)

and it can easily be verified that

q1 ·q2 = q2 ·q1. (3.41)

The norm of q is defined as

|q|2 = q ·q = q ·q = s2 + |−→v |2 = s2 + x2 + y2 + z2, (3.42)

and it can be shown that |q1 ·q2|= |q1| |q2|. A unit quaternion is one whose norm
is equal to 1.

The inverse quaternion of q is defined as

q−1 =
1
|q|2 q, (3.43)

and therefore q ·q−1 = q−1 ·q = 1. If q is a unit quaternion, then q−1 = q.

3.9.2 Expressing Rotations using Quaternions

As already mentioned, quaternions can be used to express arbitrary rotations.
Specifically, a rotation by an angle θ about an axis through the origin whose
direction is specified by a unit vector n̂, is represented by the unit quaternion

q = (cos
θ
2

, sin
θ
2

n̂), (3.44)

and it is applied to a point p, represented by the quaternion p = (0,p), using the
formula

p′ = q · p ·q−1 = q · p ·q (3.45)

(the second equality holds since q is a unit quaternion). This yields

p′ =
(
0, (s2−−→v ·−→v )p+2−→v (−→v ·p)+2s(−→v ×p)

)
, (3.46)

where s = cos θ
2 and −→v = sin θ

2 n̂. Notice that the resulting quaternion p′ repre-
sents an ordinary point p′ since it has zero scalar part; below we show that p′ is
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n̂

2

�

2

�

0v̂

1v̂
2v̂

Figure 3.18. Rotation of unit vector.

exactly the image of the original point p after rotation by angle θ about the given
axis.

Using this formulation, it is algebraically very easy to express the outcome
of two consecutive rotations. Supposing that they are represented by unit quater-
nions q1 and q2, the outcome of the composite rotation is

q2 · (q1 · p ·q1) ·q2 = (q2 ·q1) · p · (q1 ·q2) = (q2 ·q1) · p · (q2 ·q1);

therefore, the composite rotation is represented by the quaternion q = q2 · q1

(which is also a unit quaternion). Compared to the equivalent multiplication of
rotation matrices, quaternion multiplication is simpler, requires fewer operations,
and is therefore numerically more stable.

Let us now verify relations (3.44) and (3.45). Consider a unit vector v̂0, a
rotation axis n̂, and the images v̂1 and v̂2 of v̂0 after two consecutive rotations by
θ
2 around n̂ (Figure 3.18); the respective quaternions are p0 = (0, v̂0), p1 = (0, v̂1),
p2 = (0, v̂2).

Our initial aim is to show that p2 = q · p0 · q for q = (cos θ
2 , sin θ

2 n̂). We
observe that cos θ

2 = v̂0 · v̂1 and sin θ
2 n̂ = v̂0× v̂1, therefore we may write q as

q = (v̂0 · v̂1, v̂0× v̂1) = p1 · p0. Similarly, we may also conclude that q = p2 · p1.
Then,

q · p0 ·q = (p1 · p0) · p0 · (p2 · p1)

= (p1 · p0) · p0 · p1 · p2

= p1 · p1 · p2

= p2,
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since p1 · p1 = (−1,
−→
0 ) =−1 because |v̂1|= 1, and also (−1) · p2 =−(0,−v̂2) =

(0, v̂2) = p2. This proves that q · p0 · q results in the rotation of v̂0 by angle θ
about n̂.

Using similar arguments, it can be proven that q · p1 · q results in the same
rotation for v̂1, whereas q · (0, n̂) ·q yields n̂, which agrees with the fact that n̂ is
the axis of rotation.

We are now able to generalize the above for an arbitrary vector: the three
vectors v̂0, v̂1, and n̂ are linearly independent; therefore, a vector −→p may be
written as a linear combination of three components, −→p = λ0v̂0 + λ1v̂1 + λ n̂.
Then,

q · (0,−→p ) ·q = q · (0, λ0v̂0 +λ1v̂1 +λ n̂) ·q
= q · (0,λ0v̂0) ·q + q · (0,λ1v̂1) ·q + q · (0,λ n̂) ·q
= λ0(q · (0, v̂0) ·q) + λ1(q · (0, v̂1) ·q) + λ (q · (0, n̂) ·q),

which is exactly a quaternion with zero scalar part and vector part made up of the
rotated components of −→p .

3.9.3 Conversion between Quaternions and
Rotation Matrices

If rotations using quaternions are to be incorporated in a sequence of transforma-
tions represented by matrices, it will be necessary to construct a rotation matrix
starting from a given unit quaternion, and vice versa. Recall that, contrary to the
rotations described in Examples 3.13 and 3.17, quaternions represent rotations
around an axis through the origin; if this is not the case, then the usual sequence
of transformations (translation to the origin, rotation, translation back) is neces-
sary.

It can be proven [Shoe87] that the rotation matrix corresponding to a rotation
represented by the unit quaternion q = (s,x,y,z) is

Rq =

⎡⎢⎢⎣
1−2y2−2z2 2xy−2sz 2xz+2sy 0

2xy+2sz 1−2x2−2z2 2yz−2sx 0
2xz−2sy 2yz+2sx 1−2x2−2y2 0

0 0 0 1

⎤⎥⎥⎦ . (3.47)

For the inverse procedure, if a matrix

R =

⎡⎢⎢⎣
m00 m01 m02 0
m10 m11 m12 0
m20 m21 m22 0
0 0 0 1

⎤⎥⎥⎦
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represents a rotation, the corresponding quaternion q = (s,x,y,z) may be com-
puted as follows. In Rq we sum the elements in the diagonal, and, therefore,

m00 +m11 +m22 +1 = 1−2y2−2z2 +1−2x2−2z2 +1−2x2−2y2 +1

= 4−4(x2 + y2 + z2) = 4−4(1− s2) = 4s2

(3.48)

(remembering that q is a unit quaternion and thus s2 + x2 + y2 + z2 = 1), so

s =
1
2

√
m00 +m11 +m22 +1. (3.49)

The other coordinates x, y, and z of q may be computed by subtracting elements
of Rq that are symmetric with respect to the diagonal. Thus, if s = 0,

x =
m21−m12

4s
, y =

m02−m20

4s
, z =

m10−m01

4s
. (3.50)

If s = 0 (or if s is near zero and in order to improve numerical accuracy) a different
set of relations may be used, for instance,

x =
1
2

√
m00−m11−m22 +1,

y =
m01 +m10

4x
, z =

m02 +m20

4x
, s =

m21−m12

4x
.

The reader can refer to [Shoe87] for a complete presentation.

Example 3.19 (Rotation of a Pyramid.) We will re-work Example 3.18 using
quaternions.

The prescribed rotation is by 45◦ about an axis defined by point c = [0,1,0]T

and direction −→v = [0,1,1]T. Since the axis does not pass through the origin, we
must translate it by −−→c , perform the rotation using matrix Rq from (3.47), and
translate it back. We must also normalize the direction vector to get v̂ =−→v /|−→v |=
[0,1/

√
2,1/

√
2]T.

The quaternion that expresses the rotation by 45◦ about an axis with direction−→v is

q =
(

cos
45◦

2
, sin

45◦

2
v̂
)

= (cos22.5◦, 0,
sin22.5◦√

2
,

sin22.5◦√
2

).

From the double-angle trigonometric identities, we get

cos2 22.5◦ =
1+ cos45◦

2
=

2+
√

2
4

,

sin2 22.5◦ =
1− cos45◦

2
=

2−√2
4

.
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Therefore,

Rq =

⎡⎢⎢⎢⎣
√

2
2 − 1

2
1
2 0

1
2

2+
√

2
4

2−√2
4 0

− 1
2

2−√2
4

2+
√

2
4 0

0 0 0 1

⎤⎥⎥⎥⎦ ,

and the final transformation matrix is

MROT−AXIS3 = T(−→c ) ·Rq ·T(−−→c ),

which is equal to MROT−AXIS of Example 3.18.

3.10 Geometric Properties
The wide adoption of affine transformations in computer graphics and visualiza-
tion is owed to the fact that they preserve important geometric features of objects.
For example, if Φ is an affine transformation and p and q are points, then

Φ(λp+(1−λ )q) = λΦ(p)+(1−λ )Φ(q), (3.51)

for 0 ≤ λ ≤ 1. Since the set {λp + (1− λ )q, λ ∈ [0,1]} is the line segment
between p and q, Equation (3.51) states that the affine transformation of a line
segment under Φ is another line segment; furthermore, ratios of distances on the
line segment λ/(1−λ ) are preserved.

Table 3.1 summarizes the properties of affine transformations and three sub-
classes of them.

The basic affine transformations that belong to the subclasses linear, simili-
tudes, and rigid are shown in Figure 3.19.

Linear transformations can be represented by a matrix A which is post-multi-
plied by the point to be transformed. All homogeneous affine transformations are

Property preserved Affine Linear Similitude Rigid
Angles No No Yes Yes

Distances No No No Yes
Ratios of distances Yes Yes Yes Yes

Parallel lines Yes Yes Yes Yes
Affine combinations Yes Yes Yes Yes

Straight lines Yes Yes Yes Yes
Cross ratios Yes Yes Yes Yes

Table 3.1. Geometric properties preserved by transformation classes.
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HomogeneousTranslation

Rotation

Rigid

Isotropic Scaling

Similitudes

Scaling

Shear

Linear

Affine

Figure 3.19. Classification of affine homogeneous transformations.

linear. Of the non-homogeneous basic transformations, translation is not linear.
Affine and linear transformations preserve most important geometric properties
except angles and distances (for a discussion of cross ratios see Chapter 4).

Similitudes preserve the similarity of objects; the result of the application of
such a transformation on an object will be identical to the initial object, except for
its size which may have been uniformly altered. Thus, similitudes preserve angles
but not distances. Similitudes are: rotation, homogeneous translation, isotropic
scaling, and their compositions.

The most restrictive class is that of rigid transformations which preserve all
of the geometric features of objects. Any sequence of rotations and homogeneous
translations is a rigid transformation.

3.11 Exercises
1. If three-dimensional points are represented as row vectors [x,y,z,1] instead

of column vectors, determine what impact this has on the composition of
transformations.

2. If a left-handed three-dimensional coordinate system is used instead of
a right-handed system, determine how the basic three-dimensional affine
transformations change.

3. Suppose that a composite transformation which consists of m basic 3D
affine transformations must be applied to n object vertices. Compare the
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cost of applying the basic matrices to the vertices sequentially against the
cost of composing them and then applying the composite matrix to the ver-
tices. The comparison should take into account the total numbers of scalar
multiplications and scalar additions. Instantiate your result for m = 2,4,8
and n = 10,103,106.

4. Prove that Equation (3.32) (in Example 3.15) holds.

5. Determine two transformations (matrices) that align the vector −→op with the
unit vector ĵ along the positive y-axis, where o is the coordinate origin and
p is a given 3D point.

6. Show which of the following pairs of 3D transformations are commutative:

(a) Translation and rotation;

(b) Scaling and rotation;

(c) Translation and scaling;

(d) Two rotations;

(e) Isotropic scaling and rotation.

7. Determine a 3D transformation that maps an axis-aligned orthogonal paral-
lelepiped defined by two opposite vertices [xmin,ymin,zmin]T and [xmax,ymax,

zmax]T into the space of the unit cube without deformation (maintain aspect
ratio) and then rotates it by an angle θ about the axis specified by a point p
and a vector −→v .

8. Determine the affine matrices required to transform the unit cube, defined
by the matrix of its vertices

C =
[

A B C D E F G H
]
=

⎡⎢⎢⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎤⎥⎥⎦
into each of the following shapes:

S1 =

⎡⎢⎢⎣
0 0 0 0 1 1 1 1
y y y+1 y+1 y y y+1 y+1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎤⎥⎥⎦ ;



�

�

�

�

�

�

�

�

116 3. 2D and 3D Coordinate Systems and Transformations

S2 =

⎡⎢⎢⎣
0 0 0 0 1 1 1 1
y2 y2 y(y+1) y(y+1) y2 y2 y(y+1) y(y+1)
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎤⎥⎥⎦ ;

S3 =

⎡⎢⎢⎣
0 0 0 0 1 1 1 1
0 −1 0 −1 0 −1 0 −1
0 0 1 1 0 0 1 1
1 1 1 1 1 1 1 1

⎤⎥⎥⎦ ,

where y is the last digit of your year of birth.

9. Determine the three-dimensional window to viewport transformation ma-
trix. The window and the viewport are both axis-aligned rectangular paral-
lelepipeds specified by two opposite vertices [wxmin,wymin,wzmin]T,
[wxmax,wymax,wzmax]T and [vxmin,vymin,vzmin]T, [vxmax,vymax,vzmax]T, respec-
tively.

10. Determine the three-dimensional transformation that performs mirroring
with respect to a plane defined by a point p and a normal vector −→v .

11. Use the MROT−AXIS2 matrix (Equation (3.35)) to rotate the pyramid of Ex-
ample 3.18. Check that you get the same result.

12. Suppose that n consecutive rotations about different axes through the origin
are to be applied to a point. Compare the cost of computing the compos-
ite rotation by using rotation matrices and by using quaternions to express
the rotations. Include in your computation the cost of constructing the re-
quired rotation matrices (using, for example, the result of Equation (3.30)
without the translations) and quaternions (using Equation (3.44)), and in
the case of quaternions the cost of conversion to the final rotation matrix
(Equation (3.47)).
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4
Projections and Viewing

Transformations
Perspective is to painting what the bridle is to the horse, the rudder to a ship.

—Leonardo da Vinci

4.1 Introduction
In computer graphics, models are generally three-dimensional, but the output de-
vices (displays and printers) are two-dimensional.1 A projective mapping, or sim-
ply projection, must thus take place at some point in the graphics pipeline and is
usually placed after the culling stages and before the rendering stage. The projec-
tion parameters are specified as part of the viewing transformation2 that defines
the transition from the world coordinate system (WCS) to canonical screen space

1Three-dimensional display devices do exist and are an active topic of research; however, current
systems are expensive and offer a limited advantage to the human visual system.

2The term “viewing transformation” is widely used in computer graphics, although it is not a
transformation in the strict mathematical sense (i.e., a mapping with the same domain and range sets).

117
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Figure 4.1. Overview of coordinate systems involved in the viewing trans-
formation.

coordinates (CSS) via the eye coordinate system (ECS) (Figure 4.1). The viewing
transformation also specifies the clipping bounds (for frustum culling) in ECS.

The rationale behind these coordinate systems is the following: All objects
are initially defined in their own local coordinate system which may, for example,
be the result of a digitization or design process. These objects are unified in WCS
where they are placed suitably modified; the WCS is essentially used to define the
model of a three-dimensional synthetic world. The transition from WCS to ECS,
which involves a change of coordinates, is carried out in order to simplify a num-
ber of operations including culling (e.g., the specification of the clipping bounds
by the user) and projection. Finally, the transition from ECS to CSS ensures that
all objects that survived culling will be defined in a canonical space (usually rang-
ing from−1 to 1) that can easily be scaled to the actual coordinates of any display
device or viewport and that also maintains high floating-point accuracy.

4.2 Projections
In mathematics, projection is a term used to describe techniques for the creation
of the image of an object onto another simpler object such as a line, plane, or
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Property preserved Affine Projective
Angles No No

Distances No No
Ratios of distances Yes No

Parallel lines Yes No
Affine combinations Yes No

Straight lines Yes Yes
Cross ratios Yes Yes

Table 4.1. Properties of affine transformations and projective mappings.

surface. A center of projection, along with points on the object being projected, is
used to define the projector lines; see Figure 4.3. The intersection of a projector
with the simpler object (e.g., the plane of projection) forms the image of a point
of the original object. Projections can be defined in spaces of arbitrary dimension.

In computer graphics and visualization we are generally concerned with pro-
jections from 3D space onto 2D space (the 2D space is referred to as the plane
of projection and models our 2D output device). Two such projections are of
interest:

• Perspective projection, where the distance of the center of projection from
the plane of projection is finite;

• Parallel projection, where the distance of the center of projection from the
plane of projection is infinite.

Projective mappings are not affine transformations and, therefore, cannot be
described by affine transformation matrices. Table 4.1 summarizes the differences
between affine transformations and projective mappings in terms of which object
properties they preserve.

Parallel lines are not projected onto parallel lines unless their plane is parallel
to the plane of projection; their projections seem to meet at a vanishing point.
A straight line will map to a straight line, but ratios of distances on the straight
line will not be preserved. Therefore, affine combinations are not preserved by
projections (in contrast, ratios on the straight line are preserved by affine transfor-
mations by their definition). For example, looking at Figure 4.2,

ab
bd
= a′b′

b′d′
.
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Figure 4.2. Straight-line ratios under projective mapping.

Figure 4.3. Pinhole-camera model for perspective projection.

Figure 4.4. Perspective projection.
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Projections do, however, preserve cross ratios; looking again at Figure 4.2,

ac
cd
ab
bd

=
a′c′
c′d′
a′b′
b′d′

.

The implication is that in order to fully describe the projective image of a line
we need the image of three points on the line, in contrast to affine transforms
where we needed just two. (This generalizes to planes and other objects defined
by sets of points; for the projective image of an object we need the image of a
set of points with one element more than for its affine image). This result has
important implications when mapping properties of an object under projective
mappings; for example, although the “straightness” of a line is preserved and can
be described by mapping two points, properties such as the depth or color of the
line must be mapped using three points (see Section 2.7).

4.2.1 Perspective Projection

Perspective projection models the viewing system of our eyes and can be ab-
stracted by a pinhole camera (Figure 4.3). The pinhole is the center of projection,
and the plane of projection, where the image is formed, is the image plane. The
pinhole-camera model creates an inverted image but in computer graphics an up-
right image is derived by placing the image plane “in front” of the pinhole.

Suppose that the center of projection coincides with the origin and that the
plane of projection is perpendicular to the negative z-axis at a distance d from
the center (Figure 4.4). A three-dimensional point P = [x,y,z]T is projected onto
the point P′ = [x′,y′,d]T on the plane of projection. Consider the projections P1

and P′1 of P and P′, respectively, onto the yz-plane. From the similar triangles
�OP1P2 and�OP′1P′2, we have

P′1P′2
OP′2

=
P1P2

OP2
.

Since y′ = P′1P′2, d = OP′2, y = P1P2, and z = OP2,

y′ =
d · y

z
. (4.1)

The expression for x′ can similarly be derived:

x′ =
d · x

z
. (4.2)
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The perspective-projection equations are not linear, since they include divi-
sion by z, and therefore a small trick is needed to express them in matrix form.
The matrix

PPER =

⎡⎢⎢⎣
d 0 0 0
0 d 0 0
0 0 d 0
0 0 1 0

⎤⎥⎥⎦ (4.3)

alters the homogeneous coordinate and maps the coordinates of a point [x,y,z,1]T

as follows:

PPER ·

⎡⎢⎢⎣
x
y
z
1

⎤⎥⎥⎦=

⎡⎢⎢⎣
x ·d
y ·d
z ·d

z

⎤⎥⎥⎦ .

To achieve the desired result, a division with the homogeneous coordinate
must be performed, since its value is no longer 1:⎡⎢⎢⎣

x ·d
y ·d
z ·d

z

⎤⎥⎥⎦/z =

⎡⎢⎢⎣
x·d
z

y·d
z
d
1

⎤⎥⎥⎦ .

An important characteristic of the perspective projection is perspective short-
ening, the fact that the size of the projection of an object is inversely proportional
to its distance from the center of projection (Figure 4.5).

Perspective shortening was known to the ancient Greeks, but the laws of per-
spective were not thoroughly studied until Leonardo da Vinci. This explains why

x

z

y

Figure 4.5. Perspective shortening.
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some older paintings present distant figures unrealistically large. In fact, it was
only in the last few centuries that paintings attempt to model human vision. Be-
fore that, other symbolic criteria often prevailed; for example, the size of charac-
ters was proportional to their importance.

4.2.2 Parallel Projection

In parallel projection, the center of projection is at an infinite distance from the
plane of projection and the projector lines are therefore parallel to each other. To
describe such a projection one must specify the direction of projection (a vector)
and the plane of projection. We shall distinguish between two types of parallel
projections: orthographic, where the direction of projection is normal to the plane
of projection, and oblique, where the direction of projection is not necessarily
normal to the plane of projection.

Orthographic projection. Orthographic projections usually employ one of the
main planes as the plane of projection. Suppose that the xy-plane is used (Fig-
ure 4.6). A point P = [x,y,z]T will then be projected onto [x′,y′,z′]T = [x,y,0]T.
The following matrix accomplishes this:

PORTHO =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎦ , (4.4)

so that P′ = PORTHO ·P.

Figure 4.6. Orthographic projection onto the xy-plane.
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Figure 4.7. Oblique projection.

Oblique projection. Here the direction of projection is not necessarily normal
to the plane of projection. Let the direction of projection be

−−−→
DOP = [DOPx,DOPy,DOPz]T

and the plane of projection be the xy-plane (Figure 4.7).
Then, the projection P′ = [x′,y′,0]T of a point P = [x,y,z]T will be

P′ = P+λ ·−−−→DOP (4.5)

for some scalar λ . But the z-coordinate of P′ is 0, so Equation (4.5) becomes

0 = z+λ ·DOPz or λ =− z
DOPz

The other two coordinates of P′ can now be determined from Equation (4.5):

x′ = x+λ ·DOPx = x− DOPx

DOPz
· z

and, similarly,

y′ = y− DOPy

DOPz
· z.

These equations can be expressed in matrix form as

POBLIQUE(
−−−→
DOP) =

⎡⎢⎢⎢⎣
1 0 −DOPx

DOPz
0

0 1 −DOPy
DOPz

0

0 0 0 0
0 0 0 1

⎤⎥⎥⎥⎦ , (4.6)

so that P′ = POBLIQUE(
−−−→
DOP) ·P.
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Figure 4.8. Perspective projection example: cube.

4.3 Projection Examples
Example 4.1 (Perspective Projection of a Cube.) Determine the perspective
projections of a cube of side 1 when (a) the plane of projection is z = −1 and
(b) the plane of projection is z =−10. The cube is placed on the plane of projec-
tion as shown in Figure 4.8.

The vertices of the cube can be represented as the columns of a 4×8 matrix.
In case (a), the cube is

C =

⎡⎢⎢⎣
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1

−1 −1 −1 −1 −2 −2 −2 −2
1 1 1 1 1 1 1 1

⎤⎥⎥⎦ .

The result of the projection of the cube is obtained by multiplying the per-
spective projection matrix of Equation (4.3) (d =−1) by C:

PPER ·C =

⎡⎢⎢⎣
−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 1 0

⎤⎥⎥⎦·C =

⎡⎢⎢⎣
0 −1 −1 0 0 −1 −1 0
0 0 −1 −1 0 0 −1 −1
1 1 1 1 2 2 2 2

−1 −1 −1 −1 −2 −2 −2 −2

⎤⎥⎥⎦ ,

which must be normalized by the homogeneous coordinate to give⎡⎢⎢⎢⎣
0 1 1 0 0 1

2
1
2 0

0 0 1 1 0 0 1
2

1
2

−1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎦ .

The result can be seen in Figure 4.9(a).
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(a) (b)

Figure 4.9. Perspective projection of a cube onto (a) the plane z=−1 and (b) the
plane z=−10.

In case (b), the original cube is

C′ =

⎡⎢⎢⎣
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1

−10 −10 −10 −10 −11 −11 −11 −11
1 1 1 1 1 1 1 1

⎤⎥⎥⎦ .

Multiplying the perspective projection matrix (d =−10) by C′ gives⎡⎢⎢⎣
−10 0 0 0

0 −10 0 0
0 0 −10 0
0 0 1 0

⎤⎥⎥⎦·C′=
⎡⎢⎢⎣

0 −10 −10 0 0 −10 −10 0
0 0 −10 −10 0 0 −10 −10

100 100 100 100 110 110 110 110
−10 −10 −10 −10 −11 −11 −11 −11

⎤⎥⎥⎦ ,

and normalizing by the homogeneous coordinate gives⎡⎢⎢⎢⎣
0 1 1 0 0 10

11
10
11 0

0 0 1 1 0 0 10
11

10
11

−10 −10 −10 −10 −10 −10 −10 −10
1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎦ .

The result can be seen in Figure 4.9(b). Note how the “far” face of the cube
has been projected differently in the two cases.

Example 4.2 (Perspective Projection onto an Arbitrary Plane.) Compute the
perspective projection of a point P = [x,y,z]T onto an arbitrary plane Π which is
specified by a point R0 = [x0,y0,z0]T and a normal vector

−→
N = [nx,ny,nz]T. The

center of projection is the origin O.
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Figure 4.10. Perspective projection onto an arbitrary plane.

Consider the projection P′ = [x′,y′,z′]T of P = [x,y,z]T (Figure 4.10). Since

the vectors
−−→
OP′ and

−→
OP are collinear,

−−→
OP′ = a · −→OP for some scalar a and the

projection equations for each coordinate are

x′ = ax, y′ = ay, z′ = az. (4.7)

We need to determine the scalar a. The vector
−−→
R0P′ is on the plane of projec-

tion, therefore its inner product with the plane normal
−→
N is 0:

−→
N ·−−→R0P′ = 0,

or

nx(x′ − x0)+ny(y′ − y0)+nz(z′ − z0) = 0,

or

nxx′+nyy′+nzz
′ = nxx0 +nyy0 +nzz0.

Substituting the values of x′, y′, and z′ from Equation (4.7), setting c = nxx0 +
nyy0 +nzz0, and solving for a gives

a =
c

nxx+nyy+nzz
.

Note that the projection equations include a division by a combination of x, y,
and z (in simple perspective we had only z in the denominator). We can express
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the projection equations in matrix form by changing the homogeneous coordinate,
just as for simple perspective:

PPER,Π =

⎡⎢⎢⎣
c 0 0 0
0 c 0 0
0 0 c 0
nx ny nz 0

⎤⎥⎥⎦ . (4.8)

To project the point P onto the plane Π, we thus apply PPER,Π and then divide
by the homogeneous coordinate nxx+nyy+nzz.

Example 4.3 (Oblique Projection with Azimuth and Elevation Angles.) Some-
times, particularly in the field of architectural design, oblique projections are spec-
ified in terms of the azimuth and elevation angles φ and θ that define the relation
of the direction of projection to the plane of projection. Determine the projection
matrix in this case.

Define xy as the plane of projection and let φ and θ , respectively, be the az-
imuth and elevation angles of the direction of projection (Figure 4.11). One can
show, by simple trigonometry (see Exercises, Section 4.8), that the direction of the
projection vector is

−−−→
DOP = [cosθ cosφ ,cosθ sinφ ,sinθ ]T. Thus, the POBLIQUE

matrix of Equation (4.6) becomes

POBLIQUE(φ ,θ) =

⎡⎢⎢⎢⎣
1 0 − cosφ

tanθ 0

0 1 − sinφ
tanθ 0

0 0 0 0
0 0 0 1

⎤⎥⎥⎥⎦ . (4.9)

Figure 4.11. Azimuth and elevation angles for oblique projection.



�

�

�

�

�

�

�

�

4.4. Viewing Transformation 129

Example 4.4 (Oblique Projection onto an Arbitrary Plane.) Determine the
oblique projection mapping onto an arbitrary plane Π that is specified by a point
R0 = [x0,y0,z0]T and a normal vector

−→
N = [nx,ny,nz]T. The direction of projec-

tion is given by the vector
−−−→
DOP = [DOPx,DOPy,DOPz]T.

We shall first transform the plane Π so that it coincides with the xy-plane; we
shall next use the oblique projection matrix of Equation (4.6), and finally we shall
undo the first transformation. This requires five steps:

Step 1. Translate R0 to the origin, T(−−→R0).

Step 2. Align
−→
N with the positive z-axis; this is accomplished by matrix A(

−→
N )

of Example 3.12.

Step 3. Use the oblique projection matrix of Equation (4.6) with the direction of
projection transformed according to Steps 1 and 2:

−−−→
DOP′ = A(

−→
N ) ·T(−−→R0) ·−−−→DOP.

Step 4. Undo the alignment, A(
−→
N )−1.

Step 5. Undo the translation, T(
−→
R0).

Thus,

POBLIQUE,Π(
−−−→
DOP) = T(

−→
R0) ·A(

−→
N )−1 ·POBLIQUE(

−−−→
DOP′) ·A(

−→
N ) ·T(−−→R0).

(4.10)

4.4 Viewing Transformation
A viewing transformation (VT) defines the process of coordinate conversion all
the way from the world coordinate system (WCS) to canonical screen space (CSS)
via the intermediate eye coordinate system (ECS). At the same time, it defines the
clipping boundaries (for frustum culling) in ECS. All coordinate systems used are
right-handed. We shall split its description into two parts; the first part will de-
scribe the WCS-to-ECS conversion while the second part will describe the ECS-
to-CSS conversion. The second part will be further split to consider orthographic
and perspective projections separately. Extensions deal with oblique projection
and non-symmetrical viewing volume for perspective projection. Note that the
z-coordinate is maintained by the ECS-to-CSS conversion, as stages following
the viewing transformation (such as hidden surface elimination) require three-
dimensional information.
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4.4.1 WCS to ECS

The first step is the transition from WCS to ECS. ECS can be defined within the
WCS by the following intuitive parameters:

• the ECS origin E;

• the direction of view −→g ;

• the up direction −→up.

The origin E represents the point of view, where an imaginary observer is lo-
cated. The vector −→up defines the up direction and need not be perpendicular to−→g . Having chosen to use a right-handed coordinate system, we have sufficient
information to define the ECS axes xe, ye, and ze.

The xe- and ye-axes must be aligned with the corresponding CSS axes with
the usual convention that xe is the horizontal axis and increases to the right and
ye is the vertical axis and increases upwards. At the same time, a right-handed
ECS must be constructed. Thus, we have to select a ze-axis that points toward
the observer; in other words, the direction of view −→g is aligned with the negative
ze-axis. The vectors that define the other two axes are computed by cross products
as follows (Figure 4.12):

−→ze =−−→g ,
−→xe =−→up×−→ze ,
−→ye =−→ze ×−→xe .

Having defined the ECS, we next need to perform the WCS-to-ECS con-
version. In practice, once the conversion matrix MWCS→ECS is established, the

Figure 4.12. WCS to ECS.
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vertices of all objects are pre-multiplied by it. As was shown in Example 3.16,
this conversion can be accomplished by two transformations: a translation by
−−→E = [Ex,Ey,Ez]T followed by a rotational transformation which can be ex-
pressed as a change of basis. Let the WCS coordinates of the ECS unit axis
vectors be x̂e = [ax,ay,az]T, ŷe = [bx,by,bz]T, and ẑe = [cx,cy,cz]T. Then:

MWCS→ECS =

⎡⎢⎢⎣
ax ay az 0
bx by bz 0
cx cy cz 0
0 0 0 1

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

1 0 0 −Ex

0 1 0 −Ey

0 0 1 −Ez

0 0 0 1

⎤⎥⎥⎦ . (4.11)

4.4.2 ECS to CSS

We now convert our scene from ECS to CSS. Here, we must distinguish two cases:
orthographic projection on one of the three basic coordinate planes (we shall use
the xy-plane) and perspective projection.

Orthographic projection. Suppose that we perform an orthographic projection
onto the xy-plane. We need to select a region of space that will be mapped to
CSS. This region is called the view volume and takes the form of a rectangular
parallelepiped. It can be defined by two opposite vertices, which also define the
clip planes used for frustum culling (Figure 4.13):

• xe = l, the left clip plane;

• xe = r, the right clip plane, (r > l);

• ye = b, the bottom clip plane;

• ye = t, the top clip plane, (t > b);

• ze = n, the near clip plane;

• ze = f , the far clip plane, ( f < n, since the ze axis points toward the ob-
server.)

Given that we want to maintain the z-coordinate, the orthographic projection
matrix (see Equation (4.4)) onto the xy-plane is simply the identity matrix. The
view volume can be converted into CSS by a translation and a scaling transfor-
mation. We want to map the (l,b,n) values to −1 and the (r, t, f ) values to 1; the
required mapping is
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Figure 4.13. View volume for orthographic projection.

MORTHO
ECS→CSS = S(

2
r− l

,
2

t−b
,

2
f −n

) ·T(− r + l
2

,− t +b
2

,−n+ f
2

) · ID

=

⎡⎢⎢⎢⎢⎣
2

r−l 0 0 0

0 2
t−b 0 0

0 0 2
f−n 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎣

1 0 0 − r+l
2

0 1 0 − t+b
2

0 0 1 − n+ f
2

0 0 0 1

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b

0 0 2
f−n − n+ f

f−n

0 0 0 1

⎤⎥⎥⎥⎥⎦ .

(4.12)

Thus, using orthographic projection, a WCS point Xw = [xw,yw,zw,1]T can be
converted into CSS by

Xs = MORTHO
ECS→CSS ·MWCS→ECS ·Xw.

Perspective projection. In the case of perspective projection, the view volume
is a truncated pyramid that is symmetrical about the −ze-axis; Figure 4.14 shows
its yz-view shaded. This view volume can be specified by four quantities:

• θ , the angle of the field of view in the y-direction;

• aspect, the ratio of the width to the height of a cross section of the pyra-
mid;3

3For example, for the cross section defined by the plane z = n, height is the distance between t
and b (Figure 4.14), and width is the distance between l and r.
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Figure 4.14. View volume for perspective projection (yz-view).

• ze = n, the near clipping plane;

• ze = f , the far clipping plane ( f < n).

Projection is assumed to take place onto the near clipping plane ze = n. The
top, bottom, right, and left clipping boundaries at the near clipping plane can be
derived from the above parameters as

t = |n| · tan(
θ
2

),

b =−t,

r = t · aspect,

l =−r.

A modified version of the perspective projection matrix can be used (PPER

from Equation (4.3)). Special consideration must be given to the z-coordinate,
which must be preserved for hidden surface and other computations in screen
space. However, simply keeping the ze-coordinate will deform objects. We want
a mapping that preserves lines and planes, i.e., ECS lines and planes must map
to lines and planes in CSS. As shown in [Newm81], a mapping that achieves this
is zs = A + B/ze, where A and B are constants; by inverting the z-coordinate this
mapping resembles the mappings for the x- and y-coordinates. We require that
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Figure 4.15. The perspective view volume transformed into a rectangular paral-
lelepiped (yz-view).

(ze = n)⇒ (zs = n) and (ze = f )⇒ (zs = f ), and so we get two equations with
two unknowns, which results in A = (n+ f ) and B =−n f .4 The selected mapping
will not alter the boundary values ze = n and ze = f , but this will not be true for
ze values between the two boundaries. Thus, the perspective projection matrix is

PVT =

⎡⎢⎢⎣
n 0 0 0
0 n 0 0
0 0 n+ f −n f
0 0 1 0

⎤⎥⎥⎦ ,

which makes the w-coordinate equal to ze and must therefore be followed by a
division by ze (this is called the perspective division). The transformation PVT

has the effect of transforming the truncated pyramid of Figure 4.14 into the rect-
angular parallelepiped of Figure 4.15. The clipping boundaries are not affected
by PVT.

We now have a situation that is similar to the setting before the orthographic
projection, except that the view volume is already symmetrical about the−ze-axis.
In order to complete the ECS-to-CSS conversion, we therefore need to follow PVT

by a translation along ze only and a scaling transformation

4Note that we could have alternatively required that (ze = n) ⇒ (zs = −n) and (ze = f ) ⇒
(zs = − f ) so that larger zs values correspond to greater distance from the viewpoint; this results
in A =−(n+ f ) and B = n f .



�

�

�

�

�

�

�

�

4.4. Viewing Transformation 135

MPERSP
ECS→CSS = S(

2
r− l

,
2

t−b
,

2
f −n

) ·T(0,0,−n+ f
2

) ·PVT

=

⎡⎢⎢⎣
2

r−l 0 0 0
0 2

t−b 0 0
0 0 2

f−n 0
0 0 0 1

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 − n+ f

2
0 0 0 1

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

n 0 0 0
0 n 0 0
0 0 n+ f −n f
0 0 1 0

⎤⎥⎥⎦

=

⎡⎢⎢⎣
2n

r−l 0 0 0
0 2n

t−b 0 0
0 0 n+ f

f−n − 2n f
f−n

0 0 1 0

⎤⎥⎥⎦ .

(4.13)
A WCS point Xw = [xw,yw,zw,1]T can thus be converted into CSS using per-

spective projection as follows:⎡⎢⎢⎣
x
y
z
w

⎤⎥⎥⎦= MPERSP
ECS→CSS ·MWCS→ECS ·Xw,

followed by the perspective division by the w-coordinate (which equals ze). Frus-
tum culling is usually performed just before the perspective division (see Sec-
tion 4.6) ensuring that the x-, y-, and z-coordinates of every point on every object
are within the clipping bounds:

−w≤ x,y,z≤ w.

The perspective division then completes the transition into CSS; every point
of every object is now in the range [−1,1]:

Xs =

⎡⎢⎢⎣
x
y
z
w

⎤⎥⎥⎦/w.

Let us follow a couple of specific points through the above mapping to make
the process clear. Take the boundary points with ECS coordinates [l,b,n,1]T and
[0,0, f ,1]T (Figure 4.14). Applying the perspective projection matrix PVT gives

PVT ·

⎡⎢⎢⎣
l
b
n
1

⎤⎥⎥⎦=

⎡⎢⎢⎣
ln
bn
n2

n

⎤⎥⎥⎦ PVT ·

⎡⎢⎢⎣
0
0
f
1

⎤⎥⎥⎦=

⎡⎢⎢⎣
0
0
f 2

f

⎤⎥⎥⎦ .
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We can see that the homogeneous coordinate is no longer 1. Next, we apply the
combination of the scaling and translation matrices:

S ·T ·

⎡⎢⎢⎣
ln
bn
n2

n

⎤⎥⎥⎦=

⎡⎢⎢⎣
−n
−n
−n

n

⎤⎥⎥⎦ S ·T ·

⎡⎢⎢⎣
0
0
f 2

f

⎤⎥⎥⎦=

⎡⎢⎢⎣
0
0
f
f

⎤⎥⎥⎦ .

Note that r− l = −2l and t− b = −2b, since r = −l and t = −b due to the
symmetry of the truncated pyramid about −ze. Finally, the perspective division
gives the CSS values of the points:⎡⎢⎢⎣

−n
−n
−n

n

⎤⎥⎥⎦/n =

⎡⎢⎢⎣
−1
−1
−1

1

⎤⎥⎥⎦
⎡⎢⎢⎣

0
0
f
f

⎤⎥⎥⎦/ f =

⎡⎢⎢⎣
0
0
1
1

⎤⎥⎥⎦ .

4.5 Extended Viewing Transformation
While the above viewing transformation is sufficient for most settings, there are a
number of extensions to the viewing transformation that are of interest.

4.5.1 Truncated Pyramid Not Symmetrical about ze-Axis

A generalization of the perspective projection is depicted in Figure 4.16. The
truncated pyramid view volume is not symmetrical about the ze-axis; this situation
arises for example in stereo viewing where two viewpoints are slightly offset on
the xe-axis.

The above viewing volume can be specified by giving the parameters of the
clipping planes directly:

• ze = n0, the near clipping plane (as before);

• ze = f0, the far clipping plane, f0 < n0 (as before);

• ye = b0, the ye-coordinate of the bottom clipping plane at its intersection
with the near clipping plane;

• ye = t0, the ye-coordinate of the top clipping plane at its intersection with
the near clipping plane;
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Figure 4.16. Truncated pyramid view volume not symmetrical about ze (yz-view).

• xe = l0, the xe-coordinate of the left clipping plane at its intersection with
the near clipping plane;

• xe = r0, the xe-coordinate of the right clipping plane at its intersection with
the near clipping plane.

A shear transformation on the xy-plane can convert the above pyramid so that
it is symmetrical about ze. We must determine the A and B parameters of the
general xy shear matrix,

SHxy =

⎡⎢⎢⎣
1 0 A 0
0 1 B 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (4.14)

Taking the shear on the ye-coordinate, we want to map the midpoint of the
line segment t0b0 to 0. In terms of the shear,

b0 + t0
2

+B ·n0 = 0,

and solving for the shear factor B gives B =− b0+t0
2n0

. Similarly the xe shear factor

is A =− l0+r0
2n0

. The required shear transformation is

SHNON−SYM =

⎡⎢⎢⎢⎣
1 0 − l0+r0

2n0
0

0 1 − b0+t0
2n0

0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ .
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The clipping boundaries must also be altered to reflect the symmetrical shape
of the new pyramid:

n = n0, f = f0,

l = l0− l0 + r0

2
, r = r0− l0 + r0

2
,

b = b0− b0 + t0
2

, t = t0− b0 + t0
2

.

If we substitute the above equivalences into the MPERSP
ECS→CSS matrix and do the

simplifications we get

MPERSP
ECS→CSS =

⎡⎢⎢⎢⎢⎣
2n0

r0−l0
0 0 0

0 2n0
t0−b0

0 0

0 0 n0+ f0
f0−n0

− 2n0 f0
f0−n0

0 0 1 0

⎤⎥⎥⎥⎥⎦ ,

which is equivalent to the original MPERSP
ECS→CSS matrix with the clipping bounds

replaced by the initial clipping bounds. Thus, it is not necessary to have initial
clipping bounds and convert them after the shear; we can name them n, f , l,r,b, t
from the start.

The symmetry transformation SHNON−SYM should precede MPERSP
ECS→CSS, and

the ECS → CSS mapping in the case of non-symmetrical perspective projection
becomes

MPERSP−NON−SYM
ECS→CSS = MPERSP

ECS→CSS ·SHNON−SYM

=

⎡⎢⎢⎢⎢⎣
2n

r−l 0 0 0

0 2n
t−b 0 0

0 0 n+ f
f−n − 2n f

f−n

0 0 1 0

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

1 0 − l+r
2n 0

0 1 − b+t
2n 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
2n

r−l 0 − l+r
r−l 0

0 2n
t−b − b+t

t−b 0

0 0 n+ f
f−n − 2n f

f−n

0 0 1 0

⎤⎥⎥⎥⎥⎦ .

(4.15)



�

�

�

�

�

�

�

�

4.5. Extended Viewing Transformation 139

4.5.2 Oblique Projection

Although orthographic projections are the most frequently used form of parallel
projection, there are applications where the more general case of oblique parallel
projection is required. An example is the computation of oblique views for three-
dimensional displays [Theo90]. In such cases the MORTHO

ECS→CSS mapping is not
sufficient, and the direction of projection must be taken into account. The view
volume is now a six-sided parallelepiped (Figure 4.17) and can be specified by
the six parameters used for the non-symmetrical pyramid (n0, f0,b0, t0, l0,r0) plus
the direction of projection vector

−−−→
DOP.

We first translate the view volume so that the (l0,b0,n0)-point moves to the
ECS origin and then perform a shear in the xy-plane (see Equation (4.14)) to
transform the parallelepiped into a rectangular parallelepiped. Take the point de-
fined by the origin and the vector

−−−→
DOP = [DOPx,DOPy,DOPz]T. The (DOPy)

coordinate must be sheared to 0:

DOPy +B ·DOPz = 0,

and solving for the y shear factor gives B = −DOPy
DOPz

. Similarly the x shear factor

is A =−DOPx
DOPz

. The required transformation is therefore

SHPARALLEL ·TPARALLEL =

⎡⎢⎢⎢⎣
1 0 −DOPx

DOPz
0

0 1 −DOPy
DOPz

0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎣

1 0 0 −l0
0 1 0 −b0

0 0 1 −n0

0 0 0 1

⎤⎥⎥⎦ .

Note that the SHPARALLEL matrix is almost identical to the oblique projec-
tion matrix POBLIQUE (Equation (4.6)) with the exception that it preserves the

Figure 4.17. Parallel projection view volume (yz-view).
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z-coordinate. The clipping boundaries must also be altered to reflect the new rect-
angular parallelepiped:

n = 0,

f = f0−n0,

l = 0,

r = r0− l0,

b = 0,

t = t0−b0.

The symmetry transformation SHPARALLEL · TPARALLEL should precede
MORTHO

ECS→CSS and the ECS→ CSS mapping in the case of a general parallel projec-
tion is

MPARALLEL
ECS→CSS = MORTHO

ECS→CSS ·SHPARALLEL ·TPARALLEL.

4.6 Frustum Culling and the Viewing
Transformation

As discussed in Section 5.3, frustum culling is implemented by 3D clipping algo-
rithms. The viewing transformation defines the 3D clipping boundaries. Clipping
takes place in CSS, after the application of MPERSP

ECS→CSS or MORTHO
ECS→CSS, respec-

tively, but before the division by w in the former. Thus the clipping boundaries
for perspective projection are

−w≤ x,y,z≤ w

and for orthographic or parallel projection

−1≤ x,y,z≤ 1.

A question that is often asked is, “Why perform frustum culling by clipping in
3D and not in 2D, after throwing away the z-coordinate?” There are good reasons
for clipping 3D objects in 3D rather than 2D. First, in the case of perspective pro-
jection, after throwing away the z-coordinate, there is not sufficient information
to clip out objects behind the center of projection E; such objects would appear
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upside-down. Second, again in the case of perspective projection, we avoid the
perspective division by 0 (for points with ze = 0), provided the near clipping plane
is suitably set, and the cost of the perspective division is saved for points that are
clipped out. Third, the near and far clipping planes limit the depth range and
enable the optimal allocation of the bits of the depth buffer; for this reason one
should choose as narrow a depth range as possible for the view volume.

The 2D clipping algorithms of Chapter 2 easily generalize to 3D as shown in
Chapter 5.

4.7 The Viewport Transformation

The viewport is the rectangular part of the screen where the contents of the view
volume are displayed; this could be the entire screen area. A viewport is usually
defined by its bottom-left and top-right corners [xmin,ymin]T and [xmax,ymax]T in
pixel coordinates or, to maintain the z-coordinate, [xmin,ymin,zmin]T and
[xmax,ymax,zmax]T. The viewport transformation converts objects from CSS into
the viewport coordinate system (VCS). It involves a scaling and a translation:

MVIEWPORT
CSS→VCS =

⎡⎢⎢⎢⎢⎣
1 0 0 xmin+xmax

2

0 1 0 ymin+ymax
2

0 0 1 zmin+zmax
2

0 0 0 1

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎣

xmax−xmin
2 0 0 0

0 ymax−ymin
2 0 0

0 0 zmax−zmin
2 0

0 0 0 1

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
xmax−xmin

2 0 0 xmin+xmax
2

0 ymax−ymin
2 0 ymin+ymax

2

0 0 zmax−zmin
2

zmin+zmax
2

0 0 0 1

⎤⎥⎥⎥⎥⎦ . (4.16)

This is a generalization of the 2D window-to-viewport transformation (see
Example 3.8). Note that the z-coordinate is maintained by the viewport trans-
formation for use by screen-space algorithms, such as Z-buffer hidden surface
elimination (see Section 5.5.1).

Since the entire contents of the view volume are displayed in the viewport, the
size of the viewport defines the final size of the objects on the screen. Choosing
a large viewport (e.g., the entire screen area) will enlarge objects while a small
viewport will show them smaller.
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4.8 Exercises
1. Determine the perspective projection matrix when the plane of projection

is the xy-plane and the center of projection is on the positive z-axis at a
distance d from the origin.

2. Determine the perspective projection matrix when the plane of projection
is z =−5 and the center of projection is [0,0,7]T.

3. Use any perspective projection matrix to compute the projection of a sim-
ple object (e.g., triangle) that lies “behind” the observer, having named its
vertices. Can you thus see one important reason for performing frustum
culling (clipping) before projection?

4. Prove that
−−−→
DOP = [cosθ cosφ ,cosθ sinφ ,sinθ ]T in Example 4.3.

5. Two important cases of oblique projection in design applications are the
Cavalier and the Cabinet projections. These correspond to elevation angles
of θ = 45◦ and θ = 63◦, respectively (see Example 4.3). Using an azimuth
angle of your choice, determine the projection of the unit cube onto the xy-
plane. Hence, measure the length of the projections of cube sides that were
originally normal to the xy-plane. What useful observation can you make?

6. Write a simple program which allows the user to interactively rotate the
unit cube around the x-, y-, or z-axes. Use three windows to display a
perspective projection and the Cavalier and Cabinet oblique projections,
respectively (see previous exercise).

7. Write a simple program which allows the user to experiment with the view-
ing transformation using perspective projection. Specifically, the user must
be able to interactively change θ , aspect, n and f on a scene of your choice.
Note: You will have to include a 3D clipping algorithm.
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Culling and Hidden Surface

Elimination Algorithms

...the ‘total overpaintings’ developed... through incessant reworking. The original
motif peeped through the edges. Gradually it vanished completely.

—Arnulf Rainer

5.1 Introduction
The world we live in consists of a huge number of objects. We can only see a
tiny portion of these objects at any one time, due to restrictions pertaining to our
field of view as well as occlusions among the objects. For example, if we are in
a room we can not see objects behind the walls as they are occluded by the walls
themselves; we can also not see objects behind our back as they are outside our
field of view. Analogously, a typical synthetic world is composed of a very large
number of primitives, but the portion of these primitives that are relevant to the
rendering of any single frame is very small.

Culling algorithms remove primitives that are not relevant to the rendering of
a specific frame because

• they are outside the field of view (frustum culling);

• they are occluded by other objects (occlusion culling);

• they are occluded by front-facing primitives of the same object (back-face
culling).1

1This is only considered as a special case because a very efficient method exists for its solution.

143
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image plane

visible
object

Figure 5.1. The occlusion problem.

Frustum culling removes primitives that are outside the field of view, and it is
implemented by 3D clipping algorithms.

Back-face culling filters out primitives that face away from the point of view
and are thus invisible as they are hidden by front-facing primitives of the same
object. This can be achieved by a simple test on their normal vector.

The occlusion (or visibility) problem refers to the determination of the visible
object in every part of the image. It can be solved by computing the first object
intersected by each relevant ray2 emanating from the viewpoint3 (Figure 5.1).

It is not possible to produce correct renderings without solving the occlusion
problem. Not surprisingly, therefore, it was one of the first problems to be ad-
dressed by the computer graphics community [Appe68, Suth74b]. Theoretically,
the occlusion problem is now considered solved and a number of hidden surface
elimination (HSE) algorithms have been proposed. HSE algorithms directly or
indirectly involve sorting of the primitives. Primitives must be sorted in the z
(depth) dimension as visibility is dependent on depth order. Sorting in the x and y
dimensions can reduce the size of the task of sorting in z, as primitives which do
not overlap in x or y can not possibly occlude each other.

According to the space in which they work, HSE algorithms are classified as
belonging to the object space class or image space class. Object space algorithms
operate in eye coordinate space (before the perspective projection) while image
space algorithms operate in screen coordinates (after the perspective projection);4

see Chapter 4.
The general form of object space HSE algorithms is

for each primitive

find visible part (compare against all other primitives)

render visible part

which has complexity O(P2) where P is the number of primitives. The general

2Ray refers to a semi-infinite line, i.e., a line from a point to infinity. A ray can be defined by a
point and a vector.

3This assumes opaque objects.
4Note that the reason for maintaining the z-coordinate after projection is HSE (see Section 5.5).
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form of image space HSE algorithms is

for each pixel

find closest primitive

render pixel with color of closest primitive

which has complexity O(pP) where p is the number of screen pixels.5 From the
early days of computer graphics, HSE algorithms were identified as a compu-
tational bottleneck in the graphics pipeline. For this reason, special-purpose ar-
chitectures were developed, based mainly on parallel processing [Deer88,Fuch85,
Theo89a]. The experience gained was inherited by the modern graphics
accelerators.

Applications requiring interactive walk-throughs of complex scenes, such as
games and site reconstructions, made the computational cost of HSE algorithms
overwhelming even with hardware support. It was noticed that large numbers of
primitives could easily be discarded without the expensive computations of an
HSE algorithm, simply because they are occluded by a large object. Occlusion
culling algorithms thus arose.

Back-face culling eliminates approximately half of the primitives (the back-
faces) by a simple test, at a total cost of O(P), where P is the number of primitives.
Frustum culling removes those remaining primitives that fall outside the field of
view (i.e., most of them in the usual case) at a cost of O(Pv) where v is the average
number of vertices per primitive.6 Occlusion culling also costs O(P) in the usual
case. The performance bottleneck are the HSE algorithms which cost O(P2) or
O(pP) depending on the type of algorithm, as mentioned above, where p is the
number of screen pixels; for this reason it is worth expending effort on the culling
stages that precede HSE.

5.2 Back-Face Culling
Suppose that an opaque sphere, whose surface is represented by a number of small
polygons, is placed directly in front of the viewer. Only about half of the polygons
will be visible—those that lie on the hemisphere facing the viewer. If models are
constructed in such a way that the back sides of polygons are never visible, then
we can cull polygons showing their back-faces to the viewer.

5As will be seen later in this chapter, the above complexity figures are amenable to optimizations.
6As v is often fixed and equal to three (triangles), frustum culling can be regarded as having cost

O(P).
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<90
o

<90
o

>90
o

A
B

C

n̂

n̂

n̂

v̂

Figure 5.2. Detecting the back-faces of a cube.

The required constraints on the solid models for back-faces to be invisible
are that their surfaces have no boundary, are two-dimensional manifolds, and are
opaque. Note that convexity is not a constraint. Usual solid models (e.g., most
of those used in 3D games and computer-aided design applications) fulfill these
constraints.

Back-faces can be detected by computing the angle formed by a polygon’s
normal vector n̂ (pointing outwards from the opaque solid) and the view vector v̂.
If the angle is greater than 90◦, the polygon is a back-face polygon. In Figure 5.2,
A is a back-face polygon while B and C are not. Taking the inner product of the
vectors, the back-face test becomes

v̂ · n̂ < 0. (5.1)

The vectors n̂ and v̂ can be computed as shown in Section 12.5. The back-face
cull is extremely effective as it eliminates about 50% of the polygons.

Since the back-face test and the computation of the normal and view vectors
for each polygon take constant time, the cost of back-face culling is proportional
to the number of polygons O(P).

5.3 Frustum Culling
The viewing transformation of Chapter 4 defines the field of view of the observer.7

Usually this is restricted by a minimum and maximum depth value,8 thus defining
a three-dimensional solid, the view volume. Depending on the type of projection
used, the view volume takes the form of a truncated pyramid or a rectangular
parallelepiped and is also known as the (view) frustum.

7A monocular observer is usually assumed. For stereoscopic viewing, two separate fields of view
can be used.

8The depth restrictions are placed for reasons of computational efficiency and numerical accuracy.
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The objective of frustum culling is to eliminate those primitives, or parts of
primitives, that lie outside the view frustum and are thus irrelevant to the specific
view. As discussed in Section 4.6, frustum culling must take place after the
transformation from ECS to CSS (i.e., after the application of the MPERSP

ECS→CSS
or MORTHO

ECS→CSS matrix) but before the division by w in the case of perspective
projection. That is, frustum culling must be performed in three dimensions rather
than two, for the reasons discussed in Section 4.6.

Frustum culling is implemented by extending the two-dimensional clipping
algorithms of Section 2.9 to three dimensions. The objects to be clipped are
primitives such as points, line segments, and polygons, as in the case of two-
dimensional clipping. Point clipping is trivial. Both line segment and polygon
clipping reduce to the computation of the intersection of a line segment with the
planes of the clipping object.

In three dimensions the interior of the clipping object can be defined as

xmin ≤ x≤ xmax,
ymin ≤ y≤ ymax,
zmin ≤ z≤ zmax.

(5.2)

In the case of orthographic or parallel projection we use the MORTHO
ECS→CSS matrix

of Section 4.4.2 which maps the clipping planes to −1 and 1 so that

xmin = ymin = zmin =−1

and
xmax = ymax = zmax = 1.

In the case of perspective projection, the MPERSP
ECS→CSS matrix of Section 4.4.2

(before the division by w) maps the clipping planes to −w and w so that

xmin = ymin = zmin =−w

and
xmax = ymax = zmax = w.

The value of w is not constant (it is equal to a point’s eye coordinate ze). Clipping
against the homogeneous coordinate w is called homogeneous clipping.

For a parametric line segment l(t) = (1− t)p1 + tp2 from p1 = [x1,y1,z1,w1]T

to p2 = [x2,y2,z2,w2]T, the value of w can be interpolated as (1−t)w1 +tw2. Then
the inequalities (5.2) can be used to define the part of the line segment within the
clipping object:
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−((1− t)w1 + tw2)≤ (1− t)x1 + tx2 ≤ (1− t)w1 + tw2,
−((1− t)w1 + tw2)≤ (1− t)y1 + ty2 ≤ (1− t)w1 + tw2,
−((1− t)w1 + tw2)≤ (1− t)z1 + tz2 ≤ (1− t)w1 + tw2,

(5.3)

and the six intersections of the line defined by the line segment with the clipping
object planes are obtained by solving relations (5.3), used as equalities, for t:

left: t =
x1 +w1

(x1− x2)+(w1−w2)
,

right: t =
x1−w1

(x1− x2)+(w2−w1)
,

bottom: t =
y1 +w1

(y1− y2)+(w1−w2)
,

top: t =
y1−w1

(y1− y2)+(w2−w1)
,

near: t =
z1 +w1

(z1− z2)+(w1−w2)
,

far: t =
z1−w1

(z1− z2)+(w2−w1)
.

(5.4)

5.3.1 Three-Dimensional Clipping Algorithms

Most clipping algorithms extend easily to three dimensions by addressing

• the intersection computation;

• the inside/outside test.

Clipping algorithms essentially compute the intersection of the clipping object
and the subject, so to go from two to three dimensions we replace the two-
dimensional clipping object by the three-dimensional one (the view frustum). We
shall consider the Cohen–Sutherland and Liang–Barsky [Lian84] line clipping
algorithms and the Sutherland–Hodgman [Suth74a] polygon clipping algorithm.

3D Cohen–Sutherland line clipping. First study the two-dimensional Cohen–
Sutherland (CS) algorithm of Section 2.9.2. In 3D, six bits are used to code the
27 partitions of three-dimensional space defined by the view frustum planes. The
significance of these bits is (see inequalities (5.2)):

First bit. Set to 1 for z > zmax, else set to 0

Second bit. Set to 1 for z < zmin, else set to 0

Third bit. Set to 1 for y > ymax, else set to 0
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Fourth bit. Set to 1 for y < ymin, else set to 0

Fifth bit. Set to 1 for x > xmax, else set to 0

Sixth bit. Set to 1 for x < xmin, else set to 0.

A six-bit code can thus be assigned to a three-dimensional point according to
which one of the 27 partitions of three-dimensional space it lies in. If c1 and c2
are the six-bit codes of the endpoints p1 and p2 of a line segment, the trivial accept
test is c1∨ c2 = 000000 and the trivial reject test is c1∧ c2 = 000000, where ∨
and ∧ denote bitwise disjunction and conjunction, respectively. The pseudocode
for the three-dimensional CS algorithm follows:

CS_Clip_3D ( vertex p1, p2 ); {

int c1, c2;

vertex i;

plane R;

c1=mkcode (p1);

c2=mkcode (p2);

if ((c1 | c2) == 0) /* p1p2 is inside */

else if ((c1 & c2) != 0) /* p1p2 is outside */

else {

R = /* frustum plane with (c1 bit != c2 bit) */

i = intersect_plane_line (R, (p1,p2));

if outside (R, p1) CS_Clip_3D(i, p2);

else CS_Clip_3D(p1, i);

}

}

This differs from the two-dimensional algorithm in the intersection computa-
tion and the outside test. A 3D plane-line intersection computation is used (in-
stead of the 2D line-line intersection). Notice that we have not given the clipping
limits in the pseudocode; in the case of orthographic or parallel projection, these
are constant planes (e.g., x =−1) and the plane-line intersections of Appendix C
are used; in the case of perspective projection and homogeneous coordinates, the
plane-line intersections of Equations (5.4) are used. The outside test can be im-
plemented by a sign check on the evaluation of the plane equation R with the
coordinates of p1.

Three-dimensional Liang–Barsky line clipping. First study the two-dimen-
sional Liang–Barsky (LB) algorithm [Lian84] of Section 2.9.2. A parametric 3D
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line segment to be clipped is represented by its starting and ending points p1 and
p2 as above.

In the case of orthographic or parallel projection, the clipping object is a cube
and the LB computations extend directly to 3D simply by adding a third inequality
to address the z-coordinate:

zmin ≤ z1 + t∆z≤ zmax.

The rest of the LB algorithm remains basically the same as in the 2D case.
In the case of perspective projection and homogeneous coordinates, we can

rewrite inequalities (5.3), which define the part of a parametric line segment
within the clipping object, as

−(w1 + t∆w)≤ x1 + t∆x≤ w1 + t∆w,

−(w1 + t∆w)≤ y1 + t∆y≤ w1 + t∆w,

−(w1 + t∆w)≤ z1 + t∆z≤ w1 + t∆w,

where ∆x = x2− x1, ∆y = y2− y1, ∆z = z2− z1, and ∆w = w2−w1. These in-
equalities have the common form t pi ≤ qi for i = 1,2, ..6, where

p1 =−∆x−∆w, q1 = x1 +w1,

p2 = ∆x−∆w, q2 = w1− x1,

p3 =−∆y−∆w, q3 = y1 +w1,

p4 = ∆y−∆w, q4 = w1− y1,

p5 =−∆z−∆w, q5 = z1 +w1,

p6 = ∆z−∆w, q6 = w1− z1.

Notice that the ratios qi
pi

correspond to the parametric intersection values of
the line segment with clipping plane i and are equivalent to Equations (5.4). The
rest of the LB algorithm remains basically the same as in the 2D case.

Three-dimensional Sutherland–Hodgman polygon clipping. First study the
two-dimensional Sutherland–Hodgman (SH) algorithm [Suth74a] of Section 2.9.3.
In 3D the clipping object is a convex volume, the view frustum, instead of a con-
vex polygon. The algorithm now consists of six pipelined stages, one for each
face of the view frustum, as shown in Figure 5.3.9
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Figure 5.3. Sutherland–Hodgman 3D polygon clipping algorithm.

The logic of the algorithm remains similar to the 2D case; the main differences
are:

Inside test. The inside test must be altered so that it tests whether a point is on
the inside half-space of a plane. In the general case, this is equivalent to
testing the sign of the plane equation for the coordinates of the point.

Intersection computation. The intersect lines subroutine must be replaced
by intersect plane line to compute the intersection of a polygon edge
against a plane of the clipping volume. Such an intersection test is given
in Appendix C; a solution for homogeneous coordinates and perspective
projection is given by Equations (5.4).

5.4 Occlusion Culling
In large scenes, it is usually the case that only a very small portion of the primi-
tives are visible for a given set of viewing parameters. The rest are hidden by other
primitives nearer to the observer (Figure 5.4(b)). Occlusion culling aims at effi-
ciently discarding a large number of primitives before computationally expensive
hidden surface elimination (HSE) algorithms are applied. Let us define the visible
set as the subset of primitives that are rendered on at least one pixel of the final im-
age (Figure 5.4(a)). The objective of occlusion culling algorithms is to compute
a tight superset of the visible set so that the rest of the primitives can be dis-
carded; this superset is called the potentially visible set (PVS) [Aire91, CO03]10

(Figure 5.4(c)).
Occlusion culling algorithms do not expend time in determining exactly which

parts of primitives are visible, as HSE algorithms do. Instead they determine
which primitives are entirely not visible and quickly discard those, computing the
PVS. The PVS is then passed to the classical HSE algorithms to determine the
exact solution to the visibility problem.

9The SH algorithm can be applied to any other convex clipping volume; the number of stages in
the pipeline is then equal to the number of bounding planes of the convex volume.

10Occlusion culling algorithms that compute the exact visible set have also been developed, but
their computational cost is high.
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Figure 5.4. Line renderings of the primitives of a scene: (a) the visible set; (b) all
primitives; (c) the potentially visible set.

The performance goal of occlusion culling algorithms is to have a cost pro-
portional to the size of the visible set or the PVS. In practice their cost is often
proportional to the input size, O(P).

There are a number of categorizations of occlusion culling algorithms; see,
for example, [CO03, Nire02]. We shall distinguish between two major classes
here that essentially define the applicability of the algorithms: from-point and
from-region. The former solve the occlusion problem for a single viewpoint and
are more suitable for general outdoor scenes while the latter solve it for an entire
region of space and are more suitable for densely populated indoor scenes. From-
region approaches also require considerable pre-computation and are therefore
applicable to static scenes.
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5.4.1 From-Region Occlusion Culling

A number of applications, such as architectural walk-throughs and many games,
consist of a set of convex regions, or cells, that are connected by transparent por-
tals. In its simplest form the scene can be represented by a 2D floor plan, and the
cells and portals are parallel to either the x- or the y-axis [Tell91] (Figure 5.5(a)).
Assuming the walls of cells to be opaque, primitives are only visible between cells
via the portals. Cell visibility is a recursive relationship: cell ca may be visible
from cell cb via cell cm, if appropriate sightlines exist that connect their portals.

The algorithm requires a preprocessing step, but this cost is only paid once
assuming the cells and portals to be static, which is a reasonable assumption since
they usually represent fixed environments. At preprocessing, a PVS matrix and
a BSP tree [Fuch80] are constructed. The PVS matrix gives the PVS for every
cell that the viewer may be in (Figure 5.5(c)). Since visibility is symmetric, the
PVS matrix is also symmetric. To construct the PVS matrix, we start from each
cell c and recursively visit all cells reachable from the cell adjacency graph, while

Figure 5.5. (a) A scene modeled as cells and portals; (b) the stab trees of the
cells; (c) the PVS matrix; (d) the BSP tree.
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sightlines exist that allow visibility from c. Thus the stub tree of c is constructed
which defines the PVS of c (Figure 5.5(b)). All nodes in the stub tree become 1s
in the appropriate PVS matrix row (or column).

A BSP tree (see Section 5.5.2) is also constructed during preprocessing (Fig-
ure 5.5(d)). The BSP tree uses separating planes, which may be cell boundaries,
to recursively partition the scene. The leafs of the BSP tree represent the cells. A
balanced BSP tree can be used to quickly locate the cell that a point (such as the
viewpoint) lies in, in O(log2 nc) time, where nc is the number of cells.

At runtime, the steps that lead to the rendering of the PVS for a viewpoint v
are

• determine cell c of v using the BSP tree;

• determine PVS of cell c using the PVS matrix;

• render PVS.

Notice that the PVS does not change as long as v remains in the same cell
(this is the essence of a from-region algorithm). The first two steps are therefore
only executed when v crosses a cell boundary. At runtime only the BSP tree and
the PVS matrix data structures are used.

During a dynamic walk-through, the culling algorithm can be further opti-
mized by combining it with frustum and back-face culling. The rendering can be
further restricted to primitives that are both within the view frustum and the PVS.
The view frustum must be recursively constricted from cell to cell on the stab tree.
The following pseudocode incorporates these ideas (but it does not necessarily re-
flect an implementation on modern graphics hardware)

portal render(cell c, frustum f, list PVS); {

for each polygon R in c {

if ((R is portal) & (c′ in PVS)) {

/* portal R leads to cell c′ */
/* compute new frustum f′ */
f′=clip frustum(f, R);

if (f′ <> empty) portal render(c′, f′, PVS);

}

else if (R is portal) {}

else { /* R is not portal */

/* apply back-face cull */

if !back face(R) {

/* apply frustum cull */

R′=clip poly(f, R);
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if (R′ <> empty) render(R);

}

}

}

}

main() {

determine cell c of viewpoint using BSP tree;

determine PVS of cell c using PVS matrix;

f=original view frustum;

portal render(c, f, PVS);

}

Looking at the 2D example superimposed on Figure 5.5(a), the cell E that
the viewer v lies in is first determined. Objects in that cell are culled against the
original frustum f1. The first portal leading to PVS cell D constricts the frustum
to f2, and objects within cell D are culled against this new frustum. The second
portal leading to cell A reduces the frustum to f3, and objects within cell A are
culled against the f3 frustum. The recursive process stops here as there are no
new portal polygons within the f3 frustum.

f

b
p

f΄

Figure 5.6. The orig-
inal frustum (f), the
portal polygon (p),
the new frustum (f′),
and its bounding box
(b).

The f′=clip frustum(f, R) command computes the intersection of the
current frustum f and the volume formed by the viewpoint and the portal poly-
gon R. This can give rise to odd convex shapes, losing the ability to use hardware
support. A solution is to replace f′ by its bounding box. Figure 5.6 shows a 2D
example.

5.4.2 From-Point Occlusion Culling

For indoor scenes consisting of cells and portals, Luebke and Georges [Lueb95]
propose a from-point image space approach that renders the scene starting from
the current cell. Any other primitives must be visible through the image space
projection of the portals, if these fall within the clipping limits. Recursive calls
are made for the cells that the portals lead to, and at each step the new portals
are intersected with the old portals until nothing remains. An overestimate (axis-
aligned bounding window) of the intersection of the portals is computed to reduce
complexity (Figure 5.7).

In the general case (e.g., outdoor scenes), it can not be assumed that a scene
consists of cells and portals. Partitioning such scenes into regions does not then
make much sense, since the regions would not be coherent with regard to their
occlusion properties. From-point occlusion culling methods solve the problem
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Old
porta

l

New
porta

l

window

Figure 5.7. Intersection of old
and new projected portals producing
axis-aligned window through which
other cells may be visible.
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Figure 5.8. Occluder and occludees.

for a single viewpoint and consequently do not require as much pre-processing as
from-region methods, since they do not pre-compute the PVS.

The main idea behind from-point techniques is the occluder. An occluder
is a primitive, or a combination of primitives, that occludes a large number of
other primitives, the occludees, with respect to a certain viewpoint (Figure 5.8).
The region of space defined by the viewpoint and the occluder is the occlusion
frustum. Primitives that lie entirely within the occlusion frustum can be culled.
Partial occludees must be referred to the HSE algorithm. In practice, the occlusion
test checks the bounding volume of objects (see Section 5.6.1) for inclusion in the
occlusion frustum.

Two main steps are required to perform occlusion culling for a specific view-
point v:

• create a small set of good occluders for v;

• perform occlusion culling using the occluders.

Coorg and Teller [Coor97] use planar occluders (i.e., planar primitives such
as triangles) and rank them according to the area of their screen space projections.
The larger that area is, the more important the occluder. Their ranking function
fplanar is

fplanar =
−A(n̂ · v̂)
|−→v |2 , (5.5)
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Figure 5.9. Using a planar occluder.

where A is the area of a planar occluder, n̂ is its unit normal vector and −→v is the
vector from the viewpoint to the center of the planar occluder.11

A usual way of computing a planar occluder is as the proxy for a primitive or
object (Figure 5.9). The proxy is a convex polygon perpendicular to the view di-
rection inscribed within the occlusion frustum of the occluder object or primitive.

The occlusion culling step can be made more efficient by keeping a hierarchi-
cal bounding volume description of the scene [Huds97]. Starting at the top level,
a bounding volume that is entirely inside or entirely outside an occlusion frustum
is rejected or rendered, respectively. A bounding volume that is partially inside
and partially outside is split into the next level of bounding volumes, which are
then individually tested against the occlusion frustum (see also Chapter 9).

Simple occlusion culling as described above suffers from the problem of par-
tial occlusion (Figure 5.10(a)). An object may not lie in the occlusion frustum
of any individual primitive and, therefore, cannot be culled, although it may lie
in the occlusion frustum of a combination of adjacent primitives. For this reason
algorithms that merge primitives or their occlusion frusta have been developed
(Figure 5.10(b)). Papaioannou et al. [Papa06] proposed an extension to the basic

11The square in the denominator is due to the fact that projected area is inversely proportional to
the square of the distance.
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Figure 5.10. (a) The partial occlusion problem; (b) a solution by merging
occluders.

planar occluder method, solid occluders, to address the partial occlusion problem.
It dynamically produces a planar occluder for the entire volume of an object.

5.5 Hidden Surface Elimination
Hidden surface elimination (HSE) algorithms must provide a complete solution
to the occlusion problem. The primitives or parts of primitives that are visible
must be determined or rendered directly. To this end HSE algorithms (directly
or indirectly) sort the primitives intersected by the projection rays. This reduces
to the comparison of two points p1=[x1,y1,z1,w1]T and p2=[x2,y2,z2,w2]T for
occlusion. If two such points are on the same ray then they form an occluding
pair (the nearer one will occlude the other). We have to distinguish two cases
here (see Section 4.4.2).

Orthographic projection. Assuming the projection rays to be parallel to the ze-
axis (Figure 5.11(a)), the two points will form an occluding pair if

(x1 = x2) and (y1 = y2).
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Figure 5.11. Projection rays in (a) orthographic and (b) perspective projection.

Perspective projection. In this case (Figure 5.11 (b)) the perspective division must
be performed to determine if the two points form an occluding pair

(x1/z1 = x2/z2) and (y1/z1 = y2/z2).

In the case of perspective projection, the (costly) perspective division is per-
formed anyway within the ECS to CSS part of the viewing transformation (see
Section 4.4.2). It essentially transforms the perspective view volume into a rect-
angular parallelepiped (see Figure 4.15) making direct comparisons of x- and y-
coordinates possible for the determination of occluding pairs. For this reason
HSE takes place after the viewing transformation into CSS; note that it is for the
purpose of HSE that the viewing transformation maintains the z-coordinates.

Most HSE algorithms take advantage of coherence, the property of geometric
primitives (such as polygons or lines) to maintain certain characteristics locally
constant or predictably changing. For example, to determine the depth z of a
planar polygon at each of the pixels it covers, it is not necessary to compute
the intersection of its plane with the ray defined by each pixel, a rather costly
computation. Instead, noting that depth changes linearly over the surface of the
polygon, we can start from the depth at a certain pixel and add the appropriate
depth increment for each neighboring pixel visited. Thus, by taking advantage of
surface coherence, the costly ray-polygon intersection calculation can be replaced
by an incremental computation; this is actually used in the Z-buffer algorithm
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described below. Other types of coherence used in HSE as well as other computer
graphics algorithms are: edge coherence, object coherence, scan-line coherence
and frame coherence [Suth74b].

5.5.1 Z-Buffer Algorithm

The Z-buffer is a classic image space HSE algorithm [Catm74] that was originally
dismissed because of its high memory requirements; today a hardware implemen-
tation of the Z-buffer can be found on every graphics accelerator.

The idea behind the Z-buffer is to maintain a two-dimensional memory of
depth values, with the same spatial resolution as the frame buffer (Figure 5.12).
This is called the depth (or Z) buffer. There is a one-to-one correspondence be-
tween the frame- and Z-buffer elements.

Every element of the Z-buffer maintains the minimum depth for the corre-
sponding pixel of the frame buffer. Before rendering a frame, the Z-buffer is ini-
tialized to a maximum value (usually the depth f of the far clipping plane). Sup-

(a) (b)

(c)

Figure 5.12. (a) The frame buffer; (b) the depth buffer; (c) the 3D scene. In
the depth buffer image, lighter colors correspond to object points closer to the
observer.
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pose that during the rendering of a primitive12 we compute its attributes (zp,cp)
at pixel p = (xp,yp), where zp is the depth of the primitive at p (distance from
the viewpoint) and cp its color at p. Assuming that depth values decrease as we
move away from the viewpoint (the +z axis points toward the viewpoint), the
main Z-buffer test is

if (z-buffer[xp, yp] < zp) {

f-buffer[xp, yp] = cp; /* update frame buffer */

z-buffer[xp, yp] = zp; /* update depth buffer */

}

Note that the primitives can be processed in any order; this is due to the indi-
rect depth sorting that is performed by the Z-buffer memory.

An issue that has direct consequence on the efficiency of the Z-buffer algo-
rithm is the computation of the depth value zp at each of the pixels that a primitive
covers. Computing the intersection of the ray defined by the viewpoint and the
pixel with the primitive is rather expensive. Instead we take advantage of the sur-
face coherence of the primitive to compute the depth values incrementally. For
planar primitives (e.g., triangles) this amounts to 1 addition per pixel. Let the
plane equation of the primitive be

F(x,y,z) = ax+by+ cz+d = 0

or, since we are interested in the depth,

F ′(x,y) = z =−d
c
− a

c
x− b

c
y.

The value of F ′ is incrementally computed from pixel (x,y) to pixel (x+1,y) as

F ′(x+1,y)−F ′(x,y) =−a
c
.

Thus, by adding the constant first forward difference of F ′ in x or y (see Chap-
ter 2), we can compute the depth value from pixel to pixel at a cost of 1 addition.
In practice, the depth values at the vertices of the planar primitive are interpolated
across its edges and then between the edges (across the scanlines).

The same argument applies to the color value. Simple color interpolation can
be performed in a manner similar to depth interpolation. Alternatively, texture
mapping algorithms can provide color values per pixel.

12We use the word “primitive” here, instead of “polygon,” as the Z-buffer is suitable for any geo-
metric object whose depth we can determine. In practice we usually have polygons and most often
these are triangles.
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The complexity of the Z-buffer algorithm is O(Ps), where P is the number of
primitives and s is the average number of pixels covered by a primitive. However,
practice dictates that as the number of primitives P increases, their size s decreases
proportionately, maintaining a roughly constant depth complexity.13 Thus, the
cost of the Z-buffer can be regarded as proportional to the image resolution, O(p),
where p is the number of pixels.

The main advantages of the Z-buffer are its simplicity, its constant perfor-
mance, roughly independent of scene complexity, and the fact that it can process
primitives in any order. Its constant performance makes it attractive in today’s
highly complex scenes, while its simplicity led to its implementation on every
modern graphics accelerator. Its weaknesses include the difficulty to handle some
special effects (such as transparency) and the fixed resolution of its result which is
inherited from its image space nature. The latter leads to arithmetic depth sorting
inaccuracies for wide clipping ranges, a problem known as Z-fighting.

The Z-buffer computed during the rendering of a frame can be kept and used
in various ways. A simple algorithm allows the depth-merging of two or more im-
ages created using the Z-buffer [Duff85,Port84]. This can be useful, for example,
when constituent parts of a scene are generated by different software packages.
Suppose that (Fa,Za) and (Fb,Zb) represent the frame and Z-buffers for two parts
of a scene. These can be merged in correct depth order by selecting the part with
the nearest depth value at each pixel14

for (x=0; x<XRES; x++)

for (y=0; y<YRES; y++) {

Fc[x,y] = (Za[x,y]>Zb[x,y])?Fa[x,y]:Fb[x,y];

Zc[x,y] = (Za[x,y]>Zb[x,y])?Za[x,y]:Zb[x,y];

}

Many more computations can be performed using Z-buffers, including shadow
determination [Will78,Will98], voxelization [Kara99,Pass04], Voronoi computa-
tions [Hoff99], object reconstruction [Papa02], symmetry detection, and object
retrieval [Pass06]. A survey of Z-buffer applications can be found in [Theo01].

5.5.2 Binary Space Partitioning Algorithm

The binary space partitioning (BSP) algorithm [Fuch80, Fuch83] is an object
space algorithm that uses a binary tree that recursively subdivides space. In its

13Depth complexity is the average number of primitives intersected by a ray through the viewpoint
and a pixel.

14Again, this corresponds to maximum z value as we have assumed the +z-axis to point toward the
viewpoint.
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pure form, each node of the binary tree data structure represents a polygon of the
scene. Internal nodes, additionally, split space by the plane of their polygon, so
that children on their left subtree are on one side of the plane and children on their
right subtree are on the other (Figure 5.13).

To construct the BSP tree, the following algorithm is used:

BuildBSP(BSPnode, polygonDB); {

Select a polygon (plane) Pi from polygonDB;

Assign Pi to BSPnode;

/* Partition scene polygons into those that lie on either side

of plane Pi, splitting polygons that intersect Pi */

Partition(Pi, polygonDB, polygonDBL, polygonDBR);

if (polygonDBL != empty) BuildBSP(BSPnode->Left,polygonDBL);

if (polygonDBR != empty) BuildBSP(BSPnode->Right,polygonDBR);

}

The selection of the partitioning plane Pi is critical since we would like to end
up with a balanced BSP tree; a plane is therefore selected that divides the scene
into two parts of roughly equal cardinality. During the partitioning, polygons that
intersect the partitioning plane must be split into two to enforce the partitioning.

P1P2

P3

P4

P5
P1

P2

P3

P4

P5

S1

S2

S3

S4

S5

S6

( a ) ( b )

P1

P2 P4

P3
P5

S1

S2 S3

S4

S6S5

( c )

Figure 5.13. (a) A scene; (b) a space partitioning based on the scene polygons;
(c) the corresponding BSP tree. The example is two-dimensional for simplicity.
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This can be achieved by extending a clipping algorithm to deliver both the “in-
side” and the “outside” parts of a clipped polygon.

The BSP tree can then be used to display the scene with the hidden surfaces
removed. For a specific viewpoint v and BSP node (representing a partitioning
plane), all polygons that lie in the same partition as v cannot possibly be hidden
by polygons that lie in the other partition. Thus the polygons of the other partition
should be displayed first (further from v). This argument holds recursively and
leads to the BSP display algorithm that performs HSE by an in-order traversal of
the BSP tree:

DisplayBSP(BSPnode, v); {

if IsLeaf(BSPnode) Render(BSPnode->Polygon)

else if (v in ‘‘left’’ subspace of BSPnode->Polygon) {

DisplayBSP(BSPnode->Right, v);

Render(BSPnode->Polygon);

DisplayBSP(BSPnode->Left, v);

}

else /* v in ‘‘right’’ subspace of BSPnode->Polygon */ {

DisplayBSP(BSPnode->Left, v);

Render(BSPnode->Polygon);

DisplayBSP(BSPnode->Right, v);

}

}

The DisplayBSP algorithm visits every polygon once and thus costs O(P).
The BuildBSP algorithm costs O(P2) since, in the partitioning step, the selected
polygon must be compared to all other polygons in the current partition, and this
is repeated for every polygon. The overall complexity of the BSP tree algorithm
is therefore O(P2).

For static scenes the BuildBSP algorithm need only be used once, as a pre-
processing step, and then for every new position of the viewpoint only the
DisplayBSP algorithm must be run. The BSP tree algorithm is therefore ex-
tremely suitable for static scenes but not suitable for dynamic scenes where the
relative position of primitives changes often.

5.5.3 Depth Sort Algorithm

This algorithm sorts polygons according to their distance from the observer and
displays them in reverse order (back to front) [Newe72]. This resembles the way
a painter works, drawing the background in full first and then objects in the fore-
ground, so the algorithm is often referred to as the painter’s algorithm.
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The minimum depth value15 of polygons is often used for the sorting. The
basic structure of the depth sort algorithm is the following:

DepthSort(polygonDB); {

/* Sort polygonDB according to minimum z */

for each polygon in polygonDB find MINZ and MAXZ;

sort polygonDB according to MINZ;

resolve overlaps in z;

display polygons in order of sorted list;

}

Overlaps in z arise when the z extents16 of polygons overlap. When this hap-
pens the sorting becomes ambiguous as it is not clear which polygon obscures the
other. In fact there are cases when they cannot be sorted (Figure 5.14).

Q P

Q

P
R

Figure 5.14. Examples of polygons that cannot be sorted in z in an order that will
permit correct display.

When the z extents of two polygons R and Q overlap, a sequence of tests of
increasing complexity are employed to resolve the ambiguity of their order in the
display list. A positive conclusion of one of the following tests establishes that Q
can not be occluded by R:

1. The x extents of R and Q do not overlap.

2. The y extents of R and Q do not overlap.

3. R lies entirely in the half-space of Q which does not include the view-
point v. This can be established by checking that the sign of the plane

15When the +z-axis points toward the observer, the minimum z corresponds to the maximum dis-
tance from the observer.

16By z extent we mean the region of space bounded by the planes z = MINZ and z = MAXZ, where
MINZ and MAXZ represent the minimum and maximum z-coordinates of a polygon. Similar extents
can be defined for x and y.
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( a ) ( b )-z -z
v v

Q
R

Q
R

Figure 5.15. (a) R behind Q and (b) Q in front of R.

equation of Q is the same for all vertices of R and different to its sign for v
(Figure 5.15(a)):

sign( fQ(ri)) = sign( fQ(v)) ∀ri ∈ R,

where fQ(x,y,z) = aQx+bQy+cQz+dQ = 0 is the plane equation of poly-
gon Q.

4. Q lies entirely in the half-space of R which includes the viewpoint v. This
can be established by checking that the sign of the plane equation of R is
the same for all vertices of Q and for v (Figure 5.15(b)):

sign( fR(qi)) = sign( fR(v)) ∀qi ∈ Q,

where fR(x,y,z) = aRx +bRy+ cRz +dR = 0 is the plane equation of poly-
gon R.

5. The projections of R and Q do not overlap.

If none of the above tests is positive, the roles of R and Q are swaped and
Tests 3 and 4 are repeated, in an attempt to establish that Q does not occlude R.
Tests 1, 2, and 5 need not be repeated as they are symmetric. If the order is
still not resolved, then R is divided into two polygons using the plane of Q (or
equivalently Q is divided using the plane of R), the new polygons replace R in the
list, and the process is repeated.

The depth sort is clearly an object space algorithm, except for the last step
(display) which takes place in image space. An optimization is to draw the poly-
gons in reverse order (front to back) in the display step, using the rule that suc-
ceeding polygons are only drawn on pixels that have not been written to before by
nearer polygons. Then the display step can stop as soon as all image pixels have
been written to at least once.

The cost of the sorting step is O(P log2 P). The resolution of z overlaps could
cost O(P2) in the worst case where the z extents of all polygons overlap. Practice
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dictates that the depth sort is a rather slow algorithm in typical scenes of great
complexity. On the positive side, the depth sort algorithm can straightforwardly
handle transparency.

5.5.4 Ray-Casting Algorithm

As its name implies, a ray is followed for every pixel p; the ray is defined by
the viewpoint v and the vector

−−−→
p−v. Intersections with all scene primitives are

computed and the nearest intersection to v defines the visible primitive. An effi-
cient ray-triangle intersection algorithm is given in Appendix C; the ray-casting
algorithm is, however, applicable to any primitive for which we can define a ray-
intersection algorithm. The basic form of the algorithm is:

RayCasting(primitiveDB, v); {

for each pixel p {

minp = MAXINT;

for each primitive R in primitiveDB {

/* compute intersection of ray (v,p) with R */

i=intersect_primitive_ray(R,v,p); /* MAXINT if none */

if (|i-v| < minp) {

p->nearest_primitive = R;

minp = |i-v|

}

}

}

}

Even with efficient intersection computations and the use of bounding vol-
umes (see Section 5.6.1), the ray-casting algorithm is slow, O(pP), as it takes
no advantage of coherence. On the other hand, it is very general since it can be
easily applied to most primitive types. It can be speeded up in a straight-forward
manner, by distributing the rays among parallel processors and duplicating the
primitives database (see Chapters 15 and 9 for more details).

The ray-casting algorithm can be applied either before or after the perspective
projection; in the former case the rays are the projection rays themselves, in the
latter case the rays are all parallel to each other and orthogonal to the projection
plane. Hence, the ray-casting algorithm can be classified as either object or image
space.
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HSE algorithm Complexity Space
Z-Buffer O(Ps)� O(p) Image

BSP O(P2) Object
Depth Sort O(P2) Object
Ray Casting O(pP) Image/Object

Table 5.1. Complexities and application spaces of HSE algorithms.

In summary, the complexities and application spaces of the presented HSE
algorithms are given in Table 5.1.

5.6 Efficiency Issues

This section includes techniques that can increase the performance of intersection
computations, often required in culling, HSE, ray tracing (Chapter 15), and other
algorithms.

5.6.1 Bounding Volumes

Whenever intersection tests between complex objects are involved, bounding vol-
umes can be used to improve efficiency.

Most models created for synthetic worlds tend to be quite complex, as they
usually attempt to represent real-life objects using simple geometric primitives.
A natural way of reducing the cost of computing intersections with a complex
model, is to cluster its primitives in a bounding volume, such as a rectangular
parallelepiped or a sphere (Figure 5.16). A bounding volume need not be closed;
for example the extent of a model in a single coordinate axis has often been used
(Figure 5.16(b)).

( a ) ( b )

Figure 5.16. (a) Bounding volume example; (b) open bounding volume.
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( a ) ( b ) ( c )

Figure 5.17. 2D examples of bounding volume intersections: (a) non-intersecting;
(b), (c) intersecting; (c) false alarm.

Intersection with the bounding volume does not necessarily imply an intersec-
tion with the model since the bounding volume usually includes some void space
between itself and the model. “False alarms” can be generated if only the void
space is intersected; these false alarms are costly as they require detailed intersec-
tion tests against all of the primitives that define the model. On the other hand,
non-intersection with the bounding volume does imply no intersection with the
enclosed model. Figure 5.17 gives 2D examples.

Whenever the bounding volume is not intersected, no detailed intersection
tests against the model need take place, potentially saving large amounts of com-
putational effort. For a bounding volume to be successful it must possess two
qualities: be simple and minimize void space.

The first quality is necessary in order to make the intersection tests against the
bounding volume efficient. The second quality ensures that as few false alarms
as possible are generated. However, the achievement of both of these qualities is
contradictory, and a compromise usually has to be reached.

Rectangular parallelepiped bounding volumes with faces parallel to the xy, yz
and xz planes can be created simply by taking the minima and maxima of the
models’ vertex coordinates; they are the intersection of half-spaces defined by
six planes perpendicular to the coordinate axes and are thus called axis-aligned
bounding boxes (AABBs) (Figure 5.18). AABBs generally suffer from large
amounts of void space. Oriented bounding boxes (OBBs) [Gott96] are arbitrarily
oriented rectangular parallelepipeds; with a careful selection of orientation, OBBs
result in less void space than AABBs. Hierarchical bounding volumes provide a
better compromise between simplicity and void space. These include hierarchies
of k-DOPs [Klos98] (polyhedra whose faces may only have predefined orienta-
tions) and hierarchies of OBBs. Both of the above construct trees of nested vol-
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y

x

z

Figure 5.18. Axis-aligned bounding boxes.

umes. The root of the tree represents a bounding volume that encloses the entire
model; this contains smaller volumes enclosing parts of the model more tightly,
up to individual primitives. During intersection queries, the tree structure helps
to quickly restrict the area of potential intersection. Another hierarchical method
with good results for complex models is progressive hulls, i.e., a succession of
hulls that enclose the model more tightly [Plat03] (Figure 5.19). Each hull in this
hierarchy encloses all successive hulls (and of course all hulls enclose the model).
The outer hulls are simpler but leave more void space, while inner hulls are more
complex and leave less void space. The hulls are used starting from the outermost
(simplest), while intersections are found.

The pseudocode for the hierarchical intersection test of a model M

follows:

IntersectionTest(M); {

if BottomLevel(M) return(LLIntersectionTest(M))

else

if LLIntersectionTest(BoundingVolume(M)) {

v = false;

for each component M->C

v = (v || IntersectionTest(M->C));

return(v);

}

else return(false);

}
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Figure 5.19. Progressive hulls as bounding volumes; a horse model with 96,966
polygons followed by its 2,000 and 200 polygon hulls.
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where LLIntersectionTest performs an exhaustive intersection test with the
primitives of its parameter and M->C represents a component one level below in
the object hierarchy.

5.6.2 Space Subdivision

Space subdivision techniques, as their name implies, divide space into an ordered
set of cells. The cells occupied by a model indirectly determine its spatial rela-
tionship with respect to other models and objects such as the view frustum. We
can thus infer if two objects potentially intersect by checking if they occupy com-
mon cells. Furthermore, we can use the ordering of the cells to infer if an object A
potentially occludes another object B. Space subdivision techniques require spe-
cialized cell data structures and a preprocessing step to assign objects to these
data structures.

A common hierarchical 3D space subdivision technique is the octree (Fig-
ure 5.20). An octree recursively subdivides an initial cell (finite region of 3D
space, e.g., cube) into eight sub-cells that partition the space of the original cell.
Depending on the implementation, this subdivision stops

• when an elementary cell size (called voxel) is reached, or

• when the object complexity within a cell is below a certain limit (e.g., the
cell contains a single primitive).

In a culling application, models that do not occupy the cells of interest can be
discarded. For example, in frustum culling only models that occupy cells common
to the view frustum need be considered. In occlusion culling, only objects that
occupy cells with the same x- and y-coordinates need be tested for occlusion.
Furthermore, this cell-sharing property can be decided at the highest level possible
to save computational time; the octree will have more levels where higher scene
complexity exists.

4.8

1 2

4.13

7 8

6

4.2
4.3 4.4

4.7

Finite 3D Space

4.1 . . . 4.8

1 2 3 5 6 7 8

Figure 5.20. Finite 3D space and octree.
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5.7 Exercises
1. Reformulate the 3D Liang–Barksy algorithm so that it can be used for an

arbitrary convex clipping polyhedron. The polyhedron is given as a set of n
planes Pi, i = 1,2, ..n with their normal vectors

−→
N i, i = 1,2, ..n that define

the “outside” half-space of each plane. The volume of the polyhedron is
the intersection of the “inside” half-spaces of the n planes. Assume that the
given set of planes form a properly closed convex polyhedron.

2. As above, for the 3D Sutherland–Hodgman algorithm. What problem does
the use of an arbitrary convex clipping polyhedron pose to a hardware im-
plementation of this algorithm?

�3. (Parallel processing.) Implement the six stages of the 3D Sutherland–
Hodgman algorithm as a pipeline of six processors on a parallel processing
platform of your choice/access. Measure the speed-up for different num-
bers of polygons and explain the result. For more details see [Theo89b].

�4. (Field programmable gate arrays (FPGA).) As above, but implement the
pipeline on an FPGA of your choice/access. If you possess a silicon com-
piler (e.g., Handel-C), you might want to abstract the code of a clipping
stage and instantiate it six times.

5. (Culling efficiency.) Estimate the approximate number of primitives culled
by each of the three culling stages. State any assumptions that you need to
make about your scene. If you have access to a system that performs the
three types of culling, run experiments to actually measure the portion of
primitives culled for a number of different viewing parameters.

6. (Depth image combination.) In your rendering system, find a way of ex-
porting the final frame and depth buffers after rendering a scene. Then
implement an algorithm to combine multiple sets of frame and depth buffer
pairs in correct depth order, generalizing the algorithm given at the end of
Section 5.5.1.

7. (3D cursor.) In your rendering system, find a way of exporting the final
frame and depth buffers after rendering a scene. Then implement an algo-
rithm which will track and display a 3D cursor in the rendered scene, with
hidden surfaces eliminated (the cursor may hide behind objects). The cur-
sor can be moved in three dimensions, e.g., by using six keys (two for each



�

�

�

�

�

�

�

�

174 5. Culling and Hidden Surface Elimination Algorithms

dimension). (Hint: You will need to implement a small modification to the
Z-buffer algorithm).

8. An important advantage of the Z-buffer algorithm is its ability to process
primitives in any order. Does this imply that the final contents of the frame
and depth buffers will be exactly the same regardless of the order of pro-
cessing the primitives? Verify your answer experimentally. (Hint: Think of
“borderline” cases).

9. Implement the depth sort HSE algorithm for a scene consisting of a single
convex polyhedron that is arbitrarily translated and rotated within a set of
limits, in a screen-saver fashion. (Note: The 5 basic steps should suffice;
you will not need to divide any of the polyhedron’s polygons.)

10. (Bounding volumes.) Implement the ray-triangle intersection algorithm of
Appendix C. Then select a complex model consisting of at least 1,000
triangles. Scale the model so that it occupies about 10% of the volume of
the unit cube. Determine the bounding box of the scaled model by taking
the minima and maxima of its x-, y-, and z-coordinates. Next, write a simple
algorithm to generate random rays within the unit cube (essentially, for each
ray, you need to generate two random points on different faces of the cube).
Fire 1,000-10,000 random rays (in increments of 1,000) across the unit cube
and measure the amount of time required to

• compute the intersection of each ray (if any) with the model using the
bounding box;

• compute the intersection of each ray (if any) with the model without
using the bounding box.

Plot a graph of the number of rays fired against the total time taken, with
and without the use of the bounding box.
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6
Model Representation and

Simplification

Art takes nature as its model.
—Aristotle

6.1 Introduction
The 3D scenes composed in graphics and visualization depict objects of various
shapes and structures: geometric primitives such as spheres; free-form surfaces
with a known mathematical description, such as NURBS patches (see Chapter 7);
arbitrary surfaces with no concrete mathematical description, such as the surface
of a scanned object; volume objects where the internal structure of the object is
equally important to its boundary surface, such as a human organ; even fuzzy
objects such as smoke.

Models are approximate representations of the actual objects, constructed so
as to retain as many of the properties of the represented objects as feasible, while
at the same time being amenable to the manipulations required by graphics algo-
rithms. Polygonal models are the most common representation for surfaces.

As a result of the advances in computer processing power and data-acquisition
techniques, the amount of information contained in the models produced is grow-
ing constantly; even though the available detail is useful for archival purposes or
other specialized uses, mainstream graphics applications often require or bene-
fit from less detailed models. Model simplification aims to reduce the amount
of information present in a model without significantly sacrificing the quality of
representation.

175
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6.2 Overview of Model Forms

The two main categories of models are surface representations (also called bound-
ary representations or b-reps) that represent only the surface of an object and
volume representations (or space-subdivision representations) that represent the
whole volume that a (closed) 3D object occupies.

Surface representations are used more frequently. Many objects are not closed;
therefore, a volume representation is not applicable. Also the majority of objects
are not transparent, their interior is not visible, and thus space and processing
power may be saved by only representing their surface, which, in all respects,
determines their appearance. On the other hand, volume representations are used
when displaying semi-transparent objects or, more generally, objects whose in-
ternal structure is of interest; a concrete example is the visualization of three-
dimensional fields (see Section 18.2.2). Furthermore, space subdivision repre-
sentations are used as auxiliary structures in several graphics algorithms (see, for
example, Section 15.5.1).

Some model forms cannot be classified easily into the above two categories.
Constructive Solid Geometry (CSG) models represent an object by combining
geometric primitives; see Section 15.5.3 for a brief presentation. Also amorphous
objects and phenomena may be modelled as point clouds or by aggregating simple
surface or volume primitives.

Regarding surface models, we may differentiate between those that have some
mathematical description, such as geometric primitives, NURBS surfaces (see
Chapter 7), subdivision surfaces (see Chapter 8), or general parametric surfaces
(see Appendix B), and those that do not have such a mathematical description.
The latter consist of a set of points and of a set of (usually planar) polygons con-
structed with these points as vertices; hence they are called polygonal models.
Comparing these two surface model forms, we note that mathematical models are
usually exact representations of the respective objects and also allow computa-
tions on the objects, such as normal vectors, to be performed exactly; on the other
hand, they are limited to specific kinds of objects and cannot describe arbitrary
shapes. On the contrary, polygonal models are certainly approximations of the
original objects, albeit very precise ones if enough vertices are used; they are the
most general ones, since there is virtually no limit to the kind of object they can
represent—even mathematical representations are usually rendered in a “discrete”
form as polygonal models.

Polygonal models may consist of polygons of any number of vertices; in
practice, the most common ones are those comprised of quadrilaterals or trian-
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gles. Quadrilateral models are naturally generated when rasterizing parametric
surfaces (for example, tensor product surfaces, see Section 7.6). Unfortunately, a
quadrilateral in 3D is not necessarily planar, and this limitation either restricts
the shape and flexibility of the model, if the planarity of its quadrilaterals is
enforced, or makes all computations more difficult, since the constituent poly-
gons are no longer planar. This shortcoming does not exist in triangle models,
since a triangle is always planar; additionally any polygon may be triangulated
efficiently [Prep85, O’Ro98] and, therefore, a triangle model can be generated
from any polygonal model. It is evident that triangle models (also called triangle
meshes) are almost always preferred for any application that involves polygonal
models.

Polygonal models are generalized for volume representations to polyhedral
models. The most basic polyhedral primitive is the tetrahedron, and tetrahedral
meshes are the most general and flexible representation for volume models. How-
ever, models consisting of parallelepipeds are abundant, mainly as the outcome
of space subdivision processes that use rectangular grids; the constituent paral-
lelepipeds are called voxels (volume elements). Hierarchical volume representa-
tions such as octrees (see Section 15.5.1) and BSP trees (see Section 5.5.2) are
also used.

In the remainder of this chapter, we will focus on polygonal models.

6.3 Properties of Polygonal Models

A surface model is a 2-manifold (or simply a manifold) if every point on the
surface has a neighborhood homeomorphic to an open disk (the open disk is the
interior of a circle).1 In other words, even though the surface exists in three-
dimensional space, it is topologically flat when the surface is examined closely in
a small enough area around any given point. On a manifold surface, every edge
is shared by exactly two faces, and around each vertex there exists a closed loop
of faces. Similarly, a surface model is a manifold with boundary if every point on
the surface has a neighborhood homeomorphic to a half-disk. On a manifold with
boundary, some edges (those on the boundary of the model) belong to exactly
one face, and around some vertices (those on the boundary) the loop of faces is

1Two objects are homeomorphic if the one can be continuously and invertibly deformed (stretched
and bent) onto the other; for instance, a circle and a square are homeomorphic, as are a cube, a sphere
and a tetrahedron. Homeomorphic objects have common topological properties, such as number of
holes, being a manifold or not, etc.
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(a) (b) (d)(c)

Figure 6.1. (a) Part of a manifold surface; (b) Boundary vertex of a manifold
surface with boundary; (c) Non-manifold edge; (d) Non-manifold boundary vertex.

(a) (b)

Figure 6.2. The triangle mesh (a) is a simplicial complex, whereas (b) is not.

open. Figure 6.1 presents some manifold and non-manifold triangular models.
For the usual, three-dimensional surfaces, a manifold surface without boundary is
a closed surface.

It is almost always assumed that the polygons constituting a polygonal model
meet only along their edges, and the edges of the model intersect only at their
endpoints. Triangular models that satisfy this property are termed simplicial com-
plexes; Figure 6.2 shows an example of a triangular mesh that is a simplicial
complex and one that is not.

Surfaces can also be characterized as orientable or not. Intuitively, an ori-
entable surface is one that has two “sides,” like a sheet of paper; most of the
surfaces encountered in practice are orientable. On closed, orientable surfaces
the “external” and the “internal” portions of the surface are distinguishable. Fig-
ure 6.3 shows an example of a non-orientable surface, the Möbius strip; this strip
has actually just one side, since if we start off at a point and move along the strip,
we will arrive at the origin after having travelled on all of its surface. By conven-
tion, the normal vector of a closed orientable surface points towards the outside
of the surface.

Closed manifold models homeomorphic to a sphere satisfy Euler’s formula,

V −E +F = 2, (6.1)

where V is the number of vertices, E is the number of edges, and F is the number
of faces of the model. Specialized for a closed triangular model (see Exercise 1),



�

�

�

�

�

�

�

�

6.4. Data Structures for Polygonal Models 179

Figure 6.3. The Möbius strip, a non-orientable surface.

this formula reveals that the number of triangles of the model is almost twice the
number of its vertices, and also that the average number of triangles around each
vertex is six. Euler’s formula has been generalized for arbitrary manifold models
to

V −E +F = 2−2G, (6.2)

where G is the genus of the model; the genus of a model can be considered as the
number of penetrating holes or “handles” of the model; for instance, a torus has
genus 1, a double torus has genus 2, and so on.

6.4 Data Structures for Polygonal Models
Several different data structures have been proposed for the representation of
polygonal models. They differ in the type of polygonal models that they are able
to represent, in the amount and type of information that they capture directly about
the model, and in other information that can or cannot be derived indirectly from
them about the model. Information that is useful in several graphics operations is
the following:

• Topological information. Whether the model is manifold; whether it is
closed; whether it has a boundary or holes.

• Adjacency information. Neighboring faces of a given edge and face; edges
and faces around a given vertex; the boundary of an open model.

• Attributes attached to the model. Normal vector, colors, material properties
(see Chapter 12), texture coordinates (see Chapter 14).

The most primitive data structures that were used are the explicit list of edges
(the wireframe representation) and the explicit list of faces, containing, for each
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v0

v1

v2

v3

Figure 6.4. The polygonal model of a tetrahedron.

edge or face of the model, the coordinates of its vertices. For example, the list of
edges for the tetrahedron in Figure 6.4 is

e0 =
(
(x0,y0,z0),(x1,y1,z1)

)
, e3 =

(
(x1,y1,z1),(x2,y2,z2)

)
,

e1 =
(
(x0,y0,z0),(x2,y2,z2)

)
, e4 =

(
(x1,y1,z1),(x3,y3,z3)

)
,

e2 =
(
(x0,y0,z0),(x3,y3,z3)

)
, e5 =

(
(x2,y2,z2),(x3,y3,z3)

)
,

and the list of faces is

f0 =
(
(x3,y3,z3),(x2,y2,z2),(x1,y1,z1)

)
,

f1 =
(
(x2,y2,z2),(x3,y3,z3),(x0,y0,z0)

)
,

f2 =
(
(x1,y1,z1),(x0,y0,z0),(x3,y3,z3)

)
,

f3 =
(
(x0,y0,z0),(x1,y1,z1),(x2,y2,z2)

)
.

The wireframe representation is actually not a b-rep, since it does not specify
the faces of the model; these must be inferred from the edge data, but the pro-
cedure is not straightforward and may lead to ambiguities. For example, given
the above edges of the tetrahedron, we cannot know whether this tetrahedron is
closed or whether one of its faces is missing.

The explicit list of faces also has severe drawbacks and is not currently used.
It wastes space, since the coordinates of each vertex are repeated for each edge
or face that contains it; it provides no information on the adjacency of edges and
faces; computing adjacency information may even be problematic, since common
vertices can only be detected by comparing coordinates, and numerical accuracy
problems may interfere. Similarly, editing the model incurs significant overhead
and risks destroying it, if adjacent faces are not detected correctly.

Several of these shortcomings are addressed by the indexed list of faces. This
composite data structure contains a list of the vertices of the model and a list of
its faces; the vertices of each face are given as references to the list of vertices.
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(a)
v2

v0

v1

v3

v4 (b)
v0

v1

v2

v3

v4

Figure 6.5. (a) A triangle strip {v0,v1,v2,v3,v4}; (b) A triangle fan
{v0,v1,v2,v3,v4}.

For instance, the tetrahedron of Figure 6.4 is represented as

v0 = (x0,y0,z0), f0 = (v3,v2,v1),

v1 = (x1,y1,z1), f1 = (v2,v3,v0),

v2 = (x2,y2,z2), f2 = (v1,v0,v3),

v3 = (x3,y3,z3), f3 = (v0,v1,v2).

This data structure can represent any kind of polygonal model, is far more com-
pact than the explicit list of faces, and permits direct modifications to the positions
of the vertices of the model. The edges of the model are straightforward to dis-
cover, but they are repeated for each polygon that uses them, so some processing
is required in order to generate a valid list of unique edges. Furthermore, the
indexed list of faces does not provide adjacency information about the model, al-
though the data it contains is sufficient to compute it. When this data structure is
used to represent orientable models, it is customary to list the vertices of all faces
in a consistent ordering, either clockwise or counterclockwise, when seen from
the outside of the model. Using this convention, it is easier to make computa-
tions on the model, especially calculations of normal vectors (see Section 12.5.1).
Specifically for triangle models, in order to minimize the duplication of data,
most graphics packages are able to handle neighboring triangles more efficiently
as triangle strips or triangle fans (see Figure 6.5).

Owing to its generality, simplicity, and compactness, the indexed list of faces
is the basis of several common file formats for 3D models, such as the .OBJ (Wave-
front Object, [Murr96]) and .PLY [PLY07] formats. In these formats, the structure
is augmented with other indexed data for the attributes of the model (see above)
that may be bound either to the vertices or the faces of the model; for instance, the
representation of a colored cube will include a list of colors and a list of entries
indicating the color of each face.

Several more advanced data structures for polygonal model representation ex-
ist that capture some adjacency information directly and allow for easy derivation
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e

etl

etr

ebr
fl

fr

vb

vt

ebl

Figure 6.6. The winged-edge data structure. The thick edge is
e(vt ,vb, fl , fr,etl ,etr,ebl ,ebr).

of more adjacency relations. All of these data structures are indexed and contain
at least a list of vertices to which the other elements of the model (edges and
faces) refer. Most of the data structures deal with manifold models composed of
arbitrary polygons.

One such data structure is the winged-edge representation [Baum72]. In this
data structure, the central node of information is the edge. Each edge stores ref-
erences to its two vertices, to its two adjacent faces, and to its four neighboring
edges along the adjacent faces (Figure 6.6). The winged-edge data structure also
stores, for each vertex, a reference to one of its incident edges and, for each face,
a reference to one of its edges. This additional information makes it possible to
“navigate” in the topology of the model and compute adjacency queries, several
of them in constant time. The winged-edge data structure can be modified in order
to represent some types of non-manifold models.

The half-edge data structure [Weil85] is similar to the winged-edge represen-
tation, but uses oriented edges: each edge of the model is “decomposed” into two
half-edges, each storing references to its start and end vertex, to its adjacent face,
to its two neighboring half-edges along the adjacent face, and to its opposite half-
edge (Figure 6.7). Since this orientation of edges is natural in manifold models,
the half-edge data structure is more efficient than the winged-edge data structure
for several adjacency queries.

Finally, the quad-edge data structure [Guib85] is conceptually similar to the
above representations, but its implementation is more sophisticated [Lisc94], al-
lowing it to compute adjacency queries efficiently and, most notably, enabling it
to represent simultaneously a manifold model and its dual. The dual of a model
is constructed by rotating edges by 90 degrees, replacing vertices with faces and
vice versa: the dual of a tetrahedron is also a tetrahedron, the dual of a cube is an
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el
er

etll

etrr

ebrr

ebll

fl

fr

vb

vt

Figure 6.7. The half-edge representation. The thick edge is decomposed into two
half edges, el(vb,vt , fl ,ebll ,etll ,er) and er(vt ,vb, fr,etrr,ebrr,el).

octahedron and vice versa. This property of the quad-edge data structure is use-
ful in the context of computational geometry, the algorithmic study of geometric
problems.

6.5 Polygonal Model Simplification
The polygonal models used in practice are most often produced automatically, by
rasterization of mathematically defined surfaces, by 3D scanning of real objects,
or by other similar procedures. The quest for better accuracy of representation,
aided by the steady increase in computing power and the advances in 3D scan-
ning and other data acquisition techniques, leads to the generation of models that
capture the finest details of the represented surfaces at the cost of a very large
number of vertices and faces. In addition, the size of constituent polygons is usu-
ally uniform on the surface of the model due to the techniques used to generate
them.

As an example, the Digital Michelangelo project [Levo00] was concerned
with scanning and reconstructing some of the sculptures made by Michelangelo.
Using the most advanced scanning technology available at the time, the sculptures
were scanned at a resolution up to 1/4 of a mm, and the triangle meshes produced
contain several hundred million triangles (depending on the physical size of the
sculptures) and occupy several gigabytes of data storage. Such detail is certainly
required for archival purposes, but is probably useless for any other practical ap-
plication, since it is only visible at very high magnification levels. Furthermore,
the amount of data in these models will be difficult or impossible to process by
even the most advanced computers for some time to come.
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Figure 6.8. Top: The cow model at 5000 triangles (left) and simplified at 1000
triangles (right); Bottom: The same models in smaller size; their differences are
not easily discernible. (Simplification performed with QSlim [Garl97].)

On a much smaller scale, models are usually created at the finest level of de-
tail that is expected to be useful in a given application. Even in this case, the
application can benefit from multiple resolutions (levels of detail (LODs)) of the
model that can be used in different viewing conditions. For instance, when the
screen projection of a model is sufficiently small, only a small amount of detail is
discernible and rendering any more would only waste resources (Figure 6.8). In
addition, in many situations it would be beneficial to vary the detail in different
parts of the model; for instance, coplanar triangles could be merged into fewer
larger ones, and areas of the surface that are closer to the viewer would require
more detail than those further away. All of this holds particularly for interactive
applications that display large graphics scenes, where the total number of poly-
gons that must be processed at any time is considerable.

For these reasons, several model-simplification techniques have been devel-
oped. Their common aim is to reduce the number of faces of a polygonal model
while retaining, as much as possible for a given number of faces, the appearance
and structure of the original model. Then, any application that makes use of sim-
plified models usually employs several levels of detail of the original model and
selects dynamically the one that fits the current scene configuration better.

The idea of model simplification is not new [Clar76], but the more interest-
ing simplification techniques have been developed recently. These vary greatly
in many respects: they can be applied to different kinds of models, take different
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paths for the simplification of the models, have different priorities and applica-
tions.

With regard to their domain of application, simplification algorithms deal
most easily with closed manifold meshes. The boundary of non-closed models
is handled in most cases, however, only few algorithms are able to simplify non-
manifold models.

A classification of simplification methods may be based on whether the method
produces discrete or continuous levels of detail of the original model. In the for-
mer case, a target number of faces is prescribed, and the algorithm generates a
new model with the required number of faces; if another level of detail is re-
quested, the algorithm has to be executed again. In the latter case, using local
simplifications of the model (removal of single vertices, edges, or faces), the al-
gorithm produces a continuous sequence of increasingly simplified models, from
the original detailed model down to a coarse base mesh. By recording the simpli-
fication steps, any intermediate level of detail may be produced. We present one
such algorithm in Section 6.5.1.

Continuous simplification algorithms are far more interesting than discrete
ones. In addition to their flexibility in the resolution of the simplified models,
several of them are easily reversible, allowing the application to move back and
forth between intermediate levels of detail. More importantly, some algorithms
support the selective refinement and coarsening of the mesh, enabling the dynamic
adjustment of detail on different parts of the model according to the needs of the
application. Finally, it is usually possible to refine or coarsen the mesh smoothly,
which minimizes visual artifacts due to switching resolutions of the model in
interactive applications.

An important issue for all simplification algorithms is how to assess the qual-
ity of a simplified model with respect to the original one. Most simplification
algorithms are guided by such measures in order to determine where the “best”
position to put the new vertex is or which edge should be removed first in order
to minimize the discrepancy of the simplified model from the original. These
measures also provide a global estimate of the quality of the final model so that
different algorithms can be compared [Cign98].

The most widely used method for this assessment is to measure some form of
distance between the simplified and the original model. For instance, the Haus-
dorff distance [Prep85] measures the maximum distance between any two points
of two surfaces M and M′ as

d∞(M,M′) = max

(
max
v∈M

{
d(v,M′)

}
, max

v′∈M′

{
d(v′,M)

})
,



�

�

�

�

�

�

�

�

186 6. Model Representation and Simplification

where

d(v,M) = min
w∈M

{|v−w|}
is the distance of a point v from a surface M, defined as the distance of v from
the closest point w of the surface. Alternatively, the mean square distance of two
surfaces is

d2(M,M′) =
1
s

∫
v∈M

d(v,M′)+
1
s′

∫
v′∈M′

d(v′,M),

where s and s′ are the areas of M and M′, respectively. In practice, these formulae
must be discretized in order to be computed on polygonal models; this is accom-
plished by sampling a number of points on both surfaces and using them for the
computations. Other approximations of the distance are often used by specific
algorithms as they fit better with the calculations performed.

6.5.1 Simplification using Iterative Edge Collapses

As an example of a polygonal model simplification method, we present the sim-
plification of triangle meshes using iterative edge collapses. The reader is referred
to [Pupp97,Garl99] for reviews of many more simplification methods.

The edge-collapse operation [Hopp96] is a local operation on a triangle mesh
that removes an edge of the model and the two adjacent triangles by collapsing
an edge to a single vertex (Figure 6.9). Using edge collapses, it is rather easy to
compute a measure of the distance of the simplified mesh from the one before
the collapse, since they only differ on the faces around the collapsed edge. Here,
we assume that the model is manifold, but variations of this method support non-
manifold models as well. The edges to be collapsed are placed in a priority queue,
using a measure of the impact of their collapse to the approximation error as their
priority, so that those that will have less impact are performed first. The algorithm
is summarized as follows:

edge
collapse

vertex
split

vd

Δr

Δrt Δrt

Δrb

Δrb

Δl

Δlb

Δlb

Δlt Δlt

vo

vl vlvr vr
vs

Figure 6.9. Edge collapse and vertex split operations.
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1. For each edge of the model that can be collapsed,2 compute a collapse
priority; sort the edges in a priority queue.

2. While more candidate edges exist in the queue and the simplification target
(for example, a maximum error or a number of faces for the base mesh) has
not been reached

(a) remove from the queue the edge collapse with highest priority;

(b) collapse this edge (the mesh only changes locally around the edge);

(c) re-compute the priorities of all edges affected by the collapse.

The two factors that affect the result of this method are

• the measure used to assess each edge collapse and assign its priority;

• the position of the new vertex for each edge collapse.

Significantly different techniques have been proposed for these two elements of
the method, usually trading computational speed for quality of simplification. In
some implementations, the position of the new vertex is fixed, for example, at
one of the edge endpoints or at its middle. In many other implementations, the
above two factors are interrelated: the position of the new vertex is computed as
a result of an optimization procedure that seeks to minimize the approximation
error (assessed using some suitable measure); the minimum error attained is used
as the priority of the edge collapse.

As an example, we present the quadric error-metric method [Garl97, Garl98,
Heck99] that minimizes the squared distance of the new vertex from the faces
around the collapsed edge. If ∆ is a triangular face of the model with plane equa-
tion

ax+by+ cz+d = 0,

the squared distance of a point x = [x,y,z]T from the plane of ∆ is

Q∆(x) =
(ax+by+ cz+d)2

a2 +b2 + c2 =
(−→n Tx+d)2

|−→n |2 = (n̂Tx+ d̂)2

= xT(n̂n̂T)x+2d̂n̂Tx+ d̂2,

2For instance, if the simplification algorithm must preserve the topology of the model, it will not
collapse edges that would create or destroy holes on it.
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where n̂ =
−→n
|−→n | is the unit normal vector of ∆ and d̂ = d

|−→n | . Therefore, it can be
represented by the quadratic form

Q∆ = (A,b, p) = (n̂n̂T, d̂n̂, d̂2)

so that
Q∆(x) = xTAx+2bTx+ p.

With this notation, the sum of the squared distances of x from two triangles ∆1 and
∆2 can be computed by summing coordinate-wise the corresponding quadratic
forms Q∆1 = (A1,b1, p1) and Q∆2 = (A2,b2, p2):

Q∆1(x)+Q∆2(x) =
(
Q∆1 +Q∆2

)
(x)

= xT(A1 +A2)x+2(b1 +b2)Tx+(p1 + p2).

We observe that this is a quadratic form similar to the ones of the Q∆i ; also this re-
sult generalizes naturally to any number of triangles. The simplification algorithm
assigns initially, to each vertex v of the mesh, the quadratic form that expresses
the sum of squared distances of a point from the faces around that vertex (each
component of the sum may be weighted by the surface of the respective face, for
better scaling):

Qv = ∑
∆ around x

w∆Q∆.

Then, when an edge e(vo,vd) is collapsed, the total squared distance of the result-
ing vertex vs from all the faces around vo and vd is:

Q(vs) = Qvo(vs)+Qvd (vs),

therefore represented by the quadratic form

Q = Qvo +Qvd ,

which is of the familiar form Q = (A,b, p). The optimal position for vs may be
considered the one that minimizes Q. By differentiating Q, it can easily be shown
that its minimum is attained at

vs = A−1b,

and the minimum is

Q(vs) =−bTA−1b+ p = bTvs + p.
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If the matrix A is singular, then the minimization is restricted along the edge
e(vo,vd); if this fails as well, vs is selected between vo and vd depending on
which vertex gives the smaller value for Q.

Simplification based on iterative edge collapses has all the desirable proper-
ties of continuous level of detail methods. First, it is easily reversible to the coarse
base model by performing vertex splits (Figure 6.9) in reverse order to the corre-
sponding edge collapses, provided that the position of the original endpoints is
kept with each edge collapse. The base mesh, together with the sequence of ver-
tex splits that lead to the original model, is termed a progressive mesh. Second,
by retaining some more information on the neighboring vertices and faces of each
collapsed edge, it is possible to perform selective refinement and coarsening of
the mesh on regions of interest [Xia96, Hopp97, DF97a, DF97b, DF98, Pupp98].
In addition, as already mentioned, various error metrics and vertex-positioning
strategies may be employed, so the method can be adapted to various intents and
available resources.

The simplification of large models is a rather lengthy operation, especially if
an optimization procedure is used, and, therefore, it is typically performed off-
line; nonetheless, the generated levels of detail can be exploited interactively in
real time for selectively refining the model. The infrastructure for supporting
simplification based on edge collapse is becoming a standard feature in several
graphics packages.

6.6 Exercises
1. Show that in the case of triangular models, the basic Euler formula (6.1)

reduces to F +4 = 2V or 3V = 6+E.

2. Construct an algorithm to generate the list of edges of a model in an indexed
list of faces representation. The algorithm must also report the following:

• if the model is manifold or not;

• its boundary edges, if it has any.

3. Construct an algorithm to compute the following adjacency information of
a model in an indexed list of faces representation:

• all edges around a given vertex;

• all faces around a given vertex;

• the neighboring faces across the edges of a given face.
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4. Construct an algorithm to compute the winged-edge representation of a
manifold model, given its indexed list of faces representation.

5. Given the winged-edge representation of a polygonal model, construct al-
gorithms to enumerate

• all vertices of a given face;

• all edges of a given face;

• all edges around a given vertex;

• all faces around a given vertex.

6. Repeat Exercise 5 using the half-edge representation.

7. A simple simplification algorithm for triangular models is based on merging
nearly coplanar neighboring faces and re-triangulating the resulting poly-
gon using fewer triangles [Hink93,Kalv96]. Construct a program to imple-
ment this simplification method. Does this algorithm produce a continuous
sequence of simplified meshes easily?

8. An edge collapse may alter the topology of a triangle mesh. Find a situation
in which this occurs; see [Hopp93,Dey99,Cign00] for details.

9. Implement an algorithm to simplify a triangle mesh by iterative edge col-
lapses. You may use the quadric error metric described or a simpler vertex-
placement strategy and error approximation computation.
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Parametric Curves and

Surfaces
Equations are just the boring part of mathematics.

I attempt to see things in terms of geometry.
—Stephen Hawking

7.1 Introduction
In Chapter 2 we presented algorithms for the rasterization of basic geometric
primitives, lines and circles. However, the composition of realistic graphics scenes
calls for more flexible, free-form curves and surfaces. The area of computer
graphics that deals with these shapes is computer-aided geometric design (CAGD).
In this chapter we shall examine representations and properties of the most basic
forms of such curves and surfaces; the reader should refer to [Fari01, Hosc96,
Bart87] for more advanced topics.

The need for mathematical representations of free-form shapes, suitable for
computer processing, became apparent during the 1960s in the automotive and
aeronautic industries. Until that time, the specifications by the designers for the
shape of cars and planes were implemented only approximately, as no exact de-
scriptions of such shapes were in practical use. When computer-driven machinery
that could produce complex-shaped objects was made available to these indus-
tries, it became essential to devise suitable mathematical descriptions. Paul de
Casteljau and Pierre Bézier, then working at Citroën and Renault, respectively,
developed independently the theory of polynomial curves and surfaces that now
bears Bézier’s name—de Casteljau’s work was not published early on—and con-
stitutes the basic tool for describing and rendering free-form shapes.

191
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192 7. Parametric Curves and Surfaces

All of the curve and surface descriptions examined in the rest of this Chap-
ter are in parametric form, and the reader is referred to Appendix B (especially
Sections B.1.1 and B.2.1) for an overview of the relevant background theory. We
remind here that a curve in parametric representation is given as two or three (if it
is a plane or space curve, respectively) independent coordinate functions in terms
of a parameter t:

X(t) =
[

x(t)
y(t)

]
or X(t) =

⎡⎣x(t)
y(t)
z(t)

⎤⎦ .

Owing to the independence of the coordinate functions, the description of plane
and space curves is essentially the same: z(t) may be considered zero everywhere
for a plane curve. Similarly, surfaces are given as three independent coordinate
functions in terms of two parameters u and v:

X(u,v) =

⎡⎣x(u,v)
y(u,v)
z(u,v)

⎤⎦ .

The basic geometric primitive utilized in the following is the line segment
between two points p0 and p1, which in parametric form is

P(t) = (1− t)p0 + t p1, t ∈ [0,1], (7.1)

and expresses the linear interpolation between these two points.

7.2 Bézier Curves

7.2.1 Quadratic Bézier Curves

Let us consider three points, p0, p1, and p2, and interpolate them in pairs, (p0,p1)
and (p1,p2), as follows:

p1
0(t) = (1− t)p0 + t p1,

p1
1(t) = (1− t)p1 + t p2,

t ∈ [0,1].

For each value of t between 0 and 1, p1
0(t) and p1

1(t) represent points on the
respective line segments. In a second step, we interpolate these points for the
same value of t as follows:

p2
0(t) = (1− t)p1

0(t)+ t p1
1(t)

= (1− t)2 p0 +2t(1− t)p1 + t2 p2.
(7.2)
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Figure 7.1. Generation of a quadratic Bézier curve.

In pr
i (t), the superscript r refers to the interpolation step and the subscript i refers

to the index of the first point being interpolated. Notice that as t increases from 0
to 1, the three points p1

0(t), p1
1(t), and p2

0(t) move concurrently on the respective
line segments (see Figure 7.1). Equation (7.2) shows that the point p2

0(t) traces
a quadratic (second-degree) curve with respect to the parameter t; this curve is a
quadratic Bézier curve (or a second-degree Bézier curve), and it will be denoted
by P2(t). The initial points p0, p1, and p2 are called control points of the Bézier
curve.

7.2.2 n th-Degree Bézier Curves

The process outlined above for the generation of a quadratic Bézier curve from its
three control points can be generalized for more control points in a straightforward
manner. Figure 7.2 presents the curve generated by four control points: in this
case we perform three linear-interpolation steps, and the outcome is a cubic Bézier
curve (or a third-degree Bézier curve) P3(t).

In the general case, an nth-degree Bézier curve Pn(t) may be constructed given
(n+1) control points p0,p1, . . . ,pn after n linear interpolation steps. The curve is
given by the formula1

Pn(t) =
n

∑
i=0

(
n
i

)
ti(1− t)n−ipi , t ∈ [0,1]. (7.3)

1The binomial coefficients
(n

i

)
are defined as(

n
i

)
=

n!
i!(n− i)!

if 0≤ i≤ n and 0 otherwise.
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Figure 7.2. Generation of a cubic Bézier curve. For a specific value of t, all
intermediate points used for the interpolation steps are denoted.

It is easy to see that this formula gives exactly Equation (7.2) for n = 2. The
polygon formed by p0,p1, . . . ,pn is called the control polygon of the curve.

7.2.3 The de Casteljau Algorithm

Equation (7.3) provides a direct way to compute points on a Bézier curve. Un-
fortunately, this formula is numerically rather complex and inefficient, requiring
computations of binomial coefficients and of powers of t and (1− t). On the con-
trary, the interpolation steps performed for the generation of the Bézier curve are
simple linear relations of t.

The de Casteljau algorithm summarizes these linear interpolation steps in a
convenient iterative scheme for the computation of Bézier curve points:

1. For the required value of t, set

p0
i (t) = pi , i = 0,1, . . . ,n. (7.4a)

2. Perform the linear interpolation steps

pr
i (t) = (1− t)pr−1

i (t)+ t pr−1
i+1 (t) ,

r = 1,2, . . . ,n,

i = 0,1, . . . ,n− r.
(7.4b)

3. Then the point on the curve corresponding to parametric value t is

Pn(t) = pn
0(t).



�

�

�

�

�

�

�

�
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All the intermediate points involved in the de Casteljau algorithm can be writ-
ten in a triangular arrangement called the de Casteljau triangle. For the case
of a cubic Bézier curve, the triangle is (omitting the parameter t from pr

i (t) for
simplicity)

p0 = p0
0 p1

0
1−t

p2
0 p3

0 = P3(t)

p1 = p0
1 p1

1 p2
1

p2 = p0
2 p1

2

p3 = p0
3

t

(7.5)

When implementing this algorithm in a computer program, the above arrange-
ment indicates that we need not store all intermediate points. We may use a one-
dimensional array, initialized with the control points of the curve, and overwrite
its elements from top to bottom as the algorithm progresses; at the end, the first
element of the array will be the point on the curve. The pseudocode in Listing 7.1
provides an implementation of the de Casteljau algorithm.

point bezierPoint ( int n, point[] controlPt, float t )

{

point deCasPt[n+1];

for (i=0; i <= n; i++)

deCasPt[i] = controlPt[i];

for (r=1; r <= n; r++) {

for (i=0; i <= n-r; i++) {

deCasPt[i] = (1-t)*deCasPt[i] + t*deCasPt[i+1];

}

}

return deCasPt[0];

}

Listing 7.1: The de Casteljau algorithm.
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Example 7.1 (Bézier Curve Point Evaluation.) Given a Bézier curve with con-
trol points

p0 =
[
0 0

]T
, p1 =

[
2 2

]T
, p2 =

[
6 4

]T
, and p3 =

[
8 2

]T
,

compute the point corresponding to the parametric value t = 1/4.
The required point is computed by the following de Casteljau triangle:[

0

0

] [
1
2
1
2

] [
9
8

1

] [
29
16
23
16

]
[

2

2

] [
3
5
2

] [
31
8
11
4

]
[

6

4

] [
13
2
7
2

]
[

8

2

]

Each point is an affine combination of the two points from the column at its left,
on the same and on the next line of the triangle, with coefficients 3

4 and 1
4 , respec-

tively. The required point is

P3 ( 1
4

)
=

[
29
16
23
16

]
.

7.2.4 Bernstein Polynomials

The coefficients of pi in the Bézier curve definition (7.3) are special polynomials
called nth-degree Bernstein polynomials. They are

Bn
i (t) =

(
n
i

)
ti(1− t)n−i , i = 0,1,2, . . . ,n. (7.6)

Using the Bernstein polynomials, the Bézier curve can be rewritten as

Pn(t) =
n

∑
i=0

Bn
i (t)pi , t ∈ [0,1]. (7.7)
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For the most common cases of n = 2 and n = 3, the Bernstein polynomials
are, respectively,

B2
0(t) = (1− t)2,

B2
1(t) = 2t(1− t),

B2
2(t) = t2,

(7.8)

(remember relation (7.2)), and

B3
0(t) = (1− t)3,

B3
1(t) = 3t(1− t)2,

B3
2(t) = 3t2(1− t),

B3
3(t) = t3.

(7.9)

Bernstein polynomials possess interesting properties that will help us in the
analysis of Bézier curves. The most important of these properties are the follow-
ing:

• The nth-degree Bernstein polynomials constitute a basis of the vector space
of nth-degree polynomials. In other words, any nth-degree polynomial f (t)
may be written in the form

f (t) =
n

∑
i=0

Bn
i (t)ci, (7.10)

where ci, i = 0,1,2, . . . ,n are suitable (scalar) coefficients.

• Bernstein polynomials satisfy

n

∑
i=0

Bn
i (t) = 1, for every t (7.11)

and

0≤ Bn
i (t)≤ 1, for t ∈ [0,1]. (7.12)

• Bernstein polynomials are symmetric with respect to t and 1− t:

Bn
j(t) = Bn

n− j(1− t). (7.13)
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7.2.5 Properties of Bézier Curves

The definition given in Equation (7.3) of the Bézier curve and the properties of
Bernstein polynomials reveal important properties of Bézier curves.

• Every nth-degree polynomial curve may be written in the form of a Bézier
curve. This follows from the fact that each of the x, y (and possibly z)
components of a polynomial curve is itself an nth-degree polynomial, and
therefore it may be written in terms of the Bernstein basis as mentioned
above; the Bézier control points of the curve are formed by assembling the
coefficients of each Bernstein polynomial.

• Convex-hull property. The Bézier curve always lies inside the convex hull
of its control points. This is due to properties (7.11) and (7.12) of the Bern-
stein polynomials, which imply that the Bézier curve is a convex combina-
tion of its control points.

• Invariance under affine transformations. This stems from property (7.11)
of the Bernstein polynomials, which signifies that the Bézier curve is an
affine combination of its control points. As a practical consequence, in
order to apply an affine transformation to a Bézier curve, it is sufficient to
transform its control points.

• Invariance under affine transformations of its parameter. The curve re-
mains unaltered if the parametric interval is changed from t ∈ [0,1] to
u ∈ [a,b]; in other words, if an affine transformation of the parameter t
to u = a +(b−a)t is performed. In this case the interpolation steps (7.4b)
become

pr
i (t) =

b−u
b−a

pr−1
i (t)+

u−a
b−a

pr−1
i+1 (t). (7.14)

• Symmetry with respect to its control points. If the control points of the curve
are used in reverse order, pn, pn−1, . . . ,p0, the shape of the curve does not
change, but the curve is traversed in the opposite direction. This results
from the symmetry of Bernstein polynomials, relation (7.13).

• Linear precision. If all control points lie on a straight line, then the curve
also has the shape of a straight line, since its convex hull becomes a line.

• Variation-diminishing property. A planar Bézier curve is intersected by an
arbitrary straight line no more than the number of times that the line inter-
sects the control polygon of the curve. Similarly, a non-planar Bézier curve
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is intersected by an arbitrary line or plane no more than the number of times
that the line or plane intersects its control polygon. As a consequence of
the variation-diminishing property, a curve with a convex control polygon
is convex as well—but note that the inverse is not true: a convex Bézier
curve may have a non-convex control polygon.

• Endpoint interpolation. It is easy to verify that

Pn(0) = p0,

Pn(1) = pn;
(7.15)

therefore, the curve starts at its first control point and ends at its last one.

• Derivative. Using properties of the binomial coefficients, it can be shown
that the tangent (first derivative) of a Bézier curve is

d
dt

Pn(t) = n
n−1

∑
i=0

Bn−1
i (t)(pi+1−pi). (7.16)

• Tangents at the endpoints. The above relation is considerably simplified at
the end points. It can be shown that

d
dt

Pn(0) = n(p1−p0),

d
dt

Pn(1) = n(pn−pn−1);
(7.17)

therefore, the tangent vectors at the endpoints of the curve are parallel to
the first and last edge of its control polygon.

If the curve is defined over an arbitrary parametric interval u ∈ [a,b], the
chain rule yields, for the above relations,

d
du

Pn(a) =
d
dt

dt
du

Pn(0) =
1

b−a
n(p1−p0),

d
du

Pn(b) =
d
dt

dt
du

Pn(1) =
1

b−a
n(pn−pn−1).

(7.18)

• Second derivatives at the endpoints. It can be shown that the following
relations hold for the second derivatives at the endpoints of an nth-degree
Bézier curve:

d2

dt2 Pn(0) = n(n−1)(p2−2p1 +p0),

d2

dt2 Pn(1) = n(n−1)(pn−2pn−1 +pn−2).
(7.19)
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If the curve is defined over an arbitrary parametric interval u ∈ [a,b], the
chain rule yields, for the above relations,

d2

du2 Pn(a) =
1

(b−a)2 n(n−1)(p2−2p1 +p0),

d2

du2 Pn(b) =
1

(b−a)2 n(n−1)(pn−2pn−1 +pn−2).
(7.20)

• Pseudo-local control. Local control implies that moving a control point of a
curve has a localized effect on the curve. Bézier curves do not possess local
control since the Bernstein polynomials Bn

i (t), which are essentially the
weights by which the control points contribute to the shape of the curve, are
non-zero over the whole parametric interval [0,1] of the curve; therefore,
moving any control point affects the shape of the whole curve. However,
we may say that Bézier curves possess pseudo-local control, since the effect
of moving pi is more pronounced around the parametric value i/n, where
the respective Bernstein polynomial Bn

i (t) has its only maximum. Pseudo-
local control makes it easier to predict the change of shape of a Bézier curve
when moving its control points.

As a result of the above properties, Bézier curves are an important tool for
representing curves in computer graphics and geometric design. Cubic Bézier
curves are mostly used in practice, since they provide enough shape flexibility,
intuitive dependence on their control points, and efficiency for their calculation.
Higher-degree curves can produce more complex shapes involving more control
points, but the higher cost for their computation and the global effect of changing
any control point make them less attractive in practice. In the following sections,
we will discuss practical solutions to the problem of defining a curve using more
control points.

7.2.6 Bézier Curve Subdivision

Consider the cubic Bézier curve P3(t) shown in Figure 7.2. Any specific para-
metric value t0 ∈ [0,1] divides the curve into two segments, the “left” one with
endpoints P3(0) = p0 and P3(t0), and the “right” one with endpoints P3(t0) and
P3(1) = p3. Being parts of the initial cubic Bézier curve, these segments are both
also cubic curves and, therefore, they may be written in Bézier curve form. Our
aim is to determine the Bézier control points of these two segments; as we show
below they can be computed using only the control points of the initial curve.
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We will work first on the left segment. We denote it by L and call its control
points li, i = 0,1,2,3, so that

L(t ′) =
3

∑
i=0

B3
i (t
′)li , t ′ ∈ [0,1].

(We use a local parameter t ′ for L, different from the parameter t of the original
curve, so that L(t ′) traces the whole left segment when t ′ ∈ [0,1].)

The first and the last control point can be determined immediately, since the
curve interpolates its endpoints, so

l0 = p0 = P3(0) = p0
0(t0), (7.21a)

l3 = P3(t0) = p3
0(t0). (7.21b)

For l1, we observe that it is involved in the tangent of L(t ′) for t ′ = 0. P and L
have the same tangent at this point, since they coincide when t ∈ [0, t0], therefore

d
dt

P3(0) =
d
dt

L(0) =
d

dt ′
dt ′

dt
L(0)

⇔ 3(p1−p0) =
1
t0

3(l1− l0)

⇔ l1 = (1− t0)p0 + t0p1,

and using the notation of the de Casteljau algorithm,

l1 = p1
0(t0). (7.21c)

Similarly, we observe that l2 is involved in the second derivative of L(t ′) for t ′= 0,
and therefore

6(p2−2p1 +p0) =
1

t2
0

6(l2−2l1 + l0)

⇔ l2 = (1− t0)2p0 +2t0(1− t0)p1 + t2
0 p2,

and using the notation of the de Casteljau algorithm,

l2 = p2
0(t0). (7.21d)

Relations (7.21) can be written concisely as

li = pi
0(t0); (7.22)
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therefore, the control points li of the left segment are exactly the points of the
first line of the de Casteljau triangle (7.5). It is important that this property holds
for Bézier curves of any degree n, as can be proved by computing higher-degree
derivatives of the curve.

The right segment of the curve is the part that corresponds to the parametric
interval [t0,1] of the initial curve. Its control points ri can be computed by working
in a similar manner with the tangents at the other end of the curve. They are given
by

ri = pn−i
i (t0), (7.23)

which are the points of the “hypotenuse” of the de Casteljau triangle (see (7.5) for
the cubic case); this result holds as well for Bézier curves of any degree.

It is interesting, thus, that the de Casteljau algorithm not only computes the
point on the curve that corresponds to a parametric value t0, but also provides
the control points of the two segments into which the curve is subdivided by
this point. The implementation given in Section 7.2.3 readily provides the points
ri (they are the deCasPt available at the end of the algorithm), and it must be
modified slightly in order to provide points li as well: after each column of the
triangle is completed, its 0-index element is a control point of the left segment.

Applications of Bézier curve subdivision. The subdivision of a Bézier curve
that we just described can be repeated recursively for each of the two segments of
the curve. It can be shown that the control points generated during this recursion
converge to the initial curve, and that this convergence is rather fast. This result
has interesting practical applications.

The most important application is a way to draw Bézier curves. By recursively
subdividing the curve into two segments, after a number of steps the control points
of the segments will be nearly collinear, up to a tolerance level set in advance;
then, the subdivision may be stopped and each segment may be drawn as a line
segment between its two endpoints, owing to the linear precision of Bézier curves.
This manner of drawing Bézier curves is clearly adaptive, since it will draw its
flat regions quickly but perform more recursion steps in sections of the curve with
high curvature.

During the recursion, subdivision of the curve may be performed at any para-
metric value t0. However, the value t0 = 1

2 is preferred, since in this case the
interpolation steps involve only divisions by 2, which can be implemented effi-
ciently as bit shifts.

Collinearity of the control points can be tested by constructing the line through
the two extreme control points p0 and pn, computing the distance of every other
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control point pi, i = 1,2, . . . ,n− 1, from this line, and ensuring that every such
distance is less than the required tolerance. The distance of a control point pi

from the line through p0 and pn is given by the formula

d =
|(pn−p0)× (pn−pi)|

|pn−p0| .

If the control points are two-dimensional, the cross product in the numerator of
this formula can be computed by constructing three-dimensional points with zero
z-coordinate. If the denominator is equal to zero, p0 and pn coincide, and one of
them should be changed in the above formula.

A second application of Bézier curve subdivision concerns finding the inter-
section of the curve with a line. The algorithm is also recursive. First the axis-
aligned bounding box (AABB) of the initial curve is constructed and checked for
intersection with the line; if an intersection does exist, the curve is subdivided into
its left and right segment, and this process continues recursively with the AABB
of each segment. The subdivision stops when the AABB of a segment is so small
as to be considered a single point, up to a given tolerance level.

The algorithm works correctly since the AABB contains the curve; therefore,
if the line does not intersect the AABB, it will not intersect the curve either. When
the AABB becomes a point, the curve segment contained therein will also be a
single point. Thus, if the line intersects the box it will intersect the curve as well.
The AABB is very efficient both to compute (in fact, it is the AABB box of the
control points of the curve, since the curve is contained in the convex hull of
its control points) and to check for intersection with the line (using one of the
algorithms of Section 2.9).

7.2.7 Smoothly Joining Bézier Curves

The complexity of the shape of a single Bézier curve is restricted by its degree, or
equivalently by the number of its control points. In many practical applications,
there is a need to draw complex shapes and in these cases Bézier curves of high
degree are needed. Unfortunately, the use of high-degree Bézier curves is not ad-
visable for two reasons: first, the higher the degree of the curve, the less efficient
it is to compute it as more linear interpolation steps are involved and numerical
accuracy problems may appear; and second, the lack of local control makes it
difficult to create a desirable shape with a single Bézier curve. For these reasons,
Bézier curves of degree higher than 5 are not used in practice very often.

The problem of representing complex shapes is solved by using low-degree
curves joined in such a way that the resulting shape is smooth at the joins. The
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most common form of such curves is the B-spline curve, which we will present in
the next section. Here we will discuss the core procedure for joining two Bézier
curves smoothly, in order to gain insight about its properties and limitations.

Before we continue, we need to formalize the meaning of “smooth joins.”
Consider two polynomial curves F(t), t ∈ [t0, t1] and G(t), t ∈ [t1, t2]. We say that
these curves join with parametric continuity Cr at t1 if their rth-order derivatives
are equal at t1:

F(r)(t1) = G(r)(t1).

It can be proven that Cr continuity at a point implies also Cm continuity for all
0 ≤ m < r. For instance, if F(t) and G(t) join at t1 with C2 continuity, then their
values (C0), their tangents (C1), and their second derivatives (C2) are equal at
this point; this join is naturally “smooth,” since the slope of the curve at the join
does not change abruptly. For polynomial curves of degree k, it is meaningful to
look for continuity up to Ck−1, since their kth-order derivatives are constant and
higher-order ones are zero.

Consider now two Bézier curves, Pn(t), t ∈ [0,1] of degree n with control
points p0, p1, . . .pn and Qm(t), t ∈ [1,2] of degree m with control points q0,
q1, . . .qm. We seek conditions for the two curves to join at t = 1 with C2 con-
tinuity.

C0 continuity implies that the last point of the first curve coincides with the
initial point of the second one. Since the curves interpolate their endpoints, it is
sufficient to have

pn = q0. (7.24)

Similarly, C1 continuity requires, because of (7.17) and (7.18), that

n(pn−pn−1) = m(q1−q0) ⇔ q1−pn =
n
m

(pn−pn−1) ; (7.25)

therefore, q1 must be placed on the line defined by pn−1 and pn = q0, and its
distance from pn must be the one given by (7.25).

Because of (7.19) and (7.20), C2 continuity requires that

n(n−1)(pn−2pn−1 +pn−2) = m(m−1)(q2−2q1 +q0) (7.26)

from which the position of q2 can be determined.
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Figure 7.3. Smooth join of cubic Bézier curves. (a) C0 continuity; (b) C1 continuity;
(c) C2 continuity.

In the special case where n = m, relation (7.25) becomes q1−pn = pn−pn−1,
so the distance |q1pn| must be equal to the distance |pnpn−1|. Additionally, if
n = m = 3, relation (7.26) becomes q2 − 2q1 = p1 − 2p2; if we set this point
d = q2−2q1 = p1−2p2, then d must be placed so that |dp2|= |p2p1|, and finally
q2 must be placed so that |dq1|= |q1q2| (see Figure 7.3).

From the above, we observe that each additional degree of continuity restricts
the position of one more control point of each curve; for n = m = 3 with C2

continuity, which is a fairly usual and practical requirement, only the position of
the two extreme endpoints p0 and q3 is free.

For greater flexibility, higher-degree curves can be used, which as already
mentioned is not very efficient, or alternatively lower continuity could be required,
which would probably not produce a satisfactorily smooth curve. There is another
alternative, which is to modify the kind of continuity required: instead of para-
metric continuity (Cr), we could require the weaker geometric continuity (Gr),
which, as its name implies, is based on geometric elements of the curves instead
of algebraic ones. We just mention here that G0 is the same as C0; G1 requires
that the tangent vector at the join be continuous (only the direction of the tangents
should be equal and not their norm as in C1), and G2 requires additionally that
the curvature be continuous at the join. For details and applications of geomet-
ric continuity, the reader should refer to the specialized books mentioned in the
beginning of this chapter.
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7.3 B-Spline Curves

In the last section, we saw how Bézier curves can be joined together so that the
resulting curve is smooth (continuous) at the join. Such curves that are generated
by joining parametric curves with continuity constraints are called, in general,
spline curves. Their name comes from the mechanical spline, a flexible wooden,
metal or plastic strip used to draw smooth curves for engineering applications,
such as shipbuilding or carmaking; the desired bendings of the strip are created
by appropriate pegs (or ducks or weights) that hold it in place.

B-spline curves are specifically spline curves comprised of polynomial seg-
ments of degree k joined with Ck−1 continuity, the highest continuity that we may
seek. The degree k of the segments is also the degree of the B-spline curve.

Similar to Bézier curves, B-spline curves are defined with the help of control
points, which we will denote by p0, p1, . . . ,pn. Unlike Bézier curves, though,
the number (n+1) of control points is independent of the curve degree and only
related to the number of polynomial segments that constitute it.

The polynomial segments that form a B-spline curve are defined over consec-
utive parametric intervals [ti, ti+1], whose union is an interval [tmin, tmax] called the
domain of the curve. The values ti at the boundaries of the intervals are called
knots of the B-spline curve. As we shall see, the definition of the B-spline curve
requires some additional knots outside its domain; in total, a B-spline curve has a
knot sequence

tfirst ≤ . . .≤ tmin ≤ . . .≤ tmax ≤ . . .≤ tlast.

The number of knots depends on the degree of the curve and on the number of its
control points; we will determine it precisely in the following.

7.3.1 Quadratic B-Spline Curves

We will start by examining quadratic (or second-degree) B-spline curves, in order
to facilitate the presentation of general kth-degree B-spline curves.

A quadratic B-spline curve Q(t) will be comprised of quadratic segments
Qi(t), defined in parametric intervals [ti, ti+1]. Similar to quadratic Bézier curves,
we will use three control points for each segment—but the two linear interpola-
tion steps required will be different, in order to ensure continuity at the joins. For
segment Qi(t), we will use control points pi−2, pi−1, and pi.
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In the first step, we interpolate separately (pi−2, pi−1) and (pi−1, pi) in the
parametric intervals [ti−1, ti+1] and [ti, ti+2], respectively; notice that we do not use
[ti, ti+1] for both as in Bézier curves, but different overlapping intervals for each
pair of control points. Thus we get the intermediate points

q1
i−1(t) =

ti+1− t
ti+1− ti−1

pi−2 +
t− ti−1

ti+1− ti−1
pi−1 , t ∈ [ti−1, ti+1]

q1
i (t) =

ti+2− t
ti+2− ti

pi−1 +
t− ti

ti+2− ti
pi , t ∈ [ti, ti+2].

In the parametric interval of interest [ti, ti+1], both q1
i−1(t) and q1

i (t) are defined,
and for the second step we interpolate them in this interval. Thus, we get

Qi(t) = q2
i (t) =

ti+1− t
ti+1− ti

q1
i−1(t)+

t− ti
ti+1− ti

q1
i (t) , t ∈ [ti, ti+1],

and substituting q1
i−1(t) and q1

i (t) from the previous relations, we get an expres-
sion for Qi(t) in terms of the control points of the curve:

Qi(t) =
ti+1− t
ti+1− ti

ti+1− t
ti+1− ti−1

pi−2

+
(

ti+1− t
ti+1− ti

t− ti−1

ti+1− ti−1
+

t− ti
ti+1− ti

ti+2− t
ti+2− ti

)
pi−1

+
t− ti

ti+1− ti

t− ti
ti+2− ti

pi.

(7.27)

Therefore, the segment Qi(t) defined in this way is quadratic with respect
to t over the parametric interval [ti, ti+1]. Using (7.27) it can also be shown that
consecutive segments Qi(t), t ∈ [ti, ti+1] and Qi+1(t), t ∈ [ti+1, ti+2] join with the
desired C1 continuity: at the common parametric value ti+1 they satisfy

Qi(ti+1) = Qi+1(ti+1),

Q′i(ti+1) = Q′i+1(ti+1).

In other words, they join at ti+1 (C0) and their tangents coincide (C1). Overall, the
set of quadratic segments generated as described above forms a quadratic B-spline
curve.

Formula (7.27) provides a piecewise expression for the B-spline curve that
is not very useful for studying the curve; what we need is a uniform expression
for the whole curve in terms of its control points and its knots. To derive it, we
consider a single control point pi; from the preceding analysis, we conclude that
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Figure 7.4. A quadratic B-spline curve and the effect of control point pi on the
curve.

it affects three consecutive segments of the curve, Qi(t), Qi+1(t), and Qi+2(t)
(see Figure 7.4). We rewrite (7.27) for these segments, giving in full only the
coefficients of pi and abbreviating the others for the sake of simplicity:

Qi(t) = ai pi−2 +bi pi−1 +
t− ti

ti+1− ti

t− ti
ti+2− ti

pi ,

t ∈ [ti, ti+1],

Qi+1(t) = ai+1 pi−1

+
(

ti+2− t
ti+2− ti+1

t− ti
ti+2− ti

+
t− ti+1

ti+2− ti+1

ti+3− t
ti+3− ti+1

)
pi + ci+1 pi+1 ,

t ∈ [ti+1, ti+2],

Qi+2(t) =
ti+3− t

ti+3− ti+2

ti+3− t
ti+3− ti+1

pi +bi+2 pi+1 + ci+2 pi+2 ,

t ∈ [ti+2, ti+3].

If we set

N2
i (t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t−ti
ti+1−ti

t−ti
ti+2−ti

, t ∈ [ti, ti+1),
ti+2−t

ti+2−ti+1

t−ti
ti+2−ti

+ t−ti+1
ti+2−ti+1

ti+3−t
ti+3−ti+1

, t ∈ [ti+1, ti+2),
ti+3−t

ti+3−ti+2

ti+3−t
ti+3−ti+1

, t ∈ [ti+2, ti+3),

0 , everywhere else,

(7.28)
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then2 the effect of control point pi on the whole curve is N2
i (t)pi and, summing

the effects of all control points, the quadratic B-spline curve can be written as

Q(t) =
n

∑
i=0

N2
i (t)pi. (7.29)

We are now able to determine the necessary number of knots for the quadratic
B-spline curve. Given control points p0, p1, . . . ,pn, using the above notation the
first segment of the curve is Q2(t) that uses p0, p1, p2 and requires knots t1, t2,
t3, t4; the last segment of the curve is Qn(t) that uses control points pn−2, pn−1,
pn and requires knots tn−1, tn, tn+1, tn+2. Therefore, a quadratic B-spline curve
with (n + 1) control points p0, p1, . . . ,pn requires (n + 2) knots t1, t2, . . . , tn+2;
the domain of the curve is the union of the domains [ti, ti+1] of its segments Qi(t),
i = 2,3, . . . ,n, that is the parametric interval [t2, tn+1]. We note that relations (7.28)
and (7.29) indicate that two more knots, t0 and tn+3, are required so that N2

0 (t)
and N2

n (t) are defined correctly. However, our previous analysis suggests that
these knots do not contribute to the shape of the curve; they are simply “dummy”
knots needed only for the mathematics of (7.28). Their values are of no interest,
and they are only used if relation (7.29) is employed to compute points on the
B-spline curve.

7.3.2 k th-Degree B-Spline Curves

The process outlined above for the generation of a quadratic B-spline curve can
be generalized for higher-degree curves in a straightforward manner.

The construction of a segment Qi(t), t ∈ [ti, ti+1] of a kth-degree B-spline
curve3 requires k consecutive linear interpolation steps. In the first step, (k + 1)
control points pi−k, pi−k+1, . . . ,pi will be interpolated in pairs, producing points
q1

j(t), j = i−k+1, i−k+2, . . . , i on linear segments defined in the parametric in-
tervals [t j, t j+k], respectively. In each subsequent interpolation step r = 2,3, . . . ,k,
the points of the previous step will be interpolated to produce points qr

j(t), j =
i− k + r, . . . , i on segments of degree r defined in shrinking parametric intervals
[t j, t j+k−r+1]. After k such steps, a single kth-degree segment qk

i (t) = Qi(t) will
be constructed, defined in [ti, ti+1]. It can be shown that the consecutive segments
Qi(t) join with Ck−1 continuity, therefore they form a kth-degree B-spline curve.

2Whereas previous relations used closed intervals for Qi(t), relation (7.28) uses half-open intervals
for the branches of the function, in order to ensure that the value of the function at the common knots
is computed by a single branch; this is just a formality, since consecutive branches give the same value
at the common knots.

3Some sources refer to the order (k +1) of a kth-degree B-spline curve; we use the degree k of the
curve throughout, as it is the degree of its constituting polynomial segments.
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In order to express the whole curve in terms of its control points and its
knots, we can proceed similarly to the quadratic B-spline curve above. We no-
tice that each control point pi affects (k + 1) consecutive segments Q j(t), j =
i, i + 1, . . . , i + k, and we can construct a function Nk

i (t) that expresses its contri-
bution to the curve. These functions are called kth-degree B-spline functions, and
we will discuss them thoroughly below; using them, the B-spline curve may be
written as

Q(t) =
n

∑
i=0

Nk
i (t)pi. (7.30)

The curve is comprised of (n− k + 1) polynomial segments of degree k, each
defined over the parametric interval [ti, ti+1] for i = k,k +1, . . . ,n. Therefore, the
domain of the curve is the union of all these intervals, that is, the interval [tk, tn+1].
In total (n + k) knots t1, t2, . . . , tn+k are required (and, as for quadratic B-splines,
two more “dummy” knots t0 and tn+k+1 that are necessary to correctly define Nk

i (t)
but do not contribute to the shape of the curve).4 The knots must be in ascending
order, ti ≤ ti+1, since they are the endpoints of the parametric intervals on which
the segments of the curves are defined. Knots may be repeated, as we shall see
below, with interesting effect on the properties of the curve; however, at most k
consecutive knots may be equal, ti < ti+k. More details on the knot sequence of a
B-spline curve are given in Section 7.3.5.

7.3.3 B-Spline Functions

The functions Nk
i (t) that we referred to in the definition of B-spline curves above

are called kth-degree B-spline functions. They are defined recursively by setting

N0
i (t) =

{
1, t ∈ [ti, ti+1),
0, everywhere else,

(7.31a)

and then for r = 1,2, . . . ,k and i = 0,1, . . . ,n+ k− r,

Nr
i (t) =

t− ti
ti+r− ti

Nr−1
i (t)+

ti+r+1− t
ti+r+1− ti+1

Nr−1
i+1 (t). (7.31b)

One can observe that these relations give (7.28) for k = 2.
B-spline functions Nr

i (t) are rth-degree polynomials of t with local support
on the interval [ti, ti+r+1); in other words, they are non-zero only on this inter-
val. Moreover, they are spline functions, since they consist of (r +1) polynomial
segments of degree r joined with Cr−1 continuity at the knots.

4Most other sources include these “dummy” knots to the knot sequence of the B-spline curve. We
shall not follow this practice here, but only refer to the knots t1, . . . , tn+k.
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Figure 7.5. Linear B-spline functions (k = 1, n = 4).
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Figure 7.6. Quadratic B-spline functions (k = 2, n = 4).

Figures 7.5 and 7.6 show the first- and second-degree B-spline functions for an
illustrative knot sequence. It can be observed that each first-degree B-spline func-
tion N1

i (t) consists of two linear segments joined at ti+1 (C0 continuity). Similarly,
each second-degree B-spline function N2

i (t) consists of three quadratic segments
joined with C1 continuity at ti+1 and ti+2, respectively.

Given a degree k and a knot sequence t0, t1, . . . , tn+k, tn+k+1, all the spline func-
tions defined over this knot sequence constitute a vector space. It can be shown
that the (n + 1) B-spline functions of degree k defined over this knot sequence
form a basis of this vector space. This is what the “B” in B-spline functions
stands for: basis splines.

7.3.4 The de Boor Algorithm

Similarly to the de Casteljau algorithm for computing points on a Bézier curve,
the de Boor algorithm [dB72,Cox72] provides an iterative scheme for computing
points on a B-spline curve. This algorithm summarizes the linear interpolation
steps involved in the generation of a kth-degree B-spline curve.

Due to the local support of B-spline functions, in order to compute a point
Q(t) on a B-spline curve, we must know the interval to which the requested para-
metric value t belongs. Therefore the steps of the algorithm are the following:
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1. For the required value of t, find the parametric interval [ti, ti+1) to which t
belongs. Note that i will satisfy k ≤ i≤ n, since the domain of the curve is
[tk, tn+1].

2. Set
q0

j(t) = p j , j = i− k, i− k +1, . . . , i. (7.32a)

3. Perform the linear interpolation steps

qr
j(t) =

tk−r+1+ j− t

tk−r+1+ j− t j
qr−1

j−1(t)+
t− t j

tk−r+1+ j− t j
qr−1

j (t) ,

r = 1,2, . . . ,k

i = i− k + r, i− k + r +1, . . . , i.
(7.32b)

4. Then the point on the curve corresponding to parametric value t is

Q(t) = qk
i (t).

All the intermediate points involved in the de Boor algorithm can be written
in a triangular arrangement, similar to the de Casteljau triangle. For the case of a
cubic B-spline curve, the triangle is (omitting the parameter t)

pi−3 = q0
i−3

pi−2 = q0
i−2 q1

i−2

pi−1 = q0
i−1 q1

i−1 q2
i−1

pi = q0
i q1

i q2
i q3

i = Q(t)

This triangle has two notable differences compared to the de Casteljau triangle.
First, the coefficients involved in the linear interpolation steps are not constant
(1− t and t) as in the de Casteljau triangle but depend on the specific row and
column. Second, when implementing this algorithm using a one-dimensional ar-
ray, the intermediate points must be computed from bottom to top so that any
required points are not overwritten. Note that the de Boor algorithm never uses
the “dummy” knots t0 and tn+k+1, as expected.

The pseudocode in Listing 7.2 presents a sample implementation of the de Boor
algorithm. Since most modern programming languages impose that the array
indices start from 0, we make a change of variable m = j− i + k so that m =
0,1, . . . ,k− r.
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for (j = i-k; j <= i; j++) {

m = j-i+k;

deBoorPt[m] = controlPt[j];

}

for (r = 1; r <= k; r++) {

for (j = i; j >= i-k+r; j--) {

m = j-i+k;

coeff = (t-knots[j]) / (knots[k-r+1+j] - knots[j]);

deBoorPt[m] = (1-coeff)*deBoorPt[m-1]

+ coeff*deBoorPt[m];

}

}

Listing 7.2: The de Boor algorithm.

This algorithm allows us to draw a B-spline curve by computing successive
points on the curve, for t from tk to tn+1 in small increments ∆t, depending on
the required accuracy, and joining them with line segments. If we run through the
domain of the curve in this way, it is easy to know at each step the subinterval
[ti, ti+1) to which the current parametric value t belongs.

7.3.5 Knots and Parameterizations

The knot sequence of a B-spline curve directly affects its shape; using the same
control points and different knot sequences, the shape of the resulting curves can
vary considerably. In this section we shall examine the knot sequence and its
properties more closely.

Properties of the knots of a B-spline curve. Suppose, first, that for a kth-
degree B-spline curve the first knot has multiplicity k; in other words, it is repeated
k times (t1 = t2 = · · ·= tk−1 = tk). Then, by performing the relevant computations,
we can show that Q(t1) = Q(tk) = p0; therefore, the curve interpolates its first
control point. Similarly, if the last knot has multiplicity k, the curve interpolates
its last control point pn. A knot sequence such that the first and last k knots
are equal is called open or clamped. We observe that unlike Bézier curves, which
always interpolate their extreme control points, B-spline curves have this property
only when a clamped knot sequence is used.
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Figure 7.7. Quadratic B-spline functions (k = 2, n = 4) with t4 = t5 = 6.

More generally, if a knot of a B-spline curve is repeated, ti = ti+1, it can be
shown that the curve loses one degree of continuity at the respective point Q(ti).
Consequently, if a knot has multiplicity r, the curve is Ck−r at the respective point.
An illustration of this property is provided in Figure 7.7. The quadratic B-spline
functions of Figure 7.6 are shown again, the only difference being that two knots
are equal. It can be seen that the B-spline functions are no longer C1 continuous
everywhere but only C0 continuous at the double knot. A quadratic B-spline curve
that uses this knot sequence is therefore only C0 continuous at that point, since it
is a sum of terms Nk

i (t)pi.
Figure 7.8 shows a cubic B-spline curve having a knot with multiplicity one,

two, and three. It can be seen that as the multiplicity of the knot increases, the
curve on the neighborhood of this knot approaches its control polygon; when
the multiplicity of the knot becomes equal to the degree of the curve, a cusp is
formed at the control point that corresponds to this knot since the curve is only
C0 continuous at this point. This property can be exploited when using B-spline
curves in practice, in order to better control the shape of the curve.

[ 1, 1, 1, 2, 3, 4, 5, 5, 5 ]

[ 1, 1, 1, 2, 2, 4, 5, 5, 5 ]

[ 1, 1, 1, 2, 2, 2, 5, 5, 5 ]

0p

1p

2p

3p

4p

5p

6p

Figure 7.8. Effect of multiple knots on the shape of a B-spline curve.



�

�

�

�

�

�

�

�

7.3. B-Spline Curves 215

Finally, we can now justify the restriction mentioned in Section 7.3.2 that
no knot may be repeated more than k times: this would result in lower than C0

continuity and would create a discontinuity on the curve.

Parameterizations. Our previous presentation of B-spline curves implied that
the knot sequence is supplied by the user along with the control points of the
curve. In practice, however, the user should mostly care about the control points
of the curve, which provide an approximation of its shape. The knot sequence can
be generated automatically, using specific algorithms (parameterizations) that try
to produce a well-shaped curve.

The simplest parameterization is the uniform one, in which the knots are
equidistant. This can be realized by setting

ti = i−1 , i = 1,2, . . . ,n+ k. (7.33)

If the curve should interpolate its first and last endpoints, a clamped uniform
parameterization should be used, given by

ti =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , i = 1, . . . ,k,

i− k , i = k +1, . . . ,n,

n− k +1 , i = n+1, . . . ,n+ k.

(7.34)

Uniform knot sequences generate visually acceptable curves in most cases. How-
ever, their disadvantage is that they do not take into account the shape of the curve
in any way, and so in some cases they may not produce well-shaped, “smooth”
curves, for instance if control points are close to each other in areas where the
curvature of the curve changes abruptly. Such cases are better handled by pa-
rameterizations that take into account the geometry of the control polygon of the
curve.

One such parameterization often used in practice is the chord-length param-
eterization, in which the distances between the knots are proportional to the dis-
tances between corresponding control points. A clamped chord-length parame-
terization is

ti =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , i = 1, . . . ,k,

ti−1 + |pi−k−pi−k−1| , i = k +1, . . . ,n,

∑n−k
j=0|p j+1−p j| , i = n+1, . . . ,n+ k.

(7.35)
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Different chord-length parameterizations can be produced by changing the ex-
treme knots and/or by not requiring that the curve interpolates its first and last
control points.

Another similar parameterization is the centripetal parameterization, in which
the distances between the knots are proportional to the square root of the distances
between corresponding control points. A clamped centripetal parameterization is

ti =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , i = 1, . . . ,k,

ti−1 +
√|pi−k−pi−k−1| , i = k +1, . . . ,n,

∑n−k
j=0

√|p j+1−p j| , i = n+1, . . . ,n+ k.

(7.36)

Different centripetal parameterizations can be produced by changing the end con-
ditions imposed. The name of this parameterization comes from the fact that if a
particle moves on the curve at constant speed between successive knots, then its
motion will counterbalance the centripetal force exercised on it.

Several other parameterizations have appeared in the literature, usually suited
to specific applications. These are even better adapted to the geometry of the
control polygon of the curve, but their complexity renders them unsuitable for
general use. Drawing applications that require precision may use a simple initial
parameterization such as the ones described above, and then let the user modify it
interactively in order to generate the desired shape.

Knot insertion. An important operation on B-spline curves is knot insertion, the
addition of a knot to the knot sequence of the curve while maintaining its shape.
When inserting a knot, either the degree of the curve or the number of its control
points must be increased by one so that the correlation between the degree, the
number of control points, and the number of knots is maintained. In most cases it
is not desirable to increase the degree of the curve, as high-degree curves become
difficult to compute and manipulate. Therefore, during knot insertion a new con-
trol point is added—and some others are moved in order to maintain the shape of
the curve.

The new knot and control point provide greater flexibility to the shape of the
curve. In addition, it can be shown that as knots are inserted in the knot sequence
of a B-spline curve, its control polygon comes closer to the curve; this result
may be useful for drawing a B-spline curve, since after several knot insertions the
control polygon will constitute a good enough approximation of the curve itself.

Suppose, then, that we wish to insert a new knot s between knots ti and ti+1;
the new knot sequence will be t1, . . . , ti,s, ti+1, . . . , tn+k. Let r j, j = 0,1, . . . ,n +1
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Figure 7.9. Knot insertion in a cubic B-spline curve.

be the new control points of the curve. Since a control point pi only affects the
curve on the interval [ti, ti+k+1] where the corresponding B-spline function Nk

i (t)
is non-zero, only k of the new control points will be different from the original
ones. The control points that are not affected are

r j = p j , j = 0, . . . , i− k,

r j = p j−1 , j = i+1, . . . ,n+1,
(7.37a)

and we need only determine r j for j = i− k +1, . . . , i. It can be shown that these
are given by

r j =
t j+k− s

t j+k− t j
p j−1 +

s− t j

t j+k− t j
p j , j = i− k +1, . . . , i, (7.37b)

so they consist of linear interpolations of the original control points in suit-
able parametric intervals. This formula is called Boehm’s knot-insertion
formula [Boeh80]. The indices used in the above relations impose some restric-
tions on the interval where the knot insertion occurs; specifically, i must be be-
tween k and n (inclusive); in other words, a knot may be inserted only in the
domain of the curve [tk, tn+1].

Figure 7.9 demonstrates the insertion of the knot in a cubic B-spline curve. It
is apparent that the control polygon approaches the curve, as already mentioned.

7.3.6 Properties of B-Spline Curves

The above discussion of B-spline curves reveals that they constitute a very flex-
ible design tool, since they are formed by low-degree segments with guaranteed
continuity. Here we summarize their most important properties.
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Figure 7.10. Strong convex hull property of a quadratic B-spline curve.

• Local control. Unlike Bézier curves, which possess only pseudo-local con-
trol (see Section 7.2.5), B-spline curves exhibit full local control, so that
changing the position of a control point affects the shape of the curve only
on a restricted segment of the curve. Specifically, control point pi affects
only the part of the curve corresponding to the parametric interval [ti, ti+k+1)
in which the respective B-spline function Nk

i (t) has local support (is non-
zero).

• Strong convex-hull property. All the interpolation steps performed for the
generation of a B-spline curve are convex combinations of its control points
(provided that the knot sequence is non-decreasing). It is evident, then, that
the B-spline curve lies inside the convex hull of its control points.

Additionally, any B-spline curve satisfies this property in an even stronger
form: every point on the curve lies inside the convex hull of the (k + 1)
control points that contribute to its computation (see relation (7.32a) of the
de Boor algorithm), and, therefore, the whole curve lies inside the union of
these convex hulls. Figure 7.10 demonstrates this property for a quadratic
curve.

• Invariance under affine transformations. The B-spline curve is an affine
combination of its control points, and, therefore, it is invariant under affine
combinations. As a practical consequence, in order to apply an affine trans-
formation to a B-spline curve, it is sufficient to transform its control points.

We note that, in general, parameterizations are not maintained under affine
transformations, so, for instance, if a curve that was parameterized with a
chord-length parameterization is transformed, then distances between the
knots will no longer be proportional to the distances of the control points.
The only parameterization of those mentioned in Section 7.3.5 that is main-
tained is the uniform one.
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• Invariance under affine transformations of its parameter. The B-spline
curve remains invariant if its parameter is transformed affinely to u = a +
(b− a)t. Just as in the previous property, the chord-length and centripetal
parameterizations are not maintained under such parameter transforma-
tions.

• Strong linear precision. If the control points of a B-spline curve lie on a
straight line, then the curve degenerates to a straight line.

Additionally, if (k + 1) control points of the curve are collinear, the corre-
sponding segment of the curve is a straight line segment, due to the strong
convex-hull property.

• Strong variation-diminishing property. B-spline curves enjoy the variation-
diminishing property, so a planar B-spline curve may not be intersected by
an arbitrary straight line more times than its control polygon, and a non-
planar B-spline curve may not be intersected by a straight line or plane
more times than its control polygon.

B-spline curves satisfy this property in an even stronger form: it holds for
the polygon formed by the (k +1) control points that contribute to any spe-
cific point on the curve.

• Endpoint interpolation. As we have shown, a B-spline curve interpolates
its extreme control points only if a clamped knot sequence, in which the
first and last knots are repeated k times, is used. This setting is often used
in practice.

• Derivative. It can be shown that the tangent (first derivative) of a kth-degree
B-spline curve is

d
dt

Q(t) = k
n−1

∑
i=0

Nk−1
i (t)

1
ti+k+1− ti+1

(pi+1−pi). (7.38)

• Generalization of Bézier curves. A B-spline curve of degree k with (k +1)
control points p0,p1, . . . ,pk and knot sequence (0<k>,1<k>), where x<k>

denotes a knot with multiplicity k, is a Bézier curve of degree k with con-
trol points p0,p1, . . . ,pk. This can be verified by computing the B-spline
functions Nk

i (t) for this special knot sequence and noticing that they are
equivalent to the Bernstein polynomials Bk

i (t).
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The above properties suggest that low-degree B-spline curves are easier to
manipulate: the convex hull of the parts of the curve is closer to them, local
control is better since the part of the curve affected by moving any control point
is smaller, and the computations involved are more efficient. In practice, cubic B-
spline curves are used most often since they provide satisfactory flexibility with
rather low complexity.

7.3.7 B-Spline Curves in Bézier Form

As we saw, a kth-degree B-spline curve is composed of several kth-degree polyno-
mial segments defined over parametric intervals [ti, ti+1]. Each of these segments
may be written as a kth-degree Bézier curve for suitable (Bézier) control points.
In this way we obtain a piecewise Bézier form of the B-spline curve. This form
of the curve can be useful both theoretically, since Bézier curves are consider-
ably simpler and well studied, and practically, for example by using an efficient
method for drawing Bézier curves in order to draw the B-spline curve.

We shall present the Bézier form of quadratic (k = 2) and cubic (k = 3)
B-splines which, as already mentioned, are the ones most often used in practice.
The respective formulas for higher-degree curves are much more complicated.

Consider first a quadratic B-spline Q(t) and a specific segment Qi(t) de-
fined from (B-spline) control points pi−2, pi−1 and pi over the parametric interval
[ti, ti+1]. In Bézier form, this segment is defined by three (Bézier) control points
which we denote r0, r1, and r2. Since any Bézier curve interpolates its first and
last control points, r0 and r2 are exactly the endpoints of this segment, Qi(ti) and
Qi(ti+1), respectively. To determine r1, we can compare the B-spline and Bézier
forms of this segment and conclude that it coincides with the B-spline control
point pi−1. Overall, using the notation of the de Boor algorithm, we have

r0 = Qi(ti) =
ti+1− ti

ti+1− ti−1
pi−2 +

ti− ti−1

ti+1− ti−1
pi−1 = q1

i−1(ti),

r1 = pi−1,

r2 = Qi(ti+1) =
ti+2− ti+1

ti+2− ti
pi−1 +

ti+1− ti
ti+2− ti

pi = q1
i (ti+1).

(7.39)

Consider now a cubic B-spline Q(t) and a specific segment Qi(t) defined
from (B-spline) control points pi−3, pi−2, pi−1 and pi over the parametric interval
[ti, ti+1]. In Bézier form, this segment is defined by four (Bézier) control points,
which we denote r0, r1, r2, and r3. Again, the first and last control points r0

and r3 are exactly the endpoints of this segment, Qi(ti) and Qi(ti+1), respectively.
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The middle control points are now some of the intermediate points generated
during the interpolation steps of the B-spline. Using the notation of the de Boor
algorithm, we have

r0 =
ti+1− ti

ti+1− ti−1

(
ti+1− ti

ti+1− ti−2
pi−3 +

ti− ti−2

ti+1− ti−2
pi−2

)
+

ti− ti−1

ti+1− ti−1
r1,

r1 = q1
i−1(ti) =

ti+2− ti
ti+2− ti−1

pi−2 +
ti− ti−1

ti+2− ti−1
pi−1,

r2 = q1
i−1(ti+1) =

ti+2− ti+1

ti+2− ti−1
pi−2 +

ti+1− ti−1

ti+2− ti−1
pi−1,

r3 =
ti+2− ti+1

ti+2− ti
r2 +

ti+1− ti
ti+2− ti

(
ti+3− ti+1

ti+3− ti
pi−1 +

ti+1− ti
ti+3− ti

pi

)
.

(7.40)

7.4 Rational Bézier and B-Spline Curves

Bézier and B-spline curves presented above are the most basic free-form para-
metric curves used in computer-aided geometric design. Bézier curves provide a
useful expression of arbitrary degree single-segment curves, and B-spline curves
generalize them to express smooth, flexible, multi-segment curves.

Unfortunately, these curve representations have two disadvantages that can
potentially limit their usefulness in practical environments. First, they are not in-
variant to projections, which are not affine transformations; consequently, they
may not be handled easily (or even correctly!) in a 3D graphics scene. Second,
they cannot represent conic sections (circles, ellipses, parabolas, and hyperbo-
las) exactly, except for parabolas; however, conic sections are common modeling
objects, and in a drawing program it would be convenient to have a common rep-
resentation for all objects used.

These two problems are overcome by rational Bézier and B-spline curves.
Rational curves, in general, are polynomial parametric curves that use homoge-
neous coordinates (see Section 3.4.1). Given a (usual) polynomial curve

X(t) =

⎡⎣x(t)
y(t)
z(t)

⎤⎦
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(z(t) would be zero everywhere for a planar curve), we can construct a family of
rational curves

Xh(t) =

⎡⎢⎢⎣
w(t)x(t)
w(t)y(t)
w(t)z(t)

w(t)

⎤⎥⎥⎦ .

If w(t) is constant for all t in the domain of the curve, we get the original curve
X(t).

The definition of rational Bézier and B-spline curves is straightforward, since
the coordinates in parametric form are independent of each other; therefore, the
addition of the homogeneous coordinate simply requires extending the equations
with one more coordinate. Still, this addition lends interesting properties to the
curves, which we shall present in the following.

7.4.1 Rational Bézier Curves

Consider a sequence of homogeneous control points

ph
i = [wipi,wi]T = [wixi,wiyi,wizi,wi]T,

i = 0,1, . . . ,n. A homogeneous Bézier curve can be defined as

Ph(t) =
n

∑
i=0

Bn
i (t)p

h
i =

[
∑n

i=0 Bn
i (t)wipi

∑n
i=0 Bn

i (t)wi

]
.

To get to the usual Cartesian form of the curve, we divide all coordinates by
the homogeneous one, and we have (omitting the homogeneous coordinate that
becomes equal to 1),

Pr(t) =
1

∑n
i=0 Bn

i (t)wi

n

∑
i=0

Bn
i (t)wipi. (7.41)

This is an nth-degree rational Bézier curve. The (Cartesian) points pi are the
control points of the curve and the wi are the respective weights.

The weights are thus called because the value of each wi affects the contribu-
tion of the corresponding control point to the curve. If a weight wi is zero, then
the control point pi does not affect the curve at all. As wi increases, the curve
is pulled towards pi; however, it is only the ratio of the various wi that matters
and not their absolute values, since common factors are ruled out due to the di-
vision performed. As expected, if all weights are equal, the rational Bézier curve
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Figure 7.11. The effects of different weights to the shape of a rational Bézier
curve. The control polygon is the same as the one in Figure 7.2. The weights
used are [1,w1,1,1] where w1 is shown on each curve.

reduces to a normal Bézier curve. Weights are chosen to be positive, because neg-
ative values have unpredictable and undesirable effect on the shape of the curve:
first, the convex-hull property is not maintained, since the curve is no longer a
convex combination of its control points, and second, poles may be created that
would make the curve go to infinity. Overall, the weights of a rational Bézier
curve offer an additional level of local control on the shape of the curve.

These properties are demonstrated in Figure 7.11, where the effect of w1 on
a cubic rational Bézier curve is shown. For w1 > 0, as w1 increases the curve is
pulled towards p1. For w1 = 1, all the weights are equal and the curve is a simple
Bézier curve (compare to Figure 7.2). For w1 = 0, the control point p1 does not
affect the curve. Finally, for w1 < 0, the curve is pushed away from p1 in a mostly
unpredictable manner.

The procedure outlined above implies that a rational Bézier curve Pr(t) is
actually the perspective projection of a higher-dimension regular Bézier curve,
the homogeneous one Ph(t), onto the plane w = 1 (refer back to Figure 3.6 for a
visualization of homogeneous coordinates).

Rational Bézier curves retain most of the properties of normal Bézier curves.
A notable difference concerns the convex-hull and variation-diminishing proper-
ties, which hold only if the weights are non-negative. Furthermore, rational Bézier
curves are invariant not only under affine transformations but also under projec-
tive transformations; this property stems from the fact that they are themselves
projections of the respective homogeneous curves. Therefore, in order to project
a rational Bézier curve it suffices to project its control points.
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Rational Bézier curves can be evaluated using the familiar de Casteljau algo-
rithm for the homogeneous control points ph

i and performing the homogeneous
division at the end. An alternative formulation, which may provide higher nu-
merical accuracy at the cost of increased computational complexity, is to perform
the division at each step, thus working effectively with the basic homogeneous
representation of the intermediate points anew at each step of the algorithm.

Conic sections as rational Bézier curves. Conic sections (circles, ellipses,
parabolas and hyperbolas) are the various curves resulting from the intersection
of a plane and a cone at different angles [Weis04]. Their algebraic equations have
a common form,

Ax2 +Bxy+Cy2 +Dx+Ey+F = 0, (7.42)

with the following constraints for each kind of curve:

• If B2− 4AC < 0, the curve is an ellipse. If, in addition, B = 0 and A = C,
the curve is a circle.

• If B2−4AC = 0, the curve is a parabola.

• If B2−4AC > 0, the curve is a hyperbola.

Figure 7.12. Conics as rational quadratic Bézier curves: ellipse (|w1| < 1),
parabola (|w1| = 1), hyperbola (|w1| > 1). The solid segment of each curve cor-
responds to w1 > 0 and the dashed (“complementary”) segment corresponds to
w1 < 0. It can be seen that the “infinite” segments of the parabola and the hyper-
bola correspond to w1 < 0.
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θ

Figure 7.13. A circular arc constructed as a rational quadratic Bézier curve. The
weight for the middle control point is w1 = sinθ .

The only conic section that can be represented by a non-rational polyno-
mial parametric equation is the parabola; in fact, any quadratic Bézier curve is
a parabolic segment. The other conic sections can only be represented by ratio-
nal curves, specifically by rational quadratic Bézier curves. It can be shown (see
also Exercise 8) that a rational quadratic Bézier curve with (non-collinear) control
points p0, p1, p2 and corresponding weights 1, w1, 1, is

• an elliptical segment, if |w1|< 1,

• a parabolic segment, if |w1|= 1 (then the curve is a normal Bézier curve),

• a hyperbolic segment, if |w1|> 1.

Figure 7.12 shows all the possibilities.
Circular arcs deserve special attention. Figure 7.13 shows the control polygon

of a rational Bézier curve representing a circular arc. It can be shown that in this
case the control polygon must be an isosceles triangle, |p0p1| = |p1p2|, and the
weight of p1 is w1 = sinθ , where θ is the half-angle between p0p1 and p1p2.

7.4.2 Rational B-Spline Curves—NURBS

Having presented rational Bézier curves, the construction of rational B-spline
curves is straightforward. Given a sequence of control points pi, i = 0,1, . . . ,n,
a sequence of corresponding weights wi, i = 0,1, . . . ,n, and a knot sequence ti,
i = 1,2, . . . ,n+ k, a rational B-spline curve of degree k is given by

Qr(t) =
1

∑n
i=0 Nn

i (t)wi

n

∑
i=0

Nn
i (t)wipi. (7.43)

Rational B-spline curves with arbitrary (not necessarily uniform) knot sequence
are usually referred to as NURBS, non-uniform rational B-splines.
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NURBS retain most of the properties of B-spline curves, with the strong
convex-hull and strong variation-diminishing properties holding only if the weights
are non-negative; also NURBS are invariant under projective transformations.
The weights have the same properties mentioned for rational Bézier curves, thus
offering additional flexibility to the designer.

NURBS are the most general of all curve representations examined up to this
point: under suitable conditions they can represent simple B-spline curves (if all
the weights are equal), simple and rational Bézier curves (see the last property of
B-splines in Section 7.3.6), and conic sections (see also Exercise 9). Moreover,
they possess all the desirable properties of the other types of curves, notably local
control, and they are invariant under both affine and projective transformations.
For all these reasons, NURBS are the standard tool for representing freeform
curves in CAGD applications.

7.5 Interpolation Curves
Bézier and B-spline curves that we analyzed in the previous sections are approx-
imation curves, since in general they do not pass through their control points,
which only provide a good indication of their shape. However, there is often the
need to construct interpolation curves that pass through given points.

This problem can be formulated as follows: given a set of points p0, p1, . . . ,pn

and corresponding parametric values (knots) t0, t1, . . . , tn, find a parametric curve
P(t) that satisfies

P(ti) = pi , i = 0,1, . . . ,n. (7.44)

Simple interpolation methods construct P(t) as a single polynomial curve of
degree n. We note that this curve is unique: it is determined by the (n+1) coeffi-
cients of the respective polynomial, which may be computed as the single solution
of a linear system of (n+1) equations formed by (7.44). This way of determining
the interpolation curve by solving the linear system is not practical at all. Below
we present two other methods for generating this curve, directly using Lagrange
polynomials and recursively using Aitken’s algorithm.

In spite of the virtues of these methods, the use of a single polynomial seg-
ment to interpolate a set of points has several drawbacks. First, the interpolation
of several points requires a high-degree polynomial and, consequently, the com-
putations involved are complex and numerically unstable. Second, the generated
curve exhibits oscillations (Figure 7.14) and does not follow its control polygon
in a predictable way; this defect compromises the usefulness of these methods.
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Figure 7.14. Oscillations of a high-degree interpolation curve.

To overcome these drawbacks, interpolation is usually performed using curves
comprised of several low-degree segments, joined together with continuity con-
straints. In the following, we examine interpolation with cubic Hermite curves
and cubic B-splines.

7.5.1 Simple Polynomial Interpolation

A simple way to construct an interpolation curve that satisfies the conditions set
above is by using the nth-degree Lagrange polynomials,

Ln
i (t) =

n

∏
j=0
j =i

t− t j

ti− t j
, i = 0,1, . . . ,n. (7.45)

Then, the interpolation curve is

P(t) =
n

∑
i=0

Ln
i (t)pi(t). (7.46)

Regarding the Lagrange polynomials, we observe that the ith polynomial
Ln

i (t) is zero on every knot t j except for the ith knot ti on which its value is 1;
as a result, the curve satisfies condition (7.44). Further characteristics of the La-
grange polynomials reveal properties of the interpolation curve:

• Invariance under affine transformations. This holds since the Lagrange
polynomials sum to 1; therefore, the interpolation curve is a barycentric
combination of its control points.

• No convex-hull property. The Lagrange polynomials are neither always
positive nor less than 1; therefore, the curve is not contained in the convex
hull of its control points.
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• Linear precision. If all control points lie on a straight line then the curve
also has the shape of a straight line.

• No variation-diminishing property. The same argument that supports the
absence of the convex-hull property indicates that the interpolation curve
does not satisfy the variation-diminishing property; in other words, as al-
ready mentioned, the curve may demonstrate oscillations.

Aitken’s algorithm provides a recursive evaluation of the interpolation curve,
similar to the de Casteljau and the de Boor algorithms:

1. For the required value of t, set

p0
i (t) = pi , i = 0,1, . . . ,n. (7.47a)

2. Perform the linear interpolation steps

pr
i (t) =

ti+r− t
ti+r− ti

pr−1
i (t)+

t− ti
ti+r− ti

pr−1
i+1 (t) ,

r = 1,2, . . . ,n,

i = 0,1, . . . ,n− r.
(7.47b)

0p

1p

2p

3p

1

0p

1

1p

1

2p

2
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3

0p

0t 2t 3tt1t

Figure 7.15. Aitken’s algorithm for the construction of the interpolation curve
(adapted from [Fari01]).
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3. Then, the point on the curve corresponding to parametric value t is

P(t) = pn
0(t).

It can be observed that in the linear interpolation steps performed, the param-
eter t does not always lie between ti and ti+r, and, consequently, the intermediate
points generated are not convex combinations of the points in the previous step
(Figure 7.15).

7.5.2 Hermite Curves

The interpolation problem, as stated above, concerns finding a curve that passes
through given points. We may, however, seek a curve that interpolates other el-
ements, such as tangents. In this section, we present interpolation with (cubic)
Hermite curves that are required to interpolate given points and to have given
tangents at these points.

Cubic Hermite interpolation. Suppose, initially, that we are given two points p0

and p1 and corresponding tangent vectors −→m0 and −→m1. In the simplest case, we
are seeking a cubic curve H(t), t ∈ [0,1] (the cubic Hermite curve), that satisfies
the following relations:

H(0) = p0, H′(0) =−→m0,

H(1) = p1, H′(1) =−→m1.
(7.48)

Notice that the four elements provided are adequate to determine a cubic curve.
In our analysis of Bézier curves, we showed that every cubic polynomial curve

may be written in the form of a Bézier curve; so we express the Hermite curve as

H(t) =
n

∑
i=0

Bn
i (t)qi , t ∈ [0,1] (7.49)

for some unknown Bézier control points qi. Using further properties of Bézier
curves, we have

p0 = H(0) = q0,

p1 = H(1) = q3,

and −→m0 = H′(0) = 3(q1−q0) ⇔ q1 = p0 + 1
3
−→m0,

−→m1 = H′(1) = 3(q3−q2) ⇔ q2 = p1− 1
3
−→m1.
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Therefore, the curve is

H(t) = (1− t)3p0 +3t(1− t)2 (p0 + 1
3
−→m0
)
+3t2(1− t)

(
p1− 1

3
−→m1
)
+ t3p1

or, expressing it with respect to its defining elements,

H(t) = H3
0 (t)p0 +H3

1 (t)p1 +H3
2 (t)−→m0 +H3

3 (t)−→m1 , t ∈ [0,1], (7.50)

where H3
i (t) are the cubic Hermite polynomials

H3
0 (t) = 2t3−3t2 +1,

H3
1 (t) =−2t3 +3t2,

H3
2 (t) = t3−2t2 + t,

H3
3 (t) = t3− t2.

(7.51)

In case the curve is defined over an arbitrary parametric interval [a,b], these
relations must be modified. Unlike Bézier curves, Hermite curves are not invari-
ant to affine transformations of their parameter; in other words, their defining ele-
ments (specifically −→m0 and −→m1) must be altered for the curve to remain the same
when the parameter t ∈ [0,1] is changed to u ∈ [a,b] by setting u = (1− t)a+ tb.
Recalling relations (7.18), the tangents at the endpoints are now

−→m0 = H′(a) =
1

b−a
3(q1−q0),

−→m1 = H′(b) =
1

b−a
3(q3−q2),

and working as above we deduce that

H(u) = H3
0 (u)p0 +H3

1 (u)p1 +H3
2 (u)(b−a)−→m0 +H3

3 (u)(b−a)−→m1 ,

u ∈ [a,b], (7.52)

so the tangent vectors should be divided by (b− a) in order to obtain the curve
in the form (7.50). The physical explanation of this fact is rather straightforward:
using H(t) we traverse the curve in one time unit (the length of the interval [0,1]);
if we would like to traverse it in (b−a) time units (the length of the new interval
[a,b]), our speed, represented by the tangent vectors, must be smaller by a factor
of (b−a).
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Piecewise cubic Hermite interpolation. The practical interest of interpolating
only two points and the respective tangent vectors is limited. It would be more
interesting to construct a smooth curve that interpolates a sequence of points p0,
p1, . . . ,pn and respective tangent vectors−→m0, −→m1, . . . ,

−→mn at parametric values t0,
t1, . . . , tn.

It is possible to construct this curve as a piecewise cubic Hermite curve. In
fact, independent Hermite segments, one for each parametric interval [ti, ti+1],
may be constructed, and they will constitute a C1-continuous curve since they
share the tangent vectors −→m i at their endpoints. Each segment will be given by

Hi(u) = H3
0 (u)pi +H3

1 (u)pi+1 +H3
2 (u)(ti+1− ti)

−→m i +H3
3 (u)(ti+1− ti)

−→m i+1 ,

u ∈ [ti, ti+1].

This construction of an interpolating curve provides great flexibility to a po-
tential designer, since it allows her to modify the shape of the curve by altering
the tangent vectors at the interpolated points. Even greater flexibility is easily
achievable by requiring only G1 geometric continuity at the joins, allowing the
tangent vectors at the end of a segment and at the beginning of the next segment
to be a multiple of each other instead of being equal.

Automatic generation of tangents. Nonetheless, in some situations, it might
not be desirable to specify the tangent vectors at the knots explicitly, or it might
not be easy to determine tangent vectors that produce a well-shaped curve. In
such cases, an automated method for computing tangent vectors is needed. The
simplest methods seek a curve that is C1 continuous at the joins, whereas more
complicated methods produce a C2 continuous curve.

A natural approach for the computation of tangent vectors is to set−→m i parallel
to the line through the two neighboring control points pi−1 and pi+1:

−→m i = 1
2 (1− c)(pi+1−pi−1) , i = 1,2, . . . ,n−1. (7.53)

The constant c is a tension parameter that affects the norm of the tangent vectors.
The curves generated using these tangent vectors are called cardinal splines. If
c = 0 then −→m i = 1

2 (pi+1−pi−1), and the curves are called Catmull–Rom splines.
This procedure cannot determine the tangents −→m0 and −→mn at the first and last
control points.

A second approach is to use Bessel tangents: the tangent vector−→m i is set equal
to the tangent of the parabola that interpolates the three neighboring points pi−1,
pi, and pi+1. If Qi(u),u ∈ [ti−1, ti+1] is this parabola, which may be computed
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using Lagrange polynomials or Aitken’s algorithm, then

−→m i =
d
du

Qi(ti) , i = 1,2, . . . ,n−1. (7.54a)

For the first and last tangent vectors, we may use the tangents of the first and last
parabolas, respectively,

−→m0 =
d
du

Q1(t0) and −→mn =
d
du

Qn−1(tn). (7.54b)

Performing the necessary computations, we reach the following formulas for the
tangent vectors in terms of the elements of the curve:

−→m0 =
−t2− t1 +2t0

(t2− t0)(t1− t0)
p0 +

t2− t0
(t2− t1)(t1− t0)

p1

+
t1− t0

(t2− t1)(t2− t0)
p2,

−→m i =− ti+1− ti
(ti+1− ti−1)(ti− ti−1)

pi−1 +
ti+1−2ti + ti−1

(ti+1− ti)(ti− ti−1)
pi

+
ti− ti−1

(ti+1− ti)(ti+1− ti−1)
pi+1,

−→mn =
tn− tn−1

(tn− tn−2)(tn−1− tn−2)
pn−2− tn− tn−2

(tn− tn−1)(tn−1− tn−2)
pn−1

+
2tn− tn−1− tn−2

(tn− tn−1)(tn− tn−2)
pn.

(7.55)

We notice that the Bessel tangents−→m0 and−→mn at the ends of the curve can be used
independently, in order to complement the tangents of cardinal splines mentioned
above.

The two previous methods for computing the tangent vectors generate C1 con-
tinuous curves. In order to create a curve that has C2 continuity at the joins of its
constituting cubic segments, we must require that the second derivatives of each
pair of successive segments are equal at the joins. If Hi(u), u ∈ [ti, ti+1] is the
segment that interpolates pi and pi+1, the following relation must hold:

d2

du2 Hi−1(ti) =
d2

du2 Hi(ti).

Using (7.52), we differentiate the Hermite curve segments twice and get

(ti+1− ti)
−→m i−1 +2(ti+1− ti−1)

−→m i +(ti− ti−1)
−→m i+1 =

3
ti+1− ti
ti− ti−1

(pi−pi−1)+3
ti− ti−1

ti+1− ti
(pi+1−pi). (7.56)
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This relation holds for i = 1,2, . . . ,n−1, thus providing (n−1) equations for the
computation of the (n+1) tangent vectors mi, i = 0,1, . . . ,n.

Since we have used all the available elements of the curve, we must impose
two additional conditions on the interpolation curve, in order to create two more
relations that will allow us to compute the tangent vectors. This situation may be
unfortunate, but on the other hand, it offers some flexibility to the shape of the
curve. It is customary to apply conditions referring to the ends of the curve, from
which the values of −→m0 and −→mn are computed. The easiest approach would be
to allow the user to supply arbitrary values for these two tangent vectors; alterna-
tively, geometric conditions that take into account the shape of the curve near its
ends are applied. We will present such conditions below, for now we suppose that−→m0 and −→mn are known. By combining equations (7.56) for all i, we construct the
following linear system:⎡⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0
α1 β1 γ1 0
...

. . .
. . .

. . .
...

0 αn−1 βn−1 γn−1

0 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎣
−→m0−→m1

...−→mn−1−→mn

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
−→c 0−→c 1

...−→c n−1−→c n

⎤⎥⎥⎥⎥⎥⎦ , (7.57)

where we set

αi = (ti+1− ti),
−→c 0 =−→m0,

βi = 2(ti+1− ti−1),
−→c i = 3

ti+1− ti
ti− ti−1

(pi−pi−1)+3
ti− ti−1

ti+1− ti
(pi+1−pi),

γi = (ti− ti−1),
−→c n =−→mn.

Solving this system will provide the tangent vectors −→m i so that the interpolating
curve is C2 continuous. It can be proven that this system always has a unique
solution. Moreover, it is a tridiagonal system, and it may be solved efficiently
using a direct method such as LU decomposition.

End conditions for C2 piecewise Hermite interpolation. The additional con-
ditions necessary to determine the tangents for a C2 piecewise Hermite curve are
called end conditions (or boundary conditions), since they involve the tangent
vectors −→m0 and −→mn at the ends of the curve.

One such condition is the Bessel end condition. The Bessel tangents computed
in (7.55) for −→m0 and −→mn are used so that the tangents at the ends are those of the
parabolas that interpolate the first and last three control points. It suffices, then,
to replace −→c 0 and −→c n in the system (7.57) with these expressions.
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Another condition is the quadratic end condition, which requires that the sec-
ond derivatives of the interpolation curve at the first two knots are equal (and
similarly for the last two knots). Using our previous notation the following rela-
tions must hold:

d2

du2 H0(t0) =
d2

du2 H0(t1) and
d2

du2 Hn−1(tn−1) =
d2

du2 Hn−1(tn).

By differentiating the Hermite curve twice, we can deduce that under this assump-
tion −→m0 +−→m1 = 2

p1−p0

t1− t0
and −→mn−1 +−→mn = 2

pn−pn−1

tn− tn−1
.

These relations must be plugged into the system (7.57), replacing its first and last
lines in full; fortunately, even after this change, the system remains tridiagonal
and can be solved efficiently.

The last condition that we shall analyze is the physical end condition, which
requires that the second derivatives vanish (are equal to zero) at the ends of the
curve. If this condition is applied, the interpolating curve becomes a straight line
near its ends, an effect which might or might not be desirable depending on the
application. The name of this condition comes from the fact that the generated
curve resembles the mechanical (or physical) spline, which is pinned at its ends
so that its curvature vanishes. Working similarly to the quadratic end condition,
we get

2−→m0 +−→m1 = 3
p1−p0

t1− t0
and −→mn−1 +2−→mn = 3

pn−pn−1

tn− tn−1
,

and, again, we should replace the first and last equation of the system (7.57) with
these equations.

7.5.3 Cubic B-Spline Interpolation�

B-spline curves, as studied above, approximate a given set of control points. In
this section we show how to construct a cubic B-spline curve that interpolates a
given set of points.

We shall denote the interpolating B-spline curve as Q(t); we require that the
given parametric values ti at which the curve interpolates points pi,

Q(ti) = pi , i = 0,1, . . . ,n, (7.58)

are also used as the knots of the B-spline curve. Our aim is to find the control
points qi of this B-spline curve.
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Supposing that the given points pi are all different from each other, the values
of ti should also be different from each other. The first and the last points are easy
to interpolate, if a clamped knot sequence is used. Therefore, we add knots t−2,
t−1 and tn+1, tn+2 such that

t−2 = t−1 = t0,

tn = tn+1 = tn+2.

Given this knot sequence, the control points are qi, i = −3,−2, . . . ,n− 1 (the
range of indices for the control points is imposed by the range of the indices of
the knots). The first and the last control points are already known,

q−3 = p0,

qn−1 = pn.
(7.59)

For the remaining control points, the definition of the cubic B-spline curve and
(7.58) give

p j = Q(t j) =
n−1

∑
i=−3

N3
i (t j)qi , j = 1,2, . . . ,n−1. (7.60)

The value of the cubic B-spline basis functions N3
i (t) at the knots t j can be

computed as follows: We start by evaluating the quadratic B-spline basis func-
tions (7.28) at the knots, to get the simplified representation:

N2
i (t j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 , j = i,

ti+1−ti
ti+2−ti

, j = i+1,

ti+3−ti+2
ti+3−ti+1

, j = i+2,

0 , otherwise.

Then, we apply the B-spline basis definition (7.31b) to get

N3
i (t j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ti+1−ti
ti+3−ti

ti+1−ti
ti+2−ti

, j = i+1,

ti+2−ti
ti+3−ti

ti+3−ti+2
ti+3−ti+1

+ ti+4−ti+2
ti+4−ti+1

ti+2−ti+1
ti+3−ti+1

, j = i+2,

ti+4−ti+3
ti+4−ti+1

ti+4−ti+3
ti+4−ti+2

, j = i+3,

0 , otherwise.
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Finally, we change the indices in order to get the N3
i (t j) for a constant j and

for all suitable i,

N3
j−1(t j) =

t j− t j−1

t j+2− t j−1

t j− t j−1

t j+1− t j−1
,

N3
j−2(t j) =

t j− t j−2

t j+1− t j−2

t j+1− t j

t j+1− t j−1
+

t j+2− t j

t j+2− t j−1

t j− t j−1

t j+1− t j−1
,

N3
j−3(t j) =

t j+1− t j

t j+1− t j−2

t j+1− t j

t j+1− t j−1
.

(7.61)

Therefore (7.60) becomes

p j = N3
j−3(t j)q j−3 +N3

j−2(t j)q j−2 +N3
j−1(t j)q j−1.

Substituting N3
i (t j) from (7.61), we get

(t j+1− t j)2

t j+1− t j−2
q j−3

+
[
(t j− t j−2)(t j+1− t j)

t j+1− t j−2
+

(t j+2− t j)(t j− t j−1)
t j+2− t j−1

]
q j−2

+
(t j− t j−1)2

t j+2− t j−1
q j−1 = (t j+1− t j−1)p j.

(7.62)

Relations (7.59) and (7.62) provide (n+1) linear equations for the determina-
tion of the (n+3) unknown control points qi, and, therefore, two more equations
are needed in order to create a soluble system. The situation is very similar to the
one that occured when we required that a Hermite interpolation curve be C2 at the
joins of its segments. This coincidence is not accidental, since in both cases we
seek a piecewise cubic curve that is C2 continuous and interpolates (n+1) given
points; the only difference is that in the former case the curve was expressed as
a piecewise Hermite curve whereas in the latter it is given as a B-spline curve.
Actually it can be proven that any expression of such a curve would require two
additional conditions apart from the given interpolated points.

For the B-spline curve examined, it is customary to specify conditions for
the two extreme unknown control points q−2 and q−1. We will present such
conditions later; for now, we assume that q−2 and q−1 are known.
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The linear system of (7.59) and (7.62) can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0 0
0 1 0 0 . . . 0 0
0 α1 β1 γ1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 αn−1 βn−1 γn−1 0
0 0 . . . 0 0 1 0
0 0 0 . . . 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q−3

q−2

q−1
...

qn−3

qn−2

qn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0

r1

(t2− t0)p1
...

(tn− tn−2)pn−1

r2

pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.63)

where we set α j, β j, γ j the coefficients of q j−3, q j−2, q j−1 from (7.62), respec-
tively, and also r1 = q−2 and r2 = qn−2. This is a tridiagonal system that can be
solved efficiently using a direct method such as LU decomposition.

End conditions. In the case of B-spline interpolation, the end conditions re-
quired to complete the system (7.63) refer to the second and the penultimate con-
trol points, q−2 and qn−2. We shall examine the same end conditions as for cubic
Hermite interpolation, the only difference being that now the equations will be
expressed in terms of the given points pi instead of the tangent vectors.

For the Bessel end condition the equations can be computed as follows. At
the start of the curve, the tangent is

Q′(t0) =
3

t1− t0
(q−2−q−3) =

3
t1− t0

(q−2−p0),

and equating this with the expression of −→m0, which is the required tangent, de-
rived in (7.55), we have

q−2 =
1
3

(
2t2− t1− t0

t2− t0
p0− t2− t0

t2− t1
p1− (t1− t0)2

(t2− t1)(t2− t0)
p2

)
.

Working similarly for the end of the curve, we reach

qn−2 =
1
3

(
− (tn−1− tn)2

(tn−2− tn−1)(tn−2− tn)
pn−2 +

tn−2− tn
tn−2− tn−1

pn−1

+
2tn−2− tn−1− tn

tn−2− tn)
pn

)
.

These two expressions for q−2 and qn−2 must replace r1 and r2 in system (7.63).
In order to apply the quadratic end condition, we may write the first (and sim-

ilarly the last) segment of the B-spline curve, defined over the parametric interval
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[t0, t1] as a cubic Bézier curve (see Section 7.3.7) and differentiate this form of the
curve twice. In this way we end up with the relations

q−2 −q−1 =
t2 − t0

3(t1 − t0)
(p0 −p1),

qn−3 −qn−2 =
tn − tn−2

3(tn − tn−1)
(pn−1 −pn),

which must replace the second and the penultimate equations of system (7.63) in
full; the system remains tridiagonal even after this change.

Finally, the natural end condition can be applied similarly. The respective
equations are

(t2 + t1 −2t0)q−2 − (t1 − t0)q−1 = (t2 − t0)p0,

(tn − tn−1)qn−3 − (2tn − tn−1 − tn−2)qn−2 = −(tn − tn−2)pn.

7.5.4 Parameterizations of Piecewise Interpolation Curves

In all our discussion of piecewise parametric interpolation curves, we assumed
that the knots of the curve (the parametric values at which the curve interpolates
the given points) are given by the user. However, this is seldom the case, as
the user is interested only in providing the points that the curve interpolates. In
such cases, the required knots may be computed algorithmically, possibly using
the given points in order to generate better-shaped curves. The parameterization
methods that we have presented for general B-spline curves (see Section 7.3.5)
can be applied here as well.

The simplest parameterization is the uniform one, in which the knots are
equidistant. This parameterization is used in practice in spite of the fact that
other methods may produce better curves, since it greatly simplifies the linear
systems (7.57) and (7.63) that must be solved to produce C2 cubic interpolating
curves.

More complex parameterizations, which usually generate smoother curves,
can be constructed by taking into account the given interpolated points pi. A
chord-length parameterization can be computed from the relation

ti+2 − ti+1

ti+1 − ti
=

|pi+2 −pi+1|
|pi+1 −pi|

and a centripetal parameterization can be computed from

ti+2 − ti+1

ti+1 − ti
=

√
|pi+2 −pi+1|
|pi+1 −pi| .
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In both of these cases, the value of the initial knot t0 can be specified arbitrarily.
We notice that in contrast to B-spline parameterizations, which use the control
points of the curve, parameterizations of interpolating curves use the points being
interpolated since the shape of the curve should be adapted to them.

7.6 Surfaces
Bézier and B-spline curves can be used to generate parametric surfaces in several
ways. The most straightforward and intuitive type of surfaces are tensor product
Bézier and B-spline surfaces. It will be seen that these forms of parametric sur-
faces are simple generalizations of the respective curves, thus inheriting most of
their properties.

7.6.1 Tensor Product Bézier Surfaces

Consider a Bézier curve of degree m with control points pi, i = 0,1, . . . ,m, given
in terms of a parameter u,

Pm(u) =
m

∑
i=0

Bm
i (u)pi , u ∈ [0,1].

Consider further that each control point pi traces a Bézier curve of degree n (con-
stant for all control points) with control points pi, j, j = 0,1, . . . ,n, in terms of a
parameter v,

Pn
i (v) =

n

∑
j=0

Bn
j(v)pi, j , v ∈ [0,1].

Then every point of the initial curve will trace a Bézier curve of degree n, and all
these curves will generate a tensor product Bézier surface. The equation of this
surface can be formed if we replace the points pi in the first of the above equations
with the curve Pn

i (v) that it traces. Thus, the equation of a tensor product Bézier
surface Pm,n(u,v) of degree m in u and degree n in v is

Pm,n(u,v) =
m

∑
i=0

Bm
i (u)

(
n

∑
j=0

Bn
j(v)pi, j

)

=
m

∑
i=0

n

∑
j=0

Bm
i (u)Bn

j(v)pi, j , u ∈ [0,1], v ∈ [0,1].

(7.64)

The Bézier curves that were used for the definition of the surface have (m+1)×
(n + 1) control points, which are the control points (also called the control net)
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Figure 7.16. A tensor product Bézier surface of degrees 2 and 3.

of the tensor product Bézier surface. These points can be shown in a rectangular
arrangement:

v→
u p0,0 p0,1 . . . p0,n

↓ p1,0 p1,1 . . . p1,n
...

...
...

pm,0 pm,1 . . . pm,n

(7.65)

The isoparametric curves that correspond to u = 0, u = 1, v = 0, and v = 1 are
called boundary curves of the Bézier surface. Notice that the control points pi

of the boundary curve Pm(u) corresponding to v = 0 that we used initially are
pi = pi,0 using the current notation.

The construction of a tensor product Bézier surface is symmetric: we may
start off from the boundary curve u = 0 and trace a curve with each of its control
points to construct the same surface as above; this can be verified by interchang-
ing the two summations in (7.64). Generally, the same surface is constructed by
starting with any of the boundary curves.

The de Casteljau algorithm for tensor product Bézier surfaces. The de
Casteljau algorithm is very important for the processing of Bézier curves, since
it is applied to the efficient computation of points on the curve as well as to the
subdivision of the curve into two segments of the same type; subdivision has in-
teresting applications as well, an important one being the drawing of the Bézier
curve. The same algorithm can be used for tensor product Bézier surfaces, with
similar applications; this should be expected since surfaces were defined exclu-
sively in terms of Bézier curves.

Specifically, in order to compute a point Pm,n(u,v) of a Bézier surface, we first
apply the de Casteljau algorithm to each of the rows of the table in (7.65) (in other
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point bezierSurfacePoint ( int m, int n,

point[][] controlPt,

float u, float v )

{

point tmpPt[n+1];

point curvePt[n+1];

for (i=0; i <= m; i++) {

for (j=0; j <= n; j++) {

tempPt[j] = controlPt[i][j];

}

curvePt[i] = bezierPoint(n, tempPt, v);

}

return bezierPoint(m, curvePt, u);

}

Listing 7.3: The de Casteljau algorithm for surfaces.

words, to each of the curves traced by pi,0); in this way m+1 points are computed,
which correspond to the given value of the parameter v on these curves. These are
the control points of the isoparametric curve corresponding to this value of v. The
required point Pm,n(u,v) of the surface is the point on this curve that corresponds
to the value of u, and it can be computed by another application of the de Casteljau
algorithm.

The pseudocode in Listing 7.3 implements the de Casteljau algorithm for a
tensor product Bézier surface. It uses the de Casteljau algorithm for curves pro-
vided in Section 7.2.3.

Properties of tensor product Bézier surfaces. The properties of tensor prod-
uct Bézier surfaces are generalizations of the respective properties of Bézier
curves. Bézier surfaces enjoy the convex-hull property, invariance under affine
transformations, invariance under affine transformations of their parameters, sym-
metry with respect to their control points, planar precision, boundary control
points interpolation, and pseudo-local control. The only property that does not
generalize to surfaces is the variation-diminishing property.

Concerning the derivatives of a tensor product Bézier surface, we note that
the most interesting ones are the partial derivatives with respect to each of the
parameters; they are the tangents of isoparametric curves of the surface. In the
case of a tensor product Bézier surface, these derivatives can be computed easily,
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since the parameters u and v are separated. The partial derivative with respect to
u is

∂
∂u

Pm,n(u,v) =
n

∑
j=0

Bn
j(v)

(
∂
∂u

m

∑
i=0

Bm
i (u)pi, j

)
,

where the term in parentheses is only dependent on u; therefore, it may be com-
puted as the derivative of a Bézier curve, see relation (7.16). To apply this
formula, one must differentiate all the mth-degree Bézier curves formed by the
columns of the control net for the requested value of u; then these derivatives are
considered as control points of a Bézier curve, which must be evaluated at the
requested value of v to give the value of the surface derivative.

Bézier surface subdivision. Subdivision of a tensor product Bézier surface is a
simple generalization of Bézier curve subdivision. In this case, a pair of paramet-
ric values (u0,v0) is chosen, and the surface is subdivided into four sub-surfaces
of the same type, whose control points are produced during the evaluation of the
surface point Pm,n(u0,v0) using the de Casteljau algorithm.

The process can be outlined as follows: The de Casteljau algorithm is ap-
plied to every line of the control point table (7.65), thus subdividing each of the
corresponding curves into a “left” and a “right” segment, yielding two sets of
(m+1)× (n+1) control points. Then the de Casteljau algorithm is applied to all
the 2× (m+1)× (n+1) columns of control points, subdividing each into a “top”
and a “bottom” segment, thus producing in total four sets of (m + 1)× (n + 1)
control points that define respective Bézier surfaces.

This subdivision process can be used in several applications involving tensor
product Bézier surfaces, such as drawing a Bézier surface and finding intersec-
tions between a Bézier surface and a line or plane.

In order to draw a tensor product Bézier surface, we take into account that if
its control points are coplanar, then the surface degenerates into a planar polygon
defined by the four extreme control points. Therefore, to draw a Bézier surface we
check whether its control points are coplanar (up to a given tolerance level); if this
holds, we simply draw the aforementioned polygon; otherwise we subdivide the
surface into four subsurfaces, for an arbitrary pair of parametric values (u0,v0),
and perform the same procedure recursively for each of the subsurfaces.

The other applications of Bézier surface subdivision can be adapted similarly
from their counterparts involving Bézier curves.



�

�

�

�

�

�

�

�

7.6. Surfaces 243

7.6.2 Tensor Product B-Spline Surfaces

Tensor product Bézier surfaces have, as we saw, common properties with Bézier
curves; inevitably, they also have common disadvantages, the most important one
being the need to use high-degree surfaces in order to describe complex shapes.
For such surfaces, it is preferable to utilize techniques similar to the ones em-
ployed in curves and to construct smooth surfaces by joining together low-degree
surfaces with suitable continuity constraints.

Tensor product B-spline surfaces are an instance of such surfaces. They are
constructed by parametric surfaces of degree k with respect to u and degree � with
respect to v, joined together with continuity Ck−1 with respect to u and C�−1 with
respect to v. They are generated from B-spline curves, in a manner similar to the
generation of tensor product Bézier surfaces from Bézier curves: we start off with
a kth-degree B-spline curve given in terms of the parameter u and consider that its
points trace �th-degree B-spline curves in terms of the parameter v; the generated
surface is a tensor product B-spline surface.

A tensor product B-spline surface has a set of (m+1)× (n+1) control points
pi, j, where m and n are independent of the degrees k and � of the surface; it has
also two sets of knots, u1, u2, . . . ,um+k for the parameter u and v1, v2, . . . ,vn+� for
the parameter v. It is given by the formula

Q(u,v) =
m

∑
i=0

n

∑
j=0

Nk
i (u)N�

j (v)pi, j. (7.66)

(Four additional “dummy” knots u0, um+k+1, v0, and vn+�+1 are needed for the
proper definition of the B-spline basis functions Nk

i (u) and N�
j (v), but these do not

affect the shape of the curve.) The two knot sequences, for u and for v, are totally
independent of each other. The domain of the surface is the parametric interval
[uk,um+1]× [v�,vn+1]. The following arrangement depicts the control elements of
a B-spline surface:

v1 . . . vn . . . vn+�

p0,0 p0,1 . . . p0,n

u1 p1,0 p1,1 . . . p1,n
...

...
...

...
um pm,0 pm,1 . . . pm,n
...
um+k
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The de Boor algorithm for tensor product B-spline surfaces. The de Boor
algorithm, used to compute points on a B-spline curve, can be readily adapted
to tensor product surfaces. This is similar to the adaptation of the de Casteljau
algorithm for Bézier surfaces.

In order to compute a point Q(u,v) on a tensor product B-spline surface, we
must first find the parametric interval [ui,ui+1]× [v j,v j+1] into which the para-
metric value (u,v) belongs. Then we can apply the familiar de Boor algorithm
for B-spline curves to each of the rows of the control net for the parametric value
v ∈ [v j,v j+1]; this produces (m +1) points, to which we apply the de Boor algo-
rithm once more, for the parametric value u ∈ [ui,ui+1]. The computed point on
the latter curve is the point on the B-spline surface. Just as with Bézier surfaces,
the procedure can be carried out first for u (to the columns of the control net) and
then for v.

Knots and parameterizations. The two knot sequences, for u and for v, of a
tensor product B-spline surface maintain all the properties of the knot sequence
of a B-spline curve (see Section 7.3.5). So, for instance, when the first k knots for
u are equal, the surface interpolates its isoparametric curve that corresponds to u =
u1 = uk; similar properties hold when the first or last knots of the sequences for
u or for v are equal. Furthermore, when any internal knot is repeated, the surface
loses degrees of continuity accordingly, along the corresponding isoparametric
curves.

Just like for B-spline curves, it would be beneficial to determine “good” pa-
rameterizations automatically, so that the user need not supply the knot sequences.
Unfortunately, it is far more difficult to find such knot sequences in the case of
tensor product surfaces than it is for curves. Contrary to all other forms of pro-
cessing tensor product surfaces that we have examined, it is impossible to apply
the methods mentioned in Section 7.3.5 to rows and columns of the control net of
a B-spline surface in order to generate a parameterization that satisfies one of the
properties mentioned (chord length, centripetal). The reason is that all the isopara-
metric curves of the surface use the same knot sequences for u (and, respectively,
for v); therefore, it is not possible to construct a knot sequence that satisfies, for
instance, the chord-length property, for all rows of the control net simultaneously.
If a chord-length knot sequence is constructed based on the control points of a
row, it will probably not produce satisfactory results when used in the other rows.
One solution would seemingly be to combine knot sequences constructed for all
rows, for instance by averaging the respective knot values; however, this approach
would likely not produce good results for any of the rows, unless the geometry of
the control points is uniform across the rows of the control net.



�

�

�

�

�

�

�

�

7.6. Surfaces 245

Methods to generate parameterizations based on all the control points of the
surface have been presented only for surfaces of degree four or higher that demon-
strate geometric and not parametric continuity. In other cases, the use of a uniform
parameterization, which does not take into account the geometry of the control
net, is the safest choice.

Knot insertion for tensor product B-spline surfaces is no more difficult than it
is for curves, and the Boehm algorithm can be applied here as well. For a surface,
a knot may be inserted independently in any of the two knot sequences, for u and
for v. If a knot is inserted in the knot sequence u1, u2, . . . ,um+k (in a permissible
position, according to the restrictions mentioned for curves), a full row of control
points must be added to the control net of the surface in order to maintain the
relationship between the number of control points, the degree of the curve, and
the number of knots; each of these points can be computed by applying the Boehm
algorithm for curves to the respective column of the control net. The procedure is
similar for knot insertion in v1, v2, . . . ,vn+�, by applying the Boehm algorithm to
the rows of the control net of the surface.

Properties of tensor product B-spline surfaces. Most of the properties of
B-spline curves generalize for surfaces. Tensor product B-spline surfaces enjoy
local control, the strong convex-hull property, invariance under affine transfor-
mations, invariance under affine transformations of their parameters, planar pre-
cision, boundary control point interpolation if the extreme knots have suitable
multiplicity, and are a generalization of tensor product Bézier surfaces under suit-
able conditions. The only property that is not carried over from curves is the
variation-diminishing property.

Interpolation with tensor product B-spline surfaces. Tensor product B-spline
surfaces are, in general, approximating their control points. Analogously to B-
spline curves, they can be adapted so as to interpolate a given set of points. The
most interesting and practical case are bi-cubic tensor product B-spline surfaces,
in other words surfaces of degree three for both u and v.

The problem can be stated as follows: given (m + 1)× (n + 1) points pi, j,
i = 0,1, . . . ,m, j = 0,1, . . . ,n and two knot sequences ui, i = 0,1, . . . ,m and v j,
j = 0,1, . . . ,n, determine the (m + 3)× (n + 3) control points qi, j of a bi-cubic
tensor product B-spline surface Q(u,v) that satisfies

Q(ui,v j) = pi, j ,
i = 0,1, . . . ,m,

j = 0,1, . . . ,n.
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The computation can be performed as follows: First we interpolate each col-
umn of the array of given points pi, j in terms of u, computing the control points
si, j of the respective interpolation curves. We recall that each of these curves has
(m + 3) control points and requires two additional points to be specified, which
we call r0, j and r1, j, j = 0,1, . . . ,n. Then we interpolate each row of these control
points si, j in terms of v, computing the control points qi, j of the respective interpo-
lation curves. Each of these (m+3) curves has (n+3) control points and requires
two additional points to be specified, which we call ci,0 and ci,1, i = 0,1, . . . ,m+2.
The control points qi, j constitute the control points of the interpolating B-spline
surface.

In conclusion, tensor product surfaces have a relatively simple mathematical
form and interesting properties, which make them useful practical tools for the
representation of surfaces. Their main drawback is that the set of points used as
control or interpolation points must necessarily form a rectangular arrangement,
otherwise this class of surfaces cannot be used. Specifically for B-spline surfaces,
additional problems may arise if the points are not distributed relatively “uni-
formly,” due to the fact that a constant parameterization is applied to all rows or
columns of the control net. In the case of triangular topology, barycentric coor-
dinates can be used to define surfaces in a manner analogous to tensor product
surfaces. Subdivision surfaces, examined in Chapter 8, overcome these limita-
tions and offer a more general description of surfaces.

7.7 Exercises
1. Construct the Bernstein polynomials for n = 4 and n = 5. Verify their prop-

erties mentioned in Section 7.2.4.

2. Create a program to draw Bézier curves. Implement two methods for draw-
ing them:

(a) Using the de Casteljau algorithm, compute points at equally spaced
parametric values on the curve and join them with line segments.

(b) Using Bézier curve subdivision, as described in Section 7.2.6.

Compare the two implementations in terms of speed, visual quality, and
ease of use (additional parameters or assumptions needed in each case).
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3. (Degree elevation.) Given a Bézier curve Pn(t) of degree n with control
points p0, p1, . . .pn, determine the control points q0, q1, . . .qn+1 of a new
curve Qn+1(t) of degree n+1 that has the same shape as Pn(t).

4. (Multiple knot insertion.) Construct an algorithm to insert the same knot s
times to the knot sequence of a B-spline curve. You may reuse formula
(7.37) for each step, renumbering the elements of the curve before proceed-
ing to the next iteration. The resulting formula should be similar the the
one of the de Boor algorithm; explain why this holds.

5. (Closed B-spline curves.) Investigate closed B-spline curves, whose two
endpoints coincide. Find conditions under which the closed curve is smooth
at the point it closes.

6. Prove that the first derivatives of Bézier and B-spline curves are given
by (7.16) and (7.38), respectively.

7. Construct a program to visualize rational Bézier and B-spline curves. The
user must have interactive control over all the parameters of the curves (con-
trol points, knot sequence, weights). Also explore the parameterizations
presented in Section 7.3.5.

8. Verify that a planar rational quadratic Bézier curve represents a conic sec-
tion under the assumptions of Section 7.4.1. You may eliminate the param-
eter t from the two coordinate parametric equations, construct the algebraic
equation, and verify that the constraints of Equation (7.42) hold.

9. Given that a circular arc can be represented using a rational Bézier curve, a
complete circle can be represented using a number of consecutive rational
Bézier curves (with positive weights), as shown in Figure 7.17.

Figure 7.17. A circle represented as three and four consecutive rational Bézier
curves. The control polygons of the curves are also shown.
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Equivalently, the circle can be represented by a rational B-Spline curve with
the same pi as control points. Find the remaining elements of this NURBS
curve (weights and knot sequence) for the two cases depicted. Can you see
a pattern?

10. Construct a program to draw piecewise cubic interpolation curves. Verify
that cubic Hermite interpolation with C2 continuity yields the same curve
as cubic B-spline interpolation. Experiment with various end conditions.

11. Construct a program to render the various types of tensor product surfaces
presented. Integrate illumination and texturing algorithms (Chapters 12
and 14).
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8
Subdivision for Graphics and

Visualization

A. Nasri, F. A. Salem, and G. Turkiyyah

One reason my paintings have become realistic has to do
with my interest in what things really look like.

—Robert Bechtle

8.1 Introduction
Subdivision surfaces are now well established in the graphics community. They
provide simple techniques to generate a smooth surface from a given polygonal
mesh, often referred to as polyhedron. One of their major advantages over tradi-
tional B-spline surfaces and NURBS is the ability to handle meshes of arbitrary
topology. As such, complex shapes can be obtained, rendered, and edited at var-
ious levels of the refinement process. In this chapter, we present the basic ideas
about these surfaces and provide the algorithms of some of the well-known sub-
division schemes. We also describe how to manipulate such surfaces and give an
overview of continuity analysis at extraordinary points. Finally, the application
of subdivision surfaces in the domain of finite elements is outlined. The discus-
sion is far from complete, and more information on these topics can be found in
the cited references [Zori00, Warr01, Sabi04, Velh01a, Nasr02c, Nasr02b, Sede98,
Stam03,Stam98,Zhan02,Pakd05, Ivri03].

249
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Tensor product B-spline surfaces restrict the defining control mesh to a rect-
angular topology. Such a restriction tremendously limits the complexity of shapes
that can be represented. This limitation motivated the search for a general solution
that can handle arbitrary topology, yet still produce regular B-spline surfaces in
the normal way. The concept of subdivision surfaces was initiated by two papers
that appeared in the same journal in 1978. They were both extensions of B-spline
surfaces over such a topology. The first paper presented the Doo–Sabin [Doo78]
subdivision algorithm that produces standard quadratic B-splines and the second
paper introduced the Catmull–Clark algorithm [Catm78] that produces cubic B-
splines. Following these results, subdivision surfaces became a central issue for
the graphics and geometric modeling community.

Since subdivision surfaces were initiated by knot insertion [Boeh80, Cohe80,
Fari01], it is assumed that the reader is familiar with this topic in the context of
curves and surfaces (see Chapter 7).

8.2 Notation
In this section, we introduce some basic notation to be used throughout this
chapter.

Mask. A mask is generally defined by a set of scalars (mi)1≤i≤n which can be
applied to a set of n vertices vi to generate a new vertex w as follows:

w = ∑n
i=1 mivi

∑n
i=1 mi

.

Interior/boundary vertex. For a closed polyhedron all vertices are called interior
vertices. Typically, an interior vertex corresponds to a point on the limit
surface with an epsilon neighborhood homeomorphic to a closed disk. For
an open polyhedron, a set of vertices fall on the boundary. The vertices
that make up the skirt of the polyhedron are called boundary vertices. An
edge linking two boundary vertices is always shared by one face of the
polyhedron.

Valence of a vertex. The valence of a vertex is the number of edges incident on it.
Accordingly, an interior vertex is at least three-valent whereas a boundary
vertex could be two-valent.

Ordinary vertex/face. An ordinary vertex depends on the subdivision scheme used.
For surfaces based on tensor products, an interior (boundary) vertex that is
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four-valent (three-valent) is called an ordinary vertex. An ordinary face is
a face that has four ordinary vertices. For triangular meshes, an ordinary
vertex is usually six-valent.

Extraordinary vertex/face. A vertex that is not an ordinary vertex is typically
called an extraordinary vertex. A face with n (n = 4) vertices is called
an extraordinary face.

1-ring. A 1-ring of an interior vertex vi is the set of vertices (v j), where viv j is
an edge incident to vi.

Regular/irregular setting. When all vertices are ordinary vertices, the configura-
tion is called regular. In irregular settings, the configuration contains at
least one extraordinary vertex or one extraordinary face.

Tensor product. Given two masks (mi)1≤i≤r and (ni)1≤i≤p, the tensor product of
these two masks is another mask of r× p elements (mi×n j)1≤i≤r,1≤ j≤p.

8.3 Subdivision Curves
In this section, we present three popular subdivision curves: quadratic subdivision
(Chaikin), cubic subdivision, and four-point schemes. We assume that the initial
control-polygon vertices are indicated by vi and the vertices of its refined polygon
by v j

i , where the subscript j indicates the level of refinement; as such, vi = v0
i .

8.3.1 Quadratic Curve Subdivision

The first curve-subdivision algorithm was published in 1974 by Chaikin [Chai74].
The algorithm was mainly intended for hardware acceleration. The algorithm
consists of the following steps:

1. For each edge e j
i connecting two vertices v j

i−1 and v j
i , compute two new

vertices using the masks (1,3), and (3,1) as follows:

v j+1
2i−1 =

3
4

v j
i +

1
4

v j
i−1, (8.1)

v j+1
2i =

3
4

v j
i +

1
4

v j
i+1. (8.2)



�

�

�

�

�

�

�

�

252 8. Subdivision for Graphics and Visualization

2. Construct a new polygon as follows:

(a) For each vertex v j
i , connect its two new vertices v j+1

2i−2 and v j+1
2i−1 form-

ing a V-edge (corresponding to a vertex) of the new control polygon.

(b) For each edge e j
i , connect its two new vertices v j+1

2i−1,v
j+1
2i forming an

E-edge (corresponding to an edge) of the new control polygon.

The above steps can be repeated a number of times until the refined control
polygon converges to a smooth limit curve. Figure 8.1 shows the corresponding
masks and one step of refinement.

After the method was presented at a conference, it was shown that the re-
sulting curve is simply a uniform quadratic B-spline [Ries75] and that the above
construction can be obtained by inserting a knot at the middle of every interval
defining the quadratic B-spline curve of the initial control polygon.

8.3.2 Cubic Curve Subdivision

Similar to the quadratic case, a cubic subdivision algorithm can be formulated
by inserting a knot at the middle of each interval. The algorithm consists of the
following steps:

1. For each vertex v j
i , compute a new vertex v j+1

2i , called V-vertex, using the
mask (1,6,1) as follows:

v j+1
2i =

v j
i−1 +6v j

i +v j
i+1

8
. (8.3)

2. For each edge v j
i−1v j

i , compute a new vertex, called E-vertex, using the
mask (1,1) as follows:

v j+1
2i−1 =

v j
i−1 +v j

i

2
. (8.4)

3. Construct a new refined polygon by connecting the E- and V-vertices gen-
erated as above.

If the algorithm is repeated recursively, then the subsequently refined con-
trol polygon will converge to the uniform cubic B-spline defined by the original
control polygon. Figure 8.2 shows the corresponding masks and one step of re-
finement.
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Figure 8.1. The quadratic curve subdivision masks (top) and one example of
Chaikin’s subdivision. The original vertices are shown as black disks and the re-
fined ones as hollow disks.

Figure 8.2. The cubic subdivision mask (top) and one refinement step (bottom).
The original vertices are shown as black disks and the refined ones as hollow
disks.
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8.3.3 Four-Point Subdivision

In contrast to the previous two algorithms, the four-point subdivision is an inter-
polating scheme, where the limit curve interpolates the given control vertices.

The algorithm consists of the following steps:

1. For each vertex vi, denote the new corresponding vertex v j+1
2i , called V-

vertex; v j+1
2i = v j

i .

2. For each edge v j
i−1v j

i , compute a new E-vertex using the mask (−1,9,9,−1)
as follows:

v j+1
2i−1 =

−v j
i−2 +9v j

i−1 +9v j
i −v j

i+1

16
. (8.5)

3. Construct a refined control polygon by connecting each V-vertex to its
neighboring E-vertices.

Repeating this algorithm results in a limit curve that interpolates the vertices
of the given control polygon. Figure 8.3 shows the corresponding masks and one
step of refinement.

9 9

-1 -1

Figure 8.3. The four-point subdivision masks (top) and one step of refinement
(bottom). The original vertices are shown as black disks and the refined ones as
hollow disks.
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8.4 Subdivision Surfaces

The extension of the quadratic and cubic curve subdivision algorithms to tensor
product surfaces is straightforward. These surfaces have rectangular topology.
However, the challenging task is how to extend such surface definitions to control
meshes with arbitrary topology. We begin first by addressing the extension in
the regular setting and then discuss its applications to irregular topology. In the
former case, the subdivision coefficients, or the masks, are obtained by inserting
knots at the middle of each interval in both parameter directions. As such, the
coefficients can be easily obtained using the tensor-product formulation.

8.4.1 Quadratic Tensor Product Subdivision

Consider the rectangular mesh in Figure 8.4, which is used to illustrate the quadra-
tic tensor product refinement rules. Let us assume that the surface is parameter-
ized by the two parameters s and t. Along the s-direction, the quadratic curve
subdivision generates two vertices on each edge using the mask (1,3) and (3,1),
respectively. These vertices are indicated by solid squares in the figure. Using the
same masks, we apply the refinement in the t-direction, generating two vertices
(indicated by solid disks) on each edge joining two square vertices. Comparing
the original and refined meshes, it is easy to notice the following (see Figure 8.4):

1. For each face f of the initial mesh, a new face (called F-face) is generated
from its refined vertices.

2. For each edge e of the initial mesh, a new face (called E-face) is generated
from the refined vertices of that edge on the faces common to it.

3. For each vertex v of the initial mesh, a new face (called V-face) is generated
from the refined vertices of that vertex on the faces sharing it.

4. The refined polyhedron is actually obtained by connecting the refined ver-
tices to form all of these faces.

It can be shown easily that the new vertices are then computed by the tensor
product of the mask (3,1). For example, the vertex A′ is obtained by the tensor
product (3,1)× (3,1), which is equivalent to (9,3,1,3) applied to the vertices
A,B,C,D in that order. The other vertices are obtained by a rotation of this mask.
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Figure 8.4. Quadratic tensor subdivision. (a) Initial configuration; (b) along the
s-direction; (c) along the t direction; (d) one level of refinement, where the three
types of faces, the F-face of ABCD, the E-face of AD, and the V-face of D are
shown.

8.4.2 Cubic Tensor Product Subdivision

Similar to the quadratic case, the cubic subdivision rules can be obtained by the
tensor product of the masks used in cubic curve subdivision. Applying these
masks in the s-direction will generate a V-vertex corresponding to each old vertex
and an E-vertex corresponding to each edge vertex (see Figure 8.5). The refined
vertices are indicated by solid squares on this figure. Next, the same masks are
applied to the square vertices in the t-direction, giving the final refined vertices.
These are indicated by solid disks on the same figure.
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Figure 8.5. Cubic tensor subdivision. (a) Initial configuration; (b) refinement along
the s-direction; (c) refinement along the t-direction; (d) the three types of vertices.

After comparing the old and the new mesh, it is easy to notice the following:

1. For each face f of the initial mesh, a new vertex (called F-vertex) is gener-
ated as the centroid of that face.

2. For each edge e of the initial mesh, a new vertex (called E-vertex) is gen-
erated from the vertices of that edge and the two F-vertices of its shared
faces.

3. For each vertex v of the initial mesh, a new vertex (called V-vertex) is gen-
erated as a linear combination of that vertex, the E-vertices of the edges
incident to it, and the F-vertices of the faces sharing it.

4. The refined mesh is similarly obtained by connecting the refined vertices to
form all these faces.

Again, the new vertices can be computed using the tensor product of the masks
used in cubic curve subdivision. For example, the F-vertex can be computed by
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the tensor product of the masks (1,1)× (1,1), the E-vertex can be computed by
the masks (1,1)× (1,6,1) and finally the V-vertex is computed using the mask
(1,6,1)× (1,6,1).

8.4.3 Subdivision Schemes

The above formulation led to the generalization of B-spline surfaces over arbitrary
topology and, later, to the establishment of subdivision surfaces.

A subdivision surface is typically defined by a tuple (P0,R), where P0 is an
initial mesh of arbitrary topology, called a polyhedron, and R is a set of rules,
called a refinement procedure. By a polyhedron, we mean a set of vertices, edges,
and faces in 3D space, where the faces do not have to be planar. The refinement
procedure (often referred to as a scheme) is applied to the polyhedron P0 to gen-
erate another polyhedron P1, which in turn is taken as an input to the refinement
procedure to generate another polyhedron P2, and so on. If R satisfies the condi-
tions stated in [Pete04] then the sequence of polyhedra P0,P1,P2, · · · ,Pi, · · · will
converge to a smooth surface.

The first two pioneering refinement procedures were developed by Doo–Sabin
[Doo78] and Catmull–Clark [Catm78]. They are both extensions of B-spline sur-
faces over arbitrary topology. The Doo–Sabin scheme is an extension of quadratic
tensor product subdivision, whereas the Catmull–Clark scheme is an extension of
cubic tensor product subdivision. Since then, many subdivisions schemes have
been devised. In this section, we only describe some of these schemes; other
schemes can be found in the cited references.

In the following, we assume that P j is the refined polyhedron at level j and
that its vertices, edges, and faces are indicated by v j

i , e j
i , and f j

i , respectively.

The Doo–Sabin scheme. The Doo–Sabin scheme extends the quadratic tensor
product to arbitrary topology. For regular meshes, where all faces are simply
quads, the scheme generates biquadratic B-spline surfaces. The challenging task
is to compute the refined vertices of an n-sided face f j

i , where n is not equal to 4.
The following is an extended version of the algorithm given in Section 8.4.1.

1. For each n-sided face f j
i , compute n refined vertices v j+1

i as a linear combi-
nation of the vertices of that face:

v j+1
i =

n

∑
k=1

αikv j
k, (8.6)
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with

αii =
n+5

4
,

αik =
3+2cos(2π(i− k))/n

4n
, for k = i. (8.7)

2. Construct a refined polygon Pi+1 as follows:

(a) For each n-sided face f j
i , generate a new face (called F-face) from its

refined vertices.

(b) For each edge e j
i , generate a new face (called an E-face) from the

refined vertices of that edge on the faces common to it.

(c) For each vertex v j
i , generate a new face (called V-face) from the re-

fined vertices of that vertex on the faces sharing it.

Computing the refined vertices is achieved by applying the mask depicted in
Figure 8.6 to the vertices of a given face. Figure 8.7 shows an example of a
polyhedron, the first two refinements, and its corresponding limit surface.

For Doo–Sabin surfaces, the following observations can be made:

1. An n-sided face always generates an F-face with the same number of sides,
i.e., an n-sided face remains n-sided after refinement. If n = 4, then such a
face is called an extraordinary face, whereas a four-sided face is called an
ordinary face.

2. An n-valent vertex generates an n-sided face. As such, all four-valent ver-
tices generate ordinary faces.

Figure 8.6. Masks for computing the vertices of an F-face.
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Figure 8.7. Doo–Sabin subdivision. From left to right: an initial configuration, its
first and second refinements, and limit surface.

3. After the first refinement, all vertices are four-valent.

4. All E-faces are ordinary faces.

5. After a few steps of refinement, almost all the faces of the polyhedron are
four-sided except for e f + ev extraordinary faces, where e f and ev are the
number of the extraordinary faces and vertices, respectively, of the initial
polyhedron.

6. Similar to the curve subdivision, every vertex shared by four quads cor-
responds to a quadratic B-spline patch. Doo–Sabin surfaces are therefore
biquadratic B-spline surfaces, except at small areas that correspond to the
extraordinary vertices and faces.

7. The centroid of every face is a point on the limit surface, and a planar face
is actually tangent to the limit surface at this point.

The Catmull–Clark scheme. The Catmull–Clark algorithm is basically an ex-
tension of the tensor cubic subdivision. Over arbitrary topology, the E-vertices
and the F-vertices are computed using the same formulas adopted in the rectan-
gular topology case. The major challenge is how to compute the V-vertices of the
n-valent (n = 4) vertices. The full algorithm follows:

1. For each face f j
i of the input polyhedron, generate a new vertex v f j+1

i
(called F-vertex) as the centroid of that face.
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2. For each edge e j
i = v j

i v j
i+1 of the input polyhedron, generate a new vertex

ve j+1
i (called E-vertex) as a linear combination of v j

i , v j
i+1, and their four

adjacent vertices on the two faces shared by that edge (see the masks in
Figure 8.8).

3. For each vertex v j
i of the input polyhedron, generate a new vertex (called V-

vertex) v j+1
i as a linear combination of v j

i itself, the E-vertices of the edges
sharing it, and the F-vertices of the faces sharing it. As such, the V-vertex
v j+1

i is then given by

v j+1
i = αn

n

∑
k=1

v f j
k +βn

n

∑
k=1

ve j
k + γnv j

i , (8.8)

where the original values of αn, βn, and γn are given by

αn = βn =
1
n2 ,

γn =
n−2

n
. (8.9)

These values can be modified to improve the smoothness of the limit surface
as suggested by Sabin [Sabi91].

4. Construct a refined polygon Pi+1 as follows:

(a) For each face f j
i of Pi, connect its F-vertex to the E-vertices of the

edges of f j
i .

(b) For each vertex v j
i of Pi, connect its V-vertex to E-vertices of the edge

incident to v j
i .

Figure 8.8 depicts the various Catmull–Clark masks. The following observa-
tions can be made about Catmull–Clark refinement:

1. An n-valent vertex always generates a V-vertex of the same valency. For
n = 4, the vertex is called an extraordinary vertex; otherwise, it is an ordi-
nary vertex.

2. After the first refinement, every initial n-sided face generates an F-vertex
with valence n. As such, all faces of the subsequently refined polyhedra will
become four-sided. Accordingly, the Catmull–Clark algorithm is generally
described for quad meshes, as one refinement step will get rid of the n-sided
faces.
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Figure 8.8. The Catmull–Clark masks. Top left: mask for F-vertex; Top right: mask
for E-vertex; Bottom left: refined vertices (solid disks) around an extraordinary
vertex; Bottom right: mask for V-vertex in the case of quad meshes.

3. All E-vertices are four-valent.

4. After one step of refinement, all vertices of the refined polyhedron become
four-valent, except for ev + e f extraordinary vertices, where ev and e f are
the numbers of extraordinary vertices and faces, respectively, of the initial
polyhedron.

5. Every quad surrounded by eight other quads corresponds to a bicubic B-
spline patch. Accordingly, Catmull–Clark subdivision surfaces are mainly
cubic B-spline surfaces except around a small number of extraordinary ver-
tices.
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Figure 8.9. Catmull–Clark subdivision. From left to right: an initial configuration,
first and second refinements, and limit surface

6. Every n-valent vertex v1
i of the polyhedron P1, i.e., first refinement, con-

verges to a point on the limit surface given by

v∞
i =

n2v1
i +4∑n

j=1 ve1
j +∑n

j=1 v f 1
j

n(n+5)
, (8.10)

where ve1
j are the E-vertices of the edges incident to the vertex v1

i , and v f 1
j

are F-vertices of the faces sharing it.

The Loop scheme. While both the Catmull–Clark and Doo–Sabin schemes are
quad-based schemes, the first subdivision algorithm that is mainly devoted to tri-
angular meshes was developed by Loop [Loop87]. The algorithm takes as input a
polyhedron P j (at level j) with triangular faces and uses the following set of rules
to generate another polyhedron Pj+1:

1. For each edge e j
i , do the following:

(a) Let t1 and t2 be the two triangles sharing that edge.

(b) Let c1 and c2 be the vertices of that edge and c3 and c4 be the other
two vertices of t1 and t2.

(c) Generate an E-vertex ve j+1
i using the mask indicated in Figure 8.10

as follows:

ve j+1
i =

3c1 + c3 +3c2 + c4

8
. (8.11)
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Figure 8.10. Loop masks. From left to right: E-vertex mask and V-vertex mask.

2. For each n-valent vertex v j
i , do the following:

(a) Let c1,c2, · · · ,cn be the vertices of the 1-ring around v j
i (see Fig-

ure 8.10).

(b) Generate a V-vertex v j
i+1 using a linear combination of the vertex v j

i
and its 1-ring vertices as follows:

v j
i+1 = (1−nαn)v

j
i +αn

n

∑
j=1

c j, (8.12)

where αn is given by

α3 =
3
16

,

αn =
1
n

(
5
8
−
(

3
8

+
1
4

cos
2π
n

)2
)

for n > 3. (8.13)

(c) Generate a refined polyhedron Pj+1 as follows:

i. For each triangle of the polyhedron Pj, connect the E-vertices of
its three edges to form a triangle of P j+1.

ii. For each n-valent vertex of the polyhedron Pj, connect its V-
vertex to the E-vertices of all edges incident to it. As such, n
triangles are added to the refined polyhedron Pj+1.

The above set of rules generate a sequence of polyhedra that converges to a
smooth limit surface that is an extension of the three-direction quartic box-spline.
The following are some observations about this scheme:



�

�

�

�

�

�

�

�

8.4. Subdivision Surfaces 265

Figure 8.11. Loop subdivision: From left to right: an initial configuration, its first
and second refinements, and limit surface. (See also Color Plate I.)

1. An ordinary point in this scheme is a six-valent vertex; otherwise, it is
called an extraordinary vertex.

2. The limit surface is C2, except at the extraordinary points where it is C1.

3. A n-valent v0
i vertex on the initial mesh converges to a limit point given by

v∞
i =

3+8α(n−1)
3+8nα

v0
i +

8α
3+8nα

n

∑
j=1

v0
j , (8.14)

where v0
j are the one-ring vertices around v0

i .

Figure 8.11 (see also Color Plate I) shows an example of Loop surfaces.

The modified butterfly scheme. This scheme was initially developed as an ex-
tension of the four-point scheme by Dyn et al. [Dyn90] and later modified by
Zorin [Zori96] to improve its smoothness. It is a triangle-based algorithm that
consists of one main rule, i.e., how to compute the E-vertices. For practical appli-
cations, we provide the modified version of this algorithm:

1. For each vertex v j
i , let its V-vertex be the same as the original vertex, i.e.,

v j
i+1 = v j

i .

2. For each edge e j
i :

(a) If both vertices of that edge are 6-valent, then do the following:

i. Let t1 and t2 be the two triangles sharing that edge.

ii. Let t3 and t4 be the two other triangles sharing an edge with t1,
and let t5 and t6 be the triangles sharing an edge with t2
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Figure 8.12. Butterfly masks and corresponding configurations. Regular E-vertex
(top) and E-vertex near extraordinary point (bottom).

iii. Compute an E-vertex of that edge as a linear combination of the
vertices of the above triangles as follows (see Figure 8.12):

ve j
i+1 =

8

∑
k=1

αici, (8.15)

where

αi =−1 for i = 1,3,6,7,

αi = 2 for i = 2,8,

αi = 8 for i = 4,5.

(8.16)

(b) Else, if one of the vertices of the edge is an n-valent vertex, where
n = 6, i.e., an extraordinary vertex (say v j

i ), then do the following:

i. Let (ci)(0≤i≤n−1) be the one-ring vertices around v j
i .
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Figure 8.13. Butterfly subdivision. An initial configuration (left) and its limit surface
(right). (Courtesy of D. Zorin.) (See also Color Plate II.)

ii. Compute the E-vertex of the edge as a linear combination of the
1-ring vertices as follows:

ve j
i+1 =

n−1

∑
k=0

αici, (8.17)

where the αi depend on the valency n as follows:

αi =
1
n

(
1
4

+ cos
2πi
n

+
1
2

+ cos
4πi
n

)
for n > 5,

α0 =
5
12

, α1 = α2 =− 1
12

for n = 3,

α0 =
3
8
, α2 =−1

8
, α1 = α3 = 0 for n = 4.

(c) Else, compute an average of the coefficients obtained by treating each
vertex as extraordinary vertex and use the resulting mask to compute
the E-vertex of that edge.

Figure 8.13 (see also Color Plate II) shows an example of butterfly surfaces.
Some observations about this scheme follow:

1. Since all initial vertices are part of the refined polyhedra, the scheme is an
interpolating scheme.
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2. The refinement can be done adaptively.

3. For regular meshes, the scheme is only C1.

4. For irregular topology, the modified version produces smooth C1 surfaces
compared to the original version that exhibits undesirable creases.

The midpoint subdivision scheme. The midpoint subdivision scheme is known
as the simplest subdivision scheme; it was developed by Peters and Reif [Pete97].
The algorithm consists of the following:

1. For each edge e j
i , compute its E-vertex as the midpoint of that edge.

2. Construct a new polyhedron as follows:

(a) For each face f j
i , construct an F-face by connecting the E-vertices of

its edges.

(b) For each vertex v j
i , construct a V-face by connecting the E-vertices of

the edges incident to it.

Looking at this scheme carefully, the following observations can be made:

1. Two steps of this algorithm resemble one step of Doo–Sabin with different
coefficients for computing the new vertices. The steps become as follows:

(a) On each n-sided face f j
i , generate n vertices v j+1

i as linear combina-
tions of the old vertices v j

i as follows:

v j+1
i =

n

∑
k=1

αrv
j
k, (8.18)

where r = (k− j +n) mod n and the coefficients αi are given by

αi = 2
n

∑
j=0

2− j cos
2πi j

n
, (8.19)

and

n = �n−1
2
�.

2. The limit surface is C1.

3. The algorithm initially converges slowly for large n-sided faces. To over-
come this problem, modified subdivision coefficients were reported in [Pete97].
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The
√

3 subdivision scheme. The
√

3 subdivision scheme is a triangular-based
scheme developed by Kobbelt [Kobb00]. Given a polyhedron whose faces are all
triangles, the algorithm consists of the following:

1. For each face f j
i , generate an F-vertex as the centroid of that face.

2. For each n-valent vertex v j
i , do the following:

(a) Let (bi) be the 1-ring vertices around v j
i .

(b) Generate a V-vertex v j+1
i as follows:

v j+1
i = (1−αn)v

j
i +

αn

n

n

∑
i=1

bi, (8.20)

where αn is given by

αn =
1
9

(
4−2cos

(
2π
n

))
. (8.21)

3. Construct a new polyhedron as follows:

(a) For each old edge, connect the F-vertices (centroid) of the two faces
common to that edge.

(b) For each old face, connect its F-vertex to the V-vertices of its corre-
sponding vertices.

Figure 8.14 shows an example of
√

3 subdivision surfaces. The following
observations can be made about this scheme:

1. It is an interpolating scheme.

2. One major advantage of this algorithm is the ability to accommodate adap-
tive subdivision; however, two neighboring triangles can only differ by one
level of refinement.

3. The limit surface is C2 except at the extraordinary vertices where it is C1.
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Figure 8.14.
√

3 subdivision. From left to right: an initial configuration, its first and
second refinements, and limit surface. (Courtesy of L. Kobbelt.)

8.5 Manipulation of Subdivision Surfaces
Most subdivision algorithms are considered as smoothing operators. Given a
coarse mesh, they generate a smooth surface at the limit. This is not needed at all
times. For computer-graphics applications, often one needs to generate a surface
with a crease or with a sharp edge. A criticism concerning this general smooth-
ness was reported in the early 1980s. In response to this criticism, an example
of generating subdivision surfaces with deliberate discontinuity along a common
boundary curve (similar to creases) was originally suggested by Nasri [Nasr87].
This issue was rigourously addressed in the literature and later led to the gen-
eration of subdivision surfaces with sharp features; a necessity in modeling and
animation [Hopp94,DeRo98].

In addition to sharp features, subdivision surfaces can be manipulated using
interpolation constraints. We generally distinguish between two types of subdivi-
sion algorithms: interpolating and approximating; the latter approximate an initial
given polyhedron whereas the former interpolate some or all of its vertices. For
example, the Catmull–Clark, Doo–Sabin, midpoint, and Loop schemes are all ap-
proximating, whereas the butterfly and

√
3 schemes are interpolating. Typically,

approximating schemes can be made interpolating as reported in [Nasr87,Hals93].
In this section, we briefly summarize some of the issues used in the manipu-

lation of subdivision surfaces.

8.5.1 Sharp Features

The smoothness of a subdivision surface at a vertex can be deliberately reduced
to C0 by modifying appropriate masks of the subdivision process. Such a vertex,
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Figure 8.15. Subdivision surfaces with sharp features. Mask for crease vertex
(top left), mask for a dart vertex (top right), mask for E-vertex incident to any sharp
vertex (bottom left), and an example of a Catmull–Clark subdivision surface with a
dart (bottom right).

often referred to as a sharp vertex, is labeled according to the number of tagged
sharp edges incident to it. If the number of tagged edges is greater than two,
it is called a dart vertex whereas if the number is equal to two, it is called a
crease vertex. Otherwise, it is simply called a corner vertex. For example, in the
Catmull–Clark scheme, if we modify the V-vertex coefficients of a tagged vertex
v0

i and its adjacent E-vertices as indicated in Figure 8.15, then that vertex will
generate a dart. Similarly, the Loop scheme can be modified so that a tagged
vertex can become a sharp vertex as indicated in [Hopp94].

For even-degree subdivision schemes, such as the Doo–Sabin or the midpoint
scheme, generating sharp vertices requires some special treatment. Figure 8.15
shows an example of a Catmull–Clark surface with a dart vertex.

8.5.2 Open Polyhedra

Most of the subdivision schemes discussed so far work nicely for closed poly-
hedra. However, they suffer from the lack of control of the boundary curves of
the limit surfaces generated from open polyhedra. This is due to the fact that
a limit surface from an open polyhedron actually shrinks to its interior, making
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it hard to control its boundary curves. This problem was initially addressed by
Nasri [Nasr87], and a solution was proposed for Doo–Sabin surfaces. It was re-
visited later in [Nasr95,Nasr97].

The idea consists of modifying the boundary faces to have some specific struc-
ture so that a limit surface has its boundary curves controlled by the boundary
vertices of the initial configuration. These vertices form the boundary control
polygon1 of the surface. Naturally, the curve of this control polygon is considered
to be its corresponding piecewise B-spline curve where pieces meet at two-valent
boundary vertices. For example, consider the simple case of a Doo–Sabin surface
where all boundary vertices are three-valent. The boundary faces can be modified
by extending every edge viv j by reflecting its interior vertex v j symmetrically
about the boundary vi. However, more complicated boundary situations exist that
can be addressed by introducing the notion of n-reflected faces [Nasr03a]. This
method has the advantage of maintaining the same subdivision coefficients so (1)
no specialized analysis of the limit surface is necessary, and (2) two subdivision
surfaces can be joined with smoothness across their boundary curves. This work
led later to the introduction of polygonal complexes and their applications in curve
interpolation; these topics will be discussed in Section 8.5.4.

Another method for controlling the boundary curves consists simply of mod-
ifying the subdivision coefficients along the boundary [Zori00]. The idea is to
refine the boundary control polygon using one of the basic curve subdivision al-
gorithms. In the Catmull–Clark scheme, for example, the following steps are
used:

1. For each boundary edge, generate an E-vertex at its midpoint.

2. For each boundary vertex, generate a V-vertex as indicated in Equation (8.3).

A similar algorithm could be devised for Doo–Sabin surfaces.

8.5.3 Interpolation in Approximating Schemes

For approximating schemes, the interpolation idea was first presented in [Nasr87],
in which the generation of interpolating Doo–Sabin surfaces was established. This
was later extended to Catmull–Clark surfaces by Halstead et al. [Hals93]. The
problem can be stated as follows: Given a polyhedron2 P with a set of tagged
vertices vk to be interpolated, find another polyhedron Q with a set of vertices wk,
whose limit surface interpolates the tagged vertices vk.

1Note that a surface could well have many boundary control polygons.
2This can be the initial or a subsequently refined one.



�

�

�

�

�

�

�

�

8.5. Manipulation of Subdivision Surfaces 273

Figure 8.16. C1 interpolation of one vertex.

Let us assume that the polyhedron Q has a similar topology to P. One solu-
tion consists of treating every tagged vertex vk as a limit vertex w∞

k to which a
face (in the Doo–Sabin scheme) or a vertex (in the Catmull–Clark or the Loop
scheme) converges. Once this is identified, we can express vk as a linear combi-
nation of a number of vertices (wk) and set up a system of linear equations whose
solution gives the unknown wk. The major tasks involved are then to define the
corresponding limit point or face, and then to set up the system of equations.

For Doo–Sabin surfaces, a centroid of a face is a limit point on the surface.
We then need to associate every tagged vertex vk with a centroid of a certain face,
which leads to the following algorithm for computing the matrix M of the linear
system (see Figure 8.16):

1. Initialize all elements of the l × l matrix M to zero, where l is the total
number of vertices of the original polyhedron.

2. For each n-valent vertex wk do the following:
If wk is to be interpolated then

(a) let V Fk be the V-face generated from that vertex.

(b) Let (w1
i )1≤i≤n be the vertices of V Fk. The superscript indicates that

these vertices belong to the first subdivision.

(c) Form the equation

vk =
1
n
(

n

∑
i=1

w1
i ).

(d) Replace every vertex w1
i by the linear combination of the vertices (wk)

of the face to which it belongs. Assuming that this face is m-sided,
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then

w1
i =

m

∑
r=1

αriwr,

which gives

vk =
1
n
(

n

∑
i=1

m

∑
r=1

αriwr).

(e) Form the row k of the matrix M using the coefficients

1
n

αri.

This will define the m× n elements of this row. The remaining
l−m×n elements are set to zero.

Else, set wk = vk so the corresponding row of matrix M is 0 everywhere
except at position k where it is 1.

3. Set up the system of equations:⎛⎜⎜⎜⎜⎜⎜⎝
v1

v2

v3

·
·

vn

⎞⎟⎟⎟⎟⎟⎟⎠= M ·

⎛⎜⎜⎜⎜⎜⎜⎝
w1

w2

w3

·
·

wn

⎞⎟⎟⎟⎟⎟⎟⎠ .

4. Solve the system for the unknown vertices wk.

5. Construct a new polyhedron Q from a copy of P but with new vertices given
by the solution of the above system.

Figure 8.17 (left) shows an example of an interpolating Doo–Sabin surface.
For Catmull–Clark interpolating surfaces, a similar algorithm can be devised

[Hals93]. Here, every vertex to be interpolated will be associated with the limit
of its V-vertex given by Equation (8.10). It is true that a limit vertex is given in
terms of vertices of the first refinement, but each of these can be replaced by their
combinations of the vertices wk. As such, each vertex will correspond to a row
of the matrix needed to solve the underlying linear system. Figure 8.17 (right)
shows an example of an interpolating Catmull–Clark surface.

Other schemes can also follow the same strategy. For example, using the Loop
scheme, every vertex to be interpolated is associated with the limit vertex given
in Equation (8.14).
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Figure 8.17. Interpolating subdivision surfaces. Left: A Doo–Sabin surface inter-
polating the top four vertices of a cube. Right: A Catmull–Clark surface with the
same interpolation conditions.

It is noteworthy to mention that for closed polyhedra, the matrix M is a square
matrix, since we have one equation for every unknown vertex. A solution exists
as long as M is not singular. For open polyhedra, boundary conditions must be
taken into consideration as suggested in [Nasr87,Nasr91].

8.5.4 Interpolation of Curves by Subdivision Surfaces

In this section, we consider the issue of interpolating curves by subdivision sur-
faces, which is related to both interpolating and approximating schemes.

Given a tagged control polygon cp on a polyhedron P0, we need to force the
limit surface of P0 to interpolate the B-spline curve defined by cp. To solve this
problem, we distinguish between two types of curves: a curve with C0 continuity
(known as crease) and a curve with C1 continuity. We first consider curves of the
first type.

Generating a crease can be achieved in two ways. The first approach is to treat
the control polygon cp as a boundary of two subdivision surfaces where they join
with C0 continuity as discussed in [Nasr87]. Typically, each surface will have to
undergo the procedure of boundary modification as indicated in the open polyhe-
dron case (Section 8.5.2). The second approach is to modify the subdivision coef-
ficients such that each refinement of the polyhedron will refine the tagged control
polygon to generate the desired curve. In general, this can break the smooth-
ness across the interpolated curve. For Catmull–Clark and Doo–Sabin surfaces,
a crease is typically the B-spline curve of the tagged control polygon. This poly-
gon should then be refined by employing the same masks used in the subdivision
curve algorithms that are described in Section 8.3. For example, in Catmull–Clark
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Figure 8.18. Interpolating curves by subdivision surfaces. Left: a Doo–Sabin
surface interpolating a crease. Right: a Catmull–Clark surface interpolating a C1-
continuous curve. (See also Color Plate IV.)

surfaces, the following algorithm, which is similar to the curve subdivision case,
is used (assume that the control polygon cp is given by vertices (ci):

1. For each edge vi−1vi of the control polygon cp, make its E-vertex the mid-
point of that edge.

2. For each vertex ci of the control polygon, make its V-vertex

vi−1 +6vi +vi+1

8
.

3. For all other edges and vertices, generate the E- and V-vertices as indicated
by the Catmull–Clark subdivision scheme.

Figure 8.18 (left) (see also Color Plate IV) shows an example of a Doo–Sabin
surface interpolating a crease.

For the interpolation of curve with C1 continuity, the notion of polygonal com-
plexes was first introduced by Nasri in [Nasr00]. A polygonal complex is simply
a polyhedron C that converges to a curve under a given subdivision scheme S.
Embedding such a complex in a polyhedron P will generate a limit surface that
interpolates the curve defined by C. If S is considered to be the Doo–Sabin
scheme, then the simplest of these complexes is a strip of quads that converges to
a quadratic B-spline curve. The control vertices of this curve are the midpoints
of the shared edges between the adjacent quads. If two such complexes share
one quad q, then the resulting two curves will intersect at the centroid of q. If
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Figure 8.19. Lofted Catmull–Clark subdivision surfaces. Left: A set of control poly-
gons defining cubic B-spline curves. Right: A Catmull–Clark subdivision surface
interpolating these curves. (See also Color Plate V.)

more than two curves are to be interpolated through an extraordinary vertex, then
an n-reflected face can be used as the shared face between the two correspond-
ing complexes. More details can be found in [Nasr03a]. Figure 8.18 (right) (see
also Color Plate IV) shows an example of a Catmull–Clark surface interpolating
a curve with C1 across.

For the Catmull–Clark scheme, a polygonal complex can be defined by two
adjacent rows of faces. As discussed in [Nasr02a], such a complex converges to
its corresponding cubic B-spline curve. The control vertices of this curve are also
computed from the vertices of the shared edges between the faces of the complex.
Curve interpolation was also considered by Levin using the combined subdivision
schemes [Levi99].

Based on curve interpolation, lofted subdivision surfaces can be generated
[Nasr03b]. Given a set of cross-section curves, we first construct a polygonal
complex for each of these curves. After that, we connect these complexes into
one polyhedron whose limit surface interpolates these curves. A Catmull–Clark
lofted surface is shown in Figure 8.19 (see also Color Plate V). The generation of
subdivision surfaces through a net of curves was also discussed in [Scha04].

For more information, a taxonomy of interpolation conditions on subdivision
curves and surfaces is provided in [Nasr02c,Nasr02b].

8.6 Analysis of Subdivision Surfaces�

Since subdivision surfaces are generated from arbitrary topology, typical smooth-
ness violations occur at and in the vicinity of extraordinary points. They involve
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the order of continuity there as well as curvature behavior. Avoiding such viola-
tions is essential to producing good quality surfaces. Analyzing, and then tuning,
subdivision algorithms have thus emerged as an integral task in handling most of
the current schemes. Initial attempts date back to the late 1970s where the role
of eigenanalysis was first illustrated, i.e., that the spectrum of the subdivision op-
erator can be used to analyze smoothness properties at and around extraordinary
points [Doo78].

Since subdivision algorithms generalize the subdivision rules of biquadratic
and bicubic tensor product B-spline surfaces, subdivision surfaces inherit the
smoothness properties of their underlying polynomial splines at all but the ex-
traordinary points, where regular subdivision rules no longer apply. While lower-
order smoothness at extraordinary points was a well-known observation, it was
only first formally verified in [Pete98,Umla00] and is now known to be a result of
the low polynomial degree of subdivision surfaces [Reif96, Prau99, Pete00]. Al-
though the goal of achieving C2 continuity at extraordinary points has been shown
to be unattainable [Reif96], the general understanding remains that high-quality
surfaces must conform to conditions governing normal continuity, bounded, yet
non-zero, curvature, and minimal curvature fluctuations at all points of the sur-
face.

Analysis of many of the current schemes is now well established. The Catmull–
Clark scheme [Catm78] generates piecewise bicubic C2-continuous surfaces ev-
erywhere except at the extraordinary points, where the surface maintains C1 conti-
nuity but exhibits unbounded curvature. The 4-8 approximating scheme [Velh01a,
Velh01b] generalizing the four-directional box spline is C4 continuous every-
where but only C1 at extraordinary vertices. Loop’s binary scheme [Loop87]
achieves C2 continuity everywhere, C1 continuity at the extraordinary points, and
bounded curvature only when the valence is equal to 4, 5, and 6. The Doo–
Sabin [Doo78] and 4-3 [Pete03] schemes are C2 continuous everywhere but only
C1 continuous at the extraordinary points. Since many of the standard algo-
rithms fail to produce good quality surfaces at the extraordinary points, they
have to be modified via tuning, i.e., modifying the masks around the extraordi-
nary point to improve curvature behavior there. General analysis tools revolve
mainly around three different approaches: z-transformation methods using dif-
ference schemes [Cava91,Dyn92], Fourier analysis techniques [Cohe92,Daub99,
Dyn02, Pete98, Karc04, Pete04], and methods bounding the joint spectral radius
of local subdivision operators [Han03, Jia95,Riou92]. We dedicate the remainder
of this section to a brief outline of Fourier analysis tools and refer the reader to a
comprehensive summary in [Reif06].
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8.6.1 Fourier Analysis Techniques

Fourier analysis techniques apply in the context of subdivision surfaces that are
generated by stationary,3 linear, and symmetric subdivision algorithms generaliz-
ing box-splines or B-splines, and whose subdivision matrix is known to be non-
defective. In the vicinity of an extraordinary point m, the subdivision surface x
can be viewed as the union of m and a nested sequence of spline rings xm. Each
spline ring xm is a function

xm : Sn → R3, Sn = Σ×Zn, Σ = [0,2]2 \ [0,1)2,

where n is the valence of m. We thus view each of the spline rings xm as the
exclusive union of segments of rings x j

m, j ∈ Zn, associated with every edge e j

emanating from the extraordinary point. Let m denote the index of an arbitrary
spline ring in the entire union comprising xm. We consider a positive integer L,
control points B0

m, . . . ,BL
m in R3, and real-valued functions ϕ0, . . . ,ϕL that form a

partition of unity, and are, at least piecewise, twice differentiable (thus, the spline
ring can be generated by a C2 interpolating subdivision [Pete04, Reif06]). The
spline ring is then viewed as a linear combination of the ϕ i defined on Sn with
respective weights given by the Bi

m, for i = 0, . . . ,L. We collect the functions in a
row vector ϕ and the respective control points in a column vector Bm, so that the
spline rings can be expressed as

xm = ϕBm. (8.22)

The sequence of control points Bm is obtained via repeated application of an
(L+1)× (L+1) subdivision matrix A onto the initial data B0, so that

Bm = AmB0. (8.23)

Combining (8.22) and (8.23) above, we have

xm = ϕAmB0. (8.24)

Let λ0, . . . ,λL denote the eigenvalues of A ordered by modulus and corresponding
to right eigenvectors −→v 0, . . . ,

−→v L. For −→v i = 0, define the eigenfunction

Ψi = ϕ−→v i. (8.25)

3A subdivision algorithm is stationary if the subdivision scheme is constant across all subdivision
levels.
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Let di ∈ R3 represent eigen coefficients in R3 scaling the right eigenvectors such
that

B0 =
L

∑
i=0

−→v i di.

Then, xm is represented by

xm =
L

∑
i=0

λ m
i Ψidi. (8.26)

Equation (8.26) is reminiscent of a local Taylor expansion whose first components
indexed by i = 0, . . . ,5 have geometric interpretations. In particular, the compo-
nents corresponding to i = 0 affect the position of the extraordinary point m, the
components for i = 1,2 affect the tangent plane configuration, and the components
for i = 3,4,5 affect the curvature: i = 3 for the cup configuration and i = 4,5 for
the saddle configurations [Bart05].

Many numerical algorithms exist for computing the eigenstructure of the sub-
division matrix A, but these do not always return the correct eigenstructure (some-
times, complex eigenvalues are returned). One seeks to compute the eigenstruc-
ture explicitly, which becomes computationally infeasible with growing valence.
Symmetry of the scheme, however, implies that the subdivision matrix is block-
circulant, so that its (similar) image Â under the discrete Fourier transformation
F is a block diagonal matrix given by

Â = F−1AF = diag
(

Â0, . . . , Ân−1

)
.

By similarity of the two matrices, A and Â possess the same eigenvalues, which,
owing to the block diagonal structure of Â, are then obtained as the union of
the eigenvalues of the blocks Âk, k ∈ Zn. Moreover, all these blocks are of the
same fixed dimension for all integers n≥ 3, so that an explicit computation of the
eigenstructure of A becomes feasible. In this context, the Fourier index of a given
eigenvalue τ of A is defined as

F (τ) = {k ∈ Zn | τ is an eigenvalue of Âk}.

8.6.2 Eigenspectrum Analysis

The eigencomponents in the expansion of Equation (8.26) contribute to a number
of necessary conditions governing the subdivision scheme’s smoothness around
the extraordinary point and its curvature behavior there. Particularly, the follow-
ing standard conditions are of primary importance so that C1 and C2 continuity
are at least not violated [Doo78,Reif06]:
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1. All rows of the subdivision matrix A sum to one, so that λ0 = 1. This
ensures the convergence of the scheme.

2. The subdominant eigenvalue λ is positive, is of algebraic and geometric
multiplicity equal to 2:

1 > λ = λ1 = λ2 > |λ3| ≥ . . .

and has Fourier index F (λ ) = {1,n− 1}. If this fails, the scheme is not
C1.

3. The subsubdominant eigenvalue µ is positive and is of algebraic and geo-
metric multiplicity equal to 3:

1 > λ > µ = λ3 = λ4 = λ5 > |λ6|

and has Fourier index F (µ) = {0,2,n−2}. If this fails, the scheme is not
C2.

4. The subsubdominant eigenvalue µ is equal to λ 2. If this fails, the scheme
is not C2; otherwise, this ensures bounded curvature.

5. Elements of the eigenvectors associated with λ and µ are in a quadratic
configuration. If this condition, known as the local quadratic precision,
fails, the scheme is not C2. Otherwise, one obtains a configuration which
avoids oscillations around the extraordinary point [Gero05,Sabi02].

8.6.3 The Characteristic Map

We now turn to sufficient conditions for establishing C1 continuity at the extraor-
dinary point. The eigenvectors corresponding to the subdominant eigenvalues in-
duce the characteristic map, a local parameterization of the surface in the vicinity
of the extraordinary point, by which the surface can be written as a differentiable
function of two variables. Because of stationarity, the spline rings of the charac-
teristic map coincide at different subdivision levels, and so it suffices to analyze
one such spline ring around an extraordinary point in order to establish results
about the smoothness of the subdivision surface itself [Pete98, Pete04, Reif06].
To illustrate, let Ψ1 and Ψ2 denote the eigenfunctions associated with the two-
fold subdominant eigenvalue λ . The characteristic map is defined as

Ψ := (Ψ1,Ψ2) : Sn → R2,
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where Ψ1 and Ψ2 are the eigenfunctions corresponding to the subdominant eigen-
value. We denote by Ψ j the restriction of Ψ to Σ× j, for some j ∈ Zn. We further
have that Ψ0 =

(
Ψ0

1,Ψ
0
2

)
is regular if the Jacobian J0 = det DΨ0 for

DΨ0 =
(

Ψ0
1,u Ψ0

1,v
Ψ0

2,u Ψ0
2,v

)
is not equal to zero, for any u and v. Peters and Reif [Pete98] establish a suf-
ficient condition for the limit subdivision surface to achieve C1 continuity ev-
erywhere, including the extraordinary point. In particular, if one assumes Con-
ditions (1) and (2) above, and if the characteristic map is regular and injective,
then the limit surface attains C1 continuity everywhere for almost any choice
of initial data B0. Simplified tests for regularity and injectivity appear later in
[Pete98,Reif06,Umla05], but they follow mostly as a consequence of the crucial
result of [Pete98] that restricts testing of injectivity and regularity to a single seg-
ment of the characteristic map. In particular, if the characteristic map segment Ψ0

is regular and Ψ0
1,v(1, t), Ψ0

2,v(1, t) are strictly positive for all t ∈ [0,1], then the
characteristic map is regular and injective.

In [Pete04], a closed form for the spline ring of the characteristic map, also
known as the central surface, is derived, and results relating this to the curvature
behavior at the extraordinary point are proven. In particular, given generic initial
control nets B0, the shape at the extraordinary point m is governed by the sign of
the Gaussian curvature of the central surface, denoted by Kc. In particular,

• the shape is elliptic in the limit, if Kc > 0;

• the shape is hyperbolic in the limit, if Kc < 0;

• the shape is hybrid, if Kc changes sign.

8.6.4 Good Quality Surface Construction

Subdivision analysis tools establish the properties of a given subdivision scheme
in a straightforward manner. Mathematical progress on this front, however, re-
veals shortcomings with most of the standard subdivision algorithms. Standard
subdivision methods do not produce “good quality” surfaces in the limit, and this
has been the motivation behind subdivision tuning, i.e., reformulating the sub-
division rules at and around the extraordinary points so that many of the sought
criteria are maintained. Although C1 schemes turn out to be relatively easy to
construct, achieving higher-order continuity is much more difficult, as can be
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seen by inspection of the necessary and sufficient conditions for C2 continuity
proven in [Reif06]. Yet, arranging for good curvature behavior rather than a de-
sired mathematical property, such as C2 continuity, may be of prime importance,
if for instance, the scheme achieves the necessary C2 condition of bounded curva-
ture but exhibits flatness or oscillations around the extraordinary points, both of
which are considered to be artifacts [Prau98, Sabi03]. One can also gather from
the degree estimates of Ck piecewise polynomial subdivision surfaces obtained
in [Prau99] that tuning a subdivision scheme in order to achieve C2-continuity
without flat points will likely introduce relatively large supports. Artifacts can
also be introduced if the absolute value of the difference between the subdom-
inant eigenvalue and the shrinking factor (1/2 for binary schemes and 1/3 for
ternary ones) is relatively large [Bart04]. Also, of particular concern is the imme-
diate ease by which one may sacrifice the convex hull property in the process of
tuning [Levi06]. Thus, common current tuning techniques aim for as many of the
following goals simultaneously:

• preserving the convex hull property;

• achieving C1 continuity at extraordinary points;

• achieving bounded curvature at extraordinary points;

• avoiding flatness at extraordinary points;

• minimizing Gaussian curvature fluctuations;

• maintaining a small support;

• maintaining a small deviation of the subdominant eigenvalue from the shrink-
ing factor.

See recent papers on subdivision tuning in [Augs06,Bart04,Gink06,Levi06,
Loop98,Umla05,Zult06].

8.7 Subdivision Finite Elements�

This section introduces the formulation and use of subdivision-based (and/or spline-
based) geometric modeling techniques in finite-element modeling and simulation.
We describe the principles and specific numerical algorithms for constructing
finite-element models that are directly coupled to the underlying geometric rep-
resentations. Finite element models are a basic component of a very long list
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of simulation applications, see for example [Grin02, Tera05, Guen05, Thom06].
Some common graphics and simulation applications of subdivision models based
on finite-element include:

• Deformation of geometric models. Geometric models augmented with ma-
terial properties can deform when subjected to loads and to interpolation
constraints on position and tangents. They can thus provide a natural frame-
work for a mechanical metaphor for modeling organic shapes. By push-
ing, pulling, shearing, twisting, bending, holding, squeezing, etc., a user
can model and edit freeform shapes using intuitive tools. A finite-element
model directly coupled to the geometry allows such editors to be readily
built.

• Animation of graphical models. Elastically deformable characters and mod-
els are powerful tools for creating realistic animations in game, film, and
virtual reality environments. Physically-based models can automate a sig-
nificant chunk of the animation tasks that would otherwise have to be per-
formed manually. Character animations, cloth simulations, and a whole
host of animations can be supported by finite-element models directly tied
to the geometric representation. These models can be developed at vary-
ing levels of resolution to support different animation needs—from highly
detailed and realistic simulations that are generally done off-line, to inter-
active, real-time approximate, visually-plausible animations.

• Haptic interaction with solid models. In recent years, user-interface hard-
ware devices that incorporate the sense of touch have become widely avail-
able. Touch-enabled hardware interfaces render forces and pressures and
allow users to manipulate virtual objects and directly sense their stiffness,
compliance, yielding, and related mechanical characteristics. Applications
in games/entertainment, virtual sculpting, and engineering design can be
enhanced by haptic interaction. In order to support such interfaces, under-
lying finite-element models that are directly tied to the geometry are built
and used to compute the forces and pressures that can be fed to the haptic
devices at interactive rates.

• Simulation of physical phenomena in engineering and science. Many prob-
lems arising in engineering and science are described by partial differential
field equations on general geometric two- and three-dimensional domains
and solved by finite-element simulations. Heat flow, fluid flow, and elec-
tromagnetic field computations are common examples of such simulations
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that are performed routinely in design practice. The need for higher fidelity
and higher resolution in these simulations continues to push the need for
improved numerical discretization methods for their solution. One such
improvement can be obtained by using the same basis functions of the ge-
ometry (e.g., subdivision basis functions) to represent the fields in the dis-
cretized finite elements, allowing an exact representation of the geometry
being simulated. Although we will not cover these topics in this section,
the reader can use methods similar to the ones described here for building
these finite element simulations.

In this section, we introduce the key ideas for building finite-element simula-
tion models in the context of curves. Section 8.7.1 describes the formulations and
algorithms in a simple setting: the bending of a bar that is initially straight. This
simple geometry serves to introduce the models without cluttering the discus-
sion with the algebraic expressions that involve the curvature of general curves.
Section 8.7.2 describes the framework for a finite-element deformation model of
general 2D curves. Finite-element deformation models for surfaces in 3D, while
similar in nature, are more complicated mathematically. We briefly describe their
formulation in Section 8.7.3 and point the advanced readers to references for more
complete derivations.

8.7.1 Bending of Initially Straight Shapes

Formulation. Consider an initially straight shape (a one-dimensional bar) de-
fined by a single spatial coordinate x(t), where t is the parametric coordinate. The
geometry may be expressed as x = ∑i xiφi(t) where the φi are n basis functions
associated with a knot vector. Let the spatial domain we are interested in simu-
lating be defined in the region a ≤ x ≤ b corresponding to a parametric domain
ta ≤ t ≤ tb, and let u(x) be the vertical displacement of the bar at any point due to
the application of a distributed vertical loading f (x) along the length of the bar.
The objective of this section is to develop the techniques for finding u(x) given
f (x). Figure 8.20 shows the set-up of the problem.

From basic principles of mechanics, which will not be described here, the
equilibrium position of the bar is the function u(x) that minimizes the following
functional known as potential energy:

Π[u(x)] =
1
2

∫ b

a
cκ2dx−

∫ b

a
f udx =

1
2

∫ b

a
c

(
d2u
dx2

)2

dx −
∫ b

a
f udx,

where κ = κ(x) is the curvature of the deformed shape and d2u
dx2 is its linearized



�

�

�

�

�

�

�

�

286 8. Subdivision for Graphics and Visualization

Figure 8.20. Bending of initially straight shapes. Problem set-up in one dimension.

approximation that we will use here. The variable c is a material parameter that
may vary along the length of the rod. Larger values of c model stiffer shapes,
while smaller values model more flexible ones. The first term in the potential
energy is called the elastic strain energy and represents the energy stored in the
bar as a result of deformation and change in curvature.

This minimization is subject to a set of constraints on the position and slope
of the deformed shape of the bar. These constraints may be expressed at the end
points of the spatial domain (x = a and x = b) and are then known as “boundary
conditions” on the problem. There may also be arbitrary interpolation constraints
on position and slope at any point in the domain, or general relationships between
the positions and slopes at a number of points. We will describe these conditions
and how to incorporate them in the minimization in Section 8.7.1.

In order to find the function u(x) that represents the position of equilibrium,
geometry-based finite-element methods use the same knot discretization of the
spatial domain to represent the solution u(x) as ∑i uiφi(x), where the φi are the
same basis functions used to define the geometry. This allows us to write a dis-
cretized expression for the potential energy as

Π(ui) =
1
2

∫ b

a
c

(
∑

i
ui

d2φi

dx2

)2

dx−
∫ b

a
f

(
∑

i
uiφi(x)

)
dx,

and the problem is now reduced to finding the vector u that minimizes Π. Set-
ting the first derivatives to zero, we obtain the set of n equations that define the
equilibrium position:

∂Π
∂ui

=
∫ b

a
c

d2φi

dx2

(
∑

j
u j

d2φ j

dx2

)
dx−

∫ b

a
f φidx = 0,
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which can be written as

∑
j

[∫ b

a
c

d2φi

dx2

d2φ j

dx2 dx

]
u j =

∫ b

a
f φidx, i = 1 . . .n,

∑
j

Ki j u j = fi i = 1 . . .n,

Ku = f,

where Ki j is the (i, j)th entry in the coefficient matrix K known as the stiffness
matrix, and fi is the ith entry in the vector f known as the force vector. The first
task in a finite-element simulation is to compute these values.

Numerical computation of the stiffness matrix. In order to perform the in-
tegrals involved in Ki j and fi conveniently, we express their integrands in para-
metric space and perform all integrations in that space. The second derivative
with respect to the spatial coordinate x may be written in terms of the derivatives
with respect to the parametric coordinate t, and the Jacobian a of the mapping,

a = dx
dt = x′.4 Using the chain rule, we can express d2φ

dt2 in terms of the derivatives
with respect to x and perform simple algebraic manipulations to obtain

d2φ
dx2 =

1
a2

(
φ ′′ − 1

a
φ ′a′
)

,

where a and a′ are readily computed from the spatial mapping defining the geom-
etry: a = ∑i xiφ ′ and a′ = ∑i xiφ ′′.

The coefficients Ki j have then the following form:

Ki j =
∫ tb

ta
c

1
a4

(
φ ′′i −

1
a

φ ′i a′
)(

φ ′′j −
1
a

φ ′ja′
)

adt, (8.27)

where ta and tb are the parameter values that define the boundaries of the spatial
domain a≤ x≤ b (Figure 8.20).

For specificity, we consider cubic subdivision basis functions in this section,
but similar ideas can be used for lower- or higher-order bases. Cubic basis func-
tions are piecewise polynomials of degree 3; they have support over four adja-
cent knot-intervals (when knots are not repeated) in the parametric space, and
can be analytically expressed as four cubic polynomials defined over these inter-
vals. Therefore if |i− j| ≥ 4, Ki j is 0 since the integrand vanishes identically.
Only when the functions φi and φ j overlap, non-zero values for the corresponding

4We will denote by ′ the derivatives with respect to the parametric coordinate t.
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coefficient Ki j are obtained. Because the integrands are rational functions, it is
generally easier to perform the integration numerically. To do so, we can use a
quadrature formula over each of the overlap segments. The segments between
knots (knot intervals) in the region ta ≤ t ≤ tb are referred to as finite elements.

Let ri j be the number of overlap segments (elements) between two basis func-
tions φi and φ j. A numerical quadrature rule, such as Gauss quadrature, approxi-
mates the integral above by an expression of the form

ki j =
ri j

∑
e=1

ng

∑
g=1

[
c

1
a4

(
φ ′′i −

1
a

φ ′i a′
)(

φ ′′j −
1
a

φ ′ja′
)

a

]
tg

wg ∆te

=
ri j

∑
e=1

ng

∑
g=1

I(tg)wg ∆te, (8.28)

where all the quantities in the bracketed expression are evaluated at tg. The para-
metric coordinate of the gth Gauss point, wg is a coefficient associated with the
gth Gauss point, ng is the number of points used in the integration over each seg-
ment,5 and ∆te is the size of the segment in parametric space. This reduces the
integral computation of ki j to the evaluation of the integrand at ri j ·ng points.

There are two common ways of structuring the computations for generating
the coefficients of the stiffness matrix:

• Generating the coefficients of K one at a time. This is a direct application of
Equation (8.28) where a nested loop produces all the non-zero coefficients.
The matrix K is banded. For cubic basis functions its semi-bandwidth is 3.

for i← 1 . .n
for j← 1 . .n

� Find the segments where the supports of φ overlap
r← overlap(i, j)
for e in r

Ki j ← Ki j +∑g I(tg)wg ∆te

• Generating the contributions to K one element at a time. An alternative,
and more popular way, of computing the entries of K is obtained by ob-
serving that every element is part of the support of four basis functions, and
therefore there are 16 entries in K that involve contributions from integrals

5Values for Gauss integration of various orders of accuracy may be found in standard numerical
methods texts.
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over that element. We can then perform all the integrations that pertain to
that element and assemble them in their corresponding four rows and four
columns of K. The contributions that come from an element are stored in
a small matrix (4×4 in this case) called the element stiffness matrix. This
matrix, which we refer to as ke, represents the contributions coming from
that element to the global matrix K. A typical coefficient Ki j gets contribu-
tions from multiple ke.

for e← 1 . .m
� Generate the entries of the element stiffness matrix
for i← 1 . .4

for j← 1 . .4
ke(i, j) = ∑g I(tg)wg ∆te

� Assemble the element stiffness matrix in K
s← index set of basis functions with support over e
K(s,s)← K(s,s)+ke

In the simple one-dimensional context we are discussing in this section, both
strategies for organizing the computations are equally convenient, but in two and
three dimensions, and with adaptively changing discretizations, we may choose
to use one or the other strategy for a variety of implementation and efficiency
considerations.

Boundary conditions. The set of equations that describe the equilibrium po-
sition does not admit solutions without imposing appropriate constraints on u.
Physically, these constraints are needed to restrain the shape from accelerating
and moving as a rigid body when loads are applied to it. Mathematically, the co-
efficient stiffness matrix K described above is singular: the additional constraints
on admissible displacements are needed so that Π has a bounded minimum.

The constraints we may impose on the deformed curve are geometric con-
straints on its position and slope at various points. For example, we may want
the deformed curve to interpolate a specified point at the left end of the do-
main: u(x = a) = uo, which in terms of the unknowns ui, may be expressed as
∑uiφi(ta) = g, where g is the imposed position of the constrained point. We can
put this constraint in a canonical linear form Ciu = g, where Ci is a 1× n row
vector of the coefficients of ui in the constraints:

Ci = [φ1(ta) φ2(ta) · · · φi(ta) · · · φn(ta)].
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For the example constraint above, Ci is very sparse as three basis functions only
have non-zero value at the parameter t = ta, the left end of the spatial domain
(assuming ta is one of the knots in the knot vector). However, not all constraints
we may wish to impose on the deformation will have such sparse coefficient row
vectors. For example, a constraint expressing that the average vertical displace-
ment of the bar is zero, has a fully dense coefficient matrix. Constraints may also
be imposed on the slopes of the deformed shape. For example, if we want the
tangent at then right end of the interval (x = b) to be horizontal, then a constraint
of the form ∑uiφ ′i (tb) = 0, or

[φ ′1(tb) φ ′2(tb) · · · φ ′i (tb) · · · φ ′n(tb)] u = 0

may be imposed. Again here, the row coefficient matrix for this constraint is ex-
tremely sparse. Algebraic constraints on the deformed shape represent a powerful
tool for editing and expressing user specification on the final deformed curve. In
the context of free-form deformation, both the applied “forces” and these con-
straints on position and slope allow the user to control the shape of the curve.

Assuming we have r linear constraints on the deformation, these constraints
may be expressed in the form

Cu = g, (8.29)

where C is a r×n coefficient matrix (involving the values of basis functions and
their derivatives at various parameter values) and g is an r×1 column vector that
represents the right-hand side of the constraint equations. In order to prevent
rigid-body motion, we must have at least two constraints and one of them must
involve displacements, not just slopes, for the problem to be well posed.

The complete formulation of the problem of finding the deformed shape can
then be expressed as the problem to find u that minimizes Π(u) subject to Cu = g.

The solution of this constrained minimization problem is obtained as the so-
lution of the following set of equations:[

K CT

C 0

][
u
v

]
=
[

f
g

]
, (8.30)

where v is known as the vector of Lagrange multipliers and is obtained as part of
the solution. Even though many techniques are available for solving this set of
equations, when the problem size is relatively small, a method such as Gaussian
elimination is likely to be good enough to obtain almost-interactive solution rates.

Examples. Figure 8.21 shows some examples of deformation of a bar under a
variety of loading and constraint conditions. The bar is modeled by five cubic
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Figure 8.21. Deformation of an initially straight curve under forces (left) and inter-
polation constraints (right). Control point locations of deformed shape are shown.

segments and is initially horizontal. The left figure shows the deformation under
an upward vertical load acting at x = 1.5 and interpolation constraints at the two
ends. The right figure shows the deformed shape under interpolation constraints
only: two at the ends and two at x = 0.5 (vertical displacement is +1) and x = 2.5
(vertical displacement is−1). The positions of the control points are shown. Note
that the control points undergo only vertical displacements. This is because we
have only taken into account bending deformations due to transversely applied
loads and corresponding constraints. The addition of axial deformations in the
problem formulation allow the control points to move horizontally. This is de-
scribed next and developed more generally in Section 8.7.2.

Axial deformations. So far, we have only considered vertical displacements of
the bar where the only unknown in the solution was the vertical displacement.
We have further assumed that the “strain energy” consisted only of the bending
energy due to linearized curvature (κ = d2u

dx2 ). In this section we consider the effect
of axial deformations.

Material points on the bar can undergo displacements in the axial direction
if horizontal loads fx(x) are applied. These displacements introduce changes in
the length in the bar with corresponding axial strains. We will assume, for the
moment, that the axial strains are due to a displacement in the x-direction only,
which we will denote by ux(x). The formulation follows similar lines to the ear-
lier one, except that axial strains (changes in length), which we will denote by
ε = dux

dx , replace the bending strains in the expression for potential energy. Upon
discretization, ux(x) = ∑i uxiφi(x), the potential energy can be expressed in terms
of the unknown vector ux as
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Πa[uxi] =
1
2

∫ b

a
caε(x)2dx−

∫ b

a
fxuxdx (8.31)

=
1
2

∫ b

a
ca

(
∑

i
uxi

dφi

dx

)2

dx−
∫ b

a
f

(
∑

i
uxiφi

)
dx, (8.32)

where ca is a material parameter that represents the axial stiffness of the bar, that
may vary spatially. Assuming we have appropriate constraints imposed on the
horizontal displacements to prevent rigid-body movement (at least one is needed),
the solution for the axially-deformed bar may be obtained from the constrained
minimization problem. Minimize Πa subject to Ca ux = ga, whose solution is
obtained as [

Ka CT
a

Ca 0

][
ux

vx

]
=
[

f
g

]
, (8.33)

where Ka is the stiffness matrix associated with the axial deformations. Its entries
Kai j are obtained by evaluating the integral

∫ b

a
ca

dφi

dx

dφ j

dx
dx =

∫ b

a
ca

1
a2 φ ′i φ ′jadt

using the techniques discussed in Section 8.7.1
When both vertical and horizontal loads are applied, the deformed shape of

the bar is due to displacements in both these directions. For the case of an initially
straight bar and under our linearized approximations of curvature and elongation,
the displacements are uncoupled, and we can simply solve both sets of equations,
(8.30) and (8.33) independently:6⎡⎢⎢⎣

Ka CT
a

Ca 0
Kb CT

b
Cb 0

⎤⎥⎥⎦
⎡⎢⎢⎣

ux

vx

uy

vy

⎤⎥⎥⎦=

⎡⎢⎢⎣
fx

gx

fy

gy

⎤⎥⎥⎦ .

By grouping the Lagrange multipliers, the equations may be expressed in the
form ⎡⎢⎢⎣

Ka CT
a

Kb CT
b

Ca

Cb

⎤⎥⎥⎦
⎡⎢⎢⎣

ux

uy

vx

vy

⎤⎥⎥⎦=

⎡⎢⎢⎣
fx

fy

gx

gy

⎤⎥⎥⎦ .

6The subscript b correspond to the coefficient matrices and vectors related to bending deforma-
tions.
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Perhaps the most important characteristic of the coefficient matrix of this set of
equations is that its upper-left block, consisting of the stiffness matrices due to
axial and bending deformations, is block-diagonal. Axial deformations are strictly
due to ux, bending deformations are strictly due to uy, and there is no interaction
between them. This will no longer be true when the initial shape of the bar is not
straight. We discuss the curved case next.

8.7.2 Stretching and Bending of Curves

The formulation described above can be readily extended to shapes that are ini-
tially curved. The main change from the initially straight bar of the previous
sections is that it is no longer reasonable to assume that axial elongations are due
solely to displacements in a longitudinal direction, nor that bending is due solely
to displacements in a transverse direction. In the case of curved geometries, both
x- and y-components of the displacement (in any coordinate system) produce ax-
ial as well as bending deformations. The displacements are coupled and cannot
be found independently.

Differential geometry of curves. The axial and bending strains are functions of
the change in length and change in curvature along the bar. Length and curvature
are differential geometric concepts, and we review them briefly here. The reader
is encouraged to consult [Malv69, Fari01, Gray97] for additional details on the
geometric aspects of deformation.

The initial geometry of the curved bar is defined by

x(t) =
[

x(t)
y(t)

]
with tangent vector a = x′(t) =

[
x′(t)
y′(t)

]
and curvature

κo =
dα
ds

=
∣∣∣∣d2x

ds2

∣∣∣∣= |x′ ×x′′|
|x′ |3 =

|a×a′|
|a|3 ,

where × is the vector cross product, s is the arc length of the middle axis of the
bar, and α is the angle the tangent vector a makes with the horizontal. These
different forms of the curvature expression are useful in different contexts.

Let h measure the distance along the thickness from the middle axis of the
bar. A differential parametric distance dt corresponds to a differential arc length
ds = |x′|dt = |a|dt = adt. This length may be also be written as ds = ρodα where
ρo is the radius of curvature (ρo = 1/κo). Because of the initially curved geometry
of the bar, the corresponding length of a segment at a distance h from the middle
axis is dsh = (ρo−h)dα .
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Axial strains: Change in elongation. After the curve deforms, its new position is
defined by

X(t) = x(t)+u(t) =
[

x(t)+ux(t)
y(t)+uy(t)

]
.

The arc length along the middle axis is now dS = |x′+ u′|dt. A common scalar
measure to describe the change in length between the original and the deformed
shape (an elongation strain measure) is known as the Green strain and is defined
as

ε =
1
2

dS2−ds2

ds2 =
1
2

(x′+u′)T(x′+u′)−x′Tx′

x′Tx′
,

which can be linearized to

ε =
1
a2 aTu′, (8.34)

where
a2 = |a|2 = aTa.

Bending strains: Change in curvature. Along the thickness of the bar the change
in length, at a distance h from the middle axis, may be similarly written as

εh =
1
2

dS2
h−ds2

h

ds2
h

=
1
2

(ρd−h)2(κddS)2− (ρo−h)2(κods)2

ds2
h

.

Assuming the thickness of the bar is small relative to other dimensions (h/ρ <<

1), the O(h2) terms may be neglected to give

εh = ε−h
(κddS)2− (κods)2

ds2 +O(h2)≈ ε +κh.

The change in length at a distance h is due to both the axial strain along the
middle axis and to the change in curvature between the original and deformed
shapes. The quantity κ is known as the bending strain and may be linearized to

κ =
−1
a3

(
a×u′′ −a′ ×u′ − 1

a2 (a×a′)a ·u′
)

. (8.35)

Finite-element formulation. The finite-element discretization of the problem
expresses the continuous quantities above in terms of discrete values that mul-
tiply basis functions. The initial geometry is written as

x(t) =
[

∑i φi(t)xi

∑i φi(t)yi

]
=
[

Φx
Φy

]
,
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where Φ = [φ1(t) φ2(t) · · · φn(t)] is a row vector of n basis functions. Similarly,
the displacement vector is expressed as

u(t) =
[

ux(t)
uy(t)

]
=
[

Φux

Φuy

]
= Φu (8.36)

and the derivatives of u can then be written as

u′(t) =
[

Φ′ux

Φ′uy

]
u′′(t) =

[
Φ′′ux

Φ′′
uy

]
. (8.37)

The vectors Φ′ and Φ′′ are row vectors consisting of the first and second deriva-
tives of the basis functions, respectively.

Let f be the force vector along the length of the bar:

f(t) =
[

fx(t)
fy(t)

]
.

We seek to find the displacement vector u = [ux uy]
T that is in equilibrium

with the applied forces. This is found by discretizing and then minimizing the
potential energy defined by

Π(u) =
1
2

∫ l

0
caε2ds+

1
2

∫ l

0
cbκ2ds−

∫ l

0
(fxux + fyuy)ds. (8.38)

Using the discretization introduced in Equation (8.37), the axial strain ε (Equa-
tion (8.34)) may be written in terms of u as

ε =
1
a2

[
axΦ′ ayΦ′

][ux

uy

]
=
[
Axφ Ayφ

][ux

uy

]
,

while the bending strain κ (Equation (8.35)) may be written as

κ =
1
a2

[
ay

a
Φ′′ − a′y

a
Φ′+d

ax

a
Φ′

−ax

a
Φ′′+

a′x
a

Φ′+d
ay

a
Φ′
][

ux

uy

]
=

[
Bxφ Byφ

][ux

uy

]
, (8.39)

where d = |a×a′|
a2 . The vectors Axφ and Ayφ are row vectors consisting of deriva-

tives of basis functions scaled by geometric data of the bar. They allow us to
represent the axial strain along the bar as linear combinations of the ux and uy

displacement vectors. The vectors Bxφ and Byφ are also row vectors that perform
a similar function with respect to the bending strain.
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Substituting Equation (8.36) in the potential energy expression Equation (8.39),
we obtain, after some algebraic manipulations,

Π(u) =
1
2

uT
[∫ l

0
ca

[
AT

xφ
AT

yφ

][
Axφ Ayφ

]
ds+

∫ l

0
cb

[
BT

xφ
BT

yφ

][
Bxφ Byφ

]
ds

]
u

−
[∫ l

0
fxΦds

∫ l

0
fyΦds

]
u, (8.40)

or more compactly,

Π(u) =
1
2

uT [Ka +Kb]u−
[
fT
x fT

y

]
u =

1
2

uTKu− fTu. (8.41)

The function Π is a quadratic form in which Ka and Kb are the stiffness matrices
corresponding to axial and bending deformations, respectively. The vectors fx and
fy may be interpreted as horizontal and vertical force vectors along the n degrees
of freedom of the discretization.

Numerical solution. There are three remaining tasks we need to attend to in
order to obtain the displacement vector:

1. Apply displacement/tangent constraints;

2. Evaluate the coefficient stiffness matrices and force vectors;

3. Solve the resulting system.

Displacement and tangent constraints. In order to find a unique solution to the
displacement vector, we need to properly constrain the bar to prevent rigid-body
displacements and rotations. Position and tangent constraints may be imposed
at any point along the bar. The algebraic expressions for specifying the position
interpolation constraints and slope constraints may be expressed in terms of the
basis functions and their derivatives in the same fashion as we did in Section 8.7.1.
Details are left as an exercise to reader.
Numerical evaluations of coefficients. As was the case with the straight bar, the
solution of the constrained minimization problem may be obtained by solving the
following set of algebraic equations, where v is the vector of Lagrange multipliers
corresponding to the constraints Cu = g:

[
Ka +Kb CT

C

]⎡⎣ ux

uy

v

⎤⎦=

⎡⎣ fx

fy

g

⎤⎦ .
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Figure 8.22. Global deformation of a curve under forces (left) and position inter-
polation constraints (right). Control point locations of deformed shape are shown.

Notice here that, unlike the straight-geometry case, the stiffness block of the
above set of equation is not block-diagonal. The matrices Ka and Kb are both of
size 2n×2n as both the horizontal (ux) and vertical (uy) displacement components
contribute to axial as well as bending deformations.

As described in detail in Section 8.7.1, there are two strategies for computing
the entries in Ka and Kb: entry-by-entry or element-by-element. In the more
common element-by-element approach, the effect of all of the basis functions with
partial support over a given segment (element) are computed and then assembled
in the right locations in the global stiffness matrix.

In order to evaluate the stiffness contributions from every element, the in-
tegrals for computing K and f in expression (8.40) need to be evaluated. The
analytical expressions of the integrands in these matrices and force vectors are
sufficiently cumbersome that we generally rely on numerical integration schemes
for their evaluation. A Gauss integration scheme is a convenient numerical inte-
gration strategy, and its use in finite-element computations is widespread.

Figure 8.22 shows the global deformation of a curve under the application
of loads and/or imposed interpolation constraints. The left diagram shows the
resulting shape due to a load acting at midpoint and pulling to the top right. The
right diagram shows the shape obtained by adding an interpolation constraint that
forces the curve to go through the point (3.5, 1). We note here that these deformed
shapes were generated by using the linearized kinematics expressions described
earlier, and they do not necessarily correspond to the physical deformations of
a real material. To get the physically correct deformed shapes, we can apply
the loads (or postion/slope constraints) incrementally, generating a new stiffness
matrix at each increment.
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Figure 8.23. Examples of deformable subdivision surfaces. Green arrows are
forces acting on the geometry to produce the shapes in the right column.
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8.7.3 Stretching and Bending of Subdivision Surfaces

The formulation above may be generalized to surfaces, which is the case of
more practical interest. As with curves, there are two types of deformations that
the surface can undergo under the effect of forces and constraints on displace-
ments/slopes.

• In-plane deformations. In-plane deformations involve stretching and shear-
ing in the tangent space at every point of the surface. Theycorrespond to
changes in the first fundamental form of the surface.

• Out-of-plane deformations. These deformations involve bending and twist-
ing in the normal direction to the surface. Out-of plane deformations corre-
spond to changes in the second fundamental form of the surface.

The force field that can act on the surface is a three-dimensional vector field,
and the displacements sought are the displacement vector fields for every sur-
face point. The formulations follow the same principles used in the curved bar
case of the previous section, but naturally involve more detailed algebraic expres-
sions. Details may be found in [Cira00, Gree04, Gree05]. By way of example,
Figure 8.23 shows the deformation of a number of subdivision surfaces under
various loads and interpolation constraints. The left column in the figure shows
the control meshes used in the computations. The middle column and right col-
umn show the initial surfaces and the deformed surfaces, respectively.

8.8 Exercises
1. Apply Chaikin’s subdivision algorithm to a square and prove that the limit

curve is a periodic quadratic B-spline curve.

2. Find the subdivision masks for the quartic B-spline curve.

3. Consider a quadratic curve subdivision algorithm that inserts two knots in
each interval. Find the subdivision masks for generating its refined vertices.
Explain how to extend this algorithm to tensor product quadratic B-spline
surfaces.

4. Repeat Exercise 3 for cubic B-spline.

5. Consider a modification of the Doo–Sabin algorithm that generates the re-
fined vertices as follows. For each face, join the centroid with each of its
vertices and take the midpoint of these edges as refined vertices.
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(a) Compare this algorithm with the Doo–Sabin algorithm.

(b) Does it lead to a smooth surface?

(c) Compare two steps of this algorithm to the midpoint subdivision al-
gorithm.

6. Consider a variation of Chaikin’s subdivision that splits each edge into three
equal segments.

(a) What is the mask(s) of this algorithm?

(b) How can it be extended to tensor product surfaces?

(c) Does it lead to smooth curves/surfaces?

7. Implement a subdivision system that handles most of the described schemes
with interpolating and sharp features. In particular, provide a solution to the
generation of Doo–Sabin surfaces with creases.

8. Let A denote the subdivision matrix of the Doo–Sabin algorithm. Derive
the corresponding Fourier image Â of A and determine its eigenvalues and
corresponding multiplicities. Given the original weights,

α j =
δ j,0

4
+

3+2cos(2π j/n)
4n

, j = 0, . . . ,n−1, (8.42)

where δ j,0 denotes the Kronecker delta symbol, show that the subdominant
eigenvalue λ = 1/2.

9. Let A denote the subdivision matrix of the Catmull–Clark algorithm. De-
rive the corresponding Fourier image Â of A and determine its eigenvalues
and corresponding multiplicities.

10. In your favorite programming language, implement the stiffness matrix
generation algorithm described in Section 8.7.1.

11. Write the constraint matrix for position and slope interpolation constraints
at a parametric location to for the curved bar (See Section 8.7.2).
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9
Scene Management

No matter what the illusion created, it is a flat canvas
and it has to be organized into shapes.

—David Hockney

9.1 Introduction
In Chapter 5, we saw that in order to avoid clogging the graphics-rendering pipe-
line with data, polygons that are never meant to get displayed in the visible area
of the viewing frustum are discarded early using various culling techniques. In
order to efficiently perform the visibility tests, primitives are grouped together in
clusters and spatial hierarchies so that tests are performed only on the bounding
volumes of the clusters or their aggregations and not on the geometry elements
themselves. Of course, this results in far fewer calculations and, therefore, less
impact of the size of the dataset on the performance. Obviously, gathering poly-
gons or other primitives in spatially coherent clusters and then grouping those
clusters in larger spatial aggregations in a hierarchical manner implies a scene
organization that is built bottom-up (primary element is the leaf primitive) and
queried top-down. This way, all primitives are arranged in a tree and can be effi-
ciently accessed, removed early from operations such as viewport frustum culling,
and easily managed as memory objects (dynamic loading, caching, etc.). This
type of data organization is called spatial partitioning, and, as we have already
seen in Chapter 5, there are many interesting schemes to perform it.

Actually, this is only the data-driven side of scene management. When people
design a virtual world, a three-dimensional scene, they tend to think in ontologi-
cal terms and group entities according to logical relationships rather than purely

301
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Figure 9.1. (a) Example of different scene organizations for the same scene.
(b) Architectural plan layers—no spatial coherency. (c) Spatially coherent scene
partitioning for real-time walkthrough.
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spatial ones. Sometimes, ontological hierarchies tend to resemble spatial orga-
nizations, but not always. This can be demonstrated in the example of Figure
9.1 where the same scene—a house complex—is partitioned in an ontological
manner to form a hierarchy of elements. In the architectural version of a scene or-
ganization (Figure 9.1(b)), elements are grouped according to function, material,
and consistency with traditional floor plans. Obviously, the spatial organization
of this scene does not facilitate culling and efficient traversal of the hierarchy for
rendering but better serves the specific application in terms of clarity of entity
decomposition.

On the other hand, intentionally breaking down the scene into spatially coher-
ent hierarchies (e.g., House1, House2, etc.) provides a significant performance
boost in most cases, because invisible geometry can be culled early in the process
at a high hierarchy level. In our example, if an entire house is outside the view,
then its (precomputed) extents can be checked against the viewing frustum, and
the whole subtree of the scene can be rejected with a single operation.

For real-time graphics applications, the common practice is to build scenes
as ontological hierarchies with spatial-coherency priority. Indoor environments
are constructed with portal culling and BSP trees in mind and open, outdoor
scenes are usually designed to provide hierarchies with a large branching fac-
tor for efficient frustum culling. Apart from culling efficiency, they offer better
asset management, as one builds self-contained environments (e.g, a house) that
can be easily replicated to form larger aggregations (e.g., a small town). As will
be shown later, this has also a significant impact in memory conservation via the
mechanism of geometry instancing.

Excessive decomposition of a scene into hierarchical elements can sometimes
lead to the undesired effect of slowing down the rendering operation because of
two main reasons: First, the application tends to spend too much time in the
traversal of the scene hierarchy, while it would be faster to render some redundant
elements. Second, in hardware-accelerated graphics, a fine partitioning can lead
to poor geometry streams (e.g., short triangle strips or vertex arrays) and frequent
state changes (e.g., color or texture switching), problems which have a direct
impact on the number of instructions executed and the data transferred to, from,
and within the graphics system.

9.2 Scene Graphs
A hierarchy of geometric elements that are related in an ontological manner and
are spatially dependent is called a scene graph. Although an all-encompassing
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definition of a scene graph is hard to derive, the above statement at least cov-
ers the most common aspects of scene-graph implementations. A scene graph
consists of nodes that represent aggregations of geometric elements (2D or 3D),
transformations, conditional selections, other renderable entities (e.g., sounds),
processes (calculation/simulation/trigger nodes), or other scene graphs.

A scene graph is a directed, non-cyclic graph (tree) of nodes, whose arcs
define the geometrical or functional dependence of a child node to its parent node.
One important point about scene graphs is that they are not only data structures
for the efficient storage of geometrical information; the nodes encapsulate all the
functionality that is required to define a behavior, and thus adhere to the object-
oriented programming model (see Section 9.2.4). The root node is commonly the
abstract scene node, whose purpose is to provide a single entry traversal point
in the data organization of the application and propagate to the hierarchy any
operations that need to be performed on the elements. In this sense, an operation
performed on a node, affects all of its children. For instance, a transformation
node applies a calculated transformation matrix to all of its children, which in
turn may be transformation nodes as well. If a switch node is switched off, the
entire subtree, whose root is the switch node, is excluded from rendering (and
possibly processing).

The ability to group geometrical entities together and operate on them as if
they were a single object, completely abstracting the internal operation of this
part of the scene, makes modeling of complex environments and their animation
easy and provides the means for the construction of self-contained and reusable
elements.

Take, for instance, the case of a speedboat (Figure 9.2). It is very difficult
to directly describe the movement of each individual mechanical part relative to
the global coordinate system. For example, the propeller rotates around its axis,
which in turn is shifted left or right following the steering mechanism, while the
boat moves forward and oscillates (heaves, pitches, rolls, etc.) as it travels in the
choppy sea. Well, what is the apparent motion of the propeller with respect to an
observer sitting on a nearby dock (Figure 9.2, Viewer1)? How does one describe
the propeller’s motion if one is seated inside the boat (Figure 9.2, Viewer2)?

To actually answer these questions, we need to build a hierarchy of relations
between objects, and this is what a scene graph is used for. The propeller is
attached to an outboard motor with an offset�tprop relative to the motor’s local
coordinate system and is allowed to spin on the end of the transmission shaft
(local z-axis) with a rotation transformation Rz,θ . The motor swings left and right
around the mounting point on the hull of the boat (Ry,ϕ), which also represents the
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Figure 9.2. Example of spatial relationships in a scene-graph organization. (T) are
transformation nodes, (G) are group nodes, and (geom) nodes represent actual
geometric data. CS stands for coordinate system.

coordinate system origin of the outboard motor (See angle ϕ in Figure 9.2). The
motor is translated by�tmotor relative to the boat’s coordinate center origin. The
second observer is considered fixed with respect to the vessel coordinate system
(seated/attached somewhere aboard—transformation MViewer2 relative to the boat
reference frame). The apparent motion of the propeller perceived by this second
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observer is the composite geometric transformation Mprop(Viewer2) that includes
the offset of the motor mounting shaft with respect to the observer, the rotation of
the outboard motor, the offset of the propeller, and the rotation of the latter:

Mprop(Viewer2) = M−1
Viewer2T�tmotor

Ry,ϕ T�tprop
Rz,θ . (9.1)

The observer is transformed away from the local coordinate system of the boat by
MViewer2, so the boat’s reference frame is transformed with respect to the viewing
coordinate system of Viewer2 by M−1

Viewer2. The cumulative effect of the transla-
tion of the outboard motor, followed by the rotation around its mounting point,
and the offset and spin of the propeller is the composite transformation matrix that
defines the motion of the propeller with regard to the boat’s coordinate system.

In Equation (9.1), as we seek to express one node of the scene graph relative
to another, we perform an upward traversal of the tree from the target node (here
the propeller) to the common parent node of the target and reference nodes, and
then we descend to the node whose reference system we use by inversely applying
all transformations of this branch (here, M−1

Viewer2; see hierarchy in Figure 9.2).
Instead of using the common parent as a point of traversal-direction switch-

ing, one could blindly go all the way up the hierarchy and down again since the
common path transformations would cancel one another. Of course, it is cheaper
to spot the common root first and avoid unnecessary traversals (and matrix mul-
tiplications). In general, the transformation of a node at level k on a branch A
relative to another node at level m on a branch B with a common root (connecting
branch A and B) at level r is given by the following formula:

MA→B =
r+1

∏
j=m

M−1
B j

k

∏
i=r+1

MAi. (9.2)

Equation (9.2) is a direct consequence of the duality between transformations and
change of reference frame. Here, we move the reference frame from the common
node at level r to that of the reference node (level m on branch B). As the reference
node is transformed by MBr+1 ·MBr+2 · ... ·MBm with regard to the common root
at level r, node r and everything that depends on it are inversely transformed to
reflect this change of basis.

The speedboat is a self-contained entity, with animated parts and a complete
geometric description. One can consider it a black box and completely disregard
its internal workings when thinking of the speedboat as one of 200 different ves-
sels in a marina. As the first observer (the one sitting on the dock) captures the
image of the boat passing by, he/she also sees the results of the propulsion and
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steering procedure as the visible parts of the boat are animated and revealed to
him/her. As will be discussed later in Section 9.2.4, these three keywords repre-
sent the major duty-cycle elements of a scene graph and of each individual node.

9.2.1 Data Organization

The majority of a scene graph describes relations between ontological entities
and aggregations of nodes. Naturally, all actual geometric data are essentially
leaves of the hierarchical structure. Geometry nodes may contain unordered, in-
dexed, or raw polygonal data or other primitive data information, such as NURBS
surfaces or volume data. Alternatively, the geometry nodes may be part of (or
self-contained) space-partitioning structures, such as axis-aligned bounding box
trees (AABB trees).

The above scheme of data organization is encountered frequently in applica-
tions that deal with large datasets. The scene graph represents the ontological
hierarchy of the data and potentially encapsulates the functionality of each entity,
while a space-partitioning system operates on the leaves for further accelerating
rendering and search operations at a fine level. Since efficient space partitioning
requires that the data are pre-processed and stored in the appropriate structure, the
combined scene graph–space partitioning approach is effective for static data, i.e.,
geometric information that has a fixed representation relative to a local coordinate
system and is not dynamically changed or animated. In some real-time applica-
tions, a scene graph is decoupled from the space-partitioning scheme and is used
for animated objects only, while all static environment information is isolated in
a high-performance spatial-partitioning system like a BSP tree.

9.2.2 Instancing

In the example of Section 9.2, the speedboat was modeled according to a local ref-
erence frame, and the whole subtree of the corresponding aggregation (or group)
node was considered a black box. The speedboat node could be placed anywhere
in the scene graph and replicated to create other moving boats in the scene. An
important question to ask is why one should actually replicate the node to create
separate copies of the same entity when the latter are identical? A common mech-
anism, which is directly associated with the underlying data structures that store
the hierarchical information of the scene graph, is node instancing. Instead of
making a copy of all the geometric information, transformations, and other data
that are attached to a node, a reference is created to the original node wherever
an identical node needs to be inserted into the scene graph (Figure 9.3). The tree-
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Figure 9.3. Node instancing.

like structure of the scene graph is transformed into a directed cyclic graph when
instancing is used.

Creating instances of nodes instead of actual copies obviously saves substan-
tial storage space in memory. It can also speed up the calculations in the case
where certain simulation steps take place between subsequent frames. The pro-
cessing step is performed once for the original node and all other instances reuse
the new data. For example, the update to the rotation R�v,θ(k+1) of the propeller in
frame k +1,

R�v,θ(k+1) : θ(k +1) = θ(k)+2π ·∆t · rpm/60

can be done the first time the node is visited (from any one of the referencing
super-nodes), and then the node can be marked as “processed” for the current
time stamp. Future visits to the propeller transformation node would skip the
matrix calculation and proceed to displaying the results. In fact, the whole speed-
boat would be traversed the first time it was visited for the current frame and
“flattened,” i.e., all calculations made and data transformed with respect to the
reference frame of the top-level node of the aggregation. In OpenGL [Seg04],
this would be equivalent to calculating the matrices and performing the corre-
sponding matrix multiplications to create a display list for the current frame that
would remain untouched by subsequent processing requests in the same cycle and
would only be rendered multiple times, once per instance.
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The above scheme for instancing “freezes” the internal operations of the in-
stanced node and makes both calculations and storage more efficient. However,
this is not always desired. In our example, as each boat follows a different path,
its outboard engine should be able to turn according to the motion of the vessel in
order for the latter to look convincing. If all instances used the same simulation
data, then this result could never be obtained. This could also happen in the case
where the instanced node contained a switch that should be independently trig-
gered for each identical node. In situations similar to the above, instancing can
only reflect the storage of the data in memory and no other operation. This also
affects the order in which traversal operations are done; a processing step for one
of the instances of a node must be immediately followed by a rendering call to
display the results. Simulation and rendering cannot be done as separate passes
for the entire scene graph, due to the dependency of the first on the common
instanced data.

9.2.3 Scene Graph Traversal and Culling

In terms of application functionality and programming, the main advantage of
building a scene-graph representation of a 3D world is that every operation can be
applied to the root node of the hierarchy and propagated to the rest of the entities
via the mechanism of scene-graph traversal. The four major operations performed
on a scene graph are initialization, simulation, culling, and drawing, each one of
them corresponding to respective procedures applied hierarchically on the nodes.

The simulation procedure is responsible for determining all the internal node
parameters and performing all variable updates according to a node-specific be-
havior. Sometimes this operation is referred to as the animation or application
stage, emphasizing either the visual impact of the node’s change of state or the
fact that this procedure is decoupled from the rendering algorithms.

Culling in scene graphs is tightly coupled with the node dependencies. Typ-
ically, each node is assumed to “contain” all of its children in the sense that, if a
subtree root node is marked as completely hidden, then every child node is also
invisible and the whole subtree is pruned. On the other hand, if an aggregate
node passes the visibility test, its children may be individually tested, as in the
case of partial parent-node occlusion, some children may be invisible. The result
of the culling process is usually determined by testing the bounding volume of a
node with the chosen criterion (e.g., frustum containment in the case of frustum
or occlusion culling). For an aggregate node, the bounding volume is adjusted to
reflect the collective extents of its children.
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If a node contains an animated branch of the hierarchy, its extents need to be
dynamically adjusted each time the extents of one of its children change. Recal-
culation of a geometry node’s exact extents requires the iteration through all of
its vertices to determine minimum and maximum values, or sometimes moments
and principal axes. For animated subtrees that need to iterate through the raw
data anyway (e.g., skeletal animation), this imposes no additional overhead. On
the other hand, for rigid-body animation, this reevaluation involves substantial
processing time and may be prohibitive for large models. A common practice
that is adopted instead when speed is a more important factor than exact visibility
is to adjust the bounding volume of an aggregate node based on the transformed,
object-aligned bounding volumes of its children. For example, if a geometry node
is bound by a local axis-aligned box and is indirectly connected to a group node
via a transformation node, then the extents of the group node can be evaluated
using the transformed eight corners of the box (Figure 9.4). This solution is sub-
optimal in terms of culling efficiency (bounding volume tightness) as the extents
of the transformed bounding volumes are in general larger than the extents of the

geom

geom

G

T

(1) (1)

(2) (2)(3)

(3)

(4)

(4)

Optimal AABB

Sub-optimal fast AABB

Figure 9.4. Aggregate node extent evaluation for real-time applications. The re-
sulting axis-aligned bounding box (AABB) is non-optimal but can be rapidly calcu-
lated.
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contained geometry. Culling at a fine level can be handled by the spatial subdivi-
sion scheme of the geometry nodes, if present.

The drawing operation recursively moves down the hierarchy and applies the
rendering algorithms to each visible renderable node. In direct rendering and
first-level ray-casting (see Chapter 15) the pruned subtrees are not traversed.

During rendering, regardless of the display method (direct or ray-casting),
each time a transformation node is encountered, the state of the rendering el-
ements is altered to reflect the transformation. For instance, if OpenGL direct
rendering is used, when a draw operation is called on a transformation node as we
traverse down the hierarchy, the transformation state is pushed in the matrix stack
and the local transformation of the visited node is post-multiplied with the matrix
of the parent node (current state). As the depth-first traversal returns to a higher
level, child transformations are popped from the stack.

9.2.4 Programming with Scene Graphs

Remember that in a scene graph, most nodes tend to be self-managed, meaning
that they provide their own drawing functionality and behavior. For instance,
consider a rotor node, i.e., a specialized transformation node for rotating all its
children around a certain axis with respect to its local coordinate system. The
node needs to calculate the angle of rotation for the current frame based on the
absolute time, the time the rotation started and its current state (active, stopped,
disabled etc). This functionality can be implemented in a simulation operation of
the node. Being an aggregate node, although it is not a renderable entity, it needs
to propagate a draw command to its children; therefore, the node should provide
a draw operation, whose task is to perform the operation on all dependent nodes.
Similarly, the node is responsible for checking its boundaries against any culling
criterion. This distributed operation of a scene graph facilitates an object-oriented
design of the nodes and takes advantage of polymorphism and abstraction.

Typically, all nodes of a scene graph are derived from a common generic
node class and mutate their behavior as one node inherits common attributes and
overrides the behavior of another node. A top-level node interface would look
like this:

class Node

{

protected:

bool active;

bool culled;

public:
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Node();

virtual void init();

virtual void simulate();

virtual void cull();

virtual void draw();

virtual void reset();

};

class Group : Node

{

protected:

vector<Node*> children;

Bvolume extents;

public:

Group();

void add(Node *n);

void remove(int i);

Node * getChild(int i);

int getNumChildren();

virtual void init();

virtual void simulate();

virtual void cull();

virtual void draw();

};

Any node that extends the abstract class Node inherits the four basic opera-
tions. Aggregate nodes are derived from the Group class and all share a common
functionality: they provide a list of children and basic operations on them. More
elaborate Group subclasses may need to extend this behavior by adding more
specific methods, as in the case of a Transformation node or a Selector (ac-
tivates one child at a time). An essential common feature of all Group nodes is
the traversal of their children, which is manifested as an iterative call to all avail-
able Node objects in the list. Due to polymorphism, a Group object can invoke
the method init(), draw(), cull(), or simulate() without caring what subclass the
particular object is instantiated from. This way, all scene-graph node type classes
share a common interface:

void Group::draw()

{

vector <Node>::size_type i,sz;

sz = children.size();

for (i=0; i<sz; i++)

children[i]->draw();

}
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void Geometry::draw() // Geometry is a subclass of Node

{

if (!enabled || culled)

return;

// ... render the geometry

}

Culling, initialization, and simulation steps are similarly defined.
The order of the invocation of each method at runtime is defined by the traver-

sal pattern of the scene graph. Usually, the initialization and the three repetitive
steps are executed in a scene-graph basis and not at a node level. After initial-
ization, the typical duty cycle of a scene graph involves the invocation of the
simulation, the culling and the drawing methods of the root node (in our case,
a subclass of Group). Therefore, three distinct traversals occur before the scene
graph is visualized:

// Scene is a subclass of Group

Scene *myScene = new Scene();

myScene->load("village.scn");

myScene->init();

while (notTerminating)

{

// ... other operations such as user input

myScene->simulate() ;

myScene->cull() ;

myScene->draw() ;

}

This helps keep all nodes in pace with each other in terms of status and pa-
rameter values and leads to the more efficient deferred update strategy. In this
strategy, changes in the state of an entity do not produce an immediate result. In-
stead, all attributes are evaluated once to produce a simulation, culling, or draw-
ing result. Deferred updates are particularly useful when a computationally heavy
operation needs to be repeated whenever a variable changes. Practical examples
in the scene-graph paradigm are various geometry-dependent culling techniques
(such as occlusion culling), physically based animation, and the estimation of
shadow volumes.

As scene graphs become more complex and nodes represent autonomous en-
tities, the need arises to exceed the limitations of strict hierarchical control. As
part of the simulation process, nodes may communicate with each other either by
direct method invocation or by message passing. In the latter (and more elegant)
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case, each node primitive needs to be extended to support a message queue and
possibly an event map:

class NodeMessage

{

Node *from, *to;

int ID;

void * params;

};

typedef EventID int;

class Node

{

protected:

...

vector<NodeMessage *> msgQueue;

multimap<EventID,NodeMessage *> eventMap;

// Remove all pending messages and invoke appropriate

// methods

void processMessages();

// Notify other nodes according to events registered in

// the event map

void dispatchMessages();

public:

...

message( NodeMessage *msg ); // add msg to the queue

registerEvent( EventID evt, Node* target,

int msgID, void* params );

};

The message queue is necessary because a node may receive multiple com-
mand messages from an unknown number of other nodes. An event map helps
create an interface for user-defined responses to state changes of a node (espe-
cially useful for trigger nodes). For instance, consider a room full of furniture.
The light is initially turned off, and, therefore, there is no need for the furniture
to cast shadows, so they can be also initially disabled for these geometry nodes.
When the light is turned on via a message, or because of an intrinsic behavior, the
furniture geometry needs to start casting shadows. We may also want to make a
halo object visible around the bulb to make the scene more realistic.

Light * bulb; // Light extends Node

Geometry *furniture, *halo;

...
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bulb->registerEvent( EVENT_ON, furniture, MSG_SHADOWS_ON,

NULL);

bulb->registerEvent( EVENT_ON, halo, MSG_ENABLE, NULL);

In the extended Node class we have added two new protected member func-
tions, processMessages() and dispatchMessages(). In order to correctly
time the message-pumping procedure among the nodes of the scene graph, these
operations have to be executed before and after the simulation step, respectively,
for the whole scene graph. Therefore, we need to introduce additional pre/post-
simulation methods, which will be invoked via a corresponding pre/post simula-
tion step for the whole scene:

void Scene::simulate()

{

preSimulate();

Group::simulate();

postSimulate();

}

...

void Group::preSimulate()

{

vector <Node>::size_type i,sz;

sz = children.size();

for (i=0; i<sz; i++)

children[i]->preSimulate();

}

Similar pre/post operation function calls can be implemented for the draw
and culling stages, either locally for each node (they are invoked right before and
after the corresponding operation on each node) or globally, as in the case of the
pre- and post-simulation stages. For example, when rendering with OpenGL, a
Transformation node needs to implement a pre-draw and a post-draw function
to push and pop the current matrix state in the stack. A global post-draw function
may trigger a buffer swap.

9.3 Distributed Scene Rendering

9.3.1 Introduction

The constant pursuit for detail and realism in both real-time and offline render-
ing, as well as for inherently concurrent applications such as multiplayer online
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games and multi-projection virtual reality installations, have necessitated the dis-
tribution of the scene-graph data and the rendering workload to multiple process-
ing units. A processing unit is not necessarily a separate computer, like a cluster
node or a personal computer connected to the Internet. It can also be a special-
ized co-processor for ray tracing, one or more parallel system processors, or a
scalable graphics subsystem. Therefore, we shall consider the problem of man-
aging a distributed rendering environment with parallel processes rendering the
same three-dimensional world. The scene is not necessarily resident in a common
space in memory (e.g., as in the case of an application-level cluster configuration),
and data transfers between processing units occur at a wide range of bandwidth
limitations.

A drawing operation of a scene can be split in three major ways: in the spatial
domain, in the time domain, and in the image domain. The procedure for ren-
dering a single frame of the synthetic imagery consists of four stages: splitting,
distribution, rendering, and compositing.

9.3.2 Distributed Rendering Schemes

When distributing the rendering of a scene among processing units in the spatial
domain, a portion of the scene is transferred to each unit, it is rendered indepen-
dently and then composited to form a unified, final result. Typically, the scene
is divided according to the hierarchy of a scene graph or a spatial subdivision
scheme, and then the tokens are distributed among the available units according
to a load-balancing mechanism. Each unit renders a partial result, which then
needs to be combined with the output from its siblings.

In the case of direct rendering, the resulting partial images are unordered and
overlap in the image domain (Figure 9.5). The resulting frame buffers alone can-
not be combined, and the usual practice is to maintain and transmit the depth
buffer of each partial rendering as well [Theo89a]. A unit (or process) plays the
role of the compositing engine, i.e., gathers the results and combines the partial
color information based on the fragment-by-fragment depth-buffer comparison of
the incoming images and the transparency stored in the alpha buffer. Distributed
rendering schemes such as this are called sort-last [Moln94] because the decision
for which part of the image is attributed to which node occurs at the end of the
frame generation [Muel95,Whit92].

A data-parallel rendering approach is also possible for ray tracing. The scene
database is distributed among the units and a server node1 casts rays, which are

1Here, a server signifies the node that spawned a ray. Secondary rays are cast by other nodes that
act as gathering points, i.e., servers for the next level of ray casting.
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Figure 9.5. Sort-last distributed direct-rendering example on two rendering units.

then redirected to the appropriate rendering node(s) to calculate the ray-geometry
intersection [Chal98, Lin91]. As the server maintains the hierarchical relation-
ship among the data tokens that have been distributed, it can accumulate rays
entering a particular bounding volume associated with a rendering unit and pass
the whole bunch to it for intersection-test processing, as long as the previous
package has been calculated and returned to the server. This is also a sort-last
approach, because the resulting intersection tests from all rendering units
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need to be sorted according to distance from the starting point of a ray; this,
of course, can happen when all results are reported back to the server unit.
Because the distribution of rays among rendering units is a parallel task
at a very fine level, this architecture is suitable for tightly-coupled parallel
systems.

Sort-first schemes perform a pre-partitioning of the target output space (image
domain or timeline), and each rendering unit is assigned one or more chunks
[Fuch77, Muel95]. The composition of the rendered pieces is quite trivial in this
genre of algorithms, as the gathered image chunks have no overlap.

In the case of offline rendering of animations, a flexible and easy-to-implement
sort-first parallel rendering strategy is to split the sequence (time domain) into in-
dividual frames and assign them to separate units for rendering. Each processing
unit maintains a full copy of the scene database as well as external assets, such
as textures, and independently draws a complete frame image. This type of dis-
tributed rendering is trivially parallel in the sense that no communication occurs
except from the initial batch copy of the scene material and the transfer of the
result back to the server of the render farm (computer cluster). This scheme is
usually further extended to also split each frame into chunks and assign the image
blocks to different machines or processors in the same machine (demand-driven
first-level parallel ray tracing).

Image-domain sort-first strategies are very common in both real-time and of-
fline rendering. The scene database is replicated among the rendering units, or in
the case of a multiprocessor and/or multi-GPU machine, it is shared by multiple
processes that perform the rendering. Each unit is assigned one or more “win-
dows” of the final image, and the results are easily composited by copying the
prepared image segments into a common buffer. Direct distributed rendering in
multiple graphics systems on the same machine can be handled by the hardware
of the graphics display boards. This transparently splits the workload among the
rasterizers using a master-slave architecture.

Partitioning strategies in image domain play a significant role in efficient load
balancing. Common split methods are interlaced scan-line, tiled (rectangular re-
gions, strips or columns), and offset full-image. The larger the segments, the
higher the probability that the workload will not be balanced evenly among the
rendering units. This is easy to grasp if you consider a simple example of a scene
with a blank sky above and a landscape occupied by a large city. Assuming a
split of the image into two strips: the top tile will have almost zero processing to
perform, while the bottom tile will need to rasterize almost every triangle of the
scene. A partitioning that splits the image in even and odd scan-lines (or columns)
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would ensure the best load balancing. On the other hand, if the image is split into
too many individual segments, block memory transfers become less efficient.

For real-time rendering, another important factor for choosing a partition-
ing scheme is the incremental nature of the rasterization process. Spatial co-
herence and sampling in a regular pattern is beneficial for the rendering stages
of the graphics subsystem. For example, rendering in even and odd fields (inter-
laced) does not significantly modify the scan-conversion procedure, as the scan-
line counter needs to advance by two units instead of one (See Chapter 5).

When using the post-filtering (multisampled) antialiasing technique to render
an image, an interesting strategy is to distribute the sampling kernel among the
rendering units. This is done by rendering the full frame on each unit but with a
fragment center offset that corresponds to the sample offset of the multisampling
matrix. The resulting fragments are then weighted to produce the final image.

Multi-display systems also perform a sort-first image-space split strategy, al-
though the partitioning is done in a view level (e.g., different view frusta) and no
image composition is required. Typical virtual reality computer clusters share a
common (replicated) scene graph and render on each node a different “window”
to the three-dimensional environment. On a master-slave architecture [Zuff02],
the data transactions are kept to a minimum as only synchronization signaling
and input data from the user(s) are communicated among the nodes.

9.4 Exercises
1. Build an optimal scene graph for a chessboard in the case of: (a) a static

arrangement of the pawns; (b) pawns animated by supplying their transfor-
mations; (c) pawns animated by internal simulation methods.

2. How can a spatial partitioning scheme be beneficial to a scene graph orga-
nization? What factors affect the efficiency of the combined solution?

3. Implement a scene-graph node for geometry level-of-detail (LOD) switch-
ing. Describe in detail what data should be provided in the case of screen-
space projection area and distance metrics.

4. Implement a proximity trigger scene-graph node. The node should issue a
message to a specific node in the following cases: (a) any node has entered
its area of effect; (b) any node has exited its area; (c) all nodes have exited
its area; (d) a specific node has entered/exited its area of effect.
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5. Implement a logical trigger (AND, OR, XOR, NOT) that is activated ac-
cording to the activation state of other triggers. The other triggers should
be passed by reference to the logical trigger, and they are not necessarily its
children in the scene-graph hierarchy.
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10
Visualization Principles

The man who can’t visualize a horse galloping
on a tomato is an idiot.

—André Breton

10.1 Introduction
Suppose you unexpectedly see a picture of a person you care about. Suddenly,
you feel the love you have for that person. Information flows from your visual
system through your brain to the point of the experience of love. The net result
in working memory is the feeling of love [Ledo02]. Proper artificial stimuli can
produce the same effect as natural objects, with visual stimuli being extremely
effective.

Modern scientific experiments and simulations often produce vast amounts of
data; they are aided by the continuous gains in computing performance and reduc-
tions in storage costs. However, the nature of the data produced by experiments
and simulations is usually symbolic, and it becomes harder and harder for humans
to comprehend such data sets directly, due to their increasing size. Figure 10.1
illustrates the point with an example. On the left-hand side, we have a numeric
matrix, and on the right-hand side, we have the mapping of the numbers onto
grayscale values, with a specific range coding. Once again, a picture is worth a
thousand words!

The applications of visualization can be categorized into two broad categories:

• Exploration of large acquired data sets, e.g.,

– medical data (Color Plate XXIX (left));

321
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Figure 10.1. Numeric versus grayscale-mapped data.

– oil and gas data;

– weather data;

• Exploration of large data sets that are the result of a simulation, e.g.,

– engineering simulations;

– meteorological forecasts (Color Plate XXIX (right));

– computational fluid dynamics;

– finance.

Of course, in some cases we merge the above categories as, for example, in the
case of meteorology where we have actual weather and ground data from sensors
and forecast weather data from weather-model simulations.

The goal of visualization is quite practical. Visualization aims to increase hu-
man understanding of complex data by taking advantage of the high-bandwidth
human visual channel, using techniques mainly from the field of computer graph-
ics to visually display the data. For a visualization to be useful, it must be-
come the medium that enables information to be effectively communicated to
the user [Hanr05]. The goal of visualization is to transform data into information
and to bring data to life.
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A number of definitions of visualization exist. Let us start with the definition
of the verb visualize from the Oxford Concise Dictionary [Oxf04]: “make visible
esp. to the mind (thing not visible to the eye); make visible to the eye.” Notice the
emphasis placed on understanding in this definition.

The definition given by a 1987 NSF panel [NSF87] captures the essence of
visualization well: “Visualization is a method of computing. It transforms the
symbolic into the geometric, enabling researchers to observe their simulations
and computations. Visualization offers a method for seeing the unseen. It enriches
the process of scientific discovery and fosters profound and unexpected insights.”
Of course, not all data sets contain spatial information. But, more often than
not, experiments and simulations are carried out on multidimensional grids that
represent a discretization of space. These grids then become the vehicle for the
visual display of the data, since grid points can generally be easily mapped onto
a coordinate system.

A very descriptive definition is given in a modern visualization course [Edi05]:
“Visualization is a cognitive process using the powerful information processing
and analytical functions of the human vision system. It has always been a major
factor in scientific progress, and now, with the assistance of computer graphics, it
extends our vision system from sub-atomic to interstellar dimensions and allows
geometric representations and simulations of any multidimensional data set. The
fundamental objective is to acquire new knowledge rather than generating pic-
tures.” The important elements here are the flexibility in visualizing any scale of
a data set and the aim of acquiring new knowledge.

And a nice short definition from [Hanr05]: “conveying information using
graphical techniques.”

Despite its strong growth since the middle 1980s, visualization is not new.
Since ancient times, scientists used 2D plots to visualize measured or computed
data in order to understand the behavior of phenomena and classify them into
known mathematical entities (e.g., lines and curves). Currently, visualization
refers to a body of knowledge that encompasses techniques and algorithms for
the visual representation of generic types of data.

10.2 Methods of Scientific Exploration

Over the past few thousand years, scientists have been trying to explain the real
world. The common objective has been to gain an understanding of how things
work. Sufficient understanding of a certain phenomenon allows the construction
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Observations Model Creation PredictionModel Testing

Figure 10.2. Exploration steps.

of a model of the phenomenon, i.e., a description, for example, in a mathematical
framework. The model can then be used to make predictions (Figure 10.2).

Let us use gravity as a simple example. People had been observing falling
objects for thousands of years before Newton systematically explained their be-
havior. He constructed a model, which was nothing less than the law of universal
gravitation:

F = G
m1 ·m2

r2 ,

where F is the gravitational force exerted between two objects, G the gravitational
constant, m1 and m2 the masses of the two objects (e.g., apple and Earth), and r
the distance between the two objects. Based on the astronomical observations
of Copernicus (observation stage) and Kepler’s third law for the period of rota-
tion of the planets, Newton proposed this generalized model for the gravitational
force between two objects (model-creation stage). His model was verified by the
astronomical observations of his time and later by Cavendish for small objects
(model-testing stage). Newton’s ingenuity lies in the fact that he unified the force
that attracts planets and sets them in orbital motion with the force that makes
an apple fall to the ground and, in general, the force that is exerted between all
objects (prediction stage).

The creation of a model is an iterative process. Having sufficiently observed
a phenomenon, a scientist proposes an initial model. In attempting to validate it
with real data, discrepancies often arise; these lead to corrections in the parame-
ters of the model or even to the model itself. A number of simplifying assumptions
are often made in order to make the model computationally tractable, but better
hardware and more efficient algorithms allow us to introduce more complicated
(and more accurate) models. Weather prediction is a good example. The initial
computational models used a sparse computational grid. This was understandable
given the complexity of weather models and the absolute necessity to finish pre-
dictive computations for a given time t, well before t arrived! However, the rapid
increase in processing speed and the introduction of parallel algorithms allowed
significant increases in the density of the grid used, which resulted in higher pre-
dictive accuracy and a longer prediction time frame.

Depending on the requirements, different types of models can be constructed.
Mathematical models, consisting of systems of equations and computational
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models, describing phenomena algorithmically, are common. A mix of the two is
often used.

An example of an evolving model from computer graphics is the illumination
model (see Chapter 12). Initial illumination models consisted of simple depth cu-
ing [Warn69]. Then came the Phong model [Phon75], which encompassed diffuse
and specular reflections but took no account of the interactions of light between
objects, assuming a constant ambient illumination value. Later, the ray-tracing
model [Whit80] and then the radiosity model [Kaji86] included light-interaction
computations, producing more photorealistic images at the cost of increased com-
putations.

10.3 Data Aspects and Transformations
Visualization data arises from two main sources: experiments and simulations.
Experimental data is often external, as it is produced externally to the visualiza-
tion system, while simulated data is usually internal. This is not always the case,
however, as, for example, simulated data may be acquired from other sources (ex-
ternally). Another common classification is original (or raw) versus derived (or
processed) data; the latter have been processed in some way, e.g., normalized or
filtered.

Regardless of the source and processing applied, data is characterized by a
large number of properties, such as data type, sampling domain and sampling
pattern, dimensionality, format, etc. Visualization systems thus need to provide
the user with powerful data-import modules. The type of data items largely de-
termines the kind of visualization algorithm that can be applied (e.g., vector or
scalar). The predominant algorithms for common data types is the main topic of
Chapter 18.

Experimental or simulated data can assume arbitrary ranges. Visualization
packages, on the other hand, may require a standard input range, e.g., [0.0, 1.0].
One reason for this standard range is the existence of a standard color map. The
process of converting a given data range into a standard input range is called nor-
malization. Normalization functions are usually linear, but other forms, such as
logarithmic, may also be used. For example, if imin and imax represent the min-
imum and maximum input data values, respectively, we can linearly normalize
an arbitrary input data value i into the normalized range [nmin, nmax] using the
formula

inorm =
i− imin

imax− imin
· (nmax−nmin)+nmin.
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median filter
radius = 2
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Figure 10.3. Application of 1D median filter with radius 2 (area of application
indicated by vertical lines).

Experimental data acquired by electronic, optical, magnetic, or other physical
means invariably contain a certain amount of noise or other data degradation.
Filtering techniques are typically used to remove this noise, smooth, sharpen,
or otherwise improve the quality of the data. A typical noise-removal filter that
preserves detail is the median filter. The median filter replaces each data value (on
a grid) with the median of the values of itself and its neighbors within a certain
radius. Figure 10.3 shows a 1D example of the application of a median filter with
radius 2; as can be seen from the figure, it removes the “noise spike” value 100.

Different data sources may produce data in different coordinate systems (e.g.,
Cartesian or polar coordinates, linear or logarithmic scales, etc.). Coordinate
transformations must be applied to the data to ensure compatibility between the
source and the visualization system, or between various sources when codisplay-
ing data from multiple sources. The process of unifying coordinate systems is
called coregistration, and it generally uses affine transformations (see Chapter 3).

10.3.1 Coregistration Case Study: MEG Signals within a
Generic Model Brain

Suppose that we must display, in 3D, magnetoencephalographic (MEG) patient-
specific signals within a transparent model of a generic brain [Kats05]. The
generic brain and the MEG signals constitute two separate data sets, which must
be codisplayed after coregistration (Figure 10.4; see also Color Plate XXX). The
MEG signals have position, direction, and magnitude, so it seems natural to dis-
play them using arrow glyphs (see Section 10.7).

For the coregistration, we must first establish two coordinate systems in the
two data sets and then convert one of the data sets to the coordinate system of the
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Figure 10.4. Coregistration of generic brain model with MEG signals. (See also
Color Plate XXX.)

other. Let the coordinate systems of the generic brain model and the MEG signals
be CSB and CSM , respectively. Three non-collinear points are sufficient to define
a coordinate system (assume right-handed systems). The coordinate systems can
thus be established by identifying the same three physiological points in the two
data sets. Let these points be aB, bB, fB and aM , pM , fM , respectively, and suppose
that we are transforming the MEG data to the generic brain model. We shall take
the a points to mark the origin of the two coordinate systems, the −→ap vectors to
mark the +x-axis, and the f points to indicate the “up” direction, from which the
+z-axis is derived. The z-axis is not given explicitly in order to avoid numerical
inaccuracies and to simplify the user interface (see Section 4.4.1).The directions
of the three axes in each coordinate system are computed as follows (Figure 10.5):

−→
f = f−a,
−→x = p−a,

−→y =−→x ×−→f ,
−→z =−→y ×−→x .

The first transformation step translates the MEG data set so that the origins of
the two coordinate systems (the a points) coincide:

MEG′ = T(aB−aM) ·MEG.
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z

y

f

pxa

Figure 10.5. Coordinate system using three points.

The next transformation aligns the +x-axes. This requires two rotations, about the
z- and y-axes (see Example 3.12 for details):

MEG′′ = Rz(θ2) ·Ry(θ1) ·MEG′.

Another rotation about the x-axis aligns the other two axes of the two coordinate
systems:

MEG′′′ = Rx(θ3) ·MEG′′.

Finally, since the size of the model and patient brains may differ, we can scale the
MEG vectors according to the ratios of the respective measurements, assuming
correspondence of the internal structures:

MEG′′′′ = S
(

XSIZEB

XSIZEM
,
YSIZEB

YSIZEM
,
ZSIZEB

ZSIZEM

)
·MEG′′′.

The composite transformation

S
(

XSIZEB

XSIZEM
,

YSIZEB

YSIZEM
,

ZSIZEB

ZSIZEM

)
·Rx(θ3) ·Rz(θ2) ·Ry(θ1) ·T(aB−aM)

thus coregisters the MEG data onto the generic brain model, and the two data sets
can now be correctly displayed together.

10.4 Time-Tested Principles for Good
Visual Plots

The visual display of data was around long before the advent of visualization
techniques in computer science. A number of simple but important rules of thumb
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Figure 10.6. Visualization without (left) and with (right) proper axis labeling and
legends

exist that are as applicable to visualization techniques today as they have been to
graphs for a long time.

If a visualization includes coordinate axes, then these should be clearly marked
and labeled with the quantities that they represent and their units (Figure 10.6).
Legends should never be omitted, even when obvious. Even with a good legend,
however, an overloaded visualization is hard to comprehend. If a large number
of variables must be presented, overloading should be avoided by splitting a vi-
sualization into multiple units. As with traditional graphs, authors tend to be too
optimistic about a graphical presentation; their mindset is very rarely shared by
the audience, resulting in misinterpretations.

Of critical importance to a visualization is the issue of scale and the coordinate-
axis origins. The wrong scale relative to the data values can result in large data
fluctuations appearing small and vice versa; this is a well-known trick used in
presentations to convey misinformation. On the same note, setting axis origins
at a non-zero value can result in an apparent reduction in data values; while this
may be useful when the data have small variations at high values, it should be
used with caution, and the initial value of the axis should be clearly indicated
(Figure 10.7).

Another source of misleading information in visual presentations is the com-
parison of unlike quantities; in other words, presenting side-by-side quantities
with different properties. An example is a bar chart whose bars refer to sales vol-
umes (vertical axis) by year (horizontal bar axis) except the last bar, which refers
to the current year so far; the last bar thus has different properties than the rest of
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Figure 10.7. Left: Too large scale. Middle: Unlabeled non-zero axis origin.
Right: Correct scale and origin labeling.

the bars since it refers to a period less than a year (Figure 10.8). Another example
is a multiple line (or multiple surface) graph, where different lines plot different
variables, without separate axis markings for each variable.

The transition from quantitative to visual information is another critical
factor of a visualization. Visual information includes all visual aspects of a

Figure 10.8. Comparing unlike quantities. Year 2000 measurements are not com-
plete.
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presentation, such as color and transparency. A well-chosen color mapping can
bring out information that would otherwise be uncapturable. For example, map-
ping body organs to their physical colors helps understanding in medical visual-
izations. Also, choosing colors with sufficient disparity to display different vari-
ables avoids clutter. Color maps are discussed in detail in Section 10.5.2.

10.5 Tone Mapping
Scalar data come from various input sources, and so their range varies signifi-
cantly. Furthermore, the scale that the raw data are represented in is not neces-
sarily compatible with the sensory response curve of human photoreceptors, and
therefore a direct linear mapping of the input data to light intensity does not have
the desired visual effect. There are also times when we need to display linearly
spaced sample data, but the domain is so large that we can only obtain a very poor
discretization and scaling of the input range to the available intensity that the hu-
man eye can perceive. In these cases, we need to accentuate certain important
value transitions in the scalar domain and compress the rest of the input scale.

In general, the raw input data domain scale needs to be converted to a mean-
ingful range of intensity and color values that can be more effortlessly perceived
by the human eye so that the desired information is pinpointed and extracted in-
tuitively. This is achieved by transforming the data with the help of transfer func-
tions to compress, accentuate, and shape the input signal into a more convenient
scalar gradient and then visually enhance the result by encoding the intensity in-
formation with color. Color mapping results in a more easily distinguishable and
recognizable relation between the visualized image and the underlying data. One
example of this is the use of decibels in representing the power of sound signals.
They are defined as 10log10 S, where S is the ratio of the power of a sound signal
over a reference value.

10.5.1 Transfer Functions

Consider the example of Figure 10.9. The original signal (Figure 10.9(a)) is a
thermal sensor capture with the sensor temperature-sensitivity range mapped to a
linear 8-bit grayscale gradient. The visualization of the input data provides noth-
ing but a general idea of the heat distribution, and the original source is not easily
spotted. The useful information resides in a narrow intensity window within the
full range of 256 different grayscale values, resulting in low contrast. Apart from
that, the smooth shade transition makes it almost impossible to classify the heat
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Figure 10.9. Transfer functions. (a) Original data: low contrast, no shape is
discernible. (b) Normalized range and 4-bit quantization: intensity zones. (c)
Clamped sinusoidal transfer function: zone measurements are possible. (d)
Noisy transfer function: enhancement of subtle transitions reveals otherwise un-
detectable globules.

into temperature zones and measure the extent of the temperature zones. In Figure
10.9(b), the original signal was modified by a transfer function that enhanced its
contrast and then quantized the grayscale levels into zones. In general, a transfer
function is of the form

iout = ftransfer(iin). (10.1)

The function ftransfer is not necessarily linear or even continuous. In our example,
we have

iout = fquant ( fcontrast (iin)) ,

fcontrast(x) =
x− xmin

xmax− xmin
· vmax,

fquant(x) = xmin +
(xmax− xmin)

N
·
⌊

N · x− xmin

xmax− xmin
+

1
2

⌋
,

(10.2)

where xmin and xmax refer to the minimum and maximum input signal values, vmax

is the maximum allowed range value, and N is the number of quantization steps.
We can increase the number of discrete intervals for the data representation

without losing the contrast by allowing the use of non-monotonic transfer func-
tions, such as the clamped sinusoidal function illustrated in Figure 10.9(c). Some
other useful transfer functions are the sigmoid function, which non-linearly en-
hances the contrast across a predefined threshold and the binary transfer function
(thresholding). Figure 10.10 presents some transfer functions.
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Figure 10.10. Some commonly used transfer functions. The horizontal axis rep-
resents the input values, and the vertical axis represents the output values.

10.5.2 Color Maps

Intensity alone cannot always convey an intuitive idea about the displayed data.
As explained earlier in this chapter, human beings attribute certain colors to par-
ticular states of mind or recognize quantities and qualities by them. For example,
when we look at a map, land mass is colored in brown for high altitudes and
green for low flatlands, while the sea is rendered in blue hues. Such metaphors
are encountered every day. Another example is the indication of critical levels on
meters using a color gradient from green (low/safe) to yellow and then red (very
high/critical).

However, apart from the conscious or subconscious connection between col-
ors and attributes, there is another important reason for visualizing data in color
grades rather than in intensity plots: colors have a better separation than grayscale
values and can clearly highlight important value ranges. Combined color/intensity
plots can help visualize dual parameter quantities. An example is the visualization
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Figure 10.11. Color coding of height and sea depth using a color map that
maps relative height information onto interpolated color values. (See also Color
Plate XXVI.)

of density/temperature of air. Colors, represented as scalar triplets, may also be
used to visualize vectors, although the resulting image may not be very intuitive
(Color Plate XXII).

In order to move from a grayscale to an arbitrary color gradient, we use a color
map, which is a look-up table of colors corresponding to specific sorted intensity
values. An input intensity that matches one of the table records is directly mapped
to the associated color, while other values are interpolated from the closest table
entries (Figure 10.11; see also Color Plate XXVI).

Let NC be the number of color entries ci, i = 0..NC−1, in a color map, which
are sorted in ascending order according to the associated input value si. The output
color c for a given intensity s is easily calculated via interpolation (not necessarily
linear) with the following algorithm.

if (Nc < 2)

c = colormap[0].col;

i=Nc-2;

while ( colormap[i].val > s && i > 0 )

i--;

s1 = colormap[i].val;

s2 = colormap[i+1].val;
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if ( s1 == s )

c = colormap[i].col;

else

{

t = (s - s1) / (s2 - s1);

c = interp(colormap[i].col, colormap[i+1].col, t);

}

10.6 Matters of Perception

In designing a visualization, one must take into account not only technical issues
relating to the presentation of information but also the characteristics of the hu-
man visual system [Greg97]. After all, the “customer” of any visualization output
is the human eye. The eye consists of the pupil, the entry point for light, which
is then focused by the lens onto the retina. The retina can be thought of as a
projection wall, and it is made up of nerve cells called photoreceptors, which
capture and transmit visual information to the brain. The center of the retina is
the fovea. There are two types of photoreceptors: rods and cones (Figure 10.12).
Rods are sensitive to variations in intensity, while cones are sensitive to variations
in chromaticity (see also Chapter 11). The rods outnumber the cones by more
than an order of magnitude. The cones are located close to the fovea, while the
rods are spread more evenly over the retina. Cones in a typical human eye have
the ability to separately sense three different portions of the spectrum. They are
maximally sensitive to either long wavelengths of light (red light), medium wave-

Figure 10.12. Rods and cones.
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lengths (green light), or short wavelengths (blue light). Green cones constitute
approximately 64% of the total number of cones, red cones 32%, and blue cones
4% [Ahne87,Marc77]. Red and green cones are mainly located close to the fovea,
while blue cones form a ring around them.

Different color wavelengths require the lens to assume different focal lengths.
For example, pure blue and pure red objects (at the same distance from the eye)
require significantly different lens focusing, since red and blue are at opposite
ends of the visible wavelength spectrum. A non-negligible percentage of people
have some type of color blindness, a deficiency in distinguishing certain colors.
This is usually between red and green, and it is related to the functioning of their
red and green photoreceptors.

The above facts of the human visual system have a number of important con-
sequences for visualization (see also [Murc84]):

• Since cones are located close to the fovea, we have better color vision near
the center of the viewing direction.

• Since the rods significantly outnumber the cones, variations in intensity are
more effective in a visualization than variations in chromaticity, especially
when linked to variations in value; on the other hand, chromaticity varia-
tions are more useful for area segmentation.

• Colors with significantly different wavelengths should not be displayed
close to each other, since they require different focusing and the eye gets
tired (Color Plate XXXI).

• Pure blue is unsuitable for text and other detail that must be closely exam-
ined, because the area of the fovea has no blue cones. On the other hand,
blue is excellent for backgrounds.

• Red and green should be avoided in peripheral areas, since there are no red
or green cones on the periphery of the retina.

• Avoid colors that differ only in their red-green ratio to cater to color-blind
individuals. For example, colors that differ in their blue-yellow ratio are a
better choice.

Care should be taken when working with intensity variations. The perceived
effect of intensity variations is logarithmic; thus, the apparent difference between
the intensity pairs (0.2, 0.4) and (0.4, 0.8) is the same. Also, the perception of
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Figure 10.13. Perceived intensity levels depend on relative intensity. The inner
square has the same intensity value in both images; however, on the right it ap-
pears darker (outer-region intensity on left is 50, outer-region intensity on right is
200, and inner-square intensity is 125 in both cases).

intensity levels is not absolute but instead relates to the relative intensity of their
neighborhood. Thus, an object of the same intensity will appear darker in a light
background and lighter in a dark background (Figure 10.13).

The perception of visual stimuli can be divided into conscious and precon-
scious processing [Frie91]. Preconscious visual processing takes place involun-
tarily, is extremely fast, and precedes conscious visual processing. One must
therefore take advantage of preconscious processing when mapping values into
visuals. This can be done in a number of ways, which include

• the use of intensity rather than chromaticity as a value discriminator—we
can perceive the relative scale of multiple values much better when they are
mapped onto an intensity scale instead of a chromaticity scale;

• the use of change to attract attention to detail—this change can affect object
attributes such as position (movement), size, color, etc;

• the mapping of large values to nearer (and therefore larger) objects—the
value of an object is perceived to be analogous to the area of its retinal
projection.

Finally, since visual perception is not a mere physical but rather a psychophys-
ical phenomenon, one must also consider the emotional response that different
colors have on humans. The following list, taken from [Owen99], gives details
on the significance of certain colors. Since the response to color is partly con-
scious processing, one must be aware that the same color can provoke different
responses in different people (e.g., in different cultures):
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• red—danger, stop, negative, excitement, hot;

• dark blue—stable, calming, trustworthy, mature;

• light blue—youthful, masculine, cool;

• green—growth, positive, organic, go, comforting;

• white—pure, clean, honest;

• black—serious, heavy, death;

• gray—integrity, neutral, cool, mature;

• brown—wholesome, organic, unpretentious;

• yellow—emotional, positive, caution;

• gold—conservative, stable, elegant;

• orange—emotional, positive, organic;

• purple—youthful, contemporary, royal;

• pink—youthful, feminine, warm;

• pastels—youthful, soft, feminine, sensitive;

• metallic—elegant, lasting, wealthy.

10.7 Visualizing Multidimensional Data

In traditional graph plotting, each variable is assigned a separate coordinate axis
(dimension). However, in complex problems or database applications, we need
to visualize many variables simultaneously, and these cannot easily be accom-
modated in the few dimensions that we can handle. Most displays are two-
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dimensional, and visualizations based on them can therefore display up to two
variables at a time. Virtual-reality systems have made the visualization of the
third dimension possible by simulating the 3D experience of the space that we
live in. This extends the visualization capabilities by one extra simultaneously
displayable variable, but even three variables is limiting for many data sets.

Given a data set of d variables {v1,v2, . . . ,vd}, the straightforward mathemat-
ical method of reducing the problem is to project onto a subset of the dimensions
(see also Chapter 4). A simple way to achieve such a projection is by assigning
a constant value to some of the variables (orthogonal projection). For example,
we can project d variables onto the first two by assigning constant values to the
rest of them {v1,v2,v3 = c3,v4 = c4, . . . ,vd = cd}, thus achieving a two-variable
data set, which can easily be displayed on a 2D display device. To explore such a
multidimensional data set, the constant values must be updated manually (based
on the user’s intuition). The commonly used technique of slicing is an example
of a 2D projection. Color Plate XXXII shows a 2D slice of a 3D volumetric data
set.

One extra variable can be visually accommodated by exploiting the time di-
mension. It is obviously preferable to map onto the time dimension a variable that
is itself related to time. Animation techniques (see Chapter 17) are very relevant
(Color Plate XXXIII).

Color, grayscale, or fill patterns can also be used to map the value of a vari-
able. In Color Plate XXX, two MEG data sets (different stimuli) are displayed in
different colors; color thus identifies the stimulus variable in this example.

Glyphs can be used to display more variables in a visualization. A glyph is
a visual object onto which variable values may be mapped, each onto a different
visual attribute [Past02]. The type of glyph used should be chosen so as to invoke
the desired human perception of the data being represented. For example, for
vector data, the obvious glyph to use is the arrow. Spheres, disks, crosses, and

Figure 10.14. Mapping two variables onto glyph scale and color.
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Figure 10.15. Hierarchical visualization of a multivariate function on a 2D graph.

cylinders are also commonly used glyphs. Up to three positional variables can
be mapped onto the position of the glyph. A number of extra variables can be
mapped onto other glyph attributes. In practice, this number can be no more than
two, otherwise the glyphs get overloaded with information. A common way is to
map one variable onto the scale of the glyph and the other onto its color/texture
(Figure 10.14).

Mihalisin et al. [Miha91] proposed a hierarchical method for visualizing func-
tions of N independent variables f (x1,x2, . . . ,xN) as 2D graphs. Each independent
variable takes values from a finite, discrete, contiguous range. The vertical axis
displays the function value while the independent variables are assigned a unique
priority and are hierarchically mapped onto the horizontal axis. The variable with
the highest priority, say x1, varies the fastest, while the variable with the lowest
priority, say xN , the slowest. Thus for each value of xN , which maps onto a line
segment on the horizontal axis, all other variables cycle through their values like a
nested for-loop, with x1 cycling most frequently. The value of f is plotted for each
set of values that the independent variables take. Figure 10.15 shows an example
of a function with three independent variables. Note that the function values for
each cycle of the variables can be hierarchically nested in bounding boxes, which
help to visualize it better.
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10.8 Exercises
1. (Hermann’s Grid) Create a regular 2D grid of 4×4 black squares on a white

background. For example, on a 512×512 white image, you can place black
squares of size 70×70. Observe this image closely. Do you see something
peculiar at the intersections (white crosses)? Most people see dark blobs
that disappear when you concentrate on them individually.

2. Using your word processor, create a document with a few pages of blue text
on a red background. Cut and paste the same text into another document
with the usual black text on white background. Try reading a couple of
pages from the two documents and compare the strain in your eyes.

3. Create a 512× 256 window to hold two 256× 256 images. The left half
of the window should hold a yellow square; the right half should hold a
blue square. Each half should contain a 100×100 orange square, centered
within the larger square. How do the perceived colors of the inner squares
compare?
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11
Color in Graphics and

Visualization
We need to investigate the fourth type of sense (vision), which must be

subdivided, for it encompasses many varieties; we have jointly
named these varieties colors. . .

—Plato: Timaios

11.1 Introduction
Color has always intrigued people and has been studied for millennia. Today the
study of color, and the way humans perceive it, is an important branch of physics,
physiology, psychology, and art as well as computer graphics and visualization.

The result of applying all the wonderful algorithms presented elsewhere in this
book is a color or a grayscale image, which will eventually be viewed on an output
device such as a computer monitor or a printer. The use of color or grayscale tones
requires that the graphics programmer be aware of the fundamental principles
behind color and its digital representation.

11.2 Grayscale
If we remove the color characteristics of light, we are left with achromatic light
which is solely characterized by its intensity.1 “Black and white” televisions and
monitors display intensity only. Intensity can be represented by a real number be-
tween 0 (black) and 1 (white); values between these two extremes define different
shades of gray, or grayscales.

1Intensity is formally defined as power per solid angle (see Chapter 12).

343
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Suppose that we devote d bits for the representation of the intensity of each
pixel in a digital image, allowing for n = 2d different intensity values per pixel.
The question is, which intensity values shall we represent? The obvious answer,
a linear scale of intensities between the minimum and maximum values, is not a
good solution. It is known from physiology that the human eye perceives inten-
sity ratios rather than absolute intensity values. For example the eye regards the
absolute intensity pairs (0.1,0.2) and (0.3,0.6) as having the same internal dif-
ference. This fact can easily be verified experimentally by observing 3 light bulbs
of, say, 20, 40, and 60 watts power. The difference between the first and second
bulbs appears much greater than the difference between the second and the third.
We should therefore opt for a logarithmic distribution of intensity values. Let the
minimum intensity value2 be Φ0. For a typical monitor, Φ0 is about 1/300 of the
maximum intensity value 1 (white); we say that such a monitor has a dynamic
range of 300 : 1 (see also Section 11.5). If λ is the ratio between successive
intensity values, then

Φ1 = λ ·Φ0

Φ2 = λ ·Φ1 = λ 2 ·Φ0

...

Φn−1 = λ n−1 ·Φ0 = 1.

(11.1)

The ratio λ can be estimated from (11.1) if we know the Φ0 of a particular
output device, i.e.,

λ = (1/Φ0)1/(n−1).

How many intensity values do we need, or in other words, how many in-
tensity values would allow us to make the difference between successive steps
imperceivable to humans? This is an important question in digital images, if we
want to ensure that they are not inferior compared to real photographs with respect
to grayscale resolution. Fortunately, physiologists have addressed this question:
If λ is smaller than 1.01 (i.e., successive levels differ by less than 1%) then the
human eye can not distinguish between successive intensity values [Wysz00]. We
can thus compute the minimum number of necessary intensity values by setting
λ = 1.01 in (11.1) and solving for n:

1.01n−1 ·Φ0 = 1,

n = log1.01(1/Φ0)+1.

2If the output device is a monitor, absolute black cannot be generated because of phosphor reflec-
tions.
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Figure 11.1. Representation of an image with n = 2,4,8,16,32,64,128,256
grayscale intensity values.

Since typical monitors have Φ0 ∼ 1/300, n should be around 500. Figure 11.1
shows the representation of an image with varying numbers of intensity values.

11.2.1 Halftoning: Trading Spatial for Grayscale Resolution

Anti-aliasing methods trade grayscale (or color) resolution for spatial resolution
(see Chapter 2). In certain situations, where we have abundant spatial resolution
and can trade it for grayscale resolution, the reverse process is useful. Halfton-
ing3 techniques have this aim, and their roots are in the printing industry. In
certain print media, it is preferable to use as few grayscale levels as possible
(for economic reasons mainly); halftoning techniques are useful in other situa-
tions [Cho03]. Their effect can be observed in black and white newspaper pho-
tographs which, at a distance seem to possess a number of grayscale values, but
upon closer observation one can spot the little black spots of varying sizes that

3Also known as dithering.
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Figure 11.2. Left: initial photograph. Right: halftoning representation.

constitute the images. The size of the black spots are proportional to the grayscale
value that they represent (Figure 11.2).

A common approach to halftoning in digital images is to simulate the spot size
by the density of “black” pixels. The image is divided into small regions of m×m
pixels, and the spatial resolution of these regions is traded for grayscale resolution.
The spatial resolution is thus decreased m times in each image dimension, but the
number of available grayscale values is increased by m2. As an example, let us use
the case of a bi-level image (black and white). Taking 2×2 pixel regions (m = 2)
gives five possible final grayscale values (Figure 11.3). In general, for m×m
regions and two initial grayscale values, we get m2 +1 final grayscale values.

The above assignment of pixel patterns to grayscale values can be represented
concisely by the matrix [

3 1
0 2

]
,

where a particular grayscale level k (0≤ k≤ 4) is represented by turning “on” the
pixel positions of the 2× 2 region for which the respective matrix element has a
value less than k. For example, grayscale level 2 is represented by turning “on”
the bottom-left and the top-right elements since their values are less than 2.

There are limits to the application of the halftoning technique; taking an ex-

Figure 11.3. Five grayscale levels from two grayscale levels (black and white)
using 2×2 pixel regions.
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Figure 11.4. A bad selection for grayscale level 2.

treme case, it would make no sense to trade the full spatial resolution for a great
number of grayscale levels (by making m equal to the image resolution). These
limits depend on factors such as the original spatial image resolution and the dis-
tance of observation.

The sequence of patterns that define the grayscale levels must be carefully se-
lected. For example, assigning the pixels of Figure 11.4 to grayscale level 2 would
make a constant image of this value appear to possess vertical stripes. Another
good rule is that the sequence of pixel patterns that represent successive grayscale
levels should be strictly incremental; in other words, the pixel positions selected
for grayscale level i should be a subset of the positions for level j for all j > i.
This rule is observed by the patterns of Figure 11.3.

A sequence of patterns that satisfies the quality criteria for 2× 2 regions
is [Limb69]

H2 =
[

0 2
3 1

]
.

It is possible to recursively construct larger matrices, e.g., 4× 4, 8× 8 [Jarv76],
as follows:

Hm =
[

4 ·Hm/2 4 ·Hm/2 +2 ·Um/2
4 ·Hm/2 +3 ·Um/2 4 ·Hm/2 +Um/2

]
, m≥ 4 m = 2k,

where Um is the m×m matrix with all elements equal to 1. The halftoning tech-
nique can be straightforwardly extended to media which can display multiple
grayscale levels per pixel. For example, if we can display four grayscale val-
ues per pixel (2 bits/pixel), we can increase the number of displayable grayscale
values to thirteen using 2×2 pixel regions as shown in Figure 11.5. In general, we
can use m×m pixel regions to increase the number of available grayscale levels
from k to (k− 1)m2 + 1, while reducing the available spatial resolution by m in
both the x- and the y-axes.

The halftoning technique assumes that we have an abundance of spatial reso-
lution, (i.e., that the resolution of the display medium is significantly greater than
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Figure 11.5. Thirteen grayscale levels from four grayscale levels using 2×2 pixel
regions.

that of the image) and can thus be traded for grayscale resolution. What happens
if the image and display medium have the same spatial resolutions but the im-
age has a greater grayscale resolution than the display medium? Simple rounding
gives poor results as a significant amount of image information is lost (Figure 11.6
(left)).

Floyd and Steinberg [Floy75] proposed a method that limits information loss
by propagating the rounding error from a pixel to its neighbors. The technique is
similar to the carrying of overflow units in the addition process. The difference ε
between the image value Ex,y and the nearest displayable value Ox,y at pixel (x,y)

Figure 11.6. Left: simple rounding. Right: the Floyd-Steinberg method. Both
images have two intensity levels.
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Figure 11.7. Error propagation in the Floyd-Steinberg method.

is computed as
ε = Ex,y−Ox,y.

The pixel is displayed as Ox,y and the error ε is propagated to neighboring
pixels in scan-line order, i.e., (x + 1,y),(x,y− 1) and (x + 1,y− 1), as follows
(see also Figure 11.7):

Ex+1,y = Ex+1,y +3 · ε/8,

Ex,y−1 = Ex,y−1 +3 · ε/8,

Ex+1,y−1 = Ex+1,y−1 + ε/4.

The result represents a significant improvement over simple rounding, see
Figure 11.6 (right).

The following table outlines the prerequisites for and benefits of antialiasing,
halftoning, and the Floyd-Steinberg technique:

Anti-aliasing Halftoning Floyd-Steinberg
Prerequisites IG < DG IS < DS IS = DS & IG > DG

Resolution gain Spatial Grayscale Grayscale

where DG and IG are the grayscale resolutions of the display medium and image,
respectively, and DS and IS are the spatial resolutions of the display medium and
image, respectively.

11.2.2 Gamma Correction

Most monitors have a non-linear relationship between the voltage applied to them
(i.e., the input pixel intensity) and the displayed or output intensity. This relation-
ship follows a power law,

output = inputγ , (11.2)

where γ is monitor-dependent and is usually in the range [1.5,3.0]. As input volt-
age values are usually normalized in the range [0,1], images that are not corrected
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Figure 11.8. Left: gamma-corrected image. Right: non-gamma-corrected image.

for γ will appear too dark (Figure 11.8 (right)). Gamma correction is conceptu-
ally simple; we need to pre-adjust our input values to ensure a linear relationship
between input and displayed values:

input′ = input1/γ . (11.3)

Giving the input′ values to the monitor displays the gamma-corrected image (Fig-
ure 11.8 (left)).

In practice, of course, difficulties arise. First, some display systems4 will per-
form gamma correction, some will perform partial gamma correction, and some
none at all. It is thus necessary to know what a display system does before per-
forming gamma correction. Second, most current image formats do not store
gamma-correction information, making it hard to deal with gamma correction
across platforms.

Gamma correction is relevant to both grayscale and color images; in the latter
case the main effect of the gamma correction is on the intensity of the color image.

11.3 Color Models
In a world so rich in colors, there are actually no colors. Our perception of color
stems from the reaction of our brain to the wavelengths of light that enter our eyes.
Colors do not simply exist as “deeds of light,” as Johann Wolfgang von Goethe
put it, but are the product of a process that involves self-perception.

Given the overwhelming number of different colors that can be observed in
nature, man has had a long-standing desire to communicate and use color in a

4By display system, we mean the combination of the graphics hardware (card), the monitor, and
any display software.
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Figure 11.9. Electromagnetic spectrum.

consistent manner. He has thus been striving to invent a model for systematically
describing, comparing, classifying, and ordering colors; such a model is referred
to as a color model. Naturally the simplest approach was tried first, the linear
model of Aristotle (Color Plate VI). Aristotle was inspired from the cyclical suc-
cession of colors that form the continuum of day and night. Unfortunately, this
simple color model is a long way from reality. Plato and Pythagoras invented
more elaborate color models and some of their ideas persisted until the Renais-
sance.

Actually, visible colors correspond to frequencies of light that cover a small
fraction of the electromagnetic spectrum (Figure 11.9). Different frequencies
within this small region represent the different colors, from about 4.3 · 1014 Hz
(red) to about 7.5 ·1014 Hz (violet).5

An important classification of modern color models is based on whether they
are device-independent. In a device-independent color model the coordinates6

of a color will represent a unique color value, according to human perception.
In contrast, in a device-dependent color model the same color coordinates will
produce a slightly different visible color value on different display devices. The
Commission Internationale d’Eclairage (CIE) has worked on producing device-
independent color models; such models are useful, among other things, for the
consistent conversion between device-dependent color models. For example, the
red-green-blue (RGB) and cyan-magenta-yellow (CMY) models are device-
dependent while CIE XYZ is device-independent.

Some device-dependent color models also follow the respective devices’ phi-
losophy of producing arbitrary color from primary colors; we can distinguish be-
tween additive and subtractive color models. An additive model encapsulates
the way color is produced on a computer display by adding the contributions of
the primaries while a subtractive model resembles the working of a painter or a
printer, where color mixing is achieved through a subtractive (painting) process.

5Frequency v and wavelength λ are interchangeable since λ · v = c, where c is the speed of light;
red corresponds to a wavelength of about 780 nm and violet to 380 nm.

6See Section 11.3.1.



�

�

�

�

�

�

�

�

352 11. Color in Graphics and Visualization

Another important characteristic of color models is perceptual linearity. If the
perceived difference between two colors is proportional to the difference of their
color values across the entire color model, then the color model is perceptually
linear and offers the same perceptual color precision throughout its range. Finally,
it is desirable that a color model is intuitive in its use.

In this section, a small selection of color models are presented, based on their
relevance to computer graphics and visualization. A large number of additional
color models exist [Wysz00], including models that were developed for television
(such as YUV, YIQ, YCbCr and YPbPr) and proprietary models (such as Kodak’s
YCC).

11.3.1 The CIE XYZ Color Model

In color science, Grassman’s first law states that any color can be created as a
linear combination of three basic colors, provided that no combination of any
subset of the basic colors can produce another. This is analogous to the linear-
independence requirement for the basis vectors in a coordinate system.

Aiming to provide a standard way to describe all colors, the CIE defined the
XYZ color model in 1931. This is now considered as the mother of all color
models. Colors are represented in a three-dimensional color space whose axes are
defined by the basic colors

−→
X ,
−→
Y , and

−→
Z . Mixing the basic colors in suitable

proportions X , Y , and Z produces all visible colors (Figure 11.10);
−→
X ,
−→
Y and

−→
Z

are actually not visible colors themselves but must be simply regarded as compu-
tational quantities. In fact, X and Z provide chromaticity information (what the
color is) while Y corresponds to the level of intensity.7

The basic colors thus form a color basis and other colors
−→
F are expressed as

linear combinations of the basis,

−→
F = X ·−→X +Y ·−→Y +Z ·−→Z ,

where X ,Y,Z are the color coordinates of
−→
F .

Grassman’s second law provides for color mixing in a system of three basic
colors. If

−→
F1 = X1 ·−→X +Y1 ·−→Y +Z1 ·−→Z and

−→
F2 = X2 ·−→X +Y2 ·−→Y +Z2 ·−→Z are two

given colors, then the color that represents their mixture is

−→
FM = (X1 +X2) ·−→X +(Y1 +Y2) ·−→Y +(Z1 +Z2) ·−→Z .

Color interpolation by a factor t (0 ≤ t ≤ 1) between colors
−→
F1 and

−→
F2 can

7Note that, in this context, intensity is often referred to as brightness.
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Figure 11.10. The XYZ mixing curves to produce the visible colors.

similarly be defined as

−→
FI = (t ·X1 +(1− t) ·X2) ·−→X +(t ·Y1 +(1− t) ·Y2) ·−→Y +(t ·Z1 +(1− t) ·Z2) ·−→Z .

If we project the CIE XYZ model colors onto the plane X +Y + Z = 1, we
get the XYZ color triangle. An arbitrary color vector (X ,Y,Z) corresponds to the
point (x,y,z) of the XYZ triangle given by

x =
X

(X +Y +Z)
, y =

Y
(X +Y +Z)

, z =
Z

(X +Y +Z)
.

Point (x,y,z) is the intersection of the vector (X ,Y,Z) and the XYZ triangle.
Since x + y + z = 1, we can define all colors of the triangle by giving just two of
their coordinates, say x and y; we thus take the projection of the XYZ triangle onto
the xy-plane, which is the XY triangle (Figure 11.11). Therefore, an alternative
way to specify a color is to give its x and y values (or any other pair from the
(x,y,z) triplet) plus its intensity value Y . This color specification is referred to as
Yxy.

To return to CIE XYZ from CIE Yxy, we use

X = x · Y
y
, Y = Y, Z = (1− x− y) · Y

y
= z · Y

y
.

Figure 11.12 shows a curve that encompasses all visible colors (a subset of
the XY triangle colors) and a shaded area which represents the colors found in
nature (a subset of the visible colors).
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Figure 11.11. XY triangle. Figure 11.12. Visible colors in the XY tri-
angle.

The XYZ model is perceptually non-linear and definitely not intuitive in its
use.

11.3.2 The CIE Yu′v′ Color Model

This is a transformation of the CIE XYZ model which attempts to provide per-
ceptual linearity. The u′ and v′ components of this system are defined in terms of
the x and y components of CIE XYZ as follows:

u′ =
4x

−2x+12y+3
,

v′ =
9y

−2x+12y+3
.

The above transformation is easily reversible. Again a third component could
be specified but is redundant. A complete color specification in CIE Yu′v′ can be
given as a triplet (Y,u′,v′), where Y is the same intensity value as in CIE XYZ.

11.3.3 The CIE L*a*b* Color Model

This is another transformation of CIE XYZ which aims at perceptual linearity. Its
parameters are defined relative to the white point of a display device (any display
device, as it is device-independent). The white point is the color that is displayed
when all color components are set to their maximum value8 and is expressed in the

8Since display devices usually employ the RGB model (see Section 11.3.4), the white point is
obtained by setting r = g = b = 1.
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CIE XYZ model as (Xn,Yn,Zn). The CIE L*a*b* model defines three parameters
L∗ (for intensity9) and a∗,b∗ (for chromaticity) in terms of a CIE XYZ color
specification X ,Y,Z and the white point (Xn,Yn,Zn) (Color Plate VII):

L∗=
{

116 3
√

Yr−16, if Yr > 0.008856,
903.3Yr, if Yr ≤ 0.008856,

a∗= 500( f (Xr)− f (Yr)),

b∗= 200( f (Yr)− f (Zr)),

where
Xr = X

Xn
, Yr = Y

Yn
, Zr = Z

Zn
,

f (t) =
{

3
√

t, if t > 0.008856,
7.787t +16/116, if t ≤ 0.008856.

The above transformation is reversible.

11.3.4 The RGB Color Model

As its name implies, the basic colors in the RGB additive color model are red,
green, and blue. These basic colors were chosen, because our own vision is based
on red, green, and blue color-sensitive cells (cones) (see Chapter 10). Again, other
colors

−→
F are expressed as linear combinations of the basis

−→
F = r ·−→R +g ·−→G +b ·−→B ,

where
−→
R ,
−→
G ,
−→
B are the red, green, and blue basis vectors and r,g,b are the color

coordinates of
−→
F .

On most computer displays, colors are created using an additive method. Ad-
ditive color mixing begins with black (no light present, the display phosphor is
not illuminated) and ends with white (the sum of all basic colors). As more color
is added, the result is lighter and tends to white (Color Plate VIII). Color scanners
work in a similar way; they read the amounts of basic colors that are reflected
from, or transmitted through, an object and convert these readings into digital val-
ues. The RGB model is useful for such devices due to its additive nature and its
use of the red, green, and blue basis which consists of visible colors rather than
theoretical computational quantities.

Color mixing and interpolation can be defined in a manner similar to the XYZ
model. The RGB cube is the unit cube in RGB space (Figure 11.13; see also
Color Plate IX).

9The actual term used was luminance, but, for simplicity and consistency, we shall take it to be
synonymous to intensity here.
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Figure 11.13. RGB cube diagram.
(See also Color Plate IX.)

Figure 11.14. RGB triangle. (See
also Color Plate X.)

Within the space of the RGB cube, colors correspond to vectors from the
origin (0,0,0), which is the black point. White is then (1,1,1), green is (0,1,0),
etc. In this representation the direction of a color vector defines chromaticity and
its length is the intensity. The main diagonal of the RGB cube consists of shades
of gray only (from black to white). If we disregard intensity, it is possible to
represent the RGB system with a triangle which is the intersection of the RGB
cube with the plane defined by the points red (1,0,0), green (0,1,0), and blue
(0,0,1) (Figure 11.14; see also Color Plate X). All RGB colors are mapped
onto this triangle, since all RGB vectors intersect it. The only information lost
is intensity.

Using the RGB triangle it is possible to refine the notion of chromaticity by
splitting it into hue and saturation. Hue is the dominant wavelength which gives
a color its identity and saturation is the amount of white that is present in it. All
hues are found on the perimeter of the RGB triangle; saturation is maximum at
the center of the triangle and minimum at its perimeter. Colors of the same hue,
but varying saturation, can be found on a line segment that connects a point on
the perimeter with the triangle center. (In the RGB cube, saturation corresponds
to the angle that a color vector forms with the cube diagonal.)

The correspondence between visible colors and the RGB model can be defined
by giving the portions of red, green, and blue required to produce the visible
colors (Figure 11.15).10 The RGB model is not perceptually linear and, in terms
of use, rather un-intuitive since it is not easy to come up with the mix of the three
primaries required to produce an arbitrary color.

10Note the negative values required for red in a certain range, indicating the inability of this additive
color model to produce all visible colors.
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Figure 11.15. RGB mixing curves for visible colors.

Due to its device-dependent nature, the same RGB color triplet (r,g,b) will
potentially produce perceptually different colors on different display devices. To
ensure perceptual color equality when transferring color images across RGB dis-
play devices, it is necessary to convert from one to the other via an intermediate
device-independent color model. Such devices often provide a matrix M for the
conversion of their RGB color model to CIE XYZ:11⎡⎣ X

Y
Z

⎤⎦= M ·
⎡⎣ r

g
b

⎤⎦ , (11.4)

where

M =

⎡⎣ XR XG XB

YR YG YB

ZR ZG ZB

⎤⎦ .

Given the RGB to CIE XYZ conversion matrices M1 and M2 of two display
devices, we can convert RGB colors between them in a perceptually equivalent
manner as ⎡⎣ r2

g2

b2

⎤⎦= M−1
2 ·M1 ·

⎡⎣ r1

g1

b1

⎤⎦ . (11.5)

11Some display devices provide instead the CIE XYZ specifications for red, green, blue, and the
white point, from which the matrix M can be derived.



�

�

�

�

�

�

�

�

358 11. Color in Graphics and Visualization

Alpha color and RGB compressed modes. The number of bits assigned for
the storage of the color of a pixel, the bits per pixel (bpp), determines the max-
imum number of colors that can be simultaneously present in an image as well
as the size of the image. With the exception of high dynamic range images (Sec-
tion 11.5), 8 bits per color component are typically used, giving 24 bpp. As com-
puter words are commonly 32 bits wide, the remaining 8 bits are often allocated
to represent the alpha value.

An alpha color is a quadruple [r,g,b,α]T, α = 0 and corresponds to [r/α,g/α,

b/α]T; α represents the area (or volume) in which the energy of the color is
held [Will06]. An alpha color can thus be seen as [C,α]T = [energy contribution,

area contribution]T where C is short for the RGB color components. Trans-
parency or partial pixel coverage can be mimicked by reducing the α value of
a color.

The alpha color representation very much resembles homogeneous coordi-
nates used in projective geometry, where a homogeneous point [x,y,z,w]T, w = 0,
has the basic representation [x/w,y/w,z/w]T (see Section 3.4.1). In fact, Willis
shows that alpha colors form a projective space, valid for any color computa-
tion [Will06].

For example, looking at transparency, let transparent object A of alpha color
[CA,1]T be in front of transparent object B of alpha color [CB,1]T. Since the
front object is transparent, its color only contributes a fraction αA so we have
to reduce its area coverage; in projective terms its contribution is [αACA,αA]T.
The back object contribution is the fragment αB of its own transparency times
the portion of color energy (1−αA) that object A allows to pass through it, i.e.,
[αB(1−αA)CB,αB(1−αA)]T. Thus the total contribution of the two objects is

[αACA +αB(1−αA)CB,αA +αB(1−αA)]T,

which is also known as the over operator [Port84].
The size of an image can be reduced by decreasing the bpp and this is referred

to as compressed mode. This is achieved by re-sampling the range of each color
component. The bit allocation of the bpp into the red, green, blue, and alpha
components is denoted by r:g:b:a; if 3 numbers are given then the alpha value
is not used. Common compressed modes include 4:4:4:4, 5:5:5:1, 5:6:512 and
3:3:2.

12A larger number of bits is allocated to green, as the eye is more sensitive to variations in this color
component.



�

�

�

�

�

�

�

�

11.3. Color Models 359

11.3.5 The HSV Color Model

The amounts of red, green, and blue present in a color indirectly control its hue,
saturation, and intensity characteristics. It is often simpler for humans to specify
a color based on such characteristics, rather than proportions of red, green, and
blue. One of the first modern attempts to systematically organize a color model
was made by artist A. H. Munsell [Muns41]. Munsell sought a conceptually sim-
ple way to universally describe color and proposed the hue-value-chroma system,
known today as the hue-saturation-value (HSV) system, which geometrically rep-
resents colors on a cone.13

Munsell started by arranging colors on a circle, like a color wheel, encapsulat-
ing the hue characteristic. Hue is described by an angle with respect to an initial
position on the circle (Color Plate XI). For example, red is found at 0◦, green
at 120◦, and blue at 240◦. This hue circle corresponds to a cross section of the
cone. Saturation is maximum on the surface of the cone (minus the base), which
represents pure colors with maximum “colorfulness”; the axis of the cone repre-
sents minimum saturation (shades of gray). The value component corresponds to
intensity; the minimum value 0 indicates the absence of light (black) while the
maximum value indicates that the color has its peak intensity. This component is
represented by a position along the axis of the cone: 0 corresponds to the cone’s
apex, and the maximum value corresponds to the center of the cone’s base.

A relatively simple linear transformation converts RGB values to HSV and
vice versa; HSV can be used in place of a device’s RGB model as a more intuitive
color interface.

11.3.6 The CMY(K) Color Model

When colors are mixed during the painting or printing process, the subtractive
color method is used. Subtractive color mixing starts with white (the color of the
canvas or paper); as one adds color, the result gets darker and tends to black. For
example, if we drop cyan paint on a piece of paper, it absorbs the red component of
incident light; if the paper is illuminated with white light (white = red+green+
blue), the reflected (visible) light from the painted area will be (red + green +
blue)− red = (green+blue) = cyan.

The CMY model is defined as the complement of RGB. Its three basic colors
are cyan (

−→
C ), magenta (

−→
M), and yellow (

−→
Y ). The CMY cube is the unit cube in

CMY space (Figure 11.16; see also Color Plate XII). White appears at (0,0,0)

13Note that, in this context, value refers to intensity.
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Figure 11.16. CMY cube diagram. (See also Color Plate XII.)

and black at the opposite vertex (1,1,1); other colors are also in opposite vertices
with respect to the RGB cube. A color

−→
F is expressed as a linear combinations

of the basic colors

−→
F = c ·−→C +m ·−→M + y ·−→Y ,

where c, m, and y are the color coordinates of
−→
F .

Being a complement of RGB, it is perceptually nonlinear and rather non-
intuitive, since it is not straightforward to specify a certain color as a mixture
of
−→
C ,
−→
M, and

−→
Y . The conversions between CMY and RGB are

⎡⎣ c
m
y

⎤⎦=

⎡⎣1
1
1

⎤⎦−
⎡⎣r

g
b

⎤⎦ ,

⎡⎣r
g
b

⎤⎦=

⎡⎣1
1
1

⎤⎦−
⎡⎣ c

m
y

⎤⎦ .

Some printing devices include black ink in addition to cyan, magenta, and
yellow in order to avoid synthesizing black, which appears often in text and some
diagrams; they thus economize on the use of ink and provide better quality black.
In terms of the color model, black can be used to offset the color composition
process by the minimum component of a color

−→
F . The CMYK color model is a

derivative of CMY that includes black, and the (reversible) conversion from CMY
to CMYK (with components c′,m′,y′,b) is
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b = min(c,m,y),

c′ =
c−b
1−b

,

m′ =
m−b
1−b

,

y′ =
y−b
1−b

.

Caution should be exercised when converting from the RGB space of a dis-
play device to the CMY space of a printing device, since they are both device-
dependent models. The above simple transforms are unlikely to result in ac-
curate color reproduction. Ideally, one should convert from RGB to a device-
independent system, such as CIE XYZ, and then to CMY using the transformation
matrices of the respective devices, if known:⎡⎣ c

m
y

⎤⎦=

⎡⎣ XYZ→
CMY

of printer

⎤⎦ ·
⎡⎣ RGB→

XYZ
of display

⎤⎦ ·
⎡⎣ r

g
b

⎤⎦
The following table summarizes the main characteristics of the color models

presented above, where Y and N denote yes and no.

Device-independent? Perceptually linear? intuitive?
CIE XYZ Y N N
CIE Yu′v′ Y Y ∼ N

CIE L*a*b* Y Y ∼ N
RGB N N ∼ N
HSV N N Y
CMY N N ∼ N

11.4 Web Issues
When making images for the Web, a prime consideration is that they will be
potentially viewed by a large audience with various display systems. The same
digital image can appear quite different on different display systems, if care is not
taken.

The first consideration is difference in gamma correction. An image stored
with different gamma correction than that of the actual display system will either
appear too bright or too dark. If no particular audience can be assumed, it makes
sense to use an “average” gamma-correction value for images, e.g., 2.2.
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The second consideration is difference in the color model. It is quite common
to store images in the device-dependent RGB model. As such, when the actual
display device is different than the display device used for the creation of the
image, the colors will most likely be perceptually different. This is particularly
annoying in Web applications where the image creator is not even aware of the
type of display device that will be used for viewing.

A logical possibility would be to consider one of the CIE device-independent
models for the transfer of images; this has a number of drawbacks however. First,
it imposes an extra step of calibration, as some models require the specification
of the white point for the conversion. Second, if a semi-intuitive model such as
L*a*b* is used, an expensive conversion involving cube roots is required. Finally,
RGB models are widely accepted for display devices.

sRGB. Standard RGB or sRGB is a device-independent color model that is easier
to handle for device manufacturers in the consumer market due to its similarity to
RGB. The color model sRGB achieves its device-independence by providing

• colorimetric definition of the red, green, and blue basic colors in terms of
the device-independent standard CIE XYZ;

• a gamma of 2.2;

• precisely defined viewing conditions.

In addition to Web applications, sRGB is useful in consumer electronics (e.g.,
digital cameras) as a standard format for the exchange of images.

11.5 High Dynamic Range Images
When we consider the future, we may wonder how likely it is that images created
today, either natural or synthetic, will be useful to coming generations. With the
advent of cheap digital capture and storage media, we have the tendency to think
that our images are potentially immortal. We should ask ourselves how appealing
our images will be at future times, assuming significant technological advances
in display technology. The question then is, do we record our images in a format
that is potentially immortal?

While it is virtually impossible to predict future technology, it is reasonable
to assume that the human visual system will remain as it is today. The use of
a format that can capture all that the human eye can see is significant insurance
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against the mortality of our images. Let us define the dynamic range of an image
as the ratio of its highest to its lowest intensity value. The human eye has tremen-
dous dynamic range capabilities; physiological experiments have shown that it
can perceive about five orders of magnitude (10,000 : 1) of dynamic range simul-
taneously. If the eye is given a few minutes for adaptation, this range increases
to over nine orders of magnitude. A good example of the use of this capability
is driving a car into oncoming traffic at night; the contrast between the oncoming
cars’ headlights and the surrounding area is huge, but the eye can perceive both.

Conventional displays (such as cathode ray tubes or liquid crystal displays)
do not even come close to the dynamic range of the eye; their typical dynamic
range is 300 : 1. Even worse, conventional 24-bit RGB encoding has a useful
dynamic range of only 90 : 1 [Ward01]. Thus, although 24-bit RGB encoding
does a relatively good job of representing what a monitor can display (at least
by orders of magnitude) it does a poor job of representing what the human eye
can perceive [Ward01]. In fact the dynamic range of conventional camera film is
significantly higher than that of 24-bit RGB, making film-captured images more
likely to stand the test of time.

High dynamic range (HDR) images can be produced by specialized photog-
raphy equipment (including high dynamic range CCDs), by combining multiple
images of a scene taken at different brightness levels or synthetically (e.g., by
global illumination techniques [Rein05]). Tone-mapping14 methods have been de-
veloped [Dura02, Lars97, Tumb99] that compress HDR images into the dynamic
ranges of conventional monitors according to specific preservation intents (Fig-
ure 11.17; see also Color Plate XIII). However recognizable such tone mapped
images may be, no-one would confuse them with the visual experience of watch-
ing oncoming traffic lights at night, simply because the dynamic range does not
exist. Note that the difference is not the maximum displayable intensity; increas-
ing the brightness on a conventional display would simply turn dark pixels into
medium gray [Rein05]. What is missing is the capability to display a wide dy-
namic range simultaneously. There are two advantages to creating HDR images:

1. The images can be saved for posterity at the dynamic range perceivable by
human beings, thus accounting for future HDR displays.15

2. It is possible to subsequently apply different tone-mapping techniques to
HDR images.

14For a general discussion of tone mapping, see Chapter 10.
15Current research in HDR displays is promising [Seet04].
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(a) (b)

(c) (d)

Figure 11.17. Images of a scene with high dynamic range. (a) Obtaining a dark
image loses information on the interior of the arch. (b) A bright image loses infor-
mation on the clouds. (c, d) An HDR image created from several simple images
(images (a) and (b) being the two extremes) and tone-mapped using histogram
tone mapping (c) or Reinhard’s global photographic tone mapping (d) is closer to
what the human eye can see. (Images courtesy of Greg Ward.) (See also Color
Plate XIII.)
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Figure 11.18. Bit assignments in 32-bit LogLuv.

It is possible to record HDR images by drastically increasing the bits per pixel
(e.g., by assigning a 32-bit float for every color component for a total of 96 bpp).
However HDR formats make clever use of the notion of just noticeable differ-
ence (JND) [Seet04]. A JND is the smallest intensity difference detectable by the
human eye at a given intensity level. There is a logarithmic relationship between
JNDs and intensity levels [Bart92,Bart93]; it therefore makes sense to separate the
intensity component of a pixel from its chromatic content and store it separately,
encoded at a logarithmic scale. This is the approach followed by HDR formats,
such as RGBE of Radiance [Ward91, Ward94] and LogLuv [Lars98a, Lars98b].
Here we shall focus on 32-bit LogLuv.

The 32-bit LogLuv format assigns 32 bits to each pixel. The bit assignments
are shown in Figure 11.18. Fifteen bits are used for the intensity value, 1 bit
is used for the intensity sign (negative intensity is allowed), and 16 bits are as-
signed to chromaticity.16 The logarithmic conversion between the (captured or
computed) real intensity value L and its (integer) stored value Le is of the form

Le = �c1(log2 L+ c2)�,
L = 2[Le/c1−c2].

The above encompasses the full range of perceivable intensity in impercepti-
ble steps [Lars98a].

The chromaticity values are converted from CIE XYZ to Yxy, as shown in
Section 11.3.1, and then to Yu′v′ for perceptual linearity, as shown in
Section 11.3.2 [Wysz00]; the visible u′v′ range is then scaled to eight bits for
each of u′ and v′, which gives enough precision to cover the visible chromatic
spectrum.

11.6 Exercises
1. Implement the halftoning algorithm and use it to represent an image with

five grayscale levels using two grayscale levels by employing the H2 matrix
of Section 11.2.1.

16As stated earlier, chromaticity refers to two of the three color characteristics in the HSV model
(hue and saturation); intensity (or “value” in HSV) is the third.
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2. Design and implement an algorithm which takes a grayscale image as input
and computes the number of intensity levels Q, in a format of your choice.
The algorithm should then create the halftoning matrix Hm that provides at
least Q grayscale levels (see Section 11.2.1) and convert the original image
into a bi-level (black and white) image using Hm.

3. Implement the Floyd-Steinberg algorithm and test it on grayscale images
of your choice.

4. Generalize the Floyd-Steinberg algorithm so that it works for color images.
Assuming an RGB representation, you will need to process each of the red,
green, and blue components separately. Use it to convert a 24-bit image (8
bits for each color component) to a 6-bit image (2 bits per color component)
and compare the result to the image obtained by simple rounding of each
color component to 2 bits.

5. Check if your monitor provides an RGB to CIE XYZ conversion matrix M1.
Find the equivalent matrix M2 for another monitor and convert images from
the first monitor to the second monitor using Equation (11.5). Compare the
result to the simple transfer of RGB images across the monitors.

Note: Use a simple encoding format, such as raw RGB.

6. Write a small program to display and step through grayscale levels. The
program must also allow jumps within the range that your monitor can
display (e.g., by assigning 0 to the minimum level (black) and 1 to the
maximum level (white) and then picking numbers within that range). Use
this program to confirm the logarithmic relationship between JNDs and in-
tensity levels by tabulating the absolute grayscale difference for a JND at
different intensity levels (see Section 11.5).

Note: you will have to ensure that your monitor performs reasonable gamma
correction (see Section 11.2.2.)
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12
Illumination Models and

Algorithms

Light is a thing that cannot be reproduced,
but must be represented by something else—by color.

—Paul Cézanne

12.1 Introduction

The realistic representation of illumination phenomena in computer graphics is
based on the relevant laws of optics. These laws are the result of extensive physi-
cal investigations over centuries, and the relevant body of knowledge is extensive.
In computer graphics we seek to implement those laws that make the most differ-
ence in practice, while at the same time considering the computational cost.

Let us make clear what the role of an illumination model is. When light illu-
minates a point p of an object (directly or indirectly via reflections) it changes the
object’s color at p according to such parameters as the direction of the incident
light, the direction of observation, the surface normal at p, the reflectivity of the
material, etc. The illumination process should be contrasted to texture mapping
algorithms which select the color of the object at p. Texture mapping conceptually
precedes illumination and is investigated separately in Chapter 14. The effects of
illumination and texturing are often confused by newcomers to computer graph-
ics; Figure 12.1 should help to make the distinction clear.

At this point we must distinguish between two trends in computer graphics.
The first uses practical illumination models to produce acceptable illumination
effects at a low computational cost, suitable for real-time applications and is ex-
plored in the present chapter. The second implements a large part of the available

367
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Figure 12.1. Texture-mapping and illumination algorithms.

illumination theory in order to produce the most convincing illumination effects,
which come at a high computational cost, suitable only for very demanding and
non-real-time applications and is explored in Chapter 16. An essential difference
between the two approaches is that the latter considers the interaction of light be-
tween objects, or how objects are indirectly illuminated by light reflected from
other objects. For this reason illumination models of the first type are usually
referred to as local and of the second type as global.

Finally, we have to make the distinction between an illumination model and al-
gorithm: An illumination model encapsulates a set of physical illumination laws.
An illumination algorithm implements an illumination model efficiently.

12.2 The Physics of Light-Object Interaction I
Light energy that reaches an object breaks down into four components:

Incident light = reflected light+scattered light+absorbed light+ transmitted light

Depending on the structure (roughness) of the object’s surface as well as other
secondary parameters, a portion of the incident light energy will be reflected in
the “mirror” of the incident direction (specular reflection) and another portion
will be scattered in all directions (diffuse reflection), adding to the ambient light
energy. Yet another part will be absorbed, increasing the object’s temperature,
and a final part will be transmitted through the object, depending on the object’s
transparency (Figure 12.2).

In order to introduce the basic concepts of light-object interaction, we need
to possess a basic understanding of radiometric quantities, as defined by interna-
tional standards [Illi00, Shor05]. We shall use the International System of Units
(SI). Radiometry is the measurement of optical radiation, that is, electromagnetic
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Plate I. Loop subdivision: From left to right: an initial configuration, its first and
second refinements, and limit surface. (See also Figure 8.11.)

Plate II. Butterfly subdivision. An initial
configuration (left) and its limit surface
(right). (Courtesy of D. Zorin.) (See also
Figure 8.13.)

Plate III. Procedure mapping example.
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Plate IV. Interpolating curves by subdivision surfaces. Left: a Doo–Sabin sur-
face interpolating a crease. Right: a Catmull–Clark surface interpolating a C1-
continuous curve. (See also Figure 8.18.)

Plate V. Lofted Catmull–Clark subdivision surfaces. Left: A set of control poly-
gons defining cubic B-spline curves. Right: A Catmull–Clark subdivision surface
interpolating these curves. (See also Figure 8.19.)

Plate VI. Aristotle’s linear color model.
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Plate VII. The L*a*b* color model. Plate VIII. RGB additive colors.

Plate IX. RGB cube. (See also Fig-
ure 11.13.)

Plate X. RGB triangle. (See also Fig-
ure 11.14.)

Plate XI. The hue-saturation-value
color model. Plate XII. CMY cube. (See also Fig-

ure 11.16.)
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(a) (b)

(c) (d)

Plate XIII. Images of a scene with high dynamic range. Obtaining a dark image (a)
loses information on the interior of the arch; a bright image (b) loses information
on the clouds. An HDR image created from several simple images (images (a) and
(b) being the two extremes) and tone-mapped using histogram tone mapping (c)
or Reinhard’s global photographic tone mapping (d) is closer to what the human
eye can see. (Images courtesy of Greg Ward.) (See also Figure 11.17.)
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(a) (b)

Plate XIV. (a) Forward scattering (light source opposite observer). (b) Back scat-
tering (light source behind observer).

Plate XV. The effect of the three components of the Phong model: (left) ambient
only; (middle) ambient + diffuse; (right) ambient + diffuse + specular.

Plate XVI. The effect of the specular parameters in the Phong model: n increases
to the right, ks increases upwards. (See also Figure 12.10.)

Plate XVII. Constant shading (left), Gouraud shading (middle), and Phong shading
(right).
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(a) (b)

(c) (d)

Plate XVIII. (a) Flat shaded polygons on a zigzag profile. (b) Quadratic interpola-
tion of vertex normals on a zigzag profile. (c) Linear interpolation of vertex normals
on a zigzag profile. (d) Reduction of straight silhouettes using a dense polygon
mesh approximation of a curved patch model of the same object and linear ap-
proximation (polygon count increased by a factor of 4). (Color plate by permission
from C.W.A.M. van Overveld [Over97].)

Plate XIX. Anisotropic reflectance. (See also Figure 12.30.)
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Plate XX. The Cook–Torrance Model for various materials. (See also Fig-
ure 12.25.)

Plate XXI. Results using the Strauss model. (See also Figure 12.29.)
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Plate XXII. The normal map ap-
plied to the low resolution model of
Plate XXIII (left) to imitate the geo-
metric complexity of the high resolu-
tion model of the same plate (right).

Plate XXIII. Tangent space version of
the normal map of Plate XXII.

Plate XXIV. Detail transfer via normal mapping. A low resolution proxy surface
(left) is rendered using the normal vector information of the corresponding high
detail surface it represents.



�

�

�

�

�

�

�

�

Plate XXV. Texture Hierarchies. Complex surface finishes can be achieved by hier-
archically combining textures to model material attributes. (See also Figure 14.35.)

Plate XXVI. Color coding of height and sea depth using a color map that maps
relative height information onto interpolated color values. (See also Figure 10.11.)
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36 random shadow rays

1 random shadow ray

100 random shadow rays

9 random shadow rays

Plate XXVII. Direct illumination due to a single light source. Note the difference
in quality of the image when the number of samples (shadow rays) is increased.
(See also Figure 16.3.)
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Plate XXVIII. Reflection mapping using a pre-rendered cube-map.

Plate XXIX. Left: brain visualization. Right: wind-data visualization. (Courtesy of
L. Perivoliotis, Hellenic Centre for Marine Research.)

Plate XXX. Coregistration of generic
brain model with MEG signals. (See
also Figure 10.4.)

Plate XXXI. Colors with different
wavelengths cause differential focus-
ing and tire the eye.
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Plate XXXII. Slicing. Image created using OpenDX.

Plate XXXIII. Mapping a variable onto time. Four frames from the display of MEG
activation records (arrows represent MEG activation vectors). (Images created
using OpenDX/ViewMEG [Kats05].)
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Plate XXXIV. An Ovector3
X×Y×Z . Plate XXXV. Tetrahedral grid.

Plate XXXVI. Volume rendering.
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Plate XXXVII. Arrow plot for Ovector3
X×Y×Z . (Image created using OpenDX.)

Plate XXXVIII. LIC on Ovector3
X×Y×Z using ROI. (Image courtesy of Anders Helgeland

[Helg04].)
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Plate XXXIX. Streamlines (left) and ribbons (right) for static vector fields. (Images
created using OpenDX.)

Plate XL. Effect of L on the LIC function (L = 0,5,10,20 left to right, top to bottom).
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Plate XLI. Color quantization helps understanding. (Courtesy of Peter Hall
[Hall93].)

Plate XLII. Simplification of a vector field over a tetrahedral mesh. Initial field and
simplification to 50%, 25%, and 10% of the original number of tetrahedra.
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absorption

internal
reflection

transmitted
light

incident
light

diffuse
reflection

specular
reflection

light
source

Figure 12.2. Incident light analysis.

radiation within the frequency range 3×1011 Hz and 3×1015 Hz, which includes
the ultraviolet, the visible, and the infrared ranges [Palm05]. Before proceed-
ing, please ensure that you have a sufficient grasp of solid angle calculations (see
Appendix D).

Radiant energy (Q) is emitted from a light source or reflected from a surface
and is transferred through space as photons. Radiant energy is the total energy
emitted as radiation of all wavelengths in a defined period of time and is measured
in joules. The rate at which radiant energy passes a spatial reference is called
radiant power (or flux Φ) and is measured in watts (watts = joules/sec):

Φ = dQ/dt. (12.1)

The energy emitted or reflected from a point may be restricted to certain directions
or it may be spreading equally in all directions. The radiant intensity (Ir) is
defined as the radiant power per unit of solid angle ωr in a certain direction:

Ir = dΦr/dωr. (12.2)

The SI defines a special unit, the candela, as the luminous intensity in a given
direction of a source that emits monochromatic radiation of frequency 540×1012

Hz and that has a radiant intensity in that direction of 1/683 watts per steradian.
We shall adopt the watts/steradian as the unit for intensity. Notice that intensity
is an overloaded term [Palm95] and by adopting the definition of power per solid
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Figure 12.3. Radiance.

angle in a certain direction we side with the most widely accepted convention that
conforms with the SI units.

We thus arrive at the concept of radiance (L). Assume an infinitesimal surface
dA with normal vector n̂ forming an angle θ with the direction of incident or
outgoing illumination l̂ (Figure 12.3). Radiance is defined as the radiant power
per unit solid angle leaving or entering the infinitesimal area dA from a certain
direction per unit projected surface area in that direction:

L = dΦ/(dωdAcosθ) = dΦ/(dωdA(n̂ · l̂)). (12.3)

Due to the solid angle, radiance is inversely proportional to the square of the
distance from the light source and is measured in watts/(steradians · m2).

The albedo ρ of a material is the ratio of scattered to incident electromagnetic
radiation across the spectrum; the albedo practically defines the color of a material
without the effect of illumination.

The irradiance Ei of a surface point is the incident flux per unit area in the
vicinity of the point. Irradiance can be visualized as the power per unit area inci-
dent from all directions within a hemisphere onto an elementary surface located
at the center of the base of that hemisphere:

Ei = dΦi/dA (12.4)
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Figure 12.4. Defining dωi.

and is measured in watts/m2. Similarly the radiosity B is the flux per unit area
exiting a surface

Er = B = dΦr/dA (12.5)

and is also measured in watts/m2.
For a point on an illuminated surface, we can define the incident intensity Ii

in a manner equivalent to the radiant intensity, as the incident flux per unit solid
angle,

Ii = dΦi/dωi. (12.6)

We can relate incident intensity to irradiance by combining Equations (12.4) and
(12.6):

Ei = Iidωi/dA. (12.7)

From the definition of solid angle,

dωi =
dAcosθi

d2 ,

where dA · cosθi is the projection of the elementary surface dA onto a plane nor-
mal to the direction of illumination (giving an elementary spherical region) and
d is the distance from the light source to the elementary surface (see Figure 12.4
and Appendix D).

We thus obtain the photometry law:

Ei = Ii
cosθi

d2 = Ii
(n̂ · l̂)

d2 . (12.8)

In computer graphics, we are interested in the relationship between the inci-
dent light from a certain direction onto a surface and the reflected light in another
direction as well as the transmitted light through the object. This relationship is
captured by the bidirectional reflectance distribution function (BRDF) [Nico77].
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Figure 12.5. Determining the intensity at a point on a surface.

The BRDF depends on many parameters—lighting and observation directions,
wavelength, shadow casting, the optical properties of the object, reflectivity, ab-
sorption, emission, etc. In practice, it can only be approximated and is also well
known to the remote-sensing and modern painting communities. The BRDF as-
sociates the outgoing radiance dLr in direction (θr,φr) to the irradiance dEi from
the incident direction (θi,φi) (see Figure 12.5):

BRDF =
dLr

dEi
. (12.9)

Essentially the BRDF captures the fact that objects look differently when seen
from different angles or when illuminated from different directions. A classic
example from remote sensing is the difference that arises from forward scattering
and back scattering [Rouj04] where the light source is opposite and behind the
observer, respectively. Color Plate XIV illustrates the point with two grass scenes.

12.3 The Lambert Illumination Model�

The simplest illumination model for body reflection assumes that the incident
light at the vicinity of a point p on a surface is equally diffused in all direc-
tions on the incident hemisphere (perfectly diffuse reflection). This means that
the BRDF of the body surface is constant for all directions and invariant with
respect to wavelength and polarization. A perfectly diffuse surface is called Lam-
bertian. Diffuse illumination mostly accounts for the reflected light due to body
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Figure 12.6. Lambert illumination model. The light reflected off a point on the sur-
face is invariant with respect to the viewing direction. The sphere in this example is
lit by a single distant point light source and viewed from three different directions.

reflectance: the shallow sub-surface propagation of light and exit through the in-
terface of the surface. (In contrast, specular illumination corresponds to the light
reflected off the surface, i.e., the interface between two media with different in-
dices of refraction).

In 1760, Lambert published his work Photometria (in Latin) [Lamb60], which
states what is known today as Lambert’s cosine law or Lambert’s emission law:
The total radiant power observed from a Lambertian surface is directly propor-
tional to the cosine of the angle θr between the observer’s line of sight and the
surface normal. A consequence of this law is that, when an elementary surface
dA is viewed from an arbitrary direction within the hemisphere Ω surrounding
dA, it exhibits the same radiance (Figure 12.6). An intuitive explanation of this
phenomenon is the following: As the radiant power dΦr observed at a direction
(θr,ϕr) diminishes according to Lambert’s cosine law, so does the solid angle dξ
subtended by the surface patch dA and viewed from a distant patch dS around the
observer location (Figure 12.7). This leads to an equal decrease of both terms,
which eventually cancel out.

Imagine that the receiving patch dS were positioned directly above dA,1 per-
pendicular to the normal vector of dA (and therefore here the outgoing light direc-
tion). Since θr = 0, from the definition of radiance (Equation 12.3) the observed
radiance is

L0 =
dΦ0

dSdξ
. (12.10)

1The terms dS and dA denote the areas of the respective patches.
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Figure 12.7. Solid angle of a differential patch as “seen” from locations equidistant
to the surface patch dA.

Now, let us position dS at a different viewing angle, away from the normal
direction of dA, but always perpendicular to the corresponding viewing direction
vector, that is, lower on the hemisphere surrounding dA (Figure 12.7). According
to Lambert’s cosine law, the new radiance at this arbitrary outbound direction is

L =
d(Φ0 cosθr)

dSdξ ′
=

cosθrdΦ0

dSdξ ′
. (12.11)

Furthermore, as dA is very small, the new solid angle dξ ′ is directly propor-
tional to the projection of dA on the light transfer direction (dξ ′ = dAcosθr/r2),
and therefore

dξ ′ = cosθrdξ . (12.12)

Replacing the new solid angle in (12.11) yields

L =
cosθrdΦ0

dSdξ ′
=

cosθrdΦ0

cosθrdSdξ
=

dΦ0

dSdξ
= L0. (12.13)

We shall next derive the constant BRDF fd for the Lambertian surface
[Glas95]. Although the outgoing (radiant) flux is evenly distributed over the hemi-
sphere subtended by the surface patch at the vicinity of p, fd is not equal to 1/2π
(hemisphere solid angle equals 2π steradians) as will be shown below.

The outgoing radiance is constant and, therefore, does not depend on the re-
flected light direction on the hemisphere Lr(θr,ϕr) = Lr. Furthermore, irradiance
is not attenuated by the material and is equally spread to every outgoing differen-
tial solid angle. The latter implies that the reflectance factor2 ρ(−→ω i→Ω), i.e., the

2This is actually called the conical-hemispherical reflectance factor in photometry terminology;
there are eight more types of reflectance factors (see [Nico77]).
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ratio of total reflected light to incident light from d−→ω i, equals one. From the defi-
nition of irradiance, radiosity, and radiance (Equations (12.4), (12.5), and (12.3))
as well as from the relation between the solid angle and the projected solid angle
on the surface (Appendix D), we get

dΦi = EidA, (12.14)

Lr(θr,ϕr) =
dEr(θr,ϕr)
d−→ω r cosθr

=
dEr(θr,ϕr)

d−→ω proj
r

⇒

dEr = Lrd
−→ω proj

r ⇒ Er =
∫

Ω
Lrd
−→ω proj

r .

(12.15)

Using the results from Equations (12.14) and (12.15), the unit reflectance be-
comes

ρ(−→ω i →Ω) = 1 =
dΦr

dΦi
=

dA
∫

Ω Lrd
−→ω proj

r

EidA
=

LrdA
∫

Ω d−→ω proj
r

EidA
. (12.16)

From the definition of the BRDF and taking into account that the BRDF for
the Lambertian surface is constant, we have

fd =
dLr

Li cosθid
−→ω i

⇒ dLr = fdLid
−→ω proj

i ⇒

Lr =
∫

Ω
fdLid

−→ω proj
i = fd

∫
Ω

Lid
−→ω proj

i = fdEi. (12.17)

Now we can return to Equation (12.16) and substitute Lr from Equation
(12.17):

1 =
LrdA

∫
Ω d−→ω proj

r

EidA
=

fdEidA
∫

Ω d−→ω proj
r

EidA

= fd

∫
Ω

d−→ω proj
r = fdπ ⇔ fd =

1
π

.

(12.18)

In the above derivation we have seen that the radiance associated with an
infinitesimal surface patch of area dA around point p is proportional to the cosine
of the angle θi between the normal vector at p and the incident direction. This is
due to the flow of energy that passes through the (projected) area dA of the patch
with respect to the incident light direction. For a more detailed description of the
photometric principles, the interested reader is referred to [Glas95].
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12.4 The Phong Illumination Model

Phong’s classic illumination model [Phon75] is a local empirical model; it does
not take into account the interaction of light between objects and some of the
terms used do not directly derive from physical laws. However, it gives a reason-
able approximation of reality at a modest computational cost, which explains its
widespread adoption.

The Phong model proposes a simplified BRDF that relates incoming light
intensity from direction (θi,φi) to reflected light intensity in direction (θr,φr) for
an object point p (Figure 12.5). It estimates the visible intensity as the sum of
four components: emission, ambient reflection, diffuse reflection, and specular
reflection:

I = Ie + Ig + Id + Is. (12.19)

The effect of the components of the Phong model can be seen in Color
Plate XV. The emission component Ie caters to objects with self illumination.
The ambient component Ig compensates for the fact that the Phong model takes
no account of the interaction of light between objects; a surface that is not directly
illuminated by a light source would appear completely un-illuminated (e.g., black)
if it were not for this component. A constant value of ambient light Ia is assumed
for the scene, and each object reflects this ambient light according to its ambient
reflectance coefficient ka:

Ig = Iaka (0≤ ka ≤ 1). (12.20)

The light that hits an object directly from a light source is split into two re-
flected components: diffusely reflected light, which is uniformly scattered in all
directions and specularly reflected light, which has its maximum value in the “mir-
ror” of the lighting direction. The diffuse and specular reflection coefficients kd

and ks depend mainly on the object’s surface properties. In general, the rougher
the surface the more light is diffusely reflected, while the shinier the surface the
more light is specularly reflected. As all incident light must be accounted for:
0≤ kd ,ks ≤ 1 and kd + ks ≤ 1. The sum of kd and ks may be slightly smaller than
1 to account for light that is transmitted or absorbed by the object.

The diffuse component assumes a Lambertian surface (see Section 12.3) and
distributes incident light evenly in all directions. It therefore does not depend
on the viewing direction. Its value is proportional to the irradiance Ei which is
replaced by intensity Ii according to the photometry law (Equation (12.8)); the



�

�

�

�

�

�

�

�

12.4. The Phong Illumination Model 377

l
n

Figure 12.8. The l̂ and n̂ vectors.

distance d is ignored by assuming the light source is at infinity:

Id = Iikd cosθ = Iikd(n̂ · l̂), (0≤ θ ≤ π/2, 0≤ kd ≤ 1) (12.21)

where Ii the intensity of a point light source, θ the angle between the direction of
light incidence (l̂) and the normal vector to the surface (n̂) (Figure 12.8), and kd

is the object’s diffuse reflection coefficient. Apart from the object’s roughness, kd

also depends on the wavelength of the incident light. The vectors l̂ and n̂ should
be unit vectors. The value of Id is constant over a planar surface since both the n̂
and l̂ vectors are constant (light source at infinity). In practice, we do not accept
negative values for cosθ :

Id = Iikd max(0, n̂ · l̂).

The diffuse component alone gives objects a totally matte appearance. The
specular component follows the rule of the mirror. A perfect mirror will only
specularly reflect in the direction of reflection r̂ (Figure 12.9). Most surfaces will
have a diminishing function of specular reflection that attains its maximum value
when the viewing direction v̂ coincides with r̂:

Is = Iiks cosn α = Iiks(r̂ · v̂)n, (12.22)
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v

r n l

Figure 12.9. The v̂, r̂, n̂, and l̂ vectors.

where r̂ and v̂ are unit vectors and n is an empirical value that corresponds to
surface shininess.

A better approximation to the specular reflection coefficient ks is to make it
a function w(θ ,λ ) of the angle of incidence θ and wavelength λ . Considering
a piece of glass, when θ = 0 we get no reflection, while at θ = 90 we get total
reflection.

Specular reflection is responsible for the highlights that are visible in shiny
objects. The cosn α term intuitively approximates the spatial distribution of the
specularly reflected light. The effect of the material exponent n and the spec-
ular reflection coefficient ks can be seen in Figure 12.10 and Color Plate XVI.
Small values of n correspond to coarse materials where the size of the highlight
is relatively large and scattered. Conversely, large values of n correspond to shiny
objects with a small and crisp highlight. The specular reflection takes the color
of the light source. For example, if a blue object is illuminated by a white light
source, the color of the diffuse reflection will be blue but that of the specular re-
flection will be white. Finally, the value of the specular factor cosn α should not
take on negative values, so we can replace it by max(0,cosn α).



�

�

�

�

�

�

�

�

12.4. The Phong Illumination Model 379

r
n

l r
n

l

Figure 12.10. The Phong highlight (appears for v̂ in the shaded area) for large n
(left) and small n (right).

Thus, the Phong model computes the illumination value as

I = Ie + Iaka + Ii(kd(n̂ · l̂)+ ks(r̂ · v̂)n). (12.23)

To simplify computations, the light source and the observation point are often
assumed to be at infinity, giving constant values for the l̂ and v̂ vectors over the
area of planar objects. An efficient variant of the specular reflection calculation
[Blin77] uses the halfway vector ĥ which is the average of l̂ and v̂ (Figure 12.11):

ĥ =
(l̂+ v̂)/2

|(l̂+ v̂)/2| . (12.24)

As can be seen in Figure 12.11, angle n̂h = ϕ + α , angle r̂v = θ + α , and
since θ = 2ϕ + α , we deduce that r̂v = 2n̂h, i.e., the angle formed by r̂ and v̂ is

Figure 12.11. The halfway vector ĥ.
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double the angle formed by n̂ and ĥ. We can thus replace the r̂ · v̂ product by n̂ · ĥ,
and suitably adjust the value of n:

I = Ie + Iaka + Ii(kd(n̂ · l̂)+ ks(n̂ · ĥ)n). (12.25)

The ĥ vector is much cheaper to compute than r̂ and, if l̂ and v̂ are constant
(e.g., for planar objects with light source and observer at infinity), then the ĥ
vector is also constant. Vector ĥ can be thought of as the normal vector to the
plane for which the observer at v̂ would see the maximum value of the specular
reflection from the light source at l̂ (this plane corresponds to the dashed line in
Figure 12.11).

So far, having assumed the light source at infinity, the contribution of the spec-
ular and diffuse terms depend on the intensity of the light source and the ambient
term is constant. Objects with the same properties and orientation but different
distances from the light source would thus (wrongly) have the same intensity of
illumination. This can be corrected by including a factor dependent on the dis-
tance of the object point from the light source. The physically correct calculation
involves attenuation by the square of the distance d between light source and ob-
ject, but we usually take a more flexible approach that also includes a linear and a
constant term, often useful for special effects:

f (d) = 1/(c1 + c2d + c3d2).

The model thus becomes

I = Ie + Iaka + f (d)Ii(kd(n̂ · l̂)+ ks(n̂ · ĥ)n). (12.26)

Multiple point light sources can be handled by summing their individual contri-
butions:

I = Ie + Iaka +∑
j
( f (d)Ii, j(kd(n̂ · l̂ j)+ ks(n̂ · ĥ j)n)). (12.27)

For monochromatic light, the original gray level value v of an object point p is
thus modified by the result I of the intensity computation: v′ = vI.

Color can be handled by giving the color of the light source to the specular
reflection; the color of the ambient and diffuse components depends on the color
coefficients of the object material. Three intensity values, one for each of the
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three primary colors, are then computed:

Ir = Ier + Iakar +( f (d)Ii(kdr(n̂ · l̂)+ ks(n̂ · ĥ)n)),

Ig = Ieg + Iakag +( f (d)Ii(kdg(n̂ · l̂)+ ks(n̂ · ĥ)n)),

Ib = Ieb + Iakab +( f (d)Ii(kdb(n̂ · l̂)+ ks(n̂ · ĥ)n)).

(12.28)

Notice that the specular reflection contributes equally to the three equations,
simulating a white light source. Thus if (r,g,b) is the original color of an object
at point p (usually given by a texture mapping algorithm), this is modified by the
result of the color intensity computation as (r′,g′,b′) = (rIr,gIg,bIb).

Numerical Example. We shall base our example on the basic Phong model
with the halfway vector (Equation (12.25)). Let us assume that we want to esti-
mate the intensity value for a point p which, for ease of calculations, lies at the
origin of the coordinate system p = [0,0,0]T as shown in Figure 12.12. Also let
the normal to the object at p, the light and the viewing vectors, respectively, be

−→n = [0,2,0]T,
−→
l = [1,1,0]T, −→v = [0,1,1]T.

The values of the emitted, ambient and incident intensity from the light source
are

Ie = 2, Ia = 1, Ii = 12,

and the constant values are

ka = 0.3, kd = 0.3, ks = 0.6, n = 3.

Figure 12.12. Simple Phong example.
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In other words, the light source is twelve times more intense than the ambient
light, and the object is self-illuminated and emits twice the ambient intensity. Also
since kd + ks = 0.9, 10% of the incident light is absorbed by the object. Before
we apply the Phong formula, we must compute the halfway vector and normalize
all the vectors involved:

l̂ =
−→
l

|−→l |
=

[1,1,0]T√
12 +12

=
[

1√
2
,

1√
2
,0

]T

,

v̂ =
−→v
|−→v | =

[0,1,1]T√
12 +12

=
[
0,

1√
2
,

1√
2

]T

,

−→
h = (l̂+ v̂)/2 =

[
1

2
√

2
,

1√
2
,

1

2
√

2

]T

,

ĥ =
−→
h

|−→h |
=

[ 1
2
√

2
, 1√

2
, 1

2
√

2
]T

√
3/2

=

[
1√
2
√

3
,

√
2√
3
,

1√
2
√

3

]T

,

n̂ =
[0,2,0]T√

22
= [0,1,0]T.

We can now apply Equation (12.25):

I = 2+1 ·0.3+12 · (0.3 · ( 1√
2
)+0.6 · (

√
2√
3
)3) = 8.76.

This final intensity value corresponds to the specified viewing angle and is
related to the input intensities. Notice that the angle between the directions of
reflection and viewing is r̂v = 2n̂h = 2arccos(

√
2√
3
) = 70◦. If the viewing direction

coincided with the direction of reflection i.e.,

v̂ =
[
− 1√

2
,

1√
2
,0

]T

,

then the specular reflection would attain its maximum value since r̂v = 2n̂h =
2arccos(1) = 0◦:

ĥ = [0,1,0]T,

I = 2+1 ·0.3+12 · (0.3 · ( 1√
2
)+0.6 ·13) = 12.05.
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12.5 Phong Model Vectors
The Phong model requires a number of vectors for the computation of the illumi-
nation value at a surface point, namely −→n ,

−→
l ,−→v , and −→r or

−→
h . It is important to

use efficient formulae for the computation of these vectors, since such computa-
tion is repeated for every point where the model is applied.

12.5.1 The Normal Vector

The normal vector −→n is defined as a vector perpendicular to a surface at a certain
point. The direction of the normal vector defines the orientation of the surface
and is extremely useful in computer graphics: two examples of its use are in
illumination calculations and in back-face removal (see Chapter 5).

Normal vector for implicit surfaces. Implicit surfaces are defined by an equa-
tion of the form

f (x,y,z) = 0.

The normal vector at a point p = [a,b,c]T of such a surface is given by the gradient
vector in the vicinity of p:

−→n =

⎡⎣ ∂ f /∂x
∂ f /∂y
∂ f /∂ z

⎤⎦ .

In the case of a planar surface defined by

f (x,y,z) = ax+by+ cz+d = 0,

the normal vector, which is constant over the entire planar surface, is

−→n = [a,b,c]T.

Normal vector for parametric surfaces. Surfaces are often represented para-
metrically (see Chapter 7). In three dimensions, a surface is represented by three
parametric equations in terms of two parameters u and v:

x = fx(u,v),

y = fy(u,v),

z = fz(u,v).
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The normal vector is then

−→n =
−→
∂ f
∂u
×
−→
∂ f
∂v

, (12.29)

where

−→
f =

⎡⎣ fx

fy

fz

⎤⎦ ,

−→
∂ f
∂u

=

⎡⎣ ∂ fx/∂u
∂ fy/∂u
∂ fz/∂u

⎤⎦ ,

−→
∂ f
∂v

=

⎡⎣ ∂ fx/∂v
∂ fy/∂v
∂ fz/∂v

⎤⎦ .

Normal vector for polygons. Polygons, and in particular triangles, are the usual
building element for model composition. In practice the equation of a polygon’s
plane is not known and the polygon is given in terms of a list of its vertices. There
are a number of ways to compute the normal vector in this case.

Given three consecutive, non-collinear vertices of a polygon vi−1, vi, and vi+1,
we can compute the normal vector to the polygon’s plane by taking the cross
product of the two vectors defined by the three points:

−→n = (vi+1−vi)× (vi−1−vi).

Care should be taken as the cross product is not associative. The above computa-
tion follows the right-hand rule: if the first vector is the thumb and the second the
index finger, then the normal is the middle finger of the right hand (Figure 12.13).
As graphics APIs usually allow the definition of polygon perimeters to be either
clockwise or counter-clockwise (when looking from the “outside”), it is essential
to select the correct definition, otherwise all normal computations will be reversed
and objects will take an “inside-out” look.

For polygons with more than three vertices, it is possible in practice that not all
vertices are exactly coplanar; this can be due to errors in digitization, for example.
We may then compute the polygon normal as the average of the normal vectors
given by each pair of consecutive polygon edges. Another technique suitable for
non-planar polygons is due to Martin-Newell [Suth74b]; if [xi,yi,zi]T, i = 1,2, ...,n
are the n vertices of a polygon, then the coefficients a,b,c of an approximating
plane are computed as

a =
n

∑
i=1

(yi− yi⊕1)(zi + zi⊕1),

b =
n

∑
i=1

(zi− zi⊕1)(xi + xi⊕1),

c =
n

∑
i=1

(xi− xi⊕1)(yi + yi⊕1),

(12.30)
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Figure 12.13. Right-hand rule.

where ⊕ represents addition modulo n. The d (constant) coefficient of the plane
equation can be computed (if required) using the coordinates of one of the poly-
gon’s vertices:

d =−(ax1 +by1 + cz1).

Another way of computing the normal vector uses three known non-colinear
vertices of a polygon. If [x1,y1,z1]T, [x2,y2,z2]T, and [x3,y3,z3]T are three such
points, then they must satisfy the plane equation

ax1 +by1 + cz1 =−1,

ax2 +by2 + cz2 =−1,

ax3 +by3 + cz3 =−1,

or ⎡⎣ x1 y1 z1

x2 y2 z2

x3 y3 z3

⎤⎦⎡⎣ a
b
c

⎤⎦=

⎡⎣ −1
−1
−1

⎤⎦ ,

or
XC = D.

So
C = X−1D.

Numerical Example. Given a polygon with vertices v1 = [0,0,0]T, v2 =
[1,0,0]T, v3 = [1,1,0]T, and v4 = [0,1,0.5]T (Figure 12.14), we are required to
compute its normal vector. Notice that the polygon is slightly non-planar. We
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Figure 12.14. Example of normal calculation.

shall consider two suitable methods: the average of the normals for each pair of
successive edges and Martin-Newell’s technique.

We first compute four normal vectors (one for each pair of successive edges);
these normals are indexed by the vertex onto which both edges are incident:

−→n v1 = [1,0,0]T× [0,1,0.5]T = [0,−0.5,1]T,
−→n v2 = [0,1,0]T× [−1,0,0]T = [0,0,1]T,
−→n v3 = [−1,0,0.5]T× [0,−1,0]T = [0.5,0,1]T,
−→n v4 = [0,−1,−0.5]T× [1,0,−0.5]T = [0.25,−0.5,1]T.

We can next compute the polygon normal by averaging the above. To give
equal weight to all edges, we normalize the vectors before summation:

−→n =
n̂v1 + n̂v2 + n̂v3 + n̂v4

4
= [0.17,−0.22,0.91]T

and
n̂ = [0.18,−0.23,0.96]T.

Using Martin-Newell’s technique ,we get

a = 0 ·0+(−1) ·0+0 ·0.5+1 ·0.5 = 0.5,

b = 0 ·1+0 ·2+(−0.5) ·1+0.5 ·0 =−0.5,

c = (−1) ·0+0 ·1+1 ·2+0 ·0.5 = 2.

Thus, −→n = [0.5,−0.5,2]T and

n̂ = [0.24,−0.24,0.94]T.



�

�

�

�

�

�

�

�

12.5. Phong Model Vectors 387

Figure 12.15. The star of a vertex.

Vertex normal vector for polygonal meshes. Polygonal meshes are often used
to approximate objects with smooth change of their surface normal vector, i.e.,
without discontinuities (e.g., a sphere). We shall assume objects that consist of a
single manifold surface (i.e., each edge is shared by precisely two polygons).

In illumination (and also for other algorithms), we need the normal vector to
an object’s surface at a discrete set of points covered by the surface (e.g., the pixel
grid). To this end, it is common to determine the normal at the vertices of the
polygonal mesh as a weighted average of the normals to the adjacent faces to the
vertex [Meye03], and then use this normal to perform bilinear interpolation along
edges and finally across edges, on points of the underlying grid. The polygons
that are adjacent to a vertex are often called the 1-ring neighbors or the star of
the vertex (Figure 12.15). Thus, the paradoxical term vertex normal refers to a
weighted average of the normals to the faces of the vertex’s star.

There are a number of approaches for computing the unit vertex normal n̂,
and we shall outline three of the most common [Jirk02]. First, the weights can be
taken to be equal. This amounts to normalizing (to unit length) the normals of the
faces of the star

−→
fi before averaging:

n̂ = ∑m
i=1 f̂i

|∑m
i=1 f̂i|

, (12.31)

where f̂i =
−→
fi /|−→fi | and m is the number of faces in the star. A second approach
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observes that larger polygons should contribute more than smaller ones; the face
normals are thus weighted by the area of the corresponding polygons. In the case
of triangular faces, this simply amounts to taking the face normals as computed by
the outer product of the vectors represented by two of the triangle’s edges. This
is because the outer product is equal to twice the area of the triangle:

n̂ = ∑m
i=1
−→
fi

|∑m
i=1
−→
fi |

. (12.32)

Third, Thuermer and Wuthrich [Thue98] observed that in order to ensure that
vertex normals are invariant to mesh restructuring, a good weight is the incident
angle θ of the faces of the star. For example, in Figure 12.15, the incident angle
for the first face is θ1 = v̂1v0v2. The angle θ can be computed by taking the arccos
of the dot product of the vectors defined by the incident edges that form it:

n̂ = ∑m
i=1 θif̂i

|∑m
i=1 θi f̂i|

. (12.33)

Note that vertex normals should be computed before the perspective division (pro-
jection).

Symbolic Example. We shall give a symbolic example to simply illustrate the
computations of the vertex normal. Take the situation depicted in Figure 12.15; m
is 6 as there are six polygons in the star. In order to evaluate all the vertex normal
expressions above, we need to compute the

−→
fi , the f̂i, and the θi. Take the first

triangle v0v1v2,

−→
f1 =−−→v0v1×−−→v0v2,

f̂1 =
−→
f1

|−→f1 |
,

θ1 = arccos(
−−→v0v1

|−−→v0v1|
·
−−→v0v2

|−−→v0v2|
).

Similar computations are performed for the other five triangles in the star and
expressions (12.31)–(12.33) can then be evaluated.
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12.5.2 The Reflection Vector

The reflection vector −→r is computed by noticing that the angles between the pairs
of vectors (l̂, n̂) and (n̂,−→r ) are equal and that l̂, n̂, and −→r are coplanar (Fig-
ure 12.16).

Let −→r1 be the vector defined by the projection of l̂ onto the axis of n̂. We have

|−→r1 |= |l̂|cosθ = |l̂|(n̂ · l̂) = n̂ · l̂,

since l̂ is a unit vector, so

−→r1 = n̂|−→r1 |= n̂(n̂ · l̂).

We also have
−→r =−→r1 +

−→
t

−→
t =−→r1 − l̂.

Thus,
−→r = 2−→r1 − l̂ = 2n̂(n̂ · l̂)− l̂, (12.34)

which requires six multiplications and five additions. There are special cases in
which −→r can be computed more cheaply, but we shall not consider them since,
when performance is an issue, the reflection vector is replaced by the halfway
vector as shown in Equation 12.25.

r
1

l

t

n

t

r

Figure 12.16. Computation of the reflection vector.
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12.5.3 The Light, View, and Halfway Vectors

The light and view vectors
−→
l and −→v are either given constant vectors, if the light

and view points are placed at infinity, or they are simply computed as

−→
l = l−p, (12.35)

−→v = v−p, (12.36)

where p is the object point and l and v are the given light and view points, respec-
tively. The halfway vector

−→
h , which is useful for the specular reflection, is then

computed as the average of the unit
−→
l and −→v vectors:

−→
h = (l̂+ v̂)/2, (12.37)

with its normalized form being Equation (12.24).

12.6 Illumination Algorithms Based on the
Phong Model

Historically, illumination has been increasingly applied to produce realistic syn-
thetic images. In 1969 Warnock introduced the concept of diminishing intensity
according to depth [Warn69]; objects were illuminated according to their dis-
tance from the light source (which usually coincided with the view point). In
1971 Gouraud suggested the interpolation of intensity values within polygons
from intensity values computed at the vertices [Gour71]. Phong then proposed
the computation of intensity values at every pixel by linearly interpolating ver-
tex normals and using the model he introduced in 1975 [Phon75]. There are
instances where the linear interpolation of the vertex normals does not work well;
Overveld [Over97] proposed a quadratic interpolation scheme in 1997. We shall
next describe some algorithms for the computation of illumination values within
a polygon; they progressively provide higher realism at increasing computational
complexity. Complexity however is becoming less of an issue as operations are
implemented on graphics hardware.

12.6.1 Constant Shading

The simplest illumination algorithm for polygonal objects applies a constant illu-
mination value to each polygonal facet. There is no specular reflection and no re-
duction of illumination values with distance. Only constant ambient lighting and
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diffuse reflection are incorporated into this algorithm. The light and view points
coincide and are both placed at infinity (

−→
l =−→v ), which eliminates shadows and

makes the (n̂ · l̂) term constant for each polygon. If the light and view points are
on the positive z-axis then l̂ = v̂ = [0,0,1]T, and (n̂ · l̂) = nz for n̂ = [nx,ny,nz]T.
The illumination equation (12.26) then becomes

I = Ie + Iaka + Iikdnz. (12.38)

The intensity value I is computed once for each polygon and is used for all pixels
covered by the polygon (Color Plate XVII (left)).

Unfortunately the human eye is quite sensitive to intensity discontinuities
(Mach-band phenomenon) and polygon silhouettes stand out with this algorithm,
giving objects a “polygonal” look. This problem arises from the fact that a poly-
gon mesh that is supposed to approximate a curved surface is actually discretely
sampling this surface. By using a sufficiently high sample density (polygon
count), the shape difference between the curved surface and the mesh could be
made arbitrary small. However, high sampling density implies large data volumes
and requires large processing capacity; it is therefore advantageous to compensate
for the illumination artifacts (i.e., the under-sampling artifacts) by some form of
illumination interpolation.

12.6.2 Gouraud Shading

Gouraud shading is a simple illumination interpolation algorithm and, if the sam-
pling density is sufficiently high, it can capture local maxima (highlights) and
minima of the shading distribution over the polygon mesh.

The Gouraud algorithm computes intensity values for pixels inside a polygon
by interpolating the intensity values at its vertices. Intensity values at the vertices
are estimated using the Phong model. Since intensity is a scalar value, simple
scalar interpolation is performed within the polygon. Vertex normals are com-
puted (see Section 12.5.1) and used to evaluate the Phong equation at the vertices.
The vertex intensities are then bi-linearly interpolated along the polygon edges
and between the edges (along the scanlines). In Figure 12.17, intensities I1, I2,
and I3 are computed using the Phong model while Ia, Ib and Is are computed by
interpolation:

Ia = I1
ys− y2

y1− y2
+ I2

y1− ys

y1− y2
=

1
y1− y2

(I1(ys− y2)+ I2(y1− ys)),

Ib =
1

y1− y3
(I1(ys− y3)+ I3(y1− ys)),
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Figure 12.17. Gouraud algorithm computations.

Is =
1

xb− xa
(Ia(xb− xs)+ Ib(xs− xa)). (12.39)

Intensity values are computed incrementally within a scanline. If s1 and s2 are
the indices of two pixels on the same scanline, then

Is1 =
1

xb− xa
(Ia(xb− xs1)+ Ib(xs1 − xa)),

Is2 =
1

xb− xa
(Ia(xb− xs2)+ Ib(xs2 − xa)),

and, by subtracting the above equations,

∆Is = Is2 − Is1 =
xs2 − xs1

xb− xa
(Ib− Ia) =

∆x
xb− xa

(Ib− Ia),

which, in the case of neighboring pixels (∆x = 1), becomes

∆Is =
Ib− Ia

xb− xa
.

Thus, the intensity of neighboring pixels can be computed incrementally:

Is,n = Is,n−1 +∆Is.

The visual effect of Gouraud shading is significantly better than constant shading
(Color Plate XVII (middle)).
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12.6.3 Phong Shading

Unfortunately the sampling density (polygon count) is rarely sufficient to capture
highlights with the Gouraud algorithm. These only arise when the reflection vec-
tor −→r (almost) equals the view vector −→v . In Gouraud shading the vectors are not
interpolated within the polygon but are only used to compute intensities at the ver-
tices (Figure 12.18). Also the Gouraud algorithm does not eliminate mach-bands;
the linear intensity interpolation leaves second-order intensity discontinuities that
are often visible.

Figure 12.18. Vector set-up for highlight.

The Phong algorithm solves the above problems by applying the Phong model
to each pixel. The required unit normal vectors are computed by bi-linear inter-
polation from the unit vertex normals (Figure 12.19).

We have
−→n a =

1
y1− y2

(n̂1(ys− y2)+ n̂2(y1− ys)),

−→n b =
1

y1− y3
(n̂1(ys− y3)+ n̂3(y1− ys)),

n̂s =
1

xb− xa
(n̂a(xb− xs)+ n̂b(xs− xa)). (12.40)

The following relations hold for neighboring pixels on the same scanline, and
they can be used to facilitate incremental computation:3

3n̂s = [nsx,nsy,nsz]T, n̂a = [nax,nay,naz]T, and n̂b = [nbx,nby,nbz]T.



�

�

�

�

�

�

�

�

394 12. Illumination Models and Algorithms

Figure 12.19. Phong algorithm computations.

nsx,n = nsx,n−1 +∆nsx,

nsy,n = nsy,n−1 +∆nsy,

nsz,n = nsz,n−1 +∆nsz,

where

∆nsx =
nbx−nax

xb− xa
,

∆nsy =
nby−nay

xb− xa
,

∆nsz =
nbz−naz

xb− xa
.

The result of the Phong algorithm is a significant improvement over Gouraud
(Color Plate XVII (right)) but also requires considerably more computation since
the illumination equation is evaluated at every pixel. This is no longer a major
concern, however, as the Phong algorithm can now be found implemented on
graphics accelerators.

12.6.4 Quadratic Interpolation of Vertex Normals

Images generated by means of the Phong shading algorithm are of acceptable
quality, provided the polygonal mesh is sufficiently dense. For larger polygons,
where the rate of change of the normal vectors over the surface can be high, shad-
ing artifacts can arise. The silhouette edge problem is probably the most notorious
one. In Figure 12.20, the normal vectors (computed by linear interpolation from
the vertex normals) do not vary at all over the surface, resulting in a completely



�

�

�

�

�

�

�

�

12.6. Illumination Algorithms Based on the Phong Model 395

Figure 12.20. Silhouette edge problem.

flat illumination appearance which is at odds with the appearance of the silhou-
ette.

The vertex normal interpolation essentially aims to reconstruct a surface from
a discretely sampled version. Reconstruction cannot add information, but at least
we can try to come up with a reconstructed surface that is consistent with the
sampled data, that is, that both interpolates the normal data at the vertices of the
polygon mesh and is perpendicular to the normal vectors. The linear interpolation
of vertex normals in Phong shading is not consistent in this sense, as can be seen
in Figure 12.20.

Overveld and Wyvill [Over97] showed that the quadratic interpolation of nor-
mals achieves better results. If n̂0 and n̂1 are the normal vectors to be interpolated

and
−→
δ is the vector defined by the subtraction of the first from the last interpo-

lation point (
−→
δ corresponds to a polygon edge or part of a scanline), then the

interpolated vector −→n (s) is given as

−→n (s) = n̂0 + s−→a + s2−→b , (12.41)

with s ∈ [0,1] and
−→a = n̂1− n̂0−−→b ,

−→
b = 3(

(n̂0 + n̂1) ·
−→
δ

−→
δ 2

)
−→
δ .
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Figure 12.21. Linear (left) versus quadratic (right) vector interpolation; the dashed
line shows the surface being reconstructed (from [Over97]).

As expected, −→n (0) = n̂0 and −→n (1) = n̂1. This quadratic interpolation scheme
can be efficiently implemented by taking the forward differences of the quadratic
function at a cost of two vector additions per pixel (as opposed to one vector
addition per pixel for linear interpolation).

Figure 12.21 shows the effect of the above quadratic interpolation scheme,
and Color Plate XVIII demonstrates the benefit of the scheme, especially in cases
where the sampling density (polygon count) is relatively low.

Numerical Example. Suppose that we are given the triangle mesh shown in
Figure 12.22.

v0 = [2,2,1]T, v1 = [6,2,1]T, v2 = [4,5,1]T,
−→nv0 = [−1,−1,1]T, −→nv1 = [1,0,0]T, −→nv2 = [0,1,1]T,

a = [2.66,3,1]T, b = [5.33,3,1]T, s = [4,3,1]T.

Let us assume, as in the numerical example in Section 12.4, that the values of
the emitted, ambient, and incident intensity from the light source are

Ie = 2, Ia = 1, Ii = 12,

and the constant values are

ka = 0.3, kd = 0.3, ks = 0.6, n = 3.
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Figure 12.22. Simple triangle mesh.

In addition, to simplify calculations, let the light and view point be positioned at
infinity on the positive z-axis:

l̂ = v̂ = [0,0,1]T.

Constant shading. We compute the polygon normal as

−→n = (v1−v0)× (v2−v0) = [0,0,12]T

or
n̂ = [0,0,1]T,

and from Equation (12.38),

I = 2+1 ·0.3+12 ·0.3 ·1 = 5.9.

Gouraud shading. We first normalize the vertex normals

n̂v0 = [− 1√
3
,− 1√

3
, 1√

3
]T, n̂v1 = [1,0,0]T, n̂v2 = [0, 1√

2
, 1√

2
]T.

We then use the Phong model to compute the intensities at the vertices:

Iv0 = 2+1 ·0.3+12(0.3(n̂v0 · l̂)+0.6(n̂v0 · ĥ)3) = 5.76,

Iv1 = 2+1 ·0.3+12(0.3(n̂v1 · l̂)+0.6(n̂v1 · ĥ)3) = 2.3,

Iv2 = 2+1 ·0.3+12(0.3(n̂v2 · l̂)+0.6(n̂v2 · ĥ)3) = 7.39,
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and using Equation (12.39),

Ia =
1
3
(1 · Iv2 +2 · Iv0) = 6.3,

Ib =
1
3
(1 · Iv2 +2 · Iv1) = 4.0,

Is =
1

2.67
(1.33 · Ia +1.33 · Ib) = 5.13.

Phong shading. We use linear interpolation to compute the normals at the edge
points a and b from the unit vertex normals:

−→na =
1
3
(1 · n̂v2 +2 · n̂v0) = [−0.39,0.15,0.62]T,

−→nb =
1
3
(1 · n̂v2 +2 · n̂v1) = [0.67,0.71,0.71]T.

We then convert them to unit vectors

n̂a = [−0.52,0.2,0.83]T,

n̂b = [0.55,0.59,0.59]T,

and compute the unit normal vector at the scanline point s:

−→ns =
1

2.67
(1.33 · n̂a +1.33 · n̂b) = [0.02,0.4,0.71]T,

n̂s = [0.02,0.49,0.87]T.

The intensity at s is finally computed by applying the Phong model using the
unit normal vector n̂s:

Is = 2+1 ·0.3+12(0.3(n̂s · l̂)+0.6(n̂s · ĥ)3) = 10.25.

Notice the considerably higher intensity value computed by Phong shading
when compared to constant or Gouraud shading. This is easily explained by the
existence of a highlight at s.

The quadratic interpolation scheme computes the intensity Is in a manner sim-
ilar to Phong shading; the only difference being the quadratic formulae used for
the computation of n̂a, n̂b, and n̂s.

12.7 The Cook–Torrance Illumination Model�

Although the Phong model produces convincing results for various types of glossy
materials or dull but not particularly rough surfaces, objects rendered with the
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Phong reflectance model often appear too plastic. The metallic shine or the off-
specular-direction highlights are not captured correctly for many shiny materials.
Also the reflected light-scattering distribution due to the geometric variation of a
rough surface cannot be captured by the Phong model.

Cook and Torrance [Cook82] extended the Phong model as well as the model
suggested by Blinn [Blin77], to build a general illumination model for rough sur-
faces that takes into account the directional distribution and the wavelength de-
pendence of the reflected light.

Like the Phong model, Cook and Torrance distinguished the reflected light
in three components: the ambient term, the diffuse scattering, and the specular
highlight, but instead of using a simple approximate cosine rule for the specular
and diffuse components, they provide a modeling and parameterization of the
BRDF fr of a material.4 More specifically, fr is assumed to be linearly composed
of two distinct terms, a pure diffuse and a pure specular one:

fr = kd fd + ks fs, kd + ks = 1. (12.42)

The above assumption may not hold, of course, for some complex materi-
als [Glas95]. The Cook–Torrance reflectance model for NL light sources is de-
scribed by

Ir = Ia fa +
NL

∑
l=1

I(l)
i (n̂ · l̂(l)) [ks fs + kd fd ] d−→ω (l)

i , (12.43)

where I(l)
i is the incident light intensity from light source l located at a direction

l̂(l) through a solid angle −→ω (l)
i , and n̂ is the normal vector at the given surface

location.
The quantity Ia fa is the ambient term and Ia can be regarded as constant, as in

the Phong model. In the original paper, this term was multiplied by a visibility fac-
tor f that represented the amount of incoming ambient light that was not blocked
by the surrounding environment. A distant uniformly luminous hemisphere (that
represents the indirect lighting from other reflecting surfaces) radiates light to-
ward the inspected surface point p. The portion of this light that finally reaches
the surface depends on the amount of the unblocked solid angle around the point.
If we introduce a binary visibility function V (p, l̂) that takes its maximum value
1 when there is a clear line of sight between point p and the surrounding distant
hemisphere in the direction l̂ , this factor becomes

4The BRDF fr represents here the transfer of energy between a differential incoming and a differ-
ential outgoing solid angle d−→ω i → d−→ω r.
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Figure 12.23. The Torrance–Sparrow modeling of rough surfaces. (a) A surface
consists of arbitrarily oriented V-shaped grooves. (b) Close-up on a groove.

f =
∫

unblocked Ω
(n̂ · l̂)d−→ω =

∫
Ω
(n̂ · l̂)V (p, l̂)d−→ω . (12.44)

This concept was also exploited in the work of Zhukov et al. [Zhuk98b] to
derive an empirical model to simulate diffuse global illumination—more on this
in Chapter 16.

In the reflectance model of Equation (12.43), fd is the diffuse BRDF of a
Lambertian surface (see Equation (12.18)); fa uses the same distribution as fd .
The specular part of the BRDF depends on the relative location of the observer
and the properties of the material.

For the derivation of fs, Cook and Torrance rely on the micro-facet model of
Torrance and Sparrow [Torr67]. In this widely adopted modeling of rough mate-
rials, a surface is assumed to be composed of long symmetric V-shaped grooves,
each consisting of two planar facets (Figure 12.23(a)) tilted at equal but opposite
angles to the surface normal at dA. In order to estimate the specular reflectiv-
ity of the surface, the facets are considered perfect mirrors and, therefore, reflect
light only in the direction of perfect reflection. The slope of the facets (polar an-
gle) θa as well as the orientation of the cavities (azimuth) ϕa are determined by a
statistical distribution that characterizes the material (Figure 12.23(b)).
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In order for the Torrance–Sparrow model to work, the area da of the micro-
facets is small compared to the inspected area dA, where the reflectance is calcu-
lated. Also, the wavelength λ of the incident light is supposed to be significantly
smaller than the dimensions of the facets in order to avoid interference phenomena
and be able to work with geometrical optics and dispense with wave theory.

According to the modification of Blinn to the Phong model [Blin77], we
achieve perfect reflection when a face’s normal is equal to the halfway vector
ĥ (see Equation (12.24)). The shape and angular dependence of the specular
highlight is determined by the aggregation of the contributions of the perfectly
reflected light from all facets. Due to the fact that the micro-facets are perfect
mirrors, the contribution of each one of them is binary, i.e., full reflected light
from direction l̂ to v̂ or no light at all. Therefore, the fraction D of micro-facets
facing in the direction of ĥ determines the fraction of incident light that can be
reflected back to the environment in the view direction. Many formulations for
the micro-facet distribution have been proposed and Cook and Torrance singled
out two of them, the Gaussian distribution model found in [Blin77] (Torrance–
Sparrow) and the Beckmann [Beck63] distribution. The first is easier to compute
and the second one is more physically correct, as it does not depend on any ar-
bitrary constants and results in absolute reflectance values. The two distributions
are

D(Gaussian) = c · e−(θa/m)2
,

D(Beckmann) =
1

m2 cos4 θa
· e−(tanθa/m)2

,
(12.45)

where m is the RMS slope of the surface and θa is the angle between the normal
n̂ of the surface dA and the vector ĥ (micro-facet normal vector). The higher the
mean slope m, the more rough the surface becomes, and the specular highlight is
spread out. Small values of m imply micro-facets with normal vectors closer to
the average normal vector n̂ of the surface, giving the material a more polished
look and a tighter specular highlight.

But D is not the only term that affects the specularly reflected light off the
small patch dA. As the micro-facets are arranged in V-shaped grooves, some of
the outgoing light in the direction of −→v is attenuated due to the interception of
the energy leaving the surface of a micro-facet by the opposite facet of the groove
(Figure 12.24). The amount of blocking depends on the outgoing direction and
the slope (hence the facet normal, or half-way vector ĥ) relative to the overall
normal n̂ of the face. Blinn [Blin77] has calculated the amount of light that is
blocked due to light interception Gintercept ∈ [0,1] as
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Incident 
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reflected
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Figure 12.24. Attenuation of the light in the Cook–Torrance model due to the
interception of incident and reflected light by the micro-facets.

Gintercept =
2(n̂ · ĥ)(n̂ · v̂)

v̂ · ĥ . (12.46)

As illustrated in Figure 12.24, some of the light radiating from a direction l̂
on a facet da is also blocked by the opposite facet of the groove, leaving the
lower part of the micro-facet in shadow. Geometrically, this is the inverse of the
incoming light interception, and the attenuation factor Gshadow can be derived by
exchanging the roles of l̂ and v̂ in Equation (12.46) and using the definition of ĥ:

Gshadow =
2(n̂ · ĥ)(n̂ · l̂)

l̂ · ĥ =
2(n̂ · ĥ)(n̂ · l̂)

v̂ · ĥ . (12.47)

Combining Equations (12.46) and (12.47) in a single geometric attenuation
factor G, and bearing in mind that there are cases where there is no interception
of either incident or reflected light (zero attenuation), G can be calculated by

G = min

{
1,

2(n̂ · ĥ)(n̂ · v̂)
v̂ · ĥ ,

2(n̂ · ĥ)(n̂ · l̂)
v̂ · ĥ

}
. (12.48)

In general, the ambient, diffuse, and specular reflectance of a material depends
on the wavelength of the incident light, altering both the amount and color of the
reflected light. To obtain the spectral composition of the reflected light, one needs
to multiply the incident spectral energy with the transfer function of the material
(reflectance spectrum), i.e., the measured reflectance at each wavelength. The
reflectance spectrum also depends on the angle of incidence of the incoming light.
This makes the measurement and modeling of the reflectance quite complex; in
most cases the reflectance of materials with respect to wavelength is measured
only for normal incidence (θa = 0).
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The Cook–Torrance model simplifies the spectral dependence of the reflectance
distribution function terms by allowing the diffuse BRDF to be constant and equal
to the reflectance at normal incidence, because the later varies only slightly for in-
cidence angles within 70◦ of the surface normal. The specular part of the BRDF,
however, is associated with the angle of incidence, as it leads to a color shift when
the direction of incidence and reflection are at about grazing angles (see below).
This effect is particularly evident in metals.

The spectral transfer function of the material depends on the relative index of
refraction of the material n12, or simply n and the extinction coefficient k, which
is associated with the depth an incident wave of wavelength λ may penetrate the
material until it is extinct. In the Cook–Torrance model, the dependence on n and
k is introduced through the Fresnel term F (the third factor, along with D and G)
that describes how a single micro-facet reflects light. Note that, in general, both
n and k vary with the wavelength of the incident light. For k = 0 and unpolarized
light, the Fresnel equation is

F =
1
2

(g− c)2

(g+ c)2 (1+
[c(g+ c)−1]2

[c(g− c)+1]2
), (12.49)

where
c = v̂ · ĥ,

g =
√

n2 + c2−1.

From Equation (12.49), we can see that when we look at the direction of the
light source from a very low position with respect to the surface (grazing angle),
the angle between v̂ and ĥ tends to π/2 and therefore F → 1 regardless of the
wavelength-dependent values of n and k. This means that at a grazing angle, the
spectral composition of the reflected light is the same as that of the light source.
In the general case, F = 1 for other angles.

The assumption that k = 0 is also true for non-metals. Still, Equation (12.49)
produces a good approximation of the angular dependence of F for metals too, as
the Fresnel term is only weakly dependent on k.

Gathering the micro-facet distribution D, the geometric attenuation factor G,
and the Fresnel term F in a single equation, the specular part of the BRDF is

fs =
1
π

DGF

(n̂ · l̂)(n̂ · v̂)
. (12.50)

The term (n̂ · l̂)(n̂ · v̂) maximizes the specular highlight when viewing the light
at a grazing angle. Because the estimation of the wavelength-dependent Fresnel
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Figure 12.25. Various materials simulated with the Cook–Torrance illumination
model using the OpenGL Shading Language. All surfaces are illuminated by two
sources, one a little off the normal incidence direction and one near the grazing
angle. (See also Color Plate XX.)

term is an expensive calculation, Cook and Torrance suggest an approximation:
First, one can measure or estimate via the Fresnel equation (if n(λ ), k(λ ) are
known) the reflected color at normal incidence F0. Second, as F at grazing angle
is always 1 for all wavelengths (Fπ

2
= 1), the color components (R, G, and B)

of the reflected light are equal to the respective components of the incident light.

Then, the reflected specular color component at an intermediate angle θ = ̂̂vĥ,
may be roughly interpolated from the two extreme values:
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ci = ci,0 +(ci, π
2
− ci,0)

max(0,Fθ (λ )−F0(λ ))
Fπ

2
−F0(λ )

, (12.51)

where ci, ci, π
2
, ci,0 are the color components (i=red, green, blue) of the resulting

color, the material color at normal incidence, and the incident light color, respec-
tively. The functional form of F , F(λ ), signifies its indirect dependence on the
wavelength λ through the index of refraction. The final color ci is obtained by
multiplying Equation (12.50) with Equation (12.51):

ci =
1
π

[ci,0 +(ci, π
2
− ci,0)

max(0,Fθ (λ )−F0(λ ))
Fπ

2
−F0(λ )

]
DGFθ (λ )
(n̂ · l̂)(n̂ · v̂)

. (12.52)

Figure 12.25 (see also Color Plate XX) demonstrates the behavior of the
Cook–Torrance model for various materials. The images were generated with
the OpenGL Shading Language real-time shader provided in Section 12.12.

12.8 The Oren–Nayar Illumination Model �

In all the illumination models examined so far, the diffuse component of the out-
going light from a surface was considered to adhere to the Lambert model, which
assumes that surfaces appear equally bright from all viewing directions (see Sec-
tion 12.2). In nature however, there exist many common cases of rough surfaces
whose reflectance cannot be explained by the Lambert model. A very interesting
example to demonstrate this is the full Moon. The Moon, being a spherical body
and reflecting light from a distant yet wide emitter (area light), the Sun, should
look very bright at the center while the reflected light should diminish gradually
toward the rim of the visible disk. However, this is not the case, as the reflected
light perceived by a viewer on the Earth’s surface gives the impression of a more
even illumination across the entire disk. Clearly, at a macroscopic level, the rough,
craggy surface of the moon is not Lambertian. Other rough surfaces made of ma-
terials such as clay, cement, and sand also deviate from the Lambertian model.
But how is this divergence justified?

The Lambert model works well for smooth surfaces. A rough surface ex-
hibits phenomena such as light masking and shadows like those addressed in
the Torrance–Sparrow model (see Section 12.3), but also secondary reflections of
light on the walls of the irregular microscopic structures. This leads to an apparent
brightness of the reflected light that increases as the viewing direction approaches
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Figure 12.26. First- and second-order reflections in Lambertian micro-facets com-
prise the output radiance in the Oren–Nayar model.

the light direction. Oren and Nayar studied these phenomena and proposed an
alternative detailed model that incorporates these factors and closely predicts the
behavior of rough materials [Oren92, Oren94]. While a complete analysis of the
derivation of the Oren–Nayar model is quite complex and extends beyond the
scope of this book, in the following paragraphs we will present the principles and
the practical, simplified model.

In the Oren–Nayar diffuse illumination model, the micro-facet model of the
Torrance–Sparrow theory is also adopted. A rough surface consists of long—
relative to their width—V-shaped grooves. Unlike the Blinn and Cook–Torrance
models where the micro-facets are perfect mirrors (the two models estimate the
specular component), in the Oren–Nayar model the facets are Lambertian sur-
faces. What makes this model interesting is that although it relies on the same
surface modeling as the Cook–Torrance and Blinn models, the assumption that the
micro-facets are not perfect mirrors but Lambertian surfaces, completely changes
the mechanisms of light interaction. The reflected light in direction (θr,φr) given
an incident direction l̂ is computed as a two-part contribution: the first-order and
the second-order reflected radiance L1

r (θr,φr,θi,φi) and L2
r (θr,φr,θi,φi). These

correspond to light directly reflected in a direction v̂ from a micro-facet and to
light reflected in the same direction after having bounced off the opposite facet of
the groove (Figure 12.26).

The Torrance–Sparrow model used a distribution D of facets facing in the
same direction ĥ, the direction a facet should have to perfectly reflect light from
the incident direction l̂ to the viewing direction v̂. As we are interested in the
calculation of radiance reflected to the environment from a small area dA in the
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vicinity of the rendered point, a more intuitive and convenient distribution to con-
sider is the portion of this area that consists of facets facing in a particular di-
rection â (not necessarily the halfway vector ĥ) P(θa,φa). Oren and Nayar have
considered a simple single-slope distribution (directional identical grooves) and
an isotropic Gaussian distribution.

Let us now compute the contribution of a facet with slope θa (relative to
the surface tangent plane) to the radiance perceived by the viewer. We need to
consider the area of the facet projected on the actual surface of the patch dA,
dacosθa, rather than the original facet area da. The corresponding contribution
of the micro-facet to the total radiance of the patch dA is the projected radiance
Lrp(θa,φa):

Lrp(θa,φa) =
dΦr(θa,φa)

(dacosθa)cosθrd
−→ω r

. (12.53)

From the relation between radiance and irradiance and the definition of radiant
flux, we have

dEr(θr,φr) = Lr(θr,φr)cosθrd
−→ω r = Lr(θr,φr)(â · v̂)d−→ω r

dΦr(θr,φr) = dEr(θr,φr)da

}
⇔

dΦr(θr,φr) = Lr(θr,φr)(â · v̂)d−→ω rda. (12.54)

Substituting the radiant flux in Equation (12.53), the projected radiance be-
comes

Lrp(θa,φa) =
Lr(θr,φr)(â · v̂)d−→ω rda

(dacosθa)cosθrd
−→ω r

=
Lr(θr,φr)(â · v̂)

(â · n̂)(v̂ · n̂)
. (12.55)

As we have assumed the micro-facets to be Lambertian, the BRDF of each
one of them is constant and equal to 1

π (Equation (12.18)). Allowing for the
absorption of some light according to the surface albedo ρ , from the definition of
the BRDF we have

Lr(θr,φr) = ρ fdEi(θi,φi) = ρ fdE0 cosθi = ρ fdE0(l̂ · â) =
ρ
π

E0(l̂ · â), (12.56)

where E0 is the irradiance from the source at normal incidence. Replacing the
radiance in Equation (12.55),

Lrp(θa,φa) =
ρ
π

E0
(l̂ · â)(â · v̂)
(â · n̂)(v̂ · n̂)

. (12.57)

The radiance that is directly returned towards the view direction, not account-
ing for any attenuation due to masking and shadowing, is calculated by integrating
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the contribution of the projected radiance of Equation (12.57) over every possible
direction that the micro-facets may assume. The contribution of all facets facing
in the direction of â is determined by the fraction of the total area dA that this
group of facets occupies, i.e., P(θa,φa):

L1
r (θr,φr,θi,φi) =

∫ π/2

θa=0

∫ 2π

φa=0
P(θa,φa)L1

rp(θa,φa)sinθadφadθa. (12.58)

The effect of masking and shadowing of the outgoing and incident light, re-
spectively, due to the presence of the opposite facet of the groove is the attenuation
of the perceived brightness by a certain factor. The geometric attenuation factor
GAF chosen in the Oren–Nayar model is a generalization of the corresponding
Cook–Torrance/Blinn factor G and works for any facet normal â and not neces-
sarily the halfway vector ĥ between the viewing and the incident direction:

GAF = min

{
1,max

{
0,

2(l̂ · n̂)(â · n̂)
l̂ · â ,

2(v̂ · n̂)(â · n̂)
v̂ · â

}}
. (12.59)

The projected outgoing radiance is scaled by GAF , for each group of facets in
dA that face in the direction of â; therefore, taking into account also the blocked
incident and reflected light, Equation (12.58) becomes

L1
r (θr,φr,θi,φi) =

∫ π/2

θa=0

∫ 2π

φa=0
P(θa,φa)L1

rp(θa,φa)GAF sinθadφadθa. (12.60)

The calculation of the facet inter-reflection contribution is significantly more
tedious and, thus, we will provide only some key elements of the concept and the
results of the analysis. The interested reader may find more details in the original
work of Oren and Nayar [Oren92] and in [Fors89].

As the micro-facets are Lambertian and thus do not reflect very intensely in a
particular direction, energy transmitted via secondary reflection bounces rapidly
diminishes. This energy exchange is further attenuated by the oblique relative
positioning of the facets. This means that the cumulative contribution of any
more than two bounces is not significant and can be ignored. The Oren–Nayar
model ignores the third- and higher-order reflections.

The calculation of the radiance that comes from a direction (θi,φi), bounces
off one facet (L1

r ), and is reflected by the opposite side to the view direction (L2
r ),

involves the estimation of the visible portion of the second facet and the part of the
first not in shadow (Figure 12.27(a)). Taking advantage of the translational sym-
metry of the V-shaped groove, the calculation of the total projected radiance can
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Figure 12.27. Radiance from second-order reflections. (a) All points y on the
opposite side not in shadow reflect light to a point x on the facet. K is a geometrical
kernel that specifies the attenuation between the two points. (b) By expressing Lr
in terms of the distance x from the bottom of the groove, translational symmetry
helps treat all equidistant points from the bottom of the groove identically. (c) The
total radiance leaving the facet is the sum of the contributions from all lines above
the masking limit.

be split into two consecutive sums: For all points on a line parallel to the length
of the groove, the first-bounce radiance from all points on the opposite side is
summed. The translational symmetry helps treat this stage as a symmetrical sum
over a cross-section extended both ways along the groove (Figure 12.27(b)). The
total radiance leaving the cross section of the second surface toward the direction
v̂ is found by integrating over all lines of surface points, the points which lie above
the masking limit mv (Figure 12.27(c)).
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The overall radiance leaving patch dA in the direction v̂(θr,φr) is the sum of
the two contributions:

Lr(θr,φr,θi,φi) = L1
r (θr,φr,θi,φi)+L2

r (θr,φr,θi,φi). (12.61)

Based on the concepts described above, Oren and Nayar devised a detailed
analytical model for the reflectance of rough surfaces, which is not provided here
due to its complexity and dependence on unintuitive parameters. Fortunately, they
were able to simplify the original model by specifying a functional approximation
that depended only on the angles of incidence and reflection as well as the surface
roughness. The final results for a Gaussian slope-area distribution P(θa,φa) of
facets with zero mean value and standard deviation σ are given below:

L1
r (θr,φr,θi,φi) =

ρ
π

E0 cosθi[C1 + cos(φr−φi)C2 tanβ +(1−|cos(φr−φi)|)C3 tan(
α +β

2
)],

(12.62)

L2
r (θr,φr,θi,φi) = 0.17

ρ
π

E0
σ2

σ2 +0.13
cosθi[1− (

2β
π

)2 cos(φr−φi)], (12.63)

where

C1 = 1−0.5
σ2

σ2 +0.3
,

C2 =

{
0.45 σ2

σ2+0.09
sinα, cos(φr−φi)≥ 0,

0.45 σ2

σ2+0.09
(sinα− ( 2β

π )3), otherwise,

C3 = 0.125
σ2

σ2 +0.09
(
4αβ
π2 )2,

α = max(θr,θi), β = min(θr,θi).

The BRDF of the Oren–Nayar model is easily acquired by applying the BRDF
definition to Equation (12.61). The irradiance is dropped and the final formula
depends on the constant parameters and the angles of incidence and reflection:

fOren–Nayar =
L(θr,φr,θi,φi)

Ei
=

L(θr,φr,θi,φi)
E0 cosθi

=
L1

r (θr,φr,θi,φi)+L2
r (θr,φr,θi,φi)

E0 cosθi
(12.64)
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Figure 12.28. Comparison of the Phong and Oren–Nayar models on a clay pot
and a sphere (inset).

Figure 12.28 presents a comparison of the Oren–Nayar and the Phong model.
The same rough materials were rendered using both models. The characteristic
Lambertian intensity fall-off of the Phong model does not provide a very convinc-
ing impression. The quick fall-off is very noticeable along the intersection of the
walls and at the outline and grooves of the clay pot.

12.9 The Strauss Illumination Model�

Illumination models that are based on geometrical optics, such as the Blinn,
Cook–Torrance, and Oren–Nayar models, produce very realistic shading but also
have an inherent problem that makes them difficult to work with: they use actual
physical parameters found in material science (expressed in real units), which
tend to be very unintuitive for artists. The Phong model on the other hand, can-
not effectively capture the appearance of metallic surfaces and also suffers from
a small but sometimes frustrating issue: the specular exponent is specified as an
unbounded positive number. Therefore, one cannot easily produce a balanced
shininess between a dull surface and a fully reflective one by adjusting a value
between two limits. The shininess adjustment is further made complex by the
fact that two seemingly independent parameters (the exponent and the specular
coefficient) control the same material attribute.
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Strauss [Stra90] proposed an illumination model that borrows many lighting
calculations from the Phong model but also incorporates features like metallic ap-
pearance, off-specular reflections, and unified shininess control, through intuitive
normalized parameters. It is an empirical model that was designed with simplicity
in mind, targeting animators and 3D modelers.

The basic normalized parameters that control the surface appearance are three:
The material color c = (r,g,b), which represents the albedo of the surface, the
smoothness s, ranging from 0 (dull surface) to 1 (perfect mirror), and the metal-
ness m also ranging from 0 to 1 (1 corresponds to metallic surface). The smooth-
ness controls both the specular/diffuse contribution ratio and the size of the high-
light. The metalness parameter affects the color of the specularly reflected light,
which, as seen in the Cook–Torrance model, is biased for metals toward the sur-
face basic color, except when the light source is reflected to the eye at a grazing
angle.

The intensity of the reflected light per color channel cr is calculated as the cor-
responding incident light component ci multiplied (filtered) by the diffuse, specu-
lar and ambient components of the Strauss model (Qd , Qs, and Qa, respectively):

cr = ci(Qd +Qs +Qa). (12.65)

The amount of diffuse illumination Qd that contributes to the final color de-
pends on the shininess of the surface s. The more shiny the surface, the less it
behaves as a Lambertian reflector. Also, the diffuse component is decreased as
the surface adopts a metallic quality with the increase of the metalness variable
m. Of course, the diffuse component also depends on the angle of incidence. The
Strauss diffuse and ambient components are

Qd = (n̂ · l̂)rddc,

Qa = rdc,

rd = (1− s3)(1− t),

d = (1−ms),

(12.66)

where t is the transparency of the surface and ranges between 0 and 1 (0 = fully
opaque) and c is one of the red, green, or blue components of the surface color.
The (1− s3) factor is experimentally chosen to account for a linear perceptual
transition from a dull surface to a perfect mirror with a corresponding linear
change in the s parameter.
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The specular component Qs is a product of two terms, the specular reflectivity
rs, which defines the shape of the highlight and the specular color cs, which is in-
terpolated for metallic surfaces between the surface color and the light color as in
the Cook–Torrance model (see Strauss shader implementation in Section 12.12):

Qs = rscs. (12.67)

As in the Phong model, the specular reflectivity depends on the angle between
the mirror reflection direction and the view vector, raised to a power to tighten the
highlight:

rs = (r̂ · v̂)h r j,

h =
3

1− s
.

(12.68)

The value r j is the adjusted reflectivity and encapsulates the specular atten-
uation due to the Fresnel term and the geometric attenuation factor (see also
Section 12.7); r j depends on the reflectivity of the surface at normal incidence,
rn = 1− t− rd , giving

r j = min[1, rn +(rn + k j)F(θi)G(θi)G(θr)]. (12.69)

The function F(x) is an empirical Fresnel-like function and G(x) is a geomet-
ric attenuation function. They are defined as:

F(x) =

[
1

(x− k f )2 −
1

k2
f

]
/

[
1

(1− k f )2 −
1

k2
f

]
,

G(x) =
[

1
(1− kg)2 −

1
(x− kg)2

]
/

[
1

(1− kg)2 −
1
k2

g

]
.

(12.70)

The constants k j, k f , and kg are experimentally chosen and Strauss suggests
the values 0.1, 1.12, and 1.01, respectively. Essentially, the adjusted reflectivity
creates an increase in the specular highlight near the grazing angle, while the
geometric attenuation factor counteracts this increase when the incident angle or
the viewing angle comes too close to π/2.

An OpenGL shader implementation of the Strauss model is given in Sec-
tion 12.12. Some results for various values of m, s, and c can be seen in Fig-
ure 12.29 (see also Color Plate XXI). Note that the shader uses the conventions



�

�

�

�

�

�

�

�

414 12. Illumination Models and Algorithms

Figure 12.29. Results using the Strauss model. (See also Color Plate XXI.)

found in the original work of Strauss, who defines the v̂ and l̂ vectors to point to
the surface point p.5

12.10 Anisotropic Reflectance
All of the models that have been discussed so far possessed an isotropic BRDF,
meaning that the reflected light did not depend on the azimuth angle of inci-
dence φi. However, many real materials and treated surfaces exhibit a distinctive
directional bias, i.e., the highlight appears brighter or wider at particular incident
directions. Anisotropic specular reflection is caused by the microscopic geomet-
ric structures of the surface. Most anisotropic reflective materials possess a char-

5For the Fresnel term, F(x) is used with the angle between the bisector of ̂̂vl̂ and l̂: F((θi +θr)/2).
Note that this is necessary as the original paper assumes that n̂, v̂, and l̂ are expressed in normalized
eye-space.
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acteristic grain or a set of very small grooves that are roughly locally oriented
in a specific direction. The grooves appear parallel within a magnified surface
area. Good examples of anisotropic reflectors are brushed metals (for example,
brushed aluminum (Figure 12.30; see also Color Plate XIX)), varnished wood, or
vinyl music records.

Figure 12.30 shows a simulated experiment with a geometry consisting of
parallel grooves illuminated from two directions: one is parallel and the other is

Figure 12.30. Anisotropic reflectance. Microscopic parallel grooves on specularly
reflective surfaces reflect light differently according to the relative angle between
the plane of incidence and the grain direction. Above: Magnification of a brushed
metal. Reflected light is calculated for various viewing directions and for grooves
parallel or vertical to the plane of incidence. Below: Rendering of brushed alu-
minum (amplifier front panel, volume knob, power switch, cone and sphere). (See
also Color Plate XIX.)
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perpendicular to the surface grain. Both cases are examined from the same view
directions with θr ranging from 15 to 75 degrees. Observe that the average re-
flectivity in the case of the vertical grooves is different from that of the horizontal
ones.

Let us model the surface according to the micro-facet approach and assume
that the surface grain lays on a longitude direction φg. The distribution of the
facets da with respect to their normal direction â = (θa,φa) is clearly directional,
with θa being zero for φa = φg,φg +π and ranging from −θs to θs for φa = φg±
π/2, where θs is the maximum slope. Let us now observe the surface from a
macroscopic level with incident light coming from (θi,φi). In the extreme case
where all grooves are ideally aligned with φg, the surface becomes a perfect mirror
when φi = φg,φg +π and has a wider spread of the highlight as φi tends to φg±π/2
(maximum anisotropy). If φa is allowed to vary according to some distribution,
for instance a Gaussian with mean azimuth φg and standard deviation σg, the
anisotropy becomes less pronounced as σg becomes larger.

Several models have been proposed in order to deal with anisotropy, like the
Kajiya model [Kaji85] that uses Kirchoff’s diffraction theory to simulate the ef-
fect, the Poulin-Fournier approach [Poul90] that models the surface as an aggre-
gation of parallel cylinders embedded in it or cut out from a planar area, or the
empirical, observation-based Ward model [Ward92].

Figure 12.31. Specular reflectance distribution lobes for an anisotropic reflector.
The directional dependence of the distribution with respect to the incident direction
can be defined relative to the local tangent space.
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One property that is difficult to represent for arbitrary geometry or polygonal
meshes is the direction of maximum (and minimum) reflectance on the surface,
which is dependent on the azimuth angle φg. This direction is a local attribute
of the model and cannot in general be expressed relative to the object or world
reference frame (e.g., parallel to the x-axis). Most implementations rely on the
local tangent space and align φg relative to the tangent coordinate system (n̂, û, v̂)
(Figure 12.31). A convenient way to define the tangent and bitangent vectors at
any given surface point on an arbitrary surface is via texture mapping. Refer to
Section 14.7.5 for the derivation of the tangent space from an arbitrary polygonal
surface parameterization.

12.11 Ambient Occlusion

Most local illumination models regard the ambient illumination contribution as
constant. The ambient term is the irradiance that reaches a surface as the summed
contribution of the emitted or reflected light from the environment and accounts
for the exchange of energy between the patch dA under consideration and all
other possibly contributing patches in a scene. Having a constant value reflect
this ambient illumination is clearly a very rough approximation. Even simple
scenes, like an empty room or objects resting on one another, contain surfaces that
exchange different amounts of energy according to the location and the relative
orientation with their neighbors. The walls of a room are darker near corners and
a lot of light coming from the environment is blocked underneath a table or under
a car. Normally, the exchange of energy in a closed environment is simulated via a
global illumination method, which is the subject of Chapter 16. But one aspect of
the global energy exchange that affects the ambient term, the darkening effect in
obscured parts of a scene, i.e., patches where incident light from the environment
is blocked due to the presence of other geometry, can be simulated in a more
efficient manner.

Zhukov et al. [Zhuk98b, Zhuk98a, Ione03] proposed an ambient illumination
model that, assuming a uniform (ambient) distant environment irradiance from
every direction, estimates the portion of it that finally reaches a small patch dA.
The situation is equivalent to calculating the visibility of a patch due to the pres-
ence of the rest of the geometry, that is, the portion of the solid angle around
the patch, from where dA is visible. Inversely, the obscurance of a patch dA is
the portion of the hemispherical solid angle around the patch that is blocked by
other geometry (Figure 12.32). The higher the obscurance, the darker the patch,
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Figure 12.32. Evaluation of the obscurance function in ambient occlusion.

because dA is blocked at many incident directions from other patches and, there-
fore, less light from the environment can hit the surface. In the original paper by
Zhukov et al. [Zhuk98b], the term “obscurance” w(p) was used to refer to the vis-
ibility of the surface patch and from hereafter this term will reflect the “openness”
of a patch dA centered at a point p.

An important benefit of linking the ambient illumination on a surface patch to
its obscurance is that the latter is a purely geometric property and does not depend
on any particular lighting conditions or viewing direction. The obscurance is usu-
ally pre-calculated and stored on a polygonal mesh as vertex color information
or in a texture image, which is subsequently applied at render time to the sur-
face (see also texture mapping and texture atlases in Chapter 14). The obscurance
w(p) can be multiplied with a constant ambient term and provides a convincing
estimate of the incident light from the environment. It should be noted, how-
ever, that obscurance shading or ambient occlusion is not a physical simulation
model and was not conceived to provide an accurate global illumination calcu-
lation; it misses the high-order bounces of energy that eventually hit the surface
and regards irradiance due to ambient illumination to be constant in all incident
directions.

Let us assume that there are no specific light sources in the environment. The
(uniform) incident ambient illumination can be modeled as a perfectly diffuse
light that radiates from all directions towards dA. Another important assump-
tion is that light is not emitted from some infinite medium far from the scene
itself, but that the geometry is immersed in a radiating, non-absorbing, gaseous
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medium. Why should this be so? Due to the exchange of energy among surface
patches, even if light is blocked from a particular direction, a portion of the orig-
inal radiance hits dA, due to inter-reflections. Having open space subtended by
the hemispherical solid angle above the patch behave as an emitter approximately
accounts for the diffusely reflected energy on nearby patches.

Let d(p,θi,φi) be the distance between p and the closest surface point to p in
the direction (θi,φi) (Figure 12.32). If there is no surface point in this direction,
d(p,θi,φi) is infinite:

d(p,θi,φi) =
{ |c−p|, c: first intersection point in direction (θi,φi),

+∞, no intersections in direction (θi,φi).
(12.71)

According to this model, the farther from p an intersection point is, the more
light reaches the surface of the patch dA. If the hemispherical solid angle above
the patch is completely open up to a distance dmax (which is seldom the case),
the obscurance w(p) equals 1. Obscurance can become exactly zero only in de-
generate cases or where two surfaces firmly touch each other. The value dmax

is the maximum distance at which the contribution of the surrounding geometry
is non-negligible and is empirically set per scene, according to the scale of the
environment.

The intensity of the reflected light from patch dA centered at p, due to ambient
illumination coming from the hemisphere Ω above dA can thus be approximated
as

Ia(p) = kaIaw(p),

w(p) =
1
π

∫
Ω

µ(d(p,θi,φi))cosθid
−→ω ,

(12.72)

where µ(x) is a function that maps the distance x = d(p,θi,φi) to a normalized
obscurance factor and represents the energy emitted by the gaseous medium in
the line of sight from p to the closest surface in the direction (θi,φi). The function
µ(x) is required to meet the following requirements: monotonically increasing
and smooth (the larger the distance to the intersection point, the greater the contri-
bution of ambient light), zero for zero distance and 1 at infinity with a decreasing
slope (Figure 12.33). These constraints are

µ(x) =
{

0, x = 0,
1, x = +∞

dµ(x)
dx

=
{

0, x = +∞,
> 0, otherwise,

d2µ(x)
dx2 < 0.

(12.73)
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Figure 12.33. Mapping function from distance to visibility (openness) in a particu-
lar direction.

A common family of functions that conforms to the requirements is

µ(x) = 1− e−τx. (12.74)

The parameter τ regulates the spread of the shadowed area. In the original
paper, τ is experimentally set to 1. As dmax defines a range of distance from p
beyond which no patch is taken into account, µ(x) has to be modified to normalize
this input range.

Let us now introduce NL light sources with intensity IL( j), j = 1 . . .NL, at
distance d j from the patch dA and direction of incidence l̂ j. Assuming Lambertian
surfaces, these light sources contribute to the illumination of the patch both in the
ambient and in the diffuse term. The resulting illumination for a point p of the
patch has the form

I(p) = [kaIa + kdId(p)]w(p)+ Id(p),

Id(p) =
NL

∑
j=1

δ (p, j)
IL( j)

d2
j

(l̂ j · n̂),
(12.75)

where δ (p, j) is a visibility factor that becomes 1 if the jth light source is visible
from the patch and 0 if the patch is in shadow for the specific light source.

Figure 12.34 shows an example of the application of the ambient occlusion
model, for various values of τ and dmax, as well as the final results of combining
the obscurance function with the diffuse and ambient terms of Equation (12.75).
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Figure 12.34. Example of obscurance estimation for various values of the distance
limit (left). R is the scene radius. The same scene is rendered with constant
ambient illumination (top right) and with obscurance-weighted ambient and diffuse
illumination (bottom right).
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12.12 Shader Source Code

12.12.1 Cook–Torrance Shader

//################### Cook-Torrance Model ######################//

//################### Vertex program ###########################//

varying vec3 N,P;

void main() {

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

N = normalize ( gl_NormalMatrix * gl_Normal );

P = vec3 (gl_Position) / gl_Position.w;

}

//################### Cook-Torrance Model ######################//

//################### Fragment program #########################//

varying vec3 N, P; const float pi = 3.1415936; const float e

=2.718282; const int numLights = 2;

uniform float Ka, Kd, Ks, // ambient, diffuse, specular coefs.

m; // RMS micro-facet slope

uniform vec3 n; // n(630nm) n(530nm) n(465nm)

// at normal incidence

uniform vec3 color; // The material color

// The Beckmann distribution function

float Beckmann ( in float a ) {

float tana = tan(a)/m;

float cosa = cos(a);

cosa *= cosa;

return pow ( e, -tana*tana ) / (m*m*cosa*cosa);

}

// The Fresnel term

float Fresnel( in float n, in float c ) {

float g, gc, F;

g = clamp ( n*n+c*c-1, 0.000001, 1.0);

g = sqrt(g);

gc = g+c;

F = (g-c)*(g-c)/(2*gc*gc);

return F * ( 1 + (c*gc-1)*(c*gc-1)/( (c*gc+1)*(c*gc+1) ) );

}
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// The Cook-Torrance model for the specular reflectance

void CookTorrance ( in vec3 L, // light direction

in vec3 V, // view direction

in vec3 H, // half-way vector

in float a, // angle ( N, H )

in vec3 Il, // incident illumination

in vec3 C0, // material color

out vec3 Is_I // resulting specular color

)

{

float NL, NV, VH, NH; // dot products

float D, G; // D and G scalar terms

vec3 F0, F; // The tri-chromatic Fresnel terms

// for normal & arbitrary incidence

NL = dot(N,L);

NV = dot(N,V);

VH = dot(V,H);

NH = dot(N,H);

D = Beckmann(a);

G = min ( 1, min( 2*NH*NV/VH, 2*NH*NL/VH ) );

F0.r = Fresnel(n.r,1);

F0.g = Fresnel(n.g,1);

F0.b = Fresnel(n.b,1);

F.r = Fresnel(n.r,VH);

F.g = Fresnel(n.g,VH);

F.b = Fresnel(n.b,VH);

Is_i = (C0 + (Il-C0)*(max(F-F0,0)/(1.0-F0)) ) *

( (F.r+F.g+F.b)/3 )*D*G/(pi*NL*NV);

}

void main() {

vec3 Pl; // Light position

vec3 L, H, V; // directions (unit vectors)

vec3 Ia, Id, Is, Is_i, Il; // Intensity values

int i;

float NL, a;

V = vec3 (0.0, 0.0, 1.0); // View direction
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Ia = vec3 (0.0, 0.0, 0.0); // Init. amb/dif/spec values

Id = vec3 (0.0, 0.0, 0.0);

Is = vec3 (0.0, 0.0, 0.0);

// Add the contribution of all light sources

for ( i = 0; i< numLights; i++ )

{

Pl = vec3 (gl_LightSource[i].position);

L = normalize( Pl - P );

H = normalize( L + V );

NL = dot (N,L);

// Diffuse

Id += gl_LightSource[i].diffuse * NL;

a = acos( dot(N,H) );

Il = vec3 (gl_LightSource[i].diffuse);

CookTorrance ( L, V, H, a, Il, color, Is_i );

// Specular

Is += Is_i;

}

// Ambient

Ia = Ka * gl_FrontLightModelProduct.sceneColor;

gl_FragColor = vec4(Ia,1) +

Kd * vec4(Id,1) * vec4(color,1) +

Ks * vec4(Is,1);

}

12.12.2 Strauss Shader
//################### Strauss Model ############################//

//################### Vertex program ###########################//

varying vec3 N; varying vec3 P;

void main() {

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

N = normalize ( gl_NormalMatrix * gl_Normal );

P = vec3 (gl_Position) / gl_Position.w;

}

//################### Strauss Model ############################//

//################### Fragment program #########################//
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varying vec3 N; varying vec3 P; const float pi = 3.1415936; const

int numLights = 2; uniform float m; // metalness uniform

float s; // shininess uniform float t; //

transparency uniform vec3 C; // surface color

//--------------------------- Fresnel term ---------------

float F ( in float x ) {

const float kf = 1.12f;

const float kf2 = kf*kf;

const float denom = ( 1.0/((1.0-kf)*(1.0-kf)) - 1.0/kf2 );

return ( ( 1.0/((x-kf)*(x-kf)) - 1.0/kf2 ) / denom);

}

//--------------------------- Geometric Attenuation------

float G ( in float x ) {

const float kg = 1.01f;

const float kg2 = kg*kg;

const float denom = ( 1.0/((1.0-kg)*(1.0-kg)) - 1.0/kg2 );

return ( 1.0/((1.0-kg)*(1.0-kg)) - 1.0/((x-kg)*(x-kg)) )

/ denom;

}

void main() {

vec3 Pl, L, V, H;

vec3 Qa, Qd, Qs, Ir, Cs;

int i;

float NL, NV, f;

float theta_i, theta_r;

float rn, rj, rd, rs, d;

const float kj = 0.1;

// Note that conventions in the original paper

// differ from standard normalized vector definitions:

// L and V face towards the local point P

// View direction

V = -normalize(P);

NV = dot(N,V);

Ir = vec3 (0.0, 0.0, 0.0);

for ( i = 0; i< numLights; i++ )

{

Pl = vec3 (gl_LightSource[i].position);
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L = normalize( P - Pl );

NL = dot(N,L);

H = normalize( L-2*NL*N );

theta_i = 2*acos(abs(NL))/pi;

theta_r = 2*acos(abs(NV))/pi;

rd = (1-s*s*s)*(1-t);

d = 1-m*s;

rn = 1-t-rd;

f = F((theta_i+theta_r)/2);

rj = min (1, rn+(rn+kj)*f*G(theta_i)*G(theta_r));

rs = pow(-dot(H,V),3/(1.0001-s))*rj;

Cs = 1 + m*(1-f)*(C-1);

Qd = clamp (-NL*d*rd*C,0,1);

Qs = clamp (rs*Cs,0,1);

Ir += gl_LightSource[i].diffuse * (Qd+Qs) +

gl_LightSource[i].ambient * Qa;

}

gl_FragColor = vec4(Ir,1-t);

}

12.13 Exercises

1. Based on the derivation of the Lambert BRDF, explain in your own words
why a Lambertian surface appears equally bright from all viewing direc-
tions.

2. Consider a polygonal model of a sphere which is illuminated by a point
light source in the viewing direction (v̂ = l̂). Write a program to illuminate
the sphere using the Phong model and algorithm (Equation (12.26)) and
allow the user to vary the values of the various parameters of the model
(ka,kd ,ks,d,n) and inspect the result on the sphere.

3. The same as Exercise 2, but use the Gouraud algorithm instead.

4. Extend Exercise 2 to include multiple point light sources (Equation (12.27))
and allow the user to move them individually.
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5. Extend Exercise 2 to allow the user to vary the color components of the
light source (you will need to break down the incident light intensity Ii in
Equation (12.28) into its color components).

6. Implement the quadratic interpolation of vertex normals (Section 12.6.4)
and compare it to linear interpolation on a polygonal model that has the
“staircase” structure, using the Phong shading model and algorithm.

7. In what ways do the modeling of the surfaces in the Cook–Torrance and
Oren–Nayar models differ? How do these differences affect the estimated
light that is propagated to the viewer?

8. Write an OpenGL Shading Language shader that implements the Oren–
Nayar model.

9. Using the Strauss model, provide the appropriate parameters to simulate
glossy, plastic material. Compare the resulting formula to the Phong model.

10. Compare the results of the ambient occlusion technique with those of a
global illumination method, assuming uniform hemispherical illumination
(skylight). More specifically, address the following cases in terms of visual
result similarity and credibility:

• surfaces on the exterior of tightly packed buildings in an outdoor scene
with an infinite ground object;

• surfaces inside sparse individual buildings with openings;

• surfaces inside a single concave object with a small aperture.
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13
Shadows

There is strong shadow where there is much light.
—Johann Wolfgang von Goethe

13.1 Introduction
Wherever there is light, there is shadow and this is exactly what we expect to
see when observing a three-dimensional environment. But shadows are not just
another type of photorealistic element adding credibility to a synthetic image.
Shadows help the eyes register the objects relative to their surroundings, they de-
fine the direction of the incident light and provide clues for the shape and depth of
three-dimensional objects. The latter is more important in the case of monoscopic
imaging. The human visual system is equipped with stereoscopic viewing, which
extracts depth information from the slightly different images that are registered
by the left and the right eye. When rendering in a single image, this piece of in-
formation is lost, but shadows help resolve part of the depth ambiguities that may
arise. Perspective alone cannot always give us enough clues about the perceived
objects, especially when their relative scale is not known.

Consider the example of Figure 13.1. In Figure 13.1(a), a staircase is lit by
a single light source that casts no shadows. A ball is visible in the foreground.
Although the ball is not occluded by any other object, it is impossible to determine
whether the ball is resting on a step or if it is airborne. We have no clue on its
relative position with respect to the staircase, even though we can judge from a
priori knowledge that the ball is not too small to be closer to the viewer than to
the staircase. Figure 13.1(b) shows three possible position/size combinations that
could have produced the same version of the ball raster from the same viewpoint.

429
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Figure 13.1. Size and depth clues from shadow. (a) A lit scene showing a ball in
front of a staircase. (b) Size/distance ambiguity, when scene is perceived from the
viewpoint of (a). (c)–(e) The three different positions/sizes of the ball. Images are
rendered from the same viewpoint as (a) and the ball looks identical. Shadows
help us define the object relative to its surroundings.

Figure 13.2. Shadows add a complex look to an otherwise simple geometry.
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Now, if we add shadows, the set of visible constraints that the eye needs to extract
the relative distance of the objects is complete. Figure 13.1(c)–(e) show the result
of the three different ball positions of Figure 13.1(b) when shadows are applied
to the scene.

In real-time graphics applications, such as games, shadow-generation algo-
rithms can be utilized to enhance the apparent complexity of an otherwise low-
polygon surface by casting dramatic, high-contrast shadows (see, for instance, the
scene in Figure 13.2). The sharp illumination transitions help our vision system
justify the lack of detail-related contrast and help us better detect movement as
well as place the objects in three-dimensional space.

13.2 Shadows and Light Sources

Shadows are formed on surfaces due to the blocking of direct illumination caused
by parts of objects that are placed between the light source(s) and the surface
(blockers/shadow casters). Although indirect illumination (see Chapter 16) con-
tributes to the diffuse color of the areas in shadow, the outgoing intensity of the

Figure 13.3. The sharpness and shape of a shadow depend on the size and
distance of the light source(s). (a) Point light source. (b) Small non-infinitesimal
light source (area light). (c) Large area light. (d) Infinite (directional) light source.
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diffuse illumination of these areas is generally low, unless the surface is directly
lit by other light sources.

The exact shape of the shadow is influenced by the proximity of the light
source to the shadow casters, as well as the size of the light emitter. A shadow
consists of two zones: the umbra, which is the surface area where the shadow is
cast with full light-source occlusion, and the penumbra, which is partially lit by
the light-emitting source. In order for a surface to be partially in shadow, the light
source needs to be of non-negligible volume compared to the size of the objects.
To be more precise, as distance affects the apparent size of objects, the apparent
projection of the light emitter on the surface needs to be non-negligible to create
a penumbra. The shadows that are caused by non-infinitesimal light sources and
have both an umbra and a penumbra are called soft shadows (Figure 13.3(b) and
(c)). Hard shadows only consist of an umbra and are caused by point-sized light
sources and infinitely far light emitters (Figure 13.3(a) and (d)).

The interaction of a point light source and a shadow caster produces, in gen-
eral, a pyramidal shadow shaft (part of the space where the light of the source
cannot reach) clipped at the caster surface (Figure 13.4). The volume that repre-
sents the unlit space is called a shadow volume. Normally a shadow volume is
infinite, meaning that it extends away from the light source to infinity, unless the
light source has a local effect and a finite range. In the latter case, the shadow
volume extends up to the range of influence of the light source. Directional lights,
i.e., lights that are placed at infinity are considered to be casting light in parallel
rays toward the scene. Thus, the shadow shafts produced by directional lights are

Figure 13.4. Shadow volume. Light is blocked inside the shadow volume. Every
surface part that intersects the shaft formed by the shadow caster and the light
position is in shadow.
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prismatic volumes with parallel sides and the resulting shadows neither converge
nor diverge (Figure 13.3(d)).

There are several approaches to shadow generation, but they are mostly distin-
guished according to the requirement for real-time rendering. For offline photore-
alistic rendering, shadow generation is usually an integral part of the ray-tracing
or global illumination procedure that is used for shading and image synthesis (see
Chapters 15 and 16). In real-time computer graphics, there are two algorithms
most commonly employed for shadow casting. The first technique, shadow vol-
umes, works in object space and is ideal for casting hard, precise shadows on
polygonal objects. The second, shadow mapping, works in image/texture space,
and although it is applicable in a wide range of geometric entity representations
and can be adapted to handle semi-transparent and partially occluding media, it is
not effective in producing sharp-edged shadows. We will first explain the shadow-
volume algorithm, as it is closely related to the geometric aspects of shadow cast-
ing and is therefore more intuitive. Then, we will proceed to the shadow-map
method.

13.3 Shadow Volumes
The shadow-volume algorithm, which first appeared in the late seventies
[Crow77], has been through many optimizations and improvements since its in-
ception. As the name implies, it attempts to construct in object space the frusta
that are formed for each combination of light source and light-blocking piece of
geometry (occluder). Then, each pixel to be drawn that lies on the visible geome-
try is tested for containment in the shadow volumes, and its shading is determined
according to this query. The shadow-volume algorithm requires that the occluders
are polygonal and assumes that connectivity information is available (or can be
determined as a pre-processing step) for these meshes.

13.3.1 Stenciled Shadow Volumes

The shadow-volume containment query for each visible fragment can be mapped
to a simple counter check, if the following observation is made (Figure 13.5):
Consider a ray that is shot from the eye toward the surface of the object to be
drawn. Each time the ray crosses into a shadow frustum, a counter is increased,
and when the ray exits the frustum,the counter is decreased. If the surface point
is between the eye point and the shadow volume, i.e., evidently not in shadow,
the shadow frustum is not visible from the eye location and the first hit occurs
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Figure 13.5. Surface-in-shadow test in the basic shadow-volume algorithm. A
counter is incremented each time the eye-to-fragment line enters a shadow volume
and decremented when it exits. The surface is in shadow when the counter is other
than zero.

on the rendered surface. Therefore, no attempt to generate shadow should be
made in this case. When the surface fragment is beyond the shadow frustum, the
ray enters and exits the shadow volumes an equal number of times before hitting
the surface. This means that whenever the counter is zero (n entries meaning n
counter increases and n exits resulting in n counter decreases), the surface is not in
shadow. If the rendered point lies within the shadow volume, the surface will be
hit before the ray exits one or more of the overlapping shadow volumes, leaving
the counter with a value greater than zero. This procedure can be supported by
graphics hardware if the counter is implemented via the stencil buffer.

The stencil buffer is an auxiliary buffer that is allocated in the graphics hard-
ware or the system memory (depending on implementation and application) and
implements a counter and comparator unit per image pixel. The stencil buffer is
equal in dimension to the frame buffer and usually has a resolution of 8 bits per
pixel (values in the range [0, 255]). Similar to the stencil-painting technique, the
result stored in the stencil buffer can work as a mask. The most common proce-
dure using this special buffer is to perform one or more rendering passes that fill
the buffer with the appropriate values and then use these results to prevent areas
of the final rendering pass to be drawn in the frame buffer. The contents of the
stencil buffer are compared to a reference value and depending on the stencil test,
the incoming fragments are eliminated or propagated to the frame buffer. The
stencil test is a comparison operator (always/never pass, =, =, ≥, ≤, >, <).
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Figure 13.6. Example of stencil-buffer use. (a) Stencil buffer update pass: writing
to the frame buffer is disabled and the operation on the stencil values is set to
always increase. (b) Conditional rendering pass in the frame buffer: fragments are
rendered only if the corresponding stencil values are equal to zero.

Not unlike the depth buffer, the stencil buffer can be conditionally updated;
one can specify what operation should be performed on the existing data in the
case of a failed or successful Z-buffer test or a comparison of the stencil buffer
contents with a reference value. The conditionals are the same as in the case
of the stencil mask comparison (see above). Operations on the stencil buffer in-
clude replacing, setting, maintaining, incrementing, decrementing, and inverting
the current values. Figure 13.6 shows an example of using the stencil buffer to
draw the silhouette of a group of primitives in the frame buffer, using an uncondi-
tional increment operator (increment always) on the stencil values and an equality
test as the stencil-masking operator.
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The basic stenciled shadow-volume algorithm proposed in [Heid91] and fur-
ther refined in [Kilg00] generates shadows in hardware-accelerated real-time ap-
plications according to the following steps (Figure 13.7):

1. Begin the rendering: Clear the depth and frame buffers and ignore the sten-
cil operations.

2. Render the geometry using only the indirect illumination components (Fig-
ure 13.7, Step 1). Surfaces are only affected by ambient light, emissive ef-
fects (self-illumination), and additive blending of lightmaps that represent
static, indirect illumination (see Chapter 14). The most common practice is
to simply draw the objects with the predetermined ambient component of
the surface’s material while all light sources are switched off.

3. For each occluder (shadow caster), prepare and render the shadow volume:

(a) Construct a closed (watertight) shadow volume by extruding the faces
of the caster that face in the direction of the light source away from
the light position according to the light source range. Proper capping
of the far end of the frustum is accomplished by inverting the extruded
polygons and using them as caps. Further details and optimizations of
the shadow-volume construction are presented in Section 13.3.2.

(b) Render the (eye-space) front-facing polygons of the shadow volumes
without actually updating either the frame or the depth buffer (Fig-
ure 13.7, Step 2). This is the so-called Z-pass test, because it only
accepts fragments for further manipulation that are drawn in front of
the geometry already rendered. This is only a test and the shadow
volumes do not affect the rendered result, as nothing is written into
the depth and frame buffers. On the other hand, each time a fragment
successfully passes the depth test, the stencil buffer is incremented.

(c) Now render the (eye-space) back-facing polygons of the shadow vol-
umes and again only update the stencil buffer when a shadow-volume
fragment passes the depth test. This time, though, decrement the cor-
responding stencil values instead of incrementing them (Figure 13.7,
Step 3). Steps (b) and (c) together implement the eye-to-surface ray
and shadow-volume intersections counter.

4. Render the lit geometry: Enable all diffuse and specular illumination com-
ponents, enable light sources, and render the geometry over the first pass
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Figure 13.7. Successive steps of the stenciled shadow-volume algorithm. For
one light source, two passes are required to render the visible geometry (shadow
and diffuse/specular—passes 1 and 4) plus two shadow-volume geometry passes
(front and back faces—passes 2 and 3).
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(only render where depth values in the Z-buffer are equal to the current
pass fragments). The method involves checking the stencil buffer and dis-
carding all fragments that correspond to stencil values not equal to zero
(Figure 13.7, Step 4).

Shadows from multiple light sources are handled by repeating Steps 3 and 4
for each light source. In order to properly mix the illumination of the shadowed
areas and avoid overshooting the lit surfaces, Step 4 should use additive blending
when writing to the frame buffer and completely disable the ambient component
of the light sources (as it has already been rendered in Step 2) [Ever02].

13.3.2 Shadow-Volume Construction

The easiest way to construct the shadow volumes for an occluder is to select all the
polygons that face the light source and extrude them away from the light position.
This will create a shadow shaft for every polygon, and the shadow volume of
the entire object is then the union of these polygonal (triangular) frusta (Figure
13.8(d) and (f)). In the case of the stenciled shadow-volume algorithm, these
are rendered into the stencil buffer, and all of the common interior shaft faces
eventually cancel out.

Let p1p2p3 be a polygon that is visible from the position of the light source.
The shadow frustum should extend away from this polygon toward the direction
of the incident light. Let pL be the position of a light source with attenuation
range rL. In the case of a non-attenuating (infinite) light source, rL is chosen so
that it is significantly larger than the scene extents. For each polygon point pi, the
extruded point p′i is given by

p′i = pi +(rL−|pi−pL|) · (pi−pL)
/|pi−pL|. (13.1)

Usually, the light sources are considered infinite with respect to the size of the
scene, therefore the shadow-volume sides are very long and need not be sized
according to the caster position relative to the light source, as is the case in (13.1).
This of course simplifies the calculation of the extruded point, considering that
rL >> |pi−pL|:

p′i = pi + rL · (pi−pL)
/|pi−pL|. (13.2)

Obviously, for infinite (directional) light sources, where rays are always parallel
to a direction l̂, Equation (13.2) is simplified to p′i = pi + rL · l̂ for every point of
all casters.
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Figure 13.8. Shadow-volume creation using triangle and silhouette extrusion. (a)
Casters do not need to be convex and may be self-shadowed. (b) Silhouette edges
as seen from the point of view of the light. (c) Silhouette edge determination. (d)
2-triangle shaft-sides are formed by extruding the triangle or silhouette edges. (e)
The “bright” and “dark” caps are the polygons facing toward and away from the
light source, respectively. (f). The final closed shadow volume.

This technique is very straightforward and adds no computational cost apart
from the one required to build the geometry for the shafts. However, it takes no
advantage of the fact that triangles on the occluder surface share edges, which,
when extruded, will create triangles that share all vertices and eventually cancel
each other. These shadow-shaft polygons, although invisible, are transformed
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and rasterized, slowing down the rendering procedure. Even worse, if we use the
stenciled shadow-volume algorithm, we have to render all front-facing shadow-
volume polygons in one pass and all back-facing polygons in another pass, leading
to a very likely situation that the stencil buffer gets saturated. An alternative
methodology can be adopted, which involves a more complex shadow-frustum
generation stage but results in far fewer polygons. The extra computations needed
can significantly slow down performance in case of highly tessellated models in
dynamically lit scenes, so this variation is recommended either for low polygon
models or for static light-object relationships (the shadow-frustum generation is
performed as a pre-processing step).

The pairs of sides that form the frusta for the occluder triangles can be effi-
ciently removed if, instead of extruding the silhouette of each individual triangle,
one extrudes the silhouette of the union of the faces visible from the light source.
This union of triangles also forms the “near” cap, relative to the light source (also
called the “bright cap”).

The above consideration leads to the breakup of the shadow-volume construc-
tion into a silhouette-determination stage and an edge-extrusion stage, similar to
the one used for the triangular shafts.

The silhouette of a polygonal surface relative to a viewpoint in space (here the
light position) is the set of all visible polygon edges that are shared by at least one
back-facing and one front-facing polygon with respect to the particular point of
view (Figure 13.8(b)). For open (non-watertight) 3D shapes, this set is extended
to include all open edges.

As objects or light sources move, polygons leave or enter the shadow, i.e.,
face toward or away from a light, and therefore, the silhouette needs to be dy-
namically modified for these meshes. The search for the edges that comprise the
object silhouette poly-lines requires that all polygons are compared and the com-
mon edges between polygon i and j are identified. First, as a preprocessing step,
assuming a polygon soup (unstructured set of polygons), we have to determine all
neighboring polygons and mark the common edges. For a manifold triangulated
surface, the basic structure that holds the information about the polygon points
and normals (indexed or not) has to be enriched with connectivity information,
which can be filled according to the following code fragment:

typedef struct

{ Point3f v[3]; Vector3f n[3];

Vector3f facenormal;

long neighbor[3]; // <-- initialize to -1;

} Triangle;
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int CommonEdge(Point3f a1, Point3f a2, Point3f b1, Point3f b2)

{

extern float weld_thres_squared; // avoid sqr. root

Vector3f d1 = PointSubtract(a1-b1);

Vector3f d2 = PointSubtract(a2-b2);

return ( DotProduct(d1,d1)<weld_thres_squared &&

DotProduct(d2,d2)<weld_thres_squared )

}

void FindConnectivity(Triangle *tri, long numOfTris)

{

long i,j; int k,n;

for (i=0;i<numOfTris-1;i++)

for (j=i+1;j<numOfTris;j++)

for (k=0;k<3;k++)

for (n=0;n<3;n++)

if ( CommonEdge(tri[i].v[k], tri[i].v[(k+1)%3]

tri[j].v[n], tri[j].v[(n+1)%3])

{

tri[i].neighbor[k] = j;

// edge v[k]-v[k+1] is shared with tr. j

tri[j].neighbor[n] = -1;

// mark adjacency only on one triangle to

// avoid double edges during sil. detection

break;

}

}

Whenever the silhouette needs to be updated, the connectivity information
of the mesh is used and if [n̂i · (pL−pi0)] ·

[
n̂ j ·
(
pL−p j0

)]
< 0 for two poly-

gons i and j, their common edge belongs to the edge list of the silhouette (Fig-
ure 13.8(c)). In our code example this is translated to the following silhouette
determination routine:

typedef struct

{ Point3f * edgeVertex;

int numOfEdges;

} edgeList;

edgeList* FindSilhouette( Triangle * tri, long numOfTris, Vector3f

light, boolean infinite)

{

long i,j, edges=0;

int k;
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Vector3f L, ni, nj;

float visi, visj;

Point3f * endpts = // Allocate a large edge buffer:

(Point3f*)malloc(sizeof(Point3f)*numOfTris*3*2);

for (i=0; i<numOfTris; i++)

for (k=0; k<3; k++)

{

j = tri[i].neighbor[k];

if (j!=-1) // if neighbor is marked:

{

ni = tri[i].facenormal;

L = infinite? VectorInvert(light):

VectorNorm(PointSubtract(light,tri[i].v[0]);

visi = DotProduct(ni,L);

nj = tri[j].facenormal;

L = infinite? VectorInvert(light):

VectorNorm(PointSubtract(light,tri[j].v[0]);

visj = DotProduct(nj,L);

if (visi*visj<0)

{

PointCopy(endpts[2*edges+0],tri[i].v[k];

PointCopy(endpts[2*edges+1],tri[i].v[(k+1)%3];

edges++;

}

}

}

edgeList * list = (edgeList*)malloc(sizeof(edgeList));

list->numOfEdges = edges;

list->edgeVertex = (Point3f*)malloc(sizeof(Point3f)*2*edges);

for (i=0;i<2*edges;i++)

PointCopy(list->edgeVertex[i],endpts[i]);

free(endpts);

return(list);

}

The shadow volumes from silhouette edges are created in a manner identical
to the simple, triangle-based-shaft case. An interesting observation for watertight
meshes is that the near (bright) cap of the shadow volume consists of all the tri-
angles that face towards the light source. The far (dark) cap is made of the rest of
the mesh’s faces, after extruding their vertices according to Equations (13.1) and
(13.2) (Figure 13.9). The shadow-volume sides are the extruded silhouette edges.
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Figure 13.9. Shadow volume using the shadow caster’s back- and front-facing
triangles as caps and the extruded silhouette edges.

A small problem that is associated with the geometry of the shadow volume is
the self-shadowing of polygons at the bright cap. In practice, due to the fact that
the polygons that comprise the cap belong to the occluder and therefore coincide
with the actual rendered polygons lit by the light source, the “bright” side of
the occluder may exhibit shadow artifacts during the second pass, as depth-test
accuracy may be inadequate. The shadow-volume triangles generated have the
same coordinates as the renderable geometry of the occluder, and this is prone to
cause the erroneous update of the stencil buffer due to incorrect depth comparison
during the scan conversion (Z-fighting). An easy way to overcome this problem
is to push the near cap a little further away from the light source, using the same
extrusion direction as the far-cap vertices.

13.3.3 Pitfalls and Improvements

The Z-pass stenciled shadow-volume algorithm is a robust, low-complexity
method for rendering shadows, but unfortunately it demands that the near clipping
plane of the viewing frustum does not intersect the shadow volume, and this also
includes the case when the viewpoint lies inside the shadow volume. As stated
in [Horn05], the problem is not as simple as determining whether the viewpoint is
inside the shadow frustum. Cases may occur where the view plane is entirely in
shadow while the viewer is outside the shadow frustum. To this end, some solu-
tions have been proposed that try to clamp the shadow volume at the near clipping
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plane or fill in the missing geometry of the volume [Bata99,Dief96]. However, it
has been proven that such an approach cannot guarantee an accurate result in all
view-frustum and shadow-frustum configurations [Ever02].

Carmack [Carm00] and Bilodeau and Songy [Bilo99] independently proposed
a solution to the Z-pass algorithm problem by introducing two similar approaches
that reverse the counting tests. The popular Z-fail algorithm by John Carmack
(also called Carmack’s Reverse) removes the near clipping problem but raises the
same problem at the far clipping plane. Fortunately, it is easier to ensure that the
far clipping plane does not intersect the shadow volumes, either by consistently
preparing the far caps of the shadow volume or by pushing the clipping plane to
infinity. Let us first see how the stenciled shadow-volume algorithm is modified
according to the Z-fail test:

1. Begin the rendering: Clear the depth and frame buffers and ignore the sten-
cil operations.

2. Render the geometry using only indirect illumination and emissive compo-
nents (Figure 13.10, Step 1).

3. For each occluder (shadow caster), prepare and render the shadow volume:

(a) Construct a closed (watertight) shadow volume by extruding the faces
of the caster that face in the direction of the light source away from
the light position, according to the light-source range. Proper capping
of the far end of the frustum is accomplished by inverting the extruded
polygons and using them as caps or, for watertight models, by using
the extruded back-facing polygons.

(b) Render the (eye-space) back-facing polygons of the shadow volumes
without actually updating either the frame or the depth buffer (Fig-
ure 13.10, Step 2). This is the Z-fail test. If the shadow-volume frag-
ments fail the depth test (i.e., they are hidden), the stencil buffer is
incremented. The shadow volumes do not affect the rendered result,
as nothing is written into the depth and frame buffers.

(c) Now render the (eye-space) front-facing polygons of the shadow vol-
umes and again only update the stencil buffer when a shadow-volume
fragment fails the depth test. This time though, decrement the corre-
sponding stencil values instead of incrementing them (Figure 13.10,
Step 3).
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Figure 13.10. Successive steps of the Z-fail stenciled shadow-volume algorithm.



�

�

�

�

�

�

�

�

446 13. Shadows

(d) Render the lit geometry: Enable all diffuse and specular illumination
components, enable the light source and render the geometry over the
first pass wherever the stencil values are equal to zero (Figure 13.10,
Step 4).

As already mentioned, the Z-fail stenciled shadow-volume algorithm trans-
poses the problem of the intersection of the near clipping plane with the shadow
volume to the far clipping plane. Instead of counting shadow volume enters and
exits along the eye-pixel ray starting from the eye and ending at the first visi-
ble fragment, the Z-fail algorithm counts ray intersections starting from infinity
and ending at the nearest visible fragment. This means that a failure to render a
front-facing shadow-volume fragment due to the fact that it is discarded by the
near clipping plane has the same impact as suggesting that the shadow volume is
closer to the viewer than the nearest fragment. Therefore, near-plane clipping of
the shadow volume causes no problems.

On the other hand, as counting starts from back (infinity) to front, all back-
facing shadow-volume fragments should be closer than or at “infinity” of the view
frustum in order to be taken into account. Otherwise, the resulting stencil mask
may be incorrect. By capping the open far end of the shadow volume at or before
the far clipping plane, one makes sure that infinity is always outside the shadow
volume. To solve the capping problem, one may create a far (dark) cap by se-
lecting the back-facing polygons of the caster relative to the light direction and
extruding them to a safe distance that ensures that they are not clipped by the far
plane.

Although the capping of the shadow volume solves the far clipping problem,
the extrusion of the faces to a fixed distance may still produce errors if the light
source moves close relative to the expanse of a caster (Figure 13.11). As the
light position approaches the geometry of the caster, the solid angle subtended
by the silhouette increases while the radial distance (extrusion distance) remains
fixed. This means that the far cap moves closer to the light and possibly leaves
parts of the scene outside the shadow volume. A unified solution, which takes
this situation into account, was given by Everitt and Kilgard [Ever02]. They sug-
gested using the Z-fail variation of the stenciled shadow-volume algorithm but
proposed setting the far clipping plane at “infinity” and constructing an infinite
closed shadow volume.

Setting the far clipping plane at infinity can be achieved by changing the stan-
dard projection matrix used to render the scene (see Chapter 4) and, more specifi-
cally, by estimating the limit of the matrix as the far clipping plane distance tends
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Light source

Light source
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Figure 13.11. Finite shadow-frustum deficiency. When the light source is close
to the shadow-casting geometry, the distance between the bright and dark caps is
shortened, leaving potentially shadowed geometry outside the shadow volume.

to infinity. For instance, consider the transformation matrix specified in OpenGL:

P =

⎡⎢⎢⎢⎢⎣
2n

r−l 0 r+l
r−l 0

0 2n
t−b

t+b
t−b 0

0 0 − f +n
f−n − 2n f

f−n

0 0 −1 0

⎤⎥⎥⎥⎥⎦ . (13.3)

In the well-known form of the above projection matrix definition, n is the near
clipping plane distance, f is the far clipping plane range, and l, r, t, and b are
the extents of the frustum at the near (view plane) distance. In order to acquire
a matrix formulation for the perspective projection when f moves to infinity, we
need to evaluate the limit of the matrix in Equation (13.3). Considering that only
the third row of the matrix is affected by the limit operation and the fact that
lim
x→∞

(
x±a

/
x±b

)
= 1, we get

Pinf = lim
f→∞

(P) =

⎡⎢⎢⎢⎣
2n

r−l 0 r+l
r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −1 −2n
0 0 −1 0

⎤⎥⎥⎥⎦ . (13.4)

The Z-fail approach is slower than the Z-pass one, depending on the scene’s depth
complexity. However, the two methods can be used interchangeably, according to
whether the viewport intersects the shadow volume or not. Therefore, the Z-fail
method may be applied only when necessary.
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Another issue that may sometimes arise is that successive stencil increases
or decreases can saturate the stencil buffer. This can happen when the depth
complexity of the overlapping shadow frusta exceeds the stencil-buffer accu-
racy [McGu03]. In simple terms, for an 8-bit stencil buffer, there is room for
only 255 overlapping shadow volumes, because the stencil-buffer values can only
be incremented that many times. A solution that may partially alleviate the prob-
lem is to utilize wrap-around stencil operations, supported by modern graphics
hardware. When the stencil count reaches the maximum integer value allowed,
it wraps to zero and keeps increasing. Similarly, when decrementing the stencil
buffer, values below zero are wrapped to 2bits-1 where bits denotes the number of
available stencil-buffer bits.

Many optimizations of the basic shadow-volume algorithm can be devised
to increase the performance of the real-time execution of the algorithm. For
static lights and casters, the shadow volumes need only be calculated once. Af-
ter the shadow frusta have been determined and the corresponding geometry set,
the shadow volumes for light sources that do not move and light-blocking static
geometry are valid as long as both conditions hold. This knowledge can greatly
improve the speed of the algorithm, because much of its computational cost lies in
the determination of the silhouettes and the set-up of the shadow-volume frusta.

13.4 Shadow Maps

In contrast to the shadow-volume method for shadow generation, which is
geometry-based, shadow maps operate in image space and use the depth buffer to
sort surfaces with respect to the light source line of sight. This shadow-generation
technique was first introduced by Williams in 1978 [Will78], and its variations are
still widely used in rendering software and real-time applications, such as com-
puter games.

The main concept of the algorithm is that the geometry is projected once from
the viewpoint of the light source to determine which parts of the objects have a
clear line of sight to the light-source location (i.e., are visible/lit by the source).
Then, the scene is normally projected in the eye-space coordinate system and each
fragment produced is transformed to the light-space reference frame, where its
(new, transformed) depth value is compared with the visibility information stored
in the light-space depth buffer. If the fragment’s depth in light-space coordinates
is greater than the stored one, then the fragment is hidden from the light source’s
point of view and, therefore, in shadow.
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Figure 13.12. The shadow-map algorithm. (a) Spotlight set-up. (b) Depth-buffer
capture of the scene from the point of view of the light source. (c) Final pass. Each
fragment is tested for visibility against the light-space depth map.

Let a directional spotlight with a lighting range rL be placed at a location
pL in the scene and point along the direction n̂L (Figure 13.12(a)). We can de-
fine a local (right-handed) coordinate system for this light source by arbitrarily
selecting a pair of up- and right-directional vectors, which comprise along with
the light direction an orthonormal basis of mutually perpendicular unit vectors
(ûL, v̂L,−n̂L). Also let ML and PL be the geometric transformation and projection
matrices, respectively, of the light source. The projection matrix can be defined
by the symmetrical frustum formed along the spotlight central axis n̂L with a near
plane distance set to a small positive number n and the far clipping plane adjusted
to rL. The top, bottom, right and left extents of the frustum should depend on the
spotlight-beam aperture θa: l = r = t = b = n · tan(θa/2). The shadow test itself
is very simple and is divided into the following two steps:
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• Render the scene from the light-source’s reference frame (pL, ûL, v̂L,−n̂L)
by first transforming every object according to M−1

L and projecting it using
PL (Figure 13.12(b)). Store the corresponding depth map ZL (shadow map).

• Revert to the normal camera view and render the scene (Figure 13.12(c)).
A point p = (x,y,z) on a surface is shadowed if it is located at a greater dis-
tance than the value stored in ZL, when p is expressed in the light source’s
viewport coordinates: p′ = (x′,y′,z′) = PL ·M−1

L ·p, that is, if z′ > ZL(x′,y′).
If z′ is outside the range [n,rL], p is considered to be in shadow (beyond the
limits of the light beam).

In order to apply this method to non-directional lights, multiple shadow maps
must be combined to hold the visibility information around the point light source
so that any direction on the unit sphere centered at pL is addressable. If multiple
light sources participate in the scene, the above procedure is duplicated for each
one of them.

Note that, as is the case with the shadow volumes, the shadow information
(here, the shadow map) need not be recalculated at every frame in the basic algo-
rithm but only whenever the lit environment changes or the light source moves.
A change in the viewpoint of the camera has no impact on the calculation of the
shadow map.

Today’s graphics hardware can take advantage of projective texture-coordinate
transformations [Sega92] and complex texture-component manipulations [Seg04]
to provide good quality shadows in real time [Jr.04], even with a high polygon
count.

Rendering shadows with the shadow-map algorithm using hardware acceler-
ation and standard APIs normally requires a number of simple steps, but first, we
need to realize that we are operating on screen-order, scan-converted fragments.
We have to transform these eye-clip-space coordinates back to world space coor-
dinates and then to light-clip space (Figure 13.13):

p′frag = (x′frag,y
′
frag,z

′
frag) = PL ·M−1

L ·M·
CP−1

C ·pfrag, (13.5)

where MC is the rigid transformation that places the virtual camera in the world
and PC is the camera-projection matrix. The three steps required are the following
(Figure 13.13):

• If necessary, compute the shadow map of one or more lights by rendering
the world from the light source’s point of view. Maintain the affine- and
projection-transformation matrices used for the light-space frustum set-up.
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Figure 13.13. Fragment transformation from eye space to light space for compar-
ison with the shadow-map depth values.

• Render the unlit world into the normal-view frame buffer. The lighting at
this stage should simulate the illumination perceived at the areas that will
be in shadow. The WCS-to-VCS transformation of this pass (modelview
matrix in OpenGL) needs to be inverted and stored (see Equation (13.5)).
Note that this is indirectly calculated by transforming the eye-space texture-
generation coordinate plane along with the actual geometry [Jr.04].

• Perform the shadow-comparison pass and shade the lit parts of the surfaces.
This step requires that all eye-clip-space fragments be transformed to the
normalized texture space of the shadow map. We have pre-calculated and
stored the necessary transformations, which can be applied to the fragments
in the order described by Equation (13.5). To further convert the light-clip-
space coordinates to shadow-map coordinates, the transformed fragments
are scaled and translated so that the (x′frag,y

′
frag) pair may correspond to the

(u, v) shadow-map texture coordinates and z′frag can be compared to the
stored, normalized depth map. Graphics hardware often allows the com-
parison of the third texture coordinate (normalized z′frag) with the stored
texture depth. The result can be used as a mask for the current render-
ing pass, which draws the scene with the particular light source turned on
(Figure 13.14). The comparison outcome is treated as a transparency com-
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Figure 13.14. Hardware shadow maps. Shadowed geometry is rendered in three
passes. Step 1: Shadow-map generation. Step 2: Shadowed illumination. Step 3:
Lit surface illumination.

ponent in a texture map (alpha channel), which modulates the overlay of
the current pass over the darkened surface (first camera pass).

13.4.1 Advantages of and Problems with Shadow Maps

The biggest advantage of the shadow-map algorithm is its simplicity and utiliza-
tion of a well-established hardware-accelerated algorithm. The method does not
directly depend on the scene complexity and is only affected by the image-level
depth comparisons and depth-map rendering time.

For complex, dynamic environments, shadow maps are regarded as the most
attractive choice. Relying on the very generic Z-buffer algorithm, shadow maps
can be used with any type of rendering primitive, from polygons to volumetric
data and implicit surfaces, provided that a depth buffer can be prepared from the
rendered fragments of the geometry.
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Apart from this, shadow maps allow the generation of shadows from transpar-
ent geometry because they operate at fragment level. If a fragment is alpha-culled
(fragment is rejected due to opacity dropping below a predefined threshold) in the
light-space rendering pass, it will not produce a shadow in the eye-space pass.
This fact can be exploited to produce elaborate shadows from simple geometry,
such as planes with texture maps depicting foliage or netting with transparency.

On the other hand, the main shadow-map algorithm suffers from aliasing,
which comes in various forms. A depth map, being an image itself, has a lim-
ited resolution and, therefore, the shadow-map rendering pass samples the space
subtended by the light frustum at a finite spatial resolution. Since each shadow-
map cell represents a sheared pyramidal ray that is projected through the shadow
frustum’s near clip plane toward the world, the footprint size sshadow of the cor-
responding shadow texel varies according to the distance from and the angle at
which a surface is encountered. If sshadow is larger than the footprint of a pixel
projected on the same surface point, the shadow map is oversampled, leading to
magnification aliasing manifested as jagged shadow boundaries (Figure 13.15).
If sshadow is significantly smaller than the corresponding image-pixel footprint,
the shadow map is undersampled and may cause noise artifacts. Stamminger and
Drettakis call this class of aliasing problems perspective aliasing [Stam02]. See
Section 13.4.2 for ways to address this problem.

Another form of aliasing, projection aliasing, occurs when the projected light
from the light source—and therefore the shadow-map texel footprint—becomes
almost parallel to the surface. This type of aliasing can only be partially alleviated
by increasing the resolution of the shadow buffer at the expense, of course, of
rendering time and texture memory.

Depth-value quantization can cause serious aliasing problems, especially when
the extents of the clipping volume of the light source are too large, or the light
cone is very wide. Placing the near clipping plane of the light source frustum near
the light position relative to the far-light volume plane can dramatically decrease
the depth resolution at the far end of the frustum. When the eye-space fragments
are transformed to light space, depth comparisons are prone to numerical errors
due to insufficient quantization of the stored z-values, resulting in poor and mis-
placed shadow boundaries. The problem is most noticeable in self-shadowing
cases, where the same surface region is rendered in both the shadow map and the
eye-space buffers. This problem can be observed in Figure 13.15, where dark
spots appear on the surfaces of the objects due to erroneous self-shadowing depth
comparisons. A solution to this problem is to offset the depth values a little further
away from the near depth value (0), according to the expected “worse” resolution
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Figure 13.15. Aliasing in the shadow-map algorithm due to shadow-map resolu-
tion and depth comparison inaccuracy.

of the shadow-map depth quantization. This depth bias introduces a safety margin
in the self-shadowing depth comparisons but also moves the shadows a little fur-
ther away from the light source, making them appear detached from the shadow
casters in some cases.

In shadow-mapped light sources, there is always the trade-off between range
and shadow accuracy and, therefore, smart ways to adjust the light frustum near
and far planes are sought, mostly in the form of detecting the nearest and furthest
casters and receivers subtended by the light cone. Bounding volumes and scene
graph management can help in this sorting/culling problem, but they introduce a
CPU overhead nevertheless.

The shadow-map algorithm works for directional light sources with a light
cone of less than 180 degrees. In order to use the method with point lights, mul-
tiple shadow maps have to be used to cover all directions around the light source.
These maps are usually organized in a cubical configuration with the light source
at the center of the cube, because it allows a straightforward implementation in
conventional hardware-accelerated APIs and a reasonable depth distortion due to
the 90-degree aperture of the resulting frusta. Of course, producing the full range
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of shadow maps means that the scene has to be rendered up to six times just to
prepare the shadow information.

Finally, as part of treating their aliasing problems, shadow maps can produce
smooth shadow boundaries. In fact, with shadow maps, it is almost impossible
not to produce soft shadows at high image resolutions, if jagged boundaries are to
be avoided.

13.4.2 Dealing with Shadow-Map Aliasing�

As will be explained in Chapter 14, texture maps can be accessed by filtering the
texture values over some region of the texture image instead of finding the clos-
est value that corresponds to the current fragment. The problem is that filtering
the depth information of the shadow map with this scheme would not effectively
remove the aliasing; after all, the resulting filtered light-space depth image value
of the shadow map would then be compared with the transformed eye-space frag-
ment depth, and thus, we would again end up with a binary outcome.

This, of course, makes the rendering of soft shadow boundaries impossible
and, as stated in [Reev87], the (filtered) depth values along the edges of objects
would not correspond to the depicted geometry, because near and far values on
surface boundaries would be erroneously averaged. This is demonstrated in Fig-
ure 13.16, where a 3×3 filter kernel was applied to a shadow map before compar-
ing the transformed fragments (shown as small circles) to the map depth values.
Averaging has caused one of the texels to darken significantly. After comparing it
with the incoming fragment, the binary outcome is no shadow, while the fragment
should be in the shadow.

Swapping the order of filtering and depth comparisons results in what is called
percentage closer filtering (PCF) [Reev87]. With PCF, the shadow value is no
longer binary (shadow/no shadow). A number of depth samples distributed in
the neighborhood of the final eye-space fragment to be rendered are compared
to the unfiltered shadow-map depth values. The binary results are then averaged
and the final shadow value is the percentage of the surface area corresponding
to the fragment that is in shadow. Many sampling patterns, weighting functions,
and interpolation schemes can be applied in the final stage to smooth out the
shadow values. PCF has been implemented in most software renderers and has
been adapted for modern GPUs [Bunn04]. The original algorithm by Reeves et
al. [Reev87] rendered the surfaces using micro-polygons, i.e., a fine tessellation of
a surface into small planar fragments. Point samples could be acquired over the
micro-polygons using Monte Carlo techniques and then transformed into light
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Figure 13.16. Percentage closer filtering (PCF) versus shadow-map pre-filtering.
Averaged map samples may produce wrong depth-sort results and also cannot
avoid jagged edges. PCF filters the binary results, producing smooth shadows.

space where the binary comparisons would take place. In scanline polygonal
renderers, as in hardware rasterizers, the pixel fragments cannot be sampled with
a varying size and shape pattern as in the case of the micro-polygons but instead,
a fixed kernel has to be used. Still, practical implementations of the algorithm
give good visual results.
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The post-filtering of the shadow samples produces smooth shadow boundaries
by default. Although this may be a desirable feature in some cases, the jagged
pattern samples can still be noticeable, especially in a real-time implementation of
the algorithm, where PCF is sub-optimal, if applicable at all. Another way to deal
with aliasing and at the same time avoid the significant loss of shadow-boundary
crispness is to try to sample the object space over a grid that more closely matches
the eye-space sample distribution of the world. Up to now, we have regarded
shadow maps as a view-independent method for shadow generation. Although
this is essentially true, the quality of the shadow depends on the relation between
the view frustum and the shadow frustum.

Stamminger and Drettakis [Stam02] proposed a modification of the shadow-
map algorithm that adapts the map resolution to the current view angle. Instead
of transforming and projecting the geometry expressed in the world coordinate
system as the original algorithm does, their method, perspective shadow maps
(PSM), creates the shadow maps after transforming the world and the light source
into the camera-view clip-space (post-perspective space—CSS). As the authors
explain, because the captured shadow map “sees” the scene after the camera per-
spective projection, perspective aliasing is significantly reduced. But let us see
why this is true.

When the geometry of the scene is subjected to the perspective projection
in order to render it into the viewport, the view frustum—and consequently the
geometry—is distorted into a cube, which is then orthogonally mapped onto the
viewport (see Section 4.4.2). This projective mapping enlarges elements near the
viewpoint, while it shrinks objects far from it. However, the same effect applies
to the footprints of the shadow map onto the surfaces (Figure 13.17). The depth
samples stored in the shadow map correspond to evenly placed cells (pixels) on
the light source projection plane. If the light coordinate system is rigidly trans-
formed relative to the world coordinate system, the world is evenly sampled from
the viewpoint of the light. But when these samples are projected onto the camera
view plane, the same perspective distortion occurs as with the projected geom-
etry, leading to the jagged artifacts described in Section 13.4.1. With PSM, the
shadow map samples the geometry evenly, after it has been enlarged or shrunk
by the perspective projection of the camera (Figure 13.17, bottom). Therefore,
surfaces near the camera viewpoint are captured with finer detail in the shadow
map because they appear larger in the post-perspective space. When the view
fragments are transformed to the shadow-map space, the sampling of the shadow
texture is more even, as the projective portion of the viewing transformation has
already been taken into account.
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Figure 13.17. Perspective shadow maps capture the light depth buffer after both
the geometry and the light source have been transformed to post-projective space
(CSS). Aliasing due to perspective magnification of the shadow samples is sub-
stantially suppressed.

One obvious drawback of the PSM is the need to update the shadow volume
when the view changes considerably, regardless of whether the world has changed
or not. Of course, in practice, real-time applications seldom contain solely static
environments and therefore the shadow maps need to be redrawn anyway.

The benefits of the perspective shadow-map algorithm do not come without a
cost though. PSM is more complex as an algorithm than the generic shadow-map
algorithm. The added complexity comes from the need to treat relative positions
of the light source and projection method (point/infinite) as separate cases (Fig-
ure 13.18) [Stam02].

When transforming the light frustum from world coordinates to post-
perspective space, parallel rays from infinite light sources become convergent or
divergent. The rays diverge from a point on the infinity plane in post-perspective
space (where a new point source replaces the infinite light) when the directional
light faces toward the camera (Figure 13.18(a)). When the directional light faces
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Figure 13.18. Light set-up cases in post-perspective space for the PSM algorithm.
(a) Infinite light facing toward the viewpoint. (b) Infinite light facing away from
the viewpoint. (c) Point light in front of the viewpoint. (d) Point light behind the
viewpoint. (e) Point light on the infinity plane (plane z = 0 in the camera-coordinate
system).

away from the viewpoint, light rays converge to a point on the infinity plane in
post-perspective space (Figure 13.18(b)). Technically, this case is treated as a
point source placed at the point of convergence and an inversion of the depth
range in the shadow map.

A similar distinction in separate cases happens when dealing with point light
sources in world space. Point light sources in front of the viewer remain point
lights (Figure 13.18(c)), while lights behind the view plane are inverted and map-
ped to the infinity plane (Figure 13.18(d)). Finally, light sources exactly on the
camera plane become infinite lights in post-perspective space (Figure 13.18(e)).

The projective transformation of the world according to the camera-view frus-
tum before the recording of the shadow map has a small side effect. Objects that
act as shadow casters (present in the shadow frustum) but are on the back side
of the viewpoint frustum, will move “beyond infinity” (Figure 13.19). In post-
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Figure 13.19. Post-perspective space problems. (a) Some shadow casters may by
behind the camera plane. (b) The desired depth sorting of casters and receivers,
including objects behind the camera. (c) Objects behind the camera move beyond
infinity in post-perspective space and are sorted at a wrong depth. (d) Missing
shadows due to bad caster-depth sorting.

perspective space, these objects will appear beyond the object in front of the cam-
era (Figure 13.19(c)), leading to wrong depth order and, of course, missing or
misplaced shadows (Figure 13.19(d)).

In the original paper [Stam02], the author proposed to move back the cam-
era point so that the view frustum includes all shadow casters (virtual camera)
(Figure 13.20). The change in the camera frustum is of course done only for the
post-projective space calculation for the shadow-map acquisition and not during
the actual frame-buffer rendering. This operation has the added cost of identifying
whether there are casters outside the frustum and then modifying the camera to
accommodate them inside the clipping volume. Moving the camera away results
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Figure 13.20. The virtual camera PSM modification. (a), (b) In post-perspective
space, the camera moves back to include all casters in front of the viewpoint. (c)
All objects are sorted correctly. (d) Correct shadows.

in decreased perspective foreshortening, which degrades the quality of the per-
spective shadow maps. Kozlov [Kozl04] proposes some interesting variations of
the original method based on the original PSM algorithm, such as building a spe-
cial projection matrix to dispense with the virtual camera. Figure 13.21 presents
comparative results between a standard shadow map and the perspective shadow
map.

13.5 Exercises
1. Using the Z-fail stenciled shadow-volume algorithm, implement an ex-

tended version to support area lights (spherical and quadrilateral sources).
Hint: Choose appropriate sample points on the light source surface and use
them as multiple point lights. How should their brightness be adjusted?
How should the rendering passes be blended to create a penumbra?

2. Which shadow-generation algorithm would you use to render a dense forest
and why? What optimizations can be done?
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Figure 13.21. Comparison of the regular shadow map with the perspective
shadow map. (a) Resulting image (regular shadow map). (b) Resulting image
with PSM. (c) Regular shadow map. (d) PSM. (Images courtesy of M. Stamminger
and G. Drettakis.)

3. If shadows were to be accompanied by volumetric light shafts (like sun rays
passing through clouds), which algorithm would you use and how would
you integrate both effects in one algorithm?

4. If, for a highly detailed scene, one could use low-polygon invisible proxy
geometry (mattes) to cast shadows instead of using the high-resolution
models, what problems could occur and how could one counter them?
Hint: Consider shadow proxy–actual object intersection problems and self-
shadowing.

5. Implement a shadow-map algorithm for point (omnidirectional) lights.
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The picture will have charm when each colour
is very unlike the one next to it.

—Leon Battista Alberti

14.1 Introduction
Up to this point, we have defined material properties for surfaces and explained
how it is possible to assign color information per vertex to them. We have also
presented a mechanism to modulate the resulting, interpolated color according to
an illumination model and the visibility of the light sources in order to get a prop-
erly lit, solid look for the three-dimensional objects. Color and other material
properties have been assigned to vertices and then interpolated during the scan
conversion across the entire polygon surface. Unfortunately, this slow polygon-
structured variation of the material properties over the surface of an object is very
unlikely to occur in a real environment. In practice, on every surface, from the
most dull and uninteresting real objects to the most intricate ones, one can detect
small imperfections, geometric details, patterns, or variations in the material con-
sistency. These variations are perceived by the human eye and help us identify
objects and materials and determine the physical qualities of the various media.

It is often possible to represent the apparent discontinuities or transitions of
the material properties as changes in the surface structure and vertex properties.
This might even be an efficient modeling approach in the case of plain and well-
defined patterns, as is the case in Figure 14.1(a). In this particular example, a
planar polygon is split at the boundaries of an A-shaped embedded pattern of
a different color than the rest of the surface (Figure 14.1(b). But what if the

463
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Figure 14.1. Appearance variation of a surface. A simple pattern (a) can be ap-
proximated via surface restructuring (b). Complex patterns cannot be efficiently
represented this way. With texture mapping (c), an elaborate design can be im-
printed on a surface without modifying the actual geometry.

desired pattern is more irregular and complex, as is the case of the material of
the surface in Figure 14.1(c)? Clearly we need a different approach to modify the
local material behavior across a polygonal or otherwise-defined surface.

Texturing deals with the mechanism of spatially varying one or more of the
material attributes of a surface in a predefined manner without affecting the under-
lying topology of the geometry (Figure 14.1(c)). These attributes can be anything
from the color and the transparency of the surface to the local normal and reflec-
tivity at a given point. The association between a given surface point p (or one
of its local properties, like the normal vector) and a material value in the texture
space, where the desired pattern is defined, is done via a texture-mapping function
ftex(p).

The pattern itself can be a one-, two-, or three-dimensional digital image (tex-
ture map) or a procedurally generated material. Depending on the attribute of the
material that is affected by texture mapping, the result can be a scalar value, as
in the case of a surface’s specular coefficient or alpha value (transparency), or a
vector, signifying an RGB color value, a new local normal vector, etc. Multiple
textures can be applied to a single surface in order to modify one or more of its
material properties. Different texture-mapping functions may be associated with
a single attribute and combined under a texture hierarchy (texture tree). More
about this subject can be found in Section 14.9.

14.2 Parametric Texture Mapping
When the material attribute is defined as a pre-computed, hand-drawn or digitized
digital image, the texture-mapping process is called texture or image mapping.
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Figure 14.2. Parametric texture mapping. Cartesian coordinates are mapped to
texture coordinates and then the material attributes are estimated from the discrete
texel values and applied to the initial surface locations.

Texture images, or simply textures, can be one-, two-, or three-dimensional and
are essentially buffers of pre-calculated data that the mapping function addresses
to acquire material values.

In parametric texture mapping, the mapping function is split into two parts:
one that associates the three-dimensional coordinates to the parametric domain of
the digital image and one that defines the final material attribute values (scalar or
vector) according to the color intensity of the pixels in the image that correspond
to a particular set of parameters (Figure 14.2). The discrete texture elements (im-
age pixels in the two-dimensional case) are generally called texels. The digital
image is usually mapped to a normalized domain of the parametric space T D,

where D is the dimensionality of the pattern (D = 2 for the case of a conventional
two-dimensional bitmap). The continuous normalized parameters are called tex-
ture coordinates. The mapping of the three-dimensional coordinates to the texture
space produces parameters that are either wrapped or clamped to the [0,1] range.
For sake of simplicity, in the rest of this section a texture map will refer to a
two-dimensional pattern with corresponding texture parameters u,v ∈ [0,1].

One important aspect of texture mapping is that a texture-coordinate pair is not
necessarily uniquely associated with a location on the three-dimensional surface.
This provides a great economy when applying a periodic texture to an object as a
pattern can be repeated by addressing a range of (u,v)-coordinates from multiple
surface areas (texture tiling). The above notion is illustrated in Figure 14.3.
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Figure 14.3. Texture-map tiling. Multiple points address the same texture co-
ordinates in a periodic manner, resulting in a repeated, efficient coverage of the
surface.

When there is a guaranteed 1-to-1 mapping between the entire surface covered
by a single texture and the parametric space of the texture coordinates, the map-
ping and the respective image used are referred to as a texture atlas. This special
condition, where the reverse mapping from texture space to object space is pos-
sible, has many useful applications which are discussed along with the principles
of texture-atlas parameterization in Section 14.8.

The calculation of the material attributes from the texel values using the con-
tinuous set of texture coordinates is performed via standard sampling methods,
like truncation, rounding, and interpolation, which are fully implemented in hard-
ware by all modern graphics accelerators.

14.2.1 Texture Value Estimation

Let a texture map of Nx×Ny texels be sampled at an arbitrary point (u,v) in para-
metric space and I(u,v) be the resulting intensity (monochromatic) at the speci-
fied texture coordinates. Using bilinear interpolation, I(u,v) can be estimated as
follows.

The intensity is extracted from the four neighboring texels of the arbitrary
input point (Figure 14.4). The scalar texel locations x and y that correspond to the
(u,v) parameters are given by
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Figure 14.4. Texture value calculation for an arbitrary (u,v) pair. In polygon scan-
conversion, texture coordinates are interpolated from the corresponding vertex pa-
rameters.

x = u ·Nx,
y = v ·Ny.

(14.1)

The intensity interpolation coefficients for the horizontal and vertical texel spans
are, respectively,

u′ = x−�x� ,
v′ = y−�y� , (14.2)

where (�x� ,�y�) is the nearest lower-left texel center relative to the arbitrary point
(x,y) on the image. The parameter u′ goes to 0 or 1 as x approaches �x� and �x�,
repsectively. The same holds for the relation between v′ and y.

The final intensity I(u,v) is given by the row-column bilinear interpolation
of the intensity at the four texel centers (�x� ,�y�), (�x� ,�y�), (�x� ,�y�), and
(�x� ,�y�):

Ibot = I(�x� ,�y�) · (1−u′)+ I(�x� ,�y�) ·u′,

Itop = I(�x� ,�y�) · (1−u′)+ I(�x� ,�y�) ·u′,

I(u,v) = Ibot · (1− v′)+ Itop · v′. (14.3)
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14.2.2 Texture Mapping Polygonal Surfaces

The usual practice, at least for direct polygonal rendering, is that the determina-
tion of the (u,v)-coordinates, that is, the first stage of the texture-mapping pro-
cedure, is performed before the actual rendering of the surface. As mentioned
earlier in this book, the various surface and material attributes are stored on a
per-vertex basis. The texture coordinates for each vertex are assigned to them
before the polygon rasterization. During the scan-conversion of triangles, the
texture coordinates for each sample taken in the interior of the triangle are inter-
polated from the texture parameters stored in the vertex data, with the exception
of procedural textures and dynamic texture effects. In the latter case, texture coor-
dinates are determined from the local surface and rendering attributes, such as the
normal vector and light direction, which are in turn interpolated from the vertex
data.

The bilinear interpolation is done per scanline, in a manner similar to the per-
fragment estimation of the local color and depth from the vertex colors or normal-
ized vertex-space coordinates during the polygon rasterization (see Chapters 12
and 5). Unfortunately, directly interpolating the texture coordinates from the
vertex texture parameters (bilinear mapping) does not account for the projective
mapping that the vertex coordinates undergo. Texture parameters are assigned to
vertices and are obviously not transformed when the polygons are perspectively
projected. Then, during scan conversion, the perspectively correct vertices are lin-
early interpolated and so are the texture coordinates, but the latter have not been
divided by the depth value, as the projective transformation dictates. This leads to
an inconsistent mapping (bilinear-projective and bilinear) which results in visible
stretching, bitmap tearing, and “texture floating” [Heck89].

One way to render perspectively correct textures is to interpolate the (u,v)-
coordinates after dividing them with the z vertex value. The 1/z quantity is also
interpolated from the projected vertex depth values. Then, the perspectively cor-
rect parameters are obtained by dividing the interpolated u/z and v/z parameters
by the estimated 1/z. The same practice can be applied to other quantities of
a polygon that are not affected by the perspective transformation, such as the
color and the normal vector, although the distortion is more visible in the case of
texture-parameter interpolation.

After the (u,v) pair for the current scanline point has been defined, the tex-
ture value is determined according to the sampling method chosen. Figure 14.4
demonstrates the whole procedure of the texture-coordinate extraction during the
scan-conversion and the bilinear interpolation of the texture value. In modern
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programmable GPUs, fragment programs can access and modify the texture coor-
dinates produced by the progressive scan-conversion algorithm and thus perform
a custom sampling of the texture space [Rost04].

Bilinear coordinate interpolation is only possible when progressively sam-
pling the polygon surface in a regular manner, as in scan-conversion, or when
the surface- and texture-coordinate parameterizations are coincident. If a sin-
gle texture-coordinate sample is required at an arbitrary location on a triangle,
which is the case when casting rays on geometry, this interpolation is not very
convenient. We can use the barycentric coordinate representation of the triangle
instead, which directly associates any point inside a triangle with its three vertices.

Let p1, p2 and p3 be the three vertices of the triangle p1p2p3. Any point p on
the triangle plane can be represented as an affine combination of those three basis
points:

p = λ1p1 +λ2p2 +λ3p3, (14.4)

with the additional constraint,

λ1 +λ2 +λ3 = 1. (14.5)

According to (14.5), the parametric domain is a plane in R3, as one parameter de-
pends on the other two. By restricting λ1, λ2, and λ3 to [0,1], the barycentric tri-
angle form of Equation (14.4) becomes a function that maps an equilateral triangle
in space to a range that is exactly the interior of the triangle p1p2p3 [Schn03].

By definition, the properties (14.4) and (14.5) imply that the three barycentric
coordinates are directly associated with the ratios of the triangle areas formed by
point p to the total triangle area (Figure 14.5):

λ1 =
A1

A
=

A(pp2p3)
A(p1p2p3)

,

λ2 =
A2

A
=

A(p1pp3)
A(p1p2p3)

,

λ3 = 1−λ1−λ2 =
A3

A
=

A(p1p2p)
A(p1p2p3)

,

(14.6)

where A(v1v2v3) is the area of triangle v1v2v3.
This can be intuitively illustrated as follows. Consider all points p on one of

the triangle’s edges and let that edge be p1p2 without loss of generality. Point
p is linearly interpolated from the two edge vertices p1 and p2, regardless of
where p3 lies. This means that λ3 should be zero. Indeed, as p1, p2, and p are
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Figure 14.5. Calculation of the barycentric triangle coordinates from ratios of tri-
angle areas.

collinear, A(p1p2p) is zero. When p coincides with one of the vertices pi, then
Ai = A⇔ λ j = 0, j = i.

Since the area of a triangle is proportional to the magnitude of the cross
product of two of its edges and, in particular, A(v1v2v3) =

∣∣−−→v1v2×−−→v1v3
∣∣/2, the

barycentric coordinates can be more conveniently calculated by transforming Equa-
tion (14.6) to

λ1 =

∣∣−→pp2×−→pp3

∣∣∣∣−−→p1p2×−−→p1p3
∣∣ , λ2 =

∣∣−→p1p×−−→p1p3
∣∣∣∣−−→p1p2×−−→p1p3
∣∣ , λ3 = 1−λ1−λ2. (14.7)

After calculating the three barycentric coordinates for an arbitrary triangle point
from Equation (14.7), its texture coordinates (u,v) can be easily interpolated from
the texture coordinates (ui,vi), i = 1 . . .3 stored in the vertex data of p1p2p3:

u = λ1u1 +λ2u2 +λ3u3,
v = λ1v1 +λ2v2 +λ3v3.

(14.8)

The reader should keep in mind that although this parameter-interpolation method
is more generic than the bilinear interpolation of the scan-conversion, it is more
costly to perform and should only be used when selecting random points on a
triangle and, in general, when a progressive scan is not possible.

14.3 Texture-Coordinate Generation
In the previous section, two sampling methods have been presented for estimat-
ing the texture parameters at a triangle location given the pre-calculated texture
coordinates at the triangle vertices. The (u,v)-coordinate data can be dynamically
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calculated for each vertex or can be retrieved from a data structure along with the
rest of the mesh information. In both cases, unless the texture coordinates have
been explicitly assigned by the user, the u and v parameters have been deduced
from the Cartesian coordinates of the vertices with the help of a texture-coordinate
generation function.

A texture-coordinate generation function provides a simple mapping from the
Cartesian domain to the bounded normalized domain in texture space. Most com-
mon functions perform the mapping in two steps. First the arbitrary Cartesian co-
ordinates are mapped on a predetermined “auxiliary” surface embedded in space,
whose shape can be represented parametrically. Then the auxiliary surface pa-
rameters themselves are normalized to represent the texture coordinates. Loosely
speaking, the parametric surface determines the way that a planar textured sheet
is wrapped around the original object in order to imprint the image on its surface.

One important issue that arises when generating texture coordinates for vertex
data is the way tiling is implemented. Normally, a texture-coordinate generation
transformation should map a point in space into the bounded domain of the image
map: (u,v) : u ∈ [0,1],v ∈ [0,1]. The mathematical representation of the texture-
coordinate generation functions presented here performs this wrapping step when
using a tiling greater than 1 for any direction. When the mapping is intended for
use with interpolated sampling of the surfaces, as is the case in polygon scan-

Figure 14.6. Improper texture tiling in polygon rendering. Wrapping the coordi-
nates to the range [0,1] before the interpolation step causes texture mirroring in
the transition from high to low coordinate values.
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conversion, the wrapping to the bounded domain should be performed after the
interpolation of the texture coordinates and not when assigning the (u,v) param-
eters to the polygon vertices. When a texture parameter is wrapped to the [0,1]
range before it is assigned to a vertex, the interpolated values between two con-
secutive vertices can be accidentally reversed, as is demonstrated in Figure 14.6.
The problem is corrected if the tiled u and v parameters are allowed to take values
outside the [0,1] range. The tiling operation in this case is simply implemented
by multiplying the resulting parameters of the mapping function by the tiling
factor.

Next, we shall look in detail into some of the most frequently used texture-
coordinate generation functions. The two most common local attributes that are
used for texture-coordinate generation are the location in space of the fragment
being rendered and the local surface normal vector. Of course, other local at-
tributes such as the incident-light direction can be exploited in order to address
the texture space. These are treated similarly to the point location Cartesian coor-
dinates or the normal vector, depending on whether they are expressed as points
or vectors, respectively.

14.3.1 Planar Mapping

This is the simplest (u,v)-coordinate generation function. Consider illuminating
the surface of an object by shooting parallel rays from a video projector that dis-
plays the texture map but with the provision that rays pass through the surface
and also illuminate the hidden sides. Planar mapping uses a plane as an interme-
diate parametric surface. The Cartesian coordinates are parallelly projected on
the plane, and the parametric representation of the projected points is used as a
set of texture-coordinate pairs. Although an arbitrary plane can be used, select-
ing one that is axis-aligned greatly simplifies the calculations. To achieve a pla-
nar projection from an arbitrary direction, it is more efficient and comprehensive
to transform the Cartesian coordinates before projecting them to an axis-aligned
plane instead of using an arbitrary plane from the beginning. More about texture-
coordinate transformations will be discussed in Section 14.6.

For now, let us consider one of the three axis-aligned planar mappings and,
in particular, the case of the xy-plane shown in Figure 14.7(a). The texture-
coordinate generation function is in essence a linear transformation of the Carte-
sian coordinates, with the z-component being eliminated and the resulting values
wrapped around to fall into the [0,1] range:
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Figure 14.7. Planar mapping using the xy -plane. (a) The texture-coordinate pa-
rameterization. (b) Planar mapping of an axis-aligned box. All points with the same
x- and y-coordinates are mapped on the same texture-map location.

u = x′ −⌊x′⌋ x′ = a · x+offsetx

v = y′ −⌊y′⌋ y′ = b · y+offsety
(14.9)

In Equation (14.9), a and b are the horizontal and vertical tiling factors, and
(offsetx,offsety) is the offset from the lower-left corner of the image in texture-
coordinate space. The tiling factor determines how many repetitions of the tex-
ture image should fit in one world-coordinate-system unit, or, in other words,
(1/a,1/b) are the dimensions of the quadrilateral texture tile in the Cartesian co-
ordinate system. For the assignment of texture coordinates to polygon vertices,
following the discussion regarding the coordinate wrap-around problems in poly-
gon rendering, (u,v) = (x′,y′).

Planar mapping is very useful for texturing relatively flat surface regions or
geometry that can be represented in a functional manner, as in z = f (x,y). The
more parallel a surface region is to the projection plane, the less distorted the pro-
jected texture becomes. In Figure 14.7(b), the sides of the box are perpendicular to
the projection plane, and therefore, all points with the same x- and y-coordinates
are mapped to the same set of texture coordinates. In practice, when modeling
complex objects, the artists break up the surfaces in nearly coplanar regions and
apply a separate planar mapping to each one of them. This is also part of one of
the techniques for automatically generating texture atlases as will be explained
later in this chapter. Alternatively, one of the other texture-generation functions
discussed below can be used.
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14.3.2 Cylindrical Mapping

In this mapping, the texture coordinates are derived from the cylindrical coor-
dinates of a point in space. One form of the cylindrical coordinates for a point
p = (x,y,z) is

θ = tan−1(x/z),

h = y,

r =
√

(x2 + z2),

(14.10)

where θ is the right-handed angle from the z- to x-axis, with −π < θ ≤ π , h is
the vertical offset from the xz-plane, and r is the radius or distance of p from the
y-axis.

The (u,v)-coordinates can be associated with any two of the cylindrical co-
ordinates of Equation (14.10), but usually u is derived from θ and v is calcu-
lated from the height h. The result of cylindrical mapping is similar to wrapping
a photograph around an infinitely long tube (Figure 14.8). Note that all points
with the same bearing and height are mapped to the same point in texture space
for all r ∈ [0,∞). The cylindrical coordinates of Equation (14.10) can be eas-
ily transformed into texture coordinates according to the following formula (Fig-
ure 14.8(a)):

Figure 14.8. Cylindrical mapping around the y-axis. (a) The texture coordinate
parameterization and image wrapping. (b) An example of cylindrical mapping.
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u =
1
2

+
θ
2π

=
1
2

+
tan−1(x/z)

2π
,

v = h = y.
(14.11)

The above formulation of the (u,v)-coordinate pair can be augmented to in-
clude the tiling factors a and b around and along the y-axis, respectively:

u =
a(θ +π)

2π
−
⌊

a(θ +π)
2π

⌋
,

v = by−�by� .
(14.12)

14.3.3 Spherical Mapping

Similarly to the cylindrical mapping, the spherical texture-coordinate generation
function depends on an alternative to the Cartesian coordinate representation and,
in particular, on the spherical coordinates (θ ,ϕ,r) of a point in space. As in the
cylindrical coordinates of Equation (14.10), θ is the longitude of the point, and
ϕ and r are, respectively, the latitude and distance from the coordinate system
origin. The spherical coordinates of a point p = (x,y,z) are given by

Figure 14.9. Spherical mapping. (a) The texture-coordinate parameterization and
image wrapping. (b) An evening-sky texture mapped to a dome using the spherical
texture-coordinate generation function.
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θ = tan−1
(

x
z

)
−π < θ ≤ π

ϕ = tan−1
(

y√
x2 + z2

)
−π

2
< ϕ ≤ π

2
,

r =
√

x2 + y2 + z2.

(14.13)

The spherical texture-coordinate generation usually associates the u- and v-
coordinates with the two angular components of the above representation (Fig-
ure 14.9):

u =
θ +π

2π
, v =

ϕ +π/2
π

. (14.14)

Using a pair of tiling factors (a,b) for the u- and v-coordinates, respectively,
the spherical mapping is given by

u =
a(θ +π)

2π
−
⌊

a(θ +π)
2π

⌋
,

v =
b(ϕ +π/2)

π
−
⌊

b(ϕ +π/2)
π

⌋
.

(14.15)

This very common spherical mapping operation wraps an image around an
object like a world atlas maps to the globe. This means that the spatial resolu-
tion of a texel when mapped to a surface varies according to the latitude of the
point and results in heavy distortion of the displayed features at the poles, as a
whole line of the texture is typically mapped onto a single point in space. This is
demonstrated in Figure 14.10.

For the calculation of the texture parameters, the normal vector coordinates
can be used instead of the point location. This is easily done by replacing the
(x,y,z) point coordinates of Equation (14.13) with the normal vector components
(nx,ny,nz). This is a quite useful mapping when the surface normal vector is ex-
pressed in the world coordinate system, i.e., after the three-dimensional object has
been transformed, because it allows for the rendering of complex-environment
diffuse illumination on the object’s surface. A spherical projection of the in-
coming diffuse illumination from distant light sources and ambient light is pre-
calculated and stored in a texture map. Then, instead of applying the Phong or
some other local illumination model for the modulation of the surface material,
the diffuse illumination is sampled from the texture using the spherical mapping.
Similarly, pseudo-color illumination and cartoon-style shading can be achieved,
if light sources are considered to be infinitely far from the objects.
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Figure 14.10. Inherent distortion in spherical mapping. The plot relates the texel
area of a 128×128 texture to the v texture coordinate as it sweeps the sphere from
pole to pole.

14.3.4 Cube Mapping

Cube mapping combines the local surface-direction information with the Carte-
sian coordinates of the point to derive the texture coordinates. Essentially, it works
like planar mapping, but instead of using a single projection direction, like z, one
out of the three primary axes is selected based on which axis the normal vector
is more aligned with. This means that a point p is projected onto plane xy, yz,
or xz, depending on whether the absolute value of the z-, x-, or y- coordinate, re-
spectively, of the normal vector is the largest one (Figure 14.11(a)). The planar
mapping for each one of the three cases is obtained by properly substituting the
coordinates pairs in Equation (14.9).

Cube mapping is ideal for multifaceted geometry and especially for shapes
with right angles, like rooms, buildings, or crates (Figure 14.11(b)). One very
useful property of cube mapping is that the texture map is never projected on a
surface from an angle of more than 45 degrees from the surface normal. This im-
plies that we get no significant distortion from texel stretching. On the other hand,
the transition from one projection plane to another is prone to causing discontinu-
ities as it often does when this mapping is applied to smooth curved surfaces.

When cube mapping is directly associated with the local surface normal vec-
tor or when a surface location is treated as a vector, the calculations are different.
The significance of using this mode of cube mapping must first be explained. In
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Figure 14.11. Cube (box) mapping. (a) Texture-coordinate generation.
(b) Texture-mapping example.

this section, we have seen how spherical mapping warps the projected image and
causes significant distortion at the poles due to the inherent mapping singularity.
Clearly, this can be very annoying, especially when texture mapping large sur-
faces like sky domes. Cube mapping avoids this pitfall by always selecting the
side of a cube that is most perpendicular to the vector associated with the current
point (Figure 14.12(a)). In order to achieve a similar result with the spherical
mapping though, six different sides and the respective texture maps are used in-
stead of three sides and a single bitmap (Figure 14.12(b)). This way, a 1-to-1
mapping between a specific direction (longitude/latitude pair) and an addressed
texture location can be obtained, even though the u and v parameters generated
are not unique.

The cube mapping formulation for the texture-coordinate generation from
vectors is quite simple. If we consider a vector −→v = (vx,vy,vz), which defines
a point v = o +−→v or a direction in space, cube-mapping texture coordinates are
calculated as the normalized coordinates of this vector in the range [0,1]. The
appropriate cube texture is selected according to the largest-in-magnitude signed
component of the vector provided, i.e., −x, +x, −y, +y, −z, +z. The selection of
the correspondence rules between primary axes and texture-coordinate axes is not
very restrictive and depends on the application or implementation. Cube mapping
on vector coordinates is implemented in the major graphics application program-
ming interfaces and both OpenGL and DirectX™ APIs implement a consistent
mapping mechanism, which is summarized in the following formula [Seg04]:
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Figure 14.12. Cube mapping using vector coordinates to apply pre-calculated
diffuse illumination to an object. (a) Cube mapping set-up. (b) The six cube maps.
(c) The texture-shaded object in its final environment.

u =
1
2
(

uc

|ma| +1),

v =
1
2
(

vc

|ma| +1),
(14.16)

where

(uc,vc,ma) = (−vz,−vy,vx) vx = max{|vx| ,
∣∣vy
∣∣ , |vz|},

(uc,vc,ma) = (vz,−vy,vx) −vx = max{|vx| ,
∣∣vy
∣∣ , |vz|},

(uc,vc,ma) = (vx,vz,vy) vy = max{|vx| ,
∣∣vy
∣∣ , |vz|},

(uc,vc,ma) = (vx,−vz,vy) −vy = max{|vx| ,
∣∣vy
∣∣ , |vz|},

(uc,vc,ma) = (vx,−vy,vz) vz = max{|vx| ,
∣∣vy
∣∣ , |vz|},

(uc,vc,ma) = (−vx,−vy,vz) −vz = max{|vx| ,
∣∣vy
∣∣ , |vz|}.

(14.17)
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Cube mapping is very frequently used for representing three-dimensional en-
vironment extents, such as distant landscapes, buildings in cityscapes, sky boxes,
and sky domes. When the interpolated normal vector of a surface is used to gener-
ate the texture coordinates, cube mapping can be exploited to apply pre-computed
diffuse illumination on a surface (Figure 14.12). In fact, as long as a calculation
associated with a rendered fragment results in a vector, cube mapping can pro-
vide an indexing of a pre-calculated attribute map with this vector. Environment
mapping, discussed in detail below, as well as various fragment shaders take ad-
vantage of cube maps to approximate reflected, refracted or specularly transmitted
light on a surface.

14.3.5 Environment Mapping

The determination of the texture coordinates that correspond to a surface location
as well as the selection of a texture image can be dynamically calculated at render
time. For instance, in the case of the diffuse illumination presented in the example
of Figure 14.12, the cube maps could be recalculated whenever a change in the
surrounding scene could affect the diffuse light recorded on the textures. Addi-
tionally, as the diffuse light interaction measured is location-dependent, a signifi-
cant pose change of the texture-mapped object would necessitate the recalculation
of the incident diffuse light. Of course, a change in the object’s orientation would
also certainly affect the texture-coordinate calculation.

As mentioned in the previous section, cube maps or other kinds of texture-
projection mechanisms can be used to simulate and store the various local il-
lumination calculations or material properties of the surface in a texture map
[Cabr99]. Recall that the physical or empirical models for specular light trans-
mission and reflection depend on the viewing direction from the surface point to
the eye and its relation to the local surface normal. This means that if we choose
to pre-calculate any quantity that involves the above vectors and consequently the
mirror-reflection direction, the texture coordinates need to be recalculated every
time the view position or the object pose changes.

The general category of mapping-coordinate calculations that treats the tex-
ture map as a storage medium for directionally indexed incident light is called
environment mapping, although the term is most frequently associated with the
approximate representation of the light reflected on the surface when the object is
a perfect mirror [Blin76].

Let r̂ be the direction vector that results from reflecting an imaginary ray from
the viewpoint to an arbitrary surface point with normal vector n̂. We may recall
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from the shading model calculations that, if we denote the direction from the
surface point to the viewpoint as v̂, the reflection direction is given by

r̂ = 2n̂(n̂ · v̂)− v̂ (14.18)

The vector r̂ essentially points to the direction from which the light from the
environment comes, before being reflected toward the viewpoint. This property
holds only for perfect mirrors, where the two direction vectors can be used inter-
changeably. The reflection direction is used for generating the (u,v)-coordinates
according to the mapping function of preference. Equation (14.18), when com-
bined with the cube-mapping formulas of (14.16) and (14.17), implements this
idea, which is also demonstrated in Figure 14.13. Cube maps are ideal for en-

Figure 14.13. Environment (reflection) mapping using cube maps. (a) The re-
flection vector is used for indexing the maps and the (u, v)-coordinates. (b) The
cube maps. Images were created by rendering six 90-degree views from the cen-
ter of the teapot. (c) The final modulation of the teapot surface by the mapped
environment enhances the metallic look of the surface.
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vironment mapping due to their low distortion, although spherical mapping is
an applicable alternative mapping, which has been used extensively in the past,
before cube maps were natively supported by the prevailing APIs.

Note that in order for environment mapping to work effectively, the reflected
environment elements are assumed to reside adequately far from the reflective
object, so that object motion does not render the reflected environment inconsis-
tently with the current object’s location. Otherwise, different, location-dependent
reflection maps should be made available during render time by pre-rendering the
environment on the texture(s) for each location.

A common practice when representing the reflection map as a set of cube
maps is to render the environment from the center of the object using a 90◦ square
field of view into low-resolution textures six times (Figure 14.13). As the re-
flected image bending is usually large and the surfaces are not ideally smooth,
even low-resolution reflection maps work extremely well. Using low-resolution
environment textures has the added advantage of being able to frequently recalcu-
late them, even in real time and thus facilitate the display of reflected moving ob-
jects or overcome the environment distance assumption mentioned above. Color
Plate XXVIII displays a number of reflective metallic objects. All of them use the
same static cube-map set captured from the center of the scene. This minimizes
the map-capture overhead and, in this particular scene, provides quite convinc-
ing reflections. Capture of the cube maps from a location away from the object’s
center position may provide unrealistic results in other cases.

14.3.6 View-Dependent Texture Maps�

In cube mapping, we have seen that a cube texture, which is a subtexture of the
whole environment map, is selected according to a direction vector. The notion
of selecting a texture map according to a view direction goes way back before
the introduction of cubical texture maps, to the first versions of the 3D game
engines, when sprite bitmaps were being selected to represent a different visi-
ble side of an object in space, depending on the orientation of the object relative
to the viewpoint. The sprite selection is the simplest form of image-based ren-
dering (IBR), where instead of actually rendering a three-dimensional entity, the
appropriate view of the object is reconstructed from the interpolation or warp-
ing of pre-calculated or captured images, in many cases accompanied by depth
or view-direction information, as, for example, in [Shad98,Levo96,Gort96]. The
advantage of using image-based rendering is the decoupling of scene complex-
ity from the rendering calculations, providing a constant frame rate, regardless of



�

�

�

�

�

�

�

�

14.3. Texture-Coordinate Generation 483

Figure 14.14. Simple image-based rendering using view-dependent textures. (a)
The original statue of Zeus consisting of approximately 36,000 triangles. (b) Mul-
tiple views are rendered from a fixed distance around the object. (c) A simple
polygon is texture-mapped with the nearest (or linearly interpolated) view in real
time. The texture selection depends on the viewing direction from the eye point
to the center of the object. (Screenshot from the VR production “A Walk through
Ancient Olympia.” Courtesy of the Foundation of the Hellenic World.)

the detail of the displayed geometry. A very complex object, like a detailed tree
or a human figure, can be pre-rendered or captured from various angles, usually
from equidistant locations around the object with the camera pointing at the ob-
ject itself (Figure 14.14(b)). At render-time, the image of the object as seen from
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the viewpoint is approximated by the closest pre-calculated views. Image-based
techniques may become very computationally intensive, especially when missing
depth information or gaps need to be extrapolated.

Not surprisingly, the most popular IBR methods are the simplest ones, al-
though the resulting images cannot stand scrutiny. In the easiest case of an IBR
impostor, a three-dimensional placeholder or geometry proxy, like a plane or a
simple aggregation of such, is texture-mapped with a view-dependent criterion
for selecting the texture or mixing the textures that represent the closest available
views to the current one (Figure 14.14). The subtextures used in this technique
are usually pre-ordered and the views represented are regularly spaced, so the
texture selection can be very straightforward and therefore fast. IBR impostors
make good use of the hardware since the textures from the closest viewpoints
can either be rendered in multiple passes or composed of the source subtextures
using multiple texture units and/or vertex shaders. This method is very popular
in computer games and virtual reality, especially for rendering complex flora and
crowds [Tecc02].

The reverse approach to image-based rendering is QuickTime VR [Chen95],
where instead of sampling a fixed area of 3D space from various locations around
a point of interest, an environment map is constructed from a fixed point in space
that represents the view of the three-dimensional world from that particular van-
tage point. This technique has been and still is very extensively used in multime-
dia applications and computer games to render complex environments when the
user location is considered fixed in space or the displayed objects quite far away.

A hybrid compromise between simple IBR proxies and actual three-
dimensional geometry is the use of view-dependent texture maps on three-
dimensional objects that represent a simplified version of the displayed geom-
etry [Debe96]. The need for alternative, view-dependent texture maps arises
mostly when texturing low-polygon meshes for real-time applications where sur-
face details are omitted on purpose to enhance rendering efficiency. To this end,
other important techniques such as bump and normal mapping are also utilized to
fake the apparent complexity of the actually missing geometric information, but
even these work well to some extent.

Imagine the case of Figure 14.15. The high-detail duct displayed at the upper
left of the figure consists of several polygons and is actually hollow and driven
through the wall. The wall is also properly tessellated, with a hole cut out where
the duct penetrates the building. In real-time rendering applications, it is crucial to
keep the polygon count as low as possible and also maximize the object reuse for
efficient environment modeling. A building element like a wall or a whole house
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Figure 14.15. View-dependent texture maps. Here, pre-rendered views of a high-
resolution model were applied as textures to a low polygon mesh, depending on
the inspection direction in order to correctly simulate the appearance of the original
model.

should be reusable and re-configurable. Therefore, decorations like the duct of
Figure 14.15 should not alter the basic model and must be as inexpensive to render
as possible. A less detailed version is shown in the lower left of Figure 14.15.
Notice that the duct does not penetrate the wall.

Now, an obvious way to imprint the geometric detail of the high-resolution
model onto the lower-resolution one is to render the object from a viewpoint that
ensures maximum visibility and project the image as a texture on the low-detail
model. The problem is that there are cases, such as Figure 14.15, where the
eye cannot be tricked, primarily due to very intense parallax and illumination-
information variations expected from alternative viewpoints. Bump mapping (see
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Section 14.7) alleviates part of the problem (shading), but even this cannot pro-
vide the correct depth cue and shading/shadow information. If we use a cou-
ple of textures representing the object from different viewpoints instead of a
single view and interpolate or switch through them as the inspection direction
changes, a much more realistic appearance can be achieved at the expense of
texture memory.

14.4 Texture Magnification and Minification

When a map is applied to a surface, its texels are stretched to occupy a certain
area of the surface, according to the locally varying spacing of the texture param-
eters and the dimensions of the polygons. When the textured surface is projected
on the viewing plane, a texel covers a certain portion of the image space. Obvi-
ously, apart from the textured-surface orientation and parameterization, the area
occupied by a texel in image space depends on the projection-transformation pa-
rameters and viewport size, as well as in the case of a perspective projection, on
the distance of the object from the viewpoint. In the case when the projected
texel in image space covers an area of more than a pixel, it is locally magnified,
whereas in the opposite case, when its footprint is less than a pixel, the texture is
minified or compressed (Figure 14.16).

The effect of texture magnification is to make intensity discontinuities appar-
ent in a semi-regular manner and generate a step-ladder effect when the slope
of the texture parameter change in image space is not aligned with the sam-
pling pattern of the image (Figure 14.16). The phenomenon is called texture
pixelization and results in poor and unconvincing texturing. Fortunately, the in-
terpolation methods used for extracting a texture value from the neighboring tex-
els rectifies the blocky image by smoothing the texture. The bilinear interpola-
tion implemented by hardware rasterizers and explained in Section 14.2.1 offers
a good compromise between quality and speed, although higher-order filtering
generates far better images that can be subjected to further texture magnification
[Sigg05].

When a texture is minified, the visual problems are usually more serious
as image space and time-varying sampling artifacts are produced. The texture
patterns are erratically sampled, leading to a noisy result and a Moiré pattern
at high frequencies. The problem is called texture aliasing and is explained
below.
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Figure 14.16. Texture magnification and minification. (a) Nearest-neighbor sam-
pled texture values, no filtering. (b) Aliasing artifacts in texture mapping under
perspective projection. (c) Bilinear filtering for the magnification case, aliasing in
compressed texture portions. (d) Mip-mapped texture (pyramidal pre-filtering with
trilinear interpolation).

14.4.1 Texture Antialiasing�

From a signal-theory perspective, the rendering procedure records samples of the
textured surfaces at specific locations on the resulting image at a predefined spa-
tial resolution, for example, once per pixel. In order for a signal to be correctly
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reconstructed from the samples taken, the original signal has to be band-limited
and the highest frequency must be at most half the sampling rate (uniform sam-
pling theorem) [Glas95]. To translate this into the texture-mapping paradigm,
when a textured surface is subject to the various geometric transformations and
is finally projected onto the view plane, the density of the texture-map texels in
image space varies locally and is also anisotropic. The rate at which a transi-
tion from one projected texel on the image plane to the next occurs defines the
apparent spatial frequency of the textured surface. In the case of texture compres-
sion, a texel corresponds to less than two pixel samples, and when a texture is
severely minified, the sampling of the map skips many texels. This can be clearly
observed in the example of Figure 14.16(b). A sinusoidal signal is perspectively
distorted and then regularly sampled. The infinite transformed signal is no longer
band-limited, and the regular sampling fails to correctly reconstruct the shape of
the original signal above a frequency limit (which is half the sampling rate of
course).

There are two solutions to this problem. One is to adequately super-sample
the texture in image space in order to ensure that we sample the source signal
above the Nyquist sampling rate and then band-limit the resulting signal to the
image’s actual spatial resolution by integration (post-filtering). This is illustrated
in Figure 14.17. The other solution is to band-limit the original signal before
rendering the geometry into the image buffer (pre-filtering).

The first solution, although it helps improve the final image quality and pro-
vides a means for global antialiasing (i.e., also for edges and lines; see Sec-
tion 2.8), suffers from an obvious problem in the case of texture mapping; If we
pick a larger number of samples for a pixel, we only transpose the aliasing prob-
lem higher in the spatial frequency domain. For instance, when we double the
samples taken in each image direction (four samples per pixel), we increase the
sampling rate of the projected texels. This may be adequate for many synthetic
images but provides no guarantee for the correct reconstruction of the textured
surface, simply because there is no association between the sampling rate and
the density of the projected texels on the image plane. There are indeed cases
where this approach fails, and the example in Figure 14.16 is one of them (in-
finite textured plane under perspective projection). Supersampling for texturing
is also a poor solution in the case of real-time rendering algorithms because it is
not easy to predict the required number of samples. Even if one can actually do
that, the extra samples are limited by the multisampling capacity of the graphics
system (hardware implementation) or the software renderer and can dramatically
decrease the rendering performance. Nevertheless, as super-sampling is the most
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Figure 14.17. Texture antialiasing using post-filtering. (a) A perspectively pro-
jected surface with planar mapping. Without filtering, the final image is severely
aliased. (b) The same surface rendered with a 2×2 supersampling pattern. The
aliasing is transposed to higher spatial frequencies.

common method for global image antialiasing, it also contributes to the solution
of the texture aliasing problem when combined with other techniques.

The second antialiasing option is the local pre-filtering of the texture before
rendering the corresponding fragment into the frame buffer in order to limit the
bandwidth of the texture when this is expressed in image-space coordinates. In
essence, we try to predict how many texels are contributing to the intensity of each
pixel when the textured surface is projected on the image plane. The contributing
texels are first averaged (low-pass filtering) and then used for rendering the surface
texture.

The filtering is performed in texture space by convolution of a filter kernel
f (s, t) (impulse response) of finite spatial support G with the texture values i(u,v):

( f ∗ i)(u,v) =
∫ ∫

G

f (s, t) · i(u− s,v− t)dsdt. (14.19)
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Let us first discuss how the filtering of a signal works. Filtering in the fre-
quency domain is transformed into a multiplication of the Fourier coefficients of
the signal and the filter, i.e., the signal spectrum and the filter frequency response,
respectively. To band-limit a signal in the frequency domain, all we have to do
is to create a filter, whose frequency response is zero outside the band limits and
then multiply it with the spectrum of the input signal. However, the matter is not
so simple, due to the fact that a naı̈ve box filter (1 inside the desired band and
0 outside the limits) has an infinite impulse response (IIR), i.e., it has an infinite
support in the spatial domain. Since it is far more efficient and straightforward to
filter a signal in the spatial domain in the case of rendering, an IIR filter could not
be appropriately applied, because we would need an infinite filter kernel. There
exist however many good practical finite impulse response (FIR) low-pass filters
and their discrete counterparts, like the B-spline approximation to the Gaussian
filter, but further discussion on filter construction is beyond the scope of this book.
In practice, filtering in the texture domain is a weighted averaging in a finite area
of non-zero filter kernel weights, centered at the sample point (u,v). For more
details regarding the construction of filters and their application on discrete and
continuous signals, please refer to a signal- or image-processing textbook.

Examining the relationship between an image-plane pixel and a texel, due to
the cumulative effect of surface curvature and perspective projection, a pixel in
image space is transformed in general into a curvilinear quadrilateral in texture
space (pixel pre-image) [Heck89] (Figure 14.18). In order to correctly sample the
texture at a specific pixel, the shape and area of its pre-image have to be estimated

Scanline

Current

fragment

dx

dy

M

N
Image space Texture map space

Pixel pre-image

Figure 14.18. The “footprint” of an image-space fragment when projected into
the texture space (pre-image). When a texture is minified (compressed), the pixel
pre-image may cover an area of many texels.
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by mapping its area from image space to texture space and have the texture values
be integrated over it. The corresponding filter shape and size need to adapt to the
pre-image for the texture spatial frequency to be appropriately limited, without
unnecessarily blurring the texture. A larger pixel pre-image means that a larger
number of texture samples need to be averaged and vice versa. Unfortunately,
due to the nature of texture mapping and the pixel-dependent variance of the pixel
pre-image shape, ideally, a filter kernel should be estimated for each pixel sam-
pled. Another important issue that arises is that minification (compression) and
magnification may occur at the same image location (in different directions, of
course) since the pixel pre-image may be elongated. Various solutions to this fil-
ter kernel construction problem have been proposed, like the elliptical weighted
average (EWA) filter, which is based on truncated (FIR) Gaussian filters properly
scaled and aligned according to the pixel pre-image [Gree86].

14.4.2 Mip-Mapping�

Clearly, re-computing or dynamically selecting pre-constructed filter kernels and
performing the texture filtering in real time is computationally expensive. If we
make the assumption that the filter kernel has a constant aspect ratio and orienta-
tion but a variable size, then pre-filtered versions of the texture map can be a priori
generated and efficiently stored. At render-time, all that is needed is to determine
the proper kernel size and, consequently, the proper pre-filtered version of the
texture for the specific fragment that is being rendered in image space. This idea
was effectively captured in L. Williams’ work on pyramidal parametric interpo-
lation [Will83] that introduced the notion of mip-mapping for texturing surfaces.
The acronym “mip” stands for the Latin phrase “multum in parvo,” which means
“many things in a small place” and mostly refers to the memory-storage format
of the pre-filtered maps.

Mip-mapping works as follows: The original texture map (not necessarily
square) is recursively filtered and down-sampled into successively smaller ver-
sions of the high-resolution image (mip-maps), each one-half the linear dimen-
sion of its parent (Figure 14.19(a)). A simple 2×2 box filter is used for averaging
the parent texels to produce the next minified version of the map. This produces a
hierarchy of mip-maps that represent the result of the convolution of the original
image with a square filter. The filter is a power-of-two pixels in side length (Fig-
ure 14.19(a) and (b)). The initial image is the 0th level of the pyramidal texture
representation and corresponds to a filter kernel of 20= 1. Successive levels are
sequentially indexed and correspond to filter kernels of length 2i, where i is the
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Figure 14.19. Mip-mapping. (a) The successively re-sampled mip-map levels.
The leftmost map is the base level (level 0). (b) The pyramidal parametric rep-
resentation of the mip-map. (c) Memory organization of a three-channel color
texture.

mip-map level. Assuming that the original texture image has dimension N×M,
both powers of two, there are at most �log2 (max(N,M))�+ 1 levels in the mip-
map set. The i-th mip-map level has dimension given by

max

(
N
2i ,1

)
×max

(
M
2i ,1

)
. (14.20)

We have seen in Section 14.2.1 that in order to evaluate a two-dimensional
texture map at an arbitrary continuous parameter pair (u,v), bilinear interpolation
is used on the nearest discrete texels. To approximate an image pre-filtered with
a filter kernel of arbitrary size, a third parameter d is introduced, d ∈ [0, levelmax],
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Figure 14.20. Pixel (fragment) pre-image and its corresponding partial derivatives
with respect to the image-space parameters.

which moves up and down the hierarchy and interpolates between the nearest
mip-map levels, according to the apparent minification measured at a given frag-
ment. This means that all filters in the mip-mapping pre-filtering procedure are
approximated by linearly blended square box filters. Although this is far from
the ideal filtering and does not take into account any affine transformation of the
kernel to counter the compression anisotropy, it usually works very well provided
that an appropriate value for d is selected. The computation of the pyramidal in-
terpolation parameter d is of critical importance to the resulting image quality. A
poorly selected pyramidal filter parameter d results either in failure to antialias
the texture or in excessive blurring.

Let us consider the rate of change of texels in relation to the pixels (frag-
ments) in image space. For an N×M map, the partial derivatives of the applied
texture image with respect to the horizontal and vertical image-buffer directions
are ∂u′

/
∂x, ∂u′/∂y, ∂v′

/
∂x, ∂v′

/
∂y (Figure 14.20), where

u′ = u ·N, v′ = v ·M, u,v ∈ [0,1]. (14.21)

The pixel pre-image size and orientation is directly related to these quantities.
In the simplified case of mip-mapping, in which we are only interested in square
filter selection, the linear scaling ρ of the filter kernel is roughly equal to the max-
imum dimension of the pixel pre-image, which reflects the worst-case aliasing
scenario [Will83]:
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ρ = max

⎧⎨⎩
√(

∂u′

∂x

)2

+
(

∂v′

∂x

)2

,

√(
∂u′

∂y

)2

+
(

∂v′

∂y

)2
⎫⎬⎭ . (14.22)

Although the above definition of the scaling factor gives good results, in prac-
tical implementations a less computationally intensive approximation of the above
formula is often sought [Seg04]. The desired value for the parameter d, which is
essentially the continuous level of texture detail, is associated with the filter scal-
ing factor and can be estimated with the following formula:

d =

⎧⎨⎩ levelmax

λ
0

λ > levelmax,
0≤ λ ≤ levelmax,
λ < 0,

(14.23)

where λ = log2 ρ and levelmax is the maximum pre-calculated mip-map level.
Depending on the selection mechanism for the mip-maps, d can be used ei-

ther as a nearest-neighbor decision variable or as a third interpolation parameter
to perform tri-linear interpolation between adjacent levels, the latter case fully
implementing the pyramidal parametrics paradigm and producing a smooth tran-
sition from one mip-map level to the next (Figure 14.16(d)).

The actual memory organization of the mip-maps is implementation-dependent
and affected by the number of channels that the texture map consists of. For three-
channel images, Williams suggested splitting the image into its red, green, and
blue components and tiling them in the manner shown in Figure 14.19(c). Higher
mip-map levels are stored above and to the left of their parent RGB triplets. The
concept behind this memory organization is that once a (u,v) has been selected,
the corresponding locations across the mip-maps can be indexed by a simple bi-
nary shift of the texture parameters.

Texture pre-filtering with mip-maps significantly speeds up rendering due to
the fact that all filtering takes place when the texture is first loaded. The ap-
proximation of an arbitrary size filter kernel with a linear interpolation of dis-
crete pre-calculated square box filters permits a robust and effective realization
of pre-filtering in hardware for one-, two- or three-dimensional texture images
in a unified manner. Today, all commodity graphics hardware systems imple-
ment the mip-mapping functionality in its full extent. However, the reader should
keep in mind that mip-mapping performs sub-optimal filtering in the case where
the pre-image deviates from a square shape. Finally, an important limitation of
all algorithms that rely on measured quantities in image space is that they are
screen driven and applicable only to incremental screen-order rendering tech-
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niques. Clearly other rendering methods, such as ray-tracing cannot directly bene-
fit from mip-mapping as there is no knowledge of a pre-image area for an arbitrary
isolated sample on a textured surface.

14.5 Procedural Textures

Up to this point, we have mainly dealt with texture mapping as a two-step process
from the Cartesian space to a parametric domain where the texture coordinates
are defined and finally to the texture values themselves, as indexed by the texture
coordinates, hence the name parametric texture mapping. As mentioned earlier
in this chapter, this kind of texture representation is the most comprehensive and
natural way to apply a texture that is stored in an array of pre-recorded or com-
puted discrete values. There are many cases, however, when a surface (or volume)
attribute can be directly calculated from a mathematical model or can, in general,
be derived in a procedural algorithmic manner. Procedural texturing does not
make use of an intermediate parametric space. Instead, it directly and uniquely
associates an input set of coordinates with an output texture value. Procedural
textures can be considered as time-varying self-contained systems and are often
referred to as procedural shaders, i.e., black boxes that can be linked together to
process a set of input coordinates and modify a material attribute of a surface or
volume. A procedural texture can be used to calculate a color triplet, a normalized
set of coordinates, a vector direction, or a scalar value. Some of the forms that a
procedural texture with an attribute parameter vector a and an input point p may
take are listed below:

v = fproc(p,a),
−→n =

−→
f proc(p,a),

t = fproc(p,a).

(14.24)

These output parameters can be used in turn as input to another procedural
texture or as a mapping function to index a parametric texture. Figure 14.21
demonstrates some examples of procedural texture utilization.

An important question to pose is why one should use procedural textures in-
stead of parametric image maps. In order to explain this, we need to examine the
properties of a procedural texture. First, by definition, a procedural texturing sys-
tem operates on continuous input parameters and generates a continuous output
of infinite resolution (constrained, of course, by the numerical precision). This
means that sampling a surface at a high resolution will not yield a blurred version
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Figure 14.21. The use of procedural textures to perform various color and shading
calculations.

of some interpolated discrete data, as is the case with the bitmap-based texturing,
but rather a finer version of the output domain. Therefore, procedural textures do
not suffer from magnification problems. Second, there is nothing that can cause
distortion, since no intermediate parametric representation is involved, which may
introduce mapping singularities. Last, the procedural textures can (and should be)
defined in a way to ensure a meaningful mapping from the entire input domain to
the output domain.

In nature, many periodic patterns, self-similar shapes, or chaotic and noisy
signals can be very accurately modeled using procedural textures at an arbi-
trary sampling rate. The ability of procedural textures to mathematically con-
trol the appearance of the generated pattern with the proper selection of texture
modeling parameters provides a useful visualization tool for artists and scientists
alike. Refer to Color Plate III for an example of image synthesis using procedural
textures.
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Until recently, procedural texturing was practically applicable only to non-
real-time rendering systems, because the graphics hardware could not provide
support for shaders. All computations were performed in the CPU processing
time, resulting in a waste of a critical resource, and produced results that were
incompatible with the rest of the graphics pipeline. The only way to reasonably
integrate parametric texture mapping and a procedural texture was to sample the
latter into a texture map, which of course is a solution that suffers from the sam-
pling problems discussed in Section 14.4 and completely fails to take advantage
of the beneficial properties of procedural texture mapping. Since the invention of
GPUs with support for vertex and fragment programs, procedural shaders have
been extensively used for the creation of stunning surface materials and visual
effects.

14.5.1 Noise Generation�

Very frequently in nature we come across materials and surfaces with irregular
patterns or grainy textures. For instance, if we carefully inspect a rough wall cov-
ered with stucco, or painted with a non-glossy coating, we will discover that the
diffuse, even illumination that is reflected off of the surface is caused by tiny, ir-
regular bumps of the deposited material. A patch of sand and various minerals and
stones consist of an uneven aggregation of small, irregular fragments of diverse
materials. Granite and marble often exhibit intense and even abrupt color transi-
tions in a noisy and turbulent manner. Clearly, one can think of many examples
where a natural texture looks like or depends upon a noisy pattern. The design
and implementation of a procedural texture, which acts like a pseudo-number
generator but also exhibits some more convenient and controllable properties, is
crucial for the domain of texture-generation algorithms. The reader should also
keep in mind that superimposing a granular pattern on a parametric image texture
or modulating it with a slow-varying noise function can make a tiled texture look
more convincing and pleasant to the eye, as the repetitiveness of the pattern is
substantially diminished.

A useful noise generator for image synthesis must adhere to a number of rules,
in order to ensure a consistent output at an arbitrary input. The procedural noise
should be all of the following:

• Stateless. The procedural noise model needs to be memory-less. The new
output value or vector should not depend on previous states of the generator
or past input values. This restriction is necessary if we want to have an
uncorrelated train of output samples.



�

�

�

�

�

�

�

�

498 14. Texturing

• Time-invariant. The output has to be deterministic. Dependence of the
noise function on clock-based random generators should be avoided as the
procedural noise produced would be different at consecutive samples of the
same location in space.

• Smooth. The output signal of the noise generator should be continuous and
smooth. First-order partial derivatives with respect to Cartesian coordinates
should be computable at an arbitrary location in space as they are required
by many effects and shading calculations.

• Band-limited. A white-noise generator (infinite support, constant power
spectrum) is not very useful for computing image or spatial domain texture
values, as the signal will never be correctly sampled, regardless of the den-
sity of the samples, thus leading to aliasing. The procedural noise model
should provide the means to control the maximum (and minimum) varia-
tion rate of the pattern. Band-limited noise with a low cut-off frequency
produces space-coherent slow-varying output values, which can even be
used for the modulation of vertex locations in space.

The most widely used procedural noise generator for computer graphics is the
one introduced by Perlin [Perl85]. Perlin noise encompasses all the properties
listed above and relies on a common and efficient numerical hashing scheme on
pre-calculated random values.

Assume a lattice in R3 formed by all the triplet combinations of integer values,
so that node Ωi, j,k lies on (i, j, k): i, j,k ∈N. Every lattice node is associated with
a pre-generated pseudo-random number γi, j,k in the range [−1.0,1.0], a triplet
of pseudo-random numbers in the case of a random point, or a pseudo-random
unit-length vector −→γ i, j,k if a result is required in vector form. Without loss of
generality, we will examine the scalar version of the noise generator unless stated
otherwise. The procedural noise output is the weighted sum of the values on
the eight nodes nearest to the input point p. More specifically, Perlin uses the
lattice nodes Ωi, j,k as spline knots, which contribute to the sum according to the
following weighting function [Perl89]:

ω(t) =
{

2 |t|3−3t2 +1
0

|t|< 1,
|t| ≥ 1.

(14.25)

The above function has a support of 2, centered at 0, so for an integer i,
ω(t− i) is maximized at i and drops off to 0 beyond i±1. The final noise pattern
fnoise(p) for an arbitrary point p = (x, y, z) is given by trilinear interpolation of the
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values γi, j,k of the eight lattice points Ωi, j,k closest to p (Figure 14.22(a)) using
ω(t−�t�) as the interpolation coefficient instead of t−�t�, t ∈ R. The eight lat-
tice nodes closest to p are of course Ωi, j,k, Ωi+1, j,k, Ωi, j+1,k, Ωi, j,k+1, Ωi+1, j+1,k,
Ωi, j+1,k+1, Ωi+1, j,k+1, Ωi+1, j+1,k+1: i = �x� , j = �y� ,k = �z�.

In order to be able to achieve repeatable, time-invariant results, without letting
the results be repetitive in a perceivable manner, γi, j,k is selected from a table G of
N pre-computed uniformly distributed scalars in the desired output range, using a
common modulo-based hashing mechanism:

γi, j,k = G [hash(i+hash( j +hash(k)))] ,

hash(n) = P[n mod N].
(14.26)

In the above formula, P is a table containing a pseudo-random permutation
of the first N integers. Results of the three-dimensional Perlin noise function
are shown in Figure 14.22(b). Many variations of the definition given here have
been implemented, with slight changes in the weighting/interpolation of the lattice
values or in the output response curve, which is assumed linear in this text.

14.5.2 Turbulence�

An extension of the noise procedural texture described in Section 14.5.1 is the 1/f
noise or turbulence function, also introduced by Perlin [Perl85]. This is also a
band-limited noise function, which is commonly encountered in various natural
formations and processes. As the name suggests, 1/ f noise, has a spectrum profile
whose magnitude is inversely proportional to the corresponding frequency. An
approximation to this stochastic signal is achieved by overlaying suitably scaled
harmonics of a basic band-limited noise function like fnoise(p). Based on the
scale-uncertainty principle of the spatial/frequency domain relation, a contraction
of the noise-pattern duration results in an expansion of the resulting spectrum.
In order to create the required high-order harmonics, the input signal, i.e., the
point upon which the noise function is evaluated, is suitably scaled by the central
frequency of the shifted lobe. This leads to an expression for the 1/ f noise of the
form (Figure 14.23):

fturb(p) = f1/ f (p) =
octaves

∑
i=1

1
2i f

fnoise(2i f ·p), (14.27)

where f is the base frequency of the noise in the spatial domain and octaves is
the maximum number of overlaid noise signals. The visual result of the above
noise function is that of Brownian motion. Equation (14.27) can be written in a
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Figure 14.22. Perlin noise. (a) Texture values at arbitrary three-dimensional co-
ordinates are calculated from pseudo-random values associated with the nearest
integers. (b) The result of sampling Perlin procedural noise on a spherical surface.

more generalized form, allowing for an adjustment of the octave contribution that
is unrelated to the noise frequency:

f1/ f (p) =
octaves

∑
i=1

ω i · fnoise(λ i ·p), (14.28)

where ω > 0 regulates the contribution of higher frequencies to the final result and
λ > 1 modulates the chaotic behavior of the noise. When λ → 1, f1/ f (p) appears
as a scaled version of the fnoise(p), while larger values give a more swirling look to
the result. If we consider the vector form of the 1/ f noise function, where �f1/ f (p)
can be regarded as the resulting offset of point p after performing a random walk,
ω corresponds to the speed of motion and λ simulates the entropy of the system
under Brownian motion.

A common variation of the turbulence function uses the absolute values of
the fnoise(p) octaves, resulting in a tighter and sharper pattern of fractal “wisps.”
This modification has, of course, no meaning in the vector form of the texture
function.

Many interesting patterns can be generated by applying the scalar or vector
turbulence function to simple mathematical formulas. The noise function can act
as a bias to the input points or as part of a composite function:

fproc(p) = fmath ( fturb(p)) , (14.29)

fproc(p) = fmath(p+a ·�fturb(p)). (14.30)



�

�

�

�

�

�

�

�

14.5. Procedural Textures 501

Figure 14.23. 1/f noise pattern composition.

14.5.3 Common 3D Procedural Textures

One of the most commonly used procedural textures is the solid checker pattern
(Figure 14.24), which consists of interleaved solid blocks of two different colors
(monochrome intensities here). This pattern is preferably rendered using a proce-
dural texture due to the discontinuity in the transition from one color block to the
next that cannot be represented correctly with a texture image at an arbitrary res-
olution, because it would be eventually pixelized or blurred at the checker limits.
The simple mathematical expression behind this elegant pattern is

fchecker(p) = (�x�+ �y�+ �z�) mod 2. (14.31)

For quite the opposite reason, an extremely useful pattern is the linear gradient
transition from one value to another. When performing color interpolation based
on Cartesian coordinates or measured distances in the three-dimensional space, a
procedural gradient produces a high quality smooth transition from one value to
another, without the danger of generating perceivable bands. These bands are a
result of color quantization when using texture maps with fixed-point arithmetic,
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Figure 14.24. Solid procedural texture examples.

yielding discontinuity of the second-order derivatives of the linearly interpolated
texture values. Linear gradients are easy to implement and can be defined in a
meaningful way using many alternative input parameters, from single Cartesian
coordinates to distances in space, or spherical parameters. A gradient procedural
texture can be defined in its simplest form as a ramp along a primary coordinate-
system axis:

fgradient(p) = y−�y� . (14.32)

Natural formations can be effectively modeled by combining a base mathe-
matical expression that provides the primary features of a material with the turbu-
lence or noise function, as described in Equations (14.29) and (14.30).

Wood can be represented as an infinite succession of concentric cylindrical
layers that can be modeled by a ramp function over the cylindrical coordinate r,
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i.e., the distance from an axis (Figure 14.24). By adding an amount of perturbation
a to the input points and accenting the sharp transition between layers without a
discontinuity in the texture values using an absolute sine or cosine function, we
get the wood procedural texture:

fwood(p) = |cos(2π (d−�d�))| ,
d =

√
y2 + z2 +a · fturb(p).

(14.33)

Another natural pattern, which can be easily simulated by a procedural tex-
ture, is the shape of marble veins. We can use a smoothly varying function to
generate the basic formation of compressed earth layers, such as a sine wave. If
the input parameter is perturbed by the turbulence function, we can get a very
realistic approximation of self-similar marble veins (Figure 14.24):

fmarble(p) =
1
2

+ sin(2π (x+ fturb2(p))) ,

fturb2 =
octaves

∑
i=1

1
2i f

∣∣ fnoise
(
2i f ·p)∣∣ . (14.34)

14.6 Texture Transformations
In the previous section, in order to produce turbulence, successively higher fre-
quencies of the texture were overlaid on each other. What we did, in fact, was
to take a basic noise pattern, scale it down so that its frequency becomes higher
by compressing the signal in the spatial domain, and then use it in the sum of
noise octaves. But what mechanism was employed to shrink the texture output?
Consider Equations (14.27) and (14.34). When an output signal of half the ini-
tial period was needed, the input signal was multiplied, i.e., it was stretched by a
factor of two. This operation simply takes advantage of the duality between the
transformations applied to the coordinates and the reference frame they depend
on. Remember from Chapter 3 that when a point p in space is expressed as a set
of coordinates (x, y, z) relative to a reference coordinate system L = {o, ê1, ê2, ê3},
the effect of transforming p can be achieved by inversely transforming the refer-
ence frame:

p′ = (x′,y′,z′) = M(p) : p = o+ xê1 + yê2 + zê3 ⇔
p′ = o′+ x′ê′1 + y′ê′2 + z′ê′3 : {o′, ê′1, ê′2, ê′3}= M−1({o, ê1, ê2, ê3}).

(14.35)

This simple principle is very useful, because it allows for the creation of pro-
cedural texture variations without requiring any modification of the pattern shader
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Figure 14.25. Example of practical intermediate parametric surface transformation
in image mapping.

itself. For example, a gradient along the x-axis can be achieved by reusing Equa-
tion (14.32) but instead of directly applying the formula to the input points, a
transformed version can be used:

fgradientX(p) = R−90,z
(

fgradient(p)
)

= fgradient(R90,z ·p). (14.36)

In the same manner, any transformation that needs to be applied to the texture
pattern, can be implemented by applying the inverse transformation to the input
domain:

M
(

fproc(p)
)

= fproc
(
M−1 ·p) . (14.37)

The above transformation formulation is also applicable to the case of para-
metric texture mapping. When a transformed version of the intermediate para-
metric mapping surface is needed, it is easier to inversely transform the vertices
for which the new (u, v)-coordinates are to be estimated, rather than produce a
new parametric mapping function (Figure 14.25).

When working with parametric texture mapping, we have the flexibility to
perform transformations in the texture parameter domain as well. Texture co-
ordinates can be directly shifted, rotated, and translated using two-dimensional
transformations (or three-dimensional ones in the case of volume textures). This
is very helpful for tiling at modeling time, where an artist can use a graphical
interface (commonly named as a “uv editor”) to tweak the texture parameters by
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transforming the corresponding mapped locations of the polygon vertices in the
texture domain.

14.7 Relief Representation

A texture map can be used, apart from altering the material characteristics of a
surface, for modulating its geometry to create patterns in relief, or better, to imi-
tate the apparent effect of a bumpy surface without generating the extra geometric
detail required. There are two major approaches to building a bumpy surface us-
ing texturing (either parametric or procedural). The first approach, displacement
mapping, distorts the geometry to create the relief pattern, while the second ap-
proach, bump mapping, or the similar normal mapping, tries to create the illusion
of a bumpy surface without altering the actual surface in any way.

14.7.1 Displacement Mapping

Displacement mapping creates relief patterns on a surface by moving the vertices
along the original surface normal direction or along a predefined vector accord-
ing to the intensity of the texture evaluated at each point (see Figure 14.26). The

Figure 14.26. Displacement mapping. In this particular example, darker bump-
map values represent higher elevation, for the sake of visual clarity.
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elevation pattern used in both the displacement and the bump mapping is a scalar-
valued map, called a bump map. This technique requires either that the surface
is highly tessellated from the beginning or that an appropriate adaptive algorithm
adds more surface elements at high slope areas. Displacement mapping cannot
be applied on a per-pixel basis during rendering by pushing away from the orig-
inal surface the fragment being drawn, because due to the different amount of
elevation in neighboring fragments, holes are very likely to appear.

The big advantage of displacement mapping is that it truly generates a pattern
in relief and not a shading illusion. This means that the textured surface exhibits
the proper parallax effect from all viewing angles and at all surface locations,
including the object’s silhouette. On the downside, the highly detailed surface
it requires makes the technique unfavorable for real-time rendering of relief pat-
terns. Displacement mapping is used in real-time applications in conjunction with
vertex shader programs as a surface deformation mechanism, e.g., for animating
large waves.

14.7.2 Bump Mapping�

A visual trick devised in the late 1970s by Blinn for faking the appearance of
detailed bumpy and wrinkled surfaces is called bump mapping, a method that
since then has been extensively used to enhance the rendering of surfaces with
relief details recorded in a texture map (or procedural texture).

Consider the two-dimensional simplified bump-mapping paradigm of Fig-
ure 14.27. Let b(u) be the elevation pattern in the texture domain and s = s(u) the
surface location that corresponds to the same parameterization (in fact, multiple
points may address the same parameter u, according to the mapping function).
The displaced surface s′ = s′(u) is s′(u) = s(u)+b(u)n̂(u). The new surface has a
different normal vector n̂′(u) than the original one, since the normal vector is by
definition perpendicular to the new, wrinkled surface.

The important observation, which is the key idea to bump mapping, is how
the relief pattern is finally perceived by the human eye. When we look at a bumpy
surface, what we actually deduce the shape of the relief pattern from is the varia-
tion of the surface illumination, which is the result of the surface shading. Now,
recall from the Phong shading model that the only local surface attribute that
contributes to the shading calculation is the normal vector itself and no other “el-
evation” information. This has the amazing implication that we can have the same
local visual effect of a geometrically wrinkled surface by directly calculating how
the normal vector would be perturbed if the surface were elevated, but without
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Figure 14.27. The principle of bump mapping. (a) An intensity pattern modu-
lates an initial surface (b) by pushing it along the normal direction (c). The bump-
mapping algorithm calculates the new normals (d) and, instead of actually chang-
ing the surface, it replaces the new normals on the original surface (e), to achieve
the same visual result.

actually moving the surface points. This way, the eye is tricked to believe that the
three-dimensional model is substantially elaborate in terms of geometry, whereas
we only alter the normal vector in the shading calculation according to an eleva-
tion texture.

To better understand the workings of bump mapping in three-dimensional
space, let us define the notion of tangent space (Figure 14.28). Given a surface
parameterization (u,v): s = s(u,v), the local unit-length normal vector n̂ = n̂(u,v)
of the surface is given by

n̂ = û× v̂, û =
−→
t

|−→t |
,

v̂ =
−→
b

|−→b |
,

−→
t =

∂ s(u,v)
∂u

,

−→
b =

∂ s(u,v)
∂v

.

(14.38)

The two normalized vectors û and v̂, as well as the corresponding unnormal-
ized surface derivatives t̃ and b̃, lie on the tangent plane at s(u,v) and are called
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Figure 14.28. Tangent space and the new normal vector that results from the
bump-mapping calculations.

the tangent vector and the bitangent vector, respectively. The bitangent vector is
sometimes called the binormal vector, which is actually a misnomer, as binormal
vectors are used in the description of curves and not surfaces. The two param-
eters that are used when the bump information is extracted from a texture map
are the texture coordinates, i.e., the tangent vector corresponds to the u parame-
ter in texture space and the bitangent vector corresponds to the v parameter. The
reader should refer to Section 14.7.5 for the calculation of the tangent vectors at
an arbitrary texture-mapped point in a polygon.

The elevated surface s′(u,v) is given by

s′(u,v) = s(u,v)+ n̂(u,v) ·b(u,v), (14.39)

and the perturbed normal vector is perpendicular to the new tangent vectors:

n̂′ = û′ × v̂′ =
∂ s′(u,v)

∂u
× ∂ s′(u,v)

∂v
. (14.40)

Evaluating the partial derivatives using the chain rule on Equation (14.39),
we get

∂ s′(u,v)
∂u

=
∂ s(u,v)

∂u
+

∂ n̂(u,v)
∂u

·b(u,v)+ n̂(u,v) · ∂b(u,v)
∂u

,

∂ s′(u,v)
∂v

=
∂ s(u,v)

∂v
+

∂ n̂(u,v)
∂v

·b(u,v)+ n̂(u,v) · ∂b(u,v)
∂v

.

(14.41)
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For slow (smooth) normal vector variations relative to the extent of the sur-
face, ∂ n̂

/
∂u and ∂ n̂

/
∂v are negligible, simplifying Equation (14.41) to

∂ s′(u,v)
∂u

=
∂ s(u,v)

∂u
+ n̂(u,v) · ∂b(u,v)

∂u
=
−→
t + n̂(u,v) · ∂b(u,v)

∂u
,

∂ s′(u,v)
∂v

=
∂ s(u,v)

∂v
+ n̂(u,v) · ∂b(u,v)

∂v
=
−→
b + n̂(u,v) · ∂b(u,v)

∂v
.

(14.42)

Substituting the partial derivatives of (14.42) into Equation (14.40), we get

n̂′ =
(−→

t + n̂ · ∂b(u,v)
∂u

)
×
(−→

b + n̂ · ∂b(u,v)
∂v

)
=
−→
t ×−→b +

−→
t × n̂ · ∂b(u,v)

∂v
+ n̂×−→b · ∂b(u,v)

∂u
+ n̂× n̂ · ∂b(u,v)

∂u
∂b(u,v)

∂v
⇒

n̂′ = n̂−−→b · ∂b(u,v)
∂v

−−→t · ∂b(u,v)
∂u

.

(14.43)
The new perturbed normal vector of Equation (14.43), which is expressed

relative to the object or world coordinate system, depends only on the tangent
vectors and the partial derivatives of the bump map (Figure 14.28).

Figure 14.29. Displacement versus bump mapping. The first produces accurate
elevation parallax and offset geometry at the edges in exchange for a high ge-
ometry tessellation. A bump-mapped surface can be very simple and still convey
a convincing relief appearance, which nevertheless lacks in accuracy and fails to
produce correct edges.
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Figure 14.29 shows a comparison between a displaced surface and a bump-
mapped surface. The displaced surface needs a fine tessellation in order for the
vertices to be able to track the texture-space offset variations. The resulting, dis-
placed mesh correctly captures the relief details and is accurately shaded and
clipped across the whole surface. On the other hand, if the same texture infor-
mation is applied as a bump map to the surface, there is no need for excessive
tessellation of the polygons. A very simple geometric representation can be used
and still produces a good approximation of the shading on the surface. However,
this otherwise convincing shading trick (see also the normal mapping method be-
low) has two disadvantages. First, the representation of relative offsets is poor
when deep depressions are present in the elevation pattern. The other problem
occurs at the surface edges, where due to the fact that the geometry is not ac-
tually bumpy, the shading conflicts with the clean, smooth surface extents. In
some cases, this problem can be solved by clipping the low-resolution geometry
at the silhouettes of the high-resolution version of the surface (here, the displaced,
tessellated one) [Sand00].

14.7.3 Normal Maps�

The bump-mapping method presented so far, uses as input the same image map
as the displacement mapping, i.e., a grayscale elevation image. An alternative
relief-representation method is normal mapping, where instead of providing an
elevation offset at each point, the normal vector that should be used in the shad-
ing calculations is directly supplied [Cohe98]. In procedural mapping, the normal
vector for the given input point can be calculated using a predefined function.
When parametric texturing is required to transfer a pre-calculated relief pattern
onto a model, the normal vector n̂(u,v) that corresponds to a texture coordinate
pair is stored as a color-coded triplet in a bitmap file. The R, G, and B compo-
nents of the image c(u,v) keep properly scaled and usually quantized (unless it
is a floating-point-number format) Cartesian coordinate values of the unit-length
vector:

n̂(u,v) = c(u,v)/2Nbits− (0.5,0.5,0.5), (14.44)

where Nbits is the number of bits used for storing each color channel.
The above mapping method is called object-space normal mapping. Object-

space normal mapping has two advantages. First, in contrast to bump-mapping,
the normals can be calculated intuitively from high resolution surfaces and stored
in normal maps on simplified texture-mapped versions. Color Plate XXII shows
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Figure 14.30. Normal mapping. (a) A low-resolution mesh has its normal vectors
replaced per rendered fragment, according to the normal map of Color Plate XXII.
(b) The original, high-resolution surface from which the normal map was extracted.

an example of an object-space normal map. Figure 14.30 and Color Plate XXIII
demonstrate the use of the technique to render detail on a simplified version of
a high-resolution model. The normal map has been constructed by sampling the
high resolution model and storing its normal vectors in a normal atlas texture
(see Section 14.8). This is a very useful technique in real-time rendering, where
high resolution geometry is first created using a modeling tool and then the final
application uses low-poly models coated with normal maps to display the intri-
cate shapes of their high-fidelity cousins at an affordable frame rate. The second
advantage of object-space normal maps is that they need significantly fewer cal-
culations to derive the local normal and perform the shading calculations. On the
other hand, because normals are expressed relative to an object or world reference
frame, they need to be transformed along with the object. When the object un-
dergoes any kind of distortion, such as skeletal animation or vertex morphing, the
object-space normals are wrong and result in unconvincing images.

14.7.4 Tangent-Space Normal Maps�

To overcome the limitations of object-space normal mapping, the normal vec-
tors can be defined using the tangent space as a reference frame. The normal
maps produced by this variation are called tangent-space normal maps (Color
Plate XXIV). Tangent-space-based normal maps may be less intuitive for a gen-
eral purpose calculation or visualization, and they look a lot like edge-filtered
versions of the relief patterns they represent (actually, they are directly related to
the partial derivatives of the bump map). Since they have a local reference frame,
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tangent-space normals are immune to transformations and deformations, and the
corresponding normal maps can be used as tiled textures on an arbitrary surface.

Unfortunately, tangent-space normal maps require some extra calculations to
be performed in order to integrate them with a shading model. More specifi-
cally, originally defined in the world coordinate system, the light-direction (n̂L)
and view-direction (n̂V ) vectors have to be transformed to the local tangent-space
coordinate system.

The tangent space is defined in such a way that the local z-direction points
at the (unperturbed) interpolated normal vector, the x-direction coincides with
the tangent vector, and the bitangent vector is parallel to the local y-axis. Af-
ter replacing the normal direction according to the normal map values, we get a
new normal vector ñ′(u,v). The resulting coordinate system is not necessarily
orthonormal, but the tangent vectors lie in approximately the right direction, pro-
vided the bump effect is not too pronounced. There are two options. One is to
leave the tangent vectors as they are and create an “almost-orthonormal” coordi-
nate system if we are absolutely positive that we have small perturbations of the
normal vector. The safest solution is to rectify the tangent and bitangent vectors
by first performing an orthonormalization step before using them to express the
light- and view-direction vectors in tangent space. Applying the Gram-Schmidt
orthogonalization formula [Leng04] and then normalizing the tangent vectors we
get

−→u ′ = û− (n̂′ · û) · n̂′,
−→v ′ = v̂− (n̂′ · v̂) · n̂′ − (u′ · v̂) ·−→u ′. (14.45)

The rotation matrix that transforms the light- and view-direction vectors, ini-
tially expressed in world coordinates, to the local tangent coordinate system is
the well-known change-of-basis matrix that is made up of the target coordinate
system axes expressed in the source coordinate system, as rows of the rotational
part of the homogeneous 4×4 transformation matrix:

RTangent =

⎡⎢⎢⎣
u′x u′y u′z 0
v′x v′y v′z 0
n′x n′y n′z 0
0 0 0 1

⎤⎥⎥⎦ . (14.46)

14.7.5 Tangent-Space Calculation�

Given an arbitrary texture-mapped point s on a polygonal surface, regardless of
the relief representation method chosen, we need to calculate the object-space
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Figure 14.31. Texture-aligned tangent space of a triangle.

tangent vectors
−→
t and

−→
b and the respective normalized ones, û and v̂. Let us

consider the common case of a triangle containing the surface point s. We use
here the derivation of

−→
t and

−→
b found in [Leng04].

Let the texture coordinate pairs of a triangle p1p2p3 be (u1,v1), (u2,v2), and
(u3,v3). We require that the tangent and bitangent vectors be locally parallel to
the texture isoparametric curves. This way, the tangent space is always aligned
with the normal or bump map (Figure 14.31), and the texture parameters are local
coordinates up to a scale factor on the xy-plane of the tangent space (remember
local z−axis coincides with the normal vector). We will also assume for now that
the tangent space remains constant across the polygon’s surface. We can express
an arbitrary point p in the interior of the triangle with respect to the tangent and
bitangent vectors by

p = p1 +(u−u1)ũ+(v− v1)v̂. (14.47)

As all three triangle vertices share the same tangent coordinate system, they
satisfy Equation (14.47) simultaneously:

p2−p1 = (u2−u1) û+(v2− v1) v̂,

p3−p1 = (u3−u1) û+(v3− v1) v̂,
(14.48)

or in a more compact form,
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−→q 2 = u21û+ v21v̂,
−→q 3 = u31û+ v31v̂.

(14.49)

The above linear system of six equations (two vectors, three coordinates per
vector) can be expressed in a matrix form with respect to the six unknown coor-
dinates of t̃ and b̃:[

u21 v21

u31 v31

][
tx ty tz
bx by bz

]
=
[

q2x q2y q2z

q3x q3y q3z

]
. (14.50)

The six unknown vector coordinates are obtained by solving this trivial linear
system. Using the determinant formula for the inversion of the coefficient matrix
we get

[
tx ty tz
bx by bz

]
=

1
u21v31−u31v21

[
v31 −v21

−u31 u21

][
q2x q2y q2z

q3x q3y q3z

]
. (14.51)

The resulting coordinate system is not normalized and possibly not even or-
thogonal. The vectors should be adjusted according to Equation (14.45) and then
normalized. The vectors

−→
t and

−→
b represent the triangle’s tangent space. In order

to assign a tangent coordinate system to each of the three vertices of a triangle in
a mesh, the tangent and normal vectors of triangles that share a particular vertex
have to be averaged and stored in the vertex information, along with the other
vertex attributes. Then, for every point in the triangle, the three vectors are inter-
polated in the same manner as the other vertex values (i.e., bilinear interpolation
or barycentric coordinates).

14.8 Texture Atlases�

In many practical applications of texture mapping, the need arises for a unique
mapping between surface points on a three-dimensional object and the texture
domain. The one-to-one surface parameterization is commonly used in situations
where texture values are location-dependent, the texture map is used as a storage
medium for surface data, or when we need to be able to bidirectionally address the
texture space and the surface points. The most prominent examples of such a pa-
rameterization are the use of textures to store pre-calculated diffuse illumination
(light maps or illumination maps), the normal maps, and the geometry images,
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where the Cartesian coordinates of the surface are themselves encoded in texture
maps. More about these particular applications will be discussed later.

A texture atlas is a surface parameterization where connected parts of the
object’s surface, called charts, are each mapped onto contiguous regions of the
texture domain. An object is first partitioned into charts, which are surface re-
gions homeomorphic to discs [Levy02]. Then, each chart is parameterized so that
the surface patch is unfolded on a two-dimensional domain to ensure a unique
mapping for each point in the chart. At this stage, the texture-domain pieces that
the charts are mapped to may overlap. Finally, the individual map pieces and the
corresponding parameter ranges are packed in a single texture so that the charts
do not overlap in texture space. This way the final atlas ensures the unique map-
ping between Cartesian coordinates on the surface and locations on the bounded
texture domain of the image map (Figure 14.32).

Numerous algorithms have been proposed for addressing each one of the three
stages of the texture-atlas-generation procedure as efficiently as possible. The pa-
rameterization stage depends on the constraints chosen for the surface segmen-
tation. When cutting a surface patch and unfolding it into the two-dimensional
parameter space, a set of implementation-dependent criteria must be satisfied in
order to

• minimize texture distortion and artifacts;

• distribute the texels over the surface as evenly as possible;

• ensure continuity and conformity of the mapping among the charts, if pos-
sible;

• maximize the area coverage of the charts and minimize the number of sep-
arate charts.

The third stage, i.e., texture packing, is actually a variant of the classic NP-
complete problem “bin packing,” where a number of objects of different volumes
need to be packed into a finite set of bins, while minimizing the vacant space.
In the two-dimensional case of the texture-atlas packing, a finite number of at-
las elements of known shape (concave in general) need to be arranged (moved,
rotated, and scaled) in the final texture map so that the gaps are minimized and
the coverage of the atlas texture is maximized. As the particular problem belongs
to the NP-complete class of problems, only near-optimal approximate solutions
have been proposed, from aggressive binary partitioning schemes to non-linear
programming optimization implementations.
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The “polypacks” approach is presented in Section 14.8.1 along with some
modifications. This approach is a simple and relatively easy-to-implement solu-
tion for texture atlas parameterization [Zhuk98b]. Not surprisingly, it is one of
the most common parameterization methods and has been extensively used for
the creation of lightmaps, i.e., textures that hold diffuse illumination information.
The algorithm is complemented with the kd-tree approach to texture packing.
Some more complex yet elegant and efficient solutions to the 1-to-1 surface pa-
rameterization problem can be found in [Levy02,Purn04,Shef05].

14.8.1 Surface Segmentation�

The surface is segmented in such a way that each surface region (polygon cluster
or polypack) is mapped to a plane with as little distortion as possible. The easiest

Figure 14.32. The parameterization of a surface as an atlas.
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way to do this is to cut the surface into areas of connected polygons that face
the same primary half-axis and use the corresponding plane (perpendicular to the
primary axis) as the projection plane for the planar mapping (Figure 14.32).

The problem with this naı̈ve segmentation method is that for relatively com-
plex surfaces and models with creases or irregular curved regions, there are too
many polypacks produced which are also relatively small. We seek to minimize
the number of charts in the final atlas because first, the unused space in the at-
las texture is increased with the number of atlas elements and second, the seams
between adjacent textured patches tend to be noticeable as the texture parameter-
ization changes in scaling or direction across the surface. If bilinear filtering or
mip-mapping is also utilized on the texture atlas, this makes the need for fewer
charts even more imperative due to the extra space that is required between the
packed atlas elements to act as guard space and avoid averaging texels of different
surface regions when interpolating or averaging texture values.

The planar mapping method can be modified to produce fewer polygon clus-
ters and partly alleviate the problem. First, the clustering criterion can be changed
so that adjacent polygons are clustered together if they have similar normal vec-
tors, regardless of the primary half-axis that they are aligned with. This way, we
can apply a region-growing algorithm on a number of seed polygons on the sur-
face and create connected regions of polygons. The criteria for the assimilation
of new polygons usually depend on the deviation of the new polygon’s normal
vector from that of the seed polygon or from the average normal vector of the
expanding chart, as in [Sand01]. The planar mapping projection plane is chosen
to be perpendicular to the normal vector. In some cases, depending on the chart
growth or surface segmentation method, there are still small and disconnected
patches, some of them even inside larger regions. If we relax the distortion con-
straint for the smaller patches, then we can assimilate them into larger regions,
thus cleaning up the surface charts and producing far fewer final polygon clusters
[Papa00].

The surface parameterization is straightforward in the case of the axis-aligned
segmentation. The axis-aligned bounding rectangle of the chart on the projection
plane is directly mapped onto the normalized parametric domain. Sander et al.
[Sand01] perform the additional optimization step of finding the minimum-area
bounding rectangle of the projected polygons (not necessarily axis-aligned) and
mapping this to the parametric domain, thus effectively minimizing the unused
space.

If the projection plane is aligned with the cluster normal, we need to project
the points on the intermediate parameterization plane and normalize the texture
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coordinates to the range [0,1]. Alternatively, we can transform the patch points
so that the cluster normal becomes aligned with a primary axis and then proceed
with mapping the transformed points as in the axis-aligned case.

14.8.2 Texture Allocation and Packing�

After splitting and parameterizing the surface, which is not assumed to be water-
tight or manifold in general, each cluster is mapped to the normalized parametric
domain ([0,1],[0,1]). In order for the texels of the final atlas texture to be uni-
formly distributed among the atlas charts and avoid stretching the texture, each
chart needs to be assigned a bitmap, whose aspect ratio r(i) matches the aspect
ratio of the planar projection of the ith polygon cluster, prior to packing. This
atlas element does not need to be a power-of-two sized bitmap. As the elements
will be packed to fill up the atlas texture, we only need to worry about the size of
the elements.

The size Ntexels(i) of each atlas element in texels is decided according to the
ratio of the area coverage Aproj(i) of the bounding rectangle of the projected poly-
gons on the plane to the sum of all Aproj(i) (total textured area, including unused
space):

Ntexels(i) = αNtotal ·
Aproj(i)

Charts
∑
j=1

Aproj( j)
, 0 < α < 1. (14.52)

The dimensions of the ith atlas element are easily determined by the aspect
ratio and the number of texels allocated to it:{

wi ·hi = Ntexels(i)
r(i) = wi/hi

⇔
{

hi =
√

Ntexels(i)/r(i)
wi = r(i) ·hi

. (14.53)

When inversely projecting a texel onto a polygon of the polygon cluster, the
resulting patch is a parallelogram and if there is small distortion in the texture
parameterization phase, this patch is approximately square. Therefore, the surface
is almost uniformly sampled and the texture atlas can be ideally used for surface
resampling or the mapping of pre-calculated illumination (see Section 14.8.3).

The preparation of the individual atlas elements is not yet complete. In order
to avoid using texture values from neighboring elements in the final packed atlas
texture, the texture coordinates of the polygon clusters need to be pulled toward
the inside of the area they occupy in texture space (Figure 14.33). Let us call
“active texels” the texels actually mapped to the polygons after shrinking the tex-
ture coordinates. The unused pixels left in the atlas element outside the active
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Figure 14.33. Transformation of the texture coordinates in an atlas element in
order to leave some guard space around the parameterized polypack.

texels are flagged as “sand texels” and they act as a guard space. After calculat-
ing the texture values for the active texels, the sand texel values are iteratively
extrapolated or copied from the nearest texels already evaluated (active texels or
previously estimated sand texels).

If Nsand are the desired number of unused texels on each side of the atlas
element, the corresponding transformation matrix for shrinking the ith polygon
cluster texture coordinates is given by

Msand = T
(

1
wi

Nsand,
1
hi

Nsand

)
·S
(

wi−2Nsand

wi
,

hi−2Nsand

hi

)
. (14.54)

In the work of Zhukov et al., the problem of intersecting polygons is also ad-
dressed [Zhuk98b]. When two surfaces intersect and part of one polygon goes
beneath the other, the texture values on the atlas elements that correspond to the
sunken patches will be incorrect. Furthermore, due to interpolation, the intersect-
ing patches will draw color from the sunken patches, resulting in visible artifacts
and discontinuities in the sampled function. The authors suggest flagging the
texels of the sunken patches as sand texels and averaging the texel values of the
intersecting patches to ensure a smooth transition from one intersecting surface to
the other.

The texture packing is performed by recursively partitioning the final atlas
texture, i.e., the placeholder for the individual atlas elements, into areas that will
eventually host the atlas elements. The method presented here performs a non-
uniform binary partitioning of the image space that results in an unbalanced kd-
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Figure 14.34. Construction of a texture atlas by packing individual chart textures
with a kd-tree binary image subdivision.

tree with variable keys. (A kd-tree is a binary tree where sorting and searching
is performed using a k-dimensional attribute key.) At each internal level i of
the tree traversal, the i mod(k)-coordinate of the k-dimensional input value is
compared with the corresponding threshold stored in the node to select the left or
right branch. In the case of image partitioning, the internal nodes of the tree are
decision nodes that correspond to the splitting lines of an image partitioned into
two non-equal areas, either vertically or horizontally. The leaf nodes represent
either an empty space or a region occupied by a texture map (Figure 14.34).

Normally, following the definition of a kd-tree, the splitting of the image al-
ternates between horizontal and vertical. The variation that is described in detail
below uses a variable key selection according to the best fitting of the atlas ele-
ment to be inserted into the available space, thus taking care to utilize the texture
as efficiently as possible. This means that as we traverse the tree, a horizontal
split is not necessarily followed by a vertical split and vice versa.

Initially, there is one empty node, representing the entire atlas texture space.
Before inserting any elements into the atlas tree, the elements are sorted by their
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longest edge in order to insert the bulkiest subtextures first and avoid any unnec-
essary fragmentation of the available space.

When the first element is inserted in the lower-left corner of the atlas texture,
the latter is split horizontally into two cells, the left adopting the element’s width,
the right becoming an empty node (Figure 14.34). Now, the left cell is not a
well-defined node and needs to be split further into two nodes, one that precisely
contains the inserted element and one representing the remaining empty space
above the element. Therefore, the left cell becomes a branching node that is
marked as a vertical split with the separating line at the height of the inserted
element. The element becomes one child of the vertical split (occupied leaf node)
and the remaining space becomes an empty node. New elements traverse the
tree in search of an empty space that can accommodate them. In this particular
example, a new element map can be inserted either at the second-level empty node
or at the first-level empty node, caused by the horizontal split. The procedure is
repeated until either all elements have been placed in the texture atlas or there is
an error encountered in fitting a map.

A reason why the packing may fail is that the size of the atlas texture is too
small to accommodate the atlas elements. Note that an element must be at least
1× 1 texels in size. Furthermore, leaving some guard space requires chunks of
at least 3× 3 pixels. If the final texture is too small, there is no way to fit the
subtextures into the atlas.

The insertion of an element into the tree structure as well as the basic node
definition are described in the following piece of code.

class TreeNode

{

//DATA MEMBERS:

//atlas texture area extents subtended by the node

int width, height, xmin, ymin, xmax, ymax;

//node type: branch (vert/horiz), empty, leaf (atlas element)

int type;

// In case of leaf node, pointer to allocated element bitmap

TextureMap *map;

//MEMBER FUNCTIONS:

TreeNode(TreeNode *parent, int minx, int maxx,

int miny, int maxy);

bool isBranch();

bool isLeaf();

bool insert(Element * element);

...

}
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bool TreeNode::insert (Element * element)

{

// CASE A. terminal, occupied node: cannot insert

if (isLeaf ())

return false;

// CASE B. Branch node, try inserting in children nodes

if (isBranch())

{

if (child[0]->insert (element)) // try to insert in left child

return true;

else

if (child[1]->insert (element)) // failed, try the right child

return true;

else // failed, element cannot fit

return false;

}

// CASE C. Unused node, try inserting element

// 1) Check if the remaining space is adequate for this element

if (width < element->width || height < element->height)

{ // doesn’t fit as is, try to fit it sideways:

if (height < element->width || width < element->height)

{

// doesn’t fit either way, insertion failed

return false;

}

else

// fits sideways, rotate the element by swapping params

element->swapUVs ();

}

// 2)Choose splitting direction, split space and insert element

if (width - element->width >= height - element->height)

{

//i. if the map leaves more space horizontally, split the

// cell horizontally, creating a left and a right child

type = NODE_HORIZONTAL_SPLIT;

child[CHILD_LEFT] = new TreeNode (this,

xmin, xmin + element->width - 1, ymin, ymax);

child[CHILD_RIGHT] =new TreeNode (this,

xmin + element->width, xmax, ymin, ymax);

// Now split the left child vertically into:

//a leaf node (top)...
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child[CHILD_LEFT]->type = NODE_VERTICAL_SPLIT;

child[CHILD_LEFT]->child[CHILD_TOP] =

new TreeNode (child[CHILD_LEFT],

xmin, xmin + element->width - 1, ymin,

ymin + element->height - 1);

child[CHILD_LEFT]->child[CHILD_TOP]->type = NODE_LEAF;

child[CHILD_LEFT]->child[CHILD_TOP]->map = element->map;

// ... and an empty node (bottom)

child[CHILD_LEFT]->child[CHILD_BOTTOM] =

new TreeNode (child[CHILD_LEFT],

xmin, xmin + element->width - 1,

ymin + element->height, ymax);

}

else

{

// ii. split the cell vertically, creating a top and

// bottom child

type = NODE_VERTICAL_SPLIT;

child[CHILD_TOP] = new TreeNode (this,

xmin, xmax, ymin, ymin + element->height - 1);

child[CHILD_BOTTOM] = new TreeNode (this,

xmin, xmax, ymin + element->height, ymax);

// Now split the top child into a leaf node (left)...

child[CHILD_TOP]->type = NODE_HORIZONTAL_SPLIT;

child[CHILD_TOP]->child[CHILD_LEFT] =

new TreeNode (child[CHILD_TOP],

xmin, xmin + element->width - 1,

ymin, ymin + element->height - 1);

child[CHILD_TOP]->child[CHILD_LEFT]->type = NODE_LEAF;

child[CHILD_TOP]->child[CHILD_LEFT]->map = element->map;

// ... and an empty node (right)

child[CHILD_TOP]->child[CHILD_RIGHT] =

new TreeNode (child[CHILD_TOP],

xmin + element->width, xmax,

ymin,ymin + element->height - 1);

}

return true;

}

Lévy et al. proposed a slightly more complex packing approach [Levy02]. It
is more suitable for large polygon charts with low compactness (highly irregu-
lar boundaries) than the binary subdivision method and operates in the discrete
texture space. After rotating the charts so that their longest diameter is vertically
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aligned, they are sorted according to height and inserted into the atlas. The in-
coming charts are stacked on top of the existing clusters in the atlas, not unlike
the well-known Tetris game. The topmost texels occupied by the charts already in
the atlas form a “horizon,” which the new chart’s underside texels (“bottom hori-
zon”) cannot penetrate. The new chart’s position is optimized so that the space
left between the existing horizon and the bottom horizon is minimized. Then, the
horizon is updated, taking into account the upper texels of the new chart.

14.8.3 Applications of Texture Atlases�

The most common application of texture atlases is for the storage of pre-calculated,
view-independent illumination. A three-dimensional model is parameterized into
a texture atlas, called a light map or illumination map, and the incident direct and
indirect diffuse illumination is stored in the texels of the map. When the object
is rendered, instead of performing complex shadow and global illumination cal-
culations, the pre-recorded information on the light map can be used, provided
that the geometry is part of a static environment and that the moving objects’ con-
tribution to the diffuse illumination of the model is negligible. This assumption
is valid for most static three-dimensional environments often encountered in 3D
games and other productions, and therefore, light-mapping is extensively used
for the accelerated real-time rendering of realistic scenes [Watt01]. In practice,
since illumination varies more slowly on a surface than a color or bump pattern
that may be applied to it (with the exception of sharp shadow boundaries), the
resolution of the light map does not need to be very high. Furthermore, for most
cases, the surface already has at least one set of texture parameters, associated
with the modulation of the surface material. This means that a separate set of pa-
rameters for light mapping is stored on the polygon vertices (calculated from the
atlas parameterization). The light map is applied as a second pass to the surface,
modulating the underlying high-detail color and bump shading. In contemporary
hardware, where multiple texture units operate in parallel, the different textures
are blended in one pass, making the rendering overhead of the pre-calculated il-
lumination negligible.

In Section 14.7, we have seen how texture mapping is used to simulate the ap-
pearance of surfaces with a relief pattern and how normal mapping is exploited to
transfer the shading of a complex surface onto a simplified version of the surface.
If the object to be normal-mapped is not a trivial model case (e.g., a wall) or if it
does not bear any repetitive geometric features, a texture atlas is necessary for its
parameterization.
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Extending further the idea behind the normal mapping, geometry images
[Gu02, Sand03] store in the R, G, and B components of the texture the surface
locations that correspond to each texel of the object’s atlas. This efficient three-
dimensional representation provides a regular sampling of the surface and can
be used for three-dimensional pattern recognition (on 2D input data), easy multi-
resolutional object representation, fast transmission, re-meshing and many other
important applications.

14.9 Texture Hierarchies

Complex surface materials and finishes can be achieved by using parametric and
procedural textures as building blocks in a hierarchical tree-like structure (a tex-
ture tree). Texture hierarchies were introduced by Cook in his work on shade
trees, a generalized hierarchical shader design and implementation [Cook84]. The
individual textures can be blended, multiplied, added, or combined in many ways
to produce a new output. Furthermore, the output of one texture can be used as
input to another or as a weighting function in an interpolated blending of textures
(see Figure 14.35). Texture trees can contain texture transformations, transfer
function filters (see Section 10.5.1), or output format converters, as well. A tex-
ture tree may be utilized to calculate any material attribute, provided the output
of the root node is compatible with the attribute format (e.g., a grayscale value to
modulate the transparency of a surface and not a unit-length vector).

In a texture tree, nodes can be instantiated (Figure 14.35). If a texture pattern
is used multiple times in various locations of the hierarchy, there is no need to
replicate the data or the computations associated with it. The texture is allocated
once and referenced by the calling nodes multiple times. Nor does the referenced
node need to be re-evaluated for the same point (fragment) each time its output
is required. The shader is flagged as evaluated upon the first call to the node and
subsequent texture evaluations reuse the cached value.

Hierarchical textures are heavily used in off-line rendering because they pro-
vide great freedom to artists. They allow the creation of material libraries con-
sisting of basic, reusable building blocks that can be combined in an easy and
reconfigurable manner to produce the desired final result. In real-time rendering,
texture trees are implemented via the use of multiple texture units and hardware
texture combiners, along with fragment shader programs that are executed in the
GPUs’ programmable cores.
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Figure 14.35. A practical example of texture hierarchies. (See also Color
Plate XXV.)
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14.10 Exercises
1. Derive a formula for calculating nested procedural textures, taking into ac-

count potential transformations: M1 fproc1(M2 fproc2(...MN fprocN(p))).

2. Write a program to calculate the mip-map levels of a texture image of di-
mension 2M×2N , including the filtering and downsampling operations.

3. Implement the box-mapping selection and addressing mechanism as a pro-
cedural texture (shader). The input should be the direction vector and the
output a pair of texture coordinates plus a map index. Comment on the use
of texture transformations in this particular case. Remember that cube map-
ping can be used for capturing the incoming intensity from the surrounding
environment. How can transformations help minimize the rendering of the
individual cube maps when the user rotates the viewing direction of a re-
flective/refractive object that uses cube mapping?

4. What relief texturing method would be more appropriate for the rendering
of (a) sand dunes, (b) a crater field? Consider rendering speed and image
quality at ground level as the important factors to justify your choice.

5. Take the texture-hierarchy example of Figure 14.35. Assuming that the
image maps use the same texture coordinates, can the tree be reduced fur-
ther by pre-multiplying image maps and modifying the procedural texture
attributes?

�6. Modify the bin-packing algorithm of Section 14.8 to resize the charts and
then the final atlas before the final packing of the charts, in case of insuffi-
cient space. Keep in mind that a chart cannot occupy less than a texel-wide
area (active texels) and that the sand texels also contribute to the minimum
size of the charts.

7. Implement a normal map for pond ripples using a texture tree of combined
wood procedural textures, properly adapted to produce normal vectors as
output.

�8. Can cube maps be used for caching shadow-related information and help
accelerate one or more of the shadow-generation methods? Justify your
answer.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

15
Ray Tracing

There are two ways of spreading light. . .
To be the candle, or the mirror that reflects it.

—Edith Wharton

15.1 Introduction
Direct-rendering (scan-line) algorithms operate on geometric primitives and fill
arbitrary and overlapping locations in the frame buffer with color information.
In a general sense, they are object-to-screen space image synthesizers. Sorting
(hidden surface elimination) is also performed in image space using the Z-buffer
algorithm. Ray tracing is a general and versatile algorithm that in fact operates in
exactly the opposite manner, i.e., it is a screen-to-object space image synthesizer.

In ray tracing, the path (ray) along the line of sight starting from the camera
focal point (center of projection) and passing through each pixel is followed as
it travels through the three-dimensional scene, and it registers what the observer
sees along this direction [Appe68]. As the ray encounters geometric entities, it is
specularly reflected, refracted, or attenuated (and completely absorbed of course)
depending on the material properties of the objects. Hidden surface elimination
(in object space and not image space) happens as an integral part of this process
because the ray encounters surface interfaces closer to the viewer first while it
travels through the three-dimensional world.

The notion of following a path of light and calculating its behavior at the in-
terface between materials has existed long before the beginning of the computer
graphics era. Electromagnetic wave transmission theory, but most of all geomet-
rical optics and the laws of reflection and refraction, provided the framework for

529
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the study of light-object interaction in the physics domain, a long time before the
inception of ray tracing as a computer algorithm in the early 1980s.

Direct real-time rendering in its pure form disassociates the color and shading
of a particular surface area from the existence of other objects in the same envi-
ronment. Shadows and reflected/refracted light on surfaces need to be simulated
or approximated separately and fused as color information in the local illumina-
tion model that is used during scan conversion. Ray tracing, on the other hand,
integrates all calculations that involve the specular transmission of light in one
single and elegant recursive algorithm, the recursive ray tracing algorithm (see
Section 15.3).

15.2 Principles of Ray Tracing

Let us first look at how light that emanates from a single point light source is
transmitted through space. In Figure 15.1, a glass cube resting on a checkered
surface is lit by a single point light source. Light emanates from the location of
the light source toward every direction, following an infinite number of straight
paths until it hits a surface.

On the interface between two different solids,1 light is diffusely scattered and
specularly reflected or refracted. In this particular example, the checkered surface
has no mirror-like qualities or transparency, so light leaving this surface is esti-
mated by using a local illumination model, such as the Blinn model (see Chap-
ter 12). According to the surface’s BRDF, part of the specularly and diffusely
reflected light is directly received by the observer, unless there is no clear line
of sight between this point and the center of projection of the observer. How-
ever, light reaches the observer indirectly as well, after following secondary paths
through transparent media or by being reflected off perfect mirrors. The surface of
the glass cube is partially reflective, and thus some rays that are spawned after the
direct illumination of the checkered surface hit the observer after being reflected
on the cube. Light is also refracted through the cube, illuminates the interfaces it
encounters (a local illumination model is applied each time), and is attenuated as
it changes medium and is absorbed by the material it travels through. Finally, it
reaches the observer.

1Parametric and polygonal surfaces are treated as watertight models that enclose a (not necessarily
homogeneous) volume of space. The surfaces are assigned material properties such as an index of
refraction or a reflectivity coefficient that characterize the body of the object. These attributes can be
further modulated by texturing techniques (See Chapter 14).
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Figure 15.1. Light transmission. An infinite number of rays emanate from a light
source, and a small number reach the eye after following complex paths within the
scene.

Returning to the paradigm of ray tracing, the light that is seen through a pixel
of the rendered image is the cumulative contribution of the rays that directly or
indirectly hit the surface point visible in this direction and that travel toward
the viewpoint (Figure 15.2). The nearest point encountered by looking at the
scene though pixel (i, j) in general obstructs all other geometry behind it. This
point may or may not be directly illuminated by the light source(s), depending on
whether other geometry prevents the light from reaching it. If it is indeed directly
lit by the light source, then a local illumination model can be applied to modulate
the incoming light according to the material properties.

Rays that reach the intersection point from other directions (via reflection or
refraction) and travel toward pixel (i, j) can be tracked and followed to discover
what light has been reflected off the surface from which they spawned. This
is possible due to the reciprocity of light propagation: Light follows the same
path during refraction or perfect reflection on a material interface regardless of
the direction of propagation (with the exception of total internal reflection; see
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Figure 15.2. Cumulative illumination visible through a frame-buffer pixel (i,j) due
to the contribution of direct and indirect rays.

Section 15.2.2). For each ray that we follow back to its source, we can evaluate
the light that is propagated toward the viewer by applying a local illumination
model and re-investigating for other secondary rays that reach that point. This is
exactly the mechanism of ray tracing. Given that among all infinite rays that a
light casts to the environment we are only interested in those that eventually reach
the viewpoint through a viewport pixel, we can trace back the light contributions
by following the rays in the opposite direction of their propagation toward the
source. The notion of tracing back the rays to their source instead of following
the light from the sources to the environment is what makes ray tracing a com-
putationally manageable algorithm, applicable in many simulation applications
apart from computer graphics.

Compared to direct-rendering algorithms, ray tracing has two significant ad-
vantages. First, ray-geometry intersections can be directly performed using non-
polygonal surfaces, such as geometric solids, implicit or parametric surfaces, and
fractals, without requiring any conversion to polygons first. Any mathematical
surface that can be intersected by a ray can be rendered. Second, reflection and
refraction phenomena can be accurately modeled.

In the next two sections, we shall briefly state the laws of reflection and re-
fraction in a manner convenient for the ray-tracing model.
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15.2.1 Reflection

In Chapter 12, in order to predict the direction of maximum specular highlight,
we derived the reflection vector r̂ in terms of the normal vector n̂ of the surface
at the point of incidence and the direction of the incoming light l̂. The reflected
and incident directions lie on a plane perpendicular to the surface, and according
to the law of reflection, the angle of incidence θi equals the angle of reflection
θr; that is, the incident and reflected light-propagation directions are symmetrical
with respect to the normal vector. Summarizing the calculations of Section 12.5.2,
for an arbitrary ray of light from a direction r̂i incident on a perfectly reflecting
interface between two bodies, the reflected ray in the perfect mirror-reflection
direction r̂r is given by (Figure 15.3(a)):

r̂r = r̂i−2n̂(n̂ · r̂i). (15.1)

Notice that here the incident direction is the opposite of the light direction vector
l̂ of Section 12.5.2 since we need to emphasize the direction of propagation for
clarity.

15.2.2 Refraction

When light crosses the boundary between two uniform dielectric media, its veloc-
ity in the direction of propagation changes, while its frequency remains unchanged.

The simple index of refraction n (or refractive index) of a material is the ratio be-
tween the speed of light c in a vacuum and the phase velocity of light υ in this
medium:

n = c/υ . (15.2)

The index of refraction n is greater than 1 for transparent materials and almost 1
for the air. The index of refraction also depends on the wavelength λ of the light,
therefore n = n(λ ). In particular, for visible light, n decreases with increasing
wavelength. In practice though, most implementations of ray-tracing simulations
disregard the dependency of the index of refraction on the wavelength.

The phase velocity with which the light travels through different media is
responsible for the bending of the propagation direction as the light crosses the
interface between them (Figure 15.3(b)). According to Snell’s law, the angle
θt at which the incident light leaving a material with index of refraction n1 is
transmitted through a material with index of refraction n2 is given by

sinθt

sinθi
=

n1

n2
. (15.3)
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Figure 15.3. Ray diversion. (a) Reflection. (b) Refraction.

According to (15.3), light entering a medium with larger index of refraction (n2 >

n1) is bent toward the normal direction of the optically denser medium.
When n2 < n1 (light enters a less optically dense material), the phenomenon

of total internal reflection may occur, depending on the angle of incidence. In
this situation, light is not transmitted through the boundary but is reflected instead
back into the denser material. A case where total internal reflection can be easily
observed is when diving underwater: at large viewing angles, the water surface
acts as a mirror. The minimum angle of incidence at which total internal reflection
occurs is called a critical angle θc:

θc = arcsin

(
n2

n1

)
. (15.4)

Let us now calculate the direction of the new, transmitted ray r̂t through the sec-
ond body based on the incident ray direction r̂i, the normal vector n̂ of the surface
at the point of incidence, and the refractive indices n1 and n2 (Figure 15.4). Fol-
lowing the derivation in [Leng04], the transmitted-ray direction vector can be ex-
pressed as the sum of a component parallel to the normal vector and one parallel
to the material interface (see Figure 15.4):

r̂t =−n̂cosθt − ĝsinθt , (15.5)

where ĝ is the unit length vector parallel to r̂p as in Figure 15.4. The vector r̂p

can be calculated from the normal vector and the incident direction:

r̂p =−r̂i− n̂cosθi =−r̂i− n̂ · (−r̂i · n̂) =−r̂i + n̂(r̂i · n̂). (15.6)
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Figure 15.4. Refracted ray calculation

Due to the fact that r̂i is a unit vector, the length of r̂p equals sinθi. After normal-
izing it, we get:

ĝ =
r̂p

sinθi
=
−r̂i + n̂(n̂ · r̂i)

sinθi
. (15.7)

Replacing ĝ from Equation (15.7) into Equation (15.5), we get

r̂t =−n̂cosθt − (n̂(n̂ · r̂i)− r̂i)
sinθt

sinθi
. (15.8)

From Snell’s law (Equation (15.3)), we can replace the sines in the above relation
with the indices of refraction. Also, from the Pythagorean trigonometric identity,
cosθt can be replaced by

√
1− sin2 θt . This step is necessary in order to relate

the transmission vector with known variables. Reusing Snell’s law on the identity,
we get

cosθt =
√

1− sin2 θt =

√
1− n2

1

n2
2

sin2 θi =

√
1− n2

1

n2
2

(1− cos2 θi). (15.9)

Introducing these relations in Equation (15.8) we end up with a relation that is
free of variables on the transmission side of the interface:

r̂t =−n̂

√
1− n2

1

n2
2

(1− cos2 θi)− (n̂(n̂ · r̂i)− r̂i)
n1

n2
. (15.10)
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As a final step, we replace the cosine with the corresponding inner product:

r̂t =−n̂

√
1− n2

1

n2
2

(
1− (n̂ · r̂i)

2
)
− (n̂(n̂ · r̂i)− r̂i)

n1

n2

= r̂i
n1

n2
− n̂

(
(n̂ · r̂i)

n1

n2
+

√
1− n2

1

n2
2

(
1− (n̂ · r̂i)

2
)) (15.11)

Note that the quantity inside the radical of Equation (15.11) is positive (and
therefore valid) only when n2

2/n2
1 ≥ 1− (n̂ · r̂i)

2 ⇔ n2/n1 ≥ sinθi. In the opposite
case, we have the phenomenon of total internal refraction (see above) and the new
ray is calculated according to the law of reflection (Equation (15.1)).

15.2.3 Reflectance and Transmittance�

We have seen that light that reaches the boundary between two different dielectric
materials is split into a reflected wave and a refracted one. Snell’s law and the
law of reflection define the direction at which light is propagated, but they do not
provide an insight into the intensity distribution between reflected and refracted
waves. The amount of light that is reflected off an interface between materials
with indices of refraction n1 and n2 is given by the Fresnel equations.

The Fresnel equations provide the reflection and refraction coefficients for
light crossing the boundary between two dielectrics, which correspond to the ra-
tio between the amplitude of the reflected or transmitted electric field and the am-
plitude of the incident electric field. Light is a transverse electromagnetic field,
and therefore the electric and magnetic fields are oscillating in a direction perpen-
dicular to the direction of propagation. At any given time, the electric field (or
the magnetic field, which is perpendicular to the electric one) can be decomposed
into one component parallel to and one component perpendicular to the plane
of reflection. For non-magnetized, isotropic materials, A. J. Fresnel provided two
equations for the reflection coefficient rp and rs as well for the transmission coeffi-
cient tp and ts for the case of parallel and perpendicular polarization, respectively:

rs =
n1 cosθi−n2 cosθt

n1 cosθi +n2 cosθt
, rp =

n1 cosθt −n2 cosθi

n1 cosθt +n2 cosθi
;

ts =
2n1 cosθi

n1 cosθi +n2 cosθt
, tp =

2n1 cosθi

n1 cosθt +n2 cosθi
.

(15.12)

Since the index of refraction depends on the wavelength of the light, the reflec-
tion and refraction coefficients depend on the incident angle and the wavelength
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of the incoming ray. The Fresnel formulas for wave intensity can be derived by
squaring Equation (15.12):

Rs = r2
s , Rp = r2

p, Ts = t2
s , Tp = t2

p. (15.13)

Note that one should not expect that Ts = 1−Rs or Tp = 1−Rp (energy con-
servation) due to the fact that intensity is flux per unit area and the incoming beam
is spread or shrunk according to the relation between the refractive indices.

As the exact oscillation direction and polarization of the incident wave is sel-
dom considered in computer graphics applications, when the Fresnel reflection
model is applied, the average reflection and refraction coefficients can be used:

R = (Rs +Rp)/2, T = (Ts +Tp)/2. (15.14)

In a more simplified (yet common) paradigm, the transmission and reflection
coefficients are user-selected constants, and the energy-conservation constraint is
not always respected. One reason for this convention is that in order to make a
rough approximation of the attenuation of the light as it is transmitted through
the solid body, the transmission (or refraction) coefficient is significantly lower
than the expected value. Another problem is that the contribution of the reflected
and refracted light to the local reflection model also should be balanced to avoid
saturating the cumulative intensity that is propagated to the eye or to exaggerate
the resulting effect at will.

15.3 The Recursive Ray-Tracing Algorithm
Although the ray-casting mechanism to display a three-dimensional scene with
hidden surface removal as an alternative to scan-conversion is attributed to Ap-
pel [Appe68] and Goldstein and Nagel [Gold71], an integrated approach to re-
cursively tracing rays through a scene via reflection and refraction was proposed
later by Whitted [Whit80]. It combined the previous algorithms that shot primary
rays from the viewpoint toward the scene until they hit a surface and then illu-
minated the intersection points with the recursive re-spawning of new rays from
these points.

The principle of the algorithm is quite simple: For each pixel, a primary ray
is created starting from the viewpoint and passing through the center of the pixel.
The ray is tested against the scene geometry to find the closest intersection with
respect to the starting point (Figure 15.5). When a successful hit is detected, a
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Figure 15.5. Recursive re-spawning of rays and their tracing through the scene.

local illumination model is applied to determine the color of the point according to
which light sources are visible from this point. Otherwise, the color returned is the
background color. If the material of the surface hit is transparent, a refracted ray
is spawned. If the surface is reflective, a secondary ray is also spawned toward the
mirror-reflection direction. Both secondary rays (reflected, refracted) are treated
the same way as the primary ray; they are cast and intersected with the scene.
When and if they hit a surface, a local illumination model is applied, new rays are
potentially spawned, and so on (Figure 15.5).

Each time a ray hits a surface, a local color is estimated. This color is the sum
of the illumination from the local shading model as well as the contributions of
the refracted and reflected rays that were spawned at this point. Therefore, each
time a recursion step returns, it conveys the cumulative color estimated from this
level and below (Figure 15.6). This color is added to the local color according
to the reflection and refraction coefficients and propagated to the higher (outer)
recursion step. The color returned after exiting all recursion steps is the final pixel
color.

The depth of the recursion, i.e., how many times new rays are spawned, is
controlled primarily by three factors: First, if the ray hits a surface with no trans-
parency or reflective quality, no new rays are generated. Second, if a ray’s con-
tribution drops significantly, there is no point in continuing to accumulate light
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Figure 15.6. Schematic view of the recursive ray-tracing algorithm.

on this particular path through the scene as it will have very little impact on
the resulting illumination registered on the pixel. Finally, to prevent an uncon-
trollable spawning of rays in highly reflective or elaborate transparent environ-
ments, a maximum ray-tracing depth is usually defined (typical values for most
scenes are between 4 and 8, depending on object curvature and material trans-
mission and reflection coefficients). For scenes with highly curved reflective or
transparent objects, heavy distortion prevents the eye from registering the missing
reflected/refracted information. Figure 15.7 shows a comparison between render-
ings with different maximum ray-tracing depth. Early ray pruning results in very
wrong images for certain scenes. In this particular example, a polished sphere is
placed inside a Plexiglas cube. If one recursive step is allowed, the transparent
cube only acts as a reflector, as the transmitted ray does not penetrate the cube
walls (another refracted ray at the inner boundary is required). From maximum
depth of 4 and above, the image begins to convey the correct visual information,
as multiple refracted and reflected rays penetrate the cube and hit the surface and
the background beyond, signifying a see-through object.

The recursive ray-tracing algorithm can be summarized as follows:

Color raytrace( Ray r, int depth, Scene world,

vector <Light*> lights )

{

Ray *refl, *tran;

Color color_r, color_t, color_l;
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// Terminate the procedure if the maximum recursion

// depth has been reached

if ( depth > MAX_DEPTH )

return backgroundColor;

// Intersect ray with scene and keep nearest

// intersection point

int hits = findClosestIntersection(r, world);

if ( hits == 0 )

return backgroundColor;

// Apply local illumination model, including shadows

color_l = calculateLocalColor(r, lights, world);

// Trace reflected and refracted rays according to

// material properties

if (r->isect->surface->material->k_refl > 0)

Figure 15.7. The impact of maximum ray-tracing depth on the rendered image
accuracy.
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{

refl = calculateReflection(r);

color_r = raytrace(refl, depth+1, world, lights);

delete refl;

}

if (r->isect->surface->material->k_refr > 0)

{

tran = calculateRefraction(r);

color_t = raytrace(tran, depth+1, world, lights);

delete tran;

}

return color_l + color_r + color_t;

}

15.3.1 Ray-Tracing Data Structures

To better understand the algorithm, we need to introduce a data structure for the
rays and explain what data are propagated and when. As the light passes through
transparent objects or bounces off reflective surfaces, it is attenuated because of
the reflection and refraction coefficients and potential distance attenuation that we
may apply to the rays. If volumetric effects are accounted for, the ray is also at-
tenuated due to absorption and scattering as it travels through a dense body (this
case is not covered here, see volume rendering in Chapter 18). These consider-
ations imply that a ray needs to keep track of its “strength” in order to properly
modulate the contributed local color at the intersection point and facilitate the
ray-significance termination criterion for the recursion (see termination criteria
above).

As a ray is tested for intersection with multiple surfaces, many intersection
points are usually identified along the semi-infinite line that it defines. This means
that the ray structure must keep track of the closest point to the ray origin in
order to be able to compare it with the next intersection that may occur while an
iterative ray-primitive intersection test is performed (see Section 15.3.2). To this
end, we can also keep the distance between the currently closest hit and the ray
origin, because we need to compare it with the distance to the next intersection
point. The calculated distance is also useful in the case of distance or volumetric
attenuation calculations.

In terms of data representation and storage, an intersection point is not a sim-
ple point in space in the case of ray tracing. It is used in calculations involving
the normal vector at this location, the reflection and refraction coefficients, other
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material properties (for the local illumination model), etc. Therefore, when an
intersection is identified, a number of parameters must be passed to the ray (or a
special intersection point structure therein). We need to keep the local normal, the
texture coordinates, and a reference to the material that is valid for this particular
location. Furthermore, a reference to the primitive where the intersection point
belongs is useful in order to be able to retrieve additional information. In the case
of ray tracing in polygonal scenes, the ray could only keep the intersection point
and distance, the reference to the polygon, and a set of barycentric coordinates
to derive all required attributes from the vertex information when and if required
(see Section 14.2.2). A potential data structure for a ray and intersection point
could look like this:

class Ray

{

public:

IsectPoint *isect;

int level;

Vector4f origin;

Vector3f dir;

float strength;

// methods

transform (Matrix4X4 mat);

}

class IsectPoint : Vector4f

{

public:

Vector3f n; // local normal

Primitive *surface; // intersected primitive

double barycentric[3]; // for triangular meshes

double t; // parametric distance between

// origin and intersection point

}

15.3.2 Ray-World Intersection

As it may already be apparent, for normal primary and secondary rays (shadow
rays are slightly different; see Section 15.3.3) the search for the closest intersec-
tion point is exhaustive with respect to the scene database. Distance sorting for
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hidden surface removal requires that all intersection points along the semi-infinite
line of the ray be identified.

Without some form of intersection acceleration, rays have to be tested against
the whole database of the scene at a primitive level. A primitive in ray tracing is
any mathematically defined entity that can be tested for intersection with a line
in space. Ray-primitive intersection tests are the most frequent operations in a
ray tracer, and the exhaustive and repetitive nature of this search for intersection
points is what makes ray tracing computationally expensive, but also trivially
parallel. Highly optimized intersection tests for different types of primitives have
been proposed and a number of them can be found in [Leng04] and [Schn03] as
well as in Appendix C. A discussion on the subject of how the number and type of
intersection tests performed can be optimized is discussed in Section 15.5.1. For
the current discussion, we will assume a generic primitive class of type Primitive
that provides a common intersection interface for all sub-classes of geometric
primitives (e.g., Sphere, Box, Triangle, Plane, etc) through polymorphism.

The following code fragment provides the findClosestIntersection()

function implementation of the basic recursive ray tracer, which is an exhaustive
search mechanism for the detection of the intersection point (and corresponding
distance). The results are stored in the ray instance and the number of intersection
points encountered is returned.

int findClosestIntersection(Ray r, Scene world)

{

int hits=0;

r.isect = new IsectPoint();

r.isect->t = 10000000; // a large intersection distance

for ( j=0; j<world.numObjects(); j++ )

for ( k=0; k<world.getObject(j)->numPrims(); k++ )

{

Primitive *prim = world.getObject(j)->getPrim(k);

IsectPoint *Q = prim->isect(r);

if (Q==NULL)

continue;

hits++;

// if found closer intersection, copy it in r

if ( r.isect->t > Q->t )

r.isect->copy(Q);

}

return hits;

}
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15.3.3 Local Illumination Model and Shadows

For every light source in the scene, we need to evaluate a local illumination model
at the point of ray-surface intersection. To do this we must send a shadow ray (or
shadow feeler) to each one of the light sources and determine their visibility. If we
make the assumption that light is either completely blocked or completely visible
from the intersection point, then the first time we encounter a blocking surface,
the contribution of the particular light drops to zero. However, as objects are not
always fully opaque, the color and intensity of the light is filtered through the
objects that are blocking the direct path from the intersection point to the light-
source position. Even in this case, when the contribution of the light drops below
a threshold, we can consider it as negligible and terminate the search for further
obstacles in the shadow ray’s path. This is a major distinction between a normal
ray and a shadow ray. Shadow rays can be computed faster because we do not
have to sort the intersected points along their path, and we can therefore inter-
rupt the intersection tests as soon as the attenuation from the obstacles becomes
significant.

In the block of code that follows, a basic integrated shadow feeler and lo-
cal illumination model algorithm is presented. For every light in the scene, its
contribution is calculated (penetration variable) and a local illumination model
produces a color according to the light direction, the normal vector, the material
of the surface, and the ray direction (corresponding to the opposite of the view
direction in the local illumination models of Chapter 12). The resulting cumu-
lative color is the final output. Note that each time an intersection is found, the
light penetration is diminished according to the transparency of the primitive. For
closed polygonal surfaces, this results in a ray being attenuated both when the ray
enters a mesh and exits its surface. If this is not desired, an extra step must be
performed to check if the ray exits a polygon and disregard all such intersections.

Color calculateLocalColor( Ray r, Vector<Light*> lights,

Scene world )

{

int i,j,k;

// Initialize color to the minimum illumination

Color col = ambientColor();

// For all available lights, trace a ray toward them

for ( i=0; i<lights.size(); i++ )

{

Ray *shadowRay = new Ray(r->isect,lights[i]->pos);
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// Measure how much light reaches the intersection

float penetration=1.0f;

// Filter the light as it passes through the scene

for ( j=0; j<world.numObjects(); j++ )

for ( k=0; k<world.getObject(j)->numPrims(); k++ )

{

Primitive *prim = world.getObject(j)->getPrim(k);

IsectPoint *Q = prim->isect(r);

// Case 1: ray not blocked by prim: no attenuation

if (Q==NULL)

continue;

// Case 2: light contribution is filtered

penetration *= 1 - prim->material->alpha;

// Termination criterion: light almost cut off

if ( penetration < 0.02 )

{

penetration=0;

break;

}

}

// check if light[i] contributes to local illumination

if (penetration==0)

continue;

col+=localShadingModel( r, prim, lights[i]->pos,

penetration );

} // light[i]

return col;

}

15.4 Shooting Rays

15.4.1 Primary Rays

There are many ways to determine the primary rays that are shot toward each
pixel. We present here a calculation suitable for an arbitrary camera coordinate
system (n̂, û, v̂) and a symmetrical view frustum centered at the optical axis. For
now, let us also assume an ideal pinhole camera model with focal distance d and
an aspect ratio a = w/h, where w and h are the width and the height of the image
in pixels, respectively (Figure 15.8(b)). Pixels are regarded as square image areas
(1 : 1 aspect ratio).
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Figure 15.8. Primary ray calculation. (a) The ray passes through the center of the
pixel. (b) Camera parameters.

The half-width wv and height hv of the view window at the near clipping dis-
tance (the focal length here) in world coordinates are, respectively (Figure 15.8(b)),

wv = d tanϕ, hv = wv/a. (15.15)

The main loop in a ray tracer iterates through all image pixels (i, j) and casts
(at least) one ray from each one of them (Figure 15.8(a)). Due to this iterative pro-
cedure, it is convenient to formulate the calculation of the ray starting point p and
direction r̂ in an incremental manner. We can calculate the position of the point
pUL that corresponds to the upper-left corner of the image and the incremental
offsets δ−→u and δ−→v , between successive pixels in world coordinates. Then, the
center of each pixel, which can then be used as the ray origin, is efficiently deter-
mined. The point pUL is calculated by adding an offset along the view direction
to the camera center c and moving across the view window plane to the upper-left
corner:

pUL = c+d · n̂−wvû+hvv̂, (15.16)

or using Equation (15.15),

pUL = c+d

[
n̂+
(

h
w
· v̂− û

)
tanϕ

]
. (15.17)

The incremental offsets δ−→u and δ−→v depend on the resolution of the image
in each direction:

δ−→u =
2wv

w
û, δ−→v =−2hv

h
v̂. (15.18)
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As we have assumed square pixels, the image resolution only affects the as-
pect ratio of the horizontal versus the vertical view aperture and the pixel size, but
not the pixel shape. Indeed,

∣∣δ−→u ∣∣= 2wv

w
|û|= 2ahv

w
=

2hv

h
=
∣∣δ−→v ∣∣ . (15.19)

If we use the center of the pixel as the origin p of the ray, then for i = 0..w−1
and j = 0..h−1,

p = pUL +
(

i+
1
2

)
δ−→u +

(
j +

1
2

)
δ−→v . (15.20)

The ray direction vector is simply the normalized difference between the ori-
gin and the camera focal point:

r̂ =
p− c
|p− c| . (15.21)

15.4.2 Clipping

An interesting consequence of performing the hidden surface removal in object
space and not in a post-projection step, as in the case of the Z-buffer algorithm,
is that the near and far clipping planes can take arbitrary values (even negative),
as they are essentially distances from the origin along the primary ray. In the
Z-buffer, the ratio between the near and the far clipping distances has a signifi-
cant impact on the accuracy of the depth sorting and a zero near-distance is not
allowed. In ray tracing, the near clipping plane can be set to the origin (near clip-
ping distance = 0) and the far clipping plane to infinity (practically to a very large
number) without any kind of side effect.

As we have discussed in Section 15.3.1, distance sorting in ray-world inter-
section compares the last and current distance of the intersection point from the
origin of the ray. Given a parametric representation of the semi-infinite ray, a
point along its path is defined as

q = q(t) = pstart + t · r̂. (15.22)

Due to the fact that the ray vector is considered normalized, t is the signed
distance along the ray from its starting point. If pstart lies on the near clipping
surface, intersections q(t) with t < 0 are disregarded as invisible. For the planar
clipping surface model of Section 15.4.1, the focal length d: d > 0 defines the
near clipping distance and pstart = p (Equation (15.20)). For an arbitrary clipping
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distance n from the focal point, we get ray starting points on a spherical clipping
surface,

pstart = c+n · r̂. (15.23)

15.4.3 Secondary Rays

Secondary rays are cast according to the direction of reflection, refraction or di-
rect illumination depending on whether the ray path is followed due to reflection,
transmission, or shadow test, respectively. The starting point for those rays is
always the intersection point of the previous recursion step.

One important observation is that rays emanating from a surface point are
prone to intersect with it again, unless we find a way to exclude this point from
the procedure. Recall that due to the parameterization of the semi-infinite line of
the ray, any intersection point q along the path is associated with the distance t
from the origin. Consequently, an easy test to perform is to check whether t at
the intersection is greater than zero. If, however, surfaces are allowed to coincide
precisely, then this test has to be extended to check the surface to which the new
intersection point belongs:

class Ray

{

public:

...

Primitive * startPrim;

...

}

int findClosestIntersection(Ray r, Scene world)

{

...

if (Q==NULL)

continue;

if ( Q->t <0 || (nearZero(Q->t) && r.startPrim == prim) )

continue;

hits++;

// if found closer intersection, copy it in r

if ( r.isect->t > Q->t )

r.isect->copy(Q);

...

}
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15.5 Scene Intersection Traversal

15.5.1 Hierarchical Intersection Tests

Ray-primitive intersections can benefit from the fact that geometry is organized in
object hierarchies (see Chapter 9). Instead of exhaustively searching for intersec-
tions with the primitives as a heap, we can significantly accelerate the intersection
procedure by first testing the ray with the scene management hierarchy, regard-
less of whether the latter is a bounding volume hierarchy, a spatial subdivision
hierarchy, or a combined scheme.

The idea to first perform a computationally efficient intersection test with
a simple volume that bounds a cluster of primitives instead of attempting to
blindly search for hits on the latter from the beginning was introduced many years
ago [Clar76, Whit80]. Simple solids such as boxes and spheres were utilized for
this purpose. The most common types of bounding volumes of objects used for
ray-tracing acceleration are spheres, axis-aligned bounding boxes (AABBs), ori-
ented bounding boxes (OBBs), and bounding slabs [Kay86] (Figure 15.9) (see
also Section 5.6). As the alignment to the primary axes restriction of the AABBs
does not apply to the OBBs, the latter can fit significantly more tightly to the
original object with a careful selection of the box orientation. If the three mutu-
ally perpendicular pairs of parallel planes of the OBB are replaced by an arbitrary
number of parallel planes, the object is enclosed in a set of bounding slabs, which
ensures even less void space inside the bounding volume.

When the scene is organized as a scene graph, the bounding volume of each
node can provide a first crude intersection rejection test for the geometry con-
tained (Figure 15.10) [Rubi80]. On a positive bounding volume–ray hit, the test
is recursively applied to children nodes. At leaf level, geometry primitives are
exhaustively tested for intersection as the basic ray-tracing algorithm suggests, or
the ray is passed to a space subdivision structure for further early primitive rejec-
tion processing (see below). Intersection tests with AABBs are quite inexpensive.
Even in the case of object-aligned (oriented) bounding volumes, we may trans-
form the rays to bring them to the local coordinate system of the bounding volume
and perform the test as if they were AABB (see Section 15.5.2).

An important factor that affects the efficiency of the bounding volumes as a
ray-pruning mechanism is the amount of void space that they occupy. A scene
organization with large bounding volumes at high levels (bounding volumes for
node aggregations) tends to leave a lot of unused space between the actual ge-
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Figure 15.9. Common bounding volumes for ray tracing. (a) Axis-aligned bound-
ing box (AABB). (b) Oriented bounding box (OBB). (c) Bounding volume hierarchy
(here, OBB hierarchy). (d) Bounding slabs.

ometry elements, resulting in many false hits. This is also the reason why a
tighter object-aligned bounding slab can be more efficient to use for ray-bounding
volume testing instead of a large axis-aligned bounding box. Goldsmith and
Salmon [Gold87] also showed that rays are hierarchically pruned most effectively
if the bounding volume has as small a surface area as possible. However, the num-
ber of rays hitting a bounding volume is not the sole criterion for the selection of
a particular type of container, as the computational complexity of intersecting the
ray with the solid plays a significant part due to the very large amount of rays shot
during a typical rendering.

A different approach to speed up ray tracing is space subdivision. The scene
space is decimated into a large number of simple cells, most often axis-aligned
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Figure 15.10. Intersection of a ray and a bounding volume hierarchy. Most primi-
tive intersection tests are prevented by simple ray–bounding volume tests.

boxes, and each one of them references the primitives it intersects. When a ray
is shot, the cells it intersects are determined and possible intersections with prim-
itives are only examined for the contents of these volume elements. When a ray
enters a cell, it is intersected with the primitives indexed by it or with a hierar-
chical space subdivision structure that further splits this cell into smaller ones. If
no intersection is found, then the ray is tested against the contents of the next cell
in the path. An important benefit from using non-overlapping regular partitioning
grid cells is that if the later are visited in an ordered manner according to the direc-
tion of the ray, a preliminary sorting is performed at a container level. When the
nearest intersection within a cell is found, the scene intersection traversal can be
terminated. This is also the main advantage of using a spatial subdivision method
instead of bounding volume hierarchies for spatial coherency ray-tracing accel-
eration. Note, though, that some extra preprocessing time is necessary in order
to build and fill the data structures that represent the containers for the scene el-
ements, and this should be taken into account when rendering frame sequences
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Figure 15.11. Uniform space subdivision for acceleration of ray-tracing intersec-
tion tests. A voxel space is generated around the scene (left) and the primitives are
indexed according to which voxels they intersect (middle). A ray is tested against
primitives indexed by the voxels it passes through (right).

where many objects are animated. Dynamic scenes require the recalculation and
update of the acceleration data structures of the space-partitioning scheme.

The simplest form of space partitioning for ray tracing is a regular subdivision
of the space occupied by the primitives into uniform volume elements (voxels)
(Figure 15.11). First, all primitives are pre-processed to determine which voxels
they intersect. A reference to a particular primitive is created in all cells inter-
sected by it. Then, during ray casting, the voxels that the ray passes through are
identified and their contents tested for intersections. The selection of voxels for
each ray is done with an incremental algorithm similar to the 2D DDA, only for
voxel space instead of image space [Kauf86, Fuji86, Aman87]. Amanatides and
Woo [Aman87] also proposed an acceleration technique, mailboxing, to make the
intersection tests for penetrating rays (rays that do not stop at the closest intersec-
tion) more efficient. A unique ray identifier is stored in each intersected primitive.
So, if a primitive spans more than one voxel, it is intersected only once, since the
ray identifier is compared to the one stored in the primitive before attempting to
calculate the intersection.
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The resolution of the voxel space (and, consequently, the size of each cell)
plays an important role in the performance of the uniform spatial subdivision
method. Large cells lead to fewer intersected voxels, a small probability of prim-
itives intersecting more than one cell, and therefore to less redundant intersection
tests. Smaller voxels reduce the number of primitives indexed by each one of
them and therefore lead to faster intra-voxel intersection searches.

Voxels in a spatial subdivision scheme can be hierarchically refined. One
reason to do this is to attempt to create cells with a balanced number of refer-
enced primitives. In Figure 15.12, you can observe that too many cells (both in
the two-dimensional case and the three-dimensional one) are empty, while others
may contain too many primitives due to an uneven distribution of the latter into
the space the models occupy. The most common hierarchical space-partitioning
organization for ray tracing uses an octree [Glas84] (see Section 5.6 for the def-

Figure 15.12. An octree.
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inition of an octree). The space of a top-level cell (e.g., the AABB of the whole
scene) is subdivided into eight equally-sized voxels. Those voxels that contain
no primitives are not subdivided further, while the others are split in the same
manner (Figure 15.12). The partitioning stops either when a maximum number of
subdivisions is reached or when the number of primitives a cell contains is small
enough to make further refinement unnecessary. The maximum number of subdi-
visions performed defines the depth of the tree. In contrast to the case of regular
space partitioning, ray–octree data structure intersection tests are unbalanced, but
intersection-test distribution at the leaf nodes is more even.

15.5.2 Ray Transformations

Ray-object intersections are frequently far more efficiently performed if both ge-
ometry and rays are expressed in a reference frame other than the common world
coordinate system or the camera-space reference frame. This means that a ray
may need to intersect an OBB volume, which is aligned with an arbitrary set
of axes. We can perform this intersection test more efficiently if we compute a
ray-AABB intersection instead, after expressing the ray in the local coordinate
system of the oriented bounding box. Another important situation, where rays
need to be transformed, is the case of object transformations. Recalculating the
coordinates (or the parameters) of the transformed primitives is far more expen-
sive than simply transforming the ray in the local reference frame of the object,
especially when the transformations above the object in the scene hierarchy are
animated. Transforming a ray instead of the object also facilitates the use of spa-
tial partitioning (per object) for complex models, because rigid animation of the
latter requires no recalculation of the acceleration structures. Finally, when ren-
dering mathematical primitives such as solids or space functions, it can be very
difficult to re-parameterize them to calculate a transformed version of the object.
On the other hand, moving the ray in the local space of the original mathematical
expression is straightforward.

If M is the composite transformation that has been applied to an object in a
scene hierarchy (see Section 9.2), then we only need to apply the inverse trans-
formation to the ray and perform the intersection test in the local space of the
object:

q = M ·q′ = M ·Object.RayIntersection(M−1 ·p,M−1 · r̂), (15.24)

where q is the resulting intersection point in the original reference frame of the ray
(e.g., WCS) and q is the intersection point expressed in the local object coordinate
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system, p is the ray origin, and r̂ is the direction vector of the ray. Often, for
static parts of a scene, or when a ray is first tested against a dynamic object in
an animation frame, the inverse matrix is calculated and stored in the object to be
reused as long as the current transformation of the geometry is valid.

For oriented bounding boxes or other solids, as they are frequently produced
via principal component analysis on the geometry, we directly obtain the three
local coordinate system axes (â1, â2, â3) and the corresponding dimensions of the
container. We need to precompute and store in the oriented bounding volume the
transformation that produces the resized and rigidly transformed solid from its
normalized axis-aligned version (or its inverse):

MOBV = TOBV

⎡⎢⎢⎣
a1x a2x a3x 0
a1y a2y a3y 0
a1z a2z a3z 0
0 0 0 1

⎤⎥⎥⎦
−1

SOBV, (15.25)

where TOBV is the translation according to the bounding volume origin offset and
SOBV scales the bounding volume to fit its new dimensions.

15.5.3 Constructive Solid Geometry

One of the strongest points of ray tracing is its ability to render very quickly ob-
jects that are modeled as set operations on solids. Constructive solid geometry
(CSG) is a modeling method that uses Boolean operations on a binary hierarchy
of simple solid primitives to generate new complex solids. The bounding surface
of a CSG-generated solid can be calculated either during rendering or after the
operations have been performed in object space and the solids have been con-
verted to a boundary (surface) representation. In the latter case, operations on the
geometry of the original surface models are required, which are both non-trivial
and sensitive to numerical errors. In ray tracing, the union (A OR B), intersection
(A AND B), and difference (A AND NOT B) operations are treated as classifi-
cation tests of the ray-object intersection points. This means that the combined
result of the Boolean operation between two solids is efficiently calculated at run
time without modifying the original solids in any way. But let us first understand
how constructive solid modeling works in principle.

In Figure 15.13, a complex solid model is created from a set of simple solids
that are easy to define mathematically. The primitives are combined using pair-
wise logical operations to merge pieces together and/or cut out unwanted parts.
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Figure 15.13. An example CSG tree to create a solid model (top left) from a set of
simple solid primitives (bottom right).

In many cases, the priority of operations can be changed or optimized without
affecting the final model, although this is not true in general. The combined and
primitive solids that take part in a CSG model form a binary tree, the CSG tree.
In a CSG tree, Boolean operations are expressed as CSG nodes. Each CSG node
combines two sub-trees into one solid model. The left- and right-CSG children
sub-trees may contain transformations or any other modifiers before encountering
a solid model or another CSG node. From the modeler’s point of view, the CSG
tree is constructed bottom up, by continuously combining intersected, subtracted,
or merged aggregations of solids with new ones.
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In ray tracing, if the primitives of the CSG tree were treated separately, we
would seek to find all the intersections with the boundaries of these solids and
determine which one is the closest to the ray origin. As the solids are combined
in pairs according to Boolean operations, the corresponding intersection points
form segments that are inside or outside the resulting solid. If a ray segment is
outside the combined solid, its endpoints (ray-primitive intersections) have to be
discarded. If an intersection point lies inside the resulting volume, it is of no
consequence to the ray-tracing paradigm and must also be discarded. What we
need to keep from each Boolean operation is a set of boundary surface points. So,
a CSG combination step is essentially an intersection point classification step:

• Find all intersection points between the ray and the left CSG node child.

• Find all intersection points between the ray and the right CSG node child.

• Merge all intersection points in one sorted list.

• Mark each point according to its containment in the left and right CSG
children as IN (inside the solid model), OUT (outside the solid model), or
SURFACE (on the boundary of the solid model).

• Classify each point as IN, OUT, or SURFACE for the combined solid ac-
cording to a set of logical rules (see Table 15.1).

• Keep all SURFACE points as the resulting intersection points of the CSG
node.

A CSG tree is recursively traversed from the root CSG node down to the leaves
(solid primitives). If a node is a CSG operation node, the intersection points from
its two children are requested, and the ray is propagated down and transformed ac-
cording to the geometric transformations encountered (see Section 15.5.2). Then,
the above steps are performed and a new set of intersection points is determined.
If a node is a solid primitive, it is intersected with the transformed ray and all the
resulting points are gathered and returned upwards.

The algorithm is illustrated in Figure 15.14. Beside each CSG node, the list
of gathered intersection points is presented along with the corresponding clas-
sification results for the particular set operations. Refer to Table 15.1 for the
classification of points.

The ray is passed to the root of the CSG tree (intersection) and is propagated
recursively (depth-first) to the leaves. The first CSG node that can be computed
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Figure 15.14. Intersection point classification for ray-traced CSG model rendering.

is the difference node. The intersection points of the ray a, b and c, d with the
sphere and the box, respectively, are calculated from the left and right children
of the difference node and returned to the CSG node for classification. In the
subtraction of the two solids, all surface points of the first operand (sphere) that are
not clipped by the second operand’s volume (box) are maintained, because they
continue to lie on the shell of the combined solid. All points of the second operand
that reside outside the volume of the first operand are discarded because they are
subtracted from void space. The surface points of the second operand form the
boundary surface of the clipped region and so they are kept. The intersection
points marked as SURFACE are then regarded as the intersection points of the
combined solids and propagated upward.

At the next level, the CSG node is a union set operation. Here, we need to keep
those points that define the largest combined ray segments (a and f). So we keep
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Union
Branch Right
Left

IN OUT SURFACE

IN IN IN IN
OUT IN OUT SURFACE
SURFACE IN SURFACE

Difference
Branch Right
Left

IN OUT SURFACE

IN OUT IN SURFACE
OUT OUT OUT OUT
SURFACE OUT SURFACE

Intersection
Branch Right
Left

IN OUT SURFACE

IN IN OUT SURFACE
OUT OUT OUT OUT
SURFACE SURFACE OUT

Table 15.1. Point classification for Boolean CSG operations. The table shows the
resulting status of an intersection point in the combined left and right branch of a
CSG node, according to the classification of the point in the two branches (adapted
from [Wyvi95]).

only SURFACE points of one solid that are outside the volume of the other solid.
The last operation is an intersection. Here we seek to keep intersection points
that bound ray segments intersecting both solids simultaneously. We classify as
SURFACE points the boundary points of the one solid that are inside the volume
of the other and vice versa (g and f). All other points that are inside both volumes
are valid ones but do not contribute to the outlier of the combined solid.

15.6 Deficiencies of Ray Tracing
Compared to direct-rendering methods, the major drawback of ray tracing is the
rendering speed. Although the basic ray tracing algorithm is significantly accel-
erated by various optimization techniques and space-partitioning methods, it is
still many times slower than hardware-accelerated scan-conversion algorithms,
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which rely on local, coherent data and can perform incremental computations in
image space. Ray tracing is inherently easy to implement in parallel, both at an
image-space level or in a ray distribution/spatial manner. Recently, there has been
a lot of research in the effort to take advantage of the programmable pipeline
of the graphics hardware to render or approximate the results of the first recur-
sive steps of ray tracing using direct rendering (see, for instance, methods pre-
sented in [Wald01]). These hybrid methods, along with parallel implementations
of ray tracers in software and hardware [Schm02, Wald02] provide a significant
speed-up.

Apart from rendering speed, other deficiencies of ray tracing concern the qual-
ity and realism of the generated images. With the introduction of ray tracing to im-
age synthesis, reflections, shadows, and refracted parts of the three-dimensional
world appeared in the so-far uninteresting images only shaded with a local illumi-
nation model. The images obtained a fresh, startlingly clear look that boosted the
credibility of the displayed subject significantly. Or were they too provocatively
clear?

As we have discussed in Chapter 12, the surface of real solid objects possesses
structural irregularities that scatter incident light to various directions, away from
the ideal reflection direction, depending on the smoothness of the material. For the
computation of specular highlights this principle is respected, but it should also
apply to the reflected and refracted light during ray tracing. Images reflected on or
transmitted through objects as calculated by a ray tracer appear extremely sharp,
due to the fact that a single ray is spawned for each intersection point encountered
(Figure 15.15(a)). The material interfaces are assumed perfectly smooth in the
neighborhood of the intersection point. Therefore, incoming light from a slightly
different direction than the perfect reflection or refraction direction that would
normally reach our eyes from a non-ideal reflector or transparent object cannot
appear in a ray-traced image. This super-realistic rendering of the reflected and
refracted images is characteristic to ray tracing and gives the synthetic images a
very “polished” look that is hardly encountered in real environments, natural or
man-made.

Another implication of the fact that a single shadow ray is shot from an inter-
section point is that it is not possible to generate soft shadows, which are naturally
produced by emitters of non-negligible size, such as area lights. Shadow rays
may only hit or completely miss an occluding surface when cast toward the light
source, and consequently only sharp shadows are produced (Figure 15.16(a)).

In ray tracing, similar to the direct-rendering case, the indirect illumination
that reaches a small surface area via diffuse inter-reflection is considered constant
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and is still replaced by the ambient term. More advanced models that better ap-
proximate the rendering equation [Kaji86] also compute this term and simulate
other phenomena, like caustics. See Chapter 16 for more details.

15.7 Distributed Ray Tracing�

A major improvement to the basic ray-tracing algorithm in terms of visual qual-
ity is distributed or stochastic ray tracing (see also Chapter 16 for more de-
tails). In distributed or stochastic ray tracing, instead of sampling the contribut-
ing energy from a single direction as in the basic algorithm, multiple rays ran-
domly distributed over a solid angle centered at the principal ray direction are
cast [Cook84, Cook86]. This is essentially a Monte Carlo approximation of the
integral of all energy contributing to the path that was traced from the eye point
to the scene. This method dramatically enhances the visual quality of the result at
the expense of the rendering time (or hardware resources for parallel rendering)
required to intersect the extra rays with the scene.

Figure 15.15. Distributed ray tracing. (a) Reflections in simple ray tracing look un-
realistically sharp. (b) Shooting multiple jittered rays simulates the uneven surface
of a reflective object and produces a realistic blurring of the reflected image. (c)
Same as (b) but with a less polished surface.
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Figure 15.16. Soft shadows using distributed shadow rays and a spherical emitter.

Distributed ray tracing enhances the appearance of the synthetic images in
many ways. For reflected or refracted rays, the blurring effect of non-perfectly
smooth surfaces is achieved by spawning multiple rays that diverge from the ideal
reflection/transmission direction (Figure 15.15(a) and (b)). The deviation of the
rays is determined by the roughness or the desired blurring of the material inter-
face.

The shadow-generation stage of the basic algorithm is similarly extended in
distributed ray tracing and can support area lights of arbitrary size and shape.
Recall from Section 13.2 that shadow penumbrae appear where only a portion of
the emitter is occluded by other geometry. Instead of mathematically calculating
the exact visibility of the area light source from the shaded point, a number of
rays are cast toward a set of randomly selected points over the surface or volume
of the emitter (Figure 15.16), thus making a Monte Carlo approximation of the
integral of a visibility function over the solid angle subtended by the emitter with
respect to the illuminated point.

Distributed ray tracing can also improve the visual realism at the first ray-
casting stage. Conventional ray tracing relies on the pinhole-camera model to
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Figure 15.17. Focal blur using multiple rays per pixel and a camera model with
non-zero aperture.

cast a single ray from the view plane though the center of each pixel. By shooting
multiple rays, more elaborate camera models that simulate real lenses with single
or multiple elements can be implemented [Cook84, Kolb95]. These advanced
models produce images that exhibit focal blurring and distortions that resemble
pictures taken with an actual photographic camera (Figure 15.17). For multi-
element lens models, a number of points on the lens-element surface closer to the
imaginary sensor (view) plane are selected and a ray is cast through each one of
them. Using Snell’s law, the ray is transmitted through the elements and finally
traced through the scene. The averaged intensity of all rays is registered as the
sampled color for this pixel.

Note that when averaging multiple rays per pixel, we also perform antialias-
ing on the resulting image. In the common pinhole-camera model, multiple sam-
ples are taken for each pixel by selecting random points inside a pixel instead of
its center and shooting a new ray through these points. The resulting samples
are averaged, usually using some importance function (smoothing kernel). Multi-
sampled antialiasing in ray casting can be performed in an adaptive manner, either
by comparing neighboring pixel intensities and shooting extra rays if the inten-
sity difference exceeds a predefined threshold, or by comparing multiple samples
within the same pixel and increasing the sampling rate when necessary.

As in every Monte Carlo integration method, the chosen distribution of the
rays and importance sampling function play a significant role in the quality and
the performance of distributed ray tracing [Glas95, Cook86]. For instance, when
spawning multiple rays to trace reflections from a surface, the distribution of the
rays depends on the specular model adopted for the reflector and the material
parameters narrow or widen the strata of emitted rays.
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15.8 Exercises
1. Comment on the efficiency of a regular grid-space subdivision algorithm

for ray-tracing acceleration based on the factors of voxel space resolution
and average element size. How does the mailboxing technique improve the
performance of a spatial subdivision method?

2. Modify the basic ray tracing algorithm to support distributed ray tracing
for transmitted/reflected and shadow rays. Isolate the multisampling algo-
rithm and pass it a pointer to a generic probability distribution function as
a parameter. Later, you should be able to experiment with different ray
distributions by passing a reference to the corresponding randomizer.

3. Implement a simple CSG ray tracer for hierarchies of transformed spheres,
boxes, infinite cylinders, cones, and planes (half-spaces).



�

�

�

�

�

�

�

�

16
Global Illumination

Algorithms

P. Dutré

The secret to painting in shadow is the amount of
bounced light you see in the shadow itself.

—William Hook

16.1 Introduction
Global illumination algorithms deal with the realistic computation of light trans-
port in a 3D scene. Not only is direct illumination considered, but the indirect
light (light that reaches a point of interest through one or more reflections) is
computed as well. The resulting images are radiometrically accurate and thus
photorealistic.

In order for global illumination computations to reach a photorealistic level of
accuracy, it is necessary that all aspects of the image-generation pipeline are based
in fundamental physics. More precisely, this means that the reflection properties
of all materials are described by proper BRDFs1, the light sources are radiomet-
rically modeled, the transport of light through the scene is computed accurately,
and the display of the image uses accurate tone-mapping operators.

This chapter will focus on the underlying equations of the light transport and
the mathematical tools needed to compute a full global illumination solution.

1bidirectional reflectance distribution function
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566 16. Global Illumination Algorithms

16.2 The Physics of Light-Object Interaction II

16.2.1 Rendering Equation

The rendering equation is the most fundamental equation for photorealistic syn-
thesis algorithms. It expresses the equilibrium of the light distribution in a three-
dimensional scene, taking into account the radiometric specification of the light
sources and the BRDF specifications of all materials. In its basic form, the ren-
dering equation is an energy balance that expresses how much exitant radiance
is present at a given surface point in a certain direction, given a distribution of
incident radiance values.

The rendering equation was first introduced by Kajiya [Kaji86]. However,
current forms of the rendering equations are quite different from the original for-
mulation of Kajiya.

Hemispherical integration. To derive the rendering equation, we can start from
the definition of BRDF at a surface point x that expresses exitant radiance Lr in
direction (φr,θr) versus incident irradiance Ei from direction (φi,θi):

fr(φr,θr,φi,θi) =
dLr(φr,θr)
dEi(φi,θi)

=
dLr(φr,θr)

Li(φi,θi)cos(θi)dωi
.

(16.1)

Rewriting the previous equation and integrating over the hemisphere Ωi of all
possible differential solid angles dωi yields

dLr(φr,θr) = Li(φi,θi) fr(φr,θr,φi,θi)cos(θi)dωi,

Lr(φr,θr) =
∫

Ωi

Li(φi,θi) fr(φr,θr,φi,θi)cos(θi)dωi.
(16.2)

The latter formulation is simply the equivalent integral equation of the def-
inition of the BRDF, which is a differential equation. To complete the integra-
tion, a constant term has to be added, corresponding to the self-emitted radiance
Le(φr,θr)of point x. This term will only be different from 0 if surface point x is
located on a modeled light source in the scene.

Thus, the complete rendering equation, expressing the exitant radiance Lr is
given by

Lr(φr,θr) = Le(φr,θr)+
∫

Ωi

Li(φi,θi) fr(φr,θr,φi,θi)cos(θi)dωi. (16.3)
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This equation is known as a Fredholm equation of the second kind, since the
unknown quantity, radiance, appears both on the left-hand side and on the right-
hand side, where it is integrated with a kernel function.

Surface-area integration. It is possible to rewrite the rendering equation such
that the integral is taken over all visible surfaces rather than over the hemisphere
of incoming directions. This is accomplished by transforming the solid angle dωi

to the corresponding differential surface dA. Let y be the first visible surface
point seen from point x in direction (φi,θi); (φy,θy) is the direction pointing from
y towards x, and rxy is the distance between x and y, then

dωi =
cos(θy)dA

r2
xy

, (16.4)

and Equation (16.3) becomes

Lr(φr,θr) = Le(φr,θr)+
∫

SVisible

Li(φi,θi) fr(φr,θr,φi,θi)
cos(θi)cos(θy)

r2
xy

dA,

(16.5)
where SVisible denotes the set of all visible surfaces as seen from x.

Since the radiometric quantity radiance remains constant along a straight line,
we can express the incoming radiance Li(φi,θi) at x (which we write as Li(x,φi,θi))
as an equivalent exitant radiance value Lr(y,φy,θy) leaving surface point y to-
wards x:

Li(φi,θi) = Li(x,φi,θi) = Lr(y,φy,θy). (16.6)

In Equation (16.5), the product of both cosine terms divided by r2
xy is a geo-

metric coupling term only dependent on the geometrical relationship between x
and y, and independent of the actual radiance distribution or BRDFs defined on
the surfaces:

G(x,y) =
cos(θi)cos(θy)

r2
xy

. (16.7)

Substituting all of the above in (16.5) yields

Lr(x,φr,θr) = Le(x,φr,θr)+
∫

SVisible

Lr(y,φy,θy) fr(φr,θr,φi,θi)G(x,y)dA.

(16.8)
Equation (16.8) is an equivalent form of Equation (16.3). Instead of integrat-

ing over the hemisphere of incident directions, the integration is taken over the set
of visible surface points. Both equations merely differ in a transformation of the
integration domain.
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However, we would like to write the equation as an integral over all surfaces,
not just the visible surfaces seen from x. This would offer the advantage of having
a single integration domain, identical for all points x in which the rendering equa-
tion has to be evaluated. In order to expand the integration domain to all surface
points, a visibility term V (x,y) needs to be introduced. This visibility term equals
1 when x and y are mutually visible and equals 0 otherwise.

The surface area integration formulation of the rendering equation then be-
comes

Lr(x,φr,θr) = Le(x,φr,θr)+
∫

S
Lr(y,φy,θy) fr(φr,θr,φi,θi)G(x,y)V (x,y)dA,

(16.9)
where S is the integration domain indicating all surface points y in the scene.

A special case of the surface-area integration (16.9) occurs when we only want
to consider direct illumination from one (or more) light sources. Suppose we want
to compute Lr(x,φr,θr) due to the direct illumination of a single source only:

Lr(x,φr,θr) =
∫

S1

Le(y,φy,θy) fr(φr,θr,φi,θi)G(x,y)V (x,y)dA, (16.10)

where S1 is the surface area domain of the light source (Figure 16.1).
If multiple light sources are present, and by splitting the integral over the com-

bined light source area in a sum of integrals taken for each light source separately,
the total direct illumination contribution due to L light sources is written as

Lr(x,φr,θr) =
L

∑
j=1

∫
S j

Le(y,φy,θy) fr(φr,θr,φi,θi)G(x,y)V (x,y)dA. (16.11)

Both Equations (16.10) and (16.11) are important when designing algorithms
for computing the direct illumination due to one or more light sources. It allows
for specialized numerical integration techniques to accurately determine the illu-
mination caused by such light sources.

Environment map illumination. A last variant of direct illumination that is rel-
evant and that has become important in recent years is the case in which the light
source is encoded as a (hemi)-spherical environment map. An emitted radiance
Le(φi,θi) is defined for each incoming direction, irrespective of the location of the
point x to be shaded:

Lr(φr,θr) =
∫

Ωi

Le(φi,θi) fr(φr,θr,φi,θi)cos(θi)dωi. (16.12)
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light source S1

x

y

V(x,y)

rxy

Lr(x,φr,θr)

Le(y,φy,θy)

Figure 16.1. Direct illumination due to a single light source.

Usually, an environment map is given as a high dynamic range image and can
contain more than a million pixels, each representing a different radiance value.
Thus, numerical procedures that can evaluate an integral over an hemispherical
image are necessary to evaluate the direct illumination in these scenes.

16.2.2 Discretized Form of the Rendering Equation

All variant formulations of the rendering equation described above express radi-
ance in a single point and single direction. For some applications, it can be more
useful to express light energy per surface patch (usually individual polygons) in-
stead of a single point and for the hemisphere of all outgoing directions instead
of a single direction. This can be achieved by discretizing the rendering equation,
thus obtaining a finite element formulation of the energy equilibrium in a scene.

This equilibrium will be expressed as a linear system, each equation describ-
ing the energy balance for a single patch. The family of techniques describing
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this approach are known as radiosity algorithms. The name radiosity algorithm is
mostly historical and covers a wide range of finite element methods that compute
a global illumination solution for a given scene. Not all of these algorithms are
using the radiometric quantity radiosity to express the energy equilibrium; many
variants work directly with the radiometric flux per surface patch.

In this section, we will formally derive the discretized version of the rendering
equation, by making a few assumptions about the nature of the scene. Techniques
for solving these equations are discussed in Section 16.6.

The most common assumptions for formulating the radiosity equations are the
following:

1. All surfaces in the scene are subdivided in surface patches. Usually, these
patches are polygons of a given maximum size, but the patches could as
well be curved subsets of a spline or quadric surface. For each patch it is
assumed that the outgoing radiance is similar for all surface points on the
patch, such that we can approximate the radiance for the patch by averaging
over all surface points. For each patch, the algorithm will compute only this
average radiance.

2. All surface patches have diffuse reflectance characteristics (i.e., the BRDF
for each surface has a constant value, see Chapter 12). This implies that
a surface point looks identical independent of the viewing direction. To-
gether with the previous assumption, this leads to a global illumination in
which each patch (polygon) has only one radiance value as a final solution,
usable for all surface points on that patch. It is therefore practical to use
any interactive polygon renderer to visualize the scene at interactive rates.
This is the most useful advantage of radiosity algorithms.

3. Although not strictly necessary, the light sources are considered to be dif-
fuse as well (equal exitant radiance in all directions). This simplifies the
equations and solution methods.

The radiosity problem can be described by a simplification of the rendering
equation for diffuse environments and a discretized version that will provide us
with a linear system describing the energy equilibrium in the scene.

The radiosity B for a single point x is defined as flux per surface area, or
equivalently, radiance integrated over the hemisphere of outgoing directions at x.
The average radiosity Bi emitted by a surface patch i with area Ai is therefore
given by
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Bi =
1
Ai

∫
Si

∫
Ωx

Lr(x,φr,θr)cos(θr)dωidA, (16.13)

in which Lr(x,φr,θr) for a specific surface point x is given by the rendering equa-
tion (16.3).

On purely diffuse surfaces, self-emitted radiance Le and the BRDF fr do not
depend on incoming or outgoing directions. The rendering equation for a surface
point x can then be written as

Lr(x) = Le(x)+
∫

Ωx

Li(x,φi,θi) fr(x)cos(θi)dωi. (16.14)

Of course, the incident radiance Li(x,φi,θi) still depends on incident direc-
tion. It corresponds to the exitant radiance Lr(y) emitted towards x by the point
y visible from x along the direction (φi,θi). As explained previously, the integral
over the hemisphere Ωx can be transformed into an integral over all surfaces S in
the scene. The result is an integral equation without any directions present:

Lr(x) = Le(x)+ fr(x)
∫

S
G(x,y)V (x,y)Lr(y)dAy. (16.15)

In a diffuse environment, radiosity and radiance are related since B(x) =
πLr(x) and Be(x) = πLe(x). Multiplication by π of the left- and right-hand side
of the above equation yields the radiosity integral equation:

B(x) = Be(x)+
ρ(x)

π

∫
S

K(x,y)B(y)dAy, (16.16)

where ρ(x) = π fr(x) is the diffuse hemispherical reflectance bounded by [0,1],
and the kernel K(x,y) = G(x,y)V (x,y).

Equation (16.13) now becomes

Bi =
1
Ai

∫
Si

Lr(x)
∫

Ωx

cos(θr)dωidA

=
1
Ai

∫
Si

Lr(x)πdA

=
1
Ai

∫
Si

B(x)dA. (16.17)

Often, integral equations such as Equation (16.16) are solved by reducing
them to an approximate system of linear equations by means of a procedure
known as Galerkin discretization [Delv85,Kres89,Cohe93,Sill94].
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Assume the radiosity B(x) is constant over each surface element i, i.e., B(x) =
B′i for all x∈ Si. Equation (16.16) can be converted into a linear system as follows:

B(x) = Be(x)+
ρ(x)

π

∫
S

K(x,y)B(y)dAy

⇒ 1
Ai

∫
Si

B(x)dAx =
1
Ai

∫
Si

Be(x)dAx

+
1
Ai

∫
Si

∫
S

ρ(x)
π

K(x,y)B(y)dAydAx

⇔ 1
Ai

∫
Si

B(x)dAx =
1
Ai

∫
Si

Be(x)dAx

+∑
j

1
Ai

∫
Si

∫
S j

ρ(x)
π

K(x,y)B(y)dAydAx

⇔ B′i = Bei +∑
j

B′j
1
Ai

∫
Si

∫
S j

ρ(x)
π

K(x,y)dAydAx.

If we also assume that the hemispherical diffuse reflectivity is constant over
the surface patch, i.e., ρ(x) = ρi for all x ∈ Si, the following classical radiosity
system of equations results:

B′i = Bei +ρi ∑
j

Fi jB
′
j. (16.18)

The factors Fi j are called patch-to-patch form factors:

Fi j =
1
Ai

∫
Si

∫
S j

K(x,y)
π

dAydAx. (16.19)

The form factors represent the amount of energy transfer between two surface
patches i and j; they are nontrivial four-dimensional integrals. They are only
dependent on the geometry of the scene and not on any specific configuration of
light sources in the scene.

Note that the radiosity values B′i that result after solving the system of linear
equations (Equation (16.18)) are only an approximation of the average radiosities
Bi over a surface patch. The true radiosity value B(y) that was replaced by B′j in
the above equations is in practice not piecewise constant, as we assumed in the
above derivation. The difference between Bi and B′i is, however, rarely visible in
practice. For this reason, both the average radiosity (Equation (16.13)) and the
radiosity coefficients in Equation (16.18) are used interchangeably.
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16.3 Monte Carlo Integration

An important numerical tool for evaluating the global illumination equation is
Monte Carlo integration, which evaluates integrals based on a selection of random
samples drawn from the integration domain. Monte Carlo integration has a long
history in numerical analysis, and a thorough description of various Monte Carlo
methods can be found in [Kalo86,Hamm64].

The strength of Monte Carlo integration lies in its simplicity and robustness.
An integral can be evaluated simply by generating random points in the integra-
tion domain, evaluating the integrand in this random sample, and averaging these
evaluations. It is also robust, since the Monte Carlo method will work no matter
how complex the function to be integrated is. For example, high-dimensional in-
tegrals, disjunct integration domains, or discontinuities in the integrand can all be
handled by Monte Carlo integration.

The drawback is the relatively slow convergence rate of Monte Carlo inte-
gration. When drawing N samples from the integration domain, we can expect
a convergence rate of 1/

√
N. Consequently, many variance-reduction techniques

have been developed, many specifically in the context of global illumination al-
gorithms.

Suppose we want to evaluate the following one-dimensional integral, defined
over the unit interval [0,1]:

I =
∫ 1

0
f (x)dx. (16.20)

We will uniformly draw N samples x1,x2, . . . ,xN from the domain [0,1]. By
averaging the function evaluations f (xi), we obtain an estimator for I:

〈I〉=
1
N

N

∑
i=1

f (xi). (16.21)

It is easy to prove that the expected value E[〈I〉] of 〈I〉 equals the value of the
integral I:

E[〈I〉] = E

[
1
N

N

∑
i=1

f (xi)

]
=

1
N

N

∑
i=1

E [ f (xi)]

=
1
N

N

∑
i=1

∫ 1

0
f (x)dx =

1
N
·N ·

∫ 1

0
f (x)dx

=
∫ 1

0
f (x)dx = I.

(16.22)
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Thus, we have defined a stochastic process whose expected outcome equals
the integral value I that we would like to compute. Of course, every different
computation of 〈I〉 will yield a different result, but, on average, we will get the
right answer.

The variance σ2 of this stochastic computation, indicating the spread of pos-
sible values of 〈I〉 around the expected outcome I, can be computed as follows:

σ2[〈I〉] = σ2

[
1
N

N

∑
i=1

f (xi)

]

=
1

N2

N

∑
i=1

σ2 [ f (xi)]

=
1

N2 ·N ·
∫ 1

0
( f (x)− I)2dx

=
1
N

∫ 1

0
( f (x)− I)2dx.

(16.23)

Thus, as the number of samples N increases, the variance σ2 decreases lin-
early with N. The standard deviation σ , which can be considered an approxima-
tion of the error we make when estimating the integral, therefore decreases with
1/
√

N. This means that if we want to decrease the error by a factor of two, we
need four times as many samples. This convergence speed is typically lower than
that of many other integration techniques, but it is independent of the number of
dimensions in the integral. Estimating the variance itself can be part of a sepa-
rate Monte Carlo integration process, but can also be done using the same sample
points xi used for the estimation of I. However, in the latter case, care has to be
taken about possible correlation effects.

Generalizing to the domain [a,b], and using a non-uniform probability density
p(x) to draw the samples, we obtain the following expressions for the estimator
〈I〉 and variance σ2:

〈I〉=
1
N

N

∑
i=1

f (xi)
p(xi)

,

σ2[〈I〉] = 1
N

∫ b

a
(

f (x)
p(x)

− I)2dx.

(16.24)

Again, one can prove that the expected value of 〈I〉 equals the value of the
integral, or E(〈I〉) = I.
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The probability density function (pdf) p(x) has to satisfy two constraints:

1. The value of p(x) must be strictly larger than 0 over the entire integration
domain [a,b].

2. The function p(x) has to integrate to 1:
∫ b

a p(x)dx = 1.

In order to draw samples distributed according to p(x), several techniques are
possible. Analytically, one has to compute the cumulative distribution function
P(x):

P(x) =
∫ x

a
p(y)dy. (16.25)

P(x) is a monotonic increasing function over the interval [a,b] with P(a) = 0 and
P(b) = 1. If a random number t is generated uniformly over the interval [0,1],
then the distribution of the values x = P−1(t) is distributed according to p(x).
In practice, the inverse cumulative function is often computed numerically and
stored as a table in which a binary search is possible to compute the inverse value
quickly. The main advantage of using a non-uniform pdf is that the variance,
and thus the error, of the integration can be decreased. As a rule of thumb , the
more the shape of the pdf is similar to the function to be integrated, the lower the
variance will be.

Other strategies for reducing variance usually involve distributing the sam-
pling points over the interval using techniques such as stratified sampling, N-
Rooks sampling, multiple importance sampling, or combinations of all meth-
ods. [Kalo86] and [Hamm64] contain more thorough reviews of these techniques.

Multidimensional Monte Carlo integration works in exactly the same way as
one-dimensional integration. Thus, if the integral we want to compute is defined
over a domain [a,b]× [c,d]:

I =
∫ b

a

∫ d

c
f (x,y)dxdy,

〈I〉=
1
N

N

∑
i=1

f (xi,yi)
p(xi,yi)

.

(16.26)

The main advantage of Monte Carlo integration is that it is simple to imple-
ment and is very robust. It provides an answer independent of the complexity of
the function to be integrated or the dimensions of the integration domain. The
drawback is that the error is hard to control and often cannot be expressed by
explicit lower and upper bounds.
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16.4 Computing Direct Illumination
Computing the direct illumination based on various forms of the rendering equa-
tion usually involves applying Monte Carlo integration. In this section, various
approaches are described that all assume that we want to compute the reflected ra-
diance value in a surface point x and in a specific direction, usually the direction
pointing towards the camera if x is the result of the intersection of the viewing ray
with the scene geometry in a ray tracing algorithm (see Chapter 15).

16.4.1 Single Light Source

Let us first take a look at direct illumination from a single light source (Equation
(16.10)). The integration domain is defined as the surface S1 of the light source,
thus we have to use a pdf p(y) that is able to generate surface points y j over the
total light source area. This leads to the following estimator for the radiance value
Lr(x,φr,θr) when using N sample points {y1,y2, . . . ,yN}:

〈Lr(x,φr,θr)〉=
1
N

N

∑
j=1

Le(y j,φy j ,θy j) fr(φr,θr,φi,θi)G(x,yj)V (x,y j)
p(y j)

. (16.27)

The pdf p(y) is a two-dimensional pdf that has to generate two coordinates u
and v, which can be transformed to a 3D point y on the surface of the light source
using a proper mapping. This mapping is usually identical to the mapping used
in texture-mapping procedures. Care has to be taken that each point on the light
source has a non-zero value for the pdf, otherwise some parts of the light source
will not be sampled and the estimated radiance will have a biased value.

The procedure for evaluating the direct illumination due to a single light
source is shown in Figure 16.2, and the algorithmic overview is given in Listing
16.1. Algorithmically, evaluating the visibility term V (x,y j) involves shooting a
shadow ray from x towards y j and checking whether any objects are blocking the
visibility.

As can be seen in Figure 16.3, there are quite some differences in pixel in-
tensities that are visible as noise in the final image. Noise is unavoidable in a
stochastic process such as Monte Carlo integration, but will decrease gradually if
more samples are drawn.

Different factors contribute to the visible noise in the image:

• The visibility function V (x,yi) is usually the most important factor caus-
ing noise in direct illumination computations. When the light source is
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x

Lr(x,φr,θr)

light source

yj

Figure 16.2. Sampling a single light source.

// direct illumination from a single light source

// for a surface point x, direction phi, theta

directIllumination (x, phi, theta)

estimatedRadiance = 0;

for all shadow rays

generate point y on light source;

estimatedRadiance +=

Le(y,phi_y,theta_y)*BRDF*radianceTransfer(x,y)/pdf(y);

estimatedRadiance = estimatedRadiance / #shadowRays;

return(estimatedRadiance);

// transfer between x and y

// 2 cosines, distance and visibility taken into account

radianceTransfer(x,y)

transfer = G(x,y)*V(x,y);

return(transfer);

Listing 16.1: Computing direct illumination from a single light source.
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36 random shadow rays

1 random shadow ray

100 random shadow rays

9 random shadow rays

Figure 16.3. Direct illumination due to a single light source. Note the difference
in quality of the image when the number of samples (shadow rays) is increased.
(See also Color Plate XXVII.)

fully visible to the point x to be shaded (in other words, V (x,yi) = 1 for all
points yi), or fully occluded (V (x,yi) = 0 for all points yi), there is no prob-
lem. However, when x is located in the penumbra or soft-shadow region
due to a partial blocking of a light source by a shadow caster, artifacts will
occur (see Chapter 13 for more details and definitions regarding shadow
generation). In this case, some points yi will be visible to x, and some will
not. If only one shadow ray per pixel will be drawn, this means the esti-
mated radiance can become equal to 0, resulting in a black pixel in the final
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image. Increasing the number of samples will smoothen the soft shadow
(Figure 16.3). In practice, the number of samples will be dependent on the
size of the penumbra region.

• The geometric coupling term G(x,yi) (16.7) also can contribute signifi-
cantly to the stochastic error visible in the image. Even if there are no
visibility problems, variations in the cosine factors or the inverse distance
can become significant. Especially when the light source is large, and for
points x located close to the light source, 1/rxyi

can take on arbitrarily large
values, resulting in very bright pixels. The evaluation of G(x,yi) usually
does not cause problems when the light source is small, since then this term
tends to be near constant for the different yi.

• When using non-diffuse BRDFs, the direction of the shadow rays (see
Chapter 15) might or might not coincide with the specular lobes of the
BRDF model. If the BRDF values vary largely within the solid angle sub-
tended by the light source, additional noise can be introduced into the pic-
ture.

• In principle, any valid pdf p(y) can be chosen to compute the estimate
〈Lr(x,φr,θr)〉. However, p(y) is usually uniform over the area of the light
source and, thus, will not affect the noise in the final image.

16.4.2 Multiple Light Sources

When dealing with direct illumination due to multiple light sources present in the
scene, two approaches can be followed, each with distinct advantages. The first
approach considers all light sources as individual contributors to the illumination
of a single point, while the second approach groups all light sources in a single
integration domain.

In global illumination algorithms, as in all of computer graphics, light is con-
sidered to be linearly additive. Therefore, the separate contributions of each in-
dividual light source to the illumination of surface point x can be added together.
A number of shadow rays is generated for each light source and can be chosen
independently (e.g., an equal number for all light sources or proportional to the
power of each light source).

However, it is often better to consider all combined light sources as a single
integration domain and apply Monte Carlo integration to the combined integral.
As a result, when shadow rays are generated, they can be directed to any of the
light sources, without explicitly attributing a fixed number of shadow rays to each
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yik

x

Lr(x,φr,θr)

light sources

yj

Figure 16.4. Direct illumination due to multiple light sources.

light source. When using this procedure, it is therefore possible to compute the di-
rect illumination due to any number of light sources with just a single shadow ray
for each point x to be shaded and still obtain an unbiased image. This approach
works because we make a complete abstraction of the light sources as separate
modeled entities, and instead we look at the combined integration domain. How-
ever, in order to have a working sampling algorithm, we still need access to any
of the light sources separately, because any individual light source might require a
separate sampling procedure for generating points over their respective surfaces.

A two-step sampling process is used for each shadow ray (Figure 16.4):

1. First, a discrete pdf pL(k) generates a randomly selected light source ki. We
assign each of the NL light sources a probability value for it being chosen
to send a shadow ray to. This probability function is usually the same for
all different points x, but in principle, it can be chosen differently for differ-
ent parts of the scene. This proves beneficial especially when the scene is
subdivided in different sub-scenes, which have their own light sources, but
which are also mutually hidden from each other.
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// direct illumination from multiple light sources

// for surface point x, direction phi, theta

directIllumination (x, phi, theta)

estimatedRadiance = 0;

for all shadow rays

select light source k;

generate point y on light source k;

estimatedRadiance +=

Le(y, phi_y, theta_y) * BRDF * radianceTransfer(x,y) /

(pdf(k) * pdf(y|k));

estimatedRadiance = estimatedRadiance / #shadowRays;

return(estimatedRadiance);

// transfer between x and y

// 2 cosines, distance and visibility taken into account

radianceTransfer(x,y)

transfer = G(x,y)*V(x,y);

return(transfer);

Listing 16.2: Computing direct illumination due to multiple light sources.

2. During the second step, a surface point yi on the selected light source k
is selected using a conditional pdf p(y|ki). Any of the pdfs applicable to
single light source illumination can be used.

The combined pdf for the sampled point yi on the combined area of all light
sources therefore equals pL(k)p(y|k). The total estimator, using N shadow rays,
is then expressed as

〈Lr(x,φr,θr)〉=
1
N

N

∑
i=1

Le(yi,φy j ,θy j) fr(φr,θr,φi,θi)G(x,yi)V (x,yi)
pL(ki)p(yi|ki)

. (16.28)

Listing 16.2 shows the algorithm for computing the direct illumination due to
multiple light sources.

Although any pdfs pL(k) and p(y|k) will produce unbiased images, the choice
of specific pdfs will have an impact on the variance of the estimators and the noise
in the final picture. Two of the more common choices are the following:

Uniform source selection with uniform sampling of light source area. Both pdfs
are uniform, i.e., pL(k) = 1/NL and p(y|k) = 1/SLk . Every light source will
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receive, on average, an equal number of shadow rays, and these shadow
rays are distributed uniformly over the area of each light source. This is
easy to implement, but the disadvantages are that the illumination of both
bright and weak light sources is computed with an equal number of shadow
rays. Also, light sources that are far away or invisible receive an equal
number of shadow rays as light sources that are nearby. Thus, the relative
importance of each light source to the illumination of a single surface point
source is not taken into account. Substituting the pdfs in Equation (16.28)
provides the following estimator for the direct illumination:

〈Lr(x,φr,θr)〉=
NL

N

N

∑
i=1

SLk Le(yi,φy j ,θy j) fr(φr,θr,φi,θi)G(x,yi)V (x,yi).

(16.29)

Power-proportional source selection with uniform sampling of light source area.
Here, the pdf pL(k) = Pk/Ptotal with Pk being the radiant power of light
source k and Ptotal the total power emitted by all light sources. Bright
sources receive more shadow rays, and very dim light sources receive very
few. This is likely to reduce variance and noise in the picture. The estimator
can be written as

〈Lr(x,φr,θr)〉=

Ptotal

N

N

∑
i=1

SLk Le(yi,φy j ,θy j) fr(φr,θr,φi,θi)G(x,yi)V (x,yi)
Pk

. (16.30)

If all light sources are diffuse, Pk = πSkLe,k, and thus

〈Lr(x,φr,θr)〉=
Ptotal

πN

N

∑
i=1

fr(φr,θr,φi,θi)G(x,yi)V (x,yi). (16.31)

This approach is typically superior since it gives a higher importance to
bright sources, but it could result in slower convergence at pixels where
the bright lights are invisible and illumination is dominated by less bright
lights. This latter occurrence can only be solved by using sampling strate-
gies that use some knowledge about the visibility of the light sources with
respect to specific parts of the scene.

No matter what pL(k) is chosen, one has to be sure not to exclude any light
sources that might contribute to Lr(x,φr,θr). Just dropping small, weak, or far-
away light sources might result in bias, and for some portions of the image, this
bias can be significant.
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One of the drawbacks of the above two-step procedure is that three random
numbers are needed to generate a shadow ray: one random number to select the
light source k and two random numbers to select a specific surface point yi within
the area of the light source. This makes stratified sampling more difficult to im-
plement. In [Shir00], a technique is described that makes it possible to use only
two random numbers when generating shadow rays for a number of disjunct light
sources. The two-dimensional integration domain covering all light sources is
mapped on the standard two-dimensional unit square. Each light source corre-
sponds to a small sub-domain of the unit square. When a point is generated in
the unit square, we find out what sub-domain it belongs to and then transform the
location of the point to the actual light source. Sampling in a three-dimensional
domain has been reduced to sampling in a two-dimensional domain, which makes
it easier to apply stratified sampling or other variance-reduction techniques.

16.4.3 Environment Map Illumination�

The computational techniques outlined in the previous sections are applicable to
almost all types of light sources. It is sufficient to choose an appropriate pdf to se-
lect one light source from among all light sources in the scene and, subsequently,
to choose a pdf to sample a random surface point on the selected light source.
The total variance, and hence the stochastic noise in the image, will be highly
dependent on the types of pdf chosen.

The use of environment maps (sometimes also called illumination maps or
reflection maps—see Chapter 14) as a type of light source has received signifi-
cant attention in recent years. An environment map encodes the total illumination
present on the hemisphere of directions around a single point. Usually, environ-
ment maps for illumination purposes are captured in natural environments using
digital cameras.

An environment map can be described mathematically as a stepwise continu-
ous function, in which each pixel corresponds to a small solid angle ∆Ω around
the point x at which the environment map is centered. The intensity of each pixel
then corresponds to an incident radiance value L(x,φi,θi), with (φi,θi) ∈ ∆Ω.

Capturing environment maps. Environment maps usually represent real-world
illumination conditions. A light probe in conjunction with a digital camera, or a
digital camera equipped with a fisheye lens are the most common techniques for
capturing environment maps.

A practical way to acquire an environment map of a real environment is the
use of a light probe. A light probe is nothing more than a specularly reflective ball
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Figure 16.5. Photographing a light probe results in an environment map repre-
senting incident radiance from all directions.

that is positioned at the point where the incident illumination needs to be captured.
The light probe is subsequently photographed using a camera equipped with an
orthographic lens, or alternatively, a large zoom lens such that orthographic con-
ditions are approximated as closely as possible.

The center point of a pixel in the recorded image of the light probe corre-
sponds to a single incident direction. This direction can be computed rather eas-
ily, since the normal vector on the light probe is known, and a mapping from
pixel coordinates to incident directions can be used. A photograph of the light
probe therefore results in a set of integrated samples of the function L(x,φi,θi)
(Figure 16.5).

Although the acquisition process is straightforward, there are a number of
issues to be considered:

• The camera will be reflected in the light probe and will be present in the
photograph, thereby blocking light coming from directions directly behind
the camera.

• The use of a light probe does not result in a uniform sampling of directions
over the hemisphere. Directions opposite the camera are sampled poorly,
whereas directions on the same side of the camera are sampled densely.

• All directions sampled at the edge of the image of the light probe represent
illumination from the same direction. Since the light probe has a small
radius, these values may differ slightly.



�

�

�

�

�

�

�

�

16.4. Computing Direct Illumination 585

Figure 16.6. Photographing a light probe twice, 90 degrees apart. Combining both
photographs produces a well-sampled environment map without the camera being
visible.

• Since the camera cannot capture all illumination levels due to its non-linear
response curve, a process of high dynamic range photography needs to be
used to acquire an environment map that correctly represents radiance val-
ues.

Some of these problems can be alleviated by capturing two photographs of the
light probe 90 degrees apart. The samples of both photographs can be combined
into a single environment map as is shown in Figure 16.6.

An alternative for capturing an environment map is to make use of a camera
equipped with a fisheye lens. Two photographs taken from opposite view direc-
tions result in a single environment map as well. However, good fisheye lenses
can be very expensive and hard to calibrate. Both images need to be taken in per-
fect opposite view directions, otherwise a significant set of directions will not be
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present in the photograph. If only the incident illumination of directions in one
hemisphere need to be known instead of the full sphere of directions, the use of a
fisheye lens can be very practical.

Parameterizations. When using environment maps in global illumination algo-
rithms, they need to be expressed in some parametric space. Various parameter-
izations can be used, and the effectiveness of how well environments maps can
be sampled is dependent on the type of parameterization used. In essence, this is
the same choice one has to make when computing the rendering equation as an
integral over the hemisphere.

Various types of parameterizations are used in the context of environment
maps, and we provide a brief overview here. A more in-depth analysis can be
found in [Mass04].

Latitude-longitude parameterization. These are the classic hemispherical coordi-
nates, but extended to the full sphere of directions. Advantages are an equal
distribution of the tilt angle θ , but there is a singularity around both poles,
which is represented as a line in the map. Additional problems are that
the pixels in the map do not occupy equal solid angles, and that the φ = 0
and φ = 2π angles are not mapped continuously next to each other (Figure
16.7(a)).

Projected-disk parameterization. This parameterization is also known as Nusselt
embedding. The hemisphere of directions is projected on a disk of radius 1.
The advantage is the continuous mapping of the azimuthal angle φ and the
fact that the pole is a single point in the map. However, the tilt angle θ
is non-uniformly distributed over the map (Figure 16.7(b)). A variant is
the paraboloid parameterization, in which the tilt angle is distributed more
evenly [Heid99] (Figure 16.7(c)).

Concentric-map parameterization. The concentric-map parameterization trans-
forms the projected unit disk to a unit square [Shir97]. This makes sampling
of directions in the map easier and keeps the continuity of the projected
disk-parameterizations (Figure 16.7(d)).

Sampling environment maps. The direct illumination of a surface point due to
an environment map can be expressed as follows:

Lr(x,φr,θr) =
∫

Ωx

Lmap(φi,θi) fr(φr,θr,φi,θi)cos(θi)dωi. (16.32)
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Figure 16.7. Different parameterizations for the hemisphere: (a) latitude-longitude
parameterization; (b) projected-disk parameterization; (c) paraboloid parameteri-
zation; (d) concentric-map parameterization.
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The integrand contains the incident illumination Lmap(φi,θi) on point x, com-
ing from direction (φi,θi) in the environment map. Other surfaces present in the
scene might prevent the light coming from this direction from reaching x. These
surfaces might belong to other objects, or the object to which x belongs can cast
a self-shadow onto x. In these cases, a visibility term V (x,φi,θi) has to be added:

Lr(x,φr,θr) =
∫

Ωx

Lmap(φi,θi) fr(φr,θr,φi,θi)V (x,φi,θi)cos(θi)dωi. (16.33)

A straightforward application of Monte Carlo integration results in the fol-
lowing estimator:

〈Lr(x,φr,θr)〉=
1
N

N

∑
j=1

Lmap(x,φi, j,θi, j) fr(φr,θr,φi, j,θi, j)V (x,φi, j,θi, j)cos(θi, j)
p(φi, j,θi, j)

,

(16.34)
in which the different sampled directions (φi, j,θi, j) are generated directly in the
parameterization of the environment map using a pdf p(φi, j,θi, j).

However, various problems present themselves when trying to approximate
this integral using Monte Carlo integration:

Integration domain. The environment map acting as a light source occupies the
complete solid angle around the point to be shaded, and, thus, the integra-
tion domain of the direct illumination equation has a large extent, usually
increasing variance.

Textured light source. Each pixel in the environment map represents a small solid
angle of incident light. The environment map can therefore be considered as
a textured light source. The radiance distribution in the environment map
can contain high frequencies or discontinuities, thereby again increasing
variance and stochastic noise in the final image. Especially when capturing
effects such as the sun or bright windows, very high peaks of illumination
values can be present in the environment map.

Product of environment map and BRDF. As expressed in Equation (16.33), the
integrand contains the product of the incident illumination Lmap(φi,θi) and
the BRDF fr(φr,θr,φi,θi). In addition to the discontinuities and high fre-
quency effects present in the environment map, a glossy or specular BRDF
also contains very sharp peaks. These peaks on the sphere or hemisphere
of directions for both illumination values and BRDF values usually are not
located in the same directions. This makes it very difficult to design a very
efficient sample scheme that takes these features into account.
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Visibility. If the visibility term is included, additional discontinuities are present
in the integrand. This is very similar to the handling of the visibility term
in standard direct illumination computations, but might complicate an effi-
cient sampling process.

Practical approaches try to construct a pdf p(φi, j,θi, j) that addresses these
problems. Roughly, these can be divided into three categories: pdfs based on the
distribution of radiance values Lmap(φi,θi) in the illumination map only, usually
including cos(θi) that can be pre-multiplied into the illumination map; pdfs based
on the BRDF fr(φr,θr,φi,θi), which are especially useful if the BRDF is of a
glossy or specular nature; and pdfs based on the product of both functions, but
which are usually harder to construct.

Direct illumination map sampling. A first approach for constructing a pdf based
on the radiance values in the illumination map can be simply to transform
the piecewise constant pixel values into a pdf, by computing the cumulative
distribution in two dimensions and subsequently inverting it. This typically
results in a 2D look-up table, and the efficiency of the method is highly
dependent on how fast this look-up table can be queried.

A different approach is to simplify the environment map by transforming it
into a number of well-selected point light sources. This has the advantage
that there is a consistent sampling of the environment map for all surface
points to be shaded, but can possibly introduce aliasing artifacts, especially
when using a low number of light sources. In [Koll03] an approach is
presented in which a quadrature rule is generated automatically from a high
dynamic range environment map. Visibility is taken into account in the
structured importance sampling algorithm, in which the environment map
is subdivided in a number of cells [Agar03].

BRDF sampling. The main disadvantage of constructing a pdf based only on the
illumination map is that the BRDF is not included in the sampling process,
but is left to be evaluated after the sample directions have been chosen. This
is particularly problematic for specular and glossy BRDFs, and if this is the
case, a pdf based on the BRDF will produce better results.

This, of course, requires that the BRDF can be sampled analytically, which
is not always possible, except for a few well-constructed BRDFs (e.g., a
Phong BRDF or Lafortune BRDF). Otherwise, the inverse cumulative dis-
tribution technique will have to be used for the BRDF as well.
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Sampling the product. The best approach is to construct a sampling scheme based
on the product of both the illumination map and the BRDF, possibly in-
cluding the cosine and some visibility information as well. In [Burk05],
bidirectional importance sampling is introduced that constructs a sampling
procedure based on rejection sampling. The disadvantage is that it is diffi-
cult to predict exactly how many samples will be rejected and, hence, the
computation time. Resampled importance sampling is a variant of this ap-
proach [Talb05]. Wavelet importance sampling [Clar05] constructs a pdf
based on the wavelet representation of both the illumination map and the
BRDF, but this implies some restrictions on what type of map and BRDF
can be used.

16.5 Indirect Illumination

16.5.1 Stochastic Ray Tracing

The stochastic ray tracing algorithm is a global illumination algorithm that does
not limit itself to direct illumination only, but includes all possible indirect illu-
mination effects. It can be derived by applying Monte Carlo integration directly
to the hemispherical rendering equation (16.3).

Ray-tracing set-up. In order to compute a global illumination picture, we need
to attribute a radiance value Lpixel to each pixel in the final image. This value is
a weighted measure of radiance values incident on the image plane, along a ray
coming from the scene, passing through the pixel, and pointing to the eye (see
Chapter 15 and Figure 16.8). This is best described by a weighted integral over
the image plane,

Lpixel =
∫

image plane
L(p)h(p)dp

=
∫

image plane
Lr(x,φr,θr)h(p)dp,

(16.35)

where p is a point on the image plane, h(p) is a weighting or filtering function
(see Appendix E), and x is the visible point seen from the eye through p. Often,
h(p) equals a simple box filter such that the final radiance value is computed by
uniformly averaging the incident radiance values over the area of the pixel. A
more complex camera model is described in [Kolb95]. To evaluate Lr(x,φr,θr),
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eye

p

h(p)

image plane

L(x,φr,θr)

x

Figure 16.8. Ray-tracing set-up.

a ray is cast from the eye through p in order to find x. Then, Lr(x,φr,θr) is
computed by evaluating the rendering equation.

The complete pixel-driven rendering algorithm (Listing 16.3) consists of a
loop over all pixels, and, for each pixel, the integral in the image plane is com-
puted using an appropriate integration rule (Equation (16.35)). A simple Monte
Carlo sampling over the image plane where h(p) = 0 can be used. For each sample
point p, a primary ray needs to be constructed. The radiance along this primary
ray is computed using a function rad(ray). This function finds the intersection
point x and then computes the radiance leaving surface point x in the direction of
the eye. The final radiance estimate for the pixel is obtained by averaging over
the total number of viewing rays, and taking into account the normalizing factor
of the uniform PDF over the integration domain (h(p) = 0).

Truly random paths. The function compute_radiance(x, direction eye

to p) in the pixel-driven rendering algorithm uses the rendering equation to eval-
uate the appropriate radiance value. The most simple algorithm to compute this
radiance value is to apply a basic and straightforward Monte Carlo integration
scheme to the standard form of the rendering equation (16.3). The integral can
be evaluated using Monte Carlo integration, by generating N random directions
(φi,θi) over the hemisphere Ωx, distributed according to some probability density
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// pixel-driven rendering algorithm

computeImage(eye)

for each pixel

radiance = 0;

H = integral(h(p));

for each viewing ray

pick uniform sample point p such that h(p) <> 0;

construct ray at origin eye, direction from eye to p;

radiance = radiance + rad(ray)*h(p);

radiance = radiance / (#viewingRays*H);

rad(ray)

find closest intersection point x of ray with scene;

computeRadiance(x, direction eye to p);

Listing 16.3: Pixel-driven rendering algorithm.

function p(φi,θi). The estimator for Lr(x,φr,θr) is then given by

〈Lr(x,φr,θr)〉=
1
N

N

∑
j=1

L(x,φi, j,θi, j) fr(φr,θr,φi, j,θi, j)cos(θi, j)
p(φi, j,θi, j)

. (16.36)

The cosine and BRDF terms in the integrand can be evaluated by accessing
the scene description. However, L(x,φi, j,θi, j), the incident radiance at x, is un-
known. Since radiance remains invariant along straight lines, we need to trace the
ray leaving x in direction (φi, j,θi, j) through the environment to find the closest
intersection point y. At this point, another radiance evaluation is needed. Thus,
we have a recursive procedure to evaluate L(x,φi, j,θi, j), and a path, or a tree of
paths, is traced through the scene.

Any of these radiance evaluations will only yield a non-zero value, if the path
hits a surface for which Le is different from 0. In other words, the recursive path
needs to hit one of the light sources in the scene. Since the light sources usually
are small compared to the other surfaces, this does not occur very often, and very
few of the paths will yield a contribution to the radiance value to be computed.
The resulting image will mostly be black. Only when a path hits a light source
will the corresponding pixel be attributed a color. The algorithm generates paths
in the scene, starting at the point of interest and slowly working toward the light
sources in a very uncoordinated manner.
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In theory, this algorithm could be improved somewhat by choosing p(φi,θi)
to be proportional to the cosine term or the BRDF, according to the principle
of importance sampling. In practice, the disadvantage of picking up mostly zero-
value terms is not changing the result considerably. Note however, that this simple
approach will produce an unbiased image if a sufficient number of paths per pixel
are generated.

Terminating the recursion. The recursive path generator described in the sim-
ple stochastic ray tracing algorithm needs a stopping condition. Otherwise, the
generated paths are of infinite length and the algorithm does not come to a halt.
When adding a stopping condition, one has to be careful not to introduce any bias
to the final image. Theoretically, light reflects infinitely in the scene, and we can-
not ignore those light paths of a long length that might be very important. Thus,
we have to find a way to limit the length of the paths, but still be able to obtain a
correct solution.

In classic ray-tracing implementations, two techniques are often used to pre-
vent paths from growing too long. A first technique is cutting off the recursive
evaluations after a fixed number of evaluations. In other words, the paths are gen-
erated up to a certain specified length. This puts an upper bound on the amount of
rays that need to be traced, but important light transport might have been ignored.
Thus, the image will be biased. A typical fixed path length is set at 4 or 5, but
really should be dependent on the scene to be rendered. A scene with many spec-
ular surfaces will require a larger path length, while scenes with mostly diffuse
surfaces can usually use a shorter path length.

Another approach is to use an adaptive cut-off length. When a path hits a
light source, the radiance found at the light source still needs to be multiplied
by all cosine factors and BRDF evaluations (and divided by all pdf values) at all
previous intersection points, before it can be added to the final estimate of the
radiance through the pixel. This accumulating multiplication factor can be stored
along with the lengthening path. If this factor falls below a certain threshold,
recursive path generation is stopped. This technique is more efficient compared
to the fixed path length, because many paths are stopped sooner and fewer errors
are made, but the final image will still be biased.

Russian roulette is a technique that addresses the problem of keeping the
lengths of the paths manageable, but at the same time leaves room for exploring
all possible paths of any length. Thus, an unbiased image can still be produced.
To explain the Russian roulette principle, let us look at a simple example first.
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f(x)

0 P 1

f(x/P)/P

x

y

Figure 16.9. Principle of Russian roulette.

Suppose we want to compute the one-dimensional integral

I =
∫ 1

0
f (x)dx.

The standard Monte Carlo integration procedure generates random points xi in
the domain [0,1], and computes the weighted average of all function values f (xi).
Assume that for some reason f (x) is difficult or complex to evaluate (e.g., f (x)
might be expressed as another integral), and we would like to limit the number
of evaluations of f (x) necessary to estimate I. By scaling f (x) by a factor P
horizontally and a factor 1/P vertically, we can also express the quantity I as

IRR =
∫ P

0

1
P

f (
x
P

)dx,

with P≤ 1 (Figure 16.9).
Applying Monte Carlo integration to compute the new integral, using a un-

form pdf p(x) = 1 to generate the samples over [0,1], we get the following esti-
mator for IRR:

〈IRR〉=

⎧⎨⎩
1
P

f (
x
P

) if x≤ P,

0 if x > P.
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// simple stochastic ray tracing

computeRadiance(x, dir)

find closest intersection point x of ray with scene;

estimatedRadiance = simpleStochasticRT(x, phi, theta);

return(estimatedRadiance);

simpleStochasticRT (x, phi, theta)

estimatedRadiance = 0;

if (no absorption) // Russian roulette

for all paths // N rays

sample direction phi_i, theta_i on hemisphere;

y = trace(x, phi_i, theta_i);

estimatedRadiance +=

simpleStochasticRT(y, phi_i, theta_i)*BRDF

*cos(theta_i)/pdf(phi_i, theta_i);

estimatedRadiance /= #paths;

estimatedRadiance /= (1-absorption)

estimatedRadiance += Le(x, phi_i, theta_i)

return(estimatedRadiance);

Listing 16.4: Simple stochastic ray-tracing algorithm.

light source

x

α

β

γ
γ

γ

β

α

Figure 16.10. Tracing paths using simple stochastic ray tracing.
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It is easy to verify that the expected value of 〈IRR〉 equals I. If f (x) is another
recursive integral (as is the case in the rendering equation), the result of applying
Russian roulette is that recursion stops with a probability equal to α = 1−P for
each evaluation point. The value α is called the absorption probability. Samples
generated in the interval [P,1] will generate a function value equal to 0, but this
is compensated by weighting the samples in [0,P] with a factor 1/P. Thus, the
overall estimator still remains unbiased.

If α is small, the recursion will continue many times, and the final estimator
will be more accurate. If α is large, the recursion will stop sooner, but the estima-
tor will have a higher variance. For our simple path-tracing algorithm, this means
that either we generate accurate paths having a long length or very short paths that
provide a less accurate estimate. However, the final estimator will be unbiased.

In principle, we can pick any value for α , and we can control the execution
time of the algorithm by picking an appropriate value. In global illumination
algorithms, it is common for 1−α to be equal to the hemispherical reflectance
of the material of the surface. Thus, dark surfaces will absorb the path more
easily, while lighter surfaces have a higher chance of reflecting the path. This
corresponds to the physical behavior of light incident on these surfaces.

Simple stochastic ray tracing. The complete algorithm for simple stochastic
ray tracing is given in Listing 16.4, and is illustrated in Figure 16.10. Paths are
traced starting at point x. Path α contributes to the radiance estimate at x, since it
reflects off of the light source at the second reflection and is absorbed afterwards.
Path γ also contributes, even though it is absorbed at the light source. Path β does
not contribute, since it gets absorbed before reaching the light source.

16.5.2 Putting it All Together

We now have all the algorithms in place to build a full global illumination ren-
derer using stochastic path tracing. The efficiency and accuracy of the complete
algorithm will be determined by all of the following settings:

Number of viewing rays per pixel. The number of viewing rays Np to be cast
through the pixel, or more generally, the support of h(p) (Equation (16.35)).
A higher number of viewing rays eliminates aliasing and decreases noise.

Direct illumination. For direct illumination, a number of choices are necessary
that will determine the overall efficiency:

• the total number of shadow rays Nd cast from each point x;
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• how a single light source is selected from among all the available light
sources for each shadow ray;

• the distribution of the shadow rays over the area of a single light
source.

Indirect illumination. The indirect illumination component is usually implemented
using hemisphere sampling:

• number of indirect illumination rays Ni distributed over the hemi-
sphere Ωx;

• exact distribution of these rays over the hemisphere;

• absorption probabilities for Russian roulette in order to stop the recur-
sion.

The complete algorithm for computing the global illumination for the entire
image is given in schematic form in Listing 16.5.

It is obvious that the more rays we cast at each of the different choice points,
the more accurate the solution will be. Also, the better we make use of importance
sampling, the better the final image and the less objectionable noise there will be.
The interesting question is, when given a total amount of rays one can cast per
pixel, how should they best be distributed to reach a maximum level of accuracy
for the full global illumination solution?

This is still very much an open problem in global illumination algorithms.
There are some generally accepted “default” choices, but there are no hard and
fast rules. It generally is accepted that branching out too much (i.e., recursively
generating multiple rays at every surface point) at all levels of the tree is less
efficient. Indeed, progressively more rays will be cast at each deeper level, while
at the same time, the contribution of each of those individual rays to the final
radiance value of the pixel will diminish. For indirect illumination, a branching
factor of 1 is often used after the first level. Many implementations even limit the
indirect rays to one per surface point, but then compensate by generating more
rays through the area of the pixel. This approach is known as path tracing: many
paths, without any branching (except for direct illumination), are cast. Each path
by itself is a bad approximation of the total radiance, but many paths combined
are able to produce a good estimate.
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//stochastic ray tracing

computeImage(eye)

for each pixel

radiance = 0;

H = integral(h(p));

for each sample // Np viewing rays

pick sample point p within support of h;

construct ray at eye, direction eye to p;

radiance = radiance + rad(ray)*h(p);

radiance = radiance/(#samples*H);

rad(ray)

find closest intersection point x of ray with scene;

return Le(x,dir) + computeRadiance(x, dir);

computeRadiance(x, dir)

estimatedRadiance += directIllumination(x, dir);

estimatedRadiance += indirectIllumination(x, dir);

return(estimatedRadiance);

directIllumination (x, dir)

estimatedRadiance = 0;

for all shadow rays // Nd shadow rays

select light source k;

sample point y on light source k;

estimated radiance +=

Le * BRDF * G(x,y) * V(x,y) /(pdf(k)pdf(y|k));

estimatedRadiance = estimatedRadiance / #paths;

return(estimatedRadiance);

indirectIllumination (x, dir)

estimatedRadiance = 0;

if (no absorption) // Russian roulette

for all indirect paths // Ni indirect rays

sample random direction on hemisphere;

y = trace(x, random direction);

estimatedRadiance +=

compute_radiance(y, random direction) *

BRDF * cos / pdf(random direction);

estimatedRadiance = estimatedRadiance / #paths;

return(estimatedRadiance/(1-absorption));

Listing 16.5: Complete global illumination algorithm.
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16.5.3 Bidirectional Ray Tracing�

Stochastic ray tracing traces paths through the scene starting at the surface points
that eventually end at the light sources (whether or not explicit light-source sam-
pling is used). Light tracing, a variant path-tracing algorithm, does the opposite:
paths are generated starting from the light sources, and contributions to relevant
pixels are recorded. It is the dual algorithm of stochastic ray tracing.

Bidirectional ray tracing combines both approaches in a single algorithm and
can be viewed as a two-pass algorithm in which both passes are tightly inter-
twined. Bidirectional ray tracing generates paths starting at the light sources and
at the surface point simultaneously and connects both paths in the middle to find a
contribution to the light transport between the light source and the point for which
a radiance value needs to be computed. Bidirectional ray tracing was developed
independently by both Lafortune [Lafo94] and Veach [Veac94].

The core idea of the algorithm is that one has the availability of two different
path generators when computing a Monte Carlo estimate for the flux through a
certain pixel:

• An eye path is traced starting at a sampled surface point y0 visible through
the pixel. By generating a path of length k, the path consists of a series of
surface points y0,y1, . . . ,yk. The length of the path is controlled by Russian
roulette. The probability of generating this path can be composed of the
individual pdf values of generating each successive point along the path.

• Similarly, a light path of length l is generated starting at the light source.
This path, x0,x1, . . . ,xl , also has its own probability density distribution.

By connecting the endpoint yk of the eye path with the endpoint xl of the
light path, a total path of length k + l +1 between the pixel and the light sources
is obtained. The probability density function for this path is the product of the
individual pdfs of the light paths and eye paths.

Thus, an estimator for the flux Φ through the pixel using this single path is
then given by

Φ =
K

pdf(y0,y1, . . . ,yk,xl , . . . ,x1,x0)
, (16.37)

with

K = Le(x0, . . .)G(x0,x1)V (x0,x1) fr(x1, . . .) . . .

G(xl ,yk)V (xl ,yk) fr(yk, . . .) . . .

fr(y1, . . .)G(y1,y0)V (y1,y0)h(p). (16.38)
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Figure 16.11. Different combinations for a path of length 3: eye path is of length 2,
light path of length 0 (upper left); both eye path and light path of length 1 (middle);
eye path is of length 0, light path of length 2 (upper right).

Figure 16.12. Reuse of all subpaths of both the eye path and the light path in a
bidirectional ray-tracing algorithm.
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Paths of a certain length can now be generated by using different combina-
tions. For example, a path of length 3 could be generated by a light path of length
2 and an eye path of length 0; or by a light path of length 1 and an eye path of
length 1; or by a light path of length 0 (a single point at the light source) and an
eye path of length 2. These different combinations of generating a path of given
length are shown in Figure 16.11.

Depending on the light transport mode, and the sequence of G, V , and fr

functions, some light distribution effects are better generated using either light
paths or eye paths. For example, when rendering a specular reflection that is
visible in the image, it is better to generate those specular bounces in the eye
path. Similarly, the specular reflections in caustics are better generated in the
light path. Generally, it is better to use the BRDF fr to sample the next point
or direction if fr has sharp peaks. If fr is mainly diffuse, the energy transport
along the connection between the two paths will not be influenced by the value
of the BRDF and, thus, will not possibly yield a low contribution to the overall
estimator. Another advantage is that if light sources are concealed, it might be
easier to generate light paths to distribute the light, rather than count on shadow
rays to be able to reach the light source.

When implementing bidirectional path tracing, an eye path or light path of
length k−1 can be extended to a path of length k. Thus, we use the same subpath
more than once. Intuitively, this means that if we have a light path and an eye
path, we do not only connect the endpoints, but also all possible subpaths to each
other (Figure 16.12). Care has to be taken that the Monte Carlo estimators are
still correct. This can be achieved by optimally combining the sampling methods
of each of the individual subpaths. More details and an extensive discussion can
be found in [Veac97].

Figure 16.13. Left: Stochastic ray tracing; middle: bidirectional tracing using only
light paths; right: full bidirectional ray tracing.
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Figure 16.14. Bidirectional ray tracing. Note the extensive caustics, an effect
difficult to achieve using stochastic ray tracing.

Figure 16.13 shows a simple scene, with a comparison of images generated by
stochastic ray tracing, light tracing, and bidirectional ray tracing. In both images,
the total number of paths is the same, so each image took an equal time to com-
pute. Figure 16.14 shows a picture generated by bidirectional ray tracing, with a
significant amount of caustics, which would have taken a long time to generate
using stochastic ray tracing only.

16.5.4 Photon Mapping�

Photon mapping, introduced by Jensen [Jens01, Jens95, Jens96b, Jens96a], is a
practical and robust two-pass algorithm that, like bidirectional path tracing, traces
illumination paths both from the lights and from the viewpoint. However, unlike
bidirectional path tracing, this approach caches and reuses illumination values in
a scene for efficiency. In the first pass, photons are traced from the light sources
into the scene. These photons, which carry flux information, are cached in a data
structure, called the photon map. In the second pass, an image is rendered using
the information stored in the photon map.

Photon mapping decouples photon storage from surface parameterization. This
representation enables it to handle arbitrary geometry, including procedural ge-
ometry, thus increasing the practical utility of the algorithm. It is also not prone
to meshing artifacts.
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By tracing or storing only particular types of photons (i.e., those that follow
specific types of light paths), it is possible to make specialized photon maps, just
for that purpose. The best example of this is the caustic map, which is designed
to capture photons that interact with one or more specular surfaces before reach-
ing a diffuse surface. These light paths cause caustics. Traditional Monte Carlo
sampling can be very slow at correctly producing good caustics. By explicitly
capturing caustic paths in a caustic map, the photon-mapping technique can find
accurate caustics efficiently.

One point to note is that photon mapping is a biased technique. Recall that
in a biased technique, the bias is the potentially non-zero difference between the
expected value of the estimator and the actual value of the integral being com-
puted. However, since photon maps are typically not used directly, but are used to
compute indirect illumination, increasing the photons eliminates most artifacts.

Pass 1: Tracing photons. The use of compact, point-based photons to prop-
agate flux through the scene is key in making photon mapping efficient. In the
first pass, photons are traced from the light sources and propagated through the
scene just as rays are in ray tracing; i.e., they are reflected, transmitted, or ab-
sorbed. Russian roulette and the standard Monte Carlo sampling techniques de-
scribed earlier are used to propagate photons. When the photons hit non-specular
surfaces, they are stored in the photon map. To facilitate efficient searches for
photons, a balanced kd-tree is used to implement this data structure.

As mentioned before, photon mapping can be efficient for computing caustics.
A caustic is formed when light is reflected or transmitted through one or more
specular surfaces before reaching a diffuse surface. To improve the rendering
of scenes that include caustics, the algorithm separates out the computation of
caustics from global illumination. Thus, two photon maps, a caustic photon map
and a global photon map, are computed for each scene (Figure 16.15).

Caustic photon maps can be computed efficiently because caustics occur when
light is focussed; therefore, not too many photons are needed to get a good esti-
mate of caustics. Additionally, the number of surfaces resulting in caustics in
typical scenes is often very small. Efficiency is achieved by shooting photons
only towards this small set of specular surfaces.

The reflected radiance at each point in the scene can be computed from the
photon map as follows. The photon map represents incoming flux at each point in
the scene; therefore, the photon density at a point estimates the irradiance at that
point. The reflected radiance at a point can then be computed by multiplying the
irradiance by the surface BRDF.
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light source

Caustic Map

light source

Global Photon Map

Figure 16.15. Caustic map and global photon map. The caustic map captures
photons which traverse through specular surfaces, while the global photon map
represents all paths.

To compute the photon density at a point, the n closest photons to that point
are found in the photon map. The photon density is then computed by adding the
flux of these n photons and dividing by the projected area of the sphere in which
these photons were located.

Pass 2: Computing images. The simplest use of the photon map would be
to display the reflected radiance values computed above for each visible point in
an image. However, unless the number of photons used is extremely large, this
display approach can cause significant blurring of radiance, thus resulting in poor
image quality. Instead, photon maps are more effective when integrated with a
ray tracer that computes direct illumination and queries the photon map only after
one diffuse or glossy bounce from the viewpoint is traced through the scene.

Thus, the final rendering of images could be done as follows. Rays are traced
through each pixel to find the closest visible surface. The radiance for a visible
point is split into direct illumination, specular or glossy illumination, illumination
due to caustics, and the remaining indirect illumination. Each of these compo-
nents is computed as follows:

• Direct illumination for visible surfaces is computed using regular Monte
Carlo sampling.

• Specular reflections and transmissions are ray traced.



�

�

�

�

�

�

�

�

16.6. Radiosity 605

light source

Pass 1: Shoot Photons

eye

image plane

Pass 2: Find Nearest Neighbors

caustic lookup

global photon 
map lookup

Figure 16.16. Two passes of photon mapping in a Cornell box with a glass sphere.
During pass 1, photons are traced and deposited on non-specular surfaces. Dur-
ing pass 2, global illumination is indirectly computed using the global photon map.
For each indirect ray, the closest photons in the global photon map are found.
Caustics are located by doing a similar look-up in the caustic map. Direct illumina-
tion and specular and glossy reflections are computed using ray tracing.

• Caustics are computed using the caustic photon map.

• The remaining indirect illumination is computed by sampling the hemi-
sphere; the global photon map is used to compute radiance at the next re-
cursion step.

Figure 16.16 shows a visualization of both passes of the photon-mapping al-
gorithm.

16.6 Radiosity
Previously, we derived the radiosity linear system of equation to describe the en-
ergy equilibrium in a scene. This section will describe various solution strategies
for solving the radiosity problem.

16.6.1 Classic Radiosity

The classic radiosity method consists of the following steps:

1. discretization of the input geometry in different patches i; for each resulting
patch i, a radiosity value Bi will be computed;

2. computation of form factors Fi j (Equation (16.19)) for every pair of patches
i and j;
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3. numerical solution of the radiosity system of linear equations (Equation
(16.18));

4. display of the solution, using any rendering algorithm that can display
patches with a given color (radiosity) value Bi.

In practical implementations of the classic radiosity method, these steps are
highly connected, e.g., form factors are only computed when they are needed
when solving the system of equations; intermediate results can already be dis-
played during system solution; in adaptive or hierarchical radiosity algorithms
[Cohe86,Hanr91], discretization is performed during system solution, etc.

Each of the above steps of the classic radiosity method is nontrivial. At first
sight, one would expect that Step 3, solving the radiosity system, would be the
main problem. Indeed, the size of the linear systems that need to be solved can be
very large (one equation per patch; 100,000 patches or more is quite common).
The system of linear equations is usually very well-behaved, such that simple iter-
ative methods such as Jacobi or Gauss-Seidel iterations converge after relatively
few iterations.

The main problems of the radiosity method are related to discretization of the
scene into patches and the form factor computation. The patches should be small
enough to capture illumination variations such as shadow boundaries. One of the
basic assumptions of the radiosity method is that the radiosity B(x) across each
patch needs to be approximately constant. A higher number of patches usually
solves for artifacts caused by discretization, but the number of patches shouldn’t
be too large, because this would result in exaggerated storage requirements and
computation times. Between each pair of patches, a form factor needs to be com-
puted. The number of form factors can thus be huge so that the mere storage of
form factors in computer memory is a major problem. Each form factor also re-
quires the solution of a nontrivial, four-dimensional integral (Equation (16.19)).
The integral will be singular for adjacent patches, where the distance rxy in the de-
nominator of Equation (16.4) can possibly become 0. The integrand can also ex-
hibit discontinuities of various degrees due to changing visibility (Figure 16.17).

Extensive research has been carried out in order to address these problems.
Proposed solutions include specialized algorithms for form-factor integration such
as the hemicube algorithm or shaft culling ray-tracing acceleration, discontinuity
meshing, adaptive and hierarchical subdivision, clustering, form-factor caching
strategies, the use of view importance, and higher-order radiosity approximations.
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Figure 16.17. Form-factor difficulties: the form-factor integral contains the inverse
square distance between points of both patches. This causes a singularity for
adjacent patches. Changing visibility can also introduce discontinuities of various
degrees in the form-factor integrand.

16.6.2 Form Factors

The radiosity of Bi of a single patch i is expressed as (see Equation (16.18))

Bi = Bei +ρi ∑
j

Fi jB j. (16.39)

The radiosity Bi at a patch i is the sum of two contributions. The first con-
tribution consists of the self-emitted radiosity Bei. The second contribution is the
fraction of the (incident) irradiance ∑ j Fi jB j at i that is reflected. The form factor
Fi j indicates the fraction of the irradiance on patch i that originates at patch j.

We can also rewrite the above equation by transforming radiosity values to
flux values: Pi = AiBi and Pei = AiBei. By multiplying both sides of the equation
by Ai and using the symmetry between Fi j and Fji, the following system of linear
equations is obtained:

Bi = Bei +ρi ∑
j

Fi jB j

⇔ AiBi = AiBei +ρi ∑
j

AiFi jB j

⇔ AiBi = AiBei +ρi ∑
j

A jFjiB j

⇔ Pi = Pei +∑
j

PjFjiρi. (16.40)

This system of equation states that the total power Pi emitted by patch i con-
sists of two parts: the self-emitted power Pei and the power received and reflected
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from all other patches j. The form factor Fji indicates the fraction of power emit-
ted by j that arrives at i.

Since there is conservation of total energy in a scene, the total amount of
power emitted by i and received on other patches j must equal Pi in a closed
scene. Therefore, an important property of form factors is that they sum to 1:

∑
j

Fi j = 1. (16.41)

The interpretation of the form factor Fi j being the fraction of power emitted
by a patch i, that lands on a second patch j suggests that form factors can be
estimated using a simple and straightforward simulation (Figure 16.18). Let i be
the source of a number Ni of virtual particles (small energy packets) originating
on a diffuse surface. The number Ni j of these particles that land on the second
patch j yields an estimate for the form factor: Fi j ≈ Fi jNi j/Ni. Consider a particle
originating at a uniformly chosen location x on Si and being distributed over the
hemisphere using a cosine-distributed direction with regard to the surface normal
Nx at x. The pdf p(x,φ ,θ) is written as

p(x,φ ,θ) =
cos(θ)

πAi
. (16.42)

Let χ j(x,φ ,θ) be a function that evaluates to 1 or 0 depending on whether or
not the particle hits the patch j. The probability Pi j that the particle lands on patch

Figure 16.18. The fraction of local lines hitting a particular destination patch is an
estimate for the form factor between source and destination.
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j is then written as

Pi j =
∫

Si

∫
Ωx

χ j(x,φ ,θ)p(x,φ ,θ)dAxdω (16.43)

=
1
Ai

∫
Si

∫
S j

cos(θi)cos(θ j)
πr2

xy
V (x,y)dAydAx (16.44)

= Fi j. (16.45)

Thus, when generating Ni particles from i, the expected number of hits on
patch j equals NiFi j. The more particles used, the better the ratio Ni j/Ni will
approximate Fi j. The variance of this estimator is Fi j(1−Fi j)/Ni. As mentioned
before, however, we will not need to compute form factors explicitly. If we are
given a patch i, we can select a subsequent patch j among all patches in the scene,
with probability equal to the form factor Fi j, by shooting a ray from i.

16.6.3 The Jacobi Iterative Method for Radiosity�

We will outline one widely-used solving scheme for computing the radiosity so-
lution in a scene, the so-called Jacobi iterative method, which is a method to solve
systems of linear equations x = e+Ax using a simple iteration scheme. Suppose
a system with n equations and n unknowns is to be solved, where e, x, and any
approximation of x are n-dimensional vectors or points. The idea is to start with
an arbitrary point x(0). During each iteration, the current point x(k) is transformed
into the next point x(k+1) by evaluating x(k+1) = e + Ax(k). It can be shown that
under certain conditions the sequence of points x(k) will always converge to the
same point x, which is the solution of the system. The method will converge if
the matrix norm of A is strictly less than 1.

The coefficient matrix in the radiosity or power system of equations fulfills
this requirement. In the context of radiosity, vectors such as x and e correspond
to a distribution of light power over the surfaces of a scene. Each Jacobi iteration
consists of computing an additional single bounce of light interreflection, fol-
lowed by re-adding self-emitted power. The equilibrium illumination distribution
in a scene is the solution of this process.

We will now show three slightly different ways of how repeated single-bounce
light interreflection steps can be used in order to solve the radiosity problem.

Regular gathering of radiosity. Let us first apply the above idea to the radios-

ity system of equations. As the starting radiosity distribution, B(0)
i = Bei can be

chosen. The next approximation B(k+1)
i is then obtained by filling in the previous
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approximation B(k) in the right-hand side of Equation (16.18):

B(0)
i = Bei,

B(k+1)
i = Bei +ρi ∑

j
Fi jB

(k)
j . (16.46)

The stochastic form-factor approximations described earlier can be used to
compute all form factors Fi j for a fixed patch i simultaneously. The various it-
eration steps can be interpreted as gathering steps: In each step, the previous

radiosity approximations B(k)
j for all patches j are gathered in order to obtain a

new approximation for the radiosity B(k+1) at i.

Regular shooting of power. When applied to the power system, a shooting
variant of the above iteration scheme follows:

P(0)
i = Pei,

P(k+1)
i = Pei +∑

j
P(k)

j Fjiρi. (16.47)

In each step of the resulting algorithm, the power approximation P(k+1)
i of all

patches i, visible from j, will be updated based on P(k)
j : j shoots its power towards

all other patches i.

Incremental shooting of power. Each regular power-shooting iteration above
replaces the previous approximation of power P(k) by a new approximation P(k+1).
Similar to progressive refinement radiosity [Cohe88], it is possible to construct
iterations in which unshot power is propagated rather than total power. An ap-
proximation for the total power is then obtained as the sum of increments ∆P(k)

computed in each iteration step:

∆P(0)
i = Pei,

∆P(k+1)
i = ∑

j
∆P(k)

j Fjiρi,

P(k)
i =

k

∑
l=0

∆P(l)
i .
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16.7 Conclusion
Global illumination algorithms have been in constant development since the pub-
lication of the first recursive ray-tracing algorithm in 1979. There has been a
gradual evolution from simple algorithms, some of them deemed to be hacks by
today’s standards, to very advanced, fully physically based rendering algorithms.

It has become possible to generate an image that is indistinguishable from a
photograph of a real scene. This has been achieved by carefully implementing
and investigating the physical processes that form the basis of photorealistic ren-
dering: light-material interaction and light transport. In each of these domains,
extensive research literature is available. This chapter provides an overview of
some of these aspects, mostly focusing on the light transport mechanism. As in
most modern algorithms, it is strongly believed that a good understanding of all
fundamental issues is the key to well-designed global illumination light transport
algorithms.

Global illumination has not yet found its way into many mainstream applica-
tions, but some use has already been made in feature-animation films and, to a
limited extent, in some computer games. High-quality rendering of architectural
designs has become more common, and car manufacturers have become more
aware of the possibilities of rendering cars in realistic virtual environments for
glossy advertisements. It is therefore to be expected that global illumination will
be used more frequently in future computer-graphics applications.

16.8 Exercises
1. Write a program to compute the integral of a one-dimensional function us-

ing Monte Carlo integration. Plot the absolute error versus the number of
samples used. This requires that you do know the analytic answer to the
integral, so use well-known functions such as polynomials.

2. Using the algorithm designed above, try to compute the integral for sine
functions with increasing frequencies. How is the error influenced by the
various frequencies over the same integration domain?

3. Implement an algorithm to generate uniform distributed points over a tri-
angle in the 2D-plane. Start with a simple triangle first (connecting points
(0,0), (1,0) and (0,1)), then try to generalize to a random triangle in the
2D plane.
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How can such an algorithm be used to generate points on a triangle in 3D
space?

4. Pick an interesting geometric solid in 3D: a sphere, cone, cylinder, . . . .
Design and implement an algorithm to generate uniform distributed points
on the surface of these solids. Visualize your results to make sure that the
points are indeed distributed uniformly.

5. Study the original formulation of the rendering equation as introduced by
Kajiya [Kaji86]. It is different from the radiance formulation as mostly used
today. Explain the differences. Could these differences have an influence
on the final algorithms?

6. Implement a simple stochastic ray tracer that is able to render scenes with
direct illumination only. The type of geometric primitives that are included
is not important, it can be limited to triangles and spheres only. Surfaces
should have a diffuse BRDF, and area light sources should be included as
well.

7. Add the computation of indirect illumination to your ray tracer. This re-
quires the implementation of a sampling scheme over the hemisphere of
directions around a surface point. Experiment with different values for the
absorption value used in the Russian roulette termination scheme.

8. Add the direct and indirect illumination components together to render the
full global illumination solution of a given scene. Design a user interface
such that all different sampling parameters can be adjusted by the user be-
fore the rendering computation starts.

9. A glass sphere is resting on a diffuse surface. The transparent BRDF of the
sphere is almost perfectly specular. A so-called caustic is formed on the
diffuse floor, due to the focusing effect of the glass sphere. What problems
will occur when rendering the caustic?

10. We want to render an outdoor scene at night, in which the only source of
illumination is the full moon. The moon occupies a relatively small solid
angle in the sky. However, being astronomy buffs, we have modeled the
moon as a diffuse sphere without any self-emissive illumination, and the
only real light source in our scene is the (non-visible) sun. In other words,
all the light reaching our scene is light from the sun reflected at the moon.
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Of course, our basic Monte Carlo path tracer does not know the concept of
full moon.

11. Suppose we want to render a city at night, containing hundreds of different
modeled light sources (street-lights, neon-signs, lit windows, . . . ). Shooting
a shadow ray to each of these light sources would mean a large amount of
non-efficient work, since clearly not every light source contributes signifi-
cantly to the illumination of every visible surface point. What optimization
techniques would you use such that scenes like this can be rendered in a
reasonable amount of time?

A very similar problem can occur if the light source is textured (e.g. a
stained glass window), effectively subdividing the light source into many
different smaller light sources, each with uniform color and intensity.

12. We look at the same city, but from across the river next to the city. Now
we see the entire city scene reflected in the water, including all different
light sources. The water is modeled as a surface with many different little
waves (e.g. using bump mapping) and as a perfect mirror-like surface with
respect to reflection. For any given ray, the direction in which the ray will be
reflected on the water can therefore not be predicted unless the intersection
point and hence the surface normal is already known.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

17
Basic Animation Techniques

A moving picture is worth a million words.
—Anonymous

17.1 Introduction
To animate literally means to give life. In motion pictures and computer anima-
tion, life is given by presenting a sequence of still images (or frames) in rapid
succession. If this sequence of frames resembles our notion of movement and
the frames are presented at a sufficiently high rate, then the human eye-brain duo
perceives them as smooth motion, or animation (Figure 17.1). The minimum rate
required to perceive smooth motion is around 12 frames per second (fps). Below
that, the motion appears jerky as moving objects seem to jump from one point
to another. In fact, the required fps is not constant but depends on the speed of
movement of the objects as well as on illumination parameters. Modern theater
films use 24 fps, and there are systems that use 48 or even 72 fps. Rates above 70
fps generally offer no improvement to a human observer.

The technology of animation goes back to the late nineteenth century. Tech-
nological inventions such as celluloid film (Goodwin, 1887), the Kinetoscope,
which offered single-audience movie viewing (Edison, 1893), and the cinemato-
graph which allowed multiple-audience movie viewing by projecting on a screen
(Lumière, 1894) set the basis for what was to follow. The first attempts at creat-
ing serious animation content date back to the early twentieth century; early mile-
stones are The Enchanted Drawing and Humorous Phases of Funny Faces (Black-

615
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t
( a )

t
( b )

Figure 17.1. Examples of animation: (a) Sequence of frames of a face changing
expressions; (b) frames of a moving observer sequence.

ton, 1900 and 1906), Fantasmagorie (Cohl, 1908), Little Nemo (McCay, 1911),
and the well-known Disney cartoons from the 1920s. Since most cartoon anima-
tion was performed by tweening, the drawing of frames in between keyframes,
it was only a matter of time before computers took up much of the tweening
work using interpolation techniques (See Section 17.2.1). When computer graph-
ics could produce realistic images, computer animation was introduced in fea-
ture films, with Tron and Star Trek (1982) being some of the first examples that
contained significant computer-animated parts. Later on, entire films were made
exclusively using computer animation; Tin Toy (1989) was one of the first.

Apart from films, animation is an integral part of interactive graphics applica-
tions, such as computer games. It also finds important applications in visualiza-
tion, because it can be used to show the time-dependent behavior of a system.

Computer animation can be created by altering a multitude of parameters that
can affect change between frames. Typical examples include the observer param-
eters that define the position and direction of view, the positions of objects within
the scene, which can change dynamically between frames, as well as the charac-
teristics of the objects themselves, such as color and size. These parameters are
encoded in a large number of animation variables. As it is virtually impossible
for an animator to explicitly define every animation variable for every frame, var-
ious animation-control methods have been developed which help the animator to
work at a higher level. Examples include procedural and representational meth-
ods for animating rigid bodies and skeletal animation for animating human-like
or animal-like characters. These methods use common low-level techniques such
as interpolation, collision detection, and motion blur.
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The rest of this chapter is organized as follows. First, common low-level
techniques used in most animation-control methods are discussed. Then, higher-
level animation-control methods are presented. These are grouped into rigid-body
animation, skeletal animation, deformable models, and particle systems, and they
are not mutually exclusive.

In addition to the above animation-control methods, the term procedural ani-
mation is used to refer to the encapsulation of the animation of an object in a pro-
cedure. Thus animation sequences can automatically be generated, often in real
time. Particle systems (see Section 17.6) form the largest subclass of procedural
animation. Rigid-body motion planning (see Section 17.3) and skeletal animation
(see Section 17.4) can also be done procedurally. Behavioral animation is a sub-
class of procedural animation where the objects (characters) determine their own
actions, taking into account their environment. Typical examples of behavioral
animations include bird flocking [Reyn87], artificial fish [Tu94], and autonomous
pedestrians [Shao06,Shao07]. Behavioral animation allows the production of an-
imations automatically and perpetually.

Computer animation is a wide field, encompassing knowledge from computer
science, film-making, physics, mathematics, and physiology. This chapter does
not intend to provide an exhaustive coverage of the subject but rather to supply
the essential reading for a computer graphics or visualization course. Interested
readers may refer to specialized animation volumes.

17.2 Low-Level Animation Techniques
The techniques discussed in this section are useful in most animation-control
methods and can thus be thought of as a common lower layer of tools. Inter-
polation techniques, for example, are the means by which the computer takes
over the task of tweening. Collision-detection algorithms are essential in order
to provide realism by detecting when moving objects collide so that appropriate
action can be taken. Antialiasing in the time domain, or motion blur, is essential
to most animations. Morphing allows the smooth transition from one graphical
object to another (in a number of frames) and is the successor to the well-known
effect of cross-fading in traditional motion pictures.

17.2.1 Interpolation, Keyframes, and Tweening

In the early 1900s, experienced artists were employed to produce keyframes of an
animation sequence. At keyframes, there are significant changes in the animation
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t

. . . . . .

t=t0v=v =f(t ,v ,v )0 0 0 1

t=t΄
v=f(t ,v ,v )΄ 0 1

t=t1

= f(t )v v = ,v ,v1 1 0 1

Figure 17.2. Tweening between keyframes at t0 and t1.

variables, such as the direction of motion. Then, less experienced (and less costly)
artists would do the tweening work, i.e., fill the in-between frames to reach the
desired frame rate (fps).

Today, animation-control methods use interpolation techniques to do the tween-
ing work automatically. Extreme values of the animation variables are specified
by the user. The values of animation variables are linked to frames of the anima-
tion and, since there is a one-to-one mapping between frames and time, they are
ultimately linked to time. We can thus use parametric functions f (t) to interpo-
late the animation variables between extreme values, e.g., v0 and v1, which are
the interpolation control points (Figure 17.2).

Care must be taken in selecting the variables to be interpolated. A classic ex-
ample is the movement of a stick that is fixed at one end (Figure 17.3). If the po-
sition of the free end of the stick is interpolated between two extreme points, then
the stick will seem to shrink as it goes through the middle of its movement, re-
gaining its original size as it approaches the end of the movement (Figure 17.3(a)).
Instead, if the angle of rotation is interpolated, the desired result is obtained (Fig-
ure 17.3(b)).

Interpolation is based on the parameter t that represents time. Interpolation
functions pass through the interpolation control points, so

( a ) ( b )

Figure 17.3. Importance of animation variable selection. Choosing the endpoint
(a) and the rotation angle (b) as animation variable.
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f (t0) = v0, f (t1) = v1,

for some t0 and t1. The simplest form of parametric interpolation function is the
linear function

L(t) = (1− t)v0 + tv1, t ∈ [0,1]. (17.1)

Linear interpolation is used frequently but when more advanced change is
required, we need to employ more complex forms. For example, the smooth
path of an object that is not moving in a straight line could be described better
by a function such as a Bézier function (see Chapter 7). The quadratic Bézier
function interpolates between control values v0 and v2 using an extra value v1 as
an attractor:

B2(t) = (1− t)2v0 +2t(1− t)v1 + t2v2, t ∈ [0,1]. (17.2)

The nth-degree Bézier function interpolates between v0 and vn using n− 1
attractor values vi, i = 1,2, . . . ,n−1. These values attract the interpolation toward
them, and they exert their maximum attraction at values i/n of the parameter t;
for example, the quadratic Bézier function has the nearest value to v1 at t = 0.5.

In general, the functions of parametric curves X(t) are good interpolation
functions (see Appendix B). Their tangent vector X′(t) defines velocity, which
is extremely useful if they describe motion. The arc length traveled along such a
curve (see Section B.1.1) can be computed by integrating velocity (Equation (B.4)).

Unfortunately, the arc length traveled is not proportional to the time parame-
ter t. Thus, for example, one cannot use constant differences of t to get constant
arc lengths of travel on a general curve. The reparameterization of a curve by arc
length s (see Section B.1.2) is therefore often required (Figure 17.4).

Figure 17.4. Points on a curve for constant differences of the parameter t (�: not
equidistant) and, after reparameterization, for constant differences of the parame-
ter s (�: equidistant).
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p0

p1

p2

p3

s1

s2

s3

Figure 17.5. Arc lengths between points on a curve.

Point Arc length
p0 0
p1 s1
p2 s1 + s2
p3 s1 + s2 + s3
... ...

Table 17.1.

However, reparameterization by arc length is not possible for every curve. In
such cases a pre-computed set of arc lengths si for points on the curve can be used,
as shown in Table 17.1 and Figure 17.5.

Then the point p′ on the curve that corresponds to arc length s′ can be approx-
imated by linearly interpolating the points of the two nearest arc lengths si and
si+1 (si ≤ s′ ≤ si+1):

p′ =
si+1− s′

si+1− si
pi +

s′ − si

si+1− si
pi+1. (17.3)

Interpolation of rotation.� Suppose that we express an arbitrary rotation as a
synthesis of three basic rotations Rx(θx)→ Ry(θy)→ Rz(θz). If we were to an-
imate this by gradually incrementing θx, θy, and θz, we would encounter several
problems. First, it is rather difficult to estimate the basic rotation angles that
make up the required rotation about an arbitrary axis. Second, we would observe
a “twisting” motion, since the rotations are applied sequentially and the object
seems like it is rotating alternately about the three axes. And third, we may en-
counter a phenomenon known as gimbal lock. For example, suppose that in the
first three rotation steps we rotate around x by θx, around y by π

2 , and around z
by θz. Then, as shown in Figure 17.6, the initial rotation around the x-axis by θx

is obsolete since it could be replaced at the third step by rotating by−θx around z.
One degree of freedom has thus been lost due to the fact that the middle rotation
(by π

2 around y) made the positive x-axis coincide with the negative z-axis.
One solution is to use a composite rotation matrix about an arbitrary axis,

such as the one proposed in Section 3.13. However a better solution is to use
quaternions. Compared to the composite rotation matrix, quaternion rotation is
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xθ xθ

xθ xθ

zθ
2

Figure 17.6. Gimbal lock.

more stable, requires fewer calculations, and consecutive rotations can be handled
in a smooth way, as will be explained below.

The two extreme positions of the rotation can be represented by two unit
quaternions, q0 = (1,

−→
0 ) corresponding to the initial position (zero rotation) and

q1 = (sin θ
2 , cos θ

2 n̂) corresponding to the position after rotation by θ around the
given axis with direction n̂. Unfortunately, linear interpolation between these two
quaternions, of the form qL(t) = (1− t)q0 + tq1, would not produce the expected
smooth rotation between the two positions, but instead a motion that would ac-
celerate towards the middle. This is due to the fact that quaternions representing
rotations are unit quaternions, but the intermediate qL(t) generated by the linear
interpolation formula are not unit quaternions and require normalization (division
by their norm); therefore, equidistant time intervals correspond to non-equidistant
rotations. Geometrically, all unit quaternions representing rotations lie on the sur-
face of the four-dimensional unit hypersphere, but linear interpolation interpolates
on the chord through them (see Figure 17.7(a) for the 2D analog).

The required smooth interpolation of the rotation can be achieved by perform-
ing spherical linear interpolation (slerp), that is, interpolation on the surface of
the 4D unit hypersphere along the great arc (geodesic) between q0 and q1 (Fig-
ure 17.7(b) shows the 2D analog). The usual trigonometric rules hold on the 4D

0q 1q 0q 1q

(a) (b)

Figure 17.7. (a) Linear interpolation; (b) spherical linear interpolation.
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0q 1q

ωtω

( )Sq t

Figure 17.8. Interpolation of rotation using spherical linear interpolation

arc, and thus slerp is given by the formula (see Figure 17.8)

qS(t) = q0
sin(1− t)ω

sinω
+q1

sin tω
sinω

, t ∈ [0,1], (17.4)

with ω = θ
2 the angle between the two quaternions.

Slerp solves the problem of smooth interpolation of rotation between two posi-
tions adequately. However, if a motion involves consecutive rotations around dif-
ferent axes (all passing through a common point), applying successive slerps be-
tween consecutive quaternions would produce a sharply changing motion, just as
successive linear interpolations between consecutive points produce a polygonal
line. This problem can be alleviated by using smooth spherical curves [Shoe85],
which are similar to Bézier and spline curves (Chapter 7) but employ spherical
linear interpolation instead of (simple) linear interpolation.

Interpolation of rotation using quaternions eliminates the problems of tradi-
tional animation of rotation mentioned earlier. Since any rotation is expressed
directly using an axis and an angle, the intermediate angles are straightforward to
compute (using slerp), and their application yields the expected result. Further-
more, the “twisting” motion and gimbal lock are not an issue since the rotation is
performed in one step and not as a sequence of basic rotations.

17.2.2 Collision Detection

Collision detection1 has received much attention as it finds applications in fields
such as robotics and CAD/CAM, in addition to computer animation. However
the requirements of each field are slightly different. In computer animation, an
approximate solution is often preferred over a slow solution. Collision detection
libraries exist that can save a lot of implementation time.

1Also known as interference or contact detection.
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Both theoretical work from researchers in computational geometry and prac-
tical collision-detection algorithms are available. This section does not attempt to
present the large body of work on collision detection (which is worth a book on its
own right) but rather to explore alternative collision detection strategies for poly-
hedral objects. The interested reader is referred to surveys on the subject; Lin et
al. classify collision detection approaches according to the object representation
used [Lin98] while Jimenez et al. classify them according to their algorithmic
characteristics [Jime01].

Collision detection between N objects requires solving the two-object prob-
lem O(N2) times, although optimizations are possible for special cases by ex-
ploiting time coherence, i.e., the property that most scene objects change little or
predictably between frames. Here we shall consider the basic two-object collision
detection problem.

A general way to handle the collision detection problem is to compute for each
moving 3D object its 4D extruded volume, which consists of the spatiotemporal
set of points occupied by the moving object [Came90]. Then, a collision between
two objects exists if and only if their extruded volumes intersect; Figure 17.9
shows an example for 2D objects.

Unfortunately the computation of the extruded volume for a general object is
not a simple task. Two simplification approaches have therefore been developed.

The first is to consider the sweep volume by disregarding the time parameter;
Figure 17.9 shows an example for 2D objects. The sweep volume of a 3D object

x

y

t

Extruded
Volumes (3D)

Sweep
Volumes (2D)

Object1 Object2

Figure 17.9. Intersection of extruded volumes (above) is necessary and sufficient
for a collision. Intersection of sweep volumes (below) is necessary but not suffi-
cient for a collision (example for 2D objects).
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tsampling points

Figure 17.10. Collisions may be missed if the temporal sampling points are too
sparse.

consists of the 3D spatial points defined by the motion of the object. Intersection
of sweep volumes is necessary but not sufficient for a collision. To make it suf-
ficient, the relative motion of the two objects must be considered, which may be
quite complicated.

The second simplification approach is to sample discrete points in time and
test for a collision between the two 3D objects themselves. If the sampling points
are chosen too sparsely, a collision can be missed (Figure 17.10), while if they are
chosen too densely, the computational cost rises sharply. A solution is to perform
adaptive sampling, by selecting as the next temporal sampling point the one at
which a collision can possibly occur. A simple adaptive sampling strategy is to
relate a lower bound on the distance of the two objects to an upper bound in their
relative velocities [Cull86].

Whichever method is used to capture motion, a basic intersection test between
polyhedral objects must be used in the inner loop. For two convex polyhedral ob-
jects with m and n vertices, this costs O(n+m) time [Lin91,Jime01], as the prob-
lem reduces to detecting if there is a plane that separates the convex hulls of two
sets of points. For general polyhedral objects with convex faces, the collision test
can be replaced by a check for intersection of the boundaries of the two objects.2

To test for intersection of the boundaries, one can examine each edge of one ob-
ject with every face of the other object for penetration. This costs O(nm), but
optimizations are possible. In the most general case of arbitrary polyhedra, which
is rare in practice, few approaches exist; one way is to decompose the general
polyhedra into their convex parts.

2Disregarding the case where one object is contained within the other, which can be easily detected
by testing their bounding volumes.
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Even for the simplest types of object, the collision tests are expensive since
they have to be repeated for every object pair and for every frame. Bounding
volumes are commonly used to quickly decide if two objects A and B potentially
collide (see Section 5.6.1). In animation, the bounding volumes are often ex-
tended to enclose the extruded volume in 4D space or the sweep volume in 3D
space.

17.2.3 Temporal Antialiasing

In feature films, it is common to observe the streaking effect produced by fast-
moving objects. This is caused if the shutter speed3 of the camera is slow relative
to the speed of a moving object and, hence, captures it at a continuum of positions
(Figure 17.11). It is known as motion blur. If a single frame of a film is observed,
fast-moving objects appear “streaky” and blurred. Motion blur is usually not
annoying because the human eye operates in a similar way.

In computer animation the situation is slightly different. Each frame is cre-
ated for a point in time that corresponds to an infinitely high shutter speed, or
infinitely small exposure time. The effect is that moving objects appear “jumpy,”
i.e., they seem to move from position to position in a discrete way across frames.
This is known as temporal aliasing. It occurs because the frames of a computer
animation represent a discretization of time, just like pixels of a frame represent
a discretization of space in the generation of still images.

Figure 17.11. Motion blur.

3The slower the shutter speed the longer the period of exposure of each film frame.
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t

t

Figure 17.12. The wagon-wheel effect. Single-spoked wheel shown for simplicity.

Another classic occurrence of temporal aliasing, observable both in feature
films and computer animation, is the wagon-wheel effect. A turning wheel whose
image is sampled at a discrete rate, either by capturing it on film or by lighting
it by a stroboscopic light, can appear to be rotating slower, backwards, or not at
all. This is well known to Western fans (and takes its name from Western wagon
wheels) but can be produced by any regularly spoked wheel, e.g., a helicopter
blade. It happens because the brain merges successive positions of the spokes
based on the minimum distance between them. Thus, if the wheel is rotating just
below the fps rate, it appears to be rotating backwards (Figure 17.12 (top)); if it is
rotating at exactly the fps rate, it appears to be in the same position at every frame
(Figure 17.12 (bottom)); and if it is rotating just above the fps rate, it seems to be
rotating much slower than it actually is.

One way to reduce temporal aliasing in pre-rendered computer animation4 is
to increase the sampling rate, i.e., the fps, but that is often fixed beyond the control
of the animation producer. We therefore have to resort to temporal antialiasing
techniques, which effectively introduce motion blur to computer animations.

Temporal antialiasing is handled in a manner similar to the post-filtering tech-
nique in spatial antialiasing (see Section 2.8.2). The main difference is that it is
performed in the time dimension (Figure 17.13). The steps are as follows:

1. Sample at k times the desired fps rate creating virtual frames Iv.

2. Low-pass filter the virtual frames to eliminate high frequencies that cause
temporal aliasing.

4In real-time animation, such as games, temporal antialiasing is considered a luxury, since it is
hard enough to keep the fps rate sufficiently high to avoid flicker.
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t

Figure 17.13. Virtual frames (all frames) and final frames (black frames only).

3. Re-sample the virtual frames at the desired fps rate to produce the final
frame I f .

The low-pass filtering is achieved by a one-dimensional convolution filter h
(see Appendix E), for example

1 2 4 2 1 .

A typical convolution operation is performed. The filter weights are multi-
plied by the virtual frames and summed to produce the final frame:

Ii
f =

k−1

∑
p=0

Ii∗k+p
v ·h(p). (17.5)

As in spatial antialiasing, k is chosen to be odd in order to have a middle
sampling point on the final frame. The weights of the convolution filter must be
normalized, i.e., ∑k−1

p=0 h(p) = 1.

17.2.4 Morphing

Morphing is a technique that transforms one graphical object into another. It has
been extensively applied to images, often to morph facial images (Figure 17.14(a)).
Morphing is, however, more general and the graphical objects to which it can be
applied range from images to surface models to volumetric models. Morphing
can be used on its own or as a component that facilitates the smooth transition
between graphical objects in higher-level animation techniques.

Morphing is the successor to cross-fading, a traditional motion-picture tech-
nique that gradually fades one image into another. Morphing is more general as
it involves the change of both the shape and the visual attributes (such as color
and texture) and is applicable to various graphical objects, not just images. For
images, morphing can produce more convincing results than cross-fading.

Morphing uses warping, a unary function that changes the shape of a graphical
object. Given a graphical object G whose shape is represented by a set of points
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(a) (b)

Figure 17.14. An example of a morph sequence between two facial images:
(a) successive frames of the morph sequence; (b) using points to mark corre-
sponding features on the two images.

s in n-dimensional space (s ⊆ Rn), the warp function W produces a new set of
points that define the transformed shape, s′ = W (s).

Morphing is a binary function that takes two graphical objects as input and
produces another graphical object as output. Let G1 = (a1,s1) and G2 = (a2,s2)
be two graphical objects whose shapes are represented by s1 and s2 and whose
attributes by a1 and a2, respectively. Morphing between G1 and G2 can be split
into four steps (Figure 17.15):

1. Feature specification. Corresponding features on G1 and G2 are deter-
mined, usually manually. Let f1 and f2 be the corresponding feature sets.

2. Warp the shapes s1 and s2 into s′1 and s′2 based on an interpolated set of
features f ′.

3. Blend s′1 and s′2, i.e., define an intermediate shape s∗.
4. Combine a1 and a2 for s∗, producing a∗ and thus a new graphical object

G∗= (a∗,s∗).
At the feature specification stage, corresponding features of the two graphical

objects are established. This usually involves the user specifying pairs of corre-
sponding points, lines, or curves on the two graphical objects (Figure 17.14(b)).
Some automated methods for feature specification also exist.
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Figure 17.15. Morphing between two graphical objects G1 = (a1,s1) and G2 =
(a2,s2) to produce a new graphical object G∗= (a∗,s∗).

The warp operation W : s→ s′ transforms a shape according to a transformed
set of features f ′, which is the result of interpolating f1 and f2; the warp trans-
forms s1 and s2 according to f ′. There are many ways of defining W , including
barycentric mapping, field-based mapping, or as a multi-pass spline mesh.

In barycentric mapping, f1 and f2 are corresponding point sets. A triangula-
tion is computed on these point sets. Then a point p in s1 maps to a point p′ in s′1
with the same barycentric coordinates relative to the triangle that contains it. Let
p = b1v1 + b2v2 + b3v3,5 where v1, v2, and v3 are the vertices of the triangle of
f1 feature points that contains p in s1. Then p′ = b1v′1 + b2v′2 + b3v′3, where v′1,
v′2, and v′3 are the corresponding f ′ feature points. The situation is similar for s2.

In field-based mapping, the features can be points, vectors, or more complex
shapes. Each pair of corresponding features defines a different mapping for a
point in s1. The final mapping is computed by considering the fields of all feature
pairs, which are weighted by such parameters as distance from the feature and
size of the feature.

For example, if vectors are used as features, then field-based mapping can be

defined as follows. Let −→vi be a feature vector in f1 and
−→
v′i be the corresponding

transformed vector in f ′ (i.e., the result of interpolation between −→vi and the cor-
responding vector in f2). The mapping of a point p in s1 defined by this feature
vector is (see Figure 17.16)

Wi(p) = a′i +u
−→
v′i + v⊥v̂′i, (17.6)

5b1 +b2 +b3 = 1.
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Figure 17.16. Warp mapping defined by a vector pair.

where a′i is the base of
−→
v′i , ⊥v̂′i is the unit vector normal to

−→
v′i , and u,v define

p with respect to −→vi (in proportion to its magnitude). The final mapping for p,
taking all feature vectors into account, is then

W (p) = p+ ∑n
i=1 bi(Wi(p)−p)

∑n
i=1 bi

, (17.7)

where Wi(p)− p is the displacement defined by feature i, n is the number of
features, and bi is the weight of feature i, which can be defined as

bi =
|−→vi |m

d(−→vi ,p)2
, (17.8)

where d(−→vi ,p) is the distance from point p to vector −→vi . The situation is similar
for s2. Note that field-based mapping is not one-to-one. It is therefore possible
that some regions of the new graphical object G∗ will be undefined; so it is com-
mon to use a reverse mapping from G∗ onto G1 and G2. For example, in the case
of images, the pixels of G∗ are mapped onto pixels of G1 and G2.

Once s1 has been warped to s′1 and s2 has been warped to s′2, it is necessary to
blend s′1 and s′2 in order to produce the intermediate shape s∗. This is not always
straightforward as the two shapes may differ in such characteristics as topology
and genus, and these differences must be addressed by blending techniques. In
the case of images, the blending step can be omitted.

Finally the attribute sets a1 and a2 are combined into a∗ and assigned to re-
gions of s∗ (e.g., to vertices or pixels). The combination usually involves inter-
polation, and the attributes to be combined are determined from the established
correspondences in the topologies of G1 and G2.

A static graphical object G1 (such as an image) can be morphed into another
static graphical object G2 over time, by repeating the latter three steps of the mor-
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Figure 17.17. Morphing static graphical objects; the circled objects represent the
morph sequence.

phing process for interpolated values of the features, thus generating an animation
sequence G1,G∗t1 ,G∗t2 , ...,G2 (Figure 17.17).

A dynamic graphical object G1,t0 ,G1,t1 ,G1,t2 , ...,G1,tn (such as an animation
representing a talking face) can be morphed into another dynamic graphical object
G2,t0 ,G2,t1 ,G2,t2 , ...,G2,tn by repeating all four morphing steps for corresponding
(static) instances of the dynamic objects (e.g., corresponding frames) and gen-
erating a new dynamic graphical object G1,t0 ,G∗ 1

n−1 ,t1
,G∗ 2

n−2 ,t2
, ...,G2,tn which

progressively moves away from the first and approaches the second graphical ob-
ject (Figure 17.18). The first index of G∗ represents the morph distance from G1

and G2, which corresponds to the interpolation factor for the feature sets.

time (frames)
t0 t1 t2 tn

G2,t... ...
0

G2,t1
G2,t2
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...
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1G
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t,
2n

2G
2

*

G1,t ...
0

G1,t1
G1,t2

G1,tn
...

*

Figure 17.18. Morphing dynamic graphical objects; the circled objects represent
the morph sequence.
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Morphing has been extensively studied due to its many applications. These are
not limited to animation special effects but include medical imaging, correction
of lens distortion, and accelerated rendering. Several generalizations have also
been proposed, such as morphing between more than two graphical objects. The
interested reader is referred to a specialized source, such as [Gome99].

17.3 Rigid-Body Animation

Rigid-body animation techniques use only rigid transformations of objects to cre-
ate animation sequences. Rigid transformations are a subclass of affine transfor-
mations and are made up of translation, rotation and combinations of the two (see
Section 3.10). Rigid-body transformations do not deform objects.

A central issue in rigid-body animation is motion planning. Motion planning
refers to the specification of the trajectory of an object and of such physical param-
eters as velocity and acceleration along the trajectory. It is related to path plan-
ning, a well-researched area in robotics for finding a collision-free path for the
movement of a robot. This is a complex problem6 and probabilistic approaches
have been developed [Barr97,Plak05].

In basic motion planning, it is desirable to ensure continuity of motion and
to be able to specify physical parameters along the trajectory. Continuity can be
established by using a continuous parametric curve, such as a Bézier or B-spline,
to define the trajectory. Unfortunately such curves are not parameterized by arc
length, and it is therefore not directly possible to define physical parameters, such
as velocity. If arc length reparameterization is not simple for a specific curve,
we can resort to interpolations on a pre-computed table of arc lengths (see Sec-
tion 17.2.1).

In order to reduce the tediousness of specifying trajectories but also to pro-
vide realistic motion, frameworks have been developed that allow the animator
to specify the what of a motion (e.g., initial and final position), and they fill in
the how of the motion (e.g., trajectory with plausible motion parameters) using a
physical model [Witk88, Ngo93]. They employ a set of physical constraints that
lead to the solution of a system of equations. Let q(t) be a state vector that de-
scribes the characteristics of motion (e.g., position and velocity) of one or more

6It is known as the mover’s problem, and its objective is to decide if there exists a collision-free
path that moves a polyhedral object from an initial to a final position in an environment of static
polyhedral obstacles. In the general case, where the object to be moved consists of a set of polyhedra
linked together at certain vertices (see Section 17.4), the mover’s problem is PSPACE-hard [Reif79].
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objects at time t. The differential motion behavior can be described by

d
dt

q(t) = F(t,q(t)), (17.9)

where F is the physical model. The motion characteristics at time t are obtained
by integrating F :

q(t) = q0 +
∫ t

t0
F(t,q(t))dt, (17.10)

where q0 is the initial state vector at t0.
More recently, such systems have become interactive, allowing the animator

to edit the parameters of motion at desirable points along the trajectory [Popo00];
the system then re-estimates a physically plausible motion.

17.4 Skeletal Animation
In Chapter 9, we saw how geometric entities can be linked in a hierarchical man-
ner to form a scene-graph tree. Complex rigid-body animation can be achieved
as the cumulative effect of many simple transformations applied to a geometry
node as the hierarchy is traversed. In fact, geometry nodes need not necessarily
be terminal nodes in a network of associations among scene entities. Objects can
be linked in a chain of control to make the motion of one or more geometric ele-
ments dependent on the motion of a parent entity, thus creating a kinematic chain.
In such an object configuration, child nodes are animated relative to their parent’s
local coordinate system. The actual motion of each node in a kinematic chain is
determined by the transformations on all previous (higher) nodes in the hierarchy;
this type of modeling can be very advantageous for the animation of articulated
and linked or hinged objects.

The usefulness of a hierarchy of kinematic chains as a tool for directly mod-
eling the animation-control layer of objects (rigging) is limited to discrete, rigid
bodies (e.g., a robotic arm). Most articulated models that need to be animated
are soft, deformable bodies with no discrete parts, as in the case of character
animation, where humaniform or other models perform a complex motion by de-
forming a continuous mesh according to structural constraints imposed by their
internal skeleton and soft-tissue behavior.

The primary animation method for characters or other deformable articulated
structures is skeletal animation. A polygonal mesh that is the actual renderable
deformable geometry (called skin), is animated by moving the individual vertices
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that it consists of according to the motion of a hierarchy of nodes linked in a kine-
matic chain that forms a skeleton for the body (Figure 17.19). These nodes are
called bones and are rigidly transformed relative to each other, defining an artic-
ulated motion in time. The vertices of the skin are associated with one or more
bones using weights that define how the motion of each bone affects a particular
vertex. If vertex v follows the motion of bone Ji, then the weight w j is 1 only

Figure 17.19. Skeletal animation. (a) Rigging of an animated character mesh
(skin) with a bone system. (b) Weight variation of skin vertices between bone x
and bone y. (c) The character skin in motion, under the influence of the bone
kinematic chain transformations.
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for j = i. When the skin vertices are associated with one bone each, the resulting
animation of the skin resembles the motion of rigid connected bodies and creates
unnatural-looking folds and stretched polygons. To achieve a realistic result with
gradually bending surface patches at joint locations and smooth stretching of the
skin between them, each vertex should depend on the motion of multiple adjacent
bones and, therefore, needs to have more than one non-zero weight wj. The sum
of all weights w j for a vertex v must be equal to 1.

In order to efficiently create a skeletal animation sequence, bones are placed
inside the skin at the same reference frame and then connected to form the skele-
ton. During the construction of the skeleton and the assignment of weights, the
polygonal mesh represents a rest pose of the model that is only used for the skin-
ning procedure and is chosen in such a way as to facilitate the easy adjustment
of weights. Usually, the initial assignment of vertex weights is done by choosing
the closest bones to a vertex and taking the normalized distances of the vertex
from them as the corresponding weight; all other dependencies are assigned a
zero value. For bipeds, the most convenient pose to create a model for skinning
is the crucifixion pose with the legs spread out, because it ensures minimum in-
terference between different parts of the mesh. For example, if an arm is resting
beside the torso, some of the vertices on it could be accidentally assigned non-zero
weights from the torso bones and vice versa.

Let us now examine how the motion of a vertex v is derived from the corre-
sponding animation of the kinematic chain (Figure 17.20). For the moment, we
will focus on a single dependency between v and a bone Ji. The local coordinate
system of a bone Ji in rest pose is defined relative to its parent bone Ji−1 according
to a rigid transformation (Figure 17.20):

M(Ji) = TiRi. (17.11)

By recursively applying all consecutive transformations up to the root bone J0,
we get the WCS coordinates of bone Ji in rest pose:

Ji = (
i

∏
j=0

T jR j) ·o = Ai ·o, (17.12)

where o is the WCS origin. If the orientation of a bone does not participate in any
calculation (e.g., bend limit check), the skeleton can be frozen in the rest pose, in
which case only the offsets (Ti) are required in Equations (17.11) and (17.12).

If the length of the bones remains fixed during animation (which is a reason-
able constraint in most character animations), the only part that differentiates the
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Figure 17.20. Rigid transformation calculation for an animated kinematic chain
and skin vertices.

pose of a joint relative to its parent at an arbitrary time is an extra rotation ∆Ri

relative to the rest pose [Kava03]. The animated joint location J′i is expressed with
regard to its parent according to the following transformation:

M′(Ji) = TiRi∆Ri. (17.13)

As in Equation (17.12), the animated bone J′i is expressed relative to the origin
of the WCS as (Figure 17.20)

J′i = (
i

∏
j=0

T jR j∆R j) ·o. (17.14)

In order to calculate the new position v′ of a vertex v on the skin mesh in WCS
coordinates after applying the animation to the kinematic chain, we first need to
express the point in the local reference frame of the bone it depends on:

v(Ji) = (
i

∏
j=0

T jR j)−1 ·v = (
0

∏
j=i

R−1
j T−1

j ) ·v = A−1
i ·v. (17.15)
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Then, we can apply the transformation of Equation (17.14) to the relative
position and obtain the altered location of the dependent vertex at the given time:

v′ = (
i

∏
j=0

T jR j∆R j) ·v(Ji) = FiA−1
i ·v. (17.16)

When a vertex depends on more than one bone of the skeleton, the matrices
FiA−1

i of the nodes are combined according to the assigned weights wi to produce
a single transformation that is then applied to the original point on the skin:

v′ =
N

∑
i=0

(wiFiA−1
i ) ·v, (17.17)

where ∑N
i=0 wi = 1. Skeletal animation is an invaluable tool for both real-time

animation and photo-realistic rendering. The incremental bone rotations ∆Ri can
be calculated either by forward or by inverse kinematics. Alternatively, they can
be indirectly estimated from new locations of the joints, in the case where the
end positions are available via motion capture of body markers on actual moving
persons or animals. In forward kinematics, the local coordinate system of each
bone of an articulated object is determined by the cumulative transformation of
Equation (17.14) using as input the rotational parameters of the rotation trans-
formations (angles or quaternions). In inverse kinematics, a terminal bone called
end-effector is set to the desired pose relative to the WCS, and the parameters of
the bone rotations are estimated by solving a system of equations of bone offsets
and angular velocities. For more details see [Pare01].

17.5 Physically-Based Deformable Models
For modeling and animation of complex objects, one can use the deformation
of B-spline curves and surface patches (see Sections 7.3 and 7.6) and their gen-
eralization to non-uniform rational B-spline curves and surface patches (see Sec-
tion 7.4.2). These geometric entities are used extensively in the CAD industry and
to some extent in animation. Designers and animators modify the shape of these
types of curves and surfaces through manipulation of their degrees of freedom,
primarily their control points (and for rational cases of their weights as well). Ad-
ditional modifications are possible through changes of their knot vectors. Such
curves and surfaces typically get generated via an approximation or interpolation
of some primitive point data or, in the case of surfaces, through further interpola-
tion of some set of curves. As a result of these processes, geometric design and
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animation is difficult because of the indirect nature of the operations involved and
the need to also execute further operations on the resulting entities to make them
smoother and more fair.

To address these restrictions, physically-based deformable models were devel-
oped, see for example [Barr84, Meta96b, Terz87, Celn90, Terz91, Terz94]. These
models couple geometric modeling ideas and methods with physically-based laws
(including inertial, damping, and elasticity effects) and result in dynamic geomet-
ric models that can respond to concentrated and distributed forces in a natural and
intuitive way (see also Section 8.7 for the case of an initially straight curve (bar)
with bending effects present). The resulting modeling paradigm allows the easy
generation and animation of complex sculptured shapes (curves, surfaces, and
volumes) with inherent smoothness and fairness, qualities that are a by-product
of the formulation of such physically-based deformable models,

A short introduction to this method for the case of “elastically deformable”
curves is provided below. A general treatment for curves, surfaces and solids with
applications in graphics, animation, computer vision and medical imaging can be
found in more specialized monographs, e.g., [Meta96a], which also includes a
literature review on this subject. For the case of curves (modeled as initially
straight beams under tension), an example of a partial differential equation of
motion under the influence of distributed forces, suitable for shape generation
and animation is given as follows (adapted from [Celn90]):

µ
∂ 2w
∂ t2 + γ

∂w
∂ t

+(βwuu)uu− (αwu)u = f(u, t), (17.18)

where

w(u, t) is the position vector of the curve at parameter u and time t;

µ = µ(u) is the mass density at parameter u;

γ = γ(u) is the damping factor at parameter u;

α = α(u) and β = β (u) simulate the elastic curve-restoring force coefficients
related to bending and tension effects, respectively;

f(u, t) is the external force at parameter u and time t;

u is a parameter describing a point on the curve and roughly approximating arc
length. Subscripts u and uu denote first and second partial derivatives with
respect to the parameter u.
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The above partial differential equation can be solved numerically with great
efficiency using the finite-element method [Zien05], and the results can be ren-
dered for visual feedback to a designer or animator. Generalization of this method
to curved elastic or plastic models of surfaces and solids is possible, and the ref-
erences cited provide an introduction to the subject. Deformable surfaces can be
also idealized in terms of a set of distributed linear elastic springs, which give
rise to a discrete formulation. Research in this area has expanded rapidly, and
animation applications have appeared that involve nonlinear motion of cloth and
garments, hair, fracture of solids, propagation of cracks, simulation of fluids (liq-
uids and gases) entraining particles or involving a free surface with gravity waves.
For the case of fluid simulation, animation of jets, clouds, plumes of smoke, and
breaking ocean waves have recently appeared.

17.6 Particle Systems
Previous sections presented techniques for animating concrete objects that have a
specific, well-defined shape; during the animation, their shape may remain unal-
tered (rigid-body animation) or be subject to deterministic changes (skeletal or de-
formable models). Unfortunately, none of these techniques is able to realistically
animate fuzzy objects such as fireworks, smoke, water, or clouds, whose shape
cannot be easily described mathematically and changes seemingly randomly over
time.

Particle systems were developed exactly for this purpose. Their initial appli-
cation [Reev83] was the animation of a wave of fire spreading along the surface of
a planet for the Star Trek II movie. An object or phenomenon animated as a parti-
cle system is represented by a (usually large) number of individual particles, each
having its own set of attributes, such as position, velocity, color, transparency,
shape, and size. Particles are animated procedurally, their attributes evolving over
time according to rules that attempt to simulate the behavior of the system.

For each frame of the animation, the following steps are carried out:

1. New particles are generated and added to the system.

2. Each new particle is assigned its initial attributes.

3. Particles that have exceeded their lifetime are removed from the system.

4. Each particle currently in the system is assigned new (updated) attributes.

5. Particles currently in the system are rendered to produce the current frame.
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In order to create the “fuzziness” of the object, these steps are implemented
with the help of random variables, with as many degrees of freedom as the ani-
mator desires and the system can handle. For frame f , a random variable X used
for any of the attributes of a particle may have the value

X( f ) = Xmean( f )+ rand() ·Xvar( f ),

where Xmean is its mean value, Xvar is its variance, and rand() is a random-number
generator. The random variables Xmean and Xvar may both also vary between
frames if the phenomenon modeled calls for such a variation.

Particles may be rendered in many ways, depending on the application; given
the sheer number of particles that make up a system in most cases, their rendering
should be economical for practical reasons. In the initial application of particle
systems to model the wave of fire, each particle was rendered as a point light
source, emitting a small amount of light (whose color was changing over time)
and affecting its neighboring pixels; light from nearby particles is accumulated
and therefore no back-to-front sorting is necessary, and no shadows are cast on
the particles. Alternatively, particles may be rendered as colored points or short
colored lines, for example when animating fireworks. Finally, it might be neces-
sary to render each particle as a 3D object like a sphere; in this case the complete
lighting and shadow calculations will need to be applied to each particle, result-
ing in high computational cost. In any case, to enhance the realism of a particle
system it may be necessary to apply both spatial and temporal antialiasing to the
scene.

As an example of a particle system, consider the water fountain depicted in
Figure 17.21. Water is emitted from a nozzle at angle α0 from the ground. Each
water particle starts off at a random angle

α = α0 + rand() ·αvar

v
�

α

y

x

particle

Figure 17.21. One particle from the water-fountain particle system
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with a random initial velocity

−→v =−→v 0 + rand() ·−→v var.

This motion can be analyzed into two components, a vertical one which is
subject to the effect of gravity and a horizontal one which is constant, thus pro-
ducing the parabolic trajectory of the particle until it reaches the water surface.
Therefore the position of the particle over time is given by

x(t) = |−→v |cosα t,

y(t) = |−→v |sinα t− 1
2 gt2,

where g is the acceleration due to gravity, which is a constant. For a frame at time
t, these relations provide the position of the particle and may be used to animate
the particle system. The model can be made more realistic if the color of the
particles changes over time (for example, being more whitish in the first frames
to simulate higher pressure and more blueish later on), if the particles are allowed
to jump over when they reach the water surface, etc.

17.7 Exercises
1. If each frame of an animation takes 10 minutes to render at a resolution of

1024×1024×24 bits/pixel, estimate the amount of time and space required
for a 20-minute animation at 30 frames/second.

2. Create the wagon-wheel effect. Pick a circular 2D object with one or more
spikes and implement its rotation at a frequency that can be increased or
decreased by the user. The rotational frequency value should be simultane-
ously displayed.

3. Perform temporal antialiasing on the previous exercise. Use a simple 1D
convolution filter, such as the one given in Section 17.2.3.

4. Implement a simple 2D rigid-body animation system. The user must be
able to specify the motion of a 2D object using a Bézier or B-spline curve
and the object must then follow this trajectory. In addition, the object’s
orientation must coincide with the tangent of the curve.

5. Implement a simple 2D keyframe animation system. Assume that objects
consist of 2D line segments. The user must be able to create an initial
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keyframe of line segments F0. Then, subsequent keyframes Fi, (i > 0) are
created by editing (translating, rotating, scaling) the line segments of the
previous keyframe Fi−1. The user must also be able to specify the dis-
tance in frames between adjacent keyframes. The animation system then
creates the in-between frames by interpolation and produces an animation
sequence.

6. (Image Morph.) Implement a simple image-morphing package using vec-
tors as features. The user must input two images G1 and G2 and define
corresponding vectors on them (feature-specification step). For the warp
step, use a reverse mapping from G∗ to G1 and G2. For the combination
step, use only pixel colors as attributes and interpolate using the distance of
G∗ to G1 and G2. Omit the blending step.

7. Implement a simple system to handle and animate particle systems. The
system may be restricted to simple shapes such as points or lines for the
individual particles. The user must be able to specify the attributes of each
particle, their initial values, and the way these values change over succes-
sive frames.
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18
Scientific Visualization

Algorithms

Creative visualization is used by successful
people in all walks of life.

—Marisa D’Vari

18.1 Introduction
The applications of visualization are diverse; however, it is possible to form broad
classes of applications according to the type of data (e.g., vector or scalar). Algo-
rithms then exist for the visualization of common types of data, and one usually
finds them implemented in visualization packages. This chapter examines estab-
lished visualization algorithms for common types of visualization data.

Before the application of a specific visualization algorithm, it is also essential
to know the data characteristics that we want to enhance. For example, when
visualizing scalar data, it is possible to select between algorithms that display the
entire data set or algorithms that only display isosurfaces within the data; each
group has its own advantages. With every algorithm category presented here, we
give a short discussion to address this point.

The choice of visualization algorithm to be applied thus depends on two main
factors:

• the type of data;

• the desired visual effect.

For example, if we are given a large scalar data set which must be displayed
in its entirety in order to get a global view of the data, ray-casting or splatting

643
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Data Source

Visualization

Graphics

Figure 18.1. Visualization and graphics.

algorithms would be a good choice. If, on the other hand, we must examine
areas of equal value more closely, the marching cubes algorithm, which extracts
isosurfaces, should be selected.

It is now useful to create the link between visualization and graphics (Fig-
ure 18.1). Visualization algorithms are applied to a source of data. Visualization
can be thought of as one level above graphics. The visualization algorithm cre-
ates a visualization object from the raw data and specifies its display parameters
(camera parameters, color maps, transparency maps, textures, lighting parame-
ters, etc.). Graphics algorithms are then called upon to implement these specifi-
cations and thus produce the actual images.

Let us be more specific and define the visualization object as a function V (S)
[Brod92]. The domain S of the function is the space in which the experiment or
simulation took place. For example, S may consist of structured points in a 1-, 2-,
3-, or higher-dimensional space. This set of structured points is usually referred to
as a grid and is the most common type of domain. Alternatively, S may consist of
regions of a continuous space (e.g., regions of a map) or it may be an enumerated
set (e.g., types of musical instruments). Often, the domain will contain a time
variable. The range of V (S) consists of the data items that are produced by the
experiment or simulation for elements of the domain. It is the type of the items
of the range of V (S) that distinguishes between visualization methods. Common
types for the range are scalar, vector, and tensor. We shall use the following
notation [Spiv92] to define the type of a visualization object O:

O : domtype1×domtype2× ...×domtypeN→ rangetype.

For example, the visualization object that represents two-element vector values
(the range) on a three-dimensional grid plus time (the domain) would be of type
X×Y ×Z×T → vector2. If a vector plus a scalar value are the result of a simula-
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Figure 18.2. Regular, rectilinear, and structured grids.

tion on a similar grid, the type would be a multi-valued function X×Y ×Z×T →
vector× scalar. (By default we shall assume that vectors have the dimensionality
of the underlying grid). We shall use the abbreviation Orange type

domain type to give the type
of a visualization object more concisely. So, for example, a three-element vector
field over a three-dimensional grid (Color Plate XXXIV) is a Ovector3

X×Y×Z .
At this point we should define exactly how data values are represented in a do-

main. Without loss of generality, let us consider the domain of 3D discrete space
X ×Y ×Z. This domain is a grid and is called regular, if its elementary volume
elements are cubes of the same size; rectilinear, if the elements are orthogonal
parallelepipeds; and structured, if they are general parallelepipeds (Figure 18.2).
In fact, the volume elements do not even have to be parallelepipeds; a common
alternative representation is tetrahedral volume elements (Color Plate XXXV).

The range values can be mapped onto the grid domain in two ways (Fig-
ure 18.3):

• Range values are associated with entire volume elements (the volume ele-
ments are called voxels).

• Range values are associated with grid vertices (the volume elements are
called cells).

To determine the value of an arbitrary 3D point, we thus have two options cor-

Figure 18.3. Voxel (left) and cell (right) elements.
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responding to the above mappings: assign to the point the constant value of the
voxel that the point belongs to or perform interpolation from the values of the
vertices of the appropriate cell.

The discrete (grid) nature of visualization data becomes a problem when im-
ages with varying viewing parameters must be created, or computations be per-
formed which require access to values on arbitrary 3D points, rather than discrete
grid points. This is overcome by the use of interpolation techniques, which are
the single most important mathematical tool in visualization. A brief presentation
of interpolation techniques is given in Section 17.2.1.

18.2 Scalar Data Visualization
There are two main approaches to visualizing scalar data represented on a grid
(Figure 18.4). If we are interested in observing one or more surfaces of con-
stant value (isosurfaces) within the field, then we employ isosurface extraction
algorithms. These are advantageous in that they create sharp renderings and by

Surface ist
tri(v1,v2,v3)
tri(v4,v1,v2)
ri(v2,v4,v5)

l

t

Experiment or Simulator
e.g., MRI

3D Scalar
Voxel Data

Volume visualization

Rendering

Voxelization

Isosurface extraction

2D image

Figure 18.4. Visualizing scalar voxel data.
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Figure 18.5. A solid object (middle) can be visualized using an isosurface (volume
crust (left)). Not all volume information (right) can be visualized using isosurface
extraction.

transforming to a standard representation (surface lists), they can take advantage
of widely available graphics techniques for rendering the surfaces. However, only
part of the information present in the scalar field is visible on the isosurfaces (Fig-
ure 18.5).

Alternatively, we may show the entire field by employing a direct volume-
visualization technique; such techniques are however slow and generally result in
blurry images. The choice depends largely on the specifics of the application. In
this section we shall assume the Oscalar

X×Y×Z object, although generalizations to other
domain dimensions are possible.

Whichever method we choose for the visualization, we may want to pre-
simplify a very complex scalar data set to aid the visualization process [Chia03,
Cign00]. Such simplification is carried out based on the underlying grid and is
described in more detail for vector fields in Section 18.3.6.

18.2.1 Isosurface Extraction Algorithms

Volume scalar data can be too complex to visualize directly. Such data often con-
tain too much information along each ray in the viewing direction to display onto
a picture element with a single color. It is often the case that such data contain
clusters of values which can be separated by surfaces, much like a 3D Voronoi
diagram. Isosurface algorithms determine these separating surfaces after the user
inputs one or more isosurface value(s). These inputs correspond to borders where
the data set passes from lesser to greater values. Once these isosurfaces are es-
tablished, it is quick and easy to display them with standard graphics techniques,
since they consist of polygons.
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The marching cubes algorithm [Lore87] was initially developed as a method
for the efficient visualization of 3D medical data sets acquired by magnetic res-
onance imaging (MRI), computed tomography (CT), or other techniques that de-
pict complex bone formations, blood vessels, or other anatomical structures. The
user provides the 3D (volume) data set and an isosurface value(s) that defines the
desired structure (e.g., bone density), and the algorithm computes an isosurface
consisting of triangles that can be rendered efficiently. The main drawback of
marching cubes is that it creates a large number of unnecessary triangles. The
splitting box algorithm [Mull93, Star97] attempts to improve on marching cubes
in this respect.

Marching cubes. The input to the marching cubes (MC) algorithm is a scalar
volume data set Oscalar

X×Y×Z and the scalar value of the desired isosurface. The out-
put is a list of polygons which make up the isosurface. The MC algorithm visits
every cube (volume element) of the volume data set. For example, the cubes may
be created by using adjacent slices of a MRI scan. For each cube visited, the field
values at its eight vertices are compared to the user-provided isosurface value.
Vertices are thus labeled as 1 (inside, smaller than isosurface value) or 0 (outside,
greater than isosurface value). The vertex labels are then systematically concate-
nated and used as an index to a list of pre-computed surface-cube intersections.
More specifically, the steps are the following:

Void MC() {

For (i= 0; i<maxcubeI; i++)

For (j= 0; j<maxcubeJ; j++)

For (k= 0; k<maxcubeK; k++) {

// process cube (i,j,k)

// label vertices as inside (1) or outside (0)

l1=get_label (i,j,k);

l2=get_label (i+1,j,k);

...

l8=get_label (i+1,j+1,k+1);

// concatenate the 8 labels (++ stands for the

// string concatenation operator)

index=l1++l2++l3++l4++l5++l6++l7++l8;

// map index to one of the 15 basic cases

// (symmetries) and get required transform

bindex=map_2_basic_index(index);

transform=map_2_basic_trans(index);
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// use bindex to select the appropriate

// precomputed surface-cube intersection

// and reverse transform it

surface_list=

precomputed_surfaces(bindex,transform^{-1});

// use interpolation to place the

// intersection surface precisely

for (p=0; p<num_vertices(surface_list); p++)

compute_precise_edge_position(p,

cube_field_values(i,j,k));

// calculate normals at intersection

// surface vertices for rendering

for (p=0; p<num_vertices(surface_list) p++)

compute_normal(p, cube_field_values(i,j,k));

}

}

An example of vertex labeling is given in Figure 18.6; the cubes are equivalent
to the cell model of Figure 18.3.

Assuming a front-to-back, top-to-bottom, left-to-right vertex order, the in-
dexes of the top and bottom cubes in Figure 18.6 are 10100010 and 11110011,
respectively. There are a total of 28 possible ways to label the vertices of a cube

1

2

1 5

9 8

6

5

Isosurface
value = 7

Isosurface
value =4

Inside

Outside

Figure 18.6. Vertex labeling.
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Figure 18.7. The 15 surface-cube intersections.

in this manner; therefore we require 256 pre-computed surface-cube intersection
patterns. These are reduced to just 15 (Figure 18.7) by taking advantage of

• mirror symmetry;

• rotational symmetry;

• inside/outside symmetry.

Each one of the 15 intersection patterns essentially provides the topology of
the polygonal intersection surface (i.e., one or more polygons) with respect to the
cube edges. The symmetries used to go from the actual intersection pattern to one
of the 15 basic cases form the transform for a cube. We next determine the exact
points of intersection along each cube edge by interpolation. If the edge vertices
have associated field values v and v′ and the isosurface value is I (v < I < v′), then
the intersection point p (Figure 18.8) can be expressed as a fraction of the edge
length as

p =
I− v
v′ − v

.

This linear interpolation assumes a linearly varying field; otherwise the computed
point of intersection is only an approximation to the true point of intersection.
Notice that for adjacent cubes the interpolation calculation on common edges
will yield the same result, leading to locally continuous (C0) isosurface approxi-
mations.
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=0

=20

I=15 I=10

Figure 18.8. Interpolation along edge.

The normal vectors of the isosurface on the vertices of the resulting isosur-
face polygons, which are useful for the realistic rendering of the isosurface, are
computed directly from the field, in two steps:

• Compute the gradient vectors of the scalar field at cube vertices;

• Interpolate the gradient vectors along cube edges and onto the vertices of
the polygons (similar to the determination of the exact point of intersec-
tion p).

The gradient vectors at cube vertices are computed by taking central differ-
ences of the field values at neighboring cube vertices. Thus, if v(i, j,k) and
g(i, j,k) are the field value and gradient vector at cube vertex (i, j,k),

gx(i, j,k) =
v(i+1, j,k)− v(i−1, j,k)

∆x
,

gy(i, j,k) =
v(i, j +1,k)− v(i, j−1,k)

∆y
,

gz(i, j,k) =
v(i, j,k +1)− v(i, j,k−1)

∆z
,

where ∆x, ∆y, ∆z are the differences in the x-, y-, and z-coordinates, respectively,
of the cube vertices involved. Figure 18.9 presents an example of the isosurfaces
extracted from a scalar data set using the MC algorithm.

MC can be improved in a number of ways; an obvious one is to avoid re-
computation for common edges of neighboring cubes. The major disadvantage of
the algorithm is the large number of polygons that are created for the isosurface
and the fact that this number is not proportional to the isosurface complexity but
depends primarily on the density of the grid.

Still, the isosurface generated by the marching cubes algorithm is view-
independent and, as such, can be computed once for a fixed density threshold and
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Figure 18.9. Isosurface creation with the MC algorithm.

optimized for better polygon-rendering performance using one of the many mesh-
simplification algorithms [Hopp98,Hopp96,Garl99,Redd96]. Being a polygonal
surface representation, the result of the MC can be fully accelerated by the GPU
of modern graphics systems. The inherent disadvantage of MC is that it can only
visualize volume isosurfaces (or crusts) and cannot represent any type of smooth
density transitions.

Splitting box. The splitting box (SB) algorithm also creates an isosurface from
volumetric scalar data sets. It creates a smaller number of polygons than MC by
recursively subdividing the original volume only until the resulting elements pos-
sess a certain complexity property. Some definitions are in order here. A box is
a rectangular parallelepiped with edges parallel to the main axes of the grid. The
length of an edge is the number of grid vertices it contains. An edge has the MC
property if it contains at most one isosurface transition; this is the same assump-
tion made by the MC algorithm for neighboring vertices of a volume element
(cube). The SB algorithm uses this generalised property to end the subdivision
process as early as possible in the box hierarchy. A face of a box is MC if its four
edges are MC. Finally a box is MC if its six faces (or twelve edges) are all MC.
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Figure 18.10. Box subdivision.

The SB algorithm recursively subdivides a box along its longest edge until
boxes with the MC property are reached (Figure 18.10). It is initially called with
a box which represents the entire visualization volume:

void SB (box); {

if MC_property(box)

generate polygons using the 15 cases of MC;

else if size(box)=2^3

generate polygons by analytical processing;

else {

subdivide box along longest edge into box1 and box2;

SB(box1);

SB(box2);

}

}

18.2.2 Direct Volume Visualization

When we need to examine complex internal structures of data sets, volume visu-
alization algorithms are the appropriate tool to use. In general the entire depth
complexity of the data set is simultaneously displayed. The cost of displaying so
much information simultaneously is, in general, unclear images that often contain
cluttered information.

Three-dimensional scalar data sets consisting of sampled data or representing
amorphous phenomena (such as MRI, smoke, or fire) are often hard to represent
using surfaces. In such cases, we can employ visualization algorithms that display
the data by directly interrogating the data set (Color Plate XXXVI). There are two
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main types of algorithms. Backward projection, or ray casting, fires rays for each
image pixel into the data set, obtains samples and combines them into a final
color. Forward projection, or splatting, does the reverse; it projects each voxel in
the data set onto the image plane and establishes which pixels it affects using a
filter.

Ray casting. Ray casting consists of three steps:

1. Classify each voxel according to its content;

2. Transform the rays or data so that they are aligned with the viewing direc-
tion;

3. Combine the result along each ray.

The first step classifies each voxel depending on its material content; the result
is a color and transparency value. For example, in a medical scanning application
we can assign color and transparency values according to the x-ray absorption
values. Drebin [Dreb88] proposes a classification scheme whereby absorption
values are not classified using thresholds but, rather, using a Bayesian approach.
Suppose our set of possible materials is

material = {air, fat,soft-tissue,bone}

and that material i has an a-priori given probability distribution Pi(I) to have in-
tensity value I if it is in homogeneous form (Figure 18.11). Then the question is,

Figure 18.11. Material intensity probability distributions.
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given a measured voxel intensity I, which material(s) does the voxel contain and
in what proportion? If we let P(I) denote the probability that a voxel has intensity
value I then

P(I) =
m

∑
i=1

ρiPi(I),

where ρ i is the proportion of material i in the voxel (i.e., the value we seek) and m
is the number of different materials. Therefore the Bayesian estimate ρ i(I) of the
amount of material i in a voxel with measured intensity value I can be computed
as

ρi(I) =
Pi(I)

m
∑
j=1

Pj(I)

and
m

∑
j=1

ρ j(I) = 1.

The color/transparency C of the voxel is computed in so-called RGBA form (RGB
color plus transparency):

C =
m

∑
i=1

ρiCi,

where Ci = (αiRi,αiGi,αiBi,αi) is the color and transparency value that corre-
sponds to material i.

There are two ways of aligning the data with the viewing direction (Step 2 of
the algorithm): ray transformation and data transformation. Ray transformation
casts rays into the volume data and takes samples at equidistant points along each
ray (Figure 18.12). The samples are computed by tri-linear interpolation from
the eight nearest voxel values. (Equivalently, if the cell representation is used,
they are computed from the eight values of the vertices of the cell that contains
the sample point). For example, if vi, j,k|i, j,k ∈ {−,+} represent the values of
the eight surrounding voxels for a sampling point s and d−x ,d−y ,d−z represent the
distances from s to the centers of the three voxels with the smaller indices in each
axis as a portion of the inter-voxel distance (Figure 18.12), then the value at s is
computed as

vs =(1−d−x )
[
(1−d−y )

[
(1−d−z )v−−−+d−z v−−+

]
+d−y

[
(1−d−z )v−+−+d−z v−++

]]
+d−x

[
(1−d−y )

[
(1−d−z )v+−−+d−z v+−+

]
+d−y

[
(1−d−z )v++−+d−z v+++

]]
.

Data transformation aligns the volume data with the viewing direction. If z is
the viewing axis, then the voxel data are realigned so that voxels with the same
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Viewing

Rays

Image plane

dx dy

Sampling Point

Voxel

Figure 18.12. Ray transformation (parallel projection shown in 2D).

z-coordinate lie on the same viewing ray. Figure 18.13 shows this operation for
a parallel and a perspective projection. Data transformation can be achieved by
a shear-warp operation [Came92, Lacr94]. First the slices of the volume data are
sheared in the xy-plane by factors sx and sy (determined from the viewing trans-
formation) and the data of each slice are re-sampled using bi-linear interpolation.
The shear matrix (see Chapter 3) for a parallel projection is

SHpar = SHxy(sx,sy) =

⎡⎢⎢⎣
1 0 sx 0
0 1 sy 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

In the case of a perspective projection, we also need to scale each slice (Fig-
ure 18.13(right)). The scale factor s is again determined from the viewing trans-
formation and the scaling can be incorporated in the shear matrix by modifying
the homogeneous coordinate:

SHpers =

⎡⎢⎢⎣
1 0 s′x 0
0 1 s′y 0
0 0 1 0
0 0 s 1

⎤⎥⎥⎦ .
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Shear

Viewing Rays

Shear &
Scale

Figure 18.13. Shear operation for parallel (left) and perspective (right) projection.

A volume data slice at z = z0 is thus scaled by 1/(1+sz0) to return to normal homo-
geneous form (i.e., w-coordinate equal to 1), which achieves the desired scaling
effect for the perspective projection. A problem with the perspective projection is
the non-homogeneous sampling of the volume data caused by the diverging rays
(Figure 18.13(right)); in other words the sampling density is a function of depth.
A solution to this problem proposed by Kreeger et al. [Kree98] is to adaptively
introduce extra rays as a function of depth; these rays then get sub-sampled in
slices in order to end up with the initial ray resolution.

A 2D warp and re-sampling operation is needed to complete the data transfor-
mation. The warp accounts for the oblique positioning of the image plane with
respect to the volume data axes, and it takes place after the volume data have been
combined into a single XY image (Step 3).

The final step of the algorithm (Step 3) determines the resulting color value
along each ray. This is easily achieved by combining the value at successive sam-
ple points (ray transformation) or successive voxels along the Z-direction (data
transformation). For unity of presentation we shall use the term ray samples to
refer to both cases. Remembering that the value at each ray sample is stored in
RGBA form, we traverse the ray samples from back to front (Figure 18.14). At
each ray sample we compute the outgoing color value RGBout as a function of the
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Image Plane
Ray Samples

Viewing
Ray

RGBIn

RGBout

acurrent

RGBcurrent

Figure 18.14. Combining the ray samples.

incoming value RGBin and the color and transparency properties of the current
ray sample:

RGBout = RGBin(1−αcurrent)+RGBcurrentαcurrent,

where αcurrent ranges from 0 (totally transparent) to 1 (totally opaque).

Splatting. The ray-casting algorithm has an outer loop for each image-space
pixel and then traverses voxel space to consider which voxels affect it. In con-
trast, the splatting algorithm [West90] gives voxels the priority; it considers each
voxel’s projection onto the image plane (i.e., the pixels). This is as if the voxel
was thrust onto the image plane, hence the term splatting.

The discrete voxel space represents a continuous volume whose values f (x,y,z)
can be reconstructed by the function

f (x,y,z) = ∑i ∑ j ∑k v(i, j,k) ·h(x− i,y− j,z− k),

where v(i, j,k) are the discrete voxel values, h is the reconstruction kernel, and the
summation is taken over a 3D volume with size equal to that of the reconstruction
kernel (see Appendix E).

Instead of considering how multiple voxels contribute to the value of an ar-
bitrary 3D point, consider the contribution contri(x,y,z) of a single voxel (i, j,k)
to a point (x,y,z). This is independent of the contributions of other voxels to that
point and is equal to

contri(x,y,z) = v(i, j,k) ·h(x− i,y− j,z− k).
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Sheets

Image
plane

Sheets

Image
plane

Figure 18.15. Voxel sheets and image plane.

The total contribution at a given image location (x,y) is the sum of the contribu-
tions at all points along a ray that is normal to the image plane at (x,y). Assuming
z to be perpendicular to the image plane, the integral is calculated over the z-axis
(for this reason z− k is replaced by z):

contri(x,y) =
∫ ∞

−∞
v(i, j,k) ·h(x− i,y− j,z)dz.

Since v(i, j,k) does not depend on z it can be taken outside the integral:

contri(x,y) = v(i, j,k) ·
∫ ∞

−∞
h(x− i,y− j,z)dz.

A kernel is centered at every voxel and its contributions to image-space pixels can
be determined by projecting the kernel onto image space. All kernels have the
same projection, called footprint:

footprint(α,β ) =
∫ ∞

−∞
h(α,β ,z)dz,

where α,β represent the image-space X- and Y -displacement (in pixels) from the
central pixel of the kernel projection. If the image plane is not aligned with the
axes of the voxel volume, then the footprint function is slightly more complicated
[West90].

The voxels are processed in sheets; a sheet is a plane of voxels parallel to the
image plane (Figure 18.15(left)). If the image plane is not aligned with the voxel
space axes, then the sheets are defined by the pair of voxel axes most parallel to
the image plane (Figure 18.15(right)). Processing starts with the sheet nearest to
the observer:
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Figure 18.16. Volume rendering at multiple resolutions using pre-computed levels
of detail and a simple step-like kernel splatting.

for each sheet s front-to-back

for each voxel (x,y,s) in sheet s

for all footprint offsets (a,b) {

frame_buffer(x+a,y+b)=

frame_buffer(x+a,y+b)+

voxel(x+a,y+b,s)*footprint(a,b)*

transparency_buffer(x+a,y+b)

transparency_buffer(x+a,y+b)=

transparency_buffer(x+a,y+b)+

transp(voxel(x+a,y+b,s))

*footprint(a,b)

}

When compared to ray casting, splatting requires more computation as it pro-
cesses the entire voxel space and does not take advantage of bounding volumes.
On the other hand, voxels are processed independently and thus splatting is more
amenable to parallel implementation.

Another useful property of the splatting algorithm and its variations is that it
is very easy to integrate a multi-resolution representation of the volume data into
the rendering stage. As the volume is rendered in layers, the resolution of each
such planar section of the volume can be determined independently and rendered
using a pre-computed lower-resolution version of the sampled scalar space, such
as an octree. Figure 18.16 shows the representation of the same data set at four
resolutions.

18.3 Vector Data Visualization
Vector fields are quite common results in both experiments and simulations; ex-
amples are electromagnetic fields, derivatives of scalar fields, and wind-velocity
data. The visualization of vector data poses an added complexity to scalar data in
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Figure 18.17. (a) A static Ovector2
X×Y vector field; (b) a streamline (see Section 18.3.2).

that each element of the field has several dimensions to represent. One can thus
visualize only part of the field, show only some of the vector components, use
clever color-encoding techniques, or even simplify the vector field before visual-
ization.

The dimensionality of the definition grid and that of the vectors in the field are
independent. However, although fields such as Ovector3

X×Y and Ovector2
X×Y×Z are possible,

in the usual case the dimensionality of the vectors matches that of the underly-
ing grid; the types Ovector2

X×Y and Ovector3
X×Y×Z are frequently encountered in experi-

ments and simulations. An important distinction has to be made between static
(or steady) and dynamic (or unsteady, time-varying) vector fields. A static field
does not change over time and can represent, for example, the constant gravi-
tational field between a set of static objects. Figure 18.17(a) shows a static 2D
vector field.

Figure 18.18.
(a)–(d) Four
snapshots of a
dynamic Ovector2

X×Y×T
vector field at
t = t1, t2, t3, t4; (e) a
pathline (see
Section 18.3.2).

In contrast, a dynamic vector field represents a dynamic vector phenomenon,
for example, wind velocity and direction data over the US during the course of
a day. Just like frames of an animation sequence, a dynamic vector field can be
represented by taking “snapshots” of the field at discrete points in time. Each
snapshot is equivalent to a static vector field. Figure 18.18 (a)–(d) represents four
snapshots of a 2D dynamic vector field.

Without loss of generality, we can define the function types of three dimen-
sional vector fields over three dimensional grids as

Vstatic : Ovector3
X×Y×Z ,

Vdynamic : Ovector3
X×Y×Z×T ,

where the last parameter in Vdynamic refers to time.
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18.3.1 Hedgehogs

Hedgehogs (also called arrow plots and vector glyphs) refer to the standard rep-
resentation of vectors as arrows and have been extensively used to represent vec-
tor fields. The arrow length and direction represent the corresponding quantities
of the vector. Figure 18.19 and Color Plate XXXVII represent a Ovector2

X×Y and a
Ovector3

X×Y×Z object, respectively.
Dynamic vector fields can be represented by animations where each frame is

the arrow plot of the field at a specific time instant.
The major problems with arrow plots are:

• the visual clutter that arises if we construct arrow plots of dense fields;

• the projective distortion (foreshortening) that results when higher-
dimensional vector fields are projected to 2D for display purposes.

Figure 18.19. Arrow plot for Ovector2
X×Y . (Image created using OpenDX.)
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18.3.2 Particle Advection

Displaying dense vector fields in their entirety is often confusing, as one cannot
pick out important characteristics of the field, such as flow patterns, among the
large amount of information displayed. One way of fixing this is to imagine the
trace of single particles through a vector field; think of a wind-tunnel experiment
where we can release a small and light ping-pong ball and then observe the path
that it takes. Better still, we may release a small number of colored balls at differ-
ent points and observe their joint behavior. This principle finds application in the
visualization of vector fields and is called particle advection.

Particle advection techniques rely on the existence of flow patterns in vector
fields. Instead of displaying the whole vector field, we only display the effect
of these flow patterns on weightless and frictionless particles that are advected
through the field from their initial positions [IBM07]. Visual clutter is thus vir-
tually eliminated, as we are in full control of the number of particles that are
released into the field. If weight and friction are not negligible, they can be pre-
incorporated in the simulation that produced the vector field.

Let us define a visualization point as a triplet and a visualization line as a set
of points (this is not necessarily a straight line):

vispoint :[X Y Z],

visline :{vispoint}.

A streamline can be viewed as a function that takes a static vector field and a
set of initial points and produces a set of visualization lines, one for each point:

streamline : Vstatic×{vispoint}→ {visline}

Each streamline is the trace of a particle as it is advected through a static
vector field

−→
S from its initial position. A streamline for the simple static field

of Figure 18.17(a) is shown in Figure 18.17(b) while Color Plate XXXIX(left)
shows a number of streamlines together. If π is the parameter of the streamline
and s is a point on it, the following differential equation should be satisfied:

ds
dπ

=
−→
S (s(π)).

The twist of a vector field along streamlines can be visualized by plotting ribbons
that are the result of connecting the traces produced by pairs of neighboring par-
ticles (Color Plate XXXIX (right)). We can also plot an extra parameter along
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Figure 18.20. Streaklines for dynamic vector fields; after application of first field
value (left) and after application of last field value (right). (Images created using
OpenDX.)

a streamline (e.g., vector magnitude) by color coding the values of the parame-
ter along its length (Color Plate XXXIX). Another variation plots a tube around
a streamline; two extra parameters can thus be visualized along the path of the
streamline, one coded as the color and the other as the diameter of the tube.

We can also use streamlines to visualize a single time instant t of a dynamic
vector field

−→
D :

ds
dπ

=
−→
D (s(π), t).

Streaklines visualize a dynamic vector field by plotting the paths of particles as
they are advected through the field; that is, at every discrete advection step the vec-
tor field applied to the particles is determined as a function of time. Figure 18.20
gives an example.

Let us first define the concept of a pathline, which is a function that, given
an initial point s0 at an initial time t0, produces the trace of the point through the
dynamic field:

pathline : Vdynamic× initial→ visline,

where initial = (vispoint, time), by successively replacing the initial point by the
result of advecting it through each instance of the dynamic vector field:

dp(init, t)
dt

=
−→
D (p(init, t), t)

where p(init, t) is the pathline starting at init = (s0, t0) at parametric time t (i.e.,
it is a point on the pathline). Initially p(init, t0) = s0. A pathline for the simple
dynamic vector field of Figure 18.18(a)–(d) is shown in Figure 18.18(e).
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Figure 18.21.
(a)–(d) A dynamic
vector field; (e) two
streaklines.

A streakline can then be viewed as a function that takes a dynamic vector field
and a set of initial points at given initial times and produces a set of visualization
lines, one for each point:

streakline : Vdynamic×{initial}→ {visline},
where initial = (vispoint, time).

The streakline S from init = (s0, t0) at time t is S(init, t) = p(init, t). Streak-
lines do not necessarily start at the beginning of the simulation. A dynamic vector
field and two associated streaklines are shown in Figure 18.21.

18.3.3 Line Integral Convolution

Particle advection techniques present only a very small portion of the information
contained in a vector field; an unfortunate choice of particles can thus lead to
wrong conclusions about a field. Line integral convolution (LIC) [Cabr93] was
developed to allow the global visualization of dense static vector fields over 2D
or 3D regular grids. An input texture with resolution equal to the cell count of
the grid in the respective dimensions is “locally blurred” to produce an output
texture of the same size. The vector field is thus visualized via its blurring effect
on the texture. The input texture may be related to the vector field or it may be
completely unrelated, such as a noise image (Figure 18.22).

Assume a Ovector2
X×Y vector field. The local behavior of a vector field can be

approximated by computing a streamline that starts at the center of a certain cell
(pixel), say (x,y), and extends in both the positive and the negative directions
of the field, thus simulating the effect of the vector field on a particle at (x,y).

Figure 18.22. LIC on noise texture.
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Figure 18.23. 2D vector field (left) with convolution area shown shaded, 2D input
image (middle), and 2D output image (right).

The value at pixel (x,y) of the output image is computed by a convolution of a 1D
strip of the input image with a 1D convolution filter. The convolution is performed
over L cells of the streamline of (x,y) in each direction. Figure 18.23 shows the
computation of a 2D output image from a 2D vector field and a 2D input image,
all of the same dimensions.

More specifically, if O and I are the output and input images, respectively, the
LIC function is

O(x,y) = ∑
p∈A

I(p) ·h(p),

where A is the set of cells of the streamline within a discrete cell distance L from
(x,y), shown shaded in Figure 18.23(left); L is half the length of the convolution
kernel

h(p) =
λ2∫

λ1

k(w)dw;

λ1 is the arclength of the streamline from (x,y) to the point where it enters cell p;
λ2 is the arclength of the streamline from (x,y) to the point where it exits cell p;
and k(w) is the convolution filter function.

The length of the convolution kernel (2L) is a critical parameter. A large L will
cause the LIC functions of most cells to have similar values (more blurring) and
a small L will result in insufficient filtering (no blurring effect) (Color Plate XL).
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Note that so far only the direction component of vector fields was visualized.
One way of visualizing the magnitude component is to vary the value of L (which
was so far constant) according to local vector magnitude. The amount of blur-
ring is then proportional to vector magnitude, which can be beneficial for some
applications. As an example, L can be varied proportionally to wind velocity and
the resulting image can be overlaid on a 2D map. Stronger winds can thus be
visualized with a greater blurring effect.

It is also possible to animate the LIC technique by displaying particles that
travel along the field lines [Fors95]. A simple extension maps vector magnitudes
into varying animation speeds.

The generalization of the LIC technique to Ovector3
X×Y×Z fields is relatively straight-

forward. However, as the number of voxels in such 3D fields can be very large
(e.g., 512× 512× 512), the computational cost can be proportionally high; in
addition it is hard to visualize such a dense 3D output. Three-dimensional LIC
techniques utilize the concept of a region of interest (ROI) [Helg04, Inte98]. The
user defines a 3D ROI by placing constraints on some scalar value of the field,
such as vector magnitude. These constraints are then used to mask out (set to 0)
parts of the 3D input texture. LIC calculations are then only performed on voxels
that correspond to non-zero input texture elements (Color Plate XXXVIII):

for each voxel v

if (scalar_test(v) ∈ ROI) set input_texture(v) to 0

for each voxel v

if (input_texture(v) = 0) compute LIC function output O(v)

18.3.4 Visualization of Vector Field Topology

In order to minimize the visual clutter that is inherent in the visualization of vector
fields, one solution is to concentrate only on the important features of the field and
visualize its topology.

For a static vector field
−→
S (either Ovector2

X×Y or Ovector3
X×Y×Z), the most important

elements of its topology are critical points, the points where the field has zero
value. Critical points represent singularities of the vector field and the behavior
(flow) of the field is interesting in their vicinity. Critical points can be classified
according to the eigenvalues of the Jacobian matrix of the field evaluated at their
position [Helm91].

For a 2D vector field
−→
S (x,y) = (Sx(x,y), Sy(x,y)) the Jacobian matrix is

J2 =

[ ∂Sx
∂x

∂ Sx
∂y

∂Sy
∂x

∂ Sy
∂y

]
,
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and it has two eigenvalues that are either both real or both complex; they are
also conjugate to each other (i.e., their real parts are equal and their imaginary
parts are opposite). Figure 18.24 presents all the possible cases. It can be seen
that a positive real part of the eigenvalue corresponds to repelling behavior of the
field around the critical point, while a negative value corresponds to attracting
behavior; the field therefore goes both towards and away from a saddle point and
around a center. Furthermore, a (non-zero) imaginary part corresponds to rotating
behavior around the critical point.

For a 3D vector field,
−→
S (x,y,z) = (Sx(x,y,z), Sy(x,y,z), Sz(x,y,z)), the Jaco-

bian matrix may have either three real eigenvalues or one real and a pair of conju-
gate complex eigenvalues, and they correspond to behaviors of the field similarly
to the 2D case.

As Figure 18.24 shows, there are different types of field flow in the vicinity
of critical points, which define sectors of different kinds in the domain of the
field. The boundaries of these sectors are curves (for 2D fields) and curves or
surfaces (for 3D fields) called separatrices. A graph of the critical points and

Figure 18.24. Classification of 2D critical points. R1, R2 are the real parts of the
eigenvalues of the Jacobian matrix, and I1, I2 are the respective imaginary parts.
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source

saddle

saddle

sink

sink

Figure 18.25. The skeleton of a vector field.

the separatrices of a vector field is called its skeleton and it provides a simplified
representation of the field (Figure 18.25).

However, even this simplified representation of the field can be problematic,
if the field contains an excessive number of densely spaced critical points. To ad-
dress such situations, efforts to simplify the topology of a vector field have been
presented [dL99, Tric00] that merge nearby critical points, under suitable criteria
and constraints, aiming to reduce their number while preserving the characteris-
tics of the field.

This kind of topological analysis has been developed for static vector fields,
but it can be employed to visualize dynamic vector fields as well. Specifically,
given consecutive time “snapshots” of a dynamic vector field, their skeletons may
be joined by linking consecutive positions of the critical points and the respective
separatrices. The resulting surfaces permit the observation of the evolution of the
field and of its topology over time. It may then be seen that topological changes
(bifurcations) occur; for example, the type of critical points may change, critical
points may be merged, created, or destroyed over time.

18.3.5 Scalarization

A simple (but lossy) way to deal with the problems of visual clutter and projective
distortion is to discard most components of the vector field, thus creating a scalar
field. The scalar field can then be directly displayed by a simple color-value
association, using any of the techniques presented above for scalar fields. For
example, one can pick the magnitude component of the vector field for display
and discard all directional information.
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Figure 18.26. Color hues are mapped to the equator (θ ) of the color sphere.

Hall [Hall93] introduced a cleverer way of using color to display vector fields.
Instead of discarding vector components, he maps direction and magnitude to dif-
ferent color characteristics. Let vectors of an Ovector2

X×Y vector field be represented
in a polar coordinate system as triplets (ρ ,θ ,φ ) where ρ is the normalized vector
magnitude and θ ,φ the polar direction angles. These can then be directly mapped
to a spherical color-coordinate system. For example, θ can represent hue (color
hues define the equator of the color sphere (Figure 18.26)), φ can represent tone
(shade), and ρ can represent purity. So, pure colors represent vectors of maximum
magnitude, while direction is mapped to hue and tone.

Although this technique alleviates the problems of visual clutter and projective
distortion, it is hard for our brain to associate color with vector characteristics.
The situation can be somewhat improved if the colors are quantized before display
(direction and / or magnitude), as that helps us to classify the vectors into a few
major categories (Color Plate XLI).

18.3.6 Vector Field Simplification

A useful alternative technique in the case of complex vector fields, is to simplify
the field before visualizing it. Simplification techniques reduce the number of
vectors in the field in a controlled way while aiming to preserve important field
properties, such as critical points or the boundary of the field. The risk of missing
important data (as in the case of particle advection) is therefore reduced. Several
such methods have been recently developed, mostly based on vector clustering
techniques [Garc01,Heck99,Tele99,Tric00].

In the case of vector fields defined over tetrahedral meshes (i.e., where vectors
are given at the vertices of a tetrahedral mesh), it is possible to use a generaliza-
tion of the well established edge-collapse operation (see Chapter 6) to simplify
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Hedgehogs
Particle
advection LIC

Vector
field
topology Scalarization Simplification

Full field visualization x x x
Direction visualization x x x x x1 x
Magnitude visualization x x x x1 x
No significant
information loss

x x x

Avoids clutter x x x x x
1Either vector direction or magnitude is usually visualized with this technique.

Table 18.1. Summary of vector-field visualization techniques.

the vector field [Plat04]. An edge-collapse in the tetrahedral mesh reduces the
tetrahedra that share this edge to mere triangles and these are deleted; tetrahedra
that share a vertex of the collapsed edge must have this vertex updated. Briefly,
the algorithm is as follows:

• Create a queue of candidate edge-collapses by ordering all edges of the
tetrahedral mesh according to an error metric that measures the degradation
of the field as a result of each candidate edge-collapse;

• Repeat until the simplification target is reached:

– Remove the edge from the front of the queue,

– Apply the associated edge-collapse,

– Re-compute the error metric for affected queue elements and reorder
the queue.

Evidently the error metric used in the above algorithm is of critical impor-
tance. Platis [Plat04] recommends a compound error metric that takes into ac-
count both the tetrahedral domain (i.e., deviation from the original boundary) and
the vector field (i.e., changes in the implied vector values or the positions of criti-
cal points). Color Plate XLII presents an example of a complex vector field (left)
simplified to 50%, 25%, and 10% of its original number of tetrahedra using this
method.

The main characteristics of the presented vector-visualization techniques are
summarized in Table 18.1.
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18.4 Exercises
The exercises listed below are necessarily practical. However, they have been
designed with a generic view, so that they can be implemented using any major
visualization system.

1. Write a simulation program to create a vector field Ovector2
X×Y based on the

gravitational attraction exerted by three point masses. The vector field is
defined over a 500× 500 2D regular grid. The three point masses should
have different mass values and be located at points of your choice within the
bounding rectangle of the 500×500 grid. For the purpose of this exercise,
the gravitational field of a point mass is proportional to its mass value and
diminishes as the square of the distance from it. The value of the force field
at any point on the grid is a vector whose magnitude and direction is the
vector sum of the three forces that are exerted upon the point by the three
point masses.

Import your field in your visualization program and visualize it using the
hedgehog technique and an appropriate color map.

2. Extend your program for the previous exercise so that it operates on a 3D
regular grid and produces an Ovector3

X×Y×Z field on that grid, again based on
the forces exerted by three point masses located in positions within the 3D
grid. Visualize this field by converting your vector field into scalar and then
employing the following techniques:

• cutting planes;

• isosurfaces.

Convert your vector field to scalar by

• taking the vector magnitude component;

• employing the scalarization technique described in this chapter.

3. The Blunt Fin data set (obtained from NASA and other sites) is a well-
known testbed for visualization programs. It is the output of an aeronautics
simulation and consists of three fields placed on a 3D grid. The three fields
are:

• density, a scalar field;
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• momentum, a 3D vector field;

• stagnation, another scalar field.

Import the Blunt Fin data set and simultaneously display the following:

• an isosurface of the density field;

• a volume rendering of the stagnation field;

• glyphs of the vectors of the momentum field that originate from the
isosurface of the density field.

In addition, add “sensible” animation capability on any of the parameters
(e.g., the isosurface value).

Note: a “glyph” is an object used to represent a particular type of data; in
the case of vector data a usual glyph is the arrow.
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A
Vector and Affine Spaces

Points and vectors are the most basic primitives used in graphics. In this appendix
we present their mathematical foundations and their most essential properties.
The reader should refer to a specialized linear algebra textbook (for example,
[Stra03]) for a more complete presentation and advanced topics.

A.1 Vector Spaces

A set V with elements called vectors and denoted−→a ,
−→
b ,−→v , etc. is a vector space

if two operations are defined:

1. vector addition between two vectors, denoted −→a +
−→
b , whose result is also

a vector, and

2. scalar multiplication between a scalar (real number) and a vector, denoted
λ ·−→a or simply λ−→a , whose result is also a vector,

and the following properties are satisfied:

1. For vector addition:

(a) Commutativity: −→a +
−→
b =

−→
b +−→a for every −→a ,

−→
b ∈V .

(b) Associativity: −→a +(
−→
b +−→c ) = (−→a +

−→
b )+−→c for every−→a ,

−→
b ,−→c ∈ V .

675
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(c) There is a zero element
−→
0 ∈ V such that

−→
0 +−→a = −→a +

−→
0 = −→a for

every −→a ∈V .

(d) For every −→a ∈ V its inverse exists in V , that is, an element −−→a ∈ V
such that −→a +(−−→a ) =

−→
0 .

2. For scalar multiplication:

(a) Associativity: (λ µ)−→a = λ (µ−→a ) for every λ ,µ ∈ R and −→a ∈V .

(b) 1 is the identity element: 1 ·−→a =−→a for every −→a ∈V .

(c) Distributivity of scalar multiplication over vector addition:
λ (−→a +

−→
b ) = λ−→a +λ

−→
b for every λ ∈ R and −→a ,

−→
b ∈V .

(d) Distributivity of vector addition over scalar multiplication: (λ +µ)−→a =
λ−→a + µ−→a for every λ ,µ ∈ R and −→a ∈V .

The most familiar examples of vector spaces are the spaces R2 and R3 of 2D
vectors on a plane and 3D vectors in space, respectively, with the usual operations.
For 3D vectors these are

−→a +
−→
b = [ax,ay,az]T +[bx,by,bz]T = [ax +bx,ay +by,az +bz]T,

λ ·−→a = λ [ax,ay,az] = [λax,λay,λaz]T.

Another example of vector space is the set of polynomials of degree k; the opera-
tions are defined as

−→a +
−→
b = (a0 +a1x+a2x2 + · · ·+akxk)+(b0 +b1x+b2x2 + · · ·+bkxk)

= (a0 +b0)+(a1 +b1)x+(a2 +b2)x2 + · · ·+(ak +bk)xk.

λ ·−→a = λ (a0 +a1x+a2x2 + · · ·+akxk)

= (λa0)+(λa1)x+(λa2)x2 + · · ·+(λak)xk.

A.1.1 Linear Combinations and Linear Independence

Consider vectors−→a 1,−→a 2, . . . ,
−→a m of a vector space V . An expression of the form

−→a = λ1
−→a 1 +λ2

−→a 2 + · · ·+λm
−→a m

for λ1, λ2, . . . ,λm ∈ R is called a linear combination of −→a 1, −→a 2, . . . ,
−→a m. Since

vector addition and scalar multiplication yield vectors, the linear combination of
vectors is also a vector. Special forms of linear combinations are affine com-
binations (or barycentric combinations), for which the coefficients sum to one,
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∑m
i=1 λi = 1, and convex combinations, which are affine combinations for which

additionally the coefficients are non-negative, λi ≥ 0.
Vectors −→a 1, −→a 2, . . . ,

−→a m are called linearly independent if the equation

λ1
−→a 1 +λ2

−→a 2 + · · ·+λm
−→a m =

−→
0

has the unique solution λ1 = λ2 = · · ·= λm = 0. Otherwise these vectors are called
linearly dependent; in this case at least one of the λi is non-zero and therefore
at least one of −→a 1, −→a 2, . . . ,

−→a m can be written as as linear combination of the
remaining (m−1) vectors.

As a consequence of this definition, we observe that if a vector−→a can be writ-
ten as a linear combination of some linearly independent vectors−→a 1,−→a 2, . . . ,

−→a m,
then this expression is unique. Indeed, suppose that −→a can be expressed as two
different linear combinations of these vectors,

−→a = λ1
−→a 1 +λ2

−→a 2 + · · ·+λm
−→a m = µ1

−→a 1 + µ2
−→a 2 + · · ·+ µm

−→a m.

Then −→
0 = (λ1−µ1)

−→a 1 +(λ2−µ2)
−→a 2 + · · ·+(λm−µm)−→a m,

but since −→a 1, −→a 2, . . . ,
−→a m are linearly independent, all the coefficients in this

expression must be zero:

λi−µi = 0 ⇔ λi = µi for all i,

hence the expression of −→a in terms of −→a 1, −→a 2, . . . ,
−→a m is actually unique.

A.1.2 Basis and Dimension of a Vector Space

A basis of a vector space is a set of linearly independent vectors having the addi-
tional property that every vector of the space can be written as a linear combina-
tion of them.

According to the above discussion, the expression of every vector as a linear
combination of the elements of a basis is unique. The (unique) coefficients with
which a vector is written as a linear combination of the elements of a basis are
called the coordinates of the vector in terms of this basis.

Every vector space has a basis. In fact, every vector space may have many
different bases. However, it can be proven that all bases of a vector space have
the same number of elements. The number of elements in a vector space basis is
called the dimension of the vector space.
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In the 3D space R3, the most familiar basis is
−→
i = [1,0,0]T,

−→
j = [0,1,0]T,

−→
k = [0,0,1]T.

Every vector is written in terms of this basis using its usual coordinates, for in-
stance a vector −→a = x

−→
i + y

−→
j + z

−→
k has coordinates [x,y,z]T. Another basis of

this space is
−→
i′ = [1,1,1]T,

−→
j′ = [1,2,3]T,

−→
k′ = [2,3,7]T,

and, for example, the vector −→a = [2,1,−6]T has coordinates
−→
a′ = [5,1,−2] in

terms of this basis.
For the vector space of k-degree polynomials, the usual basis is the one com-

prised of the monomials
1, t, t2, . . . , tk,

and therefore this space has dimension (k+1). Another basis for this vector space
is comprised of the k-degree Bernstein polynomials,

Bk
i (t) =

(
k
i

)
ti(1− t)k−i , i = 0,1, . . . ,k.

See Chapter 7 for more details on this basis.
In general, if the coordinates of a vector are given in terms of an initial basis,

it is possible to compute its coordinates in terms of a different basis; it suffices to
know the coordinates of the vectors of the new basis in terms of the initial basis.
See Section 3.15 for an example and application in R3.

In the following sections we shall concentrate on 2D and 3D vectors of R2

and R3, since they are useful for graphics and visualization. We will denote these
vectors by their usual coordinates in a column, for example

−→a =

⎡⎣x
y
z

⎤⎦= [x,y,z]T.

Several of the properties we mention below hold equally for any vector space, but
the reader should refer to a linear algebra textbook for more details.

A.1.3 Vector Norm and Unit Vectors

The norm of a vector −→a = [x,y,z]T is the non-negative real number

|−→a |=
√

x2 + y2 + z2

and is actually the length of the vector. The norm of a vector has the following
properties:
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1. |−→a |> 0 for −→a =−→0 and |−→a |= 0 if and only if −→a =
−→
0 .

2. |λ−→a |= |λ ||−→a | for any λ ∈ R.

3. |−→a +
−→
b | ≤ |−→a |+ |−→b |.

We note that it is possible to define different kinds of vector norms in any vector
space; the only requirement is that they satisfy the above three properties.

Vectors with norm equal to 1 are called unit vectors and in this book are de-
noted with a hat ( ˆ ) instead of an arrow on top. Given any vector−→a , a unit vector
in the direction of −→a may be computed by dividing it (coordinate-wise) by its
norm:

â =
−→a
|−→a | =

[
x

|−→a | ,
y

|−→a | ,
z

|−→a |
]T

.

This process is often called normalization of −→a .

A.1.4 Dot Product

The dot product (or inner product) of two vectors −→a = [ax,ay,az]T and
−→
b =

[bx,by,bz]T is a real number and is defined as

−→a ·−→b = axbx +ayby +azbz.

This formula holds for 2D vectors as well as for vectors in any vector space given
in terms of their coordinates. The dot product can also be seen as a matrix multi-
plication: −→a ·−→b =−→a T−→b . It should also be noted that

−→a ·−→a = |−→a |2.
The dot product has the following properties:

1. Commutativity: −→a ·−→b =
−→
b ·−→a ;

2. Bilinearity: −→a · (−→b +λ−→c ) =−→a ·−→b +λ (−→a ·−→c ).

The dot product of two vectors can also be written as

−→a ·−→b = |−→a ||−→b |cosθ

where θ is the (oriented) angle from −→a to
−→
b . This form of the dot product has

important applications. First, it reveals that if two vectors are perpendicular to
each other, their dot product is equal to zero, since θ = 90◦:

−→a ⊥−→b ⇔ −→a ·−→b = 0.
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Figure A.1. Vector projection.

Second, if the coordinates of two vectors are given, the above formula can be
used to compute the angle between them:

θ = arccos

( −→a ·−→b
|−→a ||−→b |

)
.

Notice that if −→a and
−→
b are normalized, the division is avoided:

θ = arccos(â · b̂).

Third, given a vector−→a , it can be observed that the projection−→p of any vector−→
b along −→a (Figure A.1) has length

|−→p |= |−→b |cosθ = |−→b |
( −→a ·−→b
|−→a ||−→b |

)
,

where θ is the angle between −→a and
−→
b ; this formula can be simplified if −→a is

normalized:
|−→p |= â · b̂.

A.1.5 Cross Product

The cross product (or external product) of two 3D vectors −→a = [ax,ay,az]T and−→
b = [bx,by,bz]T is a vector perpendicular to both −→a and

−→
b (and therefore to the

plane spanned by them) and is defined1 as

−→a ×−→b = (aybz−azby)
−→
i +(azbx−axbz)

−→
j +(axby−aybx)

−→
k

or, in determinant form,

−→a ×−→b =

∣∣∣∣∣∣
−→
i

−→
j

−→
k

ax ay az

bx by bz

∣∣∣∣∣∣ .
1Note that the cross product is defined for 3D vectors only.
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Figure A.2. The cross product of two vectors.

The direction of the cross product can be determined using the right-hand rule for−→a ,
−→
b and −→a ×−→b as shown in Figure A.2.
The cross product has the following properties:

1. Anti-commutativity:
−→
b ×−→a =−(−→a ×−→b )

2. Distributivity over vector addition: −→a × (
−→
b +−→c ) = (−→a ×−→b )+(−→a ×−→c ).

It can be verified that the cross product of two parallel vectors is zero:

−→a ‖ −→b ⇔ −→a ×−→b = 0.

It is noteworthy that the norm of the cross product is equal to the area of the
parallelogram with sides −→a and

−→
b , and can be computed as

|−→a ×−→b |= |−→a ||−→b |sinθ

where θ (0≤ θ ≤ 180◦) is the angle between −→a and
−→
b (Figure A.2).

A.1.6 Orthonormal Basis

Even though every vector space has multiple bases, some bases are more useful
than others! One such category are orthonormal bases, which are comprised of
unit vectors that are pairwise perpendicular (orthogonal) to each other; therefore,
(b̂1, b̂2, . . . , b̂n) is an orthonormal basis of a vector space V when the vectors b̂i

constitute a basis and satisfy

b̂i · b̂ j =

{
1, if i = j,

0, if i = j.

Because of this property, when an orthonormal basis is used the coordinates
of a vector are easy to find; specifically, if −→a = λ1b̂1 +λ2b̂2 + · · ·+λnb̂n, then

λi =−→a · b̂i.

The familiar bases of the Euclidean spaces R2 and R3 are orthonormal.
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A.2 Affine Spaces
A set S with elements called points and denoted p, q, etc. is an affine space with
an associated vector space V , if an operation called addition is defined between
a point and a vector, denoted p +−→a , whose result is a point, provided that the
following properties are satisfied:

1. Associativity of addition: (p+−→a )+
−→
b = p+(−→a +

−→
b ) for every p∈ S and−→a ,

−→
b ∈V .

2.
−→
0 is the zero element for addition: p+

−→
0 = p for every p ∈ S.

3. For every p,q∈ S, there exists a unique vector−→a ∈V such that p = q+−→a ;
this is written equivalently as p− q = −→a and is often referred to as the
difference between p and q.

The most familiar examples of affine spaces are the 2D and 3D Euclidean
spaces E2 and E3 of points on a plane or in space, respectively.

This definition is consistent with the usual perception of the interplay between
points and vectors. Adding a point and a vector assumes basing the vector onto
the point and yields the point at the end of the vector. Conversely, taking the
difference of two points constructs the vector between them (specifically, p−q is
the vector from q to p, see Figure A.3). Points may not be added together as this
operation has no sense. In general, points denote position whereas vectors denote
direction and magnitude but are not based on a specific point.

Figure A.3. Operations in affine space.

A.2.1 Coordinate Systems

Consider a constant point o of an affine space S and a basis (
−→
b 1,

−→
b 2, . . . ,

−→
b n) of

the associated vector space V . Then (o;
−→
b 1,

−→
b 2, . . . ,

−→
b n) constitutes an (affine)

coordinate system of S. The point o is called the origin of the coordinate system,
and

−→
b 1,

−→
b 2, . . . ,

−→
b n define the coordinate axes. The dimension of the vector

space V is also called the dimension of the affine space S. Different coordinate



�

�

�

�

�

�

�

�

A.2. Affine Spaces 683

systems may be constructed for the same affine space by varying the origin, the
basis, or both.

Using a coordinate system of an affine space, it is possible to define coordi-
nates for the points of the space (remember that coordinates were defined only for
vectors above). Specifically, given a point p ∈ S such that

p−o = λ1
−→
b 1 +λ2

−→
b 2 + · · ·+λn

−→
b n,

the coefficients λ1, λ2, . . . ,λn are called the coordinates of p with respect to the
coordinate system (o;

−→
b 1,

−→
b 2, . . . ,

−→
b n).

Since the coordinates of point p are the same as those of vector p−o from the
origin o to p, it is usual to identify these two elements. Therefore some normally
illegal constructs can be seen, such as multiplying a point by a scalar (which
is actually a multiplication of the corresponding vector from the origin, see, for
example, the scaling transformation in Chapter 3) or adding two points (which
is actually an addition of the corresponding vectors from the origin); however,
such practices are discouraged and the distinction between points and vectors,
depending on whether a position or a direction is represented, should be respected.

In the case of Euclidean 2D and 3D spaces E2 and E3, the origin that usually
accompanies the familiar bases is o = [0,0,0]T.

The orientation of the coordinate system is important in graphics. Visually,
for E2 a coordinate system may either be counterclockwise (the usual convention)
or clockwise, as determined by the direction of rotation that the first coordinate
axis must perform in order to be aligned with the second one. Similarly, for
E3 a coordinate system may either be right-handed (the usual convention) or left-
handed (Figure 3.1). It can thus be seen that the orientation of a coordinate system
depends on the order of the basis vectors. In general, for an affine space of dimen-
sion n, two coordinate systems using different bases have the same orientation if
the determinants of the (n× n) matrices formed by the coordinates of the basis
vectors for the two bases have the same sign.
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B
Differential Geometry Basics

Differential geometry, as its name suggests, studies the properties of geometric
entities using differential calculus. Emphasis is placed on local characteristics
such as curvature. In this appendix, we present the most fundamental concepts re-
garding curves and surfaces; more complete discussions of the field can be found
in specialized sources such as [O’Ne66,Lips74, dC76,Opre97,Patr02].

B.1 Curves

B.1.1 Basic Definitions

A curve in its parametric representation is a differentiable mapping from an inter-
val I ⊆ R to R3; therefore a curve can be written as

X(t) =

⎡⎣x(t)
y(t)
z(t)

⎤⎦ , t ∈ I, (B.1)

where x(t), y(t), z(t) are all differentiable functions of t, called the coordinate
functions of X. If one of the coordinate functions, for example z(t), is constant
everywhere, then the curve is a plane curve. The interval I may be of any type:
closed, half open, open, finite or infinite.

685
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Figure B.1. Parametric equation of a line segment.

For example, the equation of a straight line through points p0 and p1 is

Xline(t) = (1− t)p0 + t p1 , t ∈ (−∞,+∞). (B.2)

If t ∈ [0,+∞) then Xline(t) represents the ray from p0 through p1, whereas if
t ∈ [0,1] then Xline(t) represents the line segment from p0 to p1 (Figure B.1).1

A physical interpretation of the above definition of a curve is to consider t
to be time, and then X(t) is the position of a particle moving along the curve at
time t. Continuing this intuition, the tangent vector of the curve at position t,

X′(t) =

⎡⎣x′(t)
y′(t)
z′(t)

⎤⎦ (B.3)

gives the velocity of this particle at time t; thus this vector is also called the
velocity vector of X at point X(t). A curve is regular if its velocity vector is
non-zero everywhere, i.e.,

X′(t) =−→0 for every t ∈ I.

Such a curve does not have any cusps or corners (singularities) that occur at para-
metric points t0 where X′(t0) =

−→
0 ; we will only consider regular curves in our

discussion.
The length traveled along the curve can be computed by integrating the veloc-

ity; therefore, the arc length between two points X(a) and X(b) of a curve X can
be computed as

L =
∫ b

a
|X′(t)|dt. (B.4)

1It should be noted that, according to the operations defined in Appendix A, the equation of the
straight line should be written more correctly as Xline(t) = p0 + t(p1−p0).
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B.1.2 Parameterizations of a Curve

The path of a curve may be followed at many different speeds; these correspond
to different parameterizations of the curve. Specifically, consider a differentiable
function t = t(s) from an interval J to I; then

Y(s) = X
(
t(s)
)
, s ∈ J (B.5)

is a reparameterization of the curve X. If the function t(s) is invertible, then the
two parameterizations X(t) and Y(s) of the curve are equivalent. Concerning the
velocity vector of a reparameterized curve, the chain rule yields

Y′(s) = t ′(s)X′
(
t(s)
)
. (B.6)

As an example, consider the linear mapping of an interval J = [a,b] to I =
[0,1]

t = t(s) =
s−a
b−a

⇐⇒ s = s(t) = a+(b−a)t.

A reparameterization of the line segment between two points p0 and p1 such that
the parameter s is in J is

Yline(s) = Xline
(
t(s)
)

=
(

1− s−a
b−a

)
p0 +

s−a
b−a

p1

=
b− s
b−a

p0 +
s−a
b−a

p1 , s ∈ [a,b].

(B.7)

Another example of reparameterization is presented in Section 7.2.5.

Arc length parameterization. Consider now a curve X(t), t ∈ I and the “arc
length” function

s(t) =
∫ t

a
|X′(u)|du, (B.8)

for some arbitrary a ∈ I. The inverse of this function has the form t = t(s) (and
it can be proven that it always exists). It can also be shown that the reparame-
terization Y(s) = X

(
t(s)
)

of the original curve for this t = t(s) has unit velocity
everywhere, |Y′(s)| = 1; consequently, in Y(s) the parameter (in this case s) can
be interpreted as the total length traveled along the curve. This parameterization
is appropriately called arc length parameterization.

The arc length parameterization has great theoretical interest, since it simpli-
fies the study of curves. It also has great practical interest, since it allows us to
answer the question “at what point Y(s) on the curve are we after having traveled
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distance s from its start?” rather than “at what point X(t) are we at time t?” Un-
fortunately, it is not easy to compute the inverse of the arc length function for any
but a limited class of curves, and it is even impossible for several curves, albeit
common ones like, for example, the ellipse.

B.1.3 Curvature, Torsion, and the Frenet Frame

One of the aims of differential geometry is to study the local behavior of curves
and surfaces. Concerning curves, their shape is characterized by two quantities,
curvature and torsion. We will initially develop these notions on curves param-
eterized by arc length, in order to simplify our discussion, and then give the re-
spective formulas for general curves.

Consider a curve Y(s) parameterized by arc length; for this curve, |Y′(s)|= 1
everywhere. For any point Y(s) on the curve we define the following three unit
vectors:

t̂ = t̂(s) = Y′(s),

n̂ = n̂(s) =
t̂′(s)
|t̂′(s)| ,

b̂ = b̂(s) = t̂(s)× n̂(s).

(B.9)

Regarding these vectors,

• t̂ is the tangent vector mentioned above.

• n̂ is called the principal normal vector and it can be proven to be perpen-
dicular to t̂: remember that |Y′(s)| = 1, therefore 1 = |t̂| =

√
t̂ · t̂ and thus

t̂ · t̂ = 1. Then (t̂ · t̂)′ = 0 which yields 2(t̂ · t̂′) = 0, hence t̂ · t̂′ = 0 which
means that t̂′ (and also n̂ = t̂′/|t̂′|) is perpendicular to t̂.

• b̂ is called the binormal vector and is by definition perpendicular to both t̂
and n̂.

These three vectors define, for every point Y(s) of the curve, a local orthonor-
mal coordinate system, called the Frenet frame (Figure B.2). The Frenet frame
changes orientation as its origin Y(s) moves along the curve, and this change of
orientation can help the study of the shape of the curve.

Curvature and torsion are defined in terms of the Frenet frame unit vectors, as
follows:

κ = κ(s) = |t̂′(s)|,
τ = τ(s) =−n̂ · b̂.

(B.10)
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Figure B.2. The Frenet frame of a parametric curve

• κ is the curvature, which measures how much the curve deviates from the
straight line at parametric position s. For an explanation of this fact, con-
sider that the derivative t̂′(s) measures the rate of change of the tangent
vector t̂ along the curve, but since t̂ = Y′ has unit length everywhere on
the curve, t̂′ measures only the rate of change of its direction; therefore,
κ = |t̂′(s)| provides a numerical estimate of the turning of the curve.

It is evident that κ(s)≥ 0. We note that if κ(s) = 0 for all s then the curve
is a straight line and vice versa. Moreover, the larger κ(s) is, the sharper
the curve at Y(s).

Using the curvature, we may define the osculating circle of the curve at
point Y(s). It is a circle that has radius ρ(s) = 1/k(s) (the radius of cur-
vature) and center c(s) = Y(s) + ρ(s)n̂(s) (the center of curvature). The
osculating circle is tangent to the curve at Y(s) and their first and second
derivatives are equal.

• τ is the torsion, which measures how much the curve deviates from being a
plane curve at parametric position s; the reference plane is the one spanned
by the point Y(s) and the vectors t̂(s) and n̂(s), called the osculating plane.
Unfortunately, it is not possible to present an intuitive derivation for torsion
within the space limits of this appendix; we note that just as curvature pro-
vides a measure of the change of orientation of the tangent vector t̂, torsion
provides a measure of the change of orientation of the binormal vector b̂ as
the Frenet frame moves along the curve.

Torsion can be either positive (for right-handed curves) or negative (for left-
handed curves). If τ(s) = 0 then the curve lies on a plane and vice versa.
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It is important to note that the curvature and torsion of a curve do not depend
on its parameterization, and therefore they characterize the curve itself; they are
intrinsic properties of the curve; in fact, if a curve Y(s) has curvature κ(s) and
torsion τ(s), then any other curve with the same curvature and torsion differs from
Y(s) only by a rigid motion (in other words, their shapes are identical and only
their absolute positions in space and orientations may be different).

Our final tool for studying the shape of a curve is provided by the deriva-
tives of t̂, n̂, b̂, which express the change of orientation of the Frenet frame as it
moves along the curve. They are given by the Frenet-Serret formulas (we omit
the parameter s):

t̂′ = +κ n̂,

n̂′ = −κ t̂ +τb̂,

b̂′ = −τn̂.
(B.11)

All the formulas given above for a curve parameterized by arc length Y(s)
can be generalized for a regular curve X(t) with arbitrary parameterization. The
Frenet frame is defined as

t̂ = t̂(t) =
X′(t)
|X′(t)| ,

n̂ = n̂(t) = b̂(t)× t̂(t),

b̂ = b̂(t) =
X′(t)×X′′(t)
|X′(t)×X′′(t)| .

(B.12)

Curvature and torsion are defined as

κ = κ(t) =
|X′(t)×X′′(t)|
|X′(t)|3 ,

τ = τ(t) =
det[X′(t),X′′(t),X′′′(t)]
|X′(t)×X′′(t)|2 ,

(B.13)

where det[a,b,c] is the determinant of the matrix with columns a, b, c. Finally,
the derivatives of the Frenet frame are (we omit the parameter t)

t̂′ = +κvn̂,

n̂′ = −κvt̂ +τvb̂,

b̂′ = −τvn̂,
(B.14)

where v(t)= s′(t)= |X′(t)| is the velocity function of the curve (see Equation (B.8)).
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B.2 Surfaces

B.2.1 Basic Definitions

A surface in its parametric representation is a differentiable mapping from a re-
gion I⊆ R2 to R3; therefore a surface can be written as

X(u,v) =

⎡⎣x(u,v)
y(u,v)
z(u,v)

⎤⎦ , (u,v) ∈ I, (B.15)

where x(u,v), y(u,v), and z(u,v) are all differentiable functions of u and v, called
the coordinate functions of X. The region I may be of any type: closed, half open,
open, finite, or infinite.

By fixing one of the parameters and letting the other one vary, we get isopara-
metric curves on the surface. More concretely, if we fix v = v0 we get the u-
parameter curve X(u,v0) and similarly, if we fix u = u0 we get the v-parameter
curve X(u0,v) (see Figure 7.16).

Isoparametric curves allow us to derive a physical meaning for the parametric
equation of a surface: starting, for instance, with a u-parameter curve and letting
each of its points trace a v-parameter curve, the outcome is the surface X(u,v);
the result is the same if the roles of u and v are interchanged.

Curves may be constructed on a surface in a more general way as follows.
Consider a surface X(u,v), (u,v) ∈ I⊆ R2, and a (regular) parametric curve B(t)
whose image lies in the parametric space I of the surface, B(t) =

[
u(t) v(t)

]T
;

then the composition C(t) = X
(
B(t)

)
= X

(
u(t),v(t)

)
is a curve that lies on the

surface X, a surface curve of X.
Tangent vectors (also called velocity vectors) on a surface are defined by dif-

ferentiating surface curves. The tangent vectors of the isoparametric curves are
the most straightforward ones, since they are computed by partially differentiat-
ing the surface with respect to each of the parameters u and v. We will use the
following notation for the partial derivatives of the surface X(u,v):

Xu =
∂X
∂u

, Xv =
∂X
∂v

, Xuu =
∂ 2X
∂u2 , Xuv =

∂ 2X
∂u∂v

, etc. (B.16)

For an arbitrary surface curve C(t) = X
(
u(t),v(t)

)
, the tangent vector is, by the

chain rule,

C′(t) =
∂X
∂u

du
dt

+
∂X
∂v

dv
dt

= Xu u′(t)+Xv v′(t) (B.17)

where the partial derivatives Xu and Xv are evaluated at
(
u(t),v(t)

)
.
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A surface is regular if

Xu×Xv =−→0 for every (u,v) ∈ I. (B.18)

This relation implies that all its isoparametric curves are regular curves and they
are nowhere tangent to each other. Such a surface does not have ridges or cusps
(singularities). We will only consider regular surfaces in our discussion.

Any point X(u,v) on the surface together with the two tangent vectors Xu(u,v)
and Xv(u,v) defines the tangent plane to the surface at that point; in fact, the
tangent vector of any surface curve passing from X(u,v) lies on this tangent plane.
The (unit) normal vector of this plane,

n̂ = n̂(u,v) =
Xu×Xv

|Xu×Xv| , (B.19)

is the normal vector of the surface at X(u,v); it follows from relation (B.18) that
the normal vector exists everywhere on a regular surface.

The three vectors Xu(u,v), Xv(u,v), and n̂(u,v) define a local coordinate sys-
tem at X(u,v). This coordinate system is analogous to the Frenet frame defined
on the points of a curve; it should be noted, however, that unlike the Frenet frame,
this coordinate system is not orthonormal and is dependent on the parameteriza-
tion of the surface.

B.2.2 Fundamental Coefficients

In the next section we will study the local properties of surfaces by analyzing
several measures of their curvature. We will make use of the following quantities:

• the first-order fundamental coefficients,

E = E(u,v) = Xu ·Xu,

F = F(u,v) = Xu ·Xv,

G = G(u,v) = Xv ·Xv,

(B.20)

and

• the second-order fundamental coefficients,

L = L(u,v) =−Xu · n̂u = Xuu · n̂,

M = M(u,v) =− 1
2 (Xu · n̂u +Xv · n̂v) = Xuv · n̂,

N = N(u,v) =−Xv · n̂v = Xvv · n̂,

(B.21)
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where n̂ is the surface normal at point X(u,v) defined in Equation (B.19).
We note that the rightmost equalities in (B.21) can be confirmed by recall-
ing that n̂ is perpendicular to Xu and Xv and differentiating n̂ ·Xu = 0 and
n̂ ·Xv = 0.

These quantities are thus called because they appear in the definitions of the
first and second fundamental form, respectively, which are two important tensors
used for the study of the local properties of a surface; we will not elaborate on the
fundamental forms in this appendix.

Apart from the formulas for surface curvatures that we will present below,
further important computations on a surface can be expressed with the help of
the fundamental coefficients. Given a surface curve C(t) = X

(
u(t),v(t)

)
, its arc

length between parametric points a and b is given by (see (B.4) and (B.17))

s =
∫ b

a

√
E(u′)2 +2Fu′v′+G(v′)2 dt. (B.22)

Also, the area of the surface corresponding to a parametric region U can be ex-
pressed as

A =
∫∫

U

√
EG−F2 dudv. (B.23)

B.2.3 Surface Curvatures

Consider a point P = X(u,v) on a surface, the normal vector n̂ = n̂(u,v) at that
point, and a plane Π that contains both P and n̂ (Figure B.3). The intersection
of the plane Π and the surface is a surface curve C(t) = X

(
u(t),v(t)

)
. The cur-

vature of C(t) at the point X(u,v) is the normal curvature κn of the surface at
X(u,v) along the direction C′(t). The normal curvature can be expressed using
the fundamental coefficients as

κn =
L(u′)2 +2Mu′v′+N(v′)2

E(u′)2 +2Fu′v′+G(v′)2 . (B.24)

The normal curvature κn at a surface point clearly depends on the direction
chosen, and it varies periodically as the cutting plane Π is rotated around n̂. It
can be proven that κn has at most two extreme values, called the principal curva-
tures κ1 (the maximum) and κ2 (the minimum) of the surface at the point consid-
ered. The directions along which κ1 and κ2 are obtained are called the (first and
second, respectively) principal curvature directions, and they are perpendicular
to each other.
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Figure B.3. Normal section of a surface.

The product of the principal curvatures

K = κ1κ2 (B.25)

is called the Gaussian curvature of the surface at the point X(u,v). Using the
fundamental coefficients, the Gaussian curvature can be expressed as

K =
LN−M2

EG−F2 . (B.26)

The mean of the principal curvatures

H = 1
2 (κ1 +κ2) (B.27)

is called the mean curvature of the surface at the point X(u,v). It can be expressed
as

H =
1
2

EN−2FM +GL
EG−F2 . (B.28)

Using (B.25) and (B.27), the two principal curvatures can be computed as

κ1 = H +
√

H2−K and κ2 = H−
√

H2−K. (B.29)

The normal and principal curvatures are related by Euler’s formula,

κn = κ1 cos2 φ +κ2 sin2 φ , (B.30)
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Figure B.4. Approximation of the Dupin indicatrix.

where φ is the angle between the tangent direction of the cutting plane considered
for κn and the first principal direction. In Euler’s formula, if we substitute ξ =
cosφ/

√
κn and η = sinφ/

√
κn, we get

1 = κ1ξ 2 +κ2η2, (B.31)

which is the equation of a conic section, called the Dupin indicatrix. An approxi-
mation of the Dupin indicatrix can be visualized as the intersection of the surface
with a plane parallel to its tangent plane at a small distance ε along the direction
of the surface normal (Figure B.4). The shape of the Dupin indicatrix depends on
the values of κ1 and κ2, and the point on the surface is characterized accordingly:

• if κ1 and κ2 have the same sign (K > 0), the Dupin indicatrix is an ellipse
whose axes correspond to the principal directions, and the point on the sur-
face is called elliptic;

• if they have opposite signs (K < 0), it is a hyperbola whose axes correspond
to the principal directions, and the point is called hyperbolic;

• if one of the principal curvatures is zero (K = 0), the indicatrix is a pair of
parallel lines, in which case the principal direction that corresponds to the
non-zero principal curvature is perpendicular to these lines and the other
one is parallel, and the point is called parabolic;

• if the principal curvatures are equal, signifying that any direction is princi-
pal, then the indicatrix is a circle and the point is called umbilical;

• finally, if both principal curvatures are zero (K = 0 as well), the Dupin
indicatrix does not exist and the point on the surface is flat.
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Another curvature measure is the absolute curvature, defined as follows:

κa = |κ1|+ |κ2|. (B.32)

The last form of curvature that we will introduce is the geodesic curvature
of a surface curve. This is the equivalent for surface curves of the usual curva-
ture defined on simple parametric curves: given a parametric curve, its curvature
on a specific point measures how much the curve deviates from being a straight
line—which is the shortest path between two points in 2D or 3D space—in the
neighborhood of this point; similarly, the geodesic curvature at a point of a sur-
face curve measures how much the curve deviates from the shortest path on the
surface between two (arbitrarily close) points in the neighborhood of this point.

Given an arc length parametrized surface curve C(s) = X
(
u(s),v(s)

)
, the

geodesic curvature κg at a given point is given by

κg = C′ ×C′′ · n̂, (B.33)

where n̂ is the normal vector of the surface at that point. Using (B.17) (but differ-
entiating with respect to s in this case), it is possible to formulate an expression
for κg that involves the derivatives of the surface X:

κg =
[

(Xu×Xuu)(u′)3

+(2Xu×Xuv +Xv×Xuu)(u′)2 v′

+(Xu×Xvv +2Xv×Xuv)u′ (v′)2

+(Xv×Xvv)(v′)3

+(Xu×Xv)(u′v′′ −u′′v′)
] · n̂

(B.34)

A surface curve whose geodesic curvature is zero everywhere is called a
geodesic curve (or simply a geodesic) and it typically represents the shortest path
on the surface between any two nearby points. For example, the great circles of a
sphere are geodesics.
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C
Intersection Tests

This appendix presents algorithms for the intersection tests encountered through-
out the book. Valuable resources on this topic are the journal of graphics tools, the
online newsletter Ray Tracing News (http://www.raytracingnews.org/) and several
specialist books (e.g. [Schn03,Eric05]).

The intersection tests that we shall consider involve a line and another ob-
ject. Given a line specified by two points p1, p2, the algorithms presented in the
following use its parametric equation,

p(t) = p1 + t (p2−p1)

and compute the parametric value t for the point of intersection. We note that
this equation represents the whole directed line through these two points if t ∈R,
the ray from p1 through p2 if t ∈ [0,+∞), and the line segment from p1 to p2 if
t ∈ [0,1]. Therefore, depending on whether a ray or a line segment is considered,
the parametric value computed should be post-checked for inclusion in the appro-
priate interval; otherwise the intersection point falls outside the bounds of the ray
or line segment.

It should also be noted that it is sometimes important to determine at an initial
stage if an intersection does not exist between the primitives examined, so that
any computations relevant only to the calculation of the intersection point(s) can
be skipped. This should be taken into account when implementing the algorithms
below.
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698 C. Intersection Tests

C.1 Planar Line-Line Intersection
Suppose that each of the two lines is specified by two points, p1 = [x1,y1]T,
p2 = [x2,y2]T and p′1 = [x′1,y

′
1]

T, p′2 = [x′2,y
′
2]

T, respectively. Then the parametric
equations of the two lines can be written as

x(t) = x1 + t ∆x,

y(t) = y1 + t ∆y

and

x′(s) = x′1 + s∆x′,
y′(s) = y′1 + s∆y′,

respectively, where

∆x = x2− x1, ∆x′ = x′2− x′1,
∆y = y2− y1, ∆y′ = y′2− y′1.

At their point of intersection the following must simultaneously hold:

x(t) = x′(s),
y(t) = y′(s),

giving two equations with two unknowns (s and t). Solving these equations for s
gives

s =
(y′1− y1)∆x− (x′1− x1)∆y

∆x′∆y−∆x∆y′
,

and substituting this value of s into the parametric equation of the second line
gives the point of intersection. Note that if the denominator in the expression for
s is 0 then the two lines are parallel.

Often one of the two lines is axis aligned, as in the case of a clipping window.
Then a simpler calculation can be used. For example suppose that one of the lines
is x = xmin and the other is again given by its parametric equation as before

x(t) = x1 + t ∆x,

y(t) = y1 + t ∆y.

At the point of intersection we must have x(t) = xmin, so solving for t gives

t =
xmin− x1

∆x
,

and plugging this value of t into the parametric line equation gives the point of
intersection.
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C.2 Line-Plane Intersection

Suppose that the equation of the plane is

−→n ·p+d = 0,

where−→n is the normal to the plane. Then the intersection of the line and the plane
is found by substituting the equation of the line for the point p of the plane:

−→n · (p1 + t (p2−p1)
)
+d = 0.

This gives the value of t corresponding to the point of intersection,

t =−
−→n ·p1 +d
−→n · (p2−p1)

,

and substituting this value of t into the equation of the line gives the point of
intersection. Note that if the denominator is 0 then the line is parallel to the plane;
also if the denominator is positive then the value of t is negative, corresponding
to an intersection point outside the ray or line segment.

C.3 Line-Triangle Intersection

The intersection test between a line and a triangle is probably the one most often
used in graphics applications, since the majority of objects are represented as tri-
angle models. Consequently, this test has been studied extensively in an effort to
determine the most efficient algorithm in varying circumstances. The implemen-
tation that is best suited to each application should be chosen among the many
available ones based on the specific set-up (for example, if the triangle normals
are pre-computed or not) and constraints (for example, how much auxiliary infor-
mation can be pre-computed and stored per triangle).

The algorithm that we present here [Mö97] is considered very efficient in most
common cases and can be further optimized if more data can be pre-computed and
stored per triangle.

Given a triangle T =�(t1, t2, t3), its parametric equation in terms of its barycen-
tric coordinates is

T(u2,u3) = (1−u2−u3)t1 +u2t2 +u3t3.
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To find its intersection with the line, we equate this equation with the parametric
equation of the line:

(1−u2−u3)t1 +u2t2 +u3t3 = p1 + t(p2−p1)

⇔ (p1−p2)t +(t2− t1)u2 +(t3− t1)u3 = p1− t1.

This constitutes a 3× 3 linear system for t, u2, and u3. By solving it, we get the
parametric value t of the intersection point along the line (which, as usual, should
be checked for inclusion in the appropriate interval if a ray or line segment is
considered) as well as the barycentric coordinates of the intersection point with
respect to the triangle. The point lies inside the triangle if 0 ≤ u2,u3 ≤ 1 (which
implies 0≤ 1−u2−u3 ≤ 1 as well).

The system can be solved efficiently, reusing many calculations. We set the
coefficients of the system,

−→c 1 = p1−p2,
−→c 2 = t2− t1,
−→c 3 = t3− t1,
−→c = p1− t1,

and by Cramer’s rule, the solution is⎡⎣ t
u2

u3

⎤⎦=
1

det[−→c 1
−→c 2

−→c 3]

⎡⎣det[−→c −→c 2
−→c 3]

det[−→c 1
−→c −→c 3]

det[−→c 1
−→c 2

−→c ]

⎤⎦ .

Furthermore, since det[−→x −→y −→z ] = −→x · (−→y ×−→z ) = −−→x · (−→z ×−→y ) etc., the
solution can be rewritten as ⎡⎣ t

u2

u3

⎤⎦=
1
d

⎡⎣ −→c ·−→n−→c 3 ·−→e
−−→c 2 ·−→e

⎤⎦ ,

where

−→n =−→c 2×−→c 3,
−→e =−→c 1×−→c ,

d =−→c 1 ·−→n .
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C.4 Line-Sphere Intersection
The number of intersection points between a line and a sphere may be zero (when
the ray avoids the shere), one (when the line is tangent to the sphere), or two (when
the line crosses the sphere). Note that in many applications when two intersection
points exist, only the first one along the ray is important, for instance when a light
ray hits the sphere.

For this test we rewrite the equation of the line in terms of its direction
−→
d =

p2−p1:

p(t) = p1 + t
−→
d .

The algorithm uses the equation of the sphere of center c and radius r: a point p
lies on the sphere if

(p− c) · (p− c) = r2.

We will also denote the vector between the first point on the line (the start of the
ray or line segment) and the center of the sphere by

−→m = p1− c.

The intersection of the line and the sphere is found by substituting the para-
metric equation of the line for the point p in the equation of the sphere, which
yields a quadratic equation for t:

(p1 + t
−→
d − c) · (p1 + t

−→
d − c) = r2

⇔ (−→m + t
−→
d ) · (−→m + t

−→
d ) = r2

⇔ (
−→
d ·−→d ) t2 +2(−→m ·−→d ) t +(−→m ·−→m)− r2 = 0

The result depends on the discriminant of this equation. If we rewrite it as at2 +
2bt + c = 0, then the discriminant is D = b2−ac, and

• if D < 0, then no real roots exists and the line does not intersect the sphere.

• if D = 0, then one (double) root exists and the line is tangent to the sphere.
The value of t for the root should be checked for inclusion in the appropriate
interval if a ray or line segment is considered.

• if D > 0, then two roots exist corresponding to two intersection points. The
smallest root is t = (−b−√D)/a and it corresponds to the first point of
intersection along the directed line.
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702 C. Intersection Tests

If a ray is considered and the smallest value of t it is negative, then the
second root, t = (−b +

√
D)/a is the correct one, unless it is negative as

well (in which case the ray actually points away from the sphere). If a line
segment is considered, similar checks are required.

Note that the above calculations are simplified if the direction vector of the line,−→
d , is pre-normalized, since in this case a = (

−→
d ·−→d ) = |−→d |2 = 1.

C.5 Line-Convex Polyhedron Intersection
The basic principle for testing the intersection between a line and a convex polyhe-
dron is the same as for the Liang-Barsky line clipping-algorithm (see Section 2.9.2
for the 2D algorithm and Section 5.3.1 for the 3D algorithm).

Considering a (directed) line and a general convex polyhedron [Hain91], the
faces of the polyhedron can be partitioned into three sets: those for which the
line is “incoming,” those for which the line is “outgoing,” and those to which
the line is parallel (see Figure C.1 for the 2D analog). The algorithm computes
the maximum parametric value of the incoming intersections, tin, and the mini-
mum parametric value of the outgoing intersections, tout. If tin < tout then the line
segment corresponding to [tin, tout] is inside the polyhedron; otherwise there is no
intersection. For faces parallel to the ray, one of the points defining the line may
be checked for being on the “inside” or the “outside” of the face, and in the latter
case the algorithm may terminate since no intersection exists.

The faces of the polyhedron should be specified as planes in the form−→n ·p+
d = 0 with −→n being the outward-pointing normal vector. The intersection points
between each face and the line can be computed as shown in Section C.2. Then

Figure C.1. A ray intersecting a convex polygon: the ray “enters” the polygon
through the points marked with a square, and “leaves” the polygon through the
points marked with a disk.
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C.5. Line-Convex Polyhedron Intersection 703

the choice whether the line enters, leaves, or is parallel to the face is determined
by the sign of the inner product −→n · (p2−p1):

• If −→n · (p2−p1) = 0, the ray is parallel to the plane; then if −→n ·p1 +d < 0,
p1 is on the “outside” of the polyhedron and so no intersection exists.

• If −→n · (p2−p1) < 0, the ray enters the polyhedron.

• If −→n · (p2−p1) > 0, the ray leaves the polyhedron.

It can be seen that the computations required are exactly the same as those needed
to determine the intersection point.

In the special case that the polyhedron is an AABB (axis-aligned bounding
box), the 3D Liang-Barsky Algorithm can be applied with only minor modifi-
cations: similarly to the line-sphere intersection problem, most applications are
concerned only with the first point of intersection (the one through which the line
enters the AABB). Again, if a ray or line segment is considered, its parametric
value should be checked for inclusion in the appropriate interval.
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D
Solid Angle Calculations

The solid angle ω subtended by a surface patch A is defined as the area of the
projection A′of A on the surface of a sphere of radius r, divided by r2 (Figure D.1):

ω =
A′

r2 . (D.1)

Figure D.1. Definition of the solid angle.
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706 D. Solid Angle Calculations

Figure D.2. Calculation of a differential solid angle.

In practical terms, a solid angle measures the aperture of the semi-infinite conical
slice of space, with its peak at the center of the sphere and its sides touching the
boundary of the surface patch (or its projection on the unit sphere). Essentially,
a solid angle is not associated with any physically meaningful unit. Instead, a
mathematical unit, the steradian (sr) is assigned to this quantity.

A unit of 1 sr corresponds to a solid angle that extends from the center of a
sphere with radius r such that it subtends a spherical patch with area equal to r2.

The estimation of the solid angle of an arbitrary spherical patch is usually per-
formed by integrating a differential solid angle over the patch. A differential solid
angle is the solid angle d�ω that corresponds to an infinitesimally small spherical
patch dA that contains a point on the sphere with polar coordinates (θ ,ϕ) (Fig-
ure D.2). Sometimes, when the direction of a particular differential solid angle is
not of importance to the calculations, the arrow above the variable can be dropped.

Let us now derive a formula that associates d�ω with the polar coordinates,
in order to be able to integrate over two intuitive and manageable variables. The
area of dA is given as the product of the arc-length of its sides, dw and dh. Both
differential arcs are part of the circumferences of the corresponding circles span-
ning the sphere horizontally and vertically (Figure D.2). The arc-lengths dw and
dh are fractions of these circumferences:



�

�

�

�

�

�

�

�

707

dh = 2πr
dθ
2π

= rdθ ,

dw = 2πr′
dϕ
2π

= r′dϕ.

(D.2)

But r′depends on the latitude of the patch and is equal to r sinθ . Using Equa-
tion (D.2), the area of the patch becomes

dA = r2 sinθdθdϕ , (D.3)

and according to the definition of the solid angle, the corresponding differential
solid angle is

d�ω =
dA
r2 = sinθdθdϕ. (D.4)

Figure D.3. Projected differential solid angle.
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The solid angle that corresponds to a sphere can be found by integrating d�ω over
the full range of ϕ and θ . Remember that θ is measured relative to the North pole
according to the set-up of Figure D.2:

ωsphere =
π∫

θ=0

2π∫
ϕ=0

sinθdϕdθ = 2π
π∫

θ=0

sinθdθ = 4π. (D.5)

This result is of course consistent with the area of a sphere of radius r(4πr2),
according to the definition of the solid angle.

In photometric calculations, it is often useful to introduce the term projected
differential solid angle d�ωproj. It is a quantity devised for measuring solid an-
gles defined by oblique orientations of a differential patch dA. Observe the hemi-
sphere of radius r that surrounds patch dA in Figure D.3. The solid angle d�ξ
that is formed using as “observation” center any point on the hemisphere and dA,
involves, according to definition, the projection of dA on the line of sight (radial
direction) between the patch and that point:

dξ = n̂ · r̂dA/r2 = cosθdA/r2. (D.6)

But in Equation (D.6), dA/r2 is also the solid angle corresponding to a differential
patch equal to dA on the hemisphere as seen from its center. The solid angle d�ξ
then equals the projection d�ωproj of d�ω = dA/r2 on the hemisphere’s base:

d�ωproj = cosθd�ω. (D.7)

In broad terms, the projected differential solid angle gives us a measure of how
much of the patch is perceived from various directions.
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Elements of Signal Theory

E.1 Sampling

An N-dimensional continuous signal can be sampled to produce an N-dimensional
discrete signal. The sampling procedure involves the selection of the appropriate
points in the signal domain and the recording of sample values at these locations.
When the samples acquired are digitized, they are quantized to match the reso-
lution of the discrete storage type used (e.g., 8, 16, 24 bits per sample). Quanti-
zation is the conversion of a continuous range of values to discrete levels (Figure
E.1(b)). The continuous signal is sampled using a sampling pattern. The most
common pattern of signal discretization is uniform sampling, where each sample
is taken at regular intervals in the continuous domain (Figure E.1(a)).

Various signals are sampled in graphics and visualization algorithms, and we
often attempt to reconstruct the original signal from the samples taken. A good
example of this procedure is texture mapping, where a bitmap represents a dis-
cretization of a real surface appearance. This signal is then re-sampled in an at-
tempt to reconstruct the appearance of the original surface in the rendered image.
In polygon rasterization or ray tracing, we sample the light-field that reaches the
camera location in order to record a two-dimensional image of what is seen from
that particular viewpoint. In order to be able to reconstruct the original visible
signal and, therefore, to produce a faithful rendering of the objects in space, we
need to adequately sample the continuous domain signal so that we capture every
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710 E. Elements of Signal Theory

Figure E.1. Regular sampling. (a) Discrete samples of a continuous signal. (b)
Quantized samples (11 levels).

detail. The detail information of a periodic signal is actually the rate at which
the values change with respect to the N-dimensional input domain. Higher detail
reflects the presence of more rapid changes in the signal values or higher frequen-
cies. A periodic signal can be expressed as a weighted sum of N-dimensional
sinusoidal terms. The finer the details present in the signal, the smaller the period
of the sinusoidal terms that correspond to them and the higher the upper frequency
bound of these periodic components.

E.2 Frequency Domain
A signal defined in an N-dimensional domain can be expressed in terms of the fre-
quency of its components, i.e., as a set of coefficients that specify the contribution
of each frequency of sinusoidal terms to the signal. This is called the frequency
domain of a signal and describes what and how harmonic waveforms contribute
to the construction of the signal. For periodic signals, the linear combination of
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sinusoidal terms with coefficients ak that comprise the signal is called the Fourier
series. For a one-dimensional periodic signal, the Fourier series is given by

f (x) =
∞

∑
k=−∞

ake jk2πx/T , (E.1)

where e jk2π is the kth harmonic and T is the period of the signal. Note that the
Fourier coefficients are complex numbers, the real part representing the amplitude
of the specific harmonic and the imaginary part providing the phase (offset) of the
sinusoidal term.

For arbitrary aperiodic signals defined on an N-dimensional input domain,
the corresponding Fourier synthesis composes the signal from the contribution
of each frequency F (u) (continuous frequency domain), u being the vector of
frequency in each direction (N total):

f (x) =
+∞∫
−∞

F(u)e j2πx·udu1du2...duN . (E.2)

The integral is N-dimensional. The function F (u) is the Fourier transform
(Fourier analysis) of the signal f (x) and is given by:

F(u) =
+∞∫
−∞

f (x)e− j2πx·udx1dx2...dxN . (E.3)

For example, the images (a), (b), and (c) of Figure E.2 are two-dimensional
signals that depict the same pattern but with different detail. The intensity in
Figure E.2(a) varies slowly, and the image is devoid of any abrupt intensity change
that would signify a fine detail. As can be observed by the amplitude of the
Fourier transform above each version of the pattern (logarithmic scale), the finer
the details present in the two-dimensional signal of the image, the more the higher
frequencies (smaller sinusoidal waveform periods) contribute to the signal.

E.3 Convolution and Filtering
A system is classified as linear if for an arbitrary number of input signals s1(x),
s2(x),..., sM(x), the combined output of the system for each one of them y(s1(x)),
y(s2(x)),..., y(sM(x)) is identical to the output of the system on the superimposed
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input signals, for any x in RN :

y(a1s1(x)+a2s2(x)+ ...+aMsM(x)) =

a1y(s1(x))+a2y(s2(x))+ ...+aMy(sM(x)) . (E.4)

where ai are arbitrary weights.
A signal value s(x) can be represented as an infinite sum of values over the

input domain, when multiplied with a coefficient that is non-zero only for x:

s(x) =
+∞∫
−∞

δ (x− t)s(t)dt. (E.5)

Figure E.2. Frequency domain (logarithmic amplitude - top row) for 2D image
data. (a) Blurred, low-detail version of the sample image. Note the concentration
of high energy in the low frequencies (longer period). (b) Less blurred image; the
spectrum contains higher frequencies. (c) The original, crisp image exhibits a lot
of detail, which is reflected in the Fourier transform of the signal as a more even
distribution of energy in the entire frequency domain.
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The function δ (x) (Delta or Dirac function) is defined as a spike of unit am-
plitude at zero:

δ (x) =
{

1, x = 0,
0, x = 0.

(E.6)

Now consider a superposition of every shifted version of the input signal s(x)
by t multiplied by a corresponding weighting coefficient h(x, t). The output of
the linear system that is characterized by h(x, t) is similar to Equation (E.5) and
is given by

y(x) =
+∞∫
−∞

h(x, t)s(t)dt, (E.7)

or for time-invariant linear systems

y(x) =
+∞∫
−∞

h(x− t)s(t)dt. (E.8)

Equation (E.8) is the convolution of the input signal s(t) and another signal
h(x) and is denoted by an asterisk (∗); y(x) = h(x) ∗ s(x) = s(x) ∗ h(x). When
referring to a linear system, h(x) is the impulse response of the system. The
impulse response characterizes the system’s behavior and is so named because it
is equal to the application of the system on a Dirac input signal (see Figure E.3):

h(x) =
+∞∫
−∞

h(x− t)δ (t)dt. (E.9)

In theory, the impulse response for continuous domain signals can be obtained
for any arbitrary unknown linear system by applying it on a Dirac signal. For
discrete signals, this is practical, indeed, and the corresponding convolution is
given by

y(n) =
+∞

∑
k=−∞

h(n− k)s(k), n ∈ Z, (E.10)

y(n1, ...,nN) =
∞

∑
k1=−∞

...
+∞

∑
kN=−∞

h(n1− k1, ...,nN− kN)s(k1, ...,kN). (E.11)

The impulse response h implements a linear filter kernel. The input signal is
filtered by convolution in the signal domain. When the impulse response is non-
zero only for a bounded region of the input domain, i.e., it has a finite support,
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Figure E.3. Signal convolution between the impulse response of a linear system
and various signals. Convolution in the signal domain results in multiplication of
the corresponding spectra. (a) The impulse response h (light grey) and the Dirac
function. (b) Power spectral density (PSD) of y(x) = h(x)∗δ (x) = h(x). (c) A square
input pulse. (d) PSD of the square input pulse of (c). (e) Convolution of the square
pulse with the impulse response h of figure (a). (f) Resulting PSD of the filtered
signal of (e). (g) Noise. (h) The PSD of the noise signal of (g). (i) The filtered
noise. (j) The resulting PSD (magnified in the vertical axis).
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then the filter is characterized as finite impulse response (FIR), otherwise it is an
infinite impulse response (IIR) filter. Most practical linear filters are FIR.

An important property of convolution is that when the signals can be ex-
pressed in the frequency domain, convolution in the input domain corresponds
to multiplication of the Fourier transforms Y , H and S of the signals:

y(x) = h(x)∗ s(x)⇔ Y (u) = H(u)S(u). (E.12)

The Fourier transform of the impulse response h(x) is called the transfer func-
tion. Often it is preferable to perform filtering in the frequency domain, especially
when multiple filters must be consecutively applied to the input signal or when
the shape (waveform) of the transfer function is more conveniently described than
that of the impulse response. For example, cutting off the middle frequencies of
an input signal may require the design of a complex impulse response. On the
other hand, it is more intuitive to construct a transfer function that selectively
zeroes the required frequencies.1

E.4 Sampling Theorem
In order to ensure that the reconstructed signal is identical to the original, the
Nyquist-Shannon sampling theorem states that the original signal has to be band-
limited and the sampling rate fsampling must be at least twice the highest frequency
of the original signal:

2 | fmax|� fsampling. (E.13)

The minimum adequate rate fsampling at which to sample the signal in order
to correctly reconstruct it is called the Nyquist rate. Failure to satisfy the above
criteria leads to poor sampling of the initial signal and the phenomenon of alias-
ing. Aliasing is the misinterpretation of the samples as a different signal than the
original during the reconstruction. This happens because more than one signal
could actually pass through the recorded samples.

In practice, as we do not actually know or cannot guarantee the spectrum
extents of the signal, the original signal is first low-pass filtered to explicitly cut
off frequencies higher than half the sampling rate. A low-pass filter allows, as the
name implies, only the low frequencies to pass to the output of the filter.

1In practice, the creation of a good transfer function is tricky, as discontinuities in the frequency
domain expand the signal input domain support, and the resulting impulse response must be truncated
to be applicable, leading to distortions.
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