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Preface

Clustering, as a special area of data mining, is one of the most commonly used
methods for discovering hidden structure of data. Clustering algorithms group a set
of objects in such a way that objects in the same cluster are more similar to each
other than to those in other clusters. Cluster analysis can be used to quantize data,
extract cluster prototypes for the compact representation of the data set, select
relevant features, segment data into homogeneous subsets, and to initialize
regression and classification models.

Graph-based clustering algorithms are powerful in giving results close to the
human intuition [1]. The common characteristic of graph-based clustering methods
developed in recent years is that they build a graph on the set of data and then use
the constructed graph during the clustering process [2–9]. In graph-based clus-
tering methods objects are considered as vertices of a graph, while edges between
them are treated differently by the various approaches. In the simplest case, the
graph is a complete graph, where all vertices are connected to each other, and the
edges are labeled according to the degree of the similarity of the objects. Con-
sequently, in this case the graph is a weighted complete graph.

In case of large data sets the computation of the complete weighted graph
requires too much time and storage space. To reduce complexity many algorithms
work only with sparse matrices and do not utilize the complete graph. Sparse
similarity matrices contain information only about a small subset of the edges,
mostly those corresponding to higher similarity values. These sparse matrices
encode the most relevant similarity values and graphs based on these matrices
visualize these similarities in a graphical way.

Another way to reduce the time and space complexity is the application of a
vector quantization (VQ) method (e.g. k-means [10], neural gas (NG) [11], Self-
Organizing Map (SOM) [12]). The main goal of the VQ is to represent the entire
set of objects by a set of representatives (codebook vectors), whose cardinality is
much lower than the cardinality of the original data set. If a VQ method is used to
reduce the time and space complexity, and the clustering method is based on
graph-theory, vertices of the graph represent the codebook vectors and the edges
denote the connectivity between them.

Weights assigned to the edges express similarity of pairs of objects. In this book
we will show that similarity can be calculated based on distances or based on
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structural information. Structural information about the edges expresses the degree
of the connectivity of the vertices (e.g. number of common neighbors).

The key idea of graph-based clustering is extremely simple: compute a graph of
the original objects or their codebook vectors, then delete edges according to some
criteria. This procedure results in an unconnected graph where each subgraph
represents a cluster. Finding edges whose elimination leads to good clustering is a
challenging problem. In this book a new approach will be proposed to eliminate
these inconsistent edges.

Clustering algorithms in many cases are confronted with manifolds, where low-
dimensional data structure is embedded in a high-dimensional vector space. In
these cases classical distance measures are not applicable. To solve this problem it
is necessary to draw a network of the objects to represent the manifold and
compute distances along the established graph. Similarity measure computed in
such a way (graph distance, curvilinear or geodesic distance [13]) approximates
the distances along the manifold. Graph-based distances are calculated as the
shortest path along the graph for each pair of points. As a result, computed dis-
tance depends on the curvature of the manifold, thus it takes the intrinsic geo-
metrical structure of the data into account. In this book we propose a novel graph-
based clustering algorithm to cluster and visualize data sets containing nonlinearly
embedded manifolds.

Visualization of complex data in a low-dimensional vector space plays an
important role in knowledge discovery. We present a data visualization technique
that combines graph-based topology representation and dimensionality reduction
methods to visualize the intrinsic data structure in a low-dimensional vector space.

Application of graphs in clustering and visualization has several advantages.
Edges characterize relations, weights represent similarities or distances. A Graph
of important edges gives compact representation of the whole complex data set. In
this book we present clustering and visualization methods that are able to utilize
information hidden in these graphs based on the synergistic combination of
classical tools of clustering, graph-theory, neural networks, data visualization,
dimensionality reduction, fuzzy methods, and topology learning.

The understanding of the proposed algorithms is supported by

• figures (over 110);
• references (170) which give a good overview of the current state of clustering,

vector quantizing and visualization methods, and suggest further reading
material for students and researchers interested in the details of the discussed
algorithms;

• algorithms (17) which aim to understand the methods in detail and help to
implement them;

• examples (over 30);
• software packages which incorporate the introduced algorithms. These Matlab

files are downloadable from the website of the author (www.abonyilab.com).
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The structure of the book is as follows. Chapter 1 presents vector quantization
methods including their graph-based variants. Chapter 2 deals with clustering. In
the first part of the chapter advantages and disadvantages of minimal spanning
tree-based clustering are discussed. We present a cutting criteria for eliminating
inconsistent edges and a novel clustering algorithm based on minimal spanning
trees and Gath-Geva clustering. The second part of the chapter presents a novel
similarity measure to improve the classical Jarvis-Patrick clustering algorithm.
Chapter 3 gives an overview of distance-, neighborhood- and topology-based
dimensionality reduction methods and presents new graph-based visualization
algorithms.

Graphs are among the most ubiquitous models of both natural and human-made
structures. They can be used to model complex structures and dynamics. Although
in this book the proposed techniques are developed to explore the hidden structure
of high-dimensional data they can be directly applied to solve practical problems
represented by graphs. Currently, we are examining how these techniques can
support risk management. Readers interested in current applications and recent
versions of our graph analysis programs should visit our website: www.abonyilab.
com.

This research has been supported by the European Union and the Hungarian
Republic through the projects TMOP-4.2.2.C-11/1/KONV-2012-0004—National
Research Center for Development and Market Introduction of Advanced Infor-
mation and Communication Technologies and GOP-1.1.1-11-2011-0045.

Veszprém, Hungary, January 2013 Ágnes Vathy-Fogarassy
János Abonyi
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Chapter 1
Vector Quantisation and Topology Based Graph
Representation

Abstract Compact graph based representation of complex data can be used for
clustering and visualisation. In this chapter we introduce basic concepts of graph
theory and present approaches which may generate graphs from data. Computa-
tional complexity of clustering and visualisation algorithms can be reduced replacing
original objects with their representative elements (code vectors or fingerprints)
by vector quantisation. We introduce widespread vector quantisation methods, the
k-means and the neural gas algorithms. Topology representing networks obtained by
the modification of neural gas algorithm create graphs useful for the low-dimensional
visualisation of data set. In this chapter the basic algorithm of the topology repre-
senting networks and its variants (Dynamic Topology Representing Network and
Weighted Incremental Neural Network) are presented in details.

1.1 Building Graph from Data

A graph G is a pair (V, E), where V is a finite set of the elements, called vertices
or nodes, and E is a collection of pairs of V . An element of E , called edge , is
ei, j = (vi , v j ), where vi , v j ∈ V . If {u, v} ∈ E , we say that u and v are neighbors.
The set of the neighbors for a given vertex is the neighborhood of that vertex. The

complete graph KN on a set of N vertices is the graph that has all the

(
N
2

)
possible

edges. In a weighted graph a weight function w : E → R is defined, which function
determines a weight wi, j for each edge ei, j . A graph may be undirected, meaning
that there is no distinction between the two vertices associated with each edge. On
the other hand, a graph may be directed, when its edges are directed from one vertex
to another. A graph is connected if there is a path (i.e. a sequence of edges) from any
vertex to any other vertex in the graph. A graph that is not connected is said to be
disconnected. A graph is finite if V and E are finite sets. A tree is a graph in which
any two vertices are connected by exactly one path. A forest is a disjoint union of
trees.

Á. Vathy-Fogarassy and J. Abonyi, Graph-Based Clustering 1
and Data Visualization Algorithms, SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-5158-6_1, © János Abonyi 2013
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A path from vstart ∈ V to vend ∈ V in a graph is a sequence of edges in E starting
with at vertex v0 = vstart and ending at vertex vk+1 = vend in the following way:
(vstart, v1)(v1, v2), . . . , (vk−1, vk), (vk, vend). A circleis a simple path that begins and
ends at the same vertex.

The distance between two vertices vi and v j of a finite graph is the minimum
length of the paths (sum of the edges) connecting them. If no such path exists, then
the distance is set equal to∞. The distance from a vertex to itself is zero. In graph
based clustering the geodesic distance is most frequently used concept instead of
the graph distance, because of it expresses the length of the path along the structure
of manifold. Shortest paths from a vertex to other vertices can be calculated by
Dijkstra’s algorithm, which is given in Appendix A.2.1.

Spanning trees play important role in the graph based clustering methods. Given
a G = (V, E) connected undirected graph. A spanning tree (T = (V, E ′), E ′ ⊆ E)
of the graph G = (V, E) is a subgraph of G that is a tree, and it connects all edges
of G together. If the number of the vertices is N , then a spanning tree has exactly
N−1 edges. The Minimal spanning tree (MST) [1] of a weighted graph is a spanning
tree where the sum of the edge weights is minimal. We have to mention that there
may exist several different minimal spanning trees of a given graph. The minimal
spanning tree of a graph can be easy constructed by Prim’s or Kruskal’s algorithm.
These algorithms are presented in Appendices A.1.1 and A.1.2.

To build a graph that emphasises the real structure of data the intrinsic relations
of data should be modelled. There are two basic approaches to connect neighbour-
ing objects together: ε-neighbouring and k-neighbouring. In case of ε-neighbouring
approach two objects xi and x j are connected by an edge if they are lying in an ε

radius environment (di, j < ε, where di, j yields the ‘distance’ of the objects xi and
x j , and ε is a small real number). Applying the k-neighbouring approach, two objects
are connected to each other if one of them is in among the k-nearest neighbours of the
other, where k is the number of the neighbours to be taken into account. This method
results in the k nearest neighbour graph (knn graph). The edges of the graph can be
weighted several ways. In simplest case, we can assign the Euclidean distance of
the objects to the edge connecting them together. Of course, there other possibilities
as well, for example the number of common neighbours can also characterise the
strength of the connectivity of data.

1.2 Vector Quantisation Algorithms

In practical data mining data often contain large number of observations. In case of
large datasets the computation of the complete weighted graph requires too much
time and storage space. Data reduction methods may provide solution for this prob-
lem. Data reduction can be achieved in such a way that the original objects are
replaced with their representative elements. Naturally, the number of the representa-
tive elements is considerably less than the number of the original observations. This
form of data reduction methods is called Vector quantization (VQ). Formally, vector
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quantisation is the process of quantising D-dimensional input vectors to a reduced set
of D-dimensional output vectors referred to as representatives or codebook vectors.
The set of the codebook vectors is called codebook also referred as cluster centres or
fingerprints. Vector quantisation is widely used method in many data compression
applications, for example in image compression [2–4], in voice compression and
identification [5–7] and in pattern recognition and data visualization [8–11].

In the following we introduce the widely used vector quantisation algorithms:
k-means clustering, neural gas and growing neural gas algorithms, and topology
representing networks. Except the k-means all approaches result in a graph which
emphasises the dominant topology of the data. Kohonen Self-Organizing Map is also
referred as a vector quantisation method, but this algorithm includes dimensionality
reduction as well, so this method will be presented in Sect. 3.4.2.

1.2.1 k-Means Clustering

k-means algorithm [12] is the simplest and most commonly used vector quantisa-
tion method. k-means clustering partitions data into clusters and minimises distance
between cluster centres (code vectors) and data related to the clusters:

J (X, V) =
c∑

i=1

∑
xk∈Ci

‖xk − vi‖2, (1.1)

where Ci denotes the i th cluster, and ‖xk−vi‖ is a chosen distance measure between
the data point xk and the cluster center vi .

The whole procedure can be found in Algorithm 1.

Algorithm 1 k-means algorithm
Step 1 Choose the number of clusters, k.
Step 2 Generate k random points as cluster centers.
Step 3 Assign each point to the nearest cluster center.
Step 4 Compute the new cluster centers as the centroids of the clusters.
Step 5 If the convergence criterion is not met go back to Step 3.

The iteration steps are repeated until there is no reassignment of patterns to new
cluster centers or there is no segnificant decrease in the squared error.

The k-means algorithm is very popular because it is easy to implement, and its
time complexity is O(N ), where N is the number of objects. The main drawback of
this algorithm is that it is sensitive to the selection of the initial partition and may
converge to a local minimum of the criterion function. As its implementation is very
easy, this algorithm is frequently used for vector quantisation. Cluster centres can be
seen as the reduced representation (representative elements) of the data. The number

http://dx.doi.org/10.1007/978-1-4471-5158-6_3
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of the cluster centres and so the number of the representative elements (codebook
vectors) is given by the user a priori. The Linde-buzo-gray algorithm (LBG) [13]
works similar to the k-means vector quantisation method, but it starts with only one
representative element (it is the cluster centre or centroid of the entire data set) and
in each iteration dynamically duplicates the number of the representative elements
and reassigns the objects to be analysed among the cluster centres. The algorithm
stops when the desired number of centroids is obtained.

Partitional clustering is closely related to the concept of Voronoi diagram. A set of
representative elements (cluster centres) decompose subspaces called Voronoi cells.
These Voronoi cells are drawn in such a way that all data points in a given Voronoi
cell are closer to their own representative data point than to the other representative
elements. Delaunay triangulation (DT) is the dual graph of the Voronoi diagram for
the same representatives. Delaunay triangulation [14] is a subdivision of the space
into triangles in such a way that there no other representative element is inside the
circumcircle of any triangle. As a result the DT divides the plane into a number of
triangles. Figure 1.1 represents a small example for the Voronoi diagram and Delau-
nay triangulation. In this figure blue dots represents the representative objects, the
Voronoi cells are drawn with red lines, and black lines form the Delaunay triangu-
lation of the representative elements. In this approach the representative elements
can be seen as a compressed presentation of the space in such a way that data points
placed in a Voronoi cell are replaced with their representative data point in the same
Voronoi cell.

The induced Delaunay triangulation is a subset of the Delaunay triangulation, and
it can be obtained by masking the Delaunay triangulation with the data distribution.
Therefore the induced Delaunay triangulation reflects more precisely to the structure
of data and do not contains such edges which go through in such areas where no data

Fig. 1.1 The Voronoi diagram
and the Delaunay triangulation
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points are found. The detailed description of induced Delaunay triangulation and the
connecting concept of masked Voronoi polyhedron can be found in [15].

1.2.2 Neural Gas Vector Quantisation

Neural gas algorithm (NG) [16] gives an informative reduced data representation
for a given data set. The name ‘neural gas’ is coming from the operation of the
algorithm since representative data points distribute themselves in the vector space
like a gas. The algorithm firstly initialises code vectors randomly. Then it repeats
iteration steps in which the following steps are performed: the algorithm randomly
chooses a data point from the data objects to be visualised, calculates the distance
order of the representatives to the randomly chosen data point, and in the course of
the adaptation step the algorithm moves all representatives closer to the randomly
chosen data point. The detailed algorithm is given in Algorithm 2.

Algorithm 2 The neural gas algorithm

Given a set of input objects X = {x1, x2, . . . , xN }, xi ∈ R
D , i = 1, 2, . . . , N .

Step 1 Initialize randomly all representative data points wi ∈ R
D , i = 1, 2, . . . , n (n < N ). Set

the iteration counter to t = 0.
Step 2 Select an input object (xi (t)) with equal probability for all objects.
Step 3 Calculate the distance order for all w j representative data points with respect to the

selected input object xi . Denote j1 the index of the closest codebook vector, j2 the index of the
second closest codebook vector and so on.

Step 4 Move closer all representative data points to the selected input object xi based on the
following formula:

w(t+1)
jk
= w(t)

jk
+ ε(t) · e−k/λ(t) ·

(
xi − w(t)

jk

)
(1.2)

where ε is an adaptation step size, and λ is the neighborhood range.
Step 5 If the termination criterion not met increase the iteration counter t = t + 1, and go back

to Step 2.

The ε and λ parameters are decreasing with time t . The adaptation step (Step 4)
corresponds to a stochastic gradient descent on a given cost function. As a result
the algorithm presents n D-dimensional output vectors which distribute themselves
homogeneously in the input ‘data cloud’.

Figure 1.2 shows a synthetic data set (‘boxlinecircle’) and the run of the neural
gas algorithm on this data set. The original data set contains 7,100 sample data
(N = 7100) placed in a cube, in a refracted line and in a circle (Fig. 1.2a). Data
points placed in the cube contain random errors (noise). In this figure the original
data points are yield with blue points and the borders of the points are illustrated
with red lines. Figure 1.2b shows the initialisation of the neural gas algorithm, where
the neurons were initialised in the range of the variables randomly. The number of
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Fig. 1.2 A synthetic data set and different status of neural gas algorithm. a The synthetic ‘box-
linecircule’ data set (N = 7100). b Neural gas initialization (n = 300). c NG, numbr of itrations:
100 (n = 300). d NG, number of iterations: 1000 (n = 300). e NG, number of iterations: 10000
(n = 300). f NG, number of iterations: 50000 (n = 300)

the representative elements was chosen to be n = 300. Figure 1.2c–f show different
states of the neural gas algorithm. Representative elements distribute themselves
homogenously and learn the form of the original data set (Fig. 1.2f).

Figure 1.3 shows an another application example. The analysed data set contains
5,000 sample points placed on a 3-dimensional S curve. The number of the repre-
sentative elements in this small example was chosen to be n = 200, and the neurons
was initialised as data points characterised by small initial values. Running results
in different states are shown in Fig. 1.3b–d.

It should be noted that neural gas algorithm has much more robust convergence
properties than k-means vector quantisation.

1.2.3 Growing Neural Gas Vector Quantisation

In most of the cases the distribution of high dimensional data is not known. In this
cases the initialisation of the k-means and the neural gas algorithms is not easy,
since it is hard to determine the number of the representative elements (clusters).



1.2 Vector Quantisation Algorithms 7

−1 −0.5 0 0.5 1 0
2

4
6−1

−0.5

0

0.5

1

1.5

2

2.5

3

−0.6 −0.4 −0.2 0 0.2 0.4 0
2

4
6−1

−0.5

0

0.5

1

1.5

2

2.5

3

−0.8−0.6−0.4−0.20 0.2 0.4 0.6 0.8 1 0
2

4
6−1

−0.5

0

0.5

1

1.5

2

2.5

3

−1 −0.5 0 0.5 1 0
2

4
6−1

−0.5

0

0.5

1

1.5

2

2.5

3

(a) (b)

(c) (d)

Fig. 1.3 The S curve data set and different states of the neural gas algorithm. a The ‘S curve’ data
set (N = 5000). b NG, number of iterations: 200 (n = 200). c NG, number of iterations: 1000
(n = 200). d NG, number of iterations: 10000 (n = 200)

The Growing neural gas (GNG) [17] algorithm provides a fairly good solution to
solve this problem, since it adds and removes representative elements dynamically.
The other main benefit of this algorithm is that it creates a graph of representatives,
therefore it can be used for exploring the topological structure of data as well. GNG
algorithm starts with two random representatives in the vector space. After this
initialisation step the growing neural gas algorithm iteratively select an input vector
randomly, locate the two nearest nodes (representative elements) to this selected
input vector, moves the nearest representative closer to the selected input vector,
updates some edges, and in definite cases creates a new representative element as
well. The algorithm is detailed in Algorithm 3 [17]. As we can see the network
topology is generated incrementally during the whole process. Termination criterion
might be for example the evaluation of a quality measure (or a maximum number
of the nodes has been reached). GNG algorithm has several important parameters,
including the maximum age of a representatives before it is deleted (amax), scaling
factors for the reduction of error of representatives (α, d), and the degrees (εb, εa) of
movements of the selected representative elements in the adaptation step (Step 6).
As these parameters are constant in time and since the algorithm is incremental,
there is no need to determine the number of representatives a priori. One of the
main benefits of growing neural gas algorithm is that is generates a graph as results.
Nodes of this graph are representative elements which present the distribution of the
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original objects and edges give information about the neighbourhood relations of the
representatives.

Algorithm 3 Growing neural gas algorithm

Given a set of input objects X = {x1, x2, . . . , xN }, xi ∈ R
D , i = 1, 2, . . . , N .

Step 1 Initialisation: Generate two random representatives (wa and wb) in the D-dimensional
vector space (wa, wb ∈ R

D), and set their error variables to zero (error(a) = 0, error(b) = 0).
Step 2 Select an input data point x randomly, according to the data distribution.
Step 3 Find the nearest ws1 and the second nearest ws2 representative elements to x.
Step 4 Increment the age of all edges emanating from the nearest representative data point ws1

by 1.
Step 5 Update the error variable of the nearest representative element (error(s1)) by adding the

squared distance between ws1 and x to it.

error(s1)← error(s1)+‖ws1 − x ‖2 (1.3)

Step 6 Move ws1 and its topological neighbours (nodes connected to ws1 by an edge) towards x
by fractions εb and εn (εb, εn ∈ [0, 1]), respectively of the total distance

ws1 ← ws1 + εb(x − ws1 ) (1.4)

wn ← wn + εn(x − wn) (1.5)

Equation 1.4 is used for the closest representative data object and Eq. 1.5 for all direct topological
neighbors n of ws1 .

Step 7 If ws1 and ws2 are not connected then create an edge between them. If they are connected
set the age of this edge to 0.

Step 8 Remove all edges with age larger than amax. If as a consequence of this deletion there
come up nodes with no edges then remove them.

Step 9 If the current iteration is an integer multiple of a parameter λ insert a new representative
element as follows:

• Find the representative element wq with the largest error.
• Find the data point wr with the largest error among the neighbors of wq .
• Insert a new representative element ws halfway between the data points wq and wr

ws = wq + wr

2
(1.6)

• Create edges between the representatives ws and wq , and ws and wr . If there was an edge
between wq and wr than delete it.

• Decrease the error variables of representatives wq and wr , and initialize the error variable
of the data point ws with the new value of the error variable of wq in that order as follows:

error(q) = α × error(q) (1.7)
error(r) = α × error(r) (1.8)

error(s) = error(q) (1.9)

Step 10 Decrease all error variables by multiplying them with a constant d.
Step 11 If a termination criterion is not met continue the iteration and go back to Step 2.
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1.2.4 Topology Representing Network

Topology representing network (TRN) algorithm [15, 16] is one of best known neural
network based vector quantisation method. The TRN algorithm works as follows.
Given a set of data (X = {x1, x2, . . . , xN }, xi ∈ R

D , i = 1, . . . , N ) and a set
of codebook vectors (W = {w1, w2, . . . , wn}, wi ∈ R

D , i = 1, . . . , n) (N > n)
the algorithm distributes pointers wi between the data objects by the neural gas
algorithm (steps 1–4 without setting the connection strengths ci, j to zero) [16],
and forms connections between them by applying competitive Hebbian rule [18].
The run of the algorithm results in a Topology Representing Network that means a
graph G = (W, C), where W denotes the nodes (codebook vectors, neural units,
representatives) and C yields the set of edges between them. The detailed description
of the TRN algorithm is given in Algorithm 4.

Algorithm 4 TRN algorithm

Given a set of input objects X = {x1, x2, . . . , xN }, xi ∈ R
D , i = 1, 2, . . . , N .

Step 1 Initialise the codebook vectors w j ( j = 1, . . . , n) randomly. Set all connection strengths
ci, j to zero. Set t = 0.

Step 2 Select an input pattern xi (t), (i = 1, . . . , N ) with equal probability for each x ∈ X .
Step 3 Determine the ranking ri, j = r(xi (t), w j (t)) ∈ {0, 1, . . . , n − 1} for each codebook

vector w j (t) with respect to the vector xi (t) by determining the sequence ( j0, j1, . . . , jn−1)
with

‖xi (t)− w j0 (t)‖ < ‖xi (t)− w j1 (t)‖ < · · · < ‖xi (t)− w jn−1 (t)‖. (1.10)

Step 4 Update the codebook vectors w j (t) according to the neural gas algorithm by setting

w j (t + 1) = w j (t)+ ε · e−
r(xi (t),w j (t))

λ(t)
(
xi (t)− w j (t)

)
, j = 1, . . . , n (1.11)

Step 5 If a connection between the first and the second closest codebook vector to xi (t) does not
exist already (c j0, j1 = 0), create a connection between them by setting c j0, j1 = 1 and set the
age of this connection to zero by t j0, j1 = 0. If this connection already exists (c j0, j1 = 1), set
t j0, j1 = 0, that is, refresh the connection of the codebook vectors j0 − j1.

Step 6 Increment the age of all connections of w j0 (t) by setting t j0,l = t j0,l + 1 for all wl (t)
with c j0,l = 1.

Step 7 Remove those connections of codebook vector w j0 (t) the age of which exceed the para-
meter T by setting c j0,l = 0 for all wl (t) with c j0,l = 1 and t j0,l > T .

Step 8 Increase the iteration counter t = t + 1. If t < tmax go back to Step 2.

The algorithm has many parameters. Opposite to growing neural gas algorithm
topology representing network requires the number of the representative elements a
priori. The number of the iterations (tmax) and the number of the codebook vectors (n)
are determined by the user. Parameter λ, step size ε and lifetime T are dependent on
the number of the iterations. This time dependence can be expressed by the following
general form:
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Fig. 1.4 The swiss roll data set and a possible topology representing network of it. a Original swiss
roll data set (N = 5000). b TRN of swiss roll dats set (n = 200)

g(t) = gi

(
g f

gi

)t/tmax

, (1.12)

where gi denotes the initial value of the variable, g f denotes the final value of the
variable, t denotes the iteration number, and tmax denotes the maximum number of
iterations. (For example for parameter λ it means: λ(t) = λi (λ f /λi )

t/tmax .) Paper
[15] gives good suggestions to tune these parameters.

To demonstrate the operation of TRN algorithm 2 synthetic data sets were chosen.
The swiss roll and the S curve data sets. The number of original objects in both cases
were N = 5000. The swiss roll data set and its topology representing network with
n = 200 quantised objects are shown in Fig. 1.4a and b.

Figure 1.5 shows two possible topology representing networks of the S curve
data set. In Fig. 1.5a, a possible TRN graph of the S curve data set with n = 100
representative elements is shown. In the second case (Fig. 1.5b) the number of the
representative elements was chosen to be twice as many as in the first case. As it can
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Fig. 1.5 Different topology representing networks of the S curve data set. a TRN of S curve data
set (n = 100). b TRN of S curve dats set (n = 200)
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be seen the greater the number of the representative elements the more accurate the
approximation is.

Parameters in both cases were set as follows: the number of iterations was set
to tmax = 200n, where n is the number of representative elements. Initial and final
values of λ, ε and T parameters were: εi = 0.3, εf = 0.05, λi = 0.2n, λi = 0.01,
Ti = 0.1n and Ti = 0.05n. Although the modification of these parameters may
somewhat change the resulted graph, the number of the representative elements has
more significant effect on the structure of the resulted network.

1.2.5 Dynamic Topology Representing Network

The main disadvantage of the TRN algorithm is that the number of the representa-
tives must be given a priori. The Dynamic topology representing network (DTRN)
introduced by Si et al. in 2000 [19] eliminates this drawback. In this method the graph
incrementally changes by adding and removing edges and vertices. The algorithm
starts with only one node, and it examines a vigilance test in each iteration. If the
nearest (winner) node to the randomly selected input pattern fails this test, a new
node is created and this new node is connected to the winner. If the winner passes
the vigilance test, the winner and its adjacent neighboors are moved closer to the
selected input pattern. In this second case, if the winner and the second closest nodes
are not connected, the algorithm creates an edge between them. Similarly to the TRN
algorithm DTRN also removes those connections whose age achieves a predefined
threshold. The most important input parameter of DTRN algorithm is the vigilance
threshold. This vigilance threshold gradually decreases from an initial value to a final
value. The detailed algorithm is given in Algorithm 5.

The termination criterion of the algorithm can be given by a maximum number
of iterations or can be controlled with the vigilance threshold. The output of the
algorithm is a D-dimensional graph.

As it can be seen DTRN and TRN algorithms are very similar to each other,
but there are some significant differences between them. While TRN starts with n
randomly generated codebook vectors, DTRN step by step builds up the set of the
representative data elements, and the final number of the codebook vectors can be
determined by the vigilance threshold as well. While during the adaptation process
the TRN moves the representative elements based on their ranking order closer to the
selected input object, DTRN performs this adaptation step based on the Euclidean
distances of the representatives and the selected input element. Furthermore, TRN
moves all representative elements closer to the selected input object, but DTRN
method applies the adaptation rule only to the winner and its direct topological
neighboors. The vigilance threshold is an additional parameter of the DTRN algo-
rithm. The tuning of this is based on the formula introduced in the TRN algorithm.
The vigilance threshold ρ accordingly to the formula 1.12 gradually decreases from
ρi to ρf during the algorithm.
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Algorithm 5 DTRN algorithm

Given a set of input objects X = {x1, x2, . . . , xN }, xi ∈ R
D , i = 1, 2, . . . , N .

Step 1 Initialization: Start with only one representative element (node) wi . To represent this node
select one input object randomly.

Step 2 Select randomly an element x from the input data objects. Find the nearest representative
element (the winner) (wc) and its direct neighbor (wd ) from:

‖x − wc‖ = min
i
‖x − wi‖ (1.13)

‖x − wd‖ = min
i 	=c
‖x − wi‖ (1.14)

The similarity between a data point and a representative element is measured by the Euclidean
distance.

Step 3 Perform a vigilance test based on the following formula:

‖x − wc‖ < ρ (1.15)

where ρ is a vigilance threshold.
Step 4 If the winner representative element fails the vigilance test: create a new codebook vector

with wg = x. Connect the new codebook vector to the winner representative element by setting
sc,g = 1, and set other possible connections of wg to zero. Set tg, j = 0 if j = c and tg, j = ∞
otherwise. Go Step 6.

Step 5 If the winner representative element passes the vigilance test:

Step 5.1: Update the coordinates of the winner node and its adjacent neighbors based on the
following formula:

Δwi (k) = sc,i α(k)
e−β‖x(k)−wi (k)‖2∑L

j=1 sc, j e−β‖x(k)−wi (k)‖2 (x(k)− wi (k)) , i = 1, . . . , L , (1.16)

where k = 0, 1, . . . is a discrete time variable, α(k) is the learning rate factor, and β is an
annealing parameter.

Step 5.2: Update the connections between the representative elements. If the winner and its
closest representative are connected (sc,d = 1) set tc,d = 0. If they are not connected with an
edge, connect them by setting sc,d = 1 and set tc,d = 0.

Step 6 Increase all connections to the winner representative element by setting tc, j = tc, j + 1.
If an age of a connection exceeds a time limit T (tc, j > T ) delete this edge by setting sc, j = 0.

Step 7 Remove the node wi if si, j = 0 for all j 	= i , and there exists more than 1 representative
element. That is if there are more than 1 representative elements, remove all representatives
which do not have any connections to the other codebook vectors.

Step 8 If a termination criterion is not met continue the iteration and go back to Step 2.

As a result, DTRN overcomes the difficulty of TRN by applying the vigilance
threshold, however the growing process is still determined by a user defined thresh-
old value. Furthermore both algorithms have difficulty breaking links between two
separated areas.

Next examples demonstrate DTRN and the effect of parametrisation on the
resulted graph. Figure 1.6 shows two possible results on the S curve data set. The
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Fig. 1.6 Different DTRN graphs of the S curve data set with the same parameter settings.
a A possible DTRN of S curve data set (n = 362). b Another possible DTRN of S curve data
set (n = 370)

algorithm in these two cases was parameterised in the same way as follows: the
vigilance threshold decreased from the average deviation of the dimensions to con-
stant 0.1, learning rate factor decreased from 0.05 to 0.0005, number of the iterations
was chosen to be 1,000 and maximum age of connections was set to be 5. DTRN
results in different topology based networks arising from the random initialisation
of the neurons. As DTRN dynamically adds and removes nodes the number of the
representative elements differs in the two examples.

Figure 1.7 shows the influence of the number of iterations (tmax) and the maxi-
mum age (T ) of edges. When the number of the iterations increases the number of
representative elements increases as well. Furthermore, the increase of the maximum
age of edges results additional links between slightly far nodes (see Fig. 1.7b and d).

1.2.6 Weighted Incremental Neural Network

H.H. Muhammad proposed an extension of the TRN algorithm, called Weighted
incremental neural network (WINN) [20]. This algorithm can be seen as a modified
version of the Growing Neural Gas algorithm. The Weighted Incremental Neural
Network method is based on neural network approach as it produces a weighted
connected net. The resulted graph contains weighted edges connected by weighted
nodes where weights are proportional to the local densities of the data.

The algorithm starts with two randomly selected nodes from the data. In each
iteration the algorithm selects one additional object and the nearest node to this object
and its direct topological neighboors are moved towards this selected object. When
the nearest node and the other n − 1 nearest nodes are not connected the algorithm
establishes a connection between them. The ages and the weight-variables of edges,
the error-variables and the weights of nodes are updated step by step. This method
inserts a new node to the graph when the number of the generated input pattern is
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Fig. 1.7 DTRN graphs of the swiss roll data set with different parameter settings. a DTRN of swiss
roll data set tmax = 500, T = 5 (n = 370). b DTRN of swiss roll data set tmax = 500, T = 10
(n = 383). c DTRN of swiss roll data set tmax = 1000, T = 5 (n = 631). d DTRN of swiss roll
data set tmax = 1000, T = 10 (n = 345)
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Fig. 1.8 Weighted Incremental Networks of the swiss roll data set. a WINN of swiss roll data set
applying the suggested amax = N/10 parameter setting. b WINN of swiss roll data set with T = 3
parameter setting
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a multiple of a predefined λ parameter. Similarly to the previous algorithms WINN
also removes the ‘old’ connections. The whole algorithm is given in Algorithm 6.

The algorithm has several parameters. While some of them (amax, λ) are dependent
on the number of objects to be analysed, others (εb, εn, α and d) are independent form
the size of the dataset. It is suggesed to initialise these independent parameters as
follows: εb = 0.05, εn = 0.0006, α = 0.5, and d = 0.0005. Parameters amax and λ

influence the resulted number of nodes in the graph. These parameters are suggested
to set as follows: amax = number of input data objects/10, and λ = number of input
signals that must be generated / desired number of representative elements. The main
disadvantage of the Weighted Incremental Neural Network algorithm is the difficulty
of tuning these parameters.

In the course of our tests we have found that the suggested setting of parameter
amax is too high. In our experimental results in case of linear manifolds nonlinearly
embedded in higher dimensional space lower values of parameter amax gave better
results. Figure 1.8a shows WINN on swiss roll data set with N = 5000. Following

Algorithm 6 WINN algorithm

Given a set of input objects X = {x1, x2, . . . , xN }, xi ∈ R
D , i = 1, 2, . . . , N .

Step 1 Initialization: Set the weight and the error variables of the objects to 0.
Step 2 Select randomly two nodes from the input data set X.
Step 3 Select randomly an element (input signal) xs from the input data objects.
Step 4 Find the n nearest input objects x j to xs . Yield the first nearest object x1, the second

nearest object x2, and so on. Increment the weight of n nearest objects by 1.
Step 5 Increment the age variable of all edges connected to x1 by 1.
Step 6 Update the error variable of x1 as follows:

Δerr(x1) = ‖x1 − xs‖2 (1.17)

Step 7 Move the nearest object x1 and the objects connected to x1 towards xs by fractions εb
and εn respectively of their distances to xs .

Step 8 If there is not edges between xs and x j ( j = 1, 2, . . . n) create them, and set their age
variable to 0. If these edges (or some of them) exist refresh them by setting their age variable to
zero. Increment the weight variable of edges between xs and x j ( j = 1, 2, . . . n) by 1.

Step 9 Remove the edges with age more than a predefined parameter amax. Isolated data points,
which are not connected by any edge are also deleted.

Step 10 If the number of the generated input signals so far is multiple of a user defined parameter
λ, insert a new node as follows: Determine the node xq with the largest accumulated error.

Step 10.1 Insert a new node (xr ) halfway between xq and its neighbor x f with the largest
error. Set the weight variable of xr to the average weights of xq and x f .

Step 10.2 Connect xr to xq and x f . Initialize the weight variable of the new edges with the
weight variable of edge between xq and x f . Delete the edge connecting the nodes xq and
x f .

Step 10.3 Decrease the error variable of xq and x f by multiplying them with a constant α.
Set the error variable of the new node xr to the new error variable of xq .

Step 11 Decrease all error variables by multiplying them with a constant d.
Step 12 If a termination criterion not met go back to Step 3.
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the instructions of [20] we have set parameter amax to be N/10, amax = 500. The
resulted graph contains some unnecessary links. Setting this parameter to a lower
value this superfluous connections do not appear in the graph. Figure 1.8b shows
this reduced parameter setting, where amax was set to be amax = 3. The number of
representative elements in both cases was n = 200.
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Chapter 2
Graph-Based Clustering Algorithms

Abstract The way how graph-based clustering algorithms utilize graphs for
partitioning data is very various. In this chapter, two approaches are presented.
The first hierarchical clustering algorithm combines minimal spanning trees and
Gath-Geva fuzzy clustering. The second algorithm utilizes a neighborhood-based
fuzzy similarity measure to improve k-nearest neighbor graph based Jarvis-Patrick
clustering.

2.1 Neigborhood-Graph-Based Clustering

Since clustering groups neighboring objects into same cluster neighborhood graphs
are ideal for cluster analysis. A general introduction to the neighborhood graphs
is given in [18]. Different interpretations of concepts ‘near’ or ‘neighbour’ lead
to a variety of related graphs. The Nearest Neighbor Graph (NNG) [9] links each
vertex to its nearest neighbor. The Minimal Spanning Tree (MST) [29] of a weighted
graph is a spanning tree where the sum of the edge weights is minimal. The Relative
Neighborhood Graph (RNG) [25] connects two objects if and only if there is no other
object that is closer to both objects than they are to each other. In the Gabriel Graph
(GabG) [12] two objects, p and q, are connected by an edge if and only if the circle
with diameter pq does not contain any other object in its interior. All these graphs
are subgraphs of the well-known Delaunay triangulation (DT) [11] as follows:

NNG ⊆ MST ⊆ RNG ⊆ GabG ⊆ DT (2.1)

There are many graph-based clustering algorithms that utilize neighborhood rela-
tionships. Most widely known graph-theory based clustering algorithms (ROCK [16]
and Chameleon [20]) also utilize these concepts. Minimal spanning trees [29] for
clustering was initially proposed by Zahn [30]. Clusters arising from single linkage
hierarchical clustering methods are subgraphs of the minimum spanning tree of the
data [15]. Clusters arising from complete linkage hierarchical clustering methods are

Á. Vathy-Fogarassy and J. Abonyi, Graph-Based Clustering 17
and Data Visualization Algorithms, SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-5158-6_2, © János Abonyi 2013



18 2 Graph-Based Clustering Algorithms

maximal complete subgraphs, and are related to the node colorability of graphs [3]. In
[2, 24], the maximal complete subgraph was considered to be the strictest definition
of the clusters. Several graph-based divisive clustering algorithms are based on MST
[4, 10, 14, 22, 26]. The approach presented in [1] utilizes several neighborhood
graphs to find the groups of objects. Jarvis and Patrick [19] extended the nearest
neighbor graph with the concept of the shared nearest neighbors. In [7] Doman et al.
iteratively utilize Jarvis-Patrick algorithm for creating crisp clusters and then they
fuzzify the previously calculated clusters. In [17], a node structural metric has been
chosen making use of the number of shared edges.

In the following, we introduce the details and improvements of MST and Jarvis-
Patrick clustering algorithms.

2.2 Minimal Spanning Tree Based Clustering

Minimal spanning tree is a weighted connected graph, where the sum of the weights
is minimal. Denote G = (V, E) a graph. Creating the minimal spanning tree means,
that we are searching the G ′ = (V, E ′), the connected subgraph of G, where E ′ ⊂ E
and the cost is minimal. The cost is computed in the following way:

∑
e∈E ′

w(e) (2.2)

where w(e) denotes the weight of the edge e ∈ E . In a graph G, where the number
of the vertices is N , MST has exactly N − 1 edges.

A minimal spanning tree can be efficiently computed in O(N 2) time using either
Prim’s [23] or Kruskal’s [21] algorithm. Prim’s algorithm starts with an arbitrary
vertex as the root of a partial tree. In each step of the algorithm, the partial tree grows
by iteratively adding an unconnected vertex to it using the lowest cost edge, until
no unconnected vertex remains. Kruskal’s algorithm begins with the connection of
the two nearest objects. In each step, the minimal pairwise distance that connects
separate trees is selected, and these two trees are connected along these objects. So
the Kruskal’s algorithm iteratively merges two trees (or a tree with a single object) in
the current forest into a new tree. The algorithm continues until a single tree remains
only, connecting all points. Detailed description of these algorithms are given in
Appendix A.1.1.1 and A.1.1.2.

Clustering based on minimal spanning tree is a hierarchical divisive procedure.
Removing edges from the MST leads to a collection of connected subgraphs of G,
which can be considered as clusters. Since MST has only N−1 edges, we can choose
inconsistent edge (or edges) by revising only N−1 values. Using MST for clustering,
we are interested in finding edges, whose elimination leads to best clustering result.
Such edges are called inconsistent edges.

The basic idea of Zahn’s algorithm [30] is to detect inherent separations in the
data by deleting edges from the MST which are significantly longer than other edges.
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Step 1 Construct the minimal spanning tree so that the edges weights are the distances between
the data points.

Step 2 Remove the inconsistent edges to get a set of connected components (clusters).
Step 3 Repeat Step 2 until a terminating criterion is not satisfied.

Zahn proposed the following criterion to determine the inconsistent edges: an edge
is inconsistent if its length is more than f times the average length of the edges, or
more than f times the average of the length of nearby edges. This algorithm is able
to detect clusters of various shapes and sizes; however, the algorithm cannot detect
clusters with different densities.

Identification of inconsistent edges causes problems in the MST based clustering
algorithms. Elimination of k edges from a minimal spanning tree results in k + 1
disconnected subtrees. In the simplest recursive theories k = 1. Denote δ the length of
the deleted edge, and let V1, V2 be the sets of the points in the resulting two clusters. In
the set of clusters, we can state that there are no pairs of points (x1, x2), x1 ∈ V1, x2 ∈
V2 such that d(x1, x2) < δ. There are several ways to define the distance between two
disconnected groups of individual objects (minimum distance, maximum distance,
average distance, distance of centroids, etc.). Defining the separation between V1
and V2, we have the result that the separation is at least δ. The determination of the
value of δ is very difficult because data can contain clusters with different densities,
shapes, volumes, and furthermore they can also contain bridges (chain links) between
the clusters. A terminating criterion determining the stop of the algorithm should be
also defined.

The simplest way to delete edges from MST is based on distances between ver-
tices. By deleting the longest edge in each iteration step we get a nested sequence of
subgraphs. Several ways are known to stop the algorithm, for example the user can
define the number of clusters or give a threshold value on the length, as well. Zahn
suggested a global threshold value for the cutting, which considers the distribution
of the data in the feature space. In [30], this threshold (δ) is based on the average
weight (distances) of the MST (Criterion-1):

δ = λ
1

N − 1

∑
e∈E ′

w(e) (2.3)

where λ is a user defined parameter, N is the number of the objects, and E ′ yields
the set of the edges of MST. Of course, λ can be defined several ways.

Long edges of MST do not always indicate outliers or cluster separation. In case of
clusters with different densities, recursive cutting of longest edges does not give the
expected clustering result (see Fig. 2.1). Solving this problem Zahn [30] suggested
that an edge is inconsistent if its length is at least f times as long as the average of
the length of nearby edges (Criterion-2). Another usage of Criterion-2 based MST
clustering is finding dense clusters embedded in a sparse set of points.

The first two splitting criteria are based on distance between the resulted
clusters. Clusters chained by a bridge of small set of data cannot be separated by
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Fig. 2.1 Minimal spanning
tree of a data set contain-
ing clusters with different
densities

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance-based approaches (see Appendix A.6.9). To solve this chaining problem,
we present a criterion based on cluster validity measure.

Many approaches use validity measures to assess the goodness of the obtained
partitions and to estimate the correct number of clusters. This can be done in two ways:

• The first approach defines a validity function which evaluates a complete partition.
An upper bound for the number of clusters must be estimated (cmax), and the
algorithms have to be run with each c ∈ {2, 3, . . . , cmax}. For each partition,
the validity function provides a value such that the results of the analysis can be
compared indirectly.
• The second approach consists of the definition of a validity function that evaluates

individual clusters of a cluster partition. Again, cmax has to be estimated and the
cluster analysis has to be carried out for cmax. The resulting clusters are compared
to each other on the basis of the validity function. Similar clusters are collected in
one cluster, very bad clusters are eliminated, so the number of clusters is reduced.
The procedure can be repeated while there are clusters that do not satisfy the
predefined criterion.

Different scalar validity measures have been proposed in the literature, but none
of them is perfect on its own. For example, partition index [5] is the ratio of the
sum of compactness and separation of the clusters. Compactness of a cluster means
that members of the cluster should be as close to each other as possible. A common
measure of compactness is the variance, which should be minimized. Separation of
clusters can be measured for example based on the single linkage, average linkage
approach or with the comparison of the centroid of the clusters. Separation index
[5] uses a minimum distance separation for partition validity. Dunn’s index [8] is
originally proposed to be used at the identification of compact and well-separated
clusters. This index combines the dissimilarity between clusters and their diameters
to estimate the most reliable number of clusters. The problems of Dunn index are:
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(i) its considerable time complexity, (ii) its sensitivity to the presence of noise in
data. Three indices, are proposed in the literature that are more robust to the presence
of noise. These Dunn-like indices are based on the following concepts: minimum
spanning tree, Relative Neighborhood Graph, and Gabriel Graph.

One of the three Dunn-like indices [6] is defined using the concept of the MST.
Let Ci be a cluster and Gi = (Vi , Ei ) the complete graph whose vertices correspond
to the objects of Ci . Denote w(e) the weight of an edge e of the graph. Let EMST

i
be the set of edges of the MST of the graph Gi , and eMST

i the continuous sequence
of the edges in EMST

i whose total edge weight is the largest. Then, the diameter of
the cluster Ci is defined as the weight of eMST

i . With the use of this notation the
Dunn-like index based on the concept of the MST is given by the equation:

Dnc = min
i=1,...,nc

{
min

j=i+1,...,nc

(
δ(Ci , C j )

maxk=1,...,nc diam (Ck)

)}
(2.4)

where nc yields the number of the clusters, δ(Ci , C j ) is the dissimilarity function
between two clusters Ci and C j defined as minxl∈Ci ,xm∈C j d(xl , xm), and diam(Ck)

is the diameter of the cluster Ck , which may be considered as a measure of clusters
dispersion. The number of clusters at which Dnc takes its maximum value indicates
the number of clusters in the underlying data.

Varma and Simon [26] used the Fukuyama-Sugeno clustering measure for deleting
edges from the MST. In this validity measure weighted membership value of an object
is multiplied by the difference between the distance between the node and its cluster
center, and the distances between the cluster center and the center of the whole data
set. The Fukuyama-Sugeno clustering measure is defined in the following way:

FSm =
N∑

j=1

nc∑
i=1

μm
i, j

(
‖x j − vi‖2A − ‖vi − v‖2A

)
(2.5)

where μi, j is the degree of the membership of data point x j in the i th cluster,
m is a weighting parameter, v denotes the global mean of all objects, vi denotes
the mean of the objects in the i th cluster, A is a symmetric and positive definite
matrix, and nc denotes the number of the clusters. The first term inside the brackets
measures the compactness of clusters, while the second one measures the distances
of the cluster representatives. Small FS indicates tight clusters with large separations
between them. Varma and Simon found, that Fukuyama-Sugeno measure gives the
best performance in a data set with a large number of noisy features.

2.2.1 Hybrid MST: Gath-Geva Clustering Algorithm

In previous section, we presented main properties of minimal spanning tree based
clustering methods. In the following, a new splitting method and a new clustering
algorithm will be introduced.
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Hybrid Minimal Spanning Tree—Gath-Geva algorithm clustering algorithm
(Hybrid MST-GG) [27] first creates minimal spanning tree of the objects, then
iteratively eliminates inconsistent edges and uses the resulted clusters to initial-
ize Gaussian mixture model-based clustering algorithm (details of the Gath-Geva
algorithm are given in Appendix A.5). Since clusters of MST will be approximated
by multivariate Gaussians, the distribution of data can be expressed by covariance
matrices of the clusters. Therefore, the proposed Hybrid MST-GG algorithm utilizes
a validity measure expressed as the determinants of the covariance matrices used to
represent the clusters.

The fuzzy hyper volume [13] validity measure is based on the concepts of hyper
volume. Let Fi be the fuzzy covariance matrix of the i th cluster defined as

Fi =
∑N

j=1(μi, j )
m

(
x j − vi

) (
x j − vi

)T

∑N
j=1(μi, j )m

, (2.6)

where μi, j denotes the degree of membership of x j in cluster Ci , and vi denotes
the center of the i th cluster. The symbol m is the fuzzifier parameter of the fuzzy
clustering algorithm and indicates the fuzzyness of clustering result. We have to
mention that if the clustering result is coming from a hard clustering, the values of
μi, j are either 0 or 1, and the value of m is supposed to be 1. The fuzzy hyper volume
of i th cluster is given by the equation:

Vi =
√

det (Fi ) (2.7)

The total fuzzy hyper volume is given by the equation:

FHV =
c∑

i=1

Vi (2.8)

where c denotes the number of clusters. Based on this measure, the proposed Hybrid
Minimal Spanning Tree—Gath-Geva algorithm compares the volume of the clusters.
Bad clusters with large volumes are further partitioned until there are ‘bad’ clusters.

In the first step, the algorithm creates the minimal spanning tree of the normalized
data that will be partitioned based on the following steps:

• classical cutting criteria of the MST (Criterion-1 and Criterion-2),
• the application of fuzzy hyper volume validity measure to eliminate edges from

the MST (Criterion-3).

The proposed Hybrid MST-GG algorithm iteratively builds the possible clusters.
First all objects form a single cluster, and then in each iteration step a binary splitting
is performed. The use of the cutting criteria results in a hierarchical tree of clusters,
in which the nodes denote partitions of the objects. To refine the partitions evolved in
the previous step, we need to calculate the volumes of the obtained clusters. In each
iteration step, the cluster (a leaf of the binary tree) having the largest hyper volume
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is selected for the cutting. For the elimination of edges from the selected cluster, first
the cutting conditions Criterion-1 and Criterion-2 are applied, which were previously
introduced (see Sect. 2.2). The use of the classical MST based clustering methods
detects well-separated clusters, but does not solve the typical problem of the graph-
based clustering algorithms (chaining affect). To dissolve this discrepancy, the fuzzy
hyper volume measure is applied. If the cutting of the partition having the largest
hyper volume cannot be executed based on Criterion-1 or Criterion-2, then the cut is
performed based on the measure of the total fuzzy hyper volume. If this partition has
N objects, then N −1 possible cuts must be checked. Each of the N −1 possibilities
results in a binary split, hereby the objects placed in the cluster with the largest
hyper volume are distributed into two subclusters. The algorithm chooses the binary
split that results in the least total fuzzy hyper volume. The whole process is carried
out until a termination criterion is satisfied (e.g., the predefined number of clusters,
and/or the minimal number of objects in each partition is reached). As the number
of the clusters is not known beforehand, it is suggested to give a relatively large
threshold for it and then to draw the single linkage based dendrogram of the clusters
to determine the proper number of them.

The application of this hybrid cutting criterion can be seen as a divisive hierar-
chical method. Following a depth-first tree-growing process, cuttings are iteratively
performed. The final outcome is a hierarchical clustering tree, where the termination
nodes are the final clusters. Figure 2.2 demonstrates a possible result after applying
the different cutting methods on the MST. The partitions marked by the solid lines are
resulted by the applying of the classical MST-based clustering methods (Criterion-1
or Criterion-2), and the partitions having gray dotted notations are arising from the
application of the fuzzy hyper volume criterion (Criterion-3).

When compact parametric representation of the clusters is needed a Gaussian
mixture model-based clustering should be performed where the number of Gaussians
is equal to the termination nodes, and iterative Gath-Geva algorithm is initialized
based on the partition obtained from the cuted MST. This approach is really fruitful,
since it is well-known that the Gath-Geva algorithm is sensitive to the initialization
of the partitions. The previously obtained clusters give an appropriate starting-point
for the GG algorithm. Hereby, the iterative application of the Gath-Geva algorithm

Fig. 2.2 Binary tree given by
the proposed Hybrid MST-GG
algorithm

v

v1

11

111 112

12

2

21 22

221 222

v

v v v v

v v v v



24 2 Graph-Based Clustering Algorithms

results in a good and compact representation of the clusters. The whole Hybrid
MST-GG algorithm is described in Algorithm 7.

Algorithm 7 Hybrid MST-GG clustering algorithm
Step 0 Normalize the variables.
Step 1 Create the minimal spanning tree of the normalized objects.
Repeat Iteration

Step 2 Node selection. Select the node (i.e., subcluster) with the largest hyper volume Vi from
the so-far formed hierarchical tree. Perform a cutting on this node based on the following
criteria.

Step 3 Binary Splitting.
• If the selected subcluster can be cut by Criterion-1, eliminate the edge with the largest

weight that meets Criterion-1.
• If the selected subcluster cannot be cut by Criterion-1, but there exists an edge which

corresponds to Criterion-2 perform a split. Eliminate the edge with the largest weight that
meets Criterion-2.

• If the cluster having the largest hyper volume cannot be cut by Criterion-1 or Criterion-2,
perform a split based on the following: Each of the edges in the corresponding subcluster
with the largest volume in the so-far formed hierarchical tree is cut. With each cut, a binary
split of the objects is formed. If the current node includes Ni objects, then Ni − 1 such
splits are formed. The two subclusters, formed by the binary splitting, plus the clusters
formed so far (excluding the current node) compose the potential partition. The total fuzzy
hyper volume (F H V ) of all formed Ni − 1 potential partitions are computed. The one
that exhibits the lowest F H V is selected as the best partition of the objects in the current
node.

Until the termination criterion is satisfied (e.g. minimum number of objects in each subcluster
and/or maximum number of clusters).

Step 4 When the compact parametric representation of the result of the clustering is needed,
then Gath-Geva clustering is performed, where the number of the Gaussians is equal to the
termination nodes, and the GG algorithm is initialized based on the partition obtained at the
previous step.

The Hybrid MST-GG clustering method has the following four parameters: (i)
cutting condition for the classical splitting of the MST (Criterion-1 and Criterion-2);
(ii) terminating criterion for stopping the iterative cutting process; (iii) weighting
exponent m of the fuzzy membership values (see GG algorithm in Appendix A.5),
and (iv) termination tolerance ε of the GG algorithm.

2.2.2 Analysis and Application Examples

The previously introduced Hybrid MST-GG algorithm involves two major parts: (1)
creating a clustering result based on the cluster volume based splitting extension of
the basic MST-based clustering algorithm, and (2) utilizing this clustering output as
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initialization parameters in Gath-Geva clustering method. This way, the combined
application of these major parts creates a fuzzy clustering.

The first part of the Hybrid MST-GG algorithm involves iterative cuttings of MST.
The termination criterion of this iterative process can be based on the determination
of the maximum number of clusters (cmax). When the number of the clusters is
not known beforehand, it is suggested to determine this parameter a little larger
than the expectations. Hereby, the Hybrid MST-GG algorithm would result in cmax
fuzzy clusters. To determine the proper number of clusters it is worth drawing a
dendrogram of the resulted clusters based on their similarities (e.g., single linkage,
average linkage). Using these diagrams, the human ‘data miner’ can get a conception
how similar the clusters are in the original space and is able to determine which
clusters should be merged if it is needed. Finally, the resulted fuzzy clusters can also be
converted into hard clustering result based on the fuzzy partition matrix by assigning
the objects to the cluster characterized by the largest fuzzy membership value.

In the following clustering of some tailored data and well-known data sets are
presented. In the following if not defined differently, parameters of GG method were
chosen to be m = 2 and ε = 0.0001 according to the practice.

2.2.2.1 Handling the Chaining Effect

The first example is intended to illustrate that the proposed cluster volume based split-
ting extension of the basic MST-based clustering algorithm is able to handle (avoid)
the chaining phenomena of the classical single linkage scheme. Figure 2.3 presents
the minimal spanning tree of the normalized ChainLink data set (see Appendix A.6.9)
and the result of the classical MST based clustering method. The value of parame-
ter λ in this example was chosen to be 2. It means that based on Criterion-1 and
Criterion-2, those edges are removed from the MST that are 2 times longer than the
average length of the edges of the MST or 2 times longer than the average length of
nearby (connected) edges. Parameter settings λ = 2 . . . 57 give the same results. As
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Fig. 2.3 Classical MST based clustering of ChainLink data set. a MST of the ChainLink data set.
b Clusters obtained by the classical MST based clustering algorithm
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Fig. 2.3b illustrates, the classical MST based algorithm detects only two clusters. If
parameter λ is set to a smaller value, the algorithm cuts up the spherical clusters into
more subclusters, but it does not unfold the chain link. If parameter λ is very large
(λ = 58, 59, . . .), the classical MST-based algorithm cannot separate the data set.

Figure 2.4 shows the results of the Hybrid MST-GG algorithm running on the
normalized ChainLink data set. Parameters were set as follows: cmax = 4, λ = 2,
m = 2, ε = 0.0001. Figure 2.4a shows the fuzzy sets that are the results of the Hybrid
MST-GG algorithm. In this figure, the dots represent the data points and the ‘o’ mark-
ers are the cluster centers. The membership values are also shown, since the curves
represent the isosurfaces of the membership values that are inversely proportional to
the distances. It can be seen that the Hybrid MST-GG algorithm partitions the data set

Fig. 2.4 Result of the MST-
GG clustering algorithm
based on the ChainLink data
set. a Result of the MST-GG
clustering algorithm. b Hard
clustering result obtained by
the Hybrid MST-GG cluster-
ing algorithm
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adequately, and it also unfolds the data chain between the clusters. Figure 2.4b shows
the hard clustering result of the Hybrid MST-GG algorithm. Objects belonging to
different clusters are marked with different notations. It is obtained by assigning the
objects to the cluster characterized by the largest fuzzy membership value. It can be
seen that the clustering rate is 100 %.

This short example illustrates the main benefit of the incorporation of the clus-
ter validity based criterion into the classical MST based clustering algorithm. In
the following, it will be shown how the resulting nonparametric clusters can be
approximated by a mixture of Gaussians, and how this approach is beneficial for the
initialization of these iterative partitional algorithms.

2.2.2.2 Handling the Convex Shapes of Clusters: Effect of the Initialization

Let us consider a more complex clustering problem with clusters of convex shape.
This example is based on the Curves data set (see Appendix A.6.10). For the analysis,
the maximum number of the clusters was chosen to be cmax = 10, and parameter λ

was set to λ = 2.5. As Fig. 2.5 shows, the cutting of the MST based on the hybrid
cutting criterion is able to detect properly clusters, because there is no partition
containing data points from different curves. The partitioning of the clusters has
not been stopped at the detection of the well-separated clusters (Criterion-1 and
Criterion-2), but the resulting clusters have been further split to get clusters with
small volumes, (Criterion-3). The main benefit of the resulted partitioning is that it
can be easily approximated by a mixture of multivariate Gaussians (ellipsoids). This
approximation is useful since the obtained Gaussians give a compact and parametric
description of the clusters.

Figure 2.6a shows the final result of the Hybrid MST-GG clustering. The notation
of this figure are the same as in Fig. 2.4. As can be seen, the clusters provide an

Fig. 2.5 Clusters obtained by
cutting of the MST based on
the hybrid cutting criterion
(Curves data set)
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Fig. 2.6 Result of the Hybrid
MST-GG clustering algorithm
based on the Curves data set.
a Result of the Hybrid MST-
GG clustering algorithm.
b Single linkage dendrogram
based on the result of the
Hybrid MST-GG method
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excellent description of the distribution of the data. The clusters with complex shape
are approximated by a set of ellipsoids. It is interesting to note, that this clustering
step only slightly modifies the placement of the clusters (see Figs. 2.5 and 2.6a).
To determine the adequate number of the clusters, the single linkage dendrogram
has been also drawn based on the similarities of the clusters. Figure 2.6b shows
that it is worth merging clusters ‘7’ and ‘8’, then clusters ‘9’ and ‘10’, following
this the merging of clusters {7, 8} and 5 is suggested, then follows the merging of
clusters {6} and {9, 10}. After this merging, the clusters {5, 7, 8} and {6, 9, 10} are
merged, hereby all objects placed in the long curve belongs to a single cluster. The
merging process can be continued based on the dendrogram. Halting this iterative
process at the similarity level 0.995, the resulted clusters meet the users’ expectations
(clustering rate is 100 %).
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Fig. 2.7 Result of the Gath-Geva clustering initialized by fuzzy c-means (Curves data set). a Result
of the GG clustering initialized by FCM. b Dendrogram based on the result of FCM-GG

For testing the effect of the parameters, we have performed several runs with
different values of parameters λ and cmax.1 It is not advisable to select parameter λ

to be smaller than 2, because the data set is then cut up into many small subclusters.
While choosing parameter λ to be greater than 2 does not have an effect on the final
result. If cmax is chosen to be smaller than 10, the algorithm is not able to cut up
the large (‘S’) curve. If parameter cmax is chosen to be larger than 10, the Hybrid
MST-GG algorithm discloses the structure of the data set well.

In order to demonstrate the effectiveness of the proposed initialization scheme,
Fig. 2.7 illustrates the result of the Gath-Geva clustering, where the clustering was
initialized by the classical fuzzy c-means algorithm. As can be seen, this widely
applied approach failed to find the proper clustering of the data set, only a sub-
optimal solution has been found. The main difference between these two approaches
can be seen in the dendrograms (see Figs. 2.6b and 2.7b).

2.2.2.3 Application to Real Life Data: Classification of Iris Flowers

The previous example showed that it is possible to obtain a properly clustered rep-
resentation by the proposed mapping algorithm. However, the real advantage of the
algorithm was not shown. This will be done by the clustering of the well-known
Iris data set (see Appendix A.6.1). The parameters were set as follows: cmax = 3,
λ = 2.5, m = 2 and ε = 0.0001.

The basic MST based clustering method (Criterion-1 and Criterion-2) detects
only two clusters. In this case, the third cluster is formed only after the application of
the cluster volume based splitting criterion (Criterion-3). The resulted three clusters
correspond to the three classes of the Iris flowers. At the analysis of the distribution
of the classes in the clusters, we found only three misclassification errors. The mix-
ture of Gaussians density model is able to approximate this cluster arrangement. The

1 The effect of parameters m and ε was not tested, because these parameters has effects only on the
GG algorithm. These parameters were chosen as it suggested in [13].
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Fig. 2.8 Converted result of
the Hybrid MST-GG cluster-
ing on Iris data set
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fuzzy clusters resulted by the Hybrid MST-GG algorithm were converted to a hard
clustering by assigning each pattern to the cluster with the largest measure of mem-
bership. After this fine-tuning clustering step, we found only five misclassifications.
This means 96.67 % classification correctness, that is a quite good result for this
classification problem. Figure 2.8 shows the two-dimensional mapped visualization
of the classified Iris data set based on the Hybrid MST-GG algorithm completed with
the fuzzy-hard conversion. The two-dimensional mapping was made by the classical
multidimensional scaling.

2.3 Jarvis-Patrick Clustering

While most similarity measures are based on distances defied in the n-dimensional
vector space (e.g. Manhattan distances, Mahalanobis distance), similarity measures
useful for topology-based clustering utilize neighborhood relations (e.g., mutual
neighbor distance).

Jarvis-Patrick clustering (JP) [19] is a very simple clustering method. The algo-
rithm first finds k nearest neighbors (knn) of all the objects. Two objects are placed
in the same cluster whenever they fulfill the following two conditions:

• they must be each other’s k-nearest neighbors, and
• they must have at least l nearest neighbors in common.

The algorithm has two parameters:

• parameter k, that is the number of the nearest neighbors to be taken into consider-
ation, and
• parameter l, that determines the number of common neighbors necessary to classify

two objects into the same cluster.
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The main drawback of this algorithm is that the determination of the parameters k
and l influences the output of the algorithm significantly. Other drawbacks are:

• the decision criterion is very rigid (the value of l), and
• this decision is constrained by the local k-nearest neighbors.

To avoid these disadvantages we suggested an extension of the similarity measure of
the Jarvis-Patrick algorithm. The suggested fuzzy neighborhood similarity measure
takes not only the k nearest neighbors into account, and it gives a nice tool to tune
parameter l based on visualization and hierarchical clustering methods that utilize
the proposed fuzzy neighborhood similarity. The proposed extension is carried out
in the following two ways:

• fuzzyfication of parameter l, and
• spreading of the scope of parameter k.

The suggested fuzzy neighborhood similarity measure can be applied in various
forms, in different clustering and visualization techniques (e.g. hierarchical cluster-
ing, MDS, VAT). In this chapter, some application examples are also introduced to
illustrate the efficiency of the use of the proposed fuzzy neighborhood similarity
measure in clustering. These examples show that the fuzzy neighborhood similarity
measure based clustering techniques are able to detect clusters with different sizes,
shapes, and densities. It is also shown that outliers are also detectable by the proposed
measure.

2.3.1 Fuzzy Similarity Measures

Let X = {x1, x2, . . . , xN } be the set of data. Denote xi the i th object, which
consists of D measured variables, grouped into an D-dimensional column vector
xi = [x1,i , x2,i , . . . , xD,i ]T , xi ∈ R

D . Denote mi, j the number of common k-
nearest neighbors of xi and x j . Furthermore, denote set Ai the k-nearest neighbors
of xi , and A j , respectively, for x j . The Jarvis-Patrick clustering groups xi and x j in
the same cluster, if Eq. (2.9) holds.

xi ∈ A j and x j ∈ Ai and mi, j > l (2.9)

Because mi, j can be expressed as |Ai ∩ A j |, where | • | denotes the cardinality,
the mi, j > l formula is equivalent with the expression |Ai ∩ A j | > l. To refine
decision criterion, a new similarity measure between the objects is suggested [28].
The proposed fuzzy neighborhood similarity measure is calculated in the following
way:

si, j = |Ai ∩ A j |
|Ai ∪ A j | =

mi, j

2k − mi, j
(2.10)
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Equation (2.10) means that fuzzy neighborhood similarity characterizes similarity
of a pair of objects by the fraction of the number of the common neighbors and
the number of the total neighbors of that pair. The fuzzy neighborhood similarity
measure is calculated between all pairs of objects, and it takes a value from [0, 1].
The si, j = 1 value indicates the strongest similarity between the objects, and the
si, j = 0 expresses that objects xi and x j are very different from each other. Naturally,
si,i = 1 for all i = 1, 2, . . . , N . With the usage of the fuzzy neighborhood similarity
measure the crisp parameter l of the Jarvis-Patrick algorithm is fuzzyfied.

Topology representation can be improved by more sophisticated neighborhood
representation. The calculation of the transitive neighborhood fuzzy similarity mea-
sure is an iterative process. In each iteration step, there is an r -order similarity
measure (s(r)

i, j ) calculated of the objects. In the case of r = 1 the s(1)
i, j is calculated as

the fraction of the number of shared neighbors of the k-nearest neighbors of objects
xi and x j and the total number of the k-nearest neighbors of objects xi and x j . In

this case, Eq. (2.10) is obtained. Generally, s(r)
i, j is calculated in the following way:

s(r)
i, j =

|A(r)
i ∩ A(r)

j |
|A(r)

i ∪ A(r)
j |

, (2.11)

where set A(r)
i denotes the r -order k-nearest neighbors of object xi , and A(r)

j , respec-
tively, for x j . In each iteration step, the pairwise calculated fuzzy neighborhood
similarity measures are updated based on the following formula:

s,(r)
i, j = (1− α)s,(r−1)

i, j + αs(r)
i, j , (2.12)

where α is the first-order filter parameter. The iteration process proceeds until r
reaches the predefined value (rmax). The whole procedure is given in Algorithm 8.

As a result of the whole process, a fuzzy neighborhood similarity matrix (S) will be
given containing pairwise fuzzy neighborhood similarities. The fuzzy neighborhood
distance matrix (D) of the objects is obtained by the formula: D = 1 − S. These
similarity distance matrices are symmetrical, ST = S and DT = D.

The computation of the proposed transitive fuzzy neighborhood similarity/distance
measure includes the proper setting of three parameters: k, rmax, and α. Lower k (e.g.,
k = 3) separate the clusters better. By increasing value k clusters will overlap in sim-
ilar objects. The higher rmax is, the higher the similarity measure becomes. Increase
of rmax results in more compact clusters. The lower the value of α, the less the affect
of far neighbors becomes.

As the fuzzy neighborhood similarity measure is a special case of the transitive
fuzzy neighborhood similarity measure in the following these terms will be used as
equivalent.
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Algorithm 8 Calculation of the transitive fuzzy neighborhood similarity measure
Given a set of data X, specify the number of the maximum clusters rmax , and choose a first-order
filter parameter α. Initialize the fuzzy neighborhood similarity matrix as S(0) = 0.

Repeat for r = 1, 2, . . . , rmax

Step 1 Calculate the fuzzy neighborhood similarities for each pair of objects as follows:

s(r)
i, j =

|A(r)
i ∩ A(r)

j |
|A(r)

i ∪ A(r)
j |

, (2.13)

where set A(r)
i denotes the r -order k-nearest neighbors of object xi ∈ X, and A(r)

j , respec-
tively, for x j ∈ X.

Step 2 Update the fuzzy neighborhood similarity measures based on the following formula:

s,(r)
i, j = (1− α)s,(r−1)

i, j + αs(r)
i, j , (2.14)

Finally, s,(rmax )
i, j yields the fuzzy neighborhood similarities of the objects.

2.3.2 Application of Fuzzy Similarity Measures

There are several ways to apply the previously introduced fuzzy neighborhood
similarity/distance matrix. For example, hierarchical clustering methods work on
similarity or distance matrices. Generally, these matrices are obtained from the
Euclidian distances of pairs of objects. Instead of the other similarity/distance
matrices, the hierarchical methods can also utilize the fuzzy neighborhood simi-
larity/distance matrix. The dendrogram not only shows the whole iteration process,
but it can also be a useful tool to determine the number of the data groups and the
threshold of the separation of the clusters. To separate the clusters, we suggest to
draw the fuzzy neighborhood similarity based dendrogram of the data, where the
long nodes denote the proper threshold to separate the clusters.

The visualization of the objects may significantly assist in revealing the clusters.
Many visualization techniques are based on the pairwise distance of the data. Because
multidimensional scaling methods (MDS) (see Sect. 3.3.3) work on dissimilarity
matrices, this method can also be based on the fuzzy neighborhood distance matrix.
Furthermore, the VAT is also an effective tool to determine the number of the clusters.
Because VAT works with the dissimilarities of the data, it can also be based on the
fuzzy neighborhood distance matrix.

In the following section, some examples are presented to show the application of
the fuzzy neighborhood similarity/distance measure. The first example is based on
a synthetic data set, and the second and third examples deal with visualization and
clustering of the well-known Iris and Wine data sets.

The variety data set is a synthetic data set which contains 100 two-dimensional
data objects. 99 objects are partitioned in 3 clusters with different sizes (22, 26, and 51
objects), shapes, and densities, and it also contains an outlier (see Appendix A.6.8).

http://dx.doi.org/10.1007/978-1-4471-5158-6_3
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Fig. 2.9 Results of the Jarvis-Patrick clustering on the normalized Variety data set. a k = 8, l = 3.
b k = 8, l = 4. c k = 8, l = 5

Figure 2.9 shows some results of Jarvis-Patrick clustering applied on the normalized
data set. The objects belonging to different clusters are marked with different markers.
In these cases, the value of parameter k was fixed to 8, and the value of parameter l
was changed from 2 to 5. (The parameter settings k = 8, l = 2 gives the same result
as k = 8 and l = 3.) It can be seen that the Jarvis-Patrick algorithm was not able to
identify the clusters in any of the cases. The cluster placed in the upper right corner in
all cases is split into subclusters. When parameter l is low (l = 2, 3, 4), the algorithm
is not able to detect the outlier. When parameter l is higher, the algorithm detects the
outlier, but the other clusters are split into more subclusters. After multiple runs of
the JP algorithm, there appeared a clustering result, where all objects were clustered
according to expectations. This parameter setting was: k = 10 and l = 5. To show
the complexity of this data set in Fig. 2.10, the result of the well-known k-means
clustering is also presented (the number of the clusters is 4). This algorithm is not
able to disclose the outlier, thereby the cluster with small density is split into two
subclusters.
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Fig. 2.10 Result of the k-
means clustering on the nor-
malized Variety data set

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Table 2.1 Clustering rates
for different mappings of the
Variety data set

Algorithm Clustering rate (%)

JP k = 8 l = 3 95
JP k = 8 l = 4 98
JP k = 8 l = 5 65
JP k = 10 l = 5 100
k-means 88

Table 2.1 summarizes the clustering rates of the previously presented algorithms.
The clustering rate was calculated as the fraction of the number of well-clustered
objects and the total number of objects.

The proposed fuzzy neighborhood similarity measure was calculated with differ-
ent k, rmax and α parameters. Different runs with parameters k = 3 . . . 25, rmax =
2 . . . 5 and α = 0.1 . . . 0.4 have been resulted in good clustering outcomes. If a large
value is chosen for parameter k, it is necessary to keep parameter rmax on a small
value to avoid merging the outlier object with one of the clusters.

To show the fuzzy neighborhood distances of the data, the objects are visualized
by multidimensional scaling and VAT. Figure 2.11a shows the MDS mapping of the
fuzzy neighborhood distances with the parameter settings: k = 6, rmax = 3 and
α = 0.2. Other parameter settings have also been tried, and they show similar results
to Fig. 2.11a. It can be seen that the calculated pairwise fuzzy neighborhood similarity
measure separates the three clusters and the outlier well. Figure 2.11b shows the
VAT representation of the data set based on the single linkage fuzzy neighborhood
distances. The three clusters and the outlier are also easily separable in this figure.

To find the proper similarity threshold to separate the clusters and the outlier,
the dendrogram based on the single linkage connections of the fuzzy neighborhood
distances of the objects (Fig. 2.12) has also been drawn. The dendrogram shows that
the value di, j = 0.75 (di, j = 1− si, j ) is a suitable choice to separate the clusters and
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Fig. 2.11 Different graphical representations of the fuzzy neighborhood distances (Variety data
set). a MDS based on the fuzzy neighborhood distance matrix. b VAT based on the single linkage
fuzzy neighborhood distances
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Fig. 2.12 Single linkage dendrogram based on the fuzzy neighborhood distances (Variety data set)

the outlier from each other (k = 6, rmax = 3 and α = 0.2). Applying a single linkage
agglomerative hierarchical algorithm based on the fuzzy neighborhood distances, and
halting this algorithm at the threshold di, j = 0.75 the clustering rate is 100 %. In
other cases (k = 3 . . . 25, rmax = 2 . . . 5 and α = 0.1 . . . 0.4, and if the value of
parameter k was large, the parameter rmax was kept on low values), the clusters also
were easily separable and the clustering rate obtained was 99–100 %.

This simple example illustrates that the proposed fuzzy neighborhood similar-
ity measure is able to separate clusters with different sizes, shapes, and densities,
furthermore it is able to identify outliers. The Wine database (see Appendix A.6.3)
consists of the chemical analysis of 178 wines from 3 different cultivars in the same
Italian region. Each wine is characterized by 13 attributes, and there are 3 classes
distinguished. Figure 2.13 shows the MDS projections based on the Euclidian and
the fuzzy neighborhood distances (k = 6, rmax = 3, α = 0.2). The figures illustrate
that the fuzzy neighborhood distance based MDS separates the three clusters better.
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Fig. 2.13 Different MDS representations of the Wine data set. a MDS based on the Euclidian
distances. b MDS based on the fuzzy neighborhood distance matrix
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Fig. 2.14 Average linkage based dendrogram of fuzzy neighborhood distances (Wine data set)

To separate the clusters, we have drawn dendrograms based on the single, average,
and the complete linkage distances. Using these parameters, the best result (cluster-
ing rate 96.62 %) is given by the average linkage based dendrogram, on which the
clusters are uniquely separable. In Fig. 2.14, the average linkage based dendrogram
of the fuzzy neighborhood distances is shown. Figure 2.15 shows the VAT represen-
tation of the Wine data set based on the average linkage based relations of the fuzzy
neighborhood distances. It can be see that the VAT representation also suggest to
draw three clusters.

For the comparison the Jarvis-Patrick algorithm was also tested with different set-
tings on this data set. Running results of this algorithm show very diverse clustering
rates (see Table 2.2). The fuzzy neighborhood similarity was also tested on the Iris
data set. This data set contains data about three types of iris flowers (see Appendix
A.6.1). Iris setosa is easily distinguishable from the other two types, but the Iris
versicolor and the Iris virginica are very similar to each other. Figure 2.16a shows
the MDS mapping of this data set based on the fuzzy neighborhood distances. This
visualization distinguishes the Iris setosa from the other two types, but the individ-
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Fig. 2.15 Average linkage based VAT of fuzzy neighborhood distances (Wine data set)

Table 2.2 Clustering rates of
Jarvis-Patrick algorithm at
different parameter settings
on the Wine data set

Algorithm Clustering rate (%)

JP k = 10 l = 5 30.34
JP k = 10 l = 4 67.98
JP k = 10 l = 3 76.97
JP k = 10 l = 2 72.47
JP k = 8 l = 5 16.29
JP k = 8 l = 4 29.78
JP k = 8 l = 3 69.67
JP k = 8 l = 2 65.17
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Fig. 2.16 MDS and VAT representations of the Iris data set based on the fuzzy neighborhood
distances. a MDS based on the fuzzy neighborhood distance matrix. b VAT based on the fuzzy
neighborhood distance matrix

uals of the Iris versicolor and virginica overlap each other. Figure 2.16b shows the
VAT visualization of the fuzzy neighborhood distances based on the single linkage
relations of the objects. The VAT visualization also suggests a well-separated and
two overlapping clusters. The parameter settings in both cases were: k = 5, rmax = 3
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and α = 0.2. Different runs of the original Jarvis-Patrick clustering have not given
an acceptable result.

2.4 Summary of Graph-Based Clustering Algorithms

In this chapter, two graph-based clustering approaches were presented.

• The best-known graph-theoretic divisive clustering algorithm deletes the longest
edges of minimal spanning tree (MST) of the data [30]. We introduced a new
splitting criterion to improve the performance of clustering methods based on
this principle. The proposed splitting criterion is based on the calculation of the
hypervolume of the clusters. From the suggested splitting criterion follows that
the resulted clusters can be easily approximated by multivariate Gaussian func-
tions. Result of the cutting of the MST based on the combined cutting criteria
(classical cutting and the proposed cutting) can be effectively used for the ini-
tialization of Gaussian mixture model-based clustering algorithms. The resulted
Hybrid MST-GG clustering algorithm combines the graph-theoretic and the parti-
tional model based clustering. The approach is demonstrated through some sets of
tailored data and through the well-known Iris benchmark classification problem.
The results showed the advantages of the hybridization of the hierarchial graph-
theoretic and partitional model based clustering algorithm. It has been shown that:
(1) the chaining problem of the classical MST based clustering has been solved;
(2) the initialization of the Gath-Geva clustering algorithms has been properly
handled, and (3) the resulting clusters are easily interpretable with the compact
parametric description of the multivariate Gaussian clusters (fuzzy covariance
matrices).
• The similarity of objects can be calculated based on neighborhood relations. The

fuzzy neighborhood similarity measure introduced in this chapter extends the
similarity measure of the Jarvis-Patrick algorithm in two ways: (i) it takes into
account the far neighbors partway and (ii) it fuzzifies the crisp decision criterion
of the Jarvis-Patrick algorithm.

The fuzzy neighborhood similarity measure is based on the common neighbors of
the objects, but differently from the Jarvis-Patrick algorithm it is not restricted to
the direct neighbors. While the fuzzy neighborhood similarity measure describes the
similarities of the objects, the fuzzy neighborhood distance measure characterizes
the dissimilarities of the data. The values of the fuzzy neighborhood distances are
easily computable from the fuzzy neighborhood similarities. The application possi-
bilities of the fuzzy neighborhood similarity and distance measures are widespread.
All methods that work on distance or similarity measures can also be based on the
fuzzy neighborhood similarity/distance measures. This chapter introduced the appli-
cation possibilities of the fuzzy neighborhood similarity and distance measures in
hierarchical clustering and in VAT representation. It was demonstrated through appli-
cation examples that clustering methods based on the fuzzy neighborhood similar-



40 2 Graph-Based Clustering Algorithms

ity/distance measure can discover clusters with arbitrary shapes, sizes, and densities.
Furthermore, the fuzzy neighborhood similarity/distance measure is able to identify
outliers, as well.
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Chapter 3
Graph-Based Visualisation of High Dimensional
Data

Abstract In this chapter we give an overview of classical dimensionality reduction
and graph based visualisation methods that are able to uncover hidden structure of
high dimensional data and visualise it in a low-dimensional vector space.

3.1 Problem of Dimensionality Reduction

In practical data mining problems high-dimensional data has to be analysed. Objects
to be analysed are characterised with D variables, and each variable corresponds
to a dimension of the vector space. So data characterised with D variables can be
interpreted as a point in the D-dimensional vector space. The question is how can
we visualise high-dimensional (D > 3) data for human eyes?

Since humans are can able to handle more then three dimensions, it is useful to
map the high-dimensional data points into a low-dimensional vector space. Since we
are particularly good at detecting certain patterns in visualised form, dimensionality
reduction methods play an important role in exploratory data analysis [1] and visual
data mining.

Dimensional reduction methods visualise high-dimensional objects in a lower
dimensionality vector space in such a way that they try to preserve their spatial
position. Therefore the mapping procedure is influenced by the spatial position of the
objects to be analysed. The spatial distribution of the data points can be determined by
the distances and/or the neighbourhood relations of the objects. In this way computing
the pairwise distances plays an important role in the low-dimensional visualisation
process. Furthermore, we can see if the cardinality of the assessed data is really high,
the calculation of the pairwise distances requires notable time and computational
cost. In such a cases the application of a vector quantisation method may further
improve the quality of the depiction.

Based on this principles the mapping-based visualisation algorithms can be
defined as combinations of:
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1. vector quantisation (optional step),
2. calculation of the similarities or dissimilarities among the quantised or original

objects,
3. mapping of the quantised or original objects.

Each steps can be performed in a number of ways, and so dimensionality reduction
based visualisation methods offer a wide repository of opportunities. In the following
let take a closer look at applicable methods:

• Vector quantisation (VQ): There are several ways to reduce the number of the
analysed objects. Most often the presented k-means [2] or neural gas [3] algorithms
are used (see Chap. 1).
• Calculation of similarities or dissimilarities: Since applied mapping methods work

on similarity/dissimilarty matrices of the objects the computation of the pairwise
similarities or dissimilarities of the objects influences basically the result of the
mapping process. Dissimilarities can be expressed as distances. Distances among
the objects or quantised data can be calculated based on either a distance norm
(e.g. Euclidean norm) or based on a graph of the data. Calculation of graph based
distances requires the exploration of the topology of the objects or its representa-
tives. For this purpose the graph of the original or quantised data points should be
obtained by

– the ε-neighbouring,
– the k-neighbouring,
– or can be given by other algorithms used to generate the topology of data points

(for example, topology representing networks).

• Mapping: The mapping of the quantised or original data can also be carried out in
different ways (e.g. multidimensional scaling, Sammon mapping, principal com-
ponent analysis, etc.). These methods differ from each other in basic computation
principles, and therefore they can results in fairly different visualisation results.
Section 3.1 gives a summary from these methods.

As we previously mentioned, visualisation of high-dimensional data can be built
up as a combination of data reduction and dimensionality reduction. The goal of
dimensionality reduction is to map a set of observations from a high-dimensional
space (D) into a low-dimensional space (d, d � D) preserving as much of the
intrinsic structure of the data as possible. Let X = {x1, x2, . . . , xN } be a set of
the observed data, where xi denotes the i-th observation (xi = [xi,1, xi,2, . . . ,

xi,D]T ). Each data object is characterised by D dimensions, so xi, j yields the j-th
( j = 1, 2, . . . , D) attribute of the i-th (i = 1, 2, . . . , N ) data object. Dimensionality
reduction techniques transform data set X into a new data set Y with dimensionality
d (Y = {y1, y2, . . . , yN }, yi = [yi,1, yi,2, . . . , yi,d ]T ). In the reduced space many
data analysis tasks (e.g. classification, clustering, image recognition) can be carried
out faster than in the original data space.

Dimensionality reduction methods can be performed in two ways: they can
apply feature selection algorithms or they can based on different feature extrac-
tion methods. The topic of feature extraction and features selection methods is an

http://dx.doi.org/10.1007/978-1-4471-5158-6_1
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active research area, lots of research papers introduce new algorithms or utilise them
in different scientific fields (e.g. [4–9]).

Feature selection methods keep most important dimensions of the data and elimi-
nate unimportant or noisy factors. Forward selection methods start with an empty set
and add variables to this set one by one by optimizing an error criterion. Backward
selection methods start with all variables in the selected set and remove them one by
one, in each step removing the one that decreases the error the most.

In the literature there are many approaches (e.g. [10–13]) described to select the
proper subset of the attributes. The well known exhaustive search method [12] exam-

ines all possible

(
D
d

)
subsets and selects the subset with largest feature selection

criterion as the solution. This method guarantees to find the optimum solution, but if
the number of the possible subsets is large, it becomes impractical. There have been
many methods proposed to avoid the enormous computational cost (e.g. branch and
bound search [14], floating search [15], Monte Carlo algorithms).

Feature extraction methods do not select the most relevant attributes but they com-
bine them into some new attributes. The number of these new attributes is generally
more less than the number of the original attributes. So feature extraction methods
take all attributes into account and they provide reduced representation by feature
combination and/or transformation. The resulted representation provides relevant
information about the data. There are several dimensionality reduction methods pro-
posed in the literature based on the feature extraction approach, for example the well
known Principal Component Analysis (PCA) [16, 17], Sammon mapping (SM) [18],
or the Isomap [19] algorithm.

Data sets to be analysed often contain lower dimensional manifolds embedded
in higher dimensional space. If these manifolds are linearly embedded into high-
dimensional vector space the classical linear dimensionality reduction methods pro-
vide a fairly good low-dimensional representation of data. These methods assume
that data lie on a linear or on a near linear subspace of the high-dimensional space
and they calculate the new coordinates of data as the linear combination of the orig-
inal variables. The most commonly used linear dimensionality reduction methods
are for example the Principal Component Analysis (PCA) [17], the Independent
Component Analysis (ICA) [20] or the Linear Discriminant Analysis (LDA) [21].
However if the manifolds are nonlinearly embedded into the higher dimensional
space linear methods provide unsatisfactory representation of data. In these cases
the nonlinear dimensionality reduction methods may outperform the traditional lin-
ear techniques and they are able to give a good representation of data set in the
low-dimensional data space. To unfold these nonlinearly embedded manifolds many
nonlinear dimensionality reduction methods are based on the concept of geodesic
distance and they build up graphs to carry out the visualisation process (e.g. Isomap,
Isotop, TRNMap). The bets known nonlinear dimensionality reduction methods are
Kohonen’s Self-Organizing Maps (SOM) [22, 23], Sammon mapping [18], Locally
Linear Embedding (LLE) [24, 25], Laplacian Eigenmaps [26] or Isomap [19].

Dimensional reduction methods approximate high-dimensional data distribution
in a low-dimensional vector space. Different dimensionality reduction approaches
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emphasise different characteristics of data sets to be mapped. Some of them try to
preserve pairwise distances of the objects, others try to preserve global ordering or
neighbourhoud relations of data, and again others are based on mathematical models
representing other functional relationships. Based on the applied principle of the
mapping three types of the dimensionality reduction methods can be distinguished:

• metric methods try to preserve the distances of the data defined by a metric,
• non-metric methods try to preserve the global ordering relations of the data,
• other methods that are based on different mathematical approaches and differ from

the previously introduced two groups.

As distance based metric methods may provide less good results in neighbourhood
preservation. Naturally, non-metric dimensionality reduction methods emphasise the
preservation of the neighbourhood relations, and therefore they provide lower per-
formance in distance preservation. The quality of the mapping can be measured in
different ways. In the next subsection these quality measures will be introduced.

3.2 Measures of the Mapping Quality

During the mapping process algorithms try to approximate high-dimensional spatial
distribution of the objects in a low-dimensional vector space. Different algorithms
may result in different low-dimensional visualisations by emphasising different char-
acteristics of the objects relationships. While some of them try the preserve distances
others neighbourhood relationships. From an other aspects we can see that there are
algorithms that emphasise the local structure of the data points, while other methods
put the global structure in the focus. According to these approaches the evaluation
criteria of mapping can be summarised as follows:

• Distance versus neighbourhood preservation: Mapping methods try to preserve
either the distances or the neighbourhood relations among the data points. While
dimensionality reduction methods based on distance preservation try to preserve
the pairwise distances between the samples, the mapping methods based on neigh-
bourhood preservation attempt to preserve the global ordering relation of the data.
There are several numeral measures proposed to express how well the distances are
preserved, for example the classical metric MDS [27, 28] and the Sammon stress
[18] functions. The degree of the preservation of the neighbourhood relations can
be measured by the functions of trustworthiness and continuity [29, 30].
• Local versus global methods. On the other hand, the analysis of the considered

mapping methods can be based on the evaluation of the mapping qualities in local
and global environment of the objects. Local approaches attempt to preserve the
local geometry of data, namely they try to map nearby points in the input space to
nearby points in the output space. Global approaches attempt to preserve geometry
at all scales by mapping nearby points in the input space to nearby points in the
output space, and faraway points in the input space to faraway points in the output
space.



3.2 Measures of the Mapping Quality 47

To measure distance preservation of the mapping methods mostly the Sammon
stress function, classical MDS stress function and residual variance are used most
commonly.

Sammon stress and classical MDS stress functions are similar to each other.
Both functions calculate pairwise distances in the original and in the reduced low-
dimensional space as well. Both measures can be interpreted as an error between orig-
inal distances in the high-dimensional vector space and the mapped low-dimensional
vector space. The difference between the Sammon stress and the classical MDS stress
functions is that the Sammon stress contains a normalizing factor. In the Sammon
stress errors are normalised by distances of the input data objects. The Sammon
stress is calculated as it is shown in Eqs. 3.1 and 3.2 demonstrate the classical MDS
stress function.

ESM = 1
N∑

i< j
d∗i, j

N∑
i< j

(d∗i, j − di, j )
2

d∗i, j
, (3.1)

Emetric_MDS = 1
N∑

i< j
d∗2i, j

N∑
i< j

(d∗i, j − di, j )
2, (3.2)

In both equations d∗i, j denotes the distance between the i th and j th original objects,
and di, j yields the distance for the mapped data points in the reduced vector space.
Variable N yields the number of the objects to be mapped.

The error measure is based on the residual variance defined as:

1− R2(D∗X , DY ), (3.3)

where DY denotes the matrix of Euclidean distances in the low-dimensional output
space (DY = [di, j ]), and D∗X , D∗X = [d∗i, j ] is the best estimation of the distances of
the data to be projected. The pairwise dissimilarities of the objects in the input space
may arising from the Euclidean distances or may be estimated by graph distances of
the objects. R is the standard linear correlation coefficient, taken over all entries of
D∗X and DY .

In the following in this book, when the examined methods utilise geodesic or a
graph distances to calculate the pairwise dissimilarities of the objects in the high-
dimensional space the values of the dissimilarities of these objects (d∗i, j ) are also
estimated based on this principle.

The neighbourhood preservation of the mappings and the local and global
mapping qualities can be measured by functions of trustworthiness and continu-
ity. Kaski and Vienna pointed out that every visualisation method has to make a
tradeoff between gaining good trustworthiness and preserving the continuity of the
mapping [30, 31].
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A projection is said to be trustworthy [29, 30] when the nearest neighbours of a
point in the reduced space are also close in the original vector space. Let N be the
number of the objects to be mapped, Uk(i) be the set of points that are in the k size
neighbourhood of the sample i in the visualisation display but not in the original data
space. Trustworthiness of visualisation can be calculated in the following way:

M1(k) = 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Uk (i)

(r (i, j)− k) , (3.4)

where r(i, j) denotes the ranking of the objects in input space.
The projection onto a lower dimensional output space is said to be continuous

[29, 30] when points near to each other in the original space are also nearby in the
output space. Continuity of visualisation is calculated by the following equation:

M2(k) = 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Vk (i)

(s (i, j)− k) , (3.5)

where s(i, j) is the rank of the data sample i from j in the output space, and Vi (k)

denotes the set of those data points that belong to the k-neighbours of data sample i
in the original space, but not in the mapped space used for visualisation.

In this book when mappings are based on geodesic distances, the ranking values
of the objects in both cases (trustworthiness and continuity) are calculated based on
the geodesic distances.

Mapping quality of the applied methods in local and in global area can be
expressed by trustworthiness and continuity. Both measures are function of the
number of neighbours k. Usually, trustworthiness and continuity are calculated for
k = 1, 2, . . . , kmax, where kmax denotes the maximum number of the objects to be
taken into account. At small values of parameter k the local reconstruction perfor-
mance of the model can be tested, while at larger values of parameter k the global
reconstruction is measured.

Topographic error and topographic product quality measures may also be used
to give information about the neighbourhood preservation of mapping algorithms.
Topographic error [32] takes only the first and second neighbours of each data point
into account and it analyzes whether the nearest and the second nearest neighbours
remain neighbours of the object in the mapped space or not. If these data points are
not adjacent in the mapped graph the quality measure considers this a mapping error.
The sum of errors is normalized to a range from 0 to 1, where 0 means the perfect
topology preservation.

Topographic product introduced by Bauer in 1992 [33] was developed for qual-
ifying the mapping result of SOM. This measure has an input parameter k and it
takes not only the two nearest neighbor into account. The topographic product com-
pares the neighbourhood relationship between each pair of data points with respect
to both their position in the resulted map and their original reference vectors in the
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observation space. As result it indicates whether the dimensionality of the output
space is too small or too large.

3.3 Standard Dimensionality Reduction Methods

Although standard dimensionality reduction methods do not utilise neighbourhood
relations of data points and they do not build graphs to represent the topology, many
graph based visualisation methods utilise these techniques. First the well-known
Principal Component Analysis is introduced, which tries to preserve the variance
of the data. Among distance-based mapping methods Sammon mapping and the
metric multidimensional scaling will be presened. Multidimensional scaling has a
non-metric variant as well, which emphasise the preservation of the rank ordering
among the dissimilarities of objects. Sect. 3.3.3 contains the introduction of non-
metric variant of multidimensional scaling.

Naturally, there are several other widespread dimensionality reduction methods
that provides useful help to decrease the dimensionality of the data points (for exam-
ple Locally Linearly Embedding [24, 25], Linear Discriminant Analysis [21, 34] or
Laplacian Eigenmaps [26]). As these methods do not utilise graphs we do not detail
them in this book.

3.3.1 Principal Component Analysis

One of the most widely applied dimensionality reduction methods is the Principal
Component Analysis (PCA) [16, 17]. The PCA algorithm is also known as Hotteling
or as Karhunen-Loéve transform ([16, 17]). PCA differs from the metric and non-
metric dimensionality reduction methods, because instead of the preservation of the
distances or the global ordering relations of the objects it tries to preserve the variance
of the data. PCA represents the data as linear combinations of a small number of basis
vectors. This method finds the projection that stores the largest variance possible in
the original data and rotates the set of the objects such that the maximum variability
becomes visible. Geometrically, PCA transforms the data into a new coordinate
system such that the greatest variance by any projection of the data comes to lie on
the first coordinate, the second greatest variance on the second coordinate, and so
on. If the data set (X) is characterised with D dimensions and the aim of the PCA is
to find the d-dimensional reduced representation of the data set, the PCA works as
follows: The corresponding d-dimensional output is found by linear transformation:
Y = QX, where Q is the d × D matrix of linear transformation composed of the
d largest eigenvectors of the covariance matrix, and Y is the d × D matrix of the
projected data set.

To illustrate PCA-based dimensionality reduction visualisation we have chosen
2 well known data sets. Figure 3.1 shows the PCA-based mapping of the widely
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Algorithm 9 PCA algorithm
Step 1 PCA subtracts the mean from each of the data dimensions.
Step 2 The algorithm calculates the D × D covariance matrix of the data set.
Step 3 In the third step PCA calculates the eigenvectors and the eigenvalues of the covariance

matrix.
Step 4 The algorithms chooses the d largest eigenvectors.
Step 5 And finally it derives the new data set from the significant eigenvectors and from the

original data matrix.
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Fig. 3.1 PCA-based visualisations of iris data set. a 3-dimensional PCA-based visualisation of iris
data set. b 2-dimensional PCA-based visualisation of iris data set

used iris data set (see Appendix A.6.1). In the original data set each sample flower is
characterised with 4 attributes (sepal length and width and petal length and width).
As each sample flower is characterised with 4 numeric values, the original data set
is placed in a 4-dimensional vector space, which is not visible for human eyes. By
the use of PCA this dimensionality can be reduced. In the firs subfigure the first
three principal components are shown on axes (PC1, PC2, PC3), so it provides
a 3-dimensional presentation of the iris data set. In the second subfigure only the
first and the second principal components are shown on axes, therefore in this case
a 2-dimensional visualisation is presented. In these figures each colored plot yields
a flower corresponding to the original data set. Red points indicate iris flowers from
class iris setosa, blue points yield sample flowers from class iris versicolor and
magenta points indicate flowers from class iris virginica.

Figure 3.2 presents the colored S curve data set with 5000 sample points and
its 2-dimensional PCA-based mapping result. The second part of this figure (Fig.
3.2b) demonstrates the main drawback of the Principal Component Analysis based
mapping. As this subfigure do not tarts with dark blue points and do not ends with
bourdon data points, so this method is not able to unfold such linear manifolds that
are nonlinearly embedded in a higher dimensionality space.

As PCA is a linear dimensionality reduction method it can not unfold low-
dimensional manifolds embedded into the high-dimensional vector space. Kernel
PCA ([35, 36]) extends the power of the PCA algorithm with applying a kernel trick.
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Fig. 3.2 Colored S curve data set and its PCA based mapping. a Original S curve data set with
N = 5000 points. b PCA-based visualisation of S curve data set

First it transforms data into a higher-dimensional feature space, and the principal
components are in this feature space extracted.

3.3.2 Sammon Mapping

Sammon mapping (SM) [18] is one of the well known metric, nonlinear dimension-
ality reduction methods. While PCA attempts to preserve the variance of the data
during the mapping, Sammon’s mapping try to preserve the interpattern distances
[37, 38] as it tries to optimise a cost function that describes how well the pairwise
distances in a data set are preserved. The aim of the mapping process is to min-
imise this cost function step by step. The Sammon stress function (distortion of the
Sammon projection) can be written as:

ESM = 1
N∑

i< j
d∗i, j

N∑
i< j

(d∗i, j − di, j )
2

d∗i, j
, (3.6)

where d∗i, j denotes the distance between the vectors xi and x j , and di, j respectively
for yi and y j .

The minimisation of the Sammon stress is an optimisation problem. When the
gradient-descent method is applied to search for the minimum of Sammon stress, a
local minimum can be reached. Therefore a significant number of runs with different
random initialisations may be necessary.

Figure 3.3 represents 2-dimensional visualisation of the S curve data set resulted
by the Sammon mapping. Similar to the previously presented PCA-based map-
ping, the Sammon mapping can not unfold the nonlinearly embedded 2-dimensional
manifold.
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Fig. 3.3 Sammon mapping
of S curve data set
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3.3.3 Multidimensional Scaling

Multidimensional scaling (MDS) [27] refers to a group of unsupervised data visu-
alisation techniques. Given a set of data in a high-dimensional feature space, MDS
maps them into a low-dimensional (generally 2-dimensional) data space in a way
that objects that are very similar to each other in the original space are placed near
each other on the map, and objects that are very different from each other are placed
far away from each other. There are two types of MDS: (i) metric MDS and (ii)
non-metric MDS.

Metric (or classical) MDS discovers the underlying structure of data set by pre-
serving similarity information (pairwise distances) among the data objects. Similarly
to the Sammon mapping the metric multidimensional scaling also tries to minimise
a stress function. If the square-error cost is used, the objective function (stress) to be
minimized can be written as:

Emetric_MDS = 1
N∑

i< j
d∗2i, j

N∑
i< j

(d∗i, j − di, j )
2, (3.7)

where d∗i, j denotes the distance between the vectors xi and x j , and di, j between yi

and y j respectively. The only difference between the stress functions of the Sam-
mon mapping (see 3.6) and the metric MDS (see 3.7) is that the errors in distance
preservation in the case of Sammon mapping are normalized by the distances of the
input data objects. Because of this normalisation the Sammon mapping emphasises
the preservation of small distances.
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Classical MDS is an algebraic method that rests on the fact that matrix Y con-
taining the output coordinates can be derived by eigenvalue decomposition from the
scalar product matrix B = YYT . Matrix B can be found from the known distances
using Young-Householder process [39]. The detailed metric MDS algorithm is the
following:

Metric MDS Algorithm [40]

1. Let the searched coordinates of n points in a d-dimensional Euclidean space
be given by yi (i = 1, . . . , n), where yi =

[
yi,1, . . . , yi,d

]T . Matrix Y =[
y1, . . . , yn

]T is the n × d coordinates matrix. The Euclidean distances {di, j =(
yi − y j

)T (
yi − y j

)} are known. The inner product of matrix Y is denoted
B = YYT . Find matrix B from the known distances {di, j } using Young-
Householder process [39]:

(a) Define matrix A = [ai, j ], where ai, j = − 1
2 d2

i, j ,

(b) Deduce matrix B from B = HAH, where H = I − 1
n llT is the centering

matrix, and l is an n × 1 column vector of n one’s.

2. Recover the coordinates matrix Y from B using the spectral decomposition
of B:

(a) The inner product matrix B is expressed as B = YYT . The rank of B is
r (B) = r

(
YYT

) = r (Y) = d. B is symmetric, positive semi-definite and of
rank d, and hence has d non-negative eigenvalues and n−d zero eigenvalues.

(b) Matrix B is now written in terms of its spectral decomposition, B = VΛVT ,
where Λ = diag [λ1, λ2, . . . , λn] the diagonal matrix of eigenvalues λi of B,
and V = [v1, . . . , vn] the matrix of corresponding eigenvectors, normalized
such that vT

i vi = l,
(c) Because of the n − d zero eigenvalues, B can now be rewritten as B =

V1Λ1VT
1 , where Λ1 = diag [λ1, λ2, . . . , λd ] and V1 = [v1, . . . , vd ],

(d) Finally the coordinates matrix is given by Y = V1Λ
1
2
1 , where Λ

1
2
1 =

diag

[
λ

1
2
1 , . . . , λ

1
2
d

]
.

To illustrate the method visualisation of the iris data set and points lying on an S
curve were chosen (see Fig. 3.4).

In contrast with metric multidimensional scaling, in non-metric MDS only the
ordinal information of the proximities is used for constructing the spatial config-
uration. Thereby non-metric MDS attempts to preserve the rank order among the
dissimilarities. The non-metric MDS finds a configuration of points whose pairwise
Euclidean distances have approximately the same rank order as the corresponding
dissimilarities of the objects. Equivalently, the non-metric MDS finds a configuration
of points, whose pairwise Euclidean distances approximate a monotonic transforma-
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Fig. 3.4 MDS mappings of iris and S curve data sets. a MDS mapping of iris data set. b MDS
mapping of S curve data set

tion of the dissimilarities. These transformed values are known as the disparities.
The non-metric MDS stress can be formulated as follows:

Enonmetric_MDS =
√√√√ N∑

i< j

(d̂i, j − di, j )2/

N∑
i< j

d2
i, j , (3.8)

where d̂i, j yields the disparity of objects xi and x j , and di, j denotes the distance
between the vectors yi and y j . Traditionally, the non-metric MDS stress is often
called Stress-1 due to Kruskal [41].

The main steps of the non-metric MDS algorithm are given in Algorithm 10.

Algorithm 10 Non-metric MDS algorithm
Step 1 Find a random configuration of points in the output space.
Step 2 Calculate the distances between the points.
Step 3 Find the optimal monotonic transformation of the proximities in order to obtain the

disparities.
Step 4 Minimise the non-metric MDS stress function by finding a new configuration of points.
Step 5 Compare the stress to some criteria. If the stress is not enough small then go back to

Step 2.

It can be shown, that metric and non-metric MDS mappings are substantially dif-
ferent methods. On the one hand, while metric MDS algorithm is an algebraic method,
the non-metric MDS is an iterative mapping process. On the other hand the main goal
of the optimisation differs significantly, too. While metric multidimensional scaling
methods attempt to maintain the degree of the the pairwise dissimilarities of data
points, the non-metric multidimensional scaling methods focus on the preservation
of the order of the neighbourhood relations of the objects.
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3.4 Neighbourhood-Based Dimensionality Reduction

In this session dimensionality reduction methods utilising topology of data in the
input space are presented.

3.4.1 Locality Preserving Projections

Locality Preserving Projections (LPP) [42] method is a linear dimensionality reduc-
tion method, which can be seen as a linear extension of Laplacian eigenmaps. First,
the algorithm builds a graph based on k-neighbouring or ε-neighbouring in the input
space and during the mapping it tries to preserve optimally the neighbourhood struc-
ture of the data. The mapping component of the algorithm is a linear approximation to
the eigenfunctions of the Laplace Beltrami operator on the manifold embedded in the
high-dimensional vector space. The detailed algorithm can be found in Algorithm 11.

Algorithm 11 Locality Preserving Projections algorithm

Given a set of input objects X = {x1, x2, . . . , xN }T , xi ∈ R
D , i = 1, 2, . . . , N .

Step 1 In the first step the adjacency graph of the objects is calculated. The algorithm connects
two objects with an edge if they are close to each other. The closeness is determined based on
the of k-neighbouring or ε-neighbouring approaches.

Step 2 In the second step weights are assigned to the edges. The weights can be calculated based
on the following two principle:

Heat kernel: For each edges connecting xi and x j the weight is calculated as follows:

wi j = e−
‖xi−x j ‖2

t , (3.9)

where t is an input parameter.
Simple-minded: wi j = 1 if objects xi and x j are connected by an edge, otherwise wi j = 0.

Step 3 In the third step the algorithm computes the eigenvectors and eigenvalues for the following
generalized eigenvector problem:

XLXT a = λXMXT a, (3.10)

where M = L−W is the Laplacian matrix, and M is a diagonal matrix where mi i =∑
j w ji .

X is the data matrix and the i th column of that matrix is the i th object xi .
Column vectors a0, a1, . . . aN − 1 are the solutions of Equation 3.10, ordered according to the
eigenvectors λ0 < λ1 < . . . < λN − 1. The mapped data points yi (i = 1, 2, . . . , N ) are
calculated as follows:

yi = AT xi , (3.11)

where A = (a0, a0, . . . , aN−1).
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Fig. 3.5 LPP mappings of S curve and iris data sets. a LPP mapping of S curve data set. b LPP
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As a result LPP provides linear dimensionality reduction, which aims to preserve
the local structure of a given data set. Running experiments show, that LPP is not
sensitive to outliers and noise [42].

Figures 3.5 and 3.6 illustrate three application examples. Beside mapping of Iris
and S curve data sets (Fig. 3.5) a new benchmark data set is also selected for the visu-
alisation. The Semeion data set (see Appendix A.6.2 [43]) contains 1593 handwritten
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Fig. 3.6 LPP mapping of semeion data set
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digits from around 80 persons. Each person wrote on a paper all the digits from 0 to
9, twice. First time in the normal way as accurate as they can and the second time
in a fast way. The digits were scanned and stretched in a rectangular box including
16×16 cells in a grey scale of 256 values. Then each pixel of each image was scaled
into a boolean value using a fixed threshold. As a result the data set contains 1593
sample digits and each digit is characterised with 256 boolean variables. LPP of
the Semeion data set is shown in Fig. 3.6. The resulted 2-dimensional visualisation
shows interesting correlations between the digits.

3.4.2 Self-Organizing Map

Nowadays, neural networks (NN) [44] are also widely used to reduce dimension-
ality. Self-Organizing Map (SOM) developed by professor Teuvo Kohonen in the
early 1980s [23] is one of the most popular neural network models. The main goal
of SOM is to transform a high-dimensional (D-dimensional) pattern into a low-
dimensional discrete map in a topologically ordered grid. The 2-dimensional grids
may be arranged in a rectangular or a hexagonal structure. These fixed grid structures
are shown in Fig. 3.7. Although SOM can handle missing values, it is not able to
preserve the topology of the input data structure, when map structure does not match
the input data structure. Actually, the SOM is a neural network, where each neuron
is represented by a D-dimensional weight vector.

SOM is trained iteratively, using unsupervised learning. During the training
process the weight vectors have to be initialised first (e.g. randomly or sample
initialisation). After that given a random sample from the training data set, the best
matching unit (BMU) in the SOM is located. The BMU is the closest neuron to the
selected input pattern based on the Euclidean distance. The coordinates of BMU and
neurons closest to it in the SOM grid are then updated towards the sample vector
in the input space. The coverage of the change decreases with time. BMU and its
neighbouring neurons in the SOM grid are updated towards the sample object based
on the following formula:

wi (t + 1) = wi (t)+ hBMU,i (t) [x (t)− wi (t)] , (3.12)

Fig. 3.7 Hexagonal and rectangular structure of SOM
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where t denotes time, wi denotes the neurons in the grid, x(t) is the random sample
object at time t and hc,i (t) yields the neighbourhood function about the winner unit
(BMU) at time t .

The training quality of the Self-Organizing Map may be evaluated by the following
formula:

ESOM = 1

N

N∑
i=1

‖xi − wi
BMU‖, (3.13)

where N is the number of the objects to be mapped and wi
BMU yields the best matching

unit corresponding to the vector xi .
When SOM has been trained, it is ready to map any new input vector into a

low-dimensional vector space. During the mapping process a new input vector may
quickly be classified or categorized, based on the location of the closest neuron on
the grid.

There is a variety of different kinds of visualisation techniques available for the
SOM. (e.g. U-matrix, component planes). The Unified distance matrix (U-matrix)
[45] makes the 2D visualisation of multi-variate data. In the U-matrix the average
distances between the neighbouring neurons are represented by shades in a grey scale.
If the average distance of neighbouring neurons is short, a light shade is used; dark
shades represent long distances. Thereby, dark shades indicate a cluster border, and
light shades represent clusters themselves. Component planes [23] are visualised by
taking from each weight vector the value of the component (attribute) and depicting
this as a color or as a height on the grid. Figure 3.8 illustrates the U-matrix and the
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Fig. 3.8 The U-matrix and the component planes of the iris data set
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component planes representation in a hexagonal grid of the well-known iris data
set. It can be seen that the first iris kind (Iris setosa) forms a separate cluster and
the second kind (Iris versicolor) and the third one (Iris virginica) are mixed a little
bit. Among the wide range of other possibilities, the Self-Organizing Map is often
visualised by Principal Component Analysis and Sammon mapping to give more
insight to the structure of high-dimensional data.

3.4.3 Incremental Grid Growing

Incremental Grid Growing (IGG) [46] is a neural network based dimensionality
reduction approach, which takes into account the distribution of analysed data. The
algorithm results in a 2-dimensional grid that explicitly represents the cluster struc-
ture of the high-dimensional input data elements. Namely, different clusters are rep-
resented by separated grids.

Opposite to the SOM, the IGG algorithm is an incremental method, which step
by step adds nodes to the resulted 2-dimensional graph in the output space. As a
consequence, the IGG algorithm does not require to define the size of the map a
priori. Furthermore, the edges of the nodes are created and deleted dynamically, too.
Analogously to the SOM, the Incremental Growing Grid algorithm results in a fixed
grid topology, as well. While the SOM uses a predefined rectagonal or hexagonal
data structure in the the reduced space, the IGG algorithm works with a regular 2-
dimensional grid. This 2-dimensional grid allows to define the boundary nodes of
the grid, which is a decisive concept of the Incremental Grid Growing algorithm. In
Blackmore’s and Miikkulainen’ article the boundary node is defined as a node in the
grid that has at last one directly neighbouring position in the grid not yet occupied
by a node [46].

The Incremental Growing Grid algorithm starts with 2 × 2 nodes in the output
space. All boundary nodes are characterised by an error variable initialised to zero.
The algorithm works iteratively, in each iteration it chooses an input data object
randomly. Each iteration consist of three phases. During the training phase nodes
in the output grid are adapted to the input data elements in the same way as it in
the SOM algorithm happens. In the expansion phase the IGG algorithm creates a
new node or new nodes if it is necessary. If the closest node in the output grid to
the arbitrary chosen input vector is an boundary node, the algorithm recalculates the
error variable of this boundary node as follows:

Ei (t) = Ei (t − 1)+
∑

k

(
xk − wik

)2
, (3.14)

where t refers to the current number of iterations, wi is the winner boundary node,
and x is the arbitrary selected input object. The algorithm adds new nodes to the net
if too large number of analysed data are mapped into a low-dimensional output node,
and therefore the cumulative error of this node is too large. The boundary node with
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Fig. 3.9 Adding new nodes to the grid

the largest cumulative error (error node) is selected as the most inadequate node to
represent the data structure. This node grows new neighbouring node or nodes. The
new nodes are placed in all possible position in the grid which are adjacent to the
winner boundary node and they are not yet occupied by a node. Figure 3.9 visualises
two kinds of growing possibilities.

Weight vectors of the new nodes are initialised based on the neighbouring nodes
and the new nodes are connected to the error node. Finally, during the adaptation
of connections phase the algorithm evaluates two parameters for each connection. If
the Euclidean distance between two neighbouring unconnected nodes are less than a
connect threshold parameter, the algorithm creates a new edge between these nodes.
On the other hand, if the distance between two nodes connected in the grid exceeds
a disconnect threshold parameter, the algorithm deletes it.

To summarise, we can see that the Incremental Grid Growing algorithm analo-
gously to the SOM method utilises a predefined 2-dimensional structure of repre-
sentative elements, but in the case of the IGG algorithm the number of these nodes
is not a predefined parameter. As a consequence of the deletion of edges the IGG
algorithm may provide unconnected subgrids, which can be seen as a representation
of different clusters of the original objects.

The Adaptive Hierarchical Incremental Grid Growing (AHIGG) method pro-
posed by Merkl and coworkers in 2003 [47] extends the Incremental Grid Growing
approach. In this article the authors combine the IGG method with the hierarchical
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clustering approach. The main difference between the IGG and AHIG method is,
that in the course of the AHIGG algorithm the network representing the data grows
incrementally, but there are different levels of the growing state distinguished. The
Adaptive Hierarchical Incremental Grid Growing algorithm utilises the SOM algo-
rithm to train the net as well, but the initialisation of the net differs from the method
proposed in the IGG algorithm. The training process involves a fine tuning phase as
well, when only the winner node adapts to the selected data point, and no further
nodes are added to the graph. After the fine tuning phase the algorithm searches for
the possible extensions in the graph. For this extension the algorithm calculates an
error value (mean quantisation error) for each node, and nodes with too high error
value are expanded on the next level of the presentation. As a result the algorithm
creates a hierarchical architecture of different visualisation levels. Each level of the
hierarchy involves a number of independent clusters presented by 2-dimensional grid
structures.

3.5 Topology Representation

The main advantage of low-dimensional visualisation is that in the low-dimensional
vector space human eyes are able to detect clusters, or relationships between different
data objects or group of data. This is basic idea of the exploratory data analysis.
Methods introduced so far do not give back graphically the real structure of data.
Either they are not able to unfold manifolds embedded nonlinearly into the high-
dimensional space, or they visualise the observed objects or its representatives in a
predefined structure like a grid, or hexagonal lattice.

In this subsection such algorithms are introduced which try to visualise the real,
sometimes hidden structure of data to be analysed. These methods are mainly based
on the concept of geodesic distance. The geodesic distance is more appropriate
choice to determine the distances of the original objects or its representatives that
the Euclidean distance, as it calculates the pairwise distances along the manifold.
Therefore these algorithm are able to unfold such lower dimensional manifolds as
well which are nonlinearly embedded into the high-dimensional vectorspace.

The calculation of the geodesic distances of the objects requires the creation of a
graph structure of the objects or its representatives. This network may be established
for example by connecting the k nearest neighbours, or based on the principle of
ε-neighbouring. The well-known Isomap [19], Isotop [23] and Curvilinear Distance
Analysis [48] methods utilise all the k-neighbouring or ε-neighbouring approaches
to describe the neighbourhood-based structure of the analysed data. These methods
are introduced in Sects. 3.5.1–3.5.3.

Other possibility is to create topology representing networks to capture the data
structure. In the literature only few methods are only published that utilise the topol-
ogy representing networks to visualise the data set in the low-dimensional vector
space. The Online visualisation Neural Gas (OVI-NG) [49] is a nonlinear projection
method, in which the mapped representatives are adjusted in a continuous output
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space by using an adaptation rule that minimises a cost function that favors the local
distance preservation. As OVI-NG utilises Euclidean distances to map the data set it
is not able to disclose the nonlinearly embedded data structures. The Geodesic Non-
linear Projection Neural Gas (GNLP-NG) [50] algorithm is an extension of OVI-NG,
which uses geodesic distances instead of the Euclidean ones. The TRNMap algo-
rithm was developed recently, and it combines the TRN-based geodesic distances
with the multidimensional scaling method. In Sects. 3.5.4–3.5.6 these algorithms
are introduced.

3.5.1 Isomap

The Isomap algorithm proposed by Tenenbaum et al. in 2000 [19] is based on the
geodesic distance measure. Isomap deals with finite number of points in a data set
in R

D which are assumed to lie on a smooth submanifold Md (d � D). The aim of
this method is to preserve the intrinsic geometry of the data set and visualise the data
in a low-dimensional feature space. For this purpose Isomap calculates the geodesic
distances between all data points and then projects them into a low-dimensional
vector space. In this way the Isomap algorithm consists of three major steps:

Step 1 : Constructing the neighbourhood graph of the data by using the k-neighbour-
ing or ε-neighbouring approach.

Step 2 : Computing the geodesic distances between every pair of objects.
Step 3 : Constructing a d-dimensional embedding of the data points.

For the low-dimensional (generally d = 2) visualisation Isomap utilises the MDS
method. In this case the multidimensional scaling is not based on the Euclidean
distances, but it utilises the previously computed geodesic distances. As Isomap uses
a non-Euclidean metric for mapping, a nonlinear projection is obtained as a result.

However, when the first step of the Isomap algorithm is applied to a multi-class
data set, several disconnected subgraphs can be formed, thus the MDS can not be
performed on the whole data set. Wu and Chan [51] give an extension of the Isomap
solving this problem. In their proposal unconnected subgraphs are connected with an
edge between the two nearest node. In this manner the Euclidean distance is used to
approximate the geodesic distances of data objects lying on different disconnected
subgraphs. Furthermore, applying Isomap to noisy data shows also some limitations.

Figures 3.10 and 3.11 illustrate two possible 2-dimensional Isomap mappings of
the S curve set. It can be seen that due to the calculation of the geodesic distances, the
Isomap algorithm is able to unfold the 2-dimensional manifold nonlinearly embed-
ded into the 3-dimensional vector space. Additionally, in this figures two different
mapping results can be seen, which demonstrate the effect of the parametrisation of
Isomap algorithm. To calculate geodesic distances the k-neighbouring approach was
chosen in both cases. In the first case k was chosen to be k = 5, in the second case
k was set to be k = 10.
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As second example the iris data set was chosen to demonstrate the Isomap map-
ping. In this case the creation of the neighbouring graph resulted in two unconnected
subgraphs and so the original algorithm was not able to calculate the geodesic dis-
tances between all pairs of data. As a consequence, the MDS mapping can not be
performed on the whole data set. Therefore it can be established that the original
Isomap method (without any extensions) is not able to visualise the 2-dimensional
representation of the whole iris data set.

3.5.2 Isotop

The main limitation of SOM is that it transforms the high-dimensional pattern into
a low-dimensional discrete map in a topologically ordered grid (see Sect. 3.4.2).
Thereby, SOM is not able to preserve the topology of the input data structure. The
method Isotop [52] can be seen as a variation of SOM with a data-driven topology
grid. Contrary to the SOM’s rectangular or hexagonal lattice, Isotop creates a graph
that tries to capture the neighbourhood relationships in the manifold, and therefore
the resulted network reflects more accurate the hidden structure of the representatives
or data elements.

The algorithm consist of 3 major steps: (1) vector quantisation; (2) building a graph
from the representative elements; (3) mapping the graph onto a low-dimensional
vector space.

In the first phase Isotop performs a vector quantisation step in order to reduce
the number of data points. So the objects are replaced by their representatives. This
optional step can be achieved with simple methods, like Competitive Learning or
k-means clustering.

In the second step Isotop builds a graph structure to calculate the geodesic dis-
tances of the objects. This network is created based on the k-neighbouring or ε-
neighbouring approaches. Parameters k or ε are determined by the analyser. In the
network the edges are characterised by the Euclidean distances of the objects, and
the geodesic distances are calculated as sums of these Euclidean distances.

Finally, in the last step Isotop performs a non-metric dimensionality reduction.
This mapping process uses graph distances defined by the previously calculated
neighbourhood connections. Up to this point the analysed objects are represented
with representative elements in the high-dimensional vector space. In this step the
algorithm replaces the coordinates of representatives by low-dimensional ones, ini-
tialised randomly around zero. Then Isotop iteratively draws an object (g) randomly,
and moves all representatives closer to the randomly selected point. The movement
of each mapped representative becomes smaller and smaller as its neighbourhood
distance from the closest representative to the selected point (BMU) grows. Formally,
at time t all representatives yi in the low-dimensional space are updated according
to the rule:

yi = yi + α(t)hi (t)(g(t)− yi ), (3.15)
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where α(t) is a time-decreasing learning rate with values taken from between 1 and 0.
The neighbourhood factor hi is defined as:

hi (t) = exp

(
−1

2

δ2
i, j(

λ(t)E j∈N (i)
{‖xi x j‖

})2

)
, (3.16)

where λ(t) is a time-decreasing neighbourhood width, δi, j is the graph distance
between the objects xi and xi , and E j∈N (i)

{‖xi x j‖
}

is the mean Euclidean distance
between the i-th representative element and its topological neighbours.

To summarise, we can say that Isotop tries to preserve the neighbourhood relations
of the representatives in the low-dimensional output space. The algorithm is able to
unfold low-dimensional manifolds nonlinearly embedded into a high-dimensional
vector space, but it is sensitive to the parametrisation and it may fall in local min-
ima [53].

3.5.3 Curvilinear Distance Analysis

Curvilinear Component Analysis (CCA) [54] was also proposed as an improve-
ment of the Kohonen’s Self-Organizing Maps, in that the output lattice has no fixed
structure predetermined. Curvilinear Distance Analysis (CDA) [48] is the nonlinear
variant of CCA. While CCA is based on the Euclidean distances, CDA utilises the
curvilinear (graph) distances.

CDA algorithm performs the following five tasks separately:

Step 1 : Vector quantisation (optional step).
Step 2 : Computing the k- or ε-neighbourhoods and linking of the representatives

(or objects).
Step 3 : Calculating the geodesic distances by Dijkstra’s algorithm (see Appendix

A.2.1).
Step 4 : Optimizing a cost function by stochastic gradient descent, in order to get

coordinates for the representatives (or objects) in the output space.
Step 5 : After mapping of the representatives the full data set is mapped by running a

piecewise linear interpolator (this step is unnecessary if step 1 was skipped).

In the 4-th step CDA maps the objects or its representatives by minimizing the
topology error function defined as:

ECDA =
n∑

i< j

(
δi, j − di, j

)2
F

(
di, j , λ

)
, (3.17)

where δi, j denotes the geodesic distance between the objects xi and x j in the
high-dimensional input space, di, j denotes the Euclidean distance for the mapped
objects yi and y j in the low-dimensional output space, and n is the number of the
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Fig. 3.12 Nearest neighbours graphs and CDA mappings of quantised S curve data set. a Nearest
neighbours graph of S curve data set n = 50, k = 3. b CDA mapping of S curve data set n = 50.
c Nearest neighbours graph of S curve data set n = 500, k = 3. d CDA mapping of S curve data
set n = 500

representatives (or objects) to be mapped. F is a decreasing function of di, j

(F : R
+ → [0, 1]), and λ is the neighbourhood radius. The function F allows

the local topology to be favored with respect to the global topology. Usually, F is
implemented as the Heaviside step function:

F
(
di, j , λ

) =
{

0, if λ− di, j < 0,

1, if λ− di, j ≥ 0.
(3.18)

The application of factor F effects that CDA algorithm emphasises the preservation
of small distances rather than of large ones. Curvilinear Distance Analysis applies
stochastic gradient descent algorithm to minimise the topology error function ECDA.

Figure 3.12 demonstrates some CDA mappings of S curve data set. In both cases
vector the process of the quantisation was made based on the k-means algorithm
where the number of the representatives in the first case was chosen to be n = 100
and in the second case n = 500. The number of the original data points in all cases
were N = 2000. In the left column the k nearest neighbours graphs are shown where
the number of the nearest neighbours in all cases was chosen to be k = 3. The right
column contains the CDA mappings of the vector quantised data.
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Comparing Isomap and CDA methods it can be seen, that CDA applies more com-
plicated techniques than the Isomap. However, when the parametrisation is adequate,
CDA may give better visualisation result, which emphasise better some characteris-
tics of the projected data sets [55].

3.5.4 Online Data Visualisation Using Neural Gas Network

Online visualisation Neural Gas (OVI-NG) algorithm [49] is a nonlinear projection
method which combines the TRN algorithm with an adaptation rule to establish
the codebook positions (Y = {y1, y2, . . . , yn}, yi ∈ R

d , i = 1, . . . , n) in the low-
dimensional output space. Codebook positions mean the mapped codebook vectors in
the low-dimensional output space. The method adjusts codebook vectors in the input
space and their respective codebook positions in the output space simultaneously.
To obtain a distance preserving mapping, the OVI-NG defines the cost function
as follows:

EOVI−NG = 1

2

n∑
j=1

∑
k �= j

(d∗j,k − d j,k)
2 F(s j,k), (3.19)

where d∗j,k defines the Euclidean distance in the input space between the codebook
vectors w j and wk , d j,k yields the Euclidean distance of the codebook positions y j

and yk in the output space, and s j,k denotes the rank of the k-th codebook position
(yk) with respect to the j-th output vector (y j ) in the output space. The function F
is defined as:

F( f ) = e
−

(
f

σ(t)

)
, (3.20)

where σ(t) is the width of the neighbourhood that decreases with the number of
iterations in the same way as Eq. 1.12.

The OVI-NG method performs 10 steps separately. As some of them are equivalent
with steps of TRN algorithm, in the following only the additional steps are discussed
in detail. Steps 1–7 in the OVI-NG method are the same as Steps 1–7 in the TRN
algorithm (see Sect. 1.2.4), except that in the first step beside the random initiali-
sation of the codebook vectors w j the OVI-NG also initialises codebook positions
y j randomly. In each iteration step after creating new edges and removing the ‘old’
edges (Step 5–7), the OVI-NG moves the codebook positions closer to the codebook
position associated with the winner codebook vector (w j0 ). This adaptation rule is
carried out by the following two steps:

Step 8 Generate the ranking in output space s( j0, j) = s(y j0(t), y j (t)) ∈ {1, . . . ,

n−1} for each codebook position y j (t) with respect to the codebook position
associated with the winner unit y j0(t), j �= j0.

http://dx.doi.org/10.1007/978-1-4471-5158-6_1
http://dx.doi.org/10.1007/97 8-1-4471-5158-6_1
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Step 9 Update the codebook positions:

y j (t + 1) = y j (t)+ α(t)F(s j0, j )

(
d j0, j − d∗j0, j

)
d j0, j

(
y j0(t)− y j (t)

)
(3.21)

where α is the learning rate, which typically decreases with the number of
iterations t , in the same form as Eq. 1.12.

Step 10 of the OVI-NG is the same as Step 8 in the TRN algorithm.

To sum up, we can say that OVI-NG is a nonlinear projection method, in which the
codebook positions are adjusted in a continuous output space by using an adaptation
rule that minimises a cost function that favors the local distance preservation. As
OVI-NG utilises Euclidean distances to map the data set it is not able to disclose the
nonlinearly embedded data structures.

3.5.5 Geodesic Nonlinear Projection Neural Gas

The main disadvantage of the OVI-NG algorithm is that it is based on Euclidean
distances, hence it is not able to uncover nonlinearly embedded manifolds. The
Geodesic Nonlinear Projection Neural Gas (GNLP-NG) [50] is an extension of OVI-
NG, which uses geodesic distances instead of the Euclidean ones. The GNLP-NG
method includes the following two major steps:

1. creating a topology representing network to depict the structure of the data set
and then,

2. mapping this approximate structure into a low-dimensional vector space.

The first step utilises neural gas vector quantisation to define the codebook vectors
in the input space, and it uses the competitive Hebbian rule for building a connectivity
graph linking these codebook vectors. The applied combination of the neural gas
method and the Hebbian rule differs slightly from the TRN algorithm: it connects
not only the first and the second closest codebook vectors to the randomly selected
input pattern (xi (t)) (Step 5 in the TRN algorithm (see Algorithm 4 in Sect. 1.2.4)),
but it creates other edges, as well. The establishment of these complementary edges
can be formalised in the following way:

• for k = 2, . . . , K
Create a connection between the k-th nearest unit (w jk ) and the k + 1-th nearest
unit (w jk+1 ), if it does not exist already, and the following criterion is satisfied:

‖w jk − w jk+1‖ < ‖w j0 − w jk+1‖ (3.22)

http://dx.doi.org/10.1007/978-1-4471-5158-6_1
http://dx.doi.org/10.1007/978-1-4471-5158-6_1
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Else create a connection between codebook vectors w j0 and w jk+1 .
Set the ages of the established connections to zero. If the connection already exists,
refresh the age of the connection by setting its age to zero.

Parameter K is an accessory parameter compared to the TRN algorithm. In [50]
it is suggested to set K = 2. This accessory step amends the 5-th step of the TRN
algorithm (see Sect. 1.2.4).

Furthermore GNLP-NG increments not only the ages of all connections of wi0 ,
but it also extends this step to the k-th nearest unit as follows:

• Increment the age of all edges emanating from wik , for k = 1, . . . , K :

ti0,l = ti0,l + 1,∀l ∈ Nwik
, (3.23)

where Nwik
is the set of all direct topological neighbours of wik .

This accessory step amends the 6-th step of the TRN algorithm (see Algorithm 4).
During the mapping process (second major part of the algorithm) the GNLP-NG

algorithm applies an adaptation rule for the codebook positions in the projection
space. It minimises the following cost function:

EGNLP−NG = 1

2

n∑
j=1

∑
k �= j

(d j,k − δ j,k)
2e
−

(
r j,k
σ(t)

)2

, (3.24)

where r j,k = r(x j , wk) ∈ {0, 1, ..., n − 1} denotes the rank of the k-th codebook
vector with respect to the x j using geodesic distances, and σ is a width of the neigh-
bourhood surround. d j,k denotes the Euclidean distance of the codebook positions
y j and yk defined in the output space, δ j,k yields the geodesic distance between
codebook vectors w j and wk measured in the input space.

According to the previously presented overview, the GNLP-NG first determines
the topology of the data set by the modified TRN algorithm and then maps this topol-
ogy based on the graph distances. The whole process is summarised in Algorithm 12.

Parameter α is the learning rate, σ is the width of the neighbourhood, and they
typically decrease with the number of iterations t , in the same way as Eq. 1.12.
Paper [50] also gives an extension to the GNLP-NG to tear or cut the graphs with
non-contractible cycles.

Figure 3.13 visualises the 2-dimensional GNLP-NG mapping of the S curve data
set. In this small example the original S curve data set contained 2000 3-dimensional
data points, the number of the representatives was chosen to be n = 200 and they
were initialised randomly. As it can be seen the GNLP-NG method is able to unfold
the real 2-dimensional structure of the S curve data set.

http://dx.doi.org/10.1007/978-1-4471-5158-6_1
http://dx.doi.org/10.1007/978-1-4471-5158-6_1
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Algorithm 12 GNLP-NG algorithm
Step 1 Determine the topology of the data set based on the modified TRN algorithm.
Step 2 Compute the geodesic distances between the codebook vectors based on the connections

(ci, j ) of the previously calculated topology representing network. Set t = 0.
Step 3 Initialize the codebook positions y j , randomly.
Step 4 Select an input pattern xi (t) with equal probability for each x ∈ X.
Step 5 Find the codebook vector w j0 (t) in the input space that is closest to xi (t).
Step 6 Generate the ranking using geodesic distances in the input space

r j0, j = r(w j0 (t), w j (t)) ∈ {0, 1, . . . , n − 1} for each codebook vector w j (t) with respect to
w j0 (t).

Step 7 Update the codebook positions in the output space:

y j (t + 1) = y j (t)+ α(t)e
−

(
r j0 , j
σ(t)

)2

(d j0, j − δ j0, j )

d j0, j
(y j0 (t)− y j (t)) (3.25)

Step 8 Increase the iteration counter t = t + 1. If t < tmax go back to Step 4.

Fig. 3.13 GNLP-NG map-
ping of S curve data set
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3.5.6 Topology Representing Network Map

Summarising the previously introduced methods we can say, that all these methods
seem to be a good choice for topology based dimensionality reduction, but each of
them has some disadvantages. Isomap can not model multi-class problems and it is not
efficient on large and noisy data sets. The main disadvantage of OVI-NG and GNLP-
NG methods are that they use a non-metric mapping method and thereby only the
rank ordering of the representatives is preserved during the mapping process. Isotop
can indeed fall in local minima and require some care for the parametrisation [53].
Although CDA is a more complicated technique, it needs to be well parameterized
[56]. Furthermore, the OVI-NG and CCA methods are not able to uncover the non-
linearly embedded manifolds.
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Topology Representing Network Map (TRNMap) [57, 58] refers to a group of
unsupervised nonlinear mapping methods, which combines the TRN algorithm and
the multidimensional scaling to visualise the data structure. As result it gives a
compact representation of the data set to be analysed. The method aims to fulfill the
following three criteria:

• give a low-dimensional representation of the data,
• preserve the intrinsic data structure (topology), and
• according to the users expectations: preserve the distances or the rank ordering of

the objects.

TRNMap mapping method results in a visualisation map, called Topology Rep-
resenting Network Map (TRNMap). TRNMap is a self-organizing model with no
predefined structure which provides an expressive presentation of high-dimensional
data in low-dimensional vector space. The dimensionality of the input space is not
restricted. Although this method is able to provide arbitrary dimensional output map
as result, for the visualisation of data structure the 2-dimensional or 3-dimensional
output map is recommended. Topology Representing Network Map algorithm is
based on graph distances, therefore it is able to handle the set of data lying on a
low-dimensional manifold that is nonlinearly embedded in a higher-dimensional
input space. For the preservation of the intrinsic data structure TRNMap computes
the dissimilarities of the data points based on the graph distances. To compute the
graph distances the set of data is replaced by the graph resulted of the TRN algorithm
applied on the data set. The edges of the graph are labeled with their Euclidean length
and Dijkstra’s algorithm [59] is run on the graph, in order to compute the shortest
path for each pair of points. The TRNMap algorithm utilises the group of multidi-
mensional scaling mapping algorithms to give the low-dimensional representation
of the data set. If the aim of the mapping is the visualisation of the distances of the
objects or their representatives, the TRNMap utilises the metric MDS method. On
the other hand, if the user is only interested in the ordering relations of the objects, the
TRNMap uses non-metric MDS for the low-dimensional representation. As a result
it gives compact low-dimensional topology preserving feature maps to explore the
hidden structure of data. In the following the TRNMap algorithm is introduced in
details.

Given a set of data X = {x1, x2, . . . , xN }, xi ∈ R
D . The main goal of the algorithm

is to give a compact, perspicuous representation of the objects. For this purpose the
set of X is represented in a lower dimensional output space by a new set of the objects
(Y), where Y = {y1, y2, . . . , yn}, n ≤ N , (yi ∈ R

d , d � D).
To avoid the influence of the range of the attributes a normalisation procedure is

suggested as a preparing step (Step 0). After the normalisation the algorithm creates
the topology representing network of the input data set (Step 1). It is achieved by the
use of the Topology Representing Network proposed by Martinetz and Shulten [60].
The number of the nodes (representatives) of the TRN is determined by the user. By
the use of the TRN, this step ensures the exploration of the correct structure of the data
set, and includes a vector quantisation, as well. Contrary to the ε-neighbouring and
k-neighbouring algorithm, the graph resulted from applying the TRN algorithm does
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not depend on the density of the objects or the selected number of the neighbours. If
the resulted graph is unconnected, the TRNMap algorithm connects the subgraphs by
linking the closest elements (Step 2). Then the pairwise graph distances are calculated
between every pair of representatives (Step 3). In the following, the original topology
representing network is mapped into a 2-dimensional graph (Step 4). The mapping
method utilises the similarity of the data points provided by the previously calculated
graph distances. This mapping process can be carried out by the use of metric or non-
metric multidimensional scaling, as well. For the expressive visualisation component
planes are also created by the D-dimensional representatives (Step 5).

Algorithm 13 Topology Representing Network Map algorithm
Step 0 Normalize the input data set X.
Step 1 Create the Topology Representing Network of X by the use of the TRN algorithm [60].

Yield M (D) = (W, C) the resulted graph, let wi ∈W be the representatives (codebook vectors)
of M (D). If exists an edge between the representatives wi and w j (wi , w j ∈W, i �= j), ci, j = 1,
otherwise ci, j = 0.

Step 2 If M (D) is not connected, connect the subgraphs in the following way:

While there are unconnected subgraphs (m(D)
i ⊂ M (D), i = 1, 2, . . .):

(a) Choose a subgraph m(D)
i .

(b) Let the terminal node t1 ∈ m(D)
i and its closest neighbor

t2 /∈ m(D)
i from:

‖t1 − t2‖ = min‖w j − wk‖, t1, w j ∈ m(D)
i , t2, wk /∈ m(D)

i
(c) Set ct1,t2 =1.

End while

Yield M∗(D) the modified M (D).

Step 3 Calculate the geodesic distances between all wi , w j ∈ M∗(D).
Step 4 Map the graph M (D) into a 2-dimensional vector space by metric or non-metric MDS

based on the graph distances of M∗(D).
Step 5 Create component planes for the resulting Topology Representing Network Map based

on the values of wi ∈ M (D).

The parameters of the TRNMap algorithm are the same as those of the Topology
Representing Networks algorithm. The number of the nodes of the output graph (n)
is determined by the user. The bigger the n the more detailed the output map will
be. The suggest the choice is n = 0.2N , where N yields the number of the original
objects. If the number of the input data elements is high, it can result in numerous
nodes. In these cases it is practical to decrease the number of the representatives and
iteratively run the algorithm to capture the structure more precisely. Values of the
other parameters of TRN (λ, the step size ε, and the threshold value of edge’s ages
T ) can be the same as proposed by Martinetz and Schulten [60].

Figure 3.14 shows the 2-dimensional structure of the S curve data set created by
the TRNMap method. As TRNMap algorithm utilises geodesic distances to calculate
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Fig. 3.14 TRNMap visualisation of S curve data set
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Fig. 3.15 TRNMap component planes of S curve data set. a Dimension X. b Dimension Y. c
Dimension Z

the pairwise dissimilarities of the quantised data, this method is able to unfold the
real 2-dimensional structure of the S curve data set.

Besides the visualisation of the data structure, the nodes of TRNMap also visualise
high-dimensional information by the use of the component plane representation.
Component planes of the 3-dimensional S curve data set resulted by the TRNMap
are shown in the Fig. 3.15. A component plane displays the value of one component of
each node. If the input data set has D attributes, the Topology Representing Network



74 3 Graph-Based Visualisation of High Dimensional Data

Map component plane includes D different maps according to the D components.
The structure of this map is identical to the map resulted by the TRNMap algorithm,
but the nodes are represented in grayscale. White color means the smallest value,
black color corresponds to the greatest value of the attribute. By viewing several
component maps at the same time it is also easy to see simple correlations between
attributes. Because nodes of TRNMap can be seen as possible cluster prototypes,
TRNMap can provide the basis for an effective clustering method.

3.6 Analysis and Application Examples

In this section a comparative analysis is given about the previously introduced meth-
ods with some examples. The analysis is based on the evaluation of mapping results
of the following examples: Swiss roll data set (see Appendix A.6.5), Wine data set
(see Appendix A.6.3) and Wisconsin breast cancer data set (see Appendix A.6.4).

The mapping qualities of the algorithms are analysed based on the following two
aspects:

• preservation of distance and neighbourhood relations of data, and
• preservation of local and global geometry of data.

In our analysis the distance preservation of the methods is measured by the classi-
cal MDS stress function, Sammon stress function and residual variance. The neigh-
bourhood preservation and the local and global mapping qualities are measured by
functions of trustworthiness and continuity.

All analysed visualisation methods require the setting of some parameters. In the
following the next principle is followed: the identical input parameters of different
mapping methods are set in the same way. The common parameters of OVI-NG,
GNLP-NG and TRNMap algorithms were in all simulations set as follows: tmax =
200n, εi = 0.3, ε f = 0.05, λi = 0.2n, λ f = 0.01, Ti = 0.1n. If the influence
of the deletion of edges was not analysed, the value of parameter T f was set to
T f = 0.5n. The auxiliary parameters of the OVI-NG and GNLP-NG algorithms
were set as αi = 0.3, α f = 0.01, σi = 0.7n, and σ f = 0.1. The value of parameter
K in the GNLP-NG method in all cases was set to K = 2.

3.6.1 Comparative Analysis of Different Combinations

As in Sect. 3.1 was shown several combinations of vector quantisation, distance
calculation and mapping algorithms may serve the low-dimensional representation of
high-dimensional data. In this subsection some possible combinations are analysed.
For the presentation of the results the Swiss roll data set is chosen, hence it is a typical
data set which contains a low-dimensional manifold embedded in a high-dimensional
vector space (see Appendix A.6.5).
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For comparison of the possible methods different combinations of vector quanti-
sation, distance measure and dimensionality reduction method have been analysed.
As vector quantisation the well-known k-means and neural gas algorithms were
used. The distances were calculated based on either Euclidean norm (notation: Eu)
or graph distance. Although the graph distances can be calculated based on graphs
arising from the ε-neighbouring, k-neighbouring or from the Topology Represent-
ing Network, only the last two methods (k-neighbouring (knn) and TRN) have been
applied, since the ε-neighbouring method is very sensitive to data density. For dimen-
sionality reduction metric and non-metric variants of MDS (notations: mMDS for
metric MDS and nmMDS for non-metric MDS) and the Sammon mapping have been
applied. As non-metric MDS is performed by an iterative optimisation of the stress
function, this method can be stuck in local minima. To avoid this disadvantage the
non-metric MDS in all cases was initialised on the result of the metric MDS mapping
of the objects. The Sammon mapping was applied without initialisation (Sammon)
and with initialisation based on the metric MDS (Sammon_mMDS), where the result
of the MDS algorithm serves as the initial projection of the data.

Different combinations require different parameter settings. The number of the
representatives in all cases was chosen to be n = 200. If k-neighbouring was used for
the calculation of geodesic distances, the value of parameter k was chosen to be k=3.
Parameters of TRN algorithm were tuned according to the rules presented in [60]:
λ(t) = λi (λ f /λi )

t/tmax and ε(t) = εi (ε f /εi )
t/tmax , where λi = 0.2n, λ f = 0.01,

εi = 0.3, ε f = 0.05 and tmax = 200n. Unlike the suggested formula (T (t) =
Ti (T f /Ti )

t/tmax ), the threshold of the maximum age of the edges was always kept
on Ti = T f = 0.1n. Error values of Sammon stress, metric MDS stress and residual
variance were calculated for all combinations. Table 3.1 shows the average error
values of running each combination for 10 times.

Table 3.1 shows that mappings based on Euclidean distances are not able to
uncover the structure of the data because of the nonlinear embedded manifold. On
the other hand, it can be seen that the initialisation of the Sammon mapping with
the result of the metric MDS improves the mapping quality. When the distances are
calculated based on a graph, the metric MDS results in better mapping quality than
the Sammon mapping. Comparing metric and non-metric MDS, we can see that they
give similar results. The best mapping results are given by the kmeans+knn+mMDS,
kmeans+knn+nmMDS, NG+knn+mMDS, NG+knn+nmMDS, TRN+mMDS and
TRN+nmMDS combinations. Comparing all methods it can be seen that the combi-
nation of TRN with metric MDS outperforms all other methods.

Naturally, these combinations were tested on other data sets, as well. Tests run-
ning on different data sets result in similar error values and conclusions as it has
been presented previously. Difference only occurred in the case of analyzing multi-
class problems. While the Swiss roll data set contains only a single cluster, real life
examples generally contain more groups of objects. In these cases if the mapping
method utilises geodesic distances to calculate the low-dimensional presentation of
the objects, the graph of the objects or representatives must be connected. Natu-
rally, methods k-neighbouring or TRN not always result in a connected graph. For
example, in the case of analysis of iris data set the k-neighbouring method with
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Table 3.1 Values of Sammon stress, metric MDS stress and residual variance of different algorithms
on the Swiss roll data set

Algorithm Sammon stress MDS stress Res. var.

kmeans+Eu+mMDS 0.05088 0.20743 0.22891
kmeans+Eu+nmMDS 0.05961 0.21156 0.22263
kmeans+Eu+Sammon 0.05084 0.21320 0.24200
kmeans+Eu+Sammon_mMDS 0.04997 0.20931 0.23268
kmeans+knn+mMDS 0.00212 0.00091 0.00326
kmeans+knn+nmMDS 0.00216 0.00091 0.00324
kmeans+knn+Sammon 0.00771 0.00440 0.01575
kmeans+knn+Sammon_mMDS 0.00198 0.00097 0.00348
NG+Eu+mMDS 0.05826 0.04941 0.26781
NG+Eu+nmMDS 0.06659 0.05792 0.26382
NG+Eu+Sammon 0.05758 0.05104 0.27613
NG+Eu+Sammon_mMDS 0.05716 0.05024 0.27169
NG+knn+mMDS 0.00208 0.00086 0.00307
NG+knn+nmMDS 0.00206 0.00087 0.00299
NG+knn+Sammon 0.00398 0.00242 0.00916
NG+knn+Sammon_mMDS 0.00392 0.00237 0.00892
TRN+mMDS 0.00145 0.00063 0.00224
TRN+nmMDS 0.00187 0.00064 0.00221
TRN+Sammon 0.01049 0.00493 0.01586
TRN+Sammon_mMDS 0.00134 0.00068 0.00235

k = 1, 2, . . . , 49 results in two unconnected subgraphs. Consequently, at the cre-
ation of a new topology based visualisation algorithm, this observation must be taken
into account.

3.6.2 Swiss Roll Data Set

The Swiss roll data set (Fig. 3.16, Appendix A.6.5) is a typical example of the non-
linearly embedded manifolds. In this example the number of the representatives in
all cases was chosen to be n = 200. Linear mapping algorithms, such Principal
Component Analysis do not come to the proper result (see Fig. 3.17a), because of
the 2-dimensional nonlinear embedding. As can be seen in Fig. 3.17b and c CCA
and OVI-NG methods are also unable to uncover the real structure of the data, as
they utilise Euclidean distances to calculate the pairwise object dissimilarities.

Figure 3.18 shows the Isotop, CDA and GNLP-NG visualisations of the Swiss roll
data set. As CDA and Isotop methods can be based on different vector quantisation
methods, both methods were calculated based on the results of k-means and neural
gas vector quantisation methods as well. Isotop and CDA require to build a graph
to calculate geodesic distances. In these cases graphs were built based on the k-
neighbouring approach, and parameter k was set to be k = 3. It can be seen that
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Fig. 3.16 Swiss roll data set
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Fig. 3.17 PCA, CCA and OVI-NG projections of Swiss roll data set. a 2-dimensional PCA pro-
jection. b 2-dimensional CCA projection. c 2-dimensional OVI-NG projection
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Fig. 3.18 Isotop, CDA and GNLP-NG projections of Swiss roll data set. a 2-dimensional Isotop
projection with k-means VQ. b 2-dimensional Isotop projection with NG VQ. c 2-dimensional
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Fig. 3.19 Topology Representing Network and metric MDS based TRNMap visualisation of the
Swiss roll data set. a TRN. b DP_TRNMap

Isotop, CDA and GNLP-NG algorithms can uncover the structure of data in essence,
but the Isotop method shows the manifold with some distortions.

In the following let us have a closer look at the results of Topology Representing
Network Map algorithm. As TRNMap is based on the creation of the Topology Rep-
resenting Network, Fig. 3.19a shows the TRN of the Swiss roll data set. In Fig. 3.19b
the 2-dimensional metric MDS based TRNMap visualisation of the Swiss roll data
set is shown (DP_TRNMap, DP from distance preservation). As the metric MDS
and the non-metric MDS based mappings of the resulted TRN in this case give very
similar results in the mapped prototypes, the resulted TRNMap visualisations are not
distinguishable by human eyes. Thereby Fig. 3.19b can be seen as the result of the
non-metric MDS based TRNMap algorithm as well. In Fig. 3.19b it can be seen that
the TRNMap methods are able to uncover the embedded 2-dimensional manifold
without any distortion.

Visualisation of the Topology Representing Network Map also includes the con-
struction of the component planes. The component planes arising from the metric
MDS based TRNMap are shown in Fig. 3.20. The largest value of the attributes of
the representatives corresponds to the black and the smallest value to the white dot
surrounded by a grey circle. Figure 3.20a shows that alongside the manifold the
value of the first attribute (first dimension) initially grows to the highest value, then
it decreases to the smallest value, after that it grows, and finally it decreases a little.
The second attribute is invariable alongside the manifold, but across the manifold it
changes uniformly. The third component starts from the highest value, then it falls
to the smallest value, following this it increases to a middle value, and finally it
decreases a little.

Table 3.2 shows the error values of distance preservation of different mappings.
The notation DP_TRNMap yields the metric MDS based TRNMap algorithm, and
the notation NP_TRNMap yields the non-metric MDS based TRNMap algorithm
(DP comes from distance preservation and NP from neighbourhood preservation).
Table 3.2 shows that GNLP-NG and TRNMap methods outperform the Isotop and
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Fig. 3.20 Component planes of the metric MSD based Topology Representing Network Map of
the Swiss roll data set. a Dimension 1. b Dimension 2. c Dimension 3

Table 3.2 Values of Sammon stress, metric MDS stress and residual variance of Isotop, CDA,
GNLP-NG and TRNMap algorithms on the Swiss roll data set

Algorithm Sammon stress Metric MDS stress Residual variance

kmeans_Isotop 0.54040 0.57870 0.41947
NG_Isotop 0.52286 0.53851 0.15176
kmeans_CDA 0.01252 0.00974 0.01547
NG_CDA 0.01951 0.01478 0.02524
GNLP-NG 0.00103 0.00055 0.00170
DP_TRNMap 0.00096 0.00043 0.00156
NP_TRNMap 0.00095 0.00045 0.00155

CDA methods. Although, GNLP-NG and TRNMap methods show similar per-
formances in distance preservation, the TRNMap methods show somewhat better
performances.

Figure 3.21 shows the neighbourhood preservation mapping qualities of the meth-
ods to be analysed. It can be seen that different variations of Isotop and CDA
show lower performance in neighbourhood preservation than GNLP-NG and TRN-
Map methods. The continuity and the trustworthiness of GNLP-NG and TRNMap
mappings do not show a substantive difference, the qualitative indicators move
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Fig. 3.21 Trustworthiness and continuity as a function of the number of neighbours k, for the Swiss
roll data set
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Fig. 3.22 Trustworthiness and continuity of GNLP-NG and TRNMap methods as a function of the
number of neighbours k, for the Swiss roll data set

within 0.2 %. Nevertheless, the GNLP-NG method shows better performance in
the local area than the TRNMap mappings. For better visibility Fig. 3.22 focuses on
the GNLP-NG, metric MDS based TRNMap and non-metric MDS based TRNMap
mappings. In this example it has been shown both GNLP-NG and TRNMap methods
are able to uncover non-linearly embedded manifolds, the TRNMap methods show
good performance both in topology and distance preservation, and the component
planes provide useful facilities to unfold the relations among the features.

3.6.3 Wine Data Set

In this subsection a real problems is considered. The wine database (see Appen-
dix A.6.3) contains the chemical analysis of 178 wine, each is characterised by 13
continuous attributes, and there are three classes distinguished.
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Table 3.3 Values of Sammon stress, metric MDS stress and residual variance of GNLP-NG and
TRNMap algorithms on the Wine data set

Algorithm Sammon stress Metric MDS stress Residual variance

GNLP-NG T f = 0.5n 0.04625 0.03821 0.13926
GNLP-NG T f = 0.3n 0.04982 0.04339 0.15735
GNLP-NG T f = 0.05n 0.02632 0.02420 0.07742
DP_TRNMap T f = 0.5n 0.01427 0.00829 0.03336
DP_TRNMap T f = 0.3n 0.01152 0.00647 0.02483
DP_TRNMap T f = 0.05n 0.01181 0.00595 0.02161
NP_TRNMap T f = 0.5n 0.03754 0.02608 0.07630
NP_TRNMap T f = 0.3n 0.05728 0.04585 0.09243
NP_TRNMap T f = 0.05n 0.03071 0.01984 0.04647

On visualisation results presented in the following the class labels are also pre-
sented. The representatives are labeled based on the principle of the majority vote:
(1) each data point is assigned to the closest representative; (2) the representatives
are labeled with the class label that occurs most often among its assigned data point.

In this example the tuning of parameter T f of the TRN algorithm is also tested.
Parameters Ti and T f has an effect on the linkage of the prototypes, thereby they
also influence the geodesic distances of the representatives. As parameter T f yields
the final threshold of the age of the edges, this parameter has greater influence on
the resulted graph. Other parameters of TRN algorithm (λ, ε and tmax) were set to
the values presented in Sect. 3.6.2. The tuning of the parameter age of the edges is
shown in the following. The number of the representatives in all cases was chosen
to be n = 0.2N , which means 35 nodes in this case.

As parameter T f has an effect on the creation of the edges of TRN, it influences
the results of the GNLP-NG and TRNMap algorithms. Table 3.3 shows the error val-
ues of the distance preservation of the GNLP-NG, DP_TRNMap and NP_TRNMap
methods. In these simulations parameter Ti was chosen to be Ti = 0.1n, and T f was
set to T f = 0.5n, T f = 0.3n and T f = 0.05n, where n denotes the number of the
representatives. It can be seen that the best distance preservation quality is obtained
at the parameter setting T f = 0.05n. At parameters T f = 0.5n and T f = 0.3n the
methods TRNMap based on non-metric MDS and GNLP-NG seem to fall in local
minima. It can be caused by their iterative minimizing process. On the contrary, the
metric MDS based TRNMap finds the coordinates of the low-dimensional represen-
tatives in a single step process by eigenvalues decomposition, and thereby it seems to
be a more robust process. It is certified by the good error values of the DP_TRNMap
in all three cases.

The effect of the change of the parameter T f on the visual presentation is shown
in Fig. 3.23. It can be seen that the deletion of edges produces smoother graphs.

Based on the previous experimental results, the parameter setting T f = 0.05n
has been chosen for the further analysis. In the following lets have a look at the
comparison of the TRNMap methods with the other visualisation methods. Table 3.4
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Fig. 3.23 GNLP-NG and TRNMap projections of Wine data set at different settings of parameter
T f . a DP_TRNMap T f = 0.3n. b DP_TRNMap T f = 0.05n. c NP_TRNMap T f = 0.3n.
d NP_TRNMap T f = 0.05n. e GNLP-NG T f = 0.3n. f GNLP-NG T f = 0.05n

shows error values of the distance preservation of the methods to be analysed. The
parameter k for the k-neighbouring was chosen to be k = 3. It can be seen that
TRNMap method based on metric MDS mapping shows the best mapping qualities.
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Table 3.4 Values of Sammon stress, metric MDS stress and residual variance of Isotop, CDA,
GNLP-NG and TRNMap algorithms on the wine data set (T f = 0.05)

Algorithm Sammon stress Metric MDS stress Residual variance

kmeans_Isotop 0.59233 0.59797 0.54959
NG_Isotop 0.60600 0.61030 0.46479
kmeans_CDA 0.93706 0.30726 0.63422
NG_CDA 0.82031 0.27629 0.66418
GNLP-NG 0.02632 0.02420 0.07742
DP_TRNMap 0.01181 0.00595 0.02161
NP_TRNMap 0.03071 0.01984 0.04647
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Fig. 3.24 Trustworthiness and continuity as a function of the number of neighbours k, for the wine
data set
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Fig. 3.25 Trustworthiness and continuity of GNLP-NG and TRNMap methods as a function of the
number of neighbours k, for the wine data set

Figure 3.24 shows trustworthiness and continuity of different mappings. It can
be seen, that GNLP-NG, NP_TRNMap and DP_TRNMap methods give the best
performance both in local and in global areas of the objects. For better visibility
Fig. 3.25 focuses on the GNLP-NG, metric MDS based TRNMap and non-metric
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Table 3.5 The values of the Sammon stress, MDS stress and residual variance of different mapping
algorithms on the Wisconsin breast cancer data set (n = 35)

Algorithm Sammon stress MDS stress Residual variance

GNLP-NG 0.02996 0.02764 0.09733
DP_TRNMap 0.01726 0.01075 0.04272
NP_TRNMap 0.01822 0.01077 0.03790

MDS based TRNMap mappings. This figure shows that NP_TRNMap method has
not found the optimal mapping, because the characteristics of the functions of the
NP_TRNMap algorithm differ from the characteristics of functions of DP_TRNMap
algorithm. Comparing the GNLP-NG and DP_TRNMap methods we can see that
the DP_TRNMap method give better performance at larger k-nn values. Opposite to
this the GNLP-NG technique gives better performance at the local reconstruction.
(At small k-nn-s the local reconstruction performance of the model is tested, while
at larger k-nn-s the global reconstruction is measured.)

3.6.4 Wisconsin Breast Cancer Data Set

Wisconsin breast cancer database is a well-known diagnostic data set for breast
cancer (see Appendix A.6.4). This data set contains 9 attributes and class labels for
the 683 instances of which 444 are benign and 239 are malignant. It has been shown
in the previous examples that the GNLP-NG and TRNMap methods outperform the
CDA and Isotop methods both distance and neighbourhood preservation. Thereby,
in this example only the qualities of the GNLP-NG and that of the TRNMap methods
will be examined. The number of the nodes in this case was reduced to n = 35 and
n = 70. The parameter T f was chosen to be T f = 0.05n followed the previously
presented method.

To get a compact representation of the data set to be analysed, the number of the
neurons was chosen to be n = 35 in the beginning. Table 3.5 shows the numerical
evaluation of the distance preservation capabilities of the mappings. The efficiency
of the TRNMap algorithm in this case is also confirmed by the error values.

TRNMap and GNLP-NG visualisations of the Wisconsin breast cancer data set
are shown in Fig. 3.26. The results of the several runs seem to have drawn a fairly
wide partition and another compact partition. In these figures the representatives of
the benign class are labeled with square markers and the malignant class is yielded
with circle markers.

The quality of the neighbourhood preservation of the mappings is shown in
Fig. 3.27. Figures illustrate that the MDS-based techniques show better global map-
ping quality than the GNLP-NG method, but in the local area of the data points the
GNLP-NG exceeds the TRNMap methods.

To examine the robustness of the TRNMap methods another number of the rep-
resentatives has also been tried. In the second case the number of the representatives



86 3 Graph-Based Visualisation of High Dimensional Data

−3 −2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

6

7

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

−6 −5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

(a) (b)

(c)

Fig. 3.26 GNLP-NG and TRNMap visualisations of the Wisconsin breast cancer data set. a GNLP-
NG. b DP_TRNMap. c NP_TRNMap
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Fig. 3.27 Trustworthiness and continuity as a function of the number of neighbours k, for the
Wisconsin breast cancer data set (n = 35)
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Table 3.6 Values of Sammon stress, MDS stress and residual variance of different mapping algo-
rithms on the Wisconsin breast cancer data set (n = 70)

Algorithm Sammon stress MDS stress Residual variance

GNLP-NG 0.06293 0.05859 0.22249
DP_TRNMap 0.01544 0.00908 0.03370
NP_TRNMap 0.02279 0.01253 0.02887
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Fig. 3.28 Trustworthiness and continuity as a function of the number of neighbours k, for the
Wisconsin breast cancer data set (n = 70)

was chosen to be n = 70. Table 3.6 and Fig. 3.28 show the numerical evaluations of
the methods in this case (other parameters were not changed). Both the error values
and the functions show that the GNLP-NG method has fallen again in a local minima.
(This incident occurs in many other cases as well.) On the other hand, the TRNMap
algorithms in these cases are also robust to the parameter settings.

It is an interesting aspect to compare the error values of the methods in the case of
mappings of different data sets (see Tables 3.2, 3.4 and 3.5). Error values of the map-
pings for the Swiss roll data set are smaller in order of magnitude, than error values
in the other two examples. It means, that stress functions of distance preservation
are also able to show the presence of such manifolds that can be defined by graphs.

3.7 Summary of Visualisation Algorithms

In this chapter we presented dimensionality reduction methods and examined how
these methods are able to visualise hidden structure of data. Robust graph based
mapping algorithm have been proposed to visualise the hidden data structure in low-
dimensional space. The proposed method is called Topology Representing Network
Map (TRNMap), and it provides various mapping solutions. TRNMap combines
the main benefits of the Topology Representing Network and the multidimensional
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scaling. As a result a low-dimensional representation of the data set to be analysed is
given, which can reflect both the topology and the metric of the data set. Systematic
analysis of the algorithms commonly used for data visualisation and the numerical
examples presented in this chapter demonstrate that the resulting map gives a good
representation of the topology and the metric of complex data sets, and the component
plane representation of TRNMap is a useful tool to explore the hidden relations
among the features.

To show the main properties of the presented visualisation methods a detailed
analysis has been performed on them. The primary aim of this analysis was to exam-
ine the preservation of distances and neighbourhood relations of data. Preservation of
neighbourhood relations was analysed both in local and global environments. It has
been confirmed that: (1) if low-dimensional manifolds exist in the high-dimensional
feature space of the data set algorithms based on geodesic (graph) distances should
be preferred over classical Euclidean distance based methods. New scientific state-
ments are: (2) Among the wide range of possible approaches graphs obtained by
Topology Representing Networks are the most suitable to approximate this low-
dimensional manifold. Thereby, comparing TRNMap, CDA and Isotop algorithms,
it can be seen that TRNMap utilises a more efficient calculation of the graph distances
than CDA or Isotop. (3) Multidimensional scaling is an effective method to form a
low-dimensional map of the TRN based on the calculated graph distances. (4) Com-
ponent planes of TRNMap provide useful facilities to unfold the relations among
the features of the objects to be analysed. (5) Comparing TRNMap and GNLP-NG
methods, it can be seen that TRNMap methods are more robust to the initialisa-
tion parameters (e.g. such as number of the representatives, or the maximal age of
the edges). (6) MDS based techniques can be considered as global reconstruction
methods, hence in most cases they give better performances at larger k-nn values.
(7) Metric mapping based algorithms (e.g. TRNMap based on metric MDS) directly
minimise the stress functions, so their performance is the best in distance perse-
veration. It is an interesting conclusion that good distance preservation results in
good global neighbourhood persevering capabilities. (8) Stress functions of distance
preservation are suited to show the presence of such manifolds that can be defined
by graphs.

Synthetic and real life examples have shown that Topology Representing Network
Map utilises the advantages of several dimensionality reduction methods so that it
is able to give a compact representation of low-dimensional manifolds nonlinearly
embedded in the high-dimensional feature space.
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Appendix

A.1 Constructing a Minimum Spanning Tree

A.1.1 Prim’s Algorithm

Prim’s algorithm is a greedy algorithm to construct the minimal spanning tree of a
graph. The algorithm was independently developed in 1930 by Jarník [1] and later
by Prim in 1957 [2]. Therefore the algorithm is sometimes called as Jarník algorithm
as well. This greedy algorithm starts with one node in the ‘tree’ and iteratively step
by step adds the edge with the lowest cost to the tree. The formal algorithm is given
in Algorithm 14.

Algorithm 14 Prim’s algorithm
Given a non-empty connected weighted graph G = (V, E), where V yields the set of the vertices
and E yields the set of the edges.

Step 1 Select a node (x ∈ V ) arbitrary from the vertices. This node will be the root in the tree.
Set Vnew = {x}, Enew = {}.

Step 2 Choose the edge with the lowest cost from the set of the edges e(u, v) such that u ∈ Enew
and v �∈ Enew . If there are multiple edges with the same weight connecting to the tree constructed
so far, any of them may be selected. Set Enew = Enew ∪ {v} and Vnew = Vnew ∪ {e(u, v)}.

Step 3 If Vnew �= V go back to Step 2.

A.1.2 Kruskal’s Algorithm

Kruskal’s algorithm [3] is an another greedy algorithm to construct the minimal
spanning tree. This algorithm starts with a forest (initially each node of the graph
represents a tree) and iteratively adds the edge with the lowest cost to the forest
connecting trees such a way, that circles in the forest are not enabled. The detailed
algorithm is given in Algorithm 15.
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Algorithm 15 Kruskal’s algorithm
Given a non-empty connected weighted graph G = (V, E), where V yields the set of the vertices
and E yields the set of the edges.

Step 1 Create a forest F in such a way that each vertex (V ) of the graph G denotes a separate
tree. Let S = E .

Step 2 Select an edge e from S with the minimum weight. Set S = S − {e}.
Step 3 If the selected edge e connects two separated trees, then add it to the forest.
Step 4 If F is not yet a spanning tree and S �= {} go back to Step 2.

A.2 Solutions of the Shortest Path Problem

A.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm calculates the shortest path from a selected vertex to every other
vertex in a weighted graph where the weights of the edges non-negative numbers.
Similar to Prim’s and Kruskal’s algorithms it is a greedy algorithm, too. It starts from
a selected node s and iteratively adds the closest node to a so far visited set of nodes.
The whole algorithm is described in Algorithm 16.

At the end of the algorithm the improved tentative distances of the nodes yields
their distances to vertex s.

Algorithm 16 Dijkstra’s algorithm
Given a non-empty connected weighted graph G = (V, E), where V yields the set of the vertices
and E yields the set of the edges. Let s ∈ V the initial vertex from which we want to determine the
shortest distances to the other vertices.

Step 0 Initialization: Denote Pvisited the set of the nodes visited so far and Punvisi ted the set of
the nodes unvisited so far. Let Pvisi ted = {s}, Punvisi ted = V −{s}. Yield the vcurrent the current
node and set vcurrent = s. Assign a tentative distance to each node as follows: set it to 0 for
node s (dists = 0) and to infinity for all other nodes.

Step 1 Consider all unvisited direct topological neighbors of the current node, and calculate their
tentative distances to the initial vertex as follows:

dists,ei = dists,vcurrent + wvcurrent ,ei , (A.1)

where ei ∈ Punvisited is a direct topological neighbor of vcurrent , and wvcurrent ,ei yields the weight
of the edge between nodes vcurrent and ei .
If the recalculated distance for ei is less than the previously calculated distance for ei , than
record it as its new tentative distance to s.

Step 2 Mark the current vertex as visited by setting Pvisited = Pvisited ∪ {vcurrent}, and remove it
from the unvisited set by setting Punvisited = Punvisited − {vcurrent}.

Step 3 If Punvisited = {} or if the smallest tentative distance among the nodes in the unvisited set
is infinity then stop. Else select the node with the smallest tentative distance to s from the set of
the unvisited nodes, set this node as the new current node and go back to Step 1.
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A.2.2 Floyd-Warshall Algorithm

Given a weighted graph G = (V, E). The Floyd-Warshall algorithm (or Floyd’s
algorithm) computes the shortest path between all pairs of the vertices of G. The
algorithm operates on a n×n matrix representing the costs of edges between vertices,
where n is the number of the vertices in G (‖V ‖ = n). The elements of the matrix
are initialized and step by step updated as it is described in Algorithm 17.

Algorithm 17 Floyd-Warshall algorithm
Given a weighted graph G = (V, E), where V yields the set of the vertices and E yields the set
of the edges. Let n = ‖V ‖ the number of the vertices. Denote D the matrix with dimension n × n
that stores the lenghts of the paths between the vertices. After running the algorithm elements of D
will contain the lengths of the shortest paths between all pairs of edges G.

Step 1 Initialization of matrix D: If there is an edge between vertex i (vi ∈ V ) and vertex j
(vi ∈ V ) in the graph, the cost of this edge is placed in position (i, j) and ( j, i) of the matrix. If
there is no edge directly linking two vertices, an infinite (or a very large) value is placed in the
positions (i, j) and ( j, i) of the matrix. For all vi ∈ V, i = 1, 2, . . . , n the elements (i, i) of the
matrix is set to zero.

Step 2 Recalculating the elements of D.
for (k = 1; k <= n; k ++)

for (i = 1; i <= n; i ++)

for ( j = 1; j <= n; j ++)

if Di, j > (Di,k + Dk, j ) then set Di, j = Di,k + Dk, j

A.3 Hierarchical Clustering

Hierarchical clustering algorithms may be divided into two main groups: (i) agglom-
erative methods and (ii) divisive methods. The agglomerative hierarchical methods
start with N clusters, where each cluster contains only an object, and they recursively
merge the two most similar groups into a single cluster. At the end of the process the
objects will form only a single cluster. The divisive hierarchical methods begin with
all objects in a single cluster and perform splitting until all objects form a discrete
partition.

All hierarchical clustering methods work on similarity or distance matrices. The
agglomerative algorithms merge step by step those clusters that are the most similar
and the divisive methods split those clusters that are most dissimilar. The similarity
or distance matrices are updated step by step trough the iteration process. Although,
the similarity or dissimilarity matrices are generally obtained from the Euclidian
distances of pairs of objects, the pairwise similarities of the clusters are definable on
a numerous other ways.

The agglomerative hierarchical methods utilize most commonly the following
approaches to determine the distances between the clusters: (i) single linkage method,
(ii) complete linkage method and (iii) average linkage method. The single linkage
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method [4] is also known as the nearest neighbor technique. Using this similarity
measure the agglomerative hierarchical algorithms join together the two clusters
whose two closest members have the smallest distance. The single linkage clustering
methods are also often utilized in the graph theoretical algorithms, however these
methods suffer from the chaining effect [5]. The complete linkage methods [6] (also
known as the furthest neighbor methods) calculate the pairwise cluster similarities
based on the furthest elements of the clusters. These methods merge the two clus-
ters with the smallest maximum pairwise distance in each step. Algorithms based
on complete linkage methods produce tightly bound or compact clusters [7]. The
average linkage methods [8] consider the distance between two clusters to be equal
to the average distance from any member of one cluster to any member of the other
cluster. These methods merge those clusters where this average distance is the mini-
mal. Naturally, there are other methods to determine the merging condition, e.g. the
Ward method, in which the merging of two clusters is based on the size of an error
sum of squares criterion [9].

The divisive hierarchical methods are computationally demanding. If the number
of the objects to be clustered is N , there are 2N−1 − 1 possible divisions to form
the next stage of the clustering procedure. The division criterion may be based on a
single variable (monothetic divisive methods) or the split can also be decided by the
use of all the variables simultaneously (polythetic divisive methods).

The nested grouping of objects and the similarity levels are usually displayed in
a dendrogram. The dendrogram is a tree-like diagram, in which the nodes represent
the clusters and the lengths of the stems represent the distances of the clusters to be
merged or split. Figure A.1 shows a typical dendrogram representation. It can be seen,
in the case of the application of an agglomerative hierarchical method, objects a and
b will be merged first, then the objects c and d will coalesce into a group, following
this, the algorithm merges the clusters containing the objects {e} and {c, d}. Finally,
all objects would belong to a single cluster.

One of the main advantages of the hierarchical algorithms is that the number of
the clusters need not be specified a priori. There are several possibilities to chose the
proper result from the nested series of the clusters. On the one hand, it is possible to
stop the running of a hierarchical algorithm when the distance between the nearest

Fig. A.1 Dendrogram
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clusters exceeds a predetermined threshold, or on the other hand the dendrogram
also offers a useful tool in the selection of the optimal result. The shape of the
dendrogram informally suggests the number of the clusters and hereby the optimal
clustering result.

Hierarchical clustering approaches are in close ties with graph based clustering.
One of the best-known graph-theoretic divisive clustering algorithm (Zahn’s algo-
rithm [10]) is based on the construction of the minimal spanning tree. This algorithm
step by step eliminates the ‘inconsistent’ edges from the graph and hereby results in
a series of subgraphs.

A.4 Visual Assessment of Cluster Tendency

Visual Assessment of Cluster Tendency (VAT) is an effective and interesting visual-
ization method to reveal the number and the structure of clusters. The method of VAT
was proposed in [11], and its variants in [12, 13]. Its aim is similar to one of cluster
validity indices, but it tries to avoid the ‘massive aggregation of information’ by scalar
validity measures. Instead of a scalar value or a series of scalar values by different
number of clusters, an N ×N intensity image is proposed by Hathaway and Bezdek.
It displays the reordered form of the dissimilarity data D = [d(xi , x j )]N×N , where
d(xi , x j ) is the dissimilarity (not necessarily distance) of the i th and j th samples.
The method consists of two steps.

• Step 1 reorder the dissimilarity data and get D̃, in which the adjacent points are
members of a possible cluster;
• Step 2 display the dissimilarity image based on D̃, where the gray level of a pixel

is in connection with the dissimilarity of the actual pair of points.

The key step of this procedure is the reordering of D. For that purpose, Bezdek
used Prim’s algorithm [2] (see Appendix A.1.1) for finding a minimal spanning tree.
The undirected, fully connected and weighted graph analysed here contains the data
points or samples as nodes (vertices) and the edge lengths or weights of the edges are
the values in D, the pairwise distances between the samples. There are two differences
between Prim’s algorithm and VAT: (1) VAT does not need the minimal spanning
tree itself (however, it determine also the edges but does not store them), just the
order in which the vertices (samples or objects xi ) are added to the tree; and (2) it
applies special initialization. Minimal spanning tree contains all of the vertices of the
fully connected, weighted graph of the samples, therefore any points can be selected
as initial vertex. However, to help ensure the best chance of display success, Bezdek
proposed a special initialization: the initial vertex is any of the two samples that are
the farthest from each other in the data set (xi , where i is the row or column index
of max(D)). The first row and column of D̃ will be i th row and column in D. After
the initialization, the two methods are exactly the same. Namely, D is reordered so
that the second row and column correspond to the sample closest to the first sample,
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the third row and column correspond to the sample closest either one of the first two
samples, and so on.

This procedure is similar to the single-linkage algorithm that corresponds to the
Kruskal’s minimal spanning tree algorithm [3] (see Appendix A.1.2) and is basically
the greedy approach to find a minimal spanning tree. By hierarchical clustering
algorithms (such as single-linkage, complete-linkage or average-linkage methods),
the results are displayed as a dendrogram, which is a nested structure of clusters.
(Hierarchical clustering methods are not described here, the interested reader can
refer e.g. [8]). Bezdek et al. followed another way and they displayed the results as
an intensity image I (D̃) with the size of N × N . The approach was presented in [13]
as follows. Let G = {gm, . . . , gM } be the set of gray levels used for image displays.
In the following, G = {0, . . . , 255}, so gm = 0 (black) and gM = 255 (white).
Calculate

(I (D̃))i, j = D̃i, j

(
gM

max(D̃)

)
. (A.2)

Convert (I (D̃))i, j to its nearest integer. These values will be the intensity displayed
for pixel (i, j) of I (D̃). In this form of display, ‘white’ corresponds to the maximal
distance between the data (and always will be two white pixels), and the darker the
pixel the closer the two data are. (For large data sets, the image can easily exceed
the resolution of the display. To solve that problem, Huband, Bezdek and Hathaway
have been proposed variations of VAT [13]). This image contains information about
cluster tendency. Dark blocks along the diagonal indicate possible clusters, and if
the image exhibits many variations in gray levels with faint of indistinct dark blocks
along the diagonal, then the data set “[. . .] does not contain distinct clusters; or the
clustering scheme implicitly imbedded in the reordering strategy fails to detect the
clusters (there are cluster types for which single-linkage fails famously [. . .]).”

Figure A.2 gives a small example for the VAT representation. In this example
the number of the objects is 40, thereby VAT represents the data dissimilarities in a
square image with 40× 40 pixels. The figure shows how the well-separated cluster
structure is indicated by dark diagonal blocks in the intensity image. Although VAT
becomes intractable for large data sets, the bigVAT [13] as a modification of VAT
allows the visualization for larger data sets, too.

One of the main advantages of hierarchical clusterings is that they are able to detect
non-convex clusters. It is e.g. an ‘S’-like cluster in two dimensions; and it can be
the case that two data points, which clearly belong to the same cluster, are relatively
far from each other. In this case, the dendrogram generated by single-linkage clearly
indicates the distinct clusters, but there will be no dark block in the intensity image by
VAT. Certainly, single-linkage does have the drawbacks, e.g. it suffers from chaining
effect, but a question naturally comes up: how much plus information can be given
by VAT? It is because it roughly does a hierarchical clustering, but the result is not
displayed as a dendrogram but based on the pairwise distance of data samples, and
it works well only if the data in the same cluster are relatively close to each other
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Fig. A.3 Result of the (left) single-linkage algorithm and (right) VAT on synthetic data

based on the original distance norm. (This problem arises not only by clusters with
non-convex shape, but very elongated ellipsoids as well.) Therefore, one advantage
of hierarchical clustering is lost.

In Fig. A.3 results of the single-linkage algorithm and VAT can be seen on the
synthetic data. The clusters are well-separated but non-convex, and single-linkage
clearly identifies them as can be seen from the dendrogram. However, the VAT image
is not as clear as the dendrogram in this case because there are data in the ‘S’ shaped
cluster that are far from each other based on the Euclidean distance norm (see the
top and left corner of the image).
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A.5 Gath-Geva Clustering Algorithm

Fuzzy clustering methods assign degrees of membership in several clusters to each
input pattern. The resulted fuzzy partition matrix (U) describes the relationship of
the objects and the clusters. The fuzzy partition matrix U = [μi,k] is a c× N matrix,
where μi,k denotes the degree of the membership of xk in cluster Ci , so the i-th
row of U contains values of the membership function of the i-th fuzzy subset of X.
Conditions of the fuzzy partition matrix are given:

μi,k ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N , (A.3)
c∑

i=1

μi,k = 1, 1 ≤ k ≤ N , (A.4)

0 <

N∑
k=1

μi,k < N , 1 ≤ i ≤ c. (A.5)

The meaning of the relations written above is that the degree of the membership
is a real number in [0,1] (A.3); the sum of the membership values of an object is
exactly one (A.4); each cluster must contain at least one object with membership
value larger than zero, and the sum of the degrees of the membership values can not
exceed the number of elements considered (A.5).

Based on the previous statements the fuzzy partitioning space can be formulated as
follows: Let X = {x1, x2, . . . , xN } be a finite set of the observed data, let 2 ≤ c ≤ N
be an integer. The fuzzy partitioning space for X is the set

M f c =
{

U ∈ R
c×n|μi,k ∈ [0, 1] ,∀i, k;

c∑
i=1

μi,k = 1,∀k; 0 <

N∑
k=1

μi,k < N ,∀i
}

(A.6)

A common limitation of partitional clustering algorithms based on a fixed distance
norm, like k-means or fuzzy c-means clustering is, that they induce a fixed topological
structure and force the objective function to prefer clusters of spherical shape even if it
is not present. Generally, different cluster shapes (orientations, volumes) are required
for the different clusters, but there is no guideline as to how to choose them a priori.

Mixture-resolving methods (e.g. Gustafson-Kessel, Gath-Geva) assume that the
objects to be clustered are drawn from one of several distributions (usually Gaussian),
and hereby different clusters may form different shapes and sizes. The main task and
at the same time the main difficulty of these methods is to estimate the parameters
of all these distributions. These algorithms apply several norm-inducing matrices to
estimate the data covariance in each cluster. Most of the mixture-resolving methods
assume that the individual components of the mixture density are Gaussians, and
in this case the parameters of the individual Gaussians are to be estimated by the
procedure.
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Traditional approaches to this problem involve obtaining (iteratively) a maximum
likelihood estimate of the parameter vectors of the component densities [8]. More
recently, the Expectation Maximization (EM) algorithm (a general purpose maxi-
mum likelihood algorithm [14] for missing-data problems) has been applied to the
problem of parameter estimation. The Gustafson-Kessel (GK) [15] and the Gaussian
mixture based fuzzy maximum likelihood estimation (Gath-Geva algorithm (GG)
[16]) algorithms are also based on an adaptive distance norm, and they are able
to estimate the underlying distribution of the objects. Hereby, these algorithms are
able to disclose clusters with different orientation and volume. The Gath-Geva (GG)
algorithm can be seen as a further development of the Gustafson-Kessel algorithm.
In Gath-Geva algorithm the cluster sizes are not restricted like in Gustafson-Kessel
method, and the cluster densities are also taken into consideration. Unfortunately,
the GG algorithm is very sensitive to initialization, hence often it can not be directly
applied to the data.

As we have seen, the exploration of the shapes of the clusters is an essential
task. The shape of the clusters can be determined by the distance norm. The typical
distance norm between the object xk and the cluster center vi is represented as:

D2
i,k = ‖xk − vi‖2A = (xk − vi )

T A(xk − vi ), (A.7)

where A is a symmetric and positive definite matrix. Different distance norms can
be induced by the choice of the matrix A. The Euclidean distance arises with the
choice of A = I where I is an identity matrix. The Mahalanobis normis induced
when A = F−1 where F is the covariance matrix of the objects. It can be seen
that both the Euclidean and the Mahalanobis distances are based on fixed distance
norms. The Euclidean norm based methods find only hyperspherical clusters, and the
Mahalanobis norm based methods find only hyperellipsoidal ones (see Fig. A.4) even

x1x1

Euclidean norm Mahalanobis norm 

x2
x2

Fig. A.4 Different distance norms in fuzzy clustering



102 Appendix

if those shapes of clusters are not present in the data set. The norm-inducing matrix
of the cluster prototypes can be adapted by using estimates of the data covariance,
and can be used to estimate the statistical dependence of the data in each cluster.
The Gustafson-Kessel algorithm (GK) [15] and the Gaussian mixture based fuzzy
maximum likelihood estimation algorithm (Gath-Geva algorithm (GG) [16]) are
based on such an adaptive distance measure, they can adapt the distance norm to
the underlying distribution of the data which is reflected in the different sizes of the
clusters, hence they are able to detect clusters with different orientation and volume.

Algorithm 18 Gath-Geva algorithm
Given a set of data X, specify the number of the clusters c, choose a weighting exponent m > 1
and a termination tolerance ε > 0. Initialize the partition matrix U(0).

Repeat for t = 1, 2, . . .

Step 1 Calculate the cluster centers: v(t)
i =

N∑
k=1

(μ
(t−1)
i,k )m xk

N∑
k=1

(μ
(t−1)
i,k )m

, 1 ≤ i ≤ c

Step 2 Compute the distance measure D2
i,k . The distance to the prototype is calculated based

on the fuzzy covariance matrices of the cluster

F(t)
i =

N∑
k=1

(μ
(t−1)
i,k )m

(
xk − v(t)

i

) (
xk − v(t)

i

)T

N∑
k=1

(μ
(t−1)
i,k )m

, 1 ≤ i ≤ c (A.8)

The distance function is chosen as

D2
i,k(xk , vi ) = (2π)

(
N
2

)√
det (Fi )

αi
exp

(
1

2

(
xk − v(t)

i

)T
F−1

i

(
xk − v(t)

i

))
(A.9)

with the a priori probability αi = 1
N

N∑
k=1

μi,k

Step 3 Update the partition matrix

μ
(t)
i,k =

1∑c
j=1

(
Di,k (xk , vi ) /D j,k

(
xk , v j

))2/(m−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ N (A.10)

Until ||U(t) − U(t−1)|| < ε.
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A.6 Data Sets

A.6.1 Iris Data Set

The Iris data set [17] (http://www.ics.uci.edu) contains measurements on three class-
es of iris flowers. The data set was made by measurements of sepal length and width
and petal length and width for a collection of 150 irises. The analysed data set
contains 50 samples from each class of iris flowers (Iris setosa, Iris versicolor and
Iris virginica). The problem is to distinguish the three different types of the iris flower.
Iris setosa is easily distinguishable from the other two types, but Iris versicolor and
Iris virginica are very similar to each other. This data set has been analysed many
times to illustrate various clustering methods.

A.6.2 Semeion Data Set

The semeion data set contains 1593 handwritten digits from around 80 persons. Each
person wrote on a paper all the digits from 0 to 9, twice. First time in the normal way
as accurate as they can and the second time in a fast way. The digits were scanned and
stretched in a rectangular box including 16× 16 cells in a grey scale of 256 values.
Then each pixel of each image was scaled into a boolean value using a fixed threshold.
As a result the data set contains 1593 sample digits and each digit is characterised
with 256 boolean variables. The data set is available form the UCI Machine Learning
Repository [18]. The data set in the UCI Machine Learning Repository contains 266
attributes for each sample digit, where the last 10 digits describe the classifications
of the digits.

A.6.3 Wine Data Set

The Wine database (http://www.ics.uci.edu) consists of the chemical analysis of
178 wines from three different cultivars in the same Italian region. Each wine is
characterised by 13 attributes, and there are 3 classes distinguished.

A.6.4 Wisconsin Breast Cancer Data Set

The Wisconsin breast cancer database (http://www.ics.uci.edu) is a well known diag-
nostic data set for breast cancer compiled by Dr William H. Wolberg, University of
Wisconsin Hospitals [19]. This data set contains 9 attributes and class labels for the

http://www.ics.uci.edu
http://www.ics.uci.edu
http://www.ics.uci.edu
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Fig. A.5 Swiss roll data set
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683 instances (16 records with missing values were deleted) of which 444 are benign
and 239 are malignant.

A.6.5 Swiss Roll Data Set

The Swiss roll data set is a 3-dimensional data set with a 2-dimensional nonlinearly
embedded manifold. The 3-dimensional visualization of the Swiss roll data set is
shown in Fig. A.5.

A.6.6 S Curve Data Set

The S curve data set is a 3-dimensional synthetic data set, in which data points are
placed on a 3-dimensional ‘S’ curve. The 3-dimensional visualization of the S curve
data set is shown in Fig. A.6.

A.6.7 The Synthetic ‘Boxlinecircle’ Data Set

The synthetic data set ‘boxlinecircle’ was made by the authors of the book. The data
set contains 7100 sample data placed in a cube, in a refracted line and in a circle. As
this data set contains shapes with different dimensions, it is useful to demonstrate
the various selected methods. Data points placed in the cube contain random errors
(noise), too. In Fig. A.7 data points are yield with blue points and the borders of the
points are illustrated with red lines.
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Fig. A.6 S curve data set
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Fig. A.7 ‘Boxlinecircle’ data set

A.6.8 Variety Data Set

The Variety data set is a synthetic data set which contains 100 2-dimensional data
objects. 99 objects are partitioned in 3 clusters with different sizes (22, 26 and 51
objects), shapes and densities, and it also contains an outlier. Figure A.8 shows the
normalized data set.
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Fig. A.8 Variety data set

Fig. A.9 ChainLink data set
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A.6.9 ChainLink Data Set

The ChainLink data set is a synthetic data set which contains 75 2-dimensional data
objects. The objects can be partitioned into 3 clusters and a chain link which connects
2 clusters. Hence linkage based methods often suffer from the chaining effect, this
example tends to illustrate this problem. Figure A.9 shows the normalised data set.
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Fig. A.10 Curves data set

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A.6.10 Curves Data Set

The Curves data set is a synthetic data set which contains 267 2-dimensional data
objects. The objects can be partitioned into 4 clusters. What makes this data set inter-
esting is that the objects form clusters with arbitrary shapes and sizes, furthermore
these clusters lie very near to each other. Figure A.10 shows the normalised data set.
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Symbol
e-neighbouring, 2, 44

A
Agglomerative hierarchical methods, 95
Average linkage, 96

C
Circle, 2
Clustering

hierarchical, 95
Codebook, 3
Codebook vectors, 3
Complete linkage, 96
Continuous projection, 48
Curvilinear component analysis, 65

D
Delaunay triangulation, 4, 17
Dendrogram, 96
Dijkstra’s algorithm, 2, 94
Dimensionality reduction, 44

linear, 45
nonlinear, 45

Distance norm, 101
Divisive hierarchical methods, 95
Dunn’s index, 20
Dynamic topology representing

network, 11

E
Euclidean distance, 101

F
Feature extraction, 44
Feature selection, 44
Floyd-Warshall algorithm, 95
Forest, 1
Fukuyama-Sugeno clustering

measure, 21
Fuzzy hyper volume, 22
Fuzzy neighbourhood similarity

measure, 31
Fuzzy partition matrix, 100

G
Gabriel graph, 17
Gath-Geva algorithm, 100, 102
Geodesic distance, 2
Geodesic nonlinear projection neural gas, 68
Graph, 1

complete, 1
connected, 1
directed, 1
disconnected, 1
edge of graph, 1
finite, 1
node of graph, 1
path in the graph, 2
undirected, 1
weighted, 1

Growing neural gas, 7
Gustafson-Kessel algorithm, 100

H
Hybrid Minimal Spanning Tree—Gath-Geva

algorithm, 22
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I
Inconsistent edge, 18, 97
Incremental grid growing, 59
Independent component analysis, 45
Isomap, 45, 62
Isotop, 64

J
Jarvis-Patrick clustering, 18, 30

K
k-means algorithm, 3
k-neighbouring, 2, 44
knn graph, 2, 30
Kruskal’s algorithm, 2, 18, 93, 98

L
LBG algorithm, 4
Locality preserving projections, 55

M
Mahalanobis distance, 101
MDS stress function, 47
Minimal spanning tree, 2, 17, 18
Multidimensional scaling, 33, 52

metric, 52
non-metric, 53

N
Neighborhood, 1
Neural gas algorithm, 5

O
Online visualisation neural gas, 67

P
Partition index, 20
Prim’s algorithm, 2, 18, 93
Principal component analysis, 45, 49

R
Relative neighbourhood graph, 17
Residual variance, 47

S
Sammon mapping, 44, 45, 51
Sammon stress function, 47
Self-organizing Map, 45, 57
Separation index, 20
Single linkage, 96
Spanning tree, 2

minimal, 2

T
Topographic error, 48
Topographic product, 48
Topology representing network, 9
Topology representing network map, 71
Total fuzzy hyper volume, 22
Transitive fuzzy neighbourhood similarity

measure, 32
Tree, 1
Trustworthy projection, 48

V
Vector quantization, 2
Visual assessment of cluster tendency, 33, 97
Visualisation, 43
Voronoi diagram, 4

W
Weighted incremental neural network, 13

Z
Zahn’s algorithm, 17, 18, 97
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