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Preface 
This book contains volume 7 of the Journal of Graph Algorithms and Applica
tions (JGAA). Among other papers, the book contains two special issues. 

Topics of interest for JGAA include: 

Design and analysis of graph algorithms: exact and approximation graph algo
rithms; centralized and distributed graph algorithms; static and dynamic 
graph algorithms; internal- and external-memory graph algorithms; se
quential and parallel graph algorithms; deterministic and randomized graph 
algorithms. 

Experiences with graph algorithms: animations; experimentations; implementa
tions. 

Applications of graph algorithms: computational biology; computational geom
etry; computer graphics; computer-aided design; computer and intercon
nection networks; constraint systems; databases; graph drawing; graph 
embedding and layout; knowledge representation; multimedia; software 
engineering; telecommunication networks; user interfaces and visualiza
tion; VLSI circuits. 

JGAA is supported by distinguished advisory and editorial boards, has high 
scientific standards, and takes advantage of current electronic document tech
nology. The electronic version of JGAA is available on the Web at 

http://jgaa.info/ 

We would like to express our gratitude to the members of the advisory board for 
their encouragement and support of the journal, to the members of the editorial 
board and guest editors for their invaluable service and to the many anonymous 
referees for their essential role in the selection process. Finally, we would like 
to thank all the authors who have submitted papers to JGAA. 

Giuseppe Liotta 
Roberto Tamassia 

Ioannis G. Tollis 
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Abstract 

We carry out a detailed empirical analysis of simple heuristics and 
provable algorithms for bilateral contract-satisfaction problems. Such 
problems arise due to the proposed deregulation of the electric utility 
industry in the USA. Given a network and a (multi)set of pairs of vertices 
(contracts) with associated demands, the goal is to find the maximum 
number of simultaneously satisfiable contracts. Four different algorithms 
(three heuristics and a provable approximation algorithm) are considered 
and their performance is studied empirically in fairly realistic settings us
ing rigorous statistical analysis. For this purpose, we use an approximate 
electrical transmission network in the state of Colorado. Our experiments 
are based on the statistical technique Analysis of Variance (ANOVA), and 
show that the three heuristics outperform a theoretically better algorithm. 
We also test the algorithms on four types of scenarios that are likely to 
occur in a deregulated marketplace. Our results show that the networks 
that are adequate in a regulated marketplace might be inadequate for 
satisfying all the bilateral contracts in a deregulated industry. 

Communicated by Dorothea Wagner: submitted April 2002; 
revised December 2002. 
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1 Introduction 

The U.S. electric utility industry is undergoing major structural changes in an 
effort to make it more competitive [21,17,19,11]. One major consequence of the 
deregulation will be to decouple the controllers of the network from the power 
producers, making it difficult to regulate the levels of power on the network; 
consumers as well as producers will eventually be able to negotiate prices to 
buy and sell electricity [18]. In practice, deregulation is complicated by the 
facts that all power companies will have to share the same power network in the 
short term, with the network's capacity being just about sufficient to meet the 
current demand. To overcome these problems, most U.S. states have set up an 
ISO (independent system operator): a non-profit governing body to arbitrate 
the use of the network. The basic questions facing ISOs are how to decide which 
contracts to deny (due to capacity constraints), and who is to bear the costs 
accrued when contracts are denied. Several criteria/policies have been proposed 
and/or are being legislated by the states as possible guidelines for the ISO to 
select a maximum-sized subset of contracts that can be cleared simultaneously 
[18]. These include: (a) Minimum Flow Denied: The ISO selects the subset of 
contracts that denies the least amount of proposed power flow. This proposal 
favors clearing bigger contracts first, (b) First-in First-out: The contract that 
comes first gets cleared first; this is the least discriminating to the contractors, 
(c) Maximum Consumers Served: This clears the smallest contracts first and 
favors the small buyers whose interests normally tend to go unheard. 

There are three key issues in deciding policies that entail specific mecha
nisms for selecting a subset of contracts: fairness of a given policy to producers 
and consumers; the computational complexity of implementing a policy, and 
how sound a given policy is from an economic standpoint. (For instance, does 
the policy promote the optimal clearing price/network utilization etc.) Here we 
focus on evaluating the efficacy of a given policy with regard to its computa
tional resource requirement and network resource utilization. It is intuitively 
clear that the underlying network, its capacity and topology, and the spatial 
locations of the bilateral contracts on the network, will play an important role 
in determining the efficacy of these policies. We do not discuss here the fair
ness and economics aspects of these policies: these are subjects of a companion 
paper. The work reported here is done as part of a simulation based analyt
ical tool for deregulated electrical power industry being developed at the Los 
Alamos National Laboratory. 

We experimentally analyze several algorithms for simultaneously clearing a 
maximal number of bilateral contracts. The qualitative insights obtained in this 
paper can be useful to policy makers who carry the ultimate responsibility of 
deploying the best clearing mechanism in the real world. The algorithms were 
chosen according to provable performance, ability to serve as a proxy for some 
of the above-stated policies, and computational requirement. The algorithms 
are as follows; see § 3 for their specification. The ILP-RANDOMIZED ROUNDING 

(RR) algorithm has a provable performance guarantee under certain conditions. 
The computational resource requirement is quite high, but the approach also 



C. Barrett et al., Statistical Analysis of Algorithms, JGAA, 7(1) 3-31 (2003) 5 

provides us with an upper bound on any optimal solution and proves useful in 
comparing the performance of the algorithms. The LARGEST-FIRST HEURISTIC 

(LF) is a proxy for the Minimum Flow Denied policy. The SMALLEST-FIRST 

HEURISTIC (SF) serves as a proxy for the Maximum Contracts Served policy. 
The RANDOM-ORDER HEURISTIC (RO) clears the contracts in the random or
der. This algorithm was chosen as a proxy for the First-in First-out policy. 
Such a policy is probably the most natural clearing mechanism and is currently 
in place at many exchanges. 

To compare the algorithms in a quantitative and (semi-)rigorous way, we 
employ statistical tools and experimental designs. Many of the basic tools are 
standard in statistics and their use is common in other fields. But to the best 
of our knowledge, the use of formal statistical methods in experimental algo-
rithmics for analyzing/comparing the performance of algorithms has not been 
investigated. Analysis of Variance (ANOVA) is one such technique that can help 
identify which algorithms and scenarios are superior in performance. We believe 
that such statistical methods should be investigated further by the experimen
tal algorithmics community for deriving more (semi)-quantitative conclusions 
when theoretical proofs are hard or not very insightful. For instance, consider a 
given approximation algorithm that has a worst-case performance guarantee of 
p. First, the algorithm may perform much better on realistic instances that are 
of interest. Quantifying the special structure of such instances is often hard; this 
often makes it difficult to develop further theoretical improvements on the per
formance of the algorithm. Second, many heuristics that have poor worst-case 
performance perform very well on such instances. Statistical methods such as 
ANOVA can facilitate the comparison of such heuristics and provable algorithms 
in settings that are of interest to the users of such algorithms. 

We used a coarse representation of the Colorado electrical power network 
(see § 4) to qualitatively compare the four algorithms discussed above in fairly 
realistic settings. The realistic networks differ from random networks and struc
tured networks in the following ways: (i) Realistic networks typically have a very 
low average degree. In fact, in our case the average degree of the network is no 
more than 3. (ii) Realistic networks are not very uniform. One typically sees 
one or two large clusters (downtown and neighboring areas) and small clusters 
spread out throughout, (iii) For most empirical studies with random networks, 
the edge weights are chosen independently and uniformly at random from a 
given interval. However, realistic networks typically have very specific kinds of 
capacities since they are constructed with particular design goal. 

From our preliminary analysis, it appears that although the simple heuris
tic algorithms do not have worst-case performance guarantees, they outperform 
the theoretically better randomized rounding algorithm. We tested the algo
rithms on four carefully chosen scenarios. Each scenario was designed to test 
the algorithms and the resulting solutions in a deregulated setting. The em
pirical results show that networks that are capable of satisfying all demand in 
a regulated marketplace can often be inadequate for satisfying all (or even a 
acceptable fraction) of the bilateral contracts in a deregulated market. Our re
sults also confirm intuitive observations: e.g., the number of contracts satisfied 
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crucially depends on the scenario and the algorithm. 
As far as we are aware, this is the first study to investigate the efficacy of 

various policies for contract satisfaction in a deregulated power industry. Since 
it was done in fairly realistic settings, the qualitative results obtained here have 
implications for policy makers. Our results can also be applied in other settings, 
such as bandwidth-trading on the Internet. See, e.g., [2]. Also, to our knowledge, 
previous researchers have not considered the effect of the underlying network 
on the problems; this is an important parameter especially in a free-market 
scenario. 

The rest of this paper is organized as follows. The problem definitions and 
algorithms considered are described in Sections 2 and 3 respectively. Our 
experimental setup is discussed in Section 4. Section 5 presents our experimental 
results and analyzes them and Section 6 concludes the paper. In the appendix, 
we discuss interesting optimization issues that arise from deregulation, and also 
show problem instances on which our algorithms do not perform well. 

2 Problem Definitions 

We briefly define the optimization problems studied here. We are given an 
undirected network (the power network) G = (V, E) with capacities ce for each 
edge e and a set of source-sink node pairs (si,ti), 1 < i < k. Each pair (si,ti) 
has: (i) an integral demand reflecting the amount of power that Sj agrees to 
supply to U and (ii) a negotiated cost of sending unit commodity from s, to 
tj. As is traditional in the power literature, we will refer to the source-sink 
pairs along with the associated demands as a set of contracts. In general, a 
source or sink may have multiple associated contracts. We find the following 
notation convenient to describe the problems. Denote the set of nodes by N. 
The contracts are defined by a relation R C (2V x TV x 3? x 3?) so that tuple 
(v, w, a, /3) e i ? denotes a contract between source v and sink w for a units of 
commodity at a cost of /3 per unit of the commodity. For A = (u, w, a, (3) e R 
we denote source(A) = v, sink(A) = w, flow(A) = a and cost(A) = (3. 
Corresponding to the power network, we construct a digraph H = (VliSUTU 
{s, t}, E') with source s, sink node t, capacities u : E' —> 3? and costs c' : E' —> 3? 
as follows. For all A e R, define new vertices VA and WA- Let S = {VA \ A G R} 
and T = {WA \ A s R}. Each edge {x, y} from G is present in H as the two 
arcs (x, y) and (y, x) that have the same capacity as {x, y} has in G, and with 
cost 0. In addition, for all A = (v,w,a,[3) € R, we introduce: (i) arcs (VA,V) 

and (w, WA) with infinite capacity and zero cost; (ii) arc (S,VA) with capacity 
flow{A) = a and cost 0; and (iii) arc (wA,t) with capacity flow(A) = a and 
cost equaling cost(A). By this construction, we can assume without loss of 
generality that each node can participate in exactly one contract. A flow is 
simply an assignment of values to the edges in a graph, where the value of an 
edge is the amount of flow traveling on that edge. The value of the flow is 
defined as the amount of flow coming out of s (or equivalently the amount of 
flow coming in to t). A generic feasible flow f = (fx,y > 0 : (x, y) € E') in 
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H is any non-negative flow that: (a) respects the arc capacities, (b) has s as 
the only source of flow and t as the only sink. Note that for a given A £ R, 
in general it is not necessary that fStVA = fWA,t- For a given contract A £ R, 
A is said to be satisfied if the feasible flow f in H has the additional property 
that for A = (v,w,a,/3), fs,vA = fwA,t = a', i-e-> the contractual obligation of 
a units of commodity is shipped out of v and the same amount is received at 
w. Given a power network G(V,E), a contract set R is feasible (or satisfied) 
if there exists a feasible flow / in the digraph H that satisfies every contract 
A £ R. Let B = supply(s) = demand(t) = ^^ e j j /^ow;(A). 

In practice, it is typically the case that R does not form a feasible set. As 
a result we have two possible alternative methods of relaxing the constraints: 
(i) relax the notion of feasibility of a contract and (ii) try and find a subset 
of contracts that are feasible. Combining these two alternatives we define the 
following types of "relaxed feasible" subsets of R. We will concern ourselves 
with only one variant here. A contract set R! C R is a 0/1-contract satisfaction 
feasible set if, MA = (v,w,a,/3) £ R', fs,VA = fWA,t = a. 

Definition 2.1 Given a graph G(V, E) and a contract set R, the ( 0 / 1 - V E R S I O N 

MAX-FEASIBLE FLOW,) problem is to find a feasible flow f in H such that 
J^AeR' / ( ^ ) ** maximized where R' forms a 0/1-contract satisfaction feasible 
set of contracts. In the related (0 /1-VERSION, M A X - # C O N T R A C T S J problem, 
we aim to find a feasible flow f in H such that \R'\ is maximized, where R! 
forms a 0/1-contract satisfaction feasible set of contracts. 

Though such electric flow problems have some similarities with those from 
other practical situations, there are many basic differences such as reliability, 
indistinguishability between the power produced by different generators, short 
life-time due to inadequate storage, line effects etc. [22]. The variants of flow 
problems related to power transmission studied here are intuitively harder than 
traditional multi-commodity flow problems, since we cannot distinguish between 
the flow "commodities" (power produced by different generators). As a result, 
current solution techniques used to solve single/multi-commodity flow problems 
are not directly applicable to the problems considered here. 

3 Description and Discussion of Algorithms 

We work on the ( 0 / 1 - V E R S I O N , M A X - # C O N T R A C T S ) problem here. Let n and 
m respectively denote the number of vertices and edges in the network G. In 
[5], it was shown that (0/1-VERSION, M A X - # C O N T R A C T S ) is JVP-hard; also, 
unless NP C ZPP, it cannot be approximated to within a factor of m 1 / 2 - 6 for 
any fixed e > 0, in polynomial time. Thus, we need to consider good heuris
tics/approximation algorithms. First, there are three simple heuristics. The 
SMALLEST-FIRST HEURISTIC considers the contracts in non-decreasing order of 
their demands. When a contract is considered, we accept it if it can be feasi
bly added to the current set of chosen contracts, and reject it otherwise. The 
LARGEST-FIRST HEURISTIC is the same, except that the contracts are ordered 
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in non-increasing order of demands. In the RANDOM-ORDER HEURISTIC, the 
contracts are considered in a random order. 

We next briefly discuss an approximation algorithm of [5]. This has proven 
performance only when all source vertices Sj are the same; however, this algo
rithm extends naturally to the multi-source case which we work on. An integer 
linear programming (ILP) formulation for the problem is considered in [5]. We 
have indicator variables Xj for the contract between Sj and ti, and variables Zj>e 

for each (sj,ij) pair and each edge e. The intended meaning of x» is that the 
total flow for (s8, U) is diXf, the meaning of z^e is that the flow due to the con
tract between (sj,ij) on edge e is Zi>e. We write the obvious flow and capacity 
constraints. Crucially, we also add the valid constraint zitB < ceXi for all i and 
e. In the integral version of the problem, we will have x* G {0,1}, and the z^e 

as non-negative reals. We relax the condition "XJ G {0,1}" to "XJ G [0,1]" and 
solve the resultant LP; let y* be the LP's optimal objective function value. We 
perform the following rounding steps using a carefully chosen parameter A > 1. 
(a) Independently for each i, set a random variable Yi to 1 with probability 
Xi/X, and Yi := 0 with probability 1 — Xj/A. (b) If Yi = 1, we will choose to 
satisfy (1 — e) of (SJ,£J)'S contract: for all e G E, set Zi<e := ZijB(l — e)/xj. (c) 
If Yj, = 0, we choose to have no flow for (si,ti): i.e., we will reset all the z^e to 
0. A deterministic version of this result based on pessimistic estimators, is also 
provided in [5]; see [5] for further details. 

Theorem 3.1 ([5]) Given a network G and a contract set R, we can find 
an approximation algorithm for fO/1-VERSION, M A X - # C O N T R A C T S J when all 
source vertices are the same. Let OPT be the optimum value of the problem, 
and m be the number of edges in G. Then, for any given e > 0, we can 
in polynomial time find a subset of contracts R' with total weight Q(OPT • 
min{(OPT/m)(1 _ £)/e , 1}) such that for all i G R', the flow is at least (1 - e)d*. 

4 Experimental Setup and Methodology 

To test our algorithms experimentally, we used a network corresponding to a 
subset of a real power network along with contracts that we generated using 
different scenarios. The network we used is based on the power grid in Colorado 
and was derived from data obtained from PSCo's (Public Service Company of 
Colorado) Draft Integrated Resources Plan listing of power stations and major 
sub stations. The network is shown in Figure 1. We restricted our attention to 
major trunks only. 

Sources: The location and capacities of the sources was roughly based upon 
data obtained from PSCo's Draft Integrated Resources Plan listing of power 
stations and major sub stations. 

Sinks: The location and capacity of the sinks were roughly based upon the 
demographics of the state of Colorado. In order to determine the location and 
capacity of the sinks we used the number of households per county obtained from 
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Figure 1: This shows the network with node numbered as they are referenced 
in all scenarios and edge capacities labeled at values used for Scenarios 1 & 
2. The placement of the nodes and edges are what is probably the final form. 
The least number of edges cross and the nodes in the upper right are spread out 
a little bit maintaining the general feel of the distribution while allowing easier 
reading. 
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the US Census bureau. By assigning counties (load) to specific sub stations (sink 
nodes) the data for the sinks were derived. 

The following three websites can be accessed to obtain the necessary informa
tion: 

• h t tp : / /www . census .gov/popula t ion/es t imates /county/co-99-1/ 
99Cl_08.txt gives the population per county as of 1995. 

• http://www.census.gov/datamap/www/08.html contains a map of Col
orado counties. 

• Finally, h t t p : / / c c p g . b a s i n e l e c t r i c . c o m / is the PSCo Colorado Web
site. 

Edges: The edge capacities were derived from test data obtained by running 
the network through a max-flow program with the source and sink capacities 
at maximum and no capacity limits placed upon the connecting edges. The 
total sink capacity equaled the total source capacity. The sink capacity was 
distributed to the various sink nodes in correspondence with population per
centages assigned to each sink node. The edge capacities were then roughly 
assigned and the model was rerun through the max-flow program until all edge 
limits were defined. The criteria used for defining all of edge limits was that the 
network must be feasible under the condition of maximum source/sink capacity. 
Once the feasibility criteria was satisfied, some edge limits were set at capac
ity, while others were set higher than capacity in order to provide flexibility in 
contract development for the later problems. 

Software and Data Format. DIMACS (http://dimacs.rutgers.edu) has de
veloped a standard format for storing network data for input into existing net
work solvers. For the network being examined the need exists to include two 
directed arcs for each edge since the network is undirected. Addition of a mas
ter source and a master sink node with edges to the individual source and sink 
nodes was needed in order to conform to the format requirement of a single 
source and a single sink node. The edge capacities of the edges from the master 
source and sink nodes were set to be the capacities of the respective individual 
source or sink node. 

4.1 Creation and Description of Test Cases 

All the test cases were generated from the basic model. The general approach 
we used was to fix the edge capacities and generate source-sink contract combi
nations, using the capacities and aggregate demands in the basic model as upper 
bounds. To ensure that the test cases we generated corresponded to (1) difficult 
problems, i.e. infeasible sets of contracts, and (2) problems that might reason
ably arise in reality, we developed several scenarios that included an element of 
randomness (described in § 4.2). 

http://www.census.gov/population/estimates/county/co-99-1/
http://www.census.gov/datamap/www/08.html
http://ccpg.basinelectric.com/
http://dimacs.rutgers.edu
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4.2 Description of Scenarios 

The current implementation is still based upon a network which should be fea
sible only if the total source capacity is greater than the total sink capacity 
and the only requirement is that the total sink capacity be satisfied regard
less of which source provides the power. Scenarios 1, 2, 3 and 4 are based 
around the network with total generating capacity 6249 MW, and reduced 
sink capacities near 4400MW combined. See Figures 2-4. 

1. Scenario 1: This scenario is based upon the network with a total sink 
capacity (i.e. customer demand) of 4400MW. The source capacity (sup
plier's maximum production capacity) was reduced by a constant propor
tion from the total generating capacity based upon population density 
of Colorado counties. The source capacity of the network was reduced 
until the running the MAXFLOW code indicated that the maximum flow 
in the network to be slightly less than the demand. This reduction in 
the sources total production capacity increased the chances of refusing 
customers (contracts). 

2. Scenario 2: For this scenario, we took the basic network and increased 
the sink capacity while the source capacity remained fixed. 

3. Scenario 3 : For generating instances for this scenario, the edge capacities 
were adjusted, reduced in most cases, to limit the network to a maximum 
flow of slightly more than 4400MW given its source and sink distribution. 
Here, if the load is allowed to be fulfilled from any source (as is normally 
done with centralized control), the network and the edge capacities are 
enough to handle a total of 4400MW. However, if we insist that a particular 
source needs to serve a particular sink (as is done in bilateral contract 
satisfaction), then the capacities may not be enough to handle the same 
load of 4400MW. 

4. Scenario 4: For this scenario, we took the network of Scenario 3 and 
biased the selection of source nodes towards the lower valued source units. 

4.3 Methodology 

We worked with the four scenarios and ran all four algorithms for each. For the 
three greedy heuristics the implementations are fairly straightforward, and we 
used public-domain network flow codes. Implementing the randomized round
ing procedure requires extra care. The pessimistic estimator approach of [5] 
works with very low probabilities, and requires significant, repeated re-scaling 
in practice. Thus we focus on the randomized version of the algorithm of [5]; 
five representative values of e varying from .1 to .5 were chosen. We believe 
that satisfying a contract partially so that a contract is assigned less than .5 
of the required demand is not very realistic. For each scenario, and for each of 
the 5 values of e, the programs implementing the algorithms under inspection 
produced 30 files from which the following information could be extracted: 
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Figure 2: Shows the maximum capacities of the nodes and edges at the values 
used in Scenario 2. The positioning of the nodes and edges have not been 
changed to the same as the previous figure. 
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Figure 3: Shows the same network as the maximum capacities except the edges 
have been modified with arrows indicating direction of flow and the numbers 
associated with the edges are the flow values not the capacities. The edges with 
no flow have been changed to dotted lines although one or two of the dotted 
lines may look solid. 
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Figure 4: Shows the general network with the node capacities labeled with the 
sink capacities reduced to a total of 4400 MW. These are the basic capacities 
used in the creation of Scenarios 1, 2, 3, &; 4. 
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1. The running time of each algorithm. 

2. Total number of satisfied contracts by each algorithm. 

3. The LP upper bound on the IP and thus an upper bound on the approx
imations given by the algorithms. 

4. The IP approximation and objective function value. 

The number 30 was chosen to ensure that a statistically "large" sample of 
each measure would be provided in order to make valid statistical inference. We 
consider two parameters to measure the performance of our algorithms - (i) the 
running time and (ii) the quality of the solution obtained. More attention is 
given to the quality of solution measure since from a social standpoint contract 
satisfaction may leave little room for finding solutions that are far from optimal. 

We now describe how these measures are used to make inferences about 
the qualitative performance of these algorithms with respect to one another 
and independently. Since the intent is to make inferences concerning solution 
quality, a measure of this sort must be derived from the data generated. To do 
this, the data provided by the LP relaxation is examined. The [y*^s\ = [y*\ 
provides the best-case number or upper bound on the objective function value 
our algorithms can produce for a scenario. Hence, if an algorithm produces an 
objective function value of IJ/ASJ; it has produced an optimal solution for a 
given scenario. For a given algorithm A and scenario S, let Valuers denote 
the number of contracts that are satisfied by A under 5. The fraction 

Valuers 
PAS = —r-r;—j— 

provides a measure of the quality of the algorithm's solution. 

4.4 Experimental Objective 
The objective of our experiments was to find out which, if any, of the algorithms 
discussed here performs better than the others, in terms of quality of solution 
and running time for different contract scenarios. The design of the experiment 
was developed keeping this objective in mind. Since the performance depends 
on the type of algorithm used and the contract scenario, these are our factors of 
interest. As mentioned in the section 4.3, for a given e, 30 runs were performed 
for each algorithm-scenario pair. We perform two separate sets of experiments, 
one for the quality of solution as measured by p ^ and the other for running 
time. This was done because the quality of solution and running time were 
independent of each other. The number of contracts satisfied do not depend 
upon the length of the time it takes to run the algorithm. 
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5 Results and Analysis 

5.1 General Conclusions 

We first present general conclusions obtained from our results and experimental 
analysis. These will be elaborated on subsequently. 

1. Although there exist instances where the three heuristics produce solutions 
as large as £2(n) times the optimal fractional solution, most of our tests show 
that we could find integral solutions fairly close to optimal. 

2. Our experiments show that different scenarios make a significant difference 
in the type of solutions obtained. For example, the quality of solution obtained 
using the fourth scenario is significantly worse than the first three scenarios. 
The sensitivity to the scenarios poses interesting questions for infrastructure 
investment. The market will have to decide the cost that needs to be paid for 
expecting the necessary quality of service. It also brings forth the equity-benefit 
question: namely, who should pay for the infrastructure improvements? 

3. It is possible that for certain scenarios, the underlying network is incapable 
of supporting even a minimum acceptable fraction of the bilateral contracts. 
This observation - although fairly intuitive - provides an extremely important 
message, namely, networks that were adequate to service customers in a com
pletely regulated power market might not be adequate in deregulated markets. 
This makes the question of evicting the bilateral contracts more important. 

4. One expects a trade-off between the number of contracts satisfied and the 
value of e, for the randomized rounding algorithm: as e increases, and the 
demand condition is more relaxed, a higher number of contracts should get 
satisfied. But our experiments show that the change in the number of contracts 
satisfied for different values of e is insignificant. Also, A = 2 gave the best 
solutions in our experiments. 

5. In practical situations, the Random-Order heuristic would be the best to use 
since it performs very close to the optimal in terms of quality of solution and has 
very low running time. Furthermore, though the Smallest-First heuristic does 
even better on many of our experiments, Random-Order is a natural proxy to 
model contracts arriving in an unforeseen way. Also, since the heuristics deliver 
solutions very close to the LP upper bound, we see that this LP bound is tight 
and useful. To further evaluate the randomized rounding algorithm, we need to 
implement its deterministic version [5], which is a non-trivial task. 

5.2 Statistical Background 

We use a statistical technique known as analysis of variance (ANOVA) to test 
whether differences in the sample means of algorithms and scenarios reflect 
differences in the means of the statistical populations that they came from or 
are just sampling fluctuations. This will help us identify which algorithm and 
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scenarios perform the best.1 

ANOVA has the following three advantages over individual i-tests2 when the 
number of groups being compared is greater than two. See [9] for more details. 
In our case, we have four algorithms and four scenarios. Standard statistics 
terminology for a hypothesis that we wish to test, is null hypothesis. 

• It gives accurate and known type-I error probability.3 

• It is more powerful i.e. if null hypothesis is false, it is more likely to be 
rejected. 

• It can assess the effects of two or more independent variables simultane
ously. 

5.3 Mathematical Model 

Quality of Solution: We first describe the experiment for the quality of solu
tion i.e. PAS- We use a two-factor ANOVA model since our experiment involves 
two factors which are: 

1. The algorithms: At, i = 1,2,3 and 4. 

2. The scenario: Sj, j = 1,2,3 and 4. 

Following classical statistics terminology, we will sometimes refer to algo
rithms as treatments and the scenarios as blocks. We will use A to denote the 
set of algorithms and S to denote the set of scenarios. For each algorithm-
scenario pair we have 30 observations (or replicates). When testing the efficacy 
of the algorithms, we use 4 algorithms, each having 120 observations (30 for 
each scenario) from the corresponding population. The design of experiment 
used here is a fixed-effect complete randomized block. Fixed-effect because the 
factors are fixed as opposed to randomly drawn from a class of algorithms or sce
narios; the conclusions drawn from this model will hold only for these particular 
algorithms and scenarios. Complete implies that the number of observations are 
the same for each block. Randomized refers to the 30 replicates being drawn 
randomly. We wish to test the hypothesis: 

1 The populations in each of the groups are assumed to be normally distributed and have 
equal variances. The effect of violation of ANOVA assumptions of normality and homogeneity 
of variances have been tested in the literature ([10]) and the results show: 

• Non-normality has negligible consequences on type-I and II error probabilities unless 
the populations are highly skewed or the sample is very small. 

• When the design is balanced, i.e. the number of observations are the same for each 
group, violation of homogeneity of variance assumption has negligible consequences on 
the accuracy of type-I error probabilities. 

2t-test checks for the significance of the difference in the means of two samples. It can 
assess whether the difference in sample means is just due to sampling error or they really are 
from two populations with different means. 

3 The probability of rejecting a null hypothesis when it is actually true. 
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Is the mean quality of solution provided by different algorithms the 
same, against the alternative hypothesis that some or all of these 
means are unequal? 

The model for randomized block design includes constants for measuring the 
scenario effect (block effect), the algorithm effect (treatment effect) and a pos
sible interaction between the scenarios and the algorithms. The appropriate 
mathematical model is as follows: 

Xijk = A* + n + fa + (T/3),J + eijk, 

where X^k is the measurement (PAS) f° r * n e kth sample within the ith al
gorithm and the jth scenario. Tj is the algorithm effect. (3j is the scenario 
effect. (rf3)ij captures the interaction present between the algorithms and the 
scenarios, e^k is the random error. See [8, 9] for further details on ANOVA. 

We use S-Plus [15] software to run two-factor ANOVA to test the following 
three different null hypotheses. 

1. Are the means given by the 4 different algorithms equal? The null hy
pothesis here is, Ho : T\ — T^ = T3 = T4. 

2. Are the means given by the 4 different scenarios equal? The null hypoth
esis here is, Ho : 0i = 02 = /?3 = /?4-

3. Is there any interaction between the two factors? The null hypothesis here 
is, H0 : ( r / % = 0. 

The results of two-factor ANOVA are shown in Table 1 and Table 2. In 
the following discussion, we explain the meaning of each column in Table 1. 
DF refers to the degrees of freedom, SS refers to the sum of squared deviations 
from the mean. MS refers to the mean square error, which is the sum of squares 
divided by the degrees of freedom.4 

4 The sum of squares for the algorithm factor can be calculated as: 

SSA = nJXi(Xi.. - X . . . ) 2 

where n is the number of replicates, J is the number of scenarios, Xi„ is the mean of algorithm 
i across all scenarios and X... is the grand mean across all algorithms and scenarios. Recall 
that in our case n = 30 and J = 4 yielding a total sample size of 120. 

The sum of squares for scenario factor can be calculated as: 

SSs = nIEj(X.j. - X . . . ) 2 

where as before n is the number of replicates, I is the number of algorithms and X.j. is the 
mean of scenario j across all algorithms. Again, in our case n = 30 and 7 = 4. 

The sum of squares for algorithms and scenario interaction is: 

SSAS = n E j S i [ X y . - (X... +tt+ fa)}2 

Here Xij. is the mean of observations for the algorithm i scenario j pair, fj and f3j are 
respectively the estimated least square values of T* and /3j. The sum of squares "within" 
refers to the squared difference between each observation and the mean of the scenario and 
algorithm of which it is a member. It is also referred as the residual sum of squares. This can 
be calculated as: 

SSyv = nSjSjEfc(X,jfc — X^.) 
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The p-value gives the smallest level of significance at which the null hypoth
esis can be rejected.5 The lower the p-value, the lesser the agreement between 
the data and the null hypothesis. Finally the F- tes t is as follows. To test the 
null hypothesis, i.e., whether the population means are equal, ANOVA com
pares two estimates of a2. The first estimate is based on the variability of each 
population mean around the grand mean. The second is based on the variability 
of the observations in each population around the mean of that population. If 
the null hypothesis is true, the two estimates of er2 should be essentially the 
same. Otherwise, if the populations have different means, the variability of the 
population mean around the grand mean will be much higher than the variabil
ity within the population. The null hypothesis in the F-test will be accepted if 
the two estimates of a2 are almost equal. 

In a two-factor fixed-effect ANOVA, three separate F - t e s t s are performed: 
two tests for the factors, and the third for the interaction term. The null 
hypothesis for the first factor can be written as: 

HQ- : /xi . . = fj,2- = ••• = Hj.. 

which is equivalent to writing: Ho • T\ = T2 = T$ = T4. The F-test is: 

SSA/(I-1) 
A SSw/U(n - 1) 

and the null hypothesis for the second factor can be written as: 

Ho : M-i- = M-2- = • • • = M-j-

which is equivalent to writing: H0 : /?i = /fe = fe = 04- The F-test is: 

F SSs/(J-l) 
S SSw/U(n - 1) 

and the null hypothesis for the interaction term can be written as: 

Ho*3 • (r/9)« = 0. 

The F-test is: 

FAS 
SSAS/(I-1)(J-1) 

SSw/IJ(n - 1) 

If this F-ratio is close to 1, the null hypothesis is true. If it is considerably 
larger - implying that the variance between means is larger than the variance 

The total sum of squares is 

SST = 5S^ + SSs + SS^s + SSyy 

5To obtain a p-value for say F 4 , the algorithm effect, we would look across the row associ
ated with 3 degree of freedom in the numerator and 464 degrees of freedom in the denominator 
in the .F-distribution table and find the largest value that is still less than the one obtained 
experimentally. From this value, we obtain a p-value of 0 for F 4 . 
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Source 
Scenario (Block) 

Algorithm (Treatment) 

Scenario:Algorithm 

Residuals 

Total 

DF 
3 

3 

9 

464 

479 

SS 
0.14 

22.78 

0.12 

0.40 

23.45 

MS 
0.05 

7.59 

0.01 

.0008 

F-test 
43.38 

6792.60 

15.90 

p- value 
0 

0 

0 

Table 1: Results of Two-Factor ANOVA: This table shows results of two-
factor ANOVA where the factors are algorithms and scenarios. The measure
ment is the quality of solution, given by PAS- The p-values show that the 
algorithm effect, scenario effect and the interaction between the algorithms and 
scenarios are all significant at any level of confidence. 

within a population - the null hypothesis is rejected. The F distribution table 
should be checked to see if the F-ratio is significantly large. 

The results in Table 1 show that all the above three null hypothesis are 
rejected at any significance level. This implies that the performance (mea
sured by PAS) of at least one of the algorithms is significantly different from 
the other algorithms. Also, different scenarios make a difference in the perfor
mance. Finally, the scenarios and the algorithms interact in a significant way. 
The interaction implies that the performance of the algorithms are different for 
different scenarios. 

5.3.1 Contrasts 

The next question of interest is what really caused the rejection of the null 
hypothesis; just knowing that at least one of the algorithms is different does not 
help us identify which algorithm is significantly different. To answer this we use 
a procedure called contrast. A contrast C among / population means (/i,) is a 
linear combination of the form 

C = T^ocifii = «ijui + "2^2 H 1- ai/J,i 

such that the sum of contrast coefficients EjOi, is zero. In the absence of true 
population means, we use the unbiased sample means which gives the estimated 
contrast as: 

C = EjCCjXi = a\Xi + OLIXI H 1- OLJXI. 

The contrast coefficients a i , 0:2, • • • , « / a r e just positive and negative numbers 
that define the particular hypothesis to be tested. The null hypothesis states 
that the value of a parameter of interest for every contrast is zero, i.e., HQ : C — 
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Sen. 1 

Sen. 2 

Sen. 3 

Sen. 4 

Algo. 
Means 

Performance Measure: 
RR 

X n . =48.68 

Xi 2 . =46.91 

X13. =45.69 

Xi4 . =46.99 

A V =47.07 

SF 
X21. =99.73 

X2 2 . =99.56 

X2 3 . =99.25 

X2 4 . =98.03 

X2..=99.14 

Quality of Solution (in %) 
LF 

X3i. =97.97 

X3 2 . =98.38 

X33.=97.10 

X34. =88.65 

X3.. =95.51 

RO 
X 4 i . =97.78 

X4 2 . =98.93 

X4 3 . =98.82 

X44. =93.41 

X4..=97.24 

Sen. Means 
X i . =86.02 

X.2. =85.94 

X.3. =85.22 

X.4. =81.77 

X... = 84.74 

Table 2: The Mean Values of the Quality of Solution: This table shows 
the mean values of the quality of solution for each algorithm and each scenario. 

0. The value of the contrast is tested by an F-test to see if the observed value 
of the contrast is significantly different from the hypothesized value of zero. 

Table 2 shows the average value of the quality of solution for each algorithm-
scenario pair. e.g. Xn. means that we fix i = 1 and j ' = 1 and take the average 
of X^k over all k. From Table 2, it is clear that the randomized rounding 
algorithm (RR) is different from all the other algorithms for all four scenarios. 
On an average, RR algorithm satisfies 49% less contracts than the Largest-First 
(LF) heuristic and 50% less than the Random-Order (RO) heuristic and 52% 
less contracts than the Smallest-First (SF) heuristic. The difference between 
SF, RO and LF heuristics appears only marginal. Based on this observation, we 
constructed the following contrast that tests if RR is statistically significantly 
different from the other three algorithms: 

C1Q=l-{X2..)+
l-{X3..) + \{X4..) Xx. 

Using the value of algorithm means from Table 2 we can calculate the value 
of C\Q (Q stands for the quality of solution) to be equal to 0.50.6 The sum of 
squares of a contrast is expressed as: 

SS(C1Q) = {ClQ? 

Here oti are the coefficients of the contrast and iVj = 120 is the number of 
observations (i.e. sample points for each algorithm across all scenarios). This 
results in SS(C\Q) = 22.68. Now we can use the following F-test to see the 
significance of the contrast: 

SS(C1Q)/MSE ~ F(l ,464) 

6 The table values are shown in percentages, but here we use actual values. 
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MSE stands for the mean square error of the residuals. The contrast has 
one degree of freedom and residuals have 464 degrees of freedom (see table 1). 
F = 22.68/.0008 = 28350, since the observed value of F-test is greater than the 
critical F-value given in the F-distribution table, for any significance level, the 
null hypothesis is rejected. This confirms our earlier observation that the RR 
algorithm is significantly inferior in performance compared to the other three 
algorithms. The sum of squares of SS{C\Q) = 22.68 shows that 98% of the 
variation in factors sum of squares (total factors sum of squares being 23.05 
i.e. total SS - residual SS, see table 2) is due to the difference in RR algorithm 
versus the other three algorithms. 

Table 2 shows that the first three scenarios clear about 86% of the optimal 
number of contracts while under the fourth scenario, the number of contracts 
cleared is less than 82% of the optimal. Even though the difference in the 
number of cleared contracts is not very big, one would be curious to find out if 
the difference in performance under the first three scenarios versus the fourth 
scenario is significant or not. To answer this we created the following contrast 
which is orthogonal7 to the first contrast {C\Q): 

C2Q = liX.,.) + i ( X 2 . ) + i ( X 3 . ) - X.4. 

Just like CIQ, we can calculate the value of C2Q using table 2: 

SS(C2Q)/MSE ~ F(l,464) = 0.14/.0008 = 175 

Again, the null hypothesis is rejected implying that the fourth scenario is indeed 
significantly different from the other three scenarios. 

Now we look at two more contrasts to check if SF and LF are significantly 
different {C$Q) and LF and RO are significantly different (C^Q). 

C3Q = X2.. — X3.. 

C4Q = X3.. — X4.. 

SS(C3Q)/MSE ~ F ( l , 464) = 2.178/.0008 = 2722.5 

SS(C4Q)/MSE ~ F(l,464) = 1.038/.0008 = 1297.5 

For both C%Q and C4Q, the observed value of the F-test is greater than the 
critical F-value given in the F-distribution table, the null hypothesis in both 
cases are rejected, implying that SF provides a better solution than LF and also 
that RO performs significantly better than LF. 

7Two contrasts C\ and C2 are said to be orthogonal if the sum of the products of their 
corresponding coefficients is zero. It is desirable to have independent or orthogonal contrasts 
because independent tests of hypotheses can be made by comparing the mean square of each 
such contrast with the mean square of the residuals in the experiment. Each contrast has only 
one degree of freedom. 
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Source 
Scenario (Block) 

Algorithm (Treatment) 

Scenario:treatment 

Residuals 

Total 

DF 
3 

3 

9 

464 

479 

SS 
21152 

2161199 

28156 

30381 

2240888 

MS 
7050.8 

720399.8 

3128.5 

65.5 

F-test 
56.97 

5821.07 

47.78 

p- value 
0 

0 

0 

Table 3: Results of Two-Factor ANOVA: This table shows results of two-
factor ANOVA where the factors are algorithms and scenarios. The measure
ment is the running time of the algorithm-scenario pair. The p-values show that 
the algorithm effect, scenario effect and the interaction between the algorithms 
and scenarios are all significant at any level of confidence. 

In summary, all algorithms show significantly different performance when 
measured in terms of quality of solution. On an average, the best solution is 
given by the SF heuristic and the worst by the RR. 

Running Time: Tables 3 and 4 show results of the same experiment when 
performance is measured by the running time of the algorithm. The factors, 
number of observations, kinds of tests, etc. remain the same as before, except 
the performance measure. Table 3's results clearly demonstrate that different 
algorithms take significantly different time to run and that different scenarios 
have significantly different running time. The interaction term is significant 
at any level of confidence implying that the running time of an algorithm is 
different for different scenarios. 

Table 4 shows that the RR algorithm takes noticeably more time to run as 
compared to the other three heuristics. Among the three heuristics, LF and RO 
take about the same time but SF takes about 19 megaticks more than the LF 
and RO. Similarly, scenario 3 and 4 take about the same time but scenario 1 
and 2 look different. To test all the above mentioned observations, we create 
the following different contrasts: 

Cit = \{Xi..) + \(X3..) + l(X4..)-Xv. 

C2t = \{Xz..) + \{X4..)-X2.. 

Czt — Xz- — X4.. 

Cn = X.\. — X.2. 



C. Barrett et al., Statistical Analysis of Algorithms, JGAA, 7(1) 3-31 (2003) 24 

Sen. 1 

Sen. 2 

Sen. 3 

Sen. 4 

Algo. 
Means 

Performance Measure: Running Time (in Megaticks) 
RR 

Xu.=163.33 

Xi 2 . =218.23 

X13.=181.70 

Xi4.=184.33 

X\..=186.90 

SF 
X2i.=41.23 

X2 2 . =49.63 

X2 3 . =45.70 

X2 4 . =44.53 

X2..=45.27 

LF 
X3i .=24.57 

X32.=29.73 

X33.=23.30 

X34.=27.00 

X3..=26.15 

RO 
X41. =25.50 

X4 2 . =30.23 

X43. =26.43 

X44. =27.27 

X4 . . =27.36 

Sen. Means 
X.i. =63.66 

X.2.=81.96 

X.3. =69.28 

X.4.=70.78 

X... = 71.42 

Table 4: The Mean Values of the Running Time: This table shows the 
mean values of the running time for each algorithm and each scenario. 

All the above contrasts are orthogonal to each other. The first contrast, C\t 
(here t stands for running time), checks if the RR algorithm takes more time 
to run than the other three heuristics. The second contrast, C-iu will find if the 
SF heuristic is significantly different from the LF and RO heuristic. The third 
contrast, CM, checks if the LF and RO heuristics take about the same time to 
run. Finally, contrast dt, check if the first scenario takes less time to run than 
the second scenario. The results of all the contrasts are shown below. 

SS(Clt)/MSE ~ F(l,464) = 2133700.9/65.5 = 32575.5 

SS{C2t)/MSE ~ F(l,464) = 27424.4/65.5 = 418.69 

SS(C3t)/MSE ~ F(l,464) = 72.6/65.5 = 1.11 

SS(C4t)/MSE ~ J?(1,464) = 20093.4/65.5 = 306.76 

As can be seen by looking at the F-distribution table, all the above contrasts 
except Cst show that the observed value of the F-test is greater than the critical 
F-value. Hence the null hypothesis i.e. Ho : Ca = 0 where i = 1,2,4 can 
be rejected at any level of significance. This confirms our earlier hypothesis 
that RR indeed takes longer to run than the other three heuristics. SF takes 
more time to run than the LF and RO heuristics and the second scenario takes 
significantly more time to run than the first scenario. 

The mean difference in running time across different algorithms shows that 
all algorithms are significantly different in terms of running time except for 
the Largest-First and the Random-Order heuristics. These two heuristics take 
about the same time to run and indeed a contrast done i.e. Cst o n LF and RO 
proves that and the null hypothesis, HQ : C^t = 0, is accepted. 

The randomized rounding algorithm takes significantly more time to run 
than any of the other heuristics. The gap in running time narrows when RR is 
compared against SF. RR takes 141 megaticks more time than the SF heuristic, 
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160 megaticks more than the LF and RO. SF takes more time to run than LF 
and RO but it clears more contracts than LF and RO. 

All the above analysis was performed while keeping the value of e constant at 
0.1. The performance of the randomized rounding algorithm8 does not change 
in any significant way, both in terms of PAS and running time when e varied 
from 0.1 to 0.5. So all the above results hold for e = 0.1,0.2,0.3,0.4 and O.5.9 

Summary: It is clear that SF heuristic clears the most contracts, almost as 
good as the optimal but takes more running time as compared to LF and RO. 
However, it takes only a quarter of the time as compared to RR. As far as sce
narios go, the first scenario clears most contracts in the least amount of time. 
From a practical standpoint, the RO heuristic seems to be the best since it 
performs very well both in terms of running time and quality of solution and is 
trivial to implement. It performs very close to optimal in terms of clearing con
tracts and yet takes minimal time to do it as compared to the other algorithms. 
The RR algorithm, although it gives good theoretical lower bounds, is not very 
appropriate for real-life situations where both time and a high level of contract 
satisfaction have a very high priority. 

6 Discussion and Concluding Remarks 

We carried out an empirical study to evaluate the quality and running time 
performance of four different market clearing mechanisms. A novel aspect of 
our work is the use of statistical technique, Analysis of Variance, to compare 
the performance of different market clearing mechanisms. This technique allows 
us to formally test which algorithm performs better in terms of each of the 
performance measures. 

One heuristic was based on using a relaxation of integer linear program fol
lowed by randomized rounding of the fractional solution to yield an approximate 
integral solution. Although the algorithm had a provable performance guaran
tee, experiments suggest that the algorithm is not likely to be practically useful 
given the running time and the quality of solution produced. The result is not 
entirely unexpected; it has been observed that many approximation algorithms 
that are designed to work in the worst case typically do not have a very good 
average case behavior. 

We also studied three different simple heuristics: experimental results sug
gest that each is likely to perform better than the theoretically provable approx
imation algorithm. This is in spite of the fact that it is very easy to construct 
instances where the heuristics have unboundedly poor performance guarantee. 

One of the heuristics: the random-order heuristic was studied to emulate 
a simple "first-come first-serve" type clearing mechanism that is currently em
ployed by many ISO. The heuristic performs surprisingly well even compared to 
a bound on an optimal solution obtained via linear programming. The results 

8Other heuristics do not depend on the value of e. 
9 The results are available from the authors upon request. 
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suggest that this simple clearing mechanism currently employed might result in 
near-optimal utilization of the network resources. 

Our overall assessment is that for the purposes of developing large-scale 
microscopic-simulations of the deregulated power industry, the three heuristic 
methods give sufficiently good performance in terms of the quality of solution 
and the computational time requirement. 

An interesting direction for future research is to study (both theoretically 
and experimentally) the performance of these algorithms when we have flow 
constraints modeling resistive networks. The additional constraints imposed on 
the system could conceivably make the problem easier to approximate. See [1] 
for further discussions on this topic. 
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Appendix 
A Illustrative Examples 

Example 1. This example illustrates the issues encountered as a result of 
deregulation. Figure 5(a) shows an example in which there are two power plants 
A and B, and two consumers. Let us assume that each consumer has a demand 
of 1 unit. Before deregulation, say both A and B are owned by the same 
company. If we assume that the plants have identical operating and production 
costs, then the demands can be satisfied by producing 1 unit of power at each 
plant. Now assume that due to deregulation, A and B are owned by separate 
companies. Further assume that A provides power at a much cheaper rate 
and thus both the consumers sign contracts with A. It is clear that both the 
consumers now cannot get power by A alone. Although the total production 
capacity available is more than total demand and it is possible to route that 
demand through the network under centralized control, it is not possible to 
route these demands in a deregulated scenario. 

Example 2. Here, the graph consists of a simple line as shown in Figure 5(b). 
We have three contracts each with a demand of 1. The capacity of each edge is 
also 1. A feasible solution is f(si,t3) = f(s2,h) = f(s3,t2) = 1. The crucial 
point here is that the flow originating at s» may not go to U at all — since power 
produced at the sources are indistinguishable, the flow from Si joins a stream 
of other flows. If we look at the connected components induced by the edges 
with positive flow, we may have Si and U in a different component. Thus we do 
not have a path or set of paths to round for the (SJ, ij)-fiow. This shows a basic 
difference between our problem and standard multi-commodity flow problems, 
and indicates that traditional rounding methods may not be directly applicable. 

© 

0 
w <b) 

Figure 5: Figures for Examples 1 and 2 

Example 3: In this example, we illustrate how different policies can yield 
different solutions. The graph is shown in Figure 6 with edge capacities as 
listed. Again, we have three contracts, whose details are given as follows: 
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1. Contract 1 - (si,*i) demand d\ = 2 and cost/unit c\ = .5 

2. Contract 2 - (s2,*2) demand d\ = 1 and cost/unit ci = 1 

3. Contract 3 - (S3, £3) demand di = 1 and cost/unit c\ = 2 

The various solutions obtained under different policies are given below: 

1. (0/1-VERSION, MAX-FEASIBLE FLOW): TWO possible solutions: 
(i) f(si,ti) = 2, (ii) /(s2,t2) = /(s3,*3) = 1- Both solution route 2 units 
of flow in the network. 

2. ( 0 / 1 - V E R S I O N , M A X - # C O N T R A C T S ) : In contrast to the previous case 
only one solution is possible: /(s2,i2) = /(s3>*3) = 1- This also routes 2 
units of flow. 

0 

0 
W$ 

Q 
Figure 6: Example illustrating the various solutions under different contracts. 

B Worst-Case Examples 

The three heuristic methods of § 3 can be shown to have worst case perfor
mance guarantee that is fl(n). (Recall that the performance guarantee of an 
approximation algorithm for a maximization problem II is the supremum of the 
ratio of the optimal solution to the heuristic solution over all instances / of II.) 
Example 4 shows that all the heuristics can perform poorly w.r.t. an optimal 
solution. This is not too surprising given that the optimal solution gets to look 
at all of the input before clearing the contracts. 

Example 4: Consider a network with two nodes A and B joined by an edge 
(A, B). The capacity of the edge (A, B) is C < l . There is an even number n of 
contracts ( s i , i i ) , . • •, (sn,tn). Odd-numbered contracts have demand of l unit 
and the sources and sinks of these contracts are distributed as follows: source-
nodes s i ,S3 , . . . sra_i are located at node A and their corresponding consumers 
*i,*3, • • -tn-i are located at B. Let us call this set Odd-Set. For the even 
numbered contracts (denoted Even-set) we have a demand of 1 + ^ per contract 
and the source sink locations are reversed: the sources are located at B and the 
sinks at A. Note that 



C. Barrett et al., Statistical Analysis of Algorithms, JGAA, 7(1) 3-31 (2003) 31 

1. All Odd-set contracts have demand that is less than every contract in 
Even-Set. 

2. In the absence of any other contracts, only one Odd-set contract can be 
cleared; similarly, exactly one Even-set contract can be cleared. 

Now consider how many contracts can be satisfied by the each of three 
heuristic methods. 

1. SMALLEST-FIRST HEURISTIC will clear only one contract (s1, t\). 

2. LARGEST-FIRST HEURISTIC will also clear exactly one contract (s2,h). 

3. RANDOM-ORDER HEURISTIC will also perform poorly with high probabil
ity. This is because there is are a total of n! ways to arrange the contracts 
and roughly only 0 ( ( | ) ! ( | ) ! ) good ways to do it. 

4. An optimal solution can clear all the contracts simultaneously, since the 
flows from Odd-set appropriately cancel the flows from Even-Set. Thus the 
performance guarantee of the SMALLEST-FIRST HEURISTIC and LARGEST-

FIRST HEURISTIC is Q(n). The performance guarantee of RANDOM-

ORDER HEURISTIC is also fi(n) with high probability. 

Example 5: Again, we have a single edge as the network. Denote the edge by 
(A, B) as before, with the endpoints being A and B respectively and the edge 
capacity being 1. We have n contracts. As before we divide them into Even-
Set and Odd-set of contracts. The contracts' demands are strictly increasing: 
the ith contract has demand 1 + (i — l)e. The value e is chosen so that 0 < 
e < 1 and (n — l)e > 1. It is clear that SMALLEST-FIRST HEURISTIC can 
clear all the contracts, while LARGEST-FIRST HEURISTIC can clear exactly one 
contract. Again, a simple calculation shows that RANDOM-ORDER HEURISTIC 

will perform poorly with high probability. 
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1 Introduction 

The 3-D orthogonal grid consists of grid-points in 3-space with integer coor
dinates, together with the axis-parallel grid-lines determined by these points. 
Two grid-points are said to be collinear if they are contained in a single grid-line, 
and are coplanar if they are contained in a single grid-plane. A 3-D orthogo
nal drawing of a graph positions each vertex at a distinct grid-point, and routes 
each edge as a polygonal chain composed of contiguous sequences of axis-parallel 
segments contained in grid-lines, such that (a) the end-points of an edge route 
are the grid-points representing the end-vertices of the edge, and (b) distinct 
edge routes only intersect at a common end-vertex. 

For brevity we say a 3-D orthogonal graph drawing is a drawing. A drawing 
with no more than b bends per edge is called a b-bend drawing. The graph-
theoretic terms 'vertex' and 'edge' also refer to their representation in a drawing. 
The ports at a vertex v are the six directions, denoted by X+, X~, Y+, Y~, 
Z+ and Z~, which the edges incident with v can use. For each dimension 
I £ {X, Y, Z}, the J+ (respectively, I~) port at a vertex v is said to be extremal 
if v has maximum (minimum) /-coordinate taken over all vertices. 

Clearly, 3-D orthogonal drawings can only exist for graphs with maximum 
degree at most six. 3-D orthogonal drawings of maximum degree six graphs 
have been studied in [3, 4, 6, 10-13, 17, 19, 21, 22, 33, 35-37]. By representing 
a vertex by a grid-box, 3-D orthogonal drawings of arbitrary degree graphs 
have also been considered; see for example [5, 8, 21]. 3-D graph drawing has 
applications in VLSI circuit design [1, 2, 18, 23, 26] and software engineering 
[15, 16, 24, 25] for example. Note that there is some experimental evidence 
suggesting that displaying a graph in three dimensions is better than in two 
[28, 29]. 

Drawings with many bends appear cluttered and are difficult to visualise. 
In VLSI layouts, bends in the wires increase the cost of production and the 
chance of circuit failure. Therefore minimising the number of bends, along with 
minimising the bounding box volume, have been the most commonly proposed 
aesthetic criteria for measuring the quality of a drawing. Using straightforward 
extensions of the corresponding 2-D NP-hardness results, optimising each of 
these criteria is NP-hard [12]. Kolmogorov and Barzdin [17] established a lower 
bound of fi(n3/2) on the bounding box volume of drawings of n-vertex graphs. 
In this paper we establish the first non-trivial lower bounds for the number of 
bends in 3-D orthogonal drawings. Lower bounds for the number of bends in 
2-D orthogonal drawings have been established by Tamassia et al. [27] and Biedl 

[7]-
A graph with no parallel edges and no loops is simple; a multigraph may 

have parallel edges but no loops; and a pseudograph may have parallel edges and 
loops. We consider n-vertex m-edge graphs G with maximum degree at most 
six, whose vertex set and edge set are denoted by V(G) and E(G), respectively. 

A j-edge matching is denoted by Mf, that is, Mj consists of j edges with no 
end-vertex in common. Kp \ Mj is the graph obtained from the complete graph 
Kp by deleting a j-edge matching Mj (where 2j < p). The 2-vertex multigraph 
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with j edges is denoted by j • K2, and Lj is the 1-vertex pseudograph with j 
loops. An m-path is a path with m edges. By Cm we denote the cycle with m 
edges, which is also called an m-cycle. A chord of a cycle C is an edge not in C 
whose end-vertices are both in C. We say two cycles are chord-disjoint if they 
do not have a chord in common. Note that chord-disjoint cycles may share a 
vertex or edge. A chordal path of a cycle C is a path P whose end-vertices are 
in C, but the internal vertices of P and the edges of P are not in C. 

Lower bounds for the maximum number of bends per edge: 

Obviously every drawing of K3 has at least one bend. It follows from results 
in multi-dimensional orthogonal graph drawing by Wood [32], Wood [35] that 
every drawing of K$ has an edge with at least two bends. It is well known that 
every drawing of 6 • K2 has an edge with at least three bends, and it is easily 
seen that 2 • K? and 3 • K% have at least one edge with at least one and two 
bends, respectively. 

Figure 1: A 2-bend drawing of K?. 
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Eades et al. [13] originally conjectured that every drawing of Kr has an 
edge with at least three bends. A counterexample to this conjecture, namely a 
drawing of Kr with at most two bends per edge, was first exhibited by Wood 
[32]. A more symmetric drawing of Kr with at most two bends per edge is 
illustrated in Figures 1 and 2. This drawing1 has the interesting feature of 
rotational symmetry about the line X = Y = Z. 

Figure 2: Components of a 2-bend drawing of Kr-

1A physical model of this drawing is on display at the School of Computer Science and 
Software Engineering, Monash University, Clayton, Melbourne, Australia. 
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One may consider the other 6-regular complete multi-partite graphs #6,6, 
-^3,3,3 and .#2,2,2,2 to be potential examples of simple graphs requiring an edge 
with at least three bends. However, 2-bend drawings of these graphs were 
discovered by Wood [35]. 

Lower bounds for the total number of bends: 

The main result in this paper is the construction of infinite families of graphs 
of given connectivity and maximum degree, with a lower bound on the average 
number of bends in a drawing of each graph in the class. As a first step to
ward this goal we establish lower bounds on the minimum number of bends in 
drawings of small complete graphs, and the graphs obtained from small com
plete graphs by deleting a matching; see Table 1. For many of these graphs the 
obtained lower bound is tight; that is, there is a drawing with this many bends. 
The main exception being Ki and the graphs derived from Ki by deleting a 
matching. In particular, we prove a lower bound of 20 — 3j for the number of 
bends in drawings of K-j \ Mj, whereas the best known drawings have 24 — 4j 
edges; see Figure 19. We conjecture that there is no drawing of K-i \ Mj with 
fewer than 24 — Aj edges for each j € {0,1,2,3}. There is also a gap in our 
bounds in the case of K6 \ M3. Here we have a lower bound of seven bends, 
whereas the best known drawing of K6\M3 has eight bends, which we conjecture 
is bend-minimum. 

Table 1: Bounds for the minimum number of bends in drawings of complete 
graphs minus a matching Kp \ Mj. 

j = 0 

i = i 
J = 2 
J = 3 

p = 3 

1 
0 
-
-

p — 4 

3 
2 
1 
-

p = 5 

7 
5 
4 
-

p = 6 

12 
10 
8 

7 . . . 8 

p=7 

2 0 . . . 24 
17. . .20 
14 . . . 16 
11. . .12 

Furthermore we show that drawings of the multigraphs j • K2 with 2 < j < 6 
have at least 2, 4, 6, 8 and 12 bends, respectively. Since a loop has at least 
three bends in every drawing, the pseudograph Lj with 1 < j < 3 has at least 
3j bends. 

We use the above lower bounds as the basis for the construction of infinite 
families of c-connected graphs of maximum degree A with lower bounds on the 
number of bends for each member of the class, as summarised in Table 2. 

Upper bounds: 

A number of algorithms have been proposed for 3-D orthogonal graph drawing 
[3, 6, 9-13, 17, 21, 22, 33, 35-37]. We now summarise the best known upper 
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Table 2: Lower bounds on the average number of bends in drawings of an infinite 
family of c-connected graphs with maximum degree at most A. 

type 

A 

c = 0 

c = 2 

c = 3 

c = 4 

c = 5 

c = 6 

simple graphs 

6 5 4 3 2 

20 4 7 1 1 
21 5 10 2 3 
17 2 1 1 
21 3 2 3 
8 14 8 2 
11 23 19 9 
12 7 2 
17 12 5 
24 14 
36 25 
2 
3 

multigraphs 

6 5 4 3 2 

9 8 3 4 i 
Z 5 2 3 i 

4 6 -I 2 
3 5 ^ 3 " 
1 i 1 . . 
1 5 2 
2 2 
3 5 " " " 
1 
3 " " " " 

pseudographs 

6 5 4 3 2 

3 3 3 3 3 
9 3 3 
Z 2 2 " " 
4 6 
3 5 

1 . . . . 

bounds for the number of bends in 3-D orthogonal drawings. The 3-BENDS 

algorithm of Eades et al. [13] and the INCREMENTAL algorithm of Papakostas 
and Tollis [21] both produce 3-bend drawings2 of multigraphs3 with maximum 
degree six. As discussed above there exist simple graphs with at least one edge 
having at least two bends in every drawing. The following open problem is 
therefore of interest: 

2-Bends Problem: Does every (simple) graph with maximum degree at most six 
admit a 2-bend drawing? [13] 

The DIAGONAL LAYOUT & MOVEMENT algorithm of Wood [37] (also see 
[33]) solves the 2-bends problem in the affirmative for simple graphs with max
imum degree five. For maximum degree six simple graphs, the same algorithm 
uses a total of at most ^ m bends, which is the best known upper bound for 
the total number of bends in 3-D orthogonal drawings. 

In this paper we provide a negative result related to the 2-bends problem. A 
3-D orthogonal graph drawing is said to be in general position if no two vertices 
lie in a common grid-plane. The general position model is used in the 3-BENDS 

and DIAGONAL LAYOUT & MOVEMENT algorithms. In this paper we show that 
the general position model, and the natural variation of this model where pairs 
of vertices share a common plane, cannot be used to solve the 2-bends problem, 
at least for 2-connected graphs. 

The remainder of this paper is organised as follows. In Section 2 we establish 
2 The 3-BENDS algorithm [13] produces drawings with 27n3 volume. By deleting grid-planes 

not containing a vertex or a bend the volume is reduced to 8ra3. The INCREMENTAL algorithm 
[21] produces drawings with 4.63n3 volume. A modification of the 3-BENDS algorithm by 
Wood [36] produces drawings with n3 + o(n3) volume. 

3 The 3-BENDS algorithm [13] explicitly works for multigraphs. The INCREMENTAL algo
rithm, as stated in [21], only works for simple graphs, however with a suitable modification it 
also works for multigraphs [A. Papakostas, private communication, 1998]. 
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a number of introductory results concerning 0-bend drawings of cycles. These 
results are used to prove our lower bounds on the total number of bends in 
drawings of complete graphs and graphs obtained from complete graphs by 
deleting a matching, which are established in Section 3. In Section 4 we use 
these lower bounds as the basis for lower bounds on the number of bends in 
infinite families of graphs. In Section 5 we present lower bounds for the number 
of bends in general position drawings. These results have important implications 
for the nature of any solution to the 2-bends problem, which are discussed in 
Section 6. 

Some technical aspects of our proofs are presented in the appendices. In 
particular, in Appendix A we prove a number of results concerning the existence 
of cycles and other small subgraphs in graphs of a certain size; in Appendix B 
we establish the connectivity of the graphs used in our lower bounds; and in 
Appendix C we prove a result, which is not directly used in other parts of the 
paper, but may be of independent interest. 

2 Drawings of Cycles 

In this section we characterise the 0-bend drawings of the cycles Ck (k < 7). We 
then show that if a drawing of a complete graph contains such a 0-bend drawing 
of a cycle then there are many edges with at least three bends in the drawing 
of the complete graph. These results are used in Section 3 in the proofs of our 
lower bounds on the total number of bends in drawings of complete graphs. 

A straight-line path in a 0-bend drawing of a cycle is called a side. A side 
parallel to the /-axis for some I G {X, Y, Z} is called an /-side, and / is called 
the dimension of the side. Clearly the dimension of adjacent sides is different. 
Thus in a 2-dimensional drawing the dimension of the sides alternate around 
the cycle. We therefore have the following observation. 

Observation 1. There is no 2-dimensional 0-bend drawing of a cycle with an 
odd number of sides. 

If there is an 7-side in a drawing of a cycle for some / G {X, Y, Z} then 
clearly there is at least two /-sides. Therefore a drawing of a cycle with X-, 
Y- and Z-sides, which we call truly 3-dimensional, has at least six sides. Hence 
there is no truly 3-dimensional 3-, 4- or 5-sided 0-bend drawing of a cycle. By 
Observation 1 there is also no two-dimensional 3- or 5-sided 0-bend drawing of 
a cycle. We therefore have the following observations. 

Observation 2. There is no 3- or 5-sided 0-bend drawing of a cycle. 

Observation 3. There is no 0-bend drawing 0/C3. 

Observation 4. All 0-bend drawings of C± and C5 have four sides. 

Lemma 1. If a drawing of a complete graph contains a 0-bend 4-cycle (respec
tively, 5-cycle) then at least two (four) chords of the cycle each have at least 
three bends. 



D. Wood, Lower Bounds for 3-D Drawings, JGAA, 7(1) 33-77 (2003) 40 

Proof. By Observation 4 all 0-bend drawings of C\ and of C5 have four sides. 
As illustrated in Figure 3(a), the chord connecting diagonally opposite vertices 
in a 4-sided drawing of a cycle has at least three bends. Hence, if a drawing 
of a complete graph contains a 0-bend C4, then the two chords each have at 
least three bends. Also, in the case of C5, the edges from the vertex not at the 
intersection of two sides to the diagonally opposite vertices both have at least 
three bends, as illustrated in Figure 3(b). Hence, if a drawing of a complete 
graph contains a 0-bend C5, then the four chords each have at least three bends. 

• 

(a) 

-X-
• > * - - > < • 

(b) 

Figure 3: 3-bend edge 'across' the 4- and 5-cycle. 

Observation 5. K<i,z does not have a 0-bend drawing. 

Proof. K-ifi contains C4. By Observation 4, all 0-bend drawing of C4 have 
four sides. As in Lemma 1, an edge between the diagonally opposite vertices 
of a 4-sided cycle has at least three bends. Hence the 2-path in K2,3 between 
the non-adjacent vertices of the 4-cycle has at least one bend, as illustrated in 
Figure 4(b). Hence K2,z does not have a 0-bend drawing. • 

(a) (b) 

( 

0 A 
1 

0 — — -

p 

y 

—0 

/ 

Figure 4: (a) The graph i^2,3- (b) ^2,3 does not have a 0-bend drawing. 

The proof of the following lemma is almost identical to that of Observation 5 
and is omitted. 

Observation 6. If a drawing of a graph contains a 0-bend 1^-cycle (a, b, c, d) 
with a chordal 2-path P G {(a, x, c), (6, x, d)}, then P has at least two bends. • 
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We now classify the 0-bend drawings of C$. 

Lemma 2. The only 6-sided 0-bend drawings of Ce are those in Figure 5 (up 
to symmetry and the deletion of grid-planes not containing a vertex). 

• > < — > < -

1<-

* — > < • 

—><" 

(a) (b) (c) 

Figure 5: 6-sided 0-bend drawings of Ce-

Proof. Let S be the cyclic sequence of dimensions of the sides around an arbi
trary, but fixed, 6-sided 0-bend drawing of Ce-

First suppose the drawing is 2-dimensional. Since adjacent sides are perpen
dicular, without loss of generality three sides are X-sides and three sides are 
y-sides. Therefore S is (X,Y,X,Y,X,Y). The length of one of the X-sides 
equals the sum of the lengths of the other two X-sides, and similarly for the 
Y"-sides. Label these long sides X* and Y*. If the long sides are adjacent then S 
is (X*, Y*,X, Y, X, Y), which corresponds to the drawing in Figure 5(c). If the 
long sides are not adjacent then S is (X*, Y, X, Y*,X, Y), which corresponds to 
the 'drawing' in Figure 6, which contains an edge crossing. 

1<— —><-

•£—><-
Figure 6: 6-sided 0-bend 'drawing' of Ce with an edge crossing. 

Now suppose the drawing is truly 3-dimensional. Clearly there are two X-
sides, two y-sides and two Z-sides. Let x be the number of sides between the 
two X-sides in S. Clearly x is one or two. Define y and z similarly for the Y-
and Z-sides. We can assume without loss of generality that x <y < z. 

If x = 1 and y = 1 then S is (X,Z,X,Y,Z,Y), and z = 2. This sequence 
corresponds to the drawing in Figure 5(a). If x = 1 and y = 2 then S is 
(X, Y, X, Z, Y, Z), and z = 1 which is a contradiction. Otherwise x = y = z = 2 
and S is (X, Y, Z, X, Y, Z) without loss of generality, which corresponds to the 
drawing in Figure 5(b). • 
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Lemma 3. If a drawing of a complete graph contains a 0-bend 6-cycle then 
there are at least six chords of the cycle each with at least three bends. 

Proof. We can assume without loss of generality that the complete graph in 
question is KQ. By Observation 2, all 0-bend drawings of Ce are 4- or 6-sided. 
In a 4-sided 0-bend drawing of C% the two vertices not at the intersection of 
adjacent sides can be (a) on the same side, (b) on opposite sides, or (c) on 
adjacent sides, as illustrated in Figure 7. In each case there are at least six 
chords each with at least three bends if the 0-bend drawing of CQ is contained 
in a drawing of Ke. 

(a) (b) (c) 

Figure 7: Edges with at least three bends in a drawing of KG containing a 
4-sided 0-bend drawing of C§. 

By Lemma 2, the only 6-sided 0-bend drawings of Ce (up to symmetry) 
are those in Figure 5. For each such drawing of C6, if this is a sub-drawing of 
a drawing of KG, then those chords of CG illustrated in Figure 8 each require 
at least three bends (compare with Figure 3). In the case of the drawing in 
Figure 8(c) there are at least six chords each requiring at least three bends. 

T^ VY lis 
(a) (b) (c) 

Figure 8: Edges with at least three bends in a drawing of KQ containing a 
6-sided 0-bend Ce-

Consider the drawing in Figure 8(a) which forces at least four chords to 
have at least three bends if a sub-drawing of a drawing of KG- AS illustrated in 
Figure 9(a), any drawing of the edges vu and vw with at most two bends per 
edge passes through the same point. Hence one of these edges has at least three 
bends. We can make the same argument for the edges xw and xu. Hence if KQ 
contains the sub-drawing of Ce illustrated in Figure 8(a) then there are at least 
six chords each with at least three bends. 
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Now consider the drawing in Figure 8(b) which forces at least three chords 
to have at least three bends if a sub-drawing of a drawing of K§. As illustrated 
in Figure 9(b), any drawing of the edges vu, uw and vw with at most two bends 
per edge passes through the same point. Hence two of these edges have at least 
three bends. We can make the same argument for three edges connecting the 
other three vertices. Hence if Ke contains the sub-drawing of C§ illustrated in 
Figure 8(b) then there are at least seven chords each with at least three bends. 
The result follows. • 

(a) (b) 

Figure 9: Intersecting 1- and 2-bend edges. 

Lemma 4. The only 7-sided 0-bend drawings ofCy are those in Figure 10 (up 
to symmetry and the deletion of grid-planes not containing a vertex). 

(b) (c) 

Figure 10: 7-sided 0-bend drawings of C7. 

Proof. Consider an arbitrary, but fixed, 7-sided 0-bend drawing of C-j. By 
Observation 2, there is no 2-dimensional 0-bend drawing of an odd cycle, and 
if there is an 7-side in a drawing of a cycle for some 7 G {X, Y, Z}, then there 
are at least two /-sides. Therefore in a 7-sided cycle, without loss of generality 
three of the sides are X-sides, two are F-sides and two are Z-sides. Clearly 
the length of one of the X-sides equals the sum of the lengths of the other two 
X-sides. Label this long side X*. 
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Let S be the cyclic sequence of the dimensions of the sides around C7, 
which without loss of generality begins with the X*-side. Therefore S is (i) 
(X*, 1, X, 2, X, 3,4), (ii) (X*, 1, X, 2,3, X, 4), or (iii) (X*, 1,2,X, 3, X, 4), where 
the numbered locations refer to a Y- or Z-side. 

In case (i), the dimensions of the '3 ' and '4' sides are different, hence the 
dimensions of the ' 1 ' and '2' sides are also different. Without loss of generality 
' 1 ' is a y-side and '2' is a Z-side. Therefore S is either (X*,Y,X,Z,X,Y,Z) 
or (X*, Y, X, Z, X, Z, Y), which correspond to the drawings in Figure 10(a) and 
Figure 10(b), respectively. 

In case (ii), the dimensions of the '2' and '3 ' sides are different, hence the 
dimensions of the ' 1 ' and '4' sides are also different. Without loss of generality 
' 1 ' is a y-side and '4' is a Z-side. Therefore S is either (X*,Y,X,Z,Y,X,Z), 
which corresponds to the drawing in Figure 10(c), or (X*, Y, X, Y, Z, X, Z) which 
corresponds to the 'drawing' in Figure 11 with an edge crossing. 

Figure 11: 7-sided 0-bend 'drawing' of Cj with an edge intersection. 

In case (iii), S is simply the reverse sequence of S in case (i). We therefore 
have classified all 7-sided 0-bend drawings of C7 up to symmetry and after 
removing grid-planes not containing a vertex. • 

L e m m a 5. If a drawing of Kr contains a 0-bend 7-cycle then there are at least 
six chords of the cycle each with at least three bends. 

Proof. By Observation 2, a 0-bend drawing of C7 has four, six or seven sides. 
In a 4-sided 0-bend drawing of C7, as illustrated in Figure 12, the three 

vertices not at the intersection of two adjacent sides can be (a) all on the same 
side, (b) two on one side and one on an adjacent side, (c) two on one side and 
one on the opposite side, or (d) all on different sides. For each drawing, if the 
7-cycle is a sub-drawing of a drawing of KT, then eight chords of the cycle have 
at least three bends (compare with Figure 3). 

(a) (b) (c) (d) 

Figure 12: Edges with at least three bends in a 4-sided 0-bend drawing of C7. 
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Any 6-sided 0-bend drawing of CV can be obtained by placing a new vertex 
on one side of a 6-sided 0-bend drawing of CQ. Thus, by Lemma 3 if a drawing 
of K-j contains a 6-sided 0-bend drawing of Cr then at least six of the chords 
have at least three bends. 

By Lemma 4, the only 7-sided drawings of CV are those illustrated in Fig
ure 10. For each such drawing, if the 7-cycle is a sub-drawing of a drawing of if7, 
Figure 13 shows chords of the cycle which need at least three bends. The draw
ings in Figure 13(a), (b) and (c) have four, six, and four chords, respectively, 
which need at least three bends. 

(a) (b) (c) 

Figure 13: Edges with at least three bends in a 7-sided 0-bend drawing of C7. 

Consider the drawing in Figure 13(a). As illustrated in Figure 14(a), any 
drawing of the edges vu, vw and vx with at most two bends per edge passes 
through the same grid-point. Hence two of these edges have at least three bends. 
Therefore if if7 contains the sub-drawing of C7 illustrated in Figure 13(a) then 
there are at least six edges each with at least three bends. 

Now consider the drawing in Figure 13(c). As illustrated in Figure 14(b), 
there is one route for the edge vu with at most two bends, one route for the 
edge vw with at most two bends, and three routes for the edge vx with at most 
two bends. Any two of these edge routes for distinct edges pass through the 
same point. Hence two of these edges have at least three bends. Therefore if 
K7 contains the sub-drawing of C7 illustrated in Figure 13(c), then there are at 
least six edges each with at least three bends. 

w 

1 

u 
> 1 

( 

( _ — _ 7 

' / 

V 

(a) (b) 

Figure 14: Intersecting 1- and 2-bend edges. 

Therefore if a drawing of a complete graph contains a 0-bend 7-cycle, then 
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there are at least six chords of the cycle each with at least three bends. • 

The results in this section are summarised by the following immediate corol
lary of Lemmata 1, 3 and 5. 

Theorem 1. If a drawing of Kp \ Mj contains a 0-bend 4-cycle (respectively, 
5-cycle, 6-cycle, or 7-cycle), then there are at least 2 — j (4 — j , 6 — j , 6 — j) 
chords of the cycle each with at least three bends. • 

3 Drawings of Complete Graphs 

In this section we establish lower bounds for the total number of bends in draw
ings of the complete graphs K4, K$, K§ and K7, and the graphs obtained from 
these complete graphs by deleting a matching. We complete the section by es
tablishing lower bounds for the number of bends in drawings of the multigraphs 
j • K2 for 2 < j < 6. 

The 0-bend subgraph of a given drawing consists of those edges drawn with 
no bends. The following proofs typically proceed by case analysis on the size of 
the 0-bend subgraph. 

Figure 15 shows a drawing of K4 with three bends. Deleting one of the 1-
bend edges produces a drawing of K4 \ M\ with two bends. We now prove that 
both of these drawings are bend-minimum. This elementary result is indicative 
of the method of proof for the corresponding results for larger complete graphs 
which follow. 

Figure 15: A drawing of K± with three bends. 

Theorem 2. Let j G {0,1}. Every drawing of K±\Mj has at least Z — j bends. 

Proof. Let fco be the number of 0-bend edges in a drawing of K4 \ Mj. If ko < 3 
then there are at least 3 — j edges each with at least one bend, and we are done. 
Otherwise ko > 4. The 0-bend subgraph has no 3-cycle by Observation 3. The 
only 4-vertex graph with at least four edges and no 3-cycle is a 4-cycle. Thus the 
0-bend subgraph is a 4-cycle. By Theorem 1, if K4 \ Mj (with j < 1) contains 
a 0-bend 4-cycle, then there is at least one chord with at least three bends. • 

We now establish tight lower bounds for the total number of bends in draw
ings of K5 and the graphs obtained from K5 by deleting a matching. To prove 
that the drawing of K5 illustrated in Figure 16 is bend-minimum we use the 
following result, which may be of independent interest. 
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AV^y 
Figure 16: A 2-bend drawing of K$ with seven bends. 

Lemma 6. For every set S of grid-points in the 3-D orthogonal grid, either 
(1) two points in S are non-coplanar, or 
(2) at least \2\S\/3] grid-points are in a single grid-plane. 

Proof. Suppose (1) does not hold; that is, every pair of points in S share at 
least one coordinate. Without loss of generality assume that there is a point 
v € S positioned at (0,0,0). Thus every point in S has at least one coordinate 
equal to 0. If some point w € S has exactly one coordinate equal to 0 then, 
supposing this is the X-coordinate, all points in S have an X-coordinate of 0 (to 
be coplanar with v and w); that is, all points are in a single grid-plane, and the 
result follows. Otherwise every point in S, except v, has exactly two coordinates 
equal to 0; that is, every point lies on an axis. Let x, y and z be the number 
of points in S, not counting v, on the X, Y and Z axes, respectively. Then 
x+y+z = \S\-1. Without loss of generality x > y>z. Clearly x > |"( |S|-l)/3l 
and y > \_{\S\ — 1)/3J, which implies there are x + y + 1 > [2|5|/3] points in S 
on the X- or y-axes, and thus in a single grid-plane. • 

Wood [32] shows that a 1-bend drawing of Kn in a multi-dimensional or
thogonal grid requires at least n — 1 dimensions. We now provide a simple proof 
of an equivalent formulation of this result in the case of n = 5. 

Theorem 3. Every drawing of K$ has an edge with at least two bends. 

Proof. In a layout of the vertices of K5, if two vertices are non-coplanar, then 
the edge between them has at least two bends. By Lemma 6 with S = V(K5), 
if all the vertices are pairwise coplanar then four of the vertices are coplanar. 
Consider the K4 subgraph H induced by these four coplanar vertices. If any 
edge of H leaves the plane containing the vertices then it has at least two bends. 
Otherwise we have a plane orthogonal drawing of K4, which has an edge with 
at least two bends [14]. • 

We now prove that the drawing of K5 in Figure 16 is bend-minimum. 

Theorem 4. Every drawing of K5 has at least seven bends. 

file:///S/-1
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Proof. Let fco be the number of 0-bend edges in a drawing of K5. Since every 
subgraph of K5 with at least eight edges contains a 3-cycle, and by Observa
tion 3, the 0-bend subgraph has no 3-cycle, fco < 7. If fco < 4 then there are 
at least six edges each with at least one bend, and by Theorem 3, one of these 
edges has at least two bends, implying there are at least seven bends in total, 
and we are done. Now assume 5 < fco < 7. Thus the 0-bend subgraph contains 
a cycle, which by Observation 3, is a 4-cycle or a 5-cycle C. By Lemma 1, C 
has at least two chords each with at least three bends. Since fco < 7 there is 
at least one additional edge with at least one bend, implying a total of at least 
seven bends. • • 

By deleting the 2-bend edge in the drawing of K5 illustrated in Figure 16, we 
obtain a drawing of Ke\M\ with five bends in total. By deleting the appropriate 
1-bend edge from this drawing, we obtain a drawing of K5 \ Mi with four bends 
in total. We now prove that both of these drawings are bend-minimum. 

Theorem 5. For each j £ {1,2}, every drawing of K& \ Mj has at least 6 — j 
bends. 

Proof. Let fco be the number of 0-bend edges in a drawing of K5 \ Mj for some 
j G {1,2}. If fco < 4 then there are at least 6 — j edges each with at least one 
bend, and we are done. Now assume fco > 5. By Lemma 13 in Appendix A, 
every subgraph of K5 \ Mj with at least six edges contains C3 or i£2,3, and by 
Observations 3 and 5, the 0-bend subgraph does not contain C3 or ^2,3- Thus 
fco = 5. Since every 5-edge subgraph of K5 \ Mj contains a cycle, and the 0-
bend subgraph does not contain a 3-cycle (by Observation 3), there is a 0-bend 
4-cycle or 5-cycle C. 

Suppose C has a chord, which is guaranteed by Theorem 1 in the case of C 
being a 5-cycle. Then by Lemma 1 the chord has at least three bends. There 
are a further 4 — j edges each with at least one bend, giving a total of at least 
7 — j bends. If C is chordless then j = 2 and C is a 4-cycle. Thus C is spanned 
by two edge-disjoint chordal 2-paths, each of which has at least two bends by 
Observation 6. Thus the drawing has at least four bends, and we are done. • 

We now establish tight lower bounds for the total number of bends in draw
ings of KQ, and the graphs obtained from Ke by deleting a matching, except in 
the case of Kg \ M3 for which there is a difference of one bend between our lower 
bound and the best known drawing. Figure 17 shows the well-known drawing 
of KQ with two 2-bend edges and a total of twelve bends. 

Theorem 6. Every drawing of KQ has at least two edges each with at least two 
bends. 

Proof. By Theorem 3 every drawing of K$, and thus KQ, has an edge with at 
least two bends. Suppose that there is a drawing of K§ with exactly one edge 
vw with at least two bends. By removing v and all the edges incident to v 
we obtain a 1-bend drawing of K5, which contradicts Theorem 3. Thus every 
drawing of K% has at least two edges each with at least two bends. • 
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Figure 17: A 2-bend drawing of KQ with 12 bends. 

Note that the above result can be strengthened to say that in every drawing 
of K$ there are two non-adjacent edges each with at least two bends. We now 
prove that the drawing of K6 illustrated in Figure 17 is bend-minimum, as is 
the drawing obtained by deleting one or both of the 2-bend edges. 

Theorem 7. For each j 
12 - 2j bends. 

{0,1,2}, every drawing of Ke \ Mj has at least 

Proof. Let ki (i > 0) be the number of i-bend edges in a drawing of KQ \ Mj 
for some j £ {0,1,2}. Observe that K% \ Mj has 15 —j edges. By Lemma 14 in 
Appendix A, every subgraph of K§ \ Mj with at least eight edges contains C3 
or i^2,3- By Observations 3 and 5, the 0-bend subgraph does not contain C3 or 
^2,3- Thus fco < 7, and hence there are at least 8 — j edges each with at least 
one bend. 

If fco < 5 then at least 10 — j edges have at least one bend, and since there 
are at least 2 — j edges each with at least two bends (by Theorem 6), there 
are at least 12 — 2j bends, and we are done. Now assume fco > 6. Thus the 
0-bend subgraph contains a cycle C, which by Observation 3, is not a 3-cycle. 
If C has at least two chords then by Theorem 1, each chord has at least three 
bends, giving a total of at least 12 — j > 12 - 2j bends, and we are done. Also 
by Theorem 1, if j = 0 or C is a 5- or 6-cycle, then C has at least two chords. 
Thus, we now assume that C = (a, b, c, d) is a 4-cycle and j G {1,2}. 

If j = 1 then by Theorem 1, C has exactly one chord, say ac. Let x and y 
be the other two vertices in KQ \ Mj. The edge ac has at least three bends, and 
each of the chordal 2-paths axe, aye, bxd and byd have at least two bends, by 
Observation 6. Thus there is a total of at least 11 > 12 — 2j bends, and we are 
done. Now assume j = 2. If C has one chord then this chord has at least three 
bends, giving a total of at least 8 = 12 — 2j bends, and we are done. Otherwise 
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C has no chords. Let x and y be the other two vertices in K$ \ M<z- Each of the 
chordal 2-paths axe, aye, bxd and byd have at least two bends by Observation 6, 
giving a total of at least 8 = 12 — 2j bends. This completes the proof. • 

We now prove a lower bound of seven on the number of bends in drawings 
of Ke \ Mz, the octahedron graph. The drawing of Ke \ M3 obtained from the 
drawing of K$ illustrated in Figure 17 by deleting the two 2-bend edges and the 
0-bend edge has eight bends. We conjecture that every drawing of Ke \ M3 has 
at least eight bends. 

Theorem 8. Every drawing of Ke \ M3 has at least seven bends. 

Proof. Let fcj (i > 0) be the number of i-bend edges in a drawing of K6 \ M3. 
If ko < 5 then at least seven edges each have at least one bend, and we are 
done. Now assume fco > 6. Thus the 0-bend subgraph contains a cycle C 
which is not a 3-cycle by Observation 3. Hence C is a 4-, 5- or 6-cycle. Let 
V(K6 \ M3) = {a, b, c, 1,2,3} with al, 62, c3 £ E(K6 \ M3). 

Case 1. C is a 4-cycle: Since K4 %. Ke \ M3, C has at most one chord. 
Initially suppose C has no chords. Without loss of generality C = (a, b, 1,2). 
Then acl, bc2, a31, and 632 are edge-disjoint chordal 2-paths between diagonally 
opposite vertices on C. By Observation 6, each of these chordal 2-paths have at 
least two bends, giving a total of eight bends, and we are done. Now suppose 
C has one chord. Without loss of generality C = (a, b, 3,2), with the chord 
a3 having at least three bends (by Theorem 1). Thus 6c2 and 612 are chordal 
2-paths and acl3 is a chordal 3-path between diagonally opposite vertices on 
C. By Observation 6, these chordal 2-paths each have at least two bends and, 
similarly, the chordal 3-path has at least one bend. Therefore there is a total of 
at least eight bends. 

Case 2. C is a 5-cycle: Since Ke \ M3 is vertex-transitive, the vertices of 
C induce the graph illustrated in Figure 18(a). 

(a) (b) (c) (d) 

Figure 18: 0-bend 5-cycle in drawings of Ke \ M$. 

Since there is only one drawing of a 0-bend 5-cycle, by symmetry there are 
three different ways to draw C, as illustrated in Figure 18(b), (c) and (d). In 
each case there are two chords of C each with at least three bends, and a further 
chord with at least two bends, giving a total of at least eight bends. 

1 



D. Wood, Lower Bounds for 3-D Drawings, JGAA, 7(1) 33-77 (2003) 51 

Case 3. C is a 6-cycle: By Theorem 1, C has at least three chords each 
with at least three bends. Thus the drawing has at least nine bends, and we are 
done. • 

We now establish lower bounds for the number of bends in drawings of 
Ky \ Mj for each j G {0,1,2,3}. Figure 19 shows a 4-bend drawing of K? with 
a total of 24 bends. (Compare this with the total of 42 bends in the 2-bend 
drawing of K7 in Figure 1.) Deleting j of the three 4-bend edges from this 
drawing produces a drawing of K-j \ Mj with 24 — 4j bends. The following lower 
bound is thus within 4 — j bends of being tight. 

Figure 19: A 4-bend drawing of K-j with 24 bends. 

Theorem 9. For each j G {0,1,2,3}, every drawing of Kr \ Mj has at least 
20 - 3 j bends. 

Proof. Suppose to the contrary, that for some j G {0,1,2,3}, there is a drawing 
of K7 \ Mj with at most 19 — 3j bends. Let fc, (i > 0) be the number of i-bend 
edges. Then 

Y,ih < 19-3j , 
i>l 
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and 

X > < (19 - 3j) - £ ( t - l)fe . 
i > l t>2 

Since 1̂ 7 \ Mj has 21 — j edges, 

21 - j = J^ki < k0 + (19 - 3j) - 5^(* - l)*i . 
i>0 i>2 

Hence, 

J2(i ~ I)** < *0 + (19 - 3j) - (21 - j) = k0 - 2j - 2 . (1) 
j>2 

By Lemma 15 in Appendix A, every subgraph of K-j \ Mj with at least ten 
edges contains C3 or if2,3 • By Observations 3 and 5, the 0-bend subgraph does 
not contain C3 or K2>3; thus feo < 9. 

Case 1. fc0 = 8 or fc0 = 9: By Lemma 16 in Appendix A, every subgraph 
of K-j \ Mj with at least eight edges contains a cycle Ck {k ^ 4), two chord-
disjoint cycles, or K^^. Therefore the 0-bend subgraph contains a cycle Ck 
(k > 5) or two chord-disjoint 4-cycles (since C3 and K2,3 do not have 0-bend 
drawings by Observations 3 and 5, respectively). In either case, by Theorem 1 
there are at least 4 — j chords of these cycles each with at least three bends. 
Thus Y2i>3 ki>A — j , and hence, 

k2 + 2(4 -j) < k2+ ^2 fc* < ^ ( t - l ) f c j . 
j>3 i>2 

By (1) with fc0 < 9, fc2 + 8 - 2j < 9 - 2j - 2 and thus k2 < - 1 , which is a 
contradiction. 

Case 2. feo < 7: Let A be the set of edges of K7 \ Mj routed using 
an extremal port at exactly one end-vertex. Let B be the set of edges routed 
using extremal ports in the same direction at its end-vertices. Let C be the set 
of edges routed using extremal ports in differing directions at its end-vertices. 
Since, all but 2j ports in the drawing of K~j \ Mj are used, and there is at least 
one extremal port in each of the six directions, \A\ + \B\ + 2\C\ > 6 — 2j. As 
illustrated in Figure 20(a) an edge in A or B has at least two bends, and an 
edge in C has at least three bends, as illustrated in Figure 20(b). Hence, 

k2 + 2 ^ ki > 6 - 2 j , 
i>3 

which implies, 

J2(i - l)fe > 6 - 2j . (2) 
i>2 
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* : 

Z 2*1 
(a) (b) 

Figure 20: Edges using extremal ports have at least two bends. 

However, by (1) with fco < 7, 

5^( i - l)ki < 5 - 2j , 
i>2 

which contradicts (2). The result follows. • 

3.1 Drawings of Mult igraphs 

We now prove tight bounds for the number of bends in drawings of the complete 
multigraphs j • K2 for 2 < j < 6. 

•><- 1<-

1<~ 

-><-

(a) (b) (c) (d) 

Figure 21: Bend-minimum drawings of (a) 2 • K2, (b) 3 • K2, (c) 4 • K2 and (d) 
b-K2. 

We omit the proof of the following elementary result as the method is similar 
and simpler than the proofs of Theorems 10 and 11 for 6 • K2 below. 

Lemma 7. For each of the graphs j • K2 (2 < j < 5), the drawings in Figure 21 
have the minimum maximum number of bends per edge and the minimum total 
number of bends. • 

In Figure 22 we show two drawings of 6 • K2. We now provide a formal prove 
of the well-known result that the maximum number of bends per edge in the 
drawing in Figure 22(a) is optimal. 

Theorem 10. Every drawing of 6 • K2 has an edge with at least three bends. 

Proof. Let the vertices of 6 • K2 be v and w. Since 6 • K2 is 6-regular every port 
at v and w is used. The two vertices are either (a) collinear, (b) coplanar but 
not collinear, or (c) not coplanar, as illustrated in Figure 23. 
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Figure 22: Drawings of 6 • K2 with (a) a maximum of three bends per edge, and 
(b) a total of twelve bends. 

\£ 
7' 

Y. + 
(a) (b) (c) 

Figure 23: 6 • K2 has a 3-bend edge. 

In each case there is a port at v pointing away from w such that the edge 
using this port requires at least three bends to reach w. • 

We now prove that the drawing in Figure 22(b) is bend-minimum. 

Theorem 11. Every drawing of the multigraph 6 • K2 has at least twelve bends. 

Proof. Let the vertices of 6 • K2 be v and w. Suppose that v and w are not 
coplanar. The edges using the three ports at v pointing towards w have at least 
two bends, and the other edges have at least three bends. Thus the drawing 
has at least 15 bends. 

Suppose v and w are coplanar but not collinear. The edges using the two 
ports at v pointing towards w have at least one bend, the edges using the two 
opposite ports have at least two bends, and the remaining two edges have at 
least three bends. Thus the drawing has at least 12 bends. 

Suppose v and w are collinear, and without loss of generality, that v and w 
lie in an X-axis parallel line, such that the X-coordinate of v is less than the 
X-coordinate of w. The edge using the port X~ has at least three bends, and 
the four edges using the other four ports at v pointing away from w have at 
least two bends. Thus the drawing has at least 11 bends. Suppose there is such 
a drawing with exactly 11 bends. Then there are four 2-bend edges, and one 
3-bend edge. These four 2-bend edges use the Y± and Z^ ports at each vertex. 
Therefore, the edge using the X~ port and the X+ port has four bends, and 
thus the drawing has 12 bends, which is a contradiction. The result follows. • 
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4 Constructing Large Graphs 
In this section we use the lower bounds for the number of bends in drawings 
of the complete graphs established in Section 3 as building blocks to construct 
infinite families of c-connected graphs (2 < c < 6) with maximum degree A 
(2 < A < 6), and with lower bounds on the number of bends in drawings of 
every graph in the family. 

A graph is c-connected (c > 1) if the removal of fewer than c vertices results in 
neither a disconnected graph nor the trivial graph. To establish that our graphs 
are c-connected we use the following characterisation due to Whitney [31], which 
is part of the family of results known as 'Menger's Theorem'. A graph G is o 
connected if and only if for each pair u, v of distinct vertices there are at least 
c internally disjoint paths from u to v in G. Our proofs of connectivity are 
postponed until Appendix B. 

We employ two methods for constructing new graphs from two given graphs. 
First, given graphs G and H, we define H{G) to be the graph obtained by 
replacing each vertex of H by a copy of G, and connecting the edges in H 
incident to a particular vertex in H to different vertices in the corresponding 
copy of G. In most cases, H is A-regular and G is a complete graph Kv for 
some p > A; thus H(G) is well-defined. In other cases we shall specify which 
edges of H are connected to which vertices in each copy of G. 

Our second method for constructing large graphs is the cartesian product 
G x H of graphs G and H. G x H has vertex set V(H) x V(G) with (ui,u>i) 
and (v2, W2) adjacent in G x H if either v\ = V2 and w\w<z £ E(G), or w\ = W2 
and V1V2 € E(H). For example, Cp x Cq is the 4-regular px q torus graph. 

Our lower bounds for simple disconnected graphs are obtained by taking 
disjoint copies of Kp for 4 < p < 7. For consistency we denote these graphs 
by Ir(Kp), where Ir is the r-vertex graph with no edges. Our lower bounds for 
disconnected multigraphs are obtained by Ir (p • K2) for 3 < p < 6, and we use 
Ir{Lp) with 1 < p < 3 to obtain lower bounds for disconnected pseudographs. 

As illustrated in Figure 24, to obtain lower bounds for simple 2-connected 
graphs, we use Cr{Kp) for 3 < p < 6 and r > 3, and Cr(Kp \ Mi) for 4 < p < 7 
and r > 2, where the non-adjacent vertices in each copy of Kp \ M\ are incident 
to the edges of Cr. To obtain lower bounds for 2-connected multigraphs, we use 
Crip • K2) with 2 < p < 5, and we use Cr{Lp) with 1 < p < 2 to obtain lower 
bounds for 2-connected pseudographs. 

<Y?<V?. 

(a) r times (b) r times (c) r times 

Figure 24: 2-connected graphs: (a) Cr(Kp \ Mi), (b) Cr(p • K2), and (c) Cr(L2). 

As illustrated in Figure 25, to obtain lower bounds for simple 3-connected 
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graphs, we use (Cr x K2)(KP) for 3 < p < 6 and r > 3, and (Cr x K2)(KP \ M2) 
for 5 < p < 7 and r > 3, where the non-adjacent pairs of vertices in each copy 
of Kp \ M2 are incident to opposite edges of CT x K2 where possible. To obtain 
lower bounds for 3-connected multigraphs, we use Cr x {p • K2) with r > 3 and 
2 < p < 4. We use C r x ((p • i4T2)(-^i)) with 1 < p < 2 to obtain lower bounds 
for 3-connected pseudographs. 

(a) r times (b) r times (c) r times 

Figure 25: 3-connected graphs: (a) (Cr x K2){KV \ M2), (b) Cr x (p • if2), and 
(c)CPx((p-Ji:2KXi». 

To obtain lower bounds for 4-connected simple graphs, we use (Cr x Cz){Kp) 
for 4 < p < 6 and r > 3, and (<7r x C3){KP \ M2) for 5 < p < 7 and r > 3, 
where the non-adjacent pairs of vertices in each copy of Kp \ M2 are incident to 
opposite edges of Cr x C3, as illustrated in Figure 26(a). We use (Cr x Cs)(Li) 
with r > 3 to obtain lower bounds for 4-connected pseudographs, as illustrated 
in Figure 26(b). 

r times r times 
(a) (b) 

Figure 26: 4-connected graphs: (a) (C r x CS)(KP \ M2), and (b) (Cr x Cs)(Li). 

Let 2 • Cm be the m-edge cycle with each edge having multiplicity 2, and let 
I • Cm for even m be the m-edge cycle with alternating edges around the cycle 
having multiplicity 2. To obtain lower bounds for 4-connected multigraphs, 
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we use the 6-regular multigraph Cr x (2 • C3) for some r > 3, as illustrated in 
Figure 27(b), and the 5-regular multigraph Cr x ( | • C4) for r > 3, as illustrated 
in Figure 27(c). 

/ \ / \ 

r times 

/ \ 

^y 

/ \ 

(a) (b) r times 

Figure 27: 4-connected graphs: (a) Cr x (2 • C3), (b) Cr x ( | • C4). 

To obtain lower bounds for 5-connected graphs, we use (Cr x C3 x K2){KP) 
for 5 < p < 6 and r > 3, and (C r x C3 x K2){K7 \ M3) for r > 3, where the non-
adjacent pairs of vertices in each copy of Ki \ M3 are incident to opposite edges 
of Cr x C3 x K2 where possible, as illustrated in Figure 28(a). To obtain lower 
bounds for 5-connected multigraphs, we use CT x C3 x (2 • K2), as illustrated 
in Figure 28(b). 

J8EM 

mpr::^: 
$zvr;:z£ 

(a) r times (b) r times 

Figure 28: 5-connected graphs: (a) (Cr x C3 x K2)(G), (b) C r x C3 x (2 • if2). 



D. Wood, Lower Bounds for 3-D Drawings, JGAA, 7(1) 33-77 (2003) 58 

To obtain lower bounds for 6-connected graphs we use 
(C r x C3 x C3)(K6) and (Cr x C3 x C3)(K7 \ M3) for r > 3, where the non-
adjacent pairs of vertices in each copy of Ky \ M3 are incident to opposite edges 
in Cr x C3 x C3, as illustrated in Figure 29. 

r times 

Figure 29: 6-connected 
(CrxC3xC3){K7\M3). 

6-regular graphs (Cr x C3 x C3){Ke) and 

In Table 3 we prove lower bounds on the number of bends in drawings of the 
above families of graphs. Each line of the table corresponds to one such family 
H{G) (or H x G) parameterised by some value r, all of which have maximum 
degree A (shown in the first column). The third column shows the lower bounds 
on the number of bends in a drawing of G, as proved earlier in the paper. The 
fourth and fifth columns shows the number of edge-disjoint copies of G and the 
number of edges in H(G) (or H x G), respectively. The sixth column shows 
the lower bound on the average number of bends per edge in H(G) (or H x G) 
obtained by 

average # bends(H(G) or H x G) > 
# bends(G) x # copies(G) 
# edges(#(G) or H x G) 

A line marked with a * indicates the corresponding lower bound is the best 
out of those for graphs with a specific connectivity and maximum degree. These 
'best known' lower bounds are those listed in Table 2 in Section 1. 
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Table 3: Lower bounds for the average number of bends per edge. 

A H(G) or if x G #bends(G) #copies(G) #edges avg. #bends 

Disconnected Simple Graphs 
6 Ir(K7) 20 (Thm. 

Ir(K6) 12 (Thm, 

Ir{KB) 7 (Thm. 
Ir{KA) 3 (Thm. 

Ir{K3) 1 (Obs. 

Disconnected Multigraphs 
6 Ir{6 • K2) 12 (Thm. 

Ir(5-K2) 8 (Lem. 

Ir{±-K2) 6 (Lem. 

Ir(3-K2) 4 (Lem. 

Jr(2 • K2) 2 (Lem. 

Disconnected Pseudographs 

6 Ir(L3) 9 

4 Ir{L2) 6 

2 JP<Li) 3 
2-Connected Simple Graphs 
6 Cr{K6) 12 (Thm. 
6 CriKrXMt) 17 (Thm. 

5 Cr{K5) 7 (Thm. 

5 Cr^aXMi) 10 (Thm. 

4 Cr<Jf4> 3 (Thm. 
4 Cr{K5\Mi) 5 (Thm. 
3 CP<tf3) 1 (Obs. 

3 Cr{KA\Mx) 2 (Thm. 

2-Connected Multigraphs 
6 Cr(5-K2) 8 (Lem. 
5 Cr{A-K2) 6 (Lem. 
4 Cr{Z-K2) 4 (Lem. 
3 Cr(2-K2) 2 (Lem. 
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continued on next page 
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Table 3: continued 

A H(G) or H x G #bends(G) #copies(G) 

2-Connected Pseudographs 

6 Cr(L2) 6 
4 C r(Li) 3 

3-Connected Simple Graphs 

6 {CrxK2)(K6) 12 

6 (Cr xK2){K7\M2) 14 

5 {CrxK2)(K5) 7 
5 (CrxK2)(K6\M2) 8 

4 (CP x K2){Ki) 3 
4 (G rxii:2)( Jftr5 \M2) 4 

3 (Cr x K2)(K3) 1 

3-Connected Mul t ig raphs 

6 Cr x (4 • tf2) 6 
5 Cr x (3 • # , ) 4 
4 Gr x (2 • if2) 2 

3-Connected Pseudographs 

6 C P x ( ( 2 - ^ 2 ) < L i » 8 
5 (CrxK2){Li) 3 

4-Connected Simple Graphs 

6 {CrxC3){K6) 12 

6 ( C r x G 3 ) ( ^ 7 \ M 2 ) 14 

5 (CrxC3)(K5) 7 

5 (CrXC3){K6\M2) 8 

4 (C r xG3)(X 4 ) 3 
4 ( G r x G 3 ) ( i f 5 \ M 2 ) 4 

4-Connected Mul t ig raphs 

5 Cr x ( | • C4) 4 

6 Gr x (2 • C3) 6 

4-Connected Pseudographs 

6 (G r xG 3 ) (L i ) 3 

(Thm. 7) 

(Thm. 9) 

(Thm. 4) 

(Thm. 7) 

(Thm. 2) 

(Thm. 5) 

(Obs. 3) 

(Lem. 7) 

(Lem. 7) 

(Lem. 7) 

(Thm. 7) 

(Thm. 9) 

(Thm. 4) 

(Thm. 7) 

(Thm. 2) 

(Thm. 5) 

(Lem. 7) 

(Lem. 7) 
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#edges 
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33r 

41r 
23r 

29r 
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19r 
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15 + 6)r 

19 + 6)r 

10 + 6)r 
13 + 6)r 

• 6 + 6)r 

• 8 + 6)r 

lOr 

9r 

• l + 6)r 

avg. #bends 

2 * 

2 * 

2-12 _ 8 , 
33 ~~ 11 

2-14 _ 28 
41 ~~ 41 

2-7 14 , 
23 — 23 
2-8 _ 16 
29 ~ 29 
2-3 _ 2 
15 — 5 2-4 8 , 
19 — 19 * 
2 * 
9 * 

2 - 1 • 6 X 

1 
4 2 

! 

I 
312 _ 12 , 
51 — 17 

3-14 2 
63 — 3 

3-7 7 , 
36 ~ 12 * 
3-8 8 
45 ~ 15 
3-3 3 
24 — 8 3-4 2 , 
30 ~ 5 * 

- 1 - 2 * 
10 — 5 * 

9 3 

§ = 1 * 

continued on next page 
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Table 3: continued 

A H(G) or H x G #bends(G) #copies(G) #edges avg. #bends 

5-Connected Simple Graphs 

6 {Cr xC3x K2){K6) 12 (Thm. 7) 6r (6 • 15 + 15)r %§ = § * 
6 {Cr xC3x K2){K7 \ M3) 11 (Thm. 9) 6r (6 • 18 + 15)r ^ = ff 
5 (Cr x C3 x K2){K5) 7 (Thm. 4) 6r (6 • 10 + 15)r ^ = i | * 
5-Connected Multigraphs 
6 Cr x C3 x (2 • if2) 2 (Lem. 7) 3r 18r 2 | = ± * 
6-Connected Simple Graphs 

6 (CV x C3 x C3)(X6) 12 (Thm. 7) 9r (9 • 15 + 27)r 
6 (Cr xC3x C3)(K7 \ M3) 11 (Thm. 9) 9r (9 • 18 + 27)r 

9-12 _ 2 
162 ~~ 3 
9-11 _ 11 
189 ~ 21 

5 Lower Bounds for General Position Drawings 

Recall that a 3-D orthogonal graph drawing is said to be in general position 
if no two vertices lie in a common grid-plane. The general position model has 
been used for 3-D orthogonal graph drawing by Eades et al. [13] and Wood 
[33], Wood [36], Wood [37], and for 3-D orthogonal box-drawing of arbitrary 
degree graphs by Papakostas and Tollis [21], Biedl [8] and Wood [34]. In this 
section we establish lower bounds for the number of bends in general position 
drawings of 2-connected and 4-connected graphs. The next result will be crucial 
for the lower bounds to follow. 

Lemma 8. If the graph G has at least k bends in every general position drawing 
then for every edge e of G, the graph G\e has at least k — 4 bends in every 
general position drawing. 

Proof. Suppose G\e has a general position drawing with b bends. Wood [37] 
proved that the edge e can be inserted into the drawing of G\e with at most four 
bends (possibly introducing edge crossings), and that the edges can be rerouted 
to eliminate all edge crossings without increasing the total number of bends. 
Thus there is a (crossing-free) general position drawing of G with 6 + 4 bends. 
By assumption, every general position drawing of G has at least k bends. Thus 
6 + 4 > fc and 6 > fc - 4. • 

Clearly every edge in a general position drawing has at least two bends. 
Observe that if an edge is routed using an extremal port, then this edge has at 
least three bends, as illustrated in Figure 30. 

Since all ports are used in a drawing of a 6-regular m-edge graph, a general 
position drawing of such a graph requires at least 2m + 6 bends. Hence the 
graphs consisting of disjoint copies of K7 provide the following lower bound. 
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Figure 30: General position edges using extreme ports have at least three bends. 

Lemma 9. There exists an infinite family of n-vertex m-edge simple graphs, 
each with at least 2m + | n bends in every general position drawing. • 

Note that for 6-regular graphs m = 3ra; thus the above lower bound matches 
the upper bound of ^ m for the total number of bends in general position 
drawings established by the DIAGONAL LAYOUT & MOVEMENT algorithm [37]. 

To obtain a lower bound for general position drawings of 2-connected graphs, 
we use the 6-regular graph Cr(Kr \ Mi), where the non-adjacent vertices of each 
K7 \ Mi are incident to the edges of Cr, as illustrated in Figure 24(a). 

Lemma 10. There exists an infinite family ofn-vertexm-edge simple 2-connected 
graphs, each with at least 2m + jn bends in every general position drawing. 

Proof. Clearly Cr{K7 \ Mi) is 2-connected. K7 has at least 2\E(K7)\ + 6 bends 
in any general position drawing. Thus by Lemma 8, a general position drawing 
of K7\MX has at least 2 |£pT7) | + 6 - 4 = 2\E{K7\M{)\+± bends. The edges 
of Cr each have at least two bends. Thus Cr(K7 \ Mi) has at least 2m + in 
bends. • 

To obtain a lower bound for general position drawings of 4-connected graphs, 
we use the 6-regular graph (Cr x Cz){K7\M2) for r > 3, as illustrated in 
Figure 26(a). 

Lemma 11 . There exists an infinite family ofn-vertexm-edge simple ^-connected 
graphs, each with at least 2m + | n bends in every general position drawing. 

Proof. As proved in Appendix B, (C r x C%){K7 \ M2) is 4-connected. K7 has 
at least 2|.E(.KV)| + 6 bends in any general position drawing. Hence, by Lemma 8 
a general position drawing of K7 \ M2 has at least 2\E(K7)\ + 6 — 8 = 2|E(.ftr7 \ 
M2)| + 2 bends. Edges not in a K7 \ M2 have at least two bends. Thus 
(C r x C3)(K7 \ M2) has at least 2m + f n bends. • 

6 On the 2-Bends Problem 

We now look at the ramifications of the above general position lower bounds for 
the 2-bends problem. Edges with at most two bends can be classified as 0-bend, 
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1-bend, 2-bend planar or 2-bend non-planar, as illustrated in Figure 31. 

w w* 
w 

w 

w 

(a) 0-bend (b) 1-bend (c) 2-bend 
planar 

(d) 2-bend 
planar 

(e) 2-bend 
non-planar 

Figure 31: Edges vw with at most two bends. 

In a given 2-bend drawing of a graph G, we denote the number of 0-bend 
edges by ko, and the number of 2-bend planar edges by k'2. We now describe 
how to transform a given 2-bend drawing into a general position drawing. 

Lemma 12. If there is a 2-bend drawing of a graph G then there exists a general 
position drawing of G with 2m + ko + k'2 bends. 

Proof. We show that by inserting planes and adding bends to the edge routes 
a given 2-bend drawing can be transformed into a drawing with a general po
sition vertex layout and the stated number of bends. Consider a grid plane P 
containing k vertices (k > 1). As illustrated in Figure 32, replace the plane by 
k adjacent planes, and position each of the k vertices in a unique plane. 

A. 

-><r 

-><ir 

->^ 
d 

Figure 32: Removing a plane containing many vertices. 

A 0-bend edge is split in the middle and replaced by the 2-bend planar edge 
illustrated in Figure 31(c). If the 0-bend edge has length one then an extra 
plane perpendicular to the 0-bend edge is also inserted. 
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Edge segments from an edge with at least one bend and incident to a vertex 
v are routed in the plane containing v. For a 1-bend edge vw in the original 
plane, an extra segment is inserted perpendicular to P, running between the 
planes containing v and w. Hence vw is replaced by a 2-bend non-planar edge 
(for example, edge 6c in Figure 32). 

For a 2-bend edge vw in the original plane, the middle segment of vw is 
routed arbitrarily in the plane containing v or w, and a third segment is inserted 
perpendicular to P, running between the planes containing v and w. Hence 
vw is replaced by a 3-bend non-planar edge (for example, edges ad and cd in 
Figure 32). 

For a 2-bend non-planar edge vw incident to one of the k vertices, the seg
ment of vw perpendicular to P is extended in the obvious manner. Similarly, 
an edge passing through the original plane and not incident to any of the k 
vertices, is extended so that it passes through all k planes. 

This process is continued until there are no grid planes containing more than 
one vertex. Note that a 0-bend edge will initially be replaced by a 2-bend planar 
edge, and in a second transformation will be replaced by a 3-bend edge route 
(for example, edge ab in Figure 32). The resulting drawing has no crossings, has 
a general position vertex layout, and every edge has two bends except for the 
0-bend and 2-bend planar edges in the original drawing, which now have three 
bends. Hence the new drawing has 2m + ko + k2 bends. • 

We now prove that for certain graphs any 2-bend drawing has many 0-bend 
or 2-bend planar edge routes. 

Corollary 1. There exists an infinite family of 6-regular n-vertex graphs, such 
that in any 2-bend drawing of any one of the graphs, ko + k'2 > f n. 

Proof. By Lemma 9, there exists an infinite family of graphs, each with at least 
2m + | n bends in any general position drawing. If there is a 2-bend drawing of 
such a graph, then by Lemma 12 there exists a general position drawing with 
2m + fco + fc£ D e nd s- Hence 2m + ko + k'2> 2m + | n and ko + k'2> §n. • 

The following two results are obtained using the same argument used in the 
proof of Corollary 1 applied with Lemma 10 and Lemma 11, respectively. 

Corollary 2. There exists an infinite family of 6-regular 2-connected n-vertex 
graphs, such that in any 2-bend drawing of any one of the graphs, ko + k2 > 
fn. • 
Corollary 3. There exists an infinite family of 6-regular 4-connected n-vertex 
graphs, such that in any 2-bend drawing of any one of the graphs, ko + k2 > 
fn. • 

A natural variation of the general position model allows at most two vertices 
in any one grid-plane and with each vertex being coplanar with at most one 
other vertex. We now show that there exists graphs which do not have 2-bend 
drawings in this model. 
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Theorem 12. There exists an infinite family of 2-connected graphs each of 
which does not have a 2-bend drawing with at most two vertices in any one 
grid-plane and with each vertex being coplanar with at most one other vertex. 

Proof. By Corollary 2 there exists an infinite family of 6-regular 2-connected 
n-vertex graphs, such that in any 2-bend drawing of any one of the graphs, 
ko + k'2> | n . Assume, to the contrary, that for such a graph there is a 2-bend 
drawing with at most two vertices in any one grid-plane and with each vertex 
being coplanar with at most one other vertex. Then the number of pairs of 
vertices in a common grid-plane is at most §, and the number of planar edge 
routes is at most §; that is, ko + fci + k'2 < §. Hence | n < fc0 + k'2 < § — fci, 
implying fci < 0, which is a contradiction, as required. • 

7 Conclusion and Open Problems 

In this paper we have initiated the study of lower bounds for the number of 
bends in 3-D orthogonal drawings of maximum degree six graphs. As well as 
closing the gap between the established lower and upper bounds, the following 
are interesting open problems not already discussed in this paper. 

• The sequence of lower bounds on the number of bends in general position 
drawings in Section 5 suggests the following open problem. Does every 
6-connected 6-regular graph have a general position drawing with at most 
2m + 6 bends? 

• Are there classes of graphs (besides maximum degree five simple graphs) 
which admit general position 2-bend drawings? For example, it is conceiv
able that planar graphs with maximum degree at most six admit general 
position 2-bend drawings. 

• In the bend-minimum drawings of K±, K5 and K6 the 0-bend subgraph is 
a tree. Is this the case for all graphs? It is easily seen that every tree has 
a 0-bend drawing. 

• Does every graph with maximum degree at most three have a 1-bend 
drawing? 
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A Existence of Small Subgraphs 

In this appendix we prove a number of results concerning the existence of cycles 
and other small subgraphs in graphs of a certain size. 

Lemma 13. Every 5-vertex graph with at least six edges contains C3 or K2,3-

Proof. Suppose to the contrary that there exists a 6-edge 5-vertex graph G not 
containing C3 or i^2,3- G contains a cycle. Let C be the cycle of maximum 
length in G. Then \C\ = 5 or \C\ = 4. 

Case 1. \C\ = 5: Since G has six edges, C has a chord, in which case G 
contains a 3-cycle, as illustrated in Figure 33(a). 

Case 2. \C\ = 4: If C has a chord then G contains a 3-cycle, as illustrated 
in Figure 33(b). Thus C does not have a chord. Hence the vertex v not in C 
is incident to two edges vu and vw, where u and w are in C. If u and w are 
adjacent in C then G contains a 3-cycle, as illustrated in Figure 33(c). Thus u 
and w are not adjacent in C, which implies that G contains K2ts, as illustrated 
in Figure 33(d). ' • 

(a) (b) (c) (d) 

Figure 33: C3 or K2ts in a 5-vertex 6-edge graph. 

Lemma 14. Every 6-vertex graph with at least eight edges contains C3 or K2^ • 

Proof. Suppose to the contrary that there exists an 8-edge 6-vertex graph G not 
containing C3 or K2^. Let C be the longest cycle in G. Clearly 3 < \C\ < 6. 

Case 1. \C\ = 6: If \C\ = 6 then C has at least two chords. Any two chords 
of C which do not induce a 3-cycle induce ^2,35 as illustrated in Figure 34(a). 

Case 2. |C | = 5 : I f | C | = 5 then any chord of C induces a 3-cycle, and 
we are done. Otherwise C has no chords. Since G has at least eight edges, the 
vertex v not in C is adjacent to three vertices u, w and x in C. Two of u, w 
and x are adjacent in C, which implies G contains a 3-cycle, as illustrated in 
Figure 34(b). 

Case 3. \C\ = 4: If \C\ = 4 then any chord of C induces a 3-cycle, and 
we are done. Otherwise C has no chords. Let v and w be the vertices not in C. 
Since G has at least eight edges, there are at least four edges in G incident with 
v or w. Even if G contains the edge vw, there are two edges from v to vertices 
on C, or two edges from w to vertices on C. In either case, G contains C3 or 
K2t3, as illustrated in Figure 33(c) and Figure 33(d), respectively. D 
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(a) (b) 

Figure 34: C3 or ^2,3 in an 8-edge 6-vertex graph. 

Lemma 15. Every 7-vertex graph with at least ten edges contains C3 or if2,3-

Proof. Suppose to the contrary that there exists a 10-edge 7-vertex graph G not 
containing C3 or ^2,3• Let C be the longest cycle in G. Clearly 3 < \C\ < 7. 

Case 1. \C\ = 7: If \C\ = 7 then there are three chords of C in G. If two 
of these chords are incident to one vertex then, as illustrated in Figure 35(a), 
G contains a 3-cycle. Thus each vertex is incident to at most one chord. Hence 
there exists a vertex not incident to any chords of C. It is easily seen that the 
only configuration of three chords of C not inducing a 3-cycle is that illustrated 
in Figure 35(b); however in this case, G contains -#2,3-

Case 2. \C\ = 6: Suppose the vertex not in C is v. A chord of C which 
does not induce a 3-cycle is between vertices at distance two in C; that is, 
'opposite' vertices. As illustrated in Figure 34(a) any two such chords induce 
an -K"2,3 subgraph. Thus the number of chords of C is at most one. 

Suppose C has one chord. Then there are three edges vu, vw and vx in G 
incident to v. If two of u, w and x are adjacent in C then there is a 3-cycle in 
G, as illustrated in Figure 35(c). Otherwise, one of u, w or x is incident to the 
chord of C, and hence G contains if2,3, as illustrated in Figure 35(d). 

If C has no chords then v is adjacent to four vertices u, w, x and y in C. 
Two of u, w, x and y are adjacent in C; thus G contains a 3-cycle, as illustrated 
in Figure 35(c). 

Case 3. \C\ — 5: Suppose the vertices not in C are v and w. Any chord of 
C induces a 3-cycle, as illustrated in Figure 33(a). Thus C has no chords, and 
there are five edges incident to v and w. If vw is an edge of G and each of v 
and w are incident to two edges then G contains a 3-cycle or K2%z, as illustrated 
in Figure 35(e). Otherwise at least one of v and w, say v, is adjacent to three 
vertices u, x and y in C. Two of u, x and y are adjacent in C. Thus G contains 
a 3-cycle, as illustrated in Figure 34(b). 

Case 4. \C\ = 4: Suppose the vertices not on C are u, v and w. Any chord 
of C induces a 3-cycle, as illustrated in Figure 33(b). Thus C has no chords, 
and there are at least six edges incident to u, v and w. Since u, v and w do not 
form a 3-cycle, there are at least four edges between u, v or w and vertices in 
C. Hence at least one of u, v and w, say v, is adjacent to two vertices x and y 
in C. So that v, x and y do not form a 3-cycle, x and y are not adjacent. In 
this case, G contains -^"2,3, as illustrated in Figure 33(d). • 
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(a) (b) (c) (d) (e) 

Figure 35: C3 or K2,z in a 10-edge 7-vertex graph. 

Lemma 16. Every 7-vertex graph with at least eight edges contains a cycle Ck 
(k 7̂  4), two chord-disjoint cycles, or K2,3. 

Proof. Let G be a 7-vertex graph with at least eight edges. Let C be the longest 
cycle in G; thus 3 < \C\ < 7. If \C\ ^ 4 then we are done, otherwise \C\ = 4. 
If C has a chordal path then G either contains if2,3 or a cycle Ck (k ^ 4), as 
illustrated in Figure 36(a) and Figure 36(b). Thus we now assume that C has 
no chordal path. 

There are at least four edges not in C. Let X be the subgraph of G induced 
by the vertices not in C. Then X has at least three vertices, and the number 
of edges in X is at most three. We proceed by considering the number of edges 
i n X . 

Case 1. |£7(X)| = 3: Then X is a 3-cycle, as illustrated in Figure 36(c), 
and we are done. 

Case 2. |£?(X)| = 2: If there are two edges in X then X is connected and 
there are at least two edges ei and ei between X and C. Since X is connected, 
ei and e^ have the same end-vertex in C for C not to have a chordal path. In 
this case, ei and e^ along with one or two of the edges in X form a cycle which 
is chord-disjoint from C, as illustrated in Figure 36(d). 

Case 3. \E(X) | = 1: If there is one edge in X then there are at least three 
edges between X and C. If one of the vertices in X is incident to at least two 
edges between X and C then C has a chordal-path. Thus every vertex in X is 
incident to at most one edge between X and C. Since X has three vertices and 
there are at least three edges between X and C, each vertex in X is incident 
to exactly one edge between X and C. Let vw be the edge in X. For C not 
to have a chordal path, v and w are incident to the same vertex in C, in which 
case G contains a 3-cycle, as illustrated in Figure 36(d). 

Case 4. |£7(X)| = 0: If there are no edges in X then there are at least 
four edges between X and C. Thus one of the vertices in X is incident to at 
least two edges between X and C, in which case C has a chordal-path. • 
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(a) (b) (c) (d) 

Figure 36: Cfe (k ^ 4), K2l3 or two chord-disjoint cycles in a 7-vertex 8-edge 
graph. 

B Proofs of Connectivity 

In this section we prove the connectivity of the graphs used to establish our main 
lower bounds. We first prove that the 'grid-graphs' have the desired connectivity. 
Of course Cr with r > 3 is 2-connected. 

Observation 7. Cr x K2 with r > 3 is 3-connected. 

Proof. Let v and w be distinct vertices of Cr x K2. As illustrated in Figure 37, 
if v and w are (a) in the same 'row', (b) in the same 'column', or (c) 'non-
collinear', there are three internally disjoint paths between v and w in Cr x K2. 
Since r > 3, in case (c) we can assume that v and w are at least two columns 
apart. By Menger's Theorem, Cr x K2 is 3-connected. • 

/\/\ /\/\ /\ 

(a) (b) (c) 

Figure 37: Three disjoint paths in CT x K2. 

Observation 8. Cr x C3 with r > 3 is ^-connected. 

Proof. Let v and w be distinct vertices of Cr x C3. As illustrated in Figure 38, 
if v and w are (a) in the same 'row', (b) in the same 'column', or (c) 'non-
collinear', there are four internally disjoint paths between v and w in Cr x C3. 
Since r > 3, in case (c) we can assume that v and w are one row apart and at 
least two columns apart. By Menger's Theorem, Cr x C3 is 4-connected. • 

Observation 9. Cr x C3 x K2 with r > 3 is 5-connected. 

Proof. Let v and u; be distinct vertices of Cr x C3 x K2. As illustrated in 
Figure 39, if v and w (a) are in the same 'row', (b) are in the same 'column', or 
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-Tr. ^7- ^ 7 7 " 

"» - "»- "» -
(a) (b) (c) 

Figure 38: Four internally disjoint paths in Cr x C3. 

(c) have the same 'depth', (d) have the same 'height', or (e) are 'non-coplanar', 
there are five internally disjoint paths between v and w in Cr x C3 x K^. Since 
r > 3, in cases (c), (d) and (e) we can assume that v and w are at least two 
columns apart. By Menger's Theorem, Cr x C3 x K2 is 5-connected. • 

./ z 
A 
.z .c. 

Z \7-^2^-~Z2 
-7 

A 
(a) (b) (c) (d) (e) 

Figure 39: Five internally disjoint paths in Cr x C3 x if2-

Observation 10. Cr x C3 x C3 with r > 3 is 6-connected. 

Proof. Let v and w be distinct vertices of Cr x C3 x C3. As illustrated in Fig
ure 40, if v and w are (a) 'collinear', (b) 'coplanar' or (c) 'non-coplanar', there 
are six internally disjoint paths between v and w in Cr x C3 x C3. Since r > 3, 
in cases (b) and (c) we can assume that v and w are at least two columns apart. 
By symmetry these three cases suffice. By Menger's Theorem, Cr x C3 x C3 is 
6-connected. • 

~7 

A 
Z 

(a) (b) (c) 

Figure 40: Six internally disjoint paths in Cr x C3 x C3. 
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The next lemma combined with the above observations proves that Cr (Kp) 
for p > 2 is 2-connected, that (Cr x K2)(KP) for p > 3 is 3-connected, that 
(Cr x Cz)(Kp) for p > 4 is 4-connected, that (Cr x C3 x .ft̂ K-Kp) for p > 5 is 
5-connected, and that (Cr x C3 x C3)(KP) for p > 6 is 6-connected. 

Lemma 17. / / a graph G is c-connected for some c > 2, then G(KP) is c-
connected for all p> c. 

Proof. In each Kp subgraph H, those vertices of H adjacent to vertices not in 
H are called exit vertices. Every vertex v of H is adjacent to every exit vertex 
of H (except for itself). Hence there are c internally disjoint paths between 
any two vertices of G(KP) that are in distinct Kp subgraphs, since G itself is 
c-connected. Consider vertices v and w in the same Kp subgraph H whose 
original vertex in G is u. 

Suppose v and w are both exit vertices. Then there are c — 2 internally 
disjoint wtu-paths via the other exit vertices of H. Let x and y be the original 
vertices of G such that there are edges incident to v and w whose other end-
vertices axe in the subgraphs corresponding to x and y, respectively. Since G is 
2-connected, there is an xy-path in G which avoids u. This path and the edge 
vw gives a total of c internally disjoint uw-paths. 

Now suppose one of v and w, say v, is not an exit vertex. Then there axe at 
least c — 1 internally disjoint vw-pa,tbs via the other exit vertices. Along with 
the edge vw, there are at least c disjoint uw-paths. 

By Menger's Theorem, G{KP) is c-connected. • 

L e m m a 18. [(a)] 

Cr{Kp \ M\) is 2-connected for all p > 4, 

2. (Cr x K2)(KP \ M2) is 3-connected for all p>5, 

3. (Cr x C3)(KP \ M2) is 4-connected for allp> 5, 

4- (Cr x C3 x K2)(KP \ M3) is 5-connected for all p > 7, and 

5. (Cr x C3 x C3)(KP \ M3) is 6-connected for allp> 7. 

Proof. Each part of the lemma states that a graph of the form G(Kp \ Mj) is 
c-connected, where by the preceding observations, G is a c-connected graph, 
j = [ | ] , and p > 2j + 1. Observe that p > c + 1. Moreover, in each Kp \ Mj 
subgraph H, if c is even then it is precisely the exit vertices in H that are 
matched in Mj, and for odd c, all but one of the exit vertices are matched to 
each other in Mj, and the one remaining exit vertex is matched with one of the 
(at least two) non-exit vertices. By the same argument used in Lemma 17, for 
any two exit vertices v and w of a Kp \ Mj subgraph H, there is a uw-path in 
G(KP \ Mj) not using any edges in H. 

Let u b e a vertex of G(Kp \ Mj) contained in a Kp \ Mj subgraph H. We 
claim that there are c internally disjoint (possibly empty) paths from v to the 
exit vertices of H. If v is an exit vertex then there are at least c — 1 other exit 
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vertices in H, none of which are matched with v. Hence v is adjacent to each 
such exit vertex, and counting the empty path from v to v, the claim holds. 
Now suppose v is not an exit vertex. If v is adjacent to each exit vertex, which 
is guaranteed in the case of even c, then the claim holds. Otherwise c is odd, 
and v is matched with one of the exit vertices x. In this case v is adjacent to 
the c — 1 remaining exit vertices, and there is a 2-path from v to x via the other 
non-exit vertex in H, giving a total of c internally disjoint paths from v to the 
exit vertices of H. This proves our claim. It follows since G is c-connected that 
between any two vertices in distinct Kv \ Mj subgraphs, there are c internally 
disjoint paths. 

Now consider two vertices v and w contained in the same Kp \ Mj subgraph 
H. First suppose v and w are both exit vertices. If v and w are matched then 
there are c — 2 internally disjoint uw-paths via the other exit vertices, there is 
at least one path between v and w via the non-exit vertices of H, and there is 
a path between v and w not using the edges of H. Thus there are c internally 
disjoint vw-paths in G{KP \ Mj). Now suppose v and w are non-matched exit 
vertices of H. Thus c > 4. Suppose c e {4,6}. Let vx and wy be in Mj. By 
construction, v is opposite to x, and w is opposite to y (with respect to the 
grid-structure of G). Thus there exists a ra-path P disjoint from some wy-path. 
Q in G{KP \ Mj), not using any edges in H. Hence PU {xw} and Q U {vy} are 
internally disjoint iw-paths. There are c — 4 internally disjoint tw-paths via 
the other exit vertices of H. There is one vw-path via the non-exit vertex of 
H, and there is the edge vw, giving a total of c internally disjoint vw-paths in 
G(KP \ Mj). Now suppose c = 5. Either both of v and w are matched to other 
exit vertices, or one of v and w is matched with an exit vertex and the other 
is matched with a non-exit vertex. First suppose that v is matched with an 
exit-vertex x and w is matched with an exit vertex y. There are c — 4 internally 
disjoint vw-paths via the other exit vertices, there is the edge vw, there are two 
tw-paths via the two non-exit vertices, and there is the path v-y-x-w, giving a 
total of c internally disjoint uw-paths. Now suppose v is matched with an exit 
vertex x, but w is matched with a non-exit vertex y. There is a ux-path P not 
using any edges in H. There are c— 3 urn-paths via the other exit vertices, there 
is the edge vw, there is one uiy-path via the one remaining non-exit vertex, and 
P U {xw} forms a uw-path, giving a total of c internally disjoint iw-paths. 

Now consider two vertices v and w contained in the same Kp \ Mj subgraph 
H, where v is an exit vertex and w is not an exit vertex. First suppose v and 
w are matched, in which case c is odd. There are c - 1 utu-paths via the other 
exit vertices, and there is a vw-path via the other non-exit vertex of H, giving a 
total of c internally disjoint uu;-paths. Now suppose v and w are not matched. 
Let x be the vertex matched with v. Suppose x is an exit vertex. There is a 
ua;-path P not using any edge in H, and thus PU{wx} forms a vw-path. There 
are c — 2 uw-paths via the other exit vertices of H, and there is the edge vw, 
giving a total of c internally disjoint vw-paths. If x is not an exit vertex, then 
there are c — 1 iw-paths via the other exit vertices, and the edge vw gives a 
total of c internally disjoint vw-paths. 

The final case is when v and w are both not exit vertices contained in the 
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same Kp \ Mj subgraph H. At most one of v and w is matched with an exit 
vertex. Thus there are at least c — 1 tw-paths via the remaining exit vertices, 
which along with the edge vw, give c internally disjoint vw-p&ths. 

Thus for every pair of vertices v and w of G(KP \ Mj), there are c internally 
disjoint uu;-paths. By Menger's Theorem, G(KP \ Mj) is c-connected. • 

The multigraphs and pseudo graphs constructed in Section 4 have the claimed 
connectivity, since each contains a simple subgraph that is proved in Lemmata 17 
and 18 to have the same connectivity. 

C Final Observation 

Lemma 8 states that if a graph G has at least k bends in every general position 
drawing then for any edge e of G the graph G\e has at least k — A bends in every 
drawing. We now prove the analogue of this result for arbitrary (non general 
position) drawings. 

Lemma 19. If a graph G has at least k bends in every drawing then for any 
edge e of G the graph G\e has at least k — 6 bends in every drawing. 

Proof. Suppose there is a drawing of G \ e with b bends. Let e = vw. At 
each of v and w there is an unused port. Regardless of the relative directions 
of the unused ports at v and w, by inserting at most two planes at each of v 
and w, we can route e with at most six bends and entirely within the inserted 
planes. Hence the edge route for e does not intersect any existing edge routes 
in the drawing of G \ e. In Figure 41 we illustrate such an edge routing in the 
worst case scenario with v and w non-coplanar and the unused ports at v and 
w pointing away from each other. Note that in many other cases less than six 
bends are needed. Hence G has a drawing with b + 6 bends. By assumption, 
every drawing of G has at least k bends. Thus b + 6 > k and b > k — 6. • 

Figure 41: Inserting a 6-bend edge. 

Note that this technique can also be used to provide an upper bound on the 
maximum number of bends per edge route in a given drawing. For example, the 
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REDUCE FORKS algorithm of Di Battista et al. [11] does not provide a bound 
on the maximum number of bends per edge, and in many instances, edges are 
routed with more than six bends [11, 33]. By replacing each edge route with 
more than six bends by an edge route with at most six bends, as described in 
the proof of Lemma 19, the algorithm can be modified to produce drawings with 
an upper bound on the maximum number of bends per edge. Of course, doing 
so may increase the volume of the drawing. 
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1 Introduction 

1.1 Traditional Part i t ioning of Hypercubes 

In traditional computing environments with a single processor, a large number 
of memory locations and multiple users, memory is a partitionable resource. 
Processes make requests for certain amounts of contiguous memory locations, 
and various allocation and collection strategies are used to minimize memory 
fragmentation. 

In an environment with 2n processors, connected in the form of the hy-
percube Qn, and multiple users, the body of processors is also a partitionable 
resource. However, the hypercube is not partitioned in the same way as mem
ory, as Qn has a recursive substructure. Qn consists of 2 copies of Q„_i, with 
links connecting corresponding nodes in the two copies. When processes make 
requests for some of the processors, they traditionally request a complete hyper
cube of dimension smaller than n, known as a subcube. Significant research has 
been conducted into identifying, allocating, and recollecting subcubes in order 
to minimize subcube fragmentation [13, 19]. 

In this environment, if two or more processes require Qn, only one of them 
can run at any given time. We seek to take advantage of the node-connectivity 
of Qn, to increase the effective capacity of a hypercube-based computing envi
ronment, so that two processes requiring Qn can run concurrently. 

1.2 Definitions 

A network G, is a pair (N, L), where N is a set of distinct nodes, and L is a 
set of links. L is a set of two element subsets of N. In a network, the degree 
of a node n is the number of elements of L containing n as an element. A 
network is regular if every node n e N has the same degree. The degree of a 
regular network is the degree of any node n S N. A path is a sequence of nodes 
ni , ri2, . . . , rife, such that \/i, l < i < k - l , {n^, ni+\} e L. A network is 
connected if for all pairs of nodes u and v, there exists a path from u to v. The 
node-connectivity of a network G is the minimal number of nodes which must 
be removed from G, in order to make G no longer connected. 

The hypercube of dimension n, or Qn, is a network of 2™ nodes where each 
node is labeled by a bit string bo b\ .. .6„_i of length n, and there is a link 
between two nodes in Qn if and only if their labels differ in exactly one bit. Qn 

is regular with degree n, and has n2™_1 links. A dimension k link is a link in 
Qn which connects two nodes whose labels differ in the kth bit. 

A Hamilton cycle of a network is a path n±, n2, . . . , nk, n\, which visits 
each node in the network exactly once, and returns to its starting point n\. A 
Hamilton decomposition of a network is a partitioning of the links of the network 
into link-disjoint Hamilton cycles [2]. A matching in a network is a set of node-
disjoint links. A matching is orthogonal to a set of Hamilton cycles if it contains 
one and only one link from each Hamilton cycle. The Cartesian product Ni x 
N2 of two networks Ni and N2 is the network where the nodes are ordered pairs 
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of the nodes of iVi and N2, and there are links between {u, v} and {w, x} in 
Ni x N2 if {u, w} is a link in Ni or {v, x} is a link in N2. Cn represents the 
simple cycle of n nodes. 

A spanning subnetwork S of a network N is a connected network constructed 
from all the nodes of N and a proper subset of the links of N, such that for 
every pair of nodes u and v in JV, there is a path in S between u and v. A 
perfect matching in a network is a matching where every node in the network is 
incident to exactly one link. A k-factorization of a network is a partitioning of 
the links of the network into disjoint regular spanning subnetworks, or factors, 
of degree k [3]. The distance between two vertices u and v in a network G, 
denoted by distanceo{u, v), is the length of the shortest path between u and v 
in G. The diameter of a network G, denoted by diameter (G), is the maximum 
value of distanceo(u, u) V u, v € N. 

An embedding of a network G (commonly called the guest) into a network H 
(commonly called the host) is a 1-1 function / mapping the nodes of G to the 
nodes of H. When G and H have the same set of nodes, the identity embedding 
I is the embedding I(u) = u V u in G. The dilation of an embedding / is the 
largest value of d is tance^/ (u) , f(v)), V edges {u, v} in G. 

1.3 An Alternate Partitioning of Hypercubes 

We propose a different method for partitioning Qn, with a number of potential 
benefits. Currently, when a process asks to use a subcube of Qn, it gets full 
control of all the processors assigned to it. We propose that each node u of 
Qn be divided into ^ virtual nodes, where 2 < k < ^ , and n mod k = 0. 
We propose that a fc-factorization of Qn be constructed. In other words, let 
the links of Qn be divided into ^ link-disjoint regular spanning subnetworks or 
factors F\, F2, ..., Fn/k of Qn with degree k. The j t h virtual node (1 < j < f ) 
of some node u in Qn is connected to the j t h virtual node of another node v in 
Qn, by the links of Fj only. 

Figure 1 shows an example of this arrangement, where n = 4 and k = 2. 
The numbers on the nodes of Q4 are numeric representations of their bit string 
labels. Each node of Q4 has been divided into 2 virtual nodes, which are colored 
black and gray. The links of Q4 have been divided into two factors F\ and F2 

of degree | = 2. F\ is the set of gray links, connecting the gray virtual nodes, 
and F2 is the set of black links, connecting the black virtual nodes. F\ and F2 

are a 2-factorization of Q\. 
Under this arrangement, up to ^ different processes can access a virtual 

copy of Qn at the same time with no link interference between computations; 
since communication between virtual nodes is taking place over disjoint link 
sets. Another potential application for /c-factorizations of Qn is in the area 
of fault-tolerant computing. If a factor could efficiently simulate Qn, then Qn 

could tolerate the failure of all links not part of the factor, /c-factorizations of 
Qn could also be used in the construction of adaptive routing algorithms for Qn, 
which make routing decisions based on the traffic for a particular node [11, 12]. 
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Figure 1: A 2-factorization of QA 

n 
Links in Qn 

Removable Links 

2 
4 
0 

3 
12 
3 

4 
32 
14 

5 
80 
45 

6 
192 
123 

7 
448 
311 

8 
1024 
752 

Table 1: The number of links removeable from Qn without increasing diameter. 

1.4 Progress in Finding Factors of Small Diameter 

Qn is known to have node-connectivity of n [17]. Menger's Theorem states if 
a network has node-connectivity k, then k node-disjoint paths connect any two 
distinct nodes [15]. Therefore, perhaps some, or even most of the links can 
be removed from Qn without increasing its diameter. Discovering the number 
of removable links has been a subject of recent research [16, 10, 14]. It has 
been shown that (n — 2)2™_1 + 1 — [~2n-i1 links are removable from Qn without 
increasing its diameter [10]. Table 1 shows the number of links removable from 
Qn without increasing its diameter, for small values of n. 

However, the resulting spanning subnetwork of Qn is not regular, and there
fore cannot be part of any fe-factorization. Regular spanning subnetworks of 
Qn are known to exist for specific values of n. These spanning subnetworks 
are described in Table 2. For example, the cube-connected cycles network of 
dimension n CCCn [23] is known to be a spanning subnetwork of Qn+ign, where 
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Network 
CCCn 

ACCCn 

ACCCl 
Subcuben 

Qn,2,l 

Spans 
tyn+lgn 

^in+lgn 

^in+lgn 

Qn-l 

Qn 

Degree 
3 
4 
6 

lg n 
- 4- 1 2 ^ L 

Diameter 
bn o 

In- 2 
Sn 
2 

6n 9 

T " z 
n 

Table 2: Known regular spanning subnetworks of Q, 

n = 2k and lg n = log2 n [20]. The augmented cube-connected cycles networks 
ACCCl a n d ACCCl [8] are derived from adding links to C*CC„. The subcube 
network Subcuben [6] is both a spanning subnetwork of Qn-i and a subnetwork 
of the pancake network of dimension n. The spanning subnetwork Qn,2,i [7] 
contains all the links for dimensions 0 and 1, and uses the value of the first two 
bits of the label of each node to determine the dimensions of links incident to 
that node. Qn,2,i is the first regular spanning subnetwork of Qn with degree 
less than n and diameter n. 

However, none of the networks of Table 2 are part of any A;-factorization of 
the hypercubes they span, as they use all of the links for a particular dimension 
of Qn. We therefore seek to identify ^-factorizations of Qn, where the factors 
have certain properties. The factors should have minimal degree (preferably 
9(1)), so as to maximize the number of factors. The factors should have minimal 
diameter (preferably n, the diameter of Qn). The factors in this paper all have 
degree l|. It is an open question as to whether factors exist with degree smaller 
than § and diameter n. Finally, the factors should be constructed so that there 
exists an embedding / of Qn into each of the factors, with minimal dilation 
(preferably 0(1)). An embedding can be considered as a high-level description 
of how one network simulates another [22]. The dilation of an embedding is 
a commonly used measure of the efficiency of the simulation. Since parallel 
algorithms on hypercubes involve communication between adjacent nodes, the 
path in each factor between f(u) and f(v), where u and v are adjacent nodes 
in Qn, should have a length of at most a constant in order for each factor to 
efficiently simulate Qn. 

2 Creating Hamilton Decompositions of Qn 

2.1 Creat ing Hamilton Decompositions of Q2n from Hamil
ton Decompositions of Qn 

Qn has been known to have a Hamilton decomposition for some time [4]. That 
is, it is known that the links of Qn can be partitioned into disjoint Hamilton 
cycles. However, the proof did not readily result in an algorithm for producing 
the actual decomposition [1] [26]. 

Two algorithms are known for generating Hamilton decompositions of Qn. 
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Algorithm HAMILTONCOMPl(n, input, output) 
begin 

outCycle = 0 
for inCycle = 0 to n — 1 do 
begin 

for outCycleElement = 0 to 22n - 1 do 
begin 

Set the first n bits of output [outCycle] [outCycleElement] to 
input [inCycle] [outCycleElement div 2n] 

Set the last n bits of output [outCycle] [outCycleElement] to 
input [inCycle] [(outCycleElement mod 2") -
(outCycleElement div 2™)] 

end 
outCycle = outCycle + 1 
for outCycleElement = 0 to 22™ - 1 do 
begin 

Set the first n bits of output [outCycle] [outCycleElement] to 
input [inCycle] [(outCycleElement mod 2") -
(outCycleElement div 2™)] 

Set the last n bits of output [outCycle] [outCycleElement] to 
input [inCycle] [outCycleElement div 2"] 

end 
outCycle = outCycle + 1 

end 
end 

Figure 2: Creating a Hamilton decomposition of Qin 

The first, discovered by Ringel and given in [24], yields a Hamilton decompo
sition of Q2n from a Hamilton decomposition of Qn. Each Hamilton cycle of 
the Hamilton decomposition of Qn is used to form two disjoint Hamilton cy
cles of the Hamilton decomposition of Q2n- Let the Hamilton decomposition 
of Qn be stored in the two-dimensional array input [n — 1][2™ — 1], where the 
first element for both dimensions (and for all dimensions of all arrays in this 
paper) is 0. The Hamilton decomposition of Q2n will be stored in the array 
output[2n — l][22n — 1]. The algorithm is shown in Figure 2. 

Example: The cycle 00, 01, 11, 10 is a Hamilton decomposition of Q2- The 
algorithm yields the Hamilton decomposition of Q4, {{0000, 0001, 0011, 0010, 
0110, 0100, 0101, 0111, 1111, 1110, 1100, 1101, 1001, 1011, 1010, 1000}, {0000, 
0100, 1100, 1000, 1001, 0001, 0101, 1101, 1111, 1011, 0011, 0111, 0110, 1110, 
1010, 0010}}. This is the Hamilton decomposition of Q4 shown in Figure 1. 
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2.2 Creat ing Hamil ton Decompositions of Q-2n+2 from Hamil
ton Decompositions of Q2n 

The second Hamilton decomposition algorithm, based on [26] and given in [5], 
yields a Hamilton decomposition of Qin+i from a Hamilton decomposition of 
Q2n, and an orthogonal matching to the Hamilton decomposition of Q^n- This 
algorithm is based on the following result: 

Theorem 1 If a network N can be decomposed into n - 1 Hamilton cycles, and 
there exists a matching orthogonal to the set of Hamilton cycles, then N x C<ik, 
k > 2, can be decomposed into n Hamilton cycles [26]. 

C4, the cycle of 4 nodes, is but another way of describing Q2. It is known 
that Qi x Qj = Qi+j for all nonnegative integers i and j . We take advantage 
of these facts to arrive at the following corollary: 

Corollary 1: If Q2n can be decomposed into n Hamilton cycles, and there 
exists a matching in Q2n orthogonal to the set of Hamilton cycles, then Q2n x 

C4 — Q2n x Q2 — Q2n+2 can be decomposed into n + 1 Hamilton cycles. 

The algorithm [25] generates two Hamilton cycles for Q2n+2 from a selected 
Hamilton cycle for Q2n, and one Hamilton cycle for Q2n+2 from each of the 
remaining Hamilton cycles for Q2n- Let N = 22n. Assume the nodes of Q2n 

are labeled by the integers 0, 1, ..., N - 1, where two nodes are adjacent if they 
differ in exactly one bit in their binary representations. The n Hamilton cycles 
of Q2n are stored in the array in[n] [N - 1]. The n + 1 Hamilton cycles of Q2n+2 
are stored in the array out[n + l][4iV - 1]. We arrange the cycles so that the 
links of the orthogonal matching are {{in[0][0], in[0][N - 1]}, {in[l][0], in[l][N -
1]}, ..., {in[n - 1][0], in[n - 1][N - 1]}}. Furthermore, nipping cycles if necessary, 
we arrange that for 1 < i < n - 1, in[i][0] occurs before in[i][iV - 1] in the list 
in[0][0], in[0][l], ..., in[0][iV - 1]. The purpose of arranging the edges in the 
orthogonal matching in this manner is to simplify the algorithm. We also use 
an array flag[n] to keep track of the paths taken through nodes of Q2n, which 
are related to endpoints of links in the matching. The algorithm is shown in 
Figures 3, 4 and 5 and 6. 

Example Let C\ and C2 be the Hamilton cycles of Q4 shown in Figure 1. Let 
C\ be the black links, and C2 be the gray links. In this example, n = 2 and N 
= 16. d can be expressed as {0, 1, 3, 2, 6, 4, 5, 7, 15, 14, 12, 13, 9, 11, 10, 8}, 
and C2 can be expressed as {4, 0, 2, 10, 14, 6, 7, 3, 11, 15, 13, 5, 1, 9, 8, 12}. 
The orthogonal matching we will use will be the two links {0, 8} and {4, 12}. 
The cycles have been arranged so that the links of the orthogonal matching are 
in the proper position. 

The algorithm FIRST-OUTPUT-CYCLE produces the Hamilton cycle for 
Q6 {0, 1, 3, 2, 6, 4, 5, 7, 15, 14, 12, 13, 9, 11, 10, 8, 40, 56, 48, 16, 24, 26, 58, 
42, 43, 59, 27, 25, 57, 41, 45, 61, 29, 28, 30, 62, 46, 47, 63, 31, 23, 55, 39, 37, 
53, 21, 20, 52, 60, 44, 36, 38, 54, 22, 18, 50, 34, 35, 51, 19, 17, 49, 33, 32}. 
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Algorithm FIRST-OUTPUT-CYCLE(n, TV, in, out) 
begin 

Set out[0][0] through out [0] [TV - 1] to 
in[0][0] through in[0][TV - 1], respectively 

if n is even then begin 
Set out [0] [W] through out [0] [AT + 4] to 

in[0][TV - 1] + 2iV, in[0][N - 1] + 37V, 
in[0][0] + 3TV, in[0][0] + TV, in[0][TV - 1] + TV, respectively 

count = TV + 5 
end 
else begin 

out[0][TV] = in[0][TV- 1] +N 
count = TV + 1 

end 
for j = N - 2 downto 1 do 
begin 

if out[0] [count - 1] is of the form in[0][j + 1] + TV" and 
in[0][j] is not an endpoint of a link in the matching then 

begin 
Set out[0] [count] through out[0][count + 2] to in[0][j] + TV, 

in[0][j] + 3/V", in[0][j] + 2TV, respectively 
count = count 4- 3 

end 
else if out[0] [count - 1] is of the form in[0][jf + 1] + 27V and 

in[0][j] is not an endpoint of an edge in the matching then 
begin 

Set out[0] [count] through out[0][count + 2] to in[0][j] + 27V, 
in[0][jf] + 37V, in[0][?] + TV, respectively 

count = count + 3 
end 
else if out[0] [count - 1] is of the form in[0][j + 1] + TV and 

in[0][j] = in[k][N - 1] for some k then 
begin 

out [0] [count] = in[0][j] + N 
count = count + 1 
flag[k] = 0 

end 
else if out[0] [count - 1] is in[0][j + 1] + 27V and 

in[0][j] = in[A;][7V-l] for some A; then 
begin 

out [0] [count] = in[0][j] + 2N 
count = count + 1 
flag[k] = 1 

end 

Figure 3: Creating the first cycle of the Hamilton decomposition. 
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else if out [0] [count - 1] is of the form in[0][j + 1] + N and 
in[0][j] = in[fc][0] for some k then 
if fiag[fc] = 0 then 
begin 

Set out [0] [count] to out [0] [count + 4] to 
m[0][j}+N,m[0][j} + 3N, 
in[k}[N - 1] + 3N, m[k][N - 1] + 2N, in[0][j] + 2N, 
respectively 

count = count + 5 
end 
else 
begin 

Set out [0] [count] to 
out[0][count + 4] to in[0][j] + N, in[k][N - 1] + N, 
in[k\[N - 1] + 3AT, in[0][j} + 3N, m[0]\j] + 2N, respectively 

count = count + 5 
end 

else if out [0] [count - 1] is of the form m[0][j + 1] + 2N and 
in[0][j] = in[fe][0] for some fc then 
if flag[fc] = 1 then 
begin 

Set out [0] [count] to 
out[0] [count + 4] to in[0][j] + 2N, in[0][j]+ 3N, 
w[k][N - 1] + 3N, m[k][N -1]+N, in[0][j] + N, respectively 

count = count + 5 
end 
else 
begin 

Set out [0] [count] to 
out[0][count 4- 4] to m[0}\j] + 2N, m[h][N - 1] + 2N, 
in[k}[N - 1] + 3JV, in[0][j] + 3N, in[0][/] + N, respectively 

count = count + 5 
end 

end 
if n is even then 

out [0] [count] = in[0][0] + 2N 
else 

Set out[0][47V - 5] through out[0][4./V - 1] to in[0][0] + iV, in[0][0] + 3A ,̂ 
in[0][iV - 1] + 3N, in[0}[N - 1] + 2N, in[0][0] + 2N, respectively 

end 

Figure 4: Creating the first cycle (Continued). 
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Algor i thm SECOND-OUTPUT-CYCLE(n, N, in, out) 
begin 

Set out[l][0] through out[1] [AT - 1] to in[0][0] + 3N 
through in[0][AT - 1] + 3N, respectively 

if n is even then 
begin 

Set out [1] [AT] through out [1][N + 3] to in[0][AT - 1] + N, 
m[0][N - 1], in[0][0], in[0][0] + N, respectively 

for count = N + 4 to 4N - 2 do 
output[1] [count] = output[0][5Ar + 2 - count] XOR 3N 

output [1][4AT - 1] = input [0][0] + 2N 
end 
else 
begin 

Set out[1][AT] through out[l] to in[0][AT - 1] + AT, in[0][0] + N, in[0][0], 
in[0][AT- l],in[0][A^- 1] + 2N 

for count = AT + 5 to 4N - 1 do 
out [1] [count] = out [0] [count - 4] XOR 3N 

end 
end 

Figure 5: Creating the second cycle of the Hamilton decomposition 

Algor i thm REMAINING-CYCLES(n, in, out, N) 
begin 

for cycle = 1 to n - 1 do 
for node = 0 to N - 1 do 
begin 

out [cycle + l][node] = in [cycle] [node] 
out [cycle + ljfnode + 2Ar] = in [cycle] [node] + 3AT 
out[cycle + l][node + N] = in[cycle][Ar - 1 - node] + 

((2 - flag[cycle]) * N) 
out[cycle + l][node + 3A7] = in[cycle][N - 1 - node] + 

((1 + flag[cycle]) * N) 
end 

end 

Figure 6: Creating the remaining cycles of the Hamilton decomposition. 
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The algorithm SECOND-OUTPUT-CYCLE produces the Hamilton cycle 
for Q6 {48, 49, 51, 50, 54, 52, 53, 55, 63, 62, 60, 61, 57, 59, 58, 56, 24, 8, 0, 16, 
17, 1, 33, 35, 3, 19, 18, 2, 34, 38, 6, 22, 20, 28, 12, 4, 36, 37, 5, 21, 23, 7, 39, 
47, 15, 31, 30, 14, 46, 44, 45, 13, 29, 25, 9, 41, 43, 11, 27, 26, 10, 42, 40, 32}. 
Taking elements of the first output cycle, and performing an exclusive or with 
3N has the effect of toggling (changing 0 to 1 and 1 to 0) the first two bits of 
those elements. 

Finally, the algorithm REMAINING-CYCLES produces the Hamilton cycle 
for Q6 {4, 0, 2, 10, 14, 6, 7, 3, 11, 15, 13, 5, 1, 9, 8, 12, 44, 40, 41, 33, 37, 45, 
47, 43, 35, 39, 38, 46, 42, 34, 32, 36, 52, 48, 50, 58, 62, 54, 55, 51, 59, 63, 61, 
53, 49, 57, 56, 60, 28, 24, 25, 17, 21, 29, 31, 27, 19, 23, 22, 30, 26, 18, 16, 20}. 

Variable flag[l] was set to 0 in the course of executing algorithm FIRST-
OUTPUT-CYCLE. REMAINING-CYCLES creates four copies of C2 with one 
edge removed, within Q§, by adding either 0, N, 2N or 3N. The Hamilton 
paths where N and 3iV are added are traversed in the opposite direction of the 
Hamilton paths where 0 and 2N are added. Since REMAINING-CYCLES uses 
n — 1 disjoint Hamilton cycles of Qzn as input, it creates n — 1 disjoint Hamilton 
cycles for Q2n+2-

The Hamilton decomposition of Q2n+2 generated by this algorithm is par
tially determined by the Hamilton cycle of Qin-, which is selected as input[0], 
the input to FIRST-OUTPUT-CYCLE and SECOND-OUTPUT-CYCLE. It is 
also partially determined by the edges selected for the orthogonal matching re
quired by the algorithm. It is therefore possible that a large number of distinct 
Hamilton decompositions of Q271+2 can be generated using this algorithm. For 
example, four distinct Hamilton decompositions of Q4 were generated using this 
algorithm. 

3 Constructing (n/2)-Factorizations of Qn 

3.1 Constructing Factorizations from Perfect Matchings 
Derived From Hamilton Decompositions 

In Section 1.3, we proposed creating &-factorizations of Qn. In this section and 
the next, we use Hamilton decompositions of Qn to create (n/2)-factorizations 
of Qn for certain values of n. One method of constructing (n/2)-factorizations 
from Hamilton decompositions is uniting perfect matchings derived from the 
cycles of the Hamilton decomposition. 

Suppose Ci, C2, . . . , Cn/2 is a Hamilton decomposition of Qn. If the links of 
any cycle were numbered, the even-numbered links would form a perfect match
ing of Qn, as would the odd-numbered links, n link-disjoint perfect matchings 
of Qn can be constructed in this manner. When n mod k = 0, and ? unions of 
k perfect matchings are selected, the result is a fc-factorization of Qn- However, 
not all unions of k perfect matchings are connected. Table 3 shows the results 
of a computer search for the (n/2)-factorizations of Qn, whose factors had the 
smallest diameter. 
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Network 
Qi 
Q6 

Qs 
Ql2 

Degree of Factors 
2 
3 
4 
6 

Diameter 
8, 8 
8, 10 
8, 8 

12, 12 

Table 3: Degrees and diameters of factors in factorization of Qn 

The 2-factorization of Q4 is the same as a Hamilton decomposition of Q4, 
where the cycles of 16 nodes have diameter 8. The difference in the diameters 
of the factors in the 3-factorization of Q§ reflects the fact that the algorithm 
of Section 2.2 generates two Hamilton cycles for Q§ from one of the Hamilton 
cycles for Q4, and one Hamilton cycle for QQ from the other Hamilton cycle for 
Q4. Table 3 shows that half the links incident to each node of both Qs and Q12 
can be removed without increasing their diameters. Furthermore, the removed 
links themselves form a spanning subnetwork with the same diameter as the 
original hypercube. 

3.2 Constructing Factorizations from Hamilton Cycles of 
Hamilton Decompositions 

Observation of Algorithm HAMILTONCOMP1 reveals that the algorithm cre
ates two disjoint Hamilton cycles of Q2n for each Hamilton cycle of Qn. If C 
is a Hamilton cycle of Qn, then let these Hamilton cycles of Q2n be called the 
children of C. Let the descendants of C at level k be the 2fe disjoint Hamilton 
cycles of Qn2k > obtained by repeatedly applying the algorithm. Let D(C, k) 
represent the union of the descendants of C at level k. 

We observe the following regarding the children of C. One of the children 
has a pattern of changing the first n bits 2" - 1 times, then changing the last 
n bits once. This pattern is repeated 2n times. The other child has a pattern 
of changing the last n bits 2™ - 1 times, then changing the first n bits once, a 
pattern which is repeated 2" times. In general, each descendant of C at level k 
has a pattern of changing a unique block of n bits 2n - 1 times, then changing 
some other bit once. 

Lemma 1 IfC is a Hamilton cycle in Qn, then D(C, k) is a spanning subnet
work of Qn2k, with degree 2h+1 and diameter 2n~1+k. 

Proof: The diameter of C is 2™_1. Since D(C, k) is the union of 2k Hamilton 
cycles of Qn2k , D(C, k) is a spanning subnetwork of Qn2«=- Since D{C, k) is 
the union of 2fc disjoint Hamilton cycles of Qn2k, D(C, k) is of degree 2fe+1. Let 
w and to' be the labels of two nodes in D(C, k). Algorithm ROUTE provides a 
route in D(C, k) between w and w\ and is shown in Figure 7. It takes at most 
2n"1 nodes to arrange the bits of each of the 2k blocks of n bits, therefore the 
diameter is 2n~1+k. • 
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Algorithm ROUTE(w, w') 
begin 

for i = 0 to 2k - 1 do 
begin 

Select the descendant of C at level k which changes the ith block of n 
bits 2n - 1 times 

Set the ith block of n bits of w to the ith block of n bits of w' by 
traversing that descendant, using as few nodes as possible 

end 
end 

Figure 7: A routing algorithm for D(Co, k) 

Theorem 2 Let C be the Hamilton cycle for Q2 . Then D (L (C), k) and D (R (C), 
k) are mutually isomorphic. 

Proof: Consider any of the cycles in D(L(C), k). If the labels of the nodes of 
this cycle are reversed, then the labels for one of the cycles in D(R(C), k) are 
obtained. This is because in the cycles of D(L(C), k), some portion of the first 
half of the 2fe+2 bits of the labels are changed most rapidly while traversing the 
cycle, while in the cycles of D{R(C), k), some portion of the second half of the 
bits of the labels are changed most rapidly. • 

Theorem 3 For j > 2, there exists an 2^ ~l-factorization of Qii where the two 
factors have diameter 2J l+1. 

Proof: Let A and B be any Hamilton decomposition of Q4. A and B are a 
2-factorization of Q4, where each of the factors have diameter 8. D(A, k) and 
D(B, k), k > 1, form a 2fc+1-factorization oiQiif2

k = Q2k+2 > because they are 
comprised of all the Hamilton cycles of the Hamilton decomposition of Q2k+2. 
D(A, k) and D(B, k) have degree 2fc+1 and diameter 24~1+fe = 2fe+3 by Lemma 
1, which is twice the diameter of Q2

fe+2- E 

In Section 1.4, we mentioned that in order for a factor to effectively simulate 
Qn, an embedding of Qn into the factor must exist with no more than constant 
dilation. 

Theorem 4 Let A and B represent the Hamilton cycles of any Hamilton de
composition ofQ4. For j > 2, The identity embedding embeds Q2i into D(A, j 
- 2) and D(B, j - 2) with 6(1) dilation. 

Proof: Suppose we wish to route in either D(A, j - 2) or D(B, j - 2) between 
adjacent nodes in u and v differ in some bit in some block of 4 bits. Without 
loss of generality, we select D(A, j - 2). There exists a descendant of A at level 
k - 2, which changes the block of 4 bits, containing the bit in which u and v 
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differ, 24 - 1 times before changing another bit. By using that descendant, we 
can route from u to v in at most 24 - 1 = 15 = 0(1) links. • 

In summary, it is possible to create (n/2)-factorizations from Hamilton de
compositions of Qn in two ways; by uniting perfect matchings derived from 
Hamilton cycles, and by uniting the Hamilton cycles themselves. It is cur
rently unknown whether the factors in the factorizations of Section 3.1 have a 
Hamilton cycle. Since the factors mentioned in this section are composed of the 
union of Hamilton cycles, they have Hamilton cycles of their own. Furthermore, 
Hamilton decompositions exist for the factors as well. 

3.3 Construct ing Factorizations of Qn from Variations on 
Reduced and Thin Hypercubes 

Many reduced-degree variations on hypercubes have been proposed. Some of 
these variants use the values of portions of the labels of nodes, to determine the 
dimensions of the links incident to those nodes. Examples include the reduced 
hypercube [27], and the thin hypercube [7, 18]. The motivation for these net
works was to construct a subnetwork of a hypercube with a smaller degree than 
the original hypercube, and a diameter which is either the same (thin hyper
cube) or only slightly larger (reduced hypercube) than the original hypercube. 
However, neither the reduced hypercube nor the thin hypercube are part of a 
fc-factorization. We use the idea behind reduced and thin hypercubes, to con
struct an (n/2)-factorization of Qn, where n is even, where the factors have 
diameter n + 9(1). This factorization was first given in [9]. 

Consider Qn, where n is even. Recall that the label of each node is a bit 
string bobi ... 6„_i. Let the substring bobi represent the first two bits of the 
label of a node. Let the parity of a bit string signify the number of l 's in the 
bit string. Let Fi be a degree ^ spanning subnetwork, defined as follows: 

• If a label of a node has the value 00 in bobi, then that node is incident to 
links in dimensions n - 4 and n - 3 

• If a label of a node has the value 01 in bobi, then that node is incident to 
links in dimensions n - 3 and n - 2 

• If a label of a node has the value 11 in bobi, then that node is incident to 
links in dimensions n - 2 and n - 1 

• If a label of a node has the value 10 in bobi, then that node is incident to 
links in dimensions n - 1 and n - 4 

• If a label of a node has even parity in 6„_4&„_3 bn-ibn-\, then that node 
is incident to a link in dimensions 0, 2, . . . , n - 6. Otherwise, that node is 
incident to a link in dimension 1, 3, . . . , n - 5. 

For example, the node with the label 010010, is incident to links of dimen
sions 3 and 4, because 01 is the value of bobi, and is connected to nodes with 
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Figure 8: Ft, a spanning subnetwork of Q$, for n = 6. 

labels 010110 and 010000. This node is incident to a link of dimension 1, since 
0010, the value of &2̂ 3̂ 4̂ 5) has odd parity. Therefore, this node is connected 
to the node with label 000010. Ft is shown in Figure 8, with the dimension 
0 and 1 links not shown. The bold links in Figure 8 are the links of Ft. The 
black nodes are incident to dimension 0 links, and the gray nodes are incident 
to dimension 1 links. 

Let F2 be a degree ^ spanning subnetwork, defined as follows: 

• If a label of a node has the value 00 in &0&1, then that node is incident to 
links in dimensions n - 2 and n - 1 

• If a label of a node has the value 01 in bobi, then that node is incident to 
links in dimensions n - 1 and n - 4 

• If a label of a node has the value 11 in 60 61, then that node is incident to 
links in dimensions n - 4 and n - 4 

• If a label of a node has the value 10 in 6061, then that node is incident to 
links in dimensions n - 3 and n - 2 

• If a label of a node has odd parity in 6n_4&n_3 6n-2&™-i, then that node 
is incident to a link in dimensions 0, 2, . . . , n - 6. Otherwise, that node is 
incident to a link in dimension 1, 3, . . . , n - 5. 

Ft and F2 form an ^-factorization ofQn. F\ and F2 contain exactly half of 
the links in each dimension. If a node u in Qn is incident to links in dimensions 
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0, 2, ..., n - 6, then any node v adjacent to u by dimensions n - 4 through n -
1, is incident to links in dimensions 1, 3, ..., n - 5. 

Theorem 5 Fi and Fi are isomorphic to each other. 

Proof: Fi and F2 are isomorphic if there exists a mapping g from the nodes of 
Fi to the nodes of F2, such that for all pairs of adjacent nodes u and v in F\, 
g{u) is adjacent to g{v) in F2. Let g(u) be obtained from u by toggling bo and 
61. If u and v are adjacent in Fi by some dimension, then g(u) will be adjacent 
to g(v) in F2 by the same dimension. • 

Theorem 6 Both F\ and F2 have diameter n + 2. 

Proof: Let u and v be two nodes in F\. Without loss of generality, let the value 
of bobi in u be 00, and let &n_4&n_3&n_2&n-i have even parity. Assume bits b2 

through 6„_i of u are to be toggled to form bits 62 through fen_i of v. 
Case I: b0b\ in v is 00. Toggle 60, b2, • • •, &n-6, causing &0&1 to be 10. Now 

bn-\ can be toggled. Toggle 61, 63, . . . , 6n-5> causing &0&1 to be 11. Now bn-2 

can be toggled. Toggle 60, causing bob\ to be 01. Now 6„_3 can be toggled. 
Toggle 61, causing bob\ to be 00. Now 6„_4 can be toggled. 60 and b\ were 
toggled twice, while the remaining bits were toggled once, for a total of n + 2 
links. 

Case II: boh in v is 01. Toggle 60, b2, • • •, bn-6, causing &0&1 to be 10. Now 
bn-\ and 6„_4 can be toggled. Toggle 60, causing 6061 to be 00. Now bn-i can 
be toggled. Toggle 61, 63, . . . , 6„_5, causing b§b\ to be 11. Now 6n_3 can be 
toggled, bo was toggled twice, while the remaining bits were toggled once, for a 
total of n + 1 links. 

Case III: b0bi in v is 11. Toggle 6„_4 and 6„_3. Toggle b0, b2, . . . , 6„-6, 
causing 6061 to be 10. Now 6„_i can be toggled. Toggle 61, 63, . . . , 6ra_5, causing 
60b\ to be 11. Now bn-2 can be toggled. No bit was toggled more than once for 
a total of n links. 

Case IV: b0bi in v is 10. Toggle 6„_3. Toggle 61, 63, . . . , bn-5, causing b0bi 
to be 01. Now bn-2 can be toggled. Toggle 60, b2, ..., bn-e, causing &0&1 to be 
11. Now 6„_i can be toggled. Toggle 61, causing &0&1 to be 10. Now 6n_4 can 
be toggled. 61 was toggled twice, while the remaining bits were toggled once, 
for a total of n + 1 links. 

Let u and v be two nodes in F2. Without loss of generality, let the value 
of bob\ in u be 00, and let &„_4&„_3&„_2&n-i have odd parity. Assume bits b2 

through bn-\ of u are to be toggled to form bits b2 through 6„_i of v. 
Case I: 60&1 in v is 00. Toggle 61, 63, . . . , 6ra_s, causing bobi to be 01. Now 

6n_i can be toggled. Toggle 60, b2, ...bn-e, causing 6061 to be 11. Now 6„_4 
can be toggled. Toggle 61, causing bobi to be 10. Now 6„_3 can be toggled. 
Toggle 60, causing &0&1 to be 00. Now bn-2 can be toggled. 60 and 61 were 
toggled twice, while the remaining bits were toggled once, for a total of n + 2 
links. 

Case II: 6061 in v is 01. Toggle bn-2. Toggle b0, b2, . . . , 6„_6, causing 60^i 
to be 10. Now bns can be toggled. Toggle 61, 63, . . . , 6„_5, causing &0&1 to be 
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11. Now 6n_4 can be toggled. Toggle bo, causing bobi to be 01. Now bn-i can 
be toggled. &o w a s toggled twice, while the remaining bits were toggled once, 
for a total of n + 1 links. 

Case III: 60&i in v is 11. Toggle bn-2 and 6„_i. Toggle 6i, 63, . . . , 6„_5, 
causing &0&1 to be 01. Now 6n_4 can be toggled. Toggle 60, 62, . . . , 6n-6> causing 
bob\ to be 11. Now 6n_3 can be toggled. No bit was toggled more than once for 
a total of n links. 

Case IV: b0bi in v is 10. Toggle b\, 63, . . . , bn-5, causing 6061 to be 01. Now 
bn-\ and 6„_4 can be toggled. Toggle b\, causing 60^1 to be 00. Now 6n_2 can 
be toggled. Toggle 60, &2, • • • > &n-6> causing 60^1 to be 10. Now 6„_3 can be 
toggled. 60 was toggled twice, while the remaining bits were toggled once, for a 
total of n + 1 links. • 

Theorem 7 The identity embedding embeds Qn into both F\ and F2 with dila
tion 5. 

Proof: Let u and v be two nodes in Qn, which differ in exactly 1 bit. Without 
loss of generality, let the value of &0&1 in u be 00, and let 6n_46„_36n_26n-i 
have even parity. We show that the maximum distance in F\ between u and v 
is 5. 

Case I: u and v differ in either 60, &2, • • •, bn-e, 6„_4 or 6n-3- In this case, 
u and v are adjacent in F\. 

Case II: u and v differ in b\, 63, . . . , or bns. In this case, toggle 6n_3, toggle 
the bit in which u and v differ, then toggle 6„_3 again, for a total of three links. 

Case III: u and v differ in 6„_2- In this case, toggle bns, toggle 61, toggle 
bn-2, toggle bn-3, and toggle 61, for a total of five links. 

Case IV: u and v differ in bn-i- In this case, toggle bo, toggle 6n_i, toggle 
6„_4, toggle 60, and toggle 6„-4, for a total of five links. 

We now show that the maximum distance in F2 between u and v is also 5. 
Case I: u and v differ in either 61, 63, . . . , 6„_5, 6„_2 or 6n_i. In this case, 

u and v are adjacent in Fi. 
Case II: u and v differ in bo, £>2, . . . , or bn-e- In this case, toggle bn-2, toggle 

the bit in which u and v differ, then toggle 6„_2 again, for a total of three links. 
Case III: u and v differ in 6„_4. In this case, toggle b\, toggle 6„_4, toggle 

6„_i, toggle 61, and toggle 6„_i, for a total of five links. 
Case IV: u and v differ in bn-3. In this case, toggle bn-2, toggle bo, toggle 

6„_3, toggle bn-2, and toggle 60, for a total of five links. • 

4 Conclusions and Future Research 

Table 4 summarizes our findings. The consequence of our findings is that the 
links of Qn can be partitioned into two factors, each having a diameter close to 
that of Qn. The factorizations can be produced either from Hamilton decom
positions or directly. Furthermore, since there is an embedding of Qn into these 
factors with constant dilation, the factors can efficiently simulate the operation 
oi Qn-
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Original 
Hypercube 
Degree of 
Factors 

Mutually 
Isomorphic? 

Diameter 
of factors 

Best 
Dilation 
Hamilton 

Cycle? 
Hamilton 

Decomposition? 

Best 
Possible 

Qn 

9(1) 

Yes 

n 

0(1) 

Yes 

Yes 

Section 3.1 

Qs, Qu 
2, 3, 4, 6 

Unknown 

{8, 8}, {8, 10}, 
{8, 8}, {12, 12} 

Unknown 

Unknown 

Unknown 

Section 3.2 

n = 2k 

n 
2 

Yes 

2n 

0(1) 

Yes 

Yes 

Section 3.3 

n is even 
71 

2 

Yes 

n + 2 

9(1) 

Unknown 

Unknown 

Table 4: Properties of factorizations of hypercubes. 

Possible directions for future research into Hamilton decompositions include 
identifying Hamilton decompositions for other well-known networks, determin
ing if a given Hamilton cycle is part of a Hamilton decomposition and using 
Hamilton decompositions for solutions to various graph problems [21]. 

Possible directions for future research into k-factorizations include 1) deter
mining the existence of a fc-factorization of Qn, constructed from perfect match-
ings, where the factors have diameter n, 2) determining if fc-factorizations of Qn 

exist where k < §, and the diameters of the factors is n, 3) finding embeddings 
of minimal dilation of Qn into its factors. 
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Introduction 

This Special Issue brings together papers based on work presented at the Sev
enth International Workshop on Algorithms and Data Structures (WADS 2001) 
which was held August 8-10, 2001, at Brown University Providence, USA. Pre
liminary versions of the results presented at WADS 2001 have appeared in the 
conference proceedings published by Springer-Verlag, Lecture Notes in Com
puter Science, volume 2125. 

As editors of this JGAA special issue, we chose to invite papers from WADS 
2001 that reflect the broad nature of the workshop, which showcase theoretical 
contributions as well as experimental work in the field of algorithms and data 
structures. The issue collects six papers. The first three papers present new 
algorithms that either revisit basic graph algorithms within new realistic models 
of computation or that deal with fundamental questions about the combinatorial 
nature of graphs. The remaining three papers are devoted to the growing area 
of graph drawing and collect results that have a variety of applications from 
Web searching to Software Engineering. 

All contributions in this Special Issue have gone through a rigorous review 
process. We thank the authors, the referees, and the editorial board of the 
journal for their careful work and for their patience, generosity, and support. 
We hope that we have captured a bit of the dynamic quality that the range of 
research interests presented at the workshop imparts. 

Scanning the Issue 

External memory graph algorithms have received considerable attention lately 
because massive graphs arise naturally in many applications. Breadth-first 
search (BFS) and depth-first search (DFS) are the two most fundamental graph 
searching strategies. They are extensively used in many graph algorithms. Un
fortunately no I/O-efncient BFS or DFS-algorithms are known for arbitrary 
sparse graphs, while known algorithms perform reasonably well on dense graphs. 
The paper "On External-Memory Planar Depth-First Search" by L. Arge, U. 
Meyer, L. Toma, and N. Zeh presents two new results on I/O-efficient depth-
first search in an important class of sparse graphs, namely undirected embedded 
planar graphs. 

One of the most studied problems in the area of worst-case analysis of NP-
hard problems is graph coloring. An early paper by Lawler, dated 1976, contains 
two results: an algorithm for finding a 3-coloring of a graph (if the graph is 3-
chromatic) and an algorithm for finding the chromatic number of an arbitrary 
graph. Since then, the area has grown and there has been a sequence of papers 
improving Lawler's 3-coloring algorithm. However, there has been no improve
ment to Lawler's chromatic number algorithm. The paper by David Eppstein 
titled "Faster Exact Graph Coloring" provides the first improvement to Lawler's 
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chromatic number algorithm by showing how to compute the exact chromatic 
number of a graph in time 0( (4 /3 + 34/3/4)n) « 2.4150™. 

The clique-width of a graph is defined by a composition mechanism for 
vertex-labeled graphs. Graphs of bounded clique-width are interesting from an 
algorithmic point of view. A lot of NP-complete graph problems can be solved 
in polynomial time for graphs of bounded clique-width if the composition of the 
graph is explicitly given. The paper by W. Espelage, F. Gurski, and E. Wanke 
titled "Deciding clique-width for graphs of bounded tree-width" shows a linear 
time algorithm for deciding "clique-width at most k" for graphs of bounded 
tree-width and for some fixed integer k. 

Methods for ranking World Wide Web resources according to their position 
in the link structure of the Web are receiving considerable attention, because 
they provide the first effective means for search engines to cope with the explo
sive growth and diversification of the Web. The paper titled "Visual Ranking 
of Link Structures" and authored by U. Brandes and S. Cornelsen proposes a 
visualization method that supports the simultaneous exploration of a link struc
ture and a ranking of its nodes by showing the result of the ranking algorithm 
in one dimension and using graph drawing techniques in the remaining one or 
two dimensions to show the underlying structure. These techniques are useful 
for the analysis of query results, maintenance of search engines, and evaluation 
of Web graph models. 

The paper "An Approach for Mixed Upward Planarization" by M. Eiglsperger 
F. Eppinger, and M. Kaufmann considers the problem of finding a mixed up
ward planarization of a mixed graph, i.e., a graph with directed and undirected 
edges. Mixed drawings arise in applications where the edges of the graph can 
be partitioned into a set which denotes structural information and a another 
set which does not carry structural information. An example is UML class di
agrams arising in software engineering. In these diagrams, the vertices of the 
graph represent classes in an object-oriented software system, and edges repre
sent relations between these classes. In these diagrams hierarchies of subclasses 
are drawn upward, whereas relations can have arbitrary directions. The authors 
present a heuristic approach for this problem which provides good quality and 
reasonable running time in practice, even for large graphs. 

Upward planar drawings are the topic of "Upward Embeddings and Orienta
tions of Undirected Planar Graphs" by W. Didimo and M. Pizzonia. The paper 
characterizes the set of all upward embeddings and orientations of an embedded 
planar graph by using a simple flow model, which is related to that described 
by Bousset to characterize bipolar orientations. The authors take advantage of 
such a flow model to compute upward orientations with the minimum number 
of sources and sinks of 1-connected embedded planar graphs. A new algorithm 
that computes visibility representations of 1-connected planar graphs is also 
presented. 
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Abstract 

Even though a large number of I/O-efficient graph algorithms have 
been developed, a number of fundamental problems still remain open. For 
example, no space- and I/O-efficient algorithms are known for depth-first 
search or breath-first search in sparse graphs. In this paper, we present 
two new results on I/O-efficient depth-first search in an important class of 
sparse graphs, namely undirected embedded planar graphs. We develop 
a new depth-first search algorithm that uses 0(sort(N) log(iV/M)) I/Os, 
and show how planar depth-first search can be reduced to planar breadth-
first search in 0(sort(iV)) I/Os. As part of the first result, we develop 
the first I/O-efficient algorithm for finding a simple cycle separator of 
an embedded biconnected planar graph. This algorithm uses 0(sort(iV)) 
I/Os. 
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1 Introduction 

External memory graph algorithms have received considerable attention lately 
because massive graphs arise naturally in many applications. Recent web crawls, 
for example, produce graphs with on the order of 200 million vertices and 2 bil
lion edges [11]. Recent work in web modeling uses depth-first search, breadth-
first search, shortest path and connected component computations as primitive 
routines for investigating the structure of the web [9]. Massive graphs are also 
often manipulated in Geographic Information Systems (GIS), where many com
mon problems can be formulated as basic graph problems. Yet another example 
of a massive graph is AT&T's 20 TB phone-call data graph [11]. When work
ing with such massive data sets, the I/O-communication, and not the internal 
memory computation, is often the bottleneck. I/O-efficient algorithms can thus 
lead to considerable run-time improvements. 

Breadth-first search (BFS) and depth-first search (DFS) are the two most 
fundamental graph searching strategies. They are extensively used in many 
graph algorithms. The reason is that in internal memory both strategies are 
easy to implement in linear time; yet they reveal important information about 
the structure of the given graph. Unfortunately no I/O-efficient BFS or DFS-
algorithms are known for arbitrary sparse graphs, while known algorithms per
form reasonably well on dense graphs. The problem with the standard imple
mentations of DFS and BFS is that they decide which vertex to visit next one 
vertex at a time, instead of predicting the sequence of vertices to be visited. As 
a result, vertices are visited in a random fashion, which may cause the algorithm 
to spend one I/O per vertex. Unfortunately it seems that in order to predict 
the order in which vertices are visited, one essentially has to solve the searching 
problem at hand. For dense graphs, the I/Os spent on accessing vertices in a 
random fashion can be charged to the large number of edges in the graph; for 
sparse graphs, such an amortization argument cannot be applied. 

In this paper, we consider an important class of sparse graphs, namely undi
rected embedded planar graphs: A graph G is planar if it can be drawn in the 
plane so that its edges intersect only at their endpoints. Such a drawing is 
called a planar embedding of G. If graph G is given together with an embed
ding, we call it embedded. The class of planar graphs is restricted enough, and 
the structural information provided by a planar embedding is rich enough, to 
hope for more efficient algorithms than for arbitrary sparse graphs. Several 
such algorithms have indeed been obtained recently [6, 16, 22, 24]. We develop 
an improved DFS-algorithm for embedded planar graphs and show that planar 
DFS can be reduced to planar BFS in an I/O-efficient manner. 
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1.1 I/O-Model and Previous Results 
We work in the standard disk model proposed in [3]. The model defines the 
following parameters: 

N = number of vertices and edges (N = \V\ + \E\), 

M = number of vertices/edges that can fit into internal memory, and 

B = number of vertices/edges per disk block, 

where 2B < M < N. In an Input/Output operation (or simply I/O) one 
block of data is transferred between disk and internal memory. The measure of 
performance of an algorithm is the number of I/Os it performs. The number 
of I/Os needed to read N contiguous items from disk is scan(TV) = 0 ( ^ ) (the 
linear or scanning bound). The number of I/Os required to sort N items is 

sort(AZ') = 0 ( ^ l o g M / B ^ J (the sorting bound) [3]. For all realistic values of 

N, B, and M, scan(iV) < sort(JV) < N. Therefore the difference between the 
running times of an algorithm performing N I/Os and one performing scan(Ar) 
or sort (TV) I/Os can be considerable [8]. 

I/O-efficient graph algorithms have been considered by a number of authors 
[1, 2, 4, 5, 6, 10, 12, 14, 16, 19, 20, 21, 22, 23, 24, 26, 30]. We review the 
previous results most relevant to our work (see Table 1). The best known gen
eral DFS-algorithms on undirected graphs use O (\V\ + scan(|J5|)) • log2 |V|) [19] 

or O (\V\ + ^ • scan(£)) I/Os [12]. Since the best known BFS-algorithm for 

general graphs uses only O (yf\vMvMEH + sort( |F| + \E\) j I/Os [23], this 

suggests that on undirected graphs, DFS may be harder than BFS. For di

rected graphs, the best known algorithms for both problems use 0 ( (| V| + ^ 1 • 

!og2 T T +sor t ( |£ | ) j I/Os [10]. For most graph problems ft(min{|V|,sort(|V|)}) 
is a lower bound [5, 12], and, as discussed above, this is J2(sort(|V|)) in all prac
tical cases. Still, all of the above algorithms, except the recent BFS-algorithm 
of [23], use fi(|V|) I/Os. For sparse graphs, the same I/O-complexity can 

Problem 

DFS 

BFS 

General graphs 

0 ( > | + M - s c a n ( £ ) ) [12] 

0 ( ( | V | + s c a n ( | £ | ) ) . l o g 2 | F | ) [19] 

_, 

0(y™™ + sort(|v| + |£|)j [23] 

Planar graphs 

O(N) 

0(N/y/B) [23] 

Table 1: Best known upper bounds for BFS and DFS on undirected graphs (and 
linear space). 
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be achieved much easier using the standard internal memory algorithm. Im
proved algorithms have been developed for special classes of planar graphs. For 
undirected planar graphs the first o(N) DFS and BFS algorithms were devel
oped by [24]. These algorithms use 0{-^g + sort(A^ST)) I/Os and 0{NB~i) 
space, for any 0 < 7 < 1/2. BFS and DFS can be solved in 0(sort(JV)) 
I/Os on trees [10, 12] and outerplanar graphs [20]. BFS can also be solved 
in 0(sort(iV)) I/Os on fc-outerplanar graphs [21]. 

1.2 Our Results 

The contribution of this paper is two-fold. In Section 3, we present a new DFS-
algorithm for undirected embedded planar graphs that uses 
0(sort(AT) log(JV/M)) I/Os and linear space. For most practical values of B, 
M and N this algorithm uses o(N) I/Os and is the first algorithm to do so 
using linear space. The algorithm is based on a divide-and-conquer approach 
first proposed in [27]. It utilizes a new 0(sort(iV)) I/O algorithm for finding 
a simple cycle in a biconnected planar graph such that neither the subgraph 
inside nor the one outside the cycle contains more than a constant fraction of 
the vertices of the graph. Previously, no such algorithm was known. 

In Section 4 we obtain an 0(sort(JV)) I /O reduction from DFS to BFS 
on undirected embedded planar graphs using ideas similar to the ones in [15]. 
Contrary to what has been conjectured for general graphs, this shows that for 
planar graphs, BFS is as hard as DFS. Together with two recent results [6, 22], 
this implies that planar DFS can be solved in 0(sort(iV)) I/Os. In particular, 
Arge et al. [6] show that BFS and the single source shortest path problem 
can be solved in 0(sort(iV)) I/Os, given a multi-way separator of a planar 
graph. Maheshwari and Zeh [22] show that such a separator can be computed 
in 0(sort(JV)) I/Os. 

A preliminary version of this paper appeared in [7]. 

2 Basic Graph Operations 

In the algorithms described in Sections 3 and 4 we make use of previously 
developed 0(sort(N)) I/O solutions for a number of basic graph problems. We 
review these problems below. Most of the basic computations we use require 
a total order on the vertex set V and on the edge set E of the graph G = 
(V, E). For the vertex set V, such a total order is trivially provided by a unique 
numbering of the vertices in G. For the edge set E, we assume that an edge 
{v, ID} is stored as the pair (u, w), v < w, and we define (v, w) < (x, y) for edges 
(v, w) and (x, y) in E if either v < x or, v — x and w < y. We call this ordering 
the lexicographical order of E. Another ordering, which we call the inverted 
lexicographical order of E, defines (v, w) < (x, y) if either w < y, or w = y and 
v < x. 
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Set difference: Even though strictly speaking set difference is not a graph 
operation, we often apply it to the vertex and edge sets of a graph. To compute 
the difference X \ Y of two sets X and Y drawn from a total order, we first 
sort X and Y. Then we scan the two resulting sorted lists simultaneously, in a 
way similar to merging them into one sorted list. However, elements from Y are 
not copied to the output list, and an element from X is copied only if it does 
not match the current element in Y. This clearly takes 0(sort(iV)) I/Os, where 
N = \X\ + \Y\. We use SETDIFFERENCE as a shorthand for this operation. 

Duplicate removal: Given a list X = {xi,..., XJV) with some entries poten
tially occurring more than once, the DUPLICATEREMOVAL operation computes 
a list Y = (y i , . . . ,yq) such that {n,...,xN} = { y i , . . . , y q ) , yj = xit, for in
dices ii < • • • < iq, and xi ^ yj, for 1 < I < ij. That is, list Y contains the first 
occurrences of all elements in X in sorted order. (Alternatively we may require 
list Y to store the last occurrences of all elements in X.) To compute Y in 
0(sort(iV)) I/Os, we scan X and replace every element xt with the pair (xi: i). 
We sort the resulting list X' lexicographically. Now we scan list X' and discard 
for every x, all pairs that have x as their first component, except the first such 
pair. List Y can now be obtained by sorting the remaining pairs (x, y) by their 
indices y and scanning the resulting list to replace every pair (x,y) with the 
single element x. 

Computing incident edges: Given a set V of vertices and a set E of edges, 
the INCIDENTEDGES operation computes the set E' of edges {v, w} e E such 
t h a t u e V andw &V. To compute E' in 0(sort(AT)) I/Os where N = |V| + |-E|, 
we sort V in increasing order and E in lexicographical order. We scan V and 
E and mark every edge in E that has its first endpoint in V. We sort E in 
inverted lexicographical order and scan V and E again to mark every edge in 
E that has its second endpoint in V. Finally we scan E and remove all edges 
that have not been marked or have been marked twice. 

Copying labels from edges to vertices: Given a graph G = (V,E) and a 
labeling A : E —> X of the edges in E, the SUMEDGELABELS operation computes 
a labeling A' : V —> X of the vertices in V, where \'(v) = 0 e € B A(e), Ev is 
the set of edges incident to v, and © is any given associative and commutative 
operator on X. To compute labeling A' in 0(sort(N)) I/Os, we sort V in 
increasing order and E lexicographically. We scan V and E and compute a 
label X"(v) = 0 e e B / A(e), for each v, where E'v is the set of edges that have v 
as their first endpoint. Then we sort E in inverted lexicographical order and 
scan V and E to compute the label X(v) = \"(v) + © e G E » A(e), for each v, 
where E" is the set of edges that have v as their second endpoint. 

Copying labels from vertices to edges: Given a graph G = (V, E) and a 
labeling A : V —> X of the vertices in V, the COPYVERTEXLABELS operation 
computes a labeling A' : E —> X x X, where \'({v, w}) = (X(v), X(w)). We can 
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compute this labeling in 0(sort(iV)) I/Os using a procedure similar to the one 
implementing operation SUMEDGELABELS. 

Algorithms for lists and trees: Given a list stored as an unordered sequence 
of edges {(u, next(u))}, list ranking is the problem of determining for every 
vertex u in the list, the number of edges from u to the end of the list. List 
ranking can be solved in 0(sort(iV)) I/Os [4, 12] using techniques similar to the 
ones used in efficient parallel list ranking algorithms [18]. Using list ranking and 
PRAM techniques, 0(soit(N)) I /O algorithms can also be developed for most 
problems on trees, including Euler tour computation, BFS and DFS-numbering, 
and lowest common ancestor queries (Q queries can be answered in 0(sort(Q + 
N)) I/Os) [12]. Any computation that can be expressed as a "level-by-level" 
traversal of a tree, where the value of every vertex is computed either from the 
values of its children or from the value of its parent, can also be carried out in 
0(soit(N)) I/Os [12]. 

Algorithms for planar graphs: Even though no 0(soit(N)) I/O algorithms 
for BFS or DFS in planar graphs have been developed, there exist 0(sort(N)) I/O 
solutions for a few other problems on planar graphs, namely computing the 
connected and biconnected components, spanning trees and minimum spanning 
trees [12]. All these algorithms are based on edge-contraction, similar to the 
PRAM algorithms for these problems [13, 29]. We make extensive use of these 
algorithms in our DFS-algorithms. 

3 Depth-First Search using Simple Cycle Sepa
rators 

3.1 Outline of the Algorithm 

Our new algorithm for computing a DFS-tree of an embedded planar graph in 
0(sort(iV) log(N/M)) I/Os and linear space is based on a divide-and-conquer 
approach first proposed in [27]. First we introduce some terminology used in 
this section. 

A outpoint of a graph G is a vertex whose removal disconnects G. A con
nected graph G is biconnected if it does not have any cutpoints. The biconnected 
components or bicomps of a graph are its maximal biconnected subgraphs. A 
simple cycle a-separator C of an embedded planar graph G is a simple cycle such 
that neither the subgraph inside nor the one outside the cycle contains more 
than a| V| vertices. Such a cycle is guaranteed to exist only if G is biconnected. 

The main idea of our algorithm is to partition G using a simple cycle a-
separator C, recursively compute DFS-trees for the connected components of 
G\C, and combine them to obtain a DFS-tree for G. If each recursive step 
can be carried out in 0(sort(N)) I/Os, it follows that the whole algorithm takes 
0(soit(N) log(N/M)) I/Os because the sizes of the subgraphs of G we recurse 
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on are geometrically decreasing, and we can stop the recursion as soon as the 
current graph fits into main memory. Below we discuss our algorithm in more 
detail, first assuming that the graph is biconnected. 

Given a biconnected embedded planar graph G and some vertex s G G, we 
construct a DFS-tree T of G rooted at s as follows (see Figure 1): 

1. Compute a simple cycle —separator C of G. 

In Section 3.2, we show how to do this in 0(sort(.ZV)) I/Os. 

2. Find a path P from s to some vertex v in C. 

To do this, we compute an arbitrary spanning tree T" of G, rooted at s, and 
find a vertex v e C whose distance to s in T" is minimal. Path P is the path 
from s to v in T'. The spanning tree T' can be computed in 0(sort(iV)) 
I/Os [12]. Given tree T", vertex v can easily be found in 0(sort(N)) 
I/Os using a BFS-traversal [12] of T'. Path P can then be identified by 
extracting all ancestors of v in T". This takes 0(sort(iV)) I/Os using 
standard tree computations [12]. 

3. Extend P to a path P' containing all vertices in P and C. 

To do this, we identify one of the two neighbors of v in C. Let w be this 
neighbor, and let C" be the path obtained by removing edge {v, w} from C. 
Then path P' is the concatenation of paths P and C". This computation 
can easily be carried out in 0(scan(iV)) I/Os: First we scan the edge list 
of C and remove the first edge we find that has v as an endpoint. Then 
we concatenate the resulting edge list of C' and the edge list of P. 

4. Compute the connected components Hi,..., Hf. ofG\P'. For each com
ponent H, find the vertex Vi £ P' furthest away from s along P' such 
that there is an edge {ui, Vi}, Ui £ i?,. 

Figure 1: The path P' is shown in bold. The connected components of G \ P' 
are shaded dark gray. Medium edges are edges {ui, Vi}. Light edges are non-tree 
edges. 
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The connected components Hi,...,Hk can be computed in 0(soit(N)) 
I/Os [12]. We find vertices vi,...,Vk in 0(sort(iV)) I/Os as follows: First 
we mark every vertex in P' with its distance from s along P'. These 
distances can be computed in 0(sort(iV)) I/Os using the Euler tour tech
nique and list ranking [12]. Then we apply operation INCIDENTEDGES to 
V{P') and E(G), to find all edges in E(G)\E(P') incident to P'. We sort 
the resulting edge set so that edge {v,w}, v G Hi, w G P', precedes edge 
{x, y}, x G Hj, y G P', if either i < j or i = j and the distance from s to 
w is no larger than the distance from s to y. Ties are broken arbitrarily. 
We scan the resulting list and extract for every Hi the last edge {ui, Vi}, 
Ui £ Hi, in this list. 

5. Recursively compute DFS-trees Ti,...,Tk for components Hi,..., Hk, 
rooted at vertices u\,..., Uk, and construct a DFS-tree T for G as the 
union of trees T\,... ,Tk, path P', and edges {ui,Vi}, 1 < i < k. Note 
that components H\,... ,Hk are not necessarily biconnected. Below we 
show how to deal with this case. 

To prove the correctness of our algorithm, we have to show that T is indeed a 
DFS-tree for G. To do this, the following classification of the edges in E(G) \ 
E(T) is useful: An edge e = (u, v) in E(G) \ E(T) is called a back-edge if u is 
an ancestor of v in T, or vice versa; otherwise e is called a cross-edge. In [28] it 
is shown that a spanning tree T of a graph G is a DFS-tree of G if and only if 
all edges in E{G) \ E{T) are back-edges. 

Lemma 1 The tree T computed by the above algorithm is a DFS-tree of G. 

Proof: It is easy to see that T is a spanning tree of G. To prove that T is a 
DFS-tree, we have to show that all non-tree edges in G are back-edges. First 
note that there are no edges between components Hi,... ,Hk. All non-tree 
edges with both endpoints in a component Hi are back-edges because tree Tj is 
a DFS-tree of Hi. All non-tree edges with both endpoints in P' are back-edges 
because P' is a path. For every non-tree edge {v, w} with v G P' and w G Hi, 
w is a descendant of the root Wj of the DFS-tree Tt. Tree 1$ is connected to P' 
through edge {vi, Ui}. By the choice of vertex Vi, v is an ancestor of Vi and thus 
an ancestor of u; and w. Hence, edge {v,w} is a back-edge. • 

In the above description of our algorithm we assume that G is biconnected. 
If this is not the case, we find the bicomps of G, compute DFS-trees for all 
bicomps, and join these trees at the cutpoints of G. More precisely, we compute 
the bicomp-cutpoint-tree TQ of G containing all cutpoints of G and one vertex 
v(C) per bicomp C (see Figure 2). There is an edge between a cutpoint v and a 
bicomp vertex v(C) if v is contained in C. We choose the bicomp vertex v(Cr) 
corresponding to a bicomp Cr that contains vertex s as the root of To- The 
parent cutpoint of a bicomp C ^ Cr is the parent p(v(C)) ofv(C) in TQ. TQ can 
be constructed in 0(sort(iV)) I/Os, using the algorithms discussed in Section 2. 
We compute a DFS-tree of Cr rooted at vertex s. For every bicomp C ^ Cr, 
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A 
9 9 

(a) (b) (c) 

Figure 2: (a) A connected graph G with its bicomps shaded. Outpoints are 
hollow. Other vertices are solid, (b) The bicomp-cutpoint-tree of G. Bicomp 
vertices are squares, (c) The DFS tree of G obtained by "gluing together" 
DFS-trees of its bicomps. 

we compute a DFS-tree rooted at the parent cutpoint of C. The union of the 
resulting DFS-trees (see Figure 2c) is a DFS-tree for G rooted at s, since there 
are no edges between different bicomps. Thus, we obtain our first main result. 

Theorem 1 A DFS-tree of an embedded planar graph can be computed in 
0(sort(N) log(N/M)) I/O operations and linear space. 

3.2 Finding a Simple Cycle Separator 
In this section, we show how to compute a simple cycle I-separator of an embed
ded biconnected planar graph, utilizing ideas similar to the ones used in [17, 25]. 
As in the previous section, we start by introducing the necessary terminology. 

Given an embedded planar graph G, the faces of G are the connected regions 
of IR \G. We use F to denote the set of faces of G. The boundary of a face / 
is the set of edges contained in the closure of / . For a set F' of faces of G, let 
GF1 be the subgraph of G denned as the union of the boundaries of the faces in 
F' (see Figure 3a). The complement GFi of GF' is the graph obtained as the 
union of the boundaries of all faces in F \ F' (see Figure 3b). The boundary of 
GF> is the intersection between GF' and its complement GF> (see Figure 3c). 
The dual G* of G is the graph containing one vertex /* per face / € F, and 
an edge between two vertices / j* and / | if faces / i and fi share an edge (see 
Figure 3d). We use v*, e*, and /* to refer to the face, edge, and vertex that 
is dual to vertex v, edge e, and face / , respectively. The dual G* of a planar 
graph G is planar and can be computed in 0(sort(iV)) I/Os [16]. 

The idea in our algorithm is to find a set of faces F' C F such that the 
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(a) (b) (c) (d) 

Figure 3: (a) A graph G and a set F' of faces shaded gray. The edges in GF' are 
shown in bold, (b) The shaded faces are the faces in F \ F'. The bold edges are 
in GF' • (c) The boundary of GF' shown in bold, (d) The dual of G represented 
by hollow squares and dashed edges. 

boundary of G p is a simple cycle |-separator. The main difficulty is to ensure 
that the boundary of GF' is a simple cycle. We compute F' as follows: 

1. Checking for heavy faces: We check whether there is a single face 
whose boundary has size at least '-^- (Figure 4a). If we find such a face, 
we report its boundary as the separator C, as there are no vertices inside 
C and at most | | V | vertices outside C. 

2. Checking for heavy subtrees: If there is no heavy face, we compute a 
spanning tree T* of the dual G* of G, and choose an arbitrary vertex r as 
its root. Every vertex v G T* defines a subtree T*(v) of T* that contains 
v and all its descendants. The vertices in this subtree correspond to a 
set of faces in G whose boundaries define a graph G(v). Below we show 
that the boundary of G(v) is a simple cycle. We try to find a vertex v 
such that ^ | V[ < |G(u)| < §|V|, where |G(u)| is the number of vertices in 
G(v) (Figure 4b). If we succeed, we report the boundary of G{v) as the 
separator C. 

3. Splitting a heavy subtree: If Steps 1 and 2 fail to produce a simple 
cycle |-separator of G, we are left in a situation where for every leaf 
I G T* (face in G), we have \G(l)\ < ±|V|; for the root r of T*, we have 
\G(r)\ = |V|; and for every other vertex v G T*, either \G(v)\ < | | V | or 
\G(V)\ > %\v\- T h u s . t h e r e h a s t o b e a vertex v with \G(v)\ > \\V\ and 
|G(iOi)| < | | V|, for all children w\,... ,Wk of v. We show how to compute 
a subgraph G' of G(v) consisting of the boundary of the face v* and a 
subset of the graphs G(iwi),... ,G(u>k) such that i |V| < \G'\ < | |V | , and 
the boundary of G' is a simple cycle (Figure 4c). 

Below we describe our algorithm in detail and show that all of the above 
steps can be carried out in 0(sort(iV)) I/Os. This proves the following theorem. 

Theorem 2 A simple cycle ^-separator of an embedded biconnected planar 
graph can be computed in 0(sort(N)) I/O operations and linear space. 
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(a) (b) (c) 

Figure 4: (a) A heavy face, (b) A heavy subtree, (c) Splitting a heavy subtree. 

3.2.1 Checking for Heavy Faces 

In order to check whether there exists a face f in G with a boundary of size at 
least g|V|, we represent each face of G as a list of vertices along its boundary. 
Computing such a representation takes 0(sart(N)) I/Os [16]. Then we scan 
these lists to see whether any of them has length at least ^\V\. In total, this 
step uses 0(sort(iV)) I/Os. 

3.2.2 Checking for Heavy Subtrees 

First we prove that the boundary of G(v) defined by the vertices in T*(v) is a 
simple cycle. Consider a subset F' of the faces of an embedded planar graph G, 
and let H be the subgraph of G that is the union of the boundaries of the faces 
in F'. Let H* be the subgraph of the dual G* of G induced by the vertices that 
are dual to the faces in F'. We call H* the dual of H. We call graph H uniform 
if H* is connected. Since for every vertex v G T*, T*(v) and T* \ T*(v) are 
both connected, G(v) and its complement G(v) are both uniform. Using the 
following lemma, this implies that the boundary of G(v) is a simple cycle. 

Lemma 2 (Smith [27]) Let G' be a subgraph of a biconnected planar graph 
G. The boundary of G' is a simple cycle if and only if G' and its complement 
are both uniform. 

The main difficulty in finding a vertex v G T* such that \\V\ < \G{v)\ < | | V | 
is the computation of the sizes \G(v)\ of graphs G(v) for all vertices v G T*. 
Once this information has been computed, a single scan of the vertex set of T* is 
sufficient to decide whether there is a vertex v G T* with \\V\ < \G(v)\ < | |V | . 
As \T*\ = O(N), this takes 0(scan(iV)) I/Os. Given vertex v, the vertices in 
T*(v) can be reported in 0(sort(iV)) I/Os using standard tree computations [12]. 
Given these vertices, we can apply operation INCIDENTEDGES to find the set 
E' of edges in G* with exactly one endpoint in T*(v). The set {e* : e G £"} is 
the boundary of G(v). All that remains is to describe how to compute the sizes 
of graphs G(v) I/O-efficiently. 
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Assume that every vertex v e T* stores the number \v*\ of vertices on the 
boundary of face v*. The basic idea in our algorithm for computing |G(i>)| is to 
sum | to* | for all descendants w of v in T*. This can be done by processing T* 
level-by-level, bottom-up, and computing for every vertex v, the value |G(u)| = 
\v*\ + J2i=i \G(wi)\i where wi,...Wk are the children of v. By doing this, 
however, we count certain vertices several times. Below we discuss how to 
modify the above idea in order to make sure that every vertex is counted only 
once. 

We define the lowest common ancestor LCA(e) of an edge e £ G to be the 
lowest common ancestor of the endpoints of its dual edge e* in T*. For a vertex 
v £T*,we define E(v) to be the set of edges in G whose duals have v as their low
est common ancestor. For a vertex v with children w\,W2,-..Wk, E(v) consists 
of all edges on the boundary between v* and graphs G{w{), G{wi),..., G(iVk), 
as well as the edges on the boundary between graphs G{w\), G{w2), • • •, G(wk). 
Every endpoint of such an edge is contained in more than one subgraph of 
G(v), and thus counted more than once by the above procedure. The idea in 
our modification is to define an overcount c„jU, for every endpoint u of an edge 
in E(v), which is one less than the number of times vertex u is counted in the 
sum S = \v*\ + Yli=i \G(wi)\- The sum of these overcounts is then subtracted 
from S to obtain the correct value of |G(t>)|. 

Let V(v) denote the set of endpoints of edges in E(v). A vertex u € V(v) is 
counted once for each subgraph in {v*,G(wi),G{w2), • • •,G(wk)} having u on 
its boundary. Let I be the number of edges in E{v) incident to u. Each such 
edge is part of the boundary between two of the subgraphs v*, G(wi),..., G(wk)-
Thus, if u is an internal vertex of G{v) (i.e., not on its boundary), there are I 
such subgraphs, and u is counted I times (see vertex m in Figure 5). Otherwise, 
if u is on the boundary of G(v), it follows from the uniformity of G(v) and 
G(v) that two of the edges in G(v) incident to v are on the boundary of G(v) 
(see vertex u^ in Figure 5). Hence, I + 1 of the subgraphs v*, G{w\),..., G(wk) 
contain u, and u is counted I + 1 times. Therefore the overcount cVjU for vertex 
u £ V(v) is defined as follows: 

J I — 1 if all edges incident to u have their LCA in T* (v) 

1 I otherwise 

We can now compute |G(u)| using the following lemma. 

Lemma 3 For every vertex v € T*, 

\G(v)\ 

v(v)
 cv,u ifv is an internal vertex 

with children wi,...,Wk-

\v*\ ifv is a leaf 

Proof: The lemma obviously holds for the leaves of T*. In order to prove the 
lemma for an internal vertex v of T*, we have to show that we count every 
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Figure 5: The boundary of graph G(v) is shown in bold. The LCAs of these 
edges are ancestors of v in T*. Thin solid edges are those on the boundary 
between graphs v*, G(wi), G(w2), and G(ws). The LCA of these edges in T* 
is v. The LCAs of dashed edges are descendants of v*. Vertex u\ is counted 
three times in the sum S = \v*\ + \G(wi)\ + \G(w2)\ + \G(w3)\ because it is in 
v*, G(w2), and G(w3). It has three incident edges with LCA v, and all edges 
incident to u\ have their LCA in T*(v). Hence, its overcount cv,Ul is 2, so that 
by subtracting cViUl from 5, vertex u\ is counted only once. Vertex u2 is counted 
twice in S, because it is in v* and G(v)3). It has one incident edge with LCA v, 
but not all of its incident edges have their LCA in T*(v) (it is on the boundary 
of G{v)). Hence, its overcount cU;„2 is one, so that by subtracting cls„2 from 5, 
vertex u2 is counted only once. 

vertex in G{y) exactly once in the sum \v*\ + Yli=i \G(wi)\ ~ J2U£V(v)
cv,u-

A vertex in G(v) \ V(y) is counted once, since it is contained in only one of 
the graphs v*,G(wi),... ,G(wk)- A vertex u G V(v) is included in the sum 
\v*\ + J2j-i \G(wi)\ once for every graph v* or G(wi) containing it. If all edges 
incident to u have their LCA in T*(v), then all faces around u are in G(v). 
That is, G(v) is an internal vertex of G(v). As argued above, u is counted I 
times in this case, where / is the number of edges in E{v) incident to u. Thus, 
it is overcounted I — 1 times, and we obtain the exact count by subtracting 
Cv,u = 1 — 1- Otherwise, u is on the boundary of G(v) and, as argued above, it is 
counted I +1 times. Thus, we obtain the correct count by subtracting c„.„ = I. 

• 

We are now ready to show how to compute |G(t))|, for all v G T*, I/O-
efficiently. Assuming that every vertex v G T* stores \v*\ and cv = J2uev(v)

 c"-«> 
the graph sizes |G(?;)|, v G T*, can be computed in 0(sort(AT)) I/Os basically 
as described earlier: For the leaves of T*. we initialize \G(v)\ = \v*\. Then we 
process T* level by level, from the leaves towards the root, and compute for every 
internal vertex v with children u>i,..., wk, \G{v)\ = \v*\ + Yli=i \G(wi)\ - cv. It 
remains to show how to compute cv, v G T*. 
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Figure 6: The boundary of v* U G(w3) is not a simple cycle. 

By the definition of overcounts cVfU, cv = 2\E(v)\ — \V'(v)\, where V'iv) is 
the set of vertices u G V(v) so that all edges in G incident to u have their LCAs 
in T*(v). To compute sets E(v), for all v G T*, we compute the LCAs of all 
edges in G. As discussed in Section 2, we can do this in 0(sort(Ar)) I/Os [12] 
because there are 0(N) edges in G and 0{N) vertices in T*. By sorting the 
edges of G by their LCAs, we obtain the concatenation of lists E(v), v G T*, 
which we scan to determine l-E^f)!; for all v £ T*. To compute sets V'(v), for 
all v G T*, we apply operation SUMEDGELABELS to find for every vertex ue G, 
the edge incident to u whose LCA is closest to the root. We call the LCA of this 
edge the MAX-LCA of u. By sorting the vertices in G by their MAX-LCAs, 
we obtain the concatenation of lists V'(v), v GT*, which we scan to determine 
| V » | , forallweT*. 

3.2.3 Splitting a Heavy Subtree 

If the previous two steps did not produce a simple cycle —separator of G, we 
have to deal with the case where no vertex v G T* satisfies | | F | < \G(v)\ < | |V | . 
In this case, there must be a vertex v G T* with children w\,..., Wk such that 
\G(v)\ > %\V\ and \G(Wi)\ < | | F | , for 1 < i < k. Our goal is to compute a 
subgraph of G(v), consisting of the boundary of v* and a subset of the graphs 
G(wi), whose size is between | | F | and | | V | and whose boundary is a simple 
cycle C. 

In [17] it is claimed that the boundary of the graph defined by v* and any 
subset of graphs G(wi) is a simple cycle. Unfortunately, as illustrated in Fig
ure 6, this is not true in general. However, as we show below, we can com
pute a permutation a : [1,/c] —> [l,k] such that the boundary of each of the 
graphs obtained by incrementally "gluing" graphs G(wa^),... ,G(wa^)) o n t ° 
face v* is a simple cycle. More formally, we define graphs Ha(l),... ,Ha(k) 
as Ha(i) = v* U U*=1G(zf)0-(J)). Then we show that H^i) and Ha(i) are 
both uniform, for all 1 < i < k. This implies that the boundary of Ha{i) 
is a simple cycle, by Lemma 2. Given the size |u*| of face v* and the sizes 
|G(«;i) | , . . . , \G(wk)\ of graphs G(Wl),..., G(wk), the sizes | ^ ( 1 ) | , . . . , \Ha(k)\ 
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Figure 7: The graph G(v) is shaded. Let a(i) = i. Different shades represent 
the different subgraphs G(w1), G(w2) and G(w3) of G(v). The vertices on the 
boundary of v* are numbered clockwise around v*, starting at the endpoint of 
an edge shared by v* and p(v)*. The faces in G(v) incident to the boundary of 
v* are labeled with small letters. 

of graphs Ha(l),..., Ha(k) can be computed in 0(sort(Ar)) I/Os using a pro
cedure similar to the one applied in the previous section for computing the sizes 
\G(v)\ of graphs G{v), v e T*. Since \G(v)\ > %\V\ and \G(Wi)\ < ±|V'| for all 
1 < i < k, there must exist a graph Ha{i) such that \\V\ < {H^i)] < %\V\. It 
remains to show how to compute the permutation a I/0-emciently. 

To construct a, we extract G(v) from G, label every face in G{wt) with i, 
and all other faces of G(v) with 0. This labeling can be computed in 0(sort(iV)) 
I/Os by processing T*(v) from the root towards the leaves. Next we label every 
edge in G(v) with the labels of the two faces on each side of it. Given the above 
labeling of the faces in G{v) (or vertices in T*(v)), this labeling of the edges 
in G(v) can be computed in 0(sort(iV)) I/Os by applying operation C O P Y -
VERTEXLABELS to the dual graph G*{v) of G(v). Now consider the vertices 
vi,..., vt on the boundary of v* in their order of appearance clockwise around 
v*, starting at an endpoint of an edge shared by v* and the face corresponding 
to f's parent p(v) in T* (see Figure 7). As in Section 3.1, we can compute this 
order in 0(sort(AT)) I/Os using the Euler tour technique and list ranking [12]. 
For every vertex Vi, we construct a list L^ of edges around vz in clockwise order, 
starting with edge {i>i_i,«»} and ending with edge {vi,vi+i}. These lists can be 
extracted from the embedding of G in 0(sort(Ar)) I/Os. Let L be the concate-
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Figure 8: The dashed path is the path from vertex /Q to a vertex in the dual of 
G(v) constructed in the proof of Lemma 4, assuming that j = 2. 

nation of lists L\, L2, ..., Lt. For an edge e in L incident to a vertex vi7 let fa 
and fa be the two faces on each side of e, where fa precedes fa in clockwise order 
around Vi. We construct a list F of face labels from L by considering the edges 
in L in their order of appearance and appending the non-zero labels of faces fa 
and fa in this order to F. (Recall that faces in G(wi) are labeled with number 
i.) This takes 0(scan(Ar)) I/Os. List F consists of integers between 1 and k. 
Some integers may appear more than once, and the occurrences of integer i are 
not necessarily consecutive. (This happens if the union of v* with a subgraph 
G(wi) encloses another subgraph G(WJ).) For the graph G(v) in Figure 7, 

v. 3 vertex 4 vertex 5 vertex 6 vertex 7 

vertex 8 vertex 9 

We construct a final list S by removing all but the last occurrence of each 
integer from F. (Intuitively, this ensures that if the union of v* and G(wi) 
encloses another subgraph G(iVj), then j appears before i in 5; for the graph in 
Figure 7, S = (1,2,3).) List S can be computed from list F in 0(sort(A')) I/Os 
using operation DUPLICATEREMOVAL. List S contains each of the integers 1 
through k exactly once and thus defines a permutation a : [1, k] —> [1, k], where 
a(i) equals the i-th element in S. It remains to show the following lemma. 
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Lemma 4 For alll <i < k, graphs H„{i) and Ha(i) are both uniform. 

Proof: First note that every graph Ha(i) is uniform because every subgraph 
G(WJ) is uniform and there is an edge between v and Wj in G*, for 1 < j < k. 
To show that every graph -ffCT(i) is uniform, i.e., that its dual is connected., we 
first observe that G(v) is uniform and every subgraph G(WJ), 1 < j < k, is 
uniform. Graph Ha(i) is the union of a subset of these graphs. Hence, if its 
dual is disconnected, there has to be a subgraph G(iVj) C Ha{i) so that its dual 
and the dual of G(v) are in different connected components of the dual of Ha{i). 
Since G(WJ) C -ffCT(i), j = o{h), for some h> i. 

Now recall the computation of permutation a (see Figure 8). Let L be the 
list of edges clockwise around face v*, as in our construction, let eo be the last 
edge of G(WJ) in L, and let /o be the face of G(WJ) that precedes edge eo in 
the clockwise order around v*. Then for every subgraph G{WJI) that contains 
an edge that succeeds eo in L, j ' = a(h'), for some h! > h. Hence, the following 
path in G* from /p* to a vertex in the dual of G(v) is completely contained in 
the dual of Ha(i): We start at vertex /Q and follow the edge e^ dual to eo- For 
every subsequent vertex /* that has been reached through an edge e*, where 
e £ L, either / is a face of G(v), and we are done, or we follow the dual of the 
edge e' that succeeds e in L. This traversal of G* finds a vertex in the dual of 
G(v) because if it does not encounter a vertex in the dual of G(v) before, it will 
ultimately reach vertex p(v), which is in the dual of G(v). 

This shows that the duals of G(v) and G(WJ) are in the same connected 
component of the dual of Ha(i), for every graph G(WJ) C Ha(i), so that the 
dual of -ffa(i) is connected and Ha{i) is uniform. • 

4 Reducing Depth-First Search to Breadth-First 
Search 

In this section, we give an I/O-efncient reduction from DFS in an embedded 
planar graph G to BFS in its "vertex-on-face graph", using ideas from [15]. The 
idea is to use BFS to partition the faces of G into levels around a source face 
that has the source s of the DFS on its boundary, and then "grow" the DFS-tree 
level by level around that face. 

In order to obtain a partition of the faces of G into levels around the source 
face, we define a graph which we call the vertex-on-face graph G^ of G. As 
before, let G* = (V*,E*) denote the dual of graph G; recall that each vertex 
/* in V* corresponds to a face / in G. The vertex set of the vertex-on-face 
graph G* is V U V*; the edge set contains an edge (v, /*) if vertex v is on the 
boundary of face / (see Figure 10a). We will show how a BFS-tree of G+ can be 
used to obtain a partition of the faces in G such that the source face is at level 
0, all faces sharing a vertex with the source face are at level 1, all faces sharing 
a vertex with a level-1 face—but not with the source face—are at level 2, and 
so on (Figure 9a). Let £?, be the subgraph of G defined as the union of the 
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(a) (b) 

Figure 9: (a) A graph G with its faces colored according to their levels; The 
level-0 face is white, level-l faces are light gray, level-2 faces are dark gray, 
(b) Graphs Ho (solid), Hi (dotted), and H2 (dashed). 

boundaries of faces at level at most i, and let Hi = Gi\ Gj_i, for i > 0. (The 
difference Gi \ Gj_i of graphs Gi and G,_i is the subgraph of G, with vertex 
set V(Gi) \ V{Gi-\) and whose edge set contains all edges of G, that have both 
endpoints in V(Gi) \ V{Gi-\); see Figure 9b.) For i = 0, we define -ffo = Go-
We call the vertices and edges of Hi level-i vertices and edges. An edge {v, w} 
connecting two vertices v G Hi and w £ Gj_i is called an attachment edge of 
Hi. The edges of Gj_i and Hi together with the attachment edges of Ht form 
a partition of the edges of Gi. The basic idea in our algorithm is to grow the 
DFS-tree by walking clockwise1 from s around the level-0 face Go until we reach 
the counterclockwise neighbor of s. The resulting path is a DFS tree To for Go-
Next we build a DFS-tree for Hi and attach it to To through an attachment 
edge of Hi in a way that does not introduce cross-edges. Hence, the result 
is a DFS-tree T\ for G\. We repeat this process until we have processed all 
levels Ho,- • • ,Hr obtaining a DFS-tree T for G (see Figure 11). The key to 
the efficiency of the algorithm lies in the simple structure of graphs Ho,...,Hr. 
Below we give the details of our algorithm and prove the following theorem. 

Theorem 3 Let G be an undirected embedded planar graph, G* its vertex-on-
face graph, and fs a face of G containing the source vertex s. Given a BFS-tree 
of G* rooted at f*, a DFS tree of G rooted at s can be computed in 0(sort(N)) 
I/Os and linear space. 

First consider the computation of graphs G i , . . . , Gr and Hi,..., Hr. We 
start by computing graph G^ in 0(sort(iV)) I/Os as follows: First we compute 
a representation of G consisting of a list of vertices clockwise around each face 
of G. Such a representation can be computed in 0(sort(JV)) I/Os [16]. Then 
we add a face vertex /*, for every face / of G, and connect /* to all vertices 

1 A clockwise walk on the boundary of a face means walking so that the face is to our right. 
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(a) (b) 

Figure 10: (a) G^ shown in bold; numbers represent BFS-depths in G \̂ (b) T\, 
Hi and attachment edges {ui,v.i}.Vertices in T\ are labeled with their DFS-
depths. 

in the vertex list representing / . This requires a single scan of the vertex lists 
representing the faces of G. The levels of the faces of G can now be obtained 
from a BFS-tree of the vertex-on-face graph G*, rooted at the dual vertex /* of 
a face / s that contains s: Every vertex of G is at an odd level in the BFS-tree; 
every dual vertex corresponding to a face of G is at an even level (Figure 10a). 
The level of a face is the level of the corresponding vertex in the BFS-tree 
divided by two. The vertex set V(-Hj) of graph Hi contains all vertices of G at 
distance 2i + 1 from /* in G1'. Hence, we can obtain a partition of V(G) into 
vertex sets V(Hi),..., V{Hr) by sorting the vertices in V(G) by their distances 
from f* in Gl The vertex set V(Gt) of graph Gt is V(Gi) = [fj=0 V(Ht). An 
edge e e G is in Hi if both its endpoints are at distance 2i + 1 from /* in 
C?t. For an attachment edge {v,w} of Hi, v is at distance 2i + 1, and w is at 
distance 2i — 1 from /* in G*. Thus, we can obtain a partition of E(G) into 
sets E(HQ), . . . , H(Hr) and the sets of attachment edges of graphs H±,. ..,Hr 

by sorting the edges in E{G) in inverted lexicographical order defined by the 
distances of their endpoints from /* in G*. 

Next we discuss a few simple properties of graphs Gj and Hi. which we use 
to prove the correctness of our algorithm. For every edge in Gj_2, as well as for 
every attachment edge of flj_i, the two faces on both sides of the edge are at 
level at most i — 1. Thus, they cannot be boundary edges for Gj_i. It follows 
that the boundary edges of G,_i are in E(Hi-i). Consequently, all boundary 
vertices of G,_i are in V(Hi-i). As G»_i is a union of faces, its boundary 
consists of a set of cycles, called the boundary cycles of Gj_i. Graph Hi lies 
entirely "outside" the boundary of Gj_i, i.e., in Gi_i. Hence, all attachment 
edges of Hi are connected only to boundary vertices of Gj_i, i.e., vertices of 
iJj_i. Finally, note that graph Gj is uniform. This can be shown as follows: 
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Graph Gj corresponds to the first 2i levels of the BFS-tree of G*'. For a level-
(i — 1) face / i and a level-i face $2 that share a vertex v, graph d contains all 
faces incident to v. Hence, there is a path from f{ to f% in G*. Applying this 
argument inductively, we obtain that there is a path in G* from /* to every 
vertex of G*, which shows that Gj is uniform. On the other hand, graph G^-i, 
and thus Hi, is not necessarily uniform. 

We are now ready to describe the details of our algorithm for constructing 
a DFS-tree for G by repeatedly growing a DFS-tree T for G, from a DFS-tree 
Tj_i for Gj_i, starting with the DFS-tree To for Go- During the algorithm we 
maintain the following two invariants (see Figure 10b): 

(i) Every boundary cycle C of G,_i contains exactly one edge e not in Tj_i. 
One of the two endpoints of that edge is an ancestor in Tj_i of all other 
vertices in C. 

(ii) The depth of each vertex in Gj_i, defined as the distance from s in Tj_i, 
is known. 

Assume we have computed a DFS-tree Tj_i for Gj_i. Our goal is to com
pute a DFS-forest for Hi and link it to T8_i through attachment edges of Hi 
without introducing cross-edges, in order to obtain a DFS-tree T, for Gj. If 
we can compute a DFS-forest of Hi in 0(soxt(\Hi\)) I/Os and link it to Tj_i 
in 0(sort(|ffj_i| + \Hi\)) I/Os, the overall computation of a DFS-tree T for G 

uses O(8Qrt(|ff0 |) + ELi«>rt( |fi '<-i | + l ^ l ) ) = o ( £ L o ^ l ° g M / B £ ) = 
0(sort(iV)) I/Os. Next we show how to perform both computations in the 
desired number of I/Os. 

Let H[,..., H'k be the connected components of i?,. They can be computed 
in 0(sort(|i?j|)) I/Os [12]. For every component H'j, we find the deepest vertex 
Vj on the boundary of Gj_i such that there is an attachment edge {UJ,VJ} of Hi 
with Uj e Hj. Then we compute a DFS-tree Tj of Hj rooted at Uj and attach 
Tj to Tj_i using edge {UJ,VJ}. Let Tj be the resulting tree. 

Lemma 5 Tree Ti is a DPS-tree of Gi. 

Proof: Tree Ti is a spanning tree of Gi, since T-\ is a DFS-tree for Gi-\, trees 
T[,...,T'k are DFS-trees of the connected components of Hi, and each tree Tj 
is connected to Tj_i by a single edge. Now let {v,w} be a non-tree edge of 
d. As there are no edges between different connected components of Hi in Gi, 
either v, w G H'^, for some 1 < j < k, v,w S Gj_i, or w.l.o.g. v G Hj, for some 
1 < i < fc, arid tu G Gj- i . In the first two cases, edge {u, w} is a back edge, since 
trees Tj_i and Tj are DFS-trees for Gj_i and iJj, respectively. In the latter 
case, {v, w} is a back-edge because v is a descendant of Uj, and, by Invariant (i), 
w must be an ancestor of Vj on the boundary cycle of Gj_i enclosing iJ j . • 

We can compute tree Tt from tree Tj_i in 0(soTt(\Hi^i\ + \Hi\)) I/Os: 
First we find the attachment edges {u\,v\},... ,{uk,Vh} connecting graphs 
H{,..., H'k to Gi_i . This can be done using a procedure similar to the one used 
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Figure 11: The DFS-tree of G (Figure 9 and Figure 10) 

in Section 3.1. As the attachment edges of Hi are the edges of a planar graph 
with vertex set V(Hi-\) U V(Hi), this procedure takes 0(sort(|i?j_i| + \Hi\)) 
I/Os. All that remains is to show how to compute a DFS-tree T- rooted at Uj, 
for each connected component H', of Hi. The key to doing this I/O-efficiently 
is the following lemma, which shows that Hi has a simple structure. 

Lemma 6 The non-trivial bicomps of H are the boundary cycles of Gj. 

Proof: Consider a cycle G in Hi. All faces incident to G are at level i or 
greater. Thus, since G»_i is uniform, all its faces are either inside or outside G. 
Assume w.l.o.g. that Gj_i is inside G. Then none of the faces outside G shares 
a vertex with a level-(i — 1) face. That is, all faces outside G must be at level 
at least i + 1, which means that G is a boundary cycle of Gj. 

Every bicomp that is not a cycle contains at least three internally vertex-
disjoint paths Pi , P-2, and P3 with the same endpoints v and w. As we have 
just shown, the graph Ci = Pi U P3 is a boundary cycle of Gj, as is the graph 
G2 = Pi U P2. Let {v,x} be the first edge of P2, and {y,w} be the last edge 
of P2. Since Ci is a boundary cycle of Gi, Gi is either completely inside or 
completely outside C\. Since Gi is a subgraph of Hi, all faces incident to Gi 
that are on the same side of Gi as Gj are at level i because all faces on the 
other side of Gi are at level at least i + 1. Hence, if P2 is on the same side 
of Gi as Gj, the four faces incident to edges {v,x} and {y, w} are at level i, 
which contradicts the fact that G2 is a boundary cycle of Gj. If P2 is on the 
other side of Gi, the four faces incident to edges {v,x} and {y,w} are at level 
at least i + 1, which contradicts the fact that edges {v.x} and {y,w} are at 
level i. Thus, every bicomp of Hi consists of a single boundary cycle. • 

In order to compute a DFS-tree of H', rooted at Uj, we first partition H'j 
into its bicomps. This takes 0(sort(|iIj|)) I/Os [12]. Then, as in Section 3, 
we construct the bicomp-cutpoint-tree of H'j, rooted at the bicomp containing 
Uj. For each bicomp K, we determine the parent cutpoint x. If K is a trivial 
bicomp (i.e., consists of a single edge), the DFS-tree TR of K consists of the 
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single edge in K. Otherwise, by Lemma 6, K is a cycle. Let y be a neighbor 
of x in K. This neighbor can be computed in a single scan of the edge set of 
K. To obtain a DFS-tree TK of K rooted at x, we remove edge {x, y} from 
K. The DFS-tree Tj of i?j is the union of DFS-trees TK of all bicomps K of 
H'j. Note that TK is a path from x to y, and all vertices along this path are 
descendants of x. Since the non-trivial bicomps of Hi are the boundary cycles 
of Gi, Invariant (i) is hence maintained after attaching the resulting DFS-trees 
T[,...,T'ktoT%^. 

Finally, to maintain Invariant (ii), we have to determine the depth of each 
vertex in Tj. The depth of vertices in Tj_i C Ti do not change by adding 
trees Tj,...,T'k to Tj_i. The depths of the vertices in Hi can be computed 
as follows: Every vertex Uj has depth one more than the depth of Vj £ I i _ i . 
The depths of all other vertices in T- can be computed from the depth of Uj in 
0(sort(|T'|)) I/Os by performing a DFS-traversal of Tj. Hence, this computa
tion takes 0(sort(|i?j|)) I/Os, for all trees in the DFS-forest of Hi. 

This concludes the description of our reduction from planar DFS to planar 
BFS, and thus the proof of Theorem 3. The following corollary is an immediate 
consequence of Theorem 3 and recent results of [6, 22]. 

Corollary 1 A DFS-tree of an embedded planar graph can be computed in 
0(sort(N)) I/O operations and linear space. 

5 Conclusions 

In this paper, we have developed the first o(N) I/O and linear space algorithm 
for DFS in embedded planar graphs. We have also designed an 0(soit(N)) I /O 
reduction from planar DFS to planar BFS, proving that external memory planar 
DFS is not harder than planar BFS. Together with recent results of [6, 22], this 
leads to an algorithm that computes a DFS-tree of an embedded planar graph 
in 0(sort(AO) I/Os. 
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1 Introduction 

One of the earliest works in the area of worst-case analysis of NP-hard prob
lems is a 1976 paper by Lawler [5] on graph coloring. It contains two results: 
an algorithm for finding a 3-coloring of a graph (if the graph is 3-chromatic) in 
time 0(3"/3) « 1.4422™, and an algorithm for finding the chromatic number of 
an arbitrary graph in time 0( (1 + 31(/3)n) « 2.4422™. Since then, the area has 
grown, and there has been a sequence of papers improving Lawler's 3-coloring 
algorithm [1,2,4,8], with the most recent algorithm taking time « 1.3289™. 
However, there has been no improvement to Lawler's chromatic number algo
rithm. 

Lawler's algorithm follows a simple dynamic programming approach, in 
which we compute the chromatic number not just of G but of all its induced 
subgraphs. For each subgraph S, the chromatic number is found by listing all 
maximal independent subsets I C S, adding one to the chromatic number of 
S\I, and taking the minimum of these values. The 0((1 + 31/3)") running 
time of this technique follows from an upper bound of 3™/3 on the number of 
maximal independent sets in any n-vertex graph, due to Moon and Moser [6]. 
This bound is tight in graphs formed by a disjoint union of triangles. 

In this paper, we provide the first improvement to Lawler's algorithm, using 
the following ideas. First, instead of removing a maximal independent set from 
each induced subgraph S, and computing the chromatic number of S from that 
of the resulting subset, we add a maximal independent set of G \ S and compute 
the chromatic number of the resulting superset from that of S. This reversal 
does not itself affect the running time of the dynamic programming algorithm, 
but it allows us to constrain the size of the maximal independent sets we consider 
to at most \S\/3. We show that, with such a constraint, we can improve the 
Moon-Moser bound: for any n-vertex graph G and integer parameter k, there 
are at most 34fe-"4n_3fe maximal independent sets I C G with \I\ < k. This 
bound then leads to a corresponding improvement in the running time of our 
chromatic number algorithm. 

2 Preliminaries 

We assume as given a graph G with vertex set V(G) and edge set E(G). We 
let n = |V(G)| and m = |i?(G)|. A proper coloring of G is an assignment of 
colors to vertices such that no two endpoints of any edge share the same color. 
We denote the chromatic number of G (the minimum number of colors in any 
proper coloring) by x(G). 

If V(G) — {vo,«!,... vn_i}, then we can place subsets S C V{G) in one-to-
one correspondence with the integers 0 , 1 , . . . 2™ — 1: 

ViES 

Subsets of vertices also correspond to induced subgraphs of G, in which we 
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include all edges between vertices in the subset. We make no distinction between 
these three equivalent views of a vertex subset, so e.g. we will write %(5) to 
indicate the chromatic number of the subgraph induced by set S, and X[S] to 
indicate a reference to an array element indexed by the number Ylv-es^- We 
write S < T to indicate the usual arithmetic comparison between two numbers, 
and S C T to indicate the usual (proper) subset relation between two sets. Note 
that, if S C T, then also S <T, although the reverse implication does not hold. 

A set S is a maximal k-chromatic subset of T if S C T, x(S) = k, and 
x{S') > k for every S C S' C T. In particular, if k = 1, S is a maximal 
independent subset of T. 

For any vertex v & V(G), we let N(v) denote the set of neighbors of v, 
including v itself. If 5 and T are sets, S\T denotes the set-theoretic difference, 
consisting of elements of S that are not also in T. Ki denotes the complete 
graph on i vertices. We write deg(u, S) to denote the degree of vertex v in the 
subgraph induced by S. 

We express our pseudocode in a syntax similar to that of C, C++ , or Java. 
In particular this implies that array indexing is zero-based. We assume the 
usual RAM model of computation, in which a single cell is capable of storing an 
integer large enough to index the memory requirements of the program (thus, in 
our case, n-bit values are machine integers), and in which arithmetic and array 
indexing operations on these values are assumed to take constant time. 

3 Small Maximal Independent Sets 

Theorem 1 Let G be an n-vertex graph, and k be a nonnegative number. Then 
the number of maximal independent sets I C V(G) for which \I\ < k is at most 
oAk—nAn—3k 

Proof: We use induction on n; in the base case n = 0, there is one (empty) 
maximal independent set, and for any k > 0, 1 < 34fc4_3fe = (81/64)fc. Oth
erwise, we divide into cases according to the degrees of the vertices in G, as 
follows: 

• If G contains a vertex v of degree three or more, then each maximal 
independent set I either avoids v (in which case I itself is a maximal 
independent set of G \ {v}) or contains v (in which case I \ {v} is a 
maximal independent set of G \ N(v)). Thus, by induction, the number 
of maximal independent sets of cardinality at most k is at most 

^4k-(n-l)^(n-l)-3k , g4( fc - l ) - ( ra -4)4(n-4) -3( fc - l ) 

S 1 __ / _ I _\"}4fe—n AU—3k oik—riAn—3k 
4 4 ~ 

as was to be proved. 

• If G contains a degree-one vertex v, let its neighbor be u. Then each 
maximal independent set contains exactly one of u or v, and removing 
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this vertex from the set produces a maximal independent set of either 
G \ N(v) or G \ N(u). If the degree of u is d, this gives us by induction a 
bound of 

3 4 ( f c - l ) - ( n - 2 ) 4 ( n - 2 ) - 3 ( A : - l ) + 3 4 ( f e - l ) - ( n - d - l ) 4 ( n - d - l ) - 3 ( f c - l ) 

Q 

< _ Q f̂e—riAn—3fc 
_ 9 

on the number of maximal independent sets of cardinality at most k. 
• If G contains an isolated vertex v, then each maximal independent set 

contains v, and the number of maximal independent sets of cardinality at 
most k is at most 

g4(fc-l)-(n-l)4(n-l)-3(fc-l) _ ^6 ^k-n^nSk 

• If G contains a chain u-v-w-x of degree two vertices, then each maximal 
independent set contains u, contains v, or does not contain u and contains 
w. Thus in this case the number of maximal independent sets of cardinality 
at most k is at most 

2 . 34 ( / s - l ) - ( r a -3 )^ (n -3 ) -3 ( fc - l ) , ^4,(k-l)-(n-4)^(n-4)-3(k-l) 

Us-
12 

4k—n ATI—3k 

• In the remaining case, G consists of a disjoint union of triangles, all max
imal independent sets have exactly n / 3 vertices, and there are exactly 
3 n / 3 maximal independent sets. If k > n /3 , then 3™/3 < 34fc-«4n-3fc. If 
k < n /3 , there are no maximal independent sets of cardinality at most k. 

Thus in all cases the number of maximal independent sets is within the 
claimed bound. • 

Croitoru [3] proved a similar bound with the stronger assumption that all 
maximal independent sets have | / | < k. When n/4 < k < n /3 , our result is 
tight, as can be seen for a graph formed by the disjoint union of 4fc — n triangles 
and n — 3k K4S. 

Theorem 2 There is an algorithm for listing all maximal independent sets of 
size at most k in an n-vertex graph G, in time 0(34 f c _ n4n _ 3 f e) . 

Proof: We use a recursive backtracking search, following the case analysis of 
Theorem 1: if there is a high-degree vertex, we try including it or not including 
it; if there is a degree-one vertex, we try including it or its neighbor; if there is 
a degree-zero vertex, we include it; and if all vertices form chains of degree-two 
vertices, we test whether the parameter k allows any small maximal independent 
sets, and if so we try including each of a chain of three adjacent vertices. The 
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/ / List maximal independent subsets of S smaller than a given parameter. 
/ / S is a set of vertices forming an induced subgraph in G, 
II I is a set of vertices to be included in the MIS (initially zero), and 
/ / k bounds the number of vertices of S to add to J. 
/ / We call processMIS(J) on each generated set. Some non-maximal sets may be 
/ / generated along with the maximal ones, but all generated sets are independent. 

void smallMIS (set S, set I, int k) 

{ 
if (S = 0 or k = 0) processMIS(l); 
else if (there exists v £ S with deg(u, S) > 3) 

{ 
smallMIS {S\{v}, I, k); 
smallMIS (5 \ N(v), IU {«} , k - 1); 

} 
else if (there exists v £ S with deg(u, S) = 1) 

{ 
let u be the neighbor of v; 
smallMIS {S \ N(u), IU {u}, k - 1); 
smallMIS [S \ N{v), IU {v}, k - 1); 

} 
else if (there exists v £ S with deg(u, S) = 0) 

smallMIS (5 \ {v}, IU {«} , k - 1); 
else if (some cycle in S is not a triangle or k > |5|/3) 
{ 

let u, v, and w be adjacent degree-two vertices, 
such that (if possible) u and w are nonadjacent; 

smallMIS (S \ N(u), IU {u}, k - 1); 
smallMIS (S \ N(v), IU {v}, k - 1); 
smallMIS (5 \ {{u} U jV(u>)), IU {w}, k - 1); 

} 
} 

Figure 1: Algorithm for listing all small maximal independent sets. 
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same case analysis shows that this algorithm performs 0(34fc-«4n-3fe) recursive 
calls. 

Each recursive call can easily be implemented in time polynomial in the 
size of the graph passed to the recursive call. Since our 34fe-™4™-3*: bound is 
exponential in n, even when k = 0, this polynomial overhead at the higher levels 
of the recursion is swamped by the time spent at lower levels of the recursion, 
and does not appear in our overall time bound. • 

A more detailed pseudocode description of the algorithm is shown in Fig
ure 1. The given pseudocode may generate non-maximal as well as maximal 
independent sets, because (when we try not including a high degree vertex) we 
do not make sure that a neighbor is later included. This will not cause problems 
for our chromatic number algorithm, but if only maximal independent sets are 
desired one can easily test the generated sets and eliminate the non-maximal 
ones. The pseudocode also omits the data structures necessary to implement 
each recursive call in time polynomial in |5 | instead of polynomial in the number 
of vertices of the original graph. 

4 Chromatic Number 

We are now ready to describe our algorithm for computing the chromatic number 
of graph G. We use an array X, indexed by the 2" subsets of G, which will 
(eventually) hold the chromatic numbers of certain of the subsets including V(G) 
itself. We initialize this array by testing, for each subset S, whether x(S) < 3; 
if so, we set X[S] to x(S), but otherwise we set X[S] to oo. 

Next, we loop through the subsets S of V(G), in numerical order (or any 
other order such that all proper subsets of each set S are visited before we visit 
5 itself). When we visit S, we first test whether X[S] > 3. If not, we skip 
over S without doing anything. But if X[S] > 3, we loop through the small 
independent sets oiG\S, limiting the size of each such set to |S | /X[S], using the 
algorithm of the previous section. For each independent set 7, we set X[S U I] 
to the minimum of its previous value and X[S] + 1. 

Finally, after looping through all subsets, we return the value in X[V(G)] as 
the chromatic number of G. Pseudocode for this algorithm is shown in Figure 2. 

Lemma 1 Throughout the course of the algorithm, for any set S, X[S] > x(S'). 

Proof: Clearly this is true of the initial values of X. Then for any S and any 
independent set I, we can color S U J by using a coloring of S and another color 
for each vertex in I, so \(S U J) < x(S) + 1 < X[S\ + 1, and each step of our 
algorithm preserves the invariant. • 

Lemma 2 Let M be a maximal k + 1-chromatic subset of G, and let (S,I) 
be a partition of M into a k-chromatic subset S and an independent subset I, 
maximizing the cardinality of S among all such partitions. Then I is a maximal 
independent subset of G\S with \I\ < \S\/k, and S is a maximal k-chromatic 
subset of G. 



D. Eppstein, Faster Exact Graph Coloring, JGAA, 7(2) 131-140 (2003) 137 

int chromaticNumber (graph G) 

{ 
intX[2"]; 
for (S = 0; S < 2"; S++) 

{ 
if (X(S) < 3) X[S] = X[S\; 
else X[S] — oo; 

} 
for (5 = 0; S < 2n; S++) 
{ 

if (3 < X[S] < oo) 
{ 

for (each maximal independent set I of G \ S with \I\ < ' ) 

X[5 U /] = min(X[5 U I],X[S] + 1); 

} 
} 
return X[V(G)]; 

Figure 2: Algorithm for computing the chromatic number of a graph. 

Proof: If we have any (k + l)-coloring of G, then the partition formed by 
separating the largest k color classes from the smallest color class satisfies the 
inequality |7| < \S\/k, so clearly this also is true when (S,I) is the partition 
maximizing |5 | . If I were not maximal, due to the existence of another inde
pendent set I C I' C G \ S, then S U I' would be a larger (k + l)-chromatic 
graph, violating the assumption of maximality of M. 

Similarly, suppose there were another fc-chromatic set S C S' C G. Then if 
S" n I were empty, S' UI would be a (k + l)-chromatic superset of M, violating 
the assumption of M's maximality. But if S' n I were nonempty, (S', I \ S') 
would be a better partition than (S, I), so in either case we get a contradiction. 

• 

Lemma 3 Let M be a maximal k + 1-chromatic subset of G. Then, when the 
outer loop of our algorithm reaches M, it will be the case that X[M] — x(M). 

Proof: Clearly, the initialization phase of the algorithm causes this to be true 
when x(M) < 3. Otherwise, let (S,I) be as in Lemma 2. By induction on \M\, 
X[S] = x(S) at the time we visit S. Then X[S] > 3, and |7| < \S\/X[S], so the 
inner loop for S will visit I and set X\M] to X[S] + 1 = xiM)- n 

Theorem 3 We can compute the chromatic number of a graph G in time 
0((4/3 + 34/3/4)") and space 0 (2") . 
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Proof: V(G) is itself a maximal x(G)-chromatic subset of G, so Lemma 3 shows 
that the algorithm correctly computes x{G) = X[V(!&)]• Clearly, the space is 
bounded by 0(2n). It remains to analyze the algorithm's time complexity. 

First, we consider the time spent initializing X. Since we perform a 3-
coloring algorithm on each subset of G, this time is 

Y^ 0(1.3289|s|) = o(JT (") 1.3289*) = 0(2.3289'). 
SCV(G) i=0 \ 1 ' 

Finally, we bound the time in the main loop of the algorithm, which applies 
the algorithm of Theorem 2 to generate small independent subsets of each set 
G \ S. In the worst case, X[S] = 3 and we can only limit the size of the 
generated independent sets to |5 | /3 . We spend constant time adjusting the 
value of X[S U I] for each generated set. Thus, the time can be bounded as 

V o ^ ^ - i o v s y c v s i - a l f l ) 

SCV(G) 

= ° ( E ( n ) 3 ¥ _ n 4 n ~ 2 i ) 
/ 4 3 4 / 3 \ 

- o ( ( 5 + — ) * ) • 

This final term dominates the overall time bound. • 

5 Finding a Coloring 

Although the algorithm of the previous section finds the chromatic number of 
G, it is likely that an explicit coloring is desired, rather than just this number. 
The usual method of performing this sort of construction task in a dynamic 
programming algorithm is to augment the dynamic programming array with 
back pointers indicating the origin of each value computed in the array, but since 
storing 2™ chromatic numbers is likely to be the limiting factor in determining 
how large a graph this algorithm can be applied to, it is likely that also storing 
2™ set indices will severely reduce its applicability. 

Instead, we can simply search backwards from V(G) until we find a subset 
S that can be augmented by an independent set to form V(G), and that has 
chromatic number x(5) = %(G) — 1 as indicated by the value of X [S]. We assign 
the first color to G \ S. Then, we continue searching for a similar subset T c S, 
etc., until we reach the empty set. Although not every set 5 may necessarily 
have X[S] = x(S), it is guaranteed that for any S we can find T C S with 
S\T independent and X[T] = X[S] — 1, so this search procedure always finds 
a correct coloring. 

Theorem 4 After computing the array X as in Theorem 3, we can compute 
an optimal coloring of G in additional time 0(2") and 0(1) additional space. 
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void color (graph G) 

{ 
compute array X as in Figure 2; 
S = V(G); 
for (T = 2n - 1; T > 0; T — ) 

{ 
if (T C S and X[S\T} = 1 and X[T] = X[S] - 1) 
{ 

color all vertices in S \ T with the same new color; 
S = T; 

} 
} 

} 

Figure 3: Algorithm for optimally coloring a graph. 

Proof: Pseudocode for the coloring algorithm is shown in Figure 3. As we saw 
earlier, X[S] can only be guaranteed equal to x(S) when x(5) < 3 or when S is 
maximal fc-chromatic; however, X[S] always provides a correct upper bound on 
x(S)- So, each iteration of the inner block of Figure 3 correctly decomposes the 
problem into a single independent color class and a remaining (k — l)-coloring 
problem. A subset T satisfying the test will always be found, because the 
dynamic program must have used some T to set the value of X[S\. 

The time analysis follows since the algorithm consists of a simple loop over all 
subsets, performing simple subset tests and array lookups that can be executed 
in constant time each. • 

6 Conclusions 
We have shown a bound on the number of small independent sets in a graph, 
shown how to list all small independent sets in time proportional to our bound, 
and used this algorithm in a new dynamic programming algorithm for computing 
the chromatic number of a graph as well as an optimal coloring of the graph. 

Our bound on the number of small independent sets is tight for n/4 < k < 
n /3 . Very recently, Nielsen [7] has shown similar tight bounds for all ranges 
of k. Although this extension of our results does not help our chromatic num
ber algorithm, Nielsen was able to use it, together with algorithms for listing 
small maximal independent sets, as part of improved algorithms for four- and 
five-coloring. Both our algorithm and Nielsen's may take time proportional to 
the worst case bound, even for graphs with fewer maximal independent sets. 
It would be of interest to find an algorithm for listing all small maximal inde
pendent sets in time proportional to the number of generated sets rather than 
simply proportional to the worst case bound on this number. 
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Our worst case analysis of the chromatic number algorithm assumes that, 
every time we call the procedure for listing small maximal independent sets, 
this procedure achieves its worst case time bound. But is it really possible for 
all sets G \ S to be worst case instances for this procedure? If not, perhaps the 
analysis of our coloring algorithm can be improved. 

Can we prove a bound smaller than (") on the number of i-vertex maximal 
fc-chromatic induced subgraphs of a graph G1 If such a bound could be proven, 
even for k = 3, we could likely improve the algorithm presented here by only 
looping through the independent subgraphs of G \ S when S is maximal. 

An alternative possibility for improving the present algorithm would be to 
find an algorithm for testing whether x{G) < 4 in time o(1.415"). Then we 
could test the four-colorability of all subsets of G before applying the rest of 
our algorithm, and avoid looping over maximal independent subsets of G \ S 
unless X[S] > 4. This would produce tighter limits on the independent set 
sizes and therefore reduce the number of independent sets examined. However 
such a result would be significantly better than the best known time bound, 
0(1.7504") for Nielsen's four-coloring algorithm [7]. 
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1 Introduction 

The clique-width of a graph is defined by a composition mechanism for vertex-
labeled graphs, see [CO00]. The operations are the vertex disjoint union G®H 
of two graphs G and H, the addition of edges 77^ (G) between vertices labeled 
by i and vertices labeled by j , and the relabeling pj_j(G) of vertices labeled 
by i into vertices labeled by j . The clique-width of a graph G is the minimum 
number of labels needed to define G. 

Graphs of bounded clique-width are interesting from an algorithmic point 
of view. A lot of NP-complete graph problems can be solved in polynomial 
time for graphs of bounded clique-width if the composition of the graph is 
explicitly given. For example, all graph properties which are expressible in 
monadic second order logic with quantifications over vertices and vertex sets 
(MSOi-logic) are decidable in linear time on graphs of bounded clique-width, 
see [CMR00]. The MSOi-logic has been extended by counting mechanisms 
which allow the expressibility of optimization problems concerning maximal or 
minimal vertex sets, see [CMR00]. All these graph problems expressible in 
extended MSOi-logic can be solved in polynomial time on graphs of bounded 
clique-width. Furthermore, a lot of NP-complete graph problems which are not 
expressible in MSOi-logic or extended MSOi-logic like Hamiltonicity and a lot 
of partitioning problems can also be solved in polynomial time on graphs of 
bounded clique-width, see [EGW01, KR01, Wan94]. 

The following facts are already known about graphs of bounded clique-width. 
If a graph G has clique-width at most k then the edge complement G has clique-
width at most 2k, see [CO00]. Distance hereditary graphs have clique-width at 
most 3, see [GR00]. The set of all graphs of clique-width at most 2 is the set of 
all cographs. The clique-width of permutation graphs, interval graphs, grids and 
planar graphs is not bounded by some fixed integer, see [GR00]. An arbitrary 
graph with n vertices has clique-width at most n — r, if 2r < n — r, see [Joh98]. 

One of the central open questions concerning clique-width is determining 
the complexity of recognizing and finding a decomposition with clique-width 
operations of graphs of clique-width at most k, for fixed k > 4. Clique-width 
of at most 2 is decidable in linear time, see [CPS85]. Clique-width of at most 
3 is decidable in polynomial time, see [CHL+00]. The recognition problem for 
graphs of clique-width at most k is still open for k > 4. The complexity of the 
minimization problem where k is additionally given to the input is also open, 
i.e., not known to be NP-complete nor known to be solvable in polynomial time. 

A famous class of graphs for which a lot of NP-complete graph problems 
can be solved in polynomial time is the class of graphs of bounded tree-width, 
see Bodlaender [Bod98] for a survey. For every fixed integer Z, it is decidable in 
linear time whether a given graph G has tree-width I, see [Bod96]. All graph 
properties expressible in monadic second order logic with quantifications over 
vertex sets and edge sets (MS02-logic) are decidable in linear time for graphs of 
bounded tree-width by dynamic programming, see [Cou90]. The MS02-logic has 
also been extended by counting mechanisms to express optimization problems 
which can then be solved in polynomial time for graphs of bounded tree-width, 
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see [ALS91]. 
Clique-width seems to be "more powerful" than tree-width. Every graph of 

tree-width at most / has clique-width at most 3 • 2 ! _ 1 , see [CR01]. Since the 
set of all cographs already contains all complete graphs, the set of all graphs 
of clique-width at most 2 does not have bounded tree-width. In [GW00], it is 
shown that every graph of clique-width at most k which does not contain the 
complete bipartite graph Kn^n for some n > 1 as a subgraph has tree-width at 
most 3k(n — 1) — 1. 

An algorithm to decide a graph property on a graph of bounded tree-width 
can simply be obtained by partitioning the set of all so-called I-terminal graphs 
into a finite number of equivalence classes as follows. An /-terminal graph is a 
graph with a list of I distinct vertices called terminals. Two /-terminal graphs 
G and H can be combined to a graph G o H by taking the disjoint union of 
G and H and then identifying the i-th terminal of G with the i-th terminal of 
H for 1 < i < I. They are called replaceable with respect to a graph property 
II if for all /-terminal graphs J the answer to II is the same for G o J and 
H o J. Replaceability is obviously an equivalence relation. A graph property II 
is decidable in linear time on a graph of bounded tree-width if there is a finite 
number of equivalence classes with respect to II for all /-terminal graphs and 
all / > 0. The linear time algorithm first computes a binary tree-decomposition 
To for G and then bottom-up the equivalence class for every /-terminal graph 
G' represented by a complete subtree T'D of To- The equivalence class of G' 
defined by subtree T'D with root u' is computable in time 0(1) from the classes 
of the two /-terminal graphs defined by the two subtrees in T'D — {u'}, see also 
[Arn85, ALS91, AP89, Bod97, Cou90, LW88, LW93]. 

In this paper, we prove that the graph property "clique-width at most k" 
divides the set of all /-terminal graphs into a finite number of equivalence classes. 
This implies that there exists a linear time algorithm for deciding "clique-width 
at most k" for graphs of bounded tree-width. Since every graph of tree-width 
/ has clique-width at most 3 • 2* -1 , there is also a linear time algorithm for 
computing the "exact clique-width" of a graph of bounded tree-width by testing 
"clique-width at most fc" for k = 1 , . . . , 3 • 2 ! _ 1 . Note that it remains still open 
whether the clique-width k property is expressible in MS02-logic and whether 
"clique-width at most fc" is decidable in polynomial time for arbitrary graphs. 

The paper is organized as follows. In Section 2 we define the clique-width 
of vertex labeled graphs. Every graph of clique-width at most k is defined by a 
fc-expression X. 

In Section 3, we define the fc-expression tree of a fc-expression. Every k-
expression defines a unique fc-expression tree and every /c-expression tree defines 
a unique fc-expression. We will mostly work with the expression tree instead 
of the expression, because many transformation steps are easier to explain for 
expression trees than for expressions. 

In Section 4, we define a normal form for a ^-expression. We show that for 
every fc-expression there is an equivalent one in normal form. 

In Section 5, we define /-terminal graphs, for some nonnegative integer /, and 
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an equivalence relation on the set of all Z-terminal graphs, called replaceability. 
This equivalence relation is defined with respect to the graph property clique-
width at most k. If the relation has a finite number of equivalence classes, then 
the graph property clique-width at most k is decidable in linear time on graphs 
of tree-width at most / by dynamic programming algorithms. 

In Section 6, we give an overview about the proof of the main result. 
In Section 7, we show that every combined graph H o J of clique-width at 

most k can be defined by a fc-expression in normal form whose expression tree 
satisfies further special properties concerning the composition of H and J to 
H o J. Every of these special expression trees defines a connection tree for H. 
The set of all connection trees for H is called the connection type of H. For fixed 
integers k and I, there is only a fixed number of mutually different connection 
trees and thus a fixed number of connection types. 

In Section 8, we show that if two /-terminal graphs H\ and H.-2, define the 
same connection type then they are replaceable with respect to property clique-
width at most k. This shows that the equivalence relation defined in Section 5 
has a finite number of equivalence classes, which implies that graph property 
clique-width at most k is decidable in linear time for graphs of bounded tree-
width. 

2 Clique-width 

We work with finite undirected graphs G = (VG, EG), where VG is a finite set of 
vertices and EG C {{U, V} | U, V G VG, U ̂  v} is a finite set of edges. A graph 
J = (VJ,EJ) is a subgraph of G if Vj is a subset of VG and Ej is a subset of 
EG n {{u, v} I u, v G Vj, u ^ v}. J is an induced subgraph of G if additionally 
EJ = {{u,v} G EG | U,V G VJ}. G and J are isomorphic if there is a bijection 
b : VG —• Vj such that for every pair of vertices u, v G VG, {U, V} is an edge of 
G if and only if {b(u), b(v)} is an edge of J. To distinguish between the vertices 
of (non-tree) graphs and trees, we simply call the vertices of the trees nodes. 

The notion of clique-width for labeled graphs is first defined by Courcelle 
and Olariu in [CO00]. Let [k] := { 1 , . . . , k} be the set of all integers between 1 
and k. A k-labeled graph G = (VG,EG, labc) is a graph (VG, EG) whose vertices 
are labeled by a mapping labc : VG —> [k]. The fc-labeled graph consisting 
of a single vertex labeled by some label t G [k] is denoted by »t. A A;-labeled 
graph J = (Vj,Ej,labj) is a k-labeled subgraph of G if Vj C VG, EJ C EG n 
{{u, v} I u, v G Vj, U ̂  v} and labj(w) = labc(u) for all u G Vj. G and J are 
isomorphic if there is a bijection b : VQ —> Vj such that {u, v} G EQ if and only 
if {b(u),b(v)} G Ej, and for every vertex u G VG, labc(w) = labj(6(u)). 

Definition 2.1 (Clique-width, [CO00]) Let k be some positive integer. The 
class CWk of k-labeled graphs is recursively defined as follows. 

1. The k-labeled graphs *t for t G [k] are in CWk-
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2. Let G = (VG,EG,labG) € CWk and J = (Vj,Ej,labj) € CWk be two 
vertex disjoint k-labeled graphs. Then the k-labeled graph 

G®J:={V',E',lab') 

defined by V := VG U Vj, E' := EG U Ej, and 

. ,. . / labG(u) ifuGVG , 
lab (u) := < , , , { -f ,- T / , Vu 6 V 

is in CWk-

3. Let i,j e [k], i ^ j , be two distinct integers and G = (VG,EG,labG) G 
CWk be a k-labeled graph then 

(a) the k-labeled graph r)ij(G) := (VG,E',labG) defined by 

E' := EG U {{u, v} | u, v £ VG, u^v, lab(u) = i, lab(v) — j} 

is in CWk and 

(b) the k-labeled graph pi^j{G) := (VG,EG, lab') defined by 

lab'(u) := ( labG{u) %l
]
ab

h
G^/i , V u G F G v ' \ 3 if labG{u) = i 

is in CWk-

An expression X built with the operations •*, ®, r)ij, pi^j for integers t, i,j e 
[k] is called a k-expression. To distinguish between the fe-expression and the 
graph defined by the fc-expression, we denote by val(X) the graph defined by 
expression X. That is, CWfc is the set of all graphs val(X), where X is a 
fc-expression. 

We say, a fc-labeled graph G has clique-width at most k if G is contained in 
class CWfe, i.e., the set CWfe is the set of all fc-labeled graphs of clique-width at 
most k. The clique-width of a fc-labeled graph G is the smallest integer k such 
that G has clique-width at most k. 

We sometimes use the simplified notions labeled graph and expression for a 
fc-labeled graph and a fc-expression, respectively. In these cases, however, either 
k is known from the context, or k is irrelevant for the discussion. 

An unlabeled graph G = (VG,EG) has clique-width at most k if there is 
some labeling labG : VG —> [k] of the vertices of G such that the labeled graph 
G' — (VG,EG,\abG) has clique-width at most k. The clique-width of an un
labeled graph G = (VG,EG) is the smallest integer k such that there is some 
labeling labc : VG —> [k] of the vertices of G such that the labeled graph 
G' = (VG,EG,l&bG) has clique-width at most k. 

If X is a fc-expression then obviously p%^\ (X) is a fc-expression for all i G 
[k],i > 1. For the rest of this paper, we consider an unlabeled graph as a labeled 
graph in that all vertices are labeled by the same label, which is without loss 
of generality label 1. This allows us to use the notation "graph" without any 
confusion for labeled and unlabeled graphs. 
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3 Expression tree 

Every fc-expression X has by its recursive definition a tree structure that is 
called the k-expression tree T for X. It is an ordered rooted tree whose nodes 
axe labeled by the operations of the fe-expression and whose arcs axe directed 
from the leaves towards the root of T. The root of T is labeled by the last 
operation of the fc-expression. 

Definition 3.1 (Expression tree) The fe-expression tree T for k-expression 
•t consists of a single node r (the root of T) labeled by »t. The fe-expression 
tree T for r/,?J(X) and pi^j(X) consists of a copy T' of the k-expression tree 
for X, an additional node r (the root ofT) labeled by rjij or Pi->j, respectively, 
and an additional arc from the root of 7" to node r. The fc-expression tree T 
for Xi © X2 consists of a copy T\ of the k-expression tree for Xi, a copy T2 of 
the k-expression tree for X2, an additional node r (the root ofT) labeled by © 
and two additional arcs from the roots ofT\ and T2 to node r. The root o/Ti 
is the left child of r and the root 0/T2 is the right child of r. 

A node ofT labeled by »t, rjij, Pi^j, or © is called a leaf, edge insertion 
node, relabeling node, or union node, respectively. 

If integer fe is known from the context or irrelevant for the discussion, then we 
sometimes use the simplified notion expression tree for the notion fc-expression 
tree. The leaves of expression tree T for expression X correspond to the vertices 
of graph val(X). For some node u of expression tree T, let T(u) be the subtree 
of T induced by node u and all nodes of T from which there is a directed path 
to u. Note that T{u) is always an expression tree. The expression X(u) defined 
by T(u) can simply be determined by traversing the tree starting from the root, 
where the left children axe visited first. The vertices of G' are the vertices of 
G corresponding to the leaves of T(u). The edges of G' and the labels of the 
vertices of G' are defined by expression X(u). For two vertices u, v of G', every 
edge {u, v} of G' is also in G but not necessarily vice versa. Two equal labeled 
vertices in G' are also equal labeled in G but not necessarily vice versa. The 
labeled graph G' is denoted by G(T, u) or simply G(u), if tree T is unique from 
the context. Figure 1 illustrates these notations. 

4 Normal form 

We next define a so-called normal form for a fc-expression. This normal form 
does not restrict the class of fc-labeled graphs that can be defined by fc-expres-
sions, but is very useful for the proof of our main result. 

To keep the definition of our normal form as simple as possible, we enumerate 
the vertices in a graph G = val(X) defined by some fc-expression X as follows. 
The single vertex in val(«t) is the first vertex of val(«t). Let G — val(Yi © Y2). 
If val(Si) has n vertices and v a l ^ ) has m vertices, then for i = 1 , . . . , n the 
i-th vertex of G is the i-th vertex of val(Yi) and for i = n +1,..., n + m the i-th 
vertex of G is the (i — n)-th vertex of val(Y2)- The i-th vertex of val(»7j ,-(V)) 
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x = pi_»2(»72^(((»?i,2(»ie«a))e(»ji,2(«ie»2)))©»3)) T cgr> 

Figure 1: A 3-labeled graph G defined by a 3-expression X with 3-expression 
tree T, and a 3-labeled graph G(T,u) defined by 3-expression X(u) with 3-
expression tree T(u) 

and val(pi^j(Y)) is the i-th vertex of val(y). We say two expressions X and 
Y are equivalent, denoted by X = Y, if val(X) and val(Y) are isomorphic in 
consideration of the order of the vertices, that is, 

1. val(X) and val(Y) have the same number n of vertices, 

2. the i-th vertex in val(X), 1 < i < n, has the same label as the i-th vertex 
in val(Y), and 

3. there is an edge between the i-th and j'-th vertex in val(X), 1 < i, j < n, 
if and only if there is an edge between the i-th and j - t h vertex in val(Y). 

Otherwise X and Y are not equivalent, denoted by X ^ Y. 
If two fc-expressions X and Y are equivalent then they do not need to be 

equal. If two fc-labeled graphs val(X) and val(Y) defined by two fc-expressions 
X and Y are isomorphic (see the second paragraph of Section 2) then X and Y 
do not need to be equivalent. Figure 2 shows an example. 

Definition 4.1 (Normal form) Our normal form for k-expressions is defined 
as follows. 

1. The k-expression »t for some t G [k] is in normal form. 

2. IfY\ and Y% are two k-expressions in normal form then the k-expression 

P i „ - j „ ( • • • « i - i i ( V i > , j ,(••• Vi> j> (Xi e Y2) • • • ) ) • • • ) 

for i'n,,j'n, e [k] is in normal form if the fol
lowing properties hold true. 
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Xl =»72>3((»?1>2(«1©»2))©»3) = X2 = r7l,2(»l©(7?2,3(»2©»3))) 

, , y , 0 ® © mUys © ® ® 
val(JLj) : i 2 3 val(A2) : / 2 3 

^ 3 = (j?l,2(»2©«l))©«2 ^ ^4 = »2 © (%,2(»1 © »2)) 

UV\ © © © UY \ © © © 
val(A3J : / 2 3 va\{Xi) : 1 2 3 

Figure 2: The small indices at the vertices represent their numbering with re
spect to the corresponding fc-expression. The expressions X\ and X2 are equiv
alent but not equal. The labeled graphs val(X3) and val(Xt) are isomorphic 
but the expressions X3 and X4 are not equivalent. 

(a) For every edge insertion operation rji^ j>t, 1 <V <n', 

r,i,iiJ,ii(Y1) = Y1, and ili,[i,jlii(Y2) = Y2. 

(b) For every relabeling operation p»,->j,, 1 < / < n, graph 

val{Pil_Y^h (• • • p s j - . ^ ( ijj , , , / , ( • • • Vi> ,j> (V i © Y2) • • • ) ) • • • ) ) 
n' n' x 1 

has a vertex labeled by ii and a vertex labeled by ji, and 

(c) For every pair of two distinct labels i,j e [k], i ^ j , 

i. if val{Y\) has a vertex labeled by i and a vertex labeled by j then 

£ Wi-*j1(---Pu-»n('?i[,,j;,(---'Ji'1,j{( Pi~i(Yi) © Y2 )•••))•••) 

and 
ii. if val{Y2) has a vertex labeled by i and a vertex labeled by j then 

Ph^h(---Pii^Ji(rii'ri,,J'nl(---
rii'1,j'1(

 y i © y 2 ) • • • ) ) • • • ) 

If X is a fc-expression in normal form then the operations between two union 
operations are ordered such that there are first the edge insertion operations 
and after that the relabeling operations. Edges are inserted and vertices are 
relabeled as soon as possible in the following sense. By Definition 4.1(2.(a)), 
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every edge insertion operation 77^ J-»/ inserts at least one edge between a vertex 
of val(l i) and a vertex of val(l2) but no edge between two vertices of val(Fi) or 
between two vertices of val(Y2)- By Definition 4.1(2.(b)), a relabeling operation 
Pit-,j, always relabels at least one vertex to some label already used by at least 
one other vertex. Thus every relabeling operation decreases the number of 
labels used by the vertices of the graph. Since none of the relabeling operations 
pil_1^jl_1,..., Pii—ji relabels anything to i\, every vertex is relabeled at most 
once (between two union operations). The three properties, there is a vertex 
labeled by ii, there is a vertex labeled by ji, and i\ £ {ji-i, • • •, ji} imply that 
k & {ii-i,---,h,ji-i,---,ji} and ji <£ {U-i,... ,h}. Finally, by Definition 
4.1(2.(c)), the number of labels used in the graphs defined by the subexpressions 
is always minimal. 

The following observations are easy to verify. If fc-expression pi^j(Y) is in 
normal form then fc-expression Y is in normal form, if fc-expression J^/J/ (Y) is in 
normal form then fc-expression Y is in normal form, and if fc-expression Y\ ® I2 
is in normal form then fc-expression Y\ and fc-expression I2 are in normal form. 
That is, if an expression is in normal form, then every complete subexpression 
is in normal form. 

Theorem 4.2 For every k-expression X there is an equivalent k-expression in 
normal form. 

Proof: We show how to transform an arbitrary fc-expression X into an equiv
alent fc-expression in normal form. 

The following transformation steps can be used to transform a fc-expression 
X into an equivalent fc-expression in that no edge insertion operation is applied 
directly after a relabeling operation. 

Let Z = r)i'j'(pi-tj(Y)) be a subexpression of X. 

1. If {i,j} fl {i',j'} = 0, then Z can be replaced by pi-,j(r}i>j'(Y)), because 
the two operations do not affect each other. 

2. Iff G {i',f}, then we can omit the edge insertion operation rji'ji, because 
it does not create an edge. 

3. If i £ {i', j'} and j G {i',f}, then we distinguish between two cases. If 
j = i' then Z can be replaced by pi-^jiVi'j'iVid'O^)))^ ^ J = f t n e n % 
can be replaced by Pi-*,-(J7i'j'(»7i',i(y'))). 

These transformation steps can be used to transform a fc-expression X into 
an equivalent fc-expression such that all edge insertion and relabeling operations 
are in the right order with respect to Definition 4.1. The succeeding transfor
mation steps will not change this right order. 

Next we consider an induction on the number of union operations and the 
composition of X. The transformation steps do not change the number of union 
operations in the modified subexpressions. 
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Let 

* = Pi«-+jA- • • Pii^h(Vi'n,,j'n, (• • • *fci,#(•*) •••))•••) 

be a fc-expression without any union operation. Then X is equivalent to a 
fc-expression »j for some j £ {j\,... ,jn, t}. 

Let 
x = %J[, (%;,_! J,',.! (• • • %! Ji ( y i © la) • • •)) 

be a fc-expression, where 

x = rli'l,_vfl,_1(---Vi'1,r1(Yi®Y2).-.) 

is in normal form. 

1. If val(Yi) does not contain all edges between vertices labeled by i'v and 
vertices labeled by j[,, then we transform the fc-expression T)i',,j', (Yi) m*° 
an equivalent fc-expression Y{ in normal form and replace in X the subex
pression Y\ by Y{. The transformation of Vi',,j',(Yi) into normal form is 
possible by the inductive hypothesis. The same replacement is possible 
for Y2, if necessary. 

2. If 

%.d[, (*;,_!.#_! (• • • WiJi (y i®y2) •••)) = %;,_! j , ' , _ 1 (• • • »hi J I O"!©^) • • •) 

then we omit operation Vi'/j', from X, because it does not create any 
edge. 

The result is an equivalent fc-expression in normal form. 

Let 

x = pin^jn (• • • Pi^n (Vi'n„fn, (• • • Tfcirf-i (Yi 0 Y2) •••))•••) 

be a fc-expression, where subexpression 

Zo:=Vi'n,j'n,(---Vi'1,f1(
Y^®Y^---) 

is in normal form. 
If graph val(Yi) has a vertex labeled by i and a vertex labeled by j for two 

distinct labels i, j G [k] such that 

pii^jA---pii->h(Vi'n„j'n,(---Vi'1,f1( *i © Y2 ) •••))•••) 
= Pii-+ji(---pii-h(vi'n,,j'n,(---m'1j>1{ pi^j{Yi) © Y2 )•••))•••)» 

then we transform the fc-expression /?,_>,,• (Yi) into an equivalent fc-expressions 
Y{ in normal form and replace in fc-expression X the subexpression Y\ by Y[. 
The transformation of / ^ - ^ ( Y i ) into normal form is possible by the inductive 
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hypothesis. After that we transform Z0 with the new subexpression Y\ into 
normal form, if necessary. This is possible by the inductive hypothesis and the 
transformation steps already defined above. The same replacement is possible 
for Y2, if necessary. This procedure can be repeated at most k — 1 times for 
Yi and I2, because after every replacement the number of labels used by the 
vertices of val(Yi) and val(Y2) decreases by one. 

We now compute for every label I € [k], the label h(l) into which label I is 
relabeled by performing the n relabeling operations p^-*^,•••,Pin-+jn in this 
given order one after the other. Function h : [k] —> [k] can be considered as 
a directed graph H = (VJJ,AH) with vertex set VH = [k] and arc set AH = 
{(I, h(l)) I I G [k]}. Every vertex I of H has exactly one outgoing arc (I, h(l)). 

We first remove all arcs (l±, l2) from H for which graph val(Z0) has no vertex 
labeled by l\ and all arcs (li,h) for which l\ = h, because these arcs do not 
represent any relabeling of vertices of val(Zo). Next we consider every pair of two 
arcs {h,h), {h,h) of H and simultaneously replace in expression Z0 all labels 
h by I2 and all labels I2 by li, and remove both arcs (h,h) and (l2, h) from H. 
After that we insert a new arc (Zi, I3) into H if l\ ^ 1%. Note that fc-expression 
ZQ remains in normal form if two labels are exchanged in all operations of ZQ. 
Finally, we consider all arcs (l±, I2) of H for which graph val(Zo) has no vertex 
labeled by 12- We then simultaneously replace in expression ZQ all labels l\ by 
I2 and all labels l2 by h, and remove arc (li,fa) from H. 

Now we can define the new relabeling by the remaining arcs of H. We remove 
step by step an arc (Zi,^) from H and apply the relabeling operation pix^i2 

to the current fc-expression Zi (which is initially ZQ) to get a new fc-expression 
Zi+i = pi1^i2(Zi). This leads to a fc-expression which is in normal form and 
equivalent to the original one. • 

The proof of Theorem 4.2 uses a simple relabeling trick to omit a relabeling 
operation p*,-^-, (X) if graph val(X) has no vertex labeled by ji. This relabeling 
simultaneously replaces in expression X all labels i\ by ji and all labels ji by %i. 
Let Xil^j[ be the resulting expression. If X is in normal form then Xil^tjl is in 
normal form, and X^^ = p^^j^X). 

5 Replaceability 

Most of the bottom-up dynamic programming algorithms for deciding a graph 
property II on a tree-structured graph G are based on the idea of substituting 
a subgraph of G by a small so-called replaceable subgraph. The substitution 
is defined by a composition mechanism which is different for the various graph 
models. However, the notion of replaceability can be defined for every composi
tion mechanism. Thus, the bottom-up dynamic programming techniques work 
in principle for all tree-structured graphs, more or less successfully. 

For the analysis of tree-width bounded graphs, we need so-called l-terminal 
graphs and an operation denoted by o which combines two Z-terminal graphs by 
identifying vertices. Since we are mainly interested in labeled graphs, we use 



W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141-180 (2003) 152 

a labeled version of /-terminal graphs. Terminal graphs are also called sourced 
graphs, see [ALS91]. 

Definition 5.1 (A;-labeled /-terminal graph) A fc-labeled /-terminal graph 
is a system 

G = {VG,EG,PG,labG) 

where (VG, EG, labG) is a k-labeled graph and PG — (x\,..., x{) is a sequence of 
I > 0 distinct vertices ofVG. The vertices in sequence PG are called terminal 
vertices or terminals for short. Vertex Xi, 1 < i < I, is the i-th terminal of G. 
The other vertices inVG — PQ are called the inner vertices of G. 

Let H = (VH,EH,PH,labii) and J = (Vj,Ej,Pj,labj) be two vertex dis
joint k-labeled l-terminal graphs such that the i-th terminal of PH has the same 
label as the i-th terminal of Pj for i = 1 , . . . , / . Then the composition H o J 
is the k-labeled graph obtained by taking the disjoint union of (VH,EH,labjf) 
and (Vj,Ej,labj), and then identifying corresponding terminals, i.e., for i = 
1 , . . . , /, identifying the i-th terminal of H with the i-th terminal of J, and re
moving multiple edges. 

Definition 5.2 (Replaceability of fc-labeled /-terminal graphs) Let II be 
a graph property, i.e., I I : Q^ —> {true, false}, where Q\. is the set of all k-labeled 
graphs. Two k-labeled l-terminal graphs Hi and Hi are called replaceable with 
respect to II, denoted by Hi ~n,i H?, if for every k-labeled l-terminal graph J, 

U(HioJ) = n ( # 2 o J ) . 

Figure 3 and 4 show three 4-labeled 3-terminal graphs Hi, Hi, J. The two 
4-labeled 3-terminal graphs Hi and Hi are not replaceable, for example, with 
respect to Hamiltonicity, because Hi o J has a Hamilton cycle but Hi o J does 
not. 

Hi J HioJ 

Figure 3: Two 4-labeled 3-terminal graphs Hi, J and the composed graph HioJ. 
The underlined integers represent the numbering of the terminals. 

It is well known that if ~n,z divides the set of all fe-labeled /-terminal graphs 
into a finite number of equivalence classes then II is decidable in linear time for 
all fc-labeled graphs of tree-width at most /. Note that linear time means under 
the assumption that integer I is fixed and not part of the input. 
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H2 J H2oJ 

Figure 4: Two 4-labeled 3-terminal graphs H2,J and the composed graph H20J 

The same schema can be used to solve graph properties on graphs of bounded 
clique-width. In this case the composition of two vertex disjoint fc-labeled graphs 
H and J is done by an operation Xs, where S C [k] x [k]. The composed k-
labeled graph H Xs J is the disjoint union of H and J with all additional edges 
between vertices u £ VH and v £ Vj for which (labfr(u),labj(t;)) e S. Two k-
labeled graphs H\ and H2 are replaceable with respect to some graph property 
II, denoted by ~n,fc, if for all fc-labeled graphs J and all S C [k] x [k], 

n ( J ? l X s J ) = U(H2xsJ). 

If this equivalence relation ~n,fe has a finite number of equivalence classes then 
property II is decidable in linear time for all fc-labeled graphs va\(X) of clique-
width at most k if the fc-expression X is given to the input (integer k is assumed 
to be fixed and not part of the input). 

For all who are interested in the details how to solve a graph property on 
a tree-width or clique-width bounded graph with the bottom-up techniques 
mentioned above, we refer to [Arn85, AP89, ALS91, Bod97, Bod98, CMR00, 
Cou90, EGW01, KR01, LW93, Wan94]. These details are not necessary for this 
paper. 

6 Overview 

In this section, we intuitively explain how the proof of our main result is run
ning. Let Ilfc be the graph property clique-width at most k. Let ~nfc,z be the 
equivalence relation defined for fc-labeled /-terminal graphs as in Definition 5.2. 
Our aim is to show that ~nfe,; divides the set of all fc-labeled I-terminal graphs 
into a finite number of equivalence classes, for every fixed k > 1 and every fixed 
I > 0. This would imply that the graph property clique-width at most k is 
decidable in linear time for graphs of tree-width at most I. 

For every ^-labeled /-terminal graph G we will define a so-called connection 
type consisting of a set of so-called connection trees. We will show that two 
fc-labeled /-terminal graphs axe replaceable with respect to the graph property 
clique-width at most k if they are of the same connection type, but not nec
essarily vice versa. Thus, the number of equivalence classes of ~nfc,Z can be 
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bounded by the number of mutually different connection types for all fc-labeled 
^-terminal graphs. If there is a finite number of mutually different connection 
types for every fixed k > 1 and every fixed I > 0, then ~ r w has a finite number 
of equivalence classes, and our main result follows. 

The outline of the proof can easily be explained more precisely, but still 
intuitively, with a simplified version of the connection tree. To distinguish be
tween the real connection tree and the simplified one, we will call the simplified 
version the strong connection tree. Let H and J be two fc-labeled Z-terminal 
graphs such that the fc-labeled graph Ho J has clique-width at most fc, see also 
Figure 5. Let X be a fc-expression for Ho J and let T be the fc-expression tree of 
X. The fc-expression tree T can be decomposed into two subtrees, say TH and 
Tj, as follows. Subtree TH describes the fc-labeled subgraph of H o J induced 
by the vertices of H. That is, TH consists of the leaves of T representing the 
vertices of H and of all nodes of T on the paths from these leaves to the root 
of T. Subtree Tj is defined in the same way with respect to the vertices of J. 
Note that TH and Tj are not necessarily expression tress. Every node of T is 
in at least one of these two subtrees TH and Tj. Some of the nodes of T are 
contained in both subtrees. More precisely, the root of T is in both subtrees and 
at least the leaves of T representing the identified terminals of H and J , and all 
nodes of T on the paths of these leaves to the root of T are in both subtrees. 
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Figure 5: Four 2-labeled 2-terminal graphs Hi, H2, J, and J', and the two 
2-labeled graphs Hi o J and H2 o J' 

The common part of both subtrees TH and Tj, denoted by C, defines a 
strong connection tree for H. The leaves in the common part C are either 
leaves of T or union nodes. If a leaf u represents a vertex of H o J obtained 
by identifying the i-th terminal of H with the i-th terminal of J, then u will 
additionally be labeled by index i. Let u be a union node of the fc-expression 
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tree T and let tt; and ur be the left and right child of u in T. If u is in the 
common part C but u; or ur is not, then we add a left child vi to C or a right 
child vr to C, respectively, such that we get an ordered tree in that every union 
node has a left child and a right child. If ui (ur) is a node of TH but not a node 
of Tj, then the inserted leaf vi (vr, respectively) is labeled by the set L of all 
labels of the vertices in the fc-labeled graph denned by the fc-expression subtree 
T(ui) (fc-expression subtree T(ur), respectively) of T. Figure 6 illustrates such 
a labeling of the inserted leaves by an example. The existence of the non-empty 
labeling L indicates that the leaf represents a subtree of TH and not a subtree of 
Tj. These leaves are called internal leaves, the other leaves are called external 
leaves. The notions internal and external refer to the association that the left 
argument H is the internal graph for which we compute the connection tree, 
and the right argument J is the external graph, i.e., the environment to which 
H is attached. The resulting structure C is called a strong connection tree for 
H. To get all strong connection trees for H, we have to consider all fc-labeled 
/-terminal graphs J such that Ho J has clique-width at most fc, and all possible 
fc-expressions for Ho J. The set of all strong connection trees for H is the strong 
connection type of H. 

Let us next explain why two fc-labeled /-terminal graphs H\ and H-x of the 
same strong connection type are replaceable with respect to clique-width at 
most fc. After that we consider the size of the strong connection tees. Assume 
H\oJ has clique-width at most k for some fc-labeled /-terminal graph J . Let X 
be a fc-expression for H^oJ. Let T be the fc-expression tree of X and let THX and 
Tj be the two subtrees for Hi and J , respectively. The common part of T^ and 
Tj defines a strong connection tree C for H\ which is, by our assumption, also 
a strong connection tree for H<z- That is, there has to be at least one fc-labeled 
/-terminal graph J ' such that H-x ° J' has clique-width at most k. Furthermore, 
there has to be a fc-expression X' with a fc-expression tree T" for H% o J' such 
that the common part of the two subtrees TH2 and T'j, defines the same strong 
connection tree C for i?2 . Now we can replace in A;-expression tree T subtree 
T^ by subtree T'H2, see Figure 7. This can easily be done by substituting 
the corresponding subtrees represented by the internal leaves. Let T" be the 
resulting fc-expression tree we get after this replacement. 

It is easy to verify that the fc-expression tree T" defines the fc-labeled graph 
H-2 o J. The vertices from H2 and J are labeled in the fc-labeled graph defined 
by T" as in the fc-labeled graphs i72 ° J' and H\ o J , respectively. Two vertices 
from Hi or two vertices from J are connected by an edge if and only if they are 
connected by an edge in H2 ° J' or Hi o J , respectively. This is, because the 
subtrees defined by the paths from the involved leaves to the roots are equal 
in both fc-expression trees T" and T or in both fc-expression trees T" and X", 
respectively. 

The additional -L-labeling of the internal leaves in the strong connection tree 
C is necessary to ensure that T" defines no forbidden edge between an inner 
vertex u\ of H% and an inner vertex u-x of J. If the graph defined by T" has 
such a forbidden edge then Hi o J would also have at least one such forbidden 
edge, because the corresponding subgraph of Hi would have at least one vertex 
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T V d 

V'l V2 Vg V9 VXQ~~V\1 Vl V r 

TH2 TJ, ^ 

Figure 6: A 2-expression tree T for the 2-labeled graph H\oJ and a 2-expression 
tree T' for the 2-labeled graph Hi o J'. C\ is a strong connection tree for H\ 
and Hi. Ci is a strong connection tree for J and J'. 

labeled as u\ of Hi. If for every fc-labeled Z-terminal graph J, graph Hi o J has 
clique-width at most k if and only if Hi o J has clique-width at most fc, then 
obviously Hi and H2 are replaceable with respect to clique-width at most fc. 

Finally, we have to consider the size of the strong connection trees. The 
size of the common part of the two subtrees TH and Tj can, unfortunately, not 
be bounded by some constant depending only on fc and /. However, the main 
part of the next section is the proof that for every fc-labeled graph H o J of 
clique-width at most fc there is at least one fc-expression tree T such that the 
information we really need from the common part of the two subtrees TH and 
Tj can be bounded. This information is still tree-structured and will be defined 
in the next section as the real connection tree. 

We will show step by step that there is a fc-expression tree for H o J in that 
the paths in the common part of TH and Tj have the following structure. We 
divide the operations of the nodes of T into if-operations and J-operations. An 
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u4/v6 u3/v7 

V9 VW V\l 
H2oJ 

Figure 7: A 2-expression tree T'" for the 2-labeled graph Hi o J ' and a 2-
expression tree T" for the 2-labeled graph H2 ° J . 

-ff-operation changes a label of a vertex from H or inserts an edge incident to 
a vertex from H. A J-operation does anything concerning the vertices from J . 
Some of the operations could even be J?-operations and an J-operations. In 
the next section, we will prove that there is always a fc-expression tree T for 
H o J such that in the common part of T# and Tj the number of times the 
classification into H- and J-operations changes along a path from a leaf to the 
root can be bounded by some constant depending only on k and I. This property 
finally allows us to define a connection structure of bounded size, which we call 
the connection tree for H. The main idea is to replace the unbounded subpaths 
with certain operations of the same type by single so-called bridge nodes. 
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7 Determining the connection type 

We consider the case where we have a A;-labeled /-terminal graph 

H = (VH,EH,PH,labH) 

and a ^-labeled /-terminal graph J = (Vj, Ej, Pj, labj) such that H and J are 
vertex disjoint and the combined graph 

G=(VG,EG,labG)=HoJ 

has clique-width at most k. 
We partition the vertex set VG of G into three disjoint sets UH, Uj, Up such 

that UH U UJ U Up = VG. Vertex set UH = VH — PH contains the inner vertices 
from H, vertex set Uj = Vj — Pj contains the inner vertices from J, and vertex 
set Up contains the joined terminals from H and J . Vertex set Up has exactly 
/ vertices, because the / terminals of H are identified with the / terminals of J . 
Note that graph G does not have any edge between a vertex of UH and a vertex 
of Uj. 

I 1 0 

<5) 2 2 © 

3 3 © © 0 

H J G = HoJ 

Figure 8: Two 3-labeled 3-terminal graphs H and J, the 3-labeled graph G = 
H o J , and the partition of its vertices into UH, Up, and Uj 

Let T be a fc-expression tree for G = H o J . The subtree Tp of T is defined 
by the / leaves of T that correspond to the / vertices of Up and by all nodes of 
T on the paths from these leaves to the root of T, see Figure 9. Thus the root 
of Tp is the root of T. Tree Tp is in general not an expression tree. It is only 
an expression tree if neither H nor J has inner vertices. In this case, Tp and T 
are equal. 

Our intention is to show that for each such pair H, J as above there is 
always at least one fc-expression tree T for G such that Tp has a very special 
form. This special form represents the necessary information how H and J are 
combined. We will see that the size of this connection information will depend 
only on k and / but not on the size of H or J . 

The following four subsections start with a lemma that allows us to consider 
a more restricted fc-expression tree T than before. The restrictions are expressed 
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TP 

Figure 9: A 3-expression tree T for the 3-labeled graph G of Figure 8 and the 
subtree TP of T 

by certain properties that have to be satisfied. The lemmas show that this is 
always possible without loss of generality. 



W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141-180 (2003) 160 

Partition into paths of type 1, l.a, and 1.6 
Lemma 7.1 There is always a k-expression tree T for G that satisfies the fol
lowing property. 

Property 7.2 Let U\ be a union node ofT such that one of its children UQ is 
in Tp and the other child u'0 is not in Tp. Then the vertices ofG(u'0) are either 
all from UH or all from Uj. 

Proof: Since G(u'0) does not contain vertices from Up, we know that the vertices 
of G(u'Q) are all from UH U UJ. If the vertices of G(u'0) are not all from UH or 
not all from Uj then let TH and Tj be the two fc-expression trees that define 
the subgraphs of G(u'Q) induced by the vertices of UH and Uj, respectively. TH 
and Tj can easily be constructed from T(u'0) by removing subtrees whose leaves 
represent only vertices from Uj or UH, respectively. A union node that loses 
one of its children can be omitted by making the remaining child to the child of 
its parent node. Then we replace subtree T(u'0) by TH and Tj as follows. We 
insert a new union node vo between m and uo, and make the roots of TH and 
Tj to the second child of u\ and v0, respectively. The expression of the resulting 
tree obviously defines the same graph as before but ui now satisfies Property 
7.2. This can be done for all union nodes which do not satisfy Property 7.2. See 
also Figure 10. • 

Figure 10: A transformation step used in the proof of Lemma 7.1 

Let X be the fc-expression of fc-expression tree T which satisfies Property 
7.2. Then we can apply the transformation steps of the proof of Theorem 4.2 
to get a fc-expression in normal form equivalent to X. This is possible because 
the transformation steps of the transformation into normal form only rearrange 
some relabeling and edge insertion operations. They do not change Property 
7.2 of T. ^From now on we will assume that T satisfies Property 7.2 and that 
X is in normal form. 

Let ui be a union node of T such that one of its children UQ is in Tp and the 
other child u'0 is not in Tp. We define £(«i) := 0 or £(ui) := 1 if the vertices 
of G(u'0) are all from UH or all from Uj, respectively. In all other cases and in 
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the case where u\ is not a union node, we say £(ui) is undefined. For better 
readability we write £(^i) = H instead of £,{u\) = 0 and £(t*i) = J instead of 
£(ui) = 1. This does not mean that £(ui) is the graph H or J, but only that all 
vertices of G(u'Q) are from UH or Hj, respectively. By Lemma 7.1, we can now 
assume that £(ui) is well defined for all union nodes iti of T for which exactly 
one of their children is not in Tp. 

The tree Tp with I leaves now consists of at most 21 — 1 maximal paths 
p = ( u i , . . . , us>), s' > 1, such that m is a union node with two children in Tp 
or U-L has only one child in Tp which is a leaf. The last node us> of such a path 
p is either the root of Tp or a child of some union node whose children are both 
in Tp. All the graphs G(us) for s = 1 , . . . , s' contain the same vertices of Up. 
Such a path of Tp is called a 1-path or path of type 1. Every non-leaf node of 
Tp is in exactly one of these paths of type 1. 

A maximal subpath {u\,..., ur>,..., us>) of Tp such that u\ is a union node, 
U2, •..,uTi are edge insertion nodes, and ur>+i,..., us< are relabeling nodes, is 
called a frame of Tp. Every frame has at most (2) + k nodes, because there is 
exactly one union node ui, there are at most (2) edge insertion nodes U2,---,uri, 
and at most k — 1 relabeling nodes ur>+i,..., us/. Figure 11 shows the general 
structure of a frame. 

© 

Figure 11: A frame always starts with a union node followed by edge insertion 
nodes and relabeling nodes. 

The first frame of every 1-path is called a path of type l.a. The remaining 
part, if not empty, is called a path of type 1.6. There are at most 21 — 1 paths 
of type l.a and at most 21 — 1 paths of type 1.6. Every l.a path has at most 
(2) + k nodes, because it is a frame. For every union node u\ of a 1.6-path there 
is either £(ui) = H or £(ui) = J . 

Partition into paths of type 2.a and 2.6 

For some node us of the fc-expression tree T, let LH(US), LJ(US), and Lp{us) 
be the label sets of the vertices of G{us) which are from UH, UJ, and Up, 



W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141-180 (2003) 162 

type \.b 

a 

type \JDL 

—j©! 

type 1 

Figure 12: Every 1-path p is divided into a path of type l.a and a path of type 
1.6. The path of type l.a is the first frame of p. The path of type 1.6 is the 
remaining part of p, which can also be empty. 

respectively. The intersection sets 

LH(u3)r\Lj(us), LP(us)r\LH(us), LP(us)nLj(us), 

and 

are abbreviated by 

and 

respectively. 

Lp{us) n LH{us) n Lj(us) 

LHnj{us), LPnH(us), LPnJ(us) 

LpnHnj(us), 

Lemma 7.3 There is always a k-expression tree T for G such that the k-
expression X of T is in normal form and T satisfies Property 1.2 and addi
tionally Property 7.4-
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Property 7.4 Let ua be a relabeling node ofTp labeled by pi^j and let u s_i 
be the child of ua in Tp. Ifi£ Lp(ua-i) then j G Lp(us-i). 

Proof: By induction on the height of Tp. Assume X is in normal form and Tp 
satisfies Property 7.2. Let q — ( i*i , . . . , ur>,.. •, ua>) be a frame of Tp and us, 
r' < s < s', be a relabeling node labeled by pi-,j. Let i £ Lp{us-i). By the 
inductive hypothesis, we assume that T(us-i) already satisfies Property 7.4. 

If j ^ Lp(us-i) then we simultaneously replace in the expression of subtree 
T(ur>) every label i by label j and every label j by label i. The expression of 
the resulting subtree T{uT>) is still in normal form and T(uri) satisfies Property 
7.2 and 7.4. Since i is not involved in the relabeling operations of the nodes 
ur>+i,... , u s - i , the resulting expression X is obviously in normal form and 
defines the same graph as before, and T(u3) satisfies Property 7.2 and Property 
7.4. • 

Let ws_i be the child of some relabeling node us of Tp. By Lemma 7.3, we 
can now assume that 

LP(us-i) D LP(ua). 

If ip(w s _i) = Lp(us), then the reverse inclusion holds true for the sets 
LpnH(us) and LpnJ(us), i.e., 

LpnH{us-x) C LPnH(us) and Lp n j (u s _ i ) Q LPnJ(us), 

because a relabeling of a label from Lp n i j (u s_i) or Lpnj(us-i) is always a 
relabeling of a label from Lp(u s_i) . 

This allows us to divide every 1.6-path p into paths of type 2.a and paths of 
type 2.6 as follows. The 2.a-paths are the frames q = (u\, • •., ur>,...,uS') of p 
for which at least one of the following two properties holds true. 

1. There is some relabeling node us, r' < s < s', such that 

Lp{ua-i) 3 LP(us), LPnH(us_i) C LPDH(««), 

or 
Lpnj(us-i) C LPnJ(ua). 

2. 
LpnH(uo) £ ipnff(wi) or LPnJ(u0) C LPnJ(ui), 

where UQ is the child of union node u\ which is in Tp. 

It is easy to verify that this is equivalent to property 

Lp{u0) D Lp(ua>), LPnH(u0) C LPnH(ua,), or LPnj(u0) C LPriJ(us>). 

where UQ is the child of union node u\ which is in Tp. 
The 2.a-paths are the frames q of the 1.6-paths for which either the number 

of labels in Lp decreases or the number of labels in Lpnff or Lpnj increases. 
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type2i> 

type2.a 

type 2.6 

type 2.a 

type2.a 

lOi 

—®; 

type \.b 

Figure 13: Every 1.6-path is divided into paths of type 2.a and paths of type 
2.6. The 2.a-paths are the frames q of the 1.6-paths for which the number of 
labels in Lp decreases or the number of labels in Lpnjj or Lpnj increases. 

The 2.6-paths are the remaining parts of the 1.6-paths. In a 2.6-path p all the 
sets Lp{us) are equal, all the sets -kpnff(Ms) are equal, all the sets Lpnj(us) 
are equal, and thus also all the sets ipni?nj( u s) are equal, for all nodes us oip 
including the child UQ of the first node u\ which is in Tp. See also Figure 13. 

For a frame q = {u\ ,... ,ur>,... ,usi) of a 2.6-path let 

LP(q) = LP(us>), LPnH(q) = LPnH(us<), 

Lpr\j{q) = LPnj(us>), and LpnHnj(q) = LpnHr\j{usi). 

We use q as the argument instead of some node of q to emphasize that the sets 
above are equal for all nodes of q including the child UQ of the first node of q 
which is in Tp. It is easy to count that for every 1.6-path p there are at most 
3A; — 1 paths of type 2.a and thus at most 3k paths of type 2.6. A worst case 
example for k = 3 is shown in the following table. The j - th row shows the 
labeling for the last node m of the j - th 2.a-frame. 
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3 
1 
2 
3 
4 
5 
6 
7 
8 

LP(ui) 
{1, 2, 3} 
{1, 2, 3} 
{1, 2, 3} 
{1, 2, 3} 
{1, 2, 3} 
{1, 2, 3} 
{1,2} 

{1} 

LpnH(ui) 

{1} 
{1,2} 
{1, 2, 3} 
{1, 2, 3} 
{1, 2, 3} 
{1, 2, 3} 
{1,2} 

{1} 

Lpnj(ui) 

0 
0 
0 
{1} 
{1,2} 
{1, 2, 3} 
{1,2} 

{1} 

Partition into paths of type 3.a and 3.6 
Lemma 7.5 There is always a k-expression tree T for G such that the k-
expression X of T is in normal form and T satisfies Property 7.2, Property 
7.4, and additionally Property 7.6. 

Property 7.6 Let p be a l.b-path of Tp, and q = (wi, . . . ) be a 
frame of p such that node us, r' < s < s', is a relabeling node labeled by Pi-*j. 
Ifi G LHnJ(u3-i) then j G LHnj(ui). 

Before we prove Lemma 7.5 let us emphasize that label j will even be from 
LH<IJ(UI) and not only from LHnj(us-i). 

Proof: Assume X is in normal form, T satisfies Property 7.2 and Property 7.4, 
and T(u s_i) satisfies additionally Property 7.6 for some s, r' < s < s'. Let 
i € LHnJ(us-i). 

If j G Lp(q) then the assumption i G Liinj{us-\) and the relabeling pi^j 
at node u3 imply j G LpnHnJ(us) = LPnHnJ(q) and thus j G LHnj{ui). 

If j 0 Lp(q) and j $ Lunj(u{) then we simultaneously replace in the expres
sion of subtree T{ur>) every label i by label j and every label j by label i. The 
new expression of the resulting subtree T(ur>) is still in normal form and subtree 
T(ur>) still satisfies the Properties 7.2, 7.4, and 7.6. Let pil^jl,...,p^-,^ 
be the relabeling operations of the nodes uri+i,...,us-i. Label i is not in
volved in these relabeling operations, i.e., i $. {i\,..., ii-i,j\,..., ji-i}. Label 
j is not relabeled by these relabeling operations, i.e., j $ {«i, . . . , i ; _ i } , and 
none of these relabeling operations relabels some label of LHnj{ur') to j in the 
original expression, because the original tree T(ur>) satisfies Property 7.6 and 
3 & Lnnj(ui). Thus the new expression of the resulting tree T(us) is in normal 
form and defines the same graph as before, and tree T(us) now satisfies the 
Properties 7.2, 7.4, and 7.6. • 

For some node us of TP and some label j £ [k] let iovhP(us,j) be the set of 
all labels i G Lp(us) such that graph G(u„) has two non adjacent vertices, one 
labeled by i and one labeled by j . If the set forbp(us, j) is empty then either 
graph G(us) has no vertex labeled by j or every vertex of G(us) labeled by j is 
adjacent to every vertex of G(us) labeled by some label of LP(u3). (Remember 
that Lp(us) is always non-empty for the nodes us of Tp). 
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Let q = (ui, . ..,ur>,...,us') be a frame of Tp such that U\ is a union node. 
Let UQ be the child of u\ which is in Tp. If one of the edge insertion nodes ur, 
1 < r < r', is labeled by 77^ then i 0 forbp(u0, j) and j ^ forbp(u0, i), because 
otherwise 77^ would create a forbidden edge between two vertices from G(UQ). 

Let us be a relabeling node of Tp labeled by pi_»j. If i £ Lp(u3-\) then 
obviously 

forbp(us,j) = forbp(ua_i, j) U ioxhP{ua-i , i) . 

Intuitively speaking, a vertex labeled by some label of Lp(u3-\) is not adjacent 
in G{us) to some vertex labeled by j if and only if it is not adjacent in G(u s_i) 
to some vertex labeled by j or i. 

Lemma 7.7 Assume expression tree T satisfies Property 7.2, Property 7.4, and 
Property 7.6 and the k-expression XofTis in normal form. Letp be a 2.b-path 
ofTp, let q = ( u i , . . . ,ur',...,us/) be a frame ofp, and let uo be the child ofu\ 
which is in Tp. If a node us, r' < s < s', is a relabeling node labeled by Pi^j 
and if i G LHDJ(US-I) then 

forbp(ua,i) C forbP(us>, j) and forbP(uQ,j) <ZforbP{u3,,j). 

Proof: Since i is not involved in the relabeling operations of the nodes t v + i ; 
. . . , u s _ i , label i is also in £ffnj(ui). By Property 7.6, we know that j e 
LH<IJ(UI) and thus i,j e LHDJ(UI). Let u'Q be the other child of ui which is 
not in Tp. Without loss of generality, let (,{u\) = H. Since i and j are both 
in Lj{u\) and since the vertices of G(u'0) are all from UH, graph G(uo) has at 
least one vertex labeled by i and at least one vertex labeled by j . 

If label i or label j is involved in an edge insertion operation i\v^i of the nodes 
U2,... ,ur< then the other label of {i', j'} has to be in Lp(q) — LH\JJ{U\), i.e., is 
not in LHUJ(UI), where LHUJ(UI) is denned by LH{u{) U Lj(u\). Otherwise, 
a forbidden edge between a vertex from UH and a vertex from Uj is created, 
because i and j are both in LH{U\) and both in Lj(ui). By our normal form 
Property 2.(a), we know that all these edge insertion operations do not create 
a new edge between two vertices from G(u'0) or two vertices from G(UQ). Thus 
every of these edge insertion operations in that label i or j is involved creates an 
edge between a vertex from G(u'0) labeled by i or j , respectively, and a vertex 
from G(u0) labeled by some label of LP(q) — LHUJ{UI). 

If every label of forbp(uo,i) is also in forbp(tto, j) then an additional rela
beling pi^j applied to the expression represented by T(UQ) does not change the 
graph G{usi). This contradicts normal form Property 2.(c). On the other hand, 
if every label of forbp(u0, j) is also in forbp(uo,i) then an additional relabeling 
Pj->i applied to the expression represented by T(uo) does not change the graph 
G{us>). This also contradicts normal form Property 2.(c). 

So there has to be at least one label in forbp(tto, i) which is not in forbp(uo, j ) 
and one label in forbp(%,i7') which is not in forbp(uo,«). Since forbp(uo,i) C 
forbp(us_i,z) and forbp(uo;j) Q forbp(us-i,j), the result follows. • 
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Next we divide every 2.6-path p into paths of type 3.a and paths of type 3.6 
as follows. The 3.a-paths are the frames q — (ui, ... ,ur/,... ,usi) o£p for which 

LHDJ{UO) C LHnJ(us>) or forbP(u0, j) C forbP(uy, j) 

for some j G Lp(uo) U LHDJ(UO), where u$ is the child of u\ in Tp. 
The sets above can change their size in a frame of a 2.6-path as follows. 

1- LHDJ(UQ) C LHDJ(UI) and forbP(uo,i) C forbp(ui,j), because a union 
operation can not remove labels from Lnnj(uo) or forbP(uo,j), respec
tively. 

2. LHnj(ur~i) = LHnJ(ur) and forbP(uo,j) C forbP(u r, j ) for r = 2 , . . . , r ' , 
because the edge insertion operations do not change the labels, and do 
not create edges between two vertices from G(UQ), respectively. Note that 
they can not remove labels from ioibp(uo,j), although they can remove 
labels from ioibp(ui,j). 

3. Let us, r' < s < s', be a relabeling node labeled by Pj^f-

(a) If j £ i P ( u a _ i ) U Ljjnj(Us-i), then LHr\j(us~i) Q LHnJ(us). 

(b) If j G LP(ua-x) U LHnj(ua-i) then j e LHnj{ua-\), because we 
consider a 2.6-path. By Lemma 7.5, j ' G £ffnj(it s_i) and thus 
LHr\j(ua-i) 2 LHnj(us). By Lemma 7.7, forbP(us, j ) = 0, 
forbP(u0, j) C forb P (« 8 , / ) and forb P (u 0 , / ) C fo rb P (u s , / ) . 

The size of forbP(u s_i, j) for some j G Lp(ua-i) U £Hnj(w s-i) can only 
become smaller in case 3.(&), where j G LHr\j(u3-i) is relabeled into another 
label j ' G LHnJ(ua-i). In this case forbP(u s , j) = 0, because G(us) has no 
vertex labeled by j . 

A simple idea shows that the number of 3.a-paths (3.a-frames) can be 
bounded by (k + l) f c + 1 . For a node ug let ot(us) = (zo,...,Zk>) be the vec
tor, where k' = \Lp(us)\ and zt, 0 < t < k', is the number of sets forbP(ws, j ) , 
j G Lp{us) U Lnr\j{us), of size t. We say vector (ZQ,- ••,z,

k,) is larger than 
vector (zo,...,Zk'), denoted by 

iz'o,• • •,zk') > (zo,---,Zk'), 

if there is some t, 0 < t < k', such that z't > zt and z[, = zv for t' = t +1,..., fc'. 
For every 3.a-path g = (ui,... ,uTi,... ,us>), we have a(usi) > a(uo), where 
uo is the child of u\ which is in Tp. This bounds the number of 3.a-paths by 
(k + l)k+1. Note that this bound is not really tight. 

The remaining parts of p are the 3.6-paths. In a 3.6-path p all the sets 
Ljinj(us) are equal for all nodes ua of p including the child of the first node 
which is in Tp. To emphasizes this we define LHDJ(Q) = LHnJ(ua>) for the 
frames q = (ui,... ,ur>,... ,usi) of a 3.6-path p. The sets forbP(us,_7') for j G 
Lp(uo) U LHDJ(UO) do not need to be equal for all nodes us of p. In a frame 
q = (ui,...,uri,...,usi) of a 3.6-path p, it could be that there is some r, 
1 < r < r', such that set forbP(u r, j ) has a label which is not in forbP(Mo,i). 
However, we know that for s — r',..., s', forbP(w0,i) = ioxbp(ua,j). 
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Partition into paths of type 4 

To partition the paths of type 3.6 into paths of type 4, we need three more 
lemmas. The first lemma already holds for paths of type 1.6, but we use it only 
for paths of type 3.6. 

Lemma 7.8 Let q = (m,..., ur<,..., usi) be a frame of a l.b-path p such that 
ur, 1 < r < r', is an edge insertion node labeled by rji'ji. Let UQ and u'0 be 
the two children of u\, where «o is in Tp. If £,(u\) = H (if £,{ux) = J) then 
operation rji'ji only inserts edges between vertices from graph G(u'0) labeled by 
labels of Ln(u\) (of Lj{u\)) and vertices from G(UQ) not labeled by labels of 
Lj{u\) (of LH(ui), respectively). 

Proof: If £(ifi) = H (if £(ui) = J) then all vertices of G(u'0) are from UH (from 
Uj, respectively). Since rfi'ji creates at least one edge between a vertex from 
G(u'0) and a vertex from G(uo) and since there is no edge between a vertex from 
UH and a vertex from Uj, one label of {i',f} has to be in LH{U\) (in Lj{u\)) 
and the other label of {i',f} can not be in Lj(u\) (in LH{U\), respectively). • 

The next lemma shows that the relabeling operations of a frame 

q = ( u i , . . . , u r / , . . . , u s / ) 

from a 3.6-path with £(ui) = H relabels only inner vertices from H. 

Lemma 7.9 Let q = (u\,..., ur>,..., us') be a frame of a Z.b-path p such that 
node us, r' < s < s', is a relabeling node labeled by pi->j. 

1. If£(u{) = Htheni£LH{us-\)-Lp(q)-Lj(us-i) and j G LH(us-i). 

2. Ifi{ui) = J then i G Lj (u s _i ) - LP(q) - LH{us-x) and j G Lj (u s _i ) . 

Proof: Since in a 3.6-path p, the labels of Lp(q) and LHnj(q) are not relabeled, 
label i can only be in LH(«S-I)

 — Lp{q) — i j ( u s _ i ) or Lj{u3-\) — Lp(q) -
i f l K - l ) . 

If i G LH{US-{) — Lp(q) — Lj{us-i) then we get j G LH{US-\), otherwise 
Lpnu(us-i) C LPnH(us) or LHnj(us-i) £ LHnJ(us). Both are not possible in 
a 3.6-path. On the other hand, if i G Lj(u s_i) — Lp(q) — LH(US-I) then we get 
j G Lj{us-i), otherwise LPnJ(ua-i) C LpnJ(u3) or LHnJ{us^{) C LHnJ(us). 

Let UQ be the child of ui which is in Tp. Assume first that £(u i) = H, 
i G Lj{us-\) — Lp(q) — LH{US~I), and j G Lj{us-{)- Then G(UQ) has a vertex 
labeled by i and a vertex labeled by j . 

1. If j is not involved in an edge insertion operation of the nodes U2,. . . , ur 

then in G(UQ) label i can be relabeled into j , without changing G{usi). 
This contradicts our normal form Property 2,(c). 
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2. If j is involved in some edge insertion operation of the nodes U2,--.,ur 

then j is contained in LHC\J{U\) = LHHJ(Q) = £ffnj(wo) and thus 
forbp(ws/,j) = forbp(uoij), and we can also relabel i into j in graph 
G(uo) without changing the resulting graph G(usi). This also contradicts 
our normal form Property 2.(c). 

Thus, we get i e I H ( M S - I ) - LP{q) - Lj(ua-x) and j 6 LH(ua-{). For 
£(ui) = J, we get i € Lj(ua-\) - LP(q) - LH(us-i) and j G Lj(u s _i) . • 

In the proof of the next lemma, we will frequently rearrange frames in a path 
of type 3.6. Assume a path p consists of two consecutive frames, i.e., 

P = (ui,...,Ur>,...,Us>, U3'+i,...,Ur'i,...,Us"), 

where u\ and us/+i are union nodes, U2,---,ur> and us>+2,-- •, ur" are edge 
insertion nodes, and u r '+ i , ••• ,"» ' and ur"+i,..., us» are relabeling nodes. Let 
u'0 and UQ be the two children of u\, where UQ is in Tp, and let u'0' be the child 
of u s '+i which is not in Tp. 

If we exchange the two frames of p then we get the new path 

p' = (Us'+l, . . . , Urn, . . . , Ua» ,Ui,...,Ur>,...,Ua>). 

In the resulting expression tree, union node us '+i has the two children U'Q and 
UQ, and union node u\ has the two children u'0 and us». The left-right order of 
the children of ui and i v + i is not changed. That is, if u'Q is the left child (right 
child) of ui in the original expression tree then u'0 is the left child (right child, 
respectively) of it! in the new expression tree, and if U'Q is the left child (right 
child) of us'+x in the original expression tree then U'Q is the left child (right 
child, respectively) of u s '+i in the new expression tree. 

This rearrangement changes the expression defined by the original expression 
tree T(us») as follows, see also Figure 14. Let X\,X2,Xz be the expressions 
defined by the expression trees T(u'0), T(UQ), and T(U'Q), respectively. With
out loss of generality, let u'0 be the left child of u\ and u'0' be the right child 
of uai+\. Let r)i2,j2T • • ,r]ir,,jr, be the edge insertion operations of the nodes 
U2,---,uri, let Pir,+1 -y r /+ 1 j • • • > Pisi ->,v be the relabeling operations of the nodes 
uri+\,..., usi, let r)isi+2 ,j,,+2, • • • j Vir„ ,jr„ be the edge insertion operations of the 
nodes us>+2,... ,u r», and let Pir„+l—jr„+1, •.. ,pis„^J3„ be the relabeling op
erations of the nodes w r "+ i , . . . , usn. Then the original expression defined by 
T(us») is 

ft.«-j>(• • • P V ' + I - J , « + I ( » ^ » j > ( • • • ^ . ' + a J V + 2 ( Y ® X s ) •••))•••), 

where 

Y = Pi..^j.,(• • • W r , + 1 - j r / + 1 (Vir,,jr, (• • • Vi2,h{Xi © X2) • • • ) )••• )• 

The expression of the new expression tree T(uai) which we get after exchang
ing the two frames is 
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X 1 uo(J ( J uo A2 A2 "° 

Figure 14: The rearrangement of two frames. 

where 

y ," V ' ' Pirn+1^jr"+1 {Virii,jr// V ' ' Vis> +2'3e'+2 (X2®X3) •••))•••). 

Note that the new expression and the original expression do not need to be 
equivalent, but the order of the leaves in the tree is not changed. 

We need the following additional notation. Let u3 be a node of T. The 
labels of LH{US) — Lp(u3) — Lj(us) and Lj(us) — Lp(us) — LH(US) are called 
the unfixed labels of G(us). Within a path of type 3.6, only unfixed labels are 
relabeled, see also Lemma 7.9. The vertices labeled by unfixed labels of G(us) 
are called unfixed vertices of G(us). 

Lemma 7.10 There is always a k-expression X in normal form such that tree 
T satisfies Property 7.2, Property 7.4, Property 7.6, and additionally Property 
7.11. 

Property 7.11 Every Z.b-pathp is divided into at most 3-22(fe+1) paths p' such 
that either for all frames q = {u\,..., u r<,.. . ,usi) of p' £(u i) = H or for all 
frames q = ( i i i , . . . ,ur>,... ,us>) of p' £(ui) = J. 
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Proof: Let qi,...,qthe the frames of a 3.6-path p, i.e., p = qiQ---Oqt, where 
operation © is the concatenation of paths. 

For a frame q = (ui,...,us>) of p, let £(q) := £(ui), unfixH(q) = \LH(ua') -
Lp{us>) - Lj(us>)\, unnxj(g) = |£j(us<) - LP{ua>) - LH(us>)\ and 

mmH(p) = min{unnx#(gi), . . . , unfixjj(gt)} and 
min j (p) = min{unfix j (qi),..-, unfix j (qt)}. 

Let r i , r2, 1 < r± < r2 < t, such that r2 — r\ is maximal and either 

unfixij(gri) = minff(p) and unfix,/(<?r2) = minj(p) or 
unfixj(qr i) = minj(p) and unfix#(qy2) = min.fy(p). 

If q^,... ,qin, 1 < i\ < ii < ••• < in < t, are the frames for which 

unfixij(%1) = unfixij (qi2) = ••• = unSxH(qin) = minH(p) 

and if qj1,...,qjm, 1 < j \ < J2 < • • • < im < t, are the frames for which 

unfixj(gjl) = vm£xj(qja) = ••• = unfixj(g,-m) = win j(p), 

then either r\ = i\ and r2 = j m or r\ = ji and r2 = in. 
We divide the path p into three parts PRTat,Pmiddie,Piast such that p = psTat © 

Pmiddie ©Piast- Subpath ^middle starts with frame qri and ends with frame qr2, 
see also Figure 15. 

If the first part £>first or the last part piast of p are not empty then they will 
be partitioned in the same way as p. Since 

minj(pfirst) > minj(p) and mmH(p\aat) > minH{p) or 
mintf(pfirst) > minff(p) and minj(piast) > minj(p), 

the partition procedure yields at most 22(fe+1) such paths pmiddie-
Assume unfixff(qri) = minjj(p) and unfixj{qr2) = min j(p). The second 

case where unSxj(qri) = min j(p) and unnxu{qr2) = niinfl-(p) runs analogously. 
Then £(qri) = H and £,(qr2) = J and we rearrange the frames in path Pm\dd\e 
such that in the new path there is first frame qri, then all frames q with £(q) = J 
and then all remaining frames q with £(<?) = H. If we move all frames q of 
Pmiddie where £(q) = J to the front, then the remaining frames q of pmiddie 
where £(q) = H (except frame qri) will automatically move to the end. This 
rearrangement will yield at most 3 • 22(k+1^ paths such that for all frames q of 
every path all £(q) are equal. 

The order of the frames q with £(q) = J or £(q) = H is not changed, i.e, it 
is the same order as in the original path Pmiddie* 

The order of the nodes in the 
frames is also not changed when moving frames. To ensure that the resulting 
expression is really equivalent to the original one, we perform a relabeling of the 
unfixed labels as follows. 

For every node us of the new path jWddie, we define step by step a bijection 
bUs • [k] —• [k]. The idea is to use for the operations on subgraph G(us) label 
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Figure 15: The partition of path p into three parts PRrst,Pmiddie,Piaat, where 
minH(p) = 2, minj(p) = 2, 7*1 = 2, and r2 = 8 

&„a(2') instead of label i. For all labels i € Lp(us) U LHnj(ua), we will have 
6„s(i) = i, because these labels are not relabeled along a path of type 3.ft. 

The bijections for the nodes of qri are identities. The other bijections are 
denned step by step depending on the operations of the nodes along the new 
pa th Pmiddle-

We consider the nodes us of the new path pmiddie in the given order starting 
with the parent node of the last node of frame qri. 

1. If us is a union node then let u'a_x and u s_i be the two children of us, 
where u's_1 is not in Tp. The bijection bUs of us is initially the bijection 
bu„-i of the child u s _i . 

We then simultaneously replace in the expression of subtree T(u's_1) every 
label i by bUs(i). After that, we verify whether there is a vertex w of 
G{u's-\) which is an unfixed vertex in the original tree T(us) but not an 
unfixed vertex in the new tree T(us). 
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If there is such a vertex w originally labeled by i and now labeled by bUa (i), 
then we choose an arbitrary label j such that bUs (j) is not used up to now, 
i.e., bUs{j) 0 Lp{us) U L#(u s ) U LJ(US) with respect to the expression 
denned up to now by the new tree T(us). We define bUs(i) := bUs(j) and 
bus(J) '•— bUa(i), and simultaneously exchange in the expression of subtree 
T(u'a-i)

 e v e r y l a b e l 6«*W by K,{j) and every label bUs(j) by bUs(i). 

2. If us is an edge insertion node labeled by 77^, then bijection bUs is the 
bijection bUs_1 and node us will be labeled by operation VbUs(i),bUs(j)-

3. If ug is a relabeling node labeled by jOj_>j, then bijection bUs is the bijection 
&«„_! and node us will be labeled by operation P&„,(i)->6„,(j)-

For the final node us of the new path pmiddie we perform one additional 
relabeling of the resulting expression defined by T(us) such that the unfixed 
vertices of G(ua) are labeled as in the graph defined by the final node of the 
original path Pmiddie-

All these relabeling steps are possible, because for all nodes us in the first 
part of ^middle unfixjj(us) = min/f(p), and for all nodes us of the last part of 
Pmiddie 

unfixj(us) = minj(p). Thus, there are always enough unused labels 
to relabel the unfixed vertices. Note that the labels of the sets Lp(us) and 
LHnj{us) are unchanged along the nodes of pmiddie-

It remains to show that the new expression is equivalent to the original 
expression. Let q = ( u i , . . . , ur>,..., ua') be a frame of the original path pmiddie 
where £(«i) = H. The other case where £(«i) = J runs analogously and is even 
less complicated. Frame q can be moved by the rearrangement toward the end 
of Pmiddie- Let Ug and UQ be the two children of u\, where UQ is in Tp. Node 
u'0 is also a child of u\ in the new expression tree, because the children of the 
union nodes which are not in Tp are not changed by the rearrangement of the 
frames. 

Consider now an edge insertion operation 77, j of some node ur, 1 < r < r', 
of frame q in the original expression. By Lemma 7.8, we know that the edge 
insertion operation rjij of node uT creates only edges between vertices from 
G(u'0) and vertices from G(UQ). We also know that one of the two labels i,j is 
from LH{U\) and the other is not from Lj{u\). Without loss of generality, let 
j € LH{u-i) and i <£ Lj(ui). 

The rearrangement of the frames does not change the order of the leaves 
in the expression tree, see Figure 14. It also does not change the order of 
the frames q with the same £(q) on path Pmiddie- Since rjij creates only edges 
between vertices from UH and vertices from UH U Up, all these edges are also 
created by the corresponding edge insertion operation ?7bUr.(t),bu (j) in the new 
expression. 

Assume edge insertion operation Vbnr(i),bUr(j)
 m the new expression creates 

an edge which is not in the graph defined by the original expression. Then one 
of the nodes of this edge has to be in Uj. This node can only be labeled by 
bUr(J), because i ^ Lj(u\) for u\ from the original expression tree, and by our 
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relabeling procedure bUr(i) £ Lj(u\) for u± from the new expression tree. Now 
we get bUr(j) € LHDJ(UI), bUr(i) G i p ( u i ) , and bUr(i) g" forbp(us<,bUr(j)) for 
ui from the new expression tree. Since all sets Lp{ua) are equal for all nodes 
us of ^middle) all sets LHDJ(US) are equal for all nodes us of pmiddie, and all 
sets ioibp(us,j) are equal for all the last nodes us of all frames of pmiddie, and 
since these labels are not relabeled by our relabeling procedure, we get that all 
edges created by %u (i),bu (j) have to be in the graph defined by the original 
expression. This contradicts our assumption. 

Thus the original expression and the new expression are equivalent. Note 
that the normal form property and the Properties 7.2, 7.4, and 7.6 are also not 
changed by the rearrangement of the frames. D 

Lemma 7.10 allows us to divide every 3.&-path into at most 3 • 22(/c+1) paths 
of type 4. The paths of type 4 are the those parts of the paths pmiddie in that 
for all frames q all £(g) are equal. 

The connection type of H 

Let us summarize how the paths of tree Tp are partitioned now. Tree Tp consists 
of 

1. at most 21 — 1 paths of type l.a, 

2. at most (21 — 1) • (3k — 1) paths of type 2.a, 

3. at most (2/ - 1) • 3k • (k + l)k+1 paths of type 3.a, and 

4. at most (21 - 1) • 3fc • ((k + l) f e + 1 + 1) • 3 • 22(fe+1) paths of type 4. 

Every non-leaf node of Tp is in exactly one of these paths of type l.a, 2.a, 
3.a, or 4. Every path of type l.a, 2.a, or 3.a has at most (2) + k nodes, because 
these paths are frames. For all frames q = (u\,..., us<) in a path of type 4 all 
£(ui) are equal, all sets Lp(q) and LHC\J(Q)

 are equal, and all sets foibp(us>,j) 
are equal for all j G Lp(q) U Lnr\j(q)- For a node u3 of Tp, let Lp(us) be the 
set of all terminal labels, LH(US) be the set of all internal labels, and Lj(us) be 
the set of all external labels for node us. 

We now replace every 4-path p = (m,... ,us>) of Tp which consists of more 
than one frame by some so-called bridge node node v. Let UQ be the child of 
ui which is in Tp and us<+i be the parent node of us< in Tp. Then the path 
(uo,u±,... ,us>,usi+\) is replaced by path (UQ,V,tv+i)- Node v is called an 
internal bridge node if £(ui) = H and an external bridge node if £(«i) = J . 
Every bridge node represents a 4-path with more than one frame. Note that in 
a succeeding replacement the nodes UQ and uy+i can also be bridge nodes. At 
every bridge node we store the information whether it is internal or external, 
and the set of all terminal labels Lp(usi), the set of all internal labels LH(U8I), 

the set of all external labels LJ(USI), and the pairs (forbp(us/,,7'),i7) for all 
j G LP(us>)ULHnJ(us>). 
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A union node ui is called an internal union node if £(ui) = H and an 
external union node if £(wi) = J. At every union node us of Tp for which £(us) 
is defined, we store the information whether ua is internal or external. 

At every non-bridge node us of Tp we store additionally to the clique-width 
operation the set of all terminal labels Lp(us), the set of all internal labels 
LH{US), the set of all external labels Lj{us), and all pairs (ioibp(us,j),j) for 
all j £ Lp(us) U Ljjnj{us). If a leaf us of Tp represents a vertex of G obtained 
by joining the z-th terminal vertex from H with the i-th terminal vertex from 
J, then leaf u3 is additionally labeled by index i. The result C is called a 
connection tree for the fe-labeled Z-terminal graph H. 

The set of all mutually different connection trees of H with respect to all Re
labeled ^-terminal graphs J is called the connection type of H. Two connection 
trees C\, C2 for H are equivalent if there is a bijection b between the nodes of 
C\ and C2 such that 

1. node u s_i is a child (left child, right child) of node u3 in C\ if and only if 
node b(us-i) is a child (left child, right child, respectively) of node b(us) 
in C2, 

2. node us of Ci is an external or internal union node if and only if node 
b(us) of C2 is an external or internal union node, respectively, 

3. node us of C\ is an external or internal bridge node if and only if node 
b(us) of C2 is an external or internal bridge node, respectively, 

4. node us of C\ and node b(us) of Ci store the same terminal label sets, 
internal label sets, external label sets, the same pairs (forbp(us, j), j), and 
the same clique-width operation, 

5. node u3 of C\ and node b(u3) of C2 store the same index if us and b(us) 
are leaves representing a vertex obtained by joining to terminal vertices. 

Note that the two notions connection tree and connection type are always 
defined with respect to graph property clique-width at most k. For better 
readability, we will sometimes omit this extension. 

8 Main result 

The following theorem implies the main result of this paper. 

Theorem 8.1 If two k-labeled I -terminal graphs are of the same connection type 
with respect to graph property clique-width at most k, then they are replaceable 
with respect to graph property clique-width at most k. 

Proof: Let Hi and H^ be two fc-labeled Z-terminal graphs such that Hi and 
H2 are of the same connection type. Let J be any fc-labeled Z-terminal graph 
such that Hi o J has clique-width at most k. We will show that H2 o J has 
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also clique-width at most k. This implies that i?i and Hi are replaceable with 
respect to graph property clique-width at most k. 

Let Ti be a fe-expression tree for Hi o J which defines connection tree C. 
Let Ti ;p be the subtree of T\ defined by the leaves of Ti which represent the 
joined terminal vertices of Hi and J , and by the nodes on the paths from these 
leaves to the root of T\. 

Since Hi and Hi are of the same connection type, C is also a connection 
tree for if2 with respect to some fc-labeled I-terminal graph J'. Let T" be a 
fc-expression tree for Hi o J' which defines connection tree C. Let Tp be the 
subtree of T" defined by the leaves of T" which represent the joined terminal 
vertices of H^ and J', and by the nodes on the paths from these leaves to the 
root of T". 

Since Ti and T" define the same connection tree C, there is a one-to-one 
correspondence between some nodes of Ti, T", and C. For a node u of C, we 
write uc to indicate that u is a node of C. If v is the corresponding node of Ti, 
then we write uTl for v. The corresponding node in T" is denoted by uT . We 
use this notation also for frames and paths. 

Our aim is to define a new fc-expression tree T2 from Ti and T" such that Ti 
defines Hi o J . We start with a copy T{ of the fe-expression tree T\. Let T[ P be 
defined for T{ in the same way as T^p is defined for Ti. Let nf be an internal 
union node, let u0

x be the child of u^ which is not in T[ p, and let UQ be the 
child of u{ which is not in T'P. By our notation, it is clear from which trees 
these nodes are. For every such node UQ we replace in the copy T{ of Ti the 
subtrees T[{UQ1) by the subtrees T'(UQ ). Let uc be an internal bridge node, 
let pTi be the corresponding 4-path in T[ and pT be the corresponding 4-path 
in T". For every such node we substitute in the current tree T{ the 4-path pTi 
by the 4-path pT . This substitution includes all the subtrees at the children of 
the union nodes of pTi and pT which are not in T[ p and T'p, respectively. The 
resulting tree is denoted by T2. It is clear that T2 is a ^-expression tree. 

It remains to show that fc-expression tree Ti defines Hi o J. Let T2,p be the 
subtree of Ti defined by the leaves of Ti which represent the joined terminal 
vertices of Hi and J , and by the nodes on the paths from these leaves to the 
root of Ti. 

We first show that the vertices in the fc-labeled graph Hi o J axe labeled 
as in the fc-labeled graph defined by ^-expression tree T2. There is obviously 
a one-to-one correspondence between the vertices of Hi o J and the vertices of 
the graph defined by Ti, because Ti is constructed from Ti and T" which define 
J and i?2- Let Ti^2 and Titj be the subtrees of T2 defined by the leaves which 
represent vertices of Hi and J, respectively, and by the nodes on the paths from 
these leaves to the roots. The vertices of Hi are labeled in Hi o J as in the 
graph defined by fc-expression tree Ti, because these vertices are only relabeled 
by relabeling operations of T2tn2 which do not belong to the external 4-paths 
of T2,p. (Here external and internal 4-path means that the path is copied from 
Ti and T", respectively.) The same holds for the vertices of J , because these 
vertices are only relabeled by relabeling operations of T%tj which do not belong 



W. Espelage et al., Deciding Clique-Width, JGAA, 7(2) 141-180 (2003) 177 

to the internal 4-paths of T2jp. 
Next we show that all edges of H2 o J are also in the graph defined by T2. 

Let T'H and Ti,j be the subtrees of T" and T\, respectively, defined by the 
leaves which represent vertices of H2 and J, respectively, and by the nodes on 
the paths from these leaves to the roots. Let e be an edge of H2 o J. If the 
end vertices of e are both from H2 or both from J then e is created by an 
edge insertion node u^ or uj1 which is also in T'H or T\tj, respectively. The 
composition of T2 now implies that node u£2 exists in T2 and the corresponding 
edge is also contained in the graph defined by T2. Thus, all edges of H2 o J are 
in the graph defined by T2. 

The most interesting part is to show that the edge insertion operations of 
T2 do not create any edge which is not in H2 ° J . An edge insertion node u£2 

of T2 which does not belong to T2,p creates only edges which are also in H2 ° J, 
because the corresponding subtree defined by T2(u^2) is either completely copied 
from T" or completely copied from T\. 

Assume now the edge insertion node uj2 belongs also to T^p- Let 77^ 
be the edge insertion operation of uj2. If uj2 is not from a 4-path of T2,p 
which consists of more than one frame, then v%2 is also in C. Then there is an 
equivalent edge insertion node u^1 or uj in T\ or T' which is labeled as v%2 in 
T2. This equal labeling ensures that the edge insertion operation r/ij defines a 
new edge between a vertex labeled by i and a vertex labeled by j if it defines at 
least one such edge in T\ or T'. 

If uf2 is from a 4-path pT2 which is also in T2iP and which consists of more 
than one frame, then without loss of generality, let pT2 be copied from T', i.e., 
let pT2 be an internal 4-path for which £(qT2) = H2 for all frames qTz of pT2. 
Let uc be the corresponding internal bridge node for pT2 and let u'c be the 
child of uc in C. The child u'c can be a bridge node or a usual node. If it is 
a usual node then the equal labeling of u'T2 and u'T ensures that 77,̂  defines a 
new edge between a vertex labeled by i and a vertex labeled by j if it defines at 
least one such edge in T'. 

If child u'G is a bridge node then let vT2 be the last node of the path of T2 

which is represented by u'c in C. If u'c is an internal (external) bridge node 
then the equal labeling of vT2 and vT (and vTl, respectively) ensures that rjij 
defines a new edge between a vertex labeled by i and a vertex labeled by j if it 
defines such an edge in T"'. Thus, every edge in the graph defined by T2 is also 
in H2 o J , and vice versa. • 

By Theorem 8.1 and the fact that there is only a finite number of connection 
types for fixed integers I and k it follows that the equivalence relation ~nfc,; has 
a finite number of equivalence classes, where life is the graph property clique-
width at most k. This implies the following corollary. 

Corollary 8.2 For every integer k, there exists a linear time algorithm for 
deciding clique-width at most k of a graph of bounded tree-width. 

Since the clique-width of a graph of tree-width / is bounded by 3 • 2 i _ 1 , see 
[CR01], there is also an algorithm which minimizes the clique-width of a graph 
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of bounded tree-width in linear time. 

Corollary 8.3 There exists a linear time algorithm for computing the clique-
width of a graph of bounded tree-width. 

The corollary above only states that such a linear-time algorithm for deciding 
clique-width k for graphs of bounded tree-width exists. Although the proof 
is constructive, the resulting algorithm seems to be only interesting from a 
theoretical point of view. 

Note that our result does not imply that the clique-width k property is 
expressible in counting MS02-logic. The equivalence between a finite number 
of equivalence classes of ~uk,i and monadic second-order definability is only 
given for special graph classes as for example for graphs of bounded tree-width 
[Lap98], but not for the class of all graphs. 
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Abstract 

Methods for ranking World Wide Web resources according to their 
position in the link structure of the Web are receiving considerable atten
tion, because they provide the first effective means for search engines to 
cope with the explosive growth and diversification of the Web. Closely 
related methods have been used in other disciplines for quite some time. 

We propose a visualization method that supports the simultaneous 
exploration of a link structure and a ranking of its nodes by showing the 
result of the ranking algorithm in one dimension and using graph drawing 
techniques in the remaining one or two dimensions to show the underlying 
structure. We suggest to use a simple spectral layout algorithm, because 
it does not add to the complexity of an implementation already used for 
ranking, but nevertheless produces meaningful layouts. The effectiveness 
of our visualizations is demonstrated with example applications, in which 
they provide valuable insight into the link structure and the ranking mech
anism alike. We consider them useful for the analysis of query results, 
maintenance of search engines, and evaluation of Web graph models. 
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1 Introduction 

The directed graph induced by the hyperlink structure of the Web has been 
recognized as a rich source of information. Understanding and exploiting this 
structure has a proven potential to help dealing with the explosive growth and 
diversification of the Web. Probably the most widely recognized example of this 
kind is the PageRank index employed by the Google search engine [9]. 

PageRank is but one of many models and algorithms to rank Web resources 
according to their position in a hyperlink structure (see, e.g., [36, 29, 13, 1, 8, 
12]). We propose a method to complement rankings with a meaningful visual
ization of the graph they are computed on. 

While graph visualization is an active area of research as well [14, 28], its 
integration with quantitative network analyses is only beginning to receive at
tention. It is, however, rather difficult to understand the determinants of, say, a 
particular ranking if its results do not influence the way in which the structure 
is visualized. 

A design for graph visualizations showing a vertex valuation in its structural 
context is introduced in [6, 5]. In two-dimensional diagrams of social networks, 
the vertical dimension of the layout area is used to represent exactly the value 
assigned to each actor (a constraint), and a layout of the horizontal dimension is 
determined to make the diagram readable (an objective). Since the networks in 
question are relatively small (no more than a hundred vertices), an adaptation 
of the Sugiyama framework for layered graph drawing [38] is used for horizontal 
layout. 

The guiding principle in the above design is axis separation: in one dimen
sion the most important information is conveyed precisely, and in another the 
perception of its basis is eased. To facilitate visual exploration of ranking meth
ods on larger link structures such as Web graphs, we propose to apply the same 
principle, but with a very different layout algorithm that is more appropriate 
for the specific type of data. 

Standard rankings are based on spectral methods and iterative computation, 
but the same methods can also be used for graph layout. In the present appli
cation they are particularly well-suited, because densely connected subgraphs 
are clustered. On the Web, such subgraphs correspond to related resources and 
graphical clustering is therefore highly desirable. By using the axis separation 
principle and spectral layout techniques, a uniform approach to visual ranking 
of link structures is achieved. 

The paper is organized as follows. In Section 2, we recall some fundamental 
spectral properties of graphs. Link-based ranking is surveyed in Section 3, 
and formally and computationally similar layout techniques are described in 
Section 4. Applications in which our visualization approach may be useful are 
discussed in Section 5 and examples with generated and real-world data are 
provided. We conclude in Section 6. 
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2 Preliminaries 

The structural features of the Web can be captured in a directed graph G = 
(V, E), where the set V of vertices represents the set of resources on the Web, 
and there is a directed edge (u, v) G E from a resource u to a resource v, if u 
contains a hyperlink to v. All graphs considered in this paper are assumed to 
be connected. We do not allow parallel edges, but self-loops and a positive real 
weight UJUV for every edge. Let A(G) = A = (Auv)u v£V be the adjacency matrix 
of a graph, i.e. Auv = LJUV if (u, v) € E, and Auv = 0 otherwise. The indegree 
(outdegree), d+ (d~), of a vertex v £ V is £ u : ( U i l ) ) e B Auv (Ew:(v,w)eEAvw)-

We will make extensive use of algebraic properties of graphs. If A is a square 
matrix and Ap = Xp, A is called an eigenvalue of A and p an associated eigen
vector. Note that, if p is an eigenvector associated with A, then cp, c £ R, is 
also. The multiplicity of an eigenvalue is the number of distinct eigenvectors 
associated with it. Counting multiplicities, an n x n matrix has n eigenval
ues. The multiset A.(A) = {Ai, . . . , A„} of its eigenvalues with their respective 
multiplicity is called the spectrum of A. 

We recall some important properties of spectra. The following lemma applies 
in particular to adjacency matrices of undirected graphs. 

Lemma 1 Let A be a real symmetric n x n matrix. 

1. All eigenvalues of A are real. 

2. Any two eigenvectors of A with distinct eigenvalues are orthogonal. 

3. Let K(A) = {Ai , . . . , A„}, then 

(a) A(cA) = {cAi,. . . , cA„} for all c G R, 
in particular A(—A) = {—X1,..., — Xn}, and 

(b) A(/ + i4) = {l + A i , . . . , l + An}. 

For directed graphs, we have the following theorem, which is a version of the 
fundamental Perron-Frobenius Theorem reformulated for our purposes. 

Theorem 2 If A is the adjacency matrix of a strongly connected graph G, then 
there is an ordering X\ > j A21 > ••• > |An| of its eigenvalues such that Ai is 
real and simple, and —X\ is an eigenvalue of A if and only if G is bipartite. 
Moreover, the entries of a non-zero eigenvector associated with X\ are either all 
negative or all positive real numbers. 

For further background on matrix computations and algebraic properties of 
graphs we refer to [21] and [20]. 

3 Structural Ranking of Web Resources 

Any real-valued vector p = (pv)veV defined on the vertices of a graph is called a 
prominence index, where pv is the prominence of vertex v. A ranking is obtained 
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from a prominence index by ordering the vertices according to non-increasing 
prominence. 

Many models have been proposed to capture an explicitly or implicitly de
fined notion of a vertex's prominence in a graph [27, 25,16,4,17, 36, 29,1,13,12, 
and many more]. Though in general only denned for undirected graphs, we first 
outline eigenvector centrality, because it nicely illustrates some important com
monalities of the popular ranking methods that we discuss below. 

Assume that the prominence of a vertex is understood to be proportional 
to the combined prominence of its neighbors, Xpv = J2u-fu t ,}eBw»Ai v GV, 
where the constant A is introduced so that the system of equations has a non-zero 
solution. This definition yields the eigensystem of the (transposed) adjacency 
matrix, 

Xp = ATp = Ap, (eigenvector centrality [3]) 

and every eigenvector of A = A(G) gives a ranking of the vertices for the above 
notion of prominence, although the principal eigenvector, i.e. the one associated 
with the eigenvalue of largest magnitude, is generally preferred [4, 17]. The 
principal eigenvector can be obtained by power iteration, which starts with any 
non-zero vector and iteratively multiplies the matrix with the current solution, 
e.g. p^ <— 1 and 

Since the matrices considered here originate from large and sparse graphs, mul
tiplication is carried out by computing pi ' <— J2u-{u vyeE^wPu for every 
v £ V. To prevent the entries of the iterates from growing out of range, each vec
tor is normalized such that the magnitude of the largest entry equals the number 
of vertices in the graph (recall that multiples of eigenvectors are eigenvectors 
as well). This normalization scheme is applied in all subsequently described 
iterative computations without explicit mentioning. 

More elaborate indices defined on directed graphs are discussed below. In 
Figure 1 they are illustrated on an acyclic grid. The grid is placed in a plane 
and each grid point is then lifted according to its prominence. 

3.1 Hubs and authorities 

A natural notion of prominence for a Web resource is the extent to which it 
is referred to by other Web pages, in particular by those pages that specialize 
in listing useful resources. In turn, the property of being such a list of useful 
resources is a notion of prominence in itself. In these complementary and mu
tually reinforcing notions prominent resources are called authorities (resources 
with useful information) and hubs (pages with useful links). 

The hub score of a page is proportional to the combined authority of the 
resources it links to, and the authority of a resource is proportional to the 
combined hub score of the pages linking to it. In practice, hub and authority 
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(a) authority (b) PageRank (c) Katz's status 

Figure 1: Comparison of prominence indices on a directed grid 

scores are thus computed by iterating p^> <— 1 and 

p(2fe+l) ^_ ^ . p ( 2 f e ) 

p(2fc+2) <_ A-p(2k+1\ 

For h^ = p(2fc) and a^ = p(2k+1), the alternating iteration can be written as 

^(fc+l) <_ AAT . h(k) (hubs pgjj 

a(fe+i) ^ ^ T A . a(*) _ ^ authorities [29]) 

In this formulation, it is easy to see that the hub and authority indices in 
a graph with adjacency matrix A correspond to eigenvector centrality in the 
weighted undirected graphs with symmetric adjacency matrix AAT and ATA, 
respectively. 

As can be seen in Figure 1(a), vertices on and above the falling diagonal of the 
grid have the highest authority, because they are in the midst of the undirected 
graph induced by ATA. Compare this to the undirected graph induced by AAT, 
indicating why the best hubs are found on and below this diagonal. 

3.2 PageRank 

In another variant of eigenvector centrality the contribution of each vertex to 
another vertex's prominence is weighted by its outdegree, pv = J2u-(u v)eE "ffi" 
(see e.g. [35, 11]). If we require p to be a probability distribution over the set 
of vertices, this notion has a nice interpretation as the stationary distribution 
of the simple random walk on the graph (or random surfer on the Web, if you 
will), in which each edge leaving a vertex is chosen with equal probability. 

Let M = D~XA be the adjacency matrix normalized so that the rows sum 
to one, where D is the diagonal matrix with the outdegrees on the diagonal. 
Then, M is a stochastic matrix of transition probabilities, and a stationary 
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distribution p = MT • p satisfies the above notion of prominence. However, 
if a vertex has outdegree zero, the computation breaks down, and strongly 
connected components may cause an overdue increase of the prominence of their 
vertices. This so-called "sink problem" can be avoided by introducing an escape 
mechanism. Let p be an a-priori probability distribution over the vertices (e.g., 
user preferences or general popularity of a resource), then with probability u the 
random walk picks an edge of the graph whereas with the remaining probability, 
it jumps to any other vertex according to p. The index is thus defined by 

p = uMTp +(1-LU)P (PageRank [8]) 

= (uMT + (I - u)p • 1T) • p. 

The second equality holds because p is a probability distribution. From the 
second expression it can be seen that PageRank is the eigenvector centrality of 
a weighted graph with a complete set of additional escape edges. This modified 
matrix is irreducible and aperiodic so that the iteration p(°) <— - 1 and 

p(*+i) <_ (w M + (i _ W)i . ff . p(*) 

converges to a unique prominence vector. On the grid in Figure 1(b), the random 
surfer may jump to any vertex, but is most likely to walk towards the upper and 
right side of the grid, from where the only continuation is towards the upper 
right corner. 

3.3 Katz's status index 

As a generalization of simply using indegrees to measure 'status' in social net
works, the prominence of a vertex is determined by the number of directed 
paths of arbitrary length ending in the vertex, where the influence of longer 
paths is attenuated by a decay factor. Recall that the entries of the fc-th power 
of the adjacency matrix of an unweighted graph give the number of paths of 
length k between every pair of vertices. Therefore, this notion of prominence is 
determined by 

p = ( Y2(aAT)k J • 1, {Katz's status [27]) 

where parameter a corresponds to the fraction of status that is passed along 
a directed edge. For sufficiently small values of a (a convenient choice is -^rf, 
where A is the minimum of the maximum in- or outdegree of any vertex in the 
graph), the sum converges to (J — aAT)~x — I. Therefore, the status vector can 
be obtained by solving (a~~lI — AT) -p = d, where d is the vector of indegrees. 
Solving this system of linear equations directly is prohibitive for large graphs. 
Standard sparse matrix approaches approximate a solution iteratively. The 
update step in Jacobi iteration, for instance, yields p(fc+1) <— aAT • p(fc) + ad. 
This iteration nicely reflects the underlying notion of adding contributions from 
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vertices farther and farther away. The same can be observed in Figure 1(c), 
where the attenuated influence from vertices in the lower left does not suffice to 
discriminate the prominence of vertices in the upper right any more. 

In a sense, the above definitions of prominence are contained in the follow
ing generic formulation of status in networks. It puts a twist on eigenvector 
centrality through the addition of an a-priori prominence vector p, 

p — ATp + p. {Hubbel's status [25]) 

By choosing appropriate weights and a-priori prominences, we obtain eigen
vector centrality and PageRank. Reordering, we have p = (I — A7)-1 • p, 
provided the inverse exists. If it does, it equals Y?kLo{AT)k, and therefore 
P = {HkLo(AT)k) -P = i1 + ET=i(AT)h) -P- W i t h uniform edge weights and 
p = l w e obtain a prominence index in which every component is by one larger 
than Katz's status index. 

4 Spectral Graph Layout 

In the previous section we emphasized formal similarities in the definition of 
popular prominence indices. In practice, all of them are computed by some 
variant of sparse matrix power iteration, i.e. by iterating over all vertices, and, 
for each vertex, combining the current scores of its neighbors. Implementation 
of these algorithms is thus trivial. 

In this section, we introduce a layout algorithm that produces meaningful 
layouts using the same principles as the ranking methods. It is therefore a 
simple matter to complement an existing system for ranking vertices to compute 
a layout of the graph on the fly, since both parts of the system can operate 
synchronously on the same data 

4.1 Layout with eigenvectors 

For layout, we consider the unweighted, undirected, simple graph obtained by 
omitting weights, directions, self-loops, and multiple edges. Note that edge 
directions are sufficiently represented in the prominence dimension. 

Let A be the adjacency matrix of a simple undirected graph G and D = D(G) 
its diagonal degree matrix. We consider the Laplacian matrix L = D — A, which 
has interesting applications in many areas (see, e.g., [33]). Its usefulness for 
drawing graphs was first described in [22] and is based on the observation that 
minimizing the associated quadratic form 

xTLx= ^2 (xu-Xv)2, (1) 
{u,v}£E 

corresponds to minimizing the squared distance between pairs of adjacent ver
tices if x is interpreted as a vector of vertex positions. This objective functions 
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is closely related to standard graph drawing methods, since it can be interpreted 
as the energy of a physical system consisting of rings (the vertices) that are tied 
together by springs (the edges) of natural length zero. In other words, we have 
a spring-embedder with zero-length springs and no repelling forces. 

The energy-minimum state of the above system is obtained by assigning the 
same position to all vertices (recall that we assume connectedness of the graph). 
These undesirable single-point solutions can be avoided by fixing some selected 
vertices at distinct positions. Minimization subject to these boundary conditions 
yields the well-known barycentric layout model of Tutte [39]. However, the final 
layout is contingent on the fixed vertices and their position. While placing a 
face of a triconnected planar graph on a convex polygon yields a planar layout 
of the graph, there are no general rules on which vertices to place where in more 
general graphs. 

Other alternatives include the addition of repulsive forces between nodes [15, 
18] and the use of springs with non-zero length [26]. Although these methods 
have been extended to be applicable on graphs with thousands of vertices [19, 
23, 40], there implementation is far from trivial. 

Spectral methods take a different approach and yield a trivial, parameter-
free algorithm working toward a globally optimal solution with respect to the 
above quadratic objective function. Note that the undesired minima x = cl are 
the eigenvectors associated with eigenvalue zero, i.e. Lx = 0. More generally, if 
(X,x) is any eigenpair of L, then A = x T • We therefore want to minimize 

x Lx 
—=— subject to 0 ^ x 1 1 . 
x1 x 

since the eigenvectors of a symmetric matrix are orthogonal. Hence, the desired 
solution is an eigenvector associated with the second-smallest eigenvalue of L. 
This vector is called the Fiedler vector and, because of its distance minimization 
property, frequently used in graph partitioning (see, e.g., [37]). For the same 
reason, it yields a useful one-dimensional layout of a graph, because edges are 
short and hence dense subgraphs are clustered. Another argument in favor 
of using the Fiedler vector for horizontal layout is its successful application in 
drawing bipartite graphs in two-layers with few crossing edges [34]. 

If rankings ought to be visualized in three dimensions (cf. Figure 1), a rea
sonable choice for the second free dimension is the normalized eigenvector min
imizing the objective function subject to being orthogonal to 1 and the first 
solution. 

An example of two-dimensional layouts obtained from barycentric layout, a 
typical spring embedder, and two orthogonal eigenvectors of L is provided in 
Figure 2. While the spring embedder produces more uniform edge lengths, the 
eigenvectors emphasize structural clustering of vertices. 

4.2 Computing the layout 

Eigenvectors associated with the smallest eigenvalues of large sparse matrices 
are usually computed using Lanczos' method. However, all popular prominence 
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(a) barycentric (b) spring embedder (c) spectral 

Figure 2: Two-dimensional layouts of a random planar triconnected graph 

indices are computed using a variant of the much simpler power iteration, which 
only gives an eigenvector associated with the eigenvalue of largest magnitude. 
To be able to apply the same simple algorithm and thus synchronize layout and 
prominence computation, we reverse the eigenvalues of the Laplacian. 

By Lemma 1, all eigenvalues of L are real, and since L is positive-semidefinite 
they are non-negative. By Gershgorin's Theorem, the largest eigenvalue is no 
more than twice the maximum vertex degree A of the graph, so that again by 
Lemma 1 the matrix V = 2A • I — L has the same eigenvectors as L, but the 
order of the corresponding eigenvalues is reversed. 

Straightforward application of power iteration on V returns the principal 
eigenvector of L', which is the trivial eigenvector 1 associated with the smallest 
eigenvalue of L. Power iteration on a vector that is orthogonal to the principal 
eigenvector yields an eigenvector of the second-largest eigenvalue of L', and 
hence the desired layout for the first dimension. If needed, iterating on a vector 
that is orthogonal to both the trivial eigenvector and the approximate solution 
for the first dimension yields the second dimension. 

A vector y is orthogonalized with respect to another vector x by setting 
T 

y <— y — f r ^ x. Orthogonalization with respect to the trivial eigenvector 1 
is even easier, since it corresponds to subtracting, from each entry of y, the 
mean of all its entries. To obtain vectors x and y for a two-dimensional layout 
we thus carry out the following augmented power iteration on random starting 
vectors x^°',y^ that are repeatedly orthogonalized with respect to 1 and to 
one another 

x(fe+i) <_ L>. x{k) xik+i) <_ x(k+i) _ i y x(. (fc+1) 

n 
v<=V 

<*+*><-L'.yW; „(*+!>«_ yC*l> _ I £ „(f y 

~(fc+l)T ,,(fc+l) 
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(a) random (b) 10 steps (c) 30 steps (d) 50 steps 
initialization 

(e) 100 steps (f) 200 steps (g) 500 steps (h) 1000 steps 

Figure 3: Typical convergence behavior of the power iteration for layout. Note 
that x-coordinates do not change significantly after 30 iterations 

Intuitively, the layout is centered, rectified, and (due to the normalization) 
zoomed after each multiplication with L'. The last two lines are omitted if only 
one dimension needs to be determined for the layout. 

Note that in our setting the potentially slow convergence of power iteration is 
of minor importance since all we are looking for is a vector that approximately 
minimizes the quadratic objective function (1). Though overall convergence 
depends on the ratio of the largest eigenvalues, the iterate quickly moves toward 
a subspace spanned by eigenvectors associated with large eigenvalues. Only 
then, when the largest eigenvalues need to be separated, does the slow-down 
take effect. Figure 3 gives a typical, qualitative example. 

As a quantitative measure of convergence we use the residual r(x) = \\L'x — 
X

XTX
XX\\2, that is the squared distance of a; from being an eigenvector associated 

with the current eigenvalue estimate x £ x. Recall that we normalize after each 
iteration such that the magnitude of the largest entry (the largest coordinate) 
equals the number of vertices. We consider a layout to be of sufficient quality, 
if the residual is of the same order, i.e. if on the average each vertex is one unit 
off its optimal position. The entire one-dimensional layout algorithm is given 
in Algorithm 1. Note that it requires no external parameters, and is trivial to 
implement along with a ranking algorithm. 

We compared the number of iterations needed for layout to that needed 
for ranking. Since ranking is the important information to be conveyed, it is 
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Algorithm 1: One-dimensional spectral layout 

Input: simple, connected, undirected graph G = (V,E), n — \V\ 

Output: one-dimensional layout x = (x„)„6y 

r = oo; 
x <— n • 1 ; 

while - > 1 do 
n 

x' <— L'x; 
X> «_ X' - S . 6 V < . l ; 

r <- \\x' - < ^ x | | 2 ; 

required to be precise. Convergence of ranking iterations is assumed when the 
corresponding residual is below 1 (rather than the number of vertices). Our 
experience suggests that the number of iterations needed for the layout is larger 
than that for ranking, but not by much. In Figure 4, convergence of ranking 
and layout is compared on example graphs. 

For larger graphs with tens of thousands of nodes, the simple algorithm nev
ertheless becomes to slow, especially when compared with the fastest-converging 
ranking algorithms. A much more sophisticated multiscale algorithm [30] to ob
tain the Fiedler vector is available, though. 

5 Application Examples 

We demonstrate our visualization approach on three different kinds of data: 
random Web graphs generated from popular models, a search engine exam
ple constructed from an AltaVista query, and a bibliographic data set. Our 
C++-implementations use LEDA, the Library of Efficient Data Types and Al
gorithms [32]. 

5.1 Web graph models 

In the linear growth model [31], a graph grows one vertex at a time. At each time 
step, a prototype is chosen among already existing vertices, and a new vertex is 
generated. This new vertex is then assigned a fixed number of outgoing edges. 
With some fixed probability, the ith of these edges points to a randomly selected 
vertex among those already existing (creation case), and with the remaining 
probability it points to the same vertex as the ith outgoing edge of the prototype 
vertex (copying case). Our generator does not introduce multiple edges, and if 
a prototype happens to not have enough outgoing edges, no edge is introduced 
in the copying case. Clearly, all graphs evolving like this are acyclic. 

In the exponential growth model [31], a graph grows by a fixed fraction of 
its current size at each time step. New vertices receive a fixed number of loops, 
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Figure 4: Convergence of ranking and layout compared (logarithmic scale). The 
three graphs are the triconnected planar graph of Figure 2, the random small 
world of Figure 5(c) (Section 5.1), and the Web graph of Figure 6 (Section 5.2) 

and for each already existing edge, its target receives a new incoming edge for 
which, with some fixed probability, the source is chosen uniformly at random 
from the new vertices, and otherwise from the existing vertices with probability 
proportional to their current outdegree. We used a simpler model in which 
existing vertices are chosen uniformly at random as well. 

For the small-world model [41], we initially generate a cyclic sequence of 
vertices and let a vertex link to a fixed number of predecessors and successors. 
Then, each edge is rewired with some small probability by choosing a new 
destination uniformly at random. 

Figure 5 shows spectral layouts of graphs generated according to these mod
els and rankings replacing the vertical dimension with PageRank as an example 
of a prominence index. The linear model graph has about 750 vertices and was 
generated with desired outdegree 7 and copying probability 0.3, where some of 
the vertices created last where trimmed because of poor connectivity. The expo-
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Figure 5: Web models (2D spectral layout and ID spectral layout vs. PageRank) 
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Figure 6: Authority and PageRank visualization of "Java" query result 

nential model graph was generated with 10% growth rate, desired outdegree 7, 
7 initial loops, and probability 0.5 for choosing the origin among new vertices. 
It originally had about 1000 vertices, but again roughly a quarter of the vertices 
last created were removed to achieve more robust structure. The 750 vertices in 
the small-world graph originally linked to their six nearest cyclic neighbors and 
edges were rewired with probability 0.05. In all rankings, edge directions are 
indicated by color (gray edges point upwards, black edges point downwards). 

There is no visible clustering in the evolving copying models. Moreover, the 
prominence of resources appears to be correlated with their age (also with the 
other indices outlined in Section 3). The figures thus graphically support the 
conclusion of [31] that death processes, i.e. the occasional deletion of vertices and 
edges, might be necessary for the evolving copying models to be realistic. In 
the small-world model, the spectral layout reveals a cycle crumpled by chords, 
and the ranking shows that the model yields a rather egalitarian structure. 

Our generators are slightly simplified versions of the original ones and our 
samples are not representative. Their sole purpose is to demonstrate the poten
tial utility of ranked visualizations in the exploration and comparison of different 
models and parameterizations. 

http://www.scriptsearch.com
http://www.stat.duke
http://javafile.com
http://www.china-contact.com/java/
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Figure 7: Detecting a data preparation flaw by visual inspection 

5.2 Search engine query results 

The data for this example was compiled in a way similar to the HITS algo
rithm [29]. We asked the AltaVista search engine for pages containing the word 
"Java" and used the first 200 URLs it returned as the root set. It was then 
expanded by asking AltaVista for pages containing links to resources in the 
root set (backward extension), and adding resources linked to by pages in the 
root set (forward extension). The graph was completed by adding edges for 
all links between pages in the resulting set of vertices. The computations were 
carried out on the only large component of this graph from which some poorly 
connected vertices were removed to prevent extreme clustering. The graph has 
more than 5000 vertices and 15000 edges. 

In Figure 6, this graph is shown twice, with vertices positioned vertically 
according to the Fiedler vector, and horizontally according to one of two promi
nence indices. Again, links from more to less prominent resources are colored 
black. 

The most prominent resources under the PageRank measure match our ex
pectations, but there are some surprising recommendations as well. It is clearly 
visible that some of these serve distinct user groups, like the Japanese directory 
in the upper right. Note that, without zooming into the image, we may not con
clude that vertically close vertices are closely connected. However, it is safe to 
assume that vertically separated vertices are relatively distant in the structure. 
This feature can serve to distinguish query results which contain a keyword that 
is used in different contexts (see the "jaguar"-query example in [29]). 

Figure 6 also shows that the top authorities are surprisingly distinguished 
from the rest of the graph, and quite different from our expectations. Most 
of them are located at Stars.com, a large repository for developers ("Web 
Developer's Virtual Library"). Since they are well connected among each other, 

http://Stars.com
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it is by virtue of our layout approach that their vertical position is similar, and 
thus this phenomenon could be detected by visual exploration. In Figure 7, 
resources at this site are colored lighter. Not surprisingly, vertices with high 
hub scores are from this site as well. This simple example graphically explains 
why the original HITS algorithm does not consider links within a site. 

5.3 Bibliographic networks 

Web graphs may be viewed as citation networks, and there exist many other 
bibliographic relations between publications and authors of written works. A 
discussion of techniques to analyze bibliographic networks is beyond the scope of 
this paper, but there is evidence that carefully applied network analytic meth
ods can provide insight into the structure of a research area by identifying, 
e.g., prominent works or thematic clusters. We refer the reader to [42] for an 
introduction to bibliographic analysis and to [10] for an example of a system 
constructing and visualizing graphs from various bibliographic relations. 

The application of our visual ranking approach to bibliographic networks is 
illustrated by citation data made available for the 2001 Graph Drawing Con
test [2], held in conjunction with the 9th International Symposium on Graph 
Drawing. Since bibliographic networks typically contain loosely connected sub
graphs which are difficult for spectral approaches to draw properly, it is proposed 
in [7] to weaken the diagonal of the Laplacian matrix. This modification serves 
to spread vertices more uniformly. 

Each vertex in Figure 8 represents a paper that appears in one of the pro
ceedings of the symposia from 1994 and 2000. While the color indicates the year 
of the symposium, height and width represent the number of citations received 
and made, respectively. As noted in Section 3, Kleinberg's hub and author
ity scores correspond to eigenvector centrality scores in the undirected graphs 
AAT and ATA. In bibliometrics, these are known as the bibliographic coupling 
and co-citation graphs. A hub is thus a potential survey, while an authority 
is an influential paper. Note, however, that the specific data at hand is cer
tainly not sufficient to draw valid conclusions about the role and importance of 
a publication. 

We have chosen this data set because the emerging patterns even for this 
small data set happen to resemble at least some of our intuition about the 
field. In particular, the horizontal clustering produced by the spectral layout 
algorithm does indeed correspond to a thematic clustering. The small cluster in 
the far right, for instance, are the Graph Drawing Contest Reports, connected 
only to the mainstream papers that form the adjacent dense cluster. Moving 
to the left, topics change via orthogonal drawing and 3D to the less intensely 
studied visibility representations and proximity drawings. 
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Figure 8: Citations between papers in proceedings of symposia on Graph Drawing (data from the 2001 GD Contest [2]) 
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6 Conclusions 

We have proposed a method for Web graph visualization that provides unam
biguous identification of prominent resources while showing the entire graph 
and its clustering. In the simplest approach, the layout for our visualizations 
can be computed synchronously with common link-based rankings. 

We expect the proposed visualization design to be particularly useful for 
visual exploration of ranked structures, for teaching and experimenting with 
ranking procedures, and for evaluation and illustration of stochastic models of 
the Web graph. 

For graphs with tens of thousands of vertices, power iteration becomes costly 
because of its slow convergence. While speed-up techniques that reorganize 
storage to reduce external memory access [24] carry over to the layout algorithm, 
more sophisticated layout algorithms are available. Several recently introduced 
methods [19, 40, 23] produce layouts similar to the spectral approach. With a 
new multiscale technique for eigenvector layout computation [30], however, our 
approach extends directly. 

The main advantage of spectral graph layout, its correspondence with dis
tance minimization and hence with clustering, becomes a drawback in cases 
where the underlying undirected graph is poorly connected, since denser sub
graphs will be clustered in a very small interval. Experiments with modifications 
of the Laplacian matrix [7] suggest that this problem can be addressed without 
changing the iteration significantly. 

Acknowledgments. We thank Marco Gaertler for collecting the "Java"-query 
data used in Section 5.2. 
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1 Introduction 
Research for upward drawings of digraphs has been studied extensively in the 
last years. One reason is that such drawings have many applications in areas 
like workflow, project management and data flow. 

An upward drawing of a digraph is a drawing such that all the edges are 
represented by curves monotonically increasing in the vertical direction. Note 
that such a drawing exists only if the digraph is acyclic. 

A straightforward generalization of upward drawings are mixed upward draw
ings. In mixed upward drawings, only a part of the edges in the graph are 
directed and must point upward. Note that such a drawing exists only if the 
directed part of the graph is acyclic. 

Mixed drawings arise in applications where the edges of the graph can be par
titioned into a set which denotes structural information and a another set which 
does not carry structural information. An example is UML class diagrams [4] 
arising in software engineering. In these diagrams, the vertices of the graph 
represent classes in an object-oriented software system, and edges represent 
relations between these classes. There are two main types of relations: gen
eralizations and associations. The generalization relations describe structural 
information and form a directed acyclic subgraph in the diagram. It is an often 
employed convention to draw generalizations upward, whereas associations can 
have arbitrary directions [21]. 

The most popular approach for creating upward drawings of digraphs is 
probably the Sugiyama algorithm [22]. The main idea of the Sugiyama algorithm 
is to assign layers to the vertices of the graph, such that edges point in ascending 
layer order. In a next step, the number of crossings are minimized by ordering 
the nodes in the layer. In the last step the nodes are assigned coordinates. For 
a fixed layer assignment, we call a graph level planar if it has a drawing which 
respects the layering and has no crossings. Several heuristics have been proposed 
for this step and used in practice, but there are also efficient algorithms to solve 
the level planarity problem [14] [13]. There have been several attempts to apply 
the Sugiyama algorithm also to mixed graphs, i.e., in [21] the approach is used 
for UML class diagrams. 

The principal step of the Sugiyama algorithm, the layer assignment, is also 
its most severe drawback. The layer assignment restricts the freedom of choice 
for the crossing minimization algorithm drastically, and there may be large 
differences between the number of crossings for different layer assignments of 
the same graph. Also, the generalizations of the Sugiyama algorithm for the 
mixed case have to assign layers to nodes with no directed adjacent edges. This 
only works when there is a low number of them, but if the directed part of the 
mixed graph is only small, the results are not satisfying and the layer assignment 
to the nodes seems artificial. 

In this work we propose a new drawing strategy for upward drawings of 
directed graphs which is based on the concept of upward planarity. A directed 
graph is upward planar if it can be drawn upward without edge crossings. Our 
strategy consists of two phases. In the first phase, we make the input graph 
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upward planar by replacing edge crossings by dummy nodes. We call the result 
of this phase upward planarization. In the second phase, an upward planar 
drawing of the upward planarization is generated and the dummy nodes are 
discarded. 

A similar strategy has been applied very successfully in the area of drawing 
undirected graphs. The most popular algorithms based on this strategy are per
haps the graph drawing algorithms descending from the topology-shape-metrics 
approach [2] [23] for orthogonal drawings. Recently, we showed in [9] how to 
extend the topology-shape-metrics approach to mixed upward planar drawings 
of mixed upward planar graphs, i.e., mixed graphs that have a planar drawing 
in which the directed part of the graph is drawn upward. The above strategy 
can also be applied to this algorithm, the first phase then consisting of finding a 
mixed upward planarization. An alternative way to draw directed graphs using 
the topology-shape-metrics approach is based on the concept of quasi-upward 
planarity, which is introduced in [19]. However the algorithm does not guar
antee that all edges of a directed graph point upward when the graph is not 
upward planar. 

In the remainder of this paper, we concentrate on the first phase of the 
topology-shape-metrics approach, see [6] for a survey on graph drawing algo
rithms for upward planar graphs. We give an efficient heuristics that computes 
a high quality upward planarization of a directed graph. We concentrate on 
a heuristic approach, since the upward planarity test problem is already NP-
complete. To our knowledge, this is the first time that this problem has been 
studied; work on planarization has been restricted to the undirected case until 
now. We also give a generalization of our algorithm for mixed graphs. 

We want to emphasize that the topology-shape-metrics approach above is 
only one possible application of the new algorithm. Our approach also deserves 
attention as a stand-alone product which might be applicable in other environ
ments. 

The rest of the paper is organized as follows. Section 2 gives the formal 
definitions of the upward and the mixed upward planarization problem. In Sec
tion 3, we present an algorithm which solves the upward planarization problem. 
In Section 4, we generalize the results of Section 3 to the mixed case. Section 
5 contains the results of empirical experiments performed with our algorithm. 
Finally, Section 6 concludes this work. 

2 Upward and Mixed Upward Planarization Prob
lem 

A drawing of a graph (digraph) is a mapping of its nodes to points in the 
plane and of its edges to open Jordan curves. A graph (digraph) is planar if it 
has a drawing where no two edges have a common point. An upward drawing 
of a digraph is a drawing such that all the edges are represented by curves 
monotonically increasing in the vertical direction. A digraph is upward planar 



206 

M. Eiglsperger et al., Mixed Planarization, JGAA, 7(2) 203-220 (2003) 206 

(a) (b) (c) 

Figure 1: Three upward drawings of a directed graph. The graph is upward pla
nar and can therefore be drawn without crossings (a). The Sugiyama-approach 
produces seven crossings (b) whereas our new method produces only two cross
ings (c). 

if it has a drawing which is upward and planar at the same time. Please note 
that there are graphs which have an upward drawing and also have a planar 
drawing but do not have an upward planar drawing. An embedding of a graph is 
denned as a cyclic ordering of the adjacent edges of each vertex of the graph. An 
embedding is planar if there is a planar drawing of the graph which preserves this 
ordering. An upward embedding of a graph is a linear ordering of the adjacent 
edges of each vertex of the graph in which the incoming and outgoing edges 
form an interval. An upward embedding is planar if there is an upward planar 
drawing of the graph which preserves the corresponding ordering. Preserving 
the ordering means that the linear ordering is equivalent to the ordering that 
can be obtained by ordering the edges according to the angle they form with 
a ray leaving the vertex in direction of the negative x-axis. We assume in the 
remainder of the paper that graphs have no multiple edges and selfloops. 

Given a directed graph G = (V, E), the graph G' = (VU V, E') is an upward 
planarization of G with crossing number \V'\ if and only if 

• G' is upward planar, 

• deg(v) = 4 for all v € V, and 

• Ve = (v,w) € E, there is a path p(e) = (uo,«i), (^1,^2),. • •, {vn-i,vn) in 
G' with v = vo, w = vn and Vi £ V',0 < i < n. Every edge in E' is 
contained in such a path, and two paths have no edge in common. 

A mixed graph is a three-tuple G = (V, Ed, Eu) C (V, V x V, V x V), where 
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V is the set of vertices, Ed is the set of directed edges and Eu is the set of 
undirected edges. 

The mixed graph G = (V, Ed, Eu) is mixed upward planar if there is a planar 
drawing of G where each edge in Ed is represented by a curve monotonically 
increasing in the vertical direction. 

A mixed upward embedding is planar if there is a mixed upward planar 
drawing of the graph which preserves the corresponding ordering. 

Determining for a (mixed) graph G a (mixed) upward planarized graph is 
called the (mixed) upward planarization problem. Determining for a (mixed) 
graph G a (mixed) upward planarized graph with minimal crossing number is 
called the (mixed) upward crossing minimization problem. 

Because the decision problem whether a graph has an upward embedding 
is a special case of the upward crossing minimization problem and the directed 
case is a special case of the mixed case, it follows that: 

Corollary 1 ([10]) The upward crossing minimization problem and the mixed 
upward crossing minimization problem are both NP-hard. 

3 Upward Planarization 

In this section, we propose an algorithmic framework for the upward crossing 
minimization problem. This framework is derived from techniques for the pla
narization of undirected graphs, see i.e. [6]. 

The framework consists of three parts: 

1. Construct an upward planar subgraph. 

2. Determine an upward embedding of this subgraph. 

3. Insert the edges not contained in the subgraph, one by one. 

In the first step, a subgraph of the input graph is calculated which is upward 
planar. For this subgraph, an upward embedding is determined in the second 
step. Of course, these two steps are only conceptually separated and can be 
combined to one step. Note that finding a maximum upward planar subgraph, 
i.e., finding an upward planar subgraph with the maximum number of edges, is 
NP-hard. In the third step, the edges which are not part of the upward planar 
subgraph are inserted incrementally into the embedding. Additionally, we can 
perform some local optimizations on the resulting planarization to improve the 
quality of it. 

3.1 Maximum Upward Planar Subgraph 

The maximum upward planar subgraph problem can be stated as follows: Given 
a directed graph G = (V,E). Find E' C E such that the directed graph 
G = (V, E) is upward planar with maximum number of edges. 
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The maximum planar subgraph problem is a related problem and a lot of al
gorithms have been proposed for its solution [11],[12],[17],[15],[20]. All of them, 
except [15], which can also compute the optimal solution when no time limit 
is specified, are heuristics, since the problem is NP-complete. Cimikowski [5] 
compared some of them empirically. In his comparison, the algorithm of Jiinger 
and Mutzel(JM) [15] performed best in solution quality, followed by the algo
rithm of Goldschmidt and Takvorian (GT)[11]. The fastest algorithm was the 
one based on PQ-trees[ll], but its performance in terms of the solution quality 
was significantly lower than JM and GT. In [20] Resende and Ribero give a 
randomized formulation of GT and show on the same test set as [5] that their 
formulation achieves better results with the same running time performance, 
except for one family of graphs where JM performs better. 

However, the algorithm of GT is much easier to implement in contrast to 
the algorithm of JM. JM is a branch-and-cut algorithm and is, therefore, based 
on sophisticated algorithms for linear programming. 

Because of its performance and its implementation issues, we use GT as a 
starting point. In the next section, we review the GT algorithm and show in the 
following section how it can be modified to calculate upward planar embeddings. 

3.2 The Goldschmidt/Takvorian Planarization Algorithm 

In this section, we review the main components of GT, the two-phase heuristics 
of Goldschmidt and Takvorian [11]. Our description follows the one in [20]. The 
first phase of GT consists in devising an ordering II of the set of vertices of V of 
the input graph G. This ordering should possibly infer a Hamiltonian path. The 
vertices of G are placed on a vertical line according to the ordering II obtained 
in the first phase, such that as many edges as possible between adjacent vertices 
can also be placed on the line. All other edges are drawn as arcs either right or 
left of the line. 

The second phase of GT partitions the edge set E of G into subsets C (left 
of the line), 72 (right of the line), and B (the remainder) in such a way that 
\C + 72.| is large (ideally maximum) and that no two edges both in C or both in 
72 cross with respect to the sequence II devised in the first phase. 

Let 7r(v) denote the relative position of vertex v G V within vertex sequence 
II. Furthermore, let ei = (a, b) and &2 = (c, d) be two edges of G, such that, 
without loss of generality, n(a) < n(b) and 7r(c) < ir(d). These edges are 
said to cross if, with respect to sequence II, ir(a) < 7r(c) < ir(b) < ir(d) or 
7r(c) < 7r(o) < n(d) < n(b). 

The conflict graph has a vertex for every edge in G and two vertices are 
adjacent if the corresponding edges cross with respect to II. It follows directly 
from its definition that the conflict graph is an overlap graph, i.e. a graph whose 
vertices can be represented as intervals, and two vertices are adjacent if and only 
if the corresponding intervals intersect but none of the two is contained by the 
other. 

An induced bipartite subgraph of the conflict graph represents a valid as
signment of the edges in G to the sets £,72 and B. Since finding a maximal 
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induced bipartite subgraph is NP-complete, even for overlap graphs, GT uses a 
heuristics. This heuristics calculates two disjoint independent sets of the conflict 
graph which, together, are a bipartite subgraph of the conflict graph. 

A maximum independent set of an overlap graph can be calculated in time 
O(NM), where N is the number of different interval endpoints and M is the 
number of edges in the overlap graph with the algorithm of Asano, Imai and 
Mukaiyama[l]. In our setting, N < n and M = m, which leads to a running 
time of 0(nm). 

3.3 The directed version of the GT algorithm 

We now present our variant of the GT algorithm for planar upward subgraph 
calculation. In order to change the GT algorithm to get an upward planar sub
graph, we have to modify the first step of GT, the construction of the vertex 
order. The vertex order must ensure that no directed edge has a target ver
tex which is in the order before the source vertex. This is achieved by using 
algorithm vertex order as a first phase of GT. We call this variant directed GT 
or, shorter, DGT to distinguish it from the original formulation. Algorithm 1, 
directed vertex order, is a modification of the algorithm [11]. It is a variation of 
a standard topological sorting algorithm and tries to maximize the number of 
edges between consecutive vertices in the ordering. It has been shown in [20] 
that this improves the quality of the result of GT. The ordering is constructed 
incrementally. Assume that vertex v is the vertex chosen in the previous step. 
The algorithm chooses a vertex in the next step which is adjacent to v, but 
which is not the successor of an unchosen vertex. If this is not possible, it takes 
a vertex of minimal degree which, additionally, is not the successor of an uncho
sen vertex. As the first vertex, it chooses a vertex with no incoming edge with 
minimal degree. 

Lemma 1 Let G be a directed graph. If the vertex order II in the first phase 
of the GT algorithm is a topological order of G, the result of GT is an upward 
planar subgraph of G. 

Proof: Placing the vertices on a vertical line according to the ordering used 
by GT and drawing the edges in £ as arcs on the left side of the line and the 
edges in TZ on the right side of the line yields an upward planar drawing of the 
subgraph calculated by GT. • 

Lemma 2 The vertex order calculated by algorithm vertex order is a topological 
order of G. 

Proof: The algorithm vertex order increments in each iteration the current 
ordering by a vertex with indegree zero. This is similar to a folklore topological 
sorting algorithm, see, i.e., [18] for details. • 

From the sets C and 7£ and the permutation II, we can now easily obtain the 
upward planar embedding: For each node v £ V we sort the edges with source 
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Algorithm 1: vertex order 

Input: A directed graph G = (V, E) 
Output: A permutation n on the vertices 
Select v\ from G with zero indegree and minimal outdegree; 
V = V\{v1}; 
G\ = directed graph induced on G by V; 
for k = 2 , . . . , \V\ do 

U = {v £ V|indegree(u) = 0 in Gk}; 
if Vk-i is connected to a vertex in hi then 

select Vk as vertex in 14 adjacent to Vk-\ with min. degree in Gk-i 
else 

select Vk as vertex in U with min. degree in Gk-i 
end 
V = V\« f c ; 
Gk = directed graph induced on G by V; 

end 
re turn II = (v\,V2,.- • ,v\v\) 

v in C decreasing according to II and the edges with source v in 7c increasing 
according to II and concatenate these two ordered list to one. For the incoming 
edges, we first sort the edges with target v in 7c decreasing according to II and 
the edges with source v in £ increasing according to II and append the result 
to the list of outgoing edges. 

We conclude the section with the following theorem: 

Theorem 1 Algorithm DGT computes an upward planar subgraph, together 
with an upward planar embedding of this subgraph, in time 0(nm). 

3.4 Edge Insertion 

There is an interesting difference between the insertion of directed and undi
rected edges. In the undirected case, the edges which are not part of the planar 
subgraph in the first step can be inserted independently of each other. This is 
different in the directed case. Here, we cannot insert an edge into the drawing 
without looking at the remaining edges which have to be inserted later. The 
reason for this is that introducing dummy nodes in the graph introduces changes 
in the ordering of the vertices of the graph. This may introduce directed cycles 
if an edge is added later. (See Figure 2). 

Assume that the dashed edges have to be inserted in Fig. 2(a), and we start 
by inserting edge (5,9). When we do not work carefully and insert edge (5,9) 
as in Fig. 2(b), we produce a crossing C with edge (1,3) and some new edges, 
where C is involved. Then, it is no longer possible to introduce edge (3,4) 
without destroying the upwardness property because of the new directed cycle 
5 - C - 3 - 4 - 5 . 

We call a vertex with indegree 0 a source, and a vertex with outdegree 0 a 
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(a) (b) (c) 

Figure 2: Edge insertion: Critical configuration and the routing graph 

sink. A directed acyclic graph is called an s-t graph if it has exactly one sink 
and one source. We first restrict ourselves to s-t graphs. We show later how we 
can remove this restriction. 

As shown above, we have to avoid cycles when we insert edges. We avoid 
this by layering the graph. A valid layering I of a directed graph G = (V, E) is a 
mapping of V to integers such that l(v) > l(u) for each edge (u, v) S E. We then 
construct a routing graph R. The routing graph contains, for each face / and 
for each layer that / spans, a vertex. Two vertices lying in neighboring layers 
and representing the same face are connected by a directed edge of weight 0 in 
increasing layer order. Additionally, two vertices at the same layer i of adjacent 
faces are connected by an edge of weight 1 if the source vertex of an edge 
separating these two faces is less than or equal to i and the layer of the target 
node is greater than i. 

In this graph, there are no edges in decreasing layer order. Each edge of 
weight 1 represents one crossing. A shortest path in the routing graph repre
sents, therefore, an insertion of an edge with minimal number of crossings with 
respect to the given layering. Figure 2(c) shows an example for a routing graph. 

Let s(f), resp. £(/), denote the source, resp. sink, of a face / . Note that 
in an s-t graph, every face has exactly one source and one sink. Furthermore, 
//(e), resp. r / (e ) , denotes the face on the left, resp., right side of e. We consider 
the outer face as two faces, the left-outer face, resp. the right-outer face, which 
denote the left, resp. right part, of the outer face. Algorithm 2, directed edge 
insertion, summarizes the construction. It takes as input our current upward 
planar graph G, the set of remaining edges F and one edge e £ F. The output 
G' is a planarization of G and e. It uses the subroutine subdivide(G, e) which 
splits an edge e = (a,b) into two edges (a, w), (w,b), adds the vertex w to G 
and returns the created vertex w. 

Lemma 3 The graph G' calculated in directed edge insertion is an s-t graph 
and upward planar. 
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Algor i thm 2: directed edge insertion 
Input : Embedded upward planar s-t graph G = (V,E), F C V x V, 

e=(a,b)&F 

Outpu t : Embedded upward planarized s-t graph G' of G = (V, EUe) 
calculate faces from embedding; 
determine valid layering I of (V, EuF); 
Let R be an empty directed graph; 
for every face f of G do 

create vertices v(f,i) for l(s(f)) <i< l(t(f)) in R; 
for l(s(f)) < i < l(t(f)) do 

create edge of weight 0 from ?;(/, i — 1) to v(f, i) in i?; 
end 

end 
for every edge e' = (c, d) of E do 

for 1(c) < i < 1(d) do 
create edge of weight 1 from v(rf(e'),i) to v(lf(e'),i) in i?; 
create edge of weight 1 from v(lf(e'),i) to v(rf(e'),i) in ii; 

end 
end 
create vertex u(a) and u(6) in -R representing a resp. b; 
Insert edge of weight 0 from v(a) to v(f, 1(a)) in R if / is adjacent to a 
and such a vertex exists; 
Insert edge of weight 0 from v(b) to v(f, 1(b) — 1) in R if / is adjacent to 
b and such a vertex exists; 
Calculate shortest path p from u(a) to v(b) in i?; 
E / = JB,F' = y , G , = (^',JB'); 
Let eo , . . . , en be the edges of weight 1 in p; 
for 0 < i < n do 

u?i =subdivide(G',ej); 
end 
Add an edge between a and Wo, wn and 6, and Wj and Wj+i in E'; 
r e tu rn G' 

Proof: In the edge insertion step, we do not decrease the indegree or the 
outdegree of any vertex existing already in the input graph. Therefore, we only 
have to show that none of the inserted vertices is a sink or a source. But this 
is true, since each of these vertices has indegree two and outdegree two. G' is 
upward planar, since there are no crossings and the layering is observed. • 

Lemma 4 The graph (V, E' U F \ e) is acyclic. 

Proof: Assume that there is a directed cycle. Each inserted vertex Wi is induced 
by an edge of weight 1 in the routing graph which connects two face vertices 
lying in the same layer. Assign this layer to node Wi. Then, each vertex has 
a layer assigned, and there are no edges which point in decreasing layer order. 
Thus, the cycle can only contain vertices in the same layer. These can only be 
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vertices Wi by the construction of the layering. But, from this fact it follows 
that the shortest path had a directed cycle which is a contradiction. • 

Lemma 5 Algorithm directed edge insertion has time complexity 0( |V | 2 ) , 

Proof: The faces of the graph can be computed in linear time from the embed
ding. A valid layering with a minimal number of layers can also be computed in 
linear time using a topological sorting. The maximum number of layers is linear, 
since a topological sorting is an upper bound for the number of layers. Hence, 
the number of vertices in the routing graph is OdV'l2) and, since each vertex 
has constant degree, the total size of the routing graph is 0( |V|2) . Because 
the maximum cost of an edge is 1, we can use Dial's shortest path algorithm[8] 
which has linear running time in this case. The insertion of the edge can clearly 
be done in linear time. • 

The following theorem summarizes the lemmas above. 

Theorem 2 Algorithm directed edge insertion inserts one edge in an embedded 
upward planar s-t graph G = (V,E) in time 0( |V|2) without introducing cycles 
with a set of not yet inserted edges. The planarized graph is an s-t graph. 

3.5 The Complete Algorithm 

Algorithm 3, upward planarization, contains a description of the algorithm. Note 
that if the input graph for the second phase is not an s-t graph, we augment it 
to a planar upward s-t graph, see [3] for a linear time algorithm. Edges in the 
routing graph representing an edge added in the augmenting step are assigned 
weight 0, because they do not introduce a real crossing. The removed edges are 
inserted in random order in the second phase. After the routing, the augmenting 
edges are removed. Note that the augmentation does not affect the worst-case 
running time of the algorithm, since the number of edges in the graph remains 
linear in the number of nodes. 

Algorithm 3 : upward-planarization 
calculate embedded mixed upward planar subgraph with DGT; 
augment subgraph to an s-t graph; 
for Each removed directed edge do 

call algorithm directed edge insertion; 
end 
remove edges inserted in augmentation process; 

From the discussion above, we derive the following theorem: 

Theorem 3 Let G — (V, E) be a directed graph. Algorithm 3, upward-planarization, 
creates an embedded upward planarized graph of G in time 0(\V\\E\ + (|V| + 
C)2 | JE|) , where c is the number of crossings of the planarized graph. When G 
is sparse, i.e. \E\ = 0(\V\), the algorithm upward-planarization runs in time 
0{{\V\+cf\V\). 
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However, the time bound in the theorem above is very pessimistic. In our 
experiments, the running time of the algorithm is reasonable, even for larger 
graphs. 

3.6 Rerouting 

In this section, we present a local optimization method for an upward planariza
tion. One step of the method removes a path representing an edge from the pla
narization, and tries to reinsert it with fewer crossings. To test whether it can 
be reinserted with fewer crossings we first augment the graph to an s-t-graph 
after the removal of the path. Then we construct from this s-t graph the routing 
graph. Testing whether the edge can be inserted with fewer crossings reduces 
again to a shortest path problem in the routing graph. If we succeed, we change 
the planarization according to the new routing, otherwise, we do not change 
the planarization. In any case, the augmented edges are removed. We iterate 
this local optimization until we either do not make any further improvements, 
i.e., there is no edge for which we can find a routing with less crossings. This is 
realized by defining a set of edges Cand which contains all edges of the original 
graph which have crossings in the planarization. In each iteration we randomly 
choose one edge and perform the local optimization step for the path defined 
by this edge. If the planarization had been improved we recalculate Cand and 
start again. We stop when Cand is empty. Since the local optimization is time 
consuming, the total number of local optimizations steps can be bounded by a 
constant. 

4 Mixed Upward Planarization 

In this section we show how the concepts in the previous sections can be ex
tended to the mixed case, i.e., the input graph is a mixed graph. 

For the mixed planar subgraph calculation, we also use the GT algorithm. 
As in the upward case, we only have to take care of the vertex ordering. We use 
Algorithm 4, mixed vertex order, a modified version of Algorithm vertex-order 
for this, which ignores the direction of the undirected edges. 

The modifications follow the intuition that the undirected edges allow more 
freedom since we can choose the direction. So, the idea is to prefer the directed 
edges when computing the planar subgraph. One variant of the planar subgraph 
algorithm that takes this aspect into account, is to extend the GT approach 
by assigning different weights to the directed and undirected edges and then 
optimize over the weighted sum of the edges [1]. The actual choice of the 
weights depends on the application as well as on the class of graphs to consider 
and is the subject of further research. 

The upward edge insertion algorithm can be extended to the mixed case by 
directing the undirected edges in G temporarily according to the ordering in GT. 
We then insert the removed directed edges iteratively in the graph as described 
in section 3.4. Next we undirect the temporarily directed edges. Finally we 
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Algorithm 4: mixed vertex order 

Input: A mixed graph G = (V, E, F) 
Output: A permutation II on the vertices 
Select v\ from G with zero indegree and minimal degree; 
V = V\{Vl}; 
G\ = mixed graph induced on G by V; 
for k = 2,...,\V\ do 

U = {v e V|indegree(w) = 0 in Gk}; 
if Vk-i is connected to a vertex in U then 

select Vk as vertex in U adjacent to vk-i with min. degree in Gk-i 
else 

select Vk as vertex in U with min. degree in Gk-i 
end 
V = V\vk; 
Gk = mixed graph induced on G by V; 

end 
return 11= (vi,v2,...,v\v\) 

insert the removed undirected edges by an standard edge insertion algorithm 
for undirected graphs [6]. Algorithm 5, mixed-upward-planarization, summarizes 
this. 

Algorithm 5: mixed-upward-planarization 
calculate embedded mixed upward planar subgraph with GT; 
direct undirected edges in the subgraph temporarly; 
augment subgraph to an s-t graph; 
for Each removed directed edge do 

call algorithm directed edge insertion; 
end 
remove edges inserted in augmentation process; 
undirect edges which have been directed; 
for Each removed undirected edge do 

call algorithm undirected edge insertion; 
end 

Theorem 4 Let G = {V,Ed,Eu) be a mixed graph. Algorithm mixed-upward-
planarization creates an embedded mixed upward planarized graph of G in time 
0(\V\(\Ed\ + \Eu\) + (\V\ + c)2\Ed\ + (|V| + c)|£?u|), where c is the number of 
crossings in the planarized graph. 

5 Experiments 

In this section we present the results of an experimental comparison of our 
algorithm with the Sugiyama algorithm for directed acyclic graphs. 
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All experiments have been performed on a Pentium rV System with 1.8 
GHz and 512 Megabyte main-memory running Linux. We implemented our 
algorithm in pure JAVA based on the yFiles library [24]. For the experiments 
we used a randomized version of GT which takes the largest subgraph from 
150 different node orderings. In the experiments we did not use rerouting. We 
compare our algorithm to the Sugiyama implementation in yFiles [24]. This 
implementation uses a randomized version of the iterated barycenter method. 
This method was the clear winner of an experimental comparison of heuristics 
for the crossing minimization problem of layered graph [16]. All experiments 
have been performed using JDK 1.4.1. 

We performed our experiments on three test sets: 

Rome Graphs. The Rome-graphs test suite[7] contains about 10.000 undi
rected connected graphs. The number of nodes in the test suite ranges 
from 10 to 100, the average density of the graphs ranging from 1 to 2 with 
average value of 1.3. We transformed the undirected graphs to directed 
acyclic graphs by directing the edges according to an ordering of the nodes 
of the graph. As ordering we chose the implicit ordering of the nodes as 
defined in the file. 

Upward Planar Graphs. There are two test sets consisting of connected up
ward planar graphs, the first contains graphs with density 1.3, the second 
graphs with density 2.6. Both test sets contain 910 upward planar graphs, 
the number of nodes ranging in each form 10 to 100, containing 10 graphs 
for each node count. The graphs were generated the following way: First 
a random set of points in a triangle was generated. For this point set a 
Delaunay triangulation was performed which yields a planar triangulated 
graph. We deleted edges randomly until we reached the desired density. 
To assure that the generated graphs were connected we computed a span
ning tree of the triangulated graph by randomized DFS and ensured that 
edges in the spanning tree are not deleted in the previous step. Finally 
we directed the edges according to the coordinates of their endpoints. 

Graphs With Limited Height. There are two test sets which contain con
nected directed graphs with maximum height three, the first with density 
1.3, the second with density 2.6. Maximum height three means in this 
setting that they have a layer assignment with at most three layers. Both 
test sets contain 910 upward planar graphs, the number of nodes ranging 
in each form 10 to 100, containing 10 graphs for each node count. The 
graphs were generated the following way: First we distributed randomly 
the nodes in three layers. To assure that a generated graph was connected 
we generated a spanning tree for it. Then we inserted edges randomly 
between nodes in neighbored layers until the desired density was reached. 

Figure 3 shows the results of our experiments. The left diagrams show the 
relation between the average number of crossings and the number of vertices. 
The right diagrams show the relation between average running time and the 
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Figure 3: Results of experiments: Number of crossings and running time in 
milliseconds. 
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number of vertices. For the test sets with density 1.3 our algorithm yields better 
results than the Sugiyama approach. In the case for limited height graphs, the 
improvements are drastic. For the test sets with density 2.6 the Sugiyama 
approach is the clear winner. In terms of running time, the Sugiyama approach 
clearly outperforms our approach, however the running time of our algorithm is 
still acceptable for interactive use. 

6 Conclusion 

In this paper, we gave a new algorithm for the problem of finding a upward 
planarization for graphs with directed and undirected edges as well. Our ap
proach generalizes the related problem for undirected graph and emphasizes 
on the practical needs for such methods, namely practical efficiency and good 
quality, even for large graphs. The concept is designed so flexible that many 
additional requirements like constraints or interactivity might be incorporated. 
Hence, together with a graph drawing algorithm for upward planar graphs it can 
be viewed as a reasonable alternative to the well known Sugiyama algorithm. 

Acknowledgments 

The authors wish to thank the referees for their useful suggestions. 

References 

[1] T. Asano, H. Imai, and A. Mukaiyama. Finding a maximum weight inde
pendent set of a circle graph. IEICE Tranactions, E74:681-683, 1991. 

[2] C. Batini, E Nardelli, and R. Tamassia. A layout algorithm for data-flow 
diagrams. IEEE Trans. Softw. Eng., SE-12(4):538-546, 1986. 

[3] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings 
of triconnected digraphs. Algorithmica, 6(12):476-497, 1996. 

[4] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language. 
Addison-Weslay, 1999. 

[5] R. Cimikowski. An analysis of heuristics for the maximum planar subgraph 
problem. In Proceedings of the 6th ACM-SIAM Symposium of Discrete 
Algorithms, pages 322-331, 1995. 

[6] G. Di Battista, R Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: 
Algorithms for the Visualization of Graphs. Prentice Hall, 1999. 

[7] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and 
F. Vargiu. An experimental comparison of four graph drawing algortihms. 
Comput. Geom. Theory Appi, 7:303-325, 1997. 



219 

M. Eiglsperger et al., Mixed Planarization, JGAA, 7(2) 203-220 (2003) 219 

[8] R. Dial. Algorithm 360: Shortest path forest with topological ordering. 
Communications of ACM, 12:632-633, 1969. 

[9] M. Eiglsperger, U. Foessmeier, and M .Kaufmann. Orthogonal graph draw
ing with constraints. In Proc. 11th ACM-SIAM Symposium on Discrete 
Algorithms, pages 3-11, 2000. 

[10] A. Garg and R. Tamassia. On the complexity of upward and rectilinear 
planarity testing. In Proceedings of the 2nd International Symposium on 
Graph Drawing (GD'94), volume 894 of LNCS, pages 286-297, 1995. 

[11] O. Goldschmidt and A. Takvorian. An efficient graph planarization two-
phase heuristic. Networks, 24:69-73, 1994. 

[12] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. o(n2) algorithms 
for graph planarization. In IEEE Trans, on CAD, volume 8 (3), pages 
257-267, 1989. 

[13] M. Jiinger and S. Leipert. Level planar embedding in linear time. In 
J. Kratochvil, editor, Proceedings of the 7th International Symposium on 
Graph Drawing, volume 1547, pages 72-81. Springer Verlag, 2000. 

[14] M. Jiinger, S. Leipert, and P. Mutzel. Level planarity testing in linear 
time. In Proceedings of the 6th International Symposium on Graph Drawing 
(GD'98), volume 1547 of LNCS, pages 224-237, 1998. 

[15] M. Jiinger and R Mutzel. Solving the maximum weight planar subgraph 
problem by branch & cut. In Proc. of the 3rd conference on integer pro
gramming and combinatorial optimization (IPCO), pages 479-492, 1993. 

[16] M. Jiinger and R Mutzel. 2-layer straightline crossing minimization: Per
formance of exact and heuristic algorithms. Journal of Graph Algorithms 
and Applications (JGAA), l ( l ) : l -25, 1997. 

[17] G. Kant. An 0(n2) maximal planarization algorithm based on PQ-trees. 
Technical Report RUU-CS-92-03, CS Dept., Univ. Utrecht, Netherlands, 
1992. 

[18] K. Mehlhorn and S. Naher. The LEDA Platform of Combinatorial and' 
Geometric Computing. Cambridge University Press, 1999. 

[19] W. Didimo P. Bertolazzi, G. Di Battista. Quasi-upward planarity. Algo-
rithmica, 32(3):474-506, 2002. 

[20] M. Resende and C. Ribeiro. A grasp for graph planarization. Networks, 
29:173-189, 1997. 

[21] J. Seemann. Extending the Sugiyama algorithm for drawing UML class di
agrams: Towards automatic layout of object-oriented software diagrams. 
In Proceedings of the 5th International Symposium on Graph Drawing 
(GD'97), volume 1353 of LNCS, pages 415-424, 1997. 



220 

M. Eiglsperger et al., Mixed Planarization, JGAA, 7(2) 203-220 (2003) 220 

[22] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding 
of hierarchical system structures. IEEE Transactions on Systems, Man, 
and Cybernetics, 11 (2): 109-125, February 1981. 

[23] R. Tamassia. On embedding a graph in the grid with the minimum number 
of bends. SI AM Journal on Computing, 16(3):421-444, 1987. 

[24] R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Visualization and 
automatic layout of graphs. In Proceedings of the 9th International Sympo
sium on Graph Drawing (GD'01), LNCS, pages 453-454. Springer, 2001. 



221 

Journal of Graph Algorithms and Applications 
h t t p : / / j g a a . i n f o / 

vol. 7, no. 2, pp. 221-241 (2003) 

Upward Embeddings and Orientations of 
Undirected Planar Graphs 

Walter Didimo 
Dipart imento di Ingegneria Elet tronica e dell'Informazione 

Universita di Perugia 
via G. Duranti 93, 06125 Perugia, Italy. 
h t t p : / / w w w . d i e i . u n i p g . i t / " d i d i m o / 

d i d i m o Q d i e i . u n i p g . i t 

Maurizio Pizzonia 
Dipart imento di Informatica e Automazione 

Universita di Roma TYe 
via della Vasca Navale 79, 00146 Roma, Italy. 
h t t p : / / w w w . d i a . u n i r o m a 3 . i t / ~ p i z z o n i a / 

p i zzon iaOdia .un iroma3 . i t 

Abstract 

An upward embedding of an embedded planar graph specifies, for each 
vertex v, which edges are incident on v "above" or "below" and, in turn, 
induces an upward orientation of the edges from bottom to top. In this 
paper we characterize the set of all upward embeddings and orientations 
of an embedded planar graph by using a simple flow model, which is re
lated to that described by Bousset [3] to characterize bipolar orientations. 
We take advantage of such a flow model to compute upward orientations 
with the minimum number of sources and sinks of 1-connected embedded 
planar graphs. We finally devise a new algorithm for computing visibility 
representations of 1-connected planar graphs using our theoretic results. 
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1 Introduction 

Let G be an undirected planar graph with a given planar embedding. Loosely 
speaking, an upward embedding (also called an upward representation) of G is 
specified by splitting, for each vertex v of G, the ordered circular list of the 
edges that are incident on v into two linear lists (from left to right) Eabm,e(v) 
and Ebeiow(v), in such a way that there exists a planar drawing r of G with the 
following properties: (i) all the edges are monotone in vertical direction; (ii) for 
each vertex v the edges in Eabove(v) (Ebeiow(v)) are incident on v above (below) 
the horizontal line through v. 

A drawing T that verifies properties (i) and (ii) is said to be an upward 
drawing of G. An orientation of all edges of T from bottom to top defines an 
orientation of G, which we call an upward orientation of G. Hence, each upward 
embedding of G induces an upward orientation of G. Figure 1 shows an upward 
embedding of an embedded planar graph and the upward orientation induced 
by it. 

(a) (b) (c) 

Figure 1: (a) An embedded planar graph, (b) An upward embedding of the embedded 
planar graph. For each vertex vt of the graph the edges in Ebeiow(vi) and Eabove(vi) 
are drawn incident below and above the horizontal line through Vi, respectively, (c) 
The upward orientation induced by the upward embedding. 

An embedded planar graph has in general many upward embeddings and 
upward orientations within the given embedding. Although upward embed
dings and orientations have been widely studied within specific theoretic and 
application domains, as far as we know no complete combinatorial characteri
zations have been provided in the case of general embedded planar graphs. In 
the present paper we investigate this problem and we show how our theoretic 
results have interesting applicability in graph drawing. 

An important class of upward orientations, deeply studied in the literature, is 
represented by the so called bipolar orientations (or st-orientations). A bipolar 
orientation of an undirected planar graph G is an upward orientation of G with 
exactly one source s (vertex without in-edges) and one sink t (vertex without 
out-edges). A bipolar orientation of G with source s and sink t exists if and 
only if G U {(s, t)} is biconnected. Finding a bipolar orientation of a planar 
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graph is the first step of many algorithms in graph theory and graph drawing. 
A complete and elegant study of the properties of bipolar orientations has been 
provided by de Praysseix et. al. [5], and a characterization of bipolar orientations 
in terms of a network flow model has been described by Bousset [3]. 

Czyzowicz, Kelly and Rival [14, 13, 4, 16] provide several theoretic results 
about upward orientations and upward drawings of ordered set and planar lat
tices, that is, special classes of combinatorial structures. 

Several results on upward embeddings of digraphs have been also provided 
in the literature. In this case, the orientation of the edges of the graph is 
given, and a classical problem consists of finding an upward (planar) embedding 
that preserves such an orientation. Clearly, an upward embedding of a digraph 
might not exist. Bertolazzi et al. [1] describe a polynomial time algorithm for 
testing the existence of upward embeddings of a digraph within a given planar 
embedding. The algorithm is also able to construct an upward embedding if 
there exists one. In the variable embedding setting the upward planarity testing 
problem is NP-complete [9], but it can be solved in polynomial time for digraphs 
with a single source [2]. 

The main contributions of this paper are listed below: 

• Starting from the properties on upward planarity of digraphs given in [1], 
we provide a complete characterization of the set of all upward embed
dings and orientations of any embedded planar graph (Section 3.1). It 
is based on a network flow model, which is a generalization of that used 
by Bousset [3] for characterizing bipolar orientations. In particular, if the 
graph is biconnected, our flow model also captures all bipolar orientations 
of the graph. 

• We describe flow based polynomial time algorithms for computing upward 
embeddings of the input graph. Such algorithms allow us to handle partial 
specifications of the upward embedding (Section 3.1). Further, we provide 
a polynomial time algorithm to compute upward orientations with the 
minimum number of sources and sinks (Section 3.2). Upward orientations 
with the minimum number of sources and sinks can be viewed as a natural 
extension of the concept of bipolar orientations to 1-connected graphs. 

• We describe a simple technique to compute visibility representations of 1-
connected planar graphs (Section 4), which can be of practical interest for 
graph drawing applications. It is based on the computation of an upward 
embedding of the graph, and does not require running any augmentation 
algorithm to initially make the graph biconnected. Compared to a stan
dard technique that uses the good approximation algorithm described by 
Fialko and Mutzel [8] to make the graph biconnected, the algorithm we 
propose is theoretically faster, simpler to implement, and achieves similar 
results in terms of area of the visibility representation. 

In Section 2 we recall formal definitions and known results on upward em
beddings and orientations of undirected planar graphs. 
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2 Basic Definitions and Results on Upward Em
beddings 

A graph is 1-connected (or connected) if there exists a path between any pair 
of its vertices. A vertex of the graph whose removal disconnects the graph is 
called a cutvertex. A connected graph is 2-connected (or biconnected) if it has 
no cutvertex. Given a 1-connected graph G, a biconnected component (or block) 
of G is a maximal biconnected subgraph of G. Observe that each cutvertex of 
G belongs to at least two distinct blocks of G, and that each edge of G belongs 
to exactly one block of G. The decomposition of a graph into its blocks can be 
easily done in linear time [18]. 

A drawing F of a graph G maps each vertex u of G into a point pu of the 
plane and each edge (u, v) of G into a Jordan curve between pu and pv. T is 
planar if two distinct edges never intersect except at common end-points. G is 
planar if it admits a planar drawing. A planar drawing r of G divides the plane 
into topologically connected regions called faces. Exactly one of these faces is 
unbounded, and it is said to be external; the others are called internal faces. 
Also, for each vertex v of G, T induces a circular clockwise ordering of the edges 
incident on v. The choice <p of such an ordering for each vertex of G and of an 
external face is called a planar embedding of G. A planar graph G with a given 
planar embedding <f> is called an embedded planar graph and denoted by G^. A 
drawing of G^ is a planar drawing of G that induces <f> as the planar embedding. 

Let G^ be an (undirected) embedded planar graph. An upward embedding 
£<!, of G^ is a splitting of the adjacency lists of all vertices of G$ such that: 

(E l ) For each vertex v of G^ the circular clockwise list L(v) of the edges 
incident on v is split into two linear lists (from left to right), Ebeiow(v) 
and Eabove(v), so that the circular list obtained by concatenating Eabove(v) 
and the reverse of Ebeiow(v) 1S equal to L(v). 

(E2) There exists a planar drawing r(f^) of G^ such that all the edges are 
monotone in vertical direction and for each vertex v of G^ the edges of 
Ebeiow(v) and Eabove{v) are incident on v below and above the horizontal 
line through v, respectively. We say that r(5^) is a drawing of £</, and an 
upward drawing of G^. 

From (E2) the following is immediate. 

P r o p e r t y 1 Given an upward embedding of G^, for each edge e = (u,v) of G^ 
either e £ Eabove(u) l~l Ebeiow(v) or e £ Ebeiow{u) n Eabove{v). 

An upward embedding £$ of G$ uniquely induces an upward orientation 
00 of G<j,. Namely, for each edge e = (u,v) such that e £ Eabove(u) a n d 
e £ Ebeiow{v), w e orient e from u to v (see Figure 1). Conversely, an upward 
orientation defines in general a class of possible upward embeddings inducing it 
(see Figure 2). A source of £$ is a vertex v of G^ such that Ebeiow(v) is empty. 
A source has only out-edges with respect to orientation 0$. A sink of £$ is 
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a vertex v of G<j> such that Eabove(v) is empty. A sink has only in-edges with 
respect to 0$. 

(a) (b) (c) 

Figure 2: Three different upward embeddings that induce the same upward orienta
tion. 

Given a vertex vofG</„ we denote by deg(v) the number of edges incident on 
v. An angle of G^ at vertex v is a pair of clockwise consecutive edges incident-
on v. In particular, if deg(v) = 1, and if we denote by e the edge incident on 
v, (e, e) is an angle. Given a splitting of the adjacency lists of G^ that verifies 
(El), an angle (ei,e2) at vertex v of G^ can be of three different types (see 
Figure 3 for an example): 

• large: (i) both ei and e2 belong to Ebeiow(v) {EabOVe(v)), and (ii) e\ and 
e2 are the first (last) edge and the last (first) edge of Ebeiow(v) {Eabove(v)), 
respectively. We associate a label L with a large angle. 

• flat: if: (i) ei G Ebeiow(v) and e2 G Eabove{v) or, (ii) ei G Eabove(v) and 
e2 G Ebeiow(v)- We associate a label F with a flat angle. 

• small: in all the other cases. We associate a label S with a small angle. 

Figure 4 shows the labeling of the angles of an embedded planar graph G<f, 
determined by an upward embedding £$. Each drawing of £$ maps the angles 
of Gtj, to geometric angles such that large and small angles always correspond 
to geometric angles larger and smaller than 180 degrees, respectively. Both the 
two edges that form a large or a small angle at vertex v are incident on v either 
above or below the horizontal line through v. Instead, a flat angle at vertex v 
corresponds to a geometric angle that can be either larger or smaller than 180 
degrees, but in any case one of its edges is incident on v above the horizontal 
line through v while the other edge is incident on v below the same line. 

Let / be a face of G$. We call border of / the alternating circular list of 
vertices and edges that form the boundary of / . Note that, if the graph is not 
biconnected an edge or a vertex may appear more than once in the border of / . 
We say that an angle (ei,e2) at vertex v belongs to face / if e±, e2, and v belong 
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Figure 4: The labeling of the angles of an embedded planar graph determined by an 
upward embedding of the graph. 

to the border of / . The degree of / , denoted by deg(f), is the number of edges 
in the border of / . Observe that, deg(f) is equal to the number of angles of / . 

Consider now any labeling of the angles of G$ with labels L, S, and F. For 
each face / of G<f, denote by L(f), S(f), and F(f) the number of angles that 
belong to / with label L, S, and F, respectively. Also, for each vertex v of G^ 
denote by L(v), S(v), and F(v) the number of angles at vertex v with label L, 
S, and F, respectively. The following lemma is a direct consequence of a known 
result on upward planarity [1]. 

Lemma 1 Let £$ be a splitting of the adjacency lists of G§ that verifies (El), 
and consider the labeling of the angles of G<j> determined by it. £$ is an upward 
embedding of G$ if and only if the following properties hold: 

(FIN) S(f) = L(f) + 2, for each internal face f of G$. 

(FEX) S(f) = L(f) - 2, for the external face f of G0 . 
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(VLO) F(v) = 2, S(v) = deg(v) — 2, and L(v) = 0, for each vertex v of G<f, 
such that both Eabove{v) and Ebeiow(v) are not empty. 

(VL1) F(v) = 0, S(v) = deg(v) — 1, and L(v) = 1, for each vertex v of G$ 
such that either Eabove(v) or Ebeiow(v) is empty. 

Properties (VLO) and (VL1) of Lemma 1 state that if £$ is an upward 
embedding of G^, each source or sink of £$ has exactly one large angle and no 
flat angle, while each vertex that is neither a source nor a sink has exactly two 
flat angles and no large angle. The next lemma provides a different formulation 
for properties (FIN) and (FEX). 

Lemma 2 Properties (FIN) and (FEX) of Lemma 1 are equivalent to the fol
lowing properties: 

(FIN') deg(f) -2 = 2L(f) + F(f), for each internal face f of G 0 . 

(FEX') deg(f) + 2 = 2L(f) + F{f), for the external face f of G0 . 

Proof: 
Property (FIN) is equivalent to property (FIN') since deg(f) = L(f)+S(f) + 

F(f). The equivalence between properties (FEX) and (FEX') can be proved 
analogously. 

q.e.d. 

Let Gtj, be an embedded planar graph, E§ be an upward embedding of G^, 
and Cf, be the upward orientation induced by £$. Also, denote by D^ the 
directed graph obtained by G$ orienting its edges according to 0$. 

In Section 4 we need to compute a super-digraph of D^ with only one source 
and one sink (st-digraph) and preserving the upward embedding £$ when re
stricted to Dtf,. In the following we recall an algorithm for this purpose. Further 
details can be found in [1]. 

Given a face / of D^, a vertex v of / with consecutive incident edges e\ and 
e2 on the boundary of / is a switch of / if e\ and e-z are both incoming or both 
outgoing v (note that e\ and e2 may coincide if the graph is not biconnected). 
In the former case v is a sink-switch, in the latter a source-switch. Observe that 
a source (sink) of D<j, is source-switch (sink-switch) of all its incident faces; a 
vertex of D^ that is not a source or a sink is a switch of all its incident faces 
except two. 

Consider the labeling of the angles of D^ induced by its upward embedding. 
Let v be a switch of a face / of D^, and let e\ and e% be two consecutive edges 
on the boundary of / that are incident on v. Clearly, (e\,e-i) is an angle of / . 
We call v an s^-switch (s^-switch) of / if v is a source-switch of / and if (ei, e-i) 
is labeled S (L). We call v a t^-switch (t^-switch) of / if v is a sink-switch of / 
and if (ei, e-i) is labeled S (L). Note that each S or L labels of a face is associated 
with a switch. 

A complete saturator of D^ is a set of vertices and edges, not belonging to 
D^, with which we augment D$. More precisely, a complete saturator consists of 
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two vertices s and t, edge (s, t), and a set of edges (u, v) (each edge a saturating 
edge), such that (see Figure 5 (a)): 

• vertices u and v are switches of the same face, or u = s and v is an sg-
switch of the external face, or u is a ^-switch of the external face and 
v = t, 

• if u, v jt- s, t, either u is an sg-switch and v is an SL-switch or u is a t^-
switch and v is a £g-switch; in the former case we say that u saturates v 
and in the latter case we say that v saturates u, 

• the graph D^ augmented with the vertices and the edges of the com
plete saturator is an upward embedded graph with an si-orientation (st-
digraph); the upward embedding of such a digraph restricted to the ver
tices and the edges of D$ coincides with £^. 

A simple linear time algorithm for computing a complete saturator of D^ is 
given in [1]. This algorithm works in two main steps: 

In the first step it recursively decomposes each face / of G^ adding a suitable 
number of saturating edges that split / . After this step, there are no more 
SL-switches and ^-switches in the internal faces of the digraph. Also, the s^-
switches and ^-switches of the external face / are not alternated in the border 
of/. 

In the second step the algorithm further decomposes the external face / , 
adding the vertices s, t and connecting s to every SL-switch of / , and t to every 
£L -switch of / . 

In the following we briefly recall the algorithm for decomposing a face / of 
D$. More details can be found in [1]. We denote by 07 the sequence of labels 
of the angles of / encountered in clockwise order while moving on the boundary 
of / . Also, we denote by s^ an L label of <r/ with associated a source-switch of 
/ and by t^ an L label of 07 with associated a sink-switch of / . Similarly, we 
use symbols sg and £g to denote S-labels with associated a source-switch of / 
and a sink-switch of / , respectively. 

Algorithm Saturate-Face(f) 

1. If / has exactly one source-switch and one sink-switch then return. 

2. Find a subsequence (x, y, z) in 07 such that x is an L label, and y and z 
are S labels. Let vx, vy, and vz be the switches of / associated with x, y, 
and z, respectively. 

3. Split / into two faces / ' and / " by inserting one edge; after the split, / " 
always consists of the part of / containing vx, vy, and vz plus the new 
edge; / " has only one source and only one sink. Two cases are possible 
for the new edge: 
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- - ' -* \ " "-

Figure 5: (a) An upward embedded digraph with a complete saturator. The edges of 
the saturator are dashed, (b) Illustration of Case 1 of algorithm Saturate-Face(f). (c) 
Illustration of Case 2 of algorithm Saturate-Face(f) 

Case 1 (x,y,z) = (sL,£g,sg): Add edge (vz,vx); f consists of the part 
of / that does not contain vy plus the new edge. Also, ay is ob
tained from (jf by replacing the subsequence (x,y,z) with an sg. 
(see Figure 5 (b)). 

Case 2 (x,y, z) = (tL, ss>*s): Add edge (vx,vz); f consists of the part 
of / that does not contain vy plus the new edge. Also, aj> is ob
tained from (Tf by replacing the subsequence (x, y, z) with a tg. (see 
Figure 5 (c)). 

4. Apply Saturate-Face(f'). 
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3 Characterizing Upward Embeddings 

In this section we provide a complete characterization of the set of all upward 
embeddings of a general embedded planar graph (Section 3.1); it also implies a 
characterization of the upward orientations of the given graph. We model such 
a set of upward embeddings by using a simple network flow technique, which 
extends and generalizes that described by Bousset [3] for characterizing bipolar 
orientations. Also, we show how it is possible to add costs to our flow model in 
order to compute in polynomial time an upward orientation with the minimum 
number of sources and sinks (Section 3.2). 

3.1 A Flow Model Characterizing Upward Embeddings 

The following theorem characterizes the class of labelings that can be determined 
by any upward embedding of an embedded planar graph. It is important to 
observe that the characterization of such a class of labelings does not depend 
either on the choice of a splitting of the adjacency lists of the graph, in contrast 
to the result given in Lemma 1, or on the choice of an orientation of the graph. 

Theorem 1 Let C be any labeling of the angles of an embedded planar graph 
G$ with labels L, S, and F. C is the labeling determined by an upward embedding 
of (?0 if and only if the following properties hold: 

(FIN') deg(f) - 2 = 2L(f) + F(f), for each internal face f ofG^. 

(FEX') deg(f) + 2 = 2L(/) + F{f), for the external face f ofG^. 

(VL) For each vertex v either F(v) = 2 and L(v) = 0 or F(v) = 0 and L(v) = 1. 

Proof: 
The necessary condition is an immediate consequence of Lemma 1 and 

Lemma 2. In fact, if C is determined by an upward embedding, then properties 
(FIN), (FEX), (VLO), and (VL1) of Lemma 1 hold. From Lemma 2 proper
ties (FIN) and (FEX) are equivalent to properties (FIN') and (FEX'); further, 
properties (VLO) and (VL1) imply that one of the two cases of property (VL) 
holds, for each vertex of G^. 

To prove the sufficiency of the condition we consider a labeling £ that verifies 
properties (FIN'), (FEX'), and (VL), and construct an upward embedding of 
Gfj, that determines £. From £, we construct a splitting E^ of the adjacency 
lists of Cj, as follows: 

• We observe that there exists at least two distinct vertices s and t on the 
external face / having an angle labeled with L. In fact, from property 
(FEX') (that is equivalent to property (FEX) of Lemma 1) we must have 
that L(f) = S(f) + 2. We assign all the edges incident on s to the list 
Eabove(s) (we set E\,eiow{s) empty). Namely, if (ei,e2) is the angle with 
label L at vertex s, e^ and e\ will be the first edge and the last edge of 
Eabove(s), respectively. 
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• We execute a breadth first search starting from s. At each step we visit a 
different vertex v and split the list of the edges that are incident on v. In 
a breadth first search all the edges (and hence all the angles) incident on 
a vertex v are explored when v is visited. We chose to scan these edges in 
clockwise order. Namely, suppose that v is visited by moving from vertex 
u through edge eo = (u, v) (eo is the parent edge of v in the breadth 
first search). If eo is in Eabove(u) we put eo in Ebeiow(v), while if eo is in 
Ebeiow(u) we put eo in Eabove(v). Suppose that eo, e i , . . . , e^ are the edges 
incident on v in this clockwise ordering. For each e* (i = 0 , . . . , fc — 1) 
we consider the label I of angle (e^, ej+i), and we decide if e,+i has to be 
assigned to Eabove(v) or to Ebeiow{v). Note that, at this point, ê  has been 
already assigned to one of the two lists. The following cases are possible: 
(1) If I = L and e* G Ebeiow{v) then e,+i is put at the end of Ebeiow{v)-
(2) If I = L and e* G EabOVe(v) then ej+i is put at the start of Eabove{

v)-
(3) If I = S and e< G Ebeiow{v) then ei+\ is put immediately before ê  in 
Ebeioui(,v). (4) If Z = S and ê  G Eab0Ve(v) then e*+i is put immediately 
after ê  in EabOVe(v)- (5) If / = F and e, G EbeioW(v) then e,+i is put at 
the start of EabOVe(v). (6) If I = F and ej G EabOVe{v) then ej+i is put at 
the end of Ebeiow(v). 

It is easy to see that £$ verifies (El). To prove that £$ is an upward embedding 
of G<i> we need only to prove that properties (VLO) and (VL1) of Lemma 1 are 
verified (since properties (FIN) and (FEX) are equivalent to properties (FIN') 
and (FEX')). From property (VL) we only have two possible cases for the labels 
of the angles at each vertex v of G^. 

• F(y) = 2 and L(v) = 0. This implies that, for splitting the edges incident 
on v cases (1) and (2) are never applied, cases (5) and (6) are applied twice 
in the total, and cases (3) and (4) are applied deg(v) — 2 times in the total. 
Also, cases (5) and (6) imply that neither EabOVe{v) n o r Ebeiow(v) will be 
empty. This matches property (VLO). 

• F(v) = 0 and L{v) = 1. This implies that, for splitting the edges incident 
on v, either case (1) or case (2*) is applied once, cases (5) and (6) are never 
applied, and either case (3) or case (4) is applied deg(v) — 1 times. Also, 
observe that each of the cases (1), (2), (3), and (4) always puts ei+i in 
the same list as e*, and that either (1) and (3) or (2) and (4) are applied. 
This guarantees that exactly one of the two lists Eab0Ve(v) a n d Ebeiow(v) 
will be empty. This matches property (VL1). 

Finally, since no other cases are possible, properties (VLO) and (VL1) of 
Lemma 2 hold. 

q.e.d. 

We call upward labeling of G<f, a labeling of the angles of G$ that verifies prop
erties (FIN'), (FEX'), and (VL) of Theorem 1. The result of Theorem 1 allows 
the description of all upward embeddings of G^ in terms of upward labelings 
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of G^. Note that, the proof of the theorem provides a procedure to construct 
the upward embedding associated with an upward labeling. Actually, for each 
upward labeling, there are exactly two "symmetric" upward embeddings that 
determine it; they are obtained one from the other by simply exchanging list 
Eabove(v) with list Ebeiow(v) for each vertex v and then reversing such lists (see 
Figure 7 (b) for an example). 

We now provide a network flow model that characterizes all the upward 
labelings of G^. Because of the above considerations, this flow model provides 
a characterization of all upward embeddings of G^. We associate with G^ a 
flow network A/^, such that the integer feasible flows on A^ are in one-to-one 
correspondence with the upward labelings of G$. Flow network A/̂  is a directed 
graph defined as follows (see Figure 6): 

• The nodes of A/̂  are the vertices (vertex-nodes) and the faces (face-nodes) 
of G$. Each vertex-node supplies flow 2 and each face-node associated 
with face / of G^ demands a flow equal to deg(f) — 2 if / is internal and 
deg(f) + 2 if / is external. 

• With each angle of G^ at vertex v in face / there is an associated arc 
(v, / ) of A/0 with lower capacity 0 and upper capacity 2. 

(a) (b) 

Figure 6: (a) An embedded planar graph G4,. (b) Flow network N4, associated with 
G<j,. The vertex-nodes are circles and the face-nodes are squares. Each face-node is 
labeled with its demand. The arcs of the networks are dashed. 

Observe that in A/̂  the total demand is equal to the total supply. In fact: 

£ (deg(f) - 2) + 4 = £ deg(f) - 2\F\ + 4 = 2\E\ - 2\F\ + 4 = 2\V\. 
f£F f€F 
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The intuitive interpretation of the flow model in terms of upward embedding 
is as follows: (i) Each unit of flow represents a flat angle, with the convention 
that a large angle counts as two flat angles; an arc a of Af,/, has flow 0,1, or 2, 
depending on the fact that its associated angle is small, flat, or large, respec
tively, (ii) The demand of each face-node and the supply of each vertex-node 
reflect the balancing properties (FIN'), (FEX') and (VL). Figure 7 shows a 
feasible flow on the network associated with an embedded planar graph, the 
corresponding upward labeling, and the two "symmetric" upward embeddings 
associated with the labeling. Theorem 2 formally proves the correctness of the 
intuitive interpretation described above . 

Figure 7: (a) A feasible flow on the network associated with an embedded planar 
graph. Only the flow values different from zero are shown, (b) The upward labeling 
£ corresponding to the flow and the two "symmetric" upward embeddings associated 
with C. 

We remark that network M4, is related to the flow model used by Bousset 
for describing bipolar orientations of biconnected embedded planar graphs. The 
flow values in such a model do not allow to represent large angles (the allowed 
flow values are only 0 or 1), and the source and the sink of the final orientation 
are prescribed. Our flow model extends and generalizes the model of Bousset to 
1-connected planar graphs, by allowing the representation of any kind of upward 
orientations and embeddings, including the bipolar orientations for biconnected 
graphs. 

Theorem 2 LetG<p be an embedded planar graph and letN<j, be the flow network 
associated with G$. There is a one-to-one correspondence between the set of the 
upward labelings ofG$ and the set of the integer feasible flows on N$. 
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Proof: 
Consider an upward labeling C of G^. From it we construct an integer 

feasible flow x of N$ as follows. For each angle a of GQ let a be the arc of A/^ 
associated with a. We set x(a) = 2 if a is labeled L, x(a) = 1 if a is labeled 
F, and x(a) = 0 if a is labeled S. The above construction is clearly an injective 
transformation. In fact, there is a one-to-one correspondence between angles 
of G<f, and arcs of A/̂  and hence, different labelings of the same angle of G^ 
produces different values of flow on the corresponding arc of A/^. We now prove 
that flow x is feasible. From the construction of x and from property (VL) of 
C, it follows that every vertex-node of M& supplies flow 2 (and demands flow 
0). Hence, the balance property of x on every vertex-node of M<f, is verified. 
Let / be an internal face of G<p, and consider the face-node of M<t> associated 
with / . From the construction of x, such a face-node receives a flow equal to 
2L(f)+F(f) and supplies flow 0 ; hence, from property (FIN') of £ , it demands 
a flow equal to deg(f) — 2. The same reasoning applies for the external face, 
using property (FEX'). Hence, also the balance property of x on every face-node 
is verified. Finally, since on each arc of Mj, we assign an integer amount of flow 
in the range [0,2], the lower and upper capacities on the arcs of A/^ are respected 
by x. 

Conversely, consider an integer feasible flow x of A/^, and construct from 
x a labeling £ of G$, by applying a transformation that is the reverse of that 
described above . Namely, for each arc a of M,/, denote by a the corresponding 
angle of G^. Labeling C is constructed by assigning label L, F, and S to a, 
depending on the case that x{a) = 2, x(a) = 1, and x(a) = 0, respectively. By 
using the properties of x and the same reasoning applied above, it is easy to 
prove that C is an upward labeling of G^. q.e.d. 

Theorem 1 and Theorem 2 allow us to compute an upward embedding of an 
embedded planar graph G$ by computing an integer feasible flow on network 
M$- We now analyze the running time complexity of computing an upward 
embedding by means of a flow technique. 

Network A/^ has 0{n) vertices and edges, where n denotes the number of 
vertices of G$. Both A/̂  and an upward embedding associated with a feasible 
flow on A/0 can be constructed in linear time. We now observe that AQ, can be 
easily reduced to an equivalent unit capacity network Ml with a single source s 
and a single sink t and with 0(n) nodes and arcs. On A/J we can apply Dinic's 
algorithm to compute in 0(n 3 / 2 ) time a feasible (maximum) flow [7]. Namely, 
Ml is obtained from A/̂  by replacing each arc a with two unit capacity arcs 
having the same direction as a, by connecting s to each vertex-node with two 
unit capacity arcs, by connecting each internal face-node / to t with deg(f) — 2 
unit capacity arcs, and by connecting the external face-node h to t with deg(h) + 
2 unit capacity arcs. Finally, node s supplies flow 2|V| and node t demands flow 
2\V\, while all the other nodes demand and supply flow 0. The following theorem 
summarizes the complexity analysis. 

Theorem 3 There exists a flow technique for computing an upward embedding 
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of an undirected embedded planar graph in 0(n 3 / 2) time and 0(n) space, where 
n denotes the number of vertices of the graph. 

There are two main advantages of computing upward embeddings of a gen
eral planar graph G$ by using the flow model described so far. First, no aug
mentation algorithm has to be used to make the input graph biconnected (we 
just apply a standard flow algorithm). Second, it is possible to deal with par
tially specified embeddings. In particular it is possible to constrain an angle 
to be large by fixing flow 2 on the corresponding arc of the network and to 
constrain a vertex to be neither a source nor a sink by reducing to 1 the upper 
capacity of its leaving arcs in the network. Also observe that in the presence of 
constraints a feasible solution might not exist, and in this case a feasible flow is 
not found. 

In the next section we describe how to compute upward embeddings with 
the minimum number of sources and sinks, by adding costs to our network. 

3.2 Minimizing Sources and Sinks 

Computing an upward embedding of G<j, with the minimum number of sources 
and sinks (which we call optimal upward embedding for simplicity) is equivalent 
to computing an upward embedding with the minimum number of large angles. 
Clearly, if the graph is biconnected, the problem is reduced to the computation of 
a bipolar orientation. For this reason, we regard the concept of optimal upward 
embedding as the natural extension of the definition of bipolar orientation to 
the case of general connected graphs. 

The flow model we use to compute an optimal upward orientation of G^ is 
a simple variation of the one described for characterizing upward embeddings 
(see Section 3.1). We add a linear number of arcs to network A/̂  and we equip 
the arcs of the new network with costs. Each unit of cost represents a large 
angle. We also reduce the ugper capacity of all the arcs of the network. More 
in detail, the new network A/̂  is derived from A/̂  as follows: for each angle of 
G ,̂ at vertex v in face / we substitute its associated arc in A/̂  with a pair of 
directed arcs av = (v,f),a'v = (v,f). Both the new arcs have lower capacity 0 
and upper capacity 1. Also, arc av has cost 0 while arc a'v has cost 1. 

Let x b e a minimum cost flow on A/^. The interpretation of the flow in terms 
of upward labeling is similar to the one given for A/0, with a slight variation due 
to the additional arcs and costs. We first observe that for each pair of arcs av, 
a'v it never happens x(av) = 0 and x(a'v) = 1, due to the fact that the cost of 
av is 0 and that the cost of a'v is 1. In fact, if x(av) = 0 and x(a'v) = 1, then 
there would exist a negative cost cycle represented by the two and 
it would be possible to derive a new flow x' from x by simply exchanging one 
unit of flow between a'v and av (i.e., x'(av) = 1 and x'(a'v) = 0). This would 
imply that x' has a cost smaller than the cost of x, in contrast to the assumption 
that x has the minimum cost. Hence, the only possibilities for the flow on arcs 
av,a'v are: (i) x(av) = x(a'v) = 0, the angle associated with arcs av,a'v is small. 
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(ii) x(av) = 1 and x(a'v) = 0, the angle associated with arcs av,a'v is flat, (iii) 
x(av) = x(a'v) = 1, the angle associated with arcs av,a'v is large. 

Note that, only in the third case we have cost 1 on arcs av,a
r
v, while in the 

other two cases we have cost 0. This implies that the total cost of flow x on 
N<t> represents the total number of large angles of the corresponding upward 
embedding of G^. Hence, since x has the minimum cost, the corresponding 
upward embedding has the minimum number of large angles. 

Let n be the number of vertices of G<f,. Since network A/̂  is planar and has 
0(n) vertices, and since its total demand (supply) is 0(n), a minimum cost flow 
on Afff, can be computed in 0{n^ logn) time by the algorithm described in [10]. 
The following theorem summarizes the main contribution of this section. 

Theorem 4 There exists an 0(n* log n) time algorithm that computes an up
ward embedding of an embedded 1-connected planar graph with the minimum 
number of sources and sinks. 

We conclude this section by giving an upper bound on the number of sources 
and sinks of an optimal upward embedding. 

Lemma 3 An optimal upward embedding of an embedded planar graph G^ has 
at most B + 1 sources and sinks, where B is the number of blocks of G^. 

Proof: We prove the lemma by induction on B. If B = 1, the graph is 
biconnected and an optimal upward embedding of it has exactly one source and 
one sink. Suppose that the lemma is true for each graph with B > 1 blocks, 
and consider a graph G^ with 5 + 1 blocks. We select any block C of G$ such 
that C contains exactly one cut vertex of Gj, and there is no block nested into 
C. Note that such a block always exists. Let G'^, be the graph obtained from 
G<f, by removing C and let £',, be an optimal upward embedding of G'^. From 
the inductive hypothesis, £',, has at most B + 1 sources and sinks. From ££, we 
construct an upward embedding of G^. Such an upward embedding coincides 
with £',, for the subgraph G'±, and it is determined on C as follows. We always 
embed C above or below its cutvertex v, according to £'^, and according to 
the planar embedding of G$. Namely, let e\ and e2 be the two edges (not 
necessarily distinct) of G$ encountered immediately before and after C in the 
clockwise ordering around v. Three distinct cases are possible for £'^,: 

• If both ei and e<i belong to Eabove(v), we compute an upward embedding 
of C with exactly one source and one sink, where the source is v, and we 
embed it above v in £',, (see Figure 8 (a)). 

• If both ei and e2 belong to Ebeiow(v), we compute an upward embedding 
of C with exactly one source and one sink, where the sink is v, and we 
embed it below v in £L, (see Figure 8 (b)). 

• If one between e\ and e2 belongs to Eabove(v) while the other edge belongs 
to Ebeiow(v), we arbitrarily choose to compute an upward embedding of 
C with exactly one source and one sink, where the source is v, and we 
embed it above v in £\, (see Figure 8 (c)). 
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The obtained upward embedding has at most one source or one sink more 
than £',,, since vertex v is in common between C and G'^,. Therefore, an optimal 
upward embedding of Cf, has at most B + 2 sources and sinks. 

q.e.d. 

(a) (b) (c) 

Figure 8: Illustration of the proof of Lemma 3. 

The bound of Lemma 3 is strict and a class of plane graphs whose upward 
embeddings have B+1 sources and sinks can be obtained by nesting each block 
into another, as shown by the example of Figure 9. 

Figure 9: A class of embedded planar graphs whose optimal upward embeddings have 
B + 1 sources and sinks (circles). 

4 Algorithms for Visibility Representations 
We use the above results on upward embeddings to compute drawings of general 
connected planar graphs. Namely, we focus on graph drawing algorithms which 
require the computation of a (weak-)visibility representation of the input graph 
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as a preliminary step [6]. In a visibility representation (see Figure 10), each 
vertex is mapped to a horizontal segment and each edge (u, v) is mapped to 
a vertical segment between the segments associated with u and v; horizontal 
segments do not overlap, and each vertical segment only intersects its extreme 
horizontal segments. 

A standard technique [6] for constructing a visibility representation of a 
planar graph G first computes a bipolar orientation of G and then computes 
the coordinates of the drawing from this orientation. If G is not biconnected 
the technique needs to augment the graph to a biconnected planar one, in order 
to compute a bipolar orientation of it. The augmentation algorithm adds to G 
a suitable number of dummy edges, which will be removed in the final drawing. 
However, this technique has several drawbacks: (i) Adding too many dummy 
edges may lead to a final drawing with area much bigger than necessary. On 
the other side, the problem of adding the minimum number of edges to make 
a planar graph biconnected and still planar is NP-hard [12]. (ii) Although a 
good approximation algorithm for the above augmentation problem exists [8] 
(which reaches the optimal solution in many cases), implementing it efficiently 
is quite difficult, because it requires us to deal with the block cutvertex tree [11] 
of the graph and with an efficient incremental planarity testing algorithm. In 
fact, such an approximation algorithm has 0(n2T) running time, where T is 
the amortized time bound per query or insertion operation of the incremental 
planarity testing algorithm, (iii) The presence of dummy edges in the graph 
makes difficult to handle with partial assignments of the upward embedding. 

Tamassia and Tollis [17] provide a different linear time algorithm for com
puting visibility representations of general connected graphs. At each step of 
the algorithm a visibility representation of a new distinct block of the graph is 
computed and suitably merged to the current drawing. However, merging op
erations require the execution of scaling down geometric operations, which may 
lead to a final drawing with a big area on an integer grid. Also, the algorithm 
has many degrees of freedom about how to perform some topological operations 
and about the choice of the ordering in which the blocks are considered; different 
decisions may lead to very different results. 

Figure 10: A visibility representation of the upward embedded graph shown in Fig
ure 1(b). 
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We propose the following algorithm for computing a visibility representation 
of a 1-connected embedded planar graph G<j>. 

Algorithm Visibility- Upward-Embedding 

1. Compute an upward embedding £$ of G<$, by calculating a feasible flow on 
network J\f$. 

2. Compute an upward embedded si-digraph S<j, including G<$, and preserving 
8$ on G^,, by using the linear time saturation procedure described at the 
end of Section 2. 

3. Compute a visibility representation of 5^ (within its upward embedding) 
by using any known linear time algorithm [6], and then remove the edges 
introduced by the saturation procedure. 

Algorithm Visibility-Upward-Embedding has 0(n 3 / 2 ) running time, because 
its time complexity is dominated by the cost of computing a feasible flow on 
7V .̂ We experimentally observed that the area of the visibility representations 
produced by this algorithm can be dramatically improved by computing upward 
embeddings with the minimum number of sources and sinks. To do that we just 
apply a min-cost-flow algorithm in Step 1. Clearly, in this case, the running 
time of the whole algorithm grows to 0{n* logn). 

We have also slightly refined Algorithm Visibility Upward Embedding aiming 
to get a certain control over the width and the height of visibility representa
tions of 1-connected planar graphs. After we have computed an upward embed
ding with the minimum number of switches we rearrange the blocks around the 
cutvertices in the upward embedding. Namely, if v is a cutvertex we place all 
the blocks of v either above or below. This often leads to a reduction of the 
height and to an increase in the width. Such a rearrangement is performed in 
linear time by exploiting the flow network associated with the embedded planar 
graph. We experimented such an approach on a randomly generated test suite 
of 1820 graphs whose number n of vertices ranges from 10 to 100 (20 instances 
for each value of n). A detailed description of the procedure used to generate 
the graphs can be found in [15]. We averaged the width and the height on all 
the graphs having the same number of vertices. Charts in Figure 11 graphically 
show the results of the experimentation for the maximum number of cutvertices 
k(k = 0 . . . 8) whose blocks have been rearranged. 

Also, Figure 12 compares the area of the drawings computed with this strat
egy, where k is chosen equal to the total number of cutvertices of the graph, 
against the area of the drawings computed with a standard technique which uses 
the approximation algorithm in [8] to initially make the graph biconnected. In 
the two strategies we use the same algorithm for constructing the visibility rep
resentation from the si-digraph. Experimentally, for the considered test suite, 
the running time of the two algorithms is comparable (less than one second for 
the largest graphs). 
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(a) height (b) width 

Figure 11: The charts show how rearranging the blocks around cutvertices affects the 
width and the height of the visibility representation. 
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Figure 12: Area of the drawings computed with our strategy against the area of the 
drawings computed with a standard technique based on a sophisticated augmentation 
algorithm (average values). The x-axis represents the number of vertices. 

5 Open Problems 
There are several open problems that we plan to study in the near future. For 
example, we are interested in an algorithm for counting and enumerating all 
upward embeddings of an embedded planar graph without repetitions. Also, 
is it possible to pass from an upward embedding to any other in linear time? 
Is there a linear time algorithm to compute optimal upward embeddings of 
embedded planar graphs? What about non-embedded planar graphs? Finally, 
from an applications point of view we believe that the techniques shown in this 
paper may be successfully refined to compute drawings that approximate a given 
width/height ratio. 
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A b s t r a c t 

The crossing number of a graph G = (V,E), denoted by cr(G), is 
the smallest number of edge crossings in any drawing of G in the plane. 
Wee assume that the drawing is good, i.e., incident edges do not cross, 
two edges cross at most once and at most two edges cross in a point of 
the plane. Leighton [13] proved that for any n-vertex graph G of bounded 
degree, its crossing number satisfies c r (G)+n = fi(bw2(G)), where bw(G) 
is the bisection width of G. The lower bound method was extended for 
graphs of arbitrary vertex degrees to cr(G) + j$ ^2veG d% = fi(bw2(G)) in 
[16, 20], where dv is the degree of any vertex v. We improve this bound by 
showing that the bisection width can be replaced by a larger parameter -
the cutwidth of the graph. Our result also yields an upper bound for the 
path-width of G in terms of its crossing number. 
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1 Introduction 

The crossing number of a graph G = (V,E), denoted by cr(G), is the smallest 
number of edge crossings in any drawing of G in the plane. It represents a 
fundamental measure of non-planarity of graphs but is attractive from practical 
point of view too. It is known that the aesthetics and readability of graph
like structures (information diagrams, class hierarchies, flowcharts...) heavily 
depends on the number of crossings [4, 17], when the structures are visualized 
on a 2-dimensional medium. Another natural appearance of the problem is 
in the design of printed circuit boards and VLSI circuits [13]. The area of a 
VLSI circuit is strongly related to the crossing number of the underlying graph. 
The problem is NP-hard [6] and the best theoretical exact and approximation 
algorithms are in [5, 9]. A survey on heuristics is in [3]. Concerning crossing 
numbers of standard graphs, there are only a few infinite classes of graphs for 
which exact or tight bounds are known [12]. The main problem is the lack of 
efficient lower bound methods for estimating the crossing numbers of explicitly 
given graphs. The survey on known methods is in [19]. One of the powerful 
methods is based on the bisection width concept. The bisection width of a 
graph G is the minimum number of edges whose removal divides G into two 
parts having at most 2 |F | /3 vertices each. Leighton [13] proved that in any 
n-vertex graph G of bounded degree, the crossing number satisfies cr(G) + n — 
fi(bw2(G)). The lower bound was extended to 

in [16, 20], where dv is the degree of any vertex v. We improve this bound by 
showing that the bisection width can be replaced by a larger parameter - the 
cutwidth of the graph, denoted by cw(G) and defined as follows. Let G — (V, E) 
be a graph. Let <f>: V —• {1,2,3,..., | V|} be an injection. Then 

cw(G) = minmax|{uu € E : (j>(u) < i < cf)(v)}\. 
<j> i 

Note that the cutwidth is a standard graph invariant appearing e.g. in the 
linear VLSI layouts [21], and is related to such a classical topic like the discrete 
isoperimetric problem [1]. We prove 

c r(G)+^E^ir76 c w 2(G)- (!) 
vGG 

Ignoring the constant factors, the improvement is evident as cw(G) > bw(G) 
and there are connected graphs with bw(G) = 1 but with arbitrarily large 
cutwidth. For example, let G be a graph obtained by joining two KJL 'S by 
an edge. Then clearly cw(G) = fi(n2). If cw(G) PS bw(G) then the bisection 
lower bound is better up to a constant factor because of the small constant in 
our estimation. An improvement on it remains an open problem. Anyway, the 
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aim of this note is to show that from the asymptotic point of view, the graph 
invariant that essentially influences the crossing number is not the bisection 
width but the cutwidth. The new crossing number lower bound is tight up to 
a constant factor for a large class of graphs. Following Pach and Toth [15], for 
almost all n-vertex and m-edge graphs G, bw(G) > m/10, where m > lOn. As 
cw(G) > bw(G), the lower bound (1) implies cr(G) = ft(cw2(G)) = Cl{m2). On 
the other hand, trivially cr(G) = 0(m2) = 0(cw2(G)). 

Moreover, the additive term X^eG d2, cannot be removed, since the crossing 
number of any planar graph is 0 and there exists a planar graph P (e.g. the 
star) such that cw2(P) = ^ ( E „ e p ^ ) -

As a byproduct we obtain the following contribution to topological graph 
theory. The path-decomposition of a graph G is a sequence D = X\, X2, •••, Xr 

of vertex subsets of G, such that every edge of G has both ends in some set Xi 
and if a vertex of G occurs in some sets X, and Xj with i < j , then the same 
vertex occurs in all sets X^ with i < k < j . The width of D is the maximum 
number of vertices in any Xi minus 1. The path-width of G, pw(G), is the 
minimum width over all path-decompositions of G. 

A graph G = (V, E) is fc-crossing critical if cr(G) = k and cr(G — e) < cr(G), 
for all edges e € E. Hlineny [10] proved that pw(G) < 2^k\ where f(k) = 
0(k3 log k). This answers an open question of Geelen et al. [8] whether crossing 
critical graphs with bounded crossing numbers have bounded path-widths. 

Our result implies another relation between pathwidths and crossing num
bers. If cr(G) = k, then pw(G) < 9^/k + ^ o g V , ^ , without the crossing-
criticality assumption. 

2 A New Lower Bound 

We will make use of the following theorem [7]. 

Theorem 1 Let G = (V, E) be a planar graph with non-negative weights on 
its vertices that sum up to one and every weight is at most | . Let dv denote the 

degree of any vertex v. Then there exists at most % y/^Zv&v d'% edges whose 
removal divides G into disjoint subgraphs G\ = (Vi, E\) and G2 = (V2, £2) such 
that the weight of each is at most | . 

Theorem 2 implies an upper bound for the cutwidth of planar graphs which 
deserves an independent interest. 

Theorem 2 For any planar graph G = (V,E) 

672 + 5^/3 
cw(G) < 

where dv is the degree of any vertex v. 
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Proof: Apply Theorem 1 to G. Assign weights to vertices: 

dl 
weight (u) = 

Z^ev "v 

1. Let weight(u) < § for all u. By deleting ^^y/J2vevdl e d S e s w e § e t 

graphs d = (Vi, Ex) and G2 = (V2, E2) such that for i = 1,2 weight(^) < 
| , which implies 

E ^ I E * 
2. Assume there exists a vertex u such that weight(u) > | . By deleting edges 

adjacent to u we get disjoint subgraphs G\ = (Vi,Ei) and G2 = (V2,E2), 
where G2 is a one vertex graph. We have weight(Fi) = 1 — weight(u) < | 
and 

E«S<1E*-
V€VI veV 

The number of edges between G\ and G2 is 

V3 + V2 
y vev 

Placing the graphs G\ and G2 consecutively on the line and adding the 
deleted edges we obtain the estimation 

cw(G) < max{cw(G1),cw(G2)} + ( ^ + v / 2 ) Z ^ ^ , 
1 \jvev 

Solving the recurrence we find 

i=o v ' y vev y vev 

D 

Our main result is 

Theorem 3 Let G = (V, E) he a graph. Let dv denote the degree of any vertex 
v. Then the crossing number ofG satisfies 

-(G) + ^ E ^ T ^ ( G ) . 
vev 

file:///jvev
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Proof: Consider a drawing of G with cr(G) crossings. Introducing a new vertex 
at each crossing results in a plane graph H with cr(G) + n vertices. By Theorem 
2 we have 

/ m .6V2 + 5V3 f^=rZ 6V2 + 5V3 /v^ „ , 1R (rVi cw(H) < Jl^dl = 5 \ 1^ v 1 6 c r ( G ) -

Finally, note that cw(G) < cw(if), which proves the claim. • 

This result immediately gives an upper bound for the path-width of G in 
terms of its crossing number as the result of Kinnersley [11] implies that pw(G) < 
cw(G). 

Corollary 1 Let G = (V, E) be a graph. Then 

6\/2 + 5v/3 
p w ( G ) < 5 ^ /l6cr (G) + £ < e 

z y vev 

3 Final Remarks 

We proved a new lower bound formula for estimating the crossing numbers of 
graphs. The former method was based on the bisection width of graphs. Our 
method replaces the bisection width by a stronger parameter - the cutwidth. 
While the bisection width of a connected graph can be just one edge, which 
implies a trivial lower bound only, the cutwidth based method gives nontrivial 
lower bounds in most cases. A drawback of the method is the big constant 
factor in the formula. 

A natural question arises how to find or estimate the cutwidth of a graph. 
The most frequent approach so far was its estimation from below by the bisection 
width. This of course degrades the cutwidth method to the bisection method. 
Provided that cw(JJ) in known or estimated from below, for some graph H, 
we can use a well-known relation cw(G) > cw(H)/cg(H,G), see [18], where is 
the congestion of G in H defined as follows. Consider an injective mapping of 
vertices of H into the vertices of G and a mapping of edges of H into paths 
in G. Take the maximal number of paths traversing an edge. Minimizing this 
maximum over all possible mappings gives cg(H,G). Another possibility is to 
use the strong relation of the cutwidth problem to the so called discrete edge 
isoperimetric problem [1]. Informally, the problem is to find, for a given k, a 
k-vertex subset of a graph with the smallest "edge boundary". A good solution 
to the isoperimetric problem provides a good lower bound for the cutwidth. 

Recently Pach and Tardos [14] proved another relation between crossing 
numbers and a special edge cut of a graph (Corollary 5), which resembles our 
Theorem 2.3. But neither of the two statements implies the other. 
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Abstract 

We describe a heuristic method for drawing graphs which uses a mul
tilevel framework combined with a force-directed placement algorithm. 
The multilevel technique matches and coalesces pairs of adjacent vertices 
to define a new graph and is repeated recursively to create a hierarchy 
of increasingly coarse graphs, Go, G i , . . . , GL • The coarsest graph, GL , is 
then given an initial layout and the layout is refined and extended to all 
the graphs starting with the coarsest and ending with the original. At 
each successive change of level, /, the initial layout for Gi is taken from 
its coarser and smaller child graph, Gi+i, and refined using force-directed 
placement. In this way the multilevel framework both accelerates and 
appears to give a more global quality to the drawing. The algorithm can 
compute both 2 & 3 dimensional layouts and we demonstrate it on exam
ples ranging in size from 10 to 225,000 vertices. It is also very fast and can 
compute a 2D layout of a sparse graph in around 12 seconds for a 10,000 
vertex graph to around 5-7 minutes for the largest graphs. This is an 
order of magnitude faster than recent implementations of force-directed 
placement algorithms. 

Keywords: graph-drawing, multilevel optimisation, force-directed place
ment. 
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1 Introduction 

Graph-drawing algorithms form a basic enabling technology which can be used 
to help with the understanding of large sets of inter-related data. By presenting 
data in a visual form it can often be more easily digested by the user and 
both regular patterns and anomalies can be identified. However most data sets 
do not contain any explicit information on how they should be laid out for 
easy viewing, although normally such a layout will depend on the relationships 
between pieces of data. Thus if we model the data points with the vertices of a 
graph and the relationships with the edges we can use graph-based technology 
and, in particular, graph-drawing algorithms to infer a 'good' layout from an 
arbitrary data set based on the relationships. 

There has been considerable research into graph-drawing in recent years and 
a comprehensive survey can be found in [2]. Many such algorithms are based 
on physical models and the vertices are placed so as to minimise the 'energy' 
in the physical system (see below, §2.3). Typically such algorithms are able to 
display structures and symmetries in the graph but their computational cost in 
terms of CPU time is very high. 

1.1 Motivation 

The motivation behind our approach to graph-drawing arises from our work in 
the field of graph partitioning and the multilevel paradigm, e.g. [20, 21]. In 
recent years it has been recognised that an effective way of enhancing parti
tioning algorithms is to use multilevel techniques and this strategy has been 
successfully developed to overcome the localised nature of the Kernighan-Lin 
and other partition optimisation algorithms, e.g. [12]. The multilevel process 
has also recently been successfully applied to the travelling salesman and graph 
colouring problems and appears to work (for combinatorial problems at least) 
by sampling and smoothing the objective function, [20], thus imparting a more 
global perspective to the optimisation. 

This is an important consideration for graph-drawing; the localised posi
tioning of a vertex relative to fixed neighbours is actually fairly easy and it is 
the global untangling of the graph which is more difficult or time consuming. 
We therefore aim to use the multilevel ideas to both enhance the layout and 
accelerate the graph-drawing process. 

In this paper (and an earlier version, [19]) we apply multilevel ideas to force-
directed placement (FDP) algorithms. In fact such ideas have been previously 
suggested in the graph-drawing literature and for example in 1991 Pruchterman 
& Reingold, [7], suggested the possible use of 'a multigrid technique that allows 
whole portions of the graph to be moved', whilst Davidson & Harel, [1], suggest 
a multilevel approach to 'expedite the SA [simulated annealing] process'. More 
recently Hadany & Harel, [9], and in particular Harel & Koren, [10], have actu
ally used multilevel ideas (or as they refer to them, multiscale) and are able to 
robustly handle graphs of up to 15,000 vertices. However their algorithm uses 
the placement scheme of Kamada & Kawai, [13], which requires the graph the-
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oretic distances (path lengths) between pairs of vertices, and hence the overall 
complexity of the method contains an 0(N2) term. Gajer et al., who subse
quently developed a similar scheme, [8], managed to reduce this complexity by 
calculating these distances dynamically and also enhanced the scheme by com
puting the layout in higher dimensions. All three of these approaches ([8, 9,10]) 
share many features with the algorithm outlined here (although derived inde
pendently) and confirm that the multilevel paradigm can be a powerful tool for 
force-directed placement irrespective of the specific FDP algorithm used. 

A related but somewhat different idea is that of multilevel drawings, e.g. 
[3, 6]. Rather than using the multilevel process to create a good layout of the 
original graph, a multilevel graph is created, either by natural clustering which 
exists in the graph or by artificial means similar to those applied here. Each 
level is drawn on a plane at a different height and the entire structure can then 
be used to aid understanding of the graph at multiple abstraction levels, [5]. 

Finally, although not strictly related to the multilevel ideas described here, 
it is worth mentioning that Koren et al. have recently developed a number of 
other graph-drawing schemes which can work even faster than multilevel force-
directed placement (although the layout quality is often somewhat inferior). 
In particular, these include the use of the algebraic multigrid techniques, [14], 
and (building on the ideas due to Gajer et al, [8]) the development of higher-
dimensional embeddings, [11]. 

2 A multilevel algorithm for graph-drawing 

In this section we describe how we combine the multilevel optimisation ideas 
with our variant of a force-directed placement algorithm. 

2.1 Notat ion and Definitions 

Let G = G(V, E) be an undirected graph of vertices V, with edges E and which 
we will assume is connected. For any vertex v let r „ be the neighbourhood of, 
or set of vertices adjacent to, v, i.e., Fv = {u € V : (u, v) e E}. We use the 
|.| operator to denote the size of a set so that |V| is the number of vertices in 
the graph and | r„ | is the number of vertices adjacent to v (the degree of v). 
We also use |.| to denote the weight of a vertex; since weighted vertices in the 
coarsened graphs represent sets of vertices from the original graph, the weight 
of a coarsened vertex is just equivalent to the number of original vertices in the 
set it represents. We then use |.| to denote Euclidean distance in either 2D or 
3D. 

2.2 The multilevel framework 

As stated above, the inspiration behind our graph-drawing scheme is the mul
tilevel paradigm, e.g. [20]. The idea is to coalesce clusters of vertices to define 
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a new graph and recursively iterate this procedure to create a hierarchy of in
creasingly coarse graphs, GQ,GI,... and until the size of the coarsest graph 
falls below some threshold. The coarsest graph, GL, is then given an initial 
layout and the layout is refined and extended to all the graphs starting with 
the coarsest and ending with the original. At each successive change of level, 
I, the initial layout for Gi is taken from its coarser and smaller child graph, 
Gi+i, and refined using force-directed placement. Thus the algorithm does not 
actually operate simultaneously on multiple levels of the graph (as, for example, 
a multigrid algorithm might) but instead refines the layout at each level and 
then extends the result to the next level down. 

2.2.1 G r a p h coarsening 

There are many ways to create a coarser graph Gi+i(Vi+i, £7+1) from Gi(Vi, Ei) 
and clustering algorithms are an active area of research within the field of graph-
drawing amongst others, e.g. [3, 17]. Usually such clustering algorithms seek 
to retain the more important structural features of the graph in order that the 
visualisation of each level is meaningful in itself. However, here we are only 
interested in the drawing of the original graph and as such we seek a fast and 
efficient (i.e., not necessarily optimal) algorithm that judiciously reduces the size 
of the graph. Thus, if too many vertices are clustered together in one step it 
may depreciate the benefits of the multilevel paradigm and in particular inhibit 
the force-directed placement algorithm, as applied to Gi, from making use of 
the positioning obtained for Gj+i. Conversely, if each clustering only shrinks 
the graph by a small fraction, the multilevel scheme may be significantly slowed 
by having to compute the layout for a multitude of fairly similar coarse graphs. 
To suit these requirements we choose (as is typical for partitioning) a coarsening 
approach known as matching in which each vertex is matched with at most one 
neighbour, so that clusters are thus formed of at most two vertices and the 
number of vertices in the coarsened graph G7+1 is no less than half the number 
inGj. 

Computing a matching is equivalent to finding a maximal independent subset 
of graph edges which are then collapsed to create the coarser graph. The set is 
independent if no two edges in the set are incident on the same vertex (so no 
two edges in the set are adjacent), and maximal if no more edges can be added 
to the set without breaking the independence criterion. Having found such a 
set, each selected edge is collapsed and the vertices, ui,U2 S Vj say, at either 
end of it are merged to form a new vertex v S Vj+i with weight \v\ = \ui | +1«2|-

The problem of computing a matching of the vertices is known as the max
imum cardinality matching problem. Although there are optimal algorithms 
to solve this problem, they are of at least 0 ( | F | 2 5 ) , e.g. [15]. Unfortunately 
this is too slow for our purposes and, since it is not essential for the multilevel 
process to solve the problem optimally, we use a variant of the edge contraction 
heuristic proposed by Hendrickson & Leland, [12]. Their method of construct
ing a maximal independent subset of edges is to create a randomly ordered list 
of the vertices and visit them in turn, matching each unmatched vertex with 
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an unmatched neighbouring vertex (or with itself if no unmatched neighbours 
exist). Matched vertices are removed from the list. 

If there are several unmatched neighbours the choice of which to match 
with can be random, but in order to keep the weight of the vertices in the 
coarser graphs as uniform as possible, we choose to match with the neighbouring 
vertex with the smallest weight (note that even if the original graph Go is 
unweighted, Gj for I = 1,2,... will be weighted). In the case of several such 
minimally weighted neighbours a random choice is made from amongst them. 
Other matching heuristics were tested (e.g. such as one that prefers to match 
across heavily weighted edges) but did not reveal any noticeable benefits and in 
the end the choice was based purely on empirical evidence (not presented here). 

2.2.2 The initial layout 

Having constructed the series of graphs until the number of vertices in the 
coarsest graph, GL, is smaller than some threshold, we need to compute an 
initial layout for GL- However, if the graph is coarsened down to 2 vertices 
(which because of the mechanisms of the coarsening will be connected by a 
single weighted edge) we can simply place these vertices at random with no loss 
of generality. 

Note that contraction down to 2 vertices should always be possible pro
vided the graph is connected (assumed, §2.1). To see this consider that every 
connected graph of |V| vertices must have at least |V |̂ — 1 edges and that the 
collapsing of an edge results in a connected graph. Thus, if \V\ > 2 there must 
be at least one edge which can be collapsed to create a graph with \V\ — 1 
vertices and so on by induction. 

2.2.3 Uncoarsening 

At each level I the layout on graph Gi(Vi, Ei) is refined and then extended to its 
parent Gz_i(V^_i, Ei-i). This uncoarsening step is a trivial matter and matched 
pairs of vertices, v±,V2 £ Vj_i, are placed at the same position as the cluster, 
v G Vi, which represents them. 

2.3 The force-directed placement algori thm 

We use a standard drawing algorithm to refine the layout on the graph, Gi, at 
each level I. There has been considerable research into graph-drawing paradigms, 
[2], and here we are interested in straight-line drawing schemes and, in partic
ular, spring-embedder or force-directed placement algorithms. The original con
cept came from a paper by Eades, [4], and is based on the idea of replacing 
vertices by rings or hinges and edges by springs. The vertices are given initial 
positions, usually random, and the system is released so that the springs move 
the vertices to a minimal energy state (i.e., so that the springs are compressed 
or extended as little as possible). 
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Unfortunately the local spring forces are insufficient to globally untangle 
a graph and so such algorithms also employ global repulsive forces, calculated 
between every pair of vertices in the graph, and thus the system resembles an n-
body problem. Such repulsive forces between non-adjacent vertices do not have 
an analogue in the spring system but are a crucial part of the spring-embedder 
algorithms to avoid minimal energy states in which the system is collapsed in on 
itself in some manner. As a simple example of this consider a chain of 3 vertices 
{u, v, w} connected by two edges (u, v) and (v, w) and a spring model of this 
graph where both springs have a natural length k. Perhaps the most intuitive 
zero energy layout for this system would have u & w placed a distance 2fc apart 
with v in the middle. However, with no global repulsive forces there is nothing 
to stop u &; w from being placed in the same position and if this is a distance 
k away from v then once again the energy is zero. On a larger scale, repulsion 
is necessary to push whole regions, which are not immediately connected, away 
from each other. 

The particular variant of force-directed placement that we use is based on 
an algorithm by Fruchterman &; Reingold (FR), [7], itself a variation of Eades' 
original algorithm. From the point of view of the multilevel approach it is 
attractive as it is an incremental scheme which iterates to convergence and 
which can reuse a previously calculated initial layout. We have made a number 
of parameter modifications based on our experience with it and, in particular, 
because of the additional problems associated with drawing very large graphs. 
In principle however, it should be possible to use any iterative incremental 
algorithm for this part of the multilevel graph-drawing, although in practice 
different algorithms can be somewhat sensitive and require a certain amount of 
tuning. 

Figure 1 shows the basic outline of our algorithm and is written in a similar 
fashion to the original FR algorithm, [7]. Thus A is shorthand notation for 
the difference vector between the positions of two vertices and © is short for 
the vector of displacements calculated for the current vertex v. There are two 
main differences (apart from the choice of parameters); the order of updating 
and the weighting of the repulsive forces (discussed in more detail below). One 
other fairly minor difference is that we do not impose any boundaries around 
the drawing (referred to as the frame in [7]); the layout can thus expand (or 
contract) as required by the forces within the system. The positions may be 
subsequently scaled to fit onto a computer screen or a hardcopy or indeed into 
any region required by the user, but this forms no part of the algorithm. 

2.3.1 Updating 

An important difference from the original FR algorithm is the order of updating 
of the vertex positions. The original algorithm used two vectors (of length 
| V|), one containing the position of the vertices and the second containing their 
displacement as calculated during the current iteration of the outer loop. The 
outer loop then contained three main inner loops, the first looping over the 
vertices to calculate displacement caused by (global) repulsive forces and the 
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{ initialisation } 
function fr(x,w) := begin return —Cwk2/x end 
function fa(x) := begin return x2/k end 
t := to; 
Posn := NewPosn; 

while (converged ^ 1) begin 
converged := 1; 

for v G V begin 
OldPosn[v] = NewPosn[v] 

end 

for v € V begin 
{ initialise 0 , the vector of displacements of v } 
6 : = 0 ; 

{ calculate (global) repulsive forces } 
for u € V, u^ v begin 

A := Posn[u) — Posn[v]; 
e : = 0 + (A/| |A| |)-/P( | |A| | , | t i |); 

end 

{ calculate (local) attractive/spring forces } 
for u GTV begin 

A := Posn[u] — Posn[v); 
e : = e + (A/||A||)./0(||A||); 

end 

{ reposition v } 
NewPosn[v] = NewPosn[v] + (9/ | |©| |) -min(i, 
A := NewPosn[v] — OldPosn[v]; 
if (||A|| > k-tot) converged := 0; 

end 

{ reduce the temperature to reduce the maximum movement } 
t := cool(t); 

end 

Figure 1: Force-directed placement algorithm 
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second looping over edges and calculating the displacement (on the vertices at 
either end of the edge) due to the local attractive forces. The final inner loop 
over the vertices updated the positions. 

In our version however, we only calculate displacements for one vertex at 
a time, updating each at the end of the inner loop. At first it might seem 
as if this is less efficient, since the attractive forces are calculated twice for 
each edge. However, Posn is a pointer which points to NewPosn, the newly 
calculated position of each vertex which may have already been updated during 
the current iteration of the outer loop. In our experience this dramatically 
improves the performance of the algorithm (see §3.2). It is also very easy to 
recover the behaviour of the original FR algorithm (for comparison) by setting 
the pointer Posn := OldPosn in the initialisation section. 

2.3.2 Vertex weighting. 

We use a weighted version of the original FR repulsive function, computed 
by multiplying the repulsive force by the weight, |«|, of the vertex, u, which 
generates it, to give fr(x, \u\) = —C • \u\ • k2/x. Although we are typically (but 
not exclusively) interested in drawing unweighted graphs, any of the coarsened 
graphs will have weights attached to both vertices k, edges and in particular 
the vertex weight of a coarsened vertex u will represent the sum of weights of 
vertices from the original graph contained in the cluster. If we then consider 
the repulsive forces in the original graph, all of the vertices in the cluster u 
would act on any vertex from the cluster v so it makes sense to multiply the 
repulsive force of u on v by |u|. This was also confirmed by experimentation 
and made a considerable improvement as compared with neglecting this factor. 
For unweighted graphs, and in particular the force-directed algorithm used in 
its standard single-level format then |w| = 1 for all u e V and this function 
reverts back to the original FR version from [7]. 

Finally the constant C was determined by experimentation as suggested by 
Fruchterman & Reingold. We found that the smaller the value of C, the better 
the algorithms (both multilevel and the original single-level version) seemed to 
work, but the longer they took to run. This is presumably because, with the 
grid-variant in use (see below, §2.4), the smaller the value of C, the smaller the 
effect of the repulsive forces and hence the more vertices are used to calculate 
them. Thus the quality improves but the runtime increases. After extensive 
testing we settled on C = 0.2, although C = 0.5 & C = 0.1 could equally be 
used to give similar results. 

2.3.3 Edge weighting. 

Note that there is no simple equivalent edge weight analogue for the local at
tractive forces. To see this consider the three graphs shown in Figure 2(a)-(c) 
and suppose that in each case the ringed vertices are matched and merged to 
give the graph shown in Figure 2(d). The weight of the edge in Figure 2(d) 
would then be 3 if derived from Figure 2(a), 2 if derived from 2(b) and 1 if 
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Figure 2: Examples of coarsening 

from 2(c). Now consider the attractive force on each vertex of the cluster v by 
looking at the attractive forces in the three original graphs and assuming that 
the matched vertices are placed at the same position. In the case of the graph 
in Figure 2(a) there are 2 attractive forces from each vertex in the cluster w 
on each vertex in the cluster v (this corresponds to the edge weight 3). Mean
while, for Figure 2(b) there is 1 attractive force per vertex (corresponding to 
edge weight 2). However for the graph in Figure 2(c) it is not even clear what 
the attractive force from cluster w on cluster v should be, although arguably 
it should be less than 1 in some averaged sense (and this corresponds to edge 
weight 1). Hence there is no linear relation between edge weight and attractive 
forces and indeed for more complex cases (i.e., after multiple coarsenings) the 
relationship becomes even harder to evaluate. 

The simplest way of dealing with this problem, and the one that we use for all 
the experiments in this paper, is just to ignore edge weights. However, we have 
tested two alternative schemes (using the same testing regime as that described 
in Section 3). The first scheme we tried was to multiply each attractive force 
by the weight of the edge along which it acts. In fact this produced very similar 
results to ignoring the edge weights altogether, except that the drawings were 
somewhat less extended and took around 10-20% longer to compute (essentially 
both of these effects arise because the attractive forces are stronger relative to 
the repulsive ones and similar results can be seen simply by reducing the size of 
the parameter C). 

The second alternative was to average the attractive forces by again mul
tiplying each force by the corresponding edge weight but also dividing by the 
weight of the cluster on which it acts (giving multipliers of | , 1 & | respectively 
for the graphs in Figures 2(a), (b) & (c)). In fact this produced worse layouts 
than ignoring the edge weights, especially when using a fast cooling schedule 
(see §2.3.5), although for slow cooling schedules it made little difference. In the 
end, however, we decided to ignore edge weights. 

2.3.4 Natural spring length, k 

A crucial part of the algorithm is the choice of the natural spring length, k, (the 
length at which a spring or edge is neither extended nor compressed). At the 
start of the execution of the placement algorithm for graph Gi the vertices will 
all be in positions determined by the layout calculated for graph G;+i (except 
for GL, the coarsest graph). We must therefore somehow set the spring length 
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relative to this existing layout in order not to destroy it. If, for example, we set k 
too large, then the entire graph will have to expand from its current layout and 
potentially ruin any advantage gained from having calculated an initial layout 
via the multilevel process. 

u u 
(a) (b) 

Figure 3: Calculation of natural spring length 

In fact we derive the new value for k by considering what happens when we 
coarsen a graph, Gi, with well placed vertices (i.e., all vertices are approximately 
at a distance k from each other). Consider Figure 3(a) and suppose that v and 
u (at distance k from each other) are going to be clustered to form a vertex v' 
at the mid-point between them. Any vertex w adjacent to v should, if ideally 
spaced, lie somewhere on the arc PQR of the circle of radius k centred on v 
(it should not be on the arc PuR as that would place it too close to u). The 
distance between w and v' will then be 3fc/2 if w lies at Q or y/3k/2 if w lies 
at P or R. If we take an average position for w midway along the arc PQ then 
from Figure 3(b) and the cosine rule, the length d is given by 

d2 = k2 + (1) - 2 • k • £ cos(27r/3) = k2 + -k2 + -k2 = -k2 

\2J 2 4 2 4 

If we take d as an estimate for the new natural spring length k' then k! = 
VVA-k. 

Reversing this process, given a graph Gj+i with natural spring length ki+\, 
we can estimate the natural spring length for the parent graph Gi at the start 
of the placement algorithm to be 

Remarkably this simple formula works very robustly over all the examples that 
we have tested, certainly better than other functions we have tried (for example 
based on average edge length of the initial layout). Very occasionally on one or 



C. Walshaw, Multilevel Force-Directed Drawing, JGAA, 7(3) 253-285 (2003)263 

two of the examples the value for k that it gives is too small for the existing 
layout and the graph placement expands rapidly for the first few iterations. 
However, this usually occurs on one of the coarser graphs and the multilevel 
procedure is still able to find a good layout. Nonetheless we feel that the choice 
of this parameter could do with further investigation. 

For the initial coarsest graph, GL, we simply set 

1 L | (u,v)eBL 

the average edge length. Typically we coarsen down to 2 vertices and 1 edge 
and so k is set to the length of that edge. 

2.3.5 Convergence 

We retain the 'cooling schedule' used in the original FR algorithm. Notice from 
Figure 1 that when the positions are updated, the maximum movement is limited 
by the value t (or temperature) and that t is reduced at the end of each iteration 
of the outer loop. This idea, drawn from a graph-drawing algorithm due to 
Davidson & Harel, [1] and based on simulated annealing, allows large movements 
(high temperature t) at the beginning of the iterations but progressively reduces 
the maximum movement as the algorithm proceeds (and the temperature falls). 
Fruchterman & Reingold do not give the exact cooling schedule that they use, 
although they do recommend a two phase scheme, first cooling rapidly and 
steadily (possibly linearly) and the second phase at a constant low temperature. 
Here for simplicity we use the scheme U = A£j_j, or in pseudo-code 

function cool(t) := beg in return At end 

which operates similarly (i.e., initial rapid decay and a slow tail-off) but only 
involves one parameter, A. After experimentation we then set io = h at each 
level I and the algorithm is then deemed to have converged when the movement 
of every vertex is less than some tolerance, tol, times ki. Again after extensive 
experimentation we set tol = 0.01. This also allows us to avoid explicitly setting 
any maximum number of iterations since eventually the temperature will drop 
below tol-ki and so there is an implicit limit. 

By varying the cooling rate, A, and measuring performance against runtime 
for a range of values of A, we are able to compare different algorithms in a 
more meaningful way (see §3.2). However in the examples following we then 
recommend a value of A = 0.9 and this means that all movement ceases at 
iteration i where 0.9* < 0.01 or in other words after 44 iterations. This is close 
to the 50 iterations recommended in the original FR algorithm, [7]. 

2.3.6 Coincident vertices 

The algorithm needs minor exception handling if two vertices are found to be in 
exactly the same position. This can occasionally occur during the execution of 
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the algorithm but it also always happens when the code commences on a graph 
Gi, having calculated the layout on Gj+i, since we initially place the vertices 
in a cluster at the same position as the cluster. In these cases the vertices 
are simply treated as if they were a small distance apart (the actual direction 
generated randomly with the distance no more than 0.001 • k) and the forces 
calculated accordingly. This allows us to extend the layout of one graph to its 
parent without any additional sophisticated mechanism. 

2.4 Reducing the complexity 

It is fairly clear from the description of the algorithm that the placement com
plexity for each iteration on graph Gi(Vi,Ei) is 0(|VJ|2 + \Ei\). For the types 
of sparse graphs in which we are interested, the |V;|2 heavily dominates this 
expression and we therefore use the FR grid variant for reducing the run-times, 
[7]. Their motivation was that over long distances the repulsive forces are suf
ficiently small to be neglected. If we set R to be the maximum distance over 
which repulsive forces will act we can then modify the algorithm by changing 
the global force calculation to: 

function fr(x,w) := 
begin 

if (x < R) return —Cwk2/x; 
else return 0.0; 

end 

In itself this modification will do little or nothing to speed up the calculation 
as the complexity is still 0{\ Vi | 2 ) . However Fruchterman & Reingold, [7], showed 
that if the domain is divided up into regular square cells (or cube shaped cells in 
3D) of size R? (or R3 in 3D) then each vertex will only be affected by repulsive 
forces from vertices in its own and adjacent cells (including those diagonally 
adjacent). To implement this efficiently we simply visit every vertex at the 
start of each outer loop and add each to a linked list of vertices for the cell to 
which it belongs. Repulsive forces can then be calculated for each vertex by 
using the linked lists of their own and adjacent cells. In practice this seems 
to work very well although we note that the number of grid cells can greatly 
exceed the number of vertices, particularly in 3D. However the implied memory 
limitations are not difficult to deal with by storing only the non-empty cells in 
a tree structure rather than storing all of them in an array. 

We also note that, since we update vertex positions continuously throughout 
the outer loop, vertices are quite likely to move from one cell to another and 
thus not appear in the appropriate linked list. However we ignore the possible 
inaccuracies and do not transfer them during the course of an iteration and in 
practice it does not seem to matter. 

Finally we must decide what value to give to R. In the original FR algorithm 
the value R = 2k was used, but for the larger graphs in which we are interested, 
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this did not prove sufficient to 'untangle' them in a global sense. Unfortunately 
the larger the value given to R the longer the algorithm takes to run and so 
although assigning R = 20fe gave better results, it did so with a huge time 
penalty. Fortunately, however, the power of the multilevel paradigm comes 
to our aid once again and we can make R a function of the level I. Thus 
for the initial coarse graphs we can set Ri to be relatively large and achieve 
some impressive untangling without too much cost (since \Vi\ is very small for 
these graphs). Meanwhile, for the final large graphs, when most of the global 
untangling has already been achieved we can make Ri relatively small without 
penalising the placement. In fact, provided this parameter is not too small it 
should be very robust (since it just determines a cut off point for tiny repulsive 
forces) and because the first such schedule that we tried worked very well, we 
have not experimented further. 

The value that we use, therefore, is Ri = 2(1 + l)fcj for each graph Gi. In 
this expression I is just the graph number where Go is the original graph and 
Gi the graph after I coarsenings. Conveniently this also replicates the choice of 
R = 2k for Go in the original single-level FR algorithm. 

2.5 Complexity analysis 

It is not easy to derive complexity results for the algorithm but we can state 
some bounds. Firstly the number of graph levels, L, is dependent on the rate 
of coarsening. At best the number of vertices will be reduced by a factor of 2 at 
every level (if the code succeeds in matching every vertex with another one) and 
in the worst case, the code may only succeed in matching 1 vertex at every level 
(e.g. if the graph is a star graph, a 'hub' vertex connected to every other vertex 
each of which is only connected to the hub). Thus we have log2 \V\ < L < \V\. 
This probably indicates that the algorithm is not well suited to graphs with a 
small diameter relative to their size (such as star graphs) and in fact for the 
examples given in Section 3 the coarsening rate is close to 2. 

The matching & coarsening parts of the algorithm are 0(|Vi| + \Ei\) for each 
level I but in fact the total runtime is heavily dominated by the FDP algorithm. 
Using the above simplification (§2.4) of neglecting long range repulsive forces we 
can see that each iteration of the FDP algorithm is bounded below by 0(|Vj| + 
\Ei\) although with a large coefficient. In fact if the graph is dense, or in the 
worst case a complete graph, it may be that this is still 0(|Vj|2 + |.E/|), dependent 
on the relative balance of attractive & repulsive forces. However, we suspect 
that no FDP algorithm is appropriate for dense graphs because the minimal 
energy state corresponds to a tightly packed 'hair-ball' and so no structure is 
discernible in the drawing. 

In summary the total complexity at each level is close to 0(|V;| + \Ei\) for 
sparse graphs and the runtime is heavily dominated by the FDP iterations. 

Finally consider the FDP algorithm used, without coarsening, on a given 
sparse graph of size N (i.e., standard single-level placement) and compare it 
with multilevel placement (MLFDP) used on the same graph. Let Tp be the 
time for the FDP algorithm to run on the graph and for MLFDP let Tc be 
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the time to coarsen and contract it. If we suppose that the coarsening rate 
is close to 2 (which is true for most of the examples below) then for MLFDP 
this gives us a series of problems of size N, N/2,..., N/N whilst the (almost) 
linear complexity for the placement scheme at each level gives the total runtime 
for MLFDP as Tc + Tp/N + . . . + Tp/2 + Tp. In all the examples we have 
tested Tc -C Tp and so we can neglect it giving a total runtime of approximately 
Tp/N + . . . + Tp/2 + Tp « 2TP. In other words MLFDP should take only 
twice as long as FDP to run (and yet in the examples below achieves far better 
results). In fact the final level of the MLFDP algorithm is likely to already have 
a very good initial layout which means that it should run even faster than FDP 
although this is neutralised somewhat by the fact that the coarsening rate is 
normally somewhat less than 2. Nonetheless this factor of 2 is a good 'rule of 
thumb' and note that if the chosen FDP algorithm were 0(N2) or even 0(N3) 
then a similar analysis suggests that the MLFDP runtime would be substantially 
less than twice that of FDP. 

3 Experimental Results 

We have implemented the algorithms described here within the framework of 
JOSTLE, a mesh partitioning software tool developed at the University of 
Greenwich1. We illustrate and test these schemes in a variety of ways and 
on a large number of problem instances including a suite of small random pla
nar graphs together with some much bigger graphs from genuine applications. 
Firstly in §3.1 we demonstrate the multilevel scheme with an extended example 
of the technique in action. Next in §3.2 we present the results from extensive 
tests which show algorithmic performance against runtime and compare the be
haviour of single-level and multilevel versions. In §3.3 we then present a test of 
runtime complexity and finally in §3.4 highlight the multilevel algorithm with 
some detailed individual layouts. 

The experiments were all carried out using a 1 GHz Pentium III with 256 
Mbytes of memory running Linux. (Although this is three times faster than the 
processor used for our original testing in [19], differences in floating point per
formance mean that it only runs about twice as fast on this sort of application. 
Other differences in runtime result from changes in the algorithms that we have 
made since the previous paper.) 

3.1 An extended example 

In this section we demonstrate in more detail how the multilevel scheme works. 
Figure 4 shows the original layout of a small mesh-based graph, 516 (with 516 
vertices), drawn from a computational mechanics problem, and (lightly shaded) 
the underlying triangular mesh. Typically in such graphs the vertices can ei
ther represent mesh nodes (the nodal graph), mesh elements (the dual graph), 

1 freely available for academic and research purposes under a licensing agreement from 
h t tp : / /www.gre .ac .uk / j o s t l e 

http://www.gre.ac.uk/j
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Figure 4: The original layout of 516 also showing the underlying triangular mesh 
elements 

a combination of both (the full or combined graph) or some other special pur
pose representation. In this case the graph is a dual graph where each vertex 
represents a triangular element. 

Table 1: The sizes of the coarsened graphs of 516 
I 

\Vi\ 
\Ei\ 

0 
516 
729 

1 
288 
501 

2 
156 
319 

3 
86 
190 

4 
46 
97 

5 
24 
48 

6 
13 
23 

7 8 9 
7 4 2 
9 3 1 

The MLFDP algorithm was applied to this problem (ignoring the existing 
layout) and Table 1 lists the sizes of the graphs, G\{V\,E-C) to Gg(Vg,Eg), 
constructed by the coarsening. Notice that |Vj| > |VJ_i|/2 since no more than 
two vertices are clustered together and so the graph cannot shrink by more 
than a factor of two. The initial layout is computed by placing the two vertices 
of Gg at random and setting the natural spring length, k, to be the distance 
between them. Starting from Gi = G& the layout is extended from G7+1, by 
simply placing vertices at the same position as the cluster representing them in 
the coarser graph, and then refined. 

Figure 5(a) shows the final layout on G4 and it can been clearly seen that, 
although over 10 times smaller than the original, the layout is already beginning 
to take shape. Figures 5(b)-(d) meanwhile illustrate the placement algorithm 
on G2. Figure 5(b) shows the initial layout as extended from G3 and with 
many of the vertices coincident whilst Figure 5(c) then shows the layout after 
the first iteration and where the coincident vertices have been pushed apart. 
Figure 5(d) finally shows the layout after the placement algorithm has converged 
for G2. Notice an important feature of the multilevel process (common with 
the partitioning counterpart) that the final layout (partition), does not differ 
greatly from the initial one and hence the placement scheme at each level need 
not be very powerful in a global sense, since the multilevel framework seems to 
impart this property. Figure 5(e) shows the final layout on the original graph, 
Go- The small kink arises from the hole in the graph which distorts the layout 
slightly, but in general the final drawing is excellent. Finally note that the 
MLFDP algorithm took less than half a second to compute this layout (this is 
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the time for the entire algorithm including reading the problem, coarsening and 
placement at each level). 

For comparison, Figure 5(f) shows the placement algorithm used on a ran
dom initial layout of the same graph (in other words as the standard single-level 
placement algorithm, FDP). Possibly the algorithm is not well tuned for this 
problem, but what can be seen is that although the micro structure of the graph 
has been reconstructed reasonably well (at least this can be seen by examining 
the layout in more detail than Figure 5(f) allows), the single-level placement 
has not been able to 'untangle' the graph in a global sense. In fact, by adjusting 
the cooling schedule so that the algorithm runs for at least 2,150 iterations, the 
single-level scheme can achieve a similar layout to that shown in Figure 5(e); 
however this takes 9.76 seconds to run, about twenty times longer than the 0.48 
seconds required by the multilevel scheme. We believe that this at least hints 
at the power of the multilevel framework. 

(a) MLFDP, G4, final iteration (b) MLFDP, G2, iteration 0 

(c) MLFDP, G2, iteration 1 (d) MLFDP, G2, final iteration 

(e) MLFDP, G0, final iteration (f) FDP, final iteration 

Figure 5: The multilevel algorithm illustrated for the graph 516 

3.2 Comparison of single-level and multilevel algorithms 

Although anecdotal evidence (above and in [19]) suggests that the multilevel 
framework can significantly enhance force-directed placement, we test this con
clusion more thoroughly by comparing algorithmic performance on two test 
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suites. The first suite2 consists of 200 randomly generated planar graphs origi
nally constructed to benchmark the GDT3 software. There are 20 graphs each of 
size | V | = 10,20, . . . , 100 and we have subdivided the suite into two subclasses: 
100 tiny graphs with 10 < |V| < 50 and 100 small graphs with 60 < \V\ < 100. 

Table 2: The test suite of mesh-based graphs 

graph 
140 
gridl 
399 
rj20 
516 
771 
788 
meshl024 
dimeOl 
sierpinski06 
grid2 
3elt 
uk 
4970 
dime06 
ukerbel 
whitaker3 
sierpinski08 
tlOk 
crack 

size 
\V\ \E\ 
140 199 
252 476 
399 573 
400 760 
516 729 
771 1133 
788 1123 

1024 1504 
1095 1570 
1095 2187 
3296 6432 
4720 13722 
4824 6837 
4970 7400 
5343 7836 
5981 7852 
9800 28989 
9843 19683 

10027 14806 
10240 30380 

degree 
max min avg 

3 2 2.84 
4 2 3.78 
3 1 2.87 
4 2 3.80 
3 1 2.83 
3 1 2.94 
3 2 2.85 
3 2 2.94 
3 2 2.87 
4 2 3.99 
5 2 3.90 
9 3 5.81 
3 1 2.83 
3 2 2.98 
3 2 2.93 
8 2 2.63 
8 3 5.92 
4 2 4.00 
3 2 2.95 
9 3 5.93 

MLFDP placement (A = 0.9) 
crossings time (sees.) 

0 
121 

0 
0 
0 
0 

90 
0 

34 
0 
0 

3391 
116 

0 
295 
374 

0 
158 

0 
0 

0.12 
0.29 
0.38 
0.42 
0.48 
0.86 
0.78 
1.18 
1.03 
0.81 
3.82 
7.57 
5.02 
6.86 
5.53 
9.48 

11.48 
7.71 

10.65 
13.31 

The second suite comprises 20 much larger planar graphs, listed in Table 2, 
and mostly drawn from genuine examples of computational mechanics meshes. 
The Table gives their sizes (\V\ & \E\) and the maximum, minimum & average 
degree of the vertices. It also shows the number of edge crossings and runtime 
required for a layout produced by the multilevel algorithm (using the cooling 
rate, A = 0.9, suggested below, §3.3). Once again we have split the suite into 
two subclasses: 10 small mesh-based graphs of between 100 and around 1,000 
vertices and 10 medium sized with between 1,000 to around 10,000 vertices. 
Note that although these graphs are all planar, some of them (in particular 
gridl, dimeOl, 3elt & dime06) are exceptionally difficult to draw with a planar 
layout because of extreme variations in mesh density. Meanwhile sierpinski06 
& sierpinski08, despite their regular local structure, contain large holes which 
add to the drawing complexity. Both of these difficulties are explained further 
and illustrated in §3.4. 

We use the test suites to compare three different algorithms: FDP0 , the 
original FR algorithm (or as close as we can get to it); FDP, our version of that 
algorithm; and MLFDP, the multilevel version of FDP. We have also tested 

2available from h t tp : / /www.d ia .un i roma3 . i t /~gd t / t e s t su i t e /GDT- tes t su i t e -BUP. tgz 
3graph-drawing toolkit, see h t tp : / /www.d ia .un i roma3 . i t /~gd t / 

http://www.dia.uniroma3.it/~gdt/testsuite/GDT-testsuite-BUP.tgz
http://www.dia.uniroma3.it/~gdt/
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MLFDPo, the multilevel version of FDPo, but since it always seems to perform 
worse than MLFDP we do not present any results for it. 

The variants are differentiated by parameter settings defined as follows (in 
approximate order of importance): 

FDPo I FDP I MLFDP 
Posn := OldPosn Posn := NewPosn Posn := NewPosn 
t0 := 0.1 \/A t0 := k to := h 

fcj:= v/f-fcl+i J = 0 , . . . , L - 1 

Thus for FDPo (the original FR algorithm) the updating is based on vertex 
positions at the start of the loop rather than their current positions (see §2.3.1). 
The initial temperature is then given by to = 0.1 \A where A is the area of the 
initial layout and d (= 2,3) the dimension of the layout we wish to compute. 
Pruchterman & Reingold actually suggest to as one tenth of the width of the 
drawing but since we generate the initial positions by random placement in the 
region [0, l ] d , for 2D drawings this amounts to the same thing. Similarly the 
original scheme uses k = y/A/\V\ but for 3D drawings this should naturally be 
k = y/A/\V\ (where A is then the volume of the region) to be dimensionally 
correct. 

We compare the three algorithms by looking at how close each can come to 
some notionally 'optimal' layout in a given time. Although it is impossible to 
define an optimal drawing of any graph (because this is very much a subjective 
choice), nonetheless studies with real users have indicated that 'reducing the 
number of edge crossing is by far the most important aesthetic', [16], and we use 
this measure. Furthermore in order to compare different drawing algorithms it is 
necessary to bear in mind that for optimisation schemes such as these, typically 
the longer an algorithm is allowed for refinement, the better the layout it is 
likely to achieve. It is therefore insufficient to choose fixed parameter settings 
and compare results since the runtimes of the different algorithms are likely to 
be very different. We thus compare the algorithms over a range of different 
runtimes and fortunately, as described in §2.3.5, the cooling schedule, and in 
particular the cooling rate, A, allows us an easy method to do this. 

To assess a given algorithm then, we measure the runtime and solution 
quality (number of edge crossings) for a chosen group of problem instances and 
for a variety of values of A. For problem instance p, at cooling rate A, this 
gives a pair, QA,P> the solution quality found, and T\tP, the runtime. We then 
normalise the runtime values and average over all problem instances to give a 
single data point of averaged solution quality, Q\, and runtime, T\, for a given 
cooling rate A. By using several cooling rates, A, we can then plot Q\ against 
T\ to give an indication of algorithmic performance over those instances. 

Typically one might think of normalising solution quality by dividing the 
results by the quality of the optimal (or best known) solution, e.g. as in [20]. 
However all of the test graphs in this section are known to be planar and so an 
optimal layout (at least in terms of the performance measure) contains no edge 
crossings (i.e., quality 0). An alternative normalisation could be the number of 
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edges in each graph, \E\, or even the number of edges squared since presumably 
\E\2 is the maximum possible number of edge crossings. However we have not 
used either of these and, since the graphs in each subclass do not exhibit too 
much variation in size, we do not normalise the solution quality. The time 
normalisation is more simple and is calculated by T\tP/T£ where T£ is the 
runtime on an instance p for some well known reference algorithm, A. In this 
case we use A = FDPo with A = 0.9. 

To summarise then, for a set of problem instances P, we plot averaged 
solution quality Q\ against averaged normalised runtime T\ for a variety of 
cooling rates, A, and where: 

Q; = TpT H Q*>P ' Tx = Tp\H 
p£P p€P 

'J'A. 

The particular cooling rates that we used for the tests shown here were 

A = 0.5,0.8,0.9,0.95,0.98,0.99,0.995,0.998,0.999 

for MLFDP and additionally (because of the factor of two runtime overhead 
for MLFDP, §2.5) A = 0.9995 for FDP0 and FDP. In each case the runtime 
measurement includes reading in the problem, output of the solution and any 
initialisation required including an initial solution construction algorithm for 
the single-level local search schemes. It does not, however, include the time to 
count the edge crossings which forms no part of the algorithm and is only used 
here as a post-processed performance measure. 
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Figure 6: Plots of algorithmic behaviour on the random graphs 

Figures 6 & 7 show the results on the two test suites and illustrate graph
ically the behaviour of the three algorithms. First of all we can see that the 
solution quality for FDP, our version of the FR algorithm, is far better than 
that for the original, FDPo. The parameter settings certainly contribute to this 
improvement and hence this is a slightly unfair test for the original FR algo
rithm; firstly because Pruchterman & Reingold did not give complete parameter 
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(FR original) force-directed placement 
force-directed placement -

multilevel force-directed placement -

"6 
S 20000 

§> 10000 

10 20 30 40 50 60 70 80 90 100 
average runtime (normalised by timings for FDP[0.9]) 

(a) small graphs 
(100 < \V\ < 1,100) 

(FR original) force-directed placement 
force-directed placement -

multilevel force-directed placement -

average runtime (normalised by timings for FDP[0.9]) 

(b) medium graphs 
(1,000 < |V| < 11,000) 

Figure 7: Plots of algorithmic behaviour on the mesh-based graphs 

settings and secondly because, even for those that they did give, our parameter 
settings were partially tuned on this set of problem instances and hence are 
likely to be more appropriate. On the other hand extensive testing of different 
parameter combinations revealed that by far the most significant contribution 
to the difference between FDP and FDPo was the fact that the positions are 
updated continuously rather than at the end of every outer iteration (see §2.3.1 
for more details). 

Next, comparing the single-level FDP algorithm with the multilevel version, 
we see that MLFDP can also significantly enhance the scheme and that the 
benefits increase with graph size. This is perhaps not a surprise since there is 
a much greater potential for global tangling in large graphs (rather than those 
with less than 50 vertices) and hence the multilevel scheme is more likely to 
be of assistance. Furthermore the larger the graph, the more coarsening, and 
hence the more refinement at different levels, takes place. 

Looking at the curves in more detail in fact we see that for the random 
graphs, Figure 6, the MLFDP & FDP algorithms appear to have approximately 
the same asymptotic limit in solution quality. However the MLFDP curves 
bottom out more quickly. 

The mesh-based graphs demonstrate this difference even more graphically 
in Figure 7 (where note that we have offset the x-axis away from 0 to avoid 
confusion with the MLFDP curve). MLFDP reaches its asymptotic limit almost 
immediately (for A « 0.9) and it is not clear whether FDP can ever reach 
the same limit even after excessive runtimes (e.g. the 9,000 or so iterations 
represented by the final point on the FDP curves). Furthermore, even though 
the asymptotic limits for MLFDP & FDP do not seem that different, a look at 
individual layouts reveals that the single-level algorithm has not really untangled 
the graph properly. Of course the mesh-based test graphs are well structured 
locally and so we do not claim that the results would necessarily carry over to 
other graph types. On the other hand with such structure one might imagine 
that this sort of graph should be the easiest for a single-level force-directed 
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approach to handle and that FDPo & FDP should be at their best for this 
suite. 

Figure 7(a) demonstrates one further point; since the schemes are not di
rectly trying to minimise the number of edge crossings, it is possible for the 
quality to depreciate rather than improve monotonically. 

Finally the plots also suggest that the approximate runtime factor of two, 
suggested in §2.5, is fairly good. The final point on the FDP curve corresponds to 
A = 0.9995 or 9,210 iterations whilst the final point on the MLFDP corresponds 
to A = 0.999 or 4,604 iterations per level and, as can be seen, in all four plots 
these two points are fairly close together. Note that this analysis does not apply 
to FDPo because the initial temperature, to, is different. 

3.3 Runtime complexity testing 

From here on the tests are carried out at fixed cooling rate A = 0.9 which we 
have found to be a good compromise between solution quality and runtime since 
it is close to the turning point in the MLFDP curves of Figures 6 k. 7. 

With this parameter fixed we then tested algorithmic complexity by com
paring runtime against graph size using a set of 20 dual graphs, dimeOl, . . . , 
dime20, ranging in size from \V\ — 1,095 to |V| = 224,843 (note that some of 
these are used under different names in [19] and Laplace.O = dimell, Laplace.2 
= dimel3, . . . , Laplace.9 = dime20). They are somewhat unrepresentative, but 
of interest for complexity testing because each mesh is formed from the previ
ous one using mesh refinement and so the underlying geometry is unchanged. 
Also, because they are duals of triangular meshes (as is 516 in §3.1), the average 
vertex degree approximately 3 which means that the number of edges for each 
graph scales linearly with the number of vertices. They are planar, but once 
again difficult for a spring-based placement method to draw because of the high 
variation in graph density (see §3.4 for further details). Two of them, dimeOl 
& dime06, are also used in the mesh test suite (listed in Table 2 in §3.2), whilst 
another, dime20, is shown in §3.4. 

50000 100000 150000 200000 250000 
graph size (number of vertices) 

Figure 8: A plot of runtime against graph size 



C. Walshaw, Multilevel Force-Directed Drawing, JGAA, 7(3) 253-285 (2003)274 

Figure 8 shows a plot of runtime against graph size and, as can clearly be 
seen, the complexity is almost linear confirming one of the conclusions in §2.5. 
Furthermore, the runtime for the largest graph, dime20, of nearly a quarter of 
a million vertices is only 264 seconds. 

3.4 Further examples 

In this final results section we highlight the multilevel scheme with some inter
esting specific layouts that it has produced (including some for graphs which 
have a known layout). We discuss each example graph in a little more detail 
in the following sections but Table 3 gives a summary in the form of a list of 
the graphs, their sizes (|V| &; \E\), the maximum, minimum & average degree 
of the vertices, the time that the multilevel algorithm required to produce a 
layout (and whether it was computed in 2D or 3D) and a short description. 
Although all of the layouts were produced automatically, for the 3D examples, 
included to illustrate further points, the viewpoint has been selected manually 
by rotating the final drawing (the choice of optimal viewpoints is itself a subject 
for research, e.g. [22]). 

Table 3: A summary of the illustrated graphs 

graph 
c-fat500-10 
4970 
4elt 
finan512 
dime20 
data 
add32 
sierpinskilO 
meshlOO 

size 
\V\ \E\ 
500 46627 

4970 7400 
15606 45878 
74752 261120 

224843 336024 
2851 15093 
4960 9462 

88575 177147 
103081 200976 

degree 
max min avg 
188 185 186.5 

3 2 3.0 
10 3 5.9 
54 2 7.0 

3 2 3.0 
17 3 10.6 
31 1 3.8 

4 2 4.0 
4 2 3.9 

placement 
time (sees.) 

5.6 (2D) 
6.4 (2D) 

24.3 (2D) 
363.8 (2D) 
264.3 (2D) 

6.6 (3D) 
12.5 (3D) 

136.7 (3D) 
431.1 (3D) 

graph type 
random clique test 
2D dual 
2D nodal 
linear programming 
2D nodal 
3D nodal 
32-bit adder 
2D 'fractal' 
3D dual 

c-fat500-10: Despite the suggestion that FDP algorithms are best suited to 
sparse graphs, §2.5, Figure 9(a) shows a dense regular graph (originally 
generated to test algorithms for the maximum clique problem). The 2D 
layout took around 6 seconds to compute and demonstrates that here the 
MLFDP algorithm has captured the symmetries nicely. 

4970: The next example, Figure 10(a), is a planar dual graph derived from a 
mesh (also used in the mesh-based test suite, §3.2), originally constructed 
to highlight a problem in the mesh generator which created it. In fact 
by most definitions this would be considered a very poor mesh as the 
triangles become extremely long and thin towards the bottom left hand 
corner. Figure 10(b) shows the (2D) layout calculated by the MLFDP 
algorithm and is useful in that, by trying to equalise the edge lengths, the 
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drawing has actually revealed far more of the graph than was originally 
shown. This layout took around 6 seconds to compute. 

4elt: A far more challenging task for any graph-drawing algorithm which seeks 
to equalise edge lengths is shown in Figure 11 (also showing the detail at 
the centre of the mesh). This is a planar nodal graph (a larger and more 
complex version of the 3elt graph used in the mesh-based test suite, §3.2) 
which represents the fluid around a 4 element airfoil. However, because 
the mesh has been created to study fluid behaviour close to the airfoil, the 
mesh exhibits extreme variations in nodal density and a far-field (the outer 
border of the mesh) containing very few edges. Figure 12(a) shows the 
(2D) layout generated by the MLFDP algorithm and illustrates some of 
the difficulties. Firstly the original outer border has become the smallest of 
the holes whilst the outer border of the new layout is actually the perimeter 
of one of the original holes. Furthermore, the perimeters of the other holes 
exhibit buckling and folding as too many vertices have to be crammed into 
a space constrained in size by the rest of the graph. Possibly we could 
eliminate some of this folding if we increased the strength of the repulsive 
forces, but the layout is nonetheless fairly good and arguably shows the 
whole of the graph at a single resolution better than the original layout. 
Figure 12(b) shows some of the folding in more detail and demonstrates 
that the micro structure is well captured. The runtime of the MLFDP 
algorithm for 4elt was around 24 seconds. 

finan512: Perhaps the centre-piece of these examples is taken from a linear 
programming matrix with around 75,000 vertices and for which no existing 
layout is known. Figure 13(a) shows the highly illuminating layout found 
by the MLFDP algorithm; the graph is revealed to have a fairly regular 
structure and consists of a ring with 32 'handles' each of which has a 
number of fronds protruding. Figure 13(b) then shows a detailed view of 
one of the handles. It was an extremely useful picture from the point of 
view of partitioning the graph because it explained why there are good 
natural partitions of the graph (provided that the ring is cut between the 
handles). This 2D layout took about 6 minutes to compute. 

Note that for this particular drawing we used a 2D layout (although a 
3D layout looks identical from the right viewpoint) and this example il
lustrates well the memory problems that can arise with the grid based 
simplification of repulsive forces. As explained in §2.4 this modification 
divides the region into square or cube shaped cells with dimensions equal 
to some multiple of k. If a 3D layout is chosen and the ring happens by 
chance to more or less align itself with one of the x, y or z axes, then a 
box containing the graph is relatively flat and so the number of grid cells 
is not unreasonable. In the worst case however, if the ring happens to 
lie diagonally across all three axes then the box containing the graph will 
be cube shaped and the number of grid cells (most of which are empty) 
enormous relative to |V|. This reinforces our suggestion of using sparse 
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data technology to only allocate memory for non-empty grid cells. 

dime20: This is the largest graph which we have tested (also included as part 
of the complexity testing, §3.3, and, in smaller versions, as part of the 
mesh-based test suite, §3.2). Once again the original mesh, Figure 14(a), 
exhibits extreme variations in mesh density although it is perhaps easier 
to draw than 4elt. The runtime to calculate the layout, shown in Fig
ure 14(b), for this huge graph was only 264 seconds (i.e., less than 4 j 
minutes). 

da ta : This is the first 3D layout we have shown and illustrates some interest
ing points. Figure 15(a) shows the original nodal graph which despite 
the appearance of being 2D is actually a segment of the thin shell of 
some aeronautical body. Figure 15(b) shows the 3D layout computed by 
the MLFDP algorithm which, despite looking nothing like the original, 
demonstrates some very interesting features not least of which are the 
three 'panels' only weakly connected to the rest of the mesh. Until seeing 
this layout we had no idea of the existence of such 'panels' - the original 
layout certainly gives no hint of them - although they could have consid
erable impact on any graph-based algorithm. This layout took around 6 
seconds to compute. 

add32: The next graph is a representation of an electronic circuit, a 32-bit 
adder, for which we do not know of an existing layout. Figure 16(a) shows 
the results of the 3D MLFDP algorithm whilst Figure 16(b) shows a detail 
of the micro structure. Although the graph is not a tree (because of the 
existence of loops) the placement has clearly demonstrated its tree like 
nature with many outlying branches or fronds. The 3D layout took about 
12 seconds to compute. 

sierpinskilO: Figure 17(a) shows the original layout of sierpinskilO, a self-
similar 'fractal' type structure, constructed by splitting equilateral trian
gles of the previous graph in the series into four (two smaller examples, 
sierpinski06 & sierpinski08, are used in §3.2). This is a challenging prob
lem for the drawing algorithms because of the large holes (so that repulsive 
forces do not act as uniformly as in a mesh-derived graph such as 4970). 
Here we have chosen to draw a 3D layout, shown in Figure 17(b), despite 
the fact that the original graph is planar. This helps to prevent vertices 
from becoming trapped in local optima (as discussed by Fruchterman & 
Reingold, [7]) since repulsive forces need not push vertices through groups 
of other vertices. The 3D layout adds approximately an additional 50% 
time penalty (as might be expected) but the runtime is still less than 2^ 
minutes. Finally note that the bottom left-hand corner is not compacted 
in on itself, it is merely bent backwards along the line of vision; rotating 
the picture reveals this corner but hides other details. It is unfortunate 
that the drawing procedure has not managed to map the graph to a flat 
plane, but with an interactive visualisation tool this does not matter too 
much. 
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meshlOO: The final graph in this section is one of the largest that we have ex
perimented with, over 100,000 vertices, and illustrates one of the problems 
that any graph-drawing algorithm faces. The graph is the dual of a 3D 
tetrahedral solid mesh and as such, with none of the face information that 
exists in the mesh, it is very difficult to draw meaningfully. Even in the 
original layout, Figure 18(a), 3D solid objects are seen to be very difficult 
to draw with a graph. Figure 18(b) shows the 3D MLFDP layout which 
took just over 7 minutes to compute. It suffers from the same problems 
as the original although it is splayed out because of the repulsive forces; 
however the symmetry is captured nicely. 

Figure 9: The graph c-fat500-10 

(a) original layout as derived (b) the layout computed by 
from the mesh multilevel placement 

Figure 10: The graph 4970 
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(a) original layout as derived (b) detail of central region 
from the mesh 

Figure 11: The graph 4elt 

(a) the layout computed by (b) detail of the folding 
multilevel placement 

Figure 12: The graph 4elt 
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(a) the layout computed by 
multilevel placement 

(b) detail of a "handle" 

Figure 13: The graph finan512 

(a) original layout as derived 
from the mesh 

(b) the layout computed by 
multilevel placement 

Figure 14: The graph dime20 



C. Walshaw, Multilevel Force-Directed Drawing, JGAA, 7(3) 253-285 (2003)280 

(a) original layout as derived (b) the layout computed by 
from the mesh multilevel placement 

Figure 15: The graph data 

(a) the layout computed by (b) the multilevel layout - de-
multilevel placement tail 

Figure 16: The graph add32 
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(a) original layout (b) the layout computed by 
multilevel placement 

Figure 17: The graph sierpinskilO 

V 
(a) original layout as derived (b) the layout computed by 

from the mesh multilevel placement 

Figure 18: The graph meshlOO 
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4 Summary and further research 

We have described a multilevel algorithm for force-directed graph-drawing. The 
algorithm does not actually operate simultaneously on multiple levels of the 
graph (as, for example, a multigrid algorithm might) but instead, inspired by 
the multilevel partitioning paradigm, refines the layout at each level and then 
extends the result onto the next level down. The algorithm is fast, e.g. for sparse 
graphs the runtime is about 12 seconds for a 2D layout of up to around 10,000 
vertices and about 5-7 minutes for 75-100,000 vertices. At the time that the 
algorithm was originally devised (2000) this was an order of magnitude faster 
than existing single-level implementations of force-directed placement (e.g. 135 
seconds for a 1,000 vertex sparse planar mesh-based graph in [18, pp. 421]; 
even taking into account the fact that the machine used for this calculation 
was notionally 8 times slower this is still 16 times slower than similar examples 
in Table 2 which took around 1 second). It also broadens the scope of phys
ically based graph-drawing algorithms by imparting a more global element to 
the layout and seems to work robustly on a range of different graphs. Further
more, although the number of coarse graphs is typically 0(log2 N), it only adds 
an approximate factor of two runtime overhead to the force-directed algorithm 
despite considerably enhancing the results. Finally it has sometimes been sug
gested that it is unnecessary to draw large graphs as the human eye can not 
distinguish more than about 500 vertices. However examples such as finan512 
in §3.4 contradict this and indicate that graphs need to be drawn at the level 
of the structure contained within them, although this may suggest that it is 
fruitless to test drawing algorithms on very large random graphs (i.e., with no 
structure). 

So far we have tested the algorithm on a number of different graphs including 
several derived from unstructured meshes which tend to be relatively homoge
neous in both vertex degree and local adjacency patterns. An obvious source of 
further research is to test the technique on graphs arising from different areas 
(e.g. models of social or communications networks or the internet). Our algo
rithm also allows vertex weights and although we have only tested this in the 
context of the multilevel procedure, its use with weighted graphs might provide 
further interesting insights. In addition we believe, partly because of our expe
rience in dynamic repartitioning algorithms, that the multilevel process is well 
suited to handling dynamically changing graphs and this looks to be a fruitful 
topic for future research. We have not addressed disconnected graphs but feel 
that this requires only minor modifications. Finally we suspect that further 
work on some of the parameters of the algorithm would enhance its robustness 
and efficiency. In particular the calculation of the natural spring length k seems 
almost too simple to be effective. 

We have not particularly tried to address graphs for which the technique 
might not work. It is likely that very dense graphs, or even those such as 
meshlOO which have a dense substructure, are never going to be good candidates 
for any graph-drawing algorithm, and ours is no exception. It is also likely that 
graphs of small diameter may not particularly suit the coarsening process (see 
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§2.5) although it might be possible to develop modifications to the algorithm 
which could deal with hubs or star graphs (e.g. by contracting the whole star 
in one step). In summary, however, we believe that the multilevel process can 
accelerate and enhance FDP algorithms for a range of useful graphs and further 
testing on different types of graph is an important subject for further research. 
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1 Introduction 
Let £ be a finite set of axis-parallel line segments in Rd intersecting only at 
endpoints, let V be the set of all endpoints in £, and let Q be the graph defined 
by V and £. The Manhattan shortest path problem is to find the shortest path 
in Q between two distinct terminals Ti, T2 G V. We will assume that the graph 
has already been processed and stored in memory; our algorithm is meant for 
applications in which multiple runs will be conducted on the same graph. 

1.1 Notation 

In this paper, we will use the following conventions. 

• The symbol XY denotes the Manhattan distance between two points X 
and Y in space. 

• The symbol XY denotes the edge connecting two adjacent vertices X, Y 6 
Q. 

• The symbol XY denotes the length of a shortest path in Q between two 
vertices 1 , 7 6 V. 

• The symbol 5(XY) denotes the set of all shortest paths in Q between two 
vertices X,Y eV. 

• The function 1{V) denotes the length of a path V in Q. A path is a set of 
vertices and edges that trace a route between two vertices in a graph. 

• The direct sum S(XY) ©<S(YZ) forms all pairwise concatenations between 
paths in <S(XY) and S(YZ). That is, 

<S(XY) 9 S(YZ) = {V U Q : V G <S(XY), Q G <S(YZ)}. 

1.2 Previous Work 

Dijkstra's algorithm solves this problem in 0(n log n + dn) time, where n is the 
number of vertices visited by an algorithm1, which is a less expensive function 
of n than that of our algorithm. However, the purpose of our algorithm's search 
heuristic is to reduce n itself, thereby recapturing the additional log-power com
plexity factor. 

Our algorithm is an extension of A * heuristic search [4, 5], which is a priority-
first search in Q from T\ to T%. A* maintains two dynamic point sets, a wavefront 
W C V and a set Q C V of visited points, which begin as W = {Ti} and il = 0 . 
The priority of a vertex V is a conservative estimate of the length of a shortest 
path connecting the terminals via V; specifically: 

priority(V) = "TiV" + VT2, 

1Note: we do not define n to be the number of edges on the shortest path. 
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where "TiTi" = 0, 

"TiV" = min {TiU + UV\ , (1) 

and A is the set of all visited vertices that are adjacent to V. At each iteration, 
A* visits a point P G W of minimal priority: it transfers P from W to Q. 
and inserts P ' s unvisited neighbors into W. This technique is called wave-
propagation because the wavefront W grows like a shock wave emitted from 

The proofs of our algorithm's validity in Section 3 will show that "TiV" 
approximates T i V and is in fact equal to T iV by the time V is visited, hence 
the quotation marks. Once T2 is visited, the length of the shortest path is then 
priority(T2). To recover the shortest path, predecessor information is stored: 
the predecessor of a point V is defined to be the point V* € A that yields the 
minimum in equation (1). If there are multiple minimal points, then one of 
them is arbitrarily designated as the predecessor. Since A is a dynamic set, the 
predecessor of a point may vary as A* progresses, but it turns out that once 
a point P has been visited, its predecessor is always adjacent to it along some 
path in 5(TiP) . Thus, after T2 is visited, a shortest path from T\ to T2 can be 
obtained by tracing back through the predecessors from T<i to T\. 

The purpose of a search heuristic is to help the wavefront grow in the di
rection of Ti. When no shortest paths from T\ to Ti approach Ti directly, 
however, unidirectional search heuristics become misleading. This is not a rare 
occurrence; in computer chip design, one may wish to route wires between ter
minals that are accessible only through certain indirect channels. In order to 
develop a more intelligent heuristic, one must therefore explore the search space 
from both terminals. This motivates bidirectional search. 

We concentrate here on bidirectional searches that are based on wave propa
gation, which expand one wavefront from each terminal. Such searches come in 
two types: front-to-end and front-to-front. In front-to-end searches, points are 
assigned heuristics without regard to information about points on the other 
wavefront. In contrast, the wavefronts cooperate in front-to-front searches; 
heuristic calculations for points on a given wavefront incorporate information 
from points on the opposing wavefront. This is illustrated in Figure 1. 

The paper [6] by Kaindl and Kainz surveys many approaches to bidirec
tional search, and advocates front-to-end heuristics because of the apparently 
prohibitive computational complexity required for front-to-front calculations. 
In particular, the fastest such heuristic ran in time proportional to wavefront 
size, which would yield a worst-case running time that was at least quadratic. 
In this paper, we present a Manhattan shortest path algorithm that attains 
front-to-front bidirectionality for only a nominal log-power complexity cost over 
front-to-end search. 
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Front-to-front searches consider points Qk on the Front-to-end searches only consider 
other wavefront when computing P's heuristic. T2 when computing a heuristic for P. 

Figure 1: Two varieties of bidirectional heuristics. 

1.3 Front-to-Front Bidirectionality 
The natural front-to-front generalization of A* uses a two-parameter search 
heuristic that we shall call the estimated total length, or ETL for short. For any 
two points P,Q G Q, the ETL function A is defined as follows: 

A(P,Q) = "TiP" +PQ + "QT2", 

where "TXP" and "QT2" are defined along the lines of equation (1). This search 
algorithm, which we shall call FF (Front-to-Front), maintains two wavefronts, 
Wi and W2, and two visited sets, fix and Q2. Initially, Wi = {Ti}, W2 = {T2}, 
and £2i = fi2 = 0 , and at each iteration, a pair of vertices Pi € Wi and P 2 € W2 

with minimal A(Pi, P2) is visited just as in A*. If several pairs tie with minimal 
ETL, then FF visits a pair with minimal P1P2 among those tied. This helps to 
steer the wavefronts toward each other. 

FF's termination condition is quite delicate, as it is possible for the wave-
fronts to intersect before a shortest path is found. Since our algorithm has 
a similar termination condition, we postpone the details until we present our 
algorithm in Figure 2. 

2 Proposed Algorithm 

Since FF finds the minimal A(Pi, P2) at each iteration, it computes an accurate 
but costly heuristic. Our algorithm, which we name FFF (Fast Front-to-Front), 
accelerates FF by relaxing the minimality constraint on A(Pi,P2). To motivate 
our approximation, we embed the wavefronts into M.d+1 and apply computational 
geometry. 
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2.1 Dimensional Augmentat ion 

The first step is to identify our ETL minimization as a dynamic bichromatic 
closest-pair problem. To accomplish this, we enter Md+1 space, embedding our 
points P e W\ U W2 as follows: 

!

P'(x1,x2,...,xd,+a1), i f P e W i , 
P'(x1,x2,...,xd,0), if P is Ti or T2, 
P'(x1,x2,...,xd,-cr2), if P e W 2 , 

where 

ak = min {TkV + VP} , 
VGA 

and A is the set of vertices in Qk that are adjacent to P . 
In this paper, we will use the convention that all primed points are in Md+1, 

all unprimed points are in Rd, and if two points or sets in the same context have 
the same letter, a prime indicates passage between Rd and Md+1. If some point 
pi £ Kd+i is n ot in either embedded wavefront, then its unprimed form P will 
still represent the projection of P' onto its first d coordinates. Finally, we will 
refer to the last coordinate of a point P' G Rd+1 by the shorthand IT (P ' ) . 

2.2 Identification and Approximation 

Since we are working in a Manhattan metric, A(Pi, P2) is equal to the distance 
between P[ and P2 in Rd+1. Therefore, finding a minimal pair is equivalent to 
finding a closest pair between W[ and W2 in Rd + 1 . At each iteration of FF, the 
point sets only change slightly, so each minimization is an instance of a dynamic 
bichromatic closest-pair problem. 

Using the method of Eppstein in [3], one can solve the Rd+1 Manhattan 
dynamic bichromatic closest-pair problem with (9(log + n) amortized time per 
insertion and 0(log + n) amortized time per deletion. In each of our iterations, 
we will need to perform at least one insertion and one deletion, so that method 
would give us an algorithm that ran in 0(n log + 3 n) amortized time. 

We are only looking for a search heuristic, though, so we can content our
selves with almost-closest pairs without compromising the validity of our algo
rithm. This in fact speeds up our algorithm by a factor of log3 n and changes 
the complexity bounds from amortized to worst-case; in low dimensions (d < 3), 
it provides a significant performance boost. To accomplish this, we take a cue 
from the method of successive approximations: starting from a well-chosen seed 
point P^ e Rd+1, not necessarily in W[ or W2, we find a closest point X[ £ W{, 
and then find an X2 G W2 that is closest to X'±. We then use X\ and X2 instead 
of the Pi and P2 of FF. This pair may not have minimal A, but it turns out 
to be close enough (cf. Theorems 4 and 5). Therefore, we only need dynamic 
closest-point search. 
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2.3 Dynamic Closest-Point Search 

This problem can be reduced to that of dynamic range search for minimum (dis
cussed in [7, 8, 10]) by adapting the technique [1] of Gabow, Bentley, and Tarjan 
in [9]. Let S' be a set of points in Md+1, let m and M be the respective minimum 
and maximum (d + l)-st coordinates in S', and let P'(pi,P2,• • -,Pd+i) £ Md+1 

be a query point with Pd+i < m or Pd+i > M. We wish to find the point in S' 
that is closest to P'. The constraint on the last coordinate of P' is introduced 
because FFF does not require the general case and this speeds up the search by 
a factor of log n. In this section, we will only discuss the case when pd+i < m; 
the other case can be treated similarly. 

Let X be the set of all ordered (d + l)-tuples of the form ( ± 1 , . . . , ±1), and 
for any e(e i , . . . , ed+i) G I, let £l'e(P) refer to the following octant in Rd + 1 : 

e» = - 1 , 
€i = + 1 . 

X ' ( x 1 , . . . , a ; d + 1 ) G ^ ( P ) ^ V i e { l , 2 , . . . , r f + l } , | £ < j £ ![ 

Also, define the family of functions fe : Md+1 —• M for all e G J : 

d + l 

fe :X'(x1,...,Xd+1) H-> ^TeiXi, 
i=l 

where the parameter e is defined in the same way as used in Q'e(P). Then when 
X' G «S' n W€(P), its distance from P' is equal to 

d+l d+1 

£ \xi -Pi\=J2€^ -PO = ̂ x>) - un, (2) 

but since pd+i < m, we must have S' n f^(P) = 0 for all e(e i , . . . , td+i) that 
have €d+i = —1. All of our computations on X' G S' fl 0,'e(P) in equation (2) 
must then turn out as 

d+X f d \ 

J2\Xi~Pi\ = l^CiXi ) 
1=1 \ » = 1 / 

+ xd+i - i 2_ tiPi I - Pd+i, 

so if we define the family of functions g£ : Kd + 1 —> K for all e G I : 

5e : A" ' (x i , . . . ,x d + i ) H-> ^ e j X j + z r f+1, 
s.i=l 

then the distance from P' to any X' G 5 ' n fi^(P) is ge(A"') - c/6(P'). 
Now since the only £l'e(P) that contain points in S' are those with e^+i — +1 , 

we can repartition R d + 1 into the 2d distinct 0'e(P), defined as follows: 

^ 1 , . . . , , d + l ) Ge; ( P)^v i G { i , 2 , . . . , r f } , {2<^ : ^ : ; J ; 
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and the point in S' closest to P' can be found by looking for the minimum 
gc{X') - ge{P') in each of the 2d distinct Q'C(P). Within each region, ge(P') 
is constant, and we can compute and store all 2d distinct ge(X') whenever we 
insert a point X' into <S'; thus, since the partition of Ud+1 into |J 0'e(P) ignores 
all (d + l)-st coordinates, we will have reduced our R d + 1 dynamic closest-point 
problem to a Rd dynamic range search for minimum. According to [2, 3], range 
trees can solve this in 0(n logd _ 1 n) space with 0(logdn) query/update time. 

2.4 Implementation 

FFF stores W[ and W'2 in a pair of Dynamic Closest-Point Structures, or 
DCPS's, each of which holds a set of points in R d + 1 and supports the following 
operations: 

1. i n s e r t ( P ' ) . Inserts P' into the DCPS if the structure does not yet con
tain any point Q' with Q = P. If it already has such a point Q', then Q' 
is replaced by P' if |cr(P')| < l°W)l ; otherwise, P' is ignored. 

2. de lete (P') . Deletes P' from the DCPS. 

3. query(P ') . Let m and M be the minimum and maximum (d + l)-st 
coordinates in the DCPS, respectively. Then, for a point P' G R d + 1 with 
°"(P') < "i or o-(P') > M, this function performs a closest-point query; 
it returns a point X' in the DCPS that is rectilinearly closest to P'. If 
several points {X^} yield that minimal distance, then one with minimal 
PXi is returned. 

The special features of our DCPS insertion and query can be added through 
simple modifications of implementation details, and do not affect its overall 
complexity. 

We use a priority queue to select seed points for the successive approxima
tions of Section 2.2. Our priority queue stores elements of the form P'(\,S), 
where P' £ Rd+1 is the data and the ordered pair (A, 5) is its associated priority. 
The A estimates the length of a shortest path through P and the S estimates 
how close P is to W2. We compare priorities by interpreting the (A, S) as sort
ing keys; that is, (Ai,<5i) > (A2,^2) if and only if Ai > A2 or Ai = A2 and 
5\ > 62- When we pop an element off the queue, we retrieve the one with 
minimal priority. 

2.5 Pseudocode 

The algorithm is presented in Figure 2. 

3 Justification 

Throughout this section, k will be an index from the set {1,2}. Also, the asterisk 
will be a shorthand for the predecessor of a point; for instance, P* will denote 
the point in Rd that prompted the insertion (line 43) of P' into its WL 
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algorithm FFF { 

insert T[ and T2 into W ( and W'2, respectively; 

MIN := oo; 

push T{(T{T^,T1T2) onto priority queue; 

while (priority queue, W[, and W2 are all nonempty) { 

pop P'(X,5) off priority queue; 

if (A > MIN) { end algorithm; > 

if ( P 0 W i ) { return to line 5; } 

.PQ := P' with last coordinate set to zero; 

query: X[ := point in W[ that is closest to P^; 

if (P ̂  XO { PriorityQueuelnsert(P'); } 

if (WavefrontsCrossed(Xi, Cl2)) { return to line 5; } 

Visit (X{, 1); 
query: X2 := point in W2 that i s closest to X{; 
if (WavefrontsCrossed(X2, fii)) { return to line 5; } 
Visit (X£, 2); 

} 
Assertion 1: MIN ^ 00 <* S{TiT^) ^ 0 <S> <S(TiS) 9 <S(ST2) C <S(TiTa); 

procedure PriorityQueuelnsert(P') { 
if ( P £ f t 2 ) { 

Assertion 2: PT 2 i s known; 
Y' := P ' with las t coordinate set to —PT2; 

> 
else { query: Y' := point in W2 that i s closest to P ' ; } 
push P'(P'Y',PY) into priori ty queue; 

function WavefrontsCrossed(X, f2) { 
if ( l e f f l { 

Assertion 3: TXX + XT2 i s known; 
if (TiX + XTj < MIN) { S := X; 
return TRUE; 

} 

else { return FALSE; } 

MIN := TiX + XT2 ; } 

procedure Visit CX', k) {. 
Assertion 4: TfcX = \a(X')\; 
move X from Wfc to fij.; 
for (a l l {V 0 Cik : I F G £}) { 

insert V into W'k, where we use TkX + XV for |«r(V')|; 
if (fe = 1) { PriorityQueuelnsert(V'); } 

} 

Figure 2: FFF pseudocode 
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visited points 

wavefront 

Figure 3: Lemma 1 

Lemma 1 At the beginning of some iteration after the first, let X be a point 
not in fife and let V be a path in Q connecting Tk and X. Then there exist two 
points Y,Z GV such that YZeV,Yettk, and Z &Wk. 

Proof: The first iteration moves Tk into fife, so V n fife ^ 0 in every iteration 
thereafter. Let Y be the point in that intersection whose distance from X along 
edges in V is minimal, and let Z 6 V be the point adjacent to Y that is closer 
to X along V than Y was (fig. 3). From the minimality of Y, we know that 
Z ^ Ctk, so when Y was inserted into Ofe (line 41), FFF must have inserted Z 
into Wfc (lines 42-43). Again by the minimality of Y, Z cannot currently be in 
fife, so this Y and this Z satisfy the statement of the lemma. • 

Theorem 1 In every iteration after the first, when FFF visits (lines 13, 16) a 
point X eWk, 

\o{X')\ = TkX* + X*X = min {TkM* + M*M + MX} = TkX, (3) 

and a path in <S(TkX) can be obtained by tracing back through predecessors from 
X. 

Proof: We proceed by induction. 
Base Case. FFF begins with Qk = 0, Wk = {Tk}, and \a(T'k)\ = 0, so 

in the second iteration, X* = Tk = M*, T k X = TkX, and TkM* = 0. Now 
\<r{X') I = T k T k + TkX = T kX and by the triangle inequality TkM* + M*M + 
MX > TkX = TkX; our base case is true. 

Induction Step. By line 43 and the induction hypothesis, |cr(X')| = TkX* + 
X*X, so the left equality is true. To prove the center equality, we use indirect 
proof; suppose, for the sake of contradiction, that 

TkX.*+X*X ^ min {TkM* + M*M + MX] . 

Then there must currently exist some point M' e W'k for which TkM* +M*M + 
MX < \a{X')\, and TkM* + M*M = \a{M')\ by line 43. Let Q' be the query 
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point (the PQ o r t h e -^ i ) that I e d t o X' in line 10 or 14. Since a(Q') and cr(M') 
are not of the same sign, Q'M' = \<r(Q')\ + QM + \a(M')\. Combining all of 
our information: 

Q'M' = \a(Q')\ + QM + \a{M')\ 

< \<j(Q')\ + QM-MX + \a(X')\ 

< \<T(Q')\+QX + \a(X')\ 

= Q'X'. 

Thus X' is not the point in Wk that is closest to Q'\ contradiction. 
Next, we prove the rightmost equality in equation (3). Let V be a path 

in <S(TkX). Since X G Wk and Wfe D Clk = 0, Lemma 1 implies that there 
exists some point K in V n Wfe with adjacent point KQ G V D Slk- Since both 
KQ and K* are in €lk and are adjacent to K, they each must have attempted 
to insert an embedding of K into W'k by lines 42-43. Our DCPS insertion 
operation has the special property that it retains only the best embedding, so 
TkK* + K*K < T k K 0 + K0K. Yet K0 is adjacent to K along V e 5(TkK), 
so T k K 0 + K0K = TkK. Furthermore, T^K G £, so K*K = K*K and thus 
TkK* + K*K > TkK. Hence TkK* + K*K = T k K so 

M€Wk 

and 

min {TkM*+M*M + MX\ < TkK* + K*K + KX 

= TkK + KX 

< T k K + KX 

= l(V) 

= TkX, 

TkX < TkX* + X*X = min {TkM* + M*M + MX} 
Mewk 

by the center equality. Therefore, the rightmost equality is true. 
Only the last claim of our theorem remains to be proven. By equation (3), 

TkX* + X*X = T kX, so since ~3FX G £, we know that <S(TkX*) © 5(X*X) C 
<S(TkX). Now X* G fifc, so it must have been visited at some earlier time. 
From the induction hypothesis, a path in <S(TkX*) can be obtained by following 
predecessors back from X*; if we append the edge X*X to this path, then we 
will have a path in <S(TkX), so we are done. • 

Corollary 1 At the start of every iteration, for every O G Ofe, a path in <S(TkO) 
can be obtained by tracing back through predecessors from O. 

Proof: This follows immediately from Theorem 1. • 

Corollary 2 Assertions 2, 3, and 4 are true. 
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Proof: These follow from Theorem 1 and Corollary 1. • 

Corollary 3 Let W'k be one of the embedded wavefronts at the beginning of 
some iteration, and let P' be a point that is not on the same side of the a = 0 
hyperplane. That is, if k = I, o-(P') should be nonpositive, and ifk = 2, cr(P') 
should be nonnegative. Furthermore, suppose that P ^ ilk and let Q' be the 
point in W'k that is closest to P'. Then QQ* + Q*Tk = |<r(Q')| = QT k and 
PTk >PQ + QTk. 

Proof: The first claim follows from the induction step of Theorem 1, since 
that proof only used the fact that X resulted from a query by a point that 
was not on the same side of the a = 0 hyperplane. To prove the second claim, 
observe that if we replace X with P in the proof of the rightmost equality in 
Theorem 1, we find a point K' G Wj, for which TkK* + K*K + KP < T k P. 
Yet \a{K')\ = TkK* + K*K by line 43, and \a(Q')\ = QT k by the first claim, 
so since Q' G W'k is closer to P' than K' G Wk, 

Q'P' < K'P', 

\a(Q')\+QP+\a(P')\ < \<j(K')\+KP+\<r(P% 

\a(Q')\+QP < \a(K')\+KP, 

QTk + QP < TkK* + K*K + KP < T k P 

as desired. • 

Lemma 2 Let X' be a point in W{ at the start of some iteration after the first. 
If TiX* + X*X + XT2 < MIN, then the priority queue contains an element 
X'{\, 5) with A < TiX* + X*X + XT 2 . 

Proof: We first show that when a point X is visited and a neighbor V is 
inserted into W[, the priority queue element T '̂(A, 8) that FFF inserts (line 44) 
has A < T i X + XV + VT2 . 

In the call to priori tyQueuelj isert , if line 24 is used, then by Corollary 
2, A = \a(V')\ + VT2 = TiX + XV + VT 2 . If line 26 is used, we can apply 
Corollary 3 to see that VT2 > VY + YT 2 = VY + \a(Y')\, so 

T1X + X F + VT2 > T-JL + XV+ VY+\a(Y')\ 

= \o-(V')\+VY + \a(Y')\ 

= V'Y' = A. 

Thus the lemma's condition holds at the moment of insertion, and we are 
left to deal with the case where an element P'(A, 5) is popped off the priority 
queue but P' is not removed from W[. 

Note that we may pop off an element that is not in W[ • This happens when 
a point V is inserted into Wi more than once, with different V embeddings. In 
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such cases, our DCPS only retains the one with lesser |<7(V')|, although both 
remain in the priority queue. We wish to ignore all other V since they represent 
longer paths from Tk to V; such is the purpose of line 8. 

If our iteration passes line 8 but P is not visited, then we may need to reinsert 
P' into the priority queue to satisfy the lemma. If P ^ Xlf this job is success
fully accomplished by line 11, since the above analysis of pr ior i tyQueuelnser t 
applies here. The only case left to consider is when the iteration terminates via 
line 12 with P = Xx G fi2. Now, TiXJ + XfXi + XiT 2 = T i X i + X^2 by 
Corollary 3 since X{ resulted from a DCPS query by P£. Yet line 33 makes this 
at least MIN and the lemma makes no claim when T1Xt+X*X1+X1T2 > MIN, 
so we are done. • 

Lemma 3 After each iteration except the last, Oi has grown or the number of 
elements in the priority queue with A < MIN has decreased by at least one. 

Proof: If an iteration makes it to line 13, it inserts a point into f̂ , and if the 
iteration does not satisfy line 11, then the size of the priority queue decreases 
by one. Therefore, the only nontrivial case is when the iteration satisfies line 
11 but fails to reach line 13; this is when P = X\ G 0,2- The iteration will pass 
lines 22 and 33, setting A = T i X i + X i T 2 > MIN, but by line 7, A was originally 
less than MIN, so the lemma is true. • 

Lemma 4 FFF terminates; it eventually reaches assertion 1. 

Proof: We have a finite graph, so Lemma 3 implies that each iteration that 
does not decrease the number of elements with A < MIN must grow Q.\ and 
insert finitely many elements into the priority queue. The set Q,\ cannot grow 
indefinitely, however, because | V| < oo; hence only a finite number of insertions 
occur. Once the priority queue runs out of elements with A < MIN, FFF will 
terminate via line 7. Therefore, we cannot loop forever. • 

Theorem 2 FFF finds a shortest path when one exists; assertion 1 is true. 

Proof: By Lemma 4, FFF terminates, so it suffices to show that assertion 1 is 
true. We begin with the first equivalence. The reverse implication is trivial, so 
we move on to prove the forward direction. Suppose for the sake of contradiction 
that <S(TiT2) 7̂  0 but FFF terminates with MIN = oo. Let P b e a path in 
•S(TiTa); lines 12 and 15 ensure that Q.\ H Cl2 = 0 , so since T\ G Oi and 
T2 G ̂ 2, Lemma 1 applies to V. Thus both wavefronts must be nonempty. By 
Lemma 2, the priority queue contains an element with finite A, so FFF could not 
have terminated via line 5. Yet MIN = oo, so FFF could not have terminated 
via line 7 and we have a contradiction. 

Next we prove the second equivalence. Note that S is undefined until a path 
is found, so if <S(TiS) © <S(ST2) C 5(TiT 2 ) , then a shortest path exists. It 
remains to prove the forward implication. If S(TiT 2) ^ 0 , then from the first 
equivalence, MIN must be eventually be set to some finite value, at which point 
S is defined. We must show that S(TiS) © <S(ST2) C 5(TiT 2 ) . Once we reach 
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this stage, we will indeed know a shortest path in <S(TiT2) because Corollaries 
1 and 3 apply to S. 

We proceed by contradiction; suppose that FFF does not find a minimal 
path, terminating with MIN > T iT 2 . Consider the situation at the beginning 
of the last iteration. Let P b e a path in 5(TXT2); by Lemma 1, we can find 
X1 € Wi n V and Y1 € Qx n V with X^ e V. This is illustrated in Figure 4. 

The portion of this shortest path that is within the 
wavefront is derived from predecessor information. 

visited points 

wavefront 

Figure 4: Theorem 2: the dashed curves represent two different shortest paths 
between T\ and T-z, and V is the curve with longer dashes. Wavefront W2 is not 
shown. 

Since Fi e f2i and YxX\ e P e «S(TiT2), the portion of V between Ti and 
Xi is a shortest path, and hence the embedding X[ with |cr(X{)| = T1X1 is in 
W[. Then TiX£ + XfXi + XXT2 = T1X1 + XiT 2 = TXT2 and by Lemma 2, 
there must be an element in the priority queue with A < T i T 2 < MIN. We have 
a priority queue that looks for minimal A, so the loop could not have terminated 
via line 7. Furthermore, the wavefronts are nonempty by the reasoning in the 
proof of the first equivalence; thus the loop could not have terminated via line 
5. Hence we have a contradiction, and FFF is indeed valid. • 

4 Performance 

Lemma 5 The main loop runs at most (2d + l)n + 1 times, where d is the 
dimension of the search space and n is the number of visited vertices. 

Proof: By definition of Q, the degree of each vertex is at most 2d, because each 
vertex only has 2d axis-parallel directions of approach and no two edges overlap 
in more than one point. We can apply this fact to the argument used in the 
proof of Lemma 4 to classify iterations into three types: either an iteration adds 
a point to Hi and inserts up to 2d priority queue elements with A < MIN, or it 
reduces the number of such priority queue elements by at least one, or it is the 
last iteration. 
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Since n = |fii| + |fi2|> &i c a n grow no more than n times, so we can have no 
more than n iterations of the first type. The number of priority queue insertions 
with A < MIN must then be bounded by 2dn, so we can have no more than 2dn 
iterations of the second type. We can only have one iteration of the third type, 
and thus the number of iterations is bounded by (2d + l)n + 1. • 

Theorem 3 FFF's worst-case space and time complexities are 0(nlog ~~ n) 
and 0(n log n), respectively, where n is the number of vertices visited. 

Proof: Using the method in Section 2.3, our DCPS can achieve 0(n log ~~ n) 
space and 0(log n) time for updates and queries, where n is the number of 
points in the structure. In our algorithm, the DCPS's determine the space 
complexity, so FFF takes 0(nlog _ 1 n ) storage. As for speed, the dominant 
operations in the main loop are the DCPS update/query, both of which take 
O(\ogd n). Lemma 5 bounds the number of iterations by (2d + l)n + 1, so the 
overall time complexity is 0(nlog n). • 

Theorem 4 Suppose that in some graph, <S(TiT2) = 0 and the A* search 
described in Section 1.2 visits N vertices. Then FFF will visit at most 2N 
vertices. 

Proof: A* terminates after it visits all N vertices that are connected to T\ 
through paths in Q. Similarly, FFF will have exhausted W\ by the time it 
has visited all of these vertices, so it will have terminated via line 5. In each 
iteration, X\ is visited before X2, so the the number of vertices visited by FFF 
must be no more than 2N. • 

Theorem 5 Suppose that in some graph, <S(TiT2) ^ 0 . Let MQ be the set of 
all vertices X G Q for which T i X + XT2 < T i T 2 , and let M be the set of all 
vertices X G Q for which T iX + XT2 < T1T2. Then A* will visit between |A/o| 
and |A/"i| vertices, while FFF will visit no more than 2|A/i| vertices. 

Proof: The set A/"o consists of vertices with A* priority less than TiT2 , so since 
the priority of T2 is T iT 2 , the priority-first search must visit all vertices in A/o-
There is no estimate, however, of how many vertices with priority TxT2 are 
visited by A*; the method could visit as few as one or as many as all, depending 
on the search space. 

We now prove the second claim. By the reasoning in the proof of the previous 
theorem, it suffices to show that ^ i C A/i. Suppose that X\ G fii; by lines 10 
and 9, X\ resulted from a query by some point PQ, which was derived from 
some P'. When P' was inserted into W[, it had a priority A = P'Y' = \a(P')\ + 
PY + \o(Y')\ > T i P + PY+ \o(Y')\ for some Y. If Y came from line 24, then 
T i P + PY + \o-(Y')\ = T i P + 0 + PT 2 > T i P + PT2. If Y came from line 26, 
Corollary 3 implies: 

T i P + PY + \o-(Y') I = T i P + PY + YT 2 

> T i P + PY + YT2 

> T i P + PT2. 
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Therefore, in both cases we get A > T i P + PT2. 
Corollary 3 applied to line 10 tells us that T x Xi + X i P < T i P , so 

T1X1+X1T2 < T i X i + X i P + PT2 

< T i P + PT2 < A. 

By the argument in the last paragraph of the proof of Theorem 2, until MIN 
is set to T1T2, there always exists a priority queue element with A < TiT2- At 
the beginning of every iteration thereafter (except for the last), line 7 ensures 
that such a priority queue element exists. Since we popped off P' and will visit 
Xi, A < T1T2 => T1X1 + X L T 2 < T1T2. Hence X\ € M , as desired, and we 
are done. • 

5 Future Work 

The theoretical bounds of the previous section are all upper limits; however, 
the purpose of front-to-front bidirectionality was to provide a more accurate 
heuristic that would reduce n, the number of visited nodes. Since the complexity 
is 0(n logd n), a significant reduction in n would justify the additional log-power 
complexity factor. 

This amounts to classifying the spaces on which front-to-front searches out
perform other search algorithms. Unfortunately, that is beyond the scope of this 
paper; instead, we just provide a simple thought-experiment that illustrates the 
existence of such spaces. 

Figures 5 and 6 are ideal spaces for front-to-front algorithms because the 
terminals are only accessible through indirect channels that would confuse other 
heuristics. In fact, they yield relative reductions in n that follow 0{y/n). In 
light of these simple examples, we can identify one class of spaces for which our 
front-to-front search is favorable: if source and destination terminals are located 
in intricate, separated networks that are linked by a large, simple network, then 
the d-th root reduction in n can be attained. 

In this paper, we have established the feasibility of subquadratic front-to-
front bidirectional heuristic search. We close by posing a few questions that 
are opened by this result. Our algorithm is specific to lattice graphs; do there 
exist analogous tricks that produce subquadratic front-to-front searches in other 
situations? What types of graphs favor front-to-front heuristics? Do these types 
of graphs arise in "real-world" situations? 
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Search Space Vertices visited by FFF Vertices visited by A* 

1 (any subgraph) 

fi n 

T2 Ty Ji r, 

Figure 5: The subgraph can be arbitrarily complex, but FFF will always visit 8 
vertices while A* must visit all subgraph vertices with priority less than TiT 2 . 
Those vertices include all points that can be reached from the top-left vertex 
by moving down and to the right along edges in the graph. 

Search Space Vertices visited by FFF Vertices visited by A* 
•r2 rt . »r2 t-t— . *T2 

Figure 6: This is another family of search spaces in which FFF always visits a 
fixed number of vertices while A* can visit arbitrarily many. 
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This Special Issue brings together selected papers from the Ninth Annual Sym
posium on Graph Drawing, held in Vienna, Austria, on September 23-26, 2001. 
We have invited the strongest papers in the ranking generated by the GD pro
gram committee and we are glad that the following five papers could be included 
into this special issue after a strong refereeing process. 

All papers in the issue deal with planar graphs and trees, respectively, and 
their crossing free representation. Planar graph drawing is getting increasing 
attention with the availability of software libraries such as AGD, PIGALE, and 
GDToolkit that have implemented the planarization approach and a variety of 
planar graph drawing algorithms. 

Classical algorithms for angular resolution are all based on unit vertex and 
unit bend separation in the Cartesian coordinate representation. The paper by 
C. A. Duncan and S. G. Kobourov suggests to use a polar coordinate represen
tation for drawing planar graphs, thus allowing independent control over the 
vertex resolution, bend-point resolution, and edge separation. The authors also 
provide a family of algorithms demonstrating the strength of the polar coordi
nate representation in comparison to the standard (Cartesian) representation. 

Bend minimization is an important topic in planar graph drawing and even 
more in planar orthogonal graph drawing. So far there is no characterization for 
those planar graphs with maximum degree four that can be drawn orthogonally 
without any bends at all. The paper by Md. S. Rahman, T. Nishizeki, and 
M. Naznin provides a necessary and sufficient condition for a plane graph, i.e., 
a planar graph with given planar embedding, of degree at most three to have 
an orthogonal drawing without bends. The authors also provide a linear time 
algorithm for constructing such a drawing if it exists. 

Drawings without bend points in an alternative setting are considered in the 
paper by S. Felsner, G. Liotta, and S. Wismath. They investigate the question 
which graphs can be drawn straight-line and crossing free on a strip, i.e., a grid 
of size n x k. They give a characterization for trees satisfying this condition and 
prove lower bounds for the height k for arbitrary planar graphs. Moreover, they 
show that every outerplanar graph can be drawn crossing-free with straight lines 
in linear volume on a 3-dimensional restricted grid called prism. This is not true 
for general planar graphs, not even if the prism is extended to a so-called box, 
i.e., an integer grid of size n x 2 x 2. 

The paper by R. Babilon, J. Matousek, J. Maxova, and P. Valtr deals with 
the problem of low-distortion embeddings of trees. They show that every tree 
on n vertices with edges of unit length can be embedded in the plane with 
distortion 0 ( v / n ) , i.e., the distance between each pair u, v € V of vertices in the 
embedding correlates with the length of the path from u to v in the tree distorted 
by a factor up to 0(y/n). This embedding can be found by a simple formula. 
This result is best possible in the sense that it is asymptotically optimal in the 
worst case. 

Finally, the paper by H. de Fraysseix and P. Ossona de Mendez investigates 
minimal non-planar structures of non-planar graphs in a depth-first-search set
ting. Kuratowski characterized the minimal forbidden substructures in a planar 
graph, namely the subdivisions of K5 and ^3,3. In quite some applications in 
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graph drawing it is essential to find either one or many of these Kuratowski sub
divisions. The authors provide a characterization of so-called DFS cotree-critical 
graphs and give a simple algorithm for finding one ore more Kuratowski sub
divisions which is useful for the planarity testing and planarization algorithms 
based on depth-first-search. 

We would like to thank the JGAA editors for inviting us to compile this 
special issue, the referees for their invaluable help, and all authors for the con
siderable extra effort they put into making their GD 2001 contributions into the 
journal articles contained in this issue. 
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A b s t r a c t 

We present a novel way to draw planar graphs with good angular 
resolution. We introduce the polar coordinate representation and describe 
a family of algorithms for constructing it. The main advantage of the polar 
representation is that it allows independent control over grid size and 
bend positions. We first describe a standard (Cartesian) representation 
algorithm, CRA, which we then modify to obtain a polar representation 
algorithm, PRA. In both algorithms we are concerned with the following 
drawing criteria: angular resolution, bends per edge, vertex resolution, 
bend-point resolution, edge separation, and drawing area. 

The CRA algorithm achieves 1 bend per edge, unit vertex and bend 
resolution, %/2/2 edge separation, 5 n x y drawing area and 2<3 . angu
lar resolution, where d(v) is the degree of vertex v. The PRA algorithm 
has an improved angular resolution of 4 Z . , 1 bend per edge, and unit 
vertex resolution. For the PRA algorithm, the bend-point resolution and 
edge separation are parameters that can be modified to achieve different 
types of drawings and drawing areas. In particular, for the same param
eters as the CRA algorithm (unit bend-point resolution and \ /2/2 edge 
separation), the PRA algorithm creates a drawing of size 9n x ^p. 
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1 Introduction 

In the area of planar graph drawing there has been considerable interest in 
algorithms that produce readable drawings [3]. Among the many properties 
which contribute to the readability of planar graphs, edge smoothness, vertex 
resolution, bend-point resolution, angular resolution, and edge separation are of 
great importance. Edges are often drawn as straight-line segments connecting 
two vertices. An edge can also be drawn as a sequence of straight-line segments, 
in which case the smallest number of bends is desirable. An edge may also 
be drawn as a smooth curve. These three types of edges generally provide 
aesthetically pleasing drawings. 

1.1 Definitions 

A graph drawing has good vertex resolution if vertices cannot get arbitrarily 
close to one another, that is, if vertices are well distributed in the drawing. As 
a result, a great deal of research has been concentrated on graph drawing al
gorithms which place vertices on the integer grid such that the drawing area is 
proportional to the number of vertices n of the graph, typically 0(n) x 0(n). If 
there are bends in the edges, then the bend-points are also placed on the integer 
grid. The bend-point resolution of a graph refers to the minimum distance be
tween two bends. The edge separation of a graph refers to the minimum distance 
between two edges that are sufficiently away from their endpoints (since incident 
edges can get arbitrarily close to each other near their common endpoint). 

A graph drawing has good angular resolution if adjacent edges cannot form 
arbitrarily small angles. This is achieved by ensuring that the edges emanating 
from a given vertex "fan out" evenly around the vertex. Note, however, that 
good angular resolution cannot always be achieved while simultaneously guar
anteeing straight-line edges and small sub-exponential drawing area [10]. By 
introducing bends in the edges, however, we can guarantee both good resolu
tion and small drawing area. 

1.2 Previous Work 

Garg and Tamassia [6] consider the problem of drawing with good angular 
resolution, and Kant [9] shows how to create drawings with angular resolution 
of Q(l/d(v)) in an 0(n) x 0(n) area grid, using edges with at most three 
bends each. Gutwenger and Mutzel [8] describe an improved algorithm with 
better constant factors which produces very aesthetically pleasing drawings in 
a (2n — 5) x (3n/2 — 7/2) grid with at least 2/d(v) angular resolution using at 
most three bends per edge. The algorithm of Goodrich and Wagner [7] requires 
one less bend per edge and guarantees angular resolution of Q(l/d(v)) for each 
vertex v, but at the expense of larger area, (20n — 48) x (lOn — 24). Cheng, 
Duncan, Goodrich, and Kobourov [1] improve the above algorithm so that every 
edge has at most one bend while the angular resolution is Q(l/d(v)) for each 
vertex v and maximum area is 30n x 15n. 
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1.3 Our Results 

We first present a new Cartesian representation algorithm (CRA) which im
proves the bounds of previous algorithms. In particular, CRA guarantees 1 
bend per edge, unit vertex resolution, unit bend-point resolution, %/2/2 edge 
separation, 5 n x y drawing area, and ^-^ angular resolution, where d(v) is 
the degree of vertex v. 

We then present a novel polar representation algorithm (PRA). The PRA 
algorithm also guarantees ^ ^ y angular resolution, 1 bend per edge, and unit 
vertex resolution. The bend-point resolution and edge separation are parameters 
that can be modified to achieve different types of drawings and drawing areas. 
In particular, for the same parameters as the CRA algorithm (unit bend-point 
resolution and \/2/2 edge separation), the PRA algorithm creates a drawing of 
size 9n x ^ . Note that in some situations the vertex resolution is more important 
than the bend-point resolution or the edge separation. In such situations, all 
of the previous algorithms perform poorly since they are designed to maintain 
constant resolution particularly between vertices and bend-points. Using the 
PRA algorithm, we can relax the bend-point resolution constraints and get 
significant improvements. 

The PRA algorithm relies on a novel approach for representing bends and 
vertices. Traditionally, vertices and bend-points are restricted to lie on integer 
grid coordinates. One reason for this is that the points are defined by a pair 
of integers. In this way, all operations on the points (for example, shifting) are 
performed with integer arithmetic. At the drawing stage, the integer coordinates 
are mapped to pixels on the screen. 

Another reason for placing vertices and bend-points on integer grid coordi
nates is that this approach guarantees good vertex resolution, good bend-point 
resolution, and good edge separation [1, 7, 8, 9]. Rather than insisting that 
bend-points lie on integer grid coordinates, we propose an alternative approach 
which allows bend-points to be located on a grid represented by polar coordi
nates. We call this a polar representation approach because both the vertices 
and the bend-points are represented using polar coordinates. 

At the exact moment of drawing the graph onto the screen, an algorithm 
using polar representation requires a rounding calculation to determine the exact 
pixel location for the bend-points. Note, however, that the traditional approach 
also uses a rounding calculation for scaling from the integer grid space to the 
pixel space. 

The main advantage of using a polar representation is that it allows us to 
independently control grid size and bend positions. Polar coordinates allow us to 
specify different vertex resolution, bend-point resolution, and edge separation. 
We achieve this added flexibility at the expense of slightly increased storage 
for the graph representation. A Cartesian representation requires exactly two 
integers for each point while the polar representation requires up to five integers 
per point. 

Both of our algorithms assume that the graph is a fully triangulated, undi
rected, planar graph. If the graph were not fully triangulated, one can still 
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solve the problem by fully triangulating the graph, embedding this new graph, 
and then removing the inserted edges. Approached properly, this scheme in
curs at most a constant factor decrease in angular resolution as the modified 
degree of a vertex can triple in size, e.g. fully-triangulating a path. As a result, 
for the remainder of this paper when we say "graph" we mean a fully triangu
lated, undirected, planar graph. We leave it as an open exercise to modify the 
algorithm to work more effectively for general undirected planar graphs. 

In Section 2 and Section 3 we present the Cartesian Representation Algo
rithm (CRA) and argue its correctness. CRA is an improved version of the 
algorithm from Cheng et al [1] for drawing with good angular resolution. In 
Section 4 we introduce the concept of embedding graphs using a polar coordi
nate system and then present the Polar Representation Algorithm (PRA) which 
is a modification of the CRA. 

2 The CRA Algorithm 

The Cartesian Representation Algorithm is a natural extension of some previous 
algorithms that guarantee good angular resolution [9, 8, 7, 1]. In our algorithm 
the vertices of the graph are inserted sequentially by their canonical ordering, 
generating subgraphs G\, G2, • • •, Gn. The canonical ordering [5] for a planar 
graph G orders the vertices of G so that they can be inserted one at a time 
without creating any crossings. We define Gk at step i to be the graph induced 
by vertices 1,2, . . . ,k. From our ordering, we shall see that G\, G2, and G3 
are basic graphs, a vertex, a line, and a triangle respectively. Graph Gk+i is 
created from Gk by inserting the next vertex Vk+i in the canonical order. Before 
we show the details of our algorithm we need several definitions. Following the 
notation of [5], let w\ = v\, w-2, • • •, wm = V2 be the vertices of the exterior face 
Cfc of graph Gk in order. For a particular subgraph Gk with k > 2 and vertex 
Vk+i, we refer to wi and wr as the leftmost and rightmost neighbors of Vk+i on 
Cfc, see Fig. 1. We also say that Vk+i dominates Wj for I < i < r. That is these 
vertices on Ck are no longer on Ck+i-

When referring to vertices and points, we often need to use the (current) 
coordinates of the vertices and points on the grid. Let v(x) and v(y) represent 
the x and y coordinates of some vertex v. 

2.1 Vertex Regions 

In the immediate vicinity of every vertex there are two types of regions: free 
regions and port regions. The free and port regions alternate around the vertex, 
see Fig. 2(a). For each free region there is at most one edge passing through it 
to v. Each port region is bounded by a line segment with a number of ports and 
every edge inside the port region passes through a unique port. The number of 
ports in a port region is as small as possible. We define the six regions around v 
based on rays extending at certain angles or slopes from v. For convenience, we 
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Figure 1: Graph Gk+i after inserting Vk+i- The shaded part is Gk- Vertices 
wi and wr are the leftmost and rightmost neighbors of v^+i- The horizontal 
line segment below Vk+i is the middle port region through which all the edges 
(i>fc+i, vii), I < i <r, are routed. 

assume that 0° is pointing in the vertical direction. As illustrated in Figure 2(a), 
the six regions around v are denned as follows: 

• Free region M?: between —45° and 45° 

• Free region R*: between 90° and 135° 

• Free region L*: between —135° and —90° 

• Port region Mp: between L? and Rf 

• Port region IP: between 1 / and M? 

• Port region Rp: between Rf and M? 

The algorithm draws each edge in E, except the initial edge {v\,V2), by 
"routing" it through a port of one of the two vertices in a fashion similar to 
Cheng et al [1]. Each edge consists of two connected edge segments. One edge 
segment, the port edge segment, connects a vertex with one of its ports. The 
other segment, the free edge segment, connects a vertex to one of its neighbor's 
ports. For example, for an edge e — (u, v), if we route e through the leftmost port 
in u's middle port region Mp, we would draw two line segments, see Fig. 2(b): 
the port edge segment would pass from u to the port, and the free edge segment 
would pass from the port to v. This method of construction guarantees that 
the free edge segments always pass through free regions and that each port 
transmits at most one port edge segment. 

We perform our construction in incremental stages, where each stage corre
sponds to the insertion of a new vertex. Observe that at each stage, for every 
vertex v except those on the external face, w\ = V\,W2, • • • ,wm = v-i, there 
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(a) • " (b) 

Figure 2: Vertex regions and edge routing: the number of ports along each port 
region is determined by the number of edges that need to be routed through 
that port region, (a) The area around a vertex v is divided into 6 regions. The 
free regions are shaded and at most one free edge segment goes through each one 
of them. All the port segments use ports in the port regions of v. (b) Routing 
an edge e = (u, v), where the port edge segment connects it to one of its ports 
and the free edge segment connects the port to v, going through one of u's free 
regions. 

are exactly three free edge segments. The remaining edges are connected to v 
via port segments. These remaining edges can be grouped into three classes 
based on which port region they are routed through, Lp, BP, or Mv. Count the 
number of edges in each of these groups and let di(v) be the number of port 
edge segments using port region Lp. Similarly, define dr(v) and dm(v) to be the 
number of port segments using port regions Rp and Mp. Observe that in the 
final stage, there are exactly three vertices on the exterior face, vi,V2,vn, and 
then ^2v€y(di(v) + dr(v) + dm{v)) = \E\ — 1. That is, for every edge, there is 
a corresponding port and free edge segment, except for the edge (ui,i>2)- This 
initial edge is only a single free (horizontal) edge segment. We could also, of 
course, remove the port edge segments for the final external face as well and 
thus the summation would be \E\ — 3. 

For a vertex v we define the maximal right port R^^ as follows. Let v have 
coordinates (vx, vy). Then the R^^ of v has coordinates (vx + dr(v) + 1, vy + 
dr{v)) if dr(v) > 0 and (vx, vy) otherwise. We define the maximal left port L^^ 
of v in a similar fashion, see Fig. 2(a). 

2.2 Invariants of t h e C R A Algor i thm 

By design, our algorithm is incremental with n stages, where each stage cor
responds to the insertion of the next vertex in the canonical order. Thus it is 
natural to define several key invariants to be maintained at every stage. The 
four invariants below are similar in flavor to those of Cheng et al [1] except that 
here we do not need to maintain any joint boxes. 
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1. All vertices and ports have integer coordinates. 

2. Let W\ — v-y, u>2, • • •, wm — V2 be the vertices of the exterior face Ck of Gk 

in order. Then w\{x) < w^x) < ... < wm(x). 

3. The free edge segment of edge e = (wi,Wi+i), 0 < i < m, has slope ±1 
and e's port edge segment goes through a maximal port. 

4. For every vertex v there is at most one (free) edge segment crossing each 
of its free regions. All other edge segments are port edge segments. 

2.3 Vertex Shifting 

In the algorithms that maintain good angular resolution with the aid of vertex 
joint boxes [1, 7], every time a new vertex is inserted, already placed vertices 
need to be shifted a great deal so that the joint box can fit amongst them. 
The amount of shifting required is typically of the order of the degree of the 
vertex. Invariably this leads to large constants behind the 0(n) x 0(n) area, 
e.g. (20n-48) x (10n-24) in [7] and 30n x 15n in [1]. In our algorithm we never 
need to shift any vertex by more than five grid units allowing us to draw G in a 
5nx y grid. When a new vertex v is inserted, we must create enough space so 
that the leftmost wi and rightmost wr neighbors of v can "see" v through their 
respective maximal port regions. Note that the previous -Rg^ port of wi and 
I^ax of wr were used at an earlier stage. Thus, we must create an additional 
port along the BP region of wi. Similarly, additional space is necessary along 
the V region of wr. 

In order to create more space we need to move wi and wr. We also have to 
ensure that the four invariants and the planarity of the graph are maintained. 
This is achieved by shifting the "shifting set" of the vertex as well as the vertex 
itself. Using the definition of de Fraysseix et al [5], define the shifting setMk{wi) 
for a vertex Wi on the external face of Gk to be a subset of the vertices of G 
such that: 

1. Wj GMk(Wi) iff j > i 

2. Mfe(wi) D Mk(w2) D •.. Z> Mk{wm) 

3. Let 8i, 52, • • •, 8m > 0; if we sequentially translate all vertices in Mfe(u),) 
by distance 5i to the right (i = 1,2,.. . , m), then the embedding of Gk 

remains planar. 

These shifting sets can be defined recursively. Let wi and wr be the leftmost 
and rightmost neighbors of v on Ck- Then construct Mk+\{wi) recursively as 
follows: 

Mk+i(wi) = Mk{wi) U vk+i, for i < I, 

Mk+i(vk+i) = Mk(wi+i) U vk+i, 

Mk+1(wj) = Mk(wj), for j > r. 
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For convenience, define a right-shift of m units for a vertex Wi as shifting 
Mk(wi) by m units to the right so that all ports for every vertex in Mk{wi) 
also shift except the ports in the IP region of w^. Define a left-shift ofm units 
for vertex Wi as shifting Mk(wi+i) by m units to the right so that all ports for 
every vertex in Mk(wi+i) also shift including the ports in the RP region of IOJ. 

2.4 CRA Overview 

The CRA algorithm constructs the graph one vertex at a time, by creating 
the graphs Gi, G2, • • •, Gn. Constructing Gi, 1 < i < 3 is straightforward (see 
Figure 4(a)), so assume that Gk, for fc > 3, has been constructed with exterior 
face Cfc = (^1 = wi, W2, • • •, wm = i^)- Suppose we have embedded Gk with 
exterior face Cfc. To construct Gk+i, let Vk+i be the next vertex in the canonical 
ordering and recall that wi and wr are, respectively, the leftmost and rightmost 
neighbors of Vk+i on the exterior face Cfc. 

Recall that dr(wi) is the current number of port edge segments using RP of 
wi, and that di(wr) is the current number of port edge segments using IP of 
wr. There are two cases to consider: 

• case (a) dr(wi) — 0, see Fig. 3(a). 

• case (b) dr{w{) > 0, see Fig. 3(b). 

In case (a) perform a left-shift of 2 units on u>i in order to free space for a 
port in the RP region of wi. In case (b) perform a left-shift of 1 unit on wi. 
Similarly, if di(wr) = 0 then perform a right-shift of 2 units on wr. Otherwise 
perform a right-shift of 1 unit on wr. 

Insert Vk+\ at the intersection of lines I and r, where I is the line with slope 
+1 through wis maximal right port and r is the line with slope —1 through uv's 
maximal left port, see Fig. 1. In the case where lines I and r do not intersect 
in a grid point it suffices to shift all the elements in Mk(wr) one additional unit 
to the right. 

The edges from v^+i to wi and wr are routed through w^s maximal right 
port and uv's maximal left port, respectively. The remaining edges go from 
Vk+i to vertices Wi, I < i < r. 

Before placing the Mp region of Vk+i it is necessary to ensure that there are 
enough ports on it that can be used to connect Vk+\ to wi+\, wi+2, • •., uv_i. 
The Mp region is a horizontal line segment with 1,3, . . . , 2m — 1 ports when 
the line segment is respectively 1,2,..., m grid units below ujt+i. To allocate 
enough space then we simply locate the horizontal line segment \(r — l)/2\ units 
below Vk+i-

As shown in the next section the Mp region can be placed correctly, that 
is, placed so that it does not lie below any of the vertices Wi, I < i < r. We 
now need to route the edges from Vk+i to Wi. In the case where r — I is an even 
amount there are exactly enough ports for each of the vertices, so the routing 
is simple, the first (leftmost) port goes to wi+i and the last (rightmost) port 
to iu r_i. If it is odd, there is one extra port. Ideally, we would simply skip 
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_ j - 1 ~ j - j - - j - 1 ! 

(a) (b) 

Figure 3: Adding the current vertex Vk+i- Here w\ is the leftmost neighbor of 
Ufc+i on the exterior face of Gk- (a) If dr(w{) = 0, then we need to shift wi two 
grid units to the left, (b) If dr(wi) > 0, then it suffices to shift wi only one unit 
to the left. Note that the shifting set M).(wi) also shifts with wi. 

the rightmost (or leftmost) port. However, it is possible that this would force 
the last edge (among others) to have the free edge segment be outside the valid 
region. Therefore, we proceed as follows, assign leftmost port to toj+i, then 
wi+2, and so on until either all are assigned or one vertex, wa, has a free edge 
segment that is outside of the free region. We then assign ports from rightmost 
port to wr_i, then tor_2, until wa is assigned. Note this is identical to simply 
skipping one port and continuing left. In the next section, we shall show that 
this correctly routes the edges. That is, all edges go through ports and the free 
edge segments lie in free regions. 

It is important to point out that in the interest of saving space, being as 
compact as possible, we allow free edge segments to initially have length zero. 
That is a vertex u>i can actually lie on a port of another vertex v. This is not 
a problem so long as the port is used only to route an edge between v and Wi. 
During shifting, the vertex and the port are treated separately. That is, they 
are not necessarily confined to be in the same location. See Figure 4. 

3 Correctness of the Algorithm 

The algorithm works correctly if all four invariants are maintained. We show 
that free edge segments always remain in free edge regions and that there is 
at most one free edge segment per free region. We then need to bound the 
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Figure 4: After initial settings of v\, v2, and V3, inserting V4 to share edges with 
V2 and V3. (a) Initial configuration. Notice that V3 lies on both R^^ of v\ and 
Z^ax of V2- (b) Shifting vertex v2 one unit to the right. The shaded region 
indicates the LP region of v2- Notice that t^'s port did not move but a new port 
was inserted above it, the new L^^ of v2. (c) Shifting vertex ^3 two units to 
the left. The shaded region indicates the RP region of W3. Notice that «2's port 
did not move and so now ^3 does not overlap that port though it still overlaps 
ui's port. The new vertex U4 is placed at the intersection of the diagonals from 
v^s .Rgjax port and v2

,s i^ax port. In this case, they are the same point and 
once again U4 overlaps both maximal ports. 

drawing area required by the algorithm and show that good angular resolution 
is maintained. Finally, we have to bound the number of bends created and 
analyze the running time. 

Lemma 1 If a free edge segment lies in a free region in Gk, then it remains in 
the free region in Gk+i • 

Proof: The initial edge (v\,v2) is treated as a special edge. It is a free edge 
segment that is not connected to any ports. As the vertices shift this edge 
remains horizontal and thus remains inside its free regions. It can also be seen 
that the lemma holds from G2 to G3. 

For k > 3, we must consider how a free edge segment could llmove". When 
inserting vertex Vk+i, the graph Gk changes by performing shifts (right or left 
shifts). These shifts move vertices and ports and possibly cause edge segments 
to change slope. Let e be a free edge segment in Gk which connects two vertices 
w and v via one of to's port regions. The slope of e determines whether e lies 
inside a free region of v or not. Therefore, we need to prove that upon shifting 
either the slope of e does not change or that the change does not allow e to 
leave the free region. 

There are a few important points to remember about shifting before we 
proceed with the proof. First, shifting is only done with the shifting sets of 
vertices on Ck and for any such operation, all vertices and ports which move 
are shifted the same amount. In addition, all ports are shifted along with their 
respective vertices except for certain ports belonging to vertices on Ck- Second, 
if a vertex w € Gk is not in Ck then it must have been previously dominated 
by another vertex Vk',k' < k. At that time, w is added to the shifting set of 
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Mk<(vk')- Prom the recursive construction of the shifting sets, for all k > k' and 
any vertex Wi £ Ck, Vk' £ Mk(wi) if and only if w £ Mk{wi). That is, v^ shifts 
if and only if w shifts. 

Recall that there are three types of free regions: M^ ,L,f,Rf. Let us first 
assume that e lies in the M? region of v. Edge segments in the M* regions are 
created by a vertex w dominating another vertex v. But from the arguments 
above, v must then belong to the shifting set of w and so both v and w are 
always shifted together. Since e connects to IO'S Mp region, the port always 
shifts with v and w. Therefore, the slope of e cannot change and it must remain 
inMA 

As the two remaining cases are symmetric to each other, without loss of 
generality, let us now assume that e lies in the 1 / region of v. This implies that 
the slope of e is between 0 and + 1 . Edges lying in the 1 / region are created 
by neighboring vertices on some prior external face. That is, at some previous 
stage k' < k, we connected Vk> = v and w = wi £ Ck'- In this situation, e 
is routed from a port in BP of wi to v^i. If we define Vk',wi,wr in the usual 
manner, for all k > k' and all w 6 Ck, if wi £ Mk(w) then vy £ Mk{w). That 
is, if wi shifts then so must Vk> • Note that vy can shift without wi shifting. As 
for wi's BP region, it is possible that the port region shifts without wi but only 
on a left shift of wi. In this case, vy again still shifts with the BP region of 
W[. Therefore, shifting affects the slope of e only if vk> shifts and «/;'s BP region 
does not. Since v^ moves farther away from Wi's port region, the slope of e 
becomes more horizontal (approaches 0). Consequently, e still remains within 
the Lf region of v. • 

In order to prove our next main lemma (Lemma 3) we need to present a few 
smaller issues describing the relationship between the vertices and the lines of 
slope ± 1 . Each of these lemmas relies on the fact that Gk maintains the key 
invariants as described in Section 2.2. 

Definition 1 Let v be a vertex in Gk- Define v+ (respectively) v~) to be the 
line of slope +1 (resp. -1) passing through v. 

Property 1 Suppose we are given a graph Gk maintaining the key invariants. 
For any Wi £ Ck, the region above Wi and between w+ and w~ is empty of any 
vertices in Gk • 

Note, this property comes directly from the fact that the external face has 
free edge segments of slope ±1 and that x(wi) < x(w2) < ... < x(wm). See 
Figure 1. 

Lemma 2 Suppose we are given a graph Gk maintaining the key invariants. 
For any Wi, Wj £ Ck and i < j , let pt and pj be any two points on wf and tot 
such that Pi{y) — Pj{y)- Then Pj(x) — Pi{x) > j — i. By symmetry, if we use 
w^ and wj, then we still have Pj(x) —pi(x) > j — i. 

Proof: See Figure 5 for a simple example. We shall prove this lemma induc
tively. It is certainly true for the case when i = j . So, let us assume the lemma 
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Vi =? W\ p2 =f wi 

(a) (b) 

P2 =T Wi 

Figure 5: A simple example between two vertices on C&, w\ and w$. (a) Points 
pi and P3 are on w~± and w% respectively. Notice that p$(x) — p\(x) = 2 = 3—1. 
(b) Same scenario except now points are on w^ and u> J . 

Figure 6: Notice the relationship between w^, wi+i, and their respective lines 
of slope +1 when Wi+i is (a) increasing and (b) decreasing. 

holds for all f < j . There are two possibilities for Wj, either Wj(y) > Wj-\(y), 
increasing along the external face, or Wj(y) < iu,-_i(y), decreasing along the 
external face. In the first case, recall that the port edge segment connecting 
Wj to Wj^i must go through the R^g^ of Wj-\. Therefore, tot is shifted over 
one unit and hence Pj{x) — pj-i(x) = 1. In the second case, the connection is 
through the i f ^ of Wj and therefore Pj(x) — pj~i(x) > 3. See Figure 6. From 
our assumption then, we have 

Pj(x) -Pi(x) = (pj(x) - p,--i(x)) + (pj-i(x) -Pi(x)) >l + (j-l •.3-1. 

To see the symmetric argument, notice that if we flip the graph about the y-axis, 
we have the same problem. • 

Corollary 1 Suppose we are given a graph Gk maintaining the key invariants. 
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Figure 7: The intersection, p, of w^ and w^ and its relationship with some wa 

between Wi and Wj. Notice the distances between Pi{x), Pj(x), and wa(x). 

For any Wi,Wj G Ck and i < j , let p be the intersection of w~l and w~. Then 
p(y) > maxi<a<j(wa(y)) + (j -i)/2. 

Proof: Let wa be any vertex with i < a< j . Let pi and pj be any two points 
on wf and wj such that Pi(y) — Pj(y) = wa(y). That is, we are looking at 
points on the horizontal line passing through wa. For notation, let pa = wa 

which by definition is on both w+ and w~. 
Since pi and pj satisfy the assumptions of Lemma 2, we can see that Pj{x) — 

Pi{x) >j — i- Let us now look at p, the intersection of wf and wj. See Figure 7. 
From the above inequality and the fact that Pi(y) = Pj(y) — wa(y) we have 

P(V) = Pi(y) + (Pj(x) - Pi{x))/2 > wa(y) + (j - t)/2. 

Therefore, the corollary holds for the maximum of all wa(y). • 

Lemma 3 Every free edge segment passes through a free region which contains 
no other edges. 

Proof: From Lemma 1, we know that once a free edge segment lies within a 
free region it remains inside. Therefore, we only need to be concerned about 
ensuring that free edge segments are initially routed through a free region. This, 
of course, happens only with edges extending from a new vertex v = Vk+i • 

For k > 2, when v is inserted there are two types of new edges added: the 
outside edges between v and the outside neighbors, wi and wr, and the inside 
edges between v and the inside neighbors Wi where I < i < r. In both cases the 
new edge is routed through a port creating one free edge segment and one port 
edge segment. A free edge segment of an outside edge has slope either +1 or 
—1 by construction; therefore it lies inside the free regions L* and Rf of vertex 
v. Since v is a new vertex, there are no other segments inside these two free 
regions. 

Dealing with the inside edges is more complex. We first need to show that 
there is sufficient space between the vertices on the exterior face of Gk and the 
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new vertex v. Second, we need to show that v has enough ports in its middle 
port region Mp for each of the vertices on Gk that it is connected to. Third, we 
need to show that the free edge segments of the inside edges initially lie inside 
their respective free regions. We shall show that for every inside neighbor Wi, 
I <i <r, 

• vertex w^ lies on or below Mp, the middle port region for v, and 

• we can assign a unique port along the Mp port region of v, such that the 
edge segment connecting Wi to that port fits inside w^s middle free region 
Mf 

The first part is fairly easy, we chose the middle port region Mp to be 
[~(r —1)/2] units below v. That is, the y-coordinate of Mp is v(y) — \{r —1)/2~\. 
Recall that when inserting v, it is placed at the intersection p of wf and w~, 
unless such an intersection is not on a grid point, in which case wi is shifted left 
one unit to place p on a grid point. Note that in actuality, wi and wr are also 
shifted one or two units to make the connection fall on a port but the end result 
is that v is located at the intersection of wf and w~ prior to shifting. Prom 
Corollary 1, then we know that v{y) = p(y) > maxj<a<r(u;0(2/)) + (r —1)/2 and 
it follows that all inside neighbors Wi, I < i < r, lie completely below (or on) 
the Mp port region. Note that it is only possible for one inside neighbor wa 

(the maximum vertex) to actually lie directly on the port region. 
We now show that our assignment strategy from Section 2.4 properly routes 

edges through free regions. First note that if r — lis even, then there are exactly 
r — I — 1 ports on Mp and if it is odd there are exactly r — I ports. As there 
are two cases, let us look at the odd case, which has one "extra" port and is a 
bit trickier to prove. The other case follows a nearly identical (though simpler) 
argument. The assignment is done in two phases, a left to right assignment, 
wi+i,wi+2,..., wa-i, for some vertex wa followed by a right to left assignment, 
wr-\,wr-2i • • • wa. The vertex wa is defined to be the first time in the left to 
right assignment where the free edge segment in the routing would lie outside 
the free region. We call this the skip vertex because it essentially skips one port. 
Since there are exactly r — I ports for r — I — 1 vertices, there can only be one 
possible "skip". 

Let Wi be one of the vertices routed. If i < a, the edge e connecting Wi to 
v is routed through the (i - / ) t h port, Pi. Otherwise, e is routed through the 
(i — I + l ) t h port. Let pi be the intersection of wf with the port region. And, let 
pr be the intersection of w~ with the port region. Then we know that if i < a, 

Pi{x)-pi{x) = i-l (1) 

pr(x)-pi(x) = r-i + 1 

where the +1 term comes because r — I is odd. If i > a, 

Pi{x)-pi{x) = i-l + 1 (2) 
Pr(x)-Pi(x) = r-i. 
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The free edge segment of e lies in a free region only if its slope is between — 1 
and + 1 . If we let p\ and p^ be the intersection of wf and w~ with the port 
region, then e's free edge segment is in a free region if and only if Pi(x) lies on 
or between pf(x) and pj{x). Applying Lemma 2, we know 

pf{x)-pi(x) > i-l, and (3) 

pr(x)-pr(x) > r-i. (4) 

Because Wi lies on or below the port region, we know that 

Vt{x)>p-{x) (5) 

Given that wa is the first vertex which lies outside of the free region in the 
first phase, we know that, if i < a, w^s edge segment must lie in a free region. 
Let us then look at the case where i = a. Combining Equations (2), (3), and 
( 4), we see that 

Pt(x)-Pi(x) > a-1 

= pa(x) -pi(x) - 1 =»• 

P a ( z ) + 1 > Pa(x) 

Pr(x)-Pa(x) > r-a 

= pr(x) - pa(x) => 

Pa(x) > P~{X). 

Pa(x) < Pa(x)<pt(x) + l (6) 

Notice that pa{x) is (on or) between Pa(x) and Pa(x) except for the case when 
Pa(x) + 1 — Pa{x), i.e. Pa lies one unit to the left of p+. 

So, let us assume that pa does not lie (on or) between the two slopes. There
fore, Pa(x) + 1 = pa{x). Now, since wa is the skip vertex we know that the port 
q lying just to the left of pa is free. Since pa(x) = q(x) + 1, we substitute in to 
Equation (6) yielding 

p - ( s ) - l < g ( a : ) < P + ( a : ) . (7) 

But, q was not a valid port so it must not lie (on or) between w~ and w+. 
The only possibility is that q(x) = p~(x) — 1 which implies that p+(x) + 1 = 
pa(x) = q(x) + l = Pa(x)- This in turn immediately implies that Pa~(x) < Pa(x) 
which contradicts Equation (5). Hence, pa must lie between w~ and io+, more 
precisely, 

p-(x)<pa(x)<p+(x). (8) 

Let us now look at the case where i > a. Observe that since the ports are as
signed consecutively pi(x) —pa(x) = i — a. Applying Lemma 2 and Equation (8), 
for wa and w^, we see that 

pt(x)-pi(x) ^ *-« 
= Pi{x)-Pa{x) 

> pi(x)-p+(x)^-

p+(x) > Pi(x). (9) 
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Applying Equations (2) and (4), we see that 

pr(x)-p~{x) > r-i 

= pr(x)-Pi{x) =>• 

Pi(x) > P~(x). 

Therefore Pi lies between w^ and wf and the edge to Wi is properly routed. 
The argument for the case when r — I is even is identical except one does 

not have to deal with the issue of a skip vertex. Therefore, we know that all 
free edge segments are properly routed through free regions. • 

Lemma 4 If Gk maintains invariants one through four, then Gk+i maintains 
invariants one through four. 

Proof: By definition of the shifting set, invariants one and two hold, see [7]. By 
construction of the algorithm, invariant three holds as well. Also by construction 
every edge, except (v\,V2), inserted has a port edge segment and a free edge 
segment. By lemmas 1 and 3 invariant four also holds. • 

Lemma 5 The angular resolution for vertex v € G as produced by the algorithm 
is l/2d(v), where d(v) is the degree of vertex v. 

Proof: The worst angle is achieved between a free edge segment for some edge 
/ and a port edge segment for some edge e, where / is located at the boundary 
of its free region and e is the neighboring port edge segment. There are six 
possible cases but the argument is the same for all of them, so without loss of 
generality consider the case in Fig. 8. Let v be the vertex and d(v) = d be its 
degree. Also let s and t be the lengths as shown in Fig. 8. Let 9 be the angle 
between / and e, and x the number of ports as shown in the figure. Note that 
all vertices have at least one edge connected to them via free edge segments.1 

So, the number of ports, x, in any port region is at most d — 1. From the figure, 
observe that tan(0) = t/(s — t) and hence arctan(i/(s — t)) = 6. But 

t _ V2/2 _ 1 
s 3 * ~ V2{x + 1) - V2/2 ~ 2a;+ 1 

Using the Maclaurin expansion for arctan(y), where y < 1 we have 

arctan(2/) = y-y3/3+y5/5-... > y-y3/3 > y-y2/(y+l) = y/{y+l) = 1/(1+1/2/) 

Here, the last inequality comes from the fact that for 0 < y < 1, y3/3 < 
y3/(y +1) < y2/(y +1). Since 0 < x < d - 1 and 0 < l/(2a; +1) < 1, this yields 

9 = arctan(l/(2x + 1)) > 1/(1 + 2x + 1) = l/(2a; + 2) > l/2d. 

Therefore, the angular resolution is strictly greater than l/2d. • 

1In fact, all but the three external vertices have three free edge segments connected to 
them and it is a simple matter to make the external vertices have two free edge segments 
connected to them. 
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Figure 8: The minimum angle between two edges adjacent to vertex v is pro
portional to the degree d of the vertex. Using our algorithm the angle cannot 
be smaller than l/2d. 

Theorem 1 For a given planar graph G, the algorithm produces in 0(n) time a 
planar embedding with grid size bn x 5n/2, using at most one bend. The angular 
resolution for every vertex v of G is l/2d(v). 

Proof: Since every edge has only two segments, there can be at most one bend 
per edge. Chrobak and Payne [2] show how to implement the algorithm of De 
Fraysseix, et al. [5] in linear time. Their approach can be easily extended to our 
algorithm. By invariants three and four and by lemma 5 the angular resolution 
is at most l/2d(v). 

It remains to show that the drawings produced by the algorithm fit on the 
5n x 5n/2 grid. Every time we insert a vertex Vk, we increase the grid size by 
at most 5 units, which implies that the width of the drawing is at most 5n. The 
final drawing fits inside an isosceles triangle with sides of slope 0, + 1 , —1. The 
width of the base is 5n and so the height is less than 5n/2. • 

4 The PRA Algorithm 

In this section, we introduce a novel approach to represent bends and vertices. 
Rather than insisting that bends lie on integer grid coordinates, we propose an 
alternative approach which allows bends to be located on a grid represented 
by polar coordinates. Using a polar representation allows us to independently 
control the grid size and edge bend positions. We begin by considering the polar 
representation in general and then present the PRA algorithm that uses the new 
approach. 

A point p in the polar grid system is represented by a set of integers. For the 
vertices we only need two integers (px,Py)- For the bend-points we may need 
up to five integers. We shall see in the PRA algorithm that these five integers 
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(b) 

Figure 9: Vertex wi is the left-most neighbor of the next vertex Vk+i along the 
exterior face of Gfe. The dr(wi) ports of wi are evenly spaced on the arc of a 
circle of radius 2dr(w{) bounded by the middle free region M* and the right 
free region Rf. (a) An example of the layout for the Rp region with dr(wi) = 3. 
(b) The distance x between two adjacent ports or a port and an adjacent free 
region can be computed given the radius of the circle and the angle between the 
edges connecting the ports tou);: x = 2r sin ^ . 

need not be explicitly stored for every bend-point. In general, a bend-point is 
given by: 

• {Px,Py), the origin of the polar system 

• pr, the radius of the circle around the origin (px,Py) 

• pa and pn, the angle (pg) of the circle where the point is located, i.e., 
pe = 2-KPn/pd- For convenience, we consider pg — 0 to be the vertical 
direction. 

The PRA algorithm places vertices at integer grid coordinates, thus guar
anteeing unit vertex resolution. As it is based on the CRA algorithm it also 
uses only 1 bend per edge. The main difference in the two algorithms is in 
the placement of the bend-points. In the PRA algorithm, bend-points will be 
placed on a circle around the vertex (rather than on a straight-line segment). 
Therefore, the origin, (px,py) for each bend-point need not be explicitly stored 
- it suffices to store the origin of the vertex that the bend-point is associated 
with. Similarly, groups of bend-points around a given vertex will have the same 
radius and hence each of the bend-points need not explicitly store pr. Since the 
points will be evenly spaced in a port region, the values for pg need also not be 
explicitly stored for each bend-point. 

Consider the leftmost neighbor, wi, of the next vertex in the canonical order, 
Vk+i- The ports are evenly spaced in the Rp region for wi, Fig. 9(a). The 
length of the straight-line segment separating two bend-points or a bend-point 
and an adjacent free region can be computed as follows. Consider the example 
in Fig. 9(b). We would like to compute the length x in terms of the radius of 

(a) 
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the circle and the angle between the two line segments connecting consecutive 
ports to w;. Prom basic trigonometry, the angle between h and x is a /2 . We 
can express h in terms of r and a: h/r = sin a and we can express x in terms 
of h and a: h/x = cos a/2. Combining the two expressions we obtain 

r s i n a 2 r s i n £ c o s § 2 ^ " ° 2 2r sin — 
2 

Assume we have inserted vi,V2,---,Vk and have a drawing of Gk with ex
terior face Cfc. Consider inserting the next vertex Vk+i in the canonical order. 
Let wi and wr be the leftmost and rightmost neighbors of Vk+i on the exterior 
face Cfe. Define fb and fe to be the bend-point resolution and edge separation 
respectively. Observe that in the standard Cartesian representation algorithms 
/;, = 1 and fe = y/2/2. Let dr(u>i), respectively di(wr), be the number of port 
edge segments using RP of wi, respectively LP of wT. When inserting Ufc+i, 
the degrees for wi and wr affect the amount of shifting necessary to ensure 
proper resolution. As the cases for dr(wi) and di(wr) are symmetrical, we shall 
concentrate on dr(wi). There are two cases to consider: 

• case (a) dr(w{) = 0 prior to insertion 

• case (b) dr(wi) > 1 prior to insertion 

In case (a) we insert the first edge in the port region BP between the two 
free regions R? and M? of IOJ. We place the port in the middle of the arc of 
a circle connecting R* and M^. Since there are no other bends yet in RP we 
are only concerned with maintaining the edge separation. We need to place the 
port sufficiently away from the vertex wi. Consider the relationship between 
the radius of the circle and the edge separation, see Fig. 9. 

The edge separation fe = x = 2r sin §. But since there is only one port and 
it is in the middle of the arc, a = 7r/8. We are interested in the radius necessary 
to achieve the edge separation fe which is given by 

~ - / e / e < - ^ = 2v/2/e. 
2s inf 2sin^r y ^ 

Since we maintain that the vertices are at integer coordinates and the radii 
are also integers, then the minimum radius required in case (a) is 

r < \2y/2fe\. 

In case (b) we insert an additional port in the port region RP which already 
has at least one port. In this case, we must ensure that both the edge separation 
fe and bend-point resolution fb are preserved. In this case the radius required 
is given by: 

m a x i r - £ - 1 r lt^ u 
ZS1U 8(dr(wi) + l) ^ S m 8 ( d r ( W l ) + l ) 



Duncan & Kobourov, Polar Coordinate Drawing, JGAA, 7(4) 311-333 (2003)330 

Algorithm 

CRA 
PRA1 
PRA2 

fv 
1 
1 
1 

h 
l 
l 

1/2 

fe 
V2/2 
V2/2 
1/2 

drawing area 

bn x 5n/2 
9n x 9n/2 
7n x 7n/2 

resolution 

l/2d{v) 
n/Ad(v) 
ir/Ad(v) 

Table 1: Fixing specific values for the vertex resolution /„, bend-point resolution 
fb, and edge separation fe allows us to compare the PRA and CRA algorithms. 

Typically, /;, > fe, so we can assume that the bend-point resolution deter
mines the radius in case (b). Using this together with the fact that sin a > 0.97a 
for a < IT/8, the minimum radius required is 

r < r ^ f \ i < \V2fb(dr(Wl) + i)i 
Z b l I 1 8(d r (™i )+ l ) 

Summing over all vertices in the graph, the sum of the radii used for the 
right port regions, R, yields: 

ij= J2 r2V2/ei + Yl \V2fb(dr(Vi)+i)]. (io) 
VieV:d-r{vi)=l Vi£V:dr(vi)>l 

With R we bounded the number of shifts required because of "right" neigh
bors. Similarly, we can define L, the shifts necessary due to "left" neighbors: 

L= Y, r2>/2/el+ E |V2/&(di(«0 + l)l- (11) 
VieV:di(vi)=l ViEV:d,(vi)>l 

L and R bound the number of shifts required due to left and right neighbor 
visibility. Note, however, that if we shift by the minimum amount required by 
the fe and /& parameters, the location of the next vertex Vk+i may not be at 
integer coordinates. We can guarantee that Vk+i is placed on the integer grid 
by performing some additional shifts. By shifting at most 3 more units, we are 
guaranteed to find an integer location for Vk+i • Then the total shifting required 
is at most L + R + 3n. Since the final drawing fits inside an isosceles right-angle 
triangle, the total area required for the drawing is (L + R + Sn) x ( L + ^ + 3 r a ) . 

In order to compare the PRA algorithm to the CRA algorithm, we evaluate 
equations 11 and 10 using two sets of parameters, Table 1. In all three cases the 
algorithms guarantee at most one bend per edge. The PRA algorithms place all 
the vertices on grid points and each bend-point is determined by at most five 
integer polar coordinates. 

5 Conclusion and Open Problems 

In this paper we present two algorithms for drawing planar graphs with good 
angular resolution while maintaining small drawing area. Other drawing cri
teria optimized by the algorithms include number of bends, vertex resolution, 
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Figure 10: A graph with 11 vertices drawn using (a) the canonical ordering 
on the 10 x 19 grid; (b) the CRA algorithm on the 14 x 29 grid; (c) the PRA 
algorithm on the 23 x 45 grid. 

bend-point resolution, and edge separation. The first algorithm, CRA, is a 
traditional algorithm in which vertices and bend-points are represented using 
Cartesian coordinates. It improves on the best known simultaneous bounds for 
the six drawing criteria. In the PRA algorithm vertices and bend-points are 
represented using polar coordinates. It is based on the CRA algorithm but 
allows for independent control over the grid size and bend positions. 

Using a polar coordinate representation yields slightly worse area bounds 
compared to the CRA algorithm, see Fig 10 and Fig. 11. We believe, however, 
that the PRA approach is more promising. The angular resolution of the PRA 
algorithm is better and it provides greater control over the drawing process. 

The PRA bounds presented in this paper can be further improved. Using 
two integers to represent the radius (similar to the way the angles are currently 
represented) will most likely result in smaller drawing area. Our current esti
mates indicate that certain (small) values of edge separation and bend-point 
resolution yield grids of size 4n x 2n. It is likely that when using only one bend 
per edge, the best angular resolution will be achieved for vertex regions in which 
each of the port and free regions have angles 7r/3 rather than a combination of 
7r/4 and 7r/2. The biggest challenge, however, to the success of the PRA algo
rithm deals with the three potential shifts needed to align a new vertex onto an 
integer grid. If we can reduce this bottleneck, we feel that the PRA algorithm 
can significantly surpass the bounds of the CRA algorithm. 

(a) (b) (c) 

Figure 11: A graph with 17 vertices drawn using (a) the canonical ordering 
on the 16 x 31 grid; (b) the CRA algorithm on the 21 x 41 grid; (c) the PRA 
algorithm on the 43 x 85 grid. 
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1 Introduction 
Automatic graph drawings have numerous applications in VLSI circuit layout, 
networks, computer architecture, circuit schematics etc. For the last few years 
many researchers have concentrated their attention on graph drawings and in
troduced a number of drawing styles. Among the styles, "orthogonal drawings" 
have attracted much attention due to their various applications, specially in 
circuit schematics, entity relationship diagrams, data flow diagrams etc. [1]. 
An orthogonal drawing of a plane graph G is a drawing of G with the given 
embedding in which each vertex is mapped to a point, each edge is drawn as a 
sequence of alternate horizontal and vertical line segments, and any two edges do 
not cross except at their common end. A bend is a point where an edge changes 
its direction in a drawing. Every plane graph of the maximum degree four has 
an orthogonal drawing, but may need bends. For the cubic plane graph in 
Fig. 1(a) each vertex of which has degree 3, two orthogonal drawings are shown 
in Figs. 1(b) and (c) with 6 and 5 bends respectively. Minimization of the num
ber of bends in an orthogonal drawing is a challenging problem. Several works 
have been done on this issue [2, 3, 8, 13]. In particular, Garg and Tamassia [3] 
presented an algorithm to find an orthogonal drawing of a given plane graph 
G with the minimum number of bends in time 0(n7/4y/\ogn), where n is the 
number of vertices in G. Rahman et al. gave an algorithm to find an orthogonal 
drawing of a given triconnected cubic plane graph with the minimum number 
of bends in linear time [8]. 

(a) (b) (c) 

Figure 1: (a) A plane graph G, (b) an orthogonal drawing of G with 6 bends, 
and (c) an orthogonal drawing of G with 5 bends. 

In a VLSI floorplanning problem, an input is often a plane graph of the 
maximum degree 3 [4, 9, 10]. Such a plane graph G may have an orthogonal 
drawing without bends. The graph in Fig. 2(a) has an orthogonal drawing 
without bends as shown in Fig. 2(b). However, not every plane graph of the 
maximum degree 3 has an orthogonal drawing without bends. For example, 
the cubic plane graph in Fig. 1(a) has no orthogonal drawing without bends, 
since any orthogonal drawing of an outer cycle have at least four convex corners 
which must be bends in a cubic graph. One may thus assume that there are 
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four or more vertices of degree two on the outer cycle of G. It is interesting 
to know which classes of such plane graphs have orthogonal drawings without 
bends. However, no simple necessary and sufficient condition has been known 
for a plane graph to have an orthogonal drawing without bends, although one 
can know in time 0(n7 /4 \ / logn) by the algorithm [3] whether a given plane 
graph has an orthogonal drawing without bends. 

(a) (b) 

Figure 2: (a) A plane graph G and (b) an orthogonal drawing of G without 
bends. 

In this paper we obtain a simple necessary and sufficient condition for a plane 
graph G of the maximum degree 3 to have an orthogonal drawing without bends. 
The condition is a generalization of Thomassen's condition for the existence of 
"rectangular drawings" [12]. Our condition leads to a linear-time algorithm to 
find an orthogonal drawing of G without bends if it exists. 

The rest of paper is organized as follows. Section 2 describes some defini
tions and presents known results. Section 3 presents our results on orthogonal 
drawings of biconnected plane graphs without bends. Section 4 deals with or
thogonal drawings of arbitrary (not always biconnected) plane graphs without 
bends. Finally Section 5 gives the conclusion. A preliminary version of this 
paper is presented in [11]. 

2 Preliminaries 

In this section we give some definitions and preliminary known results. 
Let G be a connected simple graph with n vertices and m edges. The degree 

of a vertex v is the number of neighbors of v in G. A vertex of degree 2 in G 
is called a 2-vertex of G. We denote the maximum degree of graph G by A(G) 
or simply by A. The connectivity n(G) of a graph G is the minimum number of 
vertices whose removal results in a disconnected graph or a single vertex graph. 
We say that G is k-connected if K(G) > k. We call a vertex of G a cut vertex if 
its removal results in a disconnected graph. 

A graph is planar if it can be embedded in the plane so that no two edges 
intersect geometrically except at a vertex to which they are both incident. A 
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plane graph G is a planar graph with a fixed planar embedding. A plane graph 
G divides the plane into connected regions called faces. We refer the contour of 
a face as a cycle formed by the edges on the boundary of the face. We denote 
the contour of the outer face of G by C0(G). 

An edge of a plane graph G is called a leg of a cycle C if it is incident to 
exactly one vertex of C and located outside C. The vertex of C to which a leg 
is incident is called a leg-vertex of C. A cycle in G is called a k-legged cycle of 
G if C has exactly k legs in G and there is no edge which joins two vertices on 
C and is located outside C. 

An orthogonal drawing of a plane graph G is a drawing of G with the given 
embedding in which each vertex is mapped to a point, each edge is drawn as a 
sequence of alternate horizontal and vertical line segments, and any two edges 
do not cross except at their common end. A bend is a point where an edge 
changes its direction in a drawing. Any cycle C in G is drawn as a rectilinear 
polygon in an orthogonal drawing D(G) of G. The polygon is denoted by D(C). 
A (polygonal) vertex of the rectilinear polygon is called a corner of the drawing 
D{C). A corner has an interior angle 90° or 270°. A corner of an interior angle 
90° is called a convex corner of D{C), while a corner of an interior angle 270° 
is called a concave corner. A vertex v on C is called a non-corner of D(C) if v 
is not a corner of D(C). Thus any vertex on C is a convex corner, a concave 
corner, or a non-corner of D(C). 

A rectangular drawing of a plane biconnected graph G is a drawing of G 
such that each edge is drawn as a horizontal or a vertical line segment, and 
each face is drawn as a rectangle. (See Fig. 9.) Thus a rectangular drawing is 
an orthogonal drawing in which there is no bends and each face is drawn as a 
rectangle. The rectangular drawing of C0(G) is called the outer rectangle. The 
following result is known on rectangular drawings. 

Lemma 1 Assume that G is a plane biconnected graph with A < 3, and that 
four 2-vertices on C0(G) are designated as the four (convex) corners of the 
outer rectangle. Then G has a rectangular drawing if and only if G satisfies the 
following two conditions [12]: 

(rl) every 2-legged cycle contains at least two designated vertices, and 

(r2) every 3-legged cycle contains at least one designated vertex. 

Furthermore one can examine in linear time whether G satisfies the condition 
above, and if G does then one can find a rectangular drawing in linear time [7]. 

Consider two examples in Fig. 3, where the four designated corner vertices 
are drawn by white circles in each graph. Cycles C\, C2 and C3 are 2-legged, 
and C4, C5 and CQ are 3-legged. C3, C5 and C& do not violate the conditions 
in Lemma 1. On the other hand, cycles C\, C2 and C4 violate the conditions. 

A cycle in G violating (rl) or (r2) is called a bad cycle: a 2-legged cycle 
is bad if it contains at most one designated vertex; a 3-legged cycle is bad if it 
contains no designated vertex. 



M. S. Rahman et a l , Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 339 

O designated 2-vertex 

(a) 2-legged cycles (b) 3-legged cycles 

Figure 3: (a) 2-legged cycles Ci, C2 and G3, and (b) 3-legged cycles C4, C5 and 
G6. 

Rahman et al. [7] have obtained a linear-time algorithm to find a rectangular 
drawing of a plane graph G if G satisfies the conditions in Lemma 1 for four 
designated corner vertices on C0(G). We call it Algorithm Rectangular-Draw 
and use it in our orthogonal drawing algorithm of this paper. 

For a cycle C in a plane graph G, we denote by G(C) the plane subgraph 
of G inside C (including G). A bad cycle C in G is called a maximal bad cycle 
if G{C) is not contained in G{C') for any other bad cycle C" of G. In Fig. 4 
C\, C3, C4, G5 and CQ are bad cycles, but G2 is not a bad cycle, where G2 and 
G4 are drawn by thick lines. C\,C\, C$ and Cg are the maximal bad cycles. G3 
is not a maximal bad cycle because G(C3) is contained in G(C4) for a bad cycle 
G4. We say that cycles C and C in a plane graph G are independent of each 
other if G(C) and G{C') have no common vertex. We now have the following 
lemma. 

Lemma 2 If G is a biconnected plane graph of A < 3 and four 2-vertices 
on C0(G) are designated as corners, then the maximal bad cycles in G are 
independent of each other. 

Proof: Assume for a contradiction that a pair of maximal bad cycles C\ and 
C2 in G are not independent. Then the subgraphs G{C\) and G(G2) have a 
common vertex. In particular, the cycles C\ and G2 have a common vertex, 
because C\ and G2 are maximal bad cycles. Since A < 3, C\ and C2 share 
a common edge; C\ contains two legs of G2, and C2 contains two legs of C\. 
There are two cases to consider. 
Case 1: C\ and G2 have a common vertex not on C0(G). 

There are three cases; (i) both C\ and C2 are 2-legged cycles, (ii) one of 
C\ and C2 is a 2-legged cycle and the other is a 3-legged cycle, and (iii) both 



M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 340 

O designated vertex 

Figure 4: Maximal bad cycles C\, C4, C5 and Ce-

C\ and C2 are 3-legged cycles. If both C\ and C2 are 2-legged cycles, then G 
would be a disconnected graph as illustrated in Fig. 5(a), a contradiction to the 
assumption that G is biconnected. If one of C\ and C2 is a 2-legged cycle and 
the other is a 3-legged cycle, then G would have a cut-vertex v as illustrated in 
Fig. 5(b), a contradiction to the assumption that G is biconnected. If both C\ 
and C2 are 3-legged cycles, then there would exist a 2-legged bad cycle C* in G 
such that G(C*) contains both C\ and C2, a contradiction to the assumption 
that C\ and C% are maximal bad cycles. In Fig. 5(c) C* is drawn by thick lines. 
Case 2: C\ and C2 have a common vertex on C0(G). 

If both C\ and C2 are 2-legged cycles, then one of G{C\) and G{C2) would 
be contained in the other as illustrated in Fig. 5(d), a contradiction to the 
assumption that both C\ and C2 are maximal bad cycles. If one of C\ and 
Ci is a 2-legged cycle and the other is a 3-legged cycle, then one of G{C\) and 
G{C2) would be contained in the other, as illustrated in Fig. 5(e) and Fig. 5(f), 
contrary to the assumption. If both C\ and C2 are 3-legged cycles, then they 
have no designated vertex and there would exist a bad 2-legged cycle C* such 
that G(C*) contains both of C\ a*nd C2, a contradiction to the assumption. In 
Fig. 5(g) C* is drawn by thick lines. • 

3 Orthogonal Drawings of Biconnected Plane 
Graphs 

In this section we present our results on biconnected plane graphs. From now 
on we assume that G is a biconnected plane graph with A < 3 and there are 
four or more 2-vertices on C0(G). The following theorem is the main result of 
this section. 

Theorem 1 Assume that G is a plane biconnected graph with A < 3 and there 
are four or more 2-vertices of G on CQ(G). Then G has an orthogonal drawing 
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Figure 5: Illustration for the proof of Lemma 2. 
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without bends if and only if every 2-legged cycle contains at least two 2-vertices 
of G and every 3-legged cycle contains at least one 2-vertex ofG. 

Note that Theorem 1 is a generalization of Thomassen's condition for rectan
gular drawings in Lemma 1; applying Theorem 1 to a plane biconnected graph 
G in which all vertices have degree 3 except the four 2-vertices on C0(G), one 
can derive the condition. 

It is easy to prove the necessity of Theorem 1, as follows. 
Necessity of Theorem 1 Assume that a plane biconnected graph G has an 
orthogonal drawing D without bends. 

Let C be any 2-legged cycle. Then the rectilinear polygon D(C) in D has 
at least four convex corners. These convex corners must be vertices since D has 
no bends. The two leg-vertices of C may serve as two of the convex corners. 
However, each of the other convex corners must be a 2-vertex of G. Thus C 
must contain at least two 2-vertices of G. 

One can similarly show that any 3-legged cycle C in G contains at least one 
2-vertex of G. • 

In the rest of this section we give a constructive proof for the sufficiency of 
Theorem 1 and show that the proof leads to a linear-time algorithm to find an 
orthogonal drawing without bends if it exists. 

Assume that G satisfies the condition in Theorem 1. We now need some 
definitions. Let C be a 2-legged cycle in G, and let x and y be the two leg-
vertices of C. We say that an orthogonal drawing D(G(C)) of the subgraph 
G(C) is feasible if D(G(C)) has no bend and satisfies the following condition 
(fl) or (f2). 

(fl) The drawing D(G(C)) intersects neither the first quadrant with the origin 
at x nor the third quadrant with the origin at y after rotating the drawing 
and renaming the leg-vertices if necessary, as illustrated in Fig. 6. Note 
that C is not always drawn by a rectangle. 

x/' | 

63 f$ 
Y \ V *-^ • 

Figure 6: Illustration of (fl) for a 2-legged cycle. 
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(f2) The drawing D(G(C)) intersects neither the first quadrant with the origin 
at x nor the fourth quadrant with the origin at y after rotating the drawing 
and renaming the leg-vertices if necessary, as illustrated in Fig. 7. 

Xs 

Figure 7: Illustration of (f2) for a 2-legged cycle. 

Let C be a 3-legged cycle in G, and let x, y and z be the three leg-vertices. 
One may assume that x, y and z appear clockwise on C in this order. We say 
that an orthogonal drawing D(G(C)) is feasible if D(G{C)) has no bend and 
D(G(C)) satisfies the following condition (f3). 

(f3) The drawing D(G(C)) intersects none of the following three quadrants: 
the first quadrant with origin at x, the fourth quadrant with origin at y, 
and the third quadrant with origin at z after rotating the drawing and 
renaming the leg-vertices if necessary, as illustrated in Fig. 8. 

Figure 8: Illustration of (f3) for a 3-legged cycle. 

Each of Conditions (fl), (f2) and (f3) implies that, in the drawing of G(C), 
any vertex of G(C) except the leg-vertices is located in none of the shaded 
quadrants in Figs. 6, 7 and 8, and hence a leg incident to x, y or z can be 
drawn by a horizontal or vertical line segment without edge-crossing as indicated 
by dotted lines in Figs. 6, 7 and 8. 

We now have the following lemma. 



344 

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 344 

Lemma 3 If G satisfies the condition in Theorem 1, that is, every 2-legged 
cycle in G contains at least two 2-vertices of G and every 3-legged cycle in G 
contains at least one 2-vertex of G, then G(C) has a feasible orthogonal drawing 
for any 2- or 3-legged cycle C in G. 

Proof: We give a recursive algorithm to find a feasible orthogonal drawing of 
G(C). There are two cases to be considered. 
Case 1: C is a 2-legged cycle. 

Let x and y be the two leg-vertices of C, and let ex and ey be the legs 
incident to x and y, respectively. Since C satisfies the condition in Theorem 1, 
C has at least two 2-vertices of G. Let a and b be any two 2-vertices of G on 
C. We now regard the four vertices x, y, a and b as the four designated corner 
vertices of C. 

We first consider the case where G{C) has no bad cycle with respect to 
the four designated vertices. In this case, by Lemma 1 G(C) has a rectangular 
drawing D with the four designated corner vertices, as illustrated in Fig. 9. Such 
a rectangular drawing D of G(C) can be found by the algorithm Rectangular-
Draw in [7]. The outer cycle C of G{C) is drawn as a rectangle in D, and x, 
y, a and b are the convex corners of the rectangle. Hence D satisfies Condition 
(fl) or (f2). Since D is a rectangular drawing, D has no bend. Thus D is a 
feasible orthogonal drawing of G(C). 

Figure 9: Subgraph G{C) and its rectangular drawing D(G(C)). 

We then consider the case where G(C) has a bad cycle. Let C\, C2, • • •, C\ be 
the maximal bad cycles of G{C). By Lemma 2 C\,C2,••• ,Ci are independent 
of each other. Construct a plane graph H from G{C) by contracting each 
subgraph G{C%), 1 < i < /, to a single vertex Uj, as illustrated in Figs. 10(a) and 
(b). Clearly if is a plane biconnected graph with A < 3. Every bad cycle Ci in 
G(C) contains at most one designated vertex. If Ci contains a designated vertex, 
then we newly designate Vi as a corner vertex of H in place of the designated 
vertex. Thus H has exactly four designated vertices. (In Fig. 10 H has four 
designated vertices a, b, x, and v-i since the bad cycle C2 contains y.) Since all 
maximal bad cycles are contracted to single vertices in H, H has no bad cycle 
with respect to the four designated vertices, and hence by Lemma 1 H has a 



M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 345 

rectangular drawing D(H), as illustrated in Fig. 10(c). Such a drawing D{H) 
can be found by Algorithm Rectangular-Draw. Clearly there is no bend on 
D(-ff). The shrunken outer cycle of G(C) is drawn as a rectangle in D(H), and 
hence D(H) satisfies Conditions (fl) or (f2). If Cj is a 2-legged cycle, then the 
two legs eXi, eVi and vertex vt are embedded in D(H) as illustrated in Figs. 11(b) 
and 12(b) or as in their rotated ones, and the two legs eXi, eVi and C, can be 
drawn as illustrated in Figs. 11(c) and 12(c) or as in their rotated ones for a 
feasible orthogonal drawing D(G(Ci)) of G(Cj). If d is a 3-legged cycle, then 
Vi and the three legs eXi, eVi and eZi are embedded in D(H) as illustrated in 
Fig. 13(b) or as in their rotated ones, and d and three legs eXi, eyi and eZi can 
be drawn as illustrated in Fig. 13(c) or as in their rotated ones for a feasible 
orthogonal drawing D(G(Ci)) of G(Cj). One can obtain a drawing D(G(C)) of 
G(C) from D(H) and D(G(Ci)) 1 < i < I, as follows. Replace each Vi,l<i<l, 
in D(H) with one of the feasible drawings of G(C,) in Fig. 11(c), Fig. 12(c) and 
Fig. 13(c) and their rotated ones that corresponds to the embedding of u$ and 
the legs of Cj in D(H), and draw each leg of Ct in D(G(C)) by a straight 
line segment having the same direction as the leg in D(H), as illustrated in 
Fig. 10(d). We call this operation a patching operation. 

(a) G(C) (b)H 

b • — • % • • 

m 
(c) D(H) (d) D(G(Q) 

Figure 10: Illustration for Case 1 where C has the maximal bad cycles C±, C<i 
and C3. 

(a) 

Figure 11: (a) A 2-legged cycle Cj having a feasible orthogonal drawing satisfy
ing (fl), (b) embeddings of a vertex v^ and two legs eXi and eyi incident to u8, 
and (c) feasible orthogonal drawings of G(d) with two legs. 
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c: 

v i* 
^ 

1, 

v. ev 

(a) (b) (c) 

Figure 12: (a) A 2-legged cycle C* having a feasible orthogonal drawing satisfy
ing (f2), (b) embeddings of a vertex Vi and two legs eXi and eVi incident to vt, 
and (c) feasible orthogonal drawings of G(Ci) with two legs. 

' — ... .Y; S 

ez. / ^ 

(a) 

'3 e 

I 
h ri 

% 

<T 

^ v. ^ 

2L<1 ^ J S , 

(b) 

^ L < ^ l ^ i ^ ^ 

1̂ 

-* i v< 

e* 

^.-

(C) 

Figure 13: (a) A 3-legged cycle C, having feasible orthogonal drawings satisfying 
(f3), (b) embeddings of a vertex Vi and three legs eXi, eVi and eZi incident to Vi, 
and (c) feasible orthogonal drawings of G(Cj) with three legs. 
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We find a feasible orthogonal drawing D(G(Ci)) of G(Ci), 1 < i < I, in a re
cursive manner. We then patch the drawings D(G(C{)), D(G(C2)), •••, D(G{Ci)) 
into D{H) by patching operation. Since there is no bend in any of D{G{C\)), 
D{G{C2)),••-,D(G{Ci)), there is no bend in the resulting drawing D(G(C)). 
Since the outer cycle of D(H) is a rectangle and the resulting drawing D(G(C)) 
always expands outwards, D(C) is not always a rectangle but D(G(C)) satisfies 
(fl) or (f2). Hence D(G(C)) is a feasible orthogonal drawing. 
Case 2: C is a 3-legged cycle. 

Let x, y and z be the three leg-vertices of C, and let ex, ey and ez be the legs 
incident to x, y and z, respectively. Since C satisfies the condition in Theorem 1, 
C has at least one 2-vertex of G. Let a be any 2-vertex' of G on C. We now 
regard the four vertices x, y, z and a as designated corner vertices. 

We first consider the case where G(C) has no bad cycle with respect to 
the four designated vertices. In this case by Lemma 1 G(C) has a rectangular 
drawing D with the four designated vertices as illustrated in Fig. 14. Since 
the outer cycle C of G(C) is drawn as a rectangle in D, D satisfies Condition 
(f3). Since D is a rectangular drawing, D has no bend. Thus D is a feasible 
orthogonal drawing of G(C). 

• *z D(G(Q) 

G(C) 

Figure 14: Illustration for Case 2 where C has no bad cycle. 

We then consider the case where G(C) has a bad cycle. Let C\, C2, • • •, Ci be 
the maximal bad cycles of G(C). By Lemma 2 C\, C2, • • •, Cj are independent 
of each other. Construct a plane graph H from G(C) by contracting each 
subgraph G(Ci), 1 < i < I, to a single vertex vt, as illustrated in Figs. 15(a) and 
(b). Clearly H is a plane biconnected graph with A < 3, H has no bad cycle 
with respect to the four designated vertices, and hence H has a rectangular 
drawing D(H) as illustrated in Fig. 15(c). Clearly there is no bend on D(H). 
Since the outer cycle of H is drawn as a rectangle in D(H), D(H) satisfies 
Condition (f3). 

We then find a feasible orthogonal drawing D(G(Ci)) of G(Ci), 1 < i < I, in 
a recursive manner, and patch the drawings D(G{C{j), D(G(C2)), •••, D(G(Ci)) 
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Figure 15: Illustration for Case 2 where C has bad cycles C\, C% and C3. 

into D{H) as illustrated in Fig. 15(d). Since there is no bend in any of D{G{C\)), 
D(G(C2)),---,D(G{Ci)), there is no bend in the resulting drawing D{G(C)). 
Since the outer boundary of D(H) is a rectangle and D(G(C)) expands out
wards, D(G(C)) satisfies (f3). Thus D(G(C)) is a feasible orthogonal drawing 
of G(C). D 

We call the algorithm for obtaining a feasible orthogonal drawing of G(C) 
as described in the proof of Lemma 3 Algorithm Feasible-Draw. We now have 
the following lemma. 

Lemma 4 Algorithm Feasible-Draw finds a feasible orthogonal drawing of 
G(C) in time 0(n(G(C)), where n(G(C)) is the number of vertices in G(C). 

Proof: Let TR(G) be the computation time of Rectangular-Draw for graph 
G. Then TR(G) = 0(n) by Lemma 1, and hence there is a positive constant c 
such that 

TR(G) < c-m(G) (1) 

for any plane graph G, where m(G) is the number of edges in G. 
We first consider the computation time needed for contraction and patching 

operations in Algorithm Feasible-Draw. During the traversal of all inner faces 
of G{C) we can find the leg-vertices for each bad cycle [8]. Given the leg-vertices 
of a bad cycle, we can contract the bad cycle to a single vertex in constant time. 
Therefore the contraction operations in Feasible-Draw take 0(n(G(C))) time 
in total. Similarly the patching operations in Feasible-Draw take 0(n(G(C))) 
time in total. 

We then consider the time needed for operations in Feasible-Draw other 
than the contractions and patchings. Let T(G(C)) be the computation time of 
Feasible-Draw for finding a feasible orthogonal drawing of G(C) excluding the 
time for the contractions and patchings. We claim that T(G(C)) — 0(n(G(C))). 
Since G is a plane graph, m(G(C)) < 3n(G(C)), where m(G(C)) denotes the 
number of edges in G(C). Therefore it is sufficient to show that 

T(G(C)) < c-m{G(C)). (2) 
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We prove Eq. (2) by induction. 
We first consider the case where G{C) has no bad cycle. In this case Algo

rithm Feasible-Draw finds a rectangular drawing of G(C) by Rectangular -
Draw. Hence, by Eq. (1) we have 

T(G(C)) = TR(G(C)) < c • m(G(C)). 

We next consider the case where G{C) has the maximal bad cycles C\, Ci, • • •, 
Ci where I > 1. Suppose inductively that Eq. (2) holds for each C t, 1 < i < I, 
that is, 

T(G(Ci) )<c .m(G(Ci) ) (3) 

for 1 < i < I. Algorithm Feasible-Draw constructs a plane graph H from G(C) 
by contracting G(Ci), 1 < i < I, to a single vertex. H has no bad cycles, and the 
rectangular drawing D(H) can be found by Rectangular-Draw. Therefore, 
by Eq. (1) 

TR(H)<c-m(H). (4) 

Algorithm Feasible-Draw recursively finds drawings of G(d), 1 < i < I, and 
patches them into the rectangular drawing D(H). Therefore, 

T(G(C)) = TR(H) + J2T(G(Ci)). (5) 

One can observe that 

i 

m(H)+ Y,m(G(Ci)) = m(G(C)). (6) 
4 = 1 

Using Eqs. (3), (4), (5), and (6), we have 

i 

T(G{C)) < c-m(H) + ^c-m(G(Ci)) 
i = l 

= c-m(G(C)). 

D 

We are now ready to prove the sufficiency of Theorem 1; we actually prove 
the following lemma. 

Lemma 5 If G satisfies the condition in Theorem 1, then G has an orthogonal 
drawing without bends. 
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Proof: Since there are four or more 2-vertices on C0{G), we designate any four 
of them as (convex) corners. 

Consider first the case where G does not have any bad cycle with respect 
to the four designated (convex) corners. Then by Lemma 1 there is a rectan
gular drawing of G. Since the rectangular drawing of G has no bends, it is an 
orthogonal drawing D(G) of G without bends. 

Consider next the case where G has bad cycles. Let Ci, C2, • • •, Ci be the 
maximal bad cycles in G. By Lemma 2 C\, C2, • • •, Ci are independent of each 
other. We contract each G(Ci), 1 < i < I, to a single vertex Uj. Let G* 
be the resulting graph. Clearly, G* has no bad cycle with respect to the four 
designated vertices, some of which may be vertices resulted from the contraction 
of bad cycles. By Lemma 1 G* has a rectangular drawing D(G*), which can 
be found by the algorithm Rectangular-Draw. We recursively find a feasible 
orthogonal drawing of each G(Ci), 1 < i < I, by Feasible-Draw. Patch the 
feasible orthogonal drawings of G{C\), G(C2), •••, G{Ci) into D(G*) by patching 
operations. The resulting drawing is an orthogonal drawing D of G. Note that 
D(G*) and D(G(Ci)), 1 < i < I, have no bend. Furthermore, patching operation 
introduces no new bend. Thus D has no bend. • 

We now formally describe our algorithm as follows. 

Algorithm Bi-Orthogonal-Draw(G) 
begin 

1 Select any four 2-vertices on C0(G) as designated corners; 
2 Find the maximal bad cycles C\, C2, • • •, Q in G; 
3 For each i,l<i<l, contract cycle d to a single vertex vf, 
4 Let G* be the resulting graph; 
5 Find a rectangular drawing of G* by Rectangular-Draw; 
6 Find a feasible orthogonal drawing of each C\, C2, • • •, C\ by 

Feasible-Draw; 
7 Patch the drawings D(G(CX)), D{G{C2)), • • •, D(G(Ci)) into £>(£*); 
8 The resulting drawing D(G) is an orthogonal drawing of G 

without bends. 
end. 

We then have the following theorem. 

Theorem 2 If G satisfies the condition in Theorem 1, then Algorithm Bi-
Orthogonal-Draw finds an orthogonal drawing of G without bends in linear 
time. 

Proof: Using a method similar to one in [7, 8, 9], one can find all the maximal 
bad cycles in G in linear-time. Algorithms Rectangular-Draw and Feasible-
Draw take linear-time. Patching operations take linear time. Therefore the 
overall time complexity of the algorithm Bi-Orthogonal-Draw is linear. • 

Using an algorithm similar to Algorithm Bi-Orthogonal-Draw, one can 
find a particular orthogonal drawing without bends, which we call a "four-corner 
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drawing" and define as follows. Let C0(G) contain four or more 2-vertices of 
G, and let x, y, z and w be any four of them. Then an orthogonal drawing 
D(G) of G is called a four-corner orthogonal drawing for x, y, z and w if the 
drawing intersects none of the four quadrants, the first quadrant with the origin 
at x, the fourth quadrant with the origin at y, the third quadrant with the 
origin at z, and the second quadrant with the origin at w, after rotating the 
drawing and renaming vertices x, y, z and w if necessary. In Fig. 16 the four 
quadrants are shaded. Vertices x, y, z, and w must be convex corners of the 
drawing D(C0(G)) of the outer cycle C0(G), and D(G) should intersect neither 
the horizontal open halfline with left end at x nor the vertical halfline with the 
lower end at x, and so on for y, z, and w. Clearly, a rectangular drawing with 
four designated corners is a four-corner drawing for the designated corners. A 
four-corner drawing has applications in finding an orthogonal drawing with the 
minimum number of bends [5]. 
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Figure 16: Illustration for a four-corner orthogonal drawing. 

We now have the following corollary. 

Corollary 6 Assume that G is a plane biconnected graph with A < 3 and there 
are four or more 2-vertices on C0(G). If every 2-legged cycle in G contains 
at least two 2-vertices of G and every 3-legged cycle in G contains at least one 
2-vertex ofG, then one can find a four-corner orthogonal drawing D(G) without 
bends for any four 2-vertices x, y, z and w on C0(G) in linear time. 

Proof: One can find a four-corner orthogonal drawing D{G) without bends for 
any four 2-vertices x, y, z and w on C0(G) by using an algorithm similar to 
Algorithm Bi-Orthogonal-Draw. The algorithm selects x, y, z and w as des
ignated corners in Step 1 and expands the drawing outwards, if necessary, after 
each patching operation in Step 7. Other steps of Algorithm Bi-Orthogonal-
Draw remain unchanged in the algorithm. Clearly the algorithm takes linear 
time, since Algorithm Bi-Orthogonal-Draw takes linear time. • 
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4 Orthogonal Drawings of Arbitrary Plane 
Graphs 

In this section we extend our result on biconnected plane graphs in Theorem 1 to 
arbitrary (not always biconnected) plane graphs with A < 3 as in the following 
theorem. 

Theorem 3 Let G be a plane graph with A < 3. Then G has an orthogonal 
drawing without bends if and only if every k-legged cycle C in G contains at 
least 4 — k 2-vertices of G for any k, 0 < k < 3. 

Theorem 3 is a generalization of both Theorem 1 and Thomassen's condition 
[12]. 

The proof for the necessity of Theorem 3 is similar to the proof for the 
necessity of Theorem 1. In the rest of this section we give a constructive proof 
for the sufficiency of Theorem 3. We need some definitions. 

We may assume that G is connected. We call a subgraph B of G a biconnected 
component of G if B is a maximal biconnected subgraph of G. We call an edge 
(u, v) a bridge of G if the deletion of (u, v) results in a disconnected graph. Any 
graph can be decomposed to biconnected components and bridges. The graph 
G in Fig. 17(a) has three biconnected components B\, B2 and Bz depicted in 
Fig. 17(b) and six bridges (v3,v24), (v24,v25), (v24,v26), (v4,v16), (^io,wii) and 
(v7,v27). 

D(Bi) 

(c) 

Figure 17: (a) A connected plane graph G, (b) three biconnected components 
B\, B2 and B3 of G, and (c) a feasible orthogonal drawing of B\. 

Let C be a cycle in G, and let v be a cut vertex of G on C. We call v an 
outcut vertex for C if v is a leg-vertex of C in G, otherwise we call v an incut 
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vertex for C. (See Fig. 18.) Any outcut vertex for C is either a convex corner 
or a non-corner of D(C) in any orthogonal drawing D(G) of G, because if it 
were a concave corner then the leg of C could not be drawn as a horizontal or 
vertical line segment without edge-crossing. Similarly, any incut vertex for C is 
either a concave corner or a non-corner of D(C). Thus any orthogonal drawing 
of G must satisfy the following condition (f4). 

(f4) If v is an outcut vertex for a cycle C in G then v is either a convex corner 
or a non-corner of D(C), and if v is an incut vertex for a cycle C then v 
is either a concave corner or a non-corner of D(C). 

(a) (b) 

Figure 18: (a) Outcut vertices v at a convex corner and v' at a non-corner, and 
(b) incut vertices u a t a concave corner and v' at a non-corner. 

Of course, for any subgraph B of G, the drawing D(B) in an orthogonal 
drawing D(G) of G satisfies Condition (f4). In the plane graph G in Fig. 17(a), 
vertices V4 and V7 are outcut vertices for the cycle C0{B\), and U3 is an incut 
vertex for the cycle C0(B\). Vertex V\Q is an outcut vertex for the cycle C\ = 
V\,VQ,VIO,VS, but is an incut vertex for the cycle C2 = V^,VQ,VT,V%,V\Q,vg. 

The orthogonal drawing D{B\) of the biconnected component B\ in Fig. 17(c) 
satisfies (f4), because the outcut vertices V4, v-? for C0(B{) and V\Q for C\ are 
convex corners while the incut vertices v% for C0(B\) is a non-corner and V\Q 
for C2 is a concave corner. We call an orthogonal drawing D{B) of a subgraph 
B o f G a mergeable orthogonal drawing if D(B) satisfies (f4) and has no bends. 

Let B b e a biconnected subgraph of G, let C be a cycle in B, and let v be a 
2-vertex of B on C. We say that vertex v is good for C if v is not an incut vertex 
for C in G. For B± in Fig. 17(b), V2, V4, ve and v-j are the good vertices for 
C0{B\) while Vz is not a good vertex. Only a good vertex for C can be drawn 
as a convex corner of the rectilinear polygon D(C) in a mergeable orthogonal 
drawing D{B). 

We now have the following lemmas. 

L e m m a 7 If G satisfies the condition in Theorem 3 and B is a biconnected 
component of G, then 

(a) there are at least four good vertices for C0{B), 

(b) there are at least two good vertices for every 2-legged cycle C in B, and 
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(c) there are at least one good vertex for every 3-legged cycle C in B. 

Proof: (a) Assume that C0{B) is a A;-legged cycle in G for some k > 0. The k 
leg-vertices are outcut vertices, are not incut vertices, have degree 2 in B, and 
hence are good vertices for C0{B). Thus, if k > 4, then there are at least four 
good vertices for C0(B). 

If k = 1, then the condition in Theorem 3 implies that C0{B) contains at 
least three 2-vertices of G. Since these vertices have degree 2 in the biconnected 
component B, they are not incut vertices for C0(B) and hence are good vertices 
for C0(B). The leg-vertex of C0{B) is a good vertex, too. Thus there are at 
least four good vertices for C0(B). 

Similarly we can prove the claim when k = 0, 2 or 3. 
(b) Let C be a 2-legged cycle in B. The two leg-vertices have degree 3 in 

B, and hence they are not good for C. Let C be a fc-legged cycle in G for some 
k > 2. If k = 2, then the condition in Theorem 3 implies that C contains at 
least two 2-vertices of G, which are good for C. If k > 4, then C contains at 
least two outcut vertices which are 2-vertices of B and hence are good for C. 
Thus one may assume that k = 3. Then C contains an outcut vertex which is a 
2-vertex of B and hence is good for C. Furthermore, the condition in Theorem 3 
implies that C contains at least one 2-vertex of G, which is good for C. Thus 
C contains at least two good vertices. 

(c) Similar to (b). • 

We now have the following lemmas. 

Lemma 8 Let G be a connected plane graph of A < 3 satisfying the condition 
in Theorem 3, let B be a biconnected component of G, and let C be a 2- or 3-
legged cycle in B. Then the plane subgraph B(C) of B inside C has a mergeable 
feasible orthogonal drawing D(B(C)). 

Proof: We can recursively find a mergeable feasible orthogonal drawing D(B(C)) 
by an algorithm similar to Algorithm Feasible-Draw for finding a feasible or
thogonal drawing. However, in each recursive step, we have to choose the four 
designated corner vertices carefully in a way that none of the incut vertices for 
an outer cycle is chosen as a designated (convex) corner. This can be done, 
because by Lemma 7(b) every 2-legged cycle in B contains at least two good 
vertices, by Lemma 7(c) every 3-legged cycle in B contains at least one good 
vertex, and hence one can choose leg-vertices and good vertices as the four des
ignated corner vertices. These vertices are convex corners in the drawing of the 
cycle, while any cut vertex which is not chosen as a designated corner is drawn 
as a non-corner. Hence D(B(C)) satisfies (f4), and D(B(C)) is a mergeable 
feasible orthogonal drawing. • 

Lemma 9 If G is a connected plane graph of A < 3 and satisfies the condi
tion in Theorem 3, then every biconnected component B of G has a mergeable 
orthogonal drawing. 
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Proof: One can find a mergeable orthogonal drawing of B as follows. 
By Lemma 7(a) one can select four good vertices on C0(B) as designated 

corners. 
Consider first the case where B has no bad cycle with respect to the four 

designated corners. Then by Lemma 1 there is a rectangular drawing D(B) of 
B. Of course, D(B) has no bend. Any vertex of B which is an outcut or incut 
vertex of G has degree 2 in B. In D(B), the four designated vertices on C0(B) 
are convex corners, and every 2-vertex of B except the four designated vertices 
is a non-corner. Hence the rectangular drawing D(B) satisfies Condition (f4). 
Therefore D{B) is a mergeable orthogonal drawing. 

Consider next the case where B has bad cycles. Let Ci,Cz, • • • , C; be the 
maximal bad cycles in B. Then by Lemma 2 C\, C2, • • •, Ci are independent of 
each other. We contract each B(d), 1 < i < I, to a single vertex Vi. Let B* 
be the resulting graph. Clearly, B* has no bad cycle with respect to the four 
designated vertices, some of which may be vertices resulted from the contraction 
of bad cycles. By Lemma 1 B* has a rectangular drawing D(B*). We recursively 
find a mergeable feasible orthogonal drawing D(B(Ci)) of each B(Ci), 1 < i < I, 
by the method described in the proof of Lemma 8. Patch the mergeable feasible 
orthogonal drawings of D(B(d)), 1 < i < I, into D{B*) by patching operations. 
Clearly the resulting drawing is an orthogonal drawing D(B) of B. D(B*) is 
a mergeable drawing and and £)(B(C,)), 1 < i < I, are mergeable feasible 
drawings. Furthermore, the patching operation introduces neither a convex 
corner at any incut vertex nor a concave corner at any outcut vertex in the 
drawing of a cycle in B. Hence D(B) is a mergeable orthogonal drawing. • 

The algorithm described in the proof of Lemma 9 takes linear time similarly 
as Algorithm Bi-Orthogonal-Draw in Section 3. 

Based on the algorithm described in the proof of Lemma 9, we now present 
a result on four-corner orthogonal drawing in Lemma 10. The result described 
in Lemma 10 is used to obtain a bend-minimum orthogonal drawing of a plane 
graph with A < 3 in [5]. 

Lemma 10 Let G be a connected plane graph with A < 3, let B be a biconnected 
subgraph ofG, and let x, y, z and w be any four 2-vertices of B on C0(B). Then 
B has a mergeable four-corner orthogonal drawing D(B) for x, y, z and w if 
and only if the following (a), (b) and (c) hold: 

(a) all the vertices x, y, z and w are good for the cycle C0(B) in G; 

(b) there are at least two good vertices for every 2-legged cycle C in B; and 

(c) there are at least one good vertex for every 3-legged cycle C in B. 

Furthermore the drawing above can be found in linear time. 

Proof: Necessity: Suppose that B has a mergeable four-corner orthogonal 
drawing D(B). Then D(B) has no bends and satisfies Condition (f4). 
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(a) All the vertices x, y, z and w are convex corners of D(C0(B)), and hence 
by Condition (f4) none of x, y, z and w is an incut vertex for C0(B). Therefore 
x, y, z and w are good vertices for C0(B). 

(b) The rectilinear polygonal drawing D{C) of a 2-legged cycle C in D(B) 
has at least four convex corners. Since D(B) has no bend, every convex corner 
of D(C) is either a 2-vertex of B or a leg-vertex of C in B. The two leg-vertices 
of C may serve as two convex corners. Any other convex corner of D(C) is a 
2-vertex of B and is not an incut vertex for C in G by Condition (f4). Hence 
there are at least two good vertices for C. 

(c) Similar to (b). 
Sufficiency: Assume that B satisfies Conditions (a)-(c) in Lemma 10. Then 

we can obtain a mergeable orthogonal drawing D{B) of B in linear time by the 
algorithm described in the proof of Lemma 9. To ensure that D{B) is a four-
corner orthogonal drawing for x, y, z and w, the algorithm must select x, y, z 
and w as the four designated corners, and the drawing may be needed to expand 
outwards after each patching operation. • 

A block of a connected graph G is either a biconnected component or a 
bridge of G. The graph in Fig. 19(a) has the blocks S i , S 2 , • • •, Bg depicted in 
Fig. 19(b). The blocks and cut vertices in G can be represented by a tree T, 

(c) 

Figure 19: (a) G, (b) blocks, and (c) BC-tree T. 

called the BC-tree of G. In T each block is represented by a B-node and each 
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cut vertex of G is represented by a C-node. The BC-tiee T of the plane graph 
G in Fig. 19(a) is depicted in Fig. 19(c), where each J5-node is represented by a 
rectangle and each C-node is represented by a circle. 

We call a cycle C in a plane graph G a maximal cycle of G if G{C) is not 
contained in G(C') for any other cycle C in G. Thus a maximal cycle is an 
outer cycle of a biconnected component of G. The graph G in Fig. 20(a) has 
two maximal cycles C\ and Ci drawn by thick lines. G(C) is called a maximal 
closed subgraph of G if C is a maximal cycle of G. We now have the following 
lemma. 

(d) (e) 

Figure 20: (a) A plane graph G with two maximal cycles C\ and Ci, (b) G{C\), 
(c) BC-tree of G(Ci), (d) drawings of the two biconnected components B± and 
-86 of G(Ci), and (e) the final drawing of G(Ci). 

Lemma 11 If G is a connected plane graph of A < 3 and satisfies the condition 
in Theorem 3, then G(C) has a mergeable orthogonal drawing for any maximal 
cycle C in G. 

Proof: We give an algorithm for finding a mergeable orthogonal drawing of 
G(C), that is, an orthogonal drawing of G(C) which has no bends and satisfies 
(f4). 

If G{C) is a biconnected component of G, then by Lemma 9 G(C) has 
a mergeable orthogonal drawing. One may thus assume that G(C) is not a 



M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 358 

biconnected component of G. Then G(C) has some biconnected components 
and bridges. Clearly the biconnected components of G(C) are vertex-disjoint 
with each other. For each biconnected component we can find a mergeable 
orthogonal drawing by the algorithm described in the proof of Lemma 9, while 
we draw each bridge by a horizontal or vertical line segment. We then merge 
the drawings of biconnected components and bridges without introducing new 
bends and edge crossings as follows. 

We construct a BC-tree T of G(C). Let B\ be the node in the BC-tree 
corresponding to the biconnected component of G(C) whose outer cycle is C. 
We consider T as a rooted tree with root B\. Starting from the root B\ we visit 
the tree by depth-first search and merge the orthogonal drawings of the blocks 
in the depth first-search order. 

Let B\, Bii • • •, Bb be the ordering of the blocks following a depth-first search 
order starting from B±. G{C{) for the graph G in Fig. 20(a) is depicted in 
Fig. 20(b) and the BC-tree of G{C{) is depicted in Fig. 20(c), where Bi is the 
root of the tree and the other B-nodes are numbered according to a depth-first 
search order starting from B\. 

We assume that we have obtained a mergeable orthogonal drawing Di by 
merging the orthogonal drawings of the blocks B1,B2,-- ,BU and that we are 
now going to obtain a mergeable orthogonal drawing Di+i by merging Di with 
an orthogonal drawing of the block Bi+1. Let vt be the cut vertex corresponding 
to the C-node which is the parent of Bi+i in T. Let Bx be the parent of vt in 
T. Then both Bx and Bi+i contain vt, and Di contains the drawing of Bx. We 
have the following three cases to consider. 
Case 1: Bx is a biconnected component and Bj+i is a bridge. 

In this case Bi+\ is an edge and will be drawn inside an inner face of the 
drawing Di. Let C/ be the facial cycle of Bx corresponding to the inner face. 
Then vt is an incut vertex for C/ . Since we have obtained a mergeable orthogonal 
drawing D(BX) of Bx, vt is a concave corner or a non-corner of the drawing of 
Cf in D(BX), and hence the two edges incident to vt are drawn in Di as in 
Fig. 21 or as a rotated one. We can draw the bridge Bi+i as a horizontal or a 
vertical line segment started from vt as illustrated by dotted lines in Fig. 21. 
We thus obtain a drawing £>,+i. Clearly no new bend is introduced in Di+\ 
and Di may be expanded outwards to avoid edge crossings. In Fig. 20(e) the 
bridge B^ = (w3, U24) is merged with a biconnected component B\ at vertex U3. 
Case 2: Both Bx and B i + 1 are bridges. 

In this case vt is drawn in an inner face of Di and has degree 1 or 2 in Dj. 
(See Fig. 22.) 

We first consider the case where vt has degree 1. We then draw Bi+\ as 
indicated by the dotted line in Fig. 22(a). 

We next consider the case where vt has degree 2 in Dj. Then vt has degree 
3 in G(C), and let x, y, and z be the three neighbors of vt in G. We may 
assume without loss of generality that edges (vt,x) and (vt,y) are bridges and 
are already drawn in Di and that Bx is either (vt,x) or (vt,y). We now merge 
the drawing of bridge Bi+1 = (vt,z) to D*. It is evident from the drawing 
described above that bridges (vt,x) and (vt,y) are drawn on a (horizontal or 
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t 
B i+\ 

Figure 21: Drawing of edges incident to ut in Di when Bx is a biconnected 
component and Bj+i is a bridge. 

vertical) straight line segment. We draw Bj+i as indicated by a dotted line in 
Fig. 22(b). 

Bx * M 
Vt 

\Z 

B i+l 

x BY
 v

t y 

(a) (b) 

Figure 22: Drawings of Bi when both Bx and Bj+i are bridges 

Case 3: Bx is a bridge and B^i is a biconnected component. 
In this case vt is drawn in Di as an end of a horizontal or vertical line 

segment inside an inner face of Dt. Vertex vt has degree 2 in Bi+i and is an 
outcut vertex for C 0 (Sj+ i ) . By Lemma 9 J5(Bj+i) is a mergeable orthogonal 
drawing, and hence Vt is a convex corner or a non-corner of the drawing of 
C0(Bi+i) in D(Bi+\). Therefore D{Bi+\) can be easily merged with Dj by 
rotating D(G(Bi+1f) by 90° or 180° or 270° and expanding the drawing Dt if 
necessary. In Fig. 20(e) the orthogonal drawing of BQ is merged to D5 at vertex 
Un where D{B&) in Fig. 20(d) has been rotated by 90° and the drawing D5 is 
expanded outwards. • 

We call the algorithm described in the proof of Lemma 11 Algorithm 
Maximal-Orthogonal-Draw. Clearly Algorithm Maximal-Orthogonal-
Draw takes linear time. 

We are now ready to give a proof for sufficiency of Theorem 3. 
Proof for sufficiency of Theorem 3 

We decompose G into maximal closed subgraphs and bridges. We find an 
orthogonal drawing of each maximal closed subgraph by Algorithm Maximal-
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Orthogonal-Draw. Each of the bridges can be drawn by a horizontal or a 
vertical line segment. Using a technique similar to one in the proof of Lemma 11, 
we merge the drawings of the maximal closed subgraphs and bridges. The 
resulting drawing is an orthogonal drawing of G without bends. • 

We call the algorithm described in the proof for sufficiency of Theorem 3 
Algorithm No-bend-Orthogonal-Draw. An execution of the algorithm No-
bend-Orthogonal-Draw is illustrated in Fig. 23. We now have the following 
theorem. 

I t 1 > 4 

o > V* -
Vl 

Ho Hi' 
i 

2 n P3 

> — • „ 
v15 14 

<» 1 

w "\ 

"20 " 

D(G(CT)) 

D(G(Cl)) 

(c) 

vfr3 
8 Ho Yi 

Vl5 

27 D(G) 
(d) 

Figure 23: (a) A plane graph G, (b) two maximal closed subgraphs G{C\) and 
G(C2) of G, (c) orthogonal drawings of G{C\) and G(C2) without bends, and 
(d) orthogonal drawings of G without bends. 

Theorem 4 If G is a plane connected graph of A < 3 and satisfies the con
dition in Theorem 3, then Algorithm No-bend-Orthogonal-Draw finds an 
orthogonal drawing of G without bends in linear time. U 

5 Conclusions 

In this paper we established a necessary and sufficient condition for a plane graph 
G of A < 3 to have an orthogonal drawing without bends, and gave a linear-
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time algorithm to examine whether G has an orthogonal drawing without bends 
and find such a drawing of G if it exists. The condition is a generalization of 
Thomassen's condition for rectangular drawings [12]. The algorithm presented 
in this paper has applications in finding an orthogonal drawing of a plane graph 
of A < 3 with the minimum number of bends in linear time [5]. It is remained 
as a future work to establish a necessary and sufficient condition for a plane 
graph of A < 4 to have an orthogonal drawing without bends. 

An orthogonal drawing of a plane graph G without bends is called a rect
angular drawing of G if each face of G including the outer face is drawn as a 
rectangle. A planar graph is said to have a rectangular drawing if at least one 
of its plane embeddings has a rectangular drawing. Recently Rahman et al. [6] 
gave a necessary and sufficient condition for a planar graph of A < 3 to have a 
rectangular drawing which leads to a linear time algorithm to find a rectangular 
drawing of a planar graph, if it exists. It is thus an interesting future work to 
generalize the condition of Rahman et al. [6] for orthogonal drawings of planar 
graphs of A < 3 without bends. 
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Abstract 

This paper investigates the following question: Given a grid <j>, where 
<j> is a proper subset of the integer 2D or 3D grid, which graphs admit 
straight-line crossing-free drawings with vertices located at (integral) grid 
points of (j>1 We characterize the trees that can be drawn on a strip, i.e., 
on a two-dimensional n x 2 grid. For arbitrary graphs we prove lower 
bounds for the height k of an n x k grid required for a drawing of the 
graph. Motivated by the results on the plane we investigate restrictions 
of the integer grid in 3D and show that every outerplanar graph with n 
vertices can be drawn crossing-free with straight lines in linear volume on 
a grid called a prism. This prism consists of 3ra integer grid points and is 
universal - it supports all outerplanar graphs of n vertices. We also show 
that there exist planar graphs that cannot be drawn on the prism and 
that extension to an n x 2 x 2 integer grid, called a box, does not admit 
the entire class of planar graphs. 
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1 Introduction 
This paper deals with crossing-free straight-line drawings of planar graphs in two 
and three dimensions. Given a graph G, we constrain the vertices in a drawing 
of G to be located at integer grid points and aim at computing drawings whose 
area/volume is small. The interest in these two requirements is motivated in 
part by the fact that the screen of a computer is an integer grid of limited size 
and by the fact that a drawing algorithm should not be affected by round-off 
errors when representing the output coordinates. Also, the increasing demand 
of visualization algorithms to draw and browse very large networks makes it 
natural to study what families of graphs can be entirely visualized on a two di
mensional screen and to investigate how much benefit can be obtained from the 
third dimension to represent the overall structure of a huge graph in a small por
tion of a virtual 3D environment. A rich body of literature has been published 
on computing straight-line drawings of graphs, such that the vertices are the 
intersection points of an integer 2D grid and the overall area of the drawing is 
kept small. Typically, papers that deal with this subject focus on lower bounds 
on the area required by straight-line drawings of specific classes of graphs and 
on the design of algorithms that possibly match these lower bounds. A very 
limited list of mile-stone papers in this field includes the works by de Fraysseix, 
Pach, and Pollack [11, 12] and by Schnyder [38] who independently showed that 
every n-vertex triangulated planar graph has a crossing-free straight-line draw
ing such that the vertices are at grid points, the size of the grid is 0(n) x 0(n), 
and that this is worst case optimal; the work by Kant [26, 27], Chrobak and 
Kant [6], Schnyder and Trotter [39], Felsner [21] and Chrobak, Goodrich, and 
Tamassia [7] who studied convex grid drawings of triconnected planar graphs 
in an integer grid of quadratic area; and the many papers proving that linear 
or almost-linear area bounds can be achieved for classes of trees, including the 
result by Garg, Goodrich and Tamassia [23] and the result by Chan [5]. Sum
marizing tables and more references can be found in the book by Di Battista, 
Eades, Tamassia, and Tollis [14]. 

While the problem of computing small-sized crossing-free straight-line draw
ings in the plane has a long tradition, its 3D counterpart has become the subject 
of much attention only in recent years. Chrobak, Goodrich, and Tamassia [7] 
gave an algorithm for constructing 3D convex drawings of triconnected planar 
graphs with 0(n) volume and non-integer coordinates. Cohen, Eades, Lin and 
Ruskey [9] showed that every graph admits a straight-line crossing-free 3D draw
ing on an integer grid of 0(n3) volume, and proved that this is asymptotically 
optimum. Calamoneri and Sterbini [3] showed that all 2-, 3-, and 4-colorable 
graphs can be drawn in a 3D grid of 0(n2) volume with 0{n) aspect ratio and 
proved a lower bound of Q(n1,5) on the volume of such graphs. For r-colorable 
graphs, Pach, Thiele and Toth [31] showed a bound of 6{n2) on the volume. 
Garg, Tamassia, and Vocca [24] showed that all 4-colorable graphs (and hence 
all planar graphs) can be drawn in 0(n15) volume and with 0(1) aspect ratio 
but using a grid model where the coordinates of the vertices may not be integer. 
In this paper we study the problem of computing drawings of graphs on integer 
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2D or 3D grids that have small area/volume. The area/volume of a drawing T 
is measured as the number of grid points contained in or on a bounding box of 
T, i.e. the smallest axis-aligned box enclosing T. Note that along each side of 
the bounding box the number of grid points is one more than the actual length 
of the side. We approach the drawing problem with the following point of view: 
Instead of "squeezing" a drawing onto a small portion of a grid of unbounded 
dimensions, we assume that a grid of specified dimensions (involving a function 
of n) is given and we consider what the graphs are whose drawings fit that 
restricted grid. For example, it is well-known that there are families of graphs 
that require Q(n2) area to be drawn in the plane, the canonical example being a 
sequence of n /3 nested triangles (see [12, 8, 38]). Such graphs can be drawn on 
the surface of a three dimensional triangular prism of linear volume and using 
integer coordinates. Thus a natural question is whether there exist specific re
strictions of the 3D integer grid of linear volume that can support straight-line 
crossing-free drawings of meaningful families of graphs. For planar graphs the 
best known results for three dimensional crossing-free straight-line drawings on 
an integer grid are by Calamoneri and Sterbini [3] who show 0(n2) volume for 
general planar graphs and by Eades, Lin and Ruskey [9] who show 0(n log n) 
volume for trees. 

The main contributions of the present paper are investigations concerning 
the drawability of graphs on 2D and 3D restricted integer grids and new drawing 
algorithms for some classes of graphs. An overview of the results is as follows. 

• We characterize those trees that can be drawn on a strip, i.e., an integer 
2D grid restricted to two consecutive horizontal grid lines. From the char
acterization we derive a linear time algorithm to generate such drawings, 
if possible. This result was independently obtained by Schank [36] in his 
Master's thesis. 

• Generalizing the result for strips, we present a lower bound "the strictness 
of a tree" for the number k of horizontal grid lines required for grid draw
ings of trees. A consequence of this bound is that for any given k there 
always exist some trees that are not drawable on the n x k grid. 

• We show that the strictness of a tree is closely related to the well-known 
parameter path-width. For general graphs the path-width is shown to be 
a lower bound for the height of grid drawings. 

• Motivated by the results on restricted integer 2D grids we explore the capa
bility of restricted 3D integer grids for supporting linear volume drawings 
of graphs. In particular, we focus on two types of 3D integer grids to be 
defined subsequently, both having linear volume, called the prism and the 
box. We show that all outerplanar graphs can be drawn in linear volume 
on a prism. Note that this is the first result on 3D straight-line drawings 
of a significant class of planar graphs that achieves linear volume with 
integer coordinates. 
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• We further explore the class of graphs that can be drawn on a prism 
by asking whether the prism is a universal 3D integer grid for all planar 
graphs. We answer this question in the negative by exhibiting examples 
of planar graphs that cannot be drawn on a prism. We also investigate 
the relationship between prism-drawable and hamiltonian graphs. 

• We extend our study to box-drawability and present a characterization 
of the box-drawable graphs. While the box would appear to be a much 
more powerful grid than the prism, we prove that not all planar graphs 
are box-drawable. 

Several recent related results about 3D straight line drawings of limited 
volume have been published after the conference version of this paper was pre
sented at the Symposium on Graph Drawing GD 2001 [22]. Dujmovic, Morin, 
and Wood [20] present 0(n log2 n) volume drawings of graphs with bounded 
tree-width and 0(n) volume for graphs with bounded path-width. Wood [42] 
shows that also graphs with bounded queue number have 3D straight-line grid 
drawings of 0(n) volume. A very recent result by Dujmovic and Wood [17] 
shows that linear volume can also be achieved for graphs with bounded tree-
width; they show 3D straight-line grid drawings of volume c x n for these graphs, 
where c is a constant whose value exponentially depends on the tree-width. Di 
Giacomo, Liotta, and Wismath [16] show 4 x n volume for a subclass of series-
parallel graphs. The problem of computing straight-line 3D drawings of planar 
graphs on an integer grid of o(n2) volume is still open. A recent lower bound 
on the volume of 3D straight line drawings as a function of the number of edges 
is obtained by Bose, Czyzowicz, Morin, and Wood [2]. 

The remainder of the paper is organized as follows. Preliminaries and basic 
definitions are in Section 2. The study of trees drawable on restricted integer 2D 
grids is the topic of Section 3. In this section we also investigate the connection of 
grid drawings and path-width. Section 4 presents the linear volume algorithm 
for outerplanar graphs. Combinatorial properties of the graphs that can be 
drawn on the surface of a prism and on a box are studied in Sections 5 and 6. 
Final remarks, directions for further research and open problems can be found 
in Section 7. 

2 Preliminaries 

We assume familiarity with basic graph drawing, and computational geometry 
terminology; see for example [33, 14]. Since in the remainder of the paper we 
shall only study crossing-free straight-line drawings of planar graphs, from now 
on we shall simply talk about "graphs" to mean "planar graphs" and about 
"drawings" to mean "crossing-free straight-line drawings". We use the terms 
"vertex" and "edge" for both the graph and its drawing. We will draw graphs 
such that vertices are located at integer grid points. The dimensions of a grid 
are specified as the number of different grid points along each side of a bounding 
box of the grid. In two dimensions, a p x q grid consists of all points (i, j) with 
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1 < i < p and 1 < j < q that have integer coordinates. In three dimensions, 
a, p x q x r grid consists of all points (i, j , k) with 1 < i < p, 1 < j < q and 
1 < k < r that have integer coordinates; p, q and r are referred to as the x-, y-, 
and z-dimension of the grid, respectively. 

We shall deal with the following grids and drawings. 

• A 2D 1-track (or simply a track) is an oo x 1 grid; a 1-track drawing of a 
graph G is a drawing of G where the vertices are at distinct grid points of 
the track. 

• A 2D strip is an oo x 2 grid; note that a strip contains two tracks. A 
strip drawing of a graph G is a drawing of G with the vertices located at 
distinct grid points of the strip and the edges either connect vertices on 
the same track or connect vertices on different tracks. 

• Next we extend the notion of a strip to multiple overlapping strips. Let 
k be a given positive integer value. A 2D k-track grid is an oo x k grid 
consisting of k consecutive parallel tracks. A k-track drawing of a graph 
G is a drawing of G where the vertices are at distinct grid points of the 
fc-track and edges are only permitted between vertices that are either on 
the same track or that are one unit apart in their y-coordinates. Note 
that the previous two grids are the specific cases of k = 1 and k = 2. 

• Let k be a given positive integer value. In an n x k-grid drawing of a 
graph G, the vertices are located at distinct grid points and the edges 
may connect any pair of vertices on that grid. To avoid confusion with 
track drawings, we refer to the value k as the number of grid lines in the 
grid drawing. 

• We will also study two different types of n x 2 x 2 grids. A box is an 
n x 2 x 2 grid where each side of the bounding box is also a grid line. 
Therefore, a box has four tracks which lie on two parallel planes and are 
one grid unit apart from each other. A prism is a subset of an n x 2 x 2 
grid obtained by removing a track from a box. Figure 1 shows an example 
of a box of size 6 x 2 x 2 and an example of a prism. 

7 ^ : T ^ — r ^ — ~ — r \ 
• ) — ^ — I — ^ i — l — ^ — 1 — 1 " 1 — l — 

i • i • ! ' i • i 
* - . — n ' - - i . j - - - ; - * . - . . , - - i i ; - — ; . * 

1*1 i * i^i lid : 

-L \ l. _ _ 2. ! _ _ _ * W *. 

Figure 1: A box and a prism 

Note that &-track drawings differ from the so-called &-level drawings (see, e.g. 
[25]) as in a fc-track drawing (consecutive) vertices on the same track are per
mitted to be joined by an edge and the given graph is undirected. Let <f> be one 
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of the grids defined above. We say that a graph G is <f> drawable if G admits a 
4> drawing T where each vertex is mapped to a distinct grid point of <j>. 

Property 1 A graph is 1-track drawable if and only if it is a forest whose 
vertices have degree at most two. 

While in a fc-track drawing no edge can connect vertices that are on non-
consecutive tracks, in an n x fc-grid this is allowed. As the following property 
shows, this difference has immediate consequences on the families of &-track 
drawable and n x A;-grid drawable graphs. 

Property 2 Let k > 3 be a fixed positive integer. There exist graphs with n 
vertices that are n x k-grid drawable but are not k-track drawable. 

Proof. The graph K4 has an n x 3-grid drawing but it does not have a 3-
track drawing - indeed K4 is not drawable on tracks. Furthermore any graph 
containing K4 as a subgraph is not track-drawable. Given a drawing of a graph 
on an n x fc-grid (for k > 3), we can attach a copy of K4 which makes the 
resulting graph not track-drawable. r-j 

In the extended abstract for the graph drawing conference GD'01[22] we 
incorrectly argued that for trees n x fc-grid drawable is equivalent to A;-track 
drawable. It was first observed by Matthew Suderman that this was false. In 
a recent manuscript Suderman [40] describes a family Sk of trees, such that S* 
can be drawn on the n x (k + 1) grid but requires 2k - 1 tracks. Suderman's 
results are actually stated in terms of the pathwidth pw of a tree (a notion 
introduced in the next section). He shows that pw(Sk) = k and every tree T 
with pw(T) < k admits a drawing on 2k — 1 tracks. 

3 Grids, Path-width and Trees 

In this section we investigate the connections between drawability of a graph G 
on grids and the path-width of G. The notion of the path-width of a graph G 
was introduced by Robertson and Seymour [34] in the first paper of their series 
on graph minors. A path decomposition of a graph G = (V,E) is a sequence 
Wi, W2, • • •, Wt of subsets of V such that 

• V(u, v) G E, 3i such that u, v G Wi 

• \/v G V the set I(v) — {i : v G W»} is an interval of { 1 , . . . , t}, 
i.e. if a < b < c and a,cE I(v) then b G I(v). 

The width of the path decomposition is max(|Wj| — 1 : i = l,...,t) and the 
path-width of G, denoted pw(G) is the minimum width of a path decomposition 
of G. The path-width of an independent set is defined as zero. 

Several graph parameters have been shown to be equivalent to path-width. 
The interval thickness 6(G) is the smallest max-clique over all interval super-
graphs of G. Since interval graphs are perfect this can also be stated in terms 
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of the chromatic number: 0(G) = mva{x{H) '• H is an interval graph with 
E(G) C E{H)}. Mohring [30] has shown that 0(G) = pw(G) + 1. In node 
searching, an undirected graph is considered as a system of tunnels in which 
a fugitive is hidden. The node search number ns(G) is the least number of 
searchers required to capture the fugitive when the search is governed by the 
following rules: A search move consists of placing a searcher at a node or re
moving a searcher from a node. The fugitive is captured if both ends of the 
edge where he hides are simultaneously occupied by a searcher. The fugitive 
is allowed to move (at any speed) along edges subject to the condition that he 
never passes a node occupied by a searcher. Kiriousis and Papadimitriou [28] 
have shown that 0(G) = ns(G). Moreover there is an optimal search, i.e., a 
search requiring only ns(G) searchers, such that after an edge has been cleared 
by two searchers simultaneously guarding its end-nodes it never recontaminates, 
i.e., there never appears a path that carries no searcher connecting the cleared 
edge with a contaminated (uncleared) one. 

We now show that the path-width is a lower bound on the number k of grid 
lines needed for an n x k grid drawing for general planar graphs. We note that 
a similar result was obtained in [19] however in the context of /i-layer graph 
drawings. 

Theorem 1 Let G be a planar graph. Then we have 
pw(G) < minfc (G is drawable on annx k grid). 

Proof. We prove the inequality in the node searching context; recall ns(G) = 
pw(G) + 1. Given a planar graph G which is drawn on an n x k grid, we show 
that the layout can be used to design a node search strategy using fc+1 searchers 
for G. At the beginning a grid-line-searcher is placed on the leftmost node of 
each of the k grid lines of the drawing. The invariant is that at any intermediate 
step of the search there is a searcher on each grid line and the k nodes occupied 
by these searchers form a node separator. Left of the searchers there are cleared 
edges and nodes; edges and nodes to the right are not yet cleared and there 
is no edge connecting a cleared with an uncleared node. A move consists of 
identifying a searcher s sitting on a node v(s) on grid line t(s), such that either 
there is no edge connecting v(s) to an uncleared node or there is exactly one 
such edge and this edge connects v(s) to the next node right of v(s) on the same 
grid line. In both cases the (k + l)st searcher s* is placed on the next node v' on 
the same grid line t(s). Then s moves to v' thus setting s* free again. We claim 
that a move as described is possible as long as not all the k grid-line-searchers 
are sitting on the rightmost node of their line. Since a move clearly keeps the 
invariant valid the claim implies that the graph can be decontaminated from 
left to right in a sequence of moves. It remains to prove the existence of a move. 
Label the grid lines £1,^2, • • -,tk from lowermost to topmost. Denote the node 
occupied by the grid-line-searcher on tj by u .̂ With Vi associate the number hi 
of the highest grid line such that there is an uncleared edge from v^ to a node 
on grid line h^; if there is no uncleared edge leaving Vi we set hi = 0. Since 
hk < k there is a least index i such that hi < i. We claim that we can choose 
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the searcher of grid line U for the move. If i = 1 condition hi < 1 implies that 
we can advance the searcher on the first grid line. If i > 1 consider the edge 
emanating from node v^i to a node on grid line /ij_i > i. By planarity and 
since /ij_i > i this edge shields Vi from all uncleared nodes on grid lines tj for 
j < i. Therefore, there can be at most one edge leaving Wj to an uncleared node 
to the right and this node must sit on the same grid line. rj 

Figure 2: Six nested triangles. 

Figure 3: A drawing of G3 on an n x 6 grid. 

For the case of trees Suderman [40] has given tight bounds for the gap 
between path-width and the required height of the grid. Depending on the 
drawing model chosen, this height is bounded by the (3 fold of the path-width 
with/3e {§,2,3}. 

In contrast to the situation with trees, the gap in the inequality of Theorem 1 
can be arbitrarily large for other classes of planar graphs. Let Gk be the graph 
consisting of 2k nested triangles (see Figure 2 for the case k = 3). It is not 
difficult to see that a grid drawing of Gk requires at least 2k grid lines (i.e. an 
n x 2k grid). Namely, since Gk is three-connected it is enough to study the 
drawings given by all choices of outer faces. If the outer face is a three cycle, 
by induction we have that a drawing of Gk requires a number of grid lines that 
is at least twice the number of nested triangles, i.e. it requires at least 4k grid 
lines. If the outer face is a four cycle, we still have to draw a three cycle with at 
least k nested triangles inside, and therefore at least 2k grid lines are required. 
However, the node-search number of Gk is 4, independent of k. In an optimal 
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search the searchers sweep the triangles starting at the innermost and moving 
out. An optimal drawing for G3 is given in Figure 3. 

3.1 Minor monotone issues 

The contraction of an edge e = (x, y) in a graph means replacing x and y by 
a single vertex z which is made adjacent to all the remaining neighbours of x 
and y. 

Given a graph G we can generate smaller graphs by repeatedly deleting and 
contracting edges and deleting isolated vertices. These smaller graphs are called 
minors of G. Define G' -< G if G' is a minor of G. The relation -< is an order 
relation on the set of all graphs. A set V of graphs is minor monotone ifG^V 
and G' -<G implies G ' e P . 

Important examples of minor monotone sets of graphs are: forests, outer-
planar graphs, planar graphs and for any fixed k, the set of graphs G with 
pw(G) < k. A fundamental result of Robertson and Seymour [35] asserts that 
every minor monotone set of graphs M is characterized by a finite set of ob
structions, i.e. there is an integer t and a list of graphs 0\, O2, • • •, Ot such that 
G € M iff Oi -ft G for i = 1 , . . . , t. A classical instance is the theorem of Wagner 
[41]: G is planar iff it has no minor isomorphic to K5 or K^^. 

From Theorem 1 it is conceivable to view the minimal height k such that a 
planar graph admits a drawing on an n x k grid as a more discriminating, i.e. 
refined, version of path-width. The following theorem shows that this parameter 
'grid-height' lacks one very important property. 

Theorem 2 Being drawable on an n x k grid is not a minor monotone graph 
property for k > 3. 

Proof. The graph G shown in Figure 4 is drawn on three grid lines. By con
tracting the dotted edge we obtain the graph G' shown to the left in Figure 5. 
We show that G' requires a grid of height at least four. 

In Figure 5 the vertex resulting from the contraction is emphasized and 
labeled c, another vertex of degree two is labeled t. Let G't be the graph obtained 
by deleting t. 

The first step of the proof is to show that in every drawing of G't the bold 
vertices are drawn on the middle line. This is based on an observation which is 
interesting in its own right. 

Figure 4: The graph G drawn on a grid of height 3. 
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Figure 5: The contraction graph G' and its subgraph G't 

Let G be embedded on a grid of height k and let C be the outer cycle 
of G. The interior vertices of G, i.e., those not on C, are embedded 
on the grid lines from 2 to k — 1. 

For the case of three grid lines, k = 3, this implies that all vertices not on 
the outer cycle must be drawn on the middle grid line. As a consequence, the 
graph induced by the inner vertices must be a subgraph of a path. 

In the case of G't there are two candidates for the outer cycle namely, the 
one shown in the figure and the cycle of length four including the edge (s, c). In 
both cases the four black vertices are interior and must be drawn on the middle 
grid line. Assume that s is placed on grid line 1; then both vertices a and c 
have to go on grid line 3. A drawing of G' contains a drawing of G't, hence, for 
a drawing of G' on a grid of height three we also have: If s is on line 1 then a 
and c are on line 3. However, since x and t are common neighbours of a and c 
this placement of a and c makes a crossing of edges unavoidable. In conclusion 
the minor G' of G has no drawing on a grid of height 3. rj 

An interesting open problem suggested by one of the referees is whether 
for trees and forests the required height for grid drawings might be a minor 
monotone parameter. 

3.2 Drawings of Trees 

Next we consider drawings of trees. As a first step we characterize the family 
of strip-drawable trees and give linear time recognition and drawing algorithms 
for such trees. 

The approach taken applies to strip-drawable trees and has a natural gener
alization which leads to the notion of a fc-strict tree. We show that a (fc+l)-strict 
tree cannot be drawn on an n x k grid. We then show that the strictness of a 
tree is closely related to the path-width. More precisely, there is a difference of 
at most one between the two parameters. In his recent paper Matthew Suder-
man [40] has obtained tight bounds on the height of a grid required for drawings 
of trees of path-width k in several drawing models. 
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3.2.1 Strip-Drawable Trees 

Property 1 establishes that all paths are strip-drawable, since they are in fact 
1-track drawable. We define a tree as 2-strict if it contains a vertex of degree 
greater than or equal to three. An immediate consequence of Property 1 is the 
following. 

Property 3 A 2-strict tree is not 1-track drawable. 

An edge is defined as a core edge if its removal results in two 2-strict components. 
For an edge e = (u, v), we refer to the two subtrees resulting from its removal 
(but including vertices u, v) as Tu and Tv. 

Lemma 1 Core edges are connected. 

L • 
Tu Tx 

Figure 6: Core edges are connected 

Proof. Let e\ = (u, v) and e<z = (w,x) be two core edges and consider any 
edge e on the path connecting e\ to e%. Refer to Figure 6. Edge e receives one 
2-strict component from Tu and one from Tx and thus must be core. Q 

Lemma 2 A tree is strip drawable if and only if its core edges form a path. 

Proof. (=^) (by contradiction) By the previous lemma, if the core edges do 
not form a path, then there is a vertex v with at least three incident core 
edges (v,a), (u, b), (v,c) - see Figure 7. If the subtrees Ta,Tb,Tc are drawable 
then by Property 3 their associated drawings Ta, Tj, Tc each require two tracks. 
There is no location for v that permits a crossing-free connection to all three 
subdrawings. (<^) Refer to Figure 8. If the core edges form a non-degenerate 
path (i.e. a non-zero length path), then draw them consecutively on track t\. 
Consider an arbitrary non-core edge e = (u, v) with u on track t\. Since e is 
non-core, Tv must not be 2-strict and is thus 1-track drawable. Therefore v 
can be placed on track t^ with the drawing of Tv also on the same track, as in 
Figure 8. There is one degenerate case to consider. If there are no core edges 
(i.e. a path of length 0), then either the tree has no vertex of degree three and 
is in fact drawable on a single track, or there exists at most one vertex v with 
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Figure 7: T is not strip-drawable if the core edges are not a path 

Figure 8: Drawing a tree on a strip 

neighbours Wi,W2, —Wk and each TWi is not 2-strict. Each of the subtrees can 
thus be drawn on track t% and v on track t\ as in Figure 9. rj 

Based on this characterization, we now consider the complexity of recogniz
ing and drawing the trees that are strip-drawable. 

Lemma 3 Let T be a tree with n vertices. There exists an 0(n)-time algorithm 
that recognizes whether T is strip-drawable and, if so, computes a strip drawing 
ofT. 

Figure 9: A degenerate core path 
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Proof. Note that a tree is 2-strict if and only if it has more than two leaves; 
thus counting leaves is the crucial operation. First the core edges must be 
established and then the path condition on the core edges checked. With each 
edge e = (u, v) we associate two counters: lu will be the number of leaves in 
Tu, and lv will be the number of leaves in Tv. Let I be the number of leaves 
in the entire tree T. Since lu + lv = I it follows that e is a core edge if and 
only if both lu and lv are larger than 2. Choose an arbitrary non-leaf vertex r 
as a root. Each vertex v reports the number of leaves in the subtree below it 
to its parent u - thus establishing lv for the edge (u, v) and hence lu. If v has 
no children then it is a leaf and reports 1. A simple recursive function can be 
used to implement this counting step in linear time. Finally, checking that the 
core edges form a path is easily accomplished in linear time and the proof of the 
previous Lemma described the construction of the strip drawing. rj 

We can summarize Lemmas 2 and 3 as follows. 

Theorem 3 A tree T with n vertices is strip drawable if and only if its core 
edges form a path. Furthermore, there exists an 0(n)-time algorithm that de
termines whether T is strip drawable and, if so computes a strip drawing ofT. 

3.2.2 fc-Strict Trees 

The results of Theorem 3 can be extended to give a necessary condition for trees 
to be drawable on an n x k grid by generalizing the concepts of the previous 
section. A tree is k-strict if it contains a vertex adjacent to at least three vertices 
whose subtrees are (k — l)-strict. For example, the tree of Figure 10 is 3-strict 
since the vertex u is adjacent to three 2-strict subtrees. 

Figure 10: A 3-strict tree 

Lemma 4 A (k + 1)-strict tree is not drawable on an n x k grid. 

Proof. The proof is by induction on k and Property 3 provides the base case. 
If a tree T is (fc + l)-strict then it contains a vertex v adjacent to at least three 
vertices whose subtrees are fc-strict and by the inductive hypothesis each subtree 
requires at least k tracks to be drawn. In this case, there is no location for v on 
the k tracks that allows it to connect to the three subtrees without creating an 
intersection. r-i 
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Corollary 1 The complete ternary tree of height?- k + 1 is not drawable on an 
nx k grid. 

Proof. Such a tree is (k + l)-strict and hence not drawable on the n x k grid. 

• 

3.2.3 fc-strict t rees and Pa th -wid th 

In this subsection we show that the strictness of a tree is tightly related to the 
well known parameter path-width. 

Theorem 4 Let T be a tree. Then 

pw(T) < max*; (T is k-strict) < pw(T) + 1. 

Proof. For the proof we compare the strictness of a tree T to its node search 
number ns(T) = pw(T) + 1 (refer to the beginning of this section for the def
initions). In the proof we make use of a lemma attributed to Parsons [32] in 
[29] 

[Parsons' Lemma] For any tree T and integer k > 1, ns(T) > k + 1 
if and only if T has a vertex v at which there are three or more 
branches that have search number k or more. 

First we show that for a tree T fc-strictness implies ns(T) > k, by induction 
on k. Assume T is 2-strict. Then T contains a vertex of degree 3; in particular 
therefore at least one edge and ns(T) > 2. Now assume T is fc-strict, k > 2. 
Then T contains a vertex v at which three branches 2"i, T2, T3 are (k — l)-strict. 
By induction, each T, satisfies ns(Tj) >k — l, and by Parsons' lemma ns(T) > k. 

Next we show that ns(T) > k implies that T is (k - l)-strict, again by 
induction on k. Assume that ns(T) = 2. Then T contains an edge, and therefore 
it is 1-strict. Now ns(T) = k > 2. By Parson's lemma T contains a vertex v 
with three branches T±, T2, T3 such that ns(T,) > k — 1. By induction, T, is 
(k — 2)-strict, and therefore T is (k - l)-strict. rj 

4 Three-Dimensional Drawings of Outerplanar 
Graphs 

In Section 3, Corollary 1 showed that, for a fixed k, there is no n x k grid that 
supports all trees of n vertices. This motivates us to investigate the existence 
of three-dimensional restricted grids that support all trees. As it turns out, 
the situation in three dimensions is distinctly different. Namely, we show that 
all outerplanar graphs are prism-drawable by providing a linear time algorithm 

xThe height is measured as the number of vertices on the path from the root to the deepest 
leaf. 
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that computes this drawing. This is the first known three-dimensional straight-
line drawing algorithm for the class of outerplanar graphs that achieves 0(n) 
volume on an integer grid. 

A high level description of our drawing algorithm, called Algorithm Prism 
Draw, is as follows. Let G be an outerplanar graph with a specified outerplanar 
embedding, i.e. a circular ordering of the edges incident around each vertex such 
that all vertices of G belong to the external face. (Such an embedding can be 
computed in linear time). Algorithm Prism Draw computes a prism drawing 
of G by executing two main steps. Firstly a 2D drawing of G is computed on a 
grid that consists of 0(n) horizontal tracks and such that adjacent vertices are 
at grid points whose ^-coordinates differ by at most one. This is done by visiting 
G in a breadth-first fashion and setting the ^-coordinate to be the breadth-first 
search (BFS) number and the y-coordinate to be the depth in the BFS tree. 
Secondly, the drawing is "wrapped" onto the faces of a prism by folding it along 
the tracks. Refer to Figure 11. 

Figure 12 shows an example of the output of Step 1 of the algorithm; for 
consistency with track layout terminology, the Y axis points downwards. The 
following results establish that Algorithm Prism Draw computes a prism draw
ing of any outerplanar graph G. First observe that currx is incremented each 
time a vertex is drawn, and therefore we have the following proposition. 

Proposi t ion 1 No two vertices ofY are assigned the same X-coordinate. 

Also, since the unmarked neighbours of a vertex u are all drawn on the track 
consecutive to that of u during Step 1, we have the following. 

Proposi t ion 2 A vertex is assigned to track ti+i if and only if it has not yet 
been marked/assigned and has a neighbour on track ti} for i>0. 

The following lemmas establish that the drawing between any two consecutive 
tracks forms a strip drawing, and therefore Step 1 of Algorithm Prism Draw 
computes a fc-track drawing of the input graph. 

Lemma 5 Let G be an outerplanar graph with a given embedding and let F be 
the drawing computed by Step 1 of Algorithm Prism Draw. Then Y is a k-track 
drawing of G for some k <n. 

Proof. Step 1 of Algorithm Prism Draw draws G on a 2D fc-track, where k <n. 
Also, by Proposition 2 we have that an edge of F can connect only vertices that 
are drawn either on the same track or on two consecutive tracks. In order to 
complete the proof we must show that T satisfies the following properties. 

1. No two edges connecting vertices on consecutive tracks intersect. 

2. Let u and v be two vertices of T which are drawn on the same track t. If 
u and v are adjacent in G, then they appear consecutively on t. 

We start by proving that T has the first property. Suppose there exist four 
vertices a, b, c, d such that 
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Algorithm Prism Draw 

input: An outerplanar graph G with a given outerplanar embedding. 
output: A prism drawing of G. 

Step 1. The 2D Drawing Phase: A 2D track drawing r of G where vertices 
are assigned to different x-coordinates is computed as follows. 

• Add a dummy vertex d on the external face and an edge connecting 
d to an arbitrary vertex v. 

• mark d 

• z:=0 

• currx :=0 

• draw v on track to by setting X(v) := currx; Y(v) :=i 

• currx := currx +1 

• mark v 

• while there are unmarked vertices of G do 

- visit the vertices on track U from left to right and for each en
countered vertex u do 

* let l o b e a marked neighbour of u in G 

* visit the neighbours of u in counterclockwise order starting 
from w, and for each encountered vertex r such that r is 
unmarked do order 

• draw r on track ti+i by setting X(r) := currx; Y{r) := 
i+l 

• currx := currx +1 
• mark r 

- i := i+l 

Step 2: The 3D Wrapping Phase: A prism drawing T' is obtained by folding 
r along its tracks as follows. 

• for each vertex v of T define its coordinates X'(v), Y'(v) and Z'(v) in V 
by setting: 

-X'(v):=X(v) 

- if Y(v) = 0,1 mod 3 then Y'(v) := 0, else Y'(v) := 1 

- if Y(v) = 0,2 mod 3 then Z'{v) := 0, else Z'(v) := 1 

Figure 11: Algorithm Prism Draw. 
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Figure 12: An outerplanar graph drawn by Step 1 of Algorithm Prism Draw. 

w jy 

^ V ^ " ^ * , — *M ^ r ^ ^ - * U+i 
c a c d 

(a) (b) 

Figure 13: Two cases for the proof of Lemma 5. 

• a and b are on track ti and a is to the left of b. 

• c and d are on track £j+i. 

• There is an edge (a, d) intersecting an edge (6, c). 

Note that Algorithm Prism Draw draws all the unmarked neighbours of a on 
track ti+i by following the counterclockwise order of the edges around a given 
by the outerplanar embedding of G. Also note that all the neighbours of a on 
track ij+i are assigned an X-coordinate that is strictly smaller than the X-
coordinates assigned to the neighbours of any vertex drawn to the right of a on 
track ti. Therefore we may conclude that if (a, d) and (b, c) cross, then one of 
the two cases must hold: Case 1: Vertex c is a neighbour of both b and a (see 
Figure 13a). Case 2: There is a vertex x, drawn on track ti to the left of o and 
such that c is a neighbour of both x and b (see Figure 13b). Consider Case 1. By 
Proposition 2 and by the fact that Algorithm Prism Draw places only vertex 
v on track to, it follows that there exists a lowest common ancestor of both a 
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and b, say w, drawn on some track tj with 0 < j < i. Let Hwa and ILj,& be two 
disjoint paths connecting w to a and w to b respectively. Observe that Step 1 
of Algorithm Prism Draw computes a drawing that preserves the given outer-
planar embedding of G since it draws the vertices on consecutive tracks with 
increasing x values and by following the circular ordering of the edges around 
the vertices. Therefore, if edge (a, d) follows edge (a, c) in the counterclockwise 
ordering of the edges around a, then in the outerplanar embedding of G there 
must be a cycle (namely that formed by the path Hwa, edge (a,c), edge (c, b) 
and path Yiwb) with vertex d in its interior. But this is a contradiction. Now 
consider Case 2. By the same argument used for the previous case, there is a 
lowest common ancestor w of x and b on some track tj with 0 < j < i. Let n ^ 
and Hwb be two disjoint paths connecting w to x and w to b respectively. Now 
observe that vertex d would necessarily lie in the interior of the cycle defined 
by Ilwx, edge (x, c), edge (c, b) and path Hwf, thus contradicting the fact that T 
preserves the outerplanar embedding of G. Finally, we prove that T satisfies the 

w 

—kt^ ' 
Figure 14: Edges on a given track only join consecutive vertices. 

second property and again the proof is by contradiction. Suppose there exist 
two vertices a and b on track tj (0 < i < k) such that: 

• a and b are adjacent in G. 

• There exists a vertex c in T such that c is drawn on track £, between a 
and b. See also Figure 14. 

By the same reasoning as that used in the previous cases, let w be the lowest 
common ancestor of a and b on some track tj with 0 < j < i and let Uwa and 
Uwb be two disjoint paths connecting w to a and w to b respectively. Consider 
the cycle formed by Uwa, Uwb and edge (a, b). This cycle has vertex c in its 
interior contradicting the fact that Y preserves the outerplanar embedding of 

Theorem 5 Every outerplanar graph G with n vertices admits a crossing-free 
straight-line grid drawing in three dimensions in optimal 0(n) volume. Further
more, Algorithm Prism Draw computes such a drawing ofG in 0(n) time and 
with the vertices of G drawn on the grid points of a prism. 
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Proof. Lemma 5 ensures there are no crossings in the &-track drawing. Con
cerning Step 2 (3D Wrapping Phase), observe that the coordinate assignment 
is such that the vertices of V are grid points of a n x 2 x 2 grid and they all 
belong to just three of the four possible tracks of the n x 2 x 2 grid. Therefore, 
the vertices of V are drawn on grid points of a prism. Also, no two edges of V 
intersect because, as shown above, each subdrawing of V induced by vertices 
on two different tracks is a strip drawing and because the vertices on each track 
have distinct X-coordinates. Finally, note that Algorithm Prism Draw runs in 
linear time since it is essentially a breadth-first traversal of the graph. Q 

Remark: Note that Step 2 of the algorithm is applicable given any track-
drawing of a graph after suitable shifting to ensure increasing x-coordinates. 
Thus, graph G is track-drawable implies that G is prism-drawable. The converse 
however does not hold; K4 is an example of a graph that is prism-drawable but 
not track-drawable. 

5 Prism-Drawable Graphs 

Motivated by Theorem 5, we study in this section whether the prism is a uni
versal grid for planar graphs. For example, Figure 15 shows a maximal planar 
graph, and its prism drawing. As another example, note that the family of 
maximal planar graphs consisting of a sequence of nested triangles (as in Fig-

Figure 15: A prism-drawable graph G and its drawing 

ure 2) and that are known to require Q(n2) area in the plane [11], can easily be 
drawn on the prism in 0(n) volume. Unfortunately, it turns out that not all 
planar graphs are prism-drawable. In Section 5.1 we give a characterization of 
prism-drawable graphs and in Sections 5.2 and 5.3 we illustrate two different ap
proaches for constructing planar graphs that violate the characterization. The 
first approach is based on the concept of strictly-prism drawable graphs and the 
second exploits the relationship between hamiltonicity and prism-drawability. 
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5.1 Characterization of Prism-Drawable Graphs 
An essential prerequisite of our characterization of prism-drawable graphs, is 
the study of the strip-drawable graphs since a prism effectively consists of three 
strips. Independently, Cornelsen, Schank and Wagner [10] developed a linear 
time algorithm for determining if a graph is strip-drawable. Clearly such graphs 
must be (a subset of the) outerplanar graphs since the two tracks, which contain 
all vertices, form the exterior face. Our characterization differs significantly from 
that contained in [10]. 

We define a spine in a graph G as a sequence VQ, V\, ... vm of vertices such 
that the subgraph induced by VQ, V\, ... vm is a path. The definition of spine 
precludes any edge between non-consecutive vertices; we refer to such an edge 
as a chordal edge. The characterization of prism-drawable graphs is based on 
the observation that in a strip drawing, there must exist two sub-spines (each 
defined by the vertices on one of the two tracks of the strip) and that edges con
necting vertices on these two sub-spines must not intersect. Since every graph 
with less than four vertices is clearly strip-drawable (a three cycle is strip-
drawable and therefore every subgraph of a three cycle is strip drawable), the 
next theorem considers graphs with at least four vertices. Note that although 
this characterization is not efficiently implementable, it is a basis for character
izing the prism-drawable graphs, the box-drawable graphs and provides a means 
for showing that planar graphs are not necessarily prism-drawable. 

Theorem 6 A graph G with at least four vertices is strip-drawable if and only 
if it is possible to augment G with edges to produce a graph G' such that: 

• G' contains two edges (ro,&o) and (rz,bt). 

• There are two vertex-disjoint spines ro, r\,... rz and bo,b\,...bt in G' such 
that all vertices of G are on the two spines. 

• If there exists an edge (rj, bj) with 0 <i < z and 0 < j < t then there are 
no edges of the form (rk, h) with (0 < k < i and j < I < t) or (i < k < z 
and 0 < I < j). 

Proof. (=>)We show how to construct a graph G' that satisfies the statement. 
Let r be a strip drawing of G with ii and t2 as the two tracks of the strip. 
Let ro,bo be the leftmost pair of vertices and let rz,bt be the rightmost pair 
of vertices of T such that bo and bt are on track t i . If ro,&o are not adjacent 
in T, then edge (r0, &o) is added; similarly, iirt,bt are not adjacent in T, then 
edge (rt,bt) is added. Also, for each pair of consecutive non-adjacent vertices 
encountered when walking along each track an edge is added so to form two paths 
IIi and n 2 . Let V be the new drawing and let G' be the graph represented by 
r". Note that G' has two edges (ro,6o) and (rt,bt). Since there are no chordal 
edges between any two non consecutive vertices of V that are on the same track, 
it follows from the construction that IIi and II2 are spines for G'. Each vertex of 
G is drawn either on track t\ or on track t2 and by construction of V it belongs 
either to IIi or to n 2 ; it follows that all vertices of G are on the two spines of 
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G'. Also, since in T there are no crossings between any two edges connecting 
vertices on different tracks and since in T' edges (ro, bo) and (rt, bt) do not cross 
any other edge, it follows that if there exists an edge (r i ; bj) in G' with 0 < i < z 
and 0 < j < t then there cannot be edges of the form (r^, 6;) with (0 < k < i 
and j < I < t) or (i < k < z and 0 < I < j ) . 
(^)Given an augmented graph G', a strip drawing V of G' is obtained as 
follows. Spine ro,r\,...rz is drawn on one track such that rj is drawn to the 
right of Ti for 0 < % < j < z. Spine bo, b\,... bt is drawn on the second track 
such that bj is drawn to the right of bi for 0 < i < j < t. Edges connecting 
vertices along the same track and between the two tracks are drawn as straight-
line segments. Since the subgraph induced by each spine is a path and since for 
each edge {ri,bj) with 0 < i < z and 0 < j < t there are no edges of the form 
{rk, h) with (0 < k < i and j < I < t) or (i < k < z and 0 < I < j), it follows 
that the drawing of G' does not have crossings. Finally, a strip drawing of G is 
obtained by deleting edges from V. [-j 

The characterization of prism drawable graphs generalizes Theorem 6 to 
three dimensions. Intuitively, it must be possible to augment a given graph 
to obtain three spines with two "lids" (three cycles) and between each pair of 
spines the strip drawability condition must hold. Since every strip-drawable 
graph is also prism-drawable, the next theorem assumes that G has at least 
four vertices. 

Theorem 7 A graph G with at least four vertices is prism-drawable if and only 
if it is possible to augment G with edges to produce a graph G' such that: 

• G' contains two three-cycles ro,bo,go andrz,bt,g3, where z,t,s> 0. 

• There are three vertex-disjoint spines, denoted by ro, n , . . . rz, bo, b\,... bt 
andgo,gi,---gs in G' such that all vertices of G are on the three spines. 

• For each pair of spines xo,x\,.. .xm and yo,yi,...yp (x,y G {r,b,g}, 
x ^ y, m,p € {z,t, s}) , if (xi,yj) is an edge, then there are no edges of 
the form (xk,yi) with (0 < k < i and j < I < p) or (i < k < m and 
0 < / < j). 

Proof. (=>) We show how to construct a graph G' that satisfies the statement. 
Let r be a prism drawing of G and let t\, £2, and £3 be the three tracks of 
the prism. Consider the subgraph Gij induced by the vertices that are on two 
different tracks ti and tj (i,j = 1,2,3, i ^ j); G^ is strip-drawable and therefore 
there exists an augmented graph G'^ with the properties stated by Theorem 6. 
A graph G' that satisfies the statement is then defined as G' = G'12UG'13 UG^-
(4=) Given an augmented graph G', a prism drawing r" of G' is obtained as 
follows. Spine ro,n,...rz is drawn on track t\ such that Tj is drawn to the 
right of rj for 0 < i < j < z. Spine bo, b\,... bt is drawn on track t2 such that bj 
is drawn to the right of bi for 0 < i < j < t. Spine go,gi,---gs is drawn on track 
£3 such that gj is drawn to the right of gi for 0 < i < j < s. Edges connecting 
vertices along the same track and between two different tracks are drawn as 
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straight-line segments. Since the subgraph induced by each spine is a path and 
since for each edge (xi,yj) (x,y £ {r,b,g}; x ^ y; m,p € {z,t,s}) there are 
no edges of the form (xk, yi) with 0 < k < i and j<l<poii<k<m and 
0 < I < j , it follows that T' does not have crossings. Finally, a prism drawing 
of G is obtained by deleting edges from V. Q 

In the rest of the paper it will be convenient to imagine the three spines 
ro,ri,...rz, bo,bi,.. .bt, and go,gi,.. .gs of Theorem 7 as colored red, blue and 
green, respectively. Also, we shall refer to a graph G' described in Theorem 7 
as an augmented graph of G. 

5.2 Prism-Drawability and Planarity 

In this section we show that prism drawable graphs are a proper subset of planar 
graphs. In the next section we shall further restrict the set of prism-drawable 
graphs. 

Theorem 8 Let G be a prism-drawable graph. Then G is planar. 

Proof. Any prism-drawing of G can be augmented by edges to form a convex 
polytope and therefore by the theorem of Steinitz [43] only planar graphs are 
prism-drawable. rj 

Corollary 2 If G is a maximal planar graph and is prism drawable, then the 
augmented graph G' coincides with G. 

One approach for constructing planar prism-forbidden graphs, i.e. planar graphs 
which do not admit a prism drawing, is based on the following definition and 
lemma. A graph G is strictly prism-drawable if it is prism-drawable and all 
prism drawings of G have at least three edges (x, y), (y, z) and (z, x) such that 
x, y and z are on different tracks. 

Lemma 6 Let G be a 1-connected planar graph that has a cut vertex v whose 
removal separates the graph into h strictly prism-drawable components G\, ... 
Gh (h > 3). Then G is prism-forbidden. 

Proof. Consider any prism drawing r \ of Gi (0 < i < h). Tj has a three-cycle 
which defines a plane that intersects all three facets of the prism, because Gi 
is strictly prism-drawable. Thus, Ti,..., T^ slice the prism into h + 1 slices (see 
Figure 16). Now there is no location for v that permits it to be connected to all 
I \ (0 < i < h) without crossing at least one three-cycle. rj 

Lemma 6, provides the key to creating a prism-forbidden graph. Although 
Kn can easily be shown to be strictly prism-drawable we choose to show that 
the graph in figure 17 is strictly prism-drawable for three reasons: the extension 
to the box-forbidden case is more natural, the series-parallel case follows as a 
consequence, and the proof portrays the importance of the spine characterization 
of Theorem 7. 
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v 

II 
Figure 16: The "slicing" argument in the proof of Lemma 6. 

u 

Figure 17: A strictly prism-drawable graph. 

Lemma 7 The graph in Figure 17 is strictly prism-drawable. 

Proof. Let G be the graph of Figure 17. We first show that G satisfies The
orem 7. The augmented graph G' is defined by adding to G edges (a, b) and 
(6, c). We choose the two three-cycles of G' as follows: One three-cycle consists 
of edges (u, v), (v, a), (a, u); the second three-cycle consists of edges (u, v), (u, c), 
(c, v). The three spines of G' are as follows: the red spine is the path of vertices 
a, b, c, the blue spine consists of vertex u and the green spine consists of vertex 
v. Since G' is planar and two of the three spines consist of a single vertex, the 
non-crossing condition stated by Theorem 7 among edges connecting vertices 
on different spines is trivially verified. It follows that G is prism-drawable. It 
remains to show that G is strictly prism-drawable. This is done by proving the 
following two claims. 

1. In any prism drawing of G vertices u and v cannot be on the same track. 

2. In any prism drawing of G at least one of vertices a, b, c is drawn on a 
track different from that of u and different from that of v. 

To prove Claim 1, suppose that there existed a prism drawing r of G with u and 
v on the same track t\ (see Figure 18(a)). Since u and v are adjacent in G, there 

QB 
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exists in T a straight-line segment connecting u to v. As a consequence neither 
a, nor 6, nor c can be drawn on t\ or else there would be an edge overlapping 
edge (u,v). It follows that vertices a, b, and c are drawn as points of the other 
two tracks, and therefore at least two of them are on the same track. Suppose 
without loss of generality that a and b are both drawn on track t2. Observe that 
there is no way of drawing edges (a, it), (a, v), (b,u), (b,v) avoiding a crossing. 
It follows that in any prism drawing of G u and v must appear on different 
tracks. 

To prove Claim 2 we assume that u is drawn on track t\ and that v is drawn 
on track ti- Let £3 be the third track of the prism. Assume there existed a prism 
drawing with vertices a, b, and c all on tracks ti and t^. Assume without loss 
of generality that both a and b are on track t\. In order to avoid crossings it 
must be that one vertex, say a, is on the right-hand side and the other is on the 
left-hand side of u (see Figure 18(b)). Note however that c cannot be drawn on 
track £1 or else edge (u, c) would intersect one of the edges (a, u), (6, u). But if 
c were drawn on track i2 , then edge (c, u) would intersect either (a, v) or (c, v). 
It follows that c is drawn on track ts and therefore G is strictly prism-drawable. 

• 

u v b u a 

TvT" W " 
a b v c 

(a) (b) 

Figure 18: Illustration for the proof of Lemma 7. 

Theorem 9 There exist prism-forbidden planar graphs. 

Proof. Let G be a planar graph with a vertex v adjacent to three copies of 
the graph of Figure 16. Let Go be the subgraph of G induced by v and by 
these three copies. By Lemma 6 Go is prism-forbidden. It follows that also G 
is prism-forbidden. Q 

A consequence of the previous lemmas is the following. 

Corollary 3 There exist prism-forbidden series-parallel graphs. 

Proof. Let G be the graph in Figure 19. By using the same argument in the 
proof of Theorem 9 the corollary follows. m 
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Figure 19: A prism-forbidden series-parallel graph. 

5.3 Prism-Drawability and Hamiltonicity 
Theorem 9 shows that not all planar graphs admit a prism drawing. In this sec
tion we further restrict the family of drawable graphs by exploiting the relation 
between prism-drawability and hamiltonicity. 

A graph is subhamiltonian if it can be augmented with edges to produce a 
planar graph having a hamiltonian cycle. 

Lemma 8 Let G be a prism-drawable graph. Then G is subhamiltonian. 

Proof. Let V be a prism drawing of G and let G' be a maximally augmented 
graph obtained from G by adding edges to satisfy the conditions of Theorem 7. 
Let the three tracks of the prism be labeled t±, t2 and t3 (see for example Figure 
20(a)). Label the vertices on track £2, as ro, • • • rz and the vertices on track £3 as 
bo,... by. The hamiltonian cycle begins at the start vertex of t\, visits the start 
vertex of £2 (denoted as r0), the start vertex of £3 (denoted as 60), and then 
alternates between the £2 and £3 track visiting all vertices on those two tracks 
and ending at the end vertex of either tracks £2 or £3 (see for example Figure 
20(b)). In either case, the cycle then visits the end vertex of t\ and then the 
entire £1 spine in reverse order. 

We now give a more formal description of the cycle's traversal of the strip 
between tracks t2 and £3. Note that r0 is adjacent to 60 (and 0 or more con
secutive vertices on track £3). Since G' is maximally augmented, each vertex bi 
(0 < i < y) is adjacent to 6j_i and frj+i and to a non-empty set of consecutive 
vertices on the r-track Tj,.. . rj+fc. Furthermore, Tj is adjacent to &i_i, and 
rj+k is adjacent to bi+\. The hamiltonian cycle goes from ro to 60 and then 
applies a greedy-like approach. In general, from bi, the cycle goes to the first 
(i.e. lowest-indexed) neighbour Tj that has not previously been visited. Only 
if all the neighbours of bi on the r-track have been visited, does the cycle go to 
frj+i- The rule on the r track is symmetric. Since at each vertex, there is always 
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at least one neighbour that has not been visited, namely the next vertex on 
the same track, it is clear that the cycle can always proceed. To establish that 
all vertices are visited, a straightforward proof by contradiction can be applied. 
The (partial) hamiltonian cycle thus ends at the endpoint of either track ti or 
£3 and can be completed as described above. rj 

H 

*lK 

(a) 

ro n 

(b) 

Figure 20: Illustration for the proof of Lemma 8 

A natural question arising from Lemma 8 is whether all subhamiltonian 
planar graphs are prism drawable. This is not the case, for example the graph 
of Figure 19 is subhamiltonian but not prism drawable. The following lemma 
shows that even subhamiltonian graphs with only 9 vertices may not be prism 
drawable. In this instance it is the proof technique that is of primary interest. 

Lemma 9 The hamiltonian maximal planar graph G of Figure 21 is prism-
forbidden. 

Proof. Suppose for a contradiction that G were prism-drawable and let G' be 
the augmented graph of G described in Theorem 5. 

Consider the vertex a of G displayed in Figure 21. We start by showing that 
vertex a must be an endvertex in one of the three spines of G'. 

Let r be a prism drawing of G. Since G is maximal planar, by Corollary 2 
it follows that G coincides with its augmented graph G' and that T is also a 
prism drawing of G'. If a were not an endvertex of a spine, then the point 
representing a in T would be adjacent to two other points on the same track. 
But all neighbours of a are mutually adjacent in G and this would imply a 
chordal edge in T, which is impossible. 
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Figure 21: A hamiltonian planar graph G that is not prism-drawable. 

By the same argument, also vertices b and c of G (see Figure 21) are end-
vertices of some spine in G'. 

By Theorem 5, the endvertices of the spines in G' belong to two three-cycles. 
Therefore, at least two vertices among a, b, and c must be connected in G'. But 
G is identical to G' by Corollary 2 and no pair of these vertices are adjacent in 
Figure 21. This provides the required contradiction and proves that G is indeed 
prism-forbidden. rj 

Based on Lemmas 8 and 9 we can summarize the discussion of this section 
as follows. 

Theorem 10 The family of prism-drawable graph is a proper subset of the fam
ily of subhamiltonian planar graphs. 

6 Box-Drawable Graphs 

Motivated by Theorems 9 and 10, we consider a restricted integer 3D grid 
consisting of four tracks, namely the box, and ask whether this grid supports all 
planar graphs. Clearly, the class of box-drawable graphs is larger than the class 
of prism-graphs: Every prism-drawable graph can be drawn on the box and it is 
easy to draw some non-planar graphs on a box. For example, Figure 22 shows a 
box drawing of K5 and a box drawing of K^^. However we will show that even 
the box is not a universal grid for planar graphs. 

6.1 Characterization of Box-Drawable Graphs 

We start our investigation by characterizing the family of box-drawable graphs 
with more than five vertices. Note that any graph with at most five vertices is 
box drawable and its box drawing can be obtained by deleting edges and vertices 
from the drawing of K§ depicted in Figure 22. The next theorem follows the 
same pattern as Theorem 7. 
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Figure 22: K5 and ^3,3 drawn on a box 

Theorem 11 A graph G with at least six vertices is box-drawable if and only if 
it is possible to augment G with edges to produce a graph G' such that: 

• G' contains two four-cycles ro, bo, go, wo and rz, bt,ga, wq, where z, t,s,q > 
0. 

• The graph G' contains four vertex-disjoint spines ro,r\,...rz, bo,b\,...bt, 
go,gi,.-.gs) and wo,wi,...wq such that all vertices of G are on the four 
spines. 

• For each pair of spines XQ, X\,... xm and yo,yi,- • • yp (x, y 6 {r, b, g, w}, 
x ^ y, m,p £ {z,t,s,q}) , if (xi,yj) is an edge, then there are no edges 
of the form (xk,yi) with (0 < k < i and j < I < p) or (i < k < m and 
0<l< j). 

Proof. (=>) We show how to construct a graph G' that satisfies the statement. 
Let T be a box drawing of G and let t\, £2, £3, and £4 be the four tracks 
of the box. Consider the subgraph Gij induced by the vertices that are on 
two different tracks ti and tj (i,j = 1,2,3,4, i ^ j); G^ is strip-drawable 
and therefore there exists an augmented graph G\j with the properties stated 
by Theorem 6. A graph G' that satisfies the statement is then defined as 
G' = G\0 U G\, U G'14 U G'm U GL U Gi T34 
(4=) Among the four tracks t\, t<z, £3, and £4 of the box, we assume that the pairs 
£1,^3 and £2,̂ 4 are diagonally opposite and that the four tracks are horizontal 
lines. Given an augmented graph G', a box drawing r" of G' is constructed by 
spiralling the vertices on the four tracks as follows. 

• Spine ro,r\,...rz is drawn on track £1 such that rj is drawn to the right 
of ri for 0 < i < j < z. 

• Spine bo,h,...bt is drawn on the diagonally opposite track £3 such that 
60 is given an ^-coordinate larger than the x-coordinate of rz and bj is 
drawn to the right of hi for 0 < i < j < t. 

• Spine go, g\,... gs is drawn on track £2 such that go is given an x-coordinate 
larger than the ^-coordinate of bz and gj is drawn to the right of gi for 
0 < i < j < s. 
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• Spine WQ,Wi,.. .wq is drawn on track £4 such that wo is given an in
coordinate larger than the x-coordinate of gs and Wj is drawn to the 
right of Wi for 0 < i < j < q. 

Then, edges connecting vertices along the same track and between two differ
ent tracks are drawn as straight-line segments. In order to see that the computed 
drawing does not have edge crossings observe the following. 

• There are no edges between non consecutive vertices on the same track: 
For each spine, the subgraph of G' induced by the spine is a path which 
is drawn sequentially on a track. 

• For each pair of tracks £&,£/ (h, f € {1,2,3,4}, h ^ / ) the edges con
necting vertices on £/j with vertices on tf do not cross with each other. 
Namely, for an edge (XJ, yj) connecting a vertex on th with a vertex on £;, 
there are no edges of the form (xk,yi) with (k < i and j < I) or (i < k 
and I < j). 

• For each pair of diagonally opposite edges e\, e% such that e\ connects a 
vertex on track t\ with a vertex on track £3 and e^ connects a vertex on 
track £2 with a vertex on track £4 there are no crossings. By construction, 
the coordinates of the endpoints of e-i are both strictly larger than those 
of the endpoints of e\. 

Since r" is a box drawing and G' is a supergraph of G, a box drawing of G 
can be obtained by deleting edges from V. rj 

6.2 Box-Drawability and Planarity 

We extend the approach of Section 5.2 to construct planar graphs that cannot 
be drawn on a box. We call these graphs box-forbidden. In order to construct a 
box-forbidden graph, we need a preliminary lemma. 

Lemma 10 In any box drawing of the graph of Figure 23 vertices u and v are 
on different tracks. 

Proof. Let G be the graph of Figure 23. It is trivial to see that G is prism-
drawable and hence it is also box-drawable. Let V be a box drawing of G. 
Suppose for a contradiction that vertices u and v in V were represented as 
points of the same track t\. Observe that no other vertex of Y can be a point 
of t\ or else there would be a crossing. Since G has six vertices, a box consists 
of four tracks, and track t\ cannot contain more than two vertices, it follows 
that at least two other vertices of V must be on another track, say £2 of the box. 
But each vertex on £2 is adjacent to both u and v, which forces a crossing in T; 
contradiction. r-i 

A graph G is strictly box-drawable if it is box-drawable and there are four 
mutually adjacent vertices a, b, c and d and in all box drawings of G, a, b, c 
and d appear on separate tracks. 
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4 
Figure 23: Graph for Lemma 10. 

Lemma 11 The graph of Figure 24(a) is strictly box-drawable. 

Proof. Let G be the graph of Figure 24(a). We first prove that G is box-
drawable and then that it is strictly box-drawable. We adopt the notation of 
Figure 24(a). 

We apply Theorem 11 to G. The four spines of G' are ro,. . ,rs, 6oi--,&4> 
go,..,g$, and WQ,..,W4. The two four-cycles have the vertices ro,bo,go,wo and 
r8,b4,g8,w4. Also, as Figures 24(b), (c), (d), (e), (f), and (g) show, the sub
graphs of G' induced by vertices on two different spines are strip-drawable. It 
follows that G is box-drawable. 

We now prove that G is strictly box-drawable. Graph G consists of six 
copies of the graph in Figure 23. By Lemma 10 in any box drawing of G 
vertices ro, g4,64,104 must be on four different tracks. Furthermore, those four 
vertices are mutually adjacent. It follows that G is strictly box-drawable. rj 

Theorem 12 There exist box-forbidden planar graphs. 

Proof. Let G be a planar graph with a vertex v adjacent to three copies of the 
graph of Figure 24. Let Go be the subgraph of G induced by v and by these 
three copies; see also Figure 25. Removing v and all its incident edges from the 
graph Go splits it into three components that we name Gi, G2, and G3. In any 
box drawing I"1; of Gj (0 < i < 3) there are four mutually adjacent vertices on 
four different tracks because by Lemma 11 d is strictly box-drawable. Thus, 
Ti, T2, and I^ slice the box into 4 slices and there is no location for v that 
permits it to be connected crossing-free to all T, (0 < i < 3). rj 

7 Conclusions and Open Problems 

In this paper we showed that all outerplanar graphs can be drawn in linear 
volume on a prism - a restriction of the three dimensional integer grid. Proofs 
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(a) 

rn ri ro ra TA rs r« r? r« rn n r? 7*3 r& r* r« r? r ? ri r% ri rS 

bo h b2 h h g0 gx g2 53 54 55 9e 97 

(b) (c) 

rn r i r2 r£ rA r5 r% r2 ?"3 6Q 61 62 63 64 

Wo W\ Wl W3 104 

(d) 

bom &j fy rg b. 

-*—•—•-
5o 5i 52 53 54 55 56 57 5s 

(e) 
ffa fl g2 5^ 54 55 5j 57 & 

WO Wi W2 Wz Wi WO W\ W2 W3 Wi 

(9) 

Figure 24: (a) Graph G for Lemma 11. (b)-(e) The subgraphs of G induced by 
vertices on two different spines are strip-drawable. 
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Figure 25: A planar graph that is not box-drawable. 

that certain classes of planar graphs are not prism-drawable nor box-drawable 
were also provided. Although the problem of finding a universal integer 3D grid 
of linear volume that supports crossing-free straight line drawings of all planar 
graphs is still far from being solved, the drawing techniques and characterization 
results of this paper may provide a critical starting point for attacking such an 
ambitious research programme. We believe that the results on the restricted 2D 
grid are not only useful preliminary results for the study in three dimensions, but 
they may also shed some new light on the problem of drawing trees in linear 
area on the plane. There remain several interesting problems and directions 
for further research. We conclude the paper by describing some of the more 
intriguing open problems. 

1. Can all outerplanar graphs be drawn in linear area on a 2D integer grid? 
Does there exist a 2D universal grid set of linear area that supports all 
outerplanar graphs? 

2. Characterize the graphs drawable on an n x k grid. 

3. Can the strong algorithms for recognizing graphs of bounded pathwidth be 
applied to devise polynomial dynamic programming algorithms to decide 
fc-track drawability for fixed fc? Such an approach has been applied in 
[18] for the recognition of proper fc-track drawability for fixed k. Also, 
Schank [36] gave a direct linear time algorithm for the task of recognizing 
2-track drawable graphs. 

4. Can all planar graphs be drawn in linear volume on a three-dimensional 
integer grid? Does there exist a 3D universal grid set of linear volume 
that supports all planar graphs? 

5. The k-lines drawability problem: A related problem posed by H. de Frays-
seix [13] asks if all planar graphs can be drawn on k parallel lines that 
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lie on the surface of a cylinder, for a fixed value of k. Our results on 
box-drawability imply that k would have to be strictly greater than 4. 

The aspect ratio problem: Our results about linear volume come at the 
expense of aspect ratio. Is it possible to achieve both linear volume and 
o(n) aspect ratio for outerplanar graphs? We conjecture that it is in fact 
not possible in 2D to simultaneously attain linear area and 0(1) aspect 
ratio for some classes of planar graphs. 

Figure 26: A graph Sn with poor aspect ratio 

Conjecture 1 There is no fixed constant k for which the family of graphs 
Sn (in Figure 26) can fee drawn in a 2D integer grid of size k^/ri x yfn. 

Note that the graph Sn can be drawn on an n x 3 grid (and hence in linear 
area but with linear aspect ratio). Recently this conjecture was verified 
and the result is reported in [1]. 
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1 Introduction 

Embeddings of finite metric spaces into Euclidean spaces or other normed spaces 
that approximately preserve the metric received considerable attention in recent 
years. Numerous significant results have been obtained in the 1980s, mainly 
in connection with the local theory of Banach spaces. Later on, surprising 
algorithmic applications and further theoretical results were found in theoretical 
computer science; see, for example, Indyk [2] or Chapter 15 in [4] for overviews. 

Here we consider only embeddings into the spaces R d with the Euclidean 
metric. The quality of an embedding is measured by the distortion. Let (V, p) 
be a finite metric space. We say that a mapping / : V —• Rrf has distortion at 
most D if there exists a real number a > 0 such that for all u, v G V, 

a-p(u,v) < \\f(u) -f{v)\\ <D-a- p{u,v). 

This definition permits scaling of all distances in the same ratio a, in addition 
to the distortion of the individual distances by factors between 1 and D. Since 
the image in R d can always be re-scaled as needed, we can choose the factor a 
at our convenience. 

We study embeddings with the dimension d fixed, and mainly the case d — 2, 
i.e. embeddings into the plane. A straightforward volume argument shows 
that the distortion required to embed into R d the n-point metric space with 
all distances equal to 1 is at least f2(n1/,d). In [3], it was proved that general 
metric spaces may require even significantly bigger distortions; namely, for every 
fixed d, there are n-point metric spaces that need Jl(n1//'-(d+1)/2J) distortion for 
embedding into R d . 

Better upper bounds can be obtained for special classes of metric spaces. A 
metric p on a finite set V is called a tree metric if there is a tree T = ( V , E) (in 
the graph-theoretic sense) with V D V and a weight function w.E^ (0, oo) 
such that for all u, v € V, p{u, v) equals the length of the path connecting 
the vertices u and v in T, where the length of an edge e £ E is w(e). It was 
conjectured in [3] that, for fixed d, all n-point tree metrics can be embedded 
into Rd with distortion 0(n1/d). If true, this is best possible, as the example 
of a star with n — 1 leaves and unit-length edges shows (a volume argument 
applies). Gupta [1] proved the somewhat weaker upper bound 0{n1^d~1^). 

Here we make a step towards establishing the conjecture. We deal with the 
planar case, where the gap between the lower bound of y/n and Gupta's 0(n) 
upper bound is the largest (in fact, the 0(n) upper bound holds even for general 
metric spaces and embeddings into R 1 [3]). So far we can only handle the case 
of unit-length edges. 

Theorem 1 Every n-vertex tree with unit-length edges, considered as a met
ric space, can be embedded into R 2 with distortion 0{yfn). The embedding is 
described by a simple explicit formula and can be computed efficiently. 

Gupta's result actually states that if the considered tree has at most £ leaves, 
then an embedding into R d with distortion O ^ 1 / ^ - 1 ) ) is possible. We show 
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that here the dependence on £ cannot be improved. Let F^m (the fan with £ 
leaves and path length m) denote the tree consisting of £ paths of length m each 
glued together at a common vertex (root): 

Proposition 1 For every fixed d > 2 and every m,£ > 2 every embedding 

of Fttm into R d requires distortion il(£1^d~1'>) if £ < m d+1 , and distortion 

Cl(£1'dm1Kd+r>) if£>miS^1. 

Theorem 1 provides embeddings which are optimal in the worst case, i.e. 
there are trees for which the distortion cannot be asymptotically improved. But 
optimal or near-optimal embeddings of special trees seem to present interesting 
challenges, and sometimes low-distortion embeddings are aesthetically pleasing 
and offer a good way of drawing the particular trees. We present one interest
ing example concerning the fan F ^ ^ . Here the "obvious" embedding as in 
the above picture, as well as the embedding from Theorem 1, yield distortions 
0(y/n). In Section 4, we describe a somewhat surprising better embedding, with 
distortion only 0(n5/12). This is already optimal according to Proposition 1. 

Several interesting problems remain open. The obvious ones are to extend 
Theorem 1 to higher dimensions and/or to trees with weighted edges. Another, 
perhaps more difficult, question is to extend the class of the considered metric 
spaces. Most significantly, we do not know an example of an n-vertex planar 
graph (with weighted edges) whose embedding into R 2 would require distortion 
larger than about -Jn. If it were possible to show that all planar-graph metrics 
can be embedded into the plane with o(n) distortion, it would be a neat metric 
condition separating planar graphs from non-planar ones, since suitable n-vertex 
subdivisions of any fixed non-planar graph require £l(n) distortion [3]. 

2 Proof of Theorem 1 

Notation. 

Let T be a tree (the edges have unit lengths) and let p be the shortest-path 
metric on V = V(T). One vertex is chosen as a root. The height h(v) of a 
vertex v G V is its distance to the root. Let TTV denote the path from a vertex 
v to the root. 

For every vertex we fix a linear (left-to-right) ordering of its children. This 
defines a partial ordering •< on V: we have u -< v iff u $ nv, v $ nu, and irv 
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goes right of iru at the vertex where iru and irv branch. We define 

{ 0 if u G TTV or v G TTU 

+1 iiu^v 
—1 if v -< u. 

Furthermore we define av{u) as the distance of v to the nearest common ancestor 
of u and v, and £(v) = \{u G V(T) : u -< v}\. 

Construction. 

Our construction resembles Gupta's construction [1] to some extent, but we 
needed several new ideas to obtain a significantly better distortion. 

First we describe the idea of the construction. 
The embedded tree is placed in a suitable acute angle. The apex of the angle 

is at the origin of coordinates and the angle opens upwards. The root of the 
tree is placed to the origin. 

In the first step we put vertices of height h on the horizontal line y = 2\/nh. 
Our angle is divided into subangles that correspond to subtrees rooted at the 
sons of the root; the sizes of these subangles are proportional to the number 
of vertices in the subtrees. The vertices of height 1 are placed on the first 
horizontal line in the middle of the corresponding subangles. We continue in 
the same way for every subtree, with each subangle translated so that its vertex 
lies at the root of the subtree. 

In the second (and last) step we raise the y-coordinates of the vertices by 
appropriate amounts between 0 and -y/n. 

First step Second step 

Now we describe the embedding more formally; actually we use a slightly 
modified embedding for which the formulas are quite simple. 
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First we define an auxiliary function k(v): 

wEV 

The embedding / : V —> R 2 is now defined by f(v) = (x(v),y(v)), where 

x(v) = n~1/2k(v) 

y(v) = 2^/nh(v) + (£(v)mody/n). 

Distortion. 

We now estimate the distortion of the embedding defined above. First we show 
that the maximum expansion of the tree distance of any two vertices is at most 
0(y/n). By the triangle inequality, the maximal expansion is always attained on 
an edge. Hence, it suffices to consider two vertices connected by an edge. So let 
u be the father of v in T; it suffices to verify that | | /(u) — /(u)| | = 0(^/n). We 
clearly have \y(u) — y(v)\ < Z^/n, and so it suffices to prove that \x(u) —x(v)\ = 
0(y/n), which will follow from \k(u) — k(v)\ < n. We have 

\k(v) - k(u)\ < Y2 sgnu(«>)at«(w) - sgnv(w)av(w) . 
U)GV(T) 

We claim that every w contributes at most 1 to this sum. First we note that 
\au(w) — av(w)\ < 1. If sgn„(u;) / 0, we have sgn„(w) = sgnu(u;), and the 
contribution of w is at most \au(w)—av(w)\ < 1. The only remaining possibility 
is sgau(w) = 0 and sgn„(u;) ^ 0. But then u is the nearest common ancestor of 
v and w, we have av(w) = 1, au(w) — 0, and the contribution of w is at most 1 
in this case as well. Therefore \k(u) — k(v)\ < n as claimed. 

Next, we are going to prove that | | / (M) — f(v)\\ = Q(p(u, v)) for every u,v £ 
V; this will finish the proof of Theorem 1. 

First we consider the situation when h(u) = h(v); this is the main part of the 
proof, and the case where u and v have different levels will be an easy extension 
of this. So let h(u) = h(v) and a = av(u) = au(v), and assume that u <v. 

Lemma 1 £(v) — £(u) > a. 

This is because all the vertices on nu not lying on TTV are counted in £(v) but 
not in £(u). D 

Corollary 1 If £(v) -£{u) < \%Jri, then \y(u) -y(v)\ > \p{u,v). 

Indeed, we have \y(u) — y{v)\ = \(£(u) mod ^/n) — (£(v) mod -</n)\ > \£{u) — 
£{v)\>a = \p{u,v). u 

Thus, the difference in the y-coordinate takes care of u and v whenever 
£(v) — £{u) < \^/ri. Next, we need to show that if this is not the case, then the 
x-coordinate takes care of u and v. 
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Lemma 2 k(v) - k(u) > [£(v) - £(u)] • a. 

Corollary 2 If i{v) - l(u) > \Jn, then x(v) - x{u) > n'1'2^) _ £(u)] . a > 
\a>\p{u,v). • 

Combining this corollary with Corollary 1 yields \\f(u) — f(v)\\ = Cl(p(u, v)) 
for all u,v €V with h(u) = h(v). 

Proof of Lemma 2: We have k(v) — k(u) = J2wev *u,«(w), where tUjV(w) = 
sgnv(w)av(w) — sgnu(w)au(w). First we check that £„,„ > 0 for all w. We 
always have sgnt,(w) > sgnu(w), and so the only cases that might cause trouble 
are sgn„(io) = sgnu(w) = 1 and sgav(w) — sgnu(w) — —1. We will analyze 
only the case when sgn„(iy) = sgnu(w) = 1, the other one is symmetric. In this 
case w -< u -< v, and it is easy to check that then av(w) > au(w), which shows 
tu,v(w) > 0 in all cases. 

Next, we verify that if w contributes 1 to £(v) — £{u), which means w -< v 
and w -fi u, then tUtV(w) > a. We distinguish two cases for such w: either 
u -< w -< v, or w and u lie on a common path to the root, i.e. w G iru or u G nw. 

In the first case, u -< w -< v, sgnu(w) = —1 and sgnv(w) = 1, and so 
tu,v(w) = au(w) + av(w). It is easy to see that if u and v are vertices with 
au(u) = o,v{u) = a, then max(a„(u;), av(w)) > a for all w e V and so tUtV(w) > a 
in this case. 

In the second case, we have sgn„(u;) = 1 and sgn„(u/) = 0, and so tUiV(w) = 
av(w) = a, since the nearest common ancestor of u and v is the same as the 
nearest common ancestor of w and v. The proof of Lemma 2 is complete. • 

Claim 1 If two vertices u, v are on different levels, then 

\\f(v)-f(u)\\>^=p(u,v). 

Proof: Without loss of generality, suppose that h(u) < h(v) and u < v. Set 
a := au(v), and let w be the vertex on the path from u to v with h(w) = h(u), 
p(u,w) = 2a. 

If p{u,v) > 3a, then ||/(v) - f(u)\\ > y(v) - y(u) > (p(u,v) - 2a)y/n > 

^p{u,v) > \p{u,v). 
If p(u,v) < 3a and a < Ay/n, then \\f{v) - f(u)\\ > y(v) - y(u) > \/n > 

a/A> ±p(u,v). 
Finally, suppose that p{u, v) < 3a and a > A^/n. Using the definition of the 

embedding / and with the observation that k(v) < nh(y), it is easy to check 
that |a;(u)| < y(v) for any vertex v. Thus the whole drawing of the tree lies in 
the cone bounded by the two rays emanating from the root diagonally upwards 
and spanning the angle of 45° with the y-axis. This also holds for every subtree. 
So the distance of the point f(u) to f(v) is larger than the distance to the left 
arm of the cone rooted at f(w), which is -k=(x(w) — x(u) + y(w) — y(u)) > 

^{x{w) - x(u) -y/n)> -^{a/2 - Jn) > ^ f > j^p(u,v) (in the second 

inequality we used Corollary 2). Thus, \\f(v) — f(u)\\ > ~j=p(u, v) in this case. 
• 
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f(Pi) \ 
: f{Pj) 

Figure 1: Illustration to the proof of Proposition 1. 

3 Proof of Proposition 1 

Let FgjTn be defined as in Section 1; that is, F^m denotes the tree consisting 
of I paths of length m glued at the root r. We show that every embedding 

, 1 HA 1\ d(d~l) 

of Fe,m into R" requires distortion f ) (£ 1 ' ^ - 1 ' ) if £ < m d+\ , and distortion 
0 ( ^ / ^ 1 / ( ^ + 1 ) ) jf £ > m ^ ^ _ 

Let / : V(Ft>m) —• Rd be any non-contracting embedding with distortion D 
(i.e. for all u,v € V, p(u,v) < \\f(u) — /(t;)| | < D • p(u,v)). We choose a real 
number R such that there are £/2 of the images of endvertices of Ft,m contained 
inside the ball B of radius R around f(r) or on its boundary, and there are I/2 
of them outside the ball or on its boundary. 

We consider a ball of radius m around each of the tj2 images of endvertices 
contained in B. These balls are disjoint and contained in m-neighbourhood of 
B. Hence, by a volume argument, R = Q.(m(.lld). 

Let S denote the sphere of radius R around f(r) (i.e. the boundary of B). 
Let P\,..., P(/2 denote the £/2 paths for which the images of their endvertices 
are not contained inside B. Each f(Pi) intersects S at least once (by f(Pi) we 
mean /(V"(P»)) together with the straight lines between any f(u), f(v) such 
that {u, v} G E(Pi)). Let m^ denote the number of vertices on f(Pi) inside B 
before the first intersection with S. We put fi = min{m, | i = 1 , . . . ,£/2}. From 
the choice of fi it follows that R < D\i. 

Let P be a spherical shell of width D around B; that is, 

P = B(f(r), R + D)\ int B(f(r),R), 

where intX stands for the interior of X. At least £/2 vertices (one from each path 
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Pi, i = 1 , . . . , £/2) are contained in P. We consider a ball of radius /x around each 
of these vertices. These balls are disjoint (because the tree-distance between any 
two of the vertices is at least 2/u) and they are contained in ^-neighbourhood of 
P (see the picture). Therefore we have, for a suitable constant c > 0, 

Rd~1{D + 2n) >c£fid. 

Thus there are two possibilities: Rd-1D = fi(^d) or Rd~1n = 9,{t^d). 
If Rd~1D = n{£ • nd), then Dd+1 = il(£ • R), since R < Dfi. And since 

R = Q.{mt1ld) we have Dd+1 = Q.{£ • m • P'd). Thus D = Sl{l1'd • mW+V). If 
Rd~1H = n(£ • nd), then since R < D[i, we immediately have D = ft(^1/(rf_1))-
Thus we know that D > min{n(f1/d . m

1 /(d+1)) ,n(^1 /( ' i - i))}. it means that 

D = Q.{(1ld-m1^d+^) i£t> m ^ 1 , and D = fi(^/W-i)) if £ < m ^ 1 . 

4 A low-distortion embedding of a subdivided 
star 

In this section we describe an asymptotically optimal embedding of F!y^ ^ into 
R2 , with distortion 0{nb/12). The other F^m can be embedded similarly, with 
distortion as in Proposition 1; we omit a proof since it is technical and contains 
no new ideas. 

The embedding is sketched in Fig 2. The tree F^/^ is embedded into the 
shaded trapezoids (there are n1 /4 • 2nx/3 of them, each of height n5/12) and into 
the shaded discs (there are n1 /4 • n1 /4 of them). The root of F^t^ is embedded 
to the bottom vertex of the triangle. 

In the following, we describe the embedding in more detail. It will be done 
in two steps. In the first step, we embed vertices up to the level h = 2n1^3 into 
the dashed trapezoids on the corresponding level. In the second step, we embed 
all the other vertices on diameters of the discs and change the positions of some 
vertices on levels between n1 /3 and 2711/3. 

S t ep 1. 

We start with the vertices on level h = 2n}/3. There are n1/2 vertices on this 
level. We divide them into n1 /4 groups, each of size n1/4 . Each of these groups 
is packed into one of the dashed trapezoids (on the last level). This is possible, 
since the area of each trapezoid on this level is 9 ( n n / 1 2 ) , which is exactly the 
required area (we have n1 /4 vertices, and any two of them must be at distance at 
least ^(n 1 / 3 ) ) . It follows that no two vertices on level h = 2n1^3 are embedded 
too close to each other. 

When all the vertices on the level h = 2nx/3 are embedded, we embed the 
vertices on lower levels. We connect every vertex x on the last level by a straight 
line to the root. On this line we embed all the vertices on the path from x to the 
root. We do this in such a way that the distance A (measured on the connecting 
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,1/4 

2nV2 
h = 2nV3 

Figure 2: The embedding of F ^ ^ . 

Figure 3: The placement of vertices in lower levels. 

line) from a vertex to the bottom of its dashed trapezoid is the same for all the 
vertices on the path from x to the root (see Fig. 3). It is easy to check that the 
distance between the vertices on the last level guarantees that the vertices in 
the lower levels are also far enough from each other. Indeed, if we consider two 
vertices x\ and y\ of level h\ (i.e., with tree distance 1h\) that have distance d 
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in the embedding, then for any x^ on the path from x\ to the root and any y% on 
the path from y\ to the root, both at a level /12, their distance is at least d/12/^1 
(while their tree-distance is 2/12)- Hence, if every two vertices in a higher level 
are far enough then also every two vertices in a lower level are far enough. 

Thus, the construction described so far gives an embedding of F^^n1/3 w ^ n 

distortion 0(n 5 / 1 2 ) . In the next step we modify this embedding into an embed
ding of i ^ , ^ . 

Step 2. 

In this step we embed all vertices on the remaining levels. We also change the 
positions of some vertices on the levels between n1 /3 and 2/11/3. There is a 
column of discs on the left of each column of trapezoids; there are n1 /4 columns 
of discs with n1/4 discs in each column. Each path of F ^ ^ starts at the root, 
goes through some number of dashed trapezoids, having one vertex in each of 
them, reaches a suitable level, and then it turns into one of the discs, where 
the rest of it is embedded with vertices packed as tightly as possible. A more 
precise description follows. 

In each column, we consider the discs one by one from the bottom to the 
top. For each disc, we consider the highest shaded trapezoid lying below the 
equator of the disc. We take the leftmost vertex embedded in that trapezoid, 
and we change the embedding of the successors of this vertex: The successors are 
embedded on the equator of the considered disc and on a straight line connecting 
the leftmost vertex to the equator of the considered disc. The distance between 
any two neighbours on the connecting line is n5 /1 2 and the distance between 
any two neighbours on the equator is 1 in the embedding. 

We continue with the next higher disc (with a smaller number of paths). 
In the last level, there is only one path to end. The resulting embedding is 
indicated in Fig 2. 

It is straightforward to check that the resulting embedding of Fi^/^ yields 
distortion 0(n5/12) as claimed. • 
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1 Introduction 
The present paper is a part of the theoretical study underlying a linear time 
algorithm for finding a Kuratowski subdivision in a non-planar graph ([1]; see 
also [7] and [9] for other algorithms). Other linear time planarity algorithms 
don't exhibit a Kuratowski configuration in non planar graphs, but may be used 
to extract one in quadratic time. 

It relies on the concept of DFS cotree-critical graphs, which is a by-product of 
DFS based planarity testing algorithms (such as [5] and [4]). Roughly speaking, 
a DFS cotree-critical graph is a simple graph of minimum degree 3 having a 
DFS tree, such that any non-tree (i.e. cotree) edge is critical, in the sense that 
its deletion would lead to a planar graph. A first study of DFS cotree-critical 
graphs appeared in [3], in which it is proved that a DFS cotree-critical graph 
either is isomorphic to K5 or includes a subdivision of K3 3 and no subdivision 

Figure 1: The DFS cotree-critical graphs are either K$ or Mobius pseudo-ladders 
having all their non-critical edges (thickest) included in a single path. 

The linear time Kuratowski subdivision extraction algorithm, which has been 
both conceived and implemented in [2] by the authors, consists in two steps: the 
first one correspond to the extraction of a DFS cotree-critical subgraph by a case 
analysis algorithm; the second one extracts a Kuratowski subdivision from the 
DFS cotree-critical subgraph by a very simple algorithm (see Algorithm 1), but 
which theoretical justification is quite complex and relies on the full characteri
zation of DFS cotree-critical graphs that we prove in this paper: a simple graph 
is DFS cotree-critical if and only if it is either K& or a Mobius pseudo-ladder 
having a simple path including all the non-critical edges (see Figure 1). 

The algorithm roughly works as follows: it first computes the set Crit of the 
critical edges of G, using the property that a tree edge is critical if and only if 
it belongs to a fundamental cycle of length 4 of some cotree edge to which it is 
not adjacent. Then, three pairwise non-adjacent non-critical edges are found to 
complete a Kuratowski subdivision of G isomorphic to ^3,3. 

The space and time linearity of the algorithm are obvious. 
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Require: G is a DFS cotree-critical graph, with DFS tree Y. 
Ensure: K is a Kuratowski subdivision in G. 

if G has 5 vertices then 
K = G {G is isomorphic to K$} 

else if G has less than 9 vertices then 
Extract K with any suitable method. 

else {G is a Mobius pseudo-ladder and the DFS tree is a path} 
Crit <— E(G) \ Y {will be the set of critical edges} 
Find a vertex r incident to a single tree edge 
Compute a numbering A of the vertices according to a traversal of the path 
Y starting at r, from 1 to n. 
Let ej denote the tree edge from vertex numbered i to vertex numbered 
i + 1. 
for all cotree edge e — (u, v) (with X(u) < X(v)) do 

if A(u) - X(u) = 3 then 
Crit *- Crit U {eA(u)+1} 

end if 
end for 
Find a tree edge / = e, with 2 < i < n — 3 which is not in Crit. 
K has vertex set V(G) and edge set Crit U {ei, en_2, / } . 

end if 
Algorithm 1: extracts a Kuratowski subdivision from a DFS cotree-critical 
graph [2]. 

2 Definitions and Preliminaries 

For classical definitions (subgraph, induced subgraph, attachment vertices), we 
refer the reader to [8]. 

2.1 Mobius Pseudo-Ladder 

A Mobius pseudo-ladder is a natural extension of Mobius ladders allowing tri
angles. This may be formalized by the following definition. 

Definition 2.1 Let 7 be a polygon (vi,..., vn) and let {vi, Vj} and {vk, Vi) be 
non adjacent chords of 7. These chords are interlaced with respect to 7 if, in 
circular order, one finds exactly one of {vk,vi} between Vi and Vj. They are 
non-interlaced, otherwise. 

Thus, two chords of a polygon are either adjacent, or interlaced or non-interlaced. 

Definition 2.2 A Mobius pseudo-ladder is a non-planar simple graph, which 
is the union of a polygon {v\,..., vn) and chords of the polygon, such that any 
two non-adjacent bars are interlaced. 

With respect to such a decomposition, the chords are called bars. 
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A Mobius band is obtained from the projective plane by removing an open 
disk. Definition 2.2 means that a Mobius pseudo-ladder may be drawn in the 
plane as a polygon and internal chords such that any two non adjacent chords 
cross: consider a closed disk A of the projective plane, which intersects any 
projective line at most twice (for instance, the disk bounded by a circle of the 
plane obtained by removing the line at infinity). Embed the polygon on the 
boundary of A. Then, any two projective lines determined by pairs of adjacent 
points intersect in A. Removing the interior A of A, we obtain an embedding of 
the Mobius pseudo ladder in a Mobius band having the polygon as its boundary 
(see Figure 2). 

Notice that Kz^ and K5 are both Mobius pseudo-ladders. 

Figure 2: A Mobius pseudo-ladder on the plane, on the projective plane and on 
the Mobius band 

2.2 Critical Edges and Cotree-Critical Graphs 

Definition 2.3 Let G be a graph. An edge e e E(G) is critical for G ifG — e 
is planar. 

Remark 2.1 Let H be a subgraph of G, then any edge which is critical for G 
is critical for H (as G — e planar implies H — e planar). 

Thus, proving that an edge is non-critical for a particular subgraph of G is 
sufficient to prove that it is non-critical for G. 
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Moreover, if H is a non-planar subgraph of G, any edge in E(G) \ E(H) is 
obviously non-critical for G. 

Definition 2.4 A cotree-critical graph is a non-planar graph G, with minimum 
degree 3, such that the set of non-critical edges ofG is acyclic. 

Definition 2.5 A hut is a graph obtained from a cycle (vi,...,vp,..., vn) by 
adding two adjacent vertices x and y, such that x is incident to vn,Vi,... ,vp; 

and y is incident to vp,...,vn,v\. 

V x 

Figure 3: A hut drawn as a Mobius pseudo-ladder 

We shall use the following result on cotree-critical graphs (expressed here 
with our terminology) later on: 

Theorem 2.2 (Fraysseix, Rosenstiehl [3]) A cotree-critical graph is either 
a hut or includes a subdivision of K$£ but no subdivision of K$. 

2.3 Kuratowksi Subdivisions 

A Kuratowski subdivision in a graph G is a minimal non-planar subgraph of 
G, that is: a non-planar subgraph K of G, such that all the edges of K are 
critical for K. Kuratowski proved in [6] that such minimal graphs are either 
subdivisions of K$ or subdivisions of K^^. 

If G is non-planar and if if is a Kuratowski subdivision in G, it is clear that 
any critical edge for G belongs to E(K). This justifies a special denomination 
of the vertices and branches of a Kuratowski subdivision: 

Definition 2.6 Let G be a non-planar graph and let K be a Kuratowski sub
division of G. Then, a vertex is said to be a if-vertex (resp. a if-subvertex, 
resp. a if-exterior vertex,) if it is a vertex of degree at least 3 in K (resp. a 
vertex of degree 2 in K, resp. a vertex not in K). A if-branch is the subdivided 
path of K between two K-vertices. Two K-vertices are if-adjacent if they are 
the endpoints of a K-branch. A K-branch with endpoints x and y is said to 
link x and y, and is denoted [x, y]. We further denote ]x,y[ the subpath of [x, y] 
obtained by deleting x and y. 

A K-branch is critical for G if it includes at least one edge which is critical 
forG. 
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2.4 Depth-First Search (DFS) Tree 

Definition 2.7 A DFS tree of a connected graph G, rooted at VQ € V(G), may 
be recursively defined as follows: If G has no edges, the empty set is a DFS tree 
of G. Otherwise, let G\,...,Gk the connected components of G — VQ. Then, 
a DFS tree of G is the union of the DFS trees Y i , . . . , Yk of G\,...,Gk rooted 
at vi,...,Vk (where vi,...,Vk are the neighbors of vo in G), and the edges 
{vo,vi},...,{v0,vk}. 

Vertices of degree 1 in the tree are the terminals of the tree. 

Definition 2.8 A DFS cotree-critical graph G is a cotree-critical graph, whose 
non-critical edge set is a subset of a DFS tree of G. 

Lemma 2.3 If G is k-connected (k > 1) and Y is a DFS tree of G rooted at 
VQ, then there exists a unique path in Y of length k — 1 having VQ as one of its 
endpoints. 

Proof: The lemma is satisfied for k = 1. Assume that k > 1 and that the 
lemma is true for all k' < k. Let vo be a vertex of a fc-connected graph G. Then 
G — VQ has a unique connected component H, which is A: — 1-connected. A DFS 
tree YQ of G will be the union of a DFS tree Y» of H rooted at a neighbor v\ 
of VQ and the edge {VQ, I>I}. As there exists, by induction, a unique path in YH 
of length k — 2 having v\ as one of its endpoints, there will exist a unique path 
in YQ of length k — 1 having vo as one of its endpoints. • 

Corollary 2.4 IfG is 3-connected and Y is a DFS tree of G rooted at VQ, then 
vo has a unique son, and this son also has a unique son. 

Proof: As G is 3-connected, it is also 2-connected. Hence, there exists a unique 
tree path of length 1 and a unique tree path of length 2 having VQ as one of its 
endpoints. • 

Consider the orientation of a DFS tree Y of a connected graph G from its 
root (notice that each vertex has indegree at most 1 in 7 ) . This orientation 
induces a partial order on the vertices of G, having the root of Y as a minimum. 
In this partial order, any two vertices which are adjacent in G are comparable 
(this is the usual characterization of DFS trees). 

This orientation and partial order are the key to the proofs of the following 
two easy lemmas: 

Lemma 2.5 Let Y be a DFS tree of a graph G. Let x, y, z be three vertices of 
G, not belonging to the same monotone tree path. If x is a terminal of Y and x 
is adjacent to both y and z, then x is the root ofY. 

Proof: Assume x is not the root of Y. As y and z are adjacent to x, they are 
comparable with x. As a; is a terminal different from the root v$, y and y belong 
to the monotone tree path from VQ to x, a contradiction. • 
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Lemma 2.6 Let Y be a DFS tree of a graph G. Let x, y, z, t be four vertices of 
G, no three of which belong to the same tree path, and such that the tree paths 
from x to y and z to t intersect. Then, {x, y} and {z, t) cannot both be edges 
ofG. 

Proof: Assume both {x, y} and {z, t} are edges of G. If x and y are adjacent, 
they are comparable and thus, the tree path linking them is a monotone path. 
Similarly, the same holds for the tree path linking z and t. As these two mono
tone tree paths intersect and as neither x and z belong to both paths, there 
exists a vertex having indegree at least 2 in the tree, a contradiction. • 

3 Cotree-Critical Graphs 

Lemma 3.1 Let G be a graph and let H be the graph obtained from G by 
recursively deleting all the vertices of degree 1 and contracting all paths which 
internal vertices have degree 2 in G to single edges. Then, G is non-planar and 
has an acyclic set of non-critical edges if and only if H is cotree-critical. 

Proof: First notice that H is non-planar if and only if G is non-planar. 
The critical edges of G that remain in H are critical edges for H, according 

to the commutativity of deletion, contraction of edges and deletion of isolated 
vertices (for e e E(H), if G — e is planar so is H — e). 

For any induced path P of G, either all the edges of P are critical for G 
or they are all non-critical for G. Thus, the edge of P that remains in H is 
critical for H if and only if at least one edge of P is critical for G. Hence, if H 
had a cycle of non critical edges for H, they would define a cycle of non-critical 
edges for G, because each (non-critical) edge for H represents a simple path of 
(non-critical) edges for G . Since G does not have a cycle of non-critical edges, 
H cannot have such a cycle either. Thus, as H has minimum degree 3, if is 
cotree-critical. 

Conversely, assume H is cotree-critical. Adding a vertex of degree 1 does 
not change the status (critical/non-critical) of the other edges and cannot create 
a cycle of non-critical edges. Similarly, subdividing an edge creates two edges 
with the same status without changing the status of the other edges and hence 
cannot create a cycle of non-critical edges. Thus, the set of the non-critical 
edges of G is acyclic. • 

Lemma 3.2 Let G be a cotree-critical graph and let K be a Kuratowski sub
division of G isomorphic to Kz$. Then, there exists in E(G) \ E(K) no path 
between: 

• two vertices (K-vertices or K-subvertices) of a same K-branch of K, 

• two K-subvertices of K-adjacent K-branches of K. 

Proof: The two cases are shown Fig 4. 
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Figure 4: Forbidden paths in cotree-critical graphs (see Lemma 3.2) 

If two vertices x and y (K-vertices or if-subvertices) of a same if-branch of 
K are joined by a path in E(G)\E(K), both this path and the one linking x and 
y in K are non-critical for G. Hence G is not cotree-critical, a contradiction. 

If two i&T-subvertices x and y of if-adjacent if-branches of K are linked by 
a path in E(G) \ E(K), this path is non-critical for G.' Moreover, if z is the 
iiT-vertex adjacent to the branches including x and y, both paths from z to x 
and x to y are non-critical for G. Hence, G includes a non-critical cycle, a 
contradiction. • 

We need the following definition in the proof of the next lemma: 

Definition 3.1 Let H be an induced subgraph of a graph G. The attachment 
vertices of H in G is the subset of vertices of H having a neighbor in V(G) \ 
V(H). 

Lemma 3.3 Every cotree-critical graph is 3-connected. 

Proof: Let G be a cotree-critical graph. Assume G has a cut-vertex v. Let 
H\,H2 be two induced subgraphs of G having v as their attachment vertex and 
such that Hi is non-planar. As G has no degree 1 vertex, Hi includes a cycle. 
All the edges of this cycle are non critical for G, a contradiction. Hence, G is 
2-connected. 

Assume G has an articulation pair {v, w} such that there exists at least two 
induced subgraphs Hi, H^ of G, different from a path, having v, w as attachment 
vertices. As G is non planar, we may choose Hi in such a way that Hi + {v, w} 
is a non-planar graph (see [8], for instance). As there exists in H<z two disjoints 
paths from v to u>, no edge of these paths may be critical for G and H2 hence 
include a cycle of non-critical edges for G, a contradiction. • 

Lemma 3.4 Let G be a cotree-critical graph and let K be a Kuratowski subdi
vision of G. Then, G has no K-exterior vertices, that is: V(G) = V(K). 

Proof: According to Theorem 2.2, if K is a subdivision of K5, then either 
G = K, or G is a hut, having K has a spanning subgraph. Thus, G has no 
iiT-exterior vertex in this case, and we shall assume that K is a subdivision of 
#3,3. 
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Figure 5: A cotree-critical graphs has no JiT-exterior vertex (see Lemma 3.4) 

Assume V(G) \ V{K) is not empty and let v be a vertex of G not in K. 
According to Lemma 3.3, G is 3-connected. Hence, there exists 3 disjoint paths 
P\, P2, P3 from v to K. As K + Pi + P2 + P3 is a non-planar subgraph of G 
free of vertices of degree 1, it is a subdivision of a 3-connected graph, according 
to Lemma 3.1 and Lemma 3.3. Thus, the vertices of attachment x\,X2,xs of 
Pi,P2,P3 in K are all different. As ^3,3 is bipartite, we may color the K-
vertices of K black and white, in such a way that if-adjacent K-vertices have 
different colors. According to Lemma 3.2, no path in E(G) \ E(H) may link K-
vertices with different colors. Thus, we may assume no white if-vertex belong 
to {x\, X2, X3} and four cases may occur as shown Fig 5. All the four cases show 
a cycle of non-critical edges, a contradiction. • 

Corollary 3.5 If G is cotree-critical, no non-critical K-branch may be subdi
vided, that is: every non-critical K-branch is reduced to an edge. 

Proof: If a branch of K is non-critical for G, there exists a if3j3 subdivi
sion avoiding it. Hence, the branch just consists of a single edge, according to 
Lemma 3.3. • 

1 1 

jr 

1 1 1 1 1 1 1 1 
• 

• 

Figure 6: The 4-bars Mobius ladder M4 (all bars are non-critical edges) 
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Let G be a cotree-critical graph obtained by adding an edge linking two 
subdivision vertices of non-adjacent edges of a subdivision of a -^3,3. This 
graph is unique up to isomorphism and is the Mobius ladder with 4 non-critical 
bars shown Figure 6. 

Figure 7 shows a graph having a subdivision of a Mobius ladder with 3 bars 
as a subgraph, where two of the bars are not single edges. 

t ' 1 

Figure 7: A graph having a subdivision of a 3-bars Mobius ladder as a subgraph 
(some bars are paths of critical edges) 

The same way we have introduced if-vertices, if-subvertices and if-branches 
relative to a Kuratowski subdivision, we define M-vertices, M-subvertices and 
M-branches relative to a Mobius ladder subdivision. 

Lemma 3.6 Let K be a K^^ subdivision in a cotree-critical graph G. Not K-
adjacent K-vertices of K form two classes, {x, y, z} and {x',y',z'}, as K33 is 
bipartite. 

If [x, z'\ or [a/, z] is a critical K-branch for G, then all the edges from Jar, z[— 
Jar, y'J U [y',z[ to }x',z'[=]x',y] U [y, z'[ and the K-branch [y,y'] are pairwise 
adjacent or interlaced, with respect to the cycle (x,y',z,x',y,z'). 

Figure 8: No edges is allowed from Jar,z[ to }x',z'[ by the "outside" (see 
Lemma 3.6) 

Proof: The union of the ^3,3 subdivision and all the edges of G incident to a 
vertex in Jar, z[ and a vertex in Jar', z'[ becomes uniquely embeddable in the plane 
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after removal of the if-branches [a;, z'\ or \x', z\. Figure 8 displays the outline of 
a normal drawing of G in the plane which becomes plane when removing any of 
the if-branch [x, z'\ or [x', z\. In such a drawing, given that an edge from }x, z[ 
to }x', z'[, if drawn outside, crosses both [x, z'\ and [a;', z], all the edges from ]x, z[ 
to ]#', z'[ and the if-branch [y,y'] are drawn inside the cycle (x,y',z,z',y,x') 
without crossing and thus are adjacent or interlaced with respect to the cycle 
{x, y', z, x', y, z'). The result follows. a 

Lemma 3.7 IfG is a cotree-critical graph having a subdivision ofMobius ladder 
M with 4 bars as a subgraph, then it is the union of a polygon 7 and chords 
which are non-critical for G. Moreover the 4 bars 6i,62!^3,^4 of M are chords 
and any other chord is adjacent or interlaced with all ofbi,bi,b%,b± with respect 
to 7. 

Proof: Let G be a cotree-critical graph having a subdivision of Mobius M 
ladder with 4 bars b\,b2,bz,b± as a subgraph. First notice that all the bars of 
the Mobius ladder are non-critical for G and that, according to Corollary 3.5, 
they are hence reduced to edges. According to Lemma 3.4, M covers all the 
vertices of G as it includes a Kz$ and hence the polygon 7 of the ladder is 
Hamiltonian. Thus, the remaining edges of G are non-critical chords of 7. 

Let e be a chord different from &i, &2, &3> &4-

• Assume e is adjacent to none of b\, &2> fa, 64. 

Then it cannot be interlaced with less than 3 bars, according to Lemma 3.2, 
considering the -^3,3 induced by at least two non-interlaced bars. It can
not also be interlaced with 3 bars, according to Lemma 3.6, considering 
the K%$ induced by the 2 interlaced bars (as {x, x'}, {z, z'}) and one non
interlaced bar (as {y, y'}). 

• Assume e is adjacent to b\ only. 

Then it is interlaced with the 3 other bars, according to Lemma 3.2, 
considering the Kz,z induced by b\ and two non-interlaced bars. 

• Assume e is adjacent to b\ and another bar 6j. 

Assume e is not interlaced with some bar bj g {h,bi} then, considering 
the ^3,3 induced by b\,bi,bj we are led to a contradiction, according 
to Lemma 3.2. Thus, e is interlaced with the 2 bars to which it is not 
adjacent. 

D 

Theorem 3.8 If G is a cotree-critical graph having a subdivision of Mobius 
ladder M with 4 bars as a subgraph, then it is a Mobius pseudo-ladder whose 
polygon 7 is the set of the critical edges of G. 

Proof: According to Lemma 3.7, G is the union of a polygon 7 and chords 
including the 4 bars of M. In order to prove that G is a Mobius pseudo-ladder, 
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it is sufficient to prove that any two non-adjacent chords are interlaced with 
respect to that cycle. We choose to label the 4 bars &i, 62,63,64 of M according 
to an arbitrary traversal orientation of 7. According to Lemma 3.7, any chord 
e is adjacent or interlaced with all of 61,62,63,64 a n d hence its endpoints are 
traversed between these of two consecutive bars 6Q(e), 6/3(e) (with /3(e) = a(e) + 
1 (mod 4)), which defines functions a and /3 from the chords different from 
61,62,63,64 to {1,2,3,4}. 

As all the bars are interlaced pairwise and as any chord is adjacent or inter
laced with all of them, we only have to consider two non-adjacent chords e, / 
not in {61,62,63,64}. 

• Assume a(e) is different from a ( / ) . 

Then, the edges e and / are interlaced, as the endpoints of e and / appear 
alternatively in a traversal of 7. 

• Assume a(e) is equal to a(f). 

Let 6j, bj be the bars such that j = /3(e) + 1 = a(e) + 2 = 1 + 3 (mod 4). 
Then, consider the 1^3 induced by 7 and the bars 6;, e, bj. As bi and bj 
are non critical, one of the branches adjacent to both of them is critical, 
for otherwise a non critical cycle would exist. Hence; it follows from 
Lemma 3.6 that e and / are interlaced. 

• 

4 DFS Cotree-Critical Graphs 

An interesting special case of cotree-critical graphs, the DFS cotree-critical 
graphs, arise when the tree may be obtained using a Depth-First Search, as 
it happens when computing a cotree-critical subgraph using a planarity testing 
algorithm. Then, the structure of the so obtained DFS cotree-critical graphs 
appears to be quite simple and efficient to exhibit a Kuratowski subdivision 
(leading to a linear time algorithm). 

In this section, we first prove that any DFS cotree graph with sufficiently 
many vertices includes a Mobius ladder with 4 bars as a subgraph and hence are 
Mobius pseudo-ladders, according to Theorem 3.8. We then prove that these 
Mobius pseudo-ladders may be fully characterized. 

Lemma 4.1 Let G be a cotree-critical graph and let K be a Kuratowski sub
division of G isomorphic to K%£. Then, two K-vertices a,b which are not 
K-adjacent cannot be adjacent to K-subvertices on a same K-branch. 

Proof: The three possible cases are shown Figure 9; in all cases, a cycle of 
non-critical edges exists. • 

Lemma 4.2 Let G be a cotree-critical graph and let K be a Kuratowski subdivi
sion ofG isomorphic to K^^. IfG has two edges interlaced as shown Figure 10, 
then G is not DFS cotree-critical. 
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Figure 9: No two non-adjacent X-vertices may be adjacent to iiT-subvertices on 
the same K-branch (see Lemma 4.1) 

Figure 10: Case of two adjacent if-vertices adjacent to if-subvertices on the 
same liT-branch by two interlaced edges (see Lemma 4.2) 

Proof: Assume G is cotree-critical. By case analysis, one easily checks that any 
edge of G outside E(K) is either incident to a or b. Hence, all the vertices of G 
incident to at most one non-critical edge is adjacent to a vertex incident with 
at least 3 non-critical edges (a or b). According to Corollary 2.4, the set of non-
critical edges is not a subset of a DFS tree of G, so G is not DFS cotree-critical. 

• 
Lemma 4.3 Let G be a DFS cotree-critical graph and let K be a K^^ subdi
vision in G. Then, no two edges in E(G) \ E(K) may be incident to the same 
K-vertex. 

Proof: Assume G has a subgraph formed by K and two edges e and / incident to 
the same if-vertex a. According to Lemma 3.4 and Lemma 3.2, K is a spanning 
subgraph of G and only four cases may occur, depending on the position of the 
endpoints of e and / different from a, as none of these may belong to a K-branch 
including a: 
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Figure 11: Cases of Lemma 4.3 

• either they belong to the same if-branch, 

• or they belong to two if-branches having in common a if-vertex which is 
not if-adjacent to a, 

• or they belong to two if-branches having in common a if-vertex which is 
if-adjacent to a, 

• or they belong to two disjoint if-branches. 

By a suitable choice of the Kuratowski subdivision, the last two cases are easily 
reduced to the first two ones (see Fig 11). 

• Consider the first case. 

Assume there exists a if-subvertex v between x and y. Then, v is not 
adjacent to a if-vertex different from a, according to Lemma 4.1 and 
Lemma 4.2. If v were adjacent to another if-subvertex w, the graph 
would include a Mobius ladder with 4 bars as a subgraph and, according 
to Theorem 3.8, would be a Mobius pseudo-ladder in which {a,y} and 
{v, w} would be non adjacent non interlaced chords, a contradiction. Thus, 
v may not be adjacent to a vertex different from a and we shall assume, 
without loss of generality, that x and y are adjacent. Similarly, we may 
also assume that y and z are adjacent. 

Therefore, if G is DFS cotree-critical with tree Y, y is a terminal of Y and, 
according to Lemma 2.5, is the root of Y, which leads to a contradiction, 
according to Corollary 2.4. 
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• Consider the second case. 

As previously, we may assume that both x,y and z,t are adjacent. G 
cannot be DFS cotree-critical, according to Lemma 2.6. 

• 

Lemma 4.4 IfGis DFS cotree-critical, includes a subdivision of K3,z, and has 
at least 10 vertices, then G includes a 4-bars Mobius ladder as a subgraph. 

Proof: Let K be a . K ^ subdivision in G. 
Assume K has two if-subvertices u and v adjacent in G. According to 

Lemma 3.2, u and v neither belong to a same if-branch, nor to adjacent K-
branches. Let [a, a'] (resp. [b,b'}) be the if-branch including u (resp. v), where 
a is not lf-adjacent to b. Let c (resp. c') be the if-vertex if-adjacent to a' 
and b' (resp. a and b). Then, the polygon (d',a,u,a',c,b'\v,b) and the chords 
{c, c'}, {a, &'}, {u, v} and {a', b} define a 4-bars Mobius ladder. 

Thus, to prove the Lemma, it is sufficient to prove that if no two K-
subvertices are adjacent in G, there exists another ^3,3 subdivision K' in G 
having two if'-subvertices adjacent in G. 

As G has at least 10 vertices, there exists at least 4 if-subvertices adjacent 
in G to if-vertices. Let S be the set of the pairs (x, y) of i^-vertices, such that 
there exists a if-subvertex v adjacent to x belonging to a X-branch having y 
as one of its endpoints. Notice that K + {x, v} — {x, y} is a subdivision of ^3,3 
and thus that [x, y] is non-critical for G. 

Assume there exists two pairs (x, y) and (y, z) in S. Let u be the vertex 
adjacent to x in the if-branch incident to y and let v be the vertex adjacent to 
y in the X-branch incident to z. Then, K + {x, u} — {x, y) is a subdivision K' 
of 1̂ 3,3 for which {v, y} is an edge incident to two if'-subvertices. Hence, we 
are done in this case. 

We prove by reductio ad absurdum that the other case (no two pairs (x, y) 
and (y, z) belong to S) may not occur: according to Lemma 4.3, no two edges in 
E(G) \E{K) may be incident to a same if-vertex. Thus, no two pairs (x, y) and 
(x, z) may belong to S. Moreover, assume two pairs (x, y) and (z, y) belong to 
S. Then, [x, y] and [z, y] are non critical for G and thus not subdivided. Hence, 
x and z have to be adjacent to if-subvertices in the same if-branch incident 
to y, which contradicts Lemma 4.1. Thus, no two pairs (x,y) and (z,y) may 
belong to S. Then, the set {{x, y} : (x, y) G S or (y, x) £ S} is a matching of 
K3,3. As S includes at least 4 pairs and as .K"3i3 has no matching of size greater 
than 3, we are led to a contradiction. • 

Theorem 4.5 (Fraysseix, Rosenstiehl [3]) A DFS cotree-critical graph is 
either isomorphic to K5 or includes a subdivision of K3 3 but no subdivision 
ofK5. 

Theorem 4.6 Any DFS cotree-critical graph is a Mobius pseudo-ladder. 
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Proof: If G is isomorphic to K$, the result holds. Otherwise G includes a sub
division of .^3,3, according to Theorem 4.5. Then, the result is easily checked for 
graphs having up to 9 vertices, according to the restrictions given by Lemma 4.1 
and Lemma 4.3 and, if G as at least 10 vertices, the result is a consequence of 
Lemma 4.4 and Theorem 3.8. Q 

Theorem 4.7 A simple graph G is DFS cotree-critical if and only if it is a 
Mobius pseudo-ladder which non-critical edges belong to some Hamiltonian path. 

Moreover, if G is DFS cotree-critical according to a DFS tree Y and G has 
at least 9 vertices, then Y is a path and G is the union of a cycle of critical 
edges and pairwise adjacent or interlaced non critical chords. 

Proof: If all the non-critical graphs belong to some simple path, the set of the 
non-critical edges is acyclic and the graph is cotree critical. Furthermore, as we 
may choose the tree including the non-critical edges as the Hamiltonian path, 
the graph is DFS cotree-critical. 

Conversely, assume G is DFS cotree-critical. The existence of an Hamilto
nian including all the non-critical edges is easily checked for graph having up 
to 9 vertices. Hence, assume G has at least 10 vertices. According to Theo
rem 4.7, G is a Mobius pseudo ladder. By a suitable choice of a Kuratowski 
subdivision of -^3,3, it follows from Lemma 4.3 that no vertex of G may be 
adjacent to more than 2 non-critical edges. Let Y be a DFS tree including all 
the non-critical edges. Assume Y has a vertex v of degree at least 3. Then, one 
of the cases shown Figure 12 occurs (as v is incident to at most 2 non-critical 
edges) and hence v is adjacent to a terminal w of T. According to Lemma 2.5 
and Corollary 2.4, we are led to a contradiction. • 

t 

V 

w 

1 

Figure 12: A vertex of degree at least 3 in the tree is adjacent to a terminal of 
the tree (see Theorem 4.7) 
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