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Foreword

The Haifa Workshops on Interdisciplinary Applications of Graph Theory, Combina-
torics and Algorithms have been held at the Caesarea Rothschild Institute (C.R.L.),
University of Haifa, every year since 2001. This volume consists of survey chapters
based on presentations given at the 2001 and 2002 Workshops, as well as other collo-
quia given at C.R.I. The Rothschild Lectures of Richard Karp (Berkeley) and Robert
Tarjan (Princeton), both Turing award winners, were the highlights of the Workshops.
Two chapters based on these talks are included. Other chapters were submitted by
selected authors and were peer reviewed and edited. This volume, written by various
experts in the field, focuses on discrete mathematics and combinatorial algorithms and
their applications to real world problems in computer science and engineering. A brief
summary of each chapter is given below.

Richard Karp’s overview, Optimization Problems Related to Internet Congestion
Control, presents some of the major challenges and new results related to controlling
congestion in the Internet. Large data sets are broken down into smaller packets, all
competing for communication resources on an imperfect channel. The theoretical issues
addressed by Prof. Karp lead to a deeper understanding of the strategies for managing
the transmission of packets and the retransmission of lost packets.

Robert Tarjan’s lecture, Problems in Data Structures and Algorithms, provides
an overview of some data structures and algorithms discovered by Tarjan during the
course of his career. Tarjan gives a clear exposition of the algorithmic applications of
basic structures like search trees and self-adjusting search trees, also known as splay
trees. Some open problems related to these structures and to the minimum spanning
tree problem are also discussed.

The third chapter by Martin Charles Golumbic, Algorithmic Graph Theory and its
Applications, is based on a survey lecture given at Clemson University. This chapter is
aimed at the reader with little basic knowledge of graph theory, and it introduces the
reader to the concepts of interval graphs and other families of intersection graphs. The
lecture includes demonstrations of these concepts taken from real life examples.

The chapter Decompositions and Forcing Relations in Graphs and other Combi-
natorial Structures by Ross McConnell deals with problems related to classes of inter-
section graphs, including interval graphs, circular-arc graphs, probe interval graphs,
permutation graphs, and others. McConnell points to a general structure called modu-
lar decomposition which helps to obtain linear bounds for recognizing some of these
graphs, and solving other problems related to these special graph classes.
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In their chapter The Local Ratio Technique and its Application to Scheduling and
Resource Allocation Problems, Bar-Yehuda, Bendel, Freund and Rawitz give a survey
of the local ratio technique for approximation algorithms. An approximation algorithm
efficiently finds a feasible solution to an intractable problem whose value approximates
the optimum. There are numerous real life intractable problems, such as the scheduling
problem, which can be approached only through heuristics or approximation algorithms.
This chapter contains a comprehensive survey of approximation algorithms for such
problems.

Domination Analysis of Combinatorial Optimization Algorithms and Problems by
Gutin and Yeo provides an alternative and a complement to approximation analysis. One
ofthe goals of domination analysis is to analyze the domination ratio of various heuristic
algorithms. Given a problem P and a heuristic H, the ratio between the number of
feasible solutions that are not better than a solution produced by H, and the total number
of feasible solutions to P, is the domination ratio. The chapter discusses domination
analyses of various heuristics for the well-known traveling salesman problem, as well as
other intractable combinatorial optimization problems, such as the minimum partition
problem, multiprocessor scheduling, maximum cut, k-satisfiability, and others.

Another real-life problem is the design of auctions. In their chapter On Multi-Object
Auctions and Matching Theory: Algorithmic Aspects, Penn and Tennenholtz use b-
matching techniques to construct efficient algorithms for combinatorial and constrained
auction problems. The typical auction problem can be described as the problem of
designing a mechanism for selling a set of objects to a set of potential buyers. In the
combinatorial auction problem bids for bundles of goods are allowed, and the buyer
may evaluate a bundle of goods for a different value than the sum of the values of
each good. In constrained auctions some restrictions are imposed upon the set feasible
solutions, such as the guarantee that a particular buyer will get at least one good from
a given set. Both combinatorial and constrained auction problems are NP-complete
problems, however, the authors explore special tractable instances where b-matching
techniques can be used successfully.

Shmuel Gal’s chapter Strategies for Searching Graphs is related to the problem of
detecting an object such as a person, a vehicle, or a bomb hiding in a graph (on an edge
or at a vertex). It is generally assumed that there is no knowledge about the probability
distribution of the target’s location and, in some cases, even the structure of the graph is
not known. Gal uses probabilistic methods to find optimal search strategies that assure
finding the target in minimum expected time.

The chapter Recent Trends in Arc Routing by Alain Hertz studies the problem
of finding a least cost tour of a graph, with demands on the edges, using a fleet of
identical vehicles. This problem and other related problems are intractable, and the
chapter reports on recent exact and heuristic algorithms. The problem has applications
in garbage collection, mail delivery, snow clearing, network maintenance, and many
others.
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Software and Hardware Testing Using Combinatorial Covering Suites by Alan
Hartman is an example of the interplay between pure mathematics, computer science,
and the applied problems generated by software and hardware engineers. The construc-
tion of efficient combinatorial covering suites has important applications in the testing
of software and hardware systems. This chapter discusses the lower bounds on the size
of covering suites, and gives a series of constructions that achieve these bounds asymp-
totically. These constructions involve the use of finite field theory, extremal set theory,
group theory, coding theory, combinatorial recursive techniques, and other areas of
computer science and mathematics.

Janos Pach and Micha Sharir’s chapter, Incidences, relates to the following general
problem in combinatorial geometry: What is the maximum number of incidences be-
tween m points and n members of a family of curves or surfaces in d-space? Results of
this kind have numerous applications to geometric problems related to the distribution
of distances among points, to questions in additive number theory, in analysis, and in
computational geometry.

We would like to thank the authors for their enthusiastic response to the challenge
of writing a chapter in this book. We also thank the referees for their comments and
suggestions. Finally, this book, and many workshops, international visits, courses and
projects at CRI, are the results of a generous grant from the Caesarea Edmond Benjamin
de Rothschild Foundation. We are greatly indebted for their support throughout the last
four years.

Martin Charles Golumbic

Irith Ben-Arroyo Hartman

Caesarea Edmond Benjamin

de Rothschild Foundation Institute for
Interdisciplinary Applications of Computer Science
University of Haifa, Israel
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Optimization Problems
Related to Internet
Congestion Control

Richard Karp

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Introduction

I’m going to be talking about a paper by Elias Koutsoupias, Christos Papadim-
itriou, Scott Shenker and myself, that was presented at the 2000 FOCS Conference [1]
related to Internet-congestion control. Some people during the coffee break expressed
surprise that I’'m working in this area, because over the last several years, I have been
concentrating more on computational biology, the area on which Ron Shamir reported
so eloquently in the last lecture. I was having trouble explaining, even to myself, how it
is that I’ve been working in these two very separate fields, until Ron Pinter just explained
it to me, a few minutes ago. He pointed out to me that improving the performance of
the web is crucially important for bioinformatics, because after all, people spend most
of their time consulting distributed data bases. So this is my explanation, after the fact,
for working in these two fields.

The Model

In order to set the stage for the problems I’'m going to discuss, let’s talk in slightly
oversimplified terms about how information is transmitted over the Internet. We’ll
consider the simplest case of what’s called unicast—the transmission of message or
file D from one Internet host, or node, 4 to another node B. The data D, that host 4
wishes to send to host B is broken up into packets of equal size which are assigned
consecutive serial numbers. These packets form a flow passing through a series of links
and routers on the Internet. As the packets flow through some path of links and routers,
they pass through queues. Each link has one or more queues of finite capacity in which
packets are buffered as they pass through the routers. Because these buffers have a
finite capacity, the queues may sometimes overflow. In that case, a choice has to be
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made as to which packets shall be dropped. There are various queue disciplines. The
one most commonly used, because it is the simplest, is a simple first-in-first-out (FIFO)
discipline. In that case, when packets have to be dropped, the last packet to arrive will be
the first to be dropped. The others will pass through the queue in first-in-first-out order.

The Internet Made Simple

~a ~

@K <
el Pl

e A wishes to send data to B

e D is broken into equal packets with consecutive serial numbers

e The packets form a flow passing through a sequence of links and

routers.
e Each link has one or more queues of finite capacity.

When a packet arrives at a full queue, it is dropped.

First-in-first-out disciplines, as we will see, have certain disadvantages. Therefore,
people talk about fair queuing where several, more complicated data structures are used
in order to treat all of the data flows more fairly, and in order to transmit approximately
the same number of packets from each flow. But in practice, the overhead of fair queuing
is too large, although some approximations to it have been contemplated. And so, this
first-in-first-out queuing is the most common queuing discipline in practical use.

Now, since not all packets reach their destination, there has to be a mechanism
for the receiver to let the sender know whether packets have been received, and which
packets have been received, so that the sender can retransmit dropped packets. Thus,
when the receiver B receives the packets, it sends back an acknowledgement to A. There
are various conventions about sending acknowledgements. The simplest one is when B
simply lets 4 know the serial number of the first packet not yet received. In that case 4
will know that consecutive packets up to some point have been received, but won’t know
about the packets after that point which may have been received sporadically. Depending
on this flow of acknowledgements back to 4, 4 will detect that some packets have been
dropped because an acknowledgement hasn’t been received within a reasonable time,
and will retransmit certain of these packets.

The most undesirable situation is when the various flows are transmitting too
rapidly. In that case, the disaster of congestion collapse may occur, in which so many
packets are being sent that most of them never get through—they get dropped. The
acknowledgement tells the sender that the packet has been dropped. The sender sends
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the dropped packet again and again, and eventually, the queues fill up with packets that
are retransmissions of previous packets. These will eventually be dropped and never
get to their destinations. The most important single goal of congestion control on the
Internet is to avoid congestion collapse.

There are other goals as well. One goal is to give different kinds of service to
different kinds of messages. For example, there are simple messages that have no
particular time urgency, email messages, file transfers and the like, but then there are
other kinds of flows, like streaming media etc. which have real-time requirements.
I won’t be getting into quality-of-service issues in this particular talk to any depth.
Another goal is to allocate bandwidth fairly, so that no flow can hog the bandwidth
and freeze out other flows. There is the goal of utilizing the available bandwidth. We
want to avoid congestion collapse, but also it is desirable not to be too conservative in
sending packets and slow down the flow unnecessarily.

The congestion control algorithm which is standard on the Internet is one that the
various flows are intended to follow voluntarily. Each flow under this congestion control
algorithm has a number of parameters. The most important one is the window size W—
the maximum number of packets that can be in process; more precisely, W is the maxi-
mum number of packets that the sender has sent but for which an acknowledgement has
not yet been received. The second parameter of importance is the roundtrip time (R77T).
This parameter is a conservative upper estimate on the time it should take for a packet
to reach its destination and for the acknowledgement to come back. The significance of
this parameter is that if the acknowledgement is not received within R77 time units after
transmission, then the sender will assume that the packet was dropped. Consequently, it
will engage in retransmission of that particular packet and of all the subsequent packets
that were sent up to that point, since packet drops often occur in bursts.

In the ideal case, things flow smoothly, the window size is not excessive and not
too small, no packet is dropped, and 4 receives an acknowledgement and sends a packet
every RTT/W time steps. But in a bad case, the packet “times out”, and then all packets
sent in the last interval of time R7T must be retransmitted. The crucial question is,
therefore, how to modify, how to adjust this window. The window size should contin-
ually increase as long as drops are not experienced, but when drops are experienced,
in order to avoid repetition of those drops, the sender should decrease its window
size.

The Jacobson algorithm, given below, is the standard algorithm for adjusting the
window size. All Internet service providers are supposed to adhere to it.

Jacobson’s Algorithm for adjusting W

start-up:
W <« 1
when acknowledgment received
W «~ W+ 1
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when timeout occurs
W <« |W/2]
g0 to main
main:
if W acknowledgements received before timeout occurs then
W <~ W +1
else
W <« |W/2]

Jacobson’s algorithm gives a rather jagged behavior over time. The window size
W is linearly increased, but from time to time it is punctuated by a sudden decrease by a
factor of two. This algorithm is also called the additive increase/multiplicative decrease
(AIMD) scheme. There are a number of variations and refinements to this algorithm.
The first variation is called selective acknowledgement. The acknowledgement is made
more informative so that it indicates not only the serial number of the first packet not
yet received, but also some information about the additional packets that have been
received out of order.

AV AV AV AV avavd

The sawtooth behavior of Jacobson's standard algorithm.

The second variation is “random early drop.” The idea is that instead of dropping
packets only when catastrophe threatens and the buffers start getting full, the packets get
dropped randomly as the buffers approach saturation, thus giving an early warning that
the situation of packet dropping is approaching. Another variation is explicit congestion
notification, where, instead of dropping packets prematurely at random, warnings are
issued in advance. The packets go through, but in the acknowledgement there is a field
that indicates “you were close to being dropped; maybe you’d better slow down your
rate.” There are other schemes that try to send at the same long-term average rate as
Jacobson’s algorithm, but try to smooth out the flow so that you don’t get those jagged
changes, the abrupt decreases by a factor of two.

The basic philosophy behind all the schemes that I’'ve described so far is vol-
untary compliance. In the early days, the Internet was a friendly club, and so you
could just ask people to make sure that their flows adhere to this standard additive
increase/multiplicative decrease (AIMD) scheme. Now, it is really social pressure that
holds things together. Most people use congestion control algorithms that they didn’t
implement themselves but are implemented by their service provider and if their service
provider doesn’t adhere to the AIMD protocol, then the provider gets a bad reputation.
So they tend to adhere to this protocol, although a recent survey of the actual algorithms
provided by the various Internet service providers indicates a considerable amount of
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deviation from the standard, some of this due to inadvertent program bugs. Some of
this may be more nefarious—I don’t know.

In the long run, it seems that the best way to ensure good congestion control is not
to depend on some voluntary behavior, but to induce the individual senders to moderate
their flows out of self-interest. If no reward for adhering, or punishment for violation
existed, then any sender who is motivated by self-interest could reason as follows: what I
do has a tiny effect on packet drops because I am just one of many who are sharing these
links, so I should just send as fast as I want. But if each individual party follows this
theme of optimizing for itself, you get the “tragedy of the commons”, and the total effect
is a catastrophe. Therefore, various mechanisms have been suggested such as: moni-
toring individual flow rates, or giving flows different priority levels based on pricing.

The work that we undertook is intended to provide a foundation for studying how
senders should behave, or could be induced to behave, if their goal is self-interest and
they cannot be relied on to follow a prescribed protocol. There are a couple of ways
to study this. We have work in progress which considers the situation as an n-person
non-cooperative game. In the simplest case, you have n flows competing for a link.
As long as some of their flow rates are below a certain threshold, everything will get
through. However, as soon as the sum of their flow rates crosses the threshold, some
of them will start experiencing packet drops. One can study the Nash equilibrium of
this game and try to figure out different kinds of feedback and different kinds of packet
drop policies which might influence the players to behave in a responsible way.

The Rate Selection Problem

In the work that I am describing today, [ am not going to go into this game theoretic
approach, which is in its preliminary stages. I would like to talk about a slightly different
situation. The most basic question one could perhaps ask is the following: suppose you
had a single flow which over time is transmitting packets, and the flow observes that if
it sends at a particular rate it starts experiencing packet drops; if it sends at another rate
everything gets through. It gets this feedback in the form of acknowledgements, and if
it’s just trying to optimize for itself, and is getting some partial information about its
environment and how much flow it can get away with, how should it behave?

The formal problem that we will be discussing today is called the Rate Selection
Problem. The problem is: how does a single, self-interested host A, observing the limits
on what it can send over successive periods of time, choose to moderate its flow. In
the formal model, time will be divided into intervals of fixed length. You can think
of the length of the interval as perhaps the roundtrip time. For each time interval ¢
there is a parameter u,, defined as the maximum number of packets that 4 can send
B without experiencing packet drops. The parameter u, is a function of all the other
flows in the system, of the queue disciplines that are used, the topology of the Internet,
and other factors. Host A4 has no direct information about u,. In each time interval ¢,
the parameter x, denotes the number of packets sent by the sender 4. If x; < u,, then
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all the packets will be received, none of them will time out and everything goes well.
If x, > u,, then at least one packet will be dropped, and the sender will suffer some
penalty that we will have to model. We emphasize that the sender does not have direct
information about the successive thresholds. The sender only gets partial feedback, i.e.
whether x; < u; or not, because all that the sender can observe about the channel is
whether or not drops occurred.

In order to formulate an optimization problem we need to set up a cost function
c(x,u). The function represents the cost of transmitting x packets in a time period with
threshold u. In our models, the cost reflects two major components: opportunity cost due
to sending of less than the available bandwidth, i.e. when x, < u,, and retransmission
delay and overhead due to dropped packets when x; > u;.

We will consider here two classes of cost functions.
The severe cost function is defined as follows:

u—x; If x; < uy
clxr, ur) = { U; otherwise
The intuition behind this definition is the following: When x; < u,, the user pays the
difference between the amount it could have sent and the actual amount sent. When
x; > u,;, we’ll assume the sender has to resend all the packets that it transmitted in that
period. In that case it has no payoff for that period and its cost is u;, because if it had
known the threshold, it could have got u, packets through, but in fact, it gets zero.

The gentle cost function will be defined as:

U, — X if xi <u
ol ) = {ot(x, —u;) otherwise
where « is a fixed proportionality factor. Under this function, the sender is punished less
for slightly exceeding the threshold. There are various interpretations of this. In certain
situations it is not strictly necessary for all the packets to get through. Only the quality
of information received will deteriorate. Therefore, if we assume that the packets are
not retransmitted, then the penalty simply relates to the overhead of handling the extra
packets plus the degradation of the quality at the receiver. There are other scenarios
when certain erasure codes are used, where it is not a catastrophe not to receive certain
packets, but you still pay an overhead for sending too many packets. Other cost functions
could be formulated but we will consider only the above two classes of cost functions.

The optimization problem then is the following: Choose over successive periods
the amounts x, of packets to send, so as to minimize the total cost incurred over all
periods. The amount x,,; is chosen knowing the sequence x, x», ..., x, and whether
x; <u; ornot, foreachi =1,2,...,¢.
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The Static Case

We begin by investigating what we call the static case, where the conditions are
unchanging. In the static case we assume that the threshold is fixed and is a positive
integer less than or equal to a known upper bound #, that is, u; = u for all ¢, where
ue{l,2,...,n}. Atstept, 4 sends x, packets and learns whether x; < u,. The problem
can be viewed as a Twenty Questions game in which the goal is to determine the
threshold u at minimum cost by queries of the form, “Is x, > u?” We remark that the
static case is not very realistic. We thought that we would dispose of it in a few days,
and move on to the more interesting dynamic case. However, it turned out that there
was a lot of mathematical content even to the static case, and the problem is rather nice.

We give below an outline of some of the results.

At step ¢ of the algorithm, the sender sends an amount x;, pays a penalty c(x;, u;)
according to whether x; is above or below the threshold, and gets feedback telling it
whether x, < u, or not. At a general step, there is an interval of pinning containing the
threshold. The initial interval of pinning is the interval from / to n. We can think of
an algorithm for determining the threshold as a function from intervals of pinning to
integers. In other words, for every interval of pinning [7, j], the algorithm chooses a
flow k, (i <k < j) for the next interval. The feedback to this flow will tell the sender
whether & was above the threshold or not. In the first case, there will be packet drops
and the next interval of pinning will be the interval [i, £ — 1]. In the second case, the
sender will succeed in sending the flow through, there will be no packet drops, and the
interval of pinning at the next time interval will be the interval [k, j]. We can thus think
of the execution of the algorithm as a decision tree related to a twenty questions game
attempting to identify the actual threshold. If the algorithm were a simple binary search,
where one always picks the middle of the interval of pinning, then the tree of Figure 1
would represent the possible runs of the algorithm. Each leaf of the tree corresponds to
a possible value of the threshold. Let 4(u) denote the cost of the algorithm A, when the

Figure 1.
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threshold is . We could be interested in the expected cost which is the average cost over
all possible values of the threshold, i.e. 1/n )y ) _, A(u). We could also be interested

in the worst-case costs, i.e. max A(u). For the different cost functions defined above,
<u<n

(“gentle” and “severe”) we will be interested in algorithms that are optimal either with
respect to the expected cost or with respect to the worst-case cost.

It turns out that for an arbitrary cost function c(x, u), there is a rather simple dy-
namic programming algorithm with running time O(n®), which minimizes expected
cost. In some cases, an extension of dynamic programming allows one to compute
policies that are optimal in the worst-case sense. So the problem is not so much com-
puting the optimal policy for a particular value of the upper limit and of the threshold,
but rather of giving a nice characterization of the policy. It turns out that for the gentle
cost function family, for large #, there is a very simple characterization of the optimal
policies. And this rule is essentially optimal in an asymptotic sense with respect to both
the expected cost and the worst-case cost.

The basic question is: Given an interval of pinning [Z, j], where should you put
your next question, your next transmission range. Clearly, the bigger « is, the higher
the penalty for sending too much, and the more cautious one should be. For large oz we
should put our trial value close to the beginning of the interval of pinning in order to
avoid sending too much. It turns out that the optimal thing to do asymptotically is always
to divide the interval of pinning into two parts in the proportions 1:4/a. The expected
cost of this policy is «/a n/2 + O(logn) and the worst-case cost is /& n + O(logn).
Outlined proofs of these results can be found in [1].

These results can be compared to binary search, which has expected cost
(1 + a)n/2. Binary search does not do as well, except in the special case where @ = 1,
in which case the policy is just to cut the interval in the middle.

So that’s the complete story, more or less, of the gentle-cost function in the static
case. For the severe-cost function, things turn out to be more challenging.

Consider the binary search tree as in Figure 2, and assume that » = 8 and the
threshold is u = 6. We would start by trying to send 5 units. We would get everything
through but we would pay an opportunity cost of 1. That would take us to the right
child of the root. Now we would try to send 7 units. Seven is above the threshold 6, so
we would overshoot and lose 6, and our total cost thus far would be 1 + 6. Then we
would try 6, which is the precise threshold. The information that we succeeded would
be enough to tell us that the threshold was exactly 6, and thereafter we would incur
no further costs. So we see that in this particular case the cost is 7. Figure 2 below
demonstrates the costs for each threshold u (denoted by the leaves of the tree). The
total cost in this case is 48, the expected cost is 48/8, the worst-case cost is 10. It turns
out that for binary search both the expected cost and the worst-case cost are O(n logn).

The question is, then, can we do much better than O(n log n)? It turns out that we
can. Here is an algorithm that achieves O(n loglogn). The idea of this algorithm is as
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(©) (4) © G a0 @ © (4)

Figure 2.

follows: The algorithm runs in successive phases. Each phase will have a target—to
reduce the interval of pinning to a certain size. These sizes will be, respectively, n/2
after the first phase, n/2? after the second phase, n/2* after the third phase, n/2% after
the 4™ phase, and n/ 22" after the k-th phase. It’s immediate then that the number of
phases will be 1 + loglogn, or O(loglogn).We remark that we are dealing with the
severe-cost function where there is a severe penalty for overshooting, for sending too
much. Therefore, the phases will be designed in such a way that we overshoot at most
once per phase.

We shall demonstrate the algorithm by a numerical example. Assume n = 256 and
the threshold is u = 164. In each of the first two phases, it is just like binary search. We
try to send 128 units. We succeed because 128 < 164. Now we know that the interval of
pinning is [128, 256]. We try the midpoint of the interval, 192. We overshoot. Now the
interval of pinning is of length 64. At the next step we are trying to reduce the interval
of pinning down to 16, which is 256 over 2*. We want to be sure of overshooting only
once, so we creep up from 128 by increments of 16. We try 144; we succeed. We
try 160; we succeed. We try 176; we fail. Now we know that the interval of pinning
is [160, 175]. It contains 16 integers. At the next stage we try to get an interval of
pinning of size 1. We do so by creeping up one at a time, 161, 162, etc. until we reach
the correct threshold u = 164. A simple analysis shows that the cost of each phase
is O(n), and since the number of phases is O(loglogn), the cost of the algorithm is
O(nloglogn).

A Lower Bound

The question then is, is it possible to improve the bound O (n log log n)? The answer
is negative as is seen in the next theorem.
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Theorem 1 mAjn max A(u) = O(n loglogn).

1<u<n

Theorem 1 claims that the best complexity of an algorithm, with a given a priori
bound on the threshold u < O(n), is ®(n log log n). This is achievable by the algorithm
described above.

There is also another result that deals with the case where no upper bound is given
on the threshold. In this case, as well, a bound of ®(u loglog u) is achieved for every
threshold u.

We shall demonstrate the idea behind the proof of the lower bound in Theorem 1.
Any run of an algorithm corresponds to some path from the root to a leaf in the binary
decision tree. The path contains right and left turns. A right turn means that the amount
we send is less than or equal to the threshold; a left turn means that we overshoot, and
the amount that we send is greater than the threshold. The left turns are very undesirable
because we lose an amount equal to the threshold whenever we take a left turn. However,
we also accumulate costs associated with the right turns, because we are not sending
as much as we could have. We therefore have a trade-off between the number of left
turns, and the cost of right turns. For threshold « denote the number of left turns in the
path from root to leaf u by leftheight(u1). Let rightcost(u) denote the sum of the costs
accumulated in the right turns. Thus, the cost of an algorithm is given by

A(u) = u - leftheight(u) + rightcost(u)

For example, for the path given in Figure 3 we have leftheight(15) = 2 and rightcost
15 =15-7+(15-13)+(15-14) = 11.

We define two more parameters related to the binary tree T'. Let leftheight(T) =
max leftheight(u), and rightcost(T) = > _ rightcost(u).

The following key lemma states that there is an inherent antagonism between
minimizing the left height and the goal of minimizing the right cost.

Lemma 1 There exists a constant a > 0 such that every n-leaf binary tree T with
leftheight(T) < loglogn has rightcost(T) > an”loglogn.

The proof of Theorem 1 now follows easily from Lemma 1. For details see [1].

The Dynamic Case

So far we have discussed the static problem, which is not entirely realistic. The
static problem means that the sender is operating under constant conditions, but we
don’t expect that to be the case. We expect some fluctuation in the rate available to the
sender from period to period.



Optimization Problems Related to Internet Congestion Control 11

15

Leftheight(15)=2
Rightcost(15)=(15-7)+(15-13)+(15-14)

Figure 3.

In the dynamic case, you can think of an adversary who is changing the threshold
in such a way as to fool the sender. The problem has different forms depending on
the restrictions we assume on the adversary. If the adversary can just do anything it
would like in any period, then clearly the sender doesn’t have a clue what to do. So
we may have various assumptions on the adversary. We can assume that the threshold
u;, chosen by the adversary, is simply an integer satisfying u, € [a, b] where a and
b are any two integers. Or we can assume that the variation of the threshold is more
restricted. One such assumption that we investigated is that the adversary can drop the
threshold as rapidly as it likes but can only increase the threshold from one period to
the next by at most a factor, 6 > 1, i.e. u,41 € [0, Ou;]. Another possible assumption
is that the threshold is bounded below by a positive constant 8 and the adversary is
additively constrained so that it can only increase the threshold by some fixed amount,
«, at most in any period, i.e. u,41 € [B, u, + «].

Asinthe static case, the game is played in rounds, where in each round the algorithm
sends x, packets. Unlike the static case, here we assume that the adversary chooses a
sequence {u,} of thresholds by knowing the algorithm for choosing the sequence {x,}
of probes. Up to this point, we have considered the cost or the loss that the sender has.
Now we are going to consider the gain that the player achieves. The gain is defined as
g(x;, uy) = u; — c(xy, uy), where c(x;, u,) is the severe cost function. It is essentially the
number of packets that the player gets through. The player receives feedback f(x;, u;)
which is a single bit stating whether or not the amount sent is less than or equal to the
threshold for the current period.

Why are we suddenly switching from lose to gain? This is, after all, an online
problem. The sender is making adaptive choices from period to period, making each
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choice on the basis of partial information from the previous period. The traditional
approach for analyzing online problems is of competitive analysis [2], in which the
performance of an on-line algorithm for choosing {x,} is compared with the best among
some family of off-line algorithms for choosing {x,}. An off-line algorithm knows the
entire sequence of thresholds {u,} beforehand. An unrestricted off-line algorithm could
simply choose x; = u, for all ¢, incurring a total cost of zero. The ratio between the
on-line algorithm’s cost and that of the off-line algorithm would then be infinite, and
could not be used as a basis for choosing among on-line algorithms. For this reason it
is more fruitful to study the gain rather than the loss.

The algorithm’s gain (ALG) is defined as the sum of the gains over the succes-
sive periods, and the adversary’s gain (OPT) is the sum of the thresholds because the
omniscient adversary would send the threshold amount at every step.

We adopt the usual definition of a randomized algorithm. We say that a randomized
algorithm achieves competitive ratio r if for every sequence of thresholds.

r - ALG > OPT + const, where const depends only on the initial conditions.

This means that, for every oblivious adversary, its payoff is a fraction 1/r of the
amount that the adversary could have gotten. By an oblivious adversary we mean an
adversary which knows the general policy of the algorithm, but not the specific random
bits that the algorithm may generate from step to step. It has to choose the successive
thresholds in advance, just knowing the text of the algorithm, but not the random
bits generated by the algorithm. If the algorithm is deterministic, then the distinction
between oblivious adversaries and general adversaries disappears.

We have a sequence of theorems about the optimal competitive ratio. We will
mention them briefly without proofs. The proofs are actually, as is often the case
with competitive algorithms, trivial to write down once you have guessed the answer
and come up with the right potential function. For those who work with competitive
algorithms this is quite standard.

Adversary Restricted to a Fixed Interval

The first case we consider is when the adversary can be quite wild. It can choose any
threshold u, from a fixed interval [a, b]. The deterministic case is trivial: An optimal
on-line algorithm would never select a rate x;, > a because of the adversary’s threat to
select u; = a. But if the algorithm transmits at the minimum rate x;, = a, the adversary
will select the maximum possible bandwidth u, = b, yielding a competitive ratio of
b/a. If randomization is allowed then the competitive ratio improves, as is seen in the
following theorem:

Theorem 2 The optimal randomized competitive ratio against an adversary that is
constrained to select u, € [a, b]is 1 + In(b/a).
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The analysis of this case is proved by just considering it as a two-person game
between the algorithm and the adversary and giving optimal mixed strategies for the
two players. The details are given in [1].

Adversary Restricted by a Multiplicative Factor

It is more reasonable to suppose that the adversary is multiplicatively constrained.
In particular, we assume that the adversary can select any threshold u,.; € [0, 6 u,]
for some constant & > 1. The adversary can only increase the threshold by, at most,
some factor 6, from one period to the next. You might imagine that we would
also place a limit on how much the adversary could reduce the threshold but it
turns out we can achieve just as good a competitive ratio without this restriction. It
would be nice if it turned out that an optimal competitive algorithm was additive-
increase/multiplicative-decrease. That this would give a kind of theoretical justifica-
tion for the Jacobson algorithm, the standard algorithm that is actually used. But we
haven’t been quite so lucky. It turns out that if you are playing against the multi-
plicatively constrained adversary, then there’s a nearly optimal competitive algorithm
which is of the form multiplicative-increase/multiplicative-decrease. The result is stated
below:

Theorem 3 There is a deterministic online algorithm with competitive ratio
(V& +va=1)* against an adversary who is constrained to select any threshold u,,,
in the range [0, 0 u;] for some constant 0 > 1. On the other hand, no deterministic
online algorithm can achieve a competitive ratio better than 0.

In the proof, the following multiplicative-increase/multiplicative-decrease algo-

rithm is considered: If you undershoot, i.e. if x; < u,

then x;11 = 0 x;
N
else x,11 = Ax;, where . = ————
A NCESNES

It is argued in [1] that the following two invariants are maintained:

oy, < th,and

e rgain, > opt; + P(x,41) — P(x;), where ®(x) =

T )\x is an appropriate po-
tential function.

Once the right policy, the right bounds, and the right potential function are guessed,
then the theorem follows from the second invariant using induction. I should say that
most of this work on the competitive side was done by Elias Koutsoupias.
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Adversary Restricted by an Additive Term

We consider the case where the adversary is bounded below by a positive constant
and constrained by an additive term, i,e, u;11 € [B, u; + «]. For a multiplicatively
constrained adversary you get a multiplicative-increase/ multiplicative-decrease algo-
rithm. You might guess that for an additively constrained adversary you get additive-
increase/additive—decrease algorithm. That’s in fact what happens:

Theorem 4 The optimal deterministic competitive ratio against an adversary con-
strained to select threshold u;\ in the interval [B, u; + «] is at most 4 + «/B. On
the other hand, no deterministic online algorithm has competitive ratio better than
1+ a/p.

The algorithm is a simple additive-increase/additive—decrease algorithm and again the
proof involves certain inductive claims that, in turn, involve a potential function that
has to be chosen in exactly the right way. For more details, consult the paper [1].

There is a very nice development that came out this somewhat unexpectedly and
may be of considerable importance, not only for this problem, but also for others.
I went down to Hewlett-Packard and gave a talk very much like this one. Marcello
Weinberger at Hewlett-Packard asked, “Why don’t you formulate the problem in a
different way, taking a cue from work that has been done in information theory and
economics on various kinds of prediction problems? Why don’t you allow the adversary
to be very free to choose the successive thresholds any way it likes, from period to
period, as long as the thresholds remain in the interval [a, b]? But don’t expect your
algorithm to do well compared to arbitrary algorithms. Compare it to a reasonable class
of algorithms.” For example, let’s consider those algorithms which always send at the
same value, but do have the benefit of hindsight. So the setting was that we will allow the
adversary to make these wild changes, anything in the interval [a, b] at every step, but
the algorithm only has to compete with algorithms that send the same amount in every
period.

This sounded like a good idea. In fact, this idea has been used in a number of
interesting studies. For example, there is some work from the 70’s about the following
problem: Suppose your adversary is choosing a sequence of heads and tails and you
are trying to guess the next coin toss. Of course, it’s hopeless because if the adversary
knows your policy, it can just do the opposite. Yet, suppose you are only trying to
compete against algorithms which know the whole sequence of heads and tails chosen
by the adversary but either have to choose heads all the time or have to choose tails all
the time. Then it turns out you can do very well even though the adversary is free to
guess what you are going to do and do the opposite; nevertheless you can do very well
against those two extremes, always guessing heads and always guessing tails.

There is another development in economics, some beautiful work by Tom Cover,
about an idealized market where there is no friction, no transaction costs. He shows
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that there is a way of changing your portfolio from step to step, which of course cannot
do well against an optimal adaptive portfolio but can do well against the best possible
fixed market basket of stocks even if that market basket is chosen knowing the future
course of the market.

There are these precedents for comparing your algorithm against a restricted fam-
ily of algorithms, even with a very wild adversary. I carried this work back to ICSI
where [ work and showed it Antonio Piccolboni and Christian Schindelhauer. They got
interested in it. Of course, the hallmark of our particular problem is that unlike these
other examples of coin tossing and the economic market basket, in our case, we don’t
really find out what the adversary is playing. We only get limited feedback about the
adversary, namely, whether the adversary’s threshold was above or below the amount
we sent. Piccolboni and Schindelhauer undertook to extend some previous results in
the field by considering the situation of limited feedback. They considered a very gen-
eral problem, where in every step the algorithm has a set of moves, and the adversary
has a set of moves. There is a loss matrix indicating how much we lose if we play i
and the adversary plays j. There is a feedback matrix which indicates how much we
find out about what the adversary actually played, if we play i and if the adversary

plays ;.

Clearly, our original problem can be cast in this framework. The adversary chooses
athreshold. The algorithm chooses a rate. The loss is according to whether we overshoot
or undershoot and the feedback is either 0 or 1, according to whether we overshoot or
undershoot. This is the difference from the classical results of the 1970%. We don’t
really find out what the adversary actually played. We only find out partial information
about what the adversary played.

The natural measure of performance in this setting is worst-case regret. What it
is saying is that we are going to compare, in the worst-case over all choices of the
successive thresholds by the adversary, our expected loss against the minimum loss of
an omniscient player who, however, always has to play the same value at every step.
The beautiful result is that, subject to a certain technical condition which is usually
satisfied, there will be a randomized algorithm even in the case of limited feedback
which can keep up with this class of algorithms, algorithms that play a constant value,
make the same play at every step. This is very illuminating for our problem, but we
think that it also belongs in the general literature of results about prediction problems
and should have further applications to statistical and economic games. This is a nice
side effect to what was originally a very specialized problem.
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Problems in Data Structures
and Algorithms

Robert E. Tarjan

Princeton University and Hewlett Packard

1. Introduction

I would like to talk about various problems I have worked on over the course of my
career. In this lecture I'll review simple problems with interesting applications, and
problems that have rich, sometimes surprising, structure.

Let me start by saying a few words about how I view the process of research,
discovery and development. (See Figure 1.)

My view is based on my experience with data structures and algorithms in computer
science, but I think it applies more generally. There is an interesting interplay between
theory and practice. The way I like to work is to start out with some application from the
real world. The real world, of course, is very messy and the application gets modeled
or abstracted away into some problem or some setting that someone with a theoretical
background can actually deal with. Given the abstraction, I then try to develop a solution
which is usually, in the case of computer science, an algorithm, a computational method
to perform some task. We may be able to prove things about the algorithm, its running
time, its efficiency, and so on. And then, if it’s at all useful, we want to apply the
algorithm back to the application and see if it actually solves the real problem. There
is an interplay in the experimental domain between the algorithm developed, based
on the abstraction, and the application; perhaps we discover that the abstraction does
not capture the right parts of the problem; we have solved an interesting mathematical
problem but it doesn’t solve the real-world application. Then we need to go back and
change the abstraction and solve the new abstract problem and then try to apply that
in practice. In this entire process we are developing a body of new theory and practice
which can then be used in other settings.

A very interesting and important aspect of computation is that often the key to
performing computations efficiently is to understand the problem, to represent the
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Figure 1.

problem data appropriately, and to look at the operations that need to be performed on
the data. In this way many algorithmic problems turn into data manipulation problems,
and the key issue is to develop the right kind of data structure to solve the problem. I
would like to talk about several such problems. The real question is to devise a data
structure, or to analyze a data structure which is a concrete representation of some kind
of algorithmic process.

2. Optimum Stack Generation Problem

Let’s take a look at the following simple problem. I’ve chosen this problem because
it’s an abstraction which is, on the one hand, very easy to state, but on the other hand,
captures a number of ideas. We are given a finite alphabet X, and a stack S. We would
like to generate strings of letters over the alphabet using the stack. There are three stack
operations we can perform.

push (A)—push the letter A from the alphabet onto the stack,
emit—output the top letter from the stack,
pop—pop the top letter from the stack.

We can perform any sequence of these operations subject to the following well-
formedness constraints: we begin with an empty stack, we perform an arbitrary series
of push, emit and pop operations, we never perform pop from an empty stack, and we
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end up with an empty stack. These operations generate some sequence of letters over
the alphabet.

Problem 2.1 Given some string o over the alphabet, find a minimum length sequence
of stack operations to generate o.

We would like to find a fast algorithm to find the minimum length sequence of
stack operations for generating any particular string.

For example, consider the string A B C A C B A. We could generate it by per-
forming: push (A), emit A, pop A, push (B), emit B, pop B, push (C), emit C, pop
C etc., but since we have repeated letters in the string we can use the same item on
the stack to generate repeats. A shorter sequence of operations is: push (A), emit A,
push (B), emit B, push (C), emit C, push (A), emit A, pop A; now we can emit C (we
don’t have to put a new C on the stack), pop C, emit B, pop B, emit A. We got the
‘CBA’ string without having to do additional push-pops. This problem is a simplifica-
tion of the programming problem which appeared in “The International Conference on
Functional Programming” in 2001 [46] which calls for optimum parsing of HTML-like
expressions.

What can we say about this problem? There is an obvious O(n*) dynamic pro-
gramming algorithm!. This is really a special case of optimum context-free language
parsing, in which there is a cost associated with each rule, and the goal is to find a
minimum-cost parse. For an alphabet of size three there is an O(n) algorithm (Y. Zhou,
private communication, 2002). For an alphabet of size four, there is an O(n?) algo-
rithm. That is all I know about this problem. I suspect this problem can be solved by
matrix multiplication, which would give a time complexity of O(n®), where « is the
best exponent for matrix multiplication, currently 2.376 [8]. I have no idea whether
the problem can be solved in O(n?) or in O(nlogn) time. Solving this problem, or
getting a better upper bound, or a better lower bound, would reveal more information
about context-free parsing than what we currently know. I think this kind of question
actually arises in practice. There are also string questions in biology that are related to
this problem.

3. Path Compression

Let me turn to an old, seemingly simple problem with a surprising solution. The
answer to this problem has already come up several times in some of the talks in

U Sketch of the algorithm: Let S[1 . .. n] denote the sequence of characters. Note that there must be exactly 7
emits and that the number of pushes must equal the number of pops. Thus we may assume that the cost is sim-
ply the number of pushes. The dynamic programming algorithm is based on the observation that if the same
stack item is used to produce, say, S[i1] and S[i»], where i, > i1 and S[i;] = S[i2], then the state of the stack
at the time of emit S[7; ] must be restored for emit S[i>]. Thus the cost C[#, j] of producing the subsequence
S[i, j]is the minimum of C[i, j — 1]+ 1 and min {C[i, t]+ C[t + 1, j — 1] : S[¢t] = S[j], i <t < j}.
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the conference “Second Haifa Workshop on Interdisciplinary Applications of Graph
Theory, Combinatorics and Algorithms.” The goal is to maintain a collection of »
elements that are partitioned into sets, i.e., the sets are always disjoint and each element
is in a unique set. Initially each element is in a singleton set. Each set is named by some
arbitrary element in it. We would like to perform the following two operations:

find(x)—for a given arbitrary element x, we want to return the name of the set
containing it.

unite(x,y)—combine the two sets named by x and y. The new set gets the name of
one of the old sets.

Let’s assume that the number of elements is 7. Initially, each element is in a singleton
set, and after n — 1 unite operations all the elements are combined into a single set.

Problem 3.1 Find a data structure that minimizes the worst-case total cost of m find
operations intermingled with n — 1 unite operations.

For simplicity in stating time bounds, I assume that m > n, although this assump-
tion is not very important. This problem originally arose in the processing of COMMON
and EQUIVALENCE statements in the ancient programming language FORTRAN. A
solution is also needed to implement Kruskal’s [ 31] minimum spanning tree algorithm.
(See Section 7.)

There is a beautiful and very simple algorithm for solving Problem 3.1, developed
in the ‘60s. I’m sure that many of you are familiar with it. We use a forest data structure,
with essentially the simplest possible representation of each tree (see Figure 2). We use
rooted trees, in which each node has one pointer, to its parent. Each set is represented
by a tree, whose nodes represent the elements, one element per node. The root element
is the set name. To answer a find(x) operation, we start at the given node x and follow

Figure 2.
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the pointers to the root node, which names the set. The time of the find operation is
proportional to the length of the path. The tree structure is important here because it
affects the length of the find path. To perform a unite(x,y) operation, we access the two
corresponding tree roots x and y, and make one of the roots point to the other root. The
unite operation takes constant time.

The question is, how long can find paths be? Well, if this is all there is to it, we
can get bad examples. In particular, we can construct the example in Figure 3: a tree
which is just a long path. If we do lots of finds, each of linear cost, then the total cost
is proportional to the number of firds times the number of elements, O(m - n), which
is not a happy situation.

As we know, there are a couple of heuristics we can add to this method to sub-
stantially improve the running time. We use the fact that the structure of each tree is
completely arbitrary. The best structure for the finds would be if each tree has all its
nodes just one step away from the root. Then find operations would all be at constant
cost. But as we do the unite operations, depths of nodes grow. If we perform the unites
intelligently, however, we can ensure that depths do not become too big. I shall give
two methods for doing this.

Unite by size (Galler and Fischer [16]): This method combines two trees into one by
making the root of the smaller tree point to the root of the larger tree (breaking a tie
arbitrarily). The method is described in the pseudo-code below. We maintain with each
root x the tree size, size(x) (the number of nodes in the tree).
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unite(x,y): 1f size (x) > size (y) make x the parent of y and set
size (x) < size (x) + size ()
Otherwise make y the parent of x and set

size (y) < size (x) + size ()

Unite by rank (Tarjan and van Leewen [41]): In this method each root contains a rank,
which is an estimate of the depth of the tree. To combine two trees with roots of different
rank, we attach the tree whose root has smaller rank to the other tree, without changing
any ranks. To combine two trees with roots of the same rank, we attach either tree to
the other, and increase the rank of the new root by one. The pseudo code is below. We
maintain with each root x its rank, rank(x). Initially, the rank of each node is zero.

unite(x, y): if rank (x) > rank (y) make x the parent of y else
if rank (x) < rank (y) make y the parent of x else

if rank (x) = rank (y) make x the parent of y and increase the rank of x
by 1.

Use of either of the rules above improves the complexity drastically. In particular,
the worst-case find time decreases from linear to logarithmic. Now the total cost for
a sequence of m find operations and n — 1 intermixed unite operations is (m log n),
because with either rule the depth of a tree is logarithmic in its size. This result (for
union by size) is in [16].

There is one more thing we can do to improve the complexity of the solution to
Problem 3.1. It is an idea that Knuth [29] attributes to Alan Tritter, and Hopcroft and
Ullman [20] attribute to Mcllroy and Morris. The idea is to modify the trees not only
when we do unite operations, but also when we do find operations: when doing a find,
we “squash” the tree along the find path. (See Figure 4.) When we perform a find on
an element, say E, we walk up the path to the root, 4, which is the name of the set
represented by this tree. We now know not only the answer for E, but also the answer
for every node along the path from E to the root. We take advantage of this fact by
compressing this path, making all nodes on it point directly to the root. The tree is
modified as depicted in Figure 4. Thus, if later we do a find on say, D, this node is now
one step away from it the root, instead of three steps away.

The question is, by how much does path compression improve the speed of the
algorithm? Analyzing this algorithm, especially if both path compression and one of
the unite rules is used, is complicated, and Knuth proposed it as a challenge. Note that
if both path compression and union by rank are used, then the rank of tree root is not
necessarily the tree height, but it is always an upper bound on the tree height. Let me
remind you of the history of the bounds on this problem from the early 1970’s.

There was an early incorrect “proof” of an O(m) time-bound; that is, constant
time per find. Shortly thereafter, Mike Fischer [11] obtained a correct bound of
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O(m loglog n). Later, Hopcroft and Ullman [20] obtained the bound O(m log* n). Here
log* n denotes the number of times one must apply the log function to » to get down
to a constant. After this result had already appeared, there was yet another incorrect
result, giving a lower bound of 2(#n log log 7). Then I was able to obtain a lower bound
which shows that this algorithm does not in fact perform in constant time per find.
Rather, its time per find is slightly worse than constant. Specifically, I showed a lower
bound of Q(na(n)), where a(n) is the inverse of Ackermann’s function, an incredibly
slowly growing function that cannot possibly be measured in practice. It will be defined
below. After obtaining the lower bound, I was able to get a matching upper bound of
O(m - a(n)). (For both results, and some extensions, see [37,42].) So the correct an-
swer for the complexity of the algorithm using both path compression and one of the
unite rules is almost constant time per find, where almost constant is the inverse of
Ackermann’s function.

Ackermann’s function was originally constructed to be so rapidly growing that it is
not in the class of primitively recursive functions, those definable by a single-variable
recurrence. Here is a definition of the inverse of Ackermann’s function. We define a
sequence of functions:

Forj = 1, k= 0, 4(j)) = j + 1. A4(j) = A5 () fork = 1,
where A7+D(x) = 4(A(x)) denotes function composition.
Note that A is just the successor function; 4, is essentially multiplication by two,

Aj is exponentiation; A3 is iterated exponentiation, the inverse of log*(n); after that
the functions grow very fast.
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The inverse of Ackermann’s function is defined as:

a(n) =min{k : Ax(1) > n}

The growth of the function «(») is incredibly slow. The smallest n such that o(n) =
4 for example, is greater than any size of any problem that anyone will ever solve, in
the course of all time.

The most interesting thing about this problem is the surprising emergence of «(n)
in the time bound. I was able to obtain such a bound because I guessed that the truth was
that the time per find is not constant (and I was right). Given this guess, I was able to
construct a sequence of bad examples defined using a double recursion, which naturally
led to Ackermann’s function. Since I obtained this result, the inverse of Ackermann’s
function has turned up in a number of other places in computer science, especially in
computational geometry, in bounding the complexity of various geometrical configu-
rations involving lines and points and other objects [34].

Let one mention some further work on this problem. The tree data structure for
representing sets, though simple, is very powerful. One can attach values to the edges or
nodes of the trees and combine values along tree paths using find. This idea has many
applications [39]. There are variants of path compression that have the same inverse
Ackermann function bound and some other variants that have worse bounds [42]. The
lower bound that I originally obtained was for the particular algorithm that I have
described. But the inverse Ackermann function turns out to be inherent in the problem.
There is no way to solve the problem without having the inverse Ackermann function
dependence. I was able to show this for a pointer machine computation model with
certain restrictions [38]. Later Fredman and Saks [12] showed this for the cell probe
computation model; theirs is a really beautiful result. Recently, Haim Kaplan, Nira
Shafrir and I [24] have extended the data structure to support insertions and deletions
of elements.

4. Amortization and Self-adjusting Search Trees

The analysis of path compression that leads to the inverse Ackermann function is com-
plicated. But it illustrates a very important concept, which is the notion of amortization.
The algorithm for Problem 3.1 performs a sequence of intermixed unite and find op-
erations. Such operations can in fact produce a deep tree, causing at least one find
operation to take logarithmic time. But such a find operation squashes the tree and
causes later finds to be cheap. Since we are interested in measuring the total cost, we
do not mind if some operations are expensive, as long as they are balanced by cheap
ones. This leads to the notion of amortizatized cost, which is the cost per operation
averaged over a worst-case sequence of operations. Problem 3.1 is the first example
that I am aware of where this notion arose, although in the original work on the problem
the word amortization was not used and the framework used nowadays for doing an
amortized analysis was unknown then. The idea of a data structure in which simple



Problems in Data Structures and Algorithms 25

modifications improve things for later operations is extremely powerful. I would like to
turn to another data structure in which this idea comes into play—self-adjusting search
trees.

4.1. Search Trees

There is a type of self-adjusting search tree called the splay tree that I’m sure many
of you know about. It was invented by Danny Sleater and me [35]. As we shall see, many
complexity results are known for splay trees; these results rely on some clever ideas
in algorithmic analysis. But the ultimate question of whether the splaying algorithm is
optimal to within a constant factor remains an open problem.

Let me remind you about binary search trees.

Definition 4.1 A binary search tree is a binary tree, (every node has a left and a right
child, either of which, or both, can be missing.) Each node contains a distinct item of
data. The items are selected from a totally ordered universe. The items are arranged in

the binary search tree in the following way: for every node x in the tree, every node in

the left subtree of x is less than the item stored in x and every node in the right subtree
of x is greater than the item stored in x The operations done on the tree are access,

insert and delete.

We perform an access of an item in the obvious way: we start at the root, and we go
down the tree, choosing at every node whether to go left or right by comparing the item
in the node with the item we trying to find. The search time is proportional to the depth
of the tree or, more precisely, the length of the path from the root to the designated
item. For example, in Figure 5, a search for “frog”, which is at the root, takes one step;
a search for “zebra”, takes four steps. Searching for “zebra” is more expensive, but not
too expensive, because the tree is reasonably balanced. Of course, there are “bad” trees,
such as long paths, and there are “good” trees, which are spread out wide like the one
in Figure 5. If we have a fixed set of items, it is easy to construct a perfectly balanced
tree, which gives us logarithmic worst-case access time.

|cat|

rabbit

| pig | |zebra|

Figure 5.
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The situation becomes more interesting if we want to allow insertion and deletion
operations, since the shape of the tree will change. There are standard methods for
inserting and deleting items in a binary search tree. Let me remind you how these work.
The easiest method for an insert operation is just to follow the search path, which will
run off the bottom of the tree, and put the new item in a new node attached where
the search exits the tree. A delete operation is slightly more complicated. Consider the
tree in Figure 5. If [ want to delete say “pig” (a leaf in the tree in Figure 5), I simply
delete the node containing it. But if I want to delete “frog”, which is at the root, I have
to replace that node with another node. I can get the replacement node by taking the
left branch from the root and then going all the way down to the right, giving me the
predecessor of “frog”, which happens to be “dog”, and moving it to replace the root. Or,
symmetrically, I can take the successor of “frog” and move it to the position of “frog”.
In either case, the node used to replace frog has no children, so it can be moved without
further changes to the tree. Such a replacement node can actually have one child (but
not two); after moving such a node, we must replace it with its child. In any case, an
insertion or deletion takes essentially one search in the tree plus a constant amount of
restructuring. The time spent is at most proportional to the tree depth.

Insertion and deletion change the tree structure. Indeed, a bad sequence of such
operations can create an unbalanced tree, in which accesses are expensive. To remedy
this we need to restructure the tree somehow, to restore it to a “good” state.

The standard operation for restructuring trees is the rebalancing operation called
rotation. A rotation takes an edge such as ( f, k) in the tree in Figure 6 and switches it
around to become (k, f). The operation shown is a right rotation; the inverse operation
is a left rotation. In a standard computer representation of a search tree, a rotation takes
constant time; the resulting tree is still a binary search tree for the same set of ordered
items. Rotation is universal in the sense that any tree on some set of ordered items can
be turned into any other tree on the same set of ordered items by doing an appropriate
sequence of rotations.

right
—_—

ONNN N WO,
AR B A

Figure 6.
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We can use rotations to rebalance a tree when insertions and deletions occur. There
are various “balanced tree” structures that use extra information to determine what
rotations must be done to restore balance during insertions and deletions. Examples
include AVL trees [1], red-black trees [19,40], and many others. All these balanced
tree structures have the property that the worst-case time for a search, insertion or
deletion in an n-node tree is O(logn).

4.2. Splay Trees

This is not the end of the story, because balanced search trees have certain
drawbacks:

 Extra space is needed to keep track of the balance information.

 The rebalancing needed for insertions and deletions involves several cases, and
can be complicated.

¢ Perhaps most important, the data structure is logarithmic-worst-case but essen-
tially logarithmic-best-case as well. The structure is not optimum for a non-
uniform usage pattern. Suppose for example I have a tree with a million items
but I only access a thousand of them. I would like the thousand items to be
cheap to access, proportional to log (1,000), not to log (1,000,000). A standard
balanced search tree does not provide this.

There are various data structures that have been invented to handle this last draw-
back. Assume that we know something about the usage pattern. For example, suppose
we have an estimate of the access frequency for each item. Then we can construct
an “optimum” search tree, which minimizes the average access time. But what if the
access pattern changes over time? This happens often in practice.

Motivated by this issue and knowing about the amortized bound for path compres-
sion, Danny Sleator and I considered the following problem:

Problem 4.2 Is there a simple, self-adjusting form of search tree that does not need an
explicit balance condition but takes advantage of the usage pattern? That is, is there
an update mechanism that adjusts the tree automatically, based on the way it is used?

The goal is to have items that are accessed more frequently move up in the tree,
and items that are accessed less frequently move down in the tree.

We were able to come up with such a structure, which we called the splay tree.
A Splay tree is a self-adjusting search tree. See Figure 7 for an artist’s conception of a
self-adjusting tree.

“Splay” as a verb means to spread out. Splaying is a simple self-adjusting heuristic,
like path compression, but that applies to binary search trees. The splaying heuristic
takes a designated item and moves it up to the root of the tree by performing rotations,
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Figure 7.

preserving the item order. The starting point of the idea is to perform rotations bottom-
up. It turns out, though, that doing rotations one at a time, in strict bottom-up order,
does not produce good behavior. The splay heuristic performs rotations in pairs, in
bottom-up order, according to the rules shown in Figure 8 and explained below. To
access an item, we walk down the tree until reaching the item, and then perform the
splay operation, which moves the item all the way up to the tree root. Every item along
the search path has its distance to the root roughly halved, and all other nodes get pushed
to the side. No node moves down more than a constant number of steps.
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Cases of splaying

(1) ()
AA A A

50 AAA A°°
Ad- . )

° A Zig-Zag “ e
°)

A
AA(AAAA

Figure 8.

Figure 8 shows the cases of a single splaying step. Assume x is the node to be
accessed. If the two edges above x toward the root are in the same direction, we do a
rotation on the top edge first and then on the bottom edge, which locally transforms
the tree as seen in Figure 7b. This transformation doesn’t look helpful; but in fact,
when a sequence of such steps are performed, they have a positive effect. This is the
“zig-zig” case. If the two edges from x toward the root are in opposite directions, such
as right-left as seen in Figure 8c, or symmetrically left-right, then the bottom rotation
is done first, followed by the top rotation. In this case, x moves up and y and z get split
between the two subtrees of x. This is the zig-zag case. We keep doing zig-zag and



30 Robert E. Tarjan

Pare zig zag (a)
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—) Pare zig zag (b)
Figure 9.

zig-zig steps, as appropriate, moving x up two steps at a time, until either x is the root
or it is one step away from the root. In the latter case we then do one final rotation,
the zig case (Figure 8a). The splay operation is an entire sequence of splay steps that
moves a designated item all the way up to the root.

Figure 9a contains a step-by-step example of a complete splay operation. This is
a purely zig-zig case (except for a final zig). First we perform two rotations, moving
item #1 up the path, and then two more rotations, moving item #1 further up the
path. Finally, a last rotation is performed to make item #1 take root. Transforming the
initial configuration into the final one is called “splaying at node 1. Figure 9b gives
a step-by-step example of a purely zig-zag case.

Figure 10 is another example of a purely zig-zag case of a single splay operation.
The accessed node moves to the root, every other node along the find path has its
distance to the root roughly halved, and no nodes are pushed down by more than
a constant amount. If we start out with a really bad example, and we do a number
of splay operations, the tree gets balanced very quickly. The splay operation can be
used not only during accesses but also as the basis of simple and efficient insertions,
deletions, and other operations on search trees.

There is also a top-down version of splaying as well as other variants [35]. Sleator
has posted code for the top-down version at [47].
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4.3. Complexity Results

The main question for us as theoreticians is, “How does this algorithm perform?”
Sleator and I were able to show that, in the amortized sense, this algorithm performs
just as well as any balanced tree structure.

Theorem 4.3 Beginning with an arbitrary n-node tree, suppose we perform a sequence
of m accesses and ignore start-up effects; that is, we assume that m > n. The following
results hold.:

(a) The total cost of m accesses is O(m log n), thus matching the bound for bal-
anced trees.

(b) The splaying algorithm on any access sequence performs within a constant
factor of the performance of that of the best possible static tree for the given
access sequence (in spite of the fact that this algorithm does not know the
access frequencies ahead of time and doesn’t keep track of them).

(c) If the items are accessed in increasing order, each once, the total access time
is linear. That is, the amortized cost per access is constant, as compared to
logarithmic for a balanced search tree or for any static tree. This result demon-
strates that modifying the tree as operations proceed can dramatically improve
the access cost in certain situations.

It is relatively straightforward to prove results (a) and (b) above. They follow from
an interesting “potential” argument that I trust many of you know. These results can be
found in [35], along with additional applications and extensions. Result (c) seems to
be hard to prove — an elaborate inductive argument appears in [41].

The behavior of a splay tree when sequential accesses are performed is quite
interesting. Suppose we start with an extreme tree that is just a long left path, with the
smallest item at the bottom of the path, and begin accessing the items in increasing
order. The first access costs n. The next access costs about 7 /2, the next one costs n/4,
and so on. The access time drops by about a factor of two with each access until after
about logarithmically many accesses, at which time the tree is quite well-balanced.
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Then the time per access starts behaving something like a ruler function, with a certain
amount of randomness thrown in: about half the accesses take constant time; about a
quarter take about twice as long; about an eighth take about three times as long; and
so on. The amortized cost per access is constant rather than logarithmic.

Based on results (a)—(c) and others, Sleator and I made (what we consider to be)
an audacious conjecture. Suppose we begin with some n-node search tree and perform
a sequence of accesses. (For simplicity, we ignore insertions and deletions.) The cost to
access an item is the number of nodes on the path from the root to the item. At any time,
we can perform one or more rotations, at a cost of one per rotation. Then, knowing the
entire access sequence ahead of time, there is a pattern of rotations that minimizes the
total cost of the accesses and the rotations. This is the optimal offline algorithm, for
the given initial tree and the given access sequence.

Problem 4.4 Dynamic Optimality Conjecture: Prove or disprove that for any initial
tree and any access sequence, the splaying algorithm comes within a constant factor
of the optimal off-line algorithm.

Note that splaying is an on-line algorithm: its behavior is independent of future
accesses, depending only on the initial tree and the accesses done so far. Furthermore
the only information the algorithm retains about the accesses done so far is implicit in
the current state of the tree. A weaker form of Problem 4.4 asks whether there is any
on-line algorithm whose performance is within a constant factor of that of the optimum
off-line algorithm.

The closest that anyone has come to proving the strong form of the conjecture is
an extension by Richard Cole and colleagues of the sequential access result, Theorem
4.3(c). Consider a sequence of accesses. For simplicity, assume that the items are 1, 2,
3, in the corresponding order. The distance between two items, say i and j, is defined
tobe | i — j| + 2. Cole et al. proved the following:

Theorem 4.4 [6,7]: The total cost of a sequence of accesses using splaying is at most
of the order of n plus m plus the sum of the logarithms of the distances between
consecutively accessed items.

This result, the “dynamic finger theorem”, is a special case of the (strong) dynamic
optimality conjecture. Significant progress on the weak form of the conjecture has been
made recently by Demaine and colleagues [9]. They have designed an on-line search
tree update algorithm that comes within a loglog performance factor of the optimal
off-line algorithm (as compared to the log factor of a balanced tree algorithm). A key
part of their result is a lower bound on the cost of an access sequence derived by
Bob Wilber [43]. The algorithm of Demaine et al. is cleverly constructed so that its
performance comes within a loglog factor of Wilber’s lower bound. They also argue that
use of Wilber’s lower bound will offer no improvement beyond loglog. An immediate
question is whether one can prove a similar loglog bound for splaying, even if the
dynamic optimality conjecture remains out of reach.
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To summarize, we do not know the answer to the following question:

Is the splaying algorithm (or any on-line binary search tree algorithm) optimal to within
a constant factor?

Splaying as well as path compression are examples of very simple operations that
give rise when repeated to complicated, hard-to-analyze, behavior. Splay trees have
been used in various systems applications, for memory management, table storage, and
other things. In many applications of tables, most of the data does not get accessed most
of the time. The splaying tree algorithm takes advantage of such locality of reference:
the splay algorithm moves the current working set to the top of the tree, where it is
accessible at low cost. As the working set changes, the new working set moves to the
top of the tree.

The drawback of this data structure is, of course, that it performs rotations all the
time, during accesses as well as during insertions and deletions. Nevertheless, it seems
to work very well in practical situations in which the access pattern is changing.

5. The Rotation Distance between Search Trees

Search trees are a fascinating topic, not just because they are useful data structures,
but also because they have interesting mathematical properties. I have mentioned that
any search tree can be transformed into any other search tree on the same set of ordered
items by performing an appropriate sequence of rotations. This fact raises at least two
interesting questions, one algorithmic, one structural.

Problem 5.1 Given two n-node trees, how many rotations does it take to convert one
tree into the other?

This question seems to be NP- hard. A related question is how far apart can two trees
be? To formulate the question more precisely, we define the rotation graph on n-node
trees in the following way: The vertices of the graph are the n-node binary trees. Two
trees are connected by an edge if and only if one tree can be obtained from the other
by doing a single rotation. This graph is connected.

Problem 5.2 What is the diameter of the rotation graph described above as a function

ofn?

It is easy to get an upper bound of 2 for the diameter. It is also easy to get a lower
bound of » — O(1), but this leaves a factor of two gap. Sleator and I worked with Bill
Thurston on this problem. He somehow manages to map every possible problem into
hyperbolic geometry. Using mostly Thurston’s ideas, we were able to show that the 2n
bound is tight, by applying a volumetric argument in hyperbolic space. We were even
able to establish the exact bound for large enough », which is 2n — 6 [36]. To me this
is an amazing result. The details get quite technical, but this is an example in which a
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piece of mathematics gets brought in from way out in left field to solve a nitty-gritty
data structure problem. This just goes to show the power of mathematics in the world.

6. Static Optimum Search Trees

A final question about search trees concerns static optimum trees. Suppose we
want to store n ordered items in a fixed search tree so as to minimize the average access
time, assuming that each item is accessed independently with a fixed probability, and
that we know the access probabilities. The problem is to construct the best tree. There
are an exponential number of trees, so it might take exponential time find the best one,
but in fact it does not. There are two versions of this problem, depending on the kind
of binary search tree we want.

Problem 6.1 [tems can be stored in the internal nodes of the tree. (This is the kind of
search tree discussed in Sections 4 and 5.)

The problem in this case is: Given positive weights wi, wo, ..., w,, construct an n-
node binary tree that minimizeszg’:1 w;d;, where d; is the depth of the i-th node in
symmetric order.

Problem 6.2 [tems can be stored only in the external nodes (the leaves) of the tree.

The problem in this case is: Given positive weights w, wy, ..., w,, construct a binary
tree with n external nodes that minimizes Y ., w;d;, where d; is the depth of the i-th
external node in symmetric order.

Problem 6.1 can be solved by a straightforward O(n?)-time dynamic programming
algorithm (as in the stack generation problem discussed in Section 2). Knuth[30] was
able to improve on this by showing that there is no need to look at all the subproblems;
there is a restriction on the subproblems that have to be considered, which reduces the
time to O(n?). This result was extended by Frances Yao [45] to other problems. Yao
captured a certain kind of structural restriction that she called “quadrangle inequalities”.
Here we have an O(n?) dynamic programming algorithm with a certain amount of
cleverness in it. This result is twenty-five years old or so. Nothing better is known.
There may, in fact, be a faster algorithm for Problem 6.1; no nontrivial lower bound for
the problem is known.

For Problem 6.2, in which the items are stored in the external nodes and the
internal nodes just contain values used to support searching, we can do better. There
is a beautiful algorithm due to Hu and Tucker [21] that runs in O(x logn) time. This
algorithm is an extension of the classical algorithm of Huffman [22] for building so-
called “Huffman codes”. The difference between Hoffman codes and search trees is
the alphabetic restriction: in a search tree the items have to be in a particular order in
the leaves, whereas in a Huffman code they can be permuted arbitrarily. It turns out that
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a simple variant of the Huffman coding algorithm solves Problem 6.2. The amazing
thing about this is that the proof of correctness is inordinately complicated. Garsia
and Wachs [17] presented a variant of the algorithm with an arguably simpler proof of
correctness, and Karpinski et al. [26] have made further progress on simplifying the
proofs of both algorithms. But it is still quite a miracle that these simple algorithms
work. And again, there is no lower bound known. In fact, there is no reason to believe
that the problem cannot be solved in linear time, and there is good reason to believe
that maybe it can: for some interesting special cases the problem can indeed be solved
in linear time [27].

7. The Minimum Spanning Tree Problem

Let me close by coming back to a classical graph problem—the minimum span-
ning tree problem. Given a connected, undirected graph with edge costs, we want to
find a spanning tree of minimum total edge cost. This problem is a classical network
optimization problem, and it is about the simplest problem in this area. It has a very long
history, nicely described by Graham and Hell [18]. The first fully-realized algorithms
for this problem were developed in the 1920’s. There are three classic algorithms. The
most recently discovered is Kruskal’s algorithm [31], with which we are all familiar.
This algorithm processes the edges in increasing order by cost, building up the tree
edge-by-edge. If a given edge connects two different connected components of what
has been built so far, we add it as an additional edge; if it connects two vertices in the
same component, we throw it away. To implement this algorithm, we need an algorithm
to sort (or at least partially sort) the edges, plus a data structure to keep track of the
components. Keeping track of the components is exactly the set union problem dis-
cussed in Section 3. The running time of Kruskal’s algorithm is O(m log n) including
the sorting time. If the edges are presorted by cost, the running time of the algorithm
is the same as that of disjoint set union; namely, O(m «(n)), where «(n) is the inverse
Ackermann function.

An earlier algorithm, usually credited to Prim [33] and Dijkstra [10], is a single-
source version of Kruskal’s algorithm. It begins with a vertex and grows a tree from it by
repeatedly adding the cheapest edge connecting the tree to a new vertex. This algorithm
was actually discovered by Jarnik in 1930 [23]. It runs in O(n?) time, as implemented
by Prim and Dijkstra. (Jarnik did not consider its computational complexity at all.) By
using a data structure called a heap (or priority queue) the algorithm can be implemented
to run in O(m log n) time.

An even earlier algorithm, a beautiful parallel one, was described by Boruvka [3]
in 1926. It also has a running time of O(m log n). (The time bound is recent; Boruvka
did not investigate its complexity.) This algorithm is Kruskal’s algorithm in parallel. In
the first iteration, for every vertex pick the cheapest incident edge and add it the set of
edges so far selected. In general, the chosen edges form a set of trees. As long as there
are at least two such trees, pick the cheapest edge incident to each tree and add these
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edges to the chosen set. In every iteration the number of trees decreases by at least a
factor of two, giving a logarithmic bound on the number of iterations. If there are edges
of equal cost, a consistent tie-breaking rule must be used, or the algorithm will create
cycles, but this is just a technical detail.

All three classic algorithms run in O(m log n) time if they are implemented ap-
propriately. The obvious question is whether sorting is really needed, or can one can
get rid of the log factor and solve this problem in linear time? Andy Yao [44] was the
first to make progress. He added a new idea to Boruvka’s algorithm that reduced the
running time to O(m log logn). He thereby showed that sorting was not, in fact, in-
herent in the minimum spanning tree problem. A sequence of improvements followed,
all based on Boruvka’s algorithm. Mike Fredman and I [13] achieved a running time of
O(m log" n) by using a new data structure called the Fibonacci heap in combination
with Boruvka’s algorithm. By adding a third idea, that of packets, Galil, Gabor, and
Spencer [14] (see also [15]) obtained O(m log log* n) running time. Finally, Klein and
Tarjan [28] (see also [25]) used random sampling in combination with a linear-time
algorithm for verification of minimum spanning trees to reach the ultimate goal, a linear
time algorithm for finding minimum spanning trees.

One may ask whether random sampling is really necessary. Is there a deterministic
linear-time algorithm to find minimum spanning trees? Bernard Chazelle [4,5], in a
remarkable tour de force, invented a new data structure, called the soft heap, and used
it to obtain a minimum spanning tree algorithm with a running time of O (m «(n)). (Our
old friend, the inverse Ackermann function, shows up again!) Soft heaps make errors,
but only in a controlled way. This idea of allowing controlled errors is reminiscent
of the remarkable (and remarkably complicated) O(n logn)-size sorting network of
Aijtai, Komlos, and Szemerédi [2], which uses partition sorting with careful control
of errors.

Chazelle’s ideas were used in a different way by Pettie and Ramachandran [32] who
designed a minimum spanning tree algorithm that has a running time optimum to within
a constant factor, but whose running time they could not actually analyze. The extra
idea in their construction is that of building an optimum algorithm for very-small-size
subproblems by exhaustively searching the space of all possible algorithms, and then
combining this algorithm with a fixed-depth recursion based on Chazelle’s approach.

In conclusion, we now know that minimum spanning trees can be found in linear
time using random sampling, and we know an optimum deterministic algorithm but we
don’t know how fast it runs (no slower than O(m «(n)), possibly as fast as O(m)). This
is the strange unsettled state of the minimum spanning tree problem at the moment.
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1. Introduction

The topic about which I will be speaking, algorithmic graph theory, is part of the
interface between combinatorial mathematics and computer science. I will begin by
explaining and motivating the concept of an intersection graph, and I will provide ex-
amples of how they are useful for applications in computation, operations research, and
even molecular biology. We will see graph coloring algorithms being used for schedul-
ing classrooms or airplanes, allocating machines or personnel to jobs, or designing
circuits. Rich mathematical problems also arise in the study of intersection graphs, and
a spectrum of research results, both simple and sophisticated, will be presented. At the
end, I will provide a number of references for further reading.

I would like to start by defining some of my terms. For those of you who are
professional graph theorists, you will just have to sit back and enjoy the view. For those
of you who are not, you will be able to learn something about the subject. We have a
mixed crowd in the audience: university students, high school teachers, interdisciplinary
researchers and professors who are specialists in this area. [ am gearing this talk so that
it will be non-technical, so everyone should be able to enjoy something from it. Even
when we move to advanced topics, I will not abandon the novice.

When I talk about a graph, I will be talking about a collection of vertices and edges
connecting them, as illustrated in Figures 1 and 2. Graphs can be used in lots of different
applications, and there are many deep theories that involve using graphs. Consider, for
example, how cities may be connected by roads or flights, or how documents might

* This chapter is based on the Andrew F. Sobczyk Memorial Lecture delivered by the author on Octo-
ber 23, 2003 at Clemson University. For a biographical sketch of Andrew F. Sobczyk, see the website
http://www.math.clemson.edu/history/sobczyk.html
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d e f

Figure 1. A graph and a coloring of its vertices.

be connected by similar words and topics. These are regularly modeled by graphs, and
actions on them are carried out by algorithms applied to these graphs. Some of the
terms that we need are:

Coloring a graph — coloring a graph means assigning a color to every vertex,
with the property that two vertices that are adjacent, i.e., connected by an edge,
have different colors. As you can see in the example in Figure 1, we have colored
the vertices white, grey or black. Notice that whenever a pair of vertices are
joined by an edge, they have different colors. For example, a black vertex can
be connected only to grey or white vertices. It is certainly possible to find pairs
that have different colors yet are not connected, but every time we have an edge,
its two end points must be different colors. That is what we mean by coloring.
An independent set or a stable set — a collection of vertices, no two of which
are connected. For example, in Figure 1, the grey vertices are pair-wise not
connected, so they are an independent set. The set of vertices {d, e, f} is also an
independent set.

A clique or a complete subset of vertices — a collection of vertices where every-
thing is connected to each other, i.e., every two vertices in a clique are connected
by an edge. In our example, the vertices of the triangle form a clique of size
three. An edge is also a clique — it is a small one!

The complement of a graph — when we have a graph we can turn it “inside out”
by turning the edges into non-edges and vice-versa, non-edges into edges. In this
way, we obtain what is called the complement of the graph, simply interchanging
the edges and the non-edges. For example, the complement of the graph in
Figure 1 is shown in Figure 3. We denote the complement of G by G.

An orientation of a graph — an orientation of a graph is obtained by giving a di-
rection to each edge, analogous to making all the streets one way. There are many
different ways to do this, since every edge could go either one way or the other.
There are names for a number of special kinds of orientations. Looking at
Figure 2, the first orientation of the pentagon is called cyclic, its edges are

Figure 2. Two oriented graphs. The first is cyclic while the second is acyclic.
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Figure 3. The complement of the graph in Figure 1.

directed consistently around in a circle, in this case clockwise; one can go round
and round cycling around the orientation forever. The opposite of this idea,
when there is no oriented cycle, is called an acyclic orientation. The second
orientation of the pentagon is an acyclic orientation. You cannot go around
and around in circles on this — wherever you start, it keeps heading you in one
direction with no possibility of returning to your starting point.

Another kind of orientation is called a transitive orientation. An orientation
is transitive if every path of length two has a “shortcut” of length one.! In
Figure 4, the first orientation is not transitive because we could go from vertex
d to vertex b and then over to vertex ¢, without having a shortcut. This is not
a transitive orientation. The second orientation is transitive because for every
triple of vertices x, y, z, whenever we have an edge oriented from x to y and
another from y to z, then there is always a shortcut straight from x to z. Not all
graphs have an orientation like this. For example, the pentagon cannot possibly
be oriented in a transitive manner since it is a cycle of odd length.

2. Motivation: Interval Graphs
2.1. An Example

Let us look now at the motivation for one of the problems I will discuss. Suppose
we have some lectures that are supposed to be scheduled at the university, meeting at
certain hours of the day. Lecture a starts at 09:00 in the morning and finishes at 10:15;
lecture b starts at 10:00 and goes until 12:00 and so forth. We can depict this on the
real line by intervals, as in Figure 5. Some of these intervals intersect, for example,
lectures a and b intersect from 10:00 until 10:15, the period of time when they are both
in session. There is a point in time, in fact, where four lectures are “active” at the same
time.

We are particularly interested in the intersection of intervals. The classical model
that we are going to be studying is called an interval graph or the intersection graph
of a collection of intervals. For each of the lectures, we draw a vertex of the interval
graph, and we join a pair of vertices by an edge if their intervals intersect. In our

! Formally, if there are oriented edges x — y and y — z, then there must be an oriented edge x — z.
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Figure 4. A graph with two orientations. The first is not transitive while the second is transitive.

example, lectures a and b intersect, so we put an edge between vertex a and vertex b,
see Figure 6(a). The same can be done for lectures b and c since they intersect, and so
forth. At time 13:15, illustrated by the vertical cut, we have ¢, d, e and f all intersecting
at the same time, and sure enough, they have edges between them in the graph. They
even form a clique, a complete subset of vertices, because they pair-wise intersect with
each other. Some of the intervals are disjoint. For example, lecture a is disjoint from
lecture d, so there is no edge between vertices a and d.

Formally, a graph is an interval graph if it is the intersection graph of some col-
lection of intervals” on the real line.

Those pairs of intervals that do not intersect are called disjoint. It is not surprising
that if you were to consider a graph whose edges correspond to the pairs of intervals that
are disjoint from one another, you would get the complement of the intersection graph,
which we call the disjointness graph. It also happens that since these are intervals on
the line, when two intervals are disjoint, one of them is before the other. In this case,
we can assign an orientation on the (disjointness) edge to show which interval is earlier
and which is later. See Figure 6(b). Mathematically, this orientation is a partial order,
and as a graph it is a transitive orientation. If there happens to be a student here from
Professor Jamison’s Discrete Math course earlier today, where he taught about Hasse
diagrams, she will notice that Figure 6(b) is a Hasse diagram for our example.

2.2. Good News and Bad News

What can we say about intersecting objects? There is both good and bad news. Inter-
section can be regarded as a good thing, for example, when there is something important
in common between the intersecting objects — you can then share this commonality,
which we visualize mathematically as covering problems. For example, suppose [ want
to make an announcement over the loudspeaker system in the whole university for ev-
eryone to hear. If I pick a good time to make this public announcement, all the classes
that are in session (intersecting) at that particular time will hear the announcement.
This might be a good instance of intersection.

2 The intervals may be either closed intervals which include their endpoints, or open intervals which do not.
In this example, the intervals are closed.
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Lecture a }—{

Lecture b —— 3

Lecture ¢ }%—{

Lecture d }—F{
Lecture e }—H

Lecture /' H—{

8am 9am 10am 1lam 12pm 13pm 14pm 15pm 16pm 17pm

Figure 5. An interval representation.

Intersection can also be a bad thing, such as when intersecting intervals indicate a
conflict or competition, and the resource cannot be shared. In our example of scheduling
university lectures, we cannot put two lectures in the same classroom if they are meeting
at the same time, thus, they would need different classes. Problems such as these, where
the intervals cannot share the same resource, we visualize mathematically as coloring
problems and maximum independent set problems.

2.3. Interval Graphs and their Applications

As mentioned earlier, not every graph can be an interval graph. The problem
of characterizing which graphs could be interval graphs goes back to the Hungarian
mathematician Gyorgy Hajos in 1957, and independently to the American biologist,
Seymour Benzer in 1959. Hajos posed the question in the context of overlapping time
intervals, whereas Benzer was looking at the linear structure of genetic material, what
we call genes today. Specifically, Benzer asked whether the sub-elements could be
arranged in a linear arrangement. Their original statements of the problem are quoted
in [1] page 171. I will have more to say about the biological application later.

We have already seen the application of scheduling rooms for lectures. Of course,
the intervals could also represent meetings at the Congress where we may need to

c d e f
V‘
a b
Figure 6. (a) The interval graph of the interval representation in Figure 5 and (b) a transitive orientation of
its complement.

(a) (b)
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allocate TV crews to each of the meetings. Or there could be applications in which
jobs are to be processed according to a given time schedule, with concurrent jobs
needing different machines. Similarly, there could be taxicabs that have to shuttle
people according to a fixed schedule of trips. The assignment problem common to all
these applications, classrooms to courses, machines to jobs, taxis to trips, and so on, is
to obtain a feasible solution — one in which no two courses may meet in the same room
at the same time, and every machine or taxi does one job at a time.

3. Coloring Interval Graphs

The solution to this problem, in graph theoretic terms, is to find a coloring of the
vertices of the interval graph. Each color could be thought of as being a different room,
and each course needs to have a room: if two classes conflict, they have to get two
different rooms, say, the brown one and the red one. We may be interested in a feasible
coloring or a minimum coloring — a coloring that gives the fewest number of possible
classrooms.

Those who are familiar with algorithms know that some problems are hard and
some of them are not so hard, and that the graph coloring problem “in general” happens
to be one of those hard problems. If I am given a graph with a thousand vertices with
the task of finding a minimum feasible coloring, i.e., a coloring with the smallest
possible number of colors, I will have to spend a lot of computing time to find an
optimal solution. It could take several weeks or months. The coloring problem is an NP-
complete problem, which means that, in general, it is a difficult, computationally hard
problem, potentially needing an exponentially long period of time to solve optimally.

However, there is good news in that we are not talking about any kind of graph.
We are talking about interval graphs, and interval graphs have special properties. We
can take advantage of these properties in order to color them efficiently. I am going to
show you how to do this on an example.

Suppose we have a set of intervals, as in Figure 7. You might be given the intervals
as pairs of endpoints, [1, 6], [2, 4], [3, 11] and so forth, or in some other format like a
sorted list of the endpoints shown in Figure 8. Figure 7 also shows the interval graph.
Now we can go ahead and try to color it. The coloring algorithm uses the nice diagram
of the intervals in Figure 8, where the intervals are sorted by their left endpoints, and
this is the order in which they are processed. The coloring algorithm sweeps across
from left to right assigning colors in what we call a “greedy manner”. Interval a is the
first to start — we will give it a color, solid “black”. We come to b and give it the color
“dashes”, and now we come to ¢ and give it the color “dots”. Continuing across the
diagram, notice “dashes” has finished. Now we have a little bit of time and d starts.
I can give it “dashes” again. Next “black” becomes free so I give the next interval, e,
the color “black”. Now I am at a trouble spot because “dots”, “dashes” and “black”
are all busy. So I have to open up a new color called “brown” and assign that color
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a=[1,6] a O b
b=[24]

c=[3,11] d e

d=[59]

e=[7,14]

f=1[8.12] ¢

g = [10,16]

h = [13,15] h @ g

Figure 7. A set of intervals and the corresponding (colored) interval graph.

to interval f. I continue coloring from left to right and finally finish at the end. This
greedy method gives us a coloring using 4 colors.

Is it the best we can do? Mathematicians would ask that question. Can you “prove”
that this is the best we can do? Can we show that the greedy method gives the smallest
possible number of colors? The answer to these questions is “yes”.

Since this is a mathematics lecture, we must have a proof. Indeed, the greedy
method of coloring is optimal, and here is a very simple proof. Let k be the number of
colors that the algorithm used. Now let’s look at the point P, as we sweep across the
intervals, when color & was used for the first time. In our example, k =4 and P = §
(the point when we had to open up the color “brown”.) When we look at the point P,
we observe that all the colors 1 through £ — 1 were busy, which is why we had to open
up the last color k. How many intervals (lectures) are alive and running at that point P?

.............................................

a b ¢ bV d d e f d g  f h €& KW ¢

Figure 8. A sorted list of endpoints of the intervals in Figure 7.
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The answer is k. I am forced to use & colors, and in the interval graph, they form a
clique of size k. Formally, (1) the intervals crossing point P demonstrate that there is a
k-clique in the interval graph — which means that at least & colors are required in any
possible coloring, and (2) the greedy algorithm succeeded in coloring the graph using
k colors. Therefore, the solution is optimal. Q.E.D.

It would be nice if all theorems had simple short proofs like this. Luckily, all the
ones in this lecture will.

Interval graphs have become quite important because of their many applications.
They started off in genetics and in scheduling, as we mentioned earlier. They have
applications in what is called seriation, in archeology and in artificial intelligence and
temporal reasoning. They have applications in mobile radio frequency assignment,
computer storage and VLSI design. For those who are interested in reading more in
this area, several good books are available and referenced at the end.

4. Characterizing Interval Graphs

What are the properties of interval graphs that may allow one to recognize them?
What is their mathematical structure? I told you that not all graphs are interval graphs,
which you may have believed. Now I am going to show you that this is true. There are
two properties which together characterize interval graphs; one is the chordal graph
property and the other is the co-TRO property.

A graph is chordal if every cycle of length greater than or equal to four has a chord.
A chord means a diagonal, an edge that connects two vertices that are not consecutive
on the cycle. For example, the hexagon shown in Figure 9 is a cycle without a chord.
In an interval graph, it should not be allowed. In fact, it is forbidden.

Let’s see why it should be forbidden. If I were to try to construct an interval
representation for the cycle, what would happen? I would have to start somewhere by
drawing an interval, and then I would have to draw the interval of its neighbor, which
intersects it, and then continue to its neighbor, which intersects the second one but not
the first one, and so forth, as illustrated in Figure 9. The fourth has to be disjoint from

Figure 9. A cycle without a chord.
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the second but hit the third, and the fifth has to hit the fourth but not the third. Finally,
the sixth has to hit the fifth and not the fourth, yet somehow must close the loop and
intersect the first. This cannot be done because we must draw intervals on a line. Thus,
it is impossible to get an interval representation for this or any chordless cycle. It is a
forbidden configuration. A chordless cycle cannot be part of an interval graph.

The second property of interval graphs is the transitive orientation property of the
complement or co-TRO. Recall that the edges of the complement of an interval graph
represent disjoint intervals. Since in a pair of disjoint intervals, one appears totally
before the other, we may orient the associated edge in the disjointness graph from the
later to the earlier. It is easy to verify that such an orientation is transitive: if a is before
b, and b is before c, then a is before c. Now here is the punch line, a characterization
theorem of Gilmore and Hoffman [10] from 1964.

Theorem 1 A graph G is an interval graph if and only if G is chordal and its comple-
ment G is transitively orientable.

Additional characterizations of interval graphs can be found in the books [1, 2, 3].
Next, we will illustrate the use of some of these properties to reason about time intervals
in solving the Berge Mystery Story.

5. The Berge Mystery Story

Some of you who have read my first book, Algorithmic Graph Theory and Perfect
Graphs, know the Berge mystery story. For those who don’t, here it is:

Six professors had been to the library on the day that the rare tractate was stolen. Each had
entered once, stayed for some time and then left. If two were in the library at the same time,
then at least one of them saw the other. Detectives questioned the professors and gathered the
following testimony: Abe said that he saw Burt and Eddie in the library; Burt said that he saw
Abe and Ida; Charlotte claimed to have seen Desmond and Ida; Desmond said that he saw
Abe and Ida; Eddie testified to seeing Burt and Charlotte; Ida said that she saw Charlotte and
Eddie. One of the professors lied!! Who was it?

Let’s pause for a moment while you try to solve the mystery. Being the interrogator,
you begin, by collecting the data from the testimony written in the story: Abe saw Burt
and Eddie, Burt saw Abe and Ida, etc. Figure 10(a) shows this data with an arrow
pointing from X to Y if X “claims” to have seen Y. Graph theorists will surely start
attacking this using graph theory. How can we use it to solve the mystery?

Remember that the story said each professor came into the library, was there for
an interval of time, during that interval of time he saw some other people. If he saw
somebody, that means their intervals intersected. So that provides some data about the
intersection, and we can construct an intersection graph G, as in Figure 10(b). This
graph “should be” an interval graph if all the testimony was truthful and complete.
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Figure 10. The testimony graphs.

However, we know that there is a lie here. Why? Because looking at the intersection
graph G, we see a chordless cycle of length four which is an impossibility. This is
supposed to be an interval graph, so we know something is wrong.

Notice in Figure 10(a), that some pairs have arrows going in both directions, for
example, Burt saw Abe and Abe saw Burt, and other pairs are just one way. That
gives us some further information. Some of the edges in the intersection graph are
more confident edges than others. A bold black edge in Figure 10(b) indicates a double
arrow in Figure 10(a), and it is pretty confident because B saw A and A saw B, so, if at
least one of them is telling the truth, the edge really exists. Similarly, for I and C. But
all the one-way arrows are possibly true and possibly false. How shall we argue? Well,
if we have a 4-cycle, one of those four professors is the liar. I do not know which one,
so [ will list all the cycles and see who is common. ABID is a cycle of length 4 without
a chord; so is ADIE. There is one more — AECD — that is also a 4-cycle, with no chord.
What can we deduce? We can deduce that the liar is one of these on a 4-cycle. That tells
us Burt is not a liar. Why? Burt is one of my candidates in the first cycle, but he is not
a candidate in the second, so he is telling the truth. The same goes for Ida; she is not
down in the third cycle, so she is also telling the truth. Charlotte is not in the first cycle,
so she is ok. The same for Eddie, so he is ok. Four out of the six professors are now
known to be telling the truth. Now it is only down to Abe and Desmond. What were to
happen if Abe is the liar? If Abe is the liar, then ABID still remains a cycle because of
the testimony of Burt, who is truthful. That is, suppose Abe is the liar, then Burt, Ida
and Desmond would be truth tellers and ABID would still be a chordless cycle, which
is a contradiction. Therefore, Abe is not the liar. The only professor left is Desmond.
Desmond is the liar.

Was Desmond Stupid or Just Ignorant?

If Desmond had studied algorithmic graph theory, he would have known that his
testimony to the police would not hold up. He could have said that he saw everyone, in
which case, no matter what the truthful professors said, the graph would be an interval
graph. His (false) interval would have simply spanned the whole day, and all the data
would be consistent. Of course, the detectives would probably still not believe him.
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6. Many Other Families of Intersection Graphs

We have seen a number of applications of interval graphs, and we will see one
more a little bit later. However, I now want to talk about other kinds of intersections —
not just of intervals — to give an indication of the breadth of research that goes on in this
area. There is a mathematician named Victor Klee, who happened to have been Robert
Jameson’s thesis advisor. In a paper in the American Mathematics Monthly in 1969,
Klee wrote a little article that was titled “What are the intersection graphs of arcs in
a circle?” [21]. At that point in time, we already had Gilmore and Hoffman’s theorem
characterizing interval graphs and several other theorems of Lekkerkerker and Boland,
Fulkerson and Gross, Ghouila-Houri and Berge (see [1]). Klee came along and said,
Okay, youve got intervals on a line, what about arcs going along a circle? Figure 11
shows a model of arcs on a circle, together with its intersection graph. It is built in a
similar way as an interval graph, except that here you have arcs of a circle instead of
intervals of a line. Unlike interval graphs, circular arc intersection graphs may have
chordless cycles. Klee wanted to know: Can you find a mathematical characterization
for these circular arc graphs?

In fact, I believe that Klee’s paper was really an implicit challenge to consider a
whole variety of problems on many kinds of intersection graphs. Since then, dozens of
researchers have begun investigating intersection graphs of boxes in the plane, paths in
atree, chords of a circle, spheres in 3-space, trapezoids, parallelograms, curves of func-
tions, and many other geometrical and topological bodies. They try to recognize them,
color them, find maximum cliques and independent sets in them. (I once heard someone
I know mention in a lecture, “A person could make a whole career on algorithms for
intersection graphs!” Then I realized, that person was probably me.)

Circular arc graphs have become another important family of graphs. Renu Laskar
and I worked on domination problems and circular arc graphs during my second visit

to Clemson in 1989, and published a joint paper [14].

On my first visit to Clemson, which was in 1981, I started talking to Robert Jamison
about an application that comes up on a tree network, which I will now describe.

(a) (b)

N Oy =)

Figure 11. (a) Circular arc representation. (b) Circular arc graph.
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Figure 12. A representation of paths in a tree.

Figure 12 shows a picture of a tree, the black tree, which you may want to think of as
a communication network connecting different places. We have pairs of points on the
tree that have to be connected with paths — green paths, red paths and purple paths.
They must satisfy the property that if two of these paths overlap, even a little bit, this
intersection implies that they conflict and we cannot assign the same resource to them
at the same time. [ am interested in the intersection graph of these paths. Figure 13
gives names to these paths and shows their intersection graph. As before, if two paths
intersect, you connect the two numbers by an edge, and if they are disjoint, you do
not. Coloring this graph is the same as assigning different colors to these paths; if they
intersect, they get different colors. I can interpret each color to mean a time slot when
the path has exclusive use of the network. This way there is the red time slot, the purple

(@) (b)

g

Figure 13. (a) Vertex Intersection Graph (VPT) and (b) Edge Intesection Graph (EPT), both of the paths
shown on Figure 12.
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Table 1. Six graph problems and their complexity on VPT

graphs and EPT graphs.

Graph Problem VPT graphs EPT graphs
recognition polynomial NP-complete [12]
maximum independent set polynomial polynomial [25]
maximum clique polynomial polynomial [11]
minimum coloring polynomial NP-complete [11]
3/2 approximation coloring polynomial polynomial [25]
minimum clique cover polynomial NP-complete [11]

time slot, etc. All the red guys can use the network at the same time; all the purple
guys can use it together some time later; brown guys use it at yet a different time. We
might be interested to find (i) a maximum independent set, which would be the largest
number of paths to be used simultaneously, or (i7) a minimum coloring, which would
be a schedule of time periods for all of the paths.

I began investigating the intersection graphs of paths and trees, and immediately
had to look at two kinds of intersections — one was sharing a vertex and one was sharing
an edge. This gave rise to two classes of graphs, which we call vertex intersection graphs
of paths of a tree (VPT graphs) and edge intersection graphs of paths of a tree (EPT
graphs), quickly observing that they are different classes — VPT graphs are chordal and
perfect, the EPT graphs are not.

After discussing this at Clemson, Robert and I began working together on EPT
graphs, a collaboration of several years resulting in our first two joint papers [11, 12].
We showed a number of mathematical results for EPT graphs, and proved several
computational complexity results. Looking at the algorithmic problems — recognition,
maximum independent set, maximum clique, minimum coloring, 3/2 approximation
(Shannon) coloring, and minimum clique cover — all six problems are polynomial for
vertex intersection (VPT graphs), but have a real mixture of complexities for edge
intersection (EPT graphs), see Table 1. More recent extensions of EPT graphs have
been presented in [15, 20].

There are still other intersection problems you could look at on trees. Here is an
interesting theorem that some may know. If we consider an intersection graph of subtrees
of a tree, not just paths but arbitrary subtrees, there is a well known characterization
attributed to Buneman, Gavril, and Wallace discovered independently by each of them
in the early 19707, see [1].

Theorem 2 A graph G is the vertex intersection graph of subtrees of a tree if and only
if it is a chordal graph.

Here is another Clemson connection. If you were to look at subtrees not of just
any old tree, but of a special tree, namely, a star, you would get the following theorem
of Fred McMorris and Doug Shier [23] from 1983.
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Table 2. Graph classes involving trees.

Type of Interaction Objects Host Graph Class

vertex intersection subtrees tree chordal graphs

vertex intersection subtrees star split graphs

edge intersection subtrees star all graphs

vertex intersection paths path interval graphs

vertex intersection paths tree path graphs or VPT graphs
edge intersection paths tree EPT graphs

containment intervals line permutation graphs
containment paths tree ? (open question)
containment subtrees star comparability graphs

Theorem 3 A graph G is a vertex intersection graph of distinct subtrees of a star if
and only if both G and its complement G are chordal.

Notice how well the two theorems go together: If the host tree is any tree, you
get chordal, and if it is a star, you get chordal N co-chordal, which are also known as
split graphs. In the case of edge intersection, the chordal graphs are again precisely the
edge intersection graphs of subtrees of a tree, however, every possible graph can be
represented as the edge intersection graph of subtrees of a star. Table 2 summarizes
various intersection families on trees. Some of them may be recognizable to you; for
those that are not, a full treatment can be found in Chapter 11 of [4].

7. Tolerance Graphs

The grandfather of all intersection graph families is the family of interval graphs.
Where do we go next? One direction has been to measure the size of the intersection and
define a new class called the interval tolerance graphs, first introduced by Golumbic
and Monma [16] in 1982. It is also the topic of the new book [4] by Golumbic and
Trenk. We also go into trapezoid graphs and other kinds of intersection graphs.

Even though I am not going to be discussing tolerance graphs in detail, I will
briefly state what they are and in what directions of research they have taken us. In
particular, there is one related class of graphs (NeST) that I will mention since it, too,
has a Clemson connection.

An undirected graph G = (V, E) is a tolerance graph if there exists a collection
T = {1, }yer of closed intervals on the real line and an assignment of positive numbers
t = {t,}ver such that

vw € E & |, N 1I,| > min{t, t,}.
Here |I,| denotes the length of the interval /,. The positive number ¢, is called

the tolerance of v, and the pair (Z, ¢) is called an interval tolerance representation
of G. Notice that interval graphs are just a special case of tolerance graphs, where
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each tolerance ¢, equals some sufficiently small € > 0. A tolerance graph is said to be
bounded if it has a tolerance representation in which ¢, < |[,| forallv € V.

The definition of tolerance graphs was motivated by the idea that a small, or
“tolerable” amount of overlap, between two intervals may be ignored, and hence not
produce an edge. Since a tolerance is associated to each interval, we put an edge between
a pair of vertices when at least one of them (the one with the smaller tolerance) is
“bothered” by the size of the intersection.

Let’s look again at the scheduling problem in Figure 5. In that example, the chief
university officer of classroom scheduling needs four rooms to assign to the six lectures.
But what would happen if she had only three rooms available? In that case, would one
of the lectures c, d, e or f have to be cancelled? Probably so. However, suppose some
of the professors were a bit more tolerant, then an assignment might be possible.

Consider, in our example, if the tolerances (in minutes) were:
ty =10, = 5,1 = 65,13 = 10,1, = 20, ¢, = 60.

Then according to the definition, lectures ¢ and f would no longer conflict, since
[I. N I7| <60 =min{t., t,}. Notice, however, that lectures e and f remain in conflict,
since Professor e is too intolerant to ignore the intersection. The tolerance graph for
these values would therefore only erase the edge cf in Figure 6, but this is enough to
admit a 3-coloring.

Tolerance graphs generalize both interval graphs and another family known as
permutation graphs. Golumbic and Monma [16] proved in 1982 that every bounded
tolerance graph is a cocomparability graph, and Golumbic, Monma and Trotter [17]
later showed in 1984 that tolerance graphs are perfect and are contained in the class of
weakly chordal graphs. Coloring bounded tolerance graphs in polynomial time is an im-
mediate consequence of their being cocomparability graphs. Narasimhan and Manber
[24] used this fact in 1992 (as a subroutine) to find the chromatic number of any (un-
bounded) tolerance graph in polynomial time, but not the coloring itself. Then, in 2002,
Golumbic and Siani [19] gave an O(gn + n logn) algorithm for coloring a tolerance
graph, given the tolerance representation with ¢ vertices having unbounded tolerance.
For details and all the references, see Golumbic and Trenk [4]. The complexity of
recognizing tolerance graphs and bounded tolerance graphs remain open questions.

A several “variations on the theme of tolerance” in graphs have been defined and
studied over the past years. By substituting a different “host” set instead of the real line,
and then specifying the type of subsets of that host to consider instead of intervals, along
with a way to measure the size of the intersection of two subsets, we obtain other classes
of tolerance-type graphs, such as neighborhood subtree tolerance (NeST) graphs (see
Section 8 below), tolerance graphs of paths on a tree or tolerance competition graphs.
By changing the function min for a different binary function ¢ (for example, max, sum,
product, etc.), we obtain a class that will be called ¢-tolerance graphs. By replacing
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the measure of the length of an interval by some other measure p of the intersection
of the two subsets (for example, cardinality in the case of discrete sets, or number of
branching nodes or maximum degree in the case of subtrees of trees), we could obtain
yet other variations of tolerance graphs. When we restrict the tolerances to be 1 or oo, we
obtain the class of interval probe graphs. By allowing a separate leftside tolerance and
rightside tolerance for each interval, various bitolerance graph models can be obtained.
For example, Langley [22] in 1993 showed that the bounded bitolerance graphs are
equivalent to the class of trapezoid graphs. Directed graph analogues to several of these
models have also been defined and studied. For further study of tolerance graphs and
related topics, we refer the reader to Golumbic and Trenk [4].

8. Neighborhood Subtree Tolerance (NeST) Graphs

On my third visit to Clemson, also in 1989, Lin Dearing told me about a class of
graphs that generalized tolerance graphs, called neighborhood subtree tolerance (NeST)
graphs. This generalization consists of representing each vertex v € V(G) of a graph G
by a subtree T, of a (host) tree embedded in the plane, where each subtree 7, has a center
¢, and a radius r, and consists of all points of the host tree that are within a distance of
ry from c,. The size of a neighborhood subtree is twice its radius, or its diameter. The
size of the intersection of two subtrees 7, and T, is the Euclidean length of a longest
path in the intersection, namely, the diameter of the subtree 7, N T,. Bibelnieks and
Dearing [9] investigated various properties of NeST graphs. They proved that bounded
NeST graphs are equivalent to proper NeST graphs, and a number of other results. You
can see their result in one of the boxes in Figure 14.

I bring this to your attention because it is typical of the research done on the
relationships between graph classes. We have all these classes, some of which are
arranged in a containment hierarchy and others are equivalent, shown in the same
box of the figure. Figure 14 is an example of an incomplete hierarchy since some of
the relationships are unknown. Interval graphs and trees are the low families on this
diagram. They are contained in the classes above them, which are in turn contained in
the ones above them, etc. The fact that NeST is contained in weakly chordal graphs is
another Clemson result from [9].

You see in Figure 14 a number of question marks. Those are the open questions
still to be answered. So as long as the relationships between several graph classes in
the hierarchy are not known yet (this is page 222 of [4]), we remain challenged as
researchers.

9. Interval Probe Graphs

Lastly, I want to tell you about another class of graphs called the interval probe
graphs. They came about from studying interval graphs, where some of the adja-
cency information was missing. This is a topic that is of recent interest, motivated by
computational biology applications. The definition of an interval probe graph is a graph
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Figure 14. The NeST Hierarchy (reprinted from [4]).

whose vertices are partitioned into two sets: the probes P and non-probes N, where N
is an independent set, and there must exist a(n interval) completion, by adding some
extra edges between nodes in N so that this augmented graph is an interval graph.
The names probe and non-probe come from the biological application. Partitioned into
these two sets, the edges between pairs of P nodes and between P and N nodes are
totally known, but there is nothing known about the connections between pairs of N
nodes. Is it possible to fill in some of these missing edges in order to get an interval
representation?

That is the mathematical formulation of it. You can ask, “What kinds of graphs do
you have in this class?” Figure 15(a) shows an example of an interval probe graph and
a representation for it; The black vertices are probes and the white vertices are non—
probes. Figure 15(b) gives an example of a graph that is not interval probe, no matter
how the vertices may be partitioned. I will let you prove this on your own, but if you
get stuck, then you can find many examples and proofs in Chapter 4 of the Tolerance
Graphs book [4].

I will tell you a little bit about how this problem comes about in the study of genetic
DNA sequences. Biologists want to be able to know the whole structure of the DNA
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Figure 15. An example of an interval probe graph and a non-interval probe graph.

of some gene, which can be regarded as a long string of about a million letters. The
Human Genome Project was to be able to identify the sequence of those strings in
people. The biologists worked together with other scientists and mathematicians and
computer scientists and so on, and here is one method that they use. They take the gene
and they place it in a beaker with an enzyme, and then dump it out on the floor where
it breaks into a bunch of pieces. These fragments are called gene fragments. Now they
will take the same gene and put in a different enzyme, stir it and shake it and then dump
it on the floor where it breaks up in a different way. They do it again and again with a
bunch of different enzymes.

Now we can think of the problem as reconstructing several puzzles, each one
having different pieces, but giving the same completed string. One could argue, “Ah,
I have a string that says ABBABBABBA and someone else has a similar string BAB-
BACCADDA and they would actually overlap nicely.” By cooperating maybe we could
put the puzzle back together, by recombining overlapping fragments to find the correct
ordering, that is, if we are able to do all this pattern matching.

Imagine, instead, there is some experiment where you take this little piece of
fragment and you can actually test somehow magically, (however a biologist tests
magically), how it intersects with the other fragments. This gives you some intersection
data. Those that are tested will be the probes. In the interval probe model, for every
probe fragment we test, we know exactly whom he intersects, and for the unlucky
fragments that we do not test, we know nothing regarding the overlap information
between them. They are the non-probes. This is the intersection data that we get from
the biologist. Now the interval probe question is: can we somehow fill-in the missing
data between the pairs of non-probes so that we can get a representation consistent with
that data?

Here is a slightly different version of the same problem — played as a recognition
game. Doug has an interval graph H whose edges are a secret known only to him.
A volunteer from the audience chooses a subset N of vertices, and Doug draws you
a graph G by secretly erasing from H all the edges between pairs of vertices in N,
making N into an independent set. My game #1 is, if we give you the graph G and the
independent set N, can you fill-in some edges between pairs from N and rebuild an
interval graph (not necessarily H)?



Algorithmic Graph Theory and Its Applications 59

This problem can be shown to be solvable in time proportional to #? in a method
that was found by Julie Johnson and Jerry Spinrad, published in SODA 2001. The
following year there was a faster algorithm by Ross McConnell and Jerry Spinrad that
solved the problem in time O(m logn), published in SODA 2002. Here n and m are
the number of vertices and edges, respectively.

There is a second version of the game, which I call the unpartitioned version: this
time we give you G, but we do not tell you which vertices are in N. My game #2
requires both choosing an appropriate independent set and filling in edges to complete
it to an interval graph. So far, the complexity of this problem is still an open question.
That would be recognizing unpartitioned interval probe graphs.

10. The Interval Graph Sandwich Problem

Interval problems with missing edges, in fact, are much closer to the problem
Seymour Benzer originally addressed. He asked the question of reconstructing an
interval model even when the probe data was only partially known. Back then, they
could not answer his question, so instead he asked the ‘simpler’ interval graph question:
“Suppose I had all of the intersection data, then can you test consistency and give me
an interval representation?” It was not until much later, in 1993, that Ron Shamir and
I gave an answer to the computational complexity of Benzer’s real question.

You are given a partially specified graph, i.e., among all possible pairs of vertices,
some of the pairs are definitely edges, some of them are definitely non-edges, and the
remaining are unknown. Can you fill-in some of the unknowns, so that the result will
be an interval graph? This problem we call the interval sandwich problem and it is a
computationally hard problem, being NP-complete [18].

For further reading on sandwich problems, see [13], Chapter 4 of [4] and its
references.

11. Conclusion

The goal of this talk has been to give you a feeling for the area of algorithmic
graph theory, how it is relevant to applied mathematics and computer science, what
applications it can solve, and why people do research in this area.

In the world of mathematics, sometimes I feel like a dweller, a permanent resident;
at other times as a visitor or a tourist. As a mathematical resident, I am familiar with my
surroundings. I do not get lost in proofs. I know how to get around. Yet, sometimes as a
dweller, you can become jaded, lose track of what things are important as things become
too routine. This is why I like different applications that stimulate different kinds of
problems. The mathematical tourist, on the other hand, may get lost and may not know
the formal language, but for him everything is new and exciting and interesting. I hope
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that my lecture today has given both the mathematical resident and the mathematical
tourist some insight into the excitement and enjoyment of doing applied research in
graph theory and algorithms.
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1. Introduction

A textbook introduction to many of the ideas that are the focus of this chapter
is given in the now-classic textbook of Golumbic [9]. The main focus of the chapter
is to show that many of these problems can be brought under a single abstraction,
which involves decompositions satisfying a set of axioms on a variety of combinatorial
structures, and their dual representations with a forcing relation on elements of the
structures. One of these is the modular decomposition, where the combinatorial struc-
ture is an undirected graph, and its well-known dual, the Gamma forcing relation, on
the edges of the graph. This was described by Gallai [8] and is dealt with extensively
in Golumbic’s book.

The abstraction for the decompositions were put forth by Mohring [29], who rec-
ognized their reappearance in a variety of domains, such as hypergraphs and boolean
functions. The ones I describe here are newer examples, and what is particularly sur-
prising is that, unlike M6hring’s examples, they are also accompanied by an analog of
Gallai’s Gamma forcing relation.

The exact details of the decomposition and its dual forcing relation depend on the
combinatorial structure under consideration. However, the techniques that are used to
solve a problem in one of the contexts are often driven by the axioms satisfied by the
decomposition and its dual forcing relation in the other contexts where the abstraction
applies. In particular, I have been able to adapt techniques developed by Jerry Spinrad
and me [21] to obtain linear time bounds for modular decomposition and its dual
transitive orientation to obtain linear time bounds for problems on other structures
where I have found new examples of the abstraction. These include linear time bounds
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for recognition of circular-arc graphs [23], near-linear time bounds, together with
Spinrad, for recognition of probe interval graphs [25], so-called certifying algorithms
for recognizing permutation graphs and matrices with the consecutive-ones property,
as well as algorithms for a variety of combinatorial problems that are beyond the scope
of this chapter, such as modular decomposition of directed graphs with Fabien de
Montgolfier [24], and a variety of problems on collections of linear orders, also with de
Montgolfier, currently under review, and a representation of all circular-ones orderings
of a 0-1 matrix, with Wen-Lian Hsu [12]

The intersection graph of a family of # sets is the graph where the vertices are the
sets, and the edges are the pairs of sets that intersect. Every graph is the intersection
graph of some family of sets [16]. A graph is an interval graph if there is a way to
order the universe from which the sets are drawn so that each set is consecutive in the
ordering. Equivalently, a graph is an interval graph if it is the intersection graph of a
finite set of intervals on a line.

A graph is a circular-arc graph if it is the intersection graph of a finite set of arcs
on a circle. (See Figure 1.) A realizer of an interval graph or circular-arc graph G is a
set of intervals or circular arcs that represent G in this way.

An interval graph is a special case of circular-arc graphs; it is a circular-arc graph
that can be represented with arcs that do not cover the entire circle. Some circular-arc
graphs do not have such a representation, so the class of interval graphs is a proper
subclass of the class of circular-arc graphs.

f /%ﬁ d

4 b :

f g

Figure 1. A circular-arc graph is the intersection graph of a set of arcs on the circle, while an interval graph
is the intersection graph of a set of intervals on the line.
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Interval graphs and circular-arc graphs arise in scheduling problems and other
combinatorial problems. Before the structure of DNA was well-understood, Seymour
Benzer [1] was able to show that the set of intersections of a large number of fragments
of genetic material in a virus were an interval graph. This provided strong evidence
that genetic information was arranged inside a structure with a linear topology.

Being able to determine whether a graph is an interval graph or circular-arc graph
constitutes recognition of these graph classes. However, having a representation of
a graph with intervals or arcs can be helpful in solving combinatorial problems on
the graph, such as isomorphism testing and finding maximum independent sets and
cliques [4, 11]. Therefore, a stronger result than just recognizing the class is being able
to produce the representation whenever a graph is a member of the class. In addition
to its other uses, the representation constitutes a certificate that the graph is a member
of the class, which allows the output of a distrusted implementation of the recognition
algorithm to be checked.

In the 1960, Fulkerson and Gross [7] gave an O(n*) algorithm for finding an
interval representation of an interval graph. Booth and Lueker improved this to linear-
time in the 1970’ [3]. At that time, Booth conjectured that recognition of circular-arc
graphs would turn out to be NP-complete [2]. Tucker disproved this with an O(n?)
algorithm [34]. However, a linear-time bound has only been given recently [17, 23].

A directed graph is transitive if, whenever (x, y) and (y, z) are directed edges,
(x, z) is also a directed edge. Transitive graphs are a natural way to represent a partial
order, or poset relation, which is a relation that is reflexive, antisymmetric, and tran-
sitive. An example of a poset relation is the subset relation on a family of sets: if X,
Y, and Z are members of the family, then X C X, hence, it is reflexive; if X C Y and
Y C Z, then X C Z, hence it is transitive; and if X # Y, at most one of X C Y and
Y C X can apply, hence it is antisymmetric.

A poset relation R has an associated symmetric comparability relation
{(X, Y)|XRY or YRX}. For instance, the comparability relation associated with the
subset relation on a set family is the relation {(.X, Y)|X and Y are members of the fam-
ily and one of X and Y contains the other}. A comparability relation can be modeled
in an obvious way with an undirected graph. Such a graph is a comparability graph.

Given a poset relation in the form of a transitive digraph, it is trivial to get the
associated comparability graph: one just makes each edge symmetric. Given a compa-
rability graph, it is not so easy to find an associated poset relation. This problem can
be solved by assigning an orientation to the edges of the comparability graph so that
the resulting digraph is transitive (see Figure 2). Work on algorithms for this problem
began in the early 1960’s, but a linear-time time algorithm was not given until the the
late 1990’s. [20, 21].

Somewhat surprisingly, this time bound for transitive orientation does not give
an algorithm for recognizing comparability graphs. On an input graph that is not a
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Figure 2. A transitive orientation of a graph (A) is an orientation of the edges so that the resulting directed
graph is transitive (B). Figure (C) is a redrawing of (B) that makes it easy to see that the orientation is
transitive. A comparability graph is any graph that has a transitive orientation.

comparability graph, the algorithm produces an orientation that is not transitive. Cur-
rently, there is no known linear-time algorithm for recognizing whether a digraph is
transitive. This result is nevertheless strong enough to solve a number of other long-
standing problems in linear time in a stricter sense, that is, so that one can recognize
whether the output is correct even when one is not certain whether the input meets the
required preconditions.

An example of such a problem is that of finding a maximum clique and mini-
mum proper vertex coloring of a comparability graph. A proper vertex coloring is
an assignment of labels to the vertices so that no adjacent pairs have the same color,
and it is minimum if it minimizes the number of colors used. The size of a clique is a
lower bound on the number of colors needed, since the vertices of a clique must all be
different colors.

These problems are NP-hard on graphs in general, but polynomially solvable on
comparability graphs. If G is a comparability graph, a longest directed path in the
transitive orientation must be a maximum clique. Labeling each vertex with the length
of the longest directed path originating at the vertex gives a proper coloring of the same
size, which serves to prove that the clique is a maximum one and the vertex coloring
is a minimum one (see Figure 3).

Another example of such a problem is that of finding an interval realizer of an
interval graph. It is easy to see that if / is a set of intervals on the real line, then the
relation P; = {(X, Y)|X and Y are disjoint elements of / and X precedes Y} is a poset
relation. It follows from this observation that the complement of an interval graph is
a comparability graph. One way to produce an interval representation of an interval
graph is to find a transitive orientation of the complement, using linear extensions
to represent them, in order to avoid exceeding linear storage. This gives P; for some
interval representation of the graph, and it is not hard to see how to construct an interval
representation from it [21].

This process always succeeds if G is an interval graph. If G is not known to
be an interval graph, one cannot tell in linear time whether the transitive orientation
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Figure 3. To find a maximum clique and a minimum coloring of a comparability graph, find a transitive
orientation, and then label each vertex with the length of the longest directed path originating at the vertex.
The labeling of the vertices is a proper coloring, and, because the orientation is transitive, every directed
path is a clique. A longest directed path is therefore a clique whose size is equal to the number of colors
used. The size of a clique is a lower bound on the number of colors required to color a graph, so the coloring
proves that the clique is a maximum one, and the clique proves that the coloring is a minimum one.

algorithm produced a transitive orientation of the complement of G. Nevertheless, there
is no interval representation of G, so the construction of the interval representation must
fail, and this can be detected in linear time.

An ordering (x1, x3,...,x,) of a set of elements represents the linear order
{(xi, x;)li < j}. Linear orders are the special case of a partial order whose compa-
rability graph is complete. Every poset relation can be expressed as the intersection of
a set of linear orders [5]. The dimension of a poset relation is the minimum number of
linear orders such that their intersection is the poset relation.

The comparability graphs of two-dimensional poset relations are known as permu-
tation graphs. For k£ > 2, it is NP-complete to determine whether a given poset relation
has dimension & [36], but polynomial-time algorithms are known for two dimensions.

Theorem 1.1 [31] A graph G is a permutation graph iff G and its complement are
comparability graphs.

The simple idea behind the proof is the following. If G is a permutation, then a
transitive orientation of G can be represented by the intersection of two linear orders.
The intersection of one of these orders and the reverse of the other gives a transitive
orientation of the complement, hence the complement of G is a comparability graph.
Conversely, if G and its complement are comparability graphs et D; and D, denote
transitive orientations of G and let (D,)” denote the transitive orientation obtained by
reversing the directions of all edges of D;. It is easy to see that D; U D, is a linear order
Ly, and that D, U (D,)T isalinear order L,. D; = L, N L,, so D; is two-dimensional,
and G is a permutation graph (see Figures 4 and 5).

This theorem is the basis of the linear time bound for recognizing permutation
graphs given in [21]: the algorithm finds orientations D; and D, of G and its com-
plement that are transitive if both of these graphs are comparability graphs. It then
computes vertex orderings corresponding to D; U D, and D; U (D,)”, and checks
whether their intersection is, in fact, D;.
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Figure 4. A graph G, transitive orientation D; of G, and a transitive orientation D, of its complement.

Let I be a set of intervals on the real line such that no two endpoints of intervals
coincide. Let G, be the graph of non-intersecting pairs of intervals, let G be the graph
of pairs of intervals such that one is a subset of the other, and let G| be the graph of
pairs of intervals where each contains one endpoint of the other. Let us use double
subscripts to denote unions of these graphs. For instance G, denotes G| U G,,. The
interval graph represented by the intervals is G..

G,, G.,and G| give a partition of the complete graph. We have observed above that
G, which is the complement of the corresponding interval graph, is a comparability
graph. Also, the subset relation among members of / is transitive, so G, is also a com-
parability graph. In fact, G, is a permutation graph: listing the vertices in right-to-left
order of left endpoint and in left-to-right order of right endpoint gives the corresponding
linear orders. Thus, its complement, G| U G,,, is also a permutation graph.

If G, U G, is a permutation graph, then it has a transitive orientation. Another
way to see this is to let / be a set of intervals that represent G, G, and G.. If xy is
an edge of G, U G, then orient xy from x to y if the the left endpoint of interval x

(6,2,4,1,5,3)

Figure 5. The union of D and D, isalinear order, L = (1, 2, 3, 4, 5, 6). The union of D; and the transpose
(DZ)T of D; is another linear order, L, = (6,2, 4, 1, 5, 3). Since D1 = L1 N Ly, Dy is a two-dimensional
partial order, and G is a comparability graph.
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Figure 6. An interval realizer of an intersection matrix yields an interval orientation of G,: edges are
oriented from earlier to later intervals. An interval orientation is transitive, and its restriction to G,, is also
transitive. The union of D, and an interval orientation is a linear order, and gives the order of right endpoints
in the realizer. Similarly, the union of (D,)” and the interval orientation gives the order of left endpoints.

is to the left of the left endpoint of interval y. It is easy to see that this is a transitive
orientation Dy, of Gy,. This is illustrated in Figure 6.

Dy, U Dy, is the linear order, and it is not hard to see that it gives the order of right
endpoints in /. Similarly, Dy, U (D.)" gives the order of left endpoints of /.

The interval graph of [ fails to capture some of these embedded comparability
graphs. Thus, it is natural to use a matrix that tells, for each pair of intervals, the type
of intersection (G,, G, or G) that they share. We will see below how this matrix, its
embedded comparability graphs, and their transitive orientations, are a key element in
the linear time bound for recognition of circular-arc graphs.

An algorithm for a decision problem or optimization problem that provides no
accompanying documentation of its decision are of theoretical value, but not very useful
in practice. The reason is that actual implementations often have bugs. If the underlying
algorithm does not provide a certificate of the correctness of its determination, a user,
or a programmer, has no way to determine whether its determination is correct, or the
result of a bug.

Failure to employ a certifying algorithm is illustrated by a lesson from the devel-
opment of the LEDA package [27]. One of the more important utilities of that package
is one for producing planar embeddings of graphs, owing to the applications of this
problem in VLSI design. The procedure produced a certificate (the planar embedding)
when the input graph was planar, but provided no supporting evidence when the input
graph was not planar, allowing it to make false negative judgments that went unde-
tected for some time after its release [26]. The problem was amended by changing the
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underlying algorithm so that it returned one of the forbidden subgraphs of planar graphs
(K33 or Ks), which were described by Kuratowski in a famous theorem [15]. See [35]
and [27, section 2.14] for general discussions on result checking.

In view of the practical importance of certificates, it is surprising that the theory
community has often ignored the question of requiring an algorithm to support its
output, even in cases when the existence of adequate certificates, such as Kuratowski’s
subgraphs, is well-known. One consequence of the results described below is that they
yield suitable certificates for certain well-known decision problems, and are the basis
of certificate-producing algorithms for recognizing interval graphs and permutation
graphs [14], as well as for recognizing so-called consecutive-ones matrices.

An interesting type of certificate is the one described above for coloring compara-
bility graphs. There is no known linear-time algorithm for recognizing comparability
graphs. If the input graph is a comparability graph, the algorithm returns the coloring
and a clique of the same size to prove that the coloring is a minimum one. If the graph
is not a comparability graph, one of two things can happen: the algorithm returns a
certificate that it is not a comparability graph, or it returns a minimum coloring and the
clique certificate. Thus, if it returns a minimum coloring, one can be certain that the
coloring is correct, but not that the input graph is a comparability graph. On the other
hand, if it returns the certificate that the input graph is not a comparability graph, one
can be certain of this, but not know how to color it.

Section 3 reviews properties of the well-known modular decomposition and its dual
Gamma relation. Another excellent reference is a survey by Mohring’s [28]. Section 4
describes a similar decomposition and forcing relation on labeled matrices that gave rise
to the linear time bound for recognition of circular-arc graphs [23]. Section 5 describes
a similar decomposition on arbitrary 0-1 matrices, whose dual forcing relation gives
a certifying algorithm for the consecutive-ones property [18], and yet another that
is closely related to that of Section 4, which led to an O(n 4+ m logn) algorithm for
recognizing probe interval graphs [25].

2. Preliminaries

If G is a graph, let V' (G) denote its vertex set, n(G) denote the number of vertices, £(G)
denote the edge set, and m(G) denote the number of edges. When G is understand, we
may denote these by V', n, E, and m. If X C V(G), G| X denotes the subgraph of G
induced by X, namely, the result of deleting vertices of V' (G) — X, together with their
incident edges.

Unless otherwise indicated, the term graph will mean an undirected graph. Let G
denote the complement of a graph G. We may view an undirected graph as a special
case of a (symmetric) directed graph. Each undirected edge xy consists of a pair of
twin directed edges (x, y) and (v, x). Thus, we may speak of the directed edges in an
undirected graph.
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{
Figure 7. The Hasse diagram of the family of subsets of {1, 2, 3}.

A graph G is bipartite if there exists a partition X, Y of its vertices such that every
edge of G has an edge in both sets. A graph is bipartite if and only if it has no cycle of
odd length [4].

A clique in a graph is a set of vertices that are pairwise adjacent. A clique is
maximal if no vertices can be added to it to turn it into a larger clique, and a maximum
clique if there is no clique of larger size in the graph.

A poset relation can be represented with a Hasse diagram. This is obtained by
starting with the directed-graph representation of the poset, and deleting all transitive
edges, since they are implied by the remaining edges. By convention, the directions of
the remaining edges are depicted not with arrowheads, but by arranging the nodes in
a diagram so that all of the edges are directed upward. Figure 7 illustrates the Hasse
diagram of the subset relation among the members of a family of sets.

A linear extension of a poset relation R is a linear order L such that R C L. We
have seen that a poset relation is a transitive, antisymmetric, and reflexive relation. An
equivalence relation is a transitive, symmetric, and reflexive relation. A relation is an
equivalence relation if and only if there is a partition of the elements into equivalence
classes such that the relation is exactly those ordered pairs of elements that reside in a
common equivalence class.

If M is a matrix and 4 is a set of rows of M, then M[A] denotes the submatrix
induced by A4, namely, the result of deleting all rows not in 4. Similarly, if B is a set of
columns, then M[B] denotes the submatrix induced by B. If M is an n x n matrix and
X C{l1,2,...,n},then M| X denotes the submatrix that results from deleting rows not
in X and columns not in X.

3. Graph Modules and The I' Relation

Suppose ab and bc are two edges of a comparability graph G such that ¢ and ¢ are
nonadjacent. In any transitive orientation /' of G, exactly one of (a, b) and (b, a) will
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appear. Similarly, one of (b, ¢) and (c, b) will appear in F'. However, the fact that @ and ¢
are nonadjacent allows us to say more: if (a, b) appears in F then (b, ¢) doesn t appear,
which means that (¢, b) must appear in F. Thus, (a, b) and (b, ¢) are incompatible
orientations, since they can’t appear together in any transitive orientation. Similarly,
(b, a) and (c, b) are incompatible. This defines an incompatibility relation among
directed edges of G.

We can capture the incompatibilities with the following graph:

Definition 3.1 The I'-incompatibility graph of an undirected graph G = (V, E) is
the undirected graph Ir(G) that is defined as follows:

 The vertex set of Ir(G) is the set {(x, y)|xy € E} of directed edges of G.
o The edge set of Ir(G) consists of the elements of the following sets:

- {{(a, b), (b, a)}|ab is an edge of G},

— {{(a, b), (b, ¢)}|ab, bc are edges of G and ac is not an edge of G}.

An example is given in Figure 8. Note that /1(G) is defined whether or not G is
a comparability graph. An orientation of G is a selection of half of the directed edges
of G, one from each twin pair {(a, b), (b, a)}. Clearly, such an orientation can only be
transitive if this selection is an independent set in /1-(G). The reverse of a transitive
orientation selects the complement of this set, and is also a transitive orientation.
Therefore, G can only be a comparability graph if /1 (G) is bipartite. We will see below

a b
Comparability
Graph
e Transitive orientations:
d¢ - 1
\; e
(e,b) (ab) (cb) (ad) (c,d) (ce) d ¢
N
(be) (ba) (be) (da) (de) (e0) a b
Incompatible pairs of orientations / e
d c

Figure 8. The incompatibility graph on directed edges of an undirected graph G. A graph is a comparability
graph iff its incompatibility graph is bipartite; in this case, each transitive orientation is a bipartition class
of a bipartition of the incompatibility graph.
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that this condition is also sufficient. Therefore, an odd cycle in /-(G) can serve as a
certificate that G is not a comparability graph.

Definition 3.2 /n an undirected graph G, let us say that two vertices x and y are
even-equivalent if there is a walk of even length from x to y.

Even-equivalence is clearly an equivalence relation. If G is a connected graph, it
has two even-equivalence classes if and only if it is bipartite. If it is not bipartite, it has
only one even-equivalence class. If G is a connected graph, it suffices to show that two
vertices are even-equivalent in order to establish that they belong in the same bipartition
class if G is later discovered to be bipartite. (We are interested in the even-equivalence
in I (G), and, since its size is non-linear in the size of G, we cannot find out in linear
time whether it is bipartite in a straightforward way.)

For carrying out proofs, we will sometimes find it useful to use a relation, called
", to denote a special case of even-equivalence. This relation was first described by
Gallai [8]. If ab and bc are two edges in an undirected graph G such that ac is not an
edge, then (a, b)I'(c, b) and (b, a)T'(b, ¢). Note that in this case, ((a, b), (b, ¢), (¢, D))
is an even-length path from (a, b) to (c, b) and ((b, a), (c, b), (b, c)) is an even-
length path from (b, a) to (b, c). Thus, e I'e; implies that e; and e, are even-
equivalent.

The incompatibility relation above is only a restatement of the I" relation that
makes it easier to discuss certain concepts of interest to us here. For instance, an
odd cycle in I(G) gives a certificate that G is not a comparability graph, and it is
harder to describe the analog of this odd cycle in the I" relation. What are commonly
called the “color classes” in the I" relation are the connected components of I+(G),
and what are called the “implication classes” are the even-equivalence classes of the
components.

3.1. Modular Decomposition and Rooted Set Families

A module of an undirected graph G = (V, E) is a set X of vertices that all have
identical neighborhoods in ¥ — X. That is, for each y € V' — X, y is either adjacent to
every member of X or to none of them (see Figure 9).

Note that V" and its one-element subsets are modules for trivial reasons. These are
the trivial modules of G. Graphs that have only trivial modules are prime.

Definition 3.3 Let us say that two sets X and Y overlap if X and Y intersect, and
neither of the two is a subset of the other.

Definition 3.4 /30] Let F be a family of subsets of a universe V. Then F is a rooted
set family if and only if it satisfies the following properties:
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Figure 9. A graph and its modules. A module is a set X of vertices such that for each y € V(G) — X, either
y is adjacent to every element of X, or y is nonadjacent to every element of X.

All members of F are non-empty;

e VelF;

e {x} e Fforeachx € V;

* Whenever X and Y are overlapping members of F, then XUY, XNY, and
(X = Y)U (Y — X) are all members of F.

Below, we will see that the modules of a graph constitute a rooted set family, and
that rooted set families have an elegant and compact representation with a tree. The
term “rooted set family” contrasts with a closely related class of set families, called
“unrooted set families” that can be represented with an unrooted tree. Unrooted set
families are not of concern here; a treatment can be found in [12].

Lemma 3.5 If X and Y are overlapping members of a rooted set family, then X — Y
and Y — X are also members of the rooted set family.

Proof- Since X and Y are overlapping, (X — Y) U (Y — X) is a member of F. Since X
and (X — Y) U (Y — X) are also overlapping members of F, their intersection, X — Y,
is also a member. By symmetry, ¥ — X is also a member. Q.E.D.

Theorem 3.6 The modules of a graph G are a rooted set family on universe V(G).
Proof- V(G) and its single-element subsets are modules for trivial reasons.

Suppose X and Y are overlapping modules. To show that X U Y is a module,
we let z be an arbitrary vertex in V(G) — (X U Y) and show that it has a uniform
relationship to all members of X U Y. This is true if z has no neighbor in X U Y.
Otherwise, suppose without loss of generality that it has a neighbor in X. Since X is a
module and z € V(G) — X, all members of X are neighbors of z. This includes some
vertex w € XN Y.Sincew € Y, Y isamodule, and z € V(G) — Y, all members of ¥
are neighbors of x.
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This establishes that if X N Y fails to be a module, it is because some vertex
z € (X — Y)U (Y — X) has a non-uniform relationship to members of X N ¥, and that
if (X — Y)U (Y — X) fails to be a module, it is because some z’ € X N Y has a non-
uniform relationship to members of XAY. This can be ruled out if there is no edge
with endpoints in both X N Y and (X — Y) U (Y — X). Otherwise, let uv be an edge
of Gwithu e XNYandv € (X — Y)U (Y — X). Without loss of generality, suppose
that v € X — Y. Since Y is a module, v is adjacent to every member of Y. Since X is
a module and v € X, every member of ¥ — X is a neighbor of every member of X.
Since Y is a module, every member of X — Y is a neighbor of every member of Y. We
conclude that each member of (X — Y) U (Y — X) is a neighbor of every member of
X NY,sozandz cannot exist. Q.E.D.

Definition 3.7 Let F be a rooted set family. The strong members of F are those that
overlap with no other member of F.

Lemma 3.8 The Hasse diagram of the subset relation on strong members of a rooted
set family is a tree.

Proof. There is a unique maximal node, namely, V' (G). Thus, the Hasse diagram is
connected. Suppose there is an undirected cycle in the Hasse diagram. The cycle has a
minimal element X. The two edges of the cycle extend upward to two elements Y and Z.
If Y C Z,thenthereis no direct edge in the Hasse diagram from X to Z, a contradiction.
Similarly, Z ¢ Y. However, Y N Z is nonempty, since it contains X. Thus, ¥ and Z
are overlapping, contradicting their status as strong members of F. Q.E.D.

If F is a rooted set family, let us therefore denote the Hasse diagram of its strong
members by 7 (F).

Lemma 3.9 If F is a rooted set family, every weak member of F is a union of a set of
siblings in T (F).

Proof. Suppose a weak member X of F intersects two siblings, Y and Z in 7 (F). If
Y ¢ Xthen X and Y are overlapping, contradicting the fact that Y is strong in . Thus,
Y C X, and, by symmetry, Z C X. Q.E.D.

Lemma 3.10 Let F be a rooted set family, let X be an internal node of T (X) and let
C be its children. If some union of children of X is a weak member of F, then the union
of every subset of children of X is a member of F.

Proof. Claim 1: A maximal subset of C whose union is a weak module must have
cardinality |C| — 1.

Proof of Claim 1: Suppose C’ is a maximal subset of C whose union is a weak
module and |C’| < |C| — 1. Let X = |JC'. Since X is weak, it overlaps with some
other member Y of F. By Lemma 3.9, Y is also the union of a subset of C. ¥ contains
all members of C — C’; otherwise X U Y is also weak, contradicting the maximality of
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X.By Lemma 3.5, Y — X is a member of F. Since this is the union of more than one
member and fewer than all members of C, it is weak. Therefore, it overlaps with some
member W of F that is also a union of members of C. If W contains X, it contradicts
the maximality of X. If W overlaps X, then ¥ U X contradicts the maximality of X.

Claim2: Let A C C. If, for every pair A;, A; € A, A; U A; € F, then| J(A) € F.

Proof of Claim 2: This is obvious from the fact that the union of overlapping
members of F is a member of F. Formally, the claim is trivially true if |A| < 2.
Suppose | A| = k > 2 and that the claim is that it is true for unions of £ — 1 members
of C. Forany B, C € A, | J(A — {B}) is a member of F by induction, and B U C is an
overlapping members of F, so their union, | J(.A), is also a member of F.

Claim 3: For every A € C, A" = | J(C — {A4)) is a member of F, and for every
Ci,C; eC, CiUCj is a member of F.

Proof of Claim 3: By Claim 1, there is some 4, € Csuchthat 4| = (J(C — {4,}) €
F. Since A is weak, it overlaps with some member Z of F that contains 4, and that
is also the union of a subfamily of C. Z is contained in some maximal member 4} of
F such that 45 = [J(C — {A42}) for some A, € C. A, # A since 4, is a subset of 4.
The symmetric difference of 4} and A’ is 4; U A,, hence 4; U A4, is a member of F.

Suppose by induction that for some k£ such that 2 < k < |C|, there is are mem-
bers Ay, Az, ..., Ax € C such that for every 4; in this set, 4; is a member of F,
and for every pair A4;, 4; in this set, 4; U A; is a member of F. By Claim 2,
W =U{41, 42, ..., 4;}) is a member of F. Let 4;, = J(C — {4s11}) € F be
a maximal union of members of C that contains W and is a member of F. Since

A;chl contains W, Ay & {41, Az, ..., Ay}.Foreach 4; € {4y, ..., Az}, 4; U Ajy =
(A; — Aj ) U (A4}, — A)) is a member of F. This concludes the proof of Claim 3.
The lemma follows from Claims 2 and 3. Q.E.D.

Lemmas 3.8, 3.9, and 3.10 give the following:

Theorem 3.11 /30] If F is a rooted set family, then the internal nodes of the Hasse
diagram of the strong members can be labeled as prime and degenerate so that the
members of F are the nodes of the tree and the unions of children of degenerate nodes.

Let us call the labeled tree given by Theorem 3.11 F’s decomposition tree. When a
node has two children, the appropriate label is ambiguous; we will assume that any such
node is labeled degenerate. For the special case of modules of a graph, this tree is known
as the modular decomposition of the graph. Figure 10 gives an example. However,
below, we will use the fact that such a representation exists for any rooted set family.

As a data structure, the modular decomposition can be conveniently represented
in O(n) space. Each leaf is labeled with the graph node that it represents. There is
no need to give an explicit list of members of the set X represented by an internal
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Figure 10. The modular decomposition of a graph. The nodes are labeled prime (P) and degenerate (D).
Every node of the tree and every union of children of a degenerate node is a module. For instance, {i, j, k}
is a module because it is a node of the tree, and {i, j}, {/, k}, and {i, k} are modules because they are unions
of children of a degenerate node.

node, as these can be found in O(|.X|) time by visiting the leaf descendants of the
node.

Let us call a partition of the vertices of a graph a congruence partition if every
partition class is a module. The partition {{x}|x € V'} is a trivial congruence partition.
So is the partition {/'} that has only one partition class. If G is non-prime, there will
be other congruence partitions.

It is easy to verify that if X and Y are disjoint modules, then X x Y is either
disjoint from the edges of G or a subset of the edges of G. Thus, we may describe
the relationship of X and Y as one of two types: adjacent or nonadjacent. If P is a
congruence partition, the adjacencies and nonadjacencies among its partition classes
define a quotient graph, G /P, whose vertices are the members of P and whose edges
give the adjacencies among members of P (Figure 11).

Let A and A’ be two sets, each consisting of one vertex from each partition class in
P. G| 4 and G| A4’ are isomorphic to this quotient. Thus, the quotient G/P completely
specifies those edges of G that are not subsets of one of the partition classes. The
quotient G /P, together with the factors {G|X : X € P} completely specify G.

Definition 3.12 [f X is the set represented by a node of the decomposition tree, let C be
the sets represented by its children. X's associated quotient graph is the graph

(GIX)/C.

Lemma 3.13 If G is an undirected graph, D is a degenerate node of its modular
decomposition, and C is its children then the associated quotient graph G' = (G|D)/C
is either a complete graph or the complement of a complete graph.
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Figure 11. A quotient on the graph of Figure 9. For any pair {.X, Y} of disjoint modules, either every element
of X x Y isan edge or none is. Thus, X and Y may be viewed as adjacent or nonadjacent. If P is a partition
of the vertices of a graph where each part is a module, the adjacencies of the parts can be described by a
quotient graph G/P. The factors are the subgraphs induced by the members of P. Given the quotient and
the factors, it is easy to reconstruct G.

Proof. Since D is a module, the modular decomposition of G|D is just the subtree
rooted at D in the modular decomposition of G. Since the union of every nonempty
subfamily of members of C is a module of G, every nonempty set of vertices of
G’ = (G|D)/C is a module in G’. Suppose G’ is neither a complete graph nor the
complement of a complete graph. Then there exists a vertex v € V(G’) that has a
mixture of neighbors and non-neighbors in V' (G’) — {v}. But then V' (G") — {v} fails to
be a module, a contradiction. Q.E.D.

By Lemma 3.13, we can call a degenerate node D a 1-node if its children are
adjacent to each other, and a 0-node if its children are non-adjacent to each other.

Lemma 3.14 No I-node can be a child of a 1-node, and no 0-node can be a child of
a 0-node.

Proof. Let A be a 0-node, let B be a 0-node child, and let B be the children of B.
Then the union of any member of 3 and any child of 4 other than B is a module of
G| A that overlaps B. By the substructure rule, this is a module of G that overlaps B,
contradicting B’s status as a strong module. Thus, a 0-node cannot be a child of another.
Since the modular decomposition of G is identical except for exchanging the roles of
0-nodes and 1-nodes, no 1-node can be a child of another. Q.E.D.

There are a number of such properties that we can show for modules, but we will
find it convenient to prove them within an abstract context that will generalize easily
to other structures that we discuss below. This context is an abstraction that appeared
in [29] and in [30], where it was shown that modular decomposition is a special case.



Decompositions and Forcing Relations 79

The abstraction avoids explicit mention of graphs and modules, while retaining
those properties required to prove most of the interesting theorems about modules.
Mohring has shown that a variety of interesting structures other than modules in graphs
are instances of the abstraction, so a proof that uses only the abstraction is more general
than one that makes specific mention of graphs and modules. We give some others
below.

When one applies the following definition, S corresponds to the set of all undirected
graphs, V' (G) corresponds to a set of vertices of a graph G, G|X corresponds to the
subgraph induced by X, and F(G) corresponds to the set of modules of G.

Definition 3.15 4 quotient structure is some class S of structures, together with
operators V (), |, and F() with the following properties.

e For G € S, V(G) returns a set;

e For X C V(G), the restriction of G to X, denoted G|X, yields an instance G’
of S such that V(G') = X;

e F(G) defines a rooted set family on V(G),

Then (S, V(), F(), |) defines a quotient structure if it satisfies the following:

e (“The Restriction Rule:”) For each Y C V(G) and X € F(G), XNY €
F(GIY)U{H

o (“The Substructure Rule:”) For each Y C X € F(G), Y € F(G) iff Y €
F(G|X).

e (“The Quotient Rule:”) Let P be a partition of V(G) such that each member of
P is a member of F(G), and let A be a set consisting of one element from each
member of P. Let W C P and let B be the members of A that are in members
of W. Then W € F(G) iff B € F(G|A).

Given the foregoing, following is easy to verify, and the proofis left to the reader.

Theorem 3.16 Let S denote the set {G|G is an undirected graph}, and for G € S, let
V(G) denote its vertices, let F(G) denote its modules, and for X C V(G), let G|X
denote the subgraph of G induced by X. Then (S, V (), F(), |) is a quotient structure.

3.2. Modular Decomposition and Transitive Orientation

The following gives an initial hint of a relationship between the modular decomposition
and the transitive orientations of a graph.

Lemma 3.17 If M is a module of G, (a, D) is an edge such that {a,b} € M and
(c, d) is an edge such that {c, d} € M, then (a, b) and (c, d) are in different connected
components of Ir(G).
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Proof. Suppose that they are in the same component. There is a path in /r(G) from
(a, b)to (c, d). There must therefore be an adjacent pair (u, v), (v, w) in I+ (G) such that
{u, v} € M and {v, w} € M. However, then w is adjacent to v € M and nonadjacent
to u € M, contradicting the fact that M is a module. Q.E.D.

A graph G = (V, E) is prime if the only modules it has are trivial modules,
namely, V" and its one-element subsets. The convention of calling a node of the modular
decomposition prime if no union of its children is a weak module stems from the fact
that, by the quotient rule, its associated quotient is a prime graph.

Let P = (Xi, X», ..., X}) be a partition of the vertices of G into more than one
partition class, together with a linear ordering of members of P. A pivet is the following
operation. While there is a non-singleton class X; that is not a module, select a pivot
vertex z € V' — X; that has both neighbors and non-neighbors in X;. Since X; is not a
module, z exists. Let j be the index of the partition class X; that contains z. If j > 7,

then refine the partition by changing the partition and ordering to (X, X5, ..., X;_1,
X; N N(z), X; — N(2), Xi+1, ..., Xy). Otherwise change it to (X1, Xp, ..., Xi_y,
X; — N(z2), X; N N(z), Xit1, - .., Xi). Return the partition and its ordering when all

partition classes are modules.

The refinement procedure is illustrated in Figure 12. Let us call this operation
Refine (P). Note that when G is a prime, every non-singleton partition class X; is

a v W d e a v w d
b b

| |

v abcdew abcdev

v cde abw w ie bedv

v cie a bw w ae cd bv
v cde a b w w a cd bv

o= O

Figure 12. Transitively orienting a prime comparability graph with Algorithm 3.20. The algorithm starts
by picking an arbitrary vertex v, and refining the ordered partition (¥ — {v}, {v}) using pivots. A pivot
consists of selecting a vertex and splitting one of the classes that doesn’t contain the pivot into neighbors and
non-neighbors. The non-neighbors are placed on nearer the pivot than the neighbors. When the first partition
class is a singleton set {w}, w is identified as a source in a transitive orientation. A separate refinement on
({w}, V — {w}) produces a linear extension of a transitive orientation.
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a non-module, hence there exists a pivot vertex that can split the class. This gives the
following:

Lemma 3.18 When P is a linearly-ordered partition of vertices of a prime graph G
where P has more than one partition class, then Refine (P, G) returns a linear
ordering of the vertices of G.

The key insight into the usefulness of the pivot operation is the following obser-
vation.

Observation 3.19 [f, after a pivot on z, x € X; N N(z), then for every edge (x, u) of
G that is directed from x to X; — N(z), (x, u)['(x, z), and (u, x)I'(z, x). In particular,
if all edges of G directed from X; N N(z) to z are even-equivalent in Ir(G), then so
are all edges of G that are directed from X; N N(z) to X; — N(2).

The following is an algorithm for transitively orienting a prime comparability graph
that first appeared in [19]. It has been used in a number of subsequent papers have used
it to obtain a variety of results [20, 21, 22, 10, 23]. Instead of explicitly orienting the
edges, the algorithm returns an ordering of the vertices that is a linear extension of a
transitive orientation of G if G is a comparability graph.

Algorithm 3.20 Produce an ordering of vertices of a graph G that is a linear extension
of a transitive orientation if G is a comparability graph.

Let v be an arbitrary vertex;

P = (V(G) — {v}, {v})

CallRefine (P);

Let w be the vertex in the leftmost set returned by the call;
Q= ({fw}, V(G) — {w}))

Call Refine (Q)

Return the resulting linear ordering of the vertices

An illustration is given in Figure 12.

Lemma 3.21 Let G be a prime graph, and let (vy, vy, ..., v,) be an ordering of its
vertices returned by Algorithm 3.20. Then the edges of G that are directed from earlier
to later vertices in this ordering are even-equivalent in I (G).

Proof- Let V — {v} = Wy, W, ..., Wi = {w} be the sequence of sets that are leftmost
classes as P is refined. We show that by induction on i that all edges directed from w
to V(G) — W; are even-equivalent. This will imply that w is a source in a transitive
orientation of G if G is a comparability graph.

Note that w is adjacent to v, since it is moved to the leftmost partition class after
the initial pivot on w. Thus, fori = 1, the sole edge from w to V' (G) — W) isin a single
even-equivalence class.
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Suppose i > 1 and all edges from w to V' — W;_; are even-equivalent. By Obser-
vation 3.19, all edges from w to W;_; — W; are even-equivalent to (w, z), where z is
the pivot that splits W;_;. Since (w, z) is even-equivalent to all other edges directed
from w to V' — W;_y, the claim follows.

We conclude the edges directed out of w are all even-equivalent. Let us now use
this to show that during the refinement of Q, the set of edges that are directed from a
vertex in a class to a vertex in a later class are even-equivalent. This is true initially
for Q@ = ({w}, ¥V — {w}) by our choice of w. It remains true during partitioning by
Observation 3.19, the rule for ordering partition classes, and induction on the number
of pivots that have been performed. Q.E.D.

Corollary 3.22 If G is a comparability graph, then the ordering of vertices returned
by Algorithm 3.20 is a linear extension of a transitive orientation.

Corollary 3.23 Ifa graph G is prime, then I (G) is connected.

A straightforward O(n + m logn) implementations of Algorithm 3.20 is given
in [19, 21]. A generalization which does not require G to be prime is given in [22, 10].
This can be used to compute the modular decomposition or to transitively orient a
comparability graph if it is not prime. A linear-time implementation of Algorithm 3.20,
together with the modular-decomposition algorithm of [19, 21], is the basis of the linear-
time bound for the transitive orientation problem given in [21].

Lemma 3.24 Let G be an undirected graph, D be a degenerate 1-node of the modular
decomposition, and X and Y be two children of D. Then X x Y U Y x X isa component
of Ir(G), and the members of X x Y are even-equivalent.

Proof. By Lemma 3.17, no component can contain any of these edges and any edges
outside of this set. It remains to show that the members of X x Y are even-equivalent,
as this will also imply that X x Y U Y x X is connected.

By Lemma3.14,6|Xand5|Yare connected. Let y € Y, andletx;, x, € X betwo
vertices that are adjacent in G| .X. Then (x;, y)I"(x2, ), hence these are even-equivalent.
Since G|X is connected, the edges of X x {y} are even-equivalent. Similarly, for any
x € X, the members of {x} x Y are even-equivalent.

Let (a, b), (c, d) be arbitrary edges such that a, b € X and ¢, d € Y. By the fore-
going, (a, b) and (a, d) are even-equivalent and so are (@, d) and (c, d). Transitively,
(a, b) and (c, d) are even-equivalent. O

Lemma 3.25 If G is an undirected graph and P is a prime node of the modular
decomposition and C is its children, then:

1. The set of edges that have endpoints in more than one member of C are a
connected component of I (G);
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2. There exists an ordering of members of C such that the edges directed from
earlier to later members in this ordering are even-equivalent.

Proof: By Lemma 3.17 and the fact that P and its children are modules, there can be
no other edges in a component that contains any of these edges.

If A is a set consisting of one representative from each member of C, then by the
quotient and substructure rules, G| 4 is isomorphic to (G| P)/C, and this graph is prime.
By Lemma 3.23, I(G|A) is connected, and there exists an ordering of members of
A such that the edges directed from earlier to later elements are even-equivalent. We
show that the analogous ordering the members of C satisfies the lemma.

Edges of G| A consist of one representative from each member of {X x ¥ : X, Y
are two adjacent members of C}. Thus, it suffices to show that for each pair X, ¥ of
children of P, the members of X x Y are even-equivalent.

Letx € X and y;, y, € Y. Let A, consist of one representative vertex from each
child of P, where x and y; are the representatives of X and Y, respectively. Let
Ay = (41 — {(y1}) U {12}. G| 4, and G| A4, are isomorphic to (G|P)/C, hence they are
isomorphic to each other.

The isomorphism maps y; to y, and the other vertices to themselves. It maps each
edge of G4, to itself, except for those edges incident to y;. Since G|A4; is prime,
not all of its edges are incident to y;, so some edge e is mapped to itself. This is an
isomorphism from I+ (G|A4;) to Ir(G|A43).

Since I (G| A1) is connected, there is a path in it from (x, y;) to e, and an isomorphic
path (of the same length) in /(G| A4,) from (x, y,) to e. Thus, (x, y1) and (x, y,) are
even-equivalent. By symmetry, the foregoing also applies to (y;, x) and (), x).

Now, let (a, b) and (c, d) be two arbitrary edges in X x Y. By the foregoing, (a, b)
and (a, d) are even-equivalent, and (@, d) and (¢, d) are even-equivalent. Transitively,
(a, b) and (c, d) are even-equivalent. Since (a, b) and (c, d) are arbitrary members of
X x Y, all members of X x Y are even-equivalent. Q.E.D.

The following theorem, which summarizes the foregoing, shows that the modular
decomposition gives a way to model the connected components of I1-(G) compactly,
and, if G is a comparability graph, to model its transitive orientations.

Theorem 3.26 /8, 9] Let G be an arbitrary graph.

1. If X and Y are two children of a degenerate node that are adjacent in G, then
(X x Y)U (Y x X)is aconnected component of Ir(G). If G is a comparability
graph, then {X x Y, Y x X} is its bipartition.

2. If X1, Xy, ..., Xy are children of a prime node, then the set E; = {(a, b) : abis
anedgeof Gandx € X;,y € X;,i # j}isaconnected component of I (G). If
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G is a comparability graph, then there exists an ordering X1y, Xy, - - - » Xz ()

such that the elements of E ; that go from an earlier child to a later child are one

bipartition class and those that go from a later child to an earlier are another.
3. There are no other connected components of Ir(G).

Corollary 3.27 An undirected graph G is a comparability graph iff Ir(G) is bipartite.

Proof. A transitive orientation is a set consisting of half the vertices of /1-(G) that must
be an independent set. Reversing the the edges selects the complement of this set, and
since the reverse of a transitive orientation is also transitive, this set is an independent
set also. Thus, if G is a comparability graph, /r(G) is bipartite.

Suppose Ir(G) is bipartite. Then each component is bipartite. At each prime node,
assign an order to the children where one bipartition class consists of edges that are
directed to the right in this order. At each degenerate node, assign an arbitrary order to
the children. This induces an ordering of the leaves where every component of /1(G)
has a bipartition class consisting of edges that are directed to the right in this order.
Selecting this bipartition class from each component yields an acyclic orientation of
G, and since it is an independent set in /1(G), it is also transitive. Q.E.D.

One might be tempted to think that the diameter of a component of /1 (G) is at most
n. However, this is not true. An example of this can be obtained as follows. Let # be odd,
and let G| be the graph on n — 2 vertices that is the complement (P, _,) of the graph
consisting of a path P,_, = (vy, v, ..., Uy—2). Add a new vertex x that is adjacent to
all vertices of G| to obtain a graph G,. The path ((x, vy), (v2, x), (x, v3), ..., (X, Vy—2))
is a shortest path in /- (G,). The path ((v,—2, v1), (vi, Vy—3), (Vy—4, V1), ..., (1, V3)) 1S
also a shortest path in I+ (G). Since {vy, vy, ..., v,_2} is a module of G, these are in
different components of /-(G). Add a new vertex y adjacent only to v,_,. This gives
a graph G on n vertices, and joins these paths together with a new vertex (v,—, y) to
create a shortest path in /r(G) that is longer than 7.

Nevertheless, the diameter of a component of I-(G) is O(n). If the component
is the set of edges that go between children of a 1-node, this is obvious from the
proof of Lemma 3.24. When G is prime, the diameter of /- (G) is O(n), which can
be confirmed from the proof of Lemma 3.21 and the observation that O(n) pivots are
required. Applying this result to the proof of Lemma 3.25 shows that this is also true
for a component of /1(G) of a non-prime graph G, where the component consists of
edges that connect children of a prime node.

Since each component has a spanning tree of diameter at most 3n — 1, then in a
component that is not bipartite, there is an edge between two elements whose distance
from each other in this tree has even parity. This edge and the path of tree edges between
them yield an odd cycle of length O(#n).

By a somewhat more careful analysis of this argument, the following is derived
in [14]:
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Lemma 3.28 If G is an undirected graph that is not a comparability graph, then Ir(G)
has an odd cycle of length at most 3n.

The paper gives a linear-time algorithm for returning an odd cycle of length at
most 3n in I(G) or Ir(G) if G is not a permutation graph. This provides a certificate
of the claim that G is not a permutation graph.

Such a certificate exists for graphs that are not comparability graphs. However, at
present, no linear-time algorithm is known for finding one. Given a pair of incompatible
edges in the orientation produced by Algorithm 3.20, one can be found in linear time.
Such a pair can be found by squaring the boolean adjacency matrix for the oriented
graph, but this does not give a linear time bound. This is the bottleneck in the time
bound for recognizing comparability graphs.

4. Intersection Matrices

In this section, we give a forcing relation and a corresponding quotient structure that
were instrumental in obtaining the linear time bound of [17] for recognizing circular-arc
graphs.

Tucker gave an O(n?) algorithm [34]. Hsu improved this bound to O(nm) [11],
and Eschen and Spinrad further improved it to O(n?) [6]. The author recently improved
itto O(n +m) [17].

One reason that the problem is harder on circular-arc graphs is that there are
two ways to travel between a pair of points on a circle, and only one on a line. This
introduces the need for an algorithm to make choices that are not required in the
interval-graph recognition problem. Also, in an interval graph the maximal cliques
correspond to regions of maximal overlap among the intervals, and there are there-
fore O(n) maximal cliques. This plays an important role in Booth and Lueker’s algo-
rithm. The number of maximal cliques in a circular-arc graph can be exponential in
n [34].

To manage these problems, the algorithm of [17] works with an intersection
matrix 7', rather than directly with the graph. Like the graph, the intersection matrix
tells which pairs of arcs intersect. However, it gives additional information in the case
where two arcs intersect, namely, the type of intersection. The intersection types are
classified as follows:

* single overlap (‘1’): Arc x contains a single endpoint of arc y;

e double overlap (‘2°): x and y jointly cover the circle and each contains both
endpoints of the other;

e containment (‘c’): arc x is contained in arc y;

¢ transpose containment (‘t’): arc x contains arc y;

¢ nonadjacency (‘n’): arc x does not intersect arc y.



86 Ross M. McConnell

0o o0 oW
oo = —5

Figure 13. A flip consists of rerouting an arc’s path between its endpoints; in this case arc « is flipped. This
swaps the roles of # and ¢, and 2 and ¢ in a row, and swaps the roles of » and ¢, and 2 and ¢ in a column.

This can be captured with a matrix 7 where the entry in row i and column j is
the label from {1, 2, ¢, t, n} that gives the type of relationship between arc i and arc ;.
For obtaining a linear time bound, the matrix is represented by labeling the edges of G
with their intersection types from {1, 2, c, t} and letting a label # be given implicitly
by the absence of an edge.

The paper gives a linear-time algorithm for labeling the edges so that they are
consistent with some realizer of G, even though the actual realizer is not known. Next,
the algorithm makes use of a flip operation. This is the operation of rerouting an arc the
opposite way around the circle, while keeping its endpoints (see Figure 13). The effect
on G of a flip is unclear if only G is known. However, if the intersection matrix of the
realizer is known, it is a simple matter to transform the matrix to reflect the intersection
relationships in the new realizer, even if the actual realizer is not known. In the row
corresponding to the flipped arc, this swaps the roles of » and ¢, and the roles of 2 and
c. In the column column corresponding to the flipped arc, it swaps the roles of #» and
¢, and the roles of 2 and ¢.

Without knowledge of the actual realizer, the algorithm finds the set of arcs that
contain a particular point on the circle, and flips them. This results in the intersection
matrix of an interval realizer; cutting the circle at this point and straightening it out into a
line illustrates this. This makes the problem considerably easier, as working with interval
realizers sidesteps the difficult issues mentioned above when one works with arcs around
the circle. All that is required now is to find an interval realizer of this resulting matrix.
One can then wrap this realizer around the circle again and invert the sequence of flips
that were performed to obtain the interval realizer, but this time performing the flips
on the realizer, rather than on the intersection matrix. The result is circular-arc realizer
of the original intersection matrix, which is a circular-arc realizer of G.
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No circular-arc realizer of G exists if G fails to be a circular-arc graph. If G is not
a circular-arc graph, the algorithm either halts early or returns a circular-arc realizer
that does not match G. Determining whether a proposed realizer matches G can easily
be carried out in time linear in the size of G.

In this section, we describe elements of the central step of the algorithm, which
is finding whether an intersection matrix has an interval realizer, and, if so, producing
a realizer as a certificate. Note that every realizer of the matrix realizes G, but the
converse may not be true.

A double overlap cannot occur in an interval realizer, so we may assume that
these relationships are absent from the matrix. Let us therefore redefine an intersection
matrix to be any matrix whose off-diagonal entries are drawn from the set {1, c, ¢, n}.
The matrix is an interval matrix if it has an interval realizer.

We may assume without loss of generality that all endpoints of intervals in an
interval realizer are unique, since if this is not the case, they can be perturbed to
make this true without affecting the represented graph. In an interval realizer the exact
positions of the endpoints on the line are irrelevant; what is important is the order
in which the endpoints occur. Thus, we can represent an interval realizer with string
whose letters are the vertices of G, and where each vertex appears twice in the string,
once for its left endpoint and once for its right endpoint. We may therefore view the
set of interval realizers of a graph as a language over an alphabet whose letters are the
vertices of G.

Let R be an interval realizer, expressed as a string over the alphabet 7, and let
X C V. Then R|A denotes the result of deleting all characters in ¥ — X from this
string. That is, R| X is the result of deleting all intervals except for those in X. Let T'|.X
denote R’s intersection matrix. Note that 7’| X is also the submatrix given by rows and
columns in X.

In a way that is similar to the intersection matrices for interval graphs, an inter-
section matrix for a set of arcs defines four graphs with vertex set V. G, = G is the
graph whose edges are those pairs labeled n. Similarly, G, D, and D, are the graphs of
edges labeled 1, c, and ¢, respectively. We use the notation D, and D, to emphasize that
these graphs are directed graphs. As before, we let unions of these graphs are denoted
with multiple subscripts, e.g. G, is the G| U G,. Let V(T) denote the vertex set on
which these graphs are defined. For v € V(T), let N1(z), N,(z), and N.(z) denote the
neighbors of v in Gy, G,, and G, respectively. Let G(T) = G|.. This is the graph that
corresponds to the matrix if the matrix is an intersection matrix, but is defined for all
intersection matrices.

Suppose xy is an edge of G, and the left endpoint of x is to the left of the left
endpoint of y. Then since intervals x and y are disjoint or overlap, the right endpoint
of x is to the left of the right endpoint of y. Let us then say that x comes before y in
this case, even though x and y might intersect. This associates an orientation D;, with
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G1,: the edge set of Dy, is {(x, y) : xy is an edge of G, and x comes before y in R}.
Let us call such an orientation an interval orientation (Figure 6).

Lemma 4.1 An interval orientation Dy, of G, is a transitive orientation, and the
subgraph D,, given by the restriction of Dy, to edges of G, is also transitive.

Proof. If (x, y), (v, z) € E(Dy,), then interval x overlaps with or is disjoint from in-
terval y and comes before it, and interval y overlaps with or is disjoint from interval z
and comes before it. It follows that x overlaps with z or is disjoint from it. Thus, (x, z)
is an edge of Dy,,.

If (x,y), (v,z) € E(D,), then interval x is disjoint from interval y and comes
before it, and interval y is disjoint disjoint from interval z and comes before it. It
follows that x is disjoint from z and comes before it. Thus, (x, z) isan edge of D,,. O

Given the interval orientation D;,, and the graph D, and its transpose D, given
by the intersection matrix, then we can find the left endpoint order in R; this is just
the linear order Dy,;. Similarly, we can find the right endpoint order in R; this is just
the linear order Dj,.. Given the left endpoint order and the right endpoint order in R,
it is easy to interleave these two orders to get the full order of endpoints in R. This
operation is left as an exercise.

Thus, finding arealizer of a given matrix 7T reduces to finding an interval orientation
of G,. This brings the problem into the combinatorial domain of graphs and transitive
orientations, and avoids the pitfalls in geometric arguments about possible arrangements
of intervals on a line.

By analogy to the problem of finding a transitive orientation, let us derive an
incompatibility graph /A (T) to help us find an interval orientation.

Definition 4.2 The A-incompatibility graph IA(T) of an intersection matrix T is
defined as follows:

1. The vertex set of In(T) is {(x, y) : xy is an edge of G1,}.
2. The edge set of In(T) is the pairs of vertices of the following forms:
(@) {{(a, D), (b,a)}: abis an edge of G},
(b) {{(a, D), (b,c)}: ab, bc are edges of G, and ac is not an edge of G,};
(c) {{(a,b), (b, c)}: ab, bc are edges of G, and ac is not an edge of G1,,},
(d) {{(a, b), (b, c)} or {{(a, b), (c,a)}}: ab is an edge of G,, and ac and bc
are edges of G.

By parts a, b, and ¢, an acyclic orientation of G, that is an independent set in
IA(T) must satisfy the requirements of Lemma 4.1. For condition d, note that if
overlaps a and ¢ and a and ¢ are nonadjacent, then a and ¢ have to contain opposite
endpoints of b. It follows that if @ comes before b then it comes before ¢ also. We show
below that the interval orientations of G, are precisely those acyclic orientations of
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G, that are independent sets of /5 (T), and that such an orientation exists iff /5 (7') is
bipartite.

By analogy to the I relation, let us say that for two ordered pairs (a, b) and (b, ¢)
of vertices, (a, b)A(c, b) and (b, a)A(b, ¢) if (a, b) and (b, ¢) are neighbors in I5(T).

4.1. The Delta Modules of an Intersection Matrix

In this section, we show that for an intersection matrix 7 there is a tree, the Delta
tree, which is analogous to the modular decomposition of a graph. It represents the com-
ponents of /5 (7) in the same way that the modular decomposition represents the com-
ponents if /r(G). When G is a comparability graph, its modular decomposition can be
used to represent all of its transitive orientations. Similarly, when 7 is an interval matrix,
the Delta tree can be used to represent the interval orientations of G, in the same way.

Definition 4.3 Let T be an intersection matrix, and let X C V(T).

1. X is aclique in T if'itis a clique in the interval graph G, represented by T .

2. X is amodule of T ifit is a module of G,, G\, and G..

3. X is a Delta module if X is a module in T and it is either a clique or there are
no edges of G| from X to V(T) — X.

Let F(T) denote the Delta modules of T.

If T is an intersection matrix and P is a partition of V' (T) where each member of
‘P is a module, we can define a quotient 7/P on T. This is the submatrix induced by a
set A consisting of one representative from each member of P. Since the members of
‘P are modules of G,,, Gy, and G, G,|4, G||4, and G| A4 are unaffected by changing
the choice of representatives for 4. Thus 7'| 4 is unaffected by changing the choice of
representatives for 4 and the quotient is well-defined.

Theorem 4.4 The Delta modules of an intersection matrix are a rooted set family.

Proof. Let X and Y be overlapping Delta modules. Then XN Y, X U Y,and (X — Y) U
(Y — X) are modules of G,,, G, and G, by Theorem 3.6. It remains to show that these
sets satisfy the additional requirements of Delta modules.

Suppose X and Y are cliques. Then there are edges of G, from each member
of ¥ — X to members of X N Y. Since X is a module of G| and G, there are edges
of G, from each member of ¥ — X to every member of X, and XU Y, XN Y, and
(X —Y)U (Y — X) are cliques, hence Delta modules.

Suppose X U Y is not a clique. Then one of X and Y, say, X, is not a clique. There
isno edge of G| from X to V' (T) — X. Since X U Y is amodule of G, there is no edge
of G from XU Y to V(T)— (X UY). XUY is a Delta module.
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Figure 14. An interval realizer, the intersection matrix 7, and the Delta tree A(7).

Suppose X N Y is not a clique. Then neither X nor Y is a clique. There is no edge
of G| from X to V(T) — X, or from Y to V'(T) — Y. Thus, there is no edge of G| from
XNYtoV(T)—(XNY). XNY isaDelta module.

Finally, suppose that U = (X — Y) U (¥ — X) is not a clique. Then one of X and
Y, say, X, is not a clique. There is no edge of G| from X to V(T) — X. Since U is a
module of G, any edge of G| from U to V'(T) — U must go to a vertex s in XN Y.
But since (X — Y) U (Y — X) is a module, every member of ¥ — X is a neighbor of s
in G, and there are edges of G| from X to V'(T) — X, a contradiction. Q.E.D.

Definition 4.5 Let us call the tree decomposition of the Delta modules the Delta tree
of G1,, and denote it A(T).

Let D be a degenerate node of the Delta tree, and let C be its children. The Delta
modules are modules in each of G,,, G, and G, so it follows from Lemma 3.13 that
(T|D)/Ciscompletein G,, G1,or G.. We can call a degenerate node an n-node, 1-node,
or c-node, depending on which of these cases applies. Figure 14 gives an example.

Given Theorem 4.4, the following is obvious.

Theorem 4.6 Let T denote the set of all intersection matrices. then (Z, V (), F(), ) is
a quotient structure.

4.2. The Delta Tree and Interval Orientations

In this section, we show that the Delta tree has a role in interval orientations that is
analogous to the role of modular decomposition in transitive orientations.

The following is analogous to Lemma 3.17.
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Lemma 4.7 [f M is a Delta module of T, (a, b) is an edge such that {a, b} C M and
(c, d)is an edge such that{c,d} € M, then(a, b) and (c, d) are in different components
of In(G).

Proof. Suppose that they are in the same component. There is a path in /5(G) from
(a, b) to (¢, d). There must therefore be an adjacent pair (u, v), (v, w) in Io(G) such
that {u, v} € M and {v, w} € M.

Suppose (u, v) and (v, w) fall into case (b) or case (c) of Definition 4.2. Then the
relationship of w to u differs from its relationship to v. Since u, v € M and w is not,
M cannot be a module, a contradiction.

Otherwise, (u, v) and (v, w) fall into case (d) of Definition 4.2. If uv is an edge of
G and uw is an edge of G,, then wv is an edge of G, hence M fails to be a module
in G|, a contradiction. Thus, uv is an edge of G, and uw and vw are edges of G.
However, this means that M is not a clique, and it has outgoing edges of G| to w. M
again fails to be a Delta module, a contradiction. Q.E.D.

Let us say that 7 is prime if it has no modules, and Delta-prime if it has no Delta
modules. If T is prime, then it is also Delta prime, but the converse is not true.

Let us now redefine the pivot operation of Algorithm 3.20 so that we can use
the algorithm to find an interval orientation, rather than a transitive orientation. As
before, let P = (X, X3, ..., Xx) be a partition of the vertices of G, into more than
one partition class, together with a linear ordering of members of P. A pivot is the
following operation. Select a non-singleton class X;. In this case, a pivot vertex is a
vertex z € V' — X; such that the relationship of z to members of X; is non-uniform.
That is, in at least one of G., G, and G,, z has both neighbors and non-neighbors
in X, i

Let j be the index of the partition class X; that contains z. Let Y., Y1, and V), be
the members of X; that are neighbors of z in G, G|, and G, respectively. If j > i,

then refine the partition by changing the partition and ordering to (X, X», ..., X;_1,
Y., Y1, Yo, Xjq1, ..., X}). Otherwise change it to (X, Xo, ..., X;_1, Y., 11, ¥,
Xjt1s ..., Xi). At least two of the sets X., X, and X, are nonempty because of the

choice of z. If one of the sets is empty, remove it from the partition. Let us call this
type of pivot a three-way pivot.

There is one other type of pivot that must be used when X; is a module that fails to
be a Delta module. This is a modular pivot, which consists of the following operation.
Let z be a vertex in V' — X; such that the vertices in X; are neighbors in G. Since X;
is not a Delta module, such a z exists and X; is not a clique. Let x be a vertex with an
incident edge in G, | X;, and let ¥ be the neighbors of x in G, | X;. We replace X; in the
ordering with X; — Y and Y, placing X; — Y first if z resides in a class that is later in
the ordering than X;, and placing it second if z resides in an earlier class.
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The following observation is the analog of Observation 3.19 in the context of
interval orientations.

Observation 4.8 Let Y, Yy, and Y. be as in the description of a three-way pivot. If
x € Y,, then all edges of G, from x to Y| U Y, are neighbors of (z, x) in In(T), hence
even-equivalent to (x, z). Similarly, if y € Y\, then all edges of Gy, from y to Y, are
even-equivalent to (y, z). In particular, if all edges of Gy, in ¥, U Y. x {z} are even-
equivalent, then so are all edges of G\, that are directed from earlier to later sets in
the sequence (Y,, Y1, Y.).

The following gives a similar insight about the effect of a modular pivot:

Lemma 4.9 Let X;, Y, x, and z be as in the definition of a modular pivot. All edges
of G, that are directed from X; — Y to Y are in the same even-equivalence class as
(x,z)in In(T).

Proof. All members of {x} x Y are directed edges of G,,, and since z has edges of G, to
all of {x} U 7, it is immediate that these edges are neighbors of (z, x) in I (7'), hence
even-equivalent with (x, z).

Let ab be an arbitrary edge of G, suchthata € X; — Y,a # x,and b € Y. Note
that ax is not an edge of G,, by the definition of Y.

If ab is an edge of G,, then ab, xb are both edges in G, and ax is not an
edge of G,. Thus, (a, b) is even-equivalent to (x, b), and transitively, even-equivalent
to (x, z).

Suppose ab is an edge of G|. Then ax is either an edge in G; or in G, but in
either of these cases, (a, b) and (b, x) are neighbors in /5(T), hence (a, b) and (x, b)
are even-equivalent. Transitively, (a, b) is even-equivalent to (x, z). Q.E.D.

The following is analogous to Lemma 3.21.

Lemma 4.10 Let T be Delta-prime, and let (vy, vy, ..., v,) be an ordering of the
vertices returned by the variant of Algorithm 3.20, that uses three-way and modular
pivots in place of the standard pivot. Then the edges of G, that are directed from
earlier to later vertices in this ordering are even-equivalent in It (G).

The proof differs only in trivial details from the proof of Lemma 3.21. The main
difference is that it uses Observation 4.8 and Lemma 4.9 in place of Observation 3.19
at each place in the proof. The results of the section on comparability graphs are now
easily adapted to the new context; the details of these proofs are also trivial and are left
to the reader:

Theorem 4.11 [23] Let T be an arbitrary intersection matrix.
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1. If X and Y are two children of a degenerate node in the Delta tree that are
adjacent in Gy, then (X x Y)U (Y x X) is a connected component of Ix(G).
If T is an interval matrix, then {X x Y, Y x X} is its bipartition.

2. If X1, Xa, ..., Xy are children of a prime node, then the set E; = {(a, b) : abis
anedgeof G, andx € X;,y € X;,i # j}isaconnected component of In(G).
If T is an interval matrix, then there exists an ordering X1y, Xz), - - - » Xz
such that the elements of E 7 that go from an earlier child to a later child are one
bipartition class and those that go from a later child to an earlier are another.

3. There are no other connected components of In(T).

Corollary 4.12 An intersection matrix is an interval matrix iff In(G) is bipartite.

Lemma 4.13 If T is an n X n intersection matrix that is not an interval matrix, then
IA(T) has an odd cycle of length at most 3n.

Recall that we can represent an interval realizer with a string, where each letter of
the string is the name of a vertex whose interval has an endpoint there. Suppose T is an
interval matrix. A strong Delta modules M of T has an analog in an interval realizer R
of T: M is a set of intervals whose left endpoints are a consecutive substring and whose
right endpoints are a consecutive substring. If M has a neighbor y € V' — M in Gy,
then interval y must have an endpoint inside all intervals in M and an endpoint outside
all intervals in M. This constrains the intervals in M to have a common intersection,
which forces G,| M to have no edges.

The weak modules are those that satisfy these requirements in some, but not all,
realizers of 7. The correspondence with Delta modules of 7 means that such sets define
a quotient structure on the class of all interval realizers.

When one labels the nodes of the Delta tree with interval representations of their as-
sociated quotients, the tree gives a representation of an interval realizer (see Figure 15).
This is obtained by a composition operation on the interval realizers themselves. This
reflects the fact that the Delta modules define a quotient structure on interval realizers
that mirror the quotient structure that they define on the intersection matrices of the
interval realizers.

The quotient at a prime node can be reversed to obtain a representation of another
quotient. A degenerate node induces a quotient that is complete in one of G, G, or G;
it is easy to see how a realizer of such a graph can be permuted without changing such
a simple represented quotient in 7'. Since each realizer of T is a string, the collection of
all realizers of T is a language, and this tree gives a type of grammar for that language.

An algorithm is given in [22] for finding the modular decomposition of a graph
that uses /- (G) to reduce the problem to the Re £ ine operation of Algorithm 3.20. The
similarities between the modular decomposition and its I' relation, on the one hand,
and the Delta tree and its Delta relation, on the other, can be used to reduce finding
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Figure 15. An interval realizer and the Delta tree for the intersection matrix given by a realizer R. When
M is an internal node and C is its children, the node is labeled with the quotient (R|M)/C, represented
here with their string representations. By performing substitution operations in postorder, it is possible to
reconstruct R in O(n) time using a composition operation that mirrors the one defined by the quotient
structure.

the Delta tree to the variant of Re f ine operation that uses the three-way and modular
pivots in the same way. This, together with a linear-time algorithm for Ref ine that is
given in [21] is the basis of an algorithm given in [17, 23] for finding the Delta tree in
time linear in the size of the intersection graph G. that it represents. This assumes a
sparse representation of the matrix consisting of labeling the edges of G = G, with
with 1’s and ¢’s.

5. Similar Forcing Relations in Other Structures
5.1. Zero-one Matrices and the Consecutive-ones Property

A zero-one matrix M has the consecutive-ones property if the columns of M can be
permuted so that the 1s in each row are a consecutive block.

In this section, we summarize results from [18, 37] about an incompatibility rela-
tion on pairs of columns of an arbitrary zero-one matrix and a corresponding quotient
structure on columns of the matrix. The relation and the quotient structure have a
relationship analogous to that of Theorem 3.26: it is bipartite if and only if the matrix
has the consecutive-ones property. In this case, the decomposition tree given by the
quotient relation is the well-known PQ tree, which is a data structure for representing
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the modules of a graph. However, the quotient structure is not limited to matrices that
have the consecutive-ones property, so this gives a generalization of the PQ tree to
arbitrary zero-one matrices.

Like the modular decomposition and its quotients, this generalized PQ tree, to-
gether with the quotients induced by children in their parent sets, gives a representation
of the matrix, which can be recovered by taking a type of composition of the quotients
[37].

A graph is chordal if every simple cycle on four or more vertices has a chord,
which is an edge not on the cycle that has its two endpoints on the cycle. Interval graphs
are chordal.

If a graph is chordal, the sum of cardinalities of its maximal cliques is O(m).
Given a chordal graph, one may find the maximal cliques in linear time [32]. Since an
interval graph is chordal, this applies to interval graphs also. Let the clique matrix be
the matrix that has one row for each vertex of G, one columns for each maximal clique
of G, and a | in row i and column j iff vertex i is a member of clique ;.

Most of the algorithms that have appeared for recognizing interval graphs are based
on the following reduction, which was described by Fulkerson and Gross:

Theorem 5.1 [7] A graph is an interval graph iffits clique matrix has the consecutive-
ones propert).

To see why Theorem 5.1 is true, note that the members of a clique correspond
to a set of intervals that have a common point of intersection (see Figure 16). Thus,
an interval realizer defines an ordering of cliques where clique C; is before C; in the
ordering iff C;’s common intersection point precedes C; s in the realizer. An interval x
of arealizer will be a member of a clique C; iff it contains C;’s intersection point. Since
x is an interval, the cliques that contain x are consecutive in the ordering of cliques.

A B C A B C

. a 1 1 1
4 h— b 1
a c 1
b — f d |

c — e 1 1

& f 11

g 1

h 1

Figure 16. Each maximal cliques in an interval graph correspond to a clique point on the line in an interval
realizer. The clique matrix has a row for each vertex and a column for each maximal clique. The clique matrix
can be found in linear time, given the graph. The order of the clique points gives a consecutive-ones ordering
of the clique matrix. Conversely, a consecutive-ones ordering of the matrix gives an interval representation
of the graph: the block of ones in each row gives one of the intervals in a realizer.
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11

Figure 17. The PQ tree is a way of representing all consecutive-ones orderings of the columns of a matrix.
The leaf order of the tree gives a consecutive-ones ordering. Permuting the order of children of a P node
(black circles) gives a new order. For instance, by permuting the order of the left child of the root, we see
that (d,a, b, c, e, f, g, h,i, j, k) is a consecutive-ones ordering. Reversing the order of children of a Q node
(horizontal bars) gives a new consecutive-ones order. For instance, by reversing the order of the right child
of the root, we see that (a, b, c,d, e, f,k, j, h,i, g) is a consecutive-ones ordering. The consecutive-ones
orderings of the matrix are precisely the set of leaf orders obtainable by a sequence of such operations on
the PQ tree.

With these observations, it is easy to see how to construct an interval realizer for G,
given a consecutive-ones ordering of its clique matrix.

A consecutive-ones ordering of a matrix is a certificate that the matrix has the
consecutive-ones property. A certificate that a matrix does not have the consecutive-
ones property was given by Tucker in 1972 [33], but none of the algorithms that
have appeared for recognizing consecutive-ones matrices produces a certificate of
rejection.

Most algorithms for finding a consecutive-ones ordering of a matrix are based on
construction of the PQ tree, which is illustrated in Figure 17). The leaves represent the
columns of the matrix, and the internal nodes of the tree of one of two types: P-nodes
and Q-nodes. The children of each internal node are ordered from left to right. The
left-to-right order of leaves in the tree represents a consecutive-ones ordering of the
matrix. To obtain other consecutive-ones orderings of the matrix, one can reverse the
left-to-right order of children at any set of Q nodes, and permute arbitrarily the left-to-
right order of children of any set of P nodes. This imposes a new left-to-right order on
the leaves, which will be a new consecutive-ones ordering of the matrix.

The PQ tree is constructed in a way that ensures that all orderings of leaves ob-
tainable in this way, and only such orderings, are consecutive-ones orderings of the
matrix.

If M has duplicates of a row, we may delete all but one copy, as they place no
additional restrictions on the problem. Henceforth, let us assume that M has no duplicate
TOWS.
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Figure 18. The incompatibility graph /(M) of a 0-1 matrix has one vertex for each ordered pair of columns.
Each ordered pair (x, y) is incompatible with (adjacent to) its twin (y, x), since at most one of these can
reflect their relative order in a consecutive-ones ordering. In addition, if, in some row, x is 1, y is 0, and z
is 1, then (x, y) and (y, z) are incompatible, since the order (x, y, z) would place a zero between two ones
in that row. The first graph shows the incompatibility graph for the first row of the matrix, while the second
shows the incompatibility graph for the whole matrix.

Definition 5.2 /18] The incompatibility graph /o(M) of a 0-1 matrix M with n
columns is the undirected graph that is defined as follows: (See Figure 18.)

e The vertex set of Ic(G) is the set {(a, b)|a, b are distinct columns of M}.
e The edge set of Ic(G) are pairs of vertices of the following forms:
- {{(a, b), (b, a)}|a and b are columns of M},
- {{(a, D), (b, ¢)}| a, b, and c are columns of M and there exists a row that has
15 in columns a and ¢ and a zero in column b}.

In a consecutive-ones ordering of columns of a matrix, the pairs of columns of the
form {(i, j)|i is to the left of j in the ordering} must be an independent set in /¢ (M).
Otherwise, there exists three columns 7, j, k : i < j < k and some row » where a zero
in column j occurs in between 1’s in columns i and k. Since reversing the order of
columns in a consecutive-ones ordering produces another consecutive-ones ordering, it
is obvious that /(M) must be bipartite if a matrix M has the consecutive-ones property.
As with the analogous result for the Gamma- and Delta-incompatibility relation, what
is not obvious is that this condition is also sufficient.

Definition 5.3 Let V(M) denote the set of columns of a 0-1 matrix M. Let the row
set associated with a row of M be the set of columns where a 1 occurs in the row. Let
R(M) denote the family of row sets of M.

A set X C V(M) is a column module if it does not overlap with any row set of
M. Let C(M) denote the family of column modules of M.
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Theorem 5.4 [37] The column modules of a consecutive-ones matrix M are a rooted
set family on V (M), and its decomposition tree is the PQ tree for M, where the degen-
erate nodes are the P nodes and the prime nodes are the Q nodes.

However, it is just as easy to show that when M is an arbitrary 0-1 matrix, its column
modules are still a rooted set family. The corresponding decomposition tree therefore
gives a generalization of the PQ tree to arbitrary 0-1 matrices, called the PQR tree [37].

Letus define a congruence partition of a 0-1 matrix to be a partition P of its columns
where every partition class is a column module. To try to show an associated quotient
structure, one must come up with a suitable definition of the quotient M /P induced in
M by a congruence partition. Given the definitions of quotients from previous sections,
the obvious approach is to select a set 4 of arbitrary representatives, one from each
member of P, and to let the quotient be the submatrix M[A4]. However, this does not
work, as M[A4] can depend on the exact choice of representatives.

For instance, in Figure 17, P = {{a,b,c,d, e}, {f},{g, h, i, j, k}}. However,
M([{a, f, g}] is not the same matrix as M[{b, f, j}], for example.

Fortunately, if one also restricts the rows, a definition of a quotient with all the
desired properties emerges. Since P is a congruence partition, no row overlaps any
member of P. Thus, each row set is either a union of more than one member of P, or
a subset of a single member of P. Let R be the set of rows whose row sets are unions
of more than one member of P. The matrix (M[R])[ 4] is independent of the set 4 of
representatives chosen from P. For X € P, let Ry denote the set of rows whose row
sets are subsets of X. The factor associated with X is (M[Ryx])[X].

Clearly, M can be recovered by a simple composition operation on the the quotient
and the factors, except for the order of rows in M. The row order can be recovered if
the position of the corresponding row in M is given for each row of a quotient or factor.

Let X be a node of the PQR tree, and let C denote its children. As in the case of
modular decomposition, we can label the X with the associated quotient (M[X])/C.
This is illustrated in Figure 19 for the PQ tree of Figure 17. This gives a representation
of M, as M can be recovered from the tree and this labeling.

In order to define a quotient structure, we need a definition of a restriction operator
that is consistent with our definition of a quotient.

Definition 5.5 If M is a 0-1 matrix and X is a set of columns, then let R be the set of
rows whose row set is a subset of X. Let M|c X, denote the matrix (M[R])[ X].

Given the foregoing definitions, the following is not difficult to show.

Theorem 5.6 Let M be the class of all 0-1 matrices and |c be the quotient and
restriction operators defined for 0-1 matrices above, let V(M) denote the column set
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Figure 19. The PQR tree gives a decomposition of a 0-1 matrix into a series of quotient submatrices, one
for each internal node of the tree. The quotient at the root is given by (M[Y])[.X], where X is the set of rows
whose row set contains more than one child, and Y consists of one representative column from each child.
For each child Z, the subtree rooted at Z is found by recursion on (M[Z])[Rz], where R is the set of rows
whose row sets are contained in Z. The degenerate nodes are those whose matrix is either a row of 1’s (e.g.
Z) or whose set of rows is empty (e.g. ). A matrix has the consecutive-ones property iff each of these
quotients do.

of a 0-1 matrix M, and let C(M) denote its column modules. Then (M, V (), C(), |c) is
a quotient structure.

Clearly, for any set family F on a universe 7, a 0-1 matrix M can be constructed
to represent the family as R(M). The column modules of a matrix are defined on an
arbitrary set family. Thus, we can just as easily talk about the family C(F) of column
modules of F. This raises an interesting issue, which is that since C(F) is itself a family
of sets, C(C(F)) is well defined. What is its relationship to C(F)?

It turns out that C(C(F)) is the closure of F under the operations of adding the
union, intersection, and symmetric difference of overlapping members of F. In other
words, C(C(F)) is the minimal rooted set family that has F as a subfamily.

One consequence of this is that if  is itself a rooted set family, C(C(F)) = F, and
we may consider F and C(F) to be dual rooted set families. The decomposition tree
of C(F) can be obtained from the decomposition tree of F by exchanging the roles of
degenerate and prime labels on the nodes.

Using the techniques of the previous sections, applied to this new quotient structure
and its forcing relation, we obtain analogs of the main results:
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Theorem 5.7 [18] Let M be an arbitrary 0-1 matrix and Ic (M) be is its incompatibility
graph, and let T be its POR tree. Then:

1. If X and Y are two children of a degenerate node, then (X x Y)U (Y x X) is
a connected component of Ic(M);

2. If X1, Xa, ..., Xy are the children of a prime node Z, then the set {(a, b) : x €
Xi,b e X;,i # j}is a connected component of Ic(M);

3. There are no other connected components of Ic(M).

Corollary 5.8 A4 0-1 matrix M has the consecutive-ones property if and only if Ic(M)
is bipartite.

Apart from its theoretical interest, the corollary defines a certificate when M is
not a consecutive-ones matrix. A different certificate, based on asteroidal triples, was
given previously in [33]. However, to our knowledge, no algorithm has been published
to produce it. Let m denote the number of rows, n» denote the number of columns, and e
denote the number of 1’sin M. An O(n + m + e) algorithm to compute the generalized
PQ tree for an arbitrary 0-1 matrix, a certificate in the form of a consecutive-ones
ordering when M has the property, and a certificate in the form of an odd cycle of length
at most 3n in Io(M) if it is not is given in [18]. A key ingredient is Algorithm 3.20,
suitably modified with a pivot operation that is appropriate to the new domain.

5.2. Probe Interval Graphs

Recently, a variation of the problem of finding an interval realizer for an interval
graph has arisen from a biological application. Let ' be a collection of fragments of
DNA. A subset P of the fragments are designated as probes and the remaining set N of
fragments are designated as non-probes. For each probe fragment, the other fragments
of P U N that the probe intersects on the genome are known, while the intersections
between pairs of non-probes are unknown. Using these data, a biologist would like to
determine the linear arrangement, or physical mapping, of the fragments in the genome
that they came from.

The data for this problem can be represented with probe interval graph. A graph
G is a probe interval graph with respect to a partition { P, N} of the vertices if there
exist a set of intervals, one for each vertex, such that for x, y € P U N, xy is an edge
of G iff the interval for x intersects the interval for y and at least one of x and y is a
member of P (see Figure 20). If G is a probe-interval graph with respect to the partition,
then a set of intervals is a a probe-interval realizer of G.

This application motivates the problem of finding a set of intervals that realizes
the graph. If all fragments are probes, this problem is just that of finding an interval
realizer of an interval graph. However, for a variety of technical and economic reasons,
there is an advantage to being able to find a realizer when only a subset of the fragments
are probes.
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Figure 20. A probe interval graph is a graph with two sets of vertices: probes and non-probes. The edges
can be represented with a set of intervals, one for each vertex, such that two vertices are adjacent if their
corresponding intervals intersect and at least on of the two vertices is a probe. In this example, x and y
are not adjacent, even though their corresponding intervals intersect.

Another application of for finding an interval representation of probe-interval
graphs is recognition of circular-arc graphs. The solution outlined below is a key step
in finding an intersection matrix of a circular-arc graph, which is the first step in the
algorithm for recognizing circular-arc graphs given in [17, 23].

A polynomial time bound for finding a representation with intervals when P and N
are given was first shown with an O (n?) algorithm in [13]. A subsequent O(n + m log n)
bound is given in [25]. Note that in the biological application, the partition {P, N} is
given. Little is known about the complexity of the problem when P and N are not
specified, and we do not deal with this problem here. Abusing the terminology slightly,
we will call this a graph a probe interval graph if it has a probe interval realizer with
respect to the given partition { P, N}.

The key insight for the O(n + m log n) bound of [25] is the following. Given only
the probe intervals in a probe-interval realizer it is trivial to insert non-probe intervals
to obtain a full probe-interval realizer: if the neighbors of a non-probe z is a clique,
they have a common intersection point, and a small non-probe interval for z can be
placed there; otherwise the interval for z is extended from the leftmost right endpoint
to the rightmost left endpoint among the neighbors of z.

The probe intervals are an interval realizer of the interval graph G| P. One strategy
for finding a probe-interval realizer from scratch might therefore be to find an interval re-
alizer of G| P and then to use the foregoing observation to extend it by adding non-probe
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intervals. The problem with this approach is that not all interval realizers of G| P can be
extended to probe-interval realizers in this way. If z is a non-probe, an interval realizer
of G| P that places a non-neighbor of z between two neighbors cannot be extended, as
z’s adjacencies with P cannot be represented by inserting a single interval for z.

Let us call an interval realizer of G| P extensible if it can be extended to a probe-
interval realizer of G by adding intervals for the non-probes. Since it is easy to do this
in this case, the problem of finding a probe-interval realizer of G reduces to that of
finding an extensible realizer of G|P.

Let T denote the intersection matrix of the probe-interval realizer when the dis-
tinction between intervals in P and N is ignored. Let the graphs G, G|, and G, be
defined by this matrix as described in Section 4. Let O denote the set of entries of T
that give the relationship between pairs of intervals that contain at least one probe, and
let H,, H,, and H, denote the result of removing edges of G, G, and G, that are not
incident to a probe vertex. Let us call O a probe intersection matrix.

Clearly, any interval realizer of T is a probe-interval realizer of G. If T were
known, we could therefore use the algorithm of Section 4 to find a probe-interval
realizer. In [25], an O(n 4 m logn) algorithm is given for finding Q. Though this
is only part of the information in 7, for each non-probe z, Q completely spec-
ifies T|(P U {z}), and this is enough to allow us to derive an extensible realizer
of G| P.

An interval realizer of T gives an interval orientation to edges of G,. Let a probe
orientation be the restriction of this orientation to edges of Hj,,. Its further restriction
to edges of G, | P is an interval orientation of G,|P, and the corresponding interval
realizer of T'| P must be an extensible realizer. Let us call this an extensible orientation
of G,|P. It therefore suffices to find a probe orientation of Hj, in order to find an
extensible realizer, which allows us to find a probe interval realizer of G. The following
gives the required constraints:

Definition 5.9 The probe-incompatibility graph of T is the undirected graph Ip(T)
that is defined as follows:

o The vertex set of I1p(T) is the set of edges of Hi,,.
e Two vertices of Ip(T) are adjacent if and only if they are adjacent in
IAN(T|(P + z)) for some z € N.

Lemma 5.10 A probe orientation of Hy, must be independent in Ip(T).

Proof. A probe-interval realizer of T gives an interval orientation of G,, which is
independent in /o(T). Ip(T) is a restriction of this to edges of Hj,,. Q.E.D.

Using techniques similar to those of Section 4, it can be shown that this condition
is sufficient: any acyclic orientation of the edges of H, is a probe orientation.
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To represent all probe orientations, we may define a quotient structure that gives a
compact representation of the components of /p, as well as their bipartitions if 7 has
a probe interval realizer:

Definition 5.11 Q be a probe intersection matrix with probe set P(T). A set X C P
is an extensible module in Q if for every z € N either X or X + z is a Delta module
in T|7(P +z). For X C P, let Q|pX denote Q|(X U N), and let F(Q) denote the
extensible modules of Q.

Theorem 5.12 Let Q be the family of probe intersection matrices. (Q, P(), F(), |p) is
a quotient structure.

Note that the decomposition tree implied by Theorem 5.12 has one leaf for each
member of P, not for each member of P U N. It has the same role with respect to ex-
tensible orientations of G, | P as the Delta tree has with respect to interval orientations
of G,. When the children of prime nodes are ordered appropriately, the tree gives a
similar representation of all extensible orientations of G, | P, and for each of these, an
extensible realizer can be obtained by the techniques of Section 4. Like the Delta tree,
this tree can be computed with an adaptation of a modular decomposition algorithm
that is general to quotient structures.

If G, does not have a probe orientation, then /p(7') has an odd cycle of length at
most 3n. However, this is not a certificate that G is not a probe interval graph, since
the odd cycle could also result from an erroneous computation of the probe interval
matrix. We do not know of a compact certificate for showing that the entries of the
probe intersection matrix are correct.
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Abstract

We give a short survey of the local ratio technique for approximation algorithms, focusing mainly
on scheduling and resource allocation problems.

1. Introduction

The local ratio technique is used in the design and analysis of approximation
algorithms for NP-hard optimization problems. Since its first appearance in the early
1980’s it has been used extensively, and recently, has been fortunate to have a great
measure of success in dealing with scheduling problems. Being simple and elegant, it
is easy to understand, yet has surprisingly broad applicability.
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At the focus of this chapter are applications of the local ratio technique to schedul-
ing problems, but we also give an introduction to the technique and touch upon some of
the milestones in its path of development. We present a host of optimization problems
and local-ratio approximation algorithms, some of which were developed using the
technique, and others which are local ratio interpretations of pre-existing algorithms.

The basic concepts relating to optimization and approximation are as follows.
(Precise definitions can be found in Section 2.) An optimization problem is a problem
in which every possible solution is associated with a cost, and we seek a solution of
minimum (or maximum) cost. For example, in the minimum spanning tree problem our
objective is to find a minimum cost spanning tree in a given edge weighted graph. For
this problem, the solutions are all spanning trees, and the cost of each spanning tree
is its total edge weight. Although this particular problem is polynomial-time solvable,
many other optimization problems are NP-hard, and for those, computing approximate
solutions (efficiently) is of interest. (In fact, finding approximate solutions is also of
interest in cases where this can be done faster than finding exact solutions.) A solution
whose cost is within a factor of  of the optimum is said to be r-approximate. Thus,
for example, a spanning tree whose weight is at most twice the weight of a minimum
spanning tree is said to be 2-approximate. An r-approximation algorithm is one that is
guaranteed to return r-approximate solutions.

Analyzing an r-approximation algorithm consists mainly in showing that it
achieves the desired degree of approximation, namely, » (correctness and efficiency
are usually straightforward). To do so we need to obtain a lower bound B on the op-
timum cost and show that cost of the solution is no more than » - B. The local ratio
technique uses a “local” variation of this idea as a design principle. In essence, the idea
is to break down the cost W of the algorithm’s solution into a sum of “partial costs”
W= Zf;l W;, and similarly break down the lower bound B into B = Zf‘z 1 Bi, and
to show that W; < r - B; for all i. (In the maximization case, B is an upper bound and
we need to show that W; > B;/r for all i.) The breakdown of W and B is determined
by the way in which the solution is constructed by the algorithm. In fact, the algo-
rithm constructs the solution in such a manner as to ensure that such breakdowns exist.
Put differently, at the ith step, the algorithm “pays” W; < r - B; and manipulates the
problem instance so that the optimum cost drops by at least B;.

To see how this works in practice we demonstrate the technique on the vertex cover
problem. Given a graph G = (V, E), a vertex cover is a set of vertices C C V' such
that every edge has at least one endpoint in C. In the vertex cover problem we are given
a graph G = (V, E) and a non-negative cost function w on its vertices, and our goal is
to find a vertex cover of minimum cost. Imagine that we have to actually purchase the
vertices we select as our solution. Rather than somehow deciding on which vertices to
buy and then paying for them, we adopt the following strategy. We repeatedly select
a vertex and pay for it. However, the amount we pay need not cover its entire cost; we
may return to the same vertex later and pay some more. In order to keep track of the
payments, whenever we pay € for a vertex, we lower its marked price by €. When the
marked price of a vertex drops to zero, we are free to take it, as it has been fully paid
for.
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The heart of the matter is the rule by which we select the vertex and decide on the
amount to pay for it. Actually, we select two vertices each time and pay € for each, in the
following manner. We select any edge (#, v) whose two endpoints have non-zero cost,
and pay € = min{price of u, price of v} for both  and v. As a result, the marked price of
at least one of the endpoints drops to zero. After O(| V'|) rounds, prices drop sufficiently
so that every edge has an endpoint of zero cost. Hence, the set of all zero-cost vertices
is a vertex cover. We take this zero-cost set as our solution.

We formalize this by the following algorithm. We say that an edge is positive if
both its endpoints have strictly positive cost.

Algorithm VC

1. While there exists a positive edge (u, v):
2 Let € = min{w (u), w(v)}.

3. w(u) < w(u) —e.

4 w((v) < w(v) —e.

5. Return the set C = {v|w(v) = 0}.

To analyze the algorithm, consider the i th iteration. Let (;, v;) be the edge selected
in this iteration, and let €; be the payment made for each endpoint. Every vertex cover
must contain either u; or v; (in order to cover the edge (u;, v;)), and therefore decreasing
the price of these vertices by ¢; lowers the cost of every vertex cover by at least ¢;. It
follows that the optimum, denoted OPT, also decreases by at least €;. Thus, in the ith
round we pay 2¢; and lower OPT by at least ¢;, so the local ratio between our payment
and the drop in OPT is at most 2 in any given iteration. Summing over all iterations, we
get that the ratio between our total payment and the total drop in OPT is at most 2 as well.
Now, we know that the total drop in the optimal cost is OPT, since we end up with a vertex
cover of zero cost, so our total payment is at most 2OPT. Since this payment fully covers
the solution’s cost (in terms of the original cost function), the solution is 2-approximate.

It is interesting to note that the proof that the solution found is 2-approximate does
not depend on the actual value of € in any given iteration. In fact, any value between 0
and min{w (1), w (v)} would yield the same result (by the same arguments). We chose
min{w (u), w(v)} for the sake of efficiency. This choice ensures that the number of
vertices with positive cost strictly decreases with each iteration.

We also observe that the analysis of algorithm VC does not seem tight. The analysis
bounds the cost of the solution by the sum of a// payments, but some of these payments
are made for vertices that do not end up in the solution. It might seem that trying to
“recover” these wasteful payments could yield a better approximation ratio, but this is
not true (in the worst case); it is easy to construct examples in which all vertices for
which payments are made are eventually made part of the solution.

Finally, there might still seem to be some slack in the analysis, for in the final step
ofthe algorithm all zero-cost vertices are taken to the solution, without trying to remove



110 Reuven Bar-Yehuda et al.

unnecessary ones. One simple idea is to prune the solution and turn it into a minimal
(with respect to set inclusion) subset of C that is still a vertex cover. Unfortunately, it is
not difficult to come up with worst-case scenarios in which C is minimal to begin with.
Nevertheless, we shall see that such ideas are sometimes useful (and, in fact, necessary)
in the context of other optimization problems.

1.1. Historical Highlights

The origins of the local ratio technique can be traced back to a paper by Bar-Yehuda
and Even on vertex cover and set cover [16]. In this paper, the authors presented a lin-
ear time approximation algorithm for set cover, that generalizes Algorithm VC, and
presented a primal-dual analysis of it. This algorithm was motivated by a previous
algorithm of Hochbaum [42], which was based on LP duality, and required the solution
of a linear program. Even though Bar-Yehuda and Even’s primal-dual analysis contains
an implicit local ratio argument, the debut of the local ratio technique occurred in a
followup paper [17], where the authors gave a local ratio analysis of the same algo-
rithm. They also designed a specialized (2 — %)-approximation algorithm for
vertex cover that contains a local-ratio phase. The technique was dormant until Bafna,
Berman, and Fujito [9] incorporated the idea of minimal solutions into the local ratio
technique in order to devised a local ratio 2-approximation algorithm for the feedback
vertex set problem. Subsequently, two generic algorithms were presented. Fujito [33]
gave a unified local ratio approximation algorithm for node-deletion problems, and
Bar-Yehuda [15] developed a local ratio framework that explained most local ratio (and
primal-dual) approximation algorithms known at the time. At this point in time the
local ratio technique had reached a certain level of maturity, but only in the context
of minimization problems. No local ratio algorithms were known for maximization
problems. This was changed by Bar-Noy et al. [11], who presented the first local ratio
(and primal-dual) algorithms for maximization problems. These algorithm are based on
the notion of maximal solutions rather than minimal ones. More recently, Bar-Yehuda
and Rawitz [19] developed two approximation frameworks, one extending the generic
local ratio algorithm from [15], and the other extending known primal-dual frame-
works [38, 22], and proved that both frameworks are equivalent, thus merging these
two seemingly independent lines of research. The most recent local ratio development,
due to Bar-Yehuda et al. [12], is a novel extension of the local ratio technique called
fractional local ratio.

1.2. Organization

The remainder of this chapter is organized as follows. In Section 2 we establish
some terminology and notation. In Section 3 we state and prove the Local Ratio Theorem
(for minimization problems) and formulate the local ratio technique as a design and
analysis framework based on it. In Section 4 we formally introduce the idea of minimal
solutions into the framework, making it powerful enough to encompass many known
approximation algorithms for covering problems. Finally, in Section 5 we discuss local
ratio algorithms for scheduling problems, focusing mainly on maximization problems.
As a first step, we describe a local ratio framework for maximization problems, which
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is, in a sense, a mirror image of its minimization counterpart developed in Sections 3
and 4. We then survey a host of problems to which the local ratio technique has been
successfully applied.

In order not to interrupt the flow of text we have removed nearly all citations and
references from the running text, and instead have included at the end of each section a
subsection titled Background, in which we cite sources for the material covered in the
section and discuss related work.

1.3. Background

The vertex cover problem is known to be NP-hard even for planar cubic graphs with
unit weights [36]. Hastad [41] shows, using PCP arguments', that vertex cover cannot
be approximated within a factor of % unless P = NP. Dinur and Safra [29] improve

this bound to 104/5 — 21 ~ 1.36067. The first 2-approximation algorithm for weighted
vertex cover is due to Nemhauser and Trotter [57]. Hochbaum [43] uses this algorithm
to obtain an approximation algorithm with performance ratio 2 — —=—, where dyax 1s
the maximum degree of a vertex. Gavril (see [35]) gives a linear tlme > 2- appr0x1mat10n
algorithm for the non-weighted case. (Algorithm VC reduces to this algorithm on non-
weighted instances.) Hochbaum [42] presents two 2-approximation algorithms, both
requiring the solution of a linear program. The first constructs a vertex cover based on
the optimal dual solution, whereas the second is a simple LP rounding algorithm. Bar-
Yehuda and Even [16] present an LP based approximation algorithm for weighted set
cover that does not solve a linear program directly. Instead, it constructs simultaneously
a primal integral solution and a dual feasible solution without solving either the primal
or dual programs. It is the first algorithm to operate in this method, a method which later
became known as the primal-dual schema. Their algorithm reduces to Algorithm VC on
instances that are graphs. In a subsequent paper, Bar-Yehuda and Even [17] provide an
alternative local ratio analysis for this algorithm, making it the first local ratio algorithm
as well. They also present a specialized (2 — lozglzol%) approximation algorithm for
vertex cover. Independently, Monien and Speckenmeyer [56] achieved the same ratio
for the unweighted case. Halperin [40] improved this result to 2 — (1 — o(l))%’&
using semidefinite programming. "

2. Definitions and Notation

An optimization problem is comprised of a family of problem instances. Each
instance is associated with (1) a collection of solutions, each of which is either feasible
or infeasible, and (2) a cost function assigning a cost to each solution. We note that
in the sequel we use the terms cost and weight interchangeably. Each optimization

! By “PCP arguments” we mean arguments based on the celebrated PCP Theorem and its proof. The PCP
theorem [6, 5] and its variants state that certain suitably defined complexity classes are in fact equal to
NP. A rather surprising consequence of this is a technique for proving lower bounds on the approximation
ratio achievable (in polynomial time) for various problems. For more details see Arora and Lund [4] and
Ausiello et al. [7].
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problem can be either a minimization problem or a maximization problem. For a given
problem instance, a feasible solution is referred to as optimal if it is either minimal or
maximal (depending, respectively, on whether the problem is one of minimization or
maximization) among all feasible solutions. The cost of an optimal solution is called
the optimum value, or simply, the optimum. For example, in the well known minimum
spanning tree problem instances are edge-weighted graphs, solutions are subgraphs,
feasible solutions are spanning trees, the cost of a given spanning tree is the total weight
of its edges, and optimal solutions are spanning trees of minimum total edge weight.

Most of the problems we consider in this survey can be formulated as problems of
selecting a subset (satisfying certain constraints) of a given set of objects. For example,
in the minimum spanning tree problem we are required to select a subset of the edges
that form a spanning tree. In such problems we consider the cost function to be defined
on the objects, and extend it to subsets in the natural manner.

An approximation algorithm for an optimization problem takes an input instance
and efficiently computes a feasible solution whose value is “close” to the optimum. The
most popular measure of closeness is the approximation ratio. Recall that for » > 1,
a feasible solution is called r-approximate if its cost is within a factor of » of the
optimum. More formally, in the minimization case, a feasible solution X is said to be
r-approximate if w (X) < r - w(X™), where w (X) is the cost of X, and X* is an optimal
solution. In the minimization case, X is said to be »-approximate if w (X) > w (X*)/r.
(Note that in both cases » is smaller, when X is closer to X*.) An r-approximate
solution is also referred to as an r-approximation. An algorithm that computes r-
approximate solutions is said to achieve an approximation factor of r, and it is called
an r-approximation algorithm. Also, r is said to be a performance guarantee for it. The
approximation ratio of a given algorithm is inf {r | r is a performance guarantee for the
algorithm.} Nevertheless, the term approximation ratio is sometimes used instead of
performance guarantee.

We assume the following conventions, except where specified otherwise. All
weights are non-negative and denoted by w. We denote by w (x) the weight of ele-
ment x, and by w (X) the total weight of set X, i.e., w(X) =) ., w(x). We denote
the optimum value of the problem instance at hand by OPT. All graphs are simple and
undirected. A graph is denoted G = (V, E), where n 27|, and m2|E|. The degree of
vertex v is denoted by deg(v).

3. The Local Ratio Theorem

In Algorithm VC we have paid 2 - € for lowering OPT by at least € in each round.
Other local ratio algorithms can be explained similarly—one pays in each round at most
r - €, for some r, while lowering OPT by at least €. If the same r is used in all rounds,
the solution computed is »-approximate. This idea works well for several problems.
However, it is not hard to see that this idea works mainly because we make a down
payment on several items, and we are able to argue that OPT must drop by a proportional
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amount because every solution must involve some of these items. This localization of
the payments is at the root of the simplicity and elegance of the analysis, but it is also the
source of its weakness: how can we design algorithms for problems in which no single
set of items is necessarily involved in every optimal solution? For example, consider
the feedback vertex set problem, in which we are given a graph and a weight function
on the vertices, and our goal is to remove a minimum weight set of vertices such that
the remaining graph contains no cycles. Clearly, it is not always possible to find two
vertices such that at least one of them is part of every optimal solution! The Local
Ratio Theorem, which is given below, allows us to go beyond localized payments by
focusing on the changes in the weight function, and treating these changes as weight
functions in their own right. Indeed, this is essential in the local ratio 2-approximation
algorithm for feedback vertex set that is given in the next section.

The Local Ratio Theorem is deceptively simple. It applies to optimization problems
that can be formulated as follows.

Given a weight vector w € R" and a set of feasibility constraints F, find a solution vector
x € R” satisfying the constraints in F that minimizes the inner product w - x.

(This section discusses minimization problems. In Section 5 we deal with maximization
problems.)

In this survey we mainly focus on optimization problems in which x € {0, 1}". In
this case the optimization problem consists of instances in which the input contains a
set I of n weighted elements and a set of feasibility constraints on subsets of /. Feasible
solutions are subsets of / satisfying the feasibility constraints. The cost of a feasible
solution is the total weight of the elements it contains. Such a minimization problem
is called a covering problem if any extension of a feasible solution to any possible
instance is always feasible. The family of covering problems contains a broad range of
optimization problems, such as vertex cover, set cover, and feedback vertex set.

Theorem 1 (Local Ratio—Minimization Problems) Let F be aset of feasibility con-
straints on vectors in R". Let w, wi, w, € R" be such that w = wy + w,. Let x € R”
be a feasible solution (with respect to F) that is r-approximate with respect to wi and
with respect to w,. Then, x is r-approximate with respect to w as well.

Proof. Letx*, x{, and x3 be optimal solutions with respect to w, wy, and w,, respectively.
Clearly, w; - x{ < w; -x* and wy - x3 < w; - x*. Thus,

wex =wp-x+wy-x <r(wp-xi)+rwy-x3) <r(wp-x*)+r(w, - x%)

=r(w-x%)
and we are done. [ ]

As we shall see, algorithms that are based on the Local Ratio Theorem are typically
recursive and has the following general structure. If a zero-cost solution can be found,
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return one. Otherwise, find a decomposition of w into two weight functions w; and
wy = w — wy, and solve the problem recursively on w,. We demonstrate this on the
vertex cover problem. (Recall that a positive edge is an edge whose two endpoints have
non-zero cost.)

Algorithm RecursiveVC(G,w)
1. If all edges are non-positive, return the set C = {v |w (v) = 0}.
2. Let (u, v) be a positive edge, and let € 2 min{w (), w (v)}.
€ X=uorx =v,
0 otherwise,
4. Return RecursiveVC(G,w,).

3. Define wy(x) = { and define wy = w — wy.

Clearly, Algorithm RecursiveVC is merely a recursive version of Algorithm VC.
However, the recursive formulation is amenable to analysis that is based on the Local
Ratio Theorem. We show that the the algorithm computes 2-approximate solutions by
induction on the number of recursive calls (which is clearly finite). In the recursion base,
the algorithm returns a zero-weight vertex cover, which is optimal. For the inductive
step, consider the solution C. By the inductive hypothesis C is 2-approximate with
respect to wp. We claim that C is also 2-approximate with respect to w;. In fact, every
feasible solution is 2-approximate with respect to wy. Observe that the cost (with respect
to w;) of every vertex cover is at most 2¢, while the minimum cost of a vertex cover is at
least €. Thus, by the Local Ratio Theorem C is 2-approximate with respect to w as well.

We remark that algorithms that follow the general structure outlined above dif-
fer from one another only in the choice of wy. (Actually, the way they search for a
zero-cost solution is sometimes different.) It is not surprising that these algorithms
also share most of their analyses. Specifically, the proof that a given algorithm is an
r-approximation is by induction on the number of recursive calls. In the base case, the
solution has zero cost, and hence it is optimal (and also r-approximate). In the inductive
step, the solution returned by the recursive call is r-approximate with respect to w, by
the inductive hypothesis. And, it is shown that every solution is r-approximate with
respect to wy. This makes the current solution r-approximate with respect to w due
to the Local Ratio Theorem. Thus, different algorithms are different from one another
only in the choice of the weight function w in each recursive call, and in the proof that
every feasible solution is r-approximate with respect to w;. We formalizes this notion
by the following definition.

Definition 1 Given a set of constraints F on vectors in R" and a number r > 1, a
weight vector w € R" is said to be fully r-effective if there exists a number b such that
b <w-x <vr-bfor all feasible solutions x.

We conclude this section by demonstrating the above framework on the set cover
problem. Since the analysis of algorithms in our framework boils down to proving that
wy is r-effective, for an appropriately chosen r, we focus solely on w;, and neglect to
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mention the remaining details explicitly. We remark that our algorithm for set cover
can be formulated just as easily in terms of localized payments; the true power of the
Local Ratio Theorem will become apparent in Section 4.

3.1. Set Cover

In the set cover problem we are given a collection of non-empty sets C =
{S1, ..., S,} and a weight function w on the sets. A sef cover is a sub-collection of sets
that covers all elements. In other words, the requirement is that the union of the sets in
the set cover be equal to U 4 U’_; Si. The objective is to find a minimum-cost set cover.

Let deg(x) be the number of sets in C that contain x, ie., deg(x)=
[ {S € C|x € S}|. Let dnax = max,cy deg(x). We present a fully dp«-effective weight
function w;. Let x be an element that is not covered by any zero-weight set, and let
e = min{w(S) | x € §}. Define:

€ xes
S) = T,
wi(S) {0 otherwise.
w1 1s dmax-effective since (1) the cost of every feasible solution is bounded by ¢ -
deg(x) < € - dmax,and (2) every set cover must cover x, and therefore must cost at least €.

Note that vertex cover can be seen as a set cover problem in which the sets are the
vertices and the elements are the edges (and therefore dy,.x = 2). Indeed, Algorithm
RecursiveVC is a special case of the algorithm that is implied by the discussion above.

3.2. Background

For the unweighted set cover problem, Johnson [46] and Lovasz [52] show that
the greedy algorithm is an Hj, -approximation algorithm, where H, the nth harmonic
number, i.e., H, = Z?:l ll, and spmax 1S the maximum size of a set. This result was
generalize by Chvatal [28] result to the weighted case. Hochbaum [42] gives two diyax-
approximation algorithms, both of which are based on solving a linear program. Bar-
Yehuda and Even [16] suggest a linear time primal-dual dy,ax-approximation algorithm.
In subsequent work [17], they present the Local Ratio Theorem and provide a local
ratio analysis of the same algorithm. (Their analysis is the one given in this section.)
Feige [32] proves a lower bound of (1 — o(1)) In |U| (unless NPCDTIME(nCloglogmy),
Raz and Safra [59] show that set cover cannot be approximated within a factor of ¢ log n
for some ¢ > 0 unless P = NP.

4. A Framework for Covering Problems

In the problems we have seen this far, we were always able to identify a small
subset of items (vertices or sets) and argue that every feasible solution must include at
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least one of them. We defined a weight function w; that associated a weight of € with
each of the items in this small subset and a weight of zero with all others. Thus, we
were able to obtain an approximation ratio bounded by the size of the subset. There are
many problems, though, where it is impossible to identify such a small subset, since
no such subset necessarily exists.

An good example is the partial set cover problem (or partial cover problem, for
short). This problem is similar to set cover except that not all elements should be
covered. More specifically, the input consists of a collection of sets, a weight function
on the sets, and a number k, and we want to find a minimum-cost collection of sets that
covers at least k£ of the elements. The crucial difference between set cover and partial set
cover is that in the latter, there is no single element that must be covered by all feasible
solutions. Recall that the algorithm for set cover picked some element x and defined a
weight function w that associated a weight of € with each of the sets that contains x.
The analysis was based on the fact that, with respect to wy, € is a lower bound, since
x must be covered, while € - deg(x) is an upper bound on the cost of every set cover.
This approach fails for partial set cover—an optimal solution need not necessarily
cover x, and therefore € is no longer a lower bound. Thus if we use w;, we will end
up with a solution whose weight is positive, while OPT (with respect to w;) may be
equal to 0.

We cope with such hard situations by extending the same upper-bound/lower-
bound idea. Even if we cannot identify a small subset of items that must contribute
to all solutions, we know that the set of al/l items must surely do so (since, otherwise,
the empty set is an optimal solution). Thus, to prevent OPT from being equal to 0,
we can assign a positive weight to every item (or at least to many items). This takes
care of the lower bound, but raises the question of how to obtain a non-trivial upper
bound. Clearly, we cannot hope that the cost of every feasible solution will always be
within some reasonable factor of the cost of a single item. However, in some cases it
is enough to obtain an upper bound only for minimal solutions. A minimal solution is
a feasible solution that is minimal with respect to set inclusion, i.e., a feasible solution
all of whose proper subsets are not feasible. Minimal solutions arise naturally in the
context of covering problems, which are the problems for which feasible solutions
have the property of being monotone inclusion-wise, that is, the property that adding
items to a feasible solution cannot render it infeasible. (For example, adding a set to
a set cover yields a set cover, so set cover is a covering problem. In contrast, adding
an edge to a spanning tree does not yield a tree, so minimum spanning tree is not a
covering problem.) The idea of focusing on minimal solutions leads to the following
definition.

Definition 2 Given a set of constraints F on vectors in R" and a number r > 1, a
weight vector w € R" is said to be r-effective if there exists a number b such that
b <w-x <r-bforall minimal feasible solutions x.

Note that any fully r-effective weight function is also r-effective, while the opposite
direction is not always true.
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If we can prove that our algorithm uses r-effective weight functions and returns
minimal solutions, we will have essentially proved that it is an »-approximation algo-
rithm. Designing an algorithm to output minimal solutions is not hard. Most of the
creative effort is therefore concentrated in finding an r-effective weight function (for a
small 7).

In this section we present local ratio algorithms for the partial cover and feedback
vertex set problems. Both algorithms depend on obtaining minimal solutions. We de-
scribe and analyze the algorithm for partial set cover in full detail. We then outline
a general local ratio framework for covering problems, and discuss the algorithm for
feedback vertex set informally with reference to this framework.

4.1. Partial Set Cover

In the partial set cover problem the input consists of a collection of non-empty sets
C ={Si1,...,S,}, aweight function w on the sets, and a number k. The objective is to
find a minimum-cost sub-collection of C that covers at least k elements in U 2 | J/_, S;.
We assume that a feasible solution exists, i.e., that k < |U|. The partial cover problem
generalizes sef cover since in the set cover problem £ is simply set to |U].

Next, we present a max {dmax, 2}-approximation algorithm. (Recall that dy,x =
max,cy deg(x), where deg(x) = |{S € C|x € S}|.)

Algorithm PSC(U, C, w, k)

1. Ifk <0, return @.

2. Else, if there exists a set S € C such that w(S) = 0 do:
3 Let U’, C’ be the instance obtained by removing S.
4 P <~ PSCWU',C",w, k—|S)).

5. If P’ covers at least k elements in U:

6 Return the solution P = P’.

7

8

Else:
. Return the solution P = P’ U {S}.
9. Else:
10. Let € be maximal such that € - min{|S|, k} < w(S) forall S € C.
11. Define the weight functions wy (x) = € - min{|S|, k} and w, = w — wy.
12. Return PSC(U, C, wy, k).

Note the slight abuse of notation in Line 4. The weight function in the recursive
call is not w itself, but rather the restriction of w to C’. We will continue to silently
abuse notation in this manner.

Let us analyze the algorithm. We claim that the algorithm finds a minimal solu-
tion that is max {dy.x, 2}-approximate. Intuitively, Lines 3—8 ensure that the solution
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returned is minimal, while the weight decomposition in Lines 9—12 ensures that every
minimal solution is max {dp,x, 2}-approximate. This is done by associating with each
set S a weight that is proportional to its “covering power,” which is the number of
elements in S, but not more than k, since covering more than & elements is no better
than covering k elements.

Proposition 3 Algorithm PSC returns a feasible minimal solution.

Proof. The proof is by induction on the recursion. At the recursion basis the solution
returned is the empty set, which is both feasible (since ¥ < 0) and minimal. For the
inductive step, £ > 0 and there are two cases to consider. If Lines 9-12 are executed, then
the solution returned is feasible and minimal by the inductive hypothesis. Otherwise,
Lines 3-8 are executed. By the inductive hypothesis P’ is minimal and feasible with
respectto (U’, C', k — |S|). If P = @ then |S| > kand P = P’ U {S} is clearly feasible
and minimal. Otherwise, P’ covers atleastk — | S| elementsin U \ S, and by minimality,
for all T € P’, the collection P’ \ {T} covers less than & — | S| elements that are not
contained in S. (Note that P’ # ¢ implies k > |S|.) Consider the solution P. Either
P = P’,whichisthe case if P’ covers at least k or more elements, orelse P = P’ U {S},
in which case P covers at least £ — | S| elements that are not contained in S and an
additional | S| elements that are contained in S. In either case P covers at least k elements
and is therefore feasible. It is also minimal (in either case), since forall 7 € P,if T # S,
then P \ {T'} covers less than £ — | S| elements that are not contained in S and at most
|S| elements that are contained in S, for a total of less than &k elements, and if 7 = S,
then § € P, whichimplies P = P’ U {S}, whichis only possible if P \ {S} = P’ covers
less than & elements. [ |

Proposition 4 The weight function w used in Algorithm PSC is max {d., 2}-

effective.

Proof. In terms of w, every feasible solution costs at least € - k, since it either contains
a set whose cost is € - k, or else consists solely of sets whose size is less than %, in
which case the cost of the solution equals € times the total sizes of the sets in the
solution, which must be at least &k in order to cover k elements. To prove that every
minimal solution costs at most € - k - max {dn,x, 2}, consider a non-empty minimal
feasible solution P. If P is a singleton, its cost is at most ek, and the claim follows.
Otherwise, we prove the claim by showing that ) "¢, |S| < k - max {dimax, 2}. We say
that an element x is covered r times by P if |{S € P |x € S}| = r. We bound the total
number of times elements are covered by P, since this number is equal to ) ¢_p |S|.
Clearly every element x may be covered at most deg(x) < dya.x times. Thus, if 7 is the
number of elements that are covered by P twice or more, these elements contribute
at most ¢ - dax to the count. As for the elements that are covered only once, they
contribute exactly > ¢, |S|i, where |S|; is the number of elements covered by S
but not by any other member of P. Let S* = argmin {|S]; | S € P}. Then (by the
choice of $* and the fact that P is not a singleton) |S*|; < ) . pse 18T In addition,
t+ X sep\(s+ ISI < k by the minimality of P. Thus the elements that are covered only
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once contribute |S*[1 + D _ge py (s IS < 2D g pyisey IS < 2(k — ¢), and the total is
less than ¢ - diax + 2(k — t) < k - max {dnax, 2}, where the inequality follows from the
fact that < k (which is implied by the minimality of P). [ ]

Theorem 5 Algorithm PSC returns max {d,.., 2}-approximate solutions.

Proof. The proof is by induction on the recursion. In the base case the solution returned
is the empty set, which is optimal. For the inductive step, if Lines 3-8 are executed, then
P’ is max {dmax, 2}-approximate with respect to (U’, C’, w, k — |S|) by the inductive
hypothesis. Since w(S) = 0, the cost of P equals that of P’ and the optimum for
(U, C, w, k) cannot be smaller than the optimum value for (U’, C’', w, k — |S|) because
if P* is an optimal solution for (U, C, w, k), then P* \ {S} is a feasible solution of the
same cost for (U’, C’, w, k — |S|). Hence P is max {dax, 2}-approximate with respect
to (U, C, w, k). If, on the other hand, Lines 10-12 are executed, then by the inductive
hypothesis the solution returned is max {dn,x, 2}-approximate with respect to w,, and
by Proposition 4 it is also max {dnax, 2}-approximate with respect to wy. Thus by the
Local Ratio Theorem it is max {dm.x, 2}-approximate with respect to w as well. [ ]

4.2. A Framework

A local ratio algorithm for a covering problem typically consists of a three-way if
condition that directs execution to one of the following three primitives: computation
of optimal solution, problem size reduction, or weight decomposition. The top-level
description of the algorithm is:

1. If a zero-cost minimal solution can be found, do: computation of optimal solu-
tion.

2. Else, if the problem contains a zero-cost element, do: problem size reduction.

3. Else, do: weight decomposition.

The three types of primitives are:

Computation of optimal solution. Find a zero-cost minimal solution and return
it. (Typically, the solution is simply the empty set.) This is the recursion basis.
Problem size reduction. This primitive consists of three parts.

1. Pick a zero-cost item, and assume it is taken into the solution. Note that
this changes the problem instance, and may entail further changes to achieve
consistency with the idea that the item has been taken temporarily to the
solution. For example, in the partial set cover problem we selected a zero-
cost set and assumed it is part of our solution. Hence, we have deleted all
elements contained in it and reduced the covering requirement parameter k&
by the size of this set. Note that the modification of the problem instance may
be somewhat more involved. For example, a graph edge might be eliminated
by contracting it. As a result, two vertices are “fused” together and the edges



120 Reuven Bar-Yehuda et al.

incident on them are merged or deleted. In other words, the modification may
consist of removing some existing items and introducing new ones. This, in
turn, requires that the weight function be modified to cover the new items.
However, it is important to realize that the modification of the weight function
amounts to a re-interpretation of the old weights in terms of the new instance
and not to an actual change of weights.

2. Solve the problem recursively on the modified instance.

3. Ifthe solution returned (when re-interpreted in terms of the original instance)
is feasible (for the original instance), return it. Otherwise, add the deleted
zero-cost item to the solution, and return it.

Weight decomposition. Construct an r-effective weight function w; such that
wy = w — wj is non-negative, and solve the problem recursively using w; as the
weight function. Return the solution obtained.

We note that the above description of the framework should not be taken too
literally. Each branch of the three-way if* statement may actually consist of several
sub-cases, only one of which is to be executed. We shall see an example of this in the
algorithm for feedback vertex set (Section 4.3).

The analysis of an algorithm that follows the framework is similar to our analysis
for partial set cover. It consists of proving the following three claims.

Claim 1. The algorithm outputs a minimal feasible solution.
This claim is proven by induction on the recursion. In the base case the solution is
feasible and minimal by design. For the inductive step, if the algorithm performs
weight decomposition, then by the inductive hypothesis the solution is feasible
and minimal. If the algorithm performs problem size reduction, the claim follows
from the fact that the solution returned by the recursive call is feasible and
minimal with respect to the modified instance (by the inductive hypothesis) and
itis extended only if it is infeasible with respect to the current instance. Although
the last argument seems straightforward, the details of a rigorous prooftend to be
slightly messy, since they depend on the way in which the instance is modified.

Claim 2. The weight function w; is r-effective.
The proof depends on the combinatorial structure of the problem at hand. Indeed,
the key to the design of a local ratio algorithm is understanding the combinatorial
properties of the problem and finding the “right” » and r-effective weight function
(or functions).

Claim 3. The algorithm computes an r-approximate solution.
The proofofthis claim is also by induction on the recursion, based on the previous
two claims. In the base case the computation of optimal solution ensures that the
solution returned is 7-approximate. For the inductive step, we have two options.
Inthe problem size reduction case, the solution found recursively for the modified
instance is 7-approximate by the inductive hypothesis, and it has the same cost as
the solution generated for the original instance, since the two solutions may only
differ by a zero-weight item. This, combined with the fact that the optimum can
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only decrease because of instance modification, yields the claim. In the weight
decomposition case, the claim follows by the inductive hypothesis and the Local
Ratio Theorem, since the solution is feasible and minimal, and w; is r-effective.

4.3. Feedback Vertex Set

A set of vertices in an undirected graph is called a feedback vertex set (FVS for
short) if its removal leaves an acyclic graph (i.e., a forest). Another way of saying this
is that the set intersects all cycles in the graph. The feedback vertex set problem is:
given a vertex-weighted graph, find a minimum-weight FVS. In this section we describe
and analyze a 2-approximation algorithm for the problem following our framework for
covering problems.

The algorithm is as follows.

Algorithm FVS(G, w)

1. If G is empty, return @.

2. Ifthere exists a vertex v € V such that deg(v) < 1 do:

3. return FVS(G \ {v}, w).

4. Else, if there exists a vertex v € V such that w(v) = 0 do:

5. F' < FVS(G \ {v},w).
6. If F’ is an FVS with respect to G
7. Return F’.
8. Else:
9. Return F = F’ U {v}.
10. Else:
11. Let € = min,cp %.
12. Define the weight functions w;(v) = € - deg(v)
and w, = w — wy.
13. Return FVS(G, w»)

The analysis follows the pattern outlined above—the only interesting part
is showing that w; is 2-effective. For a given set of vertices X let us denote
deg(X) =),y deg(v). Since wi(F) = € - deg(F) for any FVS F, it is sufficient
to demonstrate the existence of a number b such that for all minimal solutions F,
b < deg(F) < 2b. Note that the weight decomposition is only applied to graphs in
which all vertices have degree at least 2, so we shall henceforth assume that our graph
G = (V, E) is such a graph.

Consider a minimal feasible solution 7. The removal of F’ from G leaves a forest on
| V| — | F| nodes. This forest contains less than |V| — |F| edges, and thus the number
of edges deleted to obtain it is greater than |E| — (|V| — |F|). Since each of these
edges is incident on some vertex in F, we get |E| — (|V| — |F|) < deg(F) (which
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is true even if F is not minimal). Let F* be a minimum cardinality FVS, and put
b=|E|— (V] —|F*|). Thenb < deg(F), and it remains to prove that deg(F) < 2b =
2|E| = 2(1V| — | F*]). We show equivalently that deg(V \ F) > 2(|V| — |F*|). To do
so we select for each vertex v € F a cycle C, containing v but no other member of
F (the minimality of F ensures the existence of such a cycle). Let P, denote the path
obtained from C, by deleting v, and let /'’ denote the union of the vertex sets of the P,s.
Consider the connected components of the subgraph induced by V. Each connected
component fully contains some path P,. Since the cycle C, must contain a member
of the FVS F™*, either P, contains a vertex of F* \ F or else v € F* N F. Thus there
are at most |F* \ F| connected components that contain vertices of F* and at most
|F* N F| that do not, for a total of at most F* connected components. Hence, the
subgraph contains at least |V'| — | F*| edges, all of which have both endpoints in V.
In addition, G contains at least 2| F'| edges with exactly one endpoint in V'—the two
edges connecting each v € F with the path P, (to form the cycle C,). It follows that
deg(V') = 2(|V'| — |F*|) + 2| F|. Thus, bearing in mind that ¥ C V \ V' and that the
degree of every vertex is at least two, we see that

deg(V \ F) = deg(V") + deg(V' \ V') \ F)
> 21| = |[F*)) + 2|F | + 24V | = V'] — |F])
= 2(/V| — |F*)).

4.4. Background

Partial set cover. The partial set cover problem was first studied by Kearns [48] in
relation to learning. He proves that the performance ratio of the greedy algorithm is
at most 2H,, + 3, where 7 is the number of sets. (Recall that H,, is the nth harmonic
number.) Slavik [60] improves this bound to Hj. The special case in which the cardi-
nality of every set is exactly 2 is called the partial vertex cover problem. This problem
was studied by Bshouty and Burroughs [25], who obtained the first polynomial time
2-approximation algorithm for it. The max {dp,x, 2}-approximation algorithm for par-
tial set cover given in this section (Algorithm PSC) is due to Bar-Yehuda [14]. In fact,
his approach can be used to approximate an extension of the partial cover problem
in which there is a length [; associated with each element x, and the goal is to cover
elements of total length at least k. (The plain set cover problem is the special case
where /; = 1 for all i.) Gandhi et al. [34] present a multi-phase primal-dual algorithm
for partial cover achieving a performance ratio of max {dmax, 2}.

Minimal solutions and feedback vertex set. Minimal solutions first appeared in
a local ratio algorithm for FVS. FVS is NP-hard [47] and MAX SNP-hard [53],
and at least as hard to approximate as vertex cover [51]. An O(logn)-approximation
algorithm for unweighted FVS is implies by a lemma due to Erdés and Podsa [31].
Monien and Shultz [55] improve the ratio to \/logn. Bar-Yehuda et al. [18] present
a 4-approximation algorithm for unweighted FVS, and an O(log n)-approximation
algorithm for weighted FVS. Bafna, Berman, and Fujito [9] present a local ratio
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2-approximation algorithm for weighted FVS, whose weight decomposition is some-
what similar to the one used in Algorithm FVS. Their algorithm is the first local
ratio algorithm to make use of minimal solutions (although this concept was used
earlier in primal-dual algorithms for network design problems [58, 1, 37]). At about
the same time, Becker and Geiger [20] also obtained a 2-approximation algorithm for
FVS. Algorithm FVS is a recursive local ratio formulation of their algorithm. Chudak
et al. [26] suggest yet another 2-approximation algorithm, and give primal-dual anal-
yses of the three algorithms. Fujito [33] proposes a generic local ratio algorithm for a
certain type of node-deletion problems. Algorithm RecursiveVC, Algorithm FVS, and
the algorithm from [9] can be seen as applications of Fujito’s generic algorithm. Bar-
Yehuda [15] presents a unified local ratio approach for covering problems. He present
a short generic approximation algorithm which can explain many known optimization
and approximation algorithms for covering problems (including Fujito’s generic algo-
rithm). Later, Bar-Yehuda and Rawitz [19] devised a framework that extends the one
from [15]. The notion of effectiveness of a weight function first appeared in [15]. The
corresponding primal-dual notion appeared earlier in [22].

5. Scheduling Problems

In this section we turn to applications of the local ratio technique in the context of
resource allocation and scheduling problems. Resource allocation and scheduling prob-
lems are immensely popular objects of study in the field of approximation algorithms
and combinatorial optimization, owing to their direct applicability to many real-life
situations and their richness in terms of mathematical structure. Historically, they were
among the first to be analyzed in terms of worst-case approximation ratio, and research
into these problems continues actively to this day.

In very broad terms, a scheduling problem is one in which jobs presenting
different demands vie for the use of some limited resource, and the goal is to resolve
all conflicts. Conflicts are resolved by scheduling different jobs at different times and
either enlarging the amount of available resource to accommodate all jobs or accepting
only a subset of the jobs. Accordingly, we distinguish between two types of problems.
The first type is when the resource is fixed but we are allowed to reject jobs. The
problem is then to maximize the number (or total weight) of accepted jobs, and there
are two natural ways to measure the quality of a solution: in throughput maximization
problems the measure is the total weight of accepted jobs (which we wish to maximize),
and in loss minimization problems it is the total weight of rejected jobs (which we wish
to minimize). While these two measures are equivalent in terms of optimal solutions,
they are completely distinct when one considers approximate solutions. The second
type of problem is resource minimization. Here we must satisfy all jobs, and can achieve
this by increasing the amount of resource. The objective is to minimize the cost of
doing so.

Our goal in this section is twofold. First, we demonstrate the applicability of
the local ratio technique in an important field of research, and second, we take the
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opportunity of tackling throughput maximization problems to develop a local ratio
theory for maximization problems in general. We begin with the latter. We present a
local ratio theorem for maximization problems and sketch a general framework based
onitin Section 5.1. We apply this framework to a collection of throughput maximization
problems in Section 5.2. Following that, we consider loss minimization in Section 5.3,
and resource minimization in Section 5.4.

5.1. Local Ratio for Maximization Problems

The Local Ratio Theorem for maximization problems is nearly identical to its
minimization counterpart. It applies to optimization problems that can be formulated
as follows.

Given a weight vector w € R" and a set of feasibility constraints F, find a solution vector
x € R” satisfying the constraints in F that maximizes the inner product w - x.

Before stating the Local Ratio Theorem for maximization problems, we remind the
reader of our convention that a feasible solution to a maximization problem is said to be
r-approximate if its weight is at least 1 /7 times the optimum weight (so approximation
factors are always greater than or equal to 1).

Theorem 5 (Local Ratio—Maximization Problems) Let F be a set of feasibility
constraints on vectors in R". Let w, wi, wy € R” be such thatw = wy + w,. Letx € R”
be a feasible solution (with respect to F) that is r-approximate with respect to wy and
with respect to wy. Then, x is r-approximate with respect to w as well.

Proof. Let x*, x{, and x5 be optimal solutions with respect to w, wy, and w,, respec-
tively. Clearly, w; - x{ > w; - x*andw, - xJ > wp - x*. Thus,w - x =w; - x +wy - x >
1 1 1 1 1

s xf) + o wa - x3) = S - xT) + S(wy - x¥) = S (w - x¥). [ ]

The general structure of a local ratio approximation algorithm for a maximization
problem is similar to the one described for the minimization case in Section 4.2. It
too consists of a three-way if* condition that directs execution to one of three main
options: optimal solution, problem size reduction, or weight decomposition. There are
several differences though. In contrast to what is done in the minimization case, we
make no effort to keep the weight function non-negative, i.e., in weight decomposition
steps we allow w, to take on negative values. Also, in problem size reduction steps
we usually remove an element whose weight is either zero or negative. Finally and
most importantly, we strive to construct maximal solutions rather than minimal ones.
This affects our choice of w; in weight decomposition steps. The weight function w is
chosen such that every maximal solution (a feasible solution that cannot be extended)
is r-approximate with respect to it?. In accordance, when the recursive call returns in

2 We actually impose a somewhat weaker condition, as described in Section 5.2.
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problem size reduction steps, we extend the solution if possible (rather than if necessary),
but we attempt to do so only for zero-weight elements (not negative weight ones).

As in the minimization case, we use the notion of effectiveness.

Definition 3 In the context of maximization problems, a weight function w is said to
be r-effective if there exists a number b such that b <w-x <r -b for all maximal
feasible solutions x.

5.2. Throughput Maximization Problems

Consider the following general problem. The input consists of a set of activities,
each requiring the utilization of a given limited resource. The amount of resource
available is fixed over time; we normalize it to unit size for convenience. The activities
are specified as a collection of sets A, ..., A,. Each set represents a single activity: it
consists of all possible instances of that activity. An instance / € 4; is defined by the
following parameters.

1. A half-open time interval [s(/), e(/)) during which the activity will be executed.
We call s(7) and e([) the start-time and the end-time of the instance.

2. The amount of resource required for the activity. We refer to this amount as the
width of the instance and denote it d(/). Naturally, 0 < d(1) < 1.

3. The weight w(I) > 0 of the instance. It represents the profit to be gained by
scheduling this instance of the activity.

Different instances of the same activity may have different parameters of duration,
width, or weight. A schedule is a collection of instances. It is feasible if (1) it contains
at most one instance of every activity, and (2) for all time instants ¢, the total width
of the instances in the schedule whose time interval contains ¢ does not exceed 1 (the
amount of resource available). The goal is to find a feasible schedule that maximizes the
total weight of instances in the schedule. For example, consider the problem instance
depicted in Figure 1. The inputconsists of three activities, A, BB, C, each comprising
several instances, depicted as rectangles in the respective rows. The projection of each
rectangle on the ¢ axis represents the corresponding instance’s time interval. The height
of each rectangle represents the resource requirement (the instance’s width) on a 1:5
scale (e.g., the leftmost instance of activity C has width 0.6). The weights of the instances
are not shown. Numbering the instances of each activity from left to right, the schedule
{A(1), C(3), C(4)} is infeasible because activity C is scheduled twice; {A(1), C(1)} is
infeasible because both instances overlap and their total width is 1.4; {A(1), B(1), C(4)}
is feasible.

In the following sections we describe local ratio algorithms for several special cases
of the general problem. We use the following notation. For a given activity instance /,
A(I) denotes the activity to which 7 belongs and Z(7) denotes the set of all activity
instances that intersect / but belong to activities other than A(7).
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Figure 1. An example of activities and instances.
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5.2.1. Interval Scheduling

In the interval scheduling problem we must schedule jobs on a single processor
with no preemption. Each job consists of a finite collection of time intervals during
which it may be scheduled. The problem is to select a maximum weight subset of
non-conflicting intervals, at most one interval for each job. In terms of our general
problem, this is simply the special case where every activity consists of a finite number
of instances and the width of every instance is 1.

To design the weight decomposition for this problem, we examine the properties
of maximal schedules. Let J be the activity instance with minimum end-time among
all activity instances of all activities (breaking ties arbitrarily). The choice of J ensures
that all of the intervals intersecting it intersect each other (see Figure 2). Consider a
maximal schedule S. Clearly S cannot contain more than one instance from .A(J), nor
can it contain more than one instance from Z(J), since all of these instances intersect
each other. Thus S contains at most two intervals from .A(J) U Z(J). On the other hand,
S must contain at least one instance from A(J) U Z(J), for otherwise it would not be
maximal (since J could be added to it). This implies that the weight function

(1 TeAWNUIW),
wi(l) =e€- { 0 otherwise,

is 2-effective for any choice of € > 0, and we can expect to obtain a 2-approximation
algorithm based on it.

Figure 2. J, A(J), and Z(J): heavy lines represent A(J); dashed lines represent Z(J).



The Local Ratio Technique and Its Application 127

A logical course of actionis to fix e = min{w (/) : I € A(J)UZ(J)} andto solve
the problem recursively on w — wy, relying on two things: (1) w; is 2-effective; and
(2) the solution returned is maximal. However, we prefer a slightly different approach.
We show that w actually satisfies a stronger property than 2-effectiveness. For a given
activity instance /, we say that a feasible schedule is /-maximal if either it contains
1, or it does not contain / but adding [ to it will render it infeasible. Clearly, every
maximal schedule is also /-maximal for any given /, but the converse is not necessarily
true. The stronger property satisfied by the above w is that every J-maximal schedule
is 2-approximate with respect to wy (for all € > 0). To see this, observe that no optimal
schedule may contain more than two activity instances from A(J) U Z(J), whereas
every J-maximal schedule must contain at least one (if it contains none, it cannot be
J-maximal since J can be added). The most natural choice of € is € = w (J).

Our algorithm for interval scheduling is based on the above observations. The
initial call is IS(A, w), where A is the set of jobs, which we also view as the set of all
UM A

Algorithm IS(A, w)

1. If A=0,return @.
2. [Ifthere exists an interval / such that w(/) < 0 do:

3. Return IS(A \ {7}, w).

4. Else:

5. Let J be the instance with minimlj4m end-time in A.
_ 1 e AJ)UI(),

6. Define wi(1) = w(J) - { 0 otherwise.

and let w, = w — wy.
S’ < IS(A, wy).
If S’ U {J} is feasible:
Return S = S’ U {J}.
Else:
Return S = §S'.

—_—
—o o

As with similar previous claims, the proof that Algorithm IS is 2-approximation
is by induction on the recursion. At the basis of the recursion (Line 1) the schedule
returned is optimal and hence 2-approximate. For the inductive step there are two
possibilities. If the recursive call is made in Line 3, then by the inductive hypothesis the
schedule returned is 2-approximate with respect to (A \ {7/}, w), and since the weight
of I is non-positive, the optimum for (A, w) cannot be greater than the optimum for
(A\ {1}, w). Thus the schedule returned is 2-approximate with respect to (A, w) as
well. If the recursive call is made in Line 7, then by the inductive hypothesis S’ is
2-approximate with respect to w;, and since wy(J) = 0 and S € §' U {J}, it follows
that S too is 2-approximate with respect to ws. Since S is J-maximal by construction
(Lines 8-11), it is also 2-approximate with respect to w;. Thus, by the Local Ratio
Theorem, it is 2-approximate with respect to w as well.
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5.2.2. Independent Set in Interval Graphs

Consider the special case of interval scheduling in which each activity consists of a
single instance. This is exactly the problem of finding a maximum weight independent
set in an interval graph (each instance corresponds to an interval), and it is well known
that this problem can be solved optimally in polynomial time (see, e.g., [39]). We claim
that Algorithm IS solves this problem optimally too, and to prove this it suffices to
show that every J-maximal solution is optimal with respect to w;. This is so because at
most one instance from A(J) U Z(J) may be scheduled in any feasible solution (since
A(J) = {J}), and every J-maximal solution schedules one.

5.2.3.  Scheduling on Parallel Identical Machines

In this problem the resource consists of k parallel identical machines. Each activity
instance may be assigned to any of the £ machines. Thus d(/) = 1/k for all /.

In order to approximate this problem we use Algorithm IS, but with a different
choice of wy, namely,

1 1 e A(J),
wil)=w(J))-3 1/k [ eI(J)),
0 otherwise.

The analysis of the algorithm is similar to the one used for the case k = 1 (i.e., interval
scheduling). It suffices to show that every J-maximal schedule is 2-approximate with
respect to wy. This is so because every J-maximal schedule either contains an instance
from A(J) or a set of instances intersecting J that prevent J from being added to
the schedule. In the former case, the weight of the schedule with respect to wy is at
least w(J). In the latter case, since k machines are available but J cannot be added,
the schedule must already contain & activity instances from Z(.J), and its weight (with
respect to wy) is therefore at least & - % -w(J) =w(J). Thus the weight of every
J-maximal schedule is at least w(J). On the other hand, an optimal schedule may
contains at most one instance from .A(J) and at most & instances from Z(J) (as they all
intersect each other), and thus its weight cannot exceed w (J) + k& - % -w(J) =2w(J).

Remark. Our algorithm only finds a set of activity instances that can be scheduled, but
does not construct an actual assignment of instances to machines. This can be done
easily by scanning the instances (in the solution found by the algorithm) in increasing
order of end-time, and assigning each to an arbitrary available machine. It is easy to
see that such a machine must always exist. Another approach is to solve the problem
as a special case of scheduling on parallel unrelated machines (described next).

5.2.4. Scheduling on Parallel Unrelated Machines

Unrelated machines differ from identical machines in that a given activity instance
may be assignable only to a subset of the machines, and furthermore, the profit derived
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from scheduling it on a machine may depend on the machine (i.e., it need not be the
same for all allowable machines). We can assume that each activity instance may be
assigned to precisely one machine. (Otherwise, simply replicate each instance once
for each allowable machine.) We extend our scheduling model to handle this problem
as follows. We now have k types of unit quantity resource (corresponding to the &
machines), each activity instance specifies the (single) resource type it requires, and
the feasibility constraint applies to each resource type separately. Since no two instance
may be processed concurrently on the same machine, we setd(/) = 1 for all instances /.

To approximate this problem, we use Algorithm IS but define Z(J) slightly dif-
ferently. Specifically, Z(J) is now defined as the set of instances intersecting J that
belong to other activities and can be scheduled on the same machine as J. It is easy
to see that again, every J-maximal schedule is 2-approximate with respect to wy, and
thus the algorithm is 2-approximation.

5.2.5. Bandwidth Allocation of Sessions in Communication Networks

Consider a scenario in which the bandwidth of a communication channel must be
allocated to sessions. Here the resource is the channel’s bandwidth, and the activities
are sessions to be routed through the channel. A session is specified as a list of intervals
in which it can be scheduled, together with a width requirement and a weight for each
interval. The goal is to find the most profitable set of sessions that can utilize the
available bandwidth.

To approximate this problem we first consider the following two special cases.

Special Case 1 All instances are wide, i.e., d(I) > 1/2 for all 1.
Special Case 2 All activity instances are narrow, i.e., d(I) < 1/2 for all 1.

In the case of wide instances the problem reduces to interval scheduling since no
pair of intersecting instances may be scheduled together. Thus, we use Algorithm IS
to find a 2-approximate schedule with respect to the wide instances only.

In the case of narrow instances we find a 3-approximate schedule by a variant of
Algorithm IS in which w, is defined as follows:

1 I e A(J),
wi)=w(J)-32-d(I) IeZ(J),
0 otherwise.

To prove that the algorithm is a 3-approximation algorithm it suffices to show that every
J-maximal schedule is 3-approximate with respect to wy. (All other details are essen-
tially the same as for interval scheduling.) A J-maximal schedule either contains an
instance of .A(J) or contains a set of instances intersecting J that prevent J from being
added to the schedule. In the former case the weight of the schedule is at least w (J).
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In the latter case, since J cannot be added, the combined width of activity instances
from Z(J) in the schedule must be greater than 1 — d(J) > 1/2, and thus their total
weight (with respect to w;) must be greater than % 2w (J) = w(J). Thus, the weight
of every J-maximal schedule is at least w (J). On the other hand, an optimal schedule
may contain at most one instance from .A(J) and at most a set of instances from Z(J)
with total width 1 and hence total weight 2w (J). Thus, the optimum weight is at most
3w (J), and therefore every J-maximal schedule is 3-approximate with respect to w.

In order to approximate the problem in the general case where both narrow and
wide activity instances are present, we solve it separately for the narrow instances
and for the wide instances, and return the solution of greater weight. Let OPT be the
optimum weight for all activity instances, and let OPT,, and OPT,, be the optimum
weight for the narrow instance and for the wide instances, respectively. Then, the weight
of the schedule found is at least max {1 OPT,, ;OPT,,}. Now, either OPT, > 2OPT,
or else OPT,, > %OPT. In either case the schedule returned is S-approximate.

5.2.6. Continuous Input

In our treatment of the above problems we have tacitly assumed that each activity
is specified as a finite set of instances. We call this type of input discrete input. In
a generalization of the problem we can allow each activity to consist of infinitely
many instances by specifying the activity as a finite collection of time windows. A time
window T is defined by four parameters: start-time s(7), end-time e(T), instance length
I(T) < e(T)—s(7), and weight w(7T). It represents the set of all instances defined by
intervals of length /(7") contained in the interval [s(7), e(7)) with associated profit
w (7). We call this type of input continuous input. The ideas underlying our algorithms
for discrete input apply equally well to continuous input, and we can achieve the same
approximation guarantees. However, because infinitely many intervals are involved,
the running times of the algorithms might become super-polynomial (although they
are guaranteed to be finite). To obtain efficiency we can sacrifice an additive term of €
in the approximation guarantee in return for an implementation whose worst case time
complexity is O(n?/€). Reference [11] contains the full details.

5.2.7.  Throughput Maximization with Batching

The main constraint in many scheduling problems is that no two jobs may be
scheduled on the same machine at the same time. However, there are situations in
which this constraint is relaxed, and batching of jobs is allowed. Consider, for example,
a multimedia-on-demand system with a fixed number of channels through which video
films are broadcast to clients (e.g., through a cable TV network). Each client requests a
particular film and specifies several alternative times at which he or she would like to
view it. If several clients wish to view the same movie at the same time, their requests
can be batched together and satisfied simultaneously by a single transmission. In the
throughput maximization version of this problem, we aim to maximize the revenue by
deciding which films to broadcast, and when, subject to the constraint that the number
of channels is fixed and only a single movie may be broadcast on a given channel at
any time.
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Formally, the batching problem is defined as follows. We are given a set of jobs,
to be processed on a system of parallel identical machines. Each job is defined by its
type, its weight, and a set of start-times. In addition, each job type has a processing time
associated with it. (In terms of our video broadcasting problem, machines correspond
to channels, jobs correspond to clients, job types correspond to movies, job weights
correspond to revenues, start-times correspond to alternative times at which clients
wish to begin watching the films they have ordered, and processing times correspond
to movie lengths.) A job instance is a pair (J, t) where J is a job and ¢ is one of its
start-times. Job instance (J, t) is said to represent job J. We associate with it the time
interval [¢, t + p), where p is the processing time associated with J’s type. A batch
is a set of job instances such that all jobs represented in the set are of identical type,
no job is represented more than once, and all time intervals associated with the job
instances are identical. We associate with the batch the time interval associated with
its job instances. Two batches conflict in jobs if there is a job represented in both;
they conflict in time if their time intervals are not disjoint. A feasible schedule is an
assignment of batches to machines such that no two batches in the schedule conflict in
jobs and no two batches conflicting in time are assigned to the same machine. The goal
is to find a maximum-weight feasible schedule. (The weight of a schedule is the total
weight of jobs represented in it.)

The batching problem can be viewed as a variant of the scheduling problem we
have been dealing with up till now. For simplicity, let us consider the single machine
case. For every job, consider the set of batches in which it is represented. All of these
batches conflict with each other, and we may consider them instances of a single activity.
In addition, two batches with conflicting time intervals also conflict with each other,
so it seems that the problem reduces to interval scheduling. There is a major problem
with this interpretation, though, even disregarding the fact that the number of batches
may be exponential. The problem is that if activities are defined as we have suggested,
i.e., each activity is the set of all batches containing a particular job, then activities are
not necessarily disjoint sets of instances, and thus they lack a property crucial for our
approach to interval scheduling. Nevertheless, the same basic approach can be still be
applied, though the precise details are far too complex to be included in a survey such
as this. We refer the reader to Bar-Noy et al. [12], who describe a 4-approximation
algorithm for bounded batching (where there is an additional restriction that no more
than a fixed number of job instances may be batched together), and a 2-approximation
algorithm for unbounded batching.

5.3. Loss Minimization

In the previous section we dealt with scheduling problems in which our aim was
to maximize the profit from scheduled jobs. In this section we turn to the dual problem
of minimizing the loss due to rejected jobs.

Recall that in our general scheduling problem (defined in Section 5.2) we are given
a limited resource, whose amount is fixed over time, and a set of activities requiring
the utilization of this resource. Each activity is a set of instances, at most one of which
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is to be selected. In the loss minimization version of the problem considered here,
we restrict each activity to consist of a single instance, but we allow the amount of
resource to vary in time. Thus the input consists of the activity specification as well
as a positive function D(¢) specifying the amount of resource available at every time
instant 7. Accordingly, we allow arbitrary positive instance widths (rather than assuming
that all widths are bounded by 1). A schedule is feasible if for all time instants ¢, the
total width of instances in the schedule containing ¢ is at most D(¢). Given a feasible
schedule, the feasible solution it defines is the set of all activity instances not in the
schedule. The goal is to find a minimum weight feasible solution.

We now present a variant of Algorithm IS achieving an approximation guarantee
of 4. We describe the algorithm as one that finds a feasible schedule, with the under-
standing that the feasible solution actually being returned is the schedule’s complement.
The algorithm is as follows. Let (A4, w) denote the input, where A4 is the description
of the activities excluding their weights, and w is the weight function. If the set of all
activity instances in A constitutes a feasible schedule, return this schedule. Otherwise,
if there is a zero-weight instance /, delete it, solve the problem recursively to obtain a
schedule S, and return either S U {/} or S, depending (respectively) on whether S U {7}
is a feasible schedule or not. Otherwise, decompose w by w = w; + w, (as described
in the next paragraph), where w,(7) > 0 for all activity instances /, with equality for
at least one instance, and solve recursively for (A, w»).

Let us define the decomposition of w by showing how to compute w,. For a given
time instant ¢, let Z(¢) be the set of activity instances containing ¢. Define A(t) =
Z,d(t) d(I) — D(t). To compute wi, find #* maximizing A(-) and let A* = A(¢").
Assuming A" > 0 (otherwise the schedule containing all instances is feasible), let

_[min{&, (D)} T eZ(r),
will)=e- { 0 otherwise,

where € (which depends on ¢*) is the unique scaler resulting in w,(/) > 0 for all / and
wa(I) = 0 for at least one /. A straightforward implementation of this algorithm runs
in time polynomial in the number of activities and the number of time instants at which
D(t) changes value.

To prove that the algorithm is 4-approximation, it suffices (by the usual arguments)
to show that w; is 4-effective. In other words, it suffices to show that every solution
defined by a maximal feasible schedule is 4-approximate with respect to w;. In the
sequel, when we say weight, we mean weight with respect to w.

Observation 6 Every collection of instances from L(t*) whose total width is at least
A has total weight at least € .

Observation 7 Both of the following evaluate to at most € X*: (1) the weight of any
single instance, and (2) the total weight of any collection of instances whose total width
is at most A'.
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Consider an optimal solution (with respect to w;). Its weight is the total weight
of instances in Z(¢*) that are not in the corresponding feasible schedule. Since all of
these instances intersect at ¢*, their combined width must be at least A*. Thus, by
Observation 6, the optimal weight is at least € A*. Now consider the complement of a
maximal feasible schedule M. We claim that it is 4-approximate because its weight
does not exceed 4¢ A*. To prove this, we need the following definitions. For a given
time instant 7, let M(¢) be the set of instances containing # that are not in the schedule
M, (i.e., M(t) = Z(t) \ M). We say that ¢ is critical if there is an instance I € M(z)
such that adding / to M would violate the width constraint at #. We say that ¢ is critical
because of I. Note that a single time instant may be critical because of several different
activity instances.

Lemma 8 Ift is a critical time instant, then Z,emm wi(l) < 2e X',

Proof. Let J be an instance of maximum width in M(z). Then, since ¢ is critical, it is
surely critical because of J. This implies that ), Mz 4U) > D(t) — d(J). Thus,

dodiy= Y d) =) d()

TeM(t) 1€1(t) Te MNZL(1)
= D)+ A@) = d(I)
Te MNZ(t)

<d(J)+ A(t)
<d(J) + A

Hence, ;i\ sy d(/) < A, and therefore, by Observation 7,

Do owiD) =) wi) +wi(J) < €A + e =2eN.
TeM(r) Te M(O\{J}

Thus there are two cases to consider. If #* is a critical point, then the weight of the
solution is Z,GM(,*) wi(l) < 2e Af and we are done. Otherwise, lett; < t*andtp > t*
be the two critical time instants closest to * on both sides (it may be that only one of
them exists). The maximality of the schedule implies that every instance in M(¢*) is
the cause of criticality of at least one time instant. Thus each such instance must contain
1, or tg (or both). It follows that M(z*) € M(t;) U M(tz). Hence, by Lemma 8, the
total weight of these instances is less than 4e A*.

5.3.1. Application: General Caching

In the general caching problem a replacement schedule is sought for a cache that
must accommodate pages of varying sizes. The input consists of a fixed cache size
D > 0, a collection of pages {1, 2, ..., m}, and a sequence of n requests for pages.
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Each page j has a size 0 < d(j) < D and a weight w(j) > 0, representing the cost of
loading it into the cache. We assume for convenience that time is discrete and that the
ith request is made at time i. (These assumptions cause no loss of generality as will
become evident from our solution.) We denote by r (i) the page being requested at time
i. A replacement schedule is a specification of the contents of the cache at all times. It
must satisfy the following condition. For all 1 < i < n, page r(i) is present in the cache
at time i and the sum of sizes of the pages in the cache at that time is not greater than
the cache size D. The initial contents of the cache (at time 0) may be chosen arbitrarily.
Alternatively, we may insist that the cache be empty initially. The weight of a given
replacement schedule is Y w(r(i)) where the sum is taken over all i such that page
r(i) is absent from the cache at time i — 1. The objective is to find a minimum weight
replacement schedule.

Observe that if we have a replacement schedule that evicts a certain page at some
time between two consecutive requests for it, we may as well evict it immediately
after the first of these requests and bring it back only for the second request. Thus,
we may restrict our attention to schedules in which for every two consecutive requests
for a page, either the page remains present in the cache at all times between the first
request and the second, or it is absent from the cache at all times in between. This
leads naturally to a description of the problem in terms of time intervals, and hence
to a reduction of the problem to our loss minimization problem, as follows. Given
an instance of the general caching problem, define the resource amount function by
D(@{)= D —d(r(i)) for 1 <i <n,and D(0) = D (or D(0) = 0 if we want the cache
to be empty initially). Define the activity instances as follows. Consider the request
made at time i. Let j be the time at which the previous request for (i) is made, or
j = —lifnosuchrequestismade.If j + 1 < i — 1, we define an activity instance with
time interval [j + 1,7 — 1], weight w (»(7)), and width d(r(7)). This reduction implies
a 4-approximation algorithm for the general caching problem via our 4-approximation
algorithm for loss minimization.

5.4. Resource Minimization

Until now we have dealt with scheduling problems in which the resource was
limited, and thus we were allowed to schedule only a subset of the jobs. In this section
we consider the case where all jobs must be scheduled, and the resource is not limited
(but must be paid for). The objective is to minimize the cost of the amount of resource
in the solution. We present a 3-approximation algorithm for such a problem. We refer
to the problem as the bandwidth trading problem, since it is motivated by bandwidth
trading in next generation networks. (We shall not discuss this motivation here, as it is
rather lengthy.)

The algorithm we present here is somewhat unusual in that it does not use an
r-effective weight function in the weight decomposition steps. Whereas previous algo-
rithms prune (or extend), if possible, the solution returned by the recursive call in order



The Local Ratio Technique and Its Application 135

to turn it into a “good” solution, i.e., one that is minimal (or maximal), the algorithm we
present here uses a weight function for which good solutions are solutions that satisfy
a certain property different from minimality or maximality. Accordingly, it modifies
the solution returned in a rather elaborate manner.

5.4.1. Bandwidth Trading

In the bandwidth trading problem we are given a set of machine types 7 =
{T1, ..., T,} and a set of jobs J = {1, ..., n}. Each machine type T; is defined by
two parameters: a time interval /(7;) during which it is available, and a weight w (T}),
which represents the cost of allocating a machine of this type. Each job j is defined by a
single time interval /(j) during which it must be processed. We say that job j contains
time ¢ if ¢ € 1(j). A given job j may be scheduled feasibly on a machine of type 7 if
type T is available throughout the job’s interval, i.e., if I(j) € I(T). A schedule is a
set of machines together with an assignment of each job to one of them. It is feasible if
every job is assigned feasibly and no two jobs with intersecting intervals are assigned
to the same machine. The cost of a feasible schedule is the total cost of the machines it
uses, where the cost of a machine is defined as the weight associated with its type. The
goal is to find a minimum-cost feasible schedule. We assume that a feasible schedule
exists. (This can be checked easily.)

Our algorithm for the problem follows.

Algorithm BT(7, J, w)

1. IfJ =@, return @.
2. Else, if there exists a machine type 7' € 7 such that w(7") = 0 do:

3. Let J' be the set of jobs that can be feasibly scheduled on
machines of type T, i.e.,J ={j € J|I(j) C I(T)}.
4. S« BT(T\{T},J\J,w).
5. Extend S’ to all J by allocating |J’| machines of type 7' and
scheduling one job from J’ on each.
6. Return the resulting schedule S.
7. Else:
8. Let ¢ be a point in time contained in a maximum number of jobs, and
let 7, be the set of machine types available at time ¢ (see Figure 3).
9. Lete =min{w(T)| T € 7;}.
. . e TeT,
10. Define the weight functions w{(T) = { 0 otherwise,
and w, = w — wy.
11. S« BT(7, J, wy).
12. Transform S’ into a new schedule S (in a manner described below.

13. Return S.
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To complete the description of the algorithm we must describe the transformation
of S’ to S referred to in Line 12. We shall do so shortly, but for now let us just point
out two facts relating to the transformation.

1. For all machine types T, S does not use more machines of type 7 than S'.
2. Let k be the number of jobs containing time ¢ (Line 8). The number of machines
used by S whose types are in 7; is at most 3k.

Based on these facts, we now prove that the algorithm is a 3-approximation algo-
rithm. The proof'is by induction on the recursion. In the base case (J = @), the schedule
returned is optimal and therefore 3-approximate. For the inductive step there are two
cases. If the recursive invocation is made in Line 4, then by the inductive hypothesis, S’
is 3-approximate with respectto (7 \ {T'}, J \ J’, w). In addition, no jobin J \ J’ can
be scheduled feasibly on a machine of type T'; all jobs in J' can be scheduled feasibly on
machines of type T'; and machines of type T are free (w (T) = 0). Thus w(S) = w(S),
and the optimum cost for (7', J, w) is the same as for (7 \ {7}, J \ J', w). Therefore S
is 3-approximate. The second case in the inductive step is that the recursive call is made
in Line 11. In this case, S’ is 3-approximate with respect to w; by the inductive hypoth-
esis. By the first fact above, w,(S) < w,(S"), and therefore S too is 3-approximate with
respect to w;. By the second fact above, w;(S) < 3ke, and because there are k jobs
containing time f—each of which can be scheduled only on machines whose types are
in 7;, and no two of which may be scheduled on the same machine—the optimum cost
is at least ke. Thus S is 3-approximate with respect to w;. By the Local Ratio Theorem,
S is therefore 3-approximate with respect to w.

It remains to describe the transformation of S’ to S in Line 12. Let J, C J be the
set of jobs containing time ¢, and recall that £ = |J;|. An example (with £ = 3) is given
in Figure 3. The strips above the line represent jobs, and those below the line represent
machine types. The darker strips represent the jobs in J; and the machine types in 7;.
Let M; € Mg be the set of machines that are available at time ¢ and are used by S,
and let J, be the set of jobs scheduled by S on machines in M;. (J,, consists of the
jobs J; and possibly additional jobs.) If | M| < 3k then S = S. Otherwise, we choose
a subset of M, € M, of size at most 3k and reschedule all of the jobs in J,,, on these
machines. The choice of M; and the construction of S" are as follows.

Jobs
N
I
Machine
Types
I
I

Figure 3. Jobs containing time ¢ (top, dark), and machine types available at time ¢ (bottom, dark).
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1. Let M, € M, be the set of k£ machines to which the & jobs in J; are assigned.
(Each job must be assigned to a different machine since they all exist at time 7).
Let J. be the set of all jobs scheduled on machines in M.,.. We schedule these
jobs the same as in S.

2. Let M; € M, \ M, be the set of k£ machines in M, \ M, with leftmost left
endpoints. (See example in Figure 4.) Let J; C Jy4, be the set of jobs in Jy,
that lie completely to the left of time point ¢ and are scheduled by .S on machines
in M, \ M.. We schedule these jobs on machines from M; as follows. Let ¢/
be the rightmost left endpoint of a machine in M,. The jobs in J; that contain
' must be assigned in S to machines from M;. We retain their assignment. We
proceed to schedule the remaining jobs in J; greedily by order of increasing left
endpoint. Specifically, for each job j we select any machine in M; on which
we have not already scheduled a job that conflicts with j and schedule j on
it. This is always possible since all k£ machines are available between ¢’ and
t, and thus if a job cannot be scheduled, its left endpoint must be contained
in k other jobs that have already been assigned. These & + 1 jobs coexist at
the time instant defining the left endpoint of the job that cannot be assigned, in
contradiction with the fact that £ is the maximal number jobs coexisting at a any

time.
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Figure 4. Rescheduling jobs that were assigned to M; and exist before time 7.
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3. Let M, € M, \ M, be the set of k machines in M, \ M, with rightmost right
endpoints. (M, and M; and not necessarily disjoint.) Let J,., C Jy4, be the set
of jobs in Jy,, that lie completely to the right of time point ¢ and are scheduled
by S on machines in M, \ M. We schedule these jobs on machines from M,
in a similar manner to the above.

We have thus managed to schedule J. U J; U J. = J), on no more than 3k machines
from M,, as desired.

5.5. Background

Throughput maximization. Single machine scheduling with one instance per ac-
tivity is equivalent to maximum weight independent set in interval graphs and hence
polynomial-time solvable [39]. Arkin and Silverberg [3] solve the problem efficiently
even for unrelated multiple machines. The problem becomes NP-hard (even in the sin-
gle machine case) if multiple instances per activity are allowed [61] (i.e., the problem
is interval scheduling) or if instances may require arbitrary amounts of the resource.
(In the latter case the problem is NP-hard as it contains knapsack [35] as a special case
in which all time intervals intersect.) Spieksma [61] studies the unweighted interval
scheduling problem. He proves that it is Max-SNP-hard, and presents a simple greedy
2-approximation algorithm. Bar-Noy et al. [13] consider real-time scheduling, in which
each job is associated with a release time, a deadline, a weight, and a processing time
on each of the machines. They give several constant factor approximation algorithms
for various variants of the throughput maximization problem. They also show that the
problem of scheduling unweighted jobs on unrelated machine is Max-SNP-hard.

Bar-Noy et al. [11], present a general framework for solving resource allocation
and scheduling problems that is based on the local ratio technique. Given a resource of
fixed size, they present algorithms that approximate the maximum throughput or the
minimum loss by a constant factor. The algorithms apply to many problems, among
which are: real-time scheduling of jobs on parallel machines; bandwidth allocation
for sessions between two endpoints; general caching; dynamic storage allocation; and
bandwidth allocation on optical line and ring topologies. In particular, they improve
most of the results from [13] either in the approximation factor or in the running time
complexity. Their algorithms can also be interpreted within the primal-dual schema
(see also [19]) and are the first local ratio (or primal-dual) algorithms for a max-
imization problems. Sections 5.2 and 5.3, with the exception of Section 5.2.7, are
based on [11].

Independently, Berman and DasGupta [21] also improve upon the algorithms given
in [13]. They develop an algorithm for interval scheduling that is nearly identical to
the one from [11]. Furthermore, they employ the same rounding idea used in [11] in
order to contend with time windows. In addition to single machine scheduling, they
also consider scheduling on parallel machines, both identical and unrelated.
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Chuzhoy et al. [27] consider the unweighted real-time scheduling problem and
present an (e/(e — 1) + €)-approximation algorithm. They generalize this algorithm to
achieve a ratio of (1 + e/(e — 1) + ¢€) for unweighted bandwidth allocation.

The batching problem discussed in Section 5.2.7 is from Bar-Noy et al. [12]. In the
case of bounded batching, they describe a 4-approximation algorithm for discrete input
and a (4 + €)-approximation algorithm for continuous input. In the case on unbounded
batching, their approximation factors are 2 and 2 + €, respectively. However, in the
discrete input case the factor 2 is achieved under an additional assumption. (See [12]
for more details.) In the parallel batch processing model all jobs belong to the same
family, and any group of jobs can be batched together. A batch is completed when the
largest job in the batch is completed. This model was studied by Brucker et al. [24]
and by Baptiste [10]. The model discussed in [12] is called batching with incompatible
families. This model was studied previously with different objective functions such as
weighted sum of completion times [62, 30, 8] and total tardiness [54].

Loss minimization. Section 5.3 is based on [11]. Albers et al. [2] consider the general
caching problem. They achieve a “pseudo” O(1)-approximation factor (using LP
rounding) by increasing the size of the cache by O(1) times the size of the largest page,
i.e., their algorithm finds a solution using the enlarged cache whose cost is within a
constant factor of the optimum for for the original cache size. When the cache size may
not be increased, they achieve an O(log(M + C)) approximation factor, where M and
C denote the cache size and the largest page reload cost, respectively. The reduction
of general caching to the loss minimization problem discussed in Section 5.3 is also
from [2].

Resource minimization. Section 5.4 is based on a write-up by Bhatia et al. [23]. The
general model of the resource minimization problem, where the sets of machine types
on which a job can be processed are arbitrary, is essentially equivalent (approximation-
wise) to set cover [23, 45]. Kolen and Kroon [49, 50] show that versions of the general
problem considered in [23] are NP-hard.
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Abstract

We provide an overview of an emerging area of domination analysis (DA) of combinatorial
optimization algorithms and problems. We consider DA theory and its relevance to computational
practice.

1. Introduction

In the recently published book [19], Chapter 6 is partially devoted to domina-
tion analysis (DA) of the Traveling Salesman Problem (TSP) and its heuristics. The
aim of this chapter is to provide an overview of the whole area of DA. In partic-

ular, we describe results that significantly generalize the corresponding results for
the TSP.

To make reading of this chapter more active, we provide questions that range from
simple to relatively difficult ones. Also, we add research questions that supply the
interested reader with open and challenging problems.
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This chapter is organized as follows. In Subsection 1.1 of this section we motivate
the use of DA in combinatorial optimization. We provide a short introduction to DA in
Subsection 1.2. We conclude this section by giving additional terminology and notation.

One of the goals of DA is to analyze the domination number or domination ratio
of various algorithms. Domination number (ratio) of a heuristic H for a combinatorial
optimization problem P is the maximum number (fraction) of all solutions that are not
better than the solution found by H for any instance of P of size n. In Section 2 we
consider TSP heuristics of large domination number. In Subsection 2.1 we provide a
theorem that allows one to prove that a certain Asymmetric TSP heuristic is of very
large domination number. We also provide an application of the theorem. In Subsection
2.2 we show how DA can be used in analysis of local search heuristics. Upper bounds for
the domination numbers of Asymmetric TSP heuristics are derived in Subsection 2.3.

Section 3 is devoted to DA for other optimization problems. We demonstrate
that problems such as the Minimum Partition, Max Cut, Max k-SAT and Fixed Span
Frequency Assignment admit polynomial time algorithms of large domination number.
On the other hand, we prove that some other problems including the Maximum Clique
and the Minimum Vertex Cover do not admit algorithms of relatively large domination
ratio unless P = NP.

Section 4 shows that, in the worst case, the greedy algorithm obtains the unique
worst possible solution for a wide family of combinatorial optimization problems and,
thus, in the worst case, the greedy algorithm is no better than the random choice for
such problems. We conclude the chapter by a short discussion of DA practicality.

1.1. Why Domination Analysis?

Exact algorithms allow one to find optimal solutions to NP-hard combinatorial
optimization (CO) problems. Many research papers report on solving large instances
of some NP-hard problems (see, e.g., Chapters 2 and 4 in [19]). The running time of
exact algorithms is often very high for large instances, and very large instances remain
beyond the capabilities of exact algorithms.

Even for instances of moderate size, if we wish to remain within seconds or minutes
rather than hours or days of running time, only heuristics can be used. Certainly, with
heuristics, we are not guaranteed to find optimum, but good heuristics normally produce
near-optimal solutions. This is enough in most applications since very often the data
and/or mathematical model are not exact anyway.

Research on CO heuristics has produced a large variety of heuristics especially
for well-known CO problems. Thus, we need to choose the best ones among them. In
most of the literature, heuristics are compared in computational experiments. While
experimental analysis is of definite importance, it cannot cover all possible families of
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instances of the CO problem at hand and, in particular, it normally does not cover the
hardest instances.

Approximation Analysis [4] is a frequently used tool for theoretical evaluation
of CO heuristics. Let H be a heuristic for a combinatorial minimization problem P
and let Z,, be the set of instances of P of size n. In approximation analysis, we use
the performance ratio ry(n) = max{f(1)/f*(I): I € Z,}, where f(I) (f*(1)) is the
value of the heuristic (optimal) solution of /. Unfortunately, for many CO problems,
estimates for y(n) are not constants and provide only a vague picture of the quality of
heuristics.

Domination Analysis (DA) provides an alternative and a complement to approxi-
mation analysis. In DA, we are interested in the domination number or domination ratio
of heuristics (these parameters have been defined earlier). In many cases, DA is very
useful. For example, we will see in Section 4 that the greedy algorithm has domination
number 1 for many CO problems. In other words, the greedy algorithm, in the worst
case, produces the unique worst possible solution. This is in line with latest computa-
tional experiments with the greedy algorithm, see, e.g., [28], where the authors came
to the conclusion that the greedy algorithm ‘might be said to self-destruct’ and that it
should not be used even as ‘a general-purpose starting tour generator’.

The Asymmetric Traveling Salesman Problem (ATSP) is the problem of computing
a minimum weight tour (Hamilton cycle) passing through every vertex in a weighted
complete digraph on n vertices. See Figure 1. The Symmetric TSP (STSP) is the same
problem, but on a complete undirected graph. When a certain fact holds for both ATSP
and STSP, we will simply speak of 7SP. Sometimes, the maximizing version of TSP is
of interest, we denote it by max TSP.

APX is the class of CO problems that admit polynomial time approximation al-
gorithms with a constant performance ratio [4]. It is well known that while max TSP
belongs to APX, TSP does not. This is at odds with the simple fact that a ‘good’ ap-
proximation algorithm for max TSP can be easily transformed into an algorithm for

19 314
a 3 b

Figure 1. A complete weighted digraph.
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TSP. Thus, it seems that both max TSP and TSP should be in the same class of CO
problems. The above asymmetry was already viewed as a drawback of performance
ratio already in the 1970, see, e.g., [11, 30, 40]. Notice that from the DA point view
max TSP and TSP are equivalent problems.

Zemel [40] was the first to characterize measures of quality of approximate so-
lutions (of binary integer programming problems) that satisfy a few basic and natural
properties: the measure becomes smaller for better solutions, it equals 0 for opti-
mal solutions and it is the same for corresponding solutions of equivalent instances.
While the performance ratio and even the relative error (see [4]) do not satisfy the last
property, the parameter 1 — r, where r is the domination ratio, does satisfy all of the
properties.

Local Search (LS) is one of the most successful approaches in constructing heuris-
tics for CO problems. Recently, several researchers started investigation of LS with
Very Large Scale Neighbourhoods (see, e.g., [1, 12, 26]). The hypothesis behind this
approach is that the larger the neighbourhood the better quality solution are expected to
be found [1]. However, some computational experiments do not support this hypothesis,
see, e.g., [ 15], where an LS with small neighbourhoods proves to be superior to that with
large neighbourhoods. This means that some other parameters are responsible for the
relative power of a neighbourhood. Theoretical and experimental results on TSP indi-
cate that one such parameter may well be the domination ratio of the corresponding LS.

Sometimes, Approximation Analysis cannot be naturally used. Indeed, a large
class of CO problems are multicriteria problems [14], which have several objective
functions. (For example, consider STSP in which edges are assigned both time and
cost, and one is required to minimize both time and cost.) We say that one solution s’ of
amulticriteria problems dominates another one s” if the values of all objective functions
at s are not worse than those at s” or the value of at least one objective function at
s’ is better than the value of the same objective function at s”. This definition allows
us to naturally introduce the domination ratio (number) for multicriteria optimization
heuristics. In particular, an algorithm that always finds a Pareto solution is of domination
ratio 1.

In our view, it is advantageous to have bounds for both performance ratio and dom-
ination number (or, domination ratio) of a heuristic whenever it is possible. Roughly
speaking this will enable us to see a 2D rather than 1D picture. For example, consider
the double minimum spanning tree heuristic (DMST) for the Metric STSP (i.e., STSP
with triangle inequality). DMST starts from constructing a minimum weight spanning
tree T in the complete graph of the STSP, doubles every edge in T, finds a closed Euler
trail £ inthe ‘double’ T', and cancels any repetition of vertices in E to obtain a TSP tour
H. It is well-known and easy to prove that the weight of H is at most twice the weight
of the optimal tour. Thus, the performance ratio for DMST is bounded by 2. How-
ever, Punnen, Margot and Kabadi [34] proved that the domination number of DMST
is 1.
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1.2. Introduction to Domination Analysis

Domination Analysis was formally introduced by Glover and Punnen [16] in 1997.
Interestingly, important results on domination analysis for the TSP can be traced back
to the 1970s, see Rublineckii [36] and Sarvanov [37].

Let P be a CO problem and let H be a heuristic for P. The domination number
domn(H,Z) of H for a particular instance Z of P is the number of feasible solutions
of 7 that are not better than the solution s produced by H including s itself. For
example, consider an instance 7 of the STSP on 5 vertices. Suppose that the weights
of tours in 7 are 3,3,5,6,6,9,9,11,11,12,14,15 (every instance of STSP on 5 vertices
has 12 tours) and suppose that the greedy algorithm computes the tour 7" of weight 6.
Then domn(greedy, 7) = 9. In general, if domn(H, 7) equals the number of feasible
solutions in Z, then H finds an optimal solution for Z. If domn(H, Z) = 1, then the
solution found by H for 7 is the unique worst possible one.

The domination number domn(H, n) of H is the minimum of domn(H, Z) over
all instances Z of size n. Since the ATSP on n vertices has (n — 1)! tours, an algorithm
for the ATSP with domination number (r — 1)! is exact. The domination number of
an exact algorithm for the STSP is (n — 1)!/2. If an ATSP heuristic .A has domination
number equal 1, then there is an assignment of weights to the arcs of each complete
digraph K, n > 2, such that A finds the unique worst possible tour in K.

When the number of feasible solutions depends not only on the size of the instance
of the CO problem at hand (for example, the number of independent sets of vertices
in a graph G on n vertices depends on the structure of G), the domination ratio of an
algorithm A is of interest: the domination ratio of A, domr(A, n), is the minimum of
domn(A, Z)/sol(Z), where sol(Z) is the number of feasible solutions of Z, taken over
all instances Z of size n. Clearly, domination ratio belongs to the interval [0, 1] and
exact algorithms are of domination ratio 1.

The Minimum Partition Problem (MPP) is the following CO problem: given n
nonnegative numbers ai, ay, ..., a,, find a bipartition of the set {1,2,...,n} into
sets X and Y such that d(X,Y) =) ;cxa — D ;cy @l is minimum. For simplic-
ity, we assume that solutions X, Y and X', Y’ are different as long as X # X/, i.e.
even if X =Y’ (no symmetry is taken into consideration). Thus, the MPP has 2"
solutions.

Consider the following greedy-type algorithm G for the MPP: G sorts the numbers
such that a1y > az@) > -+ = az(n), initiates X = {w (1)}, ¥ = {n(2)}, and, for each
J =3,puts w(j)into X if Y,y a; <) .y a;, and into Y, otherwise. It is easy to see
that any solution X, Y produced by G satisfies d(X, Y) < a().

Consider any solution X", Y’ of the MPP for the input {a;, az, ..., a,} — {a-q)}-
If we add a1y to Y if D",y a; <),y a; and to X', otherwise, then we obtain a



150 Gregory Gutin and Anders Yeo

solution X", Y for the original problem with d(X”, Y”) > d(X, Y). Thus, the domi-
nation number of G is at least 2" ! and we have the following:

Proposition 1.1 The domination ratio of G is at least 0.5.

In fact, a slight modification of G is of domination ratio very close to 1, see
Section 3.

Letus consider another CO problem. In the Assignment Problem (AP), we are given
acomplete bipartite graph B with n vertices in each partite set and a non-negative weight
weight wt (e) assigned to each edge e of B. We are required to find a perfect matching
(i.e., a collection of n edges with no common vertices) in B of minimum total weight.

The AP can be solved to optimality in time O(»>) by the Hungarian algorithm.
Thus, the domination number of the Hungarian algorithm equals #!, the total number
of perfect matchings in B.

For some instances of the AP, the O(n®) time may be too high and thus we
may be interested in having a faster heuristic for the AP. Perhaps, the first heuris-
tics that comes into mind is the greedy algorithm (greedy). The greedy algorithm
starts from the empty matching X and, at each iteration, it appends to X the cheapest
edge of B that has no common vertices with edges already in X. (A description of
greedy for a much more general combinatorial optimization problem is provided in
Section 4.)

The proof of the following theorem shows that the greedy algorithm fails on many
‘non-exotic’ instances of the AP.

Theorem 1.2 For the AR greedy has domination number 1.

Proof- Let B be a complete bipartite graph with n vertices in each partite set and let
up,us, ..., u, and vy, vy, ..., v, be the two partite sets of B. Let M be any number
greater than n. We assign weighti x M to the edge u;v; fori = 1,2, ..., n and weight
min{i, j} x M + 1 to every edge u;v;, i # j; see Figure 2 for illustration in the case
n=3.

backward edge

M+1 /

horizontal edge

forward edge

Figure 2. Assignment of weights for n = 3; classification of edges.
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We classify edges of B as follows: u;v; is horizontal (forward, backward) if i = j
(i < j,i> j).See Figure 2.

The greedy algorithm will choose edges u vy, usvy, . .., u,v, (and in that order).
We denote this perfect matching P and we will prove that P is the unique most expensive
perfect matching in B. The weight of Pis (P) =M +2M + --- +nM.

Choose an arbitrary perfect matching P’ in B distinct from P. Let P’ have edges
ULVp,, UVp,, ..., UyVp, . By the definition of the costs in B, wt (u;vp,,) < M x i+ 1.
Since P’ is distinct from P, it must have edges that are not horizontal. This means
it has backward edges. If u;v,, is a backward edge, i.e. px < k, then wt (u;v,,) <
M(k—1)+1=(Mk+1)— M. Hence,

wWwt(PY<(M+2M+---+nM)+n—M=wt(P)+n— M.
Thus, wt (P') < wt(P). O
Question 1.3 Formulate the greedy algorithm for the ATSP

Question 1.4 Consider the following mapping f from the arc set of K\ into the edge
setof K, ,, the complete bipartite graph on 2n vertices. Letx,, . . ., x, be vertices of K\,

and let {uy, ..., u,} and {vy, ..., v,} be partite sets of K, ,. Then f(x;x;) = u;v;_

Joreach 1 <i # j <n, where vy = v,. Show that f maps every Hamilton cycle of
K into a matching of K,, ,.

Question 1.5 Using the mapping [ of Question 1.4 and Theorem 1.2, prove that the
greedy algorithm has domination number 1 for the ATSP

1.3. Additional Terminology and Notation

Following the terminology in [20], a CO problem P is called DO M -easy if there
exists a polynomial time algorithm, A, such that domr (A, n) > 1/p(n), where p(n) is
a polynomial in z. In other words, a problem is DO M-easy, if, in polynomial time, we
can always find a solution, with domination number at least a polynomial fraction of
all solution. If no such algorithm exists, P is called DOM-hard.

Foradigraph D, V(D) (A(D)) denotes the vertex (arc) set of H. The same notation
are used for paths and cycles in digraphs. A four in a digraph D is a Hamilton cycle in
D. A complete digraph K} is a digraph in which every pair x, y of distinct vertices is
connected by the pair (x, y), (v, x) of arcs. The out-degree d*(v) (in-degree d~(v)) of
a vertex v of a digraph D is the number of arcs leaving v (entering v). It is clear that

|AD) = 3 cypydT (V) = 2 cppyd (V).

We will often consider weighted digraphs, i.e., pairs (D, wt), where wt is a mapping
from A(D) into the set of reals. For an arc a = (x, y) in (K, wt), the contraction of
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a results in a complete digraph with vertex set V' = V(K) U {v,} — {x, y} and weight
function wt', where v, ¢ V(K*,), such that the weight wt'(«, w), foru, w € V', equals
wt(u, x) if w = v,, wt(y, w) ifu = v,, and wt(u, w), otherwise. The above definition
has an obvious extension to a set of arcs; for more details, see [6].

For an undirected graph G, V(G) (E(G)) denotes the vertex (edge) set of H. A
tour in a graph G is a Hamilton cycle in G. A complete graph K, is a graph in which
every pair x, y of distinct vertices is connected by edge xy. Weighted graphs have
weights assigned to their edges.

For a pair of given functions f(k), g(k) of a non-negative integer argument &, we
say that f(k) = O(g(k)) if there exist positive constants ¢ and ky such that 0 < f(k) <
cg(k) forall k > k. If there exist positive constants c and ky such that 0 < cf (k) < g(k)
for all £ > ko, we say that g(k) = Q(f(k)). Clearly, f(k) = O(g(k)) if and only if
g(k) = Q(f(k)). If both f(k) = O(g(k)) and f(k) = Q(g(k)) hold, then we say that
f (k) and g(k) are of the same order and denote it by f(k) = ©(g(k)).

2. TSP Heuristics with Large Domination Number

Since there is a recent survey on domination analysis of TSP heuristics [19], we
restrict ourselves to giving a short overview of three important topics. All results will
be formulated specifically for the ATSP or the STSP, but in many cases similar results
hold for the symmetric or asymmetric counterparts as well.

2.1. ATSP Heuristics of Domination Number at Least Q2((n — 2)!)

We will show how the domination number of an ATSP heuristic can be related
to the average value of a tour. This result was (up till now) used in all proofs that a
heuristic has domination number at least Q((n — 2)!). Examples of such heuristics are
the greedy expectation algorithm introduced in [21], vertex insertion algorithms and
k-opt (see [19]). Using the above-mentioned result we will prove that vertex insertion
algorithms have domination number at least Q((n — 2)!).

A decomposition of A(K)) into tours, is a collection of tours in K¥, such that
every arc in K belongs to exactly one of the tours. The following lemma was proved
for odd n by Kirkman (see [9], p. 187), and the even case result was established
in [39].

Lemma 2.1 For every n > 2, n # 4, n # 6, there exists a decomposition of A(K))
into tours.

An automorphism, f, of V(K is a bijection from V' (K}) to itself. Note that if C
is a tour in K} then f(C) is also a tour K.
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We define 7(K}) as the average weight of a tour in K. As there are (n — 1)! tours
in K7, and (n — 2)! tours in K}, which use a given arc e (see Question 2.2), we note that

1
T(Kj)=—— Y wi(e) x (n—2),
(n— D! e A(K})
which implies that (K ") = wt(K?)/(n — 1), where wt(K ") is the sum of all weights
in K.

Question 2.2 Let e € A(K)) be arbitrary. Show that there are (n — 2)! tours in K,
which use the arc e.

Question 2.3 Let D = {C, ..., C,_1} be a decomposition of A(K) into tours. As-
sume that C,,_y is the tour in D of maximum weight. Show that wt(C,—1) > t(K).

Question 2.4 Let D = {Cy, ..., C,_1} be a decomposition of A(K) into tours. Let
be an automorphism of V(K,). Prove that a maps D into a decomposition of A(K}})
into tours.

We are now ready to prove the main result of this section.

Theorem 2.5 Assume that H is a tour in K, such that wi(H) < ©(K}}). If n # 6, then
H is not worse than at least (n — 2)! tours in K.

Proof. The result is clearly true for n = 2, 3. If n = 4, the result follows from the fact
that the most expensive tour, R, in K has weight at least t(K) > wt(H). So the
domination number of H is at least two (H and R are two tours of weight at least
wt(H ).

Assumethatn > 5andn # 6. Let V(K}Y) = {x1, x2, ..., x,}. By Lemma 2.1 there
exists a decomposition, D = {Cy, ..., C,_1} of A(K}}) into tours. Furthermore there
are (n — 1)! automorphisms, {a1, a2, . . ., @1y}, of V(K;), which map vertex x, into
x1. Now let D; be the decomposition of 4(K};) into tours, obtained by using «; on D.
In other words, D; = {«;(C1), 2;(C2), ..., o;(C,_1)} (see Question 2.4).

Note that if R is a tour in K, then R belongs to exactly (n — 1) decompositions
in {Dy, Dy, ..., Dy—1y}, as one automorphism will map C; into R, another one will
map C; into R, etc. Therefore R will lie in exactly the (» — 1) decompositions which
we obtain from these (n — 1) automorphisms.

Now let £; be the most expensive tour in D;. By Question 2.3 we see that wt(E;) >

T(K). Asany tourinthe set £ = {Ey, E,, ..., Ey,—1y} appears at most (n — 1) times,
the set £ has at least (n — 2)! distinct tours, which all have weight at least 7(K). As
wt(H) < ©(K}), this proves the theorem. 0

The above result has been applied to prove that a wide variety of ATSP heuristics
have domination number at least Q((n — 2)!). Below we will show how the above result
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can be used to prove that ATSP vertex insertion algorithms have domination number
at least (n — 2)!.

Let (K, wt) be an instance of the ATSP. Order the vertices x;, x,, ..., x, of K
using some rule. The generic vertex insertion algorithm proceeds as follows. Start
with the cycle C, = xx,x;. Construct the cycle C; from C;_; (j =3,4,5,...,n),
by inserting the vertex x; into C;_; at the optimum place. This means that for each
arc e = xy which lies on the cycle C;_; we compute wt(xx ;) + wt(x;y) — wt(xy), and
insert x; into the arc e = xy, which obtains the minimum such value. We note that
wit(C;) = wt(Cj_1) + wi(xx;) + wi(x;y) — wi(xy).

Theorem 2.6 The generic vertex insertion algorithm has domination number at least
(n—2).

Proof. We will prove that the generic vertex insertion algorithm produces a tour of
weight at most 7(K ") by induction. Clearly this is true for n = 2, as there is only one tour
in this case. Now assume that it is true for K_,. This implies that wt(C,,_;) < ©(K, —
x,). Without loss of generality assume that C,_; = x;x;...x,_1x;. Let wt(X, Y) =
D ovex, yey ¢(xy) for any disjoint sets X and Y. Since C, was chosen optimally we see
that its weight is at most (where xy = x,_; in the sum)

(g WH(Cm ) + WX X,) + WHG,Xi41) — W xi1))/(n — 1)
= WH(Cp—1) + (WY = X, X) + Wt(xn, ¥ = x,) — WH(C,p—1))/(n — 1)
< ((n = 2)T(K} — X0) + WV — X, X)) + Wt(xn, V = X,))/(n — 1)
= (WK —x,) + Wt(V — xp0, x,) + Wt(x,,, V — X))/ (n — 1)
= wit(K})/(n — 1) = ©(K}).

This completes the induction proof. Theorem 2.5 now implies that the domination
number of the generic vertex insertion algorithm is at least (n — 2)!. O

2.2. Domination Numbers of Local Search Heuristics

In TSP local search (LS) heuristics, a neighborhood N(T') is assigned to every tour
T, aset of tours in some sense close to 7. The best improvement LS proceeds as follows.
We start from a tour 7. In the i’th iteration (i > 1), we search in the neighborhood
N(T;—,) for the best tour T7;. If the weights of 7;_; and 7; do not coincide, we carry out
the next iteration. Otherwise, we output 7;.

One of the first exponential size TSP neighborhoods (called assign in [12]) was
considered independently by Sarvanov and Doroshko [38], and Gutin [17]. We describe
this neighborhood and establish a simple upper bound on the domination number of
the best improvement LS based on this neighborhood. We will see that the domination
number of the best improvement LS based on assign is significantly smaller than
that of the best improvement LS based on 2 -opt, a well-known STSP heuristic.
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Consider a weighted K,,. Assume thatn = 2k. Let T = x1y1x2)> . . . X3 yxx| be an
arbitrary tour in K,,. The neighborhood assign, N,(T), is defined as follows: N,(7) =
{xlyn(l)nyn(z) e XE YR X1 (z(1),7(2), ..., m(k))isapermutationof (1,2, ..., k)}.
Clearly, N,(T) contains k! tours. We will show that we can find the tour of minimum
weight in N,(7") in polynomial time.

Let B be a complete bipartite graph with partite sets {z;,z,...,z,} and
{¥1, ¥2, ..., ya},and letthe weight of z; y; be wt(x; y;) + wt(y;x; 1) (Where x,, 11 = x1).
Let M be a perfect matching in B, and assume that z; is matched to y,,;) in M. Observe
that the weight of M is equal to the weight of the tour x|y, 1yX2Vm@) - - - XnVm@)X1-
Since every tour in N,(7") corresponds to a perfect matching in B, and visa versa,
a minimum weight perfect matching in B corresponds to a minimum weight tour in
N,(T). Since we can find a minimum weight perfect matching in B in O(n>) time using
the Hungarian method, we obtain the following theorem.

Theorem 2.7 The best tour in N,(T) can be found in O(n®) time.

While the size of N,(T) is quite large, the domination number of the best im-
provement LS based on assign is relatively small. Indeed, consider K,, with vertices
{x1, %2, ..., %k, y1, ¥2, ..., Y&} Suppose that the weights of all edges of the forms x; y;
and y;x; equal 1 and the weights of all other edges equal 0. Then, starting from the tour
T = x1y1x%2)2 . . . x; yix ) of weight n the best improvement will output a tour of weight
n, too. However, there are only (k!)?/(2k) tours of weight » in K, and the weight of no
tour in K, exceeds n. We have obtained the following:

Proposition 2.8 For STSP the domination number of the best improvement LS based
on assign is at most (k!)? /(2k), where k = n/2.

The k-opt, k > 2, neighborhood of a tour T consists of all tour that can be
obtained by deleting a collection of £ edges (arcs) and adding another collection of k&
edges (arcs). It is easy to see that one iteration of the best improvement k-opt LS
can be completed in time O(n*). Rublineckii [36] showed that every local optimum
for the best improvement 2-opt and 3-opt for STSP is of weight at least the average
weight of a tour and, thus, by an analog of Theorem 2.5 is of domination number at
least (n — 2)!/2 when n is even and (n — 2)! when 7 is odd. Observe that this result is
of restricted interest since to reach a k-opt local optimum one may need exponential
time (cf. Section 3 in [27]). However, Punnen, Margot and Kabadi [34] managed to
prove the following result.

Theorem 2.9 For the STSP the best improvement 2 -opt LS produces a tour, which
is not worse than at least Q((n — 2)!) other tours, in at most O(n> logn) iterations.

The last two assertions imply that after a polynomial number of iterations the best
improvement 2 -opt LS has domination number at least $2(2"/n*) times larger than
that of the best improvement assign LS.
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Theorem 2.9 is also valid for the best improvement 3 -opt LS and some other LS
heuristics for TSP, see [26, 34].

2.3. Upper Bounds for Domination Numbers of ATSP Heuristics

It is realistic to assume that any ATSP algorithm spends at least one unit of time on
every arc of K7 that it considers. We use this assumption in the rest of this subsection.

Theorem 2.10 /24, 22] Let A be an ATSP heuristic of complexity t(n). Then the
domination number of A does not exceed max, <, <,(t(n)/n’)" .

Proof. Let D = (K, wt) be an instance of the ATSP and let H be the tour that A
returns, when its input is D. Let DOM(H ) denotes all tours in D which are not lighter
than H including H itself. We assume that D is the worst instance for .4, namely
domn(A, n) = DOM(H)|. Since A is arbitrary, to prove this theorem, it suffices to
show that [DOM(H)| < max;<,<,(t(n)/n’)" .

Let E denote the set of arcs in D, which 4 actually examines; observe that |F| <
t(n) by the assumption above. Let F' be the set of arcs in H that are not examined by
A, and let G denote the set of arcs in D — A(H) that are not examined by \A.

We first prove that every arc in F' must belong to each tour of DOM(H). Assume
that there is a tour H' € DOM(H) that avoids an arc a € F. If we assign to a a very
large weight, H' becomes lighter than H, a contradiction.

Similarly, we prove that no arc in G can belong to a tour in DOM (H). Assume that
ana € Gandaisinatour H' € DOM(H). By making a very light, we can ensure that
wt(H") < wt(H), a contradiction.

Now let D’ be the digraph obtained by contracting the arcs in F and deleting the
arcs in G, and let n” be the number of vertices in D’. Note that every tour in DOM(H )
corresponds to a tour in D’ and, thus, the number of tours in D’ is an upper bound on
|[DOM (H)|. In a tour of D', there are at most d (i) possibilities for the successor of a
vertex i, where d (i) is the out-degree of i in D’. Hence we obtain that

IDOM(H)| < Hd+(i) =< (%gd%)) = <t;—n)> :

where we applied the arithmetic-geometric mean inequality. O

Corollary 2.11 /24, 22] Let A be an ATSP heuristic of complexity t(n). Then the
domination number of A does not exceed max{e'™/¢, (t(n)/n)"}, where e is the basis
of natural logarithms.
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Proof. Let U(n) = max <, <,(t(n)/n’y". By differentiating f(n') = (t(n)/n’)" with
respect to n’ we can readily obtain that f(n’) increases for 1 < n’ < #(n)/e, and de-
creases for 1(n)/e < n’ < n. Thus, if n < t(n)/e, then f(n’) increases for every value
of W < n and U(n) = f(n) = (¢(n)/n)". On the other hand, if n > #(n)/e then the
maximum of f(n’) is for n’ = t(n)/e and, hence, U(n) = '™/, O

The next assertion follows directly from the proof of Corollary 2.11.

Corollary 2.12 /24, 22] Let A be an ATSP heuristic of complexity t(n). For t(n) > en,
the domination number of A does not exceed (t(n)/n)".

Note that the restriction #(n) > en is important since otherwise the bound of Corol-
lary 2.12 can be invalid. Indeed, if #(n) is a constant, then for n large enough the upper
bound becomes smaller than 1, which is not correct since the domination number is
always at least 1.

Question 2.13 Fill in details in the proof of Corollary 2.11.

Question 2.14 Using Corollary 2.11 show that ATSP O(n)-time algorithms can have
domination number at most 2°™.

Question 2.15 Show that there exist ATSP O (n)-time algorithms of domination number
at least 2. Compare the results of the last two questions.

We finish this section with a result from [24] that improves (and somewhat clar-
ifies) Theorem 20 in [34]. The proof is a modification of the proof of Theorem 20
in [34].

Theorem 2.16 Unless P = NE there is no polynomial time ATSP algorithm of domi-
nation number at least (n — 1)! — |n — n®]! for any constant o < 1.

Proof. Assume that there is a polynomial time algorithm H with domination number
at least (n — 1)! — |n — n*]! for some constant @ < 1. Choose an integer s > 1 such
that % <a.

Consider a weighted complete digraph (K7, w). We may assume that all weights
are non-negative as otherwise we may add a large number to each weight. Choose a
pair u, v of vertices in K,'. Add, to K7, another complete digraph D on n® — n vertices,
in which all weights are 0. Append all possible arcs between K' and D such that the
weights of all arcs coming into u and going out of v are 0 and the weights of all other
arcs are M, where M is larger than n times the maximum weight in (K, w). We have
obtained an instance (K%, w’) of ATSP.

nso

Apply Hto (K, w’) (observe that H is polynomial for (K5, w’)). Notice that there

areexactly (n* — n)! Hamilton cyclesin (K, w’) of weight L, where L is the weight ofa
lightest Hamilton (¢, v)-path in K}. Each of the (»* — n)! Hamilton cycles is obviously
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optimal. Observe that the domination number of H is atleast (n* — 1)! — |n® — (n*)*]!.
However, for sufficiently large n, we have

' = D= " — )] = ' — D — @ —n)! + 1

as n** > n + 1 for n large enough. Thus, a Hamilton cycle produced by H is always
among the optimal solutions (for #n large enough). This means that we can obtain a
lightest Hamilton (u, v)-path in K in polynomial time, which is impossible since
the lightest Hamilton (u, v)-path problem is a well-known NP-hard problem. We have
arrived at a contradiction. O

For a result that is stronger than Theorem 2.16, see [34].

3. Heuristics of Large Domination Ratio for Other CO Problems

In this section, we consider other CO problems which have heuristics with relatively
large domination ratios, as well as some CO problems which provably do not have
heuristics with large domination ratios (unless P = NP). Even though most initial
research on domination analysis has been done on TSP, there is now a wide variety of
other problems, which have been studied in this respect.

3.1. Minimum Partition and Multiprocessor Scheduling

We already considered the Minimum Partition Problem (MPP) in Subsection 1.2,
where we described a simple algorithm of domination ratio at least 0.5. In this subsection
we introduce a slightly more complicated algorithm of domination ratio close to 1.

Let B, be the set of all n-dimensional vectors (€1, €3, .. ., €,) with {—1, 1} coordi-
nates. The MPP can be stated as follows: given n nonnegative numbers {a, a, .. ., a,},
find a vector (¢1, €, ..., €,) € B, such that | Z;’zl €;a;| is minimum.

Consider the following greedy-type algorithm B. Initially sort the numbers
such that a;() > ay@o) = -+ > az@m). Choose an integral constant p > 0 and fix
k = | plog, n]. Solve the MP to optimality for a,(1), ax(), - .-, @), i.€., find opti-
mal values of €;(1), €x(2), . . ., €x(x)- (This can be trivially done in time O(n”).) Now
foreach j > k, if Z{;ll €x()ax() < 0, then set €;(;) = +1, and otherwise €;(;, = —1.

. . . . k k _ 1
Theorem 3.1 /2] The domination ratio of B is at least 1 — (WZJ)/Z =1- 8(\/—2).
To prove this theorem, without loss of generality, we may assume a; > a; > -+ > a,.
Observe that if min | YF_ e;a;| > S, 1 @i, then BB outputs an optimal solution.
Otherwise, it can be easily proved by induction that the solution produced satisfies

| Z:’:I €;a;| < ayy1. Thus, we may assume the last inequality.

Now it suffices to prove the following:
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Proposition 3.2 The number of vectors (e, ..., €,) € B, for which |y _, €a;| <
aj41 s at most (Lk]/CZJ)Z"’k.

To prove this proposition, we will use the following lemma:

Lemma 3.3 [13] Let a; > a; > --- > a; and let (a, b) be an arbitrary open inter-

val such that b — a < 2ay. Then the number of vectors (81, ..., 8) € By such that
k . k
> i1 8ia; € (a, b) is at most (WZJ).
Fix a vector (€x41,...,€,) € B,—;. Denote the sum ZLHI €;a; by S. Now

| > " | €ail < agyr if and only if Zf.;l €;a; belongs to the open interval (—S —
aj11, —S + ap41). However, by the lemma above, there are at most (Lkl;z |) vectors
(€1, ..., ;) with this property. Since we can fix (€411, . .., €,) € By_;in |B,_| =2"F
ways, the assertion of the proposition follows, implying the assertion of Theorem 3.1
as well.

For aninteger p > 2, a p-partition of a set 4 is a collection 4y, 4>, ..., 4, of sub-
sets of 4 such that UleA,» =Adand 4; N 4; = Pforeachl <i # j < p. Theorem 3.1
was generalized in [ 18], where the following minimum p-processor scheduling problem
was considered. We are given an integer p > 2 and a sequence w;, ws, ..., w, of pos-
itive integers, and we are required to find a p-partition Ny, No, ..., N, of {1,2,...,n}
such thatmax/_, > jen, W 1s as small as possible. Notice that the minimum 2-processor
scheduling problem is equivalent to MMP from the Domination Analysis point of view.

3.2. Max Cut

The Max Cut (MC) is the following problem: given a weighted complete graph
G = (V, E, wt), find a bipartition (a cut) (X, Y) of V' such that the sum of weights of
the edges with one end vertex in X and the other in Y, called the weight of the cut
(X, Y), is maximum.

We will show that the MC is DOM-easy, just as TSP is. (For the definition of
DO M-easy problems, see Subsection 1.3.)

Theorem 3.4 [20] The MC is DOM-easy. In fact, there is an algorithm, for the MC,
of domination number at least Q2" / n).

Proof. Let G = (V, E) be a weighted complete graph with n = | V| vertices and let W
be the sum of the weights of the edges in G. Clearly, the average weight of a cut of G
is W =w)2.

Consider the following well-known approximation algorithm C that always pro-
duces a cut of weight at least /7. The algorithm C considers the vertices of G in any
fixed order vy, v, ..., v,, initiates X = {vy}, ¥ = {v,},and adds v;,i > 3,to X or ¥
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depending on whether the sum of the weights of edges between v and Y or between
v and X is larger. We will prove that C is of domination number at least (2" /n). To
show this, it suffices to prove that the cuts in G of weight at most ¥ (we call them bad
cuts) constitute at least an O(1/n) part of all cuts.

We call a cut (X, Y) of G a k-cut if | X| = k. We evaluate the fraction of bad cuts
among k-cuts when k < n/2 — 2./n.

For a fixed edge uv of G among (Z) k-cuts there are 2(2:?) k-cuts that contain uv.
Thus, the average weight of a k-cut is Wi = 2(2:?) w/ (Z) Let by, be the number of bad
k-cuts. Then, ((}) — b)W/(};) < Wi. Hence,

by > n _4n—2 . n 1_4k(n—k) .
k k—1 k nn—1)
Itis easy to verify that 1 — 4k(n — k)/(n(n — 1)) > 1/nforallk < n/2 — 2./n. Hence,
G hasmore than 1 >~ <nj2-2n (3) bad cuts. By the famous DeMoivre-Laplace theorem

of probability theory, it follows that the last sum is at least ¢2” for some positive constant
c. Thus, G has more than ¢2" /n bad cuts. O

Using a more advanced probabilistic approach Alon, Gutin and Krivelevich [2]
recently proved that the algorithm C described above is of domination ratio larger than
0.025.

3.3. Max-k-SAT

One of the best-known NP-complete decision problems is 3-SAT. This problem is
the following: We are given a set J of variables and a collection C of clauses each with
exactly 3 literals (a literal is a variable or a negated variable in V; in a clause, literals
are separated by “OR”’). Does there exist a truth assignment for V7, such that every
clause is true?

We will now consider the more general optimization problem max-k-SAT. This
is similar to 3-SAT, but there are £ literals in each clause, and we want to find a truth
assignment for / which maximizes the number of clauses that are true, i.e., satisfied.
Let U = {x1,...,x,} be the set of variables in the instance of max-k-SAT under
consideration. Let {C, ..., C,} be the set of clauses. We assume that k is a constant.

Berend and Skiena [10] considered some well-known algorithms for max-k-SAT
and the algorithms turned out to have domination number at most n + 1. However an
algorithm considered in [20] is of domination number at least £2(2" /n¥/2)). We will
study this algorithm.

Assign a truth assignment to all the variables at random. Let p; be the probability
that C; (i’th clause) is satisfied. Observe that if some variable and its negation belong
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to C;, then p; = 1, otherwise p; = 1 — 2-* where k' is the number of distinct variables
in C;. Thus, the average number of satisfied clauses in a random truth assignment is

E= Ziﬂ:] Di-

For simplicity, in the sequel true (false) will be replaced by the binaries 1 (0). By
a construction described in Section 15.2 of [3], there exists a binary matrix 4 = (a;;)
with n columns and » = O(rn'¥/?)) rows such that the following holds: Let B be an
arbitrary submatrix of 4, consisting of k of its columns (chosen arbitrarily), and all »
of its rows. Every binary k-vector coincides with exactly »/2* rows of B. We give a
short example below, with n = 4 and k = 3 (» = 8). The matrix A can be constructed
in polynomial time [3].

Note that no matter which 3 columns we
consider, we will always get the vectors
(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0),
(1,0,1), (1,1,0), (1,1,1) equally many times
(in this case, once) in the 8 rows.

—_—0 OO = == O
—_—O = OO = O
_——_—0 = O = O O
—_—_—_o~, o O0Oo

Observe that each row, say row j, corresponds to a truth assignment 8; (where the

i’th variable gets the truth assignment of the i’th column, i.e. x; = a;1, ..., x, = a;,).
Let T; be the number of clauses satisfied by 8;. Consider a polynomial time algo-
rithm & that computes 71, ..., 7, and outputs *(4) that satisfies 7*(4) = max’;,_, T;
clauses.

We will prove that S has domination number at least (2" /n*/2!). Since rp; of the
r truth assignments will satisfy the i ’th clause, we conclude that ) ;_, 7; = r E (recall
that E = Y_'" | p;; see also Question 3.6). Therefore the truth assignment f*(4) must
satisfy at least £ clauses. Furthermore by a similar argument we conclude that the row
B+(A) corresponding to the truth assignment with fewest satisfied clauses, which we
shall call W (A), has at most E satisfied clauses.

Let X C {1, 2, ..., n} be arbitrary and let 4y be the matrix obtained from A by
changing all 0’s to 1’s and all 1’s to 0’s in the i’th column in 4, for all i € X. Note that
A x has the same properties as 4. Observe that a truth assignment can appear at most
rtimesin 7 = {B,(4x): X C {1, 2, ..., n}}, as a truth assignment cannot appear in
the j’th row of Ay and Ay, if X # Y. Therefore 7 contains at least 2" /r distinct
truth assignments all with at most E satisfied clauses. Therefore, we have proved the
following:

Theorem 3.5 /20] The algorithm S is of domination number at least Q2" /n'*/2)).

Question 3.6 Consider the given algorithm for max-k-SAT. Prove that rp; rows will
result in the i 'th clause being true, so > ._, T; = rE.



162 Gregory Gutin and Anders Yeo

Question 3.7 [20] Show that Theorem 3.5 can be extended to the weighted version of
max-k-SAT, where each clause C; has a weight w; and we wish to maximize the total
weight of satisfied clauses.

Alon, Gutin and Krivelevich [2] recently proved, using an involved probabilistic
argument, that the algorithm of Theorem 3.5 is, in fact, of domination number €2(2").

3.4. Fixed Span Frequency Assignment Problem

In [31] the domination number is computed for various heuristics for the Fixed
Span Frequency Assignment Problem (fs-FAP), which is defined as follows. We are
given a set of vertices {xi, x2,...,x,} and an n x n matrix C = (c;;). We want to
assign a frequency f; to each vertex x;, such that | f; — f;| > ¢;; foralli # j. However
when f; has to be chosen from a set of frequencies {0, 1,...,0 — 1}, where o is a
fixed integer, then this is not always possible. If | f; — f;| < ¢;;, then let x;; = 1, and
otherwise let x;; = 0.

We are also given a matrix W = (w;;) of weights, and we want to minimize the sum
Yo Z'}zl x;jw;;. In other words we want to minimize the weight of all the edges that
are broken (i.e. which have | f; — fj| < ¢;;). Putc; =0foralli =1,2,...,n. Since
every vertex may be assigned a frequency in {0, 1, ..., o — 1}, the following holds.

Proposition 3.8 The total number of solutions for the fs-FAP is o".

A heuristic for the fs-FAP, which has similarities with the greedy expectation
algorithm for the TSP (see [21]) is as follows (see [31] for details). We will assign
a frequency to each vertex xi, xz, ..., X,, in that order. Assume that we have already
assigned frequencies to xi, xp, ..., x;—; and suppose that we assign frequency f; to
x;. Forall j > i, let p;; be the probability that | f; — f;| < ¢;;, if we assign a random
frequency to j. Forall j < i letx;; = 1if | f; — fj| < ¢;; and x;; = 0 otherwise. We
now assign the frequency f; to x;, which minimizes the following:

i—1 n
E Wi Xij + E Wij Pij-
=

j=itl

In other words we choose the frequency which minimizes the weight of the con-
straints that get broken added to the average weight of constraints that will be broken by
assigning the remaining vertices with random frequencies. It is not too difficult to see
that the above approach produces an assignment of frequencies, such that the weight
of the broken edges is less than or equal to the average, taken over all assignments
of frequencies. Koller and Noble [31] proved the following theorem where G is the
algorithm described above.

Theorem 3.9 /31] The domination number of G is at least o™~ legn1=1,
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Note that the following holds.

o
Unfl'logzn'lfl > O,nflogzn72 >

— o2plogo

Therefore G finds a solution which is at least as good as a polynomial fraction of
all solutions (o is a constant). This means that the fs-FAP is DO M-easy.

In [31] it is furthermore shown that G has higher domination number than the
better-known greedy-type algorithm, which minimizes only Zl/_ 11 w;jX;ij, in each step.

3.5. DOM-hard Problems

In this section we consider two well-known graph theory problems, which are some-
what different from the previous problems we have considered. Firstly, the number of
feasible solutions, for an input of size n, depends on the actual input, and not just its size.

A clique in a graph G is a set of vertices in G such that every pair of vertices in
the set are connected by an edge. The Maximum Clique Problem (MC]) is the problem
of finding a clique of maximum cardinality in a graph. A vertex cover in a graph G is
a set S of vertices in G such that every edge is incident to a vertex in S. The Minimum
Vertex Cover Problem (MVC) is the problem of finding a minimum cardinality vertex
cover. It is easy to see that the number of cliques in a graph depends on its structure,
and not only on the number of vertices. The same holds for vertex covers.

The problems we have considered in the previous subsections have been DOM-
easy. We will show that MCI and MVC are DO M-hard unless P = NP.

Theorem 3.10 /20] MCl is DO M-hard unless P = NP,

Proof. We use a result by Héstad [29], which states that, provided that P # NP, MCl
is not approximable within a factor n'/>~¢ for any € > 0, where 7 is the number of
vertices in a graph.

Let G be a graph with n vertices, and let g be the number of vertices in a maximum
clique Q of G. Let A be a polynomial time algorithm and let A find a clique M with
m vertices in G.

Since the clique O ‘dominates’ all 27 of its subcliques and the clique M ‘dominates’
at most (;)2’" cliques in G, the domination ratio » of 4 is at most (:1)2"’ /2%. By the
above non-approximability result of Hastad [29], we may assume that mn®* < g. Thus,

(:7)2’” - (en/m)m 2™ - (n/m)"(2e)" _
29 = 24 - 2w

r < 2%,
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where s = m(logn — logm + 1 + loge — n%%). Clearly, 2* is smaller than 1/ p(n)
for any polynomial p(n) when n is sufficiently large. O

An independent set in a graph is a set S of vertices such that no edge is joins two
vertices in S. The Maximum Independent Set problem (MIS) is the problem of finding
a minimum cardinality independent set in a graph.

Question 3.11 Using Theorem 3.10 prove that MIS is DO M-hard unless P=NP.

Question 3.12 Let G = (V, E) be a graph. Prove that S in an independent set in G if
and only if V. — S is a vertex cover in G.

Question 3.13 Using the results of the previous two questions prove that MVC is
DOM-hard unless P = NP

3.6. Other Problems

There are many other combinatorial optimization problems studied in the literature
that were not considered above. We will overview some of them.

In the Generalized TSP, we are given a weighted complete directed or undirected
graph G and a partition of its vertices into non-empty sets V1, ..., V. We are required
to compute a lightest cycle in G containg exactly one vertex fromeach V;,i =1, ..., k.
In the case when all V;’s are of the same cardinality, Ben-Arieh et al. [8] proved that
the Generalized TSP is DO M -easy.

The Quadratic Assignment Problem (QAP) can be formulated as follows. We are
given two n x n matrices 4 = [a;;] and B = [b;;] of integers. Our aim is to find a
permutation 7 of {1, 2, ..., rn} that minimizes the sum

n n
D0 aibaiiy-

i=1 j=1

Using group-theoretical approaches, Gutin and Yeo [25] proved only that QAP is
DOM-easy when n is a prime power.

Conjecture 3.14 QAP is DOM-easy (for every value of n).

It was noted in [20] that Theorem 3.10 holds for some cases of the following general
problem: the Maximum Induced Subgraph with Property I1 (MISP), see Problem GT25
in the compendium of [4]). The property IT must be hereditary, i.e., every induced
subgraph of a graph with property IT has property I1, and non-trivial, i.e., it is satisfied
for infinitely many graphs and false for infinitely many graphs. Lund and Yannakakis
[32] proved that MISP is not approximable within n¢ for some € > 0 unless P = NP, if
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I is hereditary, non-trivial and is false for some clique or independent set (e.g., planar,
bipartite, triangle-free). This non-approximability result can be used as in the proof of
Theorem 3.10.

4. Greedy Algorithm

The main practical message of this section is that one should be careful while
using the classical greedy algorithm in combinatorial optimization (CO): there are many
instances of CO problems for which the greedy algorithm will produce the unique worst
possible solution. Moreover, this is true for several well-known optimization problems
and the corresponding instances are not exotic, in a sense. This means that not always
the paradigm of greedy optimization provides any meaningful optimization at all.

In this section we provide a wide extension of Theorem 1.2, which slightly general-
izes the main theorem in [23]. Interestingly, the proof of the extension is relatively easy.

An independence system is a pair consisting of a finite set £ and a family F of
subsets (called independent sets) of E such that (I1) and (I2) are satisfied.

(I1) The empty set is in F;
(I2) If X € F and Y is a subset of X, then ¥ € F.

A maximal (with respect to inclusion) set of F is called a base. Clearly, an independence
system on a set £ can be defined by its bases. Notice that bases may be of different
cardinality.

Many combinatorial optimization problems can be formulated as follows. We are
given an independence system (£, F) and a weight function wt that assigns an integral
weight wt(e) to every element e € E. The weight wt(S) of S € F is defined as the sum
of the weights of the elements of S. It is required to find a base B € F of minimum
weight. In this section, we will consider only such problems and call them the (£, F)-
optimization problems.

If SeF, then let I(S)={x: SU{x} e F}—S. The greedy algorithm (or,
greedy, for short) constructs a base as follows: greedy starts from an empty set X,
and at every step greedy takes the current set X and adds to it a minimum weight
element e € I(X); greedy stops when a base is built.

Consider the following example. Let E’ = {a, b, ¢, d}. We define an independence
system (E’, F’) by listing its two bases: {a, b, ¢}, {c, d}. Recall that the independent
sets of (E’, F') are the subsets of its bases. Let the weights of a, b, ¢, d be 1, 5,0, 2,
respectively. (Notice that the weight assignment determines an instance of the (£, F')-
optimization problem.) greedy starts from X = @, then adds ¢ to X. At the next
iteration it appends a to X. greedy cannot add d to X = {a, ¢} sinced ¢ I(X). Thus,
greedy appends b to X and stops.
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Since 6 = wt(a, b, ¢) > wt(c, d) = 2, the domination number of greedy is 1 for
this instance of the (£’, F")-optimization problem.

Note that if we add (I3) below to (I1),(I2), then we obtain one of the definitions of
a matroid [33]:

(I3) If U and V are in F and |U| > | V|, then there exists x € U — V such that
VUix}eF.

It is well-known that domination number of greedy for every matroid (£, F) is
|F|: greedy always finds an optimum for the (£, F)-optimization problem. Thus, it
is surprising to have the following theorem that generalizes Theorem 1.2.

Theorem 4.1 /23, 24] Let (E, F) be an independence system and B' = {x1, ..., xi},
k > 2, a base. Suppose that the following holds for every base B € F, B # B/,
k=1
D U@ xa, .. x) N Bl < k(k + 1)/2. (1)
j=0
Then the domination number of greedy for the (E, F)-optimization problem equals
1.
Proof. Let M be an integer larger than the maximal cardinality of a base in (£, F).
Let wt(x;) =iM and wt(x) =1+ jM if x ¢ B', x € I(x1,x2,...,x;_1) but x ¢
I(x1,x2,...,x;). Clearly, greedy constructs B" and wt(B') = Mk(k + 1)/2.

Let B = {y1, 2, ..., Vs} be a base different from B’. By the choice of wt made
above, we have that wt(y;) € {aM, aM + 1} for some positive integer a.

Clearly
Vi € 1(xlax21 e ’xa—l)s

but y; & I(x1, x2,...,X,). Hence, by (12), y; lies in I(xy, x2, ..., x;) N B, provided
j <a — 1. Thus, y; is counted ¢ times in le‘;(]) [{(x1, X2, ...,x;) N B|. Hence,

K k—1

WH(B) = > Wi(y) < s+ MY |I(x1.x2,....x;) N B
i=1 j=0
<s+Mkk+1)/2-1)=s— M+ wt(B'),

which is less than the weight of B’ as M > s. Since A finds B’, and B is arbitrary, we
see that greedy finds the unique heaviest base. O
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The strict inequality (1) cannot be relaxed to the non-strict one due to Question
4.3.

Question 4.2 Let (E,F) be a matroid. Using (13), show that for two distinct
bases B and B' = {x\, x3, ..., xi}, we have that |I(x\, X2, ...,x;) N B| > k — j for
j=0,1,..., k. Thus,

k—1

D U@ xg, . x) N Bl = k(k + 1)/2.
j=0

Question 4.3 /23] Consider a matroid (E’, F') in which E' consists of the columns
of matrix M = (1121), where I is the k X k identity matrix, and F' consists of col-
lections of linearly independent columns of M. (Check that (E', F') is a matroid.)
Let B and B’ = {x1,x,, ..., x;} be two distinct bases of our matroid. Show that
YA (1. X2, .. x)) N Bl = k(k + 1)/2.

Recall that by the Assignment Problem (AP) we understand the problem of finding
a lightest perfect matching in a weighted complete bipartite graph K, ,,.

Question 4.4 Prove Corollary 4.5 applying Theorem 4.1

Corollary 4.5 [23] Every greedy-type algorithm A is of domination number 1 for the
Asymmetric TSP, Symmetric TSP and AP

Bang-Jensen, Gutin and Yeo [7] considered the (£, F)-optimization problems, in
which wt assumes only a finite number of integral values. For such problems, the authors
of [7] completely characterized all cases when greedy may construct the unique worst
possible solution. Here the word may means that greedy may choose any element of
E of the same weight. Their characterization can be transformed into a characterization
for the case when wt assumes any integral values. An ordered partitioning of an ordered
set Z = {z1, z2, ..., zx} is a collection of subsets 41, 4,, ..., 4, of Z satisfying that
ifz, € Ajandzg € A; where 1 <i < j < q thenr < s. Some of the sets 4; may be
empty and U?_, 4; = Z.

Theorem 4.6 Let (E, F) be independence system. There is a weight assignment w
such that the greedy algorithm may produce the unique worst possible base if and
only if F contains some base B with the property that for some ordering xi, ..., X
of the elements of B and some ordered partitioning A, Ay, ..., A, of x1, ..., x; the
Jollowing holds for every base B’ # B of F:

r—1 r
D U4 )N B <Y jx |4, 2)
Jj=0 j=1

where Ay ; = AgU...UA;and Ay = 0.
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5. Practicality of Domination Analysis

Earlier in this chapter we have seen that domination analysis (DA) provides the-
oretical explanations of the poor computational behavior of greedy for certain opti-
mization problems and of the fact that some very large neighborhoods in local search
are computationally much weaker than some ‘small’ neighborhoods.

One might wonder whether a heuristic .A, that is significantly better that another
heuristic 3 from the point of view of DA, is better that 5 in computational experiments.
In particular, whether greedy is worse, in computational experiments, than any ATSP
heuristic of domination number at least (n — 2)! ? Generally speaking the answer to this
natural question is negative. This is because computational experiments and domination
analysis indicate different aspects of quality of heuristics. Nevertheless, it seems that
many heuristics of very small domination number such as greedy for TSP fail also
in computational experiments and thus are not very robust.

Koller and Noble [31] showed that the heuristic G that they introduced for the
frequency assignment problem is of larger domination number than the well-known
greedy algorithm. However, the greedy algorithm is usually better in computational
experiments than G. Judging only by the computational experiments, G is of no in-
terest. However, G might well be of interest when difficult instances of the frequency
assignment problem are considered.

Ben-Arieh et al. [8] studied some heuristics for the Generalized TSP defined above.
They investigated three modifications of a generic heuristic. In the computational ex-
periment in [8] one of the modifications was clearly inferior to the other two. The
best two behaved very similarly. Nevertheless, the authors of [8] managed to ’separate’
the two modifications by showing that one of the modifications was of much larger
domination number.

Acknowledgment
We would like to thank Tommy Jensen, Alek Vainshtein and the editors for a number

of helpful comments. Research of both authors is supported in part by a Leverhulme
Trust grant.

References

[1] RK. Ahuja, O. Ergun, I.B. Orlin and A.P. Punnen, A survey of very large-scale neighbor-
hood search techniques. Discrete Appl. Math. 123: 75-102 (2002).

[2] N. Alon, G. Gutinand M. Krivelevich, Algorithms with large domination ratio. J. Algorithms
50: 118-131 (2004).

[3] N. Alon and J.H. Spencer, The Probabilistic Method, 2nd edition, Wiley, New York, (2000).



Domination Analysis of Combinatorial Optimization Algorithms and Problems 169

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M. Protasi,
Complexity and Approximation, Springer, Berlin, (1999).

[51 E. Bach and J. Shallit, Algorithmic number theory, Volume 1, MIT Press, Cambridge, Ma.,
(1996).

[6] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer-
Verlag, London, (2000).

[7] J. Bang-Jensen, G. Gutin and A. Yeo, When the greedy algorithm fails. Discerete Optimiza-
tion, to appear.

[8] D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo and A. Zverovitch, Transformations of Gener-
alized ATSP into ATSP: experimental and theoretical study. Oper. Res. Lett. 31: 357-365
(2003).

[9] C. Berge, The Theory of Graphs, Methuen, London, (1958).

[10] D. Berend and S.S. Skiena, Combinatorial dominance guarantees for heuristic algorithms.
Manuscript, (2002).

[11] G. Cornuejols, M.L. Fisher and G.L. Nemhauser, Location of bank accounts to optimize
float; an analytic study of exact and approximate algorithms. Management Sci. 23: 789-810
(1977).

[12] V.G. Deineko and G.J. Woeginger, A study of exponential neighbourhoods for the traveling
salesman problem and the quadratic assignment problem, Math. Prog. Ser. A 87: 519-542
(2000).

[13] P.Erdés, On alemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51: 898-902 (1945).

[14] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multicriteria com-
binatorial optimization. OR Spektrum 22: 425-460 (2000).

[15] O.Ergun, J.B. Orlin and A. Steele-Feldman, Creating very large scale neighborhoods out of
smaller ones by compounding moves: a study on the vehicle routing problem. Manuscript,
(2002).

[16] F. Glover and A.P. Punnen, The traveling salesman problem: New solvable cases and link-
ages with the development of approximation algorithms, J Oper. Res. Soc. 48: 502-510
(1997).

[17] G. Gutin. On an approach to solving the TSP. In Proceedings of the USSR Conference on
System Research, pp. 184—185. Nauka, Moscow, (1984). (in Russian).

[18] G. Gutin, T. Jensen and A. Yeo, Domination analysis for minimum multiprocessor schedul-
ing. Submitted.

[19] G.Gutinand A.P. Punnen, eds., The Traveling Salesman Problem and its Variations, Kluwer,
Dordrecht, (2002).



170 Gregory Gutin and Anders Yeo

[20] G. Gutin, A. Vainshtein and A. Yeo, Domination Analysis of Combinatorial Optimization
Problems. Discrete Appl. Math. 129: 513-520 (2003).

[21] G. Gutin and A. Yeo, Polynomial approximation algorithms for the TSP and the QAP with
a factorial domination number. Discrete Appl. Math. 119: 107-116 (2002).

[22] G. Gutinand A. Yeo, Upper bounds on ATSP neighborhood size. Discrete Appl. Math. 129:
533-538 (2003).

[23] G. Gutin and A. Yeo, Anti-matroids. Oper. Res. Lett. 30: 97-99 (2002).
[24] G. Gutin and A. Yeo, Introduction to domination analysis. Submitted.

[25] G. Gutin, A. Yeo and A. Zverovitch, Traveling salesman should not be greedy: domination
analysis of greedy-type heuristics for the TSP. Discrete Appl. Math. 117: 81-86 (2002).

[26] G. Gutin, A. Yeo and A. Zverovitch, Exponential Neighborhoods and Domination Analysis
for the TSP. In The Traveling Salesman Problem and its Variations (G. Gutin and A.P.
Punnen, eds.), Kluwer, Dordrecht, (2002).

[27] D.S. Johnson and L.A. McGeoch, The traveling salesman problem: A case study in lo-
cal optimization. In Local Search in Combinatorial Optimization (E.-H.L. Aarts and J.K.
Lenstra, eds.), Wiley, Chichester, (1997).

[28] D.S. Johnson, G. Gutin, L. McGeoch, A. Yeo, X. Zhang, and A. Zverovitch, Experimental
Analysis of Heuristics for ATSP. In The Traveling Salesman Problem and its Variations (G.
Gutin and A. Punnen, eds.), Kluwer, Dordrecht, (2002).

[29] J. Hastad, Clique is hard to approximate within n'~¢, Acta Mathematica 182: 105-142
(1999).

[30] H.Kise, T. Ibaraki and H. Mine, Performance analysis of six approximation algorithms for
the one-machine maximum lateness scheduling problem with ready times. J. Oper. Res.
Soc. Japan 22: 205-223 (1979).

[31] A.E. Koller and S.D. Noble, Domination analysis of greedy heuristics for the frequency
assignment problem. To appear in Discrete Math.

[32] C. Lund and M. Yannakakis, The approximation of maximum subgraph problems. Proc.
20th Int. Colloq. on Automata, Languages and Programming, Lect. Notes Comput. Sci.
700 (1993) Springer, Berlin, pp. 40-51.

[33] J. Oxley, Matroid Theory. Oxford Univ. Press, Oxford, (1992).

[34] A.P.Punnen, F. Margot and S.N. Kabadi, TSP heuristics: domination analysis and complex-
ity. Algorithmica 35: 111-127 (2003).

[35] A. Punnen and S. Kabadi, Domination analysis of some heuristics for the asymmetric
traveling salesman problem, Discrete Appl. Math. 119: 117-128 (2002).



Domination Analysis of Combinatorial Optimization Algorithms and Problems 171

[36] VI.Rublineckii, Estimates of the accuracy of procedures in the Traveling Salesman Problem.
Numerical Mathematics and Computer Technology, 4: 18-23 (1973) (in Russian).

[37] VI. Sarvanov, On the minimization of a linear from on a set of all n-elements cycles. Vestsi
Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 4: 17-21 (1976) (in Russian).

[38] VI. Sarvanov and N.N. Doroshko, Approximate solution of the traveling salesman problem
by a local algorithm with scanning neighbourhoods of factorial cardinality in cubic time. In
Software: Algorithms and Programs. Math. Institute of Belorussian Acad. of Sci., Minsk,
31: 11-13 (1981) (in Russian).

[39] T.W. Tillson, A hamiltonian decomposition of K3, m > 8. J Combinatorial Theory B 29:
68-74 (1980).

[40] E. Zemel, Measuring the quality of approximate solutions to zero-one programming prob-
lems. Math. Oper. Res. 6: 319-332 (1981).



7

On Multi-Object Auctions
and Matching Theory:
Algorithmic Aspects

Michal Penn and Moshe Tennenholtz

Faculty of Industrial Engineering and Management
Technion, Israel Institute of Technology
Haifa 32000, Israel

Abstract

Auctions are the most widely used strategic game-theoretic mechanisms in the Internet. Auctions
have been mostly studied from a game-theoretic and economic perspective, although recent work
in Al and OR has been concerned with computational aspects of auctions as well. When faced
from a computational perspective, combinatorial auctions are perhaps the most challenging type
of auctions. Combinatorial auctions are auctions where buyers may submit bids for bundles of
goods. Another interesting direction is that of constrained auctions where some restrictions are
imposed upon the set of feasible solutions. Given that finding an optimal allocation of the goods
in a combinatorial and/or constrained auction is in general intractable, researchers have been

concerned with exposing tractable instances of combinatorial and constrained auctions problems.

In this chapter we discuss the use of b-matching techniques in the context of combinatorial and
constrained auctions.'

1. Introduction

The emergence of electronic commerce has led to increasing interest in the design
of protocols for non-cooperative environments (see e.g. [24, 15,29, 7]). The widespread
proliferation of auctions in the Internet, and the fact that auctions are basic building
blocks for a variety of economic protocols, have attracted many researchers to tackle the
challenge of efficient auction design (e.g. [32, 19, 16, 28, 21]). The design of auctions
introduces deep problems and challenges both from the game-theoretic and from the
computational perspectives. This chapter mainly concentrates on computational aspects
of auctions. More specifically, we concentrate on addressing computational problems
of combinatorial and of constrained auctions, extending upon previous work on this

'Most of the results in this chapter are based on [22, 30, 10].
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basic topic e.g., [26, 20, 28, 9, 22, 1]. Work on computational aspects of auctions fits
into two main categories:

1. Finding tractable cases where one can find polynomial algorithm for the allocation
of goods in complex auctions. For example, the work reported in [26] was the first
to introduce such an approach in the context of combinatorial auctions, while in
[22] this issue is tackled in the context of constrained multi-object auctions. In
[20], the complexity of the bidding language is discussed as well.

2. Finding heuristics in order to practically tackle highly complicated auctions. Good
examples on early work on that subject can be found in [28, 9].

In this chapter we deal with the first issue above. Our emphasis will be on the use
of b-matching techniques in order to yield polynomial algorithms.

In a typical auction setting, an organizer designs a mechanism in order to sell
k objects to a set of potential buyers. The outcome of each such mechanism is an
allocation of the objects to the buyers, and a transfer of money from the buyers to the
organizer. Much of the study of auctions is devoted to the case where there is only one
object to be sold, see [33] for a survey, or (alternatively) to cases where the auctions
for the different objects are independent of one another. However, many multi-object
auctions do not satisfy the above-mentioned independence assumption. There are two
major reasons for that: 1. The valuation of a buyer for a set of goods may be different
from the sum of its valuations for each of them. 2. Auctions might be subject to various
(social) constraints, which make only some of the allocations of the objects acceptable.
For example, the famous FCC auction for radio spectrum [8], which inspired much of
the recent work in auction theory, can be viewed as having both of the above properties.

Consider a situation where a VCR, a TV, and a Microwave are sold; a buyer may
be willing to pay $200 for the TV, $300 for the VCR, and $150 for the microwave, but
might be willing to pay only $550 for getting all of them; or in a game of Monopoly, a
player may be willing to pay $200 for a railroad, but would be willing to pay $1000 for
all four railroads. In order to allocate the goods in a satisfactory manner, bids for bun-
dles of goods should be allowed; given these bids, we need to find an optimal, revenue
maximizing, allocation of the goods. This problem is referred to as the combinatorial
auction problem, and it is in general intractable [26]. As mentioned above, this chap-
ter deals with polynomial algorithms for some tractable cases. A number of general
techniques for tackling the complexity of combinatorial auctions have been introduced.
Namely, several authors [20, 31] have dealt with the problem of winner determination in
combinatorial auctions as an integer programming [IP] problem, and considered linear
programming [LP] relaxations of that problem for isolating tractable cases of the gen-
eral problem. Other researchers used dynamic programming techniques to solve some
combinatorial auctions problem [13]. Another general technique for addressing the
complexity of the combinatorial auction problems uses b-matching techniques [30, 10].

Considering the constrained auction problem, we assume that the buyers send in-
dependent bids for each of the objects, but the system needs to enforce some typical
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constraints; the system may need to guarantee that a particular buyer (e.g., a represen-
tative of a certain minority) will get at least one good from a particular set of goods, or
that a buyer will not get more than b goods from another set of goods (e.g., in order to
guarantee that a single party will not take control of part of the market). We refer to the
related auctions as constrained multi-object auctions. The computational aspects of the
constrained auction problem have been dealt with very little in the literature [1, 22, 10].
Some special cases of this problem were also solved by using b-matching techniques
[22, 10].

In this chapter, we survey the use of b-matching techniques for solving combi-
natorial and constrained auction problems. Thus, our goal may be seen as to equip
researchers who deal with the theory and practice of combinatorial and constrained
auctions with an additional general technique for addressing the complexity of that
problem. Namely, we expose and explore the use of b-matching techniques for the
combinatorial and constrained auctions set-up, and employ h-matching techniques in
various ways in order to efficiently address several non-trivial instances of the combi-
natorial and constrained auctions problems. We will illustrate some of the b-matching
techniques in some particular cases, and mostly for constrained auctions.

2. Preliminaries and Definitions

In combinatorial auction set-ups a seller sells m goods to n potential buyers.
A bid of buyer i is a pair (S, p), where S is a bundle of goods and p is a non-
negative real number that denotes the price offer for S. Let X = {x|, x5, ..., x;}, where
x;i = (S;, pi), 1 <i <t be a set of bids, and denote by S(x;) and P(x;) the bundle of
goods and the price offer of bid x;, respectively. The combinatorial auction problem
[CAP] is to find an X, € X, for which Xy, P(x;) is maximal, under the constraint that
S(x;) N S(x;) = @ forevery x;, x; € X,,i # j. The CAP is NP-hard, see [26], since it
is equivalent to the weighted set packing problem which is known to be NP-complete
[14]. The CAP is even hard to approximate [27].

The literature distinguishes between two types of combinatorial auctions. In a sub-
additive combinatorial auction a buyer’s bid foreverybundle S = S; U $;, S1 NS, =0
of goods, is less than or equal to the sum of its bids for S| and S,. In a super-additive
combinatorial auction a buyer’s bid for every bundle S of goods, as above, is greater
than or equal to the sum of its bids for S} and ;. To put it formally, let B be any set,
then a function f : 22 — R is sub-additive if for any two disjoint subsets S;, S, C B it
holds that £(S; U $2) < f(S1) + f(S2), super-additive if f(S; U $2) > f(S1) + f(S2)
and additiveif (S U Sy) = f(S1) + f(S,). Typically, auctions for substitute goods are
sub-additive, while auctions for complementary goods are super-additive. For example,
if a buyer is interested in obtaining one TV from among a set of TVs, then typically
his/her valuation for obtaining several TVs will be smaller than the sum of his/her
valuations for obtaining each of them, since these goods are substitutes. Similarly, if a
buyer is interested in purchasing a particular bundle of socks and shoes, then his/her
valuation for the pair will be typically higher than the sum of his/her valuations for
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each of the individual goods, since these goods are complementary. Hence, both auction
types, the sub-additive and the super-additive ones, are of central importance.

As indicated before, the algorithms presented in this chapter are based on the
general b-matching algorithm. Therefore, we give here the definition of the general b-
matching problem. Let G = (V, E) be a weighted undirected graph with w : £ — R,
its weight function. Let 2', b" : V' — Z, (where Z, is the set of non-negative integers)
be two functions (the lower and upper factor functions), and let §(v) denote the set
of edges having vertex v € V' as one of their end-vertices. A (general) b-matching is
a function y : £ — Z, such that b'(v) < y(§(v)) < b"(v), where y(8(v)) stands for
Zee&(v) y(e), for each vertex v. Now, the maximum (general) weighted b-matching
problem is: Given a weighted undirected graph (G, w) and two factor functions b', b :
V' — Z,, find a (general) b-matching y with ) _, w(e)y(e) as large as possible.
Note that if ' = 0, then the general b-matching problem is equivalent to the classic
b-matching problem. In case no confusion arises, we refer to the general b-matching
problem as the b-matching problem. A weighted b-matching of maximum value is called
amaximum b-matching. We further define the capacitated general b-matching problem.
Let G = (V, E) be an undirected graph, and ¢!, ¢" : £ — Z, (the lower and upper
capacity functions), then a b-matching y is called c-capacitated if ¢'(e) < y(e) < c"(e)
for each edge e of G. The capacitated weighted b-matching problem is the following:
Given a weighted undirected graph (G, w), two factor functions &', b : V' — Z, and
two capacity functions ¢', ¢* : E — Z,, find a c-capacitated h-matching y such that
> ocr W(e)y(e) is as large as possible. Note that this problem can be easily reduced to
a similar problem with no lower capacity restrictions.

The above problem is known to be tractable, see for example [12], pp. 254-259.
For the interested reader, we recommend further reading in [17], [11] pp. 135-224 and
[4]; or any other book on combinatorial optimization. The interested reader can also
consider [23] for a pseudopolynomial algorithm for the weighted b-matching problem,
[6] for the first polynomial algorithm, and [2] for the first strongly polynomial algorithm.
The tractability of the b-matching problem will play a significant role in this chapter.

In the simple case, where no constraints are imposed on the buyers, and the only
limitations are the number of available goods, thus only simple quantity constraints
are imposed on the goods, the problem can be solved by using a maximum capacitated
b-matching algorithm in the following bipartite graph. The vertex bipartition is com-
posed of the set of n buyers and the set of m goods. An edge connects a vertex repre-
senting a buyer to a vertex representing a good if the corresponding buyer submits a
monetary bid on the corresponding good. The weight of this edge is the value of the
bid. For illustration we give the following simple example.

Assume a combinatorial auction is taking place on a set of three types of goods
that consists of two identical units of VCR, one unit of TV and one unit of Microwave.
Assume, further, that the bids are given by 2 buyers and that each buyer is inter-
ested in at most one unit of each of the different goods. An agent’s bid/valuation for
any bundle of goods, one of each category, is taken as the sum of its bids for the
individual items in this bundle. The first (second) buyer offers $300 ($250) for one
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VCR

b(MW)=1
c(e)=1, foralle

Figure 1. The constructed bipartite graph for the above example.

unit of VCR, $200 ($270) for the TV and $150 ($150) for the microwave. Then, the
bipartite graph obtained is a complete bipartite graph where one side consists of three
vertices that correspond to the three types of goods, labeled VCR,TV and MW, while
the other side consists of two vertices, labeled 1 and 2, one for each buyer. Thus the
bipartite graph obtained is a K; 3. There are 6 edges in the graph with the follow-
ing weights: w(l, VCR) =300, w(l, TV) =200, w(l, MW) =150, w2, VCR) =
250, w(2, TV) =270 and w(2, MW) = 150, corresponding to the buyers’ bids. For
each vertex, the factor functions b, b* are the same and are given by: b(1) = b(2) = 3,
b(VCR)=2and b(TV) = b(MW) = 1. The lower and upper capacity functions are
the same and equal to 1 for each edge since each buyer is willing to buy at most one
unit of each good. Figure 1 below illustrates the above constructed bipartite graph.
One can easily see that the set of edges {(1, VCR), (2, VCR), (2, TV),(1, MW)}isa
maximum matching of value 970. In our auction setting, the above solution will imply
the following allocation of goods to buyers: buyer 1 will get a VCR and a Microwave
while buyer 2 will geta VCR and a TV.

Let G be the above undirected bipartite graph that corresponds to the simple
quantity constraints case and A4 its incidence matrix. It is well known that 4 is TUM
(totally unimodular). This implies that the general maximum capacitated b-matching
problem in G can be solved also by employing linear programming algorithm.

The importance of the above simple result is by showing a general connection

between b-matchings and feasible allocations of the goods based on buyers’ bids. In
the sequel, we will consider also cases where this mapping is more subtle.

3. Combinatorial Auctions

In this section we deal with combinatorial auctions. The main feature of com-
binatorial auctions is that they allow handling cases where a buyer’s valuation for a
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bundle of goods may differ from the sum of its valuations for the individual items in
that bundle.

3.1. Quantity Constraints

Consider an auction for the reservation of seats in a particular flight. Each potential
buyer submits bids for each of the seats in the airplane, but restricts the total number
of seats he may wish to obtain. This auction has the property that the payment of buyer
i for the set of seats allocated to him, subject to his quantity constraint, is the sum
of his bids for the individual seats in this set. However, this auction is a sub-additive
combinatorial auction; a buyer will pay 0 for every additional seat assigned to him
beyond his limit on the number of required seats.

Definition 3.1 4 Quantity-constrained multi-object auction is a sub-additive combi-
natorial auction where bids are of the form (a,, p1, az, p2, - .., ar, Pk, q) Where p; is a
price offer for object a;, and q is the maximal number of objects that are to be assigned.

Notice that in the above definition we used the term multi-object auction. This is
in order to emphasize that although the auction is combinatorial, it has some syntactic
similarity with other types of multi-object auctions, such as constrained multi-object
auctions [22], since the bids are not stated explicitly for bundles of goods.

Theorem 3.1 Quantity-constrained multi-object auctions are computationally
tractable.

3.2. Binary Bids

We have seen that simple quantity constraints can be incorporated into simple
multi-object auctions, while still getting tractable solutions. Previous work has tried to
tackle the tractability of combinatorial auctions where bids are given for non-singleton
bundles. It was shown that the case of bundles of size two is tractable, while the case of
larger bundles is NP-hard. Indeed, the first use of matching techniques in the context
of combinatorial auctions appears in [26]. In that paper the authors consider the case
of bundles of size two. They look at an undirected graph where the nodes represent the
set of goods, and edges (and edge weights) are associated with bids. The solution of the
CAP can be reduced to the computation of an optimal weighted matching. Matching
techniques and the more powerful 5-matching techniques can go much further. We now
show that the case of bundles of size two and the case of quantity constraints can be
tackled simultaneously in an efficient manner.

Definition 3.2 A4 quantity-constrained multi-object auction with binary combinatorial
bundles is a sub-additive combinatorial auction that allows two types of bids: 1. The bids
allowed in a quantity-constrained multi-object auction. 2. Bids of the form (a, p, b, q, 1)



On Multi-Object Auctions and Matching Theory: Algorithmic Aspects 179

where p is the price offer for good a, q is the price offer for good b, and p + q — [ is
the price offer for the pair {a, b}, where 0 < | < min(p, q).

Given the previous seats reservation example we allow each potential buyer to
express sub-additive bids for pairs of seats, and the singletons they consist of, where
she can explicitly declare the rebate asked for if both seats are allocated. This is in
addition to bids that allow quantity constraints.

Using b-matching techniques it can be proven that:

Theorem 3.2 Given a quantity-constrained multi-object auction with binary combi-
natorial bundles, the CAP is computationally tractable.

3.2.1.  Multi-Unit Binary Combinatorial Auctions

An interesting generalization of combinatorial auctions with binary bids is related
to the case where there are several available units of each of the objects. In this case,
when the buyer makes a bid for the bundle {a, b}, he does not care which copies of the
objects a and b he obtains, as long as he obtains a copy of each one of them. In order
to deal with this problem formally, we will need to introduce an extension of the CAP,
termed multi-unit CAP (mu-CAP).

In a multi-unit combinatorial auction set-up a seller sells m goods {1, 2, ..., m}
to n potential buyers, where there are k; units of good j (1 < j < m).

A bid of buyer i is a pair (S, p), where S is a bundle of goods and p is a non-
negative real number that denotes the price offer for S2 Let X = {x1,x2,...,x},
where x; = (S;, p;) (1 <i <t) be a set of bids, and denote by S(x;) and P(x;) the
bundle of goods and the price offer of bid x;, respectively. The multi-unit combinatorial
auction problem [mu-CAP]is to findan X, C X, for which ¥ x, P(x;) is maximal, under
the constraint that for every good j (1 < j <m) X)) < k;, where X, ={xeX,:
j € S(x)}. Notice that in the mu-CAP we still allow each buyer to get at most one unit
of each good, but the number of available units of good j is k; > 1.

The mu-CAP fits many practical applications. For example, a retailer may wish to
allow its customers to create their own desired binary bundle as part of a promotional
sale, while limiting the number of units of each good available on that sale. As it turns
out, b-matching allows to generalize the positive result on combinatorial auctions with
binary bids [26] to the context of the mu-CAP in a quite straightforward manner.

Theorem 3.3 The mu-CAP with binary bids is tractable.
2 This is a rather restricted version of multi-unit combinatorial auctions. In a more elaborated version a bid

can ask for several units of each of the goods. For example, in such elaborated version we can give a bid
for two TVs and three VCRs.
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3.3. Beyond Binary Bids

As we mentioned, combinatorial auctions where bids are only for single goods or
for pairs of goods are tractable [26]. However, when bids are for bundles of size greater
than two, the CAP is in general intractable. Here we extend these results by considering
cases of non-additive combinatorial auction, that is, where the bid for an allocated set
of goods is different from the sum of bids for the singletons it consists of, and the
bundles’ sizes are greater than two. We start with two such results that we believe to
be of considerable importance in this regard. The first result shows that bundles of size
greater than two in which the bid for an allocated set of goods is different from the
sum of bids for the singletons it consists of, can be handled in polynomial time. In
the second result, a general form of combinatorial auctions where bids for triplets are
permitted, i.e., combinatorial auctions with symmetric bids for triplets are shown to be
tractable.

Definition 3.3 An almost-additive multi-object auction is a combinatorial sub-additive
auction where bids for non-singletons are of the form (ai, p1, az, p2, .-, k, Pk q)
where p; is the price offer for object a;, the price offer for any proper subset A C
{ai, ..., ar} equals X4 cqpi, and the offer for {ai, ..., ax} is q; in addition, w =
Yi<i<kpi —q > 0, andw < p; (1 < j <k).

In an almost-additive multi-object auction a shopping list of goods is gradually
built until we reach a situation where the valuations become sub-additive; sub-additivity
is a result of the requirement that w > 0. The other condition on w implies that the bid
on the whole bundle is not too low with respect to the sum of bids on the single goods.
Notice that typically ¢ will be greater than the sum of any proper subset of the p;’s; our
only requirement is that ¢ will be lower than the sum of all the p;’; hence, bidding on
and allocation of the whole {a, a, .. ., a;} bundle is a feasible and reasonable option.
Such a situation may occur if each buyer is willing to pay the sum of the costs of the
goods for any strict subset of the goods, but is expecting to get some reduction if he is
willing to buy the whole set.

Theorem 3.4 For an almost-additive multi-object auction, the CAP is computationally
tractable.

We continue with the case of combinatorial auctions with bids for triples of goods.
The general CAP in this case is NP-hard. However, consider the following:

Definition 3.4 A combinatorial auction with sub-additive symmetric bids for triplets is
a sub-additive combinatorial auction where bids are either for singletons, for pairs of
goods (and the singletons they are built of), or for triplets of goods (and the correspond-
ing subsets). Bids for singletons and pairs of goods are as in Definition 3.2, while bids
for triplets have the form (ai, p1, a2, p2, as, p3, b1, b2): the price offer for good a; is
Pi. the price offer for any pair of goods {a;, a;}, (1 <i, j <3;i # j)is p; + p; — by,
and the price offer for the whole triplet {ay, a;, as} is p1 + p2 + p3 — ba.
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Symmetric bids may be applicable to many domains. One motivation is the case
where each buyer has a certain fixed cost associated with any purchase (e.g., paper work
expenses, etc.), which is independent of the actual product purchased; this additional
cost per product will decrease as a function of the number of products purchased (e.g.,
one does not need to duplicate the amount of paper work done when purchasing a pair
of products rather than only one).

Theorem 3.5 Given a combinatorial auction with sub-additive symmetric bids for
triplets, where each bid for triplet (ay, p1, a2, p2, as, p3, b1, b2) has the property that
by > 3by, and p; > by — bi(1 <i < 3), then the CAP is computationally tractable.

The theorem makes use of the two conditions that connect by, b,, and the bids on
singletons. These conditions measure the amount of sub-additivity relative to the purely
additive case where a bid for a bundle is the sum of bids for the singletons it consists of.
The first condition is that the decrease in valuation/bid for a bundle, relative to the sum
of bids for the singletons it consists of, will be proportional to the bundle’s size; the
second condition connects that decrease to the bids on the singletons, and requires that
the above-mentioned decrease will be relatively low compared to the bids on the single
goods. Both of these conditions seem quite plausible for many sub-additive auctions.

The technique for dealing with bundles of size 3 can be extended to bundles of
larger size. However, the conditions on the amount of decrease in price offers as a
function of the bundle size become more elaborated, which might make the result less
applicable.

3.4. A Super-Additive Combinatorial Auction

In the previous sub-sections we have presented solutions for some non-trivial
sub-additive combinatorial auctions. Here we show an instance of super-additive com-
binatorial auctions that can be solved by similar techniques.

Definition 3.5 A combinatorial auction with super-additive symmetric bids for triplets
is a super-additive combinatorial auction where each buyer submits a bid for a triplet
of goods and its corresponding subsets, and is guaranteed to obtain at least one good.
The bids for triplets have the form (ay, p\, a2, p2, as, p3, b1, b2): p; is the price offer
Jor good a;, the price offer for any pair of goods {a;, a;}(1 <i,j < 3;i # j)is p; +
pj + by, and the price offer for the whole triplet {a1, a,, a3} is p1 + p2 + p3 + ba.

Notice that the major additional restriction we have here is that the auction pro-
cedure must allocate at least a single good to each buyer. Of course, in practice the
auction will have a reserve price, which will make this assumption less bothering for
several applications. This is since it will require each buyer to pay at least the reserve
price for the good it gets. For example, assume a car manufacturer wishes to promote a
new set of car models by selling a set of cars in an auction to his buyers; it can decide
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to guarantee that each participating buyer will be allocated at least one car but assign
a reserve price; a car will not be sold for a price which is below that reserve price.

Theorem 3.6 For combinatorial auctions with super-additive symmetric bids for
triplets such that 1.5b) < by < 2by, the CAP is computationally tractable.

3.5. Combinatorial Network Auctions

Linear goods refer to a set of goods where there is some linear order on them,
i.e., they can be put on a line with a clear ordering among them. An example may be
spots along a seashore. Linear goods turned out to be a very interesting setting for
multi-object auctions. The assumption is that bids will refer only to whole intervals.
For example, bids will refer only to a set of spots along the seashore that define an
interval (with no “holes”). Auctions for linear goods are also a useful case of tractable
combinatorial auctions (see [26, 20, 13]). Consider for example the case of discrete
time scheduling of one resource (e.g., allocation of time slots in a conference room),
or for the allocation of one-dimensional space (e.g., allocation of slots on a seashore),
etc. When each request refers to a complete sequence of time slots, then by referring to
each time slot as a good we get the case of auctions with linear goods. Another real-life
example that fits also into this type of problem is that of radio frequency auctions,
such as the FCC auction. For more on the FCC auction, see [18], [8] and [25]. In an
auction for linear goods we have an ordered list of m goods, g1, . . . , g, and bids should
refer to bundles of the form g;, gi+1, &i42, ..., gj—1, g where j > i, i.e., there are no
“holes” in the bundle. The combinatorial auction problem, where bids are submitted on
intervals is the same as auctions for linear goods, and is known as the Interval Auction
Problem. This problem was first discussed by Rothkopfet al. in [26]. It was also studied
by van Hoesel & Miiller in [13]. A wide extension of the result on the tractability of
auctions for linear goods is the following combinatorial network auctions problem.

Definition 3.6 A network of goods is a network G(O) = (V(0O), E(O)), where the set
of nodes, V(0O), is isomorphic to the set of goods O = {gi, ..., gn}. A combinatorial
network auction with respect to the set of goods O and the network G(O), is a combi-

natorial auction where bids can be submitted only for bundles associated with paths
in G(O).

Combinatorial network auction where G(O) is a tree is termed a combinatorial
tree auction. Combinatorial tree auction may be applicable in communication networks,
where the underline graph is a tree. This is a reasonable assumption since in many cases
the backbone of the network is a spanning tree. In such a case, goods are the edges
of the tree and any message that should be delivered from vertex i to vertex j can be
transmitted along the single path from 7 to j in the tree.

It is clear that combinatorial auctions for linear goods are simple instances of
combinatorial tree auctions, where the tree is a simple path. Using, yet again, matching
techniques, we can show:
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Theorem 3.7 Given a combinatorial tree auction problem, the CAP is computationally
tractable.

As trees are undirected graphs with no cycles, one might hope that the tractability
of the CAP could be extended to acyclic directed graphs (DAG). However, this does
not hold since the combinatorial network auction problem is NP-complete if G(O)
is a DAG. This NP-completeness result is obtained by using the following simple
transformation to the general combinatorial auction problem. Consider a complete
graph on n vertices. Assume the edges are oriented such that for any two vertices i and
7, the edge between them is directed from i to j iff i < j. Then, it is easy to see that
any bundle of goods can be represented by a path on the DAG, and vice versa, each
path corresponds to the bundle of goods that consists of the goods represented by the
vertices of the path.

4. Constrained Multi-Object Multi-Unit Auction

In constrained multi-object multi-unit auctions buyers’ valuations for the different
goods are taken as additive with the assumption that there are several identical units of
each of the m different types of goods. For simplicity we omit the multi-object term
of the constrained multi-object multi-unit auction problem and call it the constrained
multi-unit auction problem. In the constrained multi-unit auction problem, there are
external constraints on the allocation of goods. For example, consider a certain week
in which a conference center has to organize a few conferences for several companies.
Thus, the conference center aims to allocate his limited number of time slots of his
conference rooms to the several companies in a somewhat balanced way. Hence, the
number of time slots each company is allocated is restricted to obtain a feasible bal-
anced allocation. This creates another, complementary type of non-trivial multi-object
multi-unit auctions, that we now discuss. In general, the constrained multi-unit auction
problem is NP-hard. This is proved by using a reduction of the 3SAT problem to a
special version of the constrained multi-unit auction problem.

The constrained multi-unit auction problem is defined as follows. Denote by A4 the
set of the seller and the n buyers, by T the set of the m types of goods and by ¢ the
quantity vector, with g; units of good of type ¢;, for all j =1, 2, ---, m. In addition,
denote by P the payment function with p;; € R being the bid submitted by buyer i
to a single good of type ¢;. Further on, some social constraints are imposed on the
buyers. The following restrictions are considered. Buyer i is restricted to have at least
yilj and at most y;; goods of type 7;, with yi‘j, y;; integers such that 0 < yi‘j =¥ <4q;.
In addition, the total number of goods to be allocated to buyer 7 is limited to be at
least B} and at most B, with 8}, B}' integers such that 0 < ; < B! < Z'}’Zl q;. The
constrained multi-unit auction problem is, therefore, the following:

Definition 4.1 Given an 8-tuple (A, T, q, P, 8, B*, y', y"), where A is the buyer set,
T is the good type set, q € 7 is the good quantity vector, P : A x T — R is the
payment function, ', B* € 7!, are the buyers’ constraints vectors, and y', y" are the
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integer n X m buyer-good constraint matrices, find a feasible allocation of the goods
to the buyers, which maximizes the seller’s revenue.

Recall that the simple quantity constrained problem can be solved by constructing
an appropriate simple bipartite graph and then running a general b-matching algorithm
on that bipartite graph. In order to solve the constrained multi-unit auction problem, a
somewhat more complicated transformation is needed for constructing an appropriate
bipartite graph for this case that enables the use of a maximum capacitated general
b-matching algorithm to solve the problem. Such a transformation exists and implies
the following result.

Theorem 4.1 The constrained multi-unit auction problem is computationally tractable.

The constrained multi-unit auction problem can be generalized by further introduc-
ing entrance fees into the system. The generalized problem is termed the constrained
multi-unit auction problem with entrance fee. That is, in addition to the constrained
multi-unit auction problem definition, buyer i has to pay a fixed entrance fee of value
fi € R, if he wins at least one good. If entrance fees are to be paid just for taking part
in the auction, then the optimal solution of the problem with entrance fees remains the
same as that of the one without entrance fees, while its value increases by Y -, f;.
However, if entrance fees are paid only by those buyers who wins at least one good, then
employing a general b-matching algorithm to solve the problem requires further modi-
fication of the bipartite graph obtained for the constrained multi-unit auction problem.
Such a modification exists and thus, the following theorem holds.

Theorem 4.2 The constrained multi-unit auction problem with entrance fee is compu-
tationally tractable.

The constrained multi-unit auction problem with entrance fee can be formulated
naturally as a fixed charge integer programming (IP) problem. However, the LP relax-
ation of this IP formulation does not guarantee optimal integer solution. Inspired by
the constructed bipartite graph for solving the constrained multi-unit auction problem
with entrance fee, a more sophisticated IP formulation of the problem exists for which
its LP relaxation guarantees optimal integer solutions. The integrality result follows
from the fact that the incidence matrix of the obtained bipartite graph is TUM. This
integrality result gives an alternative method for solving the problem.

4.1. Volume Discount

We have assumed up to this point that the monetary bids, p;;, submitted by buyer i to
each unit of good of type #;, is independent of the size of the bid (order). Often, however,
the seller is willing to consider charging less per unit for larger orders. The purpose of
the discount is to encourage the buyers to buy the goods in large batches. Such volume
discounts are common in inventory theory for many consumer goods. We believe that
volume discounts are suitable, in a natural way, in many auction models as well.
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There are many different types of discount policies. The two most popular are: all
units and incremental. In each case, there are one or more breakpoints defining change
points in the unit cost. There are two possibilities: either the discount is applied to all
of the units in the bid (order), this is the all-unit discount, or it is applied only to the
additional units beyond the breakpoint - the incremental discount. Here we consider
the incremental case. We assume further that each buyer defines his own breakpoints.

Consider the following example. Two buyers are interested in trash bags and their
bids are of the following price policy. The first buyer is willing to pay 30 cents for each
bag for quantities below 500; for quantities between 500 and 1,000, he is willing to
pay 30 cents for each of the first 500 bags and for each bag of the remaining amount
he is willing to pay 29 cents each; for quantities over 1,000, for the first 500 bags he is
willing to pay 30 cents each, for the next 500 bags 29 cents each, and for the remaining
amount he is willing to pay 28 cents each. The second buyer has the following similar
policy. He is willing to pay 31 cents for each bag for quantities below 600; for quantities
over 600 bags he is willing to pay 31 cents for each of the first 600 bags and for the
remaining amount he is willing to pay 28 cents for each bag. The breakpoints in this
example are: 500 and 1,000 for the first buyer and 600 for the second one.

Formally the incremental volume discount constrained multi-unit auction problem
is defined as follows. Let r;; denote the number of breakpoints defined by buyer i
for a good of type #;, and let d;; denote the values of the breakpoints, with dioj =0.

Also, let p;; denote the unit cost for any additional unit beyond the breakpoint d;}‘l ,
for 1 < s <r;;. Then, each bid is composed of a 2-dimensional vector of length r;;,
(P> d5;). That is, buyer i will pay p;; for each one of the first d; goods of type ¢;
allocated to him. He will further pay pizj for each one of the next dizj — dilj goods,
pi; for each one of the next d;; — d;; goods, etc. The above mentioned problem is
denoted as the incremental volume discount constrained multi-unit auction problem
with entrance fee . The following assumptions are assumed: pilj > pizj > > p:j'f and

_ 40 1 2 ) rij
O_dl.j<dij<dij<~- <dij.

Using, yet, even more complicated construction, an appropriate bipartite graph
can be obtained so that running a general capacitated b-matching algorithm on this
graph will result a solution to the incremental volume discount constrained multi-unit
auction problem with entrance fee. Hence, the following theorem follows.

Theorem 4.3 The incremental volume discount constrained multi-unit auction prob-
lem with entrance fee is computationally tractable.

5. Conclusion

In this chapter we discussed the use of b-matching techniques in order to handle
non-trivial multi-object multi-unit auctions. We have shown that h-matching techniques
are highly applicable for both combinatorial auctions and constrained auctions, two
fundamental and complementary classes of multi-object and multi-unit auctions. While



186 Michal Penn and Moshe Tennenholtz

the more standard approach for handling complex auctions, such as combinatorial
auctions, typically relies on straightforward techniques such as LP relaxation of the
corresponding IP problem, b-matching techniques can be used in order to address
additional types of multi-object auctions. By combining standard matching techniques,
more general b-matching techniques, and capacitated b-matching techniques, tractable
solutions are found to basic combinatorial and constrained auctions.

The research reported in this chapter can be extended in various directions. First,
combinatorial bids and constraints are two basic properties of multi-object auctions,
and in future work one can combine them in a shared framework. Given that framework,
a study of the applicability of b-matching techniques to the more general setting should
be introduced. In addition, we believe that the applicability of b-matching techniques
goes beyond auctions, and may be useful in other economic settings. For example, it
seems that these techniques can be used in the context of double auctions and exchanges.
Finally, we remark that matching is a basic ingredient of markets in general; therefore, a
more general theory connecting algorithmic matching theory and economic interactions
may be a subject of future research.
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Strategies for Searching Graphs

Shmuel Gal
The University of Haifa

1. Introduction

The search problems considered in this chapter involve detecting an object such as a
person, a vehicle, or a bomb hiding somewhere in a graph (on an edge or at a vertex).
Some natural examples for such problems can be quite intriguing like finding a strategy
to get to the exit point of a maze in minimum expected time. We shall see that the optimal
search strategies sometimes have a simple structure, but, on the other hand, some very
simple graphs lead to difficult problems with complicated solutions.

An extensive research effort, initiated by Koopman and his colleagues in 1946, has
been carried out on this type of problem. (An updated edition of his book “Search and
Screening” has appeared in 1980.) Most earlier works on search assume that there exists
a probability distribution for the location of the target, which is known to the searcher
(i.e., a Bayesian approach is used). In addition, most previous works, such as the classic
work of Stone [29] “Theory of Optimal Search” which was awarded the 1975 Lanchester
Prize by the Operations Research Society of America, are concerned with finding the
optimal distribution of effort spent in the search but do not actually present optimal
search trajectories. A comprehensive survey was presented by Benkoski, Monticino,
and Weisinger [3].

In this chapter we shall take into consideration the fact that usually the searcher,
or searchers, have to move along a continuous trajectory and attempt to find those
trajectories which are optimal in the sense described in the sequel. We shall usually not
assume any knowledge about the probability distribution of the target’s location, using
instead a minimax approach. The minimax approach can be interpreted in two ways.
One could either decide that because of the lack of knowledge about the distribution
of the target, the searcher would like to assure himself against the worst possible case;
or, as in many military situations, the target is an opponent who wishes to evade the
searcher as long as possible. This leads us to find worst case solutions for the following
scenario. The search takes place in a set Q to be called the search space and the
searcher usually starts moving from a specified point O called the origin and is free to
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choose any continuous trajectory inside , subject to a maximal velocity constraint.
The searcher continues to move until he finds the (immobile) target. The aim of the
searcher is to minimize the (expected) time spent in searching. The search spaces
considered are graphs. Many search problems in two (or more) dimensional search
spaces are analyzed in [12] and [1].

We thus use the following framework. A searcher moves with unit speed along a
continuous trajectoryS looking for a (hidden) target in a graph Q. The notion “graph”
means, here, any finite connected set of arcs which intersect only at nodes of Q. Thus,
O can be represented by a set in a three-dimensional! Euclidean space with vertices
consisting of all points of O with degree # 2 plus, possibly, a finite number of points
with degree 2. (As usual, the degree of each node is defined as the number of arcs
incident at this node.) Note that we allow more than one arc to connect the same pair
of nodes.

The sum of the lengths of the arcs in Q will be denoted by p and called the total
length or the measure of the graph.

We consider searching for a target which can be located at any point, H, of the
graph, where H is either a vertex or any point on one of the arcs of Q0. A hiding dis-
tribution /4 is a probability measure on Q. A pure search strategy S is a continuous
trajectory in (, starting at the origin O, with speed 1. For any specific time ¢, S(¢)
denotes the location of the searcher at time . A mixed search strategy s is a prob-
ability measure on the set of these trajectories. (For a more formal presentation see

[12] or [1].)

We assume that the searcher finds the target as soon as his search trajectory visits
the target location. Obviously, the searcher would like to minimize the time spent
in searching (the search time) T. We will use a worst case analysis concentrating on

optimal search strategies that assure finding the target in minimum expected time. Thus

Definition 1 The value v(s) of a search strategy s is the maximum expected search
time taken over all the hiding points.

Definition 2 For any search problem
v = infu(s)

is called the “search value” or simply the “value” (of the search problem).
A strategy § which satisfies

v@E)=v
is called “an optimal search strategy”.

! Two dimensions are sufficient for planar graphs.
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Remark 3 The value v is actually the value of the search game between a searcher
and an immobile hider (the target). It is proven in [12] that this game always has a
value and an optimal search strategy.

We will not consider problems in which the target can move and try to evade
the searcher. Such problems, as well as many other search games, are analyzed
in[1].

Remark 4 Except for trivial cases, if only pure (nonrandomized) search strategies are
used, then several searchers are needed to guarantee capturing a mobile evader. The
interesting problem of determining the minimal number of such searchers in a given
network, called the ‘search number’, was considered by Parsons [24,25] and Megiddo
and Hakimi [22]. This problem has attracted much research. An important result was
obtained by Megiddo et al. [23] who showed that the problem of computing the search
number is NP-hard for general graphs but can be solved in linear time for trees.

In the next section we derive general upper and lower bounds for the expected
search time. We shall have cases, such as Eulerian graphs (Theorem 16 and 17) in
which the searcher can perform the search with “maximum efficiency” which assures
him a value of 1 /2. On the other hand, in the case of a non-Eulerian graph, we shall
prove that the value is greater than /2 and that the maximum value is w. This value is
obtained in the case that Q is a tree (Section 3). A more general family which contains
both the Eulerian graphs and the trees as subfamilies is the family of weakly Eulerian
graphs (see Definition 27) for which the optimal search strategy has a simple structure
similar to that for Eulerian graphs and trees (Section 4). We shall also demonstrate the
complications encountered in finding optimal strategies in the case that Q is not weakly
Eulerian, even if the graph simply consists of three unit arcs connecting two points
(Section 5). Finally we describe in Section 6 optimal strategies for searching a graph
with no a-priori knowledge about its structure. This is often called fraversing a maze.

Except for short proofs we present only very general sketches for our results. The
full proofs, as well as many other search games can be found in [1].

2. Lower and Upper Bounds

A useful hiding distribution for obtaining lower bounds on the expected search
time is the uniform distribution 4, i.e., “completely random” hiding strategy on Q.
More precisely:

Definition 5 The uniform distribution h,, is a random choice of the target location H
such that for all (measurable) sets B € Q,

Pr(H € B | h,) = u(B)/p.
(Note that © = 1 (Q).)

The next theorem presents a useful lower bound for v.
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Theorem 6 If the target location is chosen according to the uniform distribution
h, then, for any search strategy, the expected time spent in searching is at least

w/2.

Proof. Tt is easy to see that the probability that the target has been found by time ¢
satisfies

t
Pr(T <t) < min [—, 1]
7

which implies that

o0

E(T):/OooPr(T>t)dtZ/ max|:1—i,0] dt

0

® t
:/ <l——> dt = u/2.
0 w

Since the hiding distribution %, guarantees 1 /2 against any starting point of the
searcher, we also have the following:

Corollary 7 If there exists a search strategy with value v = /2, then allowing the
searcher to choose his starting point does not reduce the expected search time below

w/2.

In studying search trajectories in O, we shall often use the notion “closed trajec-
tory” defined as follows.

Definition 8 A trajectory S(t) defined for 0 < t < t is called “closed” if S(0) = S(t).
(Note that a closed trajectory may cut itself and may even go through some of the arcs
more than once.) If a closed trajectory visits all the points of Q , then it is called a
“tour”.

Eulerian tours, defined as follows, will have an important role in our discussion.

Definition 9 A4 graph Q is called “Eulerian” if there exists a tour L with length |,
in which case the tour L will be called an “Eulerian tour”.

A trajectory S (t), 0 <t < w, which covers all the points of Q in time ., will be called
an “Eulerian path”. (Such a path may not be closed.)

It is well known that Q is Eulerian if and only if the degree of every node is even,
and that it has an Eulerian path if and only if at most two nodes have odd degree. In
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the case that Q has two odd degree nodes, then every Eulerian path has to start at one
of them and end at the other. (See [9].)

Chinese postman tours will play an important role in our discussion:

Definition 10 A closed trajectory which visits all the points of Q and has minimum
length will be called a “minimal tour” (or a “Chinese postman tour”) and is usually
denoted by L. Its length will be denoted by [i.

Finding a minimal tour for a given graph is called the Chinese postman problem.
This problem can be reformulated for any given graph Q as follows. Find a set of
arcs, of minimum total length, such that when these arcs are duplicated (traversed
twice in the tour) the degree of each node becomes even. This problem was solved by
Edmonds [6] and Edmonds and Johnson [7] using a matching algorithm which uses
O(n*) computational steps, where 7 is the number of nodes in Q. This algorithm can be
described as follows. First compute the shortest paths between all pairs of odd-degree
nodes of Q. Then partition the odd-degree nodes into pairs so that the sum of lengths
of the shortest paths joining the pairs is minimum. This can be done by solving a
minimum weighted matching problem. The arcs of Q in the paths identified with arcs
of the matching are the arcs which should be duplicated (i.e., traversed twice). The
algorithm is also described by Christofides [5] and Lawler [21]. (An updated survey
on the Chinese postman problem is presented by Eiselt et al. [8].)

Once an Eulerian graph is given, one can use the following simple algorithm for
finding an Eulerian tour (see [4]). Begin at any node 4 and take any arc not yet used
as long as removing this arc from the set of unused arcs does not disconnect the graph
consisting of the unused arcs and incident nodes to them. Some algorithms which are
more efficient than this simple algorithm were presented by Edmonds and Johnson
[7]. Actually, it is possible to slightly modify Edmond’s algorithm in order to obtain a
trajectory (not necessarily closed) which visits all the points of O and has minimum
length. This trajectory is a minimax search trajectory (pure search strategy).

Example 11 Consider the graph in Figure 1 (having the same structure as Euler’s
Koninsberg bridge problem). The duplicated arcs in the minimal tour can be either
{ay, b1, c1} (based on the partition {AB, OC} ) or {b1,d} (based on {OB, AC} ) or
{ai, e} (based on {O A, BC} ). The corresponding sum of the lengths of the arcs is
either 5 or 4 or 5. Thus, the minimal tour duplicates the arcs by and d. The minimal
tour can be traversed by the following trajectory S,

S] = OblelOszeCdAmOazAdCc]O (1)
with length i = 20.

A minimax search trajectory is based on duplicating arcs (having minimum total
length) in order to make all the node degrees even except for the starting point O plus
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Figure 1.

another node. It can be easily seen that the arcs that have to be duplicated are a, and
by leading to the following minimax trajectory

Oblel OszeCdAal OalAaz 0C1C

with length 18.

The length of a Chinese postman tour is bounded by twice the size of the search
space as is stated by the following:

Lemma 12 Any minimal tour satisfies i1 < 2u. Equality holds only for trees.

This result can easily be obtained by considering a graph O obtained from Q as
follows. To any arc b in O, add another arc 5 which connects the same nodes and has
the same length as b. It is easy to see that O is Eulerian with a tour length 2. If we
now map the graph O into the original graph O such that both arcs b and b of Q are
mapped into the single arc b of Q, then the tour L is mapped into a tour L of Q with
the same length 2. If O is not a tree, it contains a circuit C. If we remove all new
arcs b in O corresponding to this circuit, then the resulting graph is still Eulerian and
contains Q, but has total length less than 2.

Using the length & of the minimal tour, we now derive an upper bound for the
value of the search game in a graph in terms of the length of its minimal tour.

Lemma 13 For any graph Q, the value v satisfies v < [i/2, where [i is the length of
a minimal tour L of Q.

Proof. Assume that the searcher uses a strategy § which encircles L equiprobably in
each direction. It can be easily seen that, for any target location, the sum of these two
possible discovery times is at most fi. Consequently, the expected discovery time does
not exceed fi/2. [ ]
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Definition 14 The search strategy 5 used for proving Lemma 13 will be called
the “random Chinese postman tour”.

A random Chinese tour of Figure 1 is either to randomly follow either S) (see (1))
or the same path in the opposite direction:

OC] CdAaz OalAdCeBbz 0b1 Bb] 0.

Combining Theorem 6, Lemma 12 and Lemma 13 we obtain the following result.

Theorem 15 For any graph Q, the search value v satisfies

n/2 <v<iif2 < p. (2

In the next section we will show that the upper bound, u, is attained if and only
if O is a tree.

The lower bound, /2, is attained if and only if Q is Eulerian because if Q is
Eulerian then &t = w so that (2) implies:

Theorem 16 If O is Eulerian then the Random Chinese Postman tour is an optimal
search strategy yielding a value of /2 (half the total length of Q).

Actually the Eulerian graphs are the only graphs with a search value of /2 :
Theorem 17 If the search value of a graph Q is |1/2 then Q is Eulerian
The proof'is given in [12] and in [1].

Corollary 18 For an Eulerian graph, the optimal strategies and the value of the search
problem remain the same if we remove the usual restriction S(0) = O and instead allow
the searcher an arbitrary starting point.

The claim of the corollary is an immediate consequence of Corollary 7.

Remark 19 Corollary 18 fails to hold for non-Eulerian graphs because (unlike the
Eulerian case) the least favorable hiding distribution usually depends on the starting
point of the searcher.

In general, if we allow the searcher an arbitrary starting point, then v = /2 if and
only if there exists an Eulerian path (not necessarily closed) in Q. (If there exists such
a path then the searcher can keep the expected capture time < /2 by an analogous
strategy to 5 of Lemma 13. If there exists no Eulerian path in Q, then the uniform hiding
distribution yields the expected search time exceeding /2.)
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3. Search on a Tree

We now consider searching on a tree. In this case we will see that the search value
is simply the total length of the tree (v = p), and that a random Chinese postman tour
is an optimal search strategy.

The fact that v < u is an immediate consequence of Lemma 12 and Lemma 13.
The reverse inequality is more difficult to establish. First observe that if x is any point
of the tree other than a terminal node, the subtree Q, (the union of x and the connected
component, or components, of Q \ {x} which doesn’t contain the starting point O)
contains a terminal node y. Since no trajectory can reach y before x, hiding at y
strictly dominates hiding at x. Since we are interested in worst cases, we may restrict
the target’s distributions to those concentrated on terminal nodes.

To give a hint on the worst case hiding distribution over the terminal nodes, we
first consider a very simple example. Suppose that Q is the union of two trees Q) and
(0>, who meet only at the starting node O. Let ; denote the total length of Q;. Let p;
denote the probability that the hider is in the subtree Q; and assume that the searcher
adopts the strategy of first using a random Chinese postman strategy in O, and then
at time 2y, starts again from O to use a random Chinese postman strategy on Q5.
The expected search time resulting from such a pair of strategies can be obtained by
Algorithm 20, which will be described later, giving

Py + pa Quy + p2) = wr + pa (1 + (2) -

Conducting the search in the opposite order gives an expected capture time of

ma + pr (e + w2).

Consequently, if the p; are known, the searcher can ensure an expected capture time of

min [y + p2 (1 + 12), w2 + pr (ug + w2)l.

Since the two expressions in the bracket sum to 2 (i + ), it follows that the hider
can ensure an expected capture time of at least ;1| + w, only if these expressions are
equal, or

» M1 p M2
1= s P2 = .
M1+ Ho M1+ Ha

This analysis shows that if v = w then a worst case target distribution must assign to
each subtree a probability proportional to its total length.

In general, a least favorable target distribution will be constructed recursively as
follows.
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Figure 2.

Algorithm 20 First recall our above argument that the hiding probabilities are posi-
tive only for the terminal nodes of Q . We start from the origin O with p(Q) = 1 and
go towards the leaves. In any branching we split the probability of the current subtree
proportionally to the measures of subtrees corresponding to the branches. When only
one arc remains in the current subtree we assign the remaining probability, p(A4), to
the terminal node A at the end of this arc.

We illustrate this method for the tree depicted in Figure 2.

From O we branch into 4, C, O; and O, with proportions 1, 3, 6 and 3,
respectively. Thus, the probabilities of the corresponding subtrees are %, %, 1—63 and
%, respectively. Since 4, and C are leaves we obtain p(A4;) = % and p(C) = %
Continuing towards O; we split the probability of the corresponding subtree, %, with
proportions %, % and % between B, B, and C; so that:

p(B) =&, p(By) =2 and p(Cy) = £&.

_ 3

:%andp(Aﬁ:%x%_%.

Similarly p(4>) =& x 1

In order to show that v = p it has to be proven that the probability distribution
generated by Algorithm 20 is least favorable, i.e., guarantees an expected search time
of at least p. This proof begins with the following result.

Lemma 21 Consider the two trees Q and Q' as depicted in Figure 3. The only dif-
ference between Q and Q' is that two adjacent terminal branches B A, of length a;
and B A, of length a; (in Q) are replaced by a single terminal branch B A’ of length
a) + ay (in Q). Let v be the value of the search game in Q and let V' be the value of
the search game in Q'. Then v > v'.

Proof. We present a sketch of the proof of the lemma based on the following construc-
tion: Let /" be a least favorable target distribution for the tree Q’, so that 4’ guarantees
an expected search time of at least v’, for any pure trajectory S’.
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We may assume, as explained above, that 4’ is concentrated on terminal nodes.
Given &', we construct a target distribution /4 in the graph Q as follows: For any
node other than A4; or A,, the probability is the same for # and 4’. The probabilities
p1 = h(A4;) and p, = h(A,) of choosing 4 and 4, when using 4 are given by the
formulae

a
P = p and py=

ar ’
= p
ay+a a+a

3)

where p’ = h' (A’)is the probability of A" being chosen by 4, and ay, a, are the lengths
defined in the statement of the Lemma (see Figure 3). It can be shown v > v’ by proving
that for any search trajectory S in Q the expected search time against the distribution
h is at least v'. ]

Using Lemma 21, we can readily establish by induction on the number of terminal
nodes that the target distribution of Algorithm 20 indeed guarantees an expected search
time > u for any tree. Thus we have:

Theorem 22 Q is a tree if and only if v = L.

The optimal search strategy is the random Chinese postman tour.
A worst case hiding distribution can be constructed recursively using Algorithm 20.

Remark 23 An interesting model is one in which the target is hidden at a node of a
graph and the search cost is composed of the travel cost plus c; - the cost of inspecting
the chosen node i. The case of linear ordered nodes is solved in [16] and [17]. The
more general case of a tree is solved in [19] and [18].
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It should be noted that if c; = c for all i then the problem can be transformed into
our standard search on a tree (with no inspection costs) by constructing the following
tree: To each node add an arc of length c/2, with a new leaf at the other end of this
arc. The optimal strategies for the equivalent tree are optimal for the problem with
c inspection cost but the expected (optimal) cost is reduced by c/2. (If ¢; are not all
equal then adding similar arcs, with length c; /2 to each node, leads to a close but not
identical problem.)

4. When is the Random Chinese Postman Tour Optimal?

In the case that the graph Q is neither Eulerian nor a tree, it follows from Theorems
15,17 and 22 that /2 < v < w. Yet, it may happen that the random Chinese postman
tour is an optimal search strategy (as in the cases of Eulerian graphs and trees). In this
section we analyze these types of graphs. In Section 4.1 we present a family of graphs
for which the random Chinese postman tour is optimal and in Section 4.2 we present
the widest family of graphs with this property.

4.1. Searching Weakly Cyclic Graphs

Definition 24 A graph is called “weakly cyclic” if between any two points there exist
at most two disjoint paths.

An equivalent requirement, presented in [24] is that the graph has no subset topo-
logically homeomorphic with a graph consisting of three arcs joining two points.

The difficulty in solving search games for the three arcs graph is presented in
Section 5. Note that an Eulerian graph may be weakly cyclic (e.g. if all the nodes have
degree 2) but need not be weakly cyclic (e.g., 4 arcs connecting two points).

It follows from the definition that if a weakly cyclic graph has a closed curve I" with
arcs by, ..., by incident to it, then removing I" disconnects Q into k disjoint graphs
O1,..., Qr with b; belonging to O;. (If O; and Q; would have been connected
then the incidence points of I' with b; and with b; could be connected by 3 disjoint
paths). Thus, any weakly cyclic graph can be constructed by starting with a tree (which
is obviously weakly cyclic) and replacing some of its nodes by closed curves as, for
example, I' and I'} in Figure 4 (all edges have length 1). We leave the proof of this as
an exercise to the reader.

We now formally define the above operation:

Definition 25 “Shrinking a subgraph U : Let a graph Q contain a connected subgraph
. If we replace the graph Q by a graph Q' in which T is replaced by a point B and
all arcs in Q \ T which are incident to T are incident to B in Q' we shall say that T
was shrunk and B is the shrinking node.
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It is easy to see that Q is a weakly cyclic graph if and only if it contains a set of
non-intersecting curves I'y, .. ., I'; such that shrinking them transforms Q into a tree.

In order to obtain a feeling about optimal solutions for such graphs, we consider a
simple example in which Q is a union of an interval of length / and a circle of circum-
ference ;. — I with only one point of intersection, as depicted in Figure 5. Assume, for
the moment, that the searcher’s starting point, O, is at the intersection.

Note that the length of the Chinese postman tour is jt = © + [. We now show that
the value of the game satisfies v = “TJ’[ and the optimal search strategy, §, is the
random Chinese postman tour.

4
2

The random Chinese postman tour guarantees (at most) % by Lemma 13. The
following target distribution, 4 , guarantees (at least) % : hide with probability p = #z—il
at the end of the interval (at 4) and with probability 1 — p uniformly on the circle. (It
can be easily checked that if the searcher either goes to 4, returns to O and then goes
around the circle, or encircles and later goes to 4, then the expected capture time is

equal to “TH Also, any other search trajectory yields a larger expected capture time.)

Figure 5.
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Now assume that the starting point is different from O. In this case the value
and the optimal search strategy remain the same, but the least favorable target hiding
distribution is unchanged only if the starting point is (anywhere) on the circle. As the
starting point moves from O to A4 the probability of hiding at 4 decreases from M2_4l-1 to 0.

Solving the search games for weakly cyclic graphs was presented by Reijnierse
and Potters [26]. In their paper they show that v = i/2 and present an algorithm
for constructing least favorable target distributions. (The optimal search strategy, as
presented in Lemma 13, is the random Chinese postman tour.)

We now present a simpler version of their algorithm by transforming the graph Q
into an “equivalent” tree Q as follows:

Algorithm 26 Shrink each closed curve T';, with circumference y;, and replace it by
an arc ¢; of length & which connects a (new) leaf C; to the shrinking node B;. All other
arcs and nodes remain the same. Let h be the least favorable target distribution for
the tree Q. Then the least favorable target distribution for Q is obtained as follows:

1. For a leaf of Q (which is also a leaf of Q) hide with the probability assigned
toithyh.

2. For a curve T; (represented by leaf C; in Q) hide uniformly along it with
overall probability assigned by h to leaf C;.

All other arcs and nodes are never chosen as hiding places.

We now use the above algorithm for the example presented in [26]. The graph Q is
depicted in Figure 4 and its equivalent tree is depicted in Figure 2 (see Section 3). Note
that the curves I' and I'; are replaced by arcs OC and O;C;. Thus, the least favorable
probability distribution is the same for the leaves of O and (replacing the leaves C and
C; by I and I'; ) hiding, uniformly, on I" with probability % (i.e. probability density

73—8) and on I'; with probability % (i.e. probability density % .

4.2. Searching Weakly Eulerian Graphs

Reijnierse and Potters [26] conjectured that their algorithm (for the weakly cyclic
graphs) of constructing the least favorable distribution and the result v = fi/2 hold
for the wider family of weakly Eulerian graphs, i.e., graphs obtained from a tree
replacing some nodes by Eulerian graphs. This conjecture was shown to be correct by
Reijnierse [28].

They also conjectured that v = ji/2 implies that the graph is weakly Eulerian.
We provide in [13] a simple proof for the first conjecture and also show that their

second conjecture is correct. In order to present our results we first formally define the
graphs in question.
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Figure 6.

Definition 27 A graph is called “weakly Eulerian” if it contains a set of non-
intersecting Eulerian graphs Ty, ..., ['y such that shrinking them transforms Q into
a tree.

An equivalent condition is that removing all the arcs which disconnect the graph
(the ‘tree part’) leaves a subgraph(s) with all nodes having an even (possibly zero)
degree (see Figure 6).

Obviously, any Eulerian graph is also weakly-Eulerian.
Theorem 28 If Q is weakly Eulerian, then:

1. v= /2.

2. A random Chinese postman tour is an optimal search strategy.

3. A least favorable hiding distribution, h, is the distribution (similarly to Algo-
rithm 26) for the equivalent tree, Q, obtained by shrinking all the Eulerian
subgraphs and replacing each such subgraph by an arc from the shrinking node
to a (new) leaf with half the measure of the corresponding Eulerian subgraph.
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Figure 7.

Then, the probability of such a leaf is uniformly spread on the corresponding
Eulerian subgraph. (The hiding probabilities at the leaves of Q remain the
same.)

Proof. (A sketch.) Let the measure of the equivalent tree O be ji/2. It can easily be
verified that the length of a Chinese postman tour is i because each arc in the tree part
of Q has to be traversed twice while the Eulerian subgraphs can be traversed just once.
Thus, the searcher can achieve i /2.

n [13] and [1] it is proven that / guarantees at least ji/2 expected search time,
using an equivalent tree construction ]

(The probability of hiding in the Eulerian subgraphs is unique. For example, hiding
in the middle of each arc, with the appropriate probability, is also optimal.)

We now illustrate the result by an example: Let Q be the union of an Eulerian
graph I, of measure y, and two arcs, of lengths 1 and 2 respectively, leading to leafs
C, and C; (see Figure 7).

IfO € F_then, Q would be a star with three rays of lengths 1, 2, and 0.5y, respec-
tively. Thus, # hides at C; with probability 0_5++3 at C, with probability 05++3 and

uniformly on I with overall probability o.os'y%' If the starting point is on the arc lead-

ing to C, with distance 1 from C, then Q would be the tree depicted in Figure 8.
Thus, the corresponding least favorable probabilities for Cy, C; and I" would be

05y+2 o 1 L and 23052 5 057 regpectively.

05y+3 = 05y+1° 05743 05y+3 ~ 05y+1°

Actually, the property v = ji/2 holds only for weakly Eulerian graphs:

o=

®c

C 1 CZ

Figure 8.
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Theorem 29 Let Q be any graph. If v = ji/2 then Q is weakly Eulerian.

Proof- (A sketch.) Let L be a Chinese postman tour (with length fi). Then the random
Chinese postman tour of L is an optimal search strategy (since it guarantees ji/2). The
tour L traverses some of the arcs once - call the set of such arcs T, and some arcs
twice - call this set 7.

It has to be shown that removing each arc of 7, disconnects the graph. Since all
the nodes in the set 77 must have even degrees implying that 7 is either an Eulerian
subgraph or a set of Eulerian subgraphs, it would then follow that Q satisfies the
condition equivalent to Definition 27.

Since v = j1/2, then for any ¢ > 0 there exists /. , a target distribution which
guarantees at least ji/2 — ¢ expected search time. Let b € T, with length /(b) > 0.
It can be shown that assuming Q \ b is connected enables the searcher to use search
strategies with expected search time less than (it — /(b))/2 which would contradict the
&- optimality of /.. Thus, removing b has to disconnect Q. [ ]

Combining Theorems 28, 29 and 15 yields the following result:

Theorem 30 For any graph O, a random Chinese postman tour is an optimal search
strategy if and only if the graph Q is weakly Eulerian.

Conjecture 31 Note that the value is fi/2, and the optimal search strategy is a random
Chinese postman tour, independently of the specific starting point. This property is
unique to the weakly Eulerian graphs.

We conjecture that the independence of the value on the starting point holds only
for weakly Eulerian graphs. (It does not hold in general, see Remark 34.)

Searching a graph which is not weakly Eulerian is expected to lead to rather
complicated optimal search strategies. We shall show in the next section that even the
“simple” graph with two nodes connected by three arcs, of unit length each, requires a
mixture of infinitely many trajectories for the optimal search strategy.

5. Simple Graphs Requiring Complicated Search Strategies

In the previous section, we found optimal search strategies for weakly Eulerian
graphs,. (which includes Eulerian graphs and the trees). We have shown that the random
Chinese postman tour is optimal, and v = fi/2, only for this family. We now present
a simple graph which is not weakly Eulerian and hence has value strictly less than

/2.

In this example, the graph Q consists of & distinct arcs, by, ..., by, of unit length,
connecting two points O and A. If the number k of arcs is even, then the graph Q is
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Eulerian and the solution of the game is simple. On the other hand, it turns out that the
solution is surprisingly complicated in the case that & is an odd number greater than 1,
even if & is equal only to 3. For this graph it = k£ + 1, implying from the last section
that v < ’%1 Actually, the following (stricter) inequality holds:

Lemma 32 If Q is a set of k non-intersecting arcs of unit length which join O and A,
and k is an odd number greater than 1, then

ko1
A 4
vt @)

Proof. (A sketch.) We use a natural symmetric search strategy § : Starting from O make
an equiprobable choice among the k arcs, (i.e., choosing each arc with probability 1/ k)
and move along the chosen arc to 4; then make an equiprobable choice among the
k — 1 remaining arcs, independently of the previous choice, and move along this arc
back to O; then move back to 4; and so on until all the arcs have been visited.

A simple calculation shows that if the distance between the target and A4 is d, then
the expected search time will be

(T k1 d k 1
D=3 % 2 % .
The case where Q consists of an odd number of arcs which connect two points
has been used as an example for situations in which v < i /2, but this case is inter-
esting by itself. It is amazing that the optimal search strategy is simple for any even
k (and also for any odd or even k if the hider is mobile, see [1]) but it is quite com-
plicated even for the case that & is equal only to 3. The reasonable symmetric search
strategy §, used in proving Lemma 32, which is optimal for an even k, can assure
the searcher an expected search time less than %‘ + ﬁ However, if & is odd then the
search strategy § is not optimal, or even g-optimal, as can be easily deduced from the
following argument. If the searcher uses §, then a target distribution, with an expected
search time close to % + zl—k, has to be concentrated near 4 with probability > 1— «.
However, it can easily be verified that the expected search time guaranteed by such
a hiding distribution does not exceed 1+ &, where § is small. Thus, the value of the
search game has to be smaller than 15‘ + ﬁ, which implies that the strategy § cannot be
optimal, or even g-optimal.

In order to demonstrate the complexity of this problem, we now consider the case

k = 3. In this case, the symmetric search strategy § satisfies v(5) =3/2 4+ 1/6 = 5/3,
but actually there exists a strategy § which satisfies

v(§) =@ +1n2)/3 <5/3.

The strategy § is a specific choice among the following family {sr} of search
strategies:
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Figure 9.

Definition 33 The family {sF} of search strategies is constructed as follows: Consider
a set of trajectories S;jo, where i and j are two distinct integers in the set {1, 2, 3} and
0 < o < 1. The trajectory S;; starts from O, moves along b; to A, moves along b; to
the point A, which has a distance of « from A (see Figure 9), moves back to A, moves
to O along b,,, where m € {1,2,3}\ {i, j}, and then moves from O to A, along b;.

Let F(«) be a cumulative probability distribution function of a random variable o
(0 < o < 1). Then the strategy sr is a probabilistic choice of a trajectory S;jo, where
i is determined by an equiprobable choice in the set {1, 2,3}, j is determined by an
equiprobable choice in the set {1,2,3}\ {i}, and « is chosen independently, using the
probability distribution F.

Note that the symmetric strategy § is a member of the family {sr } with the random
variable o being identically zero.

The details of choosing the distribution function 7 which corresponds to this
strategy, §, is presented in [12] and [1].

Remark 34 Unlike the weakly Eulerian graphs, the search value of the three-arcs
graph depends on the starting point of the searcher. For example®, assume that the
searcher starts at the middle of arc by. Then, if the target distribution is h, (the
uniform distribution) then the expected search time > % > 4+31“2. (It can be verified
that the searcher’s best response is to go to one of the nodes, search by and by, and

finally retrace by in order to search the unvisited half of b, .)

Problem 35 Solving the search game in a graph with an arbitrary starting point for
the searcher; is an interesting problem which has not been investigated yet.

Let ¥ be the value of such a game. It is easy to see that v < [i/2, where [i is the
minimum length of a path (not necessarily closed) which visits all the points of Q.
Indeed, sometimes © = [i/2 as happens for graphs with fi = |, because the hider can
guarantee expected search time > [i/2 by using the uniform strategy h,. (Such an
example is the 3 arcs search which is much more tractable with an arbitrary starting
point than under the usual assumption of a fixed starting point known to the hider.)

2This observation was made by Steve Alpern
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However, it is not clear for which family of graphs the equality ¥ = [i/2 holds. For
example, does it hold for trees?

Remark 36 The problem of finding the optimal search strategy for a (general) graph
has been shown by von Stengel and Werchner [31] to be NP-hard. However, they also
showed that if the search time is limited by a (fixed) bound which is logarithmic in the
number of nodes, then the optimal strategy can be found in polynomial time.

Finding an optimal search strategy on a graph can, in general, be formulated as an
infinite-dimensional linear program. This formulation and an algorithm for obtaining
its (approximate) solution is presented by Anderson and Armendia [2].

Conjecture 37 Optimal (minimax) strategies for searching a target on any graph never
use trajectories which visit some arcs (or parts of arcs ) more than twice.

(Note that this property does not hold against all target distributions. For example
in the three arcs graph, if the hiding probability is % — & for each point B;,i = 1,2, 3,
having distance %from A, and € for C;,i = 1, 2,3, having distance %from A. Then
for a small € the optimal search strategy is to go to A, then to one of the unvisited B;,
then through A, to the unvisited B, continue to C; and finally from C; to C; through
B;. Thus, the segment A B; is traversed 3 times. Still, we conjecture that such a situation
cannot occur against a least favorable target distribution.)

6. Search in an Unknown Graph

In the previous sections we examined the problem of searching for a target in a
finite connected network Q of total length ;. We now make the searcher’s problem
more difficult by depriving him of a view of the whole network Q and instead let him
see (and remember) only that part of Q which he has already traversed. We also let
him remember the number of untried arcs leading off each of the nodes he has visited.
Under these informational conditions, the network Q is known as a maze. The starting
point O is known as the entrance, and the position A of the hider is known as the
exit. In this section we present the randomized algorithm of [14] for minimizing the
expected time for the searcher to find the exit in the worst case, relative to the choice
of the network and the positioning of its entrance and exit. This strategy (called the
randomized Tarry algorithm) may be interpreted as an optimal search strategy in a
game in which the maze (network with entrance and exit) is chosen by a player (hider)
who wishes to maximize the time required to reach the exit.

Finding a way for exiting a maze has been a challenging problem since an-
cient times. Deterministic methods which assure finding the exit were already known
in the 19th century. Lucas (1882) described such an algorithm developed by [30]
presented an algorithm which is now very useful in computer science for what
is known as Depth-First Search. An attractive description of Depth-First Search is
presented in Chapter 3 of [9]. The algorithms of Trémaux and Tarry mentioned
above each guarantee that the searcher will reach the exit by time 2u. [10, 11]
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presented a variant of Tarry’s algorithm which has an improved performance for some
cases but has the same worst-case performance of 2.

The worst-case performance of any fixed search strategy cannot be less than 2.
This can easily be seen by considering the family of “star”” mazes consisting of # rays of
equal length ./ n, all radiating from a common origin O. The least time required to visit
all the nodes of this maze is (n — 1) 2u/n) + (n/n) = 2 — w/n, which converges
to 2u. Can this worst case performance be improved by using mixed strategies and
requiring only that the expected time to find the exit is small? This question is related to
the following game: For a given parameter u, Player II (the hider) chooses a maze with
measure p and specifies the entrance O and the exit 4. Player I (the searcher) starts
from O and moves at unit speed until the first time 7" (the payoff to the maximizing
player II) that he reaches A. We will show that this game has a value v which is equal
to the measure u of the maze. Obviously v > u, because the hider can always choose
the maze to be a single arc of length © going from O to 4. On the other hand, we shall
show that the searcher has a mixed strategy which guarantees that the expected value
of T does not exceed w. Consequently v = w. Therefore, this (optimal) search strategy
achieves the best worst-case performance for reaching the exit of a maze. This result
was obtained by Gal and Anderson [14] on which the following discussion is based.

The optimal strategy generates random trajectories which go from node to node by
traversing the intervening arc at unit speed without reversing direction. Consequently
it is completely specified by giving (random) rules for leaving any node that it reaches.
This strategy is based in part on a coloring algorithm on the passages of the maze. A
passage is determined by a node and an incident arc. Thus each arca = BC has two pas-
sages, one at each end, the “leaving” passage (B, a) and the “arriving” passage (C, a) .
We assume that initially the passages are uncolored, but when we go through a passage
we may sometimes color it either in yellow or in red. The strategy has two components:
coloring rules and path rules as follows. Since this strategy is in fact a randomized
version of Tarry’s algorithm, we will refer to it as the randomized Tarry algorithm.

7. Randomized Tarry Algorithm
7.1. Coloring rules

1. When arriving at any node for the first time, color the arriving passage in yellow.
(This will imply that there is at most one yellow passage at any node.)
2. When leaving any node, color the leaving passage in red.

7.2. Path rules (how to leave a node)

1. If there are uncolored passages, choose among them equiprobably.

2. If there are no uncolored passages but there is a yellow passage choose it for
leaving the node, thus changing its color to red.

3. If there are only red passages, stop.
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Figure 10.

Obviously when adopting the above algorithm to exit a maze, the searcher would
use the obvious additional rule of stopping when the exit A4 is reached. However,
for analytical reasons we prefer to consider the full paths t (¢) produced when the
searcher does not stop at 4, but continues until the single stopping rule 3 is applied.
We call these full paths tours and denote the set of all tours by 7. The set 7 is finite
because there are only finitely many randomizations involved in the generation of the
tours.

To illustrate how the randomized Tarry algorithm generates tours of the maze,
consider the particular maze drawn in Figure 10.

All arcs have length 1 so that ¢ = 7. For this maze a particular tour T € 7 is given
by the node sequence (which determines the continuous path)

T=0,B1,B,,0,B,,B3,0,B4, 0, B;, B, 4, B, By, O. 5)

The tour starts by coloring (O, OBy) red, (By, OB)) yellow, (B;, B B;) red,
(B3, B1B,) yellow and (B,, OB;) red. It then continues coloring (O, OB;) red,
(B3, By B3) red, (B3, By B3) yellow, (B3, B3;0) red, etc. Note that the tour T stops at
O when all its passages become red. It traverses each arc exactly once in each direction
and consequently takes 14 (= 2u) time units. The following Lemma shows that this
behavior is not specific to the maze or the particular tour chosen but always occurs.

Lemma 38 Let t be any tour generated by the randomized Tarry algorithm for a
particular maze Q of total length . and entrance O. Then t finishes at O at time 21,
after traversing every arc of Q exactly once in each direction.

Proof. Note that such a realization uses Tarry’s algorithm for visiting all arcs. Thus,
Lemma 38 is simply a reformulation of Tarry’s theorem (see Theorem 1 of [10]). H

Since each tour t visits all points of the maze before returning to the entrance at
time 2, an immediate consequence is the following.

Corollary 39 The randomized Tarry algorithm guarantees that the time to reach the
exit is smaller than 24.
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We have already observed that the set of tours is finite. The following lemma
computes its cardinality, which is also the reciprocal of the probability of any particular
tour.

Lemma 40 Let Q be a maze with I 4+ 1 nodes. Denote by d the degree of O and by
d; the degree of the remaining nodes i, i = 1, ..., I. Then the cardinality K of the set
T consisting of all tours t is given by

1
K =#T =dy! | [(d: — D).

i=1

Each tour t is obtained by the randomized Tarry algorithm with an equal probability

of 1/K.
The proof is given in [14] and in [1].

We now consider the main problem of evaluating the expected time taken for the
randomized Tarry algorithm to reach a point 4 of the maze (which might be taken as
the exit). For € 7 and any node A4 of O, define T4 () to be the first time that the tour
7 reaches the node A4, thatis 74 () = min {¢ : 7 (¢) = A}. Consequently the expected
time 74 for the randomized Tarry algorithm to reach A is given by

Ti= 2 Y@, ©)

teT

In order to obtain an upper bound on 74 it will be useful to compare the performance
of a tour T with the performance of its reverse tour ¢ (t) = t’ defined by

POl =7 =12r—1. (7

For example, the reverse tour of the tour T given in (5) is expressed in node sequence
form as

T'=0,B,, By, A, By, B3, 0, B4, O, B3, B,, 0, By, By, O.

Observe that while the time 7 (T) = 11 is greater than . = 7, when averaged with the
smaller time of 74 (") = 3 for its reverse path, we get (11 + 3) /2 = 7. This motivates
the following analysis. Consequently we can just as well calculate 74 by the formula

1
Ty = v Z T, (7). and hence also by
teT
~ 1 ZTA(T)‘FTA(":/)

K teT 2

®)
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Observe that since t (74 (t)) = 4 by definition, we have by (7) that t/ [2u — T4 ()] =
A.

If © reaches 4 exactly once (which is the same as A4 having degree 1) then so
does 1’ and consequently 74 (t") = 2u — T4 (t). If T also reaches A at some later
time, then 7’ also reaches A at some earlier time (2u — max {¢ : t (t) = A}), and hence
T,(t") <2u — T4 (7). In either case, we have that

Ty(t)) <2u—Ty(v)
1e.,

Ty (') + Ty (x) <20, ©)
with equality if and only if 4 is a node of degree 1. Combining (8) and (9), we have

- 1 T T (7
Fym Ly MO
teT

1 21
< — —_— = U.
_KT;Z n

Again, we have equality if and only if 4 has degree 1. Since in this argument 4 was
arbitrary, we have established the following.

Theorem 41 The randomized Tarry algorithm reaches every possible exit point in Q
in expected time not exceeding the total length (v of Q. Furthermore, except for nodes
of degree 1, it reaches all points in expected time strictly less than (.

Since we have already observed that the hider can choose a maze in which the exit
lies at the end of a single arc of length n (which would take time p to reach) we have
the following.

Corollary 42 The value of the game in which the hider chooses a maze of total length
W, with entrance and exit, and the searcher moves to minimize the (Payoff) time required
to find the exit, is equal to L.

We conclude this section by giving some comparisons of the randomized Tarry
algorithm with other possible methods of searching a maze. Notice that in the Tarry
algorithm a tour (such as T given in (5) on the first return to O) may choose an arc that
has already been traversed (in the opposite direction), even when an untraversed arc is
available at that node. This may appear to be a foolish choice because the untraversed
node may lead to a new part of the maze (maybe even straight to the exit). Yet, a
strategy which is based on giving priority to unvisited arcs leads to significantly inferior
performance in the worst case: 2 instead of u, as shown in [14].
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The randomized Tarry algorithm requires only local information in each node. This
type of locally determined strategy is similar to some policies that could be employed
in a distributed computing environment to deal with incoming messages or queries
directed to an unknown node of the computer network. Such a model was used, for
example, by Golumbic [15]. Our strategy provides an alternative path finding mecha-
nism which uses only local information. Other local information schemes of searching
an unknown graph by several (decentralized) agents (ant-robots which leave chemi-
cal odor traces) are described and analyzed by Wagner, Lindenbaum and Bruckstein
[32-34].

8. Further Reading

Searching strategies for graphs include many other fascinating topics which could
not be covered in this survey. We mention some of them here, and encourage interested
readers to read also [1] which cover these topics.

e Searching for a Moving Target. Except for the circle and some other specific
examples finding optimal search strategies is still open and seem difficult, even
for simple graphs like trees.

e Searching in a Graph with Infinite Length. This includes the well known Linear
Search Problem of finding an optimal search trajectory on the infinite line and
some of its extensions. The optimal search trajectories given by the “turning
points” usually form geometric sequences.

e Searching for a Target who Wants to be Found. Assume, for example, that two
searchers randomly placed in a graph wish to minimize the time required to meet.
Rendezvous problems of this type include several variants. In a relatively simple
case the searchers have a common labeling of the graph so they can agree to
meet at an agreed point. The problem becomes more difficult if such a common
labeling does not exist. For example, finding optimal strategies for meeting on
the line is quite a difficult problem.
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Abstract

Arc routing problems (ARPs) arise naturally in several applications where streets require mainte-
nance, or customers located along road must be serviced. The undirected rural postman problem
(URPP) is to determine a least cost tour traversing at least once each edge that requires a service.
When demands are put on the edges and this total demand must be covered by a fleet of identical
vehicles of capacity Q based at a depot, one gets the undirected capacitated arc routing problem
(UCARP). The URPP and UCARP are known to be NP-hard. This chapter reports on recent
exact and heuristic algorithms for the URPP and UCARP.

1. Introduction

Arc routing problems (ARPs) arise naturally in several applications related to
garbage collection, road gritting, mail delivery, network maintenance, snow clearing,
etc. [19, 1, 14]. ARPs are defined over a graph G = (V, E U A4), where V' is the vertex
set, F is the edge set, and A is the arc set. A graph G is called directed if E is empty,
undirected if A is empty, and mixed if both E and A are non-empty. In this chapter, we
consider only undirected ARPs. The traversal cost (also called length) c;; of an edge
(vi,v;) in E is supposed to be non-negative. A four T, or cycle in G is represented by
a vector of the form (vy,vy, . ..,v,) where (v;,v;41) belongs to E fori =1,...,n—1
and v, = v;. All graph theoretical terms not defined here can be found in [2].

In the Undirected Chinese Postman Problem, one seeks a minimum cost tour that
traverses all edges of E at least once. In many contexts, however, it is not necessary
to traverse all edges of E, but to service or cover only a subset R C E of required
edges, traversing if necessary some edges of E\R. A covering tour for R is a tour that
traverses all edges of R at least once. When R is a proper subset of £, the problem of
finding a minimum cost covering tour for R is known as the Undirected Rural Postman
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Problem (URPP). Assume for example that a city’s electric company periodically has
to send electric meter readers to record the consumption of electricity by the different
households for billing purposes. Suppose that the company has already decided who
will read each household’s meter. This means that each meter reader has to traverse
a given subset of city streets. In order to plan the route of each meter reader, it is
convenient and natural to represent the problem as a URPP in which the nodes of the
graph are the street intersections while the edges of the graph are the street segments
between intersections, some of them requiring meter readings.

Extensions of these classical problems are obtained by imposing capacity con-
straints. The Undirected Capacitated Arc Routing Problem (UCARP) is a generaliza-
tion of the URPP in which m identical vehicles are available, each of capacity Q. One
particular vertex is called the depot and each required edge has an integral non-negative
demand. A vehicle route is feasible if it contains the depot and if the total demand on
the edges covered by the vehicle does not exceed the capacity Q. The task is to find
a set of m feasible vehicle routes of minimum cost such that each required edge is
serviced by exactly one vehicle. The number m of vehicles may be given a priori or can
be a decision variable. As an example, consider again the above problem of the city’s
electric company, but assume this time that the subset of streets that each meter reader
has to visit is not fixed in advance. Moreover, assume that no meter reader can work
more than a given number of hours. The problem to be solved is then a UCARP in
which one has to build a route for each meter reader so that all household’s meters are
scanned while no meter reader is assigned a route which exceeds the specified number
of work hours.

The URPP was introduced by Orloff [40] and shown to be NP-hard by Lenstra and
Rinnooy Kan [35]. The UCARP is also NP-hard since the URPP reduces to it whenever
0 is greater than or equal to the total demand on the required edges. Even finding a
0.5 approximation to the UCARP is NP-hard, as shown by Golden and Wong [27].
The purpose of this chapter is to survey some recent algorithmic developments for the
URPP and UCARP. The algorithms described in this chapter should be considered as
skeletons of more specialized algorithms to be designed for real life problems which
typically have additional constraints. For example, it can be imposed that the edges
must be serviced in an order that respects a given precedence relation [15]. Also, real
life problems can have multiple depot locations [17] and time windows or time limits
on the routes [18, 44]. Arc routing applications are described in details in chapters 10,
11 and 12 of the book edited by Dror [14].

In the next section, we give some additional notations, and we describe a re-
duction that will allow us to assume that all vertices are incident to at least one re-
quired edge. We also briefly describe some powerful general solution methods for
integer programming problems. Section 3 contains recent exact methods for the URPP.
Then in Section 4, we describe some recent basic procedures that can be used for
the design of heuristic methods for the URPP and UCARP. Section 5 contains exam-
ples of recent effective algorithms that use the basic procedures of Section 4 as main
ingredients.
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2. Preliminaries

Let V'x denote the set of vertices incident to at least one edge in R. The required
subgraph Gr(Vg,R) is defined as the partial subgraph of G induced by R. It is obtained
from G by removing all non-required edges as well as all vertices that are not incident to
any required edge. Let C; (i =1, ..., p) be the i-th connected component of Gg(Vz,R),
andlet V; C Vg bethe set of vertices of C;. [9] have designed a pre-processing procedure
which converts any URPP instance into another instance for which V' = V, (i.e. each
vertex is incident with at least one required edge). This is done as follows. An edge
(vi,v;) is first included in Gr(Vg,R) for each v;,v; in Vi, with cost ¢;; equal to the
length of a shortest chain between v; and v; in G. This set of new edges added to
Gr(Vg,R) is then reduced by eliminating

(a) all new edges (v;,v;) for which ¢;; = c¢j; + c;; for some vy in Vg, and
(b) one of two parallel edges if they have the same cost.

To illustrate, consider the graph G shown in Figure 1(a), where edges of R are
shown in bold lines and numbers correspond to edge costs. The new instance with
V' = Vg is represented in Figure 1(b).

From now on we will assume that the URPP is defined on a graph G = (V,E) to
which the pre-processing procedure has already been applied.

To understand the developments of Section 3, the reader has to be familiar with
basic concepts in Integer Programming. If needed, a good introduction to this topic
can be found in [45]. We briefly describe here below the cutting plane algorithm and
the Branch & Cut methodology which are currently the most powerful exact solution
approaches for arc routing problems.

Most arc routing problems can be formulated in the form

ecE
subjectto x € §

{ Minimize )" c.x,
where S is a set of feasible solutions. The convex hull conv(S) of the vectors in S is
a polyhedron with integral extreme points. Since any polyhedron can be described by
a set of linear inequalities, one can theoretically solve the above problem by Linear

(a) (b)

Figure 1. Illustration of the pre-processing procedure.
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Programming (LP). Unfortunately, a complete linear description of conv(S) typically
contains a number of inequalities which is exponential in the size of the original prob-
lem. To circumvent this problem, one can start the optimization process with a small
subset of known inequalities and compute the optimal LP solution subject to these
constraints. One can then try to identify an inequality that is valid for conv(S) but vio-
lated by the current LP solution. Such an inequality is called a cutting plane, because,
geometrically speaking, it “cuts off ” the current LP solution. If such a cutting plane
is found, then it is added to the current LP and the process is repeated. Otherwise,
the current LP solution is the optimal solution of the original problem. This kind of
procedure is called the cutting plane algorithm. It originated in the pioneering work of
Dantzig, Fulkerson and Johnson [12] on the Symmetric Traveling Salesman Problem.

The problem consisting in either finding a cutting plane, or proving that no such
inequality exists is known as the separation problem. An algorithm that solves it is
called an exact separation algorithm. The separation problem can however be NP-hard
for some classes of inequalities. In such a case, one has to resort to a heuristic separation
algorithm that may fail to find a violated inequality in the considered class, even if one
exists.

The cutting plane algorithm stops when no more valid inequality can be found.
This however does not mean that no such inequality exists. It may be that a violated
inequality belongs to an unknown class of inequalities, or that it belongs to a known
class for which we have used, without success, a heuristic separation problem. When the
cutting plane algorithm fails to solve a given instance, one can choose among several
options. One option is to feed the current LP solution into a classical Branch & Bound
algorithm for integer programs. A more powerful option is to use the so-called Branch
& Cut method (see for example [42]). A Branch & Cut is much like a Branch & Bound
method except for the fact that valid inequalities may be added at any node of the
branching tree. This leads to stronger linear relaxations at any node, which normally
leads in turn to a considerable reduction in the number of nodes, in comparison with
standard Branch & Bound.

3. Exact Algorithms for the URPP

A connected graph is said to be Eulerian if each vertex has an even degree. It is
well known that finding a tour in an Eulerian graph that traverses each edge exactly once
is an easy problem that can be solved, for example, by means of the O(| E|) algorithm
described by Edmonds and Johnson [16]. Hence, the URPP is equivalent to determining
a least cost set of additional edges that, along with the required edges, makes up an
Eulerian subgraph. Let x, denote the number of copies of edge e that must be added
to R in order to obtain an Eulerian graph, and let G(x) denote the resulting Eulerian
graph.

For a subset W C V of vertices, we denote §(W) the set of edges of E with one
endpoint in # and the other in V' \W. If W contains only one vertex v, we simply write
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3(v) instead of §({v}). [9] have proposed the following integer programming formula-
tion for the URPP:

Minimize Z CeXe
ecE

subject to

IROS)l+ Y xe=2z  (vi€V) (1)
eed(v;)

D xe =2 W= JV.PcC{l....pLP#£0) (2
ecs(W) keP
X, > 0 and integer (e € E) 3)
z; > 0 and integer (v eVl 4)

Constraints (1) stipulate that each vertex in G(x) must have an even degree. Indeed,
the left-hand side of the equality is the total number of edges incident to v; in G(x),
while the right-hand side is an even integer.

Constraints (2) enforce the solution to be connected. To understand this point,
remember first that Gg(V,R) contains p connected components with vertex sets
Vi,...,V,. Now, let P be a non-empty proper subset of {1,...,p} and consider the
vertex set W = (J,cp Vi. Notice that no required edge has one endpoint in W and
the other one outside . In order to service not only the required edges with both
endpoints in 7, but also those with both endpoints in ¥\ W, a tour must traverse the
frontier between W and V' \ W at least twice. Hence »_ x. must be at least equal to 2.

ecd(W)

The associated polyhedron was not examined in detail by [9]. This was done
in [10] who proposed the following formulation that avoids variables z; and where
SK(W)= RNSW).

Minimize Z CeXe
eckE
subject to
D xe=18r(v)l(mod2)  (veV) (5)
e€d(v)
Y xez2 W=r.Pcil....p.P£0) (2
ecd(W) kep
X, > 0and integer (ee€e E) 3)

The convex hull of feasible solutions to (2), (3), (5) is an unbounded polyhedron.
The main difficulty with this formulation lies with the non-linear degree constraints (5).



220 Alain Hertz

Another approach has recently been proposed by Ghiani and Laporte [24]. They use
the same formulation as Corberan and Sanchis, but they noted that only a small set of
variables may be greater than 1 in an optimal solution of the RPP and, furthermore,
these variables can take at most a value of 2. Then, by duplicating these latter variables,
Ghiani and Laporte formulate the URPP using only 0/1 variables. More precisely, they
base their developments on dominance relations which are equalities or inequalities
that reduce the set of feasible solutions to a smaller set which surely contains an optimal
solution. Hence, a dominance relation is satisfied by at least one optimal solution of the
problem but not necessarily by all feasible solutions. While some of these domination
relations are difficult to prove, they are easy to formulate. For example, [9] have proved
the following domination relation.

Domination relation 1
Every optimal solution of the URPP satisfies the following relations:

x. <1 ifeeR
x, <2 ife € E\R

This domination relation indicates that given any optimal solution x* of the URPP, all
edges appear at most twice in G(x*). This means that one can restrict our attention to
those feasible solutions obtained by adding at most one copy of each required edge,
and at most two copies of each non-required one. The following second domination
relation was proved by Corberan and Sanchis [10].

Domination relation 2
Every optimal solution of the URPP satisfies the following relation:

x. < lif e is an edge linking two vertices in the same connected component of Gy

The above domination relation not only states (as the first one) that it is not nec-
essary to add more that one copy of each required edge (i.e., x. < 1 ife € R), but also
that it is not necessary to add more than one copy of each non-required edge linking
two vertices in the same connected component of Gr. Another domination relation is
given in [24].

Domination relation 3

Let G* be an auxiliary graph having a vertex w; for each connected component C; of
Gr and, for each pair of components C; and C;, an edge (w;,w;) corresponding to a
least cost edge between C; and C;. Every optimal solution of the URPP satisfies the
following relation:

x. < 1l if e does not belong to a minimum spanning tree on G*.

Let E, denote the set of edges belonging to a minimum spanning tree on G*,
and let £y = E'\E,. The above relation, combined with domination relation 1 proves
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that given any optimal solution x* of the URPP, the graph G(x*) is obtained from
Gy by adding at most one copy of each edge in £, and at most two copies of each
edge in E,. In summary, every optimal solution of the URPP satisfies the following
relations:

x. <1 if eeE;
x,. <2 if ee k),

Ghiani and Laporte propose to replace each edge e € £, by two parallel edges

¢’ and e”. Doing this, they replace variable x, that can take values 0, 1 and 2 by
two binary variables x. and x... Let E’ and E” be the set of edges ¢ and e”
and let E* = E, U E’ U E”. The URPP can now be formulated as a binary integer
program:

Minimize E CeXe

ecE*
subject to
Y xe =18 (mod 2)  (veV) (5)
eed(v)
Y xez2 w=mPcl,....pP#£0) 2
ecs(W) kep
x.=0o0rl (e € E) (6)

The convex hull of feasible solutions to (2), (5), (6) is a polytope (i.e., a bounded
polyhedron). The cocircuits inequalities, defined by Barahona and Grétschel [3] and
described here below, are valid inequalities for this new formulation, while they are
not valid for the unbounded polyhedron induced by the previous formulations. These
inequalities can be written as follows:

Z Xp > er —|Fl+1  (veV,FC8w),I|szv) + |F|isodd) (7)

ecS(V\F eckF

To understand these inequalities, consider any vertex v and any subset F* C§(v) of
edges incident to v, and assume first that there is at least one edge ¢ € F with x, =0
(i.e., no copy of e is added to Gg(V,R) to obtain G(x)). Then ), x. — [F|+1 <0
and constraints (7) are useless in that case since we already know from constraints
(6) that )" s(u)\F Xe must be greater than or equal to zero. So suppose now that G(x)
contains a copy of each edge e € F. Then vertex v is incident in G(x) to |6x(v)|
required edges and to | F'| copies of edges added to Gr(V,R). If [8x(v)| + | F] is odd
then at least one additional edge in §(v)\ F must be added to Gg(V,R) in order to get the
desired Eulerian graph G(x). This is exactly what is required by constraints (7) since, in
that case, ), x. — |F| + 1 = 1. Ghiani and Laporte have shown that the non-linear



222 Alain Hertz

constraints (5) can be replaced by the linear constraints (7), and they therefore propose
the following binary linear formulation to the URPP:

Minimize E CeXe

eckE*

subject to

Y oxe= ) xe—|FI+1 eV, FC8(v),lsx)+]|F|isodd) (7)
eeS(V\F eel

D xe=2 W=V Pcll,....pL P#£0) (2
ees(W) keP
xe=0o0rl (e € E¥) (6)

All constraints in the above formulation are linear, and this makes the use of Branch
& Cut algorithms easier (see Section 2). Cocircuit inequalities (7) can be generalized
to any non-empty subset W of V:

Yoxez Y xe—IFl+1  (FC8(0W),8x(W)| +|Flis odd) ®)
ecS(W)\F ecF

If §x(W) is odd and F is empty, constraints (8) reduce to the following R-odd
inequalities used by Corberan and Sanchis [10]:

dxe=1  (WCV,8x(W)lis odd) ©9)

ecs(W)

If 5g(W) is even and F contains one edge, constraints (8) reduce to the following
R-even inequalities defined by Ghiani and Laporte [24]:

Nxezxe  (W#O W C V500 is even, e* € 5(1) (10)
ecs(W)\{e*}

These R-even inequalities (10) can be explained as follows. Notice first that they are
useless when x,- = 0 since we already know from constraints (6) that 3, sy )\ (e+) Xe =
0. So let W be any non-empty proper subset of ¥ such that [5z(/)| is even, and let
e* be any edge in (W) with x,» = 1 (if any). Since G(x) is required to be Eulerian,
the number of edges in G(x) having one endpoint in W and the other outside W
must be even. These edges that traverse the frontier between W and N\W in G(x)
are those in §x(W) as well as the edges e € §(W) with value x, = 1. Since |5§z(W)|
is supposed to be even and x.- = 1, we can impose .5 Xe = D_eeswy er) Xe T 1
tlo also be even, which means that} sy () X must be greater than or equal to

= Xe*.
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Several researchers have implemented cutting plane and Branch & Cut algorithms
for the URPP, based on the above formulations. It turns out that cutting planes of type
(9) and (10) are easier to generate than the more general ones of type (7) or (8). Ghiani
and Laporte have implemented a Branch & Cut algorithm for the URPP, based on con-
nectivity inequalities (2), on R-odd inequalities (9) and on R-even inequalities (10).
The separation problem (see Section 2) for connectivity inequalities is solved by means
of a heuristic proposed by Fischetti, Salazar and Toth [21]. To separate R-odd inequal-
ities, they use a heuristic inspired by a procedure developed by Grotschel and Win
[28]. The exact separation algorithm of [41] could be used to identify violated R-even
inequalities, but [24] have developed a faster heuristic procedure that detects several vi-
olations at a time. They report very good computational results on a set of 200 instances,
corresponding to three classes of random graphs generated as in [31]. Except for 6 in-
stances, the other 194 instances involving up to 350 vertices were solved to optimality in
a reasonable amount of time. These results outperform those reported by Christofides,
et al. [9], [10] and [36] who solved much smaller randomly generated instances
(V] <84).

4. Basic Procedures for the URPP and the UCARP

Up to recently, the best known constructive heuristic for the URPP was due to [22].
This method works along the lines of Christofides’s algorithm [8] for the undirected
traveling salesman problem, and can be described as follows.

Frederickson’s Algorithm

Step 1. Construct a minimum spanning tree S over G* (see domination relation 3
in Section 3 for the definition of G*).

Step 2. Determine a minimum cost matching M (with respect to shortest chain
costs) on the odd-degree vertices of the graph induced by R U S.

Step 3. Determine an Eulerian tour in the graph induced by R U S U M.

As Christofides’s algorithm for the undirected traveling salesman, the above algo-
rithm has a worst case ratio of 3/2. Indeed, let C* be the optimal value of the URPP
and let Cg, Cgs and Cj, denote the total cost of the edges in R, S and M, respectively.
It is not difficult to show that Cx + Cs < C* and Cj; < C*/2, and this implies that
Cr+Cg+ Cy <3C*2.

Two recent articles [31, 30] contain a description of some basic algorithmic proce-
dures for the design of heuristic methods in an arc routing context. All these procedures
are briefly described and illustrated in this section. In what follows, SC,,, denotes the
shortest chain linking vertex v to vertex w while L, is the length of this chain. The
first procedures, called POSTPONE and REVERSE, modify the order in which edges are
serviced or traversed without being serviced.
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Procedure POSTPONE

INPUT : a covering tour T with a given orientation and a starting point v on 7.
OUTPUT : another covering tour.

Whenever a required edge e appears several times on 7, delay service of e until
its last occurrence on 7', considering v as starting vertex on 7.

Procedure REVERSE

INPUT : a covering tour 7" with a given orientation and a starting point v on 7.
OUTPUT : another covering tour.

Step 1. Determine a vertex w on 7 such that the path linking v to w on T is as
long as possible, while the path linking w to v contains all edges in R. Let
P denote the path on T from v to w and P’ the path from w to v.

Step 2. If P’ contains an edge (x,w) entering w which is traversed but not serviced,
then the first edges on P’ up to (x,w) induce a circuit C. Reverse the
orientation of C and go to Step 1.

The next procedure, called SHORTEN, is based on the simple observation that
if a tour Tcontains a chain P of traversed (but not serviced) edges, then 7 can
eventually be shortened by replacing P by a shortest chain linking the endpoints
of P.

Procedure SHORTEN

INPUT : a covering tour T’
OUTPUT : a possibly shorter covering tour.

Step 1. Choose an orientation for 7 and let v be any vertex on 7.

Step 2. Apply POSTPONE and REVERSE

Step 3. Let w be the first vertex on T preceeding a required edge. If L ,, is shorter
than the length of P, then replace P by SC,,,.

Step 4. Repeatedly apply steps 2 and 3, considering the two possible orientations
of T, and each possible starting vertex v on T, until no improvement can
be obtained.

As an illustration, consider the graph depicted in Figure 2(a) containing 4 re-
quired edges shown in bold lines. An oriented tour 7' = (¢,d e, f,b,a,e,2,d,c) is rep-
resented in Figure 2(b) with v = ¢ as starting vertex. Since the required edge (¢,d)
appears twice on 7, POSTPONE makes it first traversed and then serviced, as shown
on Figure 2(c). Then, REVERSE determines P = (¢,d,e) and P’ = (e, f,b,a,e,g,d,c),
and since P’ contains a non-serviced edge (a,e) entering e, the orientation of the cir-
cuit (e, f,b,a,e) is reversed, yielding the new tour represented in Figure 2(d). The first
part P = (c,d,e,a) of this tour is shortened into (c,a), yielding the tour depicted in
Figure 2(e).
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()
(d) (e)

Figure 2. Illustration of procedures POSTPONE, REVERSE and SHORTEN.

The next procedure, called SwiTCH, also modifies the order in which required edges
are visited on a given tour. It is illustrated in Figure 3.

Procedure SWITCH

INPUT : a covering tour 7'
OUTPUT : another covering tour.

Step 1. Select a vertex v appearing several times on 7.
Step 2. Reverse all minimal cycles starting and ending at v on T'.

Given a covering tour 7 and given a non-required edge (v,w), procedure ADD
builds a new tour covering R U (v,w). On the contrary, given a required edge (v,w) in
R, procedure DRrOP builds a new tour covering R\ (v,w).

Procedure App

INPUT : a covering tour 7" and an edge (v,w) ¢R
OUTPUT : a covering tour for R U (v,w)

A tour T=(a,d,c.bafeahga) The modified tour (a,b.c.d.a.efa.gha)

with 3 minimal cycles starting and ending at a

Figure 3. Illustration of procedure SWITCH.
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Step 1. Ifneither v nor w appear on 7', then determine a vertex z on 7 minimizing
L., + L., and add the circuit SC,,U (v,w)USC,. on T. Otherwise, if
one of v and w (say v), or both of them appear on 7, but not consecutively,
then add the circuit (v,w,v) on 7.

Step 2. Set R: = R U (v,w) and attempt to shorten 7 by means of SHORTEN.

Procedure Dropr

INPUT : a covering tour 7" and an edge (v,w) in R
OUTPUT : a covering tour for R\(v,w).

Step 1. Set R: = R\(v,w).
Step 2. Attempt to shorten 7' by means of SHORTEN.

The last two procedures, called PASTE and CuT can be used in a UCARP context.
PASTE merges two routes into a single tour, possibly infeasible for the UCARP.

Procedure PASTE

INPUT : two routes 77 = (depot, v;,vs, ..., v, depot) and 7, = (depot, wi,wo, ...,
wy, depot).
OUTPUT : a single route 7" containing all required edges of R; and R,.

If (v, depot) and (depot, w;) are non-serviced edges on 7| and 75, respectively,
then set 7 = (depot, vy,...,v,,wy,...,ws, depot), else set T = (depot, vy,..., v,
depot, wy, ..., wy, depot).

Cut decomposes a non-feasible route into a set of feasible routes (i.e., the total
demand on each route does not exceed the capacity Q of each vehicle).

Procedure Cut

INPUT : A route T starting and ending at the depot, and covering R.
OUTPUT : a set of feasible vehicle routes covering R.

Step 0. Label the vertices on T so that 7 =(depot, vy, v, ...,v;, depot).

Step 1. Let D denote the total demand on 7. If D < Q then STOP : T is a feasible
vehicle route.

Step 2. Determine the largest index s such that (vs_1,vy) is a serviced edge, and the
total demand on the path (depot, vy, .. ., vy) from the depot to vy does not
exceed Q. Determine the smallest index » such that (v,_;,v,) is a serviced
edge and the total demand on the path (v,, ..., v,, depot) from v, to the
depot does not exceed Q([D/Q7 — 1). If r > s then setr = s.

For each index ¢ suchthatr < g <, let v, * denote the first endpoint
of a required edge after v, on T, and let §, denote the length of the
chain linking v, to v,* on T'. Select the vertex v, minimizing L(v,) =
Luq, depot + Ldepot, vq*_sq-
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Step 3. Let P,, (Py,«) denote the paths on 7' from the depot to v, (v,*). Con-
struct the feasible vehicle route made of Py, USCy, depots replace Py by
SCdepot,Uq* on 7T and return to Step 1.

The main idea of the above algorithm is to try to decompose the non-feasible route
T into [D/ Q] feasible vehicle routes, where [ D/ Q] is a trivial lower bound on the
number of vehicles needed to satisfy the demand on T'. If such a decomposition exists,
then the demand covered by the first vehicle must be large enough so that the residual
demand for the [ D/ Q7 —1 other vehicles does not exceed Q([D/Q7 —1) units: this
constraint defines the above vertex v,.. The first vehicle can however not service more
than Q units, and this defines the above vertex v. If r > s, this means that it is not
possible to satisfy the demand with [ D/ Q7 vehicle routes, and the strategy described
above is to cover as many required edges as possible with the first vehicle. Otherwise,
the first vehicle satisfies the demand up to a vertex v, on the path linking v, to vy, and
the process is then repeated on the tour 7’obtained from T by replacing the path (depot,
v1,...,v,*) by a shortest path from the depot to v,*. The choice for v, is made so that
the length of 7’ plus the length of the first vehicle route is minimized.

Procedure Cur is illustrated in Figure 4. The numbers in square boxes are de-
mands on required edges. The numbers on the dashed lines or on the edges are shortest
chain lengths. In this example, O = 11 and D = 24. The procedure first computes
O([D/Q1 — 1) = 22, which implies that the first vehicle route must include at least
the first required edge (i.e., » = 2). Since the first vehicle cannot include more than
the three first required edges without having a weight exceeding O, we have s = 5.
Now, vy* = v3, v3* = v3, V4™ = v4 and vs* = vg, and since L(vy) =10, L(v3) =12,
L(vy) = 8 and L(vs) = 11, vertex vy is selected. The first vehicle route is there-
fore equal to (depot,v;,v;,v3,v4,depot) and the procedure is reapplied on the tour (de-
pot, v4, vs,. .., v1g, depot) with a total demand D =17. We now have s =7 andr =9,
which means that the four remaining required edges cannot be serviced by two vehi-
cles. We therefore sets = » =7, which means that the second vehicle route is equal to
(depot, v4, vs, Vg, V7, depot) and the procedure is repeated on T = (depot, vg ,v9 vy,
depot) with D = 12. Since s = r =9, the third vehicle route is equal to (de-
pot, vg, vg, depot) and the residual tour 7 = (depot, vy, v}, depot) is now feasible and
corresponds to the fourth vehicle route.

Notice that procedure CuT does not necessarily produce a solution with a min-
imum number of vehicle routes. Indeed, in the above example, the initial route

Figure 4. Illustration of procedure CUT.
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T has been decomposed into four vehicle routes while there exists a solution with three
vehicle routes (depot, vy, ..., vs, depot), (depot, vg, ..., vo, depot) and (depot, vg, vy,
depot).

5. Recent Heuristic Algorithms for the URPP and the UCARP

The procedures described in the previous section can be used as basic tools for the
design of constructive algorithms for the URPP. As an example, a solution to the URPP
can easily be obtained by means of the following very simple algorithm designed by
[31].

Algorithm Construct-URPP

Step 1. Choose a required edge (v;,v;) and set T = (v;,v;,v;).
Step 2. If T contains all required edges then stop; else chose a required edge which
isnot yet in 7 and add it to 7by means of procedure ADD.

Post-optimization procedures can be designed on the basis of procedures DropP,
ADD and SHORTEN. As an example, an algorithm similar to the 2-opt procedure [11]
for the undirected traveling salesman problem can be designed for the URPP as shown
below.

Algorithm 2-opt-URPP

Step 1. Choose an orientation of the given tour T and select two arcs (v;,v;) and
(vy,us) on T'. Build anew tour 7" by replacing these two arcs by the shortest
chains SP;, and SP;, and by reversing the orientation of the path linking
vitov,onT.

Step 2. Let R’ be the set of required edges appearing on 7’. Apply SHORTEN
to determine a possibly shorter tour 7” that also covers R’. If R # R’
then add the missing required edges on 7” by means of procedure
ADD.

Step 3. If the resulting tour 7" has a lower cost than 7', then set 7 equal to 7.

Step 4. Repeat steps 1, 2 and 3 with the two possible orientations of 7" and with all
possible choices for (v;,v;) and (v,,v,), until no additional improvement
can be obtained.

[31] propose to use a post-optimization procedure, called DROP-ADD, similar to
the Unstringing-Stringing (US) algorithm for the undirected traveling salesman prob-
lem [23]. DROP-ADD tries to improve a given tour by removing a required edge and
reinserting it by means of DROP and ADD, respectively.

Algorithm DrRoOP-ADD

Step 1. Choose a required edge e, and build a tour 77 covering R\{e} by means
of Drop.
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Step 2. If edge e is not traversed on 7”, then add e to 7’ by means of ADD.

Step 3. If the resulting tour 7" has a lower cost than 7', then set 7 equal to 7”.

Step 4. Repeat steps 1, 2 and 3 with all possible choices for e, until no additional
improvement can be obtained.

[31] have generated 92 URPP instances to test the performance of these two post-
optimization procedures. These 92 instances correspond to three classes of randomly
generated graphs. First class graphs are obtained by randomly generating points in the
plane; class 2 graphs are grid graphs generated to represent the topography of cities,
while class 3 contains grid graphs with vertex degrees equal to 4. Computational ex-
periments show that Frederickson’s algorithm is always very quick but rarely optimal.
Percentage gaps with respect to best known solutions can be as large as 10%, partic-
ularly in the case of larger instances or when the number of connected components in
Gy, is large. Applying DroP-ADD after Frederickson’s algorithm typically generates a
significant improvement within a very short computing time. However, much better re-
sults are obtained if 2-opt-URPP is used instead of DROP-ADD, but computing times are
then more significant. The combination of Frederickson’s algorithm with 2-opt-URPP
has produced 92 solutions which are now proved to be optimal using the Branch & Cut
algorithm of [24].

Local search techniques are iterative procedures that aim to find a solution s
minimizing an objective function f over a set S of feasible solutions. The iterative
process starts from an initial solution in S, and given any solution s, the next solution is
chosen in the neighbourhood N(s) C S. Typically, a neighbour s” in N(s) is obtained
from s by performing a local change on it. Simulated Annealing [34] and Tabu Search
[25] are famous local search techniques that appear to be quite successful when applied
to a broad range of practical problem.

[30] have designed an adaptation of Tabu Search, called CARPET, for the solution of
the UCARP. Tests on benchmark problems have shown that CARPET is a highly efficient
heuristic. The algorithm works with two objective functions: f(s), the total travel
cost, and a penalized objective function f'(s) = f(s) + «wE(s), where « is a positive
parameter and E(s) is the total excess weight of all routes in a possibly infeasible
solution s. CARPET performs a search over neighbor solutions, by moving at each
iteration from the current solution to its best non-tabu neighbor, even if this causes
a deterioration in the objective function. A neighbor solution is obtained by moving
a required edge from its current route to another one, using procedures DRoOP and
ADD.

Recently, [39] have designed a new local search technique called Variable Neigh-
borhood Search (VNS). The basic idea of VNS is to consider several neighborhoods
for exploring the solution space, thus reducing the risk of becoming trapped in a lo-
cal optimum. Several variants of VNS are described in [29]. We describe here the
simplest one which performs several descents with different neighborhoods until a
local optimum for all considered neighborhoods is reached. This particular variant
of VNS is called Variable neighborhood descent (VND). Let Ny, Ny, ..., Nx denote
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a set of Kneighborhood structures (i.e., N;(s) contains the solution that can be ob-
tained by performing a local change on s according to the i-th type). VND works as
follows.

Variable Neighbourhood Descent

Step 1. Choose an initial solution s in S.

Step 2. Seti: =1 and Spes;: = 5.

Step 3. Perform a descent from s,using neighborhood »;, and let s” be the resulting
solution. If f(s") <f(s) then set s: =s'. Seti: =i + [. If i < K then repeat
Step 3.

Step 4. If f(s) < f(spes:) then go to Step 2; else stop.

[32] have designed an adaptation of VND to the undirected CARP, called VND-
CaRrp. The search space S contains all solutions made of a set of vehicle routes covering
all required edges and satisfying the vehicle capacity constraints. The objective function
to be minimized on S is the total travel cost. The first neighborhood N;(s) contains
solutions obtained from s by moving a required edge (v,w) from its current route 7; to
another one 7, Route 7, either contains only the depot (i.e., a new route is created),
or a required edge with an endpoint distant from v or w by at most «, where « is the
average length of an edge in the network. The addition of (v,w) into 7 is performed
only if there is sufficient residual capacity on 75 to integrate (v,w). The insertion of
(v,w) into 7, and the removal of (v,w) from 7} are performed using procedures ADD
and Drop described in the previous section.

A neighbor in N;(s) (i > 1) is obtained by modifying i routes in s as follows. First,
a set of i routes in s are merged into a single tour using procedure PASTE, and procedure
SwiTcH is applied on it to modify the order in which the required edges are visited.
Then, procedure CUT divides this tour into feasible routes which are possibly shortened
by means of SHORTEN.

As an illustration, consider the solution depicted in Figure 5(a) with three routes
T\ =(depot,a,b,c,d,depot), T, =(depot,b,e, f,b,depot) and T5=(depot,g,h,depot).
The capacity Q of the vehicles is equal to 2, and each required edge has a
unit demand. Routes 7} and 7, are first merged into a tour 7 =(depot,a,b,c,d,
depot,b,e, f,b,depot) shown in Figure 5(b). Then, SwiTcH modifies 7 into
T’ =(depot,d,c,b, f ,e,b,a,depot,b,depot) represented in Figure 5(c). Procedure
Cur divides T’ into two feasible routes 7| =(depot.d,c,b,f eb,depot) and
T, =(depot,b,a,depot,b,depot) depicted in Figure 5(d). Finally, these two routes
are shortened into 7", =(depot,d,c, f,e,b,depot) and T”",=(depot,b,a,depot) using
SHORTEN. Routes 7”; and 7", together with the third non-modified route 73 in s
constitute a neighbor of s in N,(s) shown in Figure 5(e).

Hertz and Mittaz have performed a comparison between CARPET, VND-CARP
and the following well known heuristics for the UCARP : CONSTRUCT-STRIKE
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Figure 5. Illustration of neighbourhood Nj.

[7], PATH-SCANNING [26], AUGMENT-MERGE [27], MODIFIED-CONSTRUCT-STRIKE [43]
and MODIFIED-PATH-SCANNING [43]. Three sets of test problems have been con-
sidered. The first set contains 23 problems described in [13] with 7 < |V| < 27
and 11 < |E| <55, all edges requiring a service (i.e. R = E). The second set contains
34 instances supplied by Benavent [5] with24 < |V| <50,34 < |E| <97and R = E.
The third set of instances was generated by Hertz, Laporte and Mittaz [30] in order
to evaluate the performance of CARPET. It contains 270 larger instances having 20,
40 or 60 vertices with edge densities in [0.1,0.3], [0.4,0.6] or [0.7,0.9] and |R|/|E| in
[0.1,0.3], [0.4,0.6] or [0.8,1.0]. The largest instance contains 1562 required edges.

A lower bound on the optimal value was computed for each instance. This lower
bound is the maximum of the three lower bounds CPA, LB2’ and NDLB’ described in
the literature. The first, CPA, was proposed by Belenguer and Benavent [4] and is based
on a cutting plane procedure. The second and third, LB2" and NDLB’, are modified
versions of LB2 [6] and NDLB [33] respectively. In LB2" and NDLB’, a lower bound
on the number of vehicles required to serve a subset R of edges is computed by means
of the lower bounding procedure LR proposed by Martello and Toth [37] for the bin
packing problem, instead of [ D/ Q7 (where D is the total demand on R).

Average results are reported in tables 1 and 2 with the following information:

* Average deviation: average ratio (in %) of the heuristic solution value over the
best known solution value.
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Table 1. Computational results on DeArmon instances

Ps AM Cs Mcs Mprs CARPET VND
Average deviation 7.26 5.71 14.03 4.02 4.45 0.17 0.17
Worst deviation 2227 25.11 43.01 40.83 23.58 2.59 1.94
Number of proven optima 2 3 2 11 5 18 18

e Worst deviation: largest ratio (in %) of the heuristic solution value over the best
known solution value;

e Number of proven optima: number of times the heuristic has produced a solution
value equal to the lower bound.

Ps, AM, Cs, MCs, Mps and VND are abbreviations for PATH-SCANNING,
AUGMENT-MERGE, CONSTRUCT-STRIKE, MODIFIED-CONSTRUCT-STRIKE, MODIFIED-
PATH-SCANNING and VND-CARP.

It clearly appears in Table 1 that the tested heuristics can be divided into three
groups. CONSTRUCT-STRIKE, PATH-SCANNING and AUGMENT-MERGE are constructive
algorithms that are not very robust: their average deviation from the best known solu-
tion value is larger than 5%, and their worst deviation is larger than 20%. The second
group contains MODIFIED-CONSTRUCT-STRIKE and MODIFIED-PATH-SCANNING; while
better average deviations can be observed, the worst deviation from the best known
solution value is still larger than 20%. The third group contains algorithms CARPET and
'VND-CARP that are able to generate proven optima for 18 out of 23 instances.

It can be observed in Table 2 that VND-CARP is slightly better than CARPET both
in quality and in computing time. Notice that VND-CARP has found 220 proven optima
out of 324 instances. As a conclusion to these experiments, it can be observed that the
most powerful heuristic methods for the solution of the UCARP all employ on the basic
tools described in Section 4.

6. Conclusion and Future Developments

In the field of exact methods, Branch & Cut has known a formidable growth
and considerable success on many combinatorial problems. Recent advances made by

Table 2. Computational results on Benavent and Hertz-Laporte-Mittaz instances

Benavent instances Hertz-Laporte-Mittaz instances
CARPET VND CARPET VND
Average deviation 0.93 0.54 0.71 0.54
Worst deviation 5.14 2.89 8.89 9.16
Number of proven optima 17 17 158 185

Computing times in seconds 34 21 350 42
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Corberan and Sanchis [10], Letchford [36] and Ghiani and Laporte [24] indicate that
this method also holds much potential for arc routing problems.

In the area of heuristics, basic simple procedures such as POSTPONE, REVERSE,
SHORTEN, DROP, ADD, SWITCH, PASTE and CUT have been designed for the URPP and
UCARP [31]. These tools can easily be adapted to the directed case [38]. Powerful
local search methods have been developed for the UCARP, one being a Tabu Search
[30], and the other one a Variable Neighborhood Descent [32].

Future developments will consist in designing similar heuristic and Branch &
Cut algorithms for the solution of more realistic arc routing problems, including those
defined on directed and mixed graphs, as well as problems incorporating a wider variety
of practical constraints.
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Abstract

In the 21*" century our society is becoming more and more dependent on software systems. The
safety of these systems and the quality of our lives is increasingly dependent on the quality of such
systems. A key element in the manufacture and quality assurance process in software engineering
is the testing of software and hardware systems. The construction of efficient combinatorial
covering suites has important applications in the testing of hardware and software. In this paper
we define the general problem, discuss the lower bounds on the size of covering suites, and give
a series of constructions that achieve these bounds asymptotically. These constructions include
the use of finite field theory, extremal set theory, group theory, coding theory, combinatorial
recursive techniques, and other areas of computer science and mathematics. The study of these
combinatorial covering suites is a fascinating example of the interplay between pure mathematics
and the applied problems generated by sofiware and hardware engineers. The wide range of
mathematical techniques used, and the often unexpected applications of combinatorial covering
suites make for a rewarding study.

1. Introduction

Testing is an important but expensive part of the software and hardware develop-
ment process. In order to test a large software or hardware system thoroughly, many
sequences of possible inputs must be tried, and then the expected behavior of the sys-
tem must be verified against the system’s requirements. This is usually a labor-intensive
process that requires a great deal of time and resources. It has often been estimated that
testing consumes at least 50% of the cost of developing a new piece of software. The
testing costs for hardware and safety-critical systems are often higher.

The consequences of inadequate testing can be catastrophic. An extreme example is
the software failure in the Therac-5 radiation therapy machine [27] that is known to have
caused six massive overdoses of radiation to be administered to cancer patients resulting
in deaths and severe injuries. A further example of a catastrophic software failure
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occurred when the Ariane 5 satellite launcher exploded 40 seconds into its maiden
flight. A register overflow failure which occurred simultaneously on one processor and
onits backup [29] caused both processors to shut down, and eventually abort the satellite
mission. The most celebrated hardware bug is the Pentium floating point division bug
[14] which caused an error in the accuracy of a small number of division computations.
This in itself, does not sound like a disaster — but the cost to the Intel corporation was
measured in millions of dollars.

An approach to lowering the cost of software testing was put forward by Cohen,
Dalal, Fredman, and Patton [11] using test suites generated from combinatorial designs.
This approach involves identifying parameters that define the space of possible test
scenarios, then selecting test scenarios in such a way as to cover all the pairwise (or
t-wise) interactions between these parameters and their values. A similar approach
was used earlier in hardware testing by Tang, Chen, and Woo [41,42] and Boroday
and Grunskii [3]. The approach is familiar to statisticians, and has been used in the
design of agricultural experiments since the 1940s [17]. The statistical analysis of such
experiments is facilitated if every interaction is covered precisely the same number of
times, however Cohen et al. point out that in software testing it is often sufficient to
generate test suites so that each interaction is covered at least once rather than insisting
on the more restrictive condition required by the statisticians.

As an example, consider the testing of an internet site that must function correctly
on three operating systems (Windows, Linux, and Solaris), two browsers (Explorer
and Netscape), three printers (Epson, HP, and IBM), and two communication proto-
cols (Token Ring and Ethernet). Although there are 36 = 3 x 2 x 3 x 2 possible test
configurations, the nine tests in Figure 1 cover all the pairwise interactions between
different parameters of the system.

The interactions between operating systems and printers are all covered precisely
once, but some interactions between operating systems and browsers are covered more
than once. For example, Windows and Explorer are tested together twice in the test
suite.

More generally, if a software system has & parameters, each of which must be
tested with n; values (1 <i < k), then the total number of possible test vectors is
the product []»,. If we wish to test the interactions of any subset of ¢ parameters,
then the number of test vectors may be as small as the product of the ¢ largest
values n;.

The same argument applies to testing software that computes a function with &
parameters, or a piece of hardware with & input ports. In the context of hardware testing
it is of particular importance to find small sets of binary vectors of length & with the
property that any fixed set of # coordinate places contains all 2’ binary strings of length
t. In Figure 2 we illustrate a set of 8 binary vectors of length 4 such that any 3 coordinate
places contain all possible binary strings of length 3.
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Operating System Browser Printer Protocol
Windows Explorer Epson Token Ring
Windows Netscape HP Ethernet
Windows Explorer IBM Ethernet
Linux Netscape Epson Token Ring
Linux Explorer HP Ethernet
Linux Netscape IBM Token Ring
Solaris Explorer Epson Ethernet
Solaris Netscape HP Token Ring
Solaris Explorer IBM Ethernet

Figure 1. A set of test cases with pairwise coverage.

In the next section we will formalize the problem of finding minimal covering
suites. We then discuss various techniques for constructing good covering suites using
finite fields (in Section 3), extremal set theory (in Section 4), group theory (Section 6),
coding theory (Section 4), algorithmic methods (Sections 5 and 8), and combinatorial
recursive methods (Section 7). We also discuss briefly the results on lower bounds on
the sizes of covering suites in Section 4. Finally in Section 9 we close with an account
of three diverse applications of covering suites including one in an area far removed
from the original motivating problem.

The wide range of methods used, and the variety of applications of these com-
binatorial objects provide evidence of the value of interdisciplinary studies, and the
cross-fertilization that occurs between mathematics and computer science.

0000
0011
0101
0110
1001
1010
1100
1111

Figure 2. A covering suite of strength 3 with four binary parameters.
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2. Covering Suites and Their Properties

Let Dy, Dy, ..., Dy be finite sets of cardinalities ny, ny, ..., n; respectively. A
test suite with N test vectorsisanarray 4 = (a;; : 1 <i < N, 1 < j < k) where each
member of the array a;; € D; foralli and j. The rows of the array are called fest vectors
or ftest cases or just simply tests. The set D; is the domain of possible values for the
i-th coordinate of the test vector.

We shall say that the test suite 4 is a t-wise covering suite with parameters
ni, na, ..., ngifforany¢ distinct columns ¢y, c3, . . ., ¢; and for any ordered ¢-tuple 7' €
D, x D, x ... x D,thereexists atleastonerowr suchthat (a,.,, areys - . ., ) = T.

We define the covering suite number CS,(ny, na, . .., ny)tobe the minimum integer
N such that there exists a t-wise covering suite with N test cases for £ domains of sizes
ni, ny, ..., ng. The function is well-defined, since the actual members of the sets D;
are not important; what really matters is the cardinalities of the sets. Unless otherwise
stated, we will assume that D; = {0, 1, ...,n; — 1}.

If all the domains are the same size, say n, we will denote CS;(n, n, ..., n) by
CS,(n*) and we also use this standard exponential notation for multi-sets in other
contexts, so that for example, we will use CS;(n?, m?) for CS,(n, n, m, m, m).

A strict interpretation of the definition implies that CSy(n*) = 1, since at least
one row is required to cover the empty O-tuple. It is also straightforward to see that
CS)(n*) = n, since each column of the minimal array must contain a permutation of 7,,.

In the rest of this section, we will establish some elementary properties of covering
suites and the covering suite numbers defined above.

Lemma 2.1 CS,(ny,ns,...,n;) > nny...n,, and hence n* > CS,(n*) > n’

Proof. Consider the number of test cases required to cover all the combinations of
values in the first  domains. Details are left as an exercise. O

We now show that CS,(n¥) is a non-decreasing function of ¢, n, and k.
Lemma 2.2 For all positive integer parameters, we have:

a) if k < r then CS;(n*) < CS;(n")

b) if n; < m; for alli then CS;(n, na, ...n;) < CS;(my, my, ...my)
¢)if n < m then CS,(n*) < CS,(m*)

d)if s < ¢ then CSy(n*) < CS,(n").

Proof- a) Let CS;(n") = N and let 4 be a t-wise covering suite with N test cases for »
domains of size n. Deleting » — k columns from A leaves a ¢-wise covering test suite
with N test cases for k domains of size n, and thus CS,(n*) < N = CS,(n").



Software and Hardware Testing Using Combinatorial Covering Suites 241

b) Let CS;(m, my, ..., m;) = N and let 4 be a t-wise covering suite with N test
cases for the k domains of size m;. Replace every entry of 4 that lies in the set [,,, — I,
by an arbitrary member of I, to produce a t-wise covering suite with N test cases for
the k£ domains of size n;, thus CS;(ny, ny, ..., ny) < N = CS;(m, my, ..., my).

¢) To prove the strict inequality in c), we observe that the symbols in any column
may be permuted independently of each other without affecting the coverage property.
We permute the symbols so that the first row of the larger array is the constant vector
with value m — 1 (the largest member of 7,,). Now delete this row, and proceed as in
the proof of part b).

d) This follows from the fact that every s-tuple is contained in some ¢-tuple.
Moreover, the inequality is strict when n > 1 and k > ¢. O

The following result shows that there is a stronger relationship between the sizes
of covering suites when increasing their strength 7.

Lemma 2.3 We have CS/(ny,ns,...,n;) > nCS;_(ny,n3,...,n;) and thus
CSy(n*) = nCS;_y(n*1).

Proof. Consider the n;| sub-arrays of a #-wise covering array consisting of all rows
where the first column takes a constant value, and delete the first column, see Fig-
ure 3. Each such sub-array must be a (r—1)-wise covering array, which implies the
result. O

The problem of minimizing the number Nof test cases in a t-wise covering test
suite for k£ domains of size n was apparently first studied by Renyi [35], and many papers
on the subject have appeared since then. Many of these consider the mathematically
equivalent problem of maximizing the number £ of domains of size » in a t-wise
covering test suite with a fixed number Nof test cases. This is known as the problem
of finding the size of a largest family of t-independent n-partitions of an N-set. Other
names used in the literature for test suites are covering arrays, (kt)-universal sets, and
t-surjective arrays.

3. Orthogonal Arrays and Finite Fields

Orthogonal arrays are structures that have been used in the design of experiments
for over 50 years. An orthogonal array of size N with k constraints, n levels, strength 7,
andindex A isan N x k array with entries from 7, = {0, 1, ...n — 1} with the property
that: in every N x ¢ submatrix, every 1 x ¢ row vector appears precisely A = N/n'
times. See Figure 4.

In a fundamental paper, Bush [6] gave constructions for orthogonal arrays of
index 1, and bounds on their parameters. It is clear that an orthogonal array of index
1 is a special case of a covering suite, since in a covering suite each 1 x ¢ row vector
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2CS, (n,,n,,...,n,)

2CS,_ (ny,ny,....,n,)

n, —1

n, —1

=2CS,_ (ny,n,,...,n,)

Figure 3. Proof of Lemma 2.3.
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is required to appear at least once. Thus, an orthogonal array is always a minimal

covering suite.

Orthogonal arrays of strength 2 and index 1 have been especially well studied as

they are equivalent to mutually orthogonal Latin squares of order 7.

A Latin square of order n is a square array of side n with entries from the set 7,
with the property that every row and every column contains every member of the set
precisely once. Two Latin squares of order » are said to be mutually orthogonal if for
any ordered pair of elements (x, y} € I? there exists precisely one cell, such that the
first square has the value x in the cell, and the second square has the value y in that
cell. We illustrate two mutually orthogonal Latin squares of order 3 in Figure 5 below.
Notice that all nine pairs of symbols (x, y) occur once in the same cell of the squares.

Figure 4. An orthogonal array of strength 2.

0000
0111
0222
1021
1102
1210
2012
2120
2201
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012 012
201 120
120 201

Figure 5. A pair of mutually orthogonal Latin squares of side 3.

A set of k — 2 Latin squares of order n, each of which is orthogonal to the other,
can be put in one-to-one correspondence with an orthogonal array of size n? with k
constraints, n levels, strength 2, and index 1, as follows.

We define a row of the array for each of the n? cells in the Latin squares. The first
column of each row contains the row number of the cell, the second column contains the
column number of the cell, and the j-th column (for j > 2) contains the element in the
cell of the j-2" Latin square. We illustrate this construction using the two orthogonal
Latin squares of order 3 given above to build the orthogonal array of size 9, with 4
constraints, 3 levels, strength 2, and index 1, given at the beginning of this section
(Figure 4).

It is well-known (see, for example, [12]) that there exists a set of » — 1 mutually
orthogonal Latin squares of order » if and only if there exists a finite projective plane of
order 7, and that, moreover, the number of mutually orthogonal Latin squares of order
n is at most n — 1. We will see below that there are many values of n for which this
holds, and they will help us to construct covering suites in many cases. We summarize
this in the following result:

Theorem 3.1 CSy(n*) = n? for all k < n + 1 if and only if there exists a projective
plane of order n, and CS,(n*) > n? forall k > n + 1.

Proof. If there exists a projective plane of order n, then there exist n — 1 mutually
orthogonal Latin squares of order n, which implies the existence of an orthogonal array
of strength 2, index 1, n + 1 constraints, and n levels. Hence CS,(n*) < n? for all
k < n + 1, using the monotonicity results (Lemma 2.2). But, by Lemma 2.1, we have
CS»(n*) > n?, and thus equality holds. On the other hand, if CS,(n*) = n?, then each
pair of symbols must occur together precisely once in each pair of columns, and hence
the covering suite must be an orthogonal array, which in turn implies the existence of
k — 2 mutually orthogonal Latin squares, and hence k < n + 1. O

It is also well known that projective planes exist for all orders n = p*, which are
powers of a single prime p. The construction of projective planes of prime power order
was generalized by Bush [6] who proved the following result.

Theorem 3.2 Let n = p® be a prime power with n > ¢. Then CS,(n*) = n' for all
k < n+ 1. Moreover, if n > 4 is a power of 2, then CS;(nk) =n’forallk <n +2.

Proof Let F ={0, 1, ...} be the set of elements in a field of order n, with 0 be-
ing the zero element of the field. We index the columns of the orthogonal array by
members of F U{oo}, and the rows of the array are indexed by ¢-tuples

(:305 ,Bla -..,,3;_1) e F'.
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The array is then defined by the following table:

Column Row Array Entry

oo (BosBisnsBiy) Bo
0 (ﬁO’ﬂl""’ﬂt—l) ﬁt—l
x#0 (BosBroesBr) S

Figure 6. Construction of orthogonal arrays of strength ¢.

Let T = (x¢,x1,...,%—1) be a t-tuple of distinct columns, and let B =
(bo, by, ..., b,_1) be an arbitrary member of F’. To complete the proof of the first
part of the theorem we need to show that B occurs as some row of the sub-matrix
whose columns are indexed by T'. If T contains neither co nor 0, then we need to
solve the following ¢ equations for the # unknown quantities 8;, which index the row
containing B.

t—1
Z,Bjxij = bl' with 0 < i<t
Jj=0

Now the coefficient matrix has the form of a Vandermonde matrix [43], and thus
is invertible. Hence the system of equations has a unique solution. If 7' contains either
00, or 0, or both, then we have a system of  — 1 or £ — 2 equations that also have a
Vandermonde coefficient matrix, and thus are uniquely solvable.

In the case where ¢+ = 3 and n is a power of two, we index the columns of the matrix
by F U {o0g, 001} and we construct the array as follows:

Column Row Array Entry

° (Bo:B1,82)

By

b (1307ﬂ1’ﬁ2) B,
0 (Bo:B15B,) B,
x#0 (IBO’ﬁl’ﬁZ) ﬁo+ﬂ1x+ﬂ2x2

Figure 7. Construction of orthogonal arrays of strength 3 over fields of characteristic 2.
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The proof of this construction is similar, with the exception of the case in which
we consider three columns indexed by two distinct non-zero field members, say x and
v, and the column indexed by oo . In this case we have to solve the following equations
for ,30, ﬂl, and ﬂz.

Bo + Bix + Bx? = by
Bo+ By + Boy* = b
B1 = by

which reduces to the following pair of equations in 8y and B;:

Bo + Bax? = by — byx
Bo+ B2y* = by — by

Now these equations have a unique solution if and only if x> — y? % 0. In most fields
this quantity may be zero for distinct values x and y, but in fields of characteristic 2,
=y =(x -y’ #0. O

Remark 3.3 In the construction for arrays of strength 2, one can order the rows and
columns so that the first ¢ rows have the form (0, x, x, ..., x) one for every member
x of the field. This can be done by putting the 0 column on the left, and placing
all rows where B; = 0 at the top of the array. (An example is shown in Figure 4.)
Deleting these rows and the first column leaves us with an array with g> — ¢ rows,
and ¢ columns with the property that any ordered pair of distinct members of the field
is contained in some row of any pair of columns. These structures are known in the
literature as ordered designs (see Section IV.30 in [12]).We will use this construction in
Section 7.

Bush [5] also gave the following product construction, which generalizes Mac-
Neish’s product construction for mutually orthogonal Latin squares.

Theorem 3.4 Ifthere exist orthogonal arrays with & constraints, n; levels (fori = 1, 2),
strength ¢, and index 1, then there exists an orthogonal array with & constraints, nn;
levels, strength ¢, and index 1.

Proof. The construction is a straightforward product construction, indexing the rows
of the new array by ordered pairs of indices of the input arrays, and using the Cartesian
product of the symbol sets used as the symbol set of the new array. If the two input arrays
are A[i, j]and B[m, j]then the resulting array C[(i, m), j]is defined by C[(i, m), j] =
(Ali, j1, B[m, j]). The details are left as an exercise. O

Theorems 3.2 and 3.4 have the following consequences for covering suites:

Corollary 3.5 If n = [] ¢g; where the g; are powers of distinct primes, then CS; (n*) =
n', for any k < 1 + max(¢, ming;).
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There is a great deal of literature on the existence of sets of mutually orthogonal
Latin squares; see [12] for an extensive list of references and numerical results. These
results all have implications for the sizes C S (n*) of optimal pairwise covering suites
with k£ < n 4 1. We quote two of the most famous of these results — the disproof of
Euler’s conjecture and the Chowla, Erdos, Straus Theorem. We will use these results
in Section 7.

Theorem 3.6 (Bose, Parker, and Shrikhande [4]): For any positive integer n other than
2 or 6, there exists a pair of mutually orthogonal Latin squares of side n, and thus
CS)(n*) = n?forall n ¢ {2, 6).

Euler originally conjectured (on the basis of Corollary 3.5) that no pair of mutually
orthogonal Latin squares of side n exists for all # = 2(mod4). A proof of the non-
existence of a pair of squares of side 6 was published in 1900, but Parker eventually
found a pair of squares of side 10, and soon after, in 1960, the conjecture was totally
discredited by Theorem 3.6.

Theorem 3.7 (Chowla, Erdos, Straus [10]) The number of mutually orthogonal Latin
squares of side n goes to infinity with », and for sufficiently large », that number is at
least n%-0675,

In other words, if we fix k, then for all sufficiently large n, CS,(n*) = n?. For small
values of £ much better results than that provided by Theorem 3.7 are known. For
example CS,(n*) = n? for all n > 6. (Theorem 3.6), and CS,(n°) = n? for all n > 10
(see [12]).

One other result that belongs in this section is a construction due to Stevens, Ling,
and Mendelsohn [39]. They give a construction for near optimal covering suites using
affine geometries over finite fields. It is one of the few constructions in the literature
for covering suites where not all the domains are of the same size.

Theorem 3.8 Letn = p“ be a prime power then CS((n + 1), (n — 1)) < n? — 1.

The testing problem discussed in Section 1 is an application of the constructions
described in this section. In that problem we wanted to test the pairwise interactions of
a system with four parameters, two of cardinality 2, and two of cardinality 3. Now from
Lemma 2.1 we have CS,(32, 2%) > 9. From the construction in Theorem 3.1 (illustrated
in Figure 4) we have CS,(3*) < 9, and hence by the monotonicity results in Lemma 2.2,
we can construct the test suite given in Figure 1, which illustrates that CS,(32, 22) < 9.
Thus the test suite in Figure 1 is optimal.

4. Lower Bounds and Asymptotics

Weak lower bounds on the function CS;(n*) can be derived from non-existence
theorems for orthogonal arrays. Two examples are presented below.
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Theorem 4.1 (Bush:) An orthogonal array with k constraints, » levels, strength ¢, and
index 1 exists only if:

n+t—1 ifn=0mod2) and t<n
k<{n+t—2 ifn=1mod2) and 3<t=<n
t+1 if t>n

This implies that CS;(n*) > n’ for all k greater than the bounds given in Theorem 4.1.

Some tighter bounds on the existence of sets of mutually orthogonal Latin square
due to Metsch [29] are very complicated to state (see 11.2.23 in [12]) but have
the following implications on the size of covering suites when n = 1, 2(mod4) and
n < 100.

Corollary to Metsch’s Theorem: CS,(n") > n?

(i) forall k > n — 4, whenn = 14, 21, 22,
(ii) for all £ > n — 5, when
n = 30, 33, 38,42, 46, 54, 57, 62, 66, 69, 70, 77, 78, and
(iii) for all £ > n — 6, when n = 86, 93, 94.

These lower bounds are of little use in that they do not tell us how fast CS,(n¥)
grows as a function of k. The only case where tight lower bounds have been proved
is when n = t = 2. This result has been rediscovered several times (see Rényi[35],
Katona[24], Kleitman and Spencer[25], and Chandra, Kou, Markowsky, and Zaks [7]
for examples).

Theorem 4.2 Forall k > 1 we have CS,(2F) = N where N is the smallest integer such

that
N —1
k= (er)

So we have the following table of exact values for CS,(2¥) = N:

The proof of these lower bounds uses Sperner’s lemma (see [22] for example) when
N is even and the Erd6s-Ko-Rado theorem [14] when N is odd.

2-3 14 |5-10 | 11-15 | 16-35 | 36-56 | 57-126

N4 |5]|6 7 8 9 10

Figure 8. The precise values of N = CS,(2%).
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The test suites that reach this bound may be constructed by taking the first test case
to be the all 0 vector. The columns of the remaining N — 1 rows each contain precisely
[N /2] ones, and each column is constructed by choosing a different [ N /27]-subset of
the rows.

For example, when n = ¢ = 2 and k = 15 we deduce that N = 7, and the optimal
test suite is:

00000 00000 00000
11111 11111 00000
11111 10000 11110
11100 01110 11101
10011 01101 11011
01010 11011 10111
00101 10111 O1111

Figure 9. An optimal pairwise covering suite for 15 binary parameters.

Gargano, Korner, and Vaccaro [20] established the following asymptotic results
for the case of pairwise covering suites:

Theorem 4.3

lim CS,(n*)/logk = n/2
k— o0

Theorem 4.3 was considerably strengthened in a subsequent paper [19] by the same
authors.

Let E be a set of ordered pairs £ C I2. We can define CSg(n*) to be the minimum
number of rows in an array with k columns over /,, with the property that every pair
of columns contains each of the members of £ in at least one of its rows. Theorem 4.3
deals with the case in which E = I? but the result was strengthened in [19] and shown
to hold for any subset E that contains a perfect matching. The implications of this
result on the size of test suites is that one doesn’t gain a great deal by excluding some
of the pairwise interactions between parameters from consideration when constructing
the test suites.

Stevens, Moura, and Mendelsohn [39] have also proved some other lower bounds
on the sizes of covering suites with £ = 2. Many of their results are too complicated to
state here, but their improvements on Theorem 4.1 are easy to state, and provide useful
information on small parameter sets.

Theorem 4.4 Ifk > n + 2, and n > 3 then CSz(nk) > n? 4+ 3 with the only exception
being CS»(3%) = 11.
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We turn our attention now to lower bounds when ¢ = 3. Kleitman and Spencer
[25] proved that CS3(2F) > 3.212...log k(1 + o(1)). I am not aware of any analogous
results for ¢z > 3.

The best asymptotic results on upper bounds for the covering suite numbers appear
to come from coding theoretical constructions (e. g. Sloane [38]), and other deep results
in probability theory and group theory.

A series of recent papers in the theoretical computer science community have been
concerned with the de-randomization of randomized algorithms. As a by-product of
this work, Naor and Naor [31], and Naor, Schulman and Srinvasan [32] have obtained
results on binary covering suites (n = 2). Azar, Motwani, and Naor [1] have generalized
these methods to apply to larger values of n. The best asymptotic upper bound given
in these papers is:

Theorem 4.5 [32]: CS;(2") < 2/t900¢N) Jogn

5. Greedy Covering Suites and Probabalistic Constructions

The first method that comes to a computer scientist’s mind is to try to use a
greedy algorithm to construct covering suites. The analysis of this algorithm gives a
surprisingly good upper bound, but unfortunately, it is not a practical algorithm for the
construction of good covering suites, since it has exponential complexity. The algorithm
is as follows.

Let us define the t-deficiency D,(A) of a test suite 4 with k& domains of size n to
be the number of ¢-tuples of domain values not contained in any test case. Thus the
deficiency of a covering suite is 0, whereas the deficiency of an empty set of test cases

18
o= (¥)n

The greedy algorithm for the construction of a covering suite is to start with the empty
test suite, A9 = ¢, and at each stage to add a test case that decreases the deficiency by
as much as possible. If 4 is the test suite after the choice of S test cases, then we will
show that

Dy(4s) = D(As—1)(1 —n™") (D

Thus D,(As) < D(¢)(1 —n~")S. Let S be the smallest integer such that D,(4s) < 1
then S = |—log(D;(¢)/log(l —n~")| if we approximate log(1 —n~") by —n~" we

see that A is a covering suite when S ~ n’(log (]:) + t log n) and hence we have:
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Theorem 5.1 For all positive integers ¢, k, v, we have:

CS;(n*) < n'(log (’;) + tlogn)

Proof. To establish equation (1) let us consider the incidence matrix with n* rows — one
for each possible test case — and (1: )n’ columns — one for each #-tuple to be covered
(see Figure 10). Each row of the matrix contains (/tc ) ones, and each column contains
n*=* ones. Let m = D;(A4;) — D,(A;-) be the maximum number of ones in a row of
the submatrix indexed by the deficient columns (i.e., the columns of #-tuples not yet
covered by the array 4;_;). Counting the number of ones in this submatrix in two ways
(ones per row times number of rows, and ones per column times number of columns)
we obtain the inequality mn* > D;(A4;_1)n*~*, which implies equation (1). O

The major problem with this construction is that in order to compute the next
test case, one must consider all n¥ — S possible test cases in order to choose one that
decreases the deficiency as much as possible.

Godbole, Skipper, and Sunley [21] use probabilistic arguments to show that a
randomly chosen array, in which each symbol is selected with equal probability, has
a positive probability of being a covering suite if the number of rows is large enough.
Their result is stated below in Theorem 5.2:

D, (4i-)

A
v

111111111...1

m

A
v

(¥

Figure 10. Proof of Equation (1).
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Theorem 5.2 As k — oo,

r (t—1)logk
CS(n") < m{l +o(1)}

Both Sloane[38] and Godbole et. al. [21] also prove the following stronger result due
to Roux [36] for the case in which # = 3 and n = 2. The bound is stronger because the
construction considers only the selection of columns with an equal number of zeros
and ones, rather than selecting at random each entry in the matrix with a probability
Of 1 /2.

Theorem 5.3 As k — oo,
CS3(2k) < 7.56444 - - -log k{1 4 o(1)}

6. Algebraic Constructions

Two papers by Chateauneuf, Colbourn and Kreher [9] and Chateauneuf and Kreher
[8] illustrate methods of using algebraic techniques to construct covering suites.

Let S be an N x k array over the set /,. Let I be a subgroup of the group of all
permutations of the symbols in /,,, and let m = |T"|. For g € I", we define the image Sg
of S to be the array whose entries are the images of the corresponding members of S
under the action of the permutation g. We further define the image S" of S under I" to
be the m N x k array consisting of the rows of Sg forall g € T.

For example, let ' = {(0)(1)(2), (012), (021)} be the cyclic group of permutations
of I3, and let

000
S =012
021

Then ST has nine rows, the first three being the image of S under (0)(1)(2), the
identity permutation; the next three are the image of S under (012); and the last three
are the image of S under (021).

000
012
021
111
ST = 120
102
222
201
210
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The array S is called a starter array with respect to I' if every n x ¢ subarray
contains at least one representative of each orbit of I" acting on ordered #-tuples from
L.

In the previous example, there are three orbits of ordered pairs under I' — the orbit
of 00, which contains the pairs {00, 11, 22}, the orbit of 01, which contains the pairs
{01, 12, 20} and the orbit of 02, which contains the pairs {02, 10, 21}. The array S is
a starter array with respect to I' since every 3 x 2 subarray contains a representative
of each orbit of ordered pairs, and thus ST is a CS,(3%).

Note that we may also reduce the number of rows in ST by deleting a copy of any
row that is repeated.

For example, with# = n = 3, and I" is the symmetric group of all six permutations
of I3, there are five orbits of ordered triples, namely the orbits of 000, 001, 010, 011,
and 012. The array

0000
0012
S = 0101
0110
0122

contains representatives of each of the five orbits in each of the four 3x5 subarrays.
Taking the image of S under the symmetric group and removing the duplicate images
of the first row generates an array with 27 rows, which establishes that CS3(3%) = 27
(c.f., Theorem 3.2).

The main constructions given in [9] involve the use of the projective general linear
group PGL(q) defined as a group of permutations of the projective line GF(q) U {oo},
where g is a prime power and GF(q) is the Galois field of order ¢. The projective linear
group consists of all permutations of GF(g) U {oo} in the set

ax +b
PGL(q) =
(9) {x g

ta,b,c,d e GF(q),ad—bc;éO}

where we define 1/0=o00,1/00=0,004+1=1—-00=1x00=00, and
oo/oo = 1.

The size of the group is ¢°> — ¢. The action of this group on the projective line is
sharply 3-transitive, meaning that there is a unique member of the group that takes any
ordered triple of distinct elements to any other ordered triple of distinct elements. This
means that if an array S over GF(q) U {oo} has the property that any N x 3 subarray
contains the five rows with patterns (xxx), (xxy), (XyX), (Xyy), and (xyz), then the image
of S with duplicates removed is a covering suite of strength 3.
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0 1 2 3 4 5
0 0 1 2 2 1 0
1 1 0 1 2 2 0
2 2 1 0 1 2 0
3 2 2 1 0 1 0
4 1 2 2 1 0 0

Figure 11. A starter array for PGL(3).

Chateauneuf et al. [9] then give an ingenious construction of an array with
2n — 1 rows and 2n columns over /, with the property that every (2n — 1) x 3 sub-
array contains representatives of the four non-constant orbits of triples (xxy), (XyX),
(xyy), and (xyz). Taking the image of this array under PGL(q), where ¢ =n — 1,
together with the n constant rows of length, 2xn gives a covering suite of strength
3. A special case of their construction of the starter array is given by indexing
the rows by Ip,_1, the columns by /,,, and setting S[i,2n — 1] =0 and S[i, j] =
min{|i — j|,2n — 1 —|i — j|} forall i, j € I5,_;. This array S has the property that
for any two columns j; and j, there is precisely one row i, such that S[i, j,] = S[i, j,]
and, furthermore, all other entries in that row are different from the common value.
The exact value of i is given by solving the equation 2i = j; + j,(mod2n — 1) or
i = j) in the special case that j, = 2n — 1. We give an example of this construction in
Figure 11.

This property also ensures that given any three columns, there are precisely three
rows in which not all of the entries in the row are distinct. Thus, so longas2n — 1 > 3,
we have a representative of the orbit of (xyz) in some row. Hence, we have the
following:

Theorem 6.1 Let gbe a prime power, then

CSs((q + 1™y < 2¢+ (@’ —q)+q +1

A consequence of this result is that CS3(3%) = 33. The theorem provides the upper
bound; the lower bound is a consequence of Lemma 2.3 and the result that CS»(3%) = 11,
see [38].

There is another algebraic starter construction in [9] which establishes that
CS3(4%) < 88.
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7. Recursive Constructions

A recursive construction for a covering suite is a method for constructing a covering
suite from one or more covering suites with smaller parameter sets. We begin with an
efficient recursive construction for pairwise covering suites. This construction was
probably known to Cohen et al. [11] — since the array they construct to show that
CS»(3'3) < 15 has the form of the construction. However, it first appeared in full detail
in Williams’ paper [45].

Theorem 7.1 If q is prime power, then
CS (") = CSig") +4* —q.

Proof. Let A be a pair-wise covering test suite with k£ columns and N = CS»(g*) rows
with entries from /.

Construct a new array B with N rows and kq + 1 columns by taking each column
A" of Ag times and bordering it with an additional column of zeroes. The additional
g*> — g rows are constructed by taking the last rows from the orthogonal array C
constructed in the proof of Theorem 3.2 and Remark 3.3, taking the first column once,
and the remaining ¢ columns k& times each (see Figure 12). O

Corollgry].IZ If ¢ is prime power, and d is any positive integer, then
CSy(g?'+o™ ) < dg? — (d - Dyg.

Proof. The result follows from Theorem 3.2 when d = 1, and by induction on d using
Theorem 7.1. O

0 [000000 ...... 0
0 e 1
0 q-1g-1...... q-1
INPN N c! 2
0
0
0| gA gA? qu
0
0
cll ¢ c? C?

Figure 12. Construction for Theorem 7.1.
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This resultimplies a good constructive upper bound on the size of pairwise covering
test suites.

Theorem 7.3 There is an absolute constant C such that CS,(n*) < Cn? log k for all
positive integers k and 7.

Proof. By Bertrand’s postulate (proved by Chebyshev in 1851) there is a prime p,
between n and 2n. In fact, for n > 115, there is always a prime between »n and /./n
(see [23]). Let d be the smallest integer such that k < 14+ p + p?> +--- + p9.

This implies that 1 + p + p*> +--- 4+ p?~! < k, and hence that d = O(logk).
Now applying Corollary 7.2 and the monotonicity result, Lemma 2.2, we have:

CS>(n*) < CS,(p' 7+ +7") < dp* = O(n* log k) thus proving the theorem. [

Another recursive construction, which has been rediscovered many times is the
following result, which gives a method of squaring the number k& of parameters in a
covering suite of strength ¢ while multiplying the number of test cases by a factor
dependent only on ¢ and n, but independent of k. This factor is related to the Turan
numbers 7' (¢, n)(see [44]) that are defined to be the number of edges in the Turan graph.
The Turan graph is the complete n-partite graph with ¢ vertices, having b parts of size
a+1,and n — b parts of size a = |¢/n] where b =t — na. Turan’s theorem (1941)
states that among all ¢-vertex graphs with no n 4 1 cliques, the Turan graph is the one
with the most edges.

Note that when n > ¢, T(¢t,n) =t(t — 1)/2, and that when n =2, we have
T(t,2)=|r*/4].

Theorem 7.4 If CS,(n*) = N and there exist T(¢, n) —1 mutually orthogonal Latin
squares of side k (or equivalently CSy(kT¢-m+1) = k2) then CS,(n*") < N(T(t, n)
1)

Before proving this result, we note that this generalizes Tang and Chen’s result [41],
since they require & to be a prime. It generalizes and strengthens the result of Chateuneuf
et al. [9] by removing the divisibility conditions on &, and producing smaller arrays in
the cases where n < t.

Proof. Let A be a t-wise covering test suite with k£ columns, N rows, entries from 7,
and let 4" be the i-th column of 4. Let B = B[i, j] be an orthogonal array of strength
2 with T'(¢, n) 4+ 1 columns and entries from {1, 2, ..., k}. We will construct a block
array C with k% columns and 7'(¢, n) + 1 rows. Each element in C will be a column of
A. Let AP1/1 be the block in the i-th row and j-th column of C (see Figure 13).

Now consider T, an arbitrary z-tuple of members of 7,. Let C’ be a submatrix
of C induced by an arbitrary choice of # columns. We wish to show that 7" is a row
of C'.
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+— k—— < T(t,n)+1 >

A

«—Z_»

Bli,j] K’

v

k2

A

1

C[ij] = AP0 T(t,n)+1

!

Figure 13. The construction for Theorem 7.4.

The columns of C’ correspond to ¢ rows of B. Let B’ be the submatrix of B induced
by those ¢ rows. We wish to find a column in B” with distinct values whenever 7' has
distinct values in the corresponding coordinates, since this would guarantee that 7" is a
row in C’ using the properties of the base array 4.

Since B is an orthogonal array, whenever B[i, j] = B[k, j] then B[i, m] #
B[k, m] for every column m # j. This means that any pair of distinct values in T
eliminates at most one column of B’. By Turan’s theorem, the number of pairs of dis-
tinct values in 7 is at most 7'(¢, ), and hence at least one column in B’ contains distinct
values whenever T contains distinct values. This completes the proof. ]

The result has several immediate corollaries.

Corollary 7.5 (Boroday [1]): CS3(2"2) < 3CS;3(25).

Proof. The result follows from Theorem 7.4 since T'(3, 2) = 2 and CS,(k*) = k? for all
k, by Corollary 3.5. O

Using the disproof of Euler’s conjecture we can derive:
Corollary 7.6 Forall k > 2, k # 6, n > 2 we have CS3(nk2) < 4CS3(n").

Proof. This result also follows from Theorem 7.4 since 7(3,n) = 3 forall n > 2, and
CS>(k*) = k? for all k > 2, k # 6, by Theorem 3.6. O

We also derive one more corollary using the result of Chowla, Erdés, and Strauss:
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Corollary 7.7 For all positive integers ¢ and », and all sufficiently large integers k, we
have CS,(n") < (T(¢, n) + 1)CS,(n*).

We give one more recursive result that shows how to double the number of columns
in 3-wise and 4-wise covering suites. The result for # = 3 and » = 2 was first proved
by Roux [36]. The result for = 3 appears in [9], although our proof is different. To
the best of my knowledge, the result for # = 4 is new.

A tool used in the construction is a partition of the edge set of the complete directed
graph on n vertices, such that each part contains a spanning set of directed cycles —
i.e., each vertex occurs precisely once as the head of an arc and once as the tail of an
arc. The simplest such partition is given by the following construction:

F={G, i+ jmodn)):iel,},j=12,....,n—1

It is clear from the construction that each vertex appears precisely once as the head of
an arc in £}, and precisely once as the tail of some arc. To show that each arc in the
complete directed graph occurs in precisely one of the sets F;, consider the arc (x, y)
and note that it occurs in the set F,_,.

We now proceed to use this construction as an ingredient in the following doubling
constructions for strength 3 and 4 covering suites.

Theorem 7.8 For all positive integers n and %,

a) CS3(n**) < CS3(n*) + (n — 1)CSy(n*)
b) CSy(n*) < CSy(n*) + (n — 1)CS3(n*) + CS,((n*))

Proof. a) Let A be a 3-wise covering suite with & columns and CS3(n¥) rows over the
symbol set /,,. Construct a new array by taking each column of 4 twice and adding
(n — 1)CS,(n*) rows constructed as follows. Let B be a pairwise covering suite with k
columns and CS,(#*) rows over the symbol set 1,. Take n — 1 copies of B, and replace
the i-th symbol in the j-th copy with the i-th member (an ordered pair) of F;. A worked
example of this construction is given below.

To verify that this construction yields a 3-wise covering suite, we need to verify
that three types of triples are covered by some row of the array: triples with three
elements in distinct columns of the original array 4, triples with two equal symbols in
columns that came from the same column of A4, and triples with two unequal symbols
in columns that came from the same column in A. The first and second types of triples
are covered due to the original structure of 4, and the third type of triple is covered by
the construction of the additional rows from B.

The construction and proof for b) is similar. Let 4, B, and C be 4-wise, 3-wise,
and pairwise covering suites with the parameters given in the statement of the result.
Take each column of A4 twice, take n — 1 copies of B and replace the i-th symbol in
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0000 — 0000 00 00
0012 — 00001122
0021 — 00002211
2212 — 22221122
2220 — 22222200

Figure 14. The doubling process in the construction of Theorem 7.5.

the j-th copy with the i-th member of F;, then take a copy of C, and replace the i-th
symbol with the i-th member of /,, x I, in some arbitrary ordering of the members of
this Cartesian product. O

Example 7.6 We now illustrate the use of Theorem 7.5 to show that:
CS3(3%) <45=274+9+9

The first 27 rows of the array come from doubling each column of the array constructed
in Theorem 3.2, which shows that CS3(3%) = 27.

The next 9 rows come from substituting the members of | = {01, 12, 20} for the
three symbols in Figure 4, which is a minimal CS,(3*), see Figure 15.

The final 9 rows come from substituting the members of F, = {02, 10, 21} in the
same array. g

Results similar to those of Theorem 7.5 are probably true for higher values of z,
but the number of cases in the proof detracts from the aesthetics of such results.

8. Heuristics

In this section, we discuss how the techniques presented in the previous sections
can be used and extended by heuristic methods to solve practical problems in the
generation of covering suites.

0000 — 01010101
0111 — 01121212
0222 — 01202020
1021 — 12012012
1102 — 12120120
1210 — 12201201
2012 — 20011220
2120 — 20122001
2201 — 20200112

Figure 15. The substitution process in the construction of Theorem 7.5.
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The most common problem, and the one on which we have focused so far, is that
of generating a minimal set of test cases guaranteeing 7-wise coverage of k parameters
with domains of sizes ny, ns, ..., n;. The practical issues of limited time and space
require that we should find a polynomial time algorithm to solve this problem. Lei and
Tai [26] prove that the determination of CS,(n*) is NP-complete using a reduction to
the vertex cover problem. Seroussi and Bshouty [37] prove that the determination of
CS,(2¥) is NP-complete using a reduction to graph 3-coloring. Thus, it seems unlikely
that we will find a polynomial time algorithm for constructing minimal covering suites
in the general case.

Another interesting and practical problem is that of finding a test suite with minimal
deficiency, given a fixed budget for executing a maximum of N test cases. This problem
is theoretically equivalent to the problem of finding a minimal test suite, so it, too, is
NP-complete.

Yet a third problem is that of finding a minimal test suite with a fixed relative
deficiency, where the relative deficiency is defined as the deficiency divided by the total
number of 7-subsets to be covered. In the case where all domains are the same size, the
relative deficiency RD, of a test suite 4 is defined as:

Di(4)
“(2)
t
A surprising result from Roux’s thesis [36] states that for any # and any ¢ > 0, thereisa
constant N (¢, ¢), independent of &, such that there exists a test suite 4 with N(¢, ) test
cases for k binary parameters with relative deficiency ¢ = RD,(A4). Sloane’s paper [38]

quotes the result that N(3,0.001) < 68. Unfortunately, the arguments are probabilistic,
and they do not give a deterministic algorithm for finding such a test suite.

RD;(A) =

Lei and Tai [26] also discuss the practical issue of extending a given test suite.
Assuming that a pairwise covering test suite for k£ parameters is already given, what is
the best way to add a single column, and perhaps additional rows, in order to extend this
suite for the additional parameter? They give an optimal algorithm for adding new rows
once a single column has been added to the initial test suite. However, their algorithms
for adding a new column are either exponential or sub-optimal.

Our heuristics for solving these problems are a combination of the constructive
and recursive methods given in sections 3 and 7, probabilistic algorithms inspired by
Roux’s techniques, and a greedy heuristic for the completion of partial test suites. We
also use the monotonicity results when the domain sizes are inappropriate for the finite
field methods of Section 3.

Roux’s technique is particularly appropriate in the case of a fixed testing budget N.
To apply the technique, we generate k random sets of columns of length N, with each
symbol appearing either | N/n;] or [N/n;] times in the column. We then select one
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column from each of these sets in such a way as to minimize the deficiency of the array
that we generate. We use a greedy heuristic for the minimization, since the selection of
columns is reducible to the problem of finding a maximal clique in a graph.

Our heuristic for the completion of a partial test suite is different from that given
by Cohen, Dalal, Fredman, and Patton in [11]. Assume that we are given a partial test
suite, and we are required to add a new test case. We first find the set of 7 columns with
the largest number of missing #-tuples, and select one of the missing tuples as the values
in those columns. We then rank all the remaining (column, value) pairs by computing ¢
values, (po, p1, - - - pr—1 )—which we call the potential vector. The first of these values
po is the amount by which the inclusion of the ranked value in the ranked column in the
partial test case would decrease the deficiency. In other words, py counts the number
of ¢-tuples containing the value in the column and ¢ — 1 other values that have already
been fixed in the partial test case under construction. In general, p; counts the total
number of missing ¢-tuples containing that value in that column as well as ¢t — 1 — i
values that have already been fixed, and i undecided values in the other columns. We
then choose the (column, value) pair with the lexicographically maximum potential
vector. If several pairs achieve the same maximum potential vector, we break the tie by
a random choice among those pairs that achieve the maximum.

For small values of ¢, k, and n, Nurmela [33] has used the method of tabu search ef-
fectively to find small covering suites, and some of the smallest known suites according
to the tables in [9] are due to this technique.

9. Applications

In the introduction we discussed the application of covering suites to the testing
of a s