Genetic
Programming
Theory and
Practice |l

Edited by
Una-May O’Reilly, Tina Yu
Rick Riolo, Bill Worzel

(and (<= (abs Ggai P {1638}) (I
f!ewe?—arraw\rcfﬁ i, (el ™ eneArrayArg(

228} GEesshira

< ._(i:. abs abs , 13 rayArg{

Genetic Programming
Theory and Practice 11

GENETIC PROGRAMMING SERIES

Series Editor

John Koza
Stanford University

Also in the series:

GENETIC PROGRAMMING AND DATA STRUCTURES: Genetic
Programming + Data Structures = Automatic Programming! William B.
Langdon; ISBN: 0-7923-8135-1

AUTOMATIC RE-ENGINEERING OF SOFTWARE USING
GENETIC PROGRAMMING, Conor Ryan; ISBN: 0-7923-8653-1

DATA MINING USING GRAMMAR BASED GENETIC
PROGRAMMING AND APPLICATIONS, Man Leung Wong and Kwong
Sak Leung; ISBN: 0-7923-7746-X

GRAMMATICAL EVOLUTION: Evolutionary Automatic Programming
in an Arbitrary Language, Michael O ’Neill and Conor Ryan; ISBN: 1-4020-
7444-1

GENETIC PROGRAMMING 1V: Routine Human-Computer Machine
Intelligence, John R. Koza, Martin A. Keane, Matthew J. Streeter, William
Mydlowec, Jessen Yu, Guido Lanza; ISBN: 1-4020-7446-8

GENETIC PROGRAMMING THEORY AND PRACTICE, edited by
Rick Riolo, Bill Worzel; ISBN: 1-4020-7581-2

AUTOMATIC QUANTUM COMPUTER PROGRAMMING: A Genetic
Programming Approach, by Lee Spector; ISBN: 1-4020-7894-3

The cover art was created by Leslie Sobel in Photoshop from an original
Photomicrograph of plant cells and genetic programming code. More of Sobel’s
artwork can be seen at www.lesliesobel.com.

Genetic Programming
Theory and Practice II

Edited by

Una-May O’Reilly

Massachusetts Institute of Technology

Tina Yu

Chevron Texaco Information Technology Group

Rick Riolo

University of Michigan

Bill Worzel

Genetics Squared, Inc.

Springer

eBook ISBN: 0-387-23254-0
Print ISBN: 0-387-23253-2

©2005 Springer Science + Business Media, Inc.
Print ©2005 Springer Science + Business Media, Inc.
Boston

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

Contents

Contributing Authors
Preface
Foreword

1
Genetic Programming: Theory and Practice
Una-May O’Reilly, Tina Yu, Rick Riolo and Bill Worzel

2

Discovering Financial Technical Trading Rules Using Genetic Program-
ming with Lambda Abstraction

Tina Yu, Shu-Heng Chen and Tzu-Wen Kuo

3
Using Genetic Programming in Industrial Statistical Model Building
Flor Castillo, Arthur Kordon, Jeff Sweeney and Wayne Zirk

4
Population Sizing for Genetic Programming Based On Decision-Making
Kumara Sastry, Una-May O ’Reilly and David E. Goldberg

5
Considering the Roles of Structure in Problem Solving by Computer
Jason Daida

6
Lessons Learned using Genetic Programming in a Stock Picking Context
Michael Caplan and Ying Becker

7
Favourable Biasing of Function Sets
Conor Ryan, Maarten Keijzer, and Mike Cattolico

8

Toward Automated Design of Industrial-Strength Analog Circuits by Means
of Genetic Programming

J. R. Koza, L. W. Jones, M. A. Keane, M. J. Streeter and S. H. Al-Sakran

vii
Xiii

XV

11

31

49

67

87

103

121

vi GENETIC PROGRAMMING THEORY AND PRACTICE 11

9
Topological Synthesis of Robust Dynamic Systems by Sustainable Ge-
netic Programming

Jianjun Hu and Erik Goodman
10

Does Genetic Programming Inherently Adopt Structured Design Techniques?

John M. Hall and Terence Soule

11
Genetic Programming of an Algorithmic Chemistry
W. Banzhaf and C. Lasarczyk

12
ACGP: Adaptable Constrained Genetic Programming
CezaryZ. Janikow

13
Using Genetic Programming to Search for Supply Chain Reordering
Policies

Scott A. Moore and Kurt DeMaagd

14
Cartesian Genetic Programming and the Post Docking Filtering Problem
A. Beatriz Garmendia-Doval, Julian F. Miller, and S. David Morley

15
Listening to Data: Tuning a Genetic Programming System
Duncan MacLean, Eric A. Wollesen and Bill Worzel

16
Incident Detection on Highways
Daniel Howard and Simon C. Roberts

17
Pareto-Front Exploitation in Symbolic Regression
Guido F. Smits and Mark Kotanchek

18

An Evolved Antenna for Deployment on NASA’s Space Technology 5
Mission

Jason D. Lohn, Gregory S. Hornby, and Derek S. Linden

Index

143

159

175

191

207

225

245

263

283

301

317

Contributing Authors

Sameer H. Al-Sakran is a Systems Research Programmer at Genetic Program-
ming Inc. in Mountain View, California (al-sakran @sccm.Stanford.edu).

Wolfgang Banzhaf is Professor and Head of the Department of Computer
Science at Memorial University of Newfoundland, St. John’s, Canada
(banzhaf @cs.mun.ca).

Ying Becker is a Principal, Advanced Research Center at State Street Global
Advisors, State Street Corp (ying_becker @ssga.com).

Michael Caplan is a Principal, US Quantitative Active Equity at State Street
Global Advisors, State Street Corp (michael_caplan@ssga.com).

Flor Castillo is a Research Specialist in the Statistics and Applied Math and
Physics Groups within the Physical Sciences Research and Development of the
Dow Chemical Company (Facastillo@dow.com).

Mike Cattolico is a consultant at Tiger Mountain Scientific, Inc.
(mike @TigerScience.com).

Shu-Heng Chen is Director of AI-ECON Research Center and Professor of
Economics at National Chengchi University in Taiwan (chchen@nccu.edu.tw).

Jason M. Daida is an Associate Research Scientist in the Space Physics Re-
search Laboratory, Department of Atmospheric, Oceanic and Space Sciences
and is affiliated with the Center for the Study of Complex Systems at The
University of Michigan, Ann Arbor (daida@umich.edu).

viii GENETIC PROGRAMMING THEORY AND PRACTICE 11

Kurt DeMaagd is a STIET Fellow and Ph.D. student in the Business Infor-
mation Systems department at the Michigan Business School in Ann Arbor,
Michigan (demaagdk @umich.edu).

A. Beatriz Garmendia-Doval is a Software engineer at Quality Objects Ltd.,
Madrid, Spain (beatrizagd @yahoo.co.uk).

David E. Goldberg is the Jerry S. Dobrovolny Distinguished Professor in En-
trepreneurial Engineering and Director of the Illinois Genetic Algorithms Lab-
oratory at the University of Illinois at Urbana-Champaign (deg@uiuc.edu).

Erik D. Goodman is Professor of Electrical and Computer Engineering and of
Mechanical Engineering at Michigan State University
(goodman@egr.msu.edu).

John Hall is a computer scientist in the Digital Send Technology group at
Hewlett-Packard Company (gpdesign @johnmbhall.net).

Gregory S. Hornby is a computer scientist with QSS Group Inc., working
as a member of the Evolvable Systems Group in the Computational Sciences
Division at NASA Ames Research Center (hornby @email.arc.nasa.gov).

Daniel Howard is a QinetiQ Fellow and heads the Software Evolution Centre
at QinetiQ in Malvern, UK (dhoward @qinetiq.com).

Jianjun Huis a Ph.D. student in Computer Science and a member of Genetic
Algorithm Research and Application Group (GARAGe) at Michigan State Uni-
versity (hujianju@msu.edu).

Cezary Z. Janikow is an Associate Professor of Computer Science at the Uni-
versity of Missouri, St. Louis (janikow @umsl.edu).

Lee W. Jones is a Systems Research Programmer at Genetic Programming Inc.
in Mountain View, California (125 @pacbell.net).

Martin A. Keane is a consultant to the gaming industry and works with Genetic
Programming, Inc. (martinkeane @ameritech.net).

Contributing Authors X

Maarten Keijzer is research scientist for KiQ Ltd, Amsterdam and researcher
for the Strategic Research and Development Group at WL | Delft Hydraulics,
Delft. He operates the research/consultancy company PrognoSys, Utrecht, The
Netherlands (mkeijzer @xs4all.nl).

Arthur K. Kordon is a Research and Development Leader in the Applied Math
and Physics Group within the Physical Sciences Research and Development of
the Dow Chemical Company (akordon@dow.com).

Mark Kotanchek is the group leader for Applied Math and Physics within
Physical Sciences Research and Development of the Dow Chemical Company,
Midland, MI, USA (mkotanchek @dow.com).

John R. Koza is Consulting Professor at Stanford University in the Biomedical
Informatics Program in the Department of Medicine and in the Department of
Electrical Engineering (koza@stanford.edu).

Tzu-Wen Kuo is a Ph.D. student of Economics at National Chengchi University,
Taiwan (kuo@aiecon.org).

Christian Lasarczyk is Research Assistant in the Department of Computer
Science at the University of Dortmund, Germany (christian.lasarczyk @uni-
dortmund.de).

Derek Linden is the Chief Technical Officer of Linden Innovation Research
LLC, a company which specializes in the automated design and optimization
of antennas and electromagnetic devices (dlinden @lindenir.com).

Jason D. Lohn leads the Evolvable Systems Group in the Computational Sci-
ences Division at NASA Ames Research Center (jlohn@email.arc.nasa.gov).

Duncan MacLean is co-founder of Genetics Squared, Inc., a computational dis-
covery company working in the pharmaceutical industry (dmaclean@acm.org).

Julian Francis Miller is a Lecturer in the Department of Electronics at the
University of York, England (jfm @ohm.york.ac.uk).

X GENETIC PROGRAMMING THEORY AND PRACTICE 11

Scott A. Moore is the Arthur F. Thurnau Professor and BBA Program Director
at the Michigan Business School in Ann Arbor (samoore @umich.edu).

David Morley is the founder and Principal Consultant of Enspiral Discovery
Ltd, and was previously the head of Computational Technology Development
at Vernalis, Cambridge, UK (d.morley @enspiral-discovery.com).

Una-May O’Reilly is aresearch scientist in the Living Machines and Humanoid
Robotics group in the Computer Science and Artificial Intelligence Laboratory
at the Massachusetts Institute of Technology (unamay @csail.mit.edu).

Rick Riolo is Director of the Computer Lab and Associate Research Scientist
in the Center for the Study of Complex Systems at the University of Michigan
(rlriolo@umich.edu).

Simon C. Roberts is a senior engineer of the Software Evolution Centre at
QinetiQ in Malvern, UK (scroberts @btinternet.com).

Conor Ryan is a senior lecturer and University Fellow at the University of
Limerick, Ireland(conor.ryan@ul.ie).

Kumara Sastry is a member of Illinois Genetic Algorithms Laboratory and
a graduate student of Material Science and Engineering at the University of
[llinois at Urbana-Champaign (kumara@illigal.ge.uiuc.edu).

Guido Smits is a Research and Development Leader in the Applied Math and
Physics group within Physical Sciences Research and Development of Dow
Benelux, Terneuzen, Netherlands (GFSMITS @dow.com).

Terence Soule is a Professor at the University of Idaho, where is he a member of
the Computer Science Department and of the Bioinformatics and Computational
Biology Program (tsoule @cs.uidaho.edu).

Matthew W. Streeter is a Ph.D. student at Carnegie Mellon University and
was formerly a Systems Research Programmer at Genetic Programming Inc.
in Mountain View, California (matts @cs.cmu.edu).

Contributing Authors Xi

Jeff Sweeney is a Senior Statistician within the Physical Sciences Research &
Development Group of the Dow Chemical Company (Jsweeney @dow.com).

Eric A. Wollesen is a gradute of the University of Michigan. He is currently
employed as a software developer by Genetics Squared, Inc., a computational
discovery company working in the pharmaceutical industry

(ericw @ genetics2.com).

Bill Worzel is the Chief Technology Officer and co—founder of Genetics
Squared, Inc., a computational discovery company working in the pharma-
ceuticalindustry (billw @arroyosoft.com).

Tina Yu is a computer scientist in the Mathematical Modeling Team at Chevron-
Texaco Information Technology Company (Tina.Yu@chevrontexaco.com).

Wayne Zirk is a Senior Statistician within the Physical Sciences Research &
Development Group of the Dow Chemical Company (Zirk WE@dow.com).

This page intentionally left blank

Preface

The work described in this book was first presented at the Second Workshop
on Genetic Programming, Theory and Practice, organized by the Center for the
Study of Complex Systems at the University of Michigan, Ann Arbor, 13-15
May 2004. The goal of this workshop series is to promote the exchange of
research results and ideas between those who focus on Genetic Programming
(GP) theory and those who focus on the application of GP to various real-
world problems. In order to facilitate these interactions, the number of talks
and participants was small and the time for discussion was large. Further,
participants were asked to review each other’s chapters before the workshop.
Those reviewer comments, as well as discussion at the workshop, arereflected in
the chapters presented in this book. Additional information about the workshop,
addendums to chapters, and a site for continuing discussions by participants and
by others can be found at http://cscs.umich.edu:8000/GPTP-2004/.

We thank all the workshop participants for making the workshop an exciting
and productive three days. In particular we thank all the authors, without
whose hard work and creative talents, neither the workshop nor the book would
be possible. We also thank our keynote speakers Lawrence (“Dave”) Davis
of NuTech Solutions, Inc., Jordan Pollack of Brandeis University, and Richard
Lenski of Michigan State University, who delivered three thought-provoking
speeches that inspired a great deal of discussion among the participants.

The workshop received support from these sources:

w The Center for the Study of Complex Systems (CSCS);
a Third Millennium Venture Capital Limited;
= State Street Global Advisors, Boston, MA;

m Biocomputing and Developmental Systems Group, Computer Science
and Information Systems, University of Limerick;

» Christopher T. May, RedQueen Capital Management; and
s Dow Chemical, Core R&D/Physical Sciences.

Xiv GENETIC PROGRAMMING THEORY AND PRACTICE 11

We thank all of our sponsors for their kind and generous support for the work-
shop and GP research in general.

A number of people made key contributions to running the workshop and
assisting the attendees while they were in Ann Arbor. Foremost among them
was Howard Oishi. Howard was assisted by Mike Charters. We also thank Bill
Tozier for helping with reading and copy-editing chapters. Melissa Fearon’s
editorial efforts were invaluable from the initial plans for the book through its
final publication. Thanks also to Deborah Doherty of Kluwer for helping with
various technical publishing issues. Finally, we thank Carl Simon, Director of
CSCS, for his support for this endeavor from its very inception.

UNA-MAY O’REILLY, TINA YU, RICK RIOLO AND BILL WORZEL

Foreword

It was my good fortune to be invited to the 2004 Genetic Programming
Workshop on Theory and Practice, held in May in Ann Arbor, Michigan. The
goals of the workshop were unique, as was the blend of participants. To my
knowledge, this workshop is alone in focusing on and promoting the interaction
between theory and practice in the evolutionary computation world. There are
many workshops and conference tracks that are oriented toward one or the
other of these two, mostly disjoint, areas of evolutionary computation work.
To participate in a workshop promoting interactions between the two subfields
was a greatjoy.

The workshop organizers have summarized the various talks in the first chap-
ter of this volume, and the reader can get a feel there for the talk I gave on the
first day of the workshop. It is worth noting that a talk like mine — containing
actual slides from training sessions for industrial practitioners of evolutionary
computation, and containing a series of slides describing historically accurate
but prickly interchanges between practitioners and theoreticians over the last
twenty years — would most likely not have received a sympathetic hearing ten
or twenty years ago. The attendees of this workshop, practitioners and theo-
reticians in roughly equal numbers, were able to laugh at some points, consider
others, and during the course of the workshop, openly discuss issues related to
the integration of theoretical and practical work in evolutionary computation.
Our field is maturing in both areas, and so are our approaches to promoting
interactions between our field’s practical and theoretical subfields.

There is a good deal to be gained by all of this in these types of interactions,
and by the change in focus that they create. The papers in this year’s workshop
are very stimulating, and I look forward as well to reading next year’s workshop
volume, containing even more work lying on the frontiers between theory and
application of evolutionary computation.

Dr. Dave Davis, Vice President of Product Research
NuTech Solutions, Inc.,

Massachusetts, USA

June, 2004

This page intentionally left blank

Chapter 1

GENETICPROGRAMMING: THEORY AND PRACTICE

An Introduction to Volume I1

Una-May O’Reilly', Tina Yu?, Rick Riolo® and Bill Worzel*

!CSAIL, Massachusetts Institute of Technology; 2ChevronTexaco Information Technology Com-
pany; 3Center for the Study of Complex Systems, University of Michigan; “Genetics Squared

Keywords: genetic programming, coevolution, theoretical biology, real-world applications

1. Theory and Practice: Mind the Gap

Genetic programming (GP) is a rapidly maturing technology that is making
significant strides toward applications which demonstrate that itis a sustainable
science. In this year’s workshop, we are very pleased to receive more contribut-
ing papers describing the application of GP than last year. We therefore arranged
to have Dave Davis , Vice President of Product Research at NuTech Solutions,
Inc., kick off the workshop with a keynote entitled “Lessons Learned from
Real-World Evolutionary Computation (EC) Projects.”

Davis has over 15 years’ experience in deploying EC in industry. He talked
about EC project management by covering the project life cycle responsibilities
of sales, proposal preparation, contract fulfillment and sustaining the client rela-
tionship. A successful sales presentation, advised Davis, is one that addresses
the potential client’s business problems rather than the EC technology being
offered. When selling an EC solution, Davis warned, it is wrong to state the al-
gorithm “is random, and can be run as long as you want to get better solutions.”
Instead, explain that the algorithm “is creative and can be used to improve on
existing solutions.” This approach of communicating the advantages of GP
through the value of its solutions, rather than how it works, increases the like-
hood of EC being accepted by the clients. Both remarks resonated throughout
subsequent workshop conversations.

2 GENETIC PROGRAMMING THEORY AND PRACTICE 11

In a provocative and admittedly somewhat exaggerated stance, Davis cited
personal interchanges in the context of Genetic Algorithm theory and practice
that might be interpreted as a warning call to the GP theory community and
advice vis-a-vis theory to its practitioners, Davis stated that “the jury is out
on the usefulness of theory to applications people.” He advised that theory
contributions should include their limitations. For example, it would be folly to
advocate any one operator (or representation) as the best over all others when
the operator has only been theoretically studied with simplifying assumptions or
within the context of infinite measure that does not reflect the bias of reality. He
felt that the knowledge of practitioners gained through experience, especially
their discoveries concerning what things work well in different cases should be
respected. Furthermore, he remonstrated that practitioners can not be expected
to wait to use a technique until its theoretical underpinnings are well understood.
Theoreticians should not hold experimenters back. As a constructive step, he
suggested that successful demonstrations by practitioners should be used by
theoreticians to choose what to examine and provide explanations for. He also
pointed out that currently much theory focuses solely on EC. In the “real” world
practitioners hybridize their EC with methods such as simulated annealing and
tabu search, a practice which challenges the pertinence of the theory.

2. The Accounts of Practitioners

Davis was followed by multiple contributions from application domains
which substantiated his claim that real world problems demand more than the
simplest form of GP that theory analyzes. In Chapter 2, Yu, Chen and Kuo
report on their use of GP with lambda abstraction to discover financial tech-
nical trading rules that use historical prices to forecast price movement and
recommend buy or sell actions. Lambda abstraction is a means of achieving
modularity in GP. In contrast to Automatically Defined Functions where the
position of a module in a program tree is determined by evolution, the position
of a lambda abstraction is predefined to sit under a function node. This al-
lows domain knowledge to be incorporated into design GP program structures.
When properly used, the lambda abstraction module mechanism will lead to
faster discovery of a solution. In this case study, the evolved GP trading rules
yielded strong evidence that there are patterns (modules) in the S&P 500 time
series. The authors made efforts to select data containing diverse financial mar-
ket trends to prepare the training, validation and testing sets. They examined the
evolved lambda abstraction GP rules, after simplification, and found there was
discernible differentiation of technical indicators with appropriate buy or sell
decisions for different factors in the data. This implies that a rule, regardless of
market climate, is able to identify opportunities to make profitable trades and
outperform a simple benchmark buy-and-hold strategy.

An Introduction to Volume Il 3

Researchers from the Dow Chemical Corporation have two contributions in
the volume. In Chapter 3, Castillo, Kordon, Sweeney and Zirk outline how
industrial statistical model building can be improved through hybridization
with GP. When statistical analysis indicates that statistically derived models
have inadequate fit, transformations of the input variables are the practical way
to reduce the lack of fit . In this situation, the authors used GP symbolic
regression models to suggest (a) non-linear input transformations that would
reduce the lack of fit in designed data, and (b) linear input transformations
that reduce input multicollinearity in undesigned data. The newly inferred
statistical models demonstrated better fit and with better model structure than
models derived by genetic programming alone.

In the undesigned data example of Chapter 3, the evolved solution that bal-
anced accuracy with parsimony was derived using the Pareto front GP system
of Smits and Kotanchek that is described in Chapter 17. This multi-objective
approach to solving real-world symbolic regression problems allows one to
select easily among multiple Pareto optimal solutions, trading between the per-
formance and the complexity of the corresponding expression solution. Since
an expression with the lowest residual error yet high complexity is likely to
overfit the data, this argues for maintaining multiple solutions, and even com-
ponents (subtrees) of those solutions. Without requiring additional preserving
cost, these solutions are able to facilitate intelligent decision making. They may
also suggest additional runs to be made with derived function sets.

On the first day, the audience heard a very experiential account of putting
a GP-derived solution to the ultimate test. In Chapter 6 Caplan and Becker
of State Street Global Advisors recount the journey that eventually led to the
deployment of an evolved stock picking strategy in a quantitatively driven,
risk-controlled, US equity portfolio. Rather than focus on the details of the
specific market context, this story stressed how “success” depended notjust on
technical performance (that involved much adjustment and refinement of data
for training and the fitness criteria) but also on winning the support of skeptical
decision makers who were not entirely knowledgeable of the technology, but
justifiably had to weigh the risk and uncertainty of the new approach. The sharp
risk of the final step of using the result to automatically pick stocks was keenly
conveyed, and made one deeply appreciative of the large amount of effort that
must be expended to support the use of what seems to be a technically simple
GP solution. This contribution is a perfect example of Dave Davis’ earlier
message: the non-technical aspects of GP must be considered in order to bring
it to successful fruition in business.

Similar to the Caplan and Becker account, two stories of working with GP
on problems that are not always well-behaved were presented on the final day
of the workshop. In Chapter 16, Howard and Roberts of QinetiQ, Inc. have
used GP for classification. Reminiscent of Yu, Chen and Kuo in Chapter 2,

4 GENETIC PROGRAMMING THEORY AND PRACTICE 11

they communicate the large effort required to prepare the extensive data used
in training, validation and testing to evolve detectors that classify alerts for
night-time traffic incidents on the U.K. freeways. To cope with the many
challenging aspects of the traffic data (e.g., missing, noisy), they used a two
stage classification process. In stage one, high sensitivity was preferred over
high specificity so there were a high number of false positive alerts. In stage
two training was aimed to reduce false alarms while retaining at least a single
alert per incident. Obvious in the account, and similar to Caplan and Becker,
is how the problem-solving difficulty lay not in the GP technique itself, but in
how much time and effort it took to prepare the data and to partition them so
that a fairly straight-forward GP system could solve the problem. In both cases,
their efforts have put GP solutions on the front line of real world usage.

MacLean, Wolleson and Worzel of Genetics Squared, Inc., like Howard and
Roberts, have used GP for classification , though they work in the realm of
biological and pharmaceutical data. In Chapter 15, they shared their experi-
ences with a problem that exhibits good behavior and two problems that exhibit
bad behavior when solved using GP. Their practical advice on both cases can
be applied to problem domains where the number of explanatory (i.e., input)
variables is large (e.g., thousands) and only relatively few examples are avail-
able, hence overfitting is highly likely to occur. They normally run GP multiple
times and only consider a result reliable and the problem well behaved if the
results show (a) good training-test set correspondence, (b) a distinct selection of
variables unique to each class, (c) the same small number of features in classi-
fiers from different runs and (d) no pattern to the samples that are misclassified
across the different runs. In the instances of badly behaved problems, they
counsel that GP should not be used “dogmatically” in the sense that when it
does not work, the time spent understanding what GP may be revealing about
the problem is as worthwhile as (or better than) simply trying to make a change
to solve the problem. They demonstrated such practice by giving an example
of how the difficulty in creating successful classifiers for one type of tumors
led them to revisit the correspondence between molecular and physical level
data. Analyzing this information suggested revising how the samples should
be classified, and the new classifications led to more rational results.

3. GP Theory and Analysis

As GP systems in applications become more complex, the need for system-
aticity in the comprehension of their elements and behavior becomes more rel-
evant. Last year, Sastry, O’Reilly and Goldberg insisted that ensuring adequate
population size is crucial to systematic competent GP algorithm design. Now,
in Chapter 4, they have taken a logical step forward from their population sizing
model of a year ago. Whereas previously they considered sizing the population

An Introduction to Volume I 5

to ensure an adequate supply of raw building blocks in the initial population,
now they derive a decision making model that determines population size based
on ensuring a quantity sufficient to ensure, with some specifiable certainty, that
the best building block is favored over its second best competitor. Such models
do not directly transfer to practice because many of their factors are not mea-
surable for a real GP problem. However, they provided insight by identifying
critical factors that figure in population sizing, particularly ones unique to GP
such as bloat and program size, and illuminating their relationships.

In Chapter 10, Hall and Soule showed experiments that examine whether GP
uses a top-down design decomposition approach or not. Clearly, the tree repre-
sentation of traditional GP can implicitly map top down design since a complete
tree represents a solution to a full problem and solutions to subproblems exist
at tree levels. However, the tree structure does not guarantee that the broader,
more significant problem is decomposed first (at the root) and the successive
subproblems are then either decomposed or solved. It appears that, while GP
discovers a program from the root down, what is fixed at the root node does not
reflect design decomposition but depends instead upon selection bias. When
this selection bias leads to premature convergence, substantially increasing the
population size might help because it will improve GP’s sampling of root node
choices. This heuristic concurs with the concept of sizing a GP population to
ensure adequate optimal building block decision making as the contribution
by Sastry, O’Reilly and Goldberg suggested but only to the extent that it en-
sures that the correct decision will be made among competing building blocks.
Adequate population sizing will not enforce top-down design because in GP
problems there is no structure dictating that the most salient building block is
the first top-down design decision.

Chapter 5’s contribution by Jason Daida is also systematic in its rigorous use
of vast quantities of experimental data and its careful consideration of the role
of structure in GP’s ability to problem solve. Daida presented a tiered view
of the roles of structure in GP: lattice, network and content. This view can
be used to frame theory on how some problems are more difficult than others
for GP to solve. Lattice, the lowest level, presumes structure independent of
content and subsequent levels; network and context presume decreasing levels
of content abstraction. Daida and his group have devised a tunably difficult
test program to probe the behavior at each level. Their results indicate that GP
may be hampered if overloaded with choice. Based on his systematic analysis,
Daida offers speculative advice on using GP in real world problem solving: use
large populations, use tournament selection, do not use an excessive primitive
set, use structure-altering operations (e.g., automatically defined functions) to
mitigate overloading and consider using meta-programs to pare down the size
of primitive sets.

6 GENETIC PROGRAMMING THEORY AND PRACTICE II

Last year, much discussion took place around a problematic issue with evolv-
ing modularity in GP: whenever both modules and the main solution must be
evolved simultaneously, the latter frequently override the former due to the
fitness criteria focusing on the performance of main solution. Consequently,
evolutionary module identification and reuse occur on a slower timescale than
the evolution of the main solution. The concept of Run Transferable Libraries
(RTL) by Ryan, Keijzer and Cattolico in Chapter 7 seeks to address this issue.
They show how libraries of functions can be evolved from one run and then be
reused in a later run. In this way, the time gap between the evolution of main
solution and its useful modules (library functions) may be reduced. The fitness
of a library function is determined after each generation within a run, according
to how much it is used in the population rather than the performance of the
solutions that use it. In common with the standard programming libraries, the
intent of RTL is to evolve general purpose sets of functions that can be used on
different instances of a similar problem, hence enhance GP scalability to more
difficult problems. Their simple initial results are encouraging and indicate that
many of the choices opened up by this approach deserve further investigation.

Interestingly, the issues surrounding evolving modularity also present them-
selves in the problem of a GP system that learns its own rules of constraint and
heuristically advantageous primitive combination. When should such heuris-
tics and constraints be updated and how can they be learned when the system
is focused on solving its problem?
inx ACGP In Chapter 12, Janikow offers two means of doing this. First, weights
assigned to existing heuristics can be strengthened when they produce an off-
spring fitter than its parents. Second, the distribution statistics of a pool of the
best solutions in terms of fitness and secondarily size can be extracted and used
to update the probabilities. This technique assumes that capturing distributional
information in partial solutions will lead to better solutions and that first order
statistics express essential structure of the genome. Janikow’s method, like that
of Ryan, Keizer and Cattolico, can be used within a run or for successive runs.

4. Achieving Better GP Performance

The second day started with an invited talk entitled “Recent Results in Co-
evolution” by Jordan Pollack. Pollack defines coevolution broadly: a coevolu-
tionary algorithm differs from an evolutionary algorithm in that individuals are
judged by relative fitness rather than absolute fitness. Not all coevolutionary
dynamics facilitate the progress of a system and the evolution of complexity.
Instead, some dynamics cause a system to stagnate. Pollack demonstrated such
a coevolution model using a “Teacher’s Dilemma” game in which the teacher
chooses a problem, from easy to hard, and the student tries to solve it.

An Introduction to Volume Il 7

In this game, both student and teacher receive a “payoff” in terms of the utility
(satisfaction and correctness) of the outcome from their perspective. Unfortu-
nately, the strategy that dominates this game is one in which the teacher and
student “secretly share” joint utility and collude in mediocrity. Besides col-
lusive mediocrity, other non-progressive coevolutionary dynamics are ‘“boom
and bust”, “winners take all”, “disengagement” and “death spirals” . By pre-
senting additional simple, formal models of coevolutionary dynamics, Pollack
showed that competition alone does not drive progress. A system needs both
competitiveness: fitness which is based on performance and informativeness:
fitness which is based on the information that an individual provides to oth-
ers. With this proper motivational structure, distributed self-interested adaptive
agents can continuously create their own gradient for open-ended progress.

Pollack’s talk encourages experimentation with coevolution because poten-
tially informativeness will complement competition and prevent evolution from
stymieing progress. Hu and Goodman in Chapter 9 note something similar in
that GP is often in need of an explicit fair competition mechanism to sustain
productive evolution. Last year, in this workshop they reported that too much
competition in a GP system can prevent sufficient alternatives from being ex-
plored. They presented a sustainable evolutionary computation model called
Hierarchical Fair Competition (HFC-GP). HFC-GP ensures that a sufficient
variety of new candidates is continually introduced to the top level of the pop-
ulation. This year they examine robustness in the context of dynamic systems
. Despite robustness being a key facet of dynamic systems, conventional dy-
namic system design decouples the functional or structural steps of designing
a solution from the determination of robust operating procedures. They show
how topologically open ended synthesis by GP offers an excellent alternative
which allows robustness to be considered from the beginning of the solution
design process. Their system exploits the representational advantages of bond
graphs for both representing a dynamic system and for evolutionary search. To
achieve their results they rely on a strongly typed GP tool enhanced with an
improved version of HFC-GP.

In Chapter 13 Moore and DeMaagd report their progress on using GP to
search for supply chain reordering policies. The system assigns fitness to agents
that participate in a supply chain “game” based on how well the chain performs
as a whole. This invites the question of how a coevolutionary view of the
system might contribute to improving the dynamics as related to Pollack’s def-
inition of coevolutionary systems and his conclusions regarding competition
and informativeness. Based on Pollack’s model, a setup where the evolving
agents need to cooperate with each other explicitly and to share information
with each other may yield progressively better policies. In the investigation
conducted, rather than evaluate GP’s ability to find optimal restocking policies,
the authors’ primary goal was to understand how changes in a set of ten GP

8 GENETIC PROGRAMMING THEORY AND PRACTICE II

parameters (each with three settings) correlated with its ability to progressively
and efficiently improve its policies for a given demand distribution and supply
chain setup. They employed design of experiments to narrow the number of
experiments down to 243 and evaluated five hypotheses concerning a param-
eter’s influence ranging from the rate of improvement of the best solution to
what generation gives the final best policy. Overall they have learned, under
narrow conditions, a set of expectations for their system’s behavior under the
given parameter choices. This will prove useful as they use GP to search in the
solution landscape.

In Chapter 14 Garmendia-Doval, Miller and Morley present a comprehensive
contribution that deals with a real-world problem employing Cartesian GP, and
analyze their system’s performance with respect to bloat and neutral drift. The
problem at hand is automating the removal of false positives from an initial stage
classifier that estimates binding modes for input ligands. Using Cartesian GP,
the evolved filter generalized well over the data by filtering out consistently bad
compounds while retaining interesting hits. Cartesian GP encodes a graph as a
string of integers that represents the functions and connections between graph
nodes, and program inputs and outputs. The representation is very general
for computational structures because it can encode a non-connected graph and
supports a many-to-one genotype phenotype mapping. Additionally, despite
having a fixed size, it can encode a variable-size graph. The evolutionary
process effectively capitalized on neutral drift and experienced no program
bloat, which seem to be inherent features of Cartesian GP’s encoding.

Koza, Jones, Keane, Streeter and Al-Sakran combine a variety of means to
upgrade previous approaches toward automated design of analog circuits with
GP and present their results in Chapter 8. Whereas their previous goal was to
show how GP can be used as an automated invention machine to synthesize
designs for complex structures with a uniform set of techniques, now attention
is turned to making the method * industrial-strength,” to focus on analog circuit
synthesis problems of challenging character. Making the technique industrial-
strength involves using elementary general domain knowledge of analog circuits
and exploiting problem specific knowledge about the required circuit. It also
includes using automatically defined functions, faster simulators and an im-
proved primitive set. The challenging factors are dealing with multi-objective
fitness criteria and assessing circuits’ performance at the corners of various per-
formance envelope conditions. Using an ongoing project for illustration and
assessment, the authors describe their improvements in detail.

In contrast to the amount of effort that has to be exerted to bring GP up to snuff
for analog circuit synthesis, in Chapter 18, Lohn, Hornby and Linden present
one of the most compelling examples of GP being used entirely in a standard
manner to evolve something valuable: the design of an X-band antenna that may
actually fly on a NASA spacecraft. The antenna design was greatly facilitated by

An Introduction to Volume 11 9

a high fidelity simulator. Despite flight worthiness, remarkably a very simple GP
primitive set that basically allowed branching and some standard construction
primitives is sufficient for the task. The evolved antenna is compliant with
its performance requirements and sports an unusual organic looking structure
which seems unlikely to have been designed by hand. If successful at space
qualification testing, it will become the first evolved hardware in space.

S. How Biology and Computation Can Inform Each Other

Richard Lenski describes himself as a biologist who studies evolution empir-
ically. One theme of his address was the study of contingency: the evolutionary
pathway passes through thousands of improbable stages. The pathway contains
events, that despite their apparent unimportance, ifaltered even so slightly, cause
evolution to cascade into a radically different channel.

Lenski reported on his investigations with the bacterium, E. coli, and related
how, in just one population, the ability to metabolize citrate (a carbon source)
evolved. The experimental task of isolating the mutational changes upon which
this adaptation is contingent will be arduous. Fortunately Avida, a fast and
tractable artificial life system, is providing Lenski with additional insights into
contingency. Lenski has established that only when he rewards simpler logic
functions does the complex logic function EQU evolve in Avida. Relevantto GP
(and all of evolutionary computation) he has shown that providing the rewards
for building blocks is necessary for complex adaptation. He has observed
considerable non-monotonicity in the mutational dynamics of populations that
evolve EQU. Neutral and deleterious mutations occur. Sometimes a trade-off
occurs — the final mutation leading to EQU will result in a simpler function
being eliminated. Each population that evolved EQU did so by a different path
and arrived at a different solution. In a case study of the lines of descent from
one run where EQU evolved, at least one deleterious mutation was necessary
for EQU because it interacted with the subsequent mutation to produce EQU.

Lenski’s analysis produced much nodding of heads and emphatic acknowl-
edgments from the audience. It indicates that we should not expect our evolu-
tionary populations to monotonically improve. It confirmed intuition that we
should choose representations and fitness functions to encourage and tolerate
deleterious mutations on the adaptive trajectory. It resonates with experience
using GP where GP runs for solving the same problem usually produce unique
solutions evolved from contingent paths.

While Lenski has used computation to investigate biology, Banzhaf and
Lasarczyk in Chapter 11 produced arguably the most provocative and spec-
ulative paper of the meeting by reversing this perspective and asking, instead,
how biology might inform a new model of computation. The observation that
concentration matters most in chemistry (e.g., consider the functioning of liv-

10 GENETIC PROGRAMMING THEORY AND PRACTICE 11

ing cells) is mapped to programming terms by dissolving the sequential order
associated with an algorithm’s instructions. A program becomes an assemblage
of a fixed quantity of instructions that are chosen randomly and executed in an
arbitrary order. With that, what matters is the concentration of instructions and
the concentration of multiple outcomes, rather than their order. This is admit-
tedly inefficient on a small scale but if parallel and distributed computing were
freed from the need to synchronize and to maintain order, and when thousands
or millions of processors can be employed cheaply, the potential pay-off of this
computational model is immense. The authors term this type of system an “al-
gorithmic chemistry.” The authors’ perspective stimulates us to novelly regard
GP as a program-based computation at the cellular chemical level not just the
information processing level when this new notion of a program is considered.

6. Wrap up: Narrowing the Gap

Few would deny that the simplest and most standard GP system is com-
plex. The algorithmic definition of a population based search which uses an
executable representation that can vary in structure and size, and which uses
selection, recombination and perhaps mutation constitutes arich, powerful com-
plex system. Although such richness and power have made GP an attractive
tool for solving real-world problems, they also make the establishment of GP’s
theoretical foundations very difficult. On top of that, many applied GP systems
are coupled with extension or hybridization in order’ to provide solutions of a
quality useful in the real world. Thus, it would seem that there is a widening
gap between GP practitioners and theoreticians. However, the close encounters
of the second time indicated otherwise. We heard laughter from theoreticians
during Davis’ provocative talk. We listened to practitioners defending theo-
retical work because they have benefited from their insights. At the end of
the workshop, many participants expressed enthusiasm to continue this kind of
close encounters to bridge GP theory and practice. Such open-minded attitudes
make us believe that despite the current state of theory is imperfect to precisely
describe the dynamics of GP and to strictly guide the use of GP (i.e., parame-
ter and representation choices), there will always be links between theory and
practice. Mapping the GP community to the coevolution model described by
Pollack, we hope this workshop series will continue fostering healthy coevolu-
tionary dynamics that allow each distributed self-interested adaptive researcher
to create his/her own gradient for the GP open-ended progress.

Chapter 2

DISCOVERING FINANCIAL TECHNICAL
TRADING RULES USING GENETIC
PROGRAMMING WITH LAMBDA
ABSTRACTION

Tina Yu', Shu-Heng Chen” and Tzu-Wen Kuo®

\ChevronTexaco Information Technology Company; *National Chengchi University, Taiwan

Abstract

Keywords:

We applied genetic programming with a lambda abstraction module mechanism
to learn technical trading rules based on S&P 500 index from 1982 to 2002. The
results show strong evidence of excess returns over buy-and-hold after transaction
cost. The discovered trading rules can be interpreted easily; each rule uses a
combination of one to four widely used technical indicators to make trading
decisions. The consensus among these trading rules is high. For the majority of
the testing period, 80% of the trading rules give the same decision. These rules
also give high transaction frequency. Regardless of the stock market climate,
they are able to identify opportunities to make profitable trades and out-perform
buy-and-hold.

modular genetic programming, lambda abstraction modules, higher-order func-
tions, financial trading rules, buy-and-hold, S&P 500 index, automatically defined
functions, PolyGP system, stock market, technical analysis, constrained syntac-
tic structure, strongly typed genetic programming, financial time series, lambda
abstraction GP.

1. Introduction

In this chapter genetic programming (GP) (Koza, 1992) combined with a
lambda abstraction module mechanism is used to find profitable trading rules
in the stock market. Finding profitable trading rules is not equivalent to the
problem of forecasting stock prices, although the two are clearly linked. A
profitable trading rule may forecast rather poorly most of the time, but perform
well overall because it is able to position the trader on the right side of the
market during large price changes. One empirical approach to predict the price

12 GENETIC PROGRAMMING THEORY AND PRACTICE 11

change is technical analysis. This approach uses historical stock prices and
volume data to identify the price trend in the market. Originated from the work
of Charles Dow in the late 1800s, technical analysis is now widely used by
investment professionals to make trading decisions (Pring, 1991).

Various trading indicators have been developed based on technical analysis.
Examples are moving average, filter and trading-range break. For the moving
average class of indicators, the trading signals are decided by comparing a
short-run with a long-run moving average in the same time series, producing
a “buy” signal when the short-run moving average is greater than the long-run
moving average. This indicator can be implemented in many different ways
by specifying different short and long periods. For example, on the left side
of Figure 2-1 is a moving average with a short of 10 days and a long of 50
days. For the filter indicators, the trading signals are decided by comparing
the current price with its local low or with its local high over a past period of
time. Similar to the moving average, it can be implemented with different time
length. When multiple filter indicators are combined together similar to the one
on the right side of Figure 2-1, it is called a trading-range break indicator.

if-then-else if-then-else

7| S

> buy sell > buy if-then-else
avg avg pricc max <« sell nothing
| I | /N
10 50 50 price min
|
50

Figure 2-1. A moving average (10,50) and a trading-range break indicator.

Previously, (Brock et al, 1992) reported that moving average and trading-
range break give significant positive returns on Dow Jones index from 1897
to 1986. Similarly, (Cooper, 1999) showed that filter strategy can out-perform
buy-and-hold under relatively low transaction cost on NYSE and AMEX stocks
for the 1962-1993 period. These studies are encouraging evidence indicating
that it is possible to devise profitable trading rules for stock markets.

However, one concern regarding these studies is that the investigated trading
indicators are decided expost. Itis possible that the selected indicator is favored
by the tested time period. If the investor had to make a choice about what
indicator or combination of indicators to use at the beginning of the sample
period, the reported returns may have not occurred. In order to obtain true
out-of-sample performance, GP has been used to devise the trading rules for
analysis. For the two attempts made, both of them reported that GP can not find
trading rules that out-perform buy-and-hold on S&P 500 index (see Section

Discovering Technical Trading Rules Using X Abstraction GP 13

2 for details). One possible reason for this outcome is that the GP systems
used are not adequate for this task. The work described in this chapter extends
GP with a A abstraction module mechanism and investigates its ability to find
profitable technical trading rules based on S&P 500 index from 1982 to 2002.

This chapter is organized as follows. Section 2 reviews related work. Section
3 presents the A abstraction module mechanism. In Section 4, the PolyGP
system is described. In section 5, S&P 500 time series data are given. Section
6 explains the experimental setup while Section 7 presents the experimental
results. We analyze the GP trading rules in Section 8 and 9. Finally, concluding
remarks are given in Section 10.

2. Related Work

Targeted toward different financial markets, different researchers have ap-
plied GP to generate trading rules and analyzed their profitability. Forexample,
(Allen and Karjalainen, 1999) studied S&P 500 index from 1928 to 1995. They
reported that the evolved GP trading rules did not earn consistent excess returns
over after transaction costs. In contrast, (Neely et al., 1997) reported that their
GP trading rules for foreign exchange markets were able to gain excess returns
for six exchange rates over the period 1981-1995. (Wang, 2000) suggested that
this conflicting result might be due to the fact that foreign exchange markets
have a lower transaction cost than the stock markets have. Another reason
Wang suggested is that (Neely et al., 1997) did not use the rolling forward
method (explained in Section 5) to test their results for different time periods
while (Allen and Karjalainen, 1999) did. Finally, Wang pointed out that these
two works used different benchmarks to assess their GP trading rules: (Allen
and Karjalainen, 1999) used the return from buy-and-hold while (Neely et al.,
1997) used zero return , because there is no well-defined buy-and-hold strategy
in the foreign exchange markets.

Using a similar GP setup as that of (Allen and Karjalainen, 1999), Wang also
investigated GP rules to trade in S&P 500 futures markets alone and to trade in
both S&P 500 spot and futures markets simultaneously. He reported that GP
trading rules were not able to beat buy-and-hold in both cases. Additionally,
he also incorporated Automatically Defined Functions (ADFs) (Koza, 1994)
in his GP experiments. He reported that ADFs made the representation of the
trading rules simpler by avoiding duplication of the same branches. However,
no comparison was made between the returns from GP rules and the returns
from ADF-GP rules.

Another approach using GP to generate trading rules is by combining pre-
defined trading indicators (Bhattacharyya et al., 2002, O’Neill et al., 2002). In
these works, instead of providing functions such as average for GP to construct
a moving average indicator and minimum to construct filter indicators, some

14 GENETIC PROGRAMMING THEORY AND PRACTICE 11

of the trading indicators are selected and calculated. These indicators are then
used to construct the leaves of GP trees. Since there are a wide range of trading
indicators, this approach has an inevitable bias; only selected indicators can be
used to construct trading rules. Modular GP relieves such bias by allowing any
forms of indicators to be generated as modules, which are then combined to
make trading decisions.

Our first attempt using modular GP to evolve financial trading rules was
based on ADF-GP (Yu et al.,, 2004). There, the evolved rules trade in both
stock markets and foreign exchange markets simultaneously. However, our
study results showed that most ADF modules were evaluated into constant value
of True or False. In other words, ADFs did not fulfill the role of identifying
modules in the trading rules. Consequently, ADF-GP trading rules gave similar
returns to those from vanilla GP trading rules; both of them were not as good
as the returns from buy-and-hold. This suggests either that there is no pattern
in financial market trading rules, or ADF is not able to find them. We find
this outcome counter-intuitive, since it is not uncommon for traders to combine
different technical indicators to make trading decisions. We therefore decide
to investigate a different modular approach (A abstraction) to better understand
GP’s ability in finding profitable trading rules.

3. Modular GP through Lambda Abstraction

Lambda abstractions are expressions defined in A calculus (Church, 1941)
that represent function definition (see Section 4 for the syntax). Similar to a
function definition in other programming languages such as C, a A abstraction
can take inputs and produce outputs. In a GP program tree, each A abstraction
is treated as an independent module, with a unique identity and purpose. It is
protected as one unit throughout the program evolution process.

One way to incorporate A abstraction modules in GP is using higher-order
functions, i.e., functions which take other functions as inputs or return functions
as outputs. When a higher-order function is used to construct GP program trees,
its function arguments are created as A abstractions modules. These modules
evolve in ways that are similar to the rest of the GP trees. However, they can
only interact with their own kind to preserve module identities.

For example, Figure 2-2 gives two program trees. Each contains two different
kinds of A abstraction modules: one is represented as a triangle and the other
as a cycle. Cross-over operations are only permitted between modules of the
same kind.

We use type information to distinguish different kind of A abstraction mod-
ules. Two A abstractions are of the same kind if they have the same number of
inputs and outputs, with the same input and output types. For example, in this

Discovering Technical Trading Rules Using X Abstraction GP 15

if-then-else

and s if-then-else

x
VAN 1 RN

Figure 2-2. Cross-over between A abstraction modules in two GP trees.

work we define a A abstraction with type information 7ime — Boolean: it
takes one input with type Time and returns a Boolean output.

Unlike an ADF, whose position in a program tree is determined by evolution,
aA abstraction module is hard-wired to situnderneath a specified function node.
Therefore, this module mechanism can be use to incorporate domain knowledge
to design GP tree structure. In this work, we want GP to combine multiple
technical indicators. To achieve that, we first add Boolean function combinators
AND, OR, NAND, NOR to the function set. Additionally, we specify some
of the combinators as higher-order functions. In this way, technical indicators
can be evolved inside A modules, which are then integrated together by the
higher-order function combinators.

Incorporating domain knowledge to design can speed up the GP evolution
process, and leads to faster discovery of meaningful solutions. In a previous
work, a similar concept was used to design recursive program structure for
the general even parity problem. With a very suitable design, the population
program structures were quickly converged (in the first generation) and most
GP evolution effort went to find the correct program contents (Yu, 2001).

4. The PolyGP System

PolyGP (Yu, 1999) is a GP system that evolves expression-based programs
(A calculus). The programs have the following syntax:

exp:c constant
| z identifier
| f built-in function
| expl exp2 application of one expression to another
| Az.exp lambda abstraction

Constants and identifiers are given in the terminal set while built-in functions
are provided in the function set. Application of expressions and A abstractions
are constructed by the system.

16 GENETIC PROGRAMMING THEORY AND PRACTICE 11

Each expression has an associated type. The types of constants and identi-
fiers are specified with known types or type variables. For example, the stock
price index has a type Double.

index :: Double

The argument and return types of each built-in function are also specified.
For example, the function “+” takes two Double type inputs, and returns a Dou-
ble type output.

+ :: Double — Double — Double

For higher-order functions, their function arguments are specified using
brackets. For example, the first argument of function IF-THEN-ELSE can
be specified as a function that takes two argument (one with type Time and the
other with Double type) and returns a Boolean value.

IF-THEN — ELSE :: (Time — Double — Boolean) — Boolean — Boolean -
Boolean

Using the provided type information, a type system selects type-matching
functions and terminals to construct type-correct program trees. A program
tree is grown from the top node downwards. There is a required type for the top
node of the tree. The type system selects a function whose return type matches
the required type. The selected function will require arguments to be created
at the next (lower) level in the tree: there will be type requirements for each
of those arguments. If the argument has a function type, a A abstraction tree
will be created. Otherwise, the type system will randomly select a function (or
a terminal) whose return type matches the new required type to construct the
argument node. This process is repeated many times until the permitted tree
depth is reached.

A abstraction trees are created using a similar procedure. The only difference
is that their terminal set consists not only of the terminal set used to create the
main program, but also the input variables to the A abstraction. Input variable
naming in A abstractions follows a simple rule: each input variable is uniquely
named with a hash symbol followed by an unique integer, e.g. #1, #2. This
consistent naming style allows cross-over to be easily performed between A
abstraction trees with the same number and the same type of inputs and outputs.

Discovering Technical Trading Rules Using A Abstraction GP 17

5. S&P 500 Index Time Series Data

From Datastream, we acquired the S&P 500 index time series data between
January 1, 1982 and December 31, 2002. Since the original time series is non-
stationary, we transformed it by dividing the daily data by its 250-day moving
average. This is the same method used by (Allen and Karjalainen, 1999)
and (Neely et al., 1997). The adjusted data oscillate around 1 and make the
modeling task easier.

A different approach to normalize financial time series is converting the
price series into a return series . This is done by calculating the price difference
between two consecutive days (first-order difference) in the original price series.
Whether financial modeling should be based on price series or return series is
still a subject under much debate (Kaboudan, 2002). We adopt the approach
used by previous GP works on modeling technical trading rules so that we can
make sensible performance comparisons.

Figure 2-3 gives the original and the transformed time series. ~ There are
three distinct phases in this time series. From 1982 to 1995, the market grew
consistently; between 1996 and 1999, the market bulled; after 2000, the market
declined. With such diversity, this data set is suitable for GP to model trading
rules.

While the transformed series are used for modeling, the computation of
the returns from GP trading rules are based on the original time series. One
implication of this data transformation is that GP is searching for rules based
on the change of price trend that give profitable trading rules.

S&P 500 (original) S&P 500 / MA-250 (normalized)
1600 1.8
1200 - 14 - S
b i ﬁfﬂ%&mﬁm&w
‘00 '].6 - SO e N N At RTINS)
0 e 02 :
1982 1985 1988 1991 1994 1997 2000 1982 1985 1988 1991 1994 1997 2000

Figure 2-3. Time series data before and after normalization.

Over-fitting is an issue faced by all data modeling techniques; GP is no
exception. When optimizing the trading rules, GP tends to make the rules
producing maximum returns for the training period, which may contain noise
that do not represent the overall series pattern. In order to construct trading
rules that generalize beyond the training data, we split the series into training,
validation and testing periods. We also adopted the rolling forward method,

18 GENETIC PROGRAMMING THEORY AND PRACTICE 11

which was proposed by (Pesaran and Timmermann, 1995) and used by (Allen
and Karjalainen, 1999) and (Wang, 2000).

To start, we reserved 1982 data to be referred to by time series functions
such as lag. The remaining time series were then organized into 7 sequences,
each of which was used to make an independent GP run. In each sequence, the
training period is 4 years long, validation period is 2 years and testing period is
2 years. The data in one sequence may overlap the data in another sequence.
As shown in Figure 2-4, the second half of the training period and the entire
validation period of the first sequence are the training period of the second se-
quence. The testing period at the first sequence is the validation period at the
second sequence. With this setup, each testing period is 2 years, and covers a
different time period from 1989 to 2002.

training validation testing

—

1983-1986, 1987-1988, 1989-1990 | e
. 1985-1988, 1989-1990, 1991-1992 L :

. 1987-1990, 1991-1992, 1993-1994 -
. 1989-1992, 1993-1994, 1995-1996 '
. 1991-1994, 1995-1996, 1997-1998 b
. 19931996, 1997-1998, 1999-2000 -
. 1995-1998, 1999-2000, 2001-2002 -

o
-
11 .I_\

e o= L

+ + 4

]
1
l
]

= & U s W

Figure 2-4. Training, validation and testing periods for 7 time sequences.

For each data series, 50 GP runs were made. The three data periods are used
in the following manner:

1 The best trading rule against the training period at the initial population
is selected and evaluated against the validation period. This is the initial
“best rule”.

2 A new generation of trading rules are created by recombining/modifying
parts of relatively fit rules in the previous generation.

3 The best trading rule against the training period at the new population is
selected and evaluated against the validation period;

4 If this rule has a better validation fitness than the previous “best rule”,
this is the new “best rule”.

5 Goto step 2 until the maximum number of generation is reached or there
is no fitter rule found after a certain number of generations (50 in this
study).

DiscoveringTechnical Trading Rules Using X Abstraction GP 19

6 The last “best rule” is evaluated against the testing period. This is what
we use to evaluate the performance of the GP trading rule.

In summary, data from the training period are used to construct/optimize
GP trading rules, while data from the validation period are used to select the
GP trading rules, which are then applied to the testing period data to give the
performance of the rule. The evaluation of performance of the GP trading rules
is based on the results from testing periods.

6. Experimental Setup

We made two sets of runs: one with A abstraction modules and one without.
The three higher-order functions defined for GP to evolve A abstraction modules
are:

AND :: (Time — Boolean) — Boolean — Boolean

NOR :: (Time — Boolean) — Boolean — Boolean

IF —THEN — ELSE :: (Time — Double — Boolean) — Boolean
— Boolean — Boolean

The first argument of AND and NOR is a function with takes one input with
type Time and returns a Boolean output. As described before, this function
argument will be created as a A abstraction in the GP trees. Since the two A
abstractions are of the same category, the left branch of an AND node in a GP
tree is allowed to cross-over with the left branch of either an AND or a NOR
node in another GP tree. The first argument of IF-THEN-ELSE, however, is a
function with a different type. Its left branch is therefore only allowed to cross-
over with the left branch of an IF-THEN-ELSE node in another GP tree. We
constrain a GP tree to have a maximum of 4 higher-order functions to preserve
computer memory usage.

Tables 2-1 and 2-2 give the functions and terminals that are used by both sets
of GP runs. The function avg computes the moving average in a time window
specified by the integer argument. For example, avg(t,250) is the arithmetic
mean of index;_1, indexi_s, - -+, indexi_o250. The function max returns the
largest index during a time window specified by the integer argument. For
example, max(t,3) is equivalent to max(indez;_1, indexs—_2, index;_3). Sim-
ilarly, the function min returns the smallest index value during a time window
specified by the integer argument. The function lag returns the index value
lagged by a number of days specified by the integer argument. For example,
lag(t,3) is index;—3. These functions are commonly used by financial traders
to design trading indicators, hence are reasonable building blocks for GP to
evolve trading rules. Also, the ranges for integer values are 0 and 250 while the
ranges for double values are 0 and 1.

20 GENETIC PROGRAMMING THEORY AND PRACTICE 11

Table 2-1. Functions and their types used for both sets of GP runs.

Name Type

OR Boolean — Boolean — Boolean
NAND Boolean — Boolean — Boolean
Double — Double — Boolean
Double - Double — Boolean
Double — Double — Double
Double — Double — Double
Double — Double — Double
Double — Double — Double
AVG Time — Integer = Double
MIN Time — Integer — Double
MAX Time — Integer — Double
LAG Time — Integer — Double

I+ AV

*

S

Table 2-2. Terminals and their types used for both sets of GP runs but rir added some text to
make this table caption go more than one line to see if that is also centered.

Name Type Name Type
INDEX Double RANDOM-INT Integer
TRUE Boolean RANDOM-DOUBLE Double
FALSE Boolean T Time

For GP runs without A abstractions, we redefine the AND, NOR and IF-
THEN-ELSE functions as follows:

AND :: Boolean — Boolean — Boolean
NOR :: Boolean — Boolean — Boolean
IF —-THEN — ELSFE :: Boolean — Boolean — Boolean — Boolean

Both sets of GP runs used the same control parameters given in Table 2-3. The
GP system is generation-based, i.e. parents do not compete with offspring for
selection and reproduction. We used a tournament of size 2 to select winners.
This means that two individuals were randomly selected and the one with a
better fitness was the winner. The new population was generated with 50% of
the individuals from cross-over, 40% from mutation (either point or sub-tree),
and 10% from the copy operator. The best individual was always copied over
to the new generation. A GP run stopped if no new best rule appeared for 50
generation on validation data, or the maximum number of generations (100)
was reached.

Discovering Technical Trading Rules Using X\ Abstraction GP 21

Table 2-3. GP control parameters.

Parameter Value Parameter Value
Tree Depth 4 Cross-over Rate 50
Population Size 200 Mutation Rate 40
Number of Runs 50 Copy Rate 10

Maximum Generation 100 Maximum Non-Improvement 50

Fitness Function

The fitness of an evolved GP trading rule is the refurn (R) it generates over
the tested period. Initially, we are out of the market, i.e. holding no stock.
Based on the trading decisions, buy and sell activities interleave throughout the
time period until the end of the term when the stock will be forcibly closed.
When in the market, it earns the stock market return. While out of the market,
it earns arisk free interest return. The continuous compounded return over the
entire period is the refurn (R) which becomes the fitness of the GP trading rule.

There are three steps in computing the return of a GP trading rule. First,
the GP rule is applied to the normalized time series to produce a sequence of
trading decisions: True directs the trader to enter/stay in the market and False
means to exit/stay out of the market. Second, this decision sequence is executed
based on the original stock price series and the daily interest rate to calculate
the compounded return. Last, each transaction (buy or sell) is charged with
a 0.25% fee, which is deducted from the compounded return to give the final
fitness.

Let P; be the S&P 500 index price on day #, I; be the interest rate on day ?,
and the return of day 7 is ry:

| log(P;) — log(P;—1) , in the market
Tt = I, , out of the market

Let n denote the total number of transactions, i.e. the number of times a True
(in the market) is followed by a False (out of the market) plus the number of
times a False (out of the market) is followed by a True (in the market). Also, let
¢ be the one-way transaction cost. The return over the entire period of T days

18:
T

R= Z ry + 1 * log
t=1
In this study, the transaction fee c is 0.25% of the stock price. Compared
to the transaction cost used by (Allen and Karjalainen, 1999) (0.1%, 0.25% &
0.5%) and (Wang, 2000) (0.12%), we have a reasonable transaction cost.

1+¢

22 GENETIC PROGRAMMING THEORY AND PRACTICE 11

7. Results

Table 2-4 gives the returns from non-X abstraction GP trading rules while
Table 2-5 gives the returns from A abstraction-GP trading rules. The last column
in both tables gives the returns from trading decisions made by the majority vote
over the 50 trading rules, generated from 50 different GP runs.

Table 2-4. Returns from non-X abstraction GP trading rules on testing data.

seq year mean stdev median max min majority vote
1 1989-1990 0.4910 0.2667 0.4021 12768 0.1681 0.5639

2 1991-1992 05032 02614 03640 1.0306 0.2688 0.4997

3 1993-1994 0.1776 0.1540 0.1286 0.5660 0.0477 0.1996

4 1995-1996 0.6058 0.1901 0.4964 09212 0.3257 0.6808

5 1997-1998 0.8678 0.4177 07913 1.8019 0.2392 0.9145

6 1999-2000 04787 0.4354 03667 1.7774 0.0665 0.5058

7 2001-2002 02608 0.5796 0.0852 1.9405 -0.4109 0.7599

Table 2-5. Returns from A abstraction-GP trading rules on testing data.

seq year mean stdev median max min majority vote
1 1989-1990 1.0353 0.2829 1.1287 1.2585 0.3081 1.1983

2 1991-1992 0.8377 02297 0.9507 09853 0.2120 0.9610

3 1993-1994 0.4479 0.1219 04905 05925 0.0477 0.5346

1995-1996 0.8007 0.1484 0.8537 009137 0.4548 0.9051
1997-1998 1.4917 0.4364 1.6450 1.8972 0.4976 1.8243
1999-2000 1.3321 0.5569 1.5488 1.9248 0.0665 1.6522
2001-2002 1.0167 0.7973 12671 19844 -0.1984 1.9651

-1 on

Both sets of GP runs find trading rules that consistently out-perform buy-
and-hold'. It is clear that their excess returns over buy-and-hold are statically
significant. Also, A abstraction-GP rules give higher returns than non-X ab-
straction GP rules. Moreover, trading decisions based on the majority vote by
50 rules give the highest returns. These are encouraging results indicating that
GP is capable of finding profitable trading rules that out-perform buy-and-hold.

'With buy-and-hold , stocks purchased at the beginning of the term are kept until the end of the term when
they are closed; no trading activity takes place during the term. This is the most frequently used benchmark
to evaluate the profitability of a financial trading rule. Buy-and-hold returns for the 7 testing periods are
0.1681, 0.2722, 0.0477, 0.4730, 0.5015, 0.0665, -0.4109 respectively

Discovering Technical Trading Rules Using A Abstraction GP 23

However, the GP rules returns may have two possible biases, from trading
costs and non-synchronous trading.

Trading Cost Bias. The actual cost associated with each trade is not easy
to estimate. One obvious reason is that different markets have different fees
and taxes. Additionally, there are hidden costs involved in the collection and
analysis of information. To work with such difficulty, break-even transaction
cost (BETC) has been proposed as an alternative approach to evaluate the prof-
itability of a trading rule (Kaboudan, 2002).

BETC is the level of transaction cost which offsets trading rule revenue and
lead to zero profits. Once we have calculated BETC for each trading rule, it
can be roughly interpreted as follows:

®» Jarge and positive: good;
s small and positive: OK;
m small and negative: bad;

® large and negative: interesting.

We will incorporate BETC to measure the profitability of the evolved GP
trading rules in our future work.

Non-Synchronous Trading Bias. Non-synchronous trading is the tendency
for prices recorded at the end of the day to represent the outcome of transactions
that occur at different points in time for different stocks. The existence of thinly
traded shares in the index can introduce non-synchronous trading bias. As a
result, the observed returns might not be exploitable in practice. One way to
test this is to execute the trading rules based on trades occurring with a delay
of one day. This could remove any first order autocorrelation bias due to non-
synchronous trading (Pereira, 2002). This is a research topic in our future
work.

Another way to evaluate the GP trading rules is by applying them to a different
financial index, such as NASDAQ 100. The returns may provide insights about
the rules and/or the stock markets themselves.

8. Analysis of GP Trading Rules

We examined all 50 rules generated from GP with A abstraction modules
on sequence 5 data and found most of them can be interpreted easily; each
module is a trading indicator of some form. Depending on the number of A
abstraction modules it contains, a rule applies one to four indicators to make
trading decisions (see Table 2-6). For example, index > avg(28) is a moving

24

GENETIC PROGRAMMING THEORY AND PRACTICE 11

Table 2-6. 50 X abstraction GP trading rules trained by sequence 5 data.

fitness quantity rules (after minor editing of non-executing code)

1.8972 2 or(index > avg(2),index > lag(1))

1.8937 1 (indez + index) > (avg(2) + avg(1))

1.8535 1 index > avg(1)

1.8476 1 if — then — else(max (1) < indez, true,avg(3) < index)

1.8059 7 index > min(2)

1.8034 1 nand(if — then — else(index < avg(3),true, false),
if — then — else(index < min(2),true, false))

1.7941 5 indez > avg(2)

1.7941 1 2 x index — avg(2) > min(21)

1.7844 1 and(or(avg(1) < indez,
or(or(avg(6) < index,1.30 < min(6)),avg(6) < indezx)),true)

1.7002 1 and(indez > min(3), nand(index > avg(28), index < avg(3)))

1.6936 1 and(and(index < min(3), or(index > min(9),
index > min(11))), and(min(5) > index, true))

1.6819 1 or(index > 1.173, index > avg(2))

1.6784 1 nand(indez < avg(5),index < min(3))

1.6775 1 nand(indez < avg(4), nand(index < min(4),
nand(index < lag(4), nand(index < avg(13),true))))

1.6126 1 or(and(indez > avg(5), true), and(index > min(5),
and(or(indezx > max(10), index < lag(h)),true)))

1.5873 2 index > min(4)

1.5870 4 index > avg(3)

1.5539 1 nand((0.00565 + index) < maz(3),true)

1.5149 1 index > avg(4)

1.5133 1 and(min(5) < indez,
nor((index + avg(175)) < (min(6) + avg(199)), false))

1.5079 1 and(indez > min(13), and(index > min(5),
and(index > min(17), true)))

1.4402 1 and(index > min(8), or(nand(index > maz(8),
nand(avg(165) < index, lag(45) > index)),
if — then — else(index > min(6), true, false)))

1.4130 2 indez > avg(6)

1.3283 1 index < min(8)

1.1427 1 index > min(15)

1.0650 1 (0.01 + min(39)) < index

0.7968 1 2.44 x (index + index) > (avg(53) + (index * 3.86))

0.7242 1 index * index > avg(21)

0.5996 1 (index + 14.4) > (20.892/(0.28 + indez))

0.5611 1 (index + 3.12) > (index /0.24)

0.5611 1 (min(84) + (8.8/index)) < ((indez + 6.79) + lag(84))

0.5015 2 true(buy — and — hold)

0.4976 1 false

Discovering Technical Trading Rules Using X Abstraction GP 25

average indicator which compares today’s index (divided by its 250-days mov-
ing average) with the average index (divided by its 250-days moving average)
over the previous 28 days. Another example is index > max(8), which is a
filter indicator that compares today’s index (divided by its 250-days moving
average) with the maximum index (divided by its 250-days moving average) of
the previous 8 days.

Among the 50 A abstraction GP trading rules, 23 use a combination of two to
four indicators to make trading decisions. The most frequently used combinator
is the AND function. This means many criteria have to be met before a stay-in-
the-market decision (7rue) is issued. In other words, the GP rules use various
indicators to evaluate the market trend and to make trading decisions. Such a
sophisticated decision making process has led to more profitable trading.

In contrast, most (48) of the 50 rules generated from non-A abstraction GP
apply a single indicator to make trading decisions. Although some of the
single trading indicators can also give high returns (see Table 2-6), they are
not always easy to find. Without the structure protection, forming meaningful
trading indicators during evolution is not always easy. We have found many
rules having branches under a combinator (such as AND) that are evaluated
into constant value of True or False, instead of a meaningful indicator. This is
very different from the A abstraction GP trading rules, where more meaningful
indicators were evolved as A abstraction modules under the branches of higher-
order function combinators (AND & NOR & IF-THEN-ELSE).

Based on the analysis, we believe the A abstraction module mechanism pro-
motes the creation and combination of technical indicators. Such combined
usage of different trading indicators gives a more, and leads to trades that gen-
erate higher returns.

We have also considered another possible benefit of the A abstraction module
mechanism: it provides good seeding , which helps GP to find fitter trading
rules. However, after examining the initial populations of all the GP runs,
we find no evidence to support such a hypothesis. Sometimes, A abstraction-
GP gives higher initial population fitness than the non-A abstraction-GP does.
Sometimes it is the other way around.

9. Analysis of Transaction Frequency

As mentioned in Section 5, the S&P 500 index grew consistently between
1989 and 1995, bulled from 1996 to 1999 and declined after 2000. As expected,
buy-and-hold gives the best return during the years 1996-1998 and the worst
returns for the 2001-2002 period.

Regardless of the stock market’s climate, GP trading rules were able to iden-
tify opportunities to make profitable trading. The average transaction frequency
for non-A abstraction GP rules is 22 for each testing period of 2 years: about

26

GENETIC PROGRAMMING THEORY AND PRACTICE 11

one transaction every 33 days. The frequency for A abstraction GP rules is
3 times higher, with an average of 76 transactions in each testing period. In
both cases, the higher the transaction frequency, the higher the return. This is
demonstrated at the bottom half of Figure 2-5 and 2-6 where 3 cross plots from

the 3 distinct time periods are given.

1991--1992 1997--1998
150 150
.E 100 .. .E : o
b= : = 100 .
. -
‘g 50 : _§ 50 | ’i..
NEeEi
0 als 5 o° o - -l |
25 S50 75 100 125 25 50 75 100 125
Generation Generation
1991--1992 1997.-1998
150 150
g : :
100 }— : E 100 |
b 3 »
E 50 S i g s0 | ..,,i..?.
] L
r -
o é o L .
05 0 0.5 1 1.5 0.5 0.5 1.5 2.5
return return

number of frade

Figure 2-5. Transaction frequency vs. returns for non-A abstraction GP rules.

1991--1992 1997--1998
150 150
i " = = _§ -
100 R L T 8 100 ——— : R T
3 S - oy
2 g -1
E sn . - ! . - 50 - o
- - " N b)
o Be. i 0 AS M
25 50 75 100 125 25 50 75 100 125
Generation Generation
1991--1992 1997--1998
150 150
g 100 e S 3
} : e };.'
.C
a 4 .
I.. - - .
0 i & 8.0
05 0 05 1 15 05 05 1.5 25
return return

number of trade

2001--2002
150
.
L]
3
s0 3
0 i u' !
25 50 75 100 125
Generation
2001--2002
150
100
e
LI
50
3]
s L=, :
-0.5 0.5 1.5 2.5
return
2001--2002
150 e
- .!
100 0 >
el
50 -
b - :
0 : -
25 50 75 100 125
Generation
2001--2002

0.5 1.5
return

25

Figure 2-6. Transaction frequency vs. returns for A abstraction GP rules.

We also compare the number of generations that each GP run lasted. As
mentioned in Section 5, a GP run terminated when either no better rule on vali-

Discovering Technical Trading Rules Using A Abstraction GP 27

dation data was found for 50 generations or the maximum number of generation
(100) has reached. This means that the number of possible generations of a GP
run is between 50 and 100. We have found that on average A abstraction GP
runs lasted 6 generations longer than non-A abstraction GP runs. This indicates
that A abstraction GP is better able to continue to find fitter trading rules.

Do longer runs always generate better trading rules? The top half of Figure
2-5 shows that non-A abstraction GP rules which give higher than 20 were gen-
erated by runs terminated at generation 100 (there are a couple of exceptions).
In other words, longer runs generated trading rules that gave higher trading
frequency (> 20) and better returns. However, this pattern is not as evident in
the A abstraction GP runs (the top half of Figure 2-6). Some of the runs that
terminated before generation 100 also generated trading rules that gave high
trading frequency (> 20) and good returns. Nevertheless, all runs that termi-
nated at generation 100 gave high trading frequency (> 20) which led to good
returns.

Figure 2-7 and 2-8 present the proportion of the 50 trading rules signaling
a True (in the market) over the entire testing period. They give a visual repre-
sentation of the degree of consensus among 50 rules and of the extent to which
their decisions are coordinated. The A abstraction rules have high consensus;
during most of the testing period, 80% of the rules give the same decisions.
In contrast, non-A abstraction rules have a slightly lower degree of consensus;
about 70% of the rules give the same decisions over the majority of the testing
period.

no_Lambda
100

80

60 r ' =

40

% in the market

20 —]

0 L L Il 1 ! L 1 L L

1989 1991 1993 1995 1997 1999 2001

Figure 2-7. Proportion of non-A abstraction GP rules signals“in the market”.

Both sets of GP rules were able to identify. They signaled mostly 7True (in
the market) during the year between 1996 and 2000 when the market was up
and mostly False (out of the market) during the year of 2001-2002 when the
market was down.

28 GENETIC PROGRAMMING THEORY AND PRACTICE 11

Lambda

% in the market

1989 1991 1993 1995 1997 1999 2001

Figure 2-8. Proportion of A abstraction GP rules signal “in the market”.

10. Concluding Remarks

The application of A abstraction GP to find technical trading rules based on
S&P 500 index has generated many encouraging results:

s The GP trading rules give returns in excess of buy-and-hold with statis-
tical significance.

m The GP trading rules can be interpreted easily; they use one to four
commonly used technical indicators to make trading decisions.

m The GP trading rules have high consensus; during the majority of the
testing period, 80% of the rules give the same decision.

m The GP trading rules are able to identify market trends; they signal mostly
True (in the market) during the years between 1996 and 2000 when the
market was up and mostly False (out of the market) during the years of
2001-2002 when the market was down.

s The GP trading rules give high transaction frequency. Regardless of
market climate, they are able to identify opportunities to make profitable
trades.

These are strong evidence indicating GP is able to find profitable technical
trading rules that out-perform buy-and-hold. This is the first time such positive
results on GP trading rules are reported.

Various analysis indicates that the A abstraction module mechanism pro-
motes the creation and combination of technical indicators in the GP trading
rules. Such combination of different trading indicators gives more sophisticated
market evaluation and leads to trades that generate higher returns.

Lambda abstraction is a module mechanism that can incorporate domain
knowledge to design program structures. When properly used, it leads to the

Discovering Technical Trading Rules Using X Abstraction GP 29

discovery of good and meaningful solutions. This chapter gives one such ex-
ample, in addition to the example of even parity problem reported in (Yu, 2001).
We anticipate there are more such domain-knowledge-rich problems that the A
abstraction module mechanism can help GP to solve.

Future Work

The evolved GP trading rules give strong evidence that there are patterns in
the S&P 500 time series. These patterns are identified by GP as various forms
of technical indicators, each of which is captured in a A abstraction module.
This feature is exhibited in all the rules generated from 50 GP runs.

These patterns, however, do not seem to exist in the initial population. In-
stead, it is through the continuous merging (cross-over) and modification (mu-
tation) of the same kind of modules for a long time (100 generations) when
meaningful technical indicators were formed.

Based on these application results, we are planning on a theoretical work to
formally define the convergence process of the A abstraction GP:

® Define each indicator in the 50 GP rules as a building block;
m Formulate the steps to find one of the 50 rules.

We are not certain if such a theory is useful, since we might not be able to
generalize it beyond this particular application or data set. Nevertheless, we
believe it is a research worth pursuing.

Acknowledgments

We wish to thank John Koza and Mike Caplan for their comments and sug-
gestions.

References

Allen, Franklin and Karjalainen, Risto (1999). Using genetic algorithms to find technical trading
rules. Journal of Financial Economics, 51(2):245-271.

Bhattacharyya, Siddhartha, Pictet, Olivier V., and Zumbach, Gilles (2002). Knowledge-intensive
genetic discovery in foreign exchange markets. I[EEE Transactions on Evolutionary Compu-
tation, 6(2):169-181.

Brock, William, Lakonishok, Josef, and LeBaron, Blake (1992). Simple technical trading rules
and the stochastic properties of stock returns. Journal of Finance, 47(5):1731-1764.

Church, Alonzo (1941). The Calculi ofLambda Conversion. Princeton University Press.

Cooper, Michael (1999). Filter rules based on price and volume in individual security overreac-
tion. The Review of Financial Studies, 12(4):901-935.

Kaboudan, Mak (2002). Gp forecasts of stock prices for profitable trading. In Evolutionary
Computation in Economics and Finance, pages 359-382. Physica-Verlag.

Koza, John R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA.

30 GENETIC PROGRAMMING THEORY AND PRACTICE 11

Koza, John R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts.

Neely, Christopher J., Weller, Paul A., and Dittmar, Rob (1997). Is technical analysis in the foreign
exchange market profitable? A genetic programming approach. The Journal of Financial and
Quantitative Analysis, 32(4):405-426.

O’Neill, Michael, Brabazon, Anthony, and Ryan, Conor (2002). Forecasting market indices
using evolutionary automatic programming. In Genetic Algoritms and Genetic Programming
in Computational Finance, pages 175-195. Kluwer Academic Publishers.

Pereira, Robert (2002). Forecasting ability but no profitability: An empirical evaluation of genetic
algorithm-optimised technical trading rules. In Evolutionary Computation in Economics and
Finance, pages 275-295. Physica-Verlag.

Pesaran, M. Hashem and Timmermann, Allan (1995). Predictability of stock returns: Robustness
and economic significance. Journal of Finance, 50:1201-1228.

Pring, Martin J. (1991). Technical Analysis Explained. McGraw-Hill Trade.

Wang, Jun (2000). Trading and hedging in s&p 500 spot and futures markets using genetic
programming. The Journal of Futures Markets, 20(10):911-942.

Yu, Gwoing Tina (1999). An Analysis of the Impact of Functional Programming Techniques
on Genetic Programming. PhD thesis, University College, London, Gower Street, London,
WCIE 6BT.

Yu, Tina (2001). Hierachical processing for evolving recursive and modular programs using
higher order functions and lambda abstractions. Genetic Programming and Evolvable Ma-
chines, 2(4):345-380.

Yu, Tina, Chen, Shu-Heng, and Kuo, Tzu-Wen (2004). A genetic programming approach to
model international short-term capital flow. To appear in a special issue of Advances in
Econometrics.

Chapter 3

USING GENETIC PROGRAMMING IN
INDUSTRIAL STATISTICAL MODEL BUILDING

Flor Castillo', Arthur Kordon!, Jeff Sweeney2, and Wayne Zirk?

SlTheDow Chemical Company, Freeport, TX; 2TheDow Chemical Company, Midland, MI
TheDow Chemical Company, South Charleston, WV.

Abstract The chapter summarizes the practical experience of integrating genetic
programming and statistical modeling at The Dow Chemical Company. A
unique methodology for using Genetic Programming in statistical modeling of
designed and undesigned data is described and illustrated with successful
industrial applications. As a result of the synergistic efforts, the building
technique has been improved and the model development cost and time can be
significantly reduced. In case of designed data Genetic Programming reduced
costs by suggesting transformations as an alternative to doing additional
experimentation. In case of undesigned data Genetic Programming was
instrumental in reducing the model building costs by providing alternative

models for consideration.

Keywords: Genetic programming, statistical model building, symbolic regression,
undesigned data

1. INTRODUCTION

Recently the role of statistical model building in industry has grown
significantly. Many corporations have embraced the Six Sigma methodology
(Harry and Schroeder, 2000) as the backbone of their manufacturing and
new product development processes. One of the key objectives of Six Sigma
is to improve the business decisions by making them entirely data-driven.
An inevitable effect of this shift is that many people with wildly different
backgrounds like process engineers, economists, and managers are building
statistical models. Another industrial activity with growing demand for
statistical model building is high-throughput discovery where the strategy
for the designed experiments and the speed and quality of the analysis are
critical (Cawse, 2003).

32 GENETIC PROGRAMMING THEORY AND PRACTICE 11

As a result of these large-scale efforts, the issue of reducing the cost of
statistical model building in industrial settings becomes central. A significant
component of the cost is due to the expense involved in running Design Of
Experiments (DOE)*. This is evident in the chemical industry where
running experiments can result in a temporary reduction in plant capacity or
product quality. In the case of statistical model building using undesigned
data (i.e. historical data), the cost is frequently based on non-linear models
development and maintenance.

Recently, Genetic Programming (GP), with its capability to
automatically generate models via symbolic regression, has captured the
attention of industry (Koza, 1992, Banzhaf et al, 1998). It has been
successfully implemented in several application areas like inferential
sensors, emulators, accelerated new product development, etc. (Kotanchek et
al, 2003). One of the areas where GP can significantly impact statistical
modeling is the cost reduction associated with empirical modeling utilizing
designed data and effective variable selection and alternative model building
with undesigned data.

This chapter will present the results from the current efforts to use GP in
industrial statistical model building at The Dow Chemical Company. The
chapter is organized in the following manner. First, the potential benefits
from the synergy between GP and statistical model building are defined,
followed by description of a methodology for using GP in empirical model
building from designed and undesigned data. The methodology is illustrated
on real industrial applications. We describe a case involving designed data
(data collected using designed experiments) where using GP reduced costs
by suggesting transformations as an alternative to doing additional
experimentation. Also we present a case involving undesigned data
(observational data collected during production process) where GP was
instrumental in reducing the model building costs by providing alternative
models for consideration. Finally, topics for future research are proposed.

2. SYNERGY BETWEEN GP AND STATISTICAL
MODEL BUILDING

To our surprise, there are very few papers that address the synergy
between statistical modeling and GP, especially in the statistical community
(with exception of Westbury et al., 2003). Statistical modeling often refers
to the local approximation of a functional relationship (affected by error)
between the inputs and the outputs using a Taylor series expansion. In the

* A glossary of statistical terms is provided at the end of the chapter

Using GP in Industrial Statistical Model Building 33

GP community, the issues of statistical analysis in GP are discussed in
(Banzhaf er al, 1998) and (Kaboudan, 1999). As a first step for analyzing
the synergetic benefits of the both approaches, the unique features of each
approach that are attractive to the other are discussed.

2.1 Unique Features of GP Attractive to Statistical
Model Building

GP has the following features that might be beneficial for statistical

modeling in industrial settings:

(a) GP generates multiple diverse empirical models that could be used as
an alternative to statistical models.

(b) GP doesn’t assume variable independence for model generation.

(¢) GP doesn’t need the regular assumptions for least-squares estimators
like multivariate normal distribution and independent errors with
zero mean and constant variance.

(d) GP can generate non-linear transforms that can linearize the problem
and allow the use of linear regression with all the rigor and benefits
of statistical analysis.

(e) GP allows inputs sensitivity analysis and variable selection that
reduces the dimensionality for statistical model building of
undesigned data.

(f) GP generates models from small data sets.

2.2 Unique Features of Statistical Model Building
Attractive to GP

Statistical model building has the following important features that are
beneficial for empirical model building using GP: '

(a) Quantify the measure of performance of a model (ANOVA F test).

(b) Ability to detect data outliers with respect to the data (Hat Matrix)
and the model (residuals).

(c) Provides multiple measures of model Lack Of Fit (R?, LOF).

(d) Calculates influence measures associated with data observations
(Cook Distance).

(e) Potential for making cause and effect conclusions (DOE).

(f) Confidence intervals to assess model and model parameter
uncertainty.

A glossary of statistical terms is provided at the end of the chapter.

34 GENETIC PROGRAMMING THEORY AND PRACTICE 11

(g) Statistical hypothesis testing for assessing parameter statistical
significance (t-test).

(h) Quantifiable ways to assess the stability of a model (multicollinearity
and VIF).

2.3 Synergetic Benefits

It is obvious from the list of features attractive to both approaches that
there is a big potential to improve model development and reduce its cost by
their intelligent integration. First, the synergetic benefits in developing
models based on GP and statistical models will be discussed, followed by
the economic impact from the integration.

The key benefit from the synergy of GP and statistical model building in
industrial model development is broadening the modeling capabilities of
both approaches. On the one hand, GP allows model building in cases where
it would be very costly or physically unrealistic to develop a linear model.
On the other hand, statistical modeling with its well established metrics
gives GP models all necessary measures of statistical performance. Some of
these measures like the confidence limits of model parameters and responses
are of critical importance for the model implementation in an industrial
environment.

There are several economic benefits from the synergy between GP and
statistical model building. The most obvious, as previously mentioned, is
the elimination of additional experimental runs to address model Lack of Fit
(LOF). Another case of economic benefit is the potential for the elimination
of expensive screening DOE. Since the dimensionality of real industrial
problems can be high (very often the numbers of inputs is 30-50), the
screening process is often very time consuming and costly. Inputs screening
can be addressed using the GP algorithm. An additional potential benefit
from the synergy between GP and statistical model building is that the
applied models may have higher reliability (due to the confidence limits and
reduced instability) and require less maintenance in comparison to the non-
linear models generated by GP alone.

3. METHODOLOGY

We are suggesting a methodology that delivers the synergetic benefits
described in Section 2 in the following two cases of high practical
importance:

- Designed data

- Undesigned data

Using GP in Industrial Statistical Model Building 35

3.1 Methodology for Designed Data

The complexity of some industrial chemical processes requires that first-
principle or mechanistic models be considered in conjunction with empirical
models. At the basis of empirical models is the underlying assumption that
for any system there is a fundamental relationship between the inputs and the
outputs that can be locally approximated over a limited range of
experimental conditions by a polynomial or a linear regression model. The
term linear model refers to a model that is linear in the parameters, [%, not
the input variables (the x’s)z. Suitable statistical techniques such as design
of experiments (DOE) are available to assist in the experimentation process
(Box et al, 1978). The capability of the model to represent the data can
often be assessed through a formal Lack Of Fit (LOF) test when
experimental replicates are available (Montgomery, 1999). Significant LOF
in the model indicates a regression function that is not linear in the inputs;
i.e., the polynomial initially considered is not adequate. A polynomial of
higher order that fits the data better may be constructed by augmenting the
original design with additional experimental runs. Specialized designs such
as the Central Composite Design are available for this purpose (Box et al.,
1978).

However, in many situations a second-order polynomial has already been
fit and LOF is still present. In other cases the fit of a higher order polynomial
is impractical because runs are very expensive or technically infeasible
because of extreme experimental conditions. Furthermore, the extra
experimental runs introduce correlation among model parameters without
guarantee that LOF is removed. This problem can be handled if appropriate
input transformations are used, provided that the basic assumption of least-
square estimation regarding the probability distributions of errors is not
affected. These assumptions require that errors be uncorrelated and normally
distributed with mean zero and constant variance.

Some useful transformations have been previously published (Box and
Draper, 1987). Unfortunately, transformations that linearize the response
without affecting the error structure are often unknown, at times based on
experience and frequently becomes at best a guessing game. This process is
time consuming and often non-efficient in solving LOF situations.

Genetic programming (GP) generated symbolic regression provides a
unique opportunity to rapidly develop and test these transformations.
Symbolic regression automatically generates non-linear input-output models.
Several possible models of the response as a function of the input variables
are obtained by combining basic functions, inputs, and numerical constants.

2 A more detailed description of linear models is given in Appendix 2.

36 GENETIC PROGRAMMING THEORY AND PRACTICE 11

This multiplicity of models with different analytical expressions provides a
rich set of possible transformations of the inputs, otherwise unknown, which

have the potential to solve LOF.

1. Run GP
i

2. Select models with
comelation>Threshald

v

3. Evaluate R? between model
prediction and aclual response

v

4. Transform input variables
according to the model

!

5. Fit
5. =8, +2 {!,x,+2ﬁ_xf +E:E|I3I A%,

with transformed variables (TLM)

w Yes

No

7. Check error structure
Check correlation among process
paramejers

v

I

8.Error
normally
distributed with mean zero
and constant variance and
not significant correlation

among process
ramete

9, Compare original model, TLM,
GP model

Figure 3-1. Methodology considered to find transforms that eliminate LOF.

Therefore, once LOF is confirmed with a statistical test and
transformations of the inputs seems to be the most practical approach to
address this situation, GP-generated symbolic regression can be used. The
process is illustrated in Figure 3-1 and consists of selecting equations with
correlation coefficients larger than a threshold level. These equations are
analyzed in terms of the R®. The original variables are then transformed
according to the functional form of these equations. Then a linear regression
model is fit to the data using the transformed variables. The adequacy of the

Using GP in Industrial Statistical Model Building 37

transformed model is initially analyzed considering Lack Of Fit and R’
Then the error structure of the models not showing significant LOF is
considered and the correlation among model parameters is evaluated. This
process ensures that the transformations given by GP not only remove LOF
but also produce the adequate error structure needed for least square
estimations with no significant correlations among the model parameters.
This methodology is illustrated with the following specific example from a
real industrial process.

3.1.1 Application- designed data

The data considered in this example is a Box-Behnken design of four
input variables, X;- X4, with six center points (Castillo et al, 2004). A total of
30 experiments were performed. The output variable was the particle size
distribution of a chemical compound. This output was fit to the following
second-order linear regression equation considering only those terms that are
significant at the 95% confidence level.

k k
S =B+ Bx+ Y B+ B, (1)
i=1 i=1

i<j

The corresponding Analysis of Variance (obtained from the JMP?
statistical software) showing evidence of Lack Of Fit (p = 0.0185) is
presented in Table 3-1*. Typically p-values less than 0.05 are
considered statistically significant.

Table 3-1. Analysis of variance (ANOVA table) and LOF for the linear model.

Source DF Sum of Squares Mean Square F Ratio
Model 14 4.7108333 0.336488 7.7751
Error 15 0.6491667 0.043278 p-value

C. Total 29 5.3600000 0.0002

R*=0.88

Lack Of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 10 0.6091667 0.060917 7.6146
Pure Error 5 0.0400000 0.008000 p-value
Total Error 15 0.6491666 0.0185

3JMP® is a registered trademark of SAS Institute Inc., Cary, NC, USA.
4 Glossary of key statistical terms are given at the end of the chapter.

38 GENETIC PROGRAMMING THEORY AND PRACTICE I

The ANOVA’ p-value (p = 0.0002) given in Table 3-1 indicates that the
model is statistically significant, however, the LOF p-value (p = 0.0185)
suggests that there exists significant model lack-of-fit (LOF); i.e. p <0.05.

Variable x; was found to be insignificant and it along with terms
involving x; was removed from the model fit. However, the resulting model
with nine parameters still had significant LOF with a p-value of 0.046.
Removal of LOF in this situation is particularly challenging because a
second order polynomial has already been considered. Furthermore, the
alternative of adding experiments to fit a third-order polynomial is not
feasible because it is costly, introduces correlations among the model
parameters, and can not guarantee that the resulting model will not have
significant LOF. The methodology presented in Figure 3-1 was implemented
and GP generated symbolic regression was employed. Function generation
takes 20 runs with a population size of 100, run for 50 generations, 0.01
parsimony pressure, and correlation coefficient and sum of squares as fitness
function. As a result, the analytical function given in equation 2 was
obtained. This function is referred to as the GP model.

0.54528
|2 |

\/lln (x3x2 + x3)| * X,X,

@)

y:

The transformations given in Table 3-2 were then applied to the data as
indicated by the functional form of the derived GP function.

Table 3-2. Variable transformations suggested by GP model.

Original Variable Transformed Variable
T Z)
X2 Z2=x"
X1 Zy = [log(x3)]™”
X4 Zi=x"

The transformed variables were used to fit a second order linear
regression model shown in equation (1). The resulting model, referred to as
the Transformed Linear Model (TLM), had an R of 0.88, no evidence of
significant Lack Of Fit (p=0.1131), no evidence of large correlation among
the model parameters, and retained the appropriate error structure. A

3 More details about Analysis of Variance (ANOVA), degrees of freedom (DF), Sum of
Squares, Mean Square, and F Ratio can be found in any regression analysis book (see for

example Draper & Smith, 1981).

Using GP in Industrial Statistical Model Building 39

summary of model numerical measures such as sum of square errors (SSE),
R?, and LOF significance is given for comparison purposes in Table 3-3.

Table 3-3. Model Comparison Summary.

R* SSE Number LOF
of Model Significance
Parameters
Original Model 0.85 0.81 9 0.046
Transformed (TLM) 0.88 0.65 9 0.113
GP Model 0.77 1.19 na na

It is evident that the sum of squares error for the Transformed Linear
Model (TLM) is smaller than those of the original model and the GP model.
Azdditionally, the TLM model shows no significant Lack Of Fit with a larger
R

It is also worth noting that the TLM and the original model considered
the same number of parameters (9). This points out that the improvement of
the TLM was not achieved by model overfitting. These results indicate that
the input transformations suggested by GP successfully improved key model
measures of performance while eliminating significant model Lack Of Fit
without introducing additional experimental runs. The TLM with no
significant LOF offers more reasonable predictions than the other models
considered providing some assurance of the usefulness of the TLM model
for prediction purposes. An additional application of this methodology to
LOF situations in a 2 factorial design is available as well (Castillo er al,
2002).

3.2 Methodology for Undesigned Data

The main objective for collecting undesigned data is often process
control (controlling the process variation not process improvement). In
many industrial applications, lots of observational (undesigned) data is
collected, stored, and later becomes the focus of a modeling exercise.
Statistically modeling undesigned data provides many challenges, among
them are data collinearity, the inability to draw cause-and-effect conclusions,
and limitations on variable ranges, just to name a few.

One nice feature of designed data (data generated using DOE) is that the
data structure relates to specific improvement objectives or scientific
hypotheses to be examined. Therefore, there is typically a corresponding
statistical model that can be fit to the designed data. Because undesigned
data is not collected with any specific improvement objectives in mind, there

40 GENETIC PROGRAMMING THEORY AND PRACTICE 11

may not be an obvious statistical model to fit. Thus, it is often entirely up to
the modeler to decide what statistical model(s) to try. In situations where an
obvious model to fit is not available, the GP algorithm can help to suggest
several candidate models to consider. Using GP in this fashion can allow
both a wider selection of models to be considered and reduce the amount of
time required for empirical model identification.

Because undesigned data presents many challenges, there are many
situations in which a Linear Regression Model (LRM) might be suspect (i.e.
data collinearity). In those situations, the modeler may want to investigate
using another model technique like PCR (Principal Component Regression),
Neural Networks, or PLS (Partial Least Squares). One key advantage that
GP has over these others is that the model terms are in the form of the
original variables. Although the modeler should not consider this causal
information, this may provide some additional understanding of the potential
relationships between the variables studied and the response(s) of interest.

Sometimes the distinction between designed and undesigned data is not
quite clear. Data collection may have been originally planned as DOE.
However, the data may end up being undesigned because the defined levels
of the input variables are not achieved in practice due to plant restrictions
and operability conditions. Sometimes a set of data may even involve data
collected using a DOE and other data outside the region of the DOE. In this
case, the whole collection of data is often referred to as undesigned data.

3.2.1 Application- Undesigned data

The data to be illustrated in this example represents a typical situation
involving undesigned data in an industrial application. Data collection was
based on a three-month process history. Process conditions in four-hour
intervals were used for the modeling effort. The output variable of interest
(call it Y) is a measured concentration level of a process bi-product which is
considered detrimental to the process. Thus, Y should be minimized for the
process to operate successfully. One goal of this modeling effort was to
predict the process conditions necessary to maintain the response variable
(Y) at very low concentration levels. All other process conditions available
in the extracted data were considered potential inputs (X’s in a general Y =
f(X) model form).

The first models investigated were linear polynomials. These models are
often used because they tend to be very flexible and can approximate many
different relationship patterns between the inputs and the output(s).
However, because this was undesigned data, there was no obvious
polynomial model form to fit. A first-order polynomial model (as shown in
equation (3)) was fit to the data as a starting point.

Using GP in Industrial Statistical Model Building 41
k

Y=, + X B 3)
i=]

Characteristics of this model fit were assessed. The analysis of variance
revealed a significant regression equation (F ratio <0.0001) with an R of
0.96. A subsequent residual analysis did not show any indication of
violations of the error structure required for least square estimation. This
suggested that nothing else was missing from the model (i.e. no higher-order
model terms required). With a high R* value (0.96) and no obvious patterns
in the model residuals, very little improvement could be expected from
investigating higher-order (more complex) polynomial models. The model
parameter estimates are presented in Table 3-4.

Table 3-4. Parameter Estimates for Linear Regression Model.

Term B t Prob>|t| VIF
Estimate Ratio
Intercept 230.70902 0.33 0.7432

x1 0.9406677 19.31 <0.0001 3.84056
x2 -2.428614 -22.97 <0.0001 7.05279
x3 0.4005954 2.97 0.0041 9.42801
x4 -10.17105 -0.36 0.7217 861.2503
x5 2.956458 0.20 0.8385 343.7906
x6 10.223555 0.36 0.7164 918.9986
x7 -31.91927 -0.57 0.5686 3431.5002
x8 14.871442 0.35 0.7257 1976.0583
x9 -135.1481 -0.69 0.4919 1000231.8
X10 117.8077 0.68 0.4967 964097.17
X1 16.152238 0.40 0.6930 70850.669
X12 14.186557 0.89 0.3750 77.489476
X13 -19.53814 -0.67 0.5023 19404.123

Because this model was built using undesigned data, multicollinearity
(correlation structure among the inputs) was examined. Variance Inflation
Factors (VIF) [Montgomery and Peck, 1992] is a recommended method for
assessing the severity of data multicollinearity. The presence of severe
multicollinearty (strong relationships between the inputs) can seriously
affect the precision of the estimated regression coefficients, making them
very sensitive to the data in the particular sample collected and producing
models with poor prediction. If multicollinearity is severe enough, it can
cause real concerns with the stability, validity and usefulness of the resulting
model.

42 GENETIC PROGRAMMING THEORY AND PRACTICE I

The VIF for each model parameter (VIF;) were calculated and are listed in
Table 3-4. In general, high VIF’s suggest that severe multicollinearity exists
and the model is suspect; some authors suggest VIF’s greater than 10 are too
high (Myers & Montgomery, 1995). From the VIF’s listed in Table 3-4, it
was obvious that severe multicollinearity issues exist within the example
data. This happens frequently with undesigned data from industrial
situations. Many of the process variables will often vary together (being
highly correlated) resulting in severely unbalanced data. One remedy often
suggested is to remove any redundant inputs that may be included in the
model together. If this is not possible or does not reduce the collinearity
down to acceptable levels, then collecting more data (say from a suggested
DOE) should be explored. However, in many situations, collecting more
data to help with the modeling is not a viable economic solution. In our
example, removing the redundant inputs did not reduce the multicollinearity
to acceptable levels, and no additional data could be collected.

With a very unstable polynomial model, alternative candidate models,
generated by GP were investigated. The parameters of the GP-generated
models are as follows: functional set included addition, subtraction,
multiplication, division, square, change sign, square root, natural logarithm,
exponential, and power. The simulated evolution was done on 50 runs, each
with 20 generations, a population size of 100; parsimony pressure 0.1, and
the product between correlation coefficient and sum of squares as fitness
function.

T 1
Pareto Front for R? (training data)

Inputs sensitraty

A %

* Selected model

Fredew & @ o

u] 0.5 1
Ratio of Nodes

Figure 3-2a. Inputs sensitivity after simulated | Figure 3-2b. Pareto front of the best

evolution. generated models.

The results from the sensitivity analysis are shown in Figure 3-2a, where
the sensitivity of each of the 13 inputs is proportional to the frequency of
selection in every functional tree or sub-tree during the whole simulated
evolution (Kordon et al., 2003). The inputs sensitivity analysis suggests five

Using GP in Industrial Statistical Model Building 43

influential inputs (X, X2, X6, X11, and Xy3), thus reducing the dimensionality of
the search space.

Multi-objective GP with (1 - R?) and relative number of nodes as fitness
functions (Smits and Kotanchek, 2004) has been used for model selection.
The models on the Pareto-front are shown in Figure 3-2b, where the final
selected model with the “best” balance between performance and complexity
is shown with an arrow. The model includes the suggested five influential
inputs, has good performance, and acceptable error structure (see Figure 3-3)

fix}=1075.3987416.0772° ({%B) * (32 + x11) S {x1 +x13)))

500 T

Predicted

200 260 300 350 400 450 500
Obsanved
50 —
: Error Statistics
B R Corr. Coefl. - 0.97345
s ,.A) » : Sid. Dev. : 15,3995
S oA Rel. Error :0.22755
& - R2.Statistic - 0.94822
= RMSEP - 15.3087
Ratio Nodes : 0. 41667
soL L :
200 300 400 500

Observed

Figure 3-3. Performance of the selected model.

The following equation was selected:

y=10275-16078* %02+ %) (4)
) X+,

Note that the LRM shown in equation (3) and the GP model shown in
equation (4) are both linear in the parameters. However, the GP model has a
functional form that shows relationships between the different variables (x,
X2, Xg, Xi1, X13)-

44 GENETIC PROGRAMMING THEORY AND PRACTICE 11

Equation (4) may be used to indicate that a transform can be applied to
the linear model presented in equation (3). The transforms used are shown in
Table 3-5.

Table 3-5. Original and transformed variables- Undesigned data.

Original Variable Transformed Variable
X2 X1 Zya(x2+xn)

X1.X13 Zy = 1 x1 +x13)

X6 Zy=%

The linear model presented in equation (3) was then fit using the
transformed variables shown in Table 3-5. This resulted in a transformed
linear model with a R* of 0.94 and no indication of severe multicollinearity
as indicated by the VIF shown in Table 3-6. The 95% confidence limits for
the model parameters are also presented in Table 3-6.

In this case both the GP and the transformed linear model are alternative
models that have good prediction capability without high multicollinearity.
These expressions are also in terms of the original variables which makes
model interpretation easier.

Table 3-6. Parameter Estimation Transformed model- Undesigned data.

Term B Lower Upper t Prob>|t | VIF
Estimate 95% 95% Ratio
Intercept 2955.60 2602.04 3309.15 16.62] <0.0001
Z3=x6 -7.26 -9.75 -4.78 -5.81] <0.0001 1.50
Zy =x2+x11 -2.15 -2.28 -2.02 -32.64 <0.0001 2.50
7> = 1/x1+x13 908023.43 993363.77822683.09 -21.1§ <0.0001 2.39

4. FUTURE RESEARCH

The methodology discussed and illustrated with real industrial examples
show the great potential of the synergy between statistical model building
and genetic programming. Many research possibilities are foreseen both in
applications of statistical model building to GP and in applications of GP to
statistical model building. Among these are:

o The application of GP to pre-screening designs with available data.
This is an attractive opportunity given the availability of online
process data and the expense of industrial experimentation. In this

Using GP in Industrial Statistical Model Building 45

situation GP offers a unique opportunity because sensitive inputs
can be identified (Kordon, et a/, 2003) and used as the starting point
of discussion for further planned experimentation.

e Application of GP in regression models in principal component
analysis (Hiden, et al, 1999). This may be an attractive alternative
given that the interpretation of some principal components is not
always obvious and can become quite difficult depending on the
number of inputs included.

e Application of statistical model discrimination techniques. This
would involve the evaluation of multiple models generated by GP in
criteria other that the traditional fitness functions such as correlation
or sum square errors. This represents a real opportunity given the
number of models generated by GP and the difficulty in selecting
the best model.

¢ Applications of designed of experiments prior to a GP run. In this
work, the effects of GP running conditions (such as parsimony
pressure, number of generations, and population size) on the quality
of the models produced (Spoonger, 2000) would be better
understood.

The possibilities are numerous and stem for the fact that both statistical
model building and GP offer unique characteristics than can be combined to
offer a better approach than each one individually.

S. APPENDIX 1: GLOSSARY OF STATISTICAL
TERMS

e ANOVA F test: Overall statistical significance test (F-ratio) for
a model.

e Center Points: A set of experiments usually at the middle levels
of the input variable ranges which are often included as part of a
designed experiment plan. In general, center points are typically
included in a designed experiment for two reasons: 1. The
experimental design plan specifically calls for inclusion of the
center point run; or 2. Center points are added in order to test for
model lack-of-fit (LOF) and provide an estimate of the
reproducibility of the data under the same set of conditions.

¢ Cook Distance: Measures each observation’s influence on the
model fit by looking at the effect of the ith observation has on all
n fitted values.

¢ Design of Experiments (DOE): A systematic approach to data
collection in a research application such that the information

46

GENETIC PROGRAMMING THEORY AND PRACTICE 11

obtained from the data is maximized by determining the (cause-
and-effect) relationships between factors (controllable inputs)
affecting a process and one or more outputs measured from that
process.

Hat Matrix: diagonal values of the matrix X(X’X)"' X’ where X
is the input matrix of the original data.

Input variable: Typically a controllable variable within the
process to be modeled whose influence may or may not have an
impact on the process output variables. In other sources, input
variables may be referred to as predictors, factors, or X’s.

LOF: Lack Of Fit: measure that indicates that the models does
not fit the data properly.

Multicollinearity: Correlation structure among the inputs as
measured by Pearson’s correlation coefficient. Multicollinearity
among the inputs leads to biased model parameter estimates.
Output variable: Measure of process performance from changing
input conditions. In other sources, output variables may be
referred as responses, measures of performance, process quality
characteristics, or Y’s.

p-value: the probability of incorrectly claiming a real effect.
p-value in LOF test: the probability of concluding that significant
LOF is present in the model when in fact it really is not.
Typically p-values less than 0.05 are considered statistically
significant.

R*: Proportion of total variability in the response that is
explained by the model.

Residual: differences between actual output and predicted output
SSE: Sum of Squares Error: The sum of the square of the
differences between actual output and predicted output.

T test or Prob>|t|: the probability of incorrectly claiming a real
effect. If the “Prob>>{t|:” values are smaller than 0.05, the factor
is considered to be statistically significant.

Undesigned Data: Data collected NOT in a systematic fashion
through the use of internal DOW methodologies.

VIF: Variance Inflation Factor; a measure of the collinearity
between input variables.

Using GP in Industrial Statistical Model Building 47

6. APPENDIX 2: DEFINITION OF A LINEAR
MODEL

A very important distinction that must be recognized is the difference
between linear and non-linear models. This is one of the most widely
misused and misunderstood terms. The term linear model refers to a model
that is linear in the parameters, [, not the input variables (the x’s). Indeed
models in which the output is related to the inputs in a non-linear fashion can
still be treated as linear provided that the parameters enter the model in a
linear fashion (Montgomery and Peck.,1992; Seber and Wild, 1989). For
example,

X
y=p,+Be"

X is non-linear in the parameters (non-linearin B1).
y=L,+ eﬁ 1™ p (1)

is linear in the parameters, while

Another way to distinguish between linear and non-linear models is to
differentiate the output with respect to the parameters. If the resulting
derivatives are not a function of any of the parameters, the model is linear.
Otherwise the model is non-linear.

References

Banzhaf, W., Nordin, P., Keller, R., and Francone, F. (1998). Genetic Programming: An
Introduction, San Francisco, CA: Morgan Kaufmann.

Box, G., Hunter, W., and Hunter, J. (1978). Statistics for Experiments: An Introduction to
Design, Data Analysis, and Model Building. New York, NY: Wiley.

Box, G. and Draper, N. (1987). Empirical Model Building and Response Surfaces. New York,
NY: Wiley.

Castillo, F., Marshall, K, Greens, J. and Kordon, A. (2002). Symbolic Regression in Design
of Experiments: A Case Study with Linearizing Transformations, In Proceedings of the
Genetic and Evolutionary Computing Conference (GECCO0’2002), W. Langdon, et al
(Eds), pp. 1043-1048. New York, NY: Morgan Kaufmann.

Castillo, F., Marshall, K, Greens, J. and Kordon, A. (2003). A Methodology for Combining
Symbolic Regression and Design of Experiments to Improve Empirical Model Building In
Proceedings ofthe Genetic and Evolutionary Computing Conference (GECCO’2003), E.
Cantu-Paz, et al(Eds), pp. 1975-1985. Chicago, IL:Springer.

Castillo, F., Sweeney, J., and Zirk, W. (2004). Using Evolutionary Algorithms to Suggest
Variable Transformations in Linear Model Lack-of-Fit Situations, accepted to CEC 2004.

Cawse, J. (2003). Experimental Design for Combinatorial and High Throughput Materials
Development. New York, NY: Wiley.

Cook, R. (1977). Detection of Influential Observations in Linear Regression, Technometrics,
19: 15-18.

48 GENETIC PROGRAMMING THEORY AND PRACTICE 11

Draper, N. R. and Smith, H. (1981). Applied Regression Analysis (Second Edition). New
York, NY: Wiley.

Harry, M. and Schroeder, R. (2000). Six Sigma: The Breakthrough Management Strategy
Revolutionizing the World’s Top Corporations. New York, NY: Doubleday.

Hiden, H. G., Willis, M. J., and Montague, G.A (1999). Non-linear Principal Component
Analysis Using Genetic Programming, Computers and Chemical Engineering 23, pp 413-
425.

Kaboudan M.(1999). Statistical Evaluation of Genetic Programming, In Proceedings ofthe 5"
International Conference on Computing in Economics and Finance (CEF’99), pp.24-26.
Boston, MA.

Kordon, A., Smits, G., Kalos, A., and Jordaan, E. (2003). Robust Soft Sensor Development
Using Genetic Programming, In Nature-Inspired Methods in Chemometrics, R. Leardi
(Ed.), pp70-108. Amsterdam: Elsevier

Kotanchek, M, Smits, G. and Kordon, A. (2003). Industrial Strength Genetic Programming,
In Genetic Programming Theory and Practice, pp 239-258, R. Riolo and B. Worzel
(Eds). Boston, MA:Kluwer.

Koza, J. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press.

Montgomery, D and Peck, E. (1992). Introduction to Linear Regression Analysis. New York,
NY: Wiley.

Montgomery, D. (1999) Design and Analysis of Experiments. New York, NY: Wiley.

Myers, R H., and Montgomery, D. (1995). Response Surface Methodology: Process and
Product Optimization Using Designed Experiments. New York, NY: Wiley.

Spoonger, S. (2000). Using Factorial Experiments to Evaluate the Effects of Genetic
Programming parameters. In Proceedings of EuroGP’2000, pp. 2782-2788. Edinburgh,
UK

Seber, G.A., and Wild, C. J. (1989). Nonlinear Regression, pp. 5-7. John Wiley and Sons,
New York.

Smits, G. and Kotanchek, M. (2004). Pareto-Front Exploitation in Symbolic Regression,
Genetic Programming Theory and Practice, pp 283-300, R. Riolo and B. Worzel (Eds).
Boston, MA:Kluwer.

Westbury, C., Buchanan, P., Sanderson, M., Rhemtulla, M., and Phillips, L. (2003). Using
Genetic Programming to Discover Nonlinear Variable Interactions, Behavior Research
Methods, Instruments, &Computers 35(2): 2020-216.

Chapter 4

POPULATION SIZING FOR
GENETIC PROGRAMMING BASED ON
DECISION-MAKING

Kumara Sastry', Una-May O’Reilly” and David E. Goldberg'

' lllinois Generic Algorithms Laboratory, University of Illinois at Urbana-Champaign;
2 Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology

Abstract

Keywords:

This chapter derives a population sizing relationship for genetic programming
(GP). Following the population-sizing derivation for genetic algorithms in (Gold-
berg et al., 1992), it considers building block decision-making as a key facet. The
analysis yields a GP-unique relationship because it has to account for bloat and for
the fact that GP solutions often use subsolutions multiple times. The population-
sizing relationship depends upon tree size, solution complexity, problem difficulty
and building block expression probability. The relationship is used to analyze
and empirically investigate population sizing for three model GP problems named
ORDER, ON-OFF and LOUD. These problems exhibit bloat to differing extents and
differ in whether their solutions require the use of a building block multiple times.

genetic programming, population sizing, facetwise modeling, scalability

1. Introduction

The growthinapplication of genetic programming (GP) to problems of prac-
tical and scientific importance is remarkable (Keijzer et al., 2004, Riolo and
Worzel, 2003, Cantd-Paz et al., 2003). Yet, despite this increasing interest
and empirical success, GP researchers and practitioners are often frustrated—
sometimesstymied—bythe lack of theory available to guide them in selecting
key algorithm parameters or to help them explain empirical findings in a sys-
tematic manner. For example, GP population sizes run from ten to a million
members or more, but at present there is no practical guide to knowing when
to choose which size.

50 GENETIC PROGRAMMING THEORY AND PRACTICE 11

To continue addressing this issue, this chapter builds on a previous paper
(Sastry et al., 2003) wherein we considered the building block supply problem
for GP. In this earlier step, we asked what population size is required to ensure
the presence of all raw building blocks for a given tree size (or size distribution)
in the initial population. The building-block supply based population size is
conservative because it does not guarantee the growth in the market share of
good substructures. That is, while ensuring the building-block supply is impor-
tant for a selecto-recombinative algorithm’s success, ensuring a growth in the
market share of good building blocks by correctly deciding between competing
building blocks is also critical (Goldberg, 2002). Furthermore, the population
sizing for GA success is usually bounded by the population size required for
making good decisions between competing building blocks. Our results herein
show this to be the case, at least for the ORDER problem.

This chapter derives a population-sizing model to ensure good decision-
making between competing building blocks. Our analytical approach is similar
to that used by (Goldberg et al., 1992) for developing a population-sizing model
based on decision-making for genetic algorithms (GAs). In our population-
sizing model, we incorporate factors that are common to both GP and GAs, as
well as those that are unique to GP. We verify the population-sizing model on
three different test problem that span the dimension of building block expres-
sion—thus, modeling the phenomena of bloat at various degrees. Using ORDER,
withUNITATION as its fitness function, provides a model problem where, per
tree, a building block can be expressed only once despite being present multiple
times. At the opposite extreme, the LOUD problem models a building block be-
ing expressed each time it is present in the tree. To cover the range between the
corners, the ON-OFF problem provides tunability of building block expression.
A parameter controls the frequency with which a “function” can suppress the ex-
pression of the subtrees below it, thus affecting how frequently a tree expresses
a building block. These experiments not only validate the population-sizing
relationship, but also empirically illustrate the relationship between population
size and problem difficulty, solution complexity, bloat and tree structure.

We proceed as follows: The next section gives a brief overview of past
work in developing facetwise population-sizing models in both GAs and GP.
In Section 3, we concisely review the derivation by (Goldberg et al., 1992) of a
population sizing equation for GAs. Section 4 provides GP-equivalent defini-
tions of building blocks, competitions (a.k.a partitions), trials, cardinality and
building-block size. In Section 5 we follow the logical steps of (Goldberg et al.,
1992) while factoring in GP perspectives to derive a general GP population siz-
ing equation. In Section 6, we derive and empirically verify the population sizes
for model problems that span the range of a BB being present and expressed.
Finally, section 7 summarizes and provides key conclusions of the study.

Population Sizing for Genetic Programming Based On Decision-Making 51

2. Background

One ofthe key achievements of GA theory is the identification of the building-
block decision-making to be a statistical one (Holland, 1973). Holland illus-
trated this using a 2¥-armed bandit model. Based on Holland’s work, De Jong
proposed equations for the 2-armed bandit problem without using Holland’s
assumption of foresight (De Jong, 1975). De Jong recognized the importance
of noise in the decision-making process and also proposed a population-sizing
model based on the signal and noise characteristics of a problem. De Jong’s sug-
gestion went unimplemented till the study by (Goldberg and Rudnick, 1991).
Goldberg and Rudnick computed the fitness variance using Walsh analysis and
proposed a population-sizing model based on the fitness variance.

A subsequent work (Goldberg et al., 1992) proposed an estimate of the pop-
ulation size that controlled decision-making errors. Their model was based on
deciding correctly between the best and the next best BB in a partition in the
presence of noise arising from adjoining BBs. This noise is termed as collateral
noise (Goldberg and Rudnick, 1991). The model proposed by Goldberg et al.,
yielded practical population-sizing bounds for selectorecombinative GAs. The
decision-making based population-sizing model (Goldberg et al., 1992) was
refined by (Harik et al., 1999). Harik et al., proposed a tighter bound on the
population size required for selectorecombinative GAs. They incorporated both
the initial BB supply model and the decision-making model in the population-
sizing relation. They also eliminated the requirement that only a successful
decision-making in the first generation results in the convergence to the opti-
mum. Specifically, Harik et al., modeled the decision-making in subsequent
generations using the well known gambler’s ruin model (Feller, 1970). The
gambler’s ruin population-sizing model was subsequently extended for noisy
environments (Miller, 1997), and for parallel GAs (Canti-Paz, 2000).

While, population-sizing in genetic algorithms has been successfully studied
with the help of facetwise and dimensional models, similar efforts in genetic
programming are still in the early stages. Recently, we developed a population
sizing model to ensure the presence of all raw building blocks in the initial
population size. We first derived the exact population size to ensure adequate
supply for amodel problem named ORDER . ORDER has an expression mechanism
that models how a primitive in GP is expressed depending on its spatial context.
We empirically validated our supply-driven population size result for ORDER
under two different fitness functions: UNITATION where each primitive is a
building block with uniform fitness contribution, and DECEPTION where each of
m subgroups, each subgroup consisting of k primitives, has its fitness computed
using a deceptive trap function.

After dealing specifically with ORDER in which, per tree, a building block
can be expressed at most once, we considered the general case of ensuring an

52 GENETIC PROGRAMMING THEORY AND PRACTICE 11

adequate building block supply where every building block in a tree is always
expressed. This is analogous to the instance of a GP problem that exhibits no
bloat. In this case, the supply equation does not have to account for subtrees
that are present yet do not contribute to fitness. This supply-based population
size equation is:
n= %2'% (logk —loge) . 4.1
where K enumerates the partition or building block competition, k is the
building-block size, € is supply error and A is average tree size.

In the context of supply, to finally address the reality of bloat, we noted that
the combined probability of a building block being present in the population
and its probability of being expressed must be computed and amalgamated into
the supply derivation. This would imply that Equation 4.1, though conservative
under the assumed condition that every raw building block must be present
in the initial population, is an underestimate in terms of accounting for bloat.
Overall, the building block supply analysis yielded insight into how two salient
properties of GP: building block expression and tree structure influence building
block supply and thus influence population size. Building block expression
manifests itself in “real life” as the phenomena of bloat in GP. Average tree size
in GP typically increases as a result of the interaction of selection, crossover
and program degeneracy.

As a next step, this study derives a decision-making based population-sizing
model. We employ the methodology of (Goldberg et al., 1992) used for deriving
a population sizing relationship for GA. In this method, the population size is
chosen so that the population contains enough competing building blocks that
decisions between two building blocks can be made with a pre-specified con-
fidence. Compared to the GA derivation, there are two significant differences.
First, the collateral noise in fitness, arises from a variable quantity of expressed
BBs. Second, the number of trials of a BB, rather than one per individual in
the GA case, depends on tree structure and whether a BB that is present in a
tree is expressed. In the GP case, the variable, x related to cardinality (e.g.,
the binary alphabet of a simple GA) and building block defining length, is con-
siderably larger because GP problems typically use larger primitive sets. It is
incorporated into the relationship by considering BB expression and presence.

We start with a brief outline of the population-sizing model of (Goldberg
et al., 1992) in the following section.

3. GA Population Sizing from the Perspective of
Competing Building Blocks

The derivational foundation for our GP population sizing equation is the
1992 result for the selecto-recombinative GA by (Goldberg et al., 1992) enti-
tled “Genetic Algorithms, Noise and the Sizing of Populations.” That paper

Population Sizing for Genetic Programming Based On Decision-Making 53

k

Hz

m"“-uil ves t WA gy { 000+ + 000 | *.::1‘"_"5»:*\!- ..

T

[wn'--n; | ann i wom s - cmwn | 111---111 I_-i*w-q}n |. . .l;mu'_-_-'-_'n: | Hy
|
|

m Partitions I

I

Figure 4-1. Two competing building blocks of size &, one is the best BB, Hj, and the other is
the second best BB, Hs.

considers how the GA can derive accurate estimates of BB fitness in the pres-
ence of detrimental noise. It recognizes that, while selection is the principal
decision maker, it distinguishes among individuals based on fitness and not
by considering BBs. Therefore, there is a possibility that an inferior BB gets
selected over a better BB in a competition due to noisy observed contributions
from adjoining BBs that are also engaged in competitions.

To derive a relation for the probability of deciding correctly between com-
peting BBs, the authors considered two individuals, one with the best BB and
the other with the second best BB in the same competition. (Goldberg et al.,
1992).

I
fa .'/\'_
I' ill I:r ,I
/ I']I :'I .:ul
- }-i—-i\ i I'l
PN | :i 1
L i i, = 1 b | N,
™ ™S (™S
(a) Few samples (b) Lots of samples

Figure 4-2. Fitness distribution of individuals in the population containing the two competing
building blocks, the best BB H1, and the second best BB Hz. When two mean fitnessdistributions
overlap, low sampling increases the likelihood of estimation error. When sampling around each
mean fitness is increased, fitness distributions are less likely to be inaccurately estimated.

Let ¢; and ¢2 be these two individuals with m non-overlapping BBs of size &
as shownin figure 4-1. Individual ¢; has the best BB, A (111 . . . 111 infigure4-
1) andindividual 42 has the second best BB, Hg (000 . . . 000 in figure 4-1). The
fitness values of 41 and 42 are fg, and fgr, respectively. To derive the probability
of correct decision-making, we have to first recognize that the fitness distribution
of the individuals containing H; and Hs is Gaussian since we have assumed
an additive fitness function and the central limit theorem applies. Two possible
fitness distributions of individuals containing BBs H; and Hy are illustrated in
figure 4-2.

54 GENETIC PROGRAMMING THEORY AND PRACTICE 11

The distance between the mean fitness of individuals containing H}, THV
and the mean fitness of individuals containing Ha, f g,, is the signal, d. That
18,

d=Fy, - Fr,- 4.2)

Recognize that the probability of correctly deciding between Hy and Hs is
equivalent to the probability that fg, — fg, > 0. Also, since fg, and fg, are
normally distributed, fg, — fm, is also normally distributed with mean d and
variance 0%11 + ‘7%{2’ where 0%11 and 0212 are the fitness variances of individuals
containing Hy and Hy respectively. That is,

fm = fry ~ N(d, 0%, +0%,). (4.3)

The probability of correct decision-making, pgm, is then given by the cumulative
density function of a unit normal variate which is the signal-to-noise ratio :

d

Pdm = P ‘——'2——‘—2‘
V GHl +0H2

Alternatively, the probability of making an error on a single trial of each BB
can estimated by finding the probability « such that

d2
2 2
O, +0H2

(4.4)

2(a) = (4.5)
where z() is the ordinate of a unit, one-sided normal deviate. Notationally
z(a) is shortened to z.

Now, consider the BB variance, 0%{1 (and 0%12): since it is assumed the fitness
function is the sum of m independent subfunctions each of size k, 0%11 (and
similarly ofqz) is the sum of the variance of the adjoining 7 — 1 subfunctions.
Also, since it is assumed that the m partitions are uniformly scaled, the variance
of each subfunction is equal to the average BB variance, agb. Therefore,

GA BB Variance: qul = oy, = (m — 1o, (4.6)

A population-sizing equation was derived from this error probability by recog-
nizing that as the number of trials, 7, increases, the variance of the fitness is
decreased by a factor equal to the trial quantity:

d2
2(m—L1)opp

T

22(a) = 4.7

To derive the quantity of trials, =, assume a uniformly random population
(of size m). Let x represent the cardinality of the alphabet (2 for the GA) and k

Population Sizing for Genetic Programming Based On Decision-Making 55

the building-block size. For any individual, the probability of H7 is 1/x where
k = x*. There is exactly one instance per individual of the competition, ¢ = 1.
Thus,

T=n-ppg-¢=n-1/s-1=n/k 4.8)

By rearrangement and calling 2?2 the coefficient ¢ (still a function of @) a
fairly general population-sizing relation was obtained:

o2
n = 2cx®(m — 1)=& 4.9)
d?
To summarize, the decision-making based population sizing model in GAs
consists of the following factors:

m Competition complexity, quantified by the total number of competing
building blocks, x*.

s Subcomponent complexity, quantified by the number of building blocks,
m.

» Ease of decision-making, quantified by the signal-to-noise ratio, d?/ afb.

= Probabilistic safety factor, quantified by the coefficient c.

4. GP Definitions for a Population Sizing Derivation

Most GP implementations reported in the literature use parse trees to repre-
sent candidate programs in the population (Langdon and Poli, 2002). We have
assumed this representation in our analysis. To simplify the analysis further,
we consider the following:

1 A primitive set of the GP tree is F U T where F denotes the set of
functions (interior nodes to a GP parse tree) and 7 denotes the set of
terminals (leaf nodes in a GP parse tree).

2 The cardinality of F = x and the cardinality of 7 = x.

3 The arity of all functions in the primitive set is two: All functions are
binary and thus the GP parse trees generated from the primitive set are
binary.

We believe that our analysis could be extended to primitive sets containing
functions with arity greater than two (non-binary trees). We also note that our
assumption closely matches a common GP benchmark, symbolic regression,
which usually has arithmetic functions of arity two.

As in our BB supply work (Sastry et al., 2003), our analysis adopts a defi-
nition of a GP schema (or similarity template) called a “tree fragment”. A tree

56 GENETIC PROGRAMMING THEORY AND PRACTICE 11

fragment is a tree with at least one leaf that is a “don’t care” symbol. This
“don’t care” symbol can be matched by any subtree (including degenerate leaf-
only trees). As before, we are most interested in only the small set set of tree
fragments that are defined by three or fewer nodes. See Figure 4-3 for this set.

0ol S Eodod

(a) (b) () (d) (e} ® (g

Figure 4-3. The smallest tree fragments in GP. Fragments (c) and (d) have mirrors where the
child is 2nd parameter of the function. Likewise, fragment (f) has mirror where 1st and 2nd
parameters of the function are reversed. Recall that a tree fragment is a similarity template:
based on the similarity it defines, it also defines a competition. A tree fragment, in other words,
is a competition. (At other times we have also used the term partition interchangeably with tree
fragment or competition)

The defining length of a tree fragment is the sum of its quantities of function
symbols, F, and terminal symbols, 7

k=N;+N, (4.10)

Because a tree fragmentis a similarity template, it alsorepresents a competition.
Since this chapter is concerned with decision-making, we will therefore use
“competition” instead of a “tree fragment.” The size of a competition (i.e., how
many BBs compete) is
k=g (4.11)
As mentioned in (Sastry et al., 2003), because a tree fragment is defined without
any positional anchoring, it can appear multiple times in a single tree. We denote
the number of instances of a tree fragment that are present in a tree of size A
(i.e., the quantity of a tree fragment in a tree) as ¢. This is equivalent to the
instances of a competition as ¢ is used in the GA case (see Equation 4.8). For
full binary trees:
¢~ 27F) (4.12)

Later, we will explain how ¢ describes the potential quantity, per tree, of a BB.

S. GP Population Sizing Model

We now proceed to derive a GP population sizing relationship based on
building block decision-making. Preliminarily, unless noted, we make the same
assumptions as the GA derivation of Section 3.

Population Sizing for Genetic Programming Based On Decision-Making 57

The first way the GP population size derivation diverges from the GA case
is how BB fitness variance (i.e., a%,l and 0?-12) is estimated (for reference, see
Equation 4.6). Recall that for the GA the source of a BB’s fitness variance was
collateral noise from the (m — 1) competitions of its adjoining BBs. In GP, the
source of collateral noise is the average number of adjoining BBs present and

expressed in each tree, denoted as g. Thus:
GP BB Variance: o}, = 0%, = [Gag (m,A) — 1]og,. (4.13)

Thus, the probability of making an error on a single trial of the BB can be

estimated by finding the probability « such that
d2

20q55 — 1o,

The second way the GP population size derivation diverges from the GA
case is in how the number of trials of a BB is estimated (for reference, see
Equation 4.8). As with the GA, for GP we assume a uniformly distributed
population of size . In GP the probability of a trial of a particular BB must
account for it being both present, 1/, and expressed in an individual (or tree),
which we denote as pe;gr . So, in GP:

z2(a) = 4.14)

1
T:E'p%xgr'(b'n (4.15)
Thus, the population size relationship for GP is:
2
— 9.bb 1
n = QC"d‘?I‘& [qugr — 1] "p% (416)

where ¢ = z2(a) is the square of the ordinate of a one-sided standard Gaus-
sian deviate at a specified error probability «. For low error values, ¢ can be
obtained by the usual approximation for the tail of a Gaussian distribution:
a ~ exp(—c/2)/(V2c).

Obviously, it is not always possible to factor the real-world problems in
the terms of this population sizing model. A practical approach would first
approximate ¢ = 2% () trials per tree (the full binary tree assumption). Then,
estimate the size of the shortest program that will solve the problem, (one might
regard this as the Kolomogorov complexity of the problem, Ag), and choose
a multiple of this for A in the model. In this case, § = cgmg. To ensure an
initial supply of building blocks that is sufficient to solve the problem, the initial
population should be initialized with trees of size A. Therefore, the population-
sizing in this case can be written as

_ Cagb (ckmk - 1) 2k+1

= 4.17

58 GENETIC PROGRAMMING THEORY AND PRACTICE 11

Similar to the GA population sizing model, the decision-making based pop-
ulation sizing model in GP consists of the following factors:

s Competition complexity, quantified by the total number of competing
building blocks, .

= Ease of decision-making, quantified by the signal-to-noise ratio, d2/ ofb.
» Probabilistic safety factor, quantified by the coefficient ¢.

m Subcomponent complexity, which unlike GA population-sizing, de-
pends not only on the minimum number of building blocks required to
solve the problem my, but also on tree size A, the size of the problem

primitive set and how bloat factors into trees (quantified by p?g).

6. Sizing Model Problems

This section derives the components of the population-sizing model (Equa-
tion 4.16) for three test problems, ORDER, LOUD, and ON-OFF. We develop the
population-sizing equation for each problem and verify it with empirical results.
In all experiments we assume that & = 1/m and thus derive c¢. Table 4-1 shows
some of these values. For all empirical experiments the the initial population
is randomly generated with either full trees or by the ramped half-and-half
method. The trees were allowed to grow up to a maximum size of 1024 nodes.
We used a tournament selection with tournament size of 4 in obtaining the em-
pirical results. We used subtree crossover with a crossover probability of 1.0
and retained 5% of the best individuals from the previous population. A GP run
was terminated when either the best individual was obtained or when a prede-
termined number of generations were exceeded. The average number of BBs
correctly converged in the best individuals were computed over 50 independent
runs. The minimum population size required such that m — 1 BBs converge
to the correct value is determined by a bisection method (Sastry, 2001). The
results of population size and convergence time was averaged over 30 such
bisection runs, while the results for the number of function evaluations was av-
eraged over 1500 independent runs. We start with population sizing for ORDER,
where a building block can be expressed at most once in a tree.

Table 4-1. Values of ¢ = z*(a) used in population sizing equation.

m| 8 | 16 | 32 [64 | 128
¢ | 97 [1.76 | 271 | 3.77 | 4.89

Population Sizing for Genetic Programming Based On Decision-Making 59

ORDER: At most one expression per BB

ORDER is a simple, yet intuitive expression mechanism which makes it
amenable to analysis and modeling (Goldberg and O’Reilly, 1998, O’Reilly
and Goldberg, 1998). For complete details refer elsewhere (Sastry et al., 2003).

The output for optimal solution of a 2m-primitive ORDER problem is
{X 1, X2, ", Xm}, and its fitness value is m. The building blocks in ORDER
are the primitives, X, that are part of the subfunctions that reduce error (alter-
natively improve fitness). The shortest perfect program is Ag = 2m — 1.

For the ORDER problem, we can easily see that afb =0.25,d =1,and ¢ = 1.
From (Sastry et al., 2003), we know that

PeE ~ exp [—k . e—%] . ' (4.18)

—expr

Additionally, for ORDER, §gp 1S given by

—_eTpr ! m“]. . : 'L i Z—]+1 m—1
9B = 1+ z 7 ZZ g (_1) m , (4.19)
1=0

7=0

where, n; is the average number of leaf nodes per tree in the population. The
derivation of the above equation was involved and detailed. It is provided
elsewhere (Sastry et al., 2004).

Substituting the above relations (Equations 4.18 and 4.19) in the population-
sizing model (Equation 4.16) we obtain the following population-sizing equa-
tion for ORDER :

2
n = 28"12(a) (%) (G55 — 1] exp [k . 6_2—)‘1’"_] . (4.20)

The above population-sizing equation is verified with empirical results in
Figure 6.0. The initial population was randomly generated with either full trees
or by the ramped half-and-half method with trees of heights, k € [hg — 1, hg +
1], where, hy is the minimum tree height with an average of 2m leaf nodes.
We observed that the population size scales quadratically with Kolmogorov
complexity, n = O (2'”)\%).

LOUD: Every BB in a tree is expressed

In ORDER, a building block could be expressed at most once in a tree. How-
ever, in many GP problems a building block can be expressed multiple times
in an individual. Indeed, an extreme case is when every building block occur-
rence is expressed. One such problem is a modified version of a test problem
proposed elsewhere (Soule and Heckendorn, 2002, Soule, 2003), which we call
LOUD.

60 GENETIC PROGRAMMING THEORY AND PRACTICE 11

= -1
g Ful.h=h
2501 & Full, b= h 1
p Hall-and—Hall, he [h-1.+1) :
— Theory, h=h-1 :
20011 _ | Theory, h=h,
o Theory, h=hst

© Hali-and-Half, ha [2,7]
Theory _

o @

~

Population size, n
" -]

=

- ra @

3 35 4 45 &
Minimum tree height, h,

55 6 2 3 ry 5
Minimum tree height, h,

(a) ORDER (b) LOUD

Figure 4-4. Empirical validation of the population-sizing model (Equation 4.20) for ORDER and
LOUD problems. Tree height hy equals 2™ and Ay = 2m — 1.

In LOUD, the primitive set consists of an “add‘ function of arity two, and three
constant terminals: 0, 1 and 4. The objective is to find an optimal number of
fours and ones. That is, for an individual with ¢ 4s and 7 1s, the fitness function
is given by F(x) = |i — m4| + |j — mq|. Therefore, even though a zero is
expressed it does not contribute to fitness. Furthermore, a 4 or 1 is expressed
each time it appears in an individual and each occurrence contributes to the
fitness value of the individual. Moreover, the problem size, m = m4 + m; and
M =2m—1.

For the LOUD problem the building blocks are “4”” and “1”. It is easy to see that
for LOUD, UQBB =0.25,d =1, ¢ = /2, and pfggr = 1/3. Furthermore, the
average number of building blocks expressed is given by (j?gr =2n;/3 = A/3.
Substituting these values in the population-sizing model (Equation 4.16) we

obtain)
n=2-3%22(a) (%) [%,\ - 1} : (;) . (4.21)

The above population-sizing equation is verified with empirical results in
Figure 6.0. The initial population was randomly generated by the ramped half-
and-half method with trees of heights h € [2,7] yielding an average tree size of
4.1 (compared to the analytically derived value of 4.5). We observed that the
population size scales as n = O (2’“)\2'5).

ON-OFF: Tunable building block expression

In the previous sections we considered two extreme cases, one where a build-
ing block could be expressed at most once in an individual, and the other where
every building block occurrence is expressed. However, usually in GP prob-

Population Sizing for Genetic Programming Based On Decision-Making 61

e o ﬁEﬁ—Ei.ne [n.-l.ntn],pw.uz £

= Thaory,p._=1/2

1200 " Halt-and-Halt, h e 11l By = 113]
"_Themy.pm-rﬂ

= 100|

55

3 as :1 4.‘5 5
Minimum tree height, h,

Figure 4-5. Empirical validation of the population-sizing model (Equation 4.22) required to
obtain the global solution for ON-OFF problem. Note that Ay = 2m — 1.

lems, some of the building blocks are expressed and others are not. Therefore,
the third test function, which we call ON-OFF, is one in which the building-block
expression probability is tunable (Sastry et al., 2004) and can approximate some
bloat scenarios of standard GP problem (Luke, 2000a).

In ON-OFF, the primitive set consists of two functions EXP and EXP of arity
two and terminal X;, and Xo. The function EXP expresses its child nodes, while
EXP suppresses its child nodes. Therefore a leaf node is expressed only when
all its parental nodes have the primitive EXP. The probability of expressing a
building block can be tuned by controlling the frequency of selecting EXP for
an internal node in the initial tree. Similar to LOUD, the objective for ON-OFF is
to find an optimal number of X; and X2. The problem size, m = mx, + mx,
and A\ = 2m — 1.

For the ON—OFF problem the building blocks are X1 and X2, 055 = 0.25,
d=1,¢=)/2and p5F = pl p. Here, ppxp is the probability of a node
being the primitive EXP. The average number of building blocks expressed is
given by g5’ = - plhyp = § - plxp. Substituting these values in the
population-sizing model (Equation 4.16) we obtain

2
n = 26+122(q) (%) [%pgxp ~ 1] - (2) : (4.22)

AP%XP

The above population-sizing equation is verified with empirical results in
Figure 4-5. The initial population was randomly generated by the ramped half-
and-half method with trees of heights h € [hg — 1, hg + 1], where hy is the
minimum tree height with an average of m leaf nodes. We observed that the
population size scales asn = O (2’“/\2'5 / pezp).

62 GENETIC PROGRAMMING THEORY AND PRACTICE 11

7. Conclusions

This contribution is a second step towards a reliable and accurate model for
sizing genetic programming populations. In the first step the model estimated
the minimum population size required to ensure that every building block was
present with a given degree of certainty in the initial population. In the process
of deriving this model, we gained valuable insight into (a) what makes GP
different from a GA in the population-sizing context and (b) the implications of
these differences. The difference of GP’s larger alphabet, while influential in
implying GP needs larger population sizes, was not a difficult factor to handle,
while bloat and the variable length individuals in GP are more complicated.

Moving to the second step, by considering a decision-making model, we
extended the GA decision-making model along these dimensions: First, our
model retains a term describing collateral noise from competing BBs (g[m, A])
but it recognizes that the quantity of these competitors depends on tree size and
the likelihood that the BB is present and expresses itself (rather than behaving
as an intron). Second, our model, like its GA counterpart, assumes that trials
decrease BB fitness variance; however, what was simple in a GA — there is one
trial per population member — for the GP case is more involved. That is, the
probability that a BB is present in a population member depends both on the
likelihood that it is present in lieu of another BB and expresses itself, plus the
number of potential trials any BB has in each population member.

The model shows that, to ensure correct decision-making within an error
tolerance, population size must go up as the probability of error decreases, noise
increases, alphabet cardinality increases, the signal-to-noise ratio decreases and
tree size decreases and bloat frequency increases. This matches intuition. There
is an interesting critical trade-off with tree size with respect to determining
population size: pressure for larger trees comes from the need to express all
correct BBs in the solution, while pressure for smaller trees comes from the
need to reduce collateral noise from competing BBs.

The fact that the model is based on statistical decision-making means that
crossover does not have to be incorporated. In GAs crossover solely acts as
a mixer or combiner of BBs. Interestingly, in GP, crossover also interacts
with selection with the potential result that programs’ size grows and structure
changes. When this happens, the frequency of bloat can also change (see
(Luke, 2000a, Luke, 2000b) for examples of this with multiplexer and symbolic
regression). These changes in size, structure and bloat frequency imply a much
more complex model would be required if one were to attempt to account for
decision-making throughout arun. They also suggest that when using the model
as a rule of thumb to size an initial population, it may prove more accurate if
the practitioner overestimates bloat in anticipation of subsequent tree growth

Population Sizing for Genetic Programming Based On Decision-Making 63

causing more than the bloat seen in the initial population, given its average tree
size.

It appears difficult to use this model with real problems where, among the
GP-particular factors, the most compact solution and BB size is not known
and the extent of bloat cannot be estimated. In the case of the GA model, the
estimation of model factors has been addressed by (Reed et al., 2000). They
estimated variance with the standard deviation of the fitness of a large random
population. In the GP case, this sampling population should be controlled for
average tree size. If a practitioner were willing to work with crude estimates of
bloat, BB size and most compact solution size, a multiple of the size of the most
compact solution could be substituted, and bloat could be used with that size
to estimate the probability that a BB is expressed and present and the average
number of BBs of the same size present and expressed, on average, in each
tree. In the future, we intend to experiment with the model and well known toy
GP problems (e.g., multiplexer, symbolic regression) where bloat frequency
and most compact problem size are obtainable, and simple choices for BB size
exist to verify if the population size scales with problem size within the order
of complexity the model predicts.

Population sizing has been important to GAs and is now important to GP,
because it is the principle factor in controlling ultimate solution quality. Once
the quality-size relation is understood, populations can be sized to obtain a
desired quality and only two things can happen in empirical trials. The quality
goal can be equaled or exceeded in which case all is well with the design of the
algorithm, or (as is more likely) the quality target can be missed, in which case
there is some other obstacle to be overcome in the algorithm design. Moreover,
once population size is understood, it can be combined with an understanding
of run duration, thereby yielding first estimates of GP run complexity, a key
milestone in making our understanding of these processes more rigorous.

Acknowledgments

We gratefully acknowledge the organizers and reviewers of the 2004 GP Theory and Practice
Workshop.

This work was sponsored by the Air Force Office of Scientific Research, Air Force Material
Command, USAF, under grant F49620-03-1-0129, the National Science Foundation under ITR
grant DMR-99-76550 (at MCC), and ITR grant DMR-0121695 (at CPSD), and the Dept. of
Energy under grant DEFG02-91ER45439 (at FS-MRL), and by the TRECC at UIUC by NCSA
and funded by the Office of Naval Research (grant N00014-01-1-0175). The U.S. Government
is authorized to reproduce and distribute reprints for government purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Air Force Office of Scientific Research, the National Science
Foundation, or the U.S. Government.

64 GENETIC PROGRAMMING THEORY AND PRACTICE 11

References

Canti-Paz, E. (2000). Efficient and accurate parallel genetic algorithms. Kluwer Academic Pub,
Boston, MA.

Canti-Paz, Brick, Foster, James A., Deb, Kalyanmoy, Davis, Lawrence, Roy, Rajkumar, O’Reilly,
Una-May, Beyer, Hans-Georg, Standish, Russell K., Kendall, Graham, Wilson, Stewart W.,
Harman, Mark, Wegener, Joachim, Dasgupta, Dipankar, Potter, Mitchell A., Schultz, Alan C.,
Dowsland, Kathryn A., Jonoska, Natasa, and Miller, Julian F., editors (2003). Genetic and
Evolutionary Computation — GECCO 2003, Part II, volume 2724 of Lecture Notes in Com-
puter Science. Springer.

De Jong, K. A. (1975). An analysis of the behavior ofa class of genetic adaptive systems. PhD
thesis, University of Michigan, Ann-Arbor, MI. (University Microfilms No. 76-9381).

Feller, W. (1970). An Introduction to Probability Theory and its Applications. Wiley, New York,
NY.

Goldberg, D. E. (2002). The Design of Innovation: Lessons from and for Competent Genetic
Algorithms. Kluwer Academic Publishers, Boston, Mass.

Goldberg, D. E., Deb, K., and Clark, J. H. (1992). Genetic algorithms, noise, and the sizing of
populations. Complex Systems, 6(4):333-362.

Goldberg, D. E. and Rudnick, M. (1991). Genetic algorithms and the variance of fitness. Complex
Systems, 5(3):265-278.

Goldberg, David E. and O’Reilly, Una-May (1998). Where does the good stuff go, and why? how
contextual semantics influence program structure in simple genetic programming. In Banzhaf,
Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence C., editors, Proceedings
of the First European Workshop on Genetic Programming, volume 1391 of LNCS, pages
16-36, Paris. Springer-Verlag.

Harik, G., Cantd-Paz, E., Goldberg, D. E., and Miller, B. L. (1999). The gambler’s ruin problem,
genetic algorithms, and the sizing of populations. Evolutionary Computation, 7(3):231-253.

Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM Journal on
Computing, 2(2):88-105.

Keijzer, Maarten, O’Reilly, Una-May, Lucas, Simon M., Costa, Ernesto, and Soule, Terence,
editors (2004). Genetic Programming 7th European Conference, EuroGP 2004, Proceedings,
volume 3003 of LNCS, Coimbra, Portugal. Springer-Verlag.

Langdon, W. B. and Poli, Riccardo (2002). Foundations of Genetic Programming. Springer-
Verlag.

Luke, Sean (2000a). Code growth is not caused by introns. In Whitley, Darrell, editor, Late
Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference, pages 228—
235, Las Vegas, Nevada, USA.

Luke, Sean (2000b). Issues in Scaling Genetic Programming: Breeding Strategies, Tree Genera-
tion, and Code Bloat. PhD thesis, Department of Computer Science, University of Maryland,
A. V. Williams Building, University of Maryland, College Park, MD 20742 USA.

Miller, B. L. (1997). Noise, Sampling, and Efficient Genetic Algorithms. PhD thesis, University
of Illinois at Urbana-Champaign, General Engineering Department, Urbana, IL.

O’Reilly, Una-May and Goldberg, David E. (1998). How fitness structure affects subsolution ac-
quisition in genetic programming. In Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar,
Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max H., Goldberg, David E.,
Iba, Hitoshi, and Riolo, Rick, editors, Genetic Programming 1998: Proceedings ofthe Third
Annual Conference, pages 269-277, University of Wisconsin, Madison, Wisconsin, USA.
Morgan Kaufmann.

Reed, P., Minsker, B. S., and Goldberg, D. E. (2000). Designing a competent simple genetic
algorithm for search and optimization. Water Resources Research, 36(12):3757-3761.

Population Sizing for Genetic Programming Based On Decision-Making 65

Riolo, Rick L. and Worzel, Bill (2003). Genetic Programming Theory and Practice. Genetic
Programming Series. Kluwer, Boston, MA, USA. Series Editor - John Koza.

Sastry, K. (2001). Evaluation-relaxation schemes for genetic and evolutionary algorithms. Mas-
ter’s thesis, University of Illinois at Urbana-Champaign, General Engineering Department,
Urbana, IL.

Sastry, K., O’Reilly, U.-M., and Goldberg, D. E. (2004). Population sizing for genetic program-
ming based on decision making. I1liGAL Report No. 2004026, University of Illinois at Urbana
Champaign, Urbana.

Sastry, Kumara, O’Reilly, Una-May, Goldberg, David E., and Hill, David (2003). Building block
supply in genetic programming. In Riolo, Rick L. and Worzel, Bill, editors, Genetic Program-
ming Theory and Practice, chapter 9, pages 137-154. Kluwer.

Soule, Terence (2003). Operator choice and the evolution of robust solutions. In Riolo, Rick L.
and Worzel, Bill, editors, Genetic Programming Theory and Practise, chapter 16, pages
257-270. Kluwer.

Soule, Terence and Heckendorn, Robert B. (2002). An analysis of the causes of code growth in
genetic programming. Genetic Programming and Evolvable Machines, 3(3):283-309.

This page intentionally left blank

Chapter 5

CONSIDERING THE ROLES OF STRUCTURE IN

PROBLEM SOLVING BY COMPUTER
Cause and Emergence in Genetic Programming

Jason M. Daida
Center for the Study of Complex Systems and Space Physics Research Laboratory,
The University of Michigan

Abstract: This chapter presents a tiered view of the roles of structure in genetic
programming. This view can be used to frame theory on how some problems
are more difficult than others for genetic programming to solve. This chapter
subsequently summarizes my group’s current theoretical work at the
University of Michigan and extends the implications of that work to real-world
problem solving.

Key words: ~ GP theory, tree structures, problem difficulty, GP-hard, test problems, Lid,
Highlander, Binomial-3

1. INTRODUCTION

In genetic programming (GP), the general consensus is that structure has
a role in GP dynamics. Beyond that general view, various researchers have
presented conflicting views as to the nature of that role.

Most maintain that structure is of secondary importance to content, which
involves the semantics and syntax of programs. After all, fitness is
determined by the evaluation of programs; only in special cases is fitness
determined by structure (e.g., Punch, Zongker et al., 1996; Clergue, Collard
et al.,, 2002). Consequently, it is not structure, per se, that matters but
schemata—building blocks of partial programs (e.g., Poli, 2000; Poli, 2001;
Langdon and Poli, 2002).

Others would suggest that structure is an emergent property—an effect
and not a cause—that arises as a result of fitness. Koza has actively
promoted this by introducing mechanisms that allow GP to “choose” an

68 GENETIC PROGRAMMING THEORY AND PRACTICE 11

architecture (i.e., the size and shape) that suits the functionality of its
solutions (e.g., Koza, 1994; Koza, 1995; Koza, Bennett III et al, 1999).
Other researchers have also designed such mechanisms (e.g., Rosca, 1995).
Some have explored structure as an emergent property of fitness that occurs
without any additional mechanisms (i.e., Goldberg and O’Reilly, 1998;
O’Reilly and Goldberg, 1998). Emergent structure has not always been
considered in a positive light, in particular, excess structure—bloat—is
considered by some to be an emergent, albeit inefficient response to
maintaining fitness (e.g., Angeline, 1994; Langdon and Poli, 1997; Banzhaf
and Langdon, 2002; Soule and Heckendorn, 2002).

Still others consider structure as a causal influence that results in effects
that either would occur in spite of content or would drive the determination
of content. A number have studied the rapid convergence of a GP population
to a common root structure, which tends to drive the solutions that are
subsequently derived by GP (e.g., Rosca, 1997; Hall and Soule, 2004).
Others have proposed a structure-as-cause alternative to hypotheses
concerning evolution of size and shape and have proposed that the evolution
of size and shape is the result of a random walk in GP on the probability
distribution of possible sizes and shapes (e.g., Langdon and Poli, 2002). Still
others (i.e., (Luke, 2003) have proposed an alternative hypothesis and a
model ofbloat that stems from a structural consequence of crossover.

My own group has also considered structure as a causal influence (Daida,
2003; Daida and Hilss, 2003; Daida, Hilss et al., 2003; Daida, Li et al.,
2003). However, we have adopted a perspective that structure is not only a
causal factor, but also a primary one, even when selection is specified solely
on content. However, we would claim that this perspective is not at odds
with any of the community’s views on structure.

I would further argue that although it is possible for all of these views to
be equally “correct,” it is not the most beneficial way to consider the roles of
structure. Structures that are causal are distinct from structures that are
emergent, as are structures that correspond to primary factors are distinct
from structures that correspond to secondary ones. What matters is the sense
and scale that is being applied to the term structure, which in turn helps to
determine which role to examine.

This chapter subsequently describes what these studies have to offer
concerning the roles of structure in GP. In particular, Section 2 presents my
group’s hierarchical view of structure. Each of Sections 3, 4, and 5 discusses
a level in this hierarchy. Section 6 concludes.

Considering the Roles of Structure in Problem Solving by Computer 69

2. A HIERARCHICAL VIEW OF STRUCTURE

In much of the field of GP, tree structures generally falls under the
category of problem representation (e.g., Angeline, 1997; Banzhaf, Nordin
et al., 1998). In spite of this, my group has considered tree structures as a
matter distinct from problem representation.

When one does an analysis in problem representation, one implicitly
assumes that what counts is information from a problem’s domain, as
opposed to the structure that carries that information. This view makes sense
when considering many algorithms in genetic and evolutionary computation.
In such cases, information structure—e.g., a matrix or a vector—does not
change in size or length for the duration of that algorithm’s processing. What
changes is content. For all practical purposes, information structure can be
(correctly) factored out of an analysis.

There are fields in computer science and in mathematics, however, where
a static information structure is not a given. Of interest, instead, are the
consequences of information structures that are variable and dynamic. Trees
are one such structure. Consequently, when one does an analysis of trees as
information structure, it iS common to treat trees as mathematical entities
apart from the information such trees would carry (e.g., Knuth, 1997). This
treatment effectively renders information structure as a level of abstraction
that is distinct from that of problem representation.

Nevertheless, a treatment of trees as pure mathematical entities without
content can only go so far. GP ultimately produces programs, so at some
point there needs to be a consideration of tree structures with content. For
this and other reasons, my group has adopted a tiered view of structures. As
shown in Figure 5-1, we consider three hierarchically arranged tiers: lattice,
network, and content. Each level in this tiered view implies a certain level of
abstraction concerning content. The lowest level—lattice—presumes
structure apart from content, and subsequent levels—network and content—
presume decreasing levels of content abstraction.

Furthermore, each level in this tiered view implies a certain set of
behaviors and possibilities that apply to that level and that constrain possible
behaviors and outcomes in the next level up.

Of interest to theoreticians is that just as it has been possible to design
test problems that address theory in
genetic algorithms, my group has
designed test problems that address

. Network
structural theory in GP. We have I
specifically devised test problems that
address each tier to illuminate that

level’s behaviors and outcomes. Of Figure 5-1. A tiered view for how
GP works.

Lattice |

Search Space

70 GENETIC PROGRAMMING THEORY AND PRACTICE 11

interest to practitioners is that findings associated with each tier also offer
insights on how to leverage the technology for solving problems.
Sections 3, 4, and 5 highlight lattice, network, and content, respectively.

3. LATTICE

The following summarizes the theoretical and practical implications
concerning our work at the lowest tier—Iattice.

3.1 Theory Concerning Lattice

The term lattice refers to the hierarchical information structures—trees—
that GP uses without consideration of the content contained in the nodes of
those trees. As it turns out, there are consequences of using a variable-
length, hierarchical structure like a tree. Trees are not neutral to problem
solving in GP. In our work (Daida, 2002; Daida, 2003; Daida and Hilss,
2003), we have described a “physics” that occurs when larger trees are
assembled iteratively by using smaller trees. This “physics” is analogous to
diffusion-limited aggregation (Witten and Sander, 1981; Witten and Sander,
1983)—a well-known process that
describes diverse phenomena such as
soot, electrolytic deposition, and
porous bodies (Kaye, 1989). 2

Diffusion-limited aggregation 2
results in fractal objects that have 2% -
certain ranges for sizes and shapes.
These sizes and shapes can be
modeled so that theoretical ranges can
be determined. In a similar fashion,
processes in GP that iteratively -
assemble larger trees by using smaller |
ones result in fractal-like objects that 2
have certain ranges for sizes and 2
shapes. As in diffusion-limited 7
aggregation, these sizes and shapes 2

Number of Nodes

L R L R R R

can be modeled; we developed our o 5 10 15 20 25

lattice-aggregate model for this
purpose (Daida and Hilss, 2003). As in
diffusion-limited aggregation,
theoretical ranges can be determined.

Depth

Figure 5-2. Predicted Regions. A map
of likely tree structures can be derived
based on a process that is analogous to
diffusion-limited aggregation.

Considering the Roles of Structure in Problem Solving by Computer 71

A map of these ranges is given in Figure 5-2.

There are four general regions in this map. Region I is where most GP
binary trees occur. Region II is where increasingly fewer trees would be
found. Region Il is where even fewer trees would typically occur. In
(Daida, 2002), we suggested that Region III might be impossible for all
practical purposes. Since then, however, we have tentatively identified those
conditions when the probability of trees occurring in this region approaches
zero. Region IV represents impossible configurations of trees, which occurs
in this case because the map presumes binary trees.

Region I occupies only a small fraction of the total allowable search
space. Region I only seems large because the map is depicted on a
logarithmic scale (which is a common convention). For the particular map
shown in Figure 5-2, Region I represents less than 0.01% of the entire
allowable search space in size and depth.

In (Daida, 2003; Daida and Hilss, 2003), we compared this map with
empirical data from several different problems, including: Quintic, Sextic, 6-
Input Multiplexer, 11-Input Multiplexer. We have also compared this map
against the tunably difficult Binomial-3 problem. In each case, nearly all of
the solutions that were derived by GP fit inside the area delineated by
Region L.

The model, however, presumes that the map applies to all GP problems,
regardless of the substance of what these problems are. Consequently, to test
for this, we de-vised a problem that is scored entirely on the structural
metrics of a tree (as opposed to exe-cuting the pro-gram associated with a
tree for

evaluating and e

scoring that -

program). This 8 g 2

test problem is ?: 3 2.3 _

called the Lid. 3 2 7 .
The premise 5 Z 2

behind the Lid g £ .3

problem is fairly = $ 3

straightforward. ;]

There have beep B x| -

efforts to limit 0 5 10 15 20 25 0 5 10 15 20 25

bloat by Target Depth Measured Depth

including a Figure 5-3. Lid Problem. The Lid problem demonstrates the

structural metric, effects of tree structure at the level of lattice. Dark bold lines
indicate the boundaries for Region I; the dotted lines, the
. boundaries for Region II. (a) Input (i.e., target sizes that GP needs
depth as In reach). (b) Output (i.e., tree sizes that GP has derived in
(Soule, Foster et response to input).

such as tree

72 GENETIC PROGRAMMING THEORY AND PRACTICE I

al., 1996), as a part of the fitness measure. For the Lid problem, all of the
selection pressure is directed towards identifying a tree of a given size and
depth. A technical description of the Lid problem is given in (Daida, Li et
al., 2003). The question is then, If one were to do this, would GP be able to
cover the entire search space?

Our work has indicated “conditionally no” as an answer. Referring to
Figure 5-3a, each dot shows the location of a target shape for a single trial;
all GP would need to do is to assemble any tree with both a target number of
nodes and a target depth to succeed. The targets were randomly distributed
in the space of sizes and depths for depths 0-26. For this particular
experiment, GP used a population size of 4,000 and fitness-proportionate
selection. There were 1,000 trials in all.

Referring to Figure 5-3b, each dot shows the location of the best solution
for a single trial. In spite of diverting all of computational effort in GP to
simply coming up with a target tree shape, most solutions still exist within
either Regions I or II. In particular, 66% of the solutions are contained
within Region I; 94% of the solutions are contained within Regions I and II.

Our previous work on the Lid problem describes in detail empirical
results from both horizontal and vertical cuts across this map (Daida, Li et
al., 2003), instead of the Monte Carlo results shown here. In our current
investigations, we are finding a significant difference when using
tournament selection instead of fitness-proportionate selection. We suspect
other structural mechanisms are involved, which are not currently included
with the lattice-aggregate model.

3.2 Practical Implications of Lattice

“You can paint it any color, so long that it’s black.” (Attributed to H.
Ford about the Model T.) A similar saying could be quipped about GP.

It is true that GP can derive programs of a great many sizes.
Nevertheless, GP “prefers” that these sizes come in a specific range of
shapes. The range of allowable shapes is extremely limited and amounts to
fractions of a percent of what shapes could be possible. This limit implies a
constraint on the structural complexity that is attainable for standard GP,
which in turn affects the computational complexity of solution outcomes.

In (Daida, 2003), a longer discussion is given on the effects of structure
on problem solving.

Considering the Roles of Structure in Problem Solving by Computer 73

4. NETWORK

Of course, GP does more than put together tree structures. At the core of
it, GP builds up solutions from fragments of guesses. Somewhere scattered
in these guesses—the initial population of solutions—are the elements from
which GP must sift and reassemble. While many in the community would
take this for granted, this ability to reconstitute working solutions from
pieces does raise the following question: Just how small and just how
scattered can those fragments be in an initial population for GP to work?

If one took the time to map out the topology of interconnections between
various fragments in various individuals in an initial population, I would
claim that this topology constitutes a network. What these networks look like
in GP is currently an ongoing investigation. The following summarizes the
theory and the practical implications concerning our work at the level of
network.

4.1 Theory Concerning Network

We are not yet to the point of articulating a mathematical theory. We
have, however, designed a test problem to probe for their existence and, if
appropriate, their dynamics.

The chief difficulty in designing such a problem is a need to isolate the
topology of interconnections away from its substance. In other words, ifit is
suitable to analyze networks in GP, there should be a set of behaviors and
phenomena that occur at this level, regardless of whatever executable
content is implicit in a GP population.

The closest parallel that the community of GP has in the discovery of a
set of behaviors and phenomena at this level would be investigations on
diversity (e.g., McPhee and Hopper, 1999; Burke, Gustafson et al., 2002a;
Burke, Gustafson et al., 2002b; Burke, Gustafson et al., 2004). At one level,
the goals between our study and these studies would be the same: an
investigation of where and how scattered fragments are within the context of
a population. At another level, the goals diverge. For example, what matters
in the studies of diversity is the uniqueness of those fragments, which often
presumes something about the content held within them. What also is
presumed in the studies of diversity is a tacit acknowledgement that more
diversity is better. Consequently, metrics that show a loss of diversity during
problem solving might either call into question the definition of diversity
that was used or whether the process of problem solving is somehow flawed
(e.g., premature convergence).

While we acknowledge that there are parallels between biological
diversity and the role of diversity in genetic and evolutionary computation,

74 GENETIC PROGRAMMING THEORY AND PRACTICE II

we have adopted a nuanced approach to this topic, similar to those taken in
investigations of ecosystems and networks. In particular, one raw count of
species in a given area is not by itself an indicator of ecosystem health.
Likewise, introducing more diversity into an indigenous network does not
necessarily result in a more diverse or robust ecosystem. For example, in
cases where an exotic invasive species is introduced, it is entirely possible
that a short-term increase in the number of different species for a given area
is a prelude to a collapse of an indigenous ecosystem as described in (Sakai,
Allendorf et al., 2001). Even in biology, diversity is a nuanced term.

The test problem that we have designed is called Highlander and was
first described in (Daida, Samples et al., 2004). The premise behind this
problem is simple and starts with a set of N uniquely labeled nodes, all of
which are distributed among M individuals in an initial population. All GP
has to do is to assemble an individual that contains a specified percentage of
N uniquely labeled nodes.

Put another way, the Highlander problem is like a game that begins with
a huge bag of marbles. Every marble corresponds to a node and there are as
many marbles as there are nodes in an initial population. The number of
marbles is known. Each marble has been labeled. Each label appears just
once. The object of the game is to grab enough marbles from the bag so that
one has a certain percentage of all of the unique labels in the bag.

Of course, the game would be easy if one had as many grabs as would be
needed and no one does anything else to the bag (like adding marbles).
Likewise, in GP, assembling an individual that consists of N uniquely
labeled nodes would be trivial if GP were allowed as many recombinations
as would be needed to create one individual while the population remained
static over time. However, each “child” in GP is a result of just one
recombination. Furthermore, the distribution of labels also changes over
time, in part because GP selects some “parents” more frequently than others.

It is possible, then, for bloat to occur in the Highlander problem. A label
counts just once, regardless of whether there is just one instance of that label
or a hundred instances of them. Consequently, a tree could consist of
thousands of nodes, but still have just three unique labels. Such a tree would
score the same as a tree that had three nodes with three different labels.

By the same token, it is irrelevant to the test problem to categorize which
fragments (i.e., subtrees) are introns and which are not, even if bloat were
present. Introns presume executability (i.e., syntactically correct code) and
functionality (i.e., upon execution, something happens). Neither applies to
Highlander because code is not executed during the course of evaluating an
individual. Consequently, it is entirely possible to point to a specific branch
in a Highlander solution and not know whether it is an intron or whether it is
the part of the tree that contributes to a fitness score. The specific

Considering the Roles of Structure in Problem Solving by Computer 75

programmatic content of nodes is rendered irrelevant in Highlander, which
is desirable when probing for and isolating network behavior.

As a probe, Highlander was designed as a tunably difficult problem as a
way to determine the conditions under which networking occurs in GP and
as a way to determine the factors that influence the combination of material

through networking. (For

_ 100 e M =500 this reason, then, no
g 80 mutation was used.) The
g so—‘j :}:g:;":g:;; tuning parameter f is the
o W= specified percentage of N
20 uniquely labeled nodes
B AR RABERAREREEE Eae that an individual tree
20 40 60 80 100 must have. As a crude

- measure of problem
e p— difficulty, we u.sed. a
‘% - successful-trials rgﬂo: i.e.,
Y the number of trials that
$ 50 produced a correct
0 solution, which is then

'Ili-llilllllll'll[llll .
20 40 & B0 100 normalized to the total

Tuning Parameter p number of GP trials.

Figure 5-4. Highlander Problem. Each plot corresponds Figure 54 shows the
to a population size M and depicts the percentage of results of problem
successful trials as a function of tuning parameter A. difficulty as a function of
Parameter g values that correspond to easier settings tuning parameter ,B for

have higher percentages of successful trials. two different population

sizes for both tournament
and fitness-proportionate selection. Each data point is the successful-trials
ratio for 1,000 trials. A total of 82,000 trials is depicted.

What is striking about the results shown is that GP is only able to
assemble a fraction of the total number of possible fragments into a single
individual. For population sizes that are commonly used in the GP
community, that fraction amounts to something between 2 — 18%.

The other striking finding was what happened when a comparison was
made between the map of Figure 5-2 and the shapes of the Highlander
solutions. Figure 5-5 shows the size and depth results for population size
1,000 and tournament selection for various tuning parameter values. Each
dot represents the size and depth for the best solution obtained for a trial.
There are 1,000 dots per plot. What is noteworthy about these results is an
absence of change in shape after the successful-trials metric goes to zero
(i.e., no trial resulted in a successful solution for #> 20%). An increase in £
should result in an increase in the size of a tree, which is what happens when

76 GENETIC PROGRAMMING THEORY AND PRACTICE 11

19 7] — — _
2" 3 19 3 2" 2" J
g B e g 2" o 2°d P
= — _ F = 3 = -
g 13 = 3 - E)" - E 4. =
S 0 10 3 2" 310]
_E L 7] y 7 :
3 2 - = 2= 2]
= 4] 24 3
3/ B-1% %)) B=30% ° 0% .
£ ST T 2T TR
1 100 1 100 1 100 1 100
219 : 219 E 219 E 2|9 3
16 — 16 16 16
w 20— 2 — o204 2
1) =] . - F - 4
_§ P = 2 ¥ " 21 = -
s ,'° - 2'°] 510 - 510
_g —] —
E 57 3 57 = o7 I 57
4 4 4 4
2 = - 2
Y B=50% p=70% 3/ 6-80% ° fa :
2 1T 2 T T 711 2 —
1 100 1 100 1 100 1 100 1 100
Depth Depth Depth Depth Depth

Figure 5-5. Size versus Depth Scatterplots for Tournament Selection, Population Size 1,000.
The boundaries for Region I are shown in bold. Since Region I has only been computed up
through depth 26, the Region I boundaries are truncated. An attractor is apparent when the
tuning parameter 5> 20%.

GP is able to assemble a correct tree. The presence of an attractor at g >
20%, in spite of what should be increasing selection pressure for trees to
grow, is noteworthy. What makes this attractor particularly striking is that it
exists even though there were no fitness criteria specified for either size or
depth. Similar behavior occurs for the other configurations of population
size and selection methods.

We speculate that the attractor represents an equilibrium point between
the rate at which solutions can be assembled versus the rate of losing of
individuals in a population due to selection.

GP can assemble a solution out of fragments that are distributed in a
population only so quickly. Assembly is further constrained by lattice
effects, which is evident in Figure 5-5. Although the boundaries for Regions
I and II have not been computed at the depths for which the Highlander
solutions lie, the shape and location of the attractor is consistent with a
lattice constraint at those depths.

At the same time, GP can lose fragments because not all individuals in a
population propagate. There has been work where it has been possible to
compute the rate of diversity loss because of tournament selection (e.g.,
Blickle, 1997; Motoki, 2002). In actuality, the attrition rate would be even

Considering the Roles of Structure in Problem Solving by Computer 77

higher because GP has a tendency to select longer branches and not roots for
subtree crossover (e.g., Luke, 2003), which subsequently means fragments
proximal to roots are lost.

Our analysis as of this writing is only preliminary and we have not yet
mapped out the topology of relationships between individuals. The
Highlander results hint at a network topology that exists and that has an
equilibrium point that is a consequence of how GP assembles all of its
solutions.

4.2 Practical Implications of Network

There have been anecdotes where GP is said to work reasonably with a
limited number of different kinds of functions and terminals. There have also
been anecdotes where GP has been known to fail when too many different
kinds of functions and terminals were needed to assemble a solution. Both
sets of anecdotes may reflect the same phenomena that occur at the level of
network.

GP has a sharply limited ability to assemble solutions from fragments
that are scattered throughout a population. When it is possible to construct a
solution from a limited number of different kinds of functions and terminals,
there is likely to be a number of redundant fragments. Consequently, a loss
of fragments would not likely be catastrophic.

However, if GP has to assemble a solution from many different kinds of
functions and terminals, the chance for redundant fragments would decrease.
The loss of fragments would be noticeable and consequential. The difficulty
curves of Figure 5-4 definitely indicated that there is an upper limit to just
how many different nodes can be used in the assembly of a solution. GP
might not be able to solve a problem at all if this upper limit is reached
before a solution is derived.

Furthermore, failure is likely to occur well before the upper limit is
reached, since this upper limit presumes that it does not matter as to the way
in which these nodes connect. If it does matter, which it does for most
problems in GP, there would be further constraints. These additional
constraints would occur at the next level of content.

S. CONTENT

What matters most to many who use GP is the solutions that the
technology generates. The solutions the technology is currently generating
are compelling in their own right. In a series of books and papers, Koza and
his colleagues have actively promoted GP as a discovery engine (Koza,

78 GENETIC PROGRAMMING THEORY AND PRACTICE 11

Bennett III et al., 1999; Koza, Keane et al., 2000; Koza, Keane et al., 2003).
By 2003, 32 instances of solutions by GP met criteria that humans would
also need to meet if their solutions are to be deemed innovative (e.g., by
peer-review or by patent law). One of these 32 was sufficiently innovative to
merit a patent application. Koza and his colleagues contend that someday GP
will routinely make discoveries and inventions (Koza, Keane et al., 2003). 1
would agree that merits of GP as a technology ultimately reside in its
substance, its solutions, and not whether it had the appropriate lattice
structure or constructed an appropriate network.

Of course, the substance of a solution in GP depends on its programmatic
content. The last and highest level—content—concerns how GP generates
functional solutions, which happen to be subject to the constraints at the
levels of lattice and network. The following summarizes the theory and the
practical implications concerning our work at this tier.

5.1 Theory Concerning Content

I would say that much of the theoretical work in the GP community
occurs at this level, where content is no longer abstracted away, where
problem domains matter, and where fitness depends on executing code.
Consequently, current theories on schema, bloat, and diversity (to name a
few) have resided at this level. My own group’s current work at this level is
characterized by the following motivating question: “How do the
consequences of lattice and network affect what happens at the level of
content?”

We have just begun to explore what this question means, since much of
my group’s recent effort has involved lattice and network. Nevertheless, my
group’s oldest and first tunably difficult problem—Binomial-3—was
designed for understanding content issues in problem difficulty (Daida,
Bertram et al., 1999). Although it started off as a tool for exploring the role
of building blocks in determining what makes a problem GP-hard, the
Binomial-3 has instead been instrumental in our current understanding of
structure. Structure, as it seems to be turning out, plays various roles in
problem solving by GP and is a major factor in determining problem
difficulty (Daida, Polito 2 et al., 1999; Daida, Polito 2 et al., 2001; Daida, Li
et al., 2003). The interplay between lattice and content was discussed at
some length in (Daida, 2003) and so is not recapitulated here. Instead, what
is discussed are some of the new developments in our group.

What is new to us since last year’s workshop are the findings from the
Highlander problem. If only a fraction of the material in the initial
population can be assembled to form a solution, we wondered about how
this fraction was distributed and what the dynamics were that governed

Considering the Roles of Structure in Problem Solving by Computer 79

content. To explore the consequences of the Highlander findings on content,
we used the Binomial-3 to focus on the interplay between network and
content. See (Daida, Ward et al., 2004) for more details.

The Binomial-3 is an instance taken from symbolic regression and
involves solving for the function fx) = 1 + 3x + 3x* + x°. Fitness cases are 50
equidistant points generated from f{x) over the interval [-1, 0). The function
set is {+, -, X, +}, which corresponds to arithmetic operators of addition,
subtraction, multiplication, and protected division. Its terminal set is {x, R},
where x is the symbolic variable and R is the set of ephemeral random
constants that are distributed uniformly over the interval [-a, &]. The tuning
parameter is «, which is a real number. The Binomial-3 can be tuned from a
relatively easy problem (e.g., = 1) to a difficult one (e.g., = 1,000).

As in Highlander, my group modified the Binomial-3 so that every node
in the initial population was uniquely labeled. In this way, the use of nodes
in any solution in any generation can be audited back to a particular
individual in an initial population. For the purposes of illustration, we call an
individual in an initial population an ancestor. Keeping track of ancestral
lineages for a current population allows us a rough measure of how GP uses
and assembles fragments from the initial population. For example, if GP
uses fragments that are distributed broadly in an initial population, an audit
would likely show a high number of ancestral lineages that belong to a
current population. Likewise, if GP uses fragments that are distributed
narrowly in an initial population, an audit would likely show a low number
of ancestral lineages that belong to a current population.

We ran an experiment where we used representative settings for “easy”
and “hard” problems (i.e., @ =1 and a = 1,000, respectively). We also used
two different selection methods: fitness-proportionate selection (which is a
selection method that is known to maintain diversity, e.g., Pincus, 1970;
Galar, 1985) and tournament selection (which is a selection method that is
known to lose diversity, e.g., Blickle and Thiele, 1995; Blickle, 1997)). This
represents a total of four different experimental configurations. We ran 200
trials per configuration, with each trial consisting of a population size of 500
that ran for 200 generations. The results are shown in Figure 5-6.

Figure 5-6 is a complete summary of approximately 80 million trees that
were audited into lineages of 400,000 ancestors. The summary is divided
into four density plots, where each density plot corresponds to a different
experimental configuration of selection method and tuning parameter c.
Each plot shows the number of ancestral lineages present in a population as
a function of time (in generations). The maximum number of ancestral
lineages for each trial was 500, which happened to occur just at generation 0
(i.e., at population initialization). For visualization purposes, only the range
[0, 150] is shown. Each density plot depicts 200 trials worth of data. Darker

80 GENETIC PROGRAMMING THEORY AND PRACTICE 11

E 140 {a) Fitness Proportionate,a =1, 5 140 i () Fitness Proportionate, o. = 1000.
o 120 & 120
£ 2
1 1
3 0o b 00
£ 80 i 80
5 e 5 e
g 40 g2 40
Z s
= Z
E 20 E 20
0L 0
0 50 100 150 200 0 50 100 150 200
Time (Generations) Time (Generations)
£ 140 (b) Tournament (m =7}, = 1. £ 140 (d} Tournament {m =7}, &0 = 1000.
$ 120 7% I 120
2 2 i
£ 100 || < 100 34%
[+] [=]
E 80 22 80 _F:
E 60} § 60l
= =z i
g2 40} 2 40 3
= = £
g 20} &= z 20 =
LR mm— o
L E— - 0
0 50 100 150 200 o 50 100 150 200
Time (Generations) Time (Generations)

Figure 5-6. Surviving Number of Ancestor Lineages by Problem Difficulty and Selection
Method. Each plot corresponds to a particular selection method and tuning parameter setting.
The thermometer graph in each plot indicates problem difficulty: the lower the percentage,
the harder it was for GP to solve.

tones in a plot correspond to more trials that have that number of lineages
remaining at a given generation. The “thermometers” that are embedded in
each plot correspond to the measured problem difficulty (i.e., a successful-
trials ratio, where a higher percentage corresponds to an “easier” problem).

For our tiered view to be useful, the Binomial-3 results should be
constrained by the Highlander results. The results shown in Figure 5-6 do
support the tiered view, since surviving lineages roughly correspond to the
amount of material that is used. For each configuration, at most 12% of
ancestral lineages remained intact through generation 200. The surprise in
our findings was that fewer lineages are roughly correlated with easier
problem solving. In other words, with less diversity, GP yielded a high
success rate.

5.2 Practical Implications of Content

Barry Schwartz wrote in his recent book, The Paradox of Choice: Why
More is Less, “...the fact that some choice is good doesn’t necessarily mean
that more choice is better.... there is a cost of having an overload of choice.”
(Schwartz, 2004), p. 3. Schwartz was talking about Americans, but he could
have just as easily been talking about GP.

Considering the Roles of Structure in Problem Solving by Computer 81

Having more choices from which to devise a solution would at first blush
seem a reasonable strategy, particularly concerning genetic and evolutionary
computation. Having more choices is like having more biological diversity.
Nature has so many variations on a theme of life that even now there is not a
complete species catalog (Wilson, 1992). If that wasn’t enough, there have
been compelling theoretical arguments for having diversity (e.g., Pincus,
1970;Galar, 1985).

Nonetheless, even in Nature, there are limits to diversity when one takes
into account analogs for lattice and network. For example, if lattice
corresponds to an island and network to that island’s ecosystem, there have
been seminal experimental and theoretical investigations (MacArthur and
Wilson, 1967) that have shown that there are limits to the number of species
that can coexist on that island. Although such works have been updated and
are now regarded as somewhat simple, the original notion remains that the
extent of a physical space is a constraining factor to the amount of biological
diversity that this space can support.

The allowable “space” in GP, as constrained by lattice and network, is
fairly small. For a set of commonly used conditions, the latfice constrains
GP to about 0.01% of the entire search space. Within what amounts to a
narrow strip of searchable space, something less than 20% of the material
given in an initial population can be reintegrated into a single solution.

What Figure 5-6 indicates is that it may be possible to overload GP’s
“space” with too many choices. Fitness-proportionate selection allows for a
significant fraction of what is theoretically allowable for recombination of
initial population material. In the Binomial-3, much of this allowable
material would be unique and in the form of ephemeral random constants.
The configuration (e = 1,000, fitness-proportionate selection) that retained
the highest number of ancestral lineages and consequently the most number
of unique nodes actually scored lowest in terms of GP’s ability to provide
correct solutions.

In GP, there is a basis for “hidden costs” for having too many choices.
For example, all nodes may be statistically permissible for their use in
assembling a solution, but not all nodes would be beneficial. The question
then becomes, what does GP do with the material that is not beneficial, even
detrimental, to problem solving? A number of different (emergent) methods
that GP could use have been described in (Daida, Bertram et al., 1999). One
could argue that each of these costs represents a penalty, since each
consumes computational resources.

So what does one do? The following is a list of our speculations that
could apply to real-world problem solving with GP:

82 GENETIC PROGRAMMING THEORY AND PRACTICE 11

* Use large populations. As Figure 5-6 indicates, GP recombines initial
population material that is distributed among a small number of
ancestors. Using large populations increases the probability of having
suitable material concentrated in a handful of individuals in the initial
population.

* Use tournament selection. For our work, we used a tournament selection
size of 7. Although fitness-proportionate selection is beneficial in
maintaining diversity, tournament selection removes ‘“choices” as a
natural consequence of the method. Fewer choices might result in fewer
costs of overloading GP’s “space.”

» Consider that having a large variety of different functions and terminals
within GP solutions may actually initiate “overloading.” If this is the
case, it could mean that the function or terminal set is too large and needs
to be pared down.

* Consider the use of structure-altering operations that delete material
from a population. Such structure-altering operations have been described
in (Koza, Bennett III et al., 1999; Koza, Keane et al., 2003). It may help
to mitigate against “overloading.”

* Ifa solution likely requires the use ofa large number ofdifferent kinds of
functions and terminals, consider the use of meta-programs. In other
words, GP wouldn’t directly derive a solution, but instead derives a
program that when executed, produces a solution. The meta-program
could then use a more limited function and terminal set than what is
required of a solution.

6. CONCLUSIONS

The roles of structure in problem solving by GP are multifaceted and
complex. This chapter has shown that it is possible for structure to be
simultaneously a cause and an effect, simultaneously a primary factor and a
secondary one. While these roles of structure may all be equally true, I shave
uggested that they are all not equally scaled.

The tiered view featured three levels: lattice, network, and content. Each
level corresponded to a particular structural scale. Lattice involved the
largest scales in which structure was a causal factor and a primary influence.
Network involved intermediate scales and allowed for emergent structures to
occur. Content involved the fine scales and considered the specifics of what
was in the network. It was at the level of content that structure was an effect
and a secondary factor.

Each level can be examined for a different set of system behaviors,
particularly with regards to how structure influences both problem solving

Considering the Roles of Structure in Problem Solving by Computer 83

and problem difficulty in GP. Although the theory is nascent, we have
devised a tunably difficult test problem for each level to probe for behaviors.
This chapter represents our first summary of how all three problems—Lid,
Highlander, and Binomial-3—serve as part of an integrated investigation
into the roles of structure in GP for problem solving.

The counterintuitive implication of our work was that because of
structure, it is possible to overload GP with too many choices and with too
much diversity implicit in those choices. The work indicated that there is a
“season” when diversity is best leveraged by the technology and that this
“season” occurs at population initialization (at least for standard GP). It is a
reason why large populations are argued for in difficult real-world problems,
rather than a strategy of maintaining diversity throughout the course of a run.

ACKNOWLEDGMENTS

Many colleagues and students were involved in the preparation of this work. I thank the
following UMACERS teams: Borges (D. Ward, A. Hilss, S. Long, M. Hodges, J. Kriesel) for
automated analysis tools and data mining support of the Binomial-3; Royal (H. Li, R. Tang)
for their work on Lid; Niihau (M. Samples, B. Hart, J. Halim, A. Kumar, M. Byom) for their
work on Highlander; Magic (M. Samples, P. Chuisano, R. O’Grady, C. Kurecka, M.
Pizzimenti, F. Tsa) for their development of GP grid computer protocols and support
infrastructure; Meta-Edge (R. Middleton, A. Mackenzie) for humanities research. Financial
support of some of the students was given and administered through S. Gregerman.
Supercomputer support was given and administered through both CAEN and the Center for
Scientific Computation. The CSCS / Santa Fe Institute Fall Workshops have played
significant roles in the formative development of the tiers. My interactions with J. Doyle, L.
Sander, and J. Padgett have been brief, but thought provoking. Gratitude is extended to the
workshop organizers T. Yu, U.-M. O’Reilly, R. Riolo, and W. Worzel, as well as to the
reviewers ofthis chapter (i.e., T. Soule, C. Ryan, D. Howard, and S. Moore). Finally as ever, I
extend my appreciation to S. Daida and I. Kristo.

REFERENCES

Angeline, P. (1994). Genetic Programming and Emergent Intelligence. In J. Kinnear, K.E.
(Ed.), Advances in Genetic Programming, 75-97. Cambridge: The MIT Press.

Angeline, P. J. (1997). Parse Trees. In T. Béck, D. B. Fogel and Z. Michalewicz (Eds.),
Handbook of Evolutionary Computation, C1.6:1-C1.6:3. Bristol: Institute of Physics
Publishing.

Banzhaf, W. and W. B. Langdon (2002). Some Considerations on the Reason for Bloat.
Genetic Programming and Evolvable Machines, 3(1), 81-91.

Banzhaf, W., P. Nordin, et al. (1998). Genetic Programming: An Introduction: On the
Automatic Evolution of Computer Programs and Its Applications. San Francisco: Morgan
Kaufmann Publishers.

84 GENETIC PROGRAMMING THEORY AND PRACTICE 11

Blickle, T. (1997). Tournament Selection. In T. Béck, D. B. Fogel and Z. Michalewicz (Eds.),
Handbook of Evolutionary Computation, C2.3:1-C2.3:4. Bristol: Institute of Physics
Publishing.

Blickle, T. and L. Thiele (1995). A Mathematical Analysis of Tournament Selection. In L. J.
Eshelman (Ed.), ICGA95: Proceedings of the Sixth International Conference on Genetic
Algorithms, 9-16. San Francisco: Morgan Kaufmann Publishers.

Burke, E., S. Gustafson, et al. (2002a). A Survey and Analysis of Diversity Measures in
Genetic Programming. In W. B. Langdon, E. Cantd-Paz, K. Mathias, et al. (Eds.),
GECCO-2002: Proceedings of the Genetic and Evolutionary Computation Conference,
716-723. San Francisco: Morgan Kaufmann Publishers.

Burke, E., S. Gustafson, et al. (2004). Diversity in Genetic Programming: An Analysis of
Measure and Correlation with Fitness. IEEE Transactions on Evolutionary Computation,
8(1), 47-62.

Burke, E., S. Gustafson, et al. (2002b). Advanced Population Diversity Measures in Genetic
Programming. In J. J. Merelo Guervés, P. Adamidis, H.-G. Beyer, J.-L. Femandez-
Villacafias and H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature—PPSN
VII: Proceedings, 341-350. Berlin: Springer-Verlag.

Clergue, M., P. Collard, et al. (2002). Fitness Distance Correlation and Problem Difficulty for
Genetic Programming. In W. B. Langdon, E. Canti-Paz, K. Mathias, et al. (Eds.),
GECCO-2002: Proceedings of the Genetic and Evolutionary Computation Conference,
724-732. San Francisco: Morgan Kaufmann Publishers.

Daida, J. M. (2002). Limits to Expression in Genetic Programming: Lattice-Aggregate
Modeling. The 2002 IEEE World Congress on Computational Intelligence: Proceedings
of the 2002 Congress on Evolutionary Computation, 273-278. Piscataway: IEEE.

Daida, J. M. (2003). What Makes a Problem GP-Hard? A Look at How Structure Affects
Content. In R. L. Riolo and W. Worzel (Eds.), Theory and Applications in Genetic
Programming, 99-118. Dordrecht: Kluwer Academic Publishers.

Daida, J. M., R. B. Bertram, et al. (1999). Analysis of Single-Node (Building) Blocks in
Genetic Programming. In L. Spector, W. B. Langdon, U.-M. O’Reilly and P. J. Angeline
(Eds.), Advances in Genetic Programming 3, 217-241. Cambridge: The MIT Press.

Daida, J. M. and A. M. Hilss (2003). Identifying Structural Mechanisms in Standard Genetic
Programming. In E. Cantd-Paz, J. A. Foster, K. Deb, et al. (Eds.), Genetic and
Evolutionary Computation—GECCO 2003, 1639-1651. Berlin: Springer-Verlag.

Daida, J. M., A. M. Hilss, et al. (2003). Visualizing Tree Structures in Genetic Programming.
In E. Canti-Paz, J. A. Foster, K. Deb, et al. (Eds.), Genetic and Evolutionary
Computation—GECCO 2003, 1652-1664. Berlin: Springer-Verlag.

Daida, J. M., H. Li, et al. (2003). What Makes a Problem GP-Hard? Validating a Hypothesis
of Structural Causes. In E. Cantd-Paz, J. A. Foster, K. Deb, et al. (Eds.), Genetic and
Evolutionary Computation—GECCO 2003, 1665-1677. Berlin: Springer-Verlag.

Daida, J. M., J. A. Polito 2, et al. (1999). What Makes a Problem GP-Hard? Analysis of a
Tunably Difficult Problem in Genetic Programming. In W. Banzhaf, J. M. Daida, A. E.
Eiben, et al. (Eds.), GECCO °99: Proceeding of the Genetic and Evolutionary
Computation Conference, 982 — 989. San Francisco: Morgan Kaufmann Publishers.

Daida, J. M., J. A. Polito 2, et al. (2001). What Makes a Problem GP-Hard? Analysis of a
Tunably Difficult Problem in Genetic Programming. Genetic Programming and
Evolvable Machines, 2(2), 165-191.

Considering the Roles of Structure in Problem Solving by Computer 85

Daida, J. M., M. E. Samples, et al. (2004). Demonstrating Constraints to Diversity with a
Tunably Difficult Problem for Genetic Programming. Proceedings of CEC 2004.
Piscataway: IEEE Press.

Daida, J. M., D. J. Ward, et al. (2004). Visualizing the Loss of Diversity in Genetic
Programming. Proceedings of CEC 2004. Piscataway: IEEE Press.

Galar, R. (1985). Handicapped Individua in Evolutionary Processes. Biological Cybernetics,
53,1-9.

Goldberg, D. E. and U.-M. O’Reilly (1998). Where Does the Good Stuff Go, and Why? In W.
Banzhaf, R. Poli, M. Schoenauer and T. C. Fogarty (Eds.), Proceedings of the First
European Conference on Genetic Programming, 16-36. Berlin: Springer-Verlag.

Hall, J. M. and T. Soule (2004). Does Genetic Programming Inherently Adopt Structured
Design Techniques? In U.-M. O’Reilly, T. Yu, R. L. Riolo and W. Worzel (Eds.),
Genetic Programming Theory and Practice II. Boston: Kluwer Academic Publishers.

Kaye, B. H. (1989). A Random Walk Through Fractal Dimensions. Weinheim: VCH
Verlagsgesellschaft.

Knuth, D. E. (1997). The Art of Computer Programming: Volume 1: Fundamental
Algorithms. Reading: Addison—Wesley.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge: The MIT Press.

Koza, J. R. (1995). Two Ways of Discovering the Size and Shape of a Computer Program to
Solve a Problem. In L. J. Eshelman (Ed.), ICGA95: Proceedings of the Sixth
International Conference on Genetic Algorithms, 287-294. San Francisco: Morgan
Kaufmann Publishers.

Koza, J. R., F. H. Bennett III, et al. (1999). Genetic Programming IIl: Darwinian Invention
and Problem Solving. San Francisco: Morgan Kaufmann Publishers.

Koza, J. R, M. A. Keane, et al. (2003). Genetic Programming IV: Routine Human-
Competitive Machine Intelligence. Norwell: Kluwer Academic Publishers.

Koza, J. R., M. A. Keane, et al. (2000). Automatic Creation of Human-Competitive Programs
and Controllers by Means of Genetic Programming. Genetic Programming and
Evolvable Machines, 1(1/2), 121-164.

Langdon, W. B. and R. Poli (1997). Fitness Causes Bloat. In P. K. Chawdhry, R. Roy and R.
K. Pant (Eds.), Soft Computing in Engineering Design and Manufacturing, 23-27.
London: Springer-Verlag.

Langdon, W. B. and R. Poli (2002). Foundations of Genetic Programming. Berlin: Springer-
Verlag.

Luke, S. (2003). Modification Point Depth and Genome Growth in Genetic Programming.
Evolutionary Computation, 11(1), 67-106.

MacArthur, R. H. and E. O. Wilson (1967). The Theory of Island Biogeography. Princeton:
Princeton University Press.

McPhee, N. F. and N. J. Hopper (1999). Analysis of Genetic Diversity through Population
History. In W. Banzhaf, J. M. Daida, A. E. Eiben, et al. (Eds.), GECCO ’99: Proceeding
of the Genetic and Evolutionary Computation Conference, 1112 — 1120. San Francisco:
Morgan Kaufmann Publishers.

Motoki, T. (2002). Calculating the Expected Loss of Diversity of Selection Schemes.
Evolutionary Computation, 10(4), 397-422.

86 GENETIC PROGRAMMING THEORY AND PRACTICE 11

O’Reilly, U-M. and D. E. Goldberg (1998). How Fitness Structure Affects Subsolution
Acquisition in Genetic Programming. In J. R. Koza, W. Banzhaf, K. Chellapilla, et al.
(Eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference, 269—
277. San Francisco: Morgan Kaufmann Publishers.

Pincus, M. (1970). An Evolutionary Strategy. Journal of Theoretical Biology, 28, 483-488.

Poli, R. (2000). Exact Schema Theorem and Effective Fitness for GP with One-Point
Crossover. In L. D. Whitley, D. E. Goldberg, E. Cantd-Paz, et al. (Eds.), GECCO 2000:
Proceedings of the Genetic and Evolutionary Computation Conference, 469—476. San
Francisco: Morgan Kaufmann Publishers.

Poli, R. (2001). Exact Schema Theory for Genetic Programming and Variable-Length Genetic
Algorithms with One-Point Crossover. Genetic Programming and Evolvable Machines,
2(2), 123-163.

Punch, W., D. Zongker, et al. (1996). The Royal Tree Problem, A Benchmark for Single and
Multiple Population Genetic Programming. In P. J. Angeline and J. K.E. Kinnear (Eds.),
Advances in Genetic Programming, 299-316. Cambridge: The MIT Press.

Rosca, J. P. (1995). Genetic Programming Exploratory Power and the Discovery of
Functions. In J. R. McDonnell, R. G. Reynolds and D. B. Fogel (Eds.), Evolutionary
Programming IV: Proceedings of the Fourth Annual Conference on Evolutionary
Programming, 719 — 736. Cambridge: The MIT Press.

Rosca, J. P. (1997). Analysis of Complexity Drift in Genetic Programming. In J. R. Koza, K.
Deb, M. Dorigo, et al. (Eds.), Genetic Programming 1997: Proceedings of the Second
Annual Conference, 286-94. San Francisco: Morgan Kaufmann Publishers.

Sakai, A. K., F. W. Allendorf, et al. (2001). The Population Biology of Invasive Species.
Annual Review of Ecology and Systematics, 32, 305-332.

Schwartz, B. (2004). The Paradox of Choice: Why More is Less. New York: HarperCollins
Publishers, Inc.

Soule, T., J. A. Foster, et al. (1996). Code Growth in Genetic Programming. In J. R. Koza, D.
E. Goldberg, D. B. Fogel and R. L. Riolo (Eds.), Genetic Programming 1996:
Proceedings of the First Annual Conference, 215 —223. Cambridge: The MIT Press.

Soule, T. and R. B. Heckendorn (2002). An Analysis of the Causes of Code Growth in
Genetic Programming. Genetic Programming and Evolvable Machines, 3(3), 283-3009.

Wilson, E. O. (1992). The Diversity of Life. Cambridge: The Belknap Press.

Witten, T. A. and L. M. Sander (1981). Diffusion-Limited Aggregation: A Kinetic Critical
Phenomenon. Physics Review Letters, 47, 1400 — 1403.

Witten, T. A. and L. M. Sander (1983). Diffusion-Limited Aggregation. Physics Review B,
27(9), 5686 — 5697.

Chapter 6

LESSONS LEARNED USING GENETIC
PROGRAMMING IN A STOCK PICKING
CONTEXT

A Story of Willful Optimism and Eventual Success

Michael Caplan' and Ying Becker’

IPrincipal, Head of Quantitative US Active Equity, State Street Global Advisors, One Lincoln
Place, Boston, MA 02111 ;2Principal, Advanced Research Center, State Street Global
Advisors, One Lincoln Place, Boston, MA 02111;

Abstract: This is a narrative describing the implementation of a genetic programming
technique for stock picking in a quantitatively driven, risk-controlled, US
equity portfolio. It describes, in general, the problems that the authors faced in
their portfolio context when using genetic programming techniques and in
gaining acceptance of the technique by a skeptical audience. We discuss in
some detail the construction of the fitness function, the genetic programming
system’s parameterization (including data selection and internal function
choice), and the interpretation and modification of the generated programs for
eventual implementation.

Key words: genetic programming, stock selection, data mining, fitness functions,
quantitative portfolio management.

1. INTRODUCTION

This is the story of how the US Quantitative Equity Area and the
Advanced Research Center of State Street Global Advisors (a unit of State
Street Corporation) began using genetic programming techniques to discover
new ways of stock investing in specific industries. The story begins with a
poorly understood data mining technique, a discussion of previously
developed underlying stock picking factors that we thought might make

88 GENETIC PROGRAMMING THEORY AND PRACTICE 11

sense, and a lot of disagreement on how to (if not whether to) implement a
final stock-picking model. ~We describe our tribulations, technical and
political, in defining the problem, codifying the solution, and finally
convincing someone to invest using this model. Importantly, we describe
how the genetic programming process improved our knowledge of how the
stock market worked in a small, but portfolio performance-significant,
industry.
This paper has the following broad sections:

e The stock picking problems we faced,

The financial elements that we had in place,

o Why a direct solution really wasn’t possible and how we needed to
construct (and adjust and adjust and adjust) our fitness function to proxy
portfolio performance,

How we avoided/sidestepped data mining/snooping concerns,
How we interpreted and modified our raw genetic programs, and
e The political battle to use the new model.

We promise that there are no special financial insights contained within
this paper and the details of the final model are absolutely proprietary and
are left purposefully vague but we think the story may be interesting to those
trying to find new applications for genetic programming techniques.

1.1 The Stock Picking Problems We Faced (a.k.a. Our
Growth Market Problem)

As quantitative portfolio managers at one of the largest institutional
money managers in the world, our task is to build risk-controlled, market-
beating stock portfolios using a composite model made of individual stock-
picking factors. These stock-picking factors fall into the following general
classes: valuation (price-based), market sentiment, and business quality.

An inherent part of our portfolio management task is to build portfolios
that work in a variety of market conditions and minimize the investors’ pain
in periods where our stock picking isn’t strong. To this end, we do quite a
bit of ex post analysis of our portfolio performance results and attempt to
decompose our returns into elements of market risk and residual stock-
picking performance as well as other more esoteric elements (volatility,
market cap size, labor intensity, etc.). The net result of this analysis is a
series of statistics that are suggestive of areas in which we do well and
poorly. Often these statistics are quite time-period specific and require

Genetic Programming in a Stock Picking Context 89

additional insight (or intuition) that is generally well beyond the degrees of
freedom permitted by the data.

One area that needed improvement was our performance in the high
technology manufacturing industry. We tend to have very good average
stock-picking performance in this industry over time but had dismal
performance in periods where the stock market was in a speculative growth
market mode. Given that the speculative growth markets had been of
relatively short duration during much of 1980s and early 1990s, our
composite model’s weakness in growth markets was masked by a
preponderance of value markets in the prior 20 years. With a newly
reinvigorated investor class gathering assets and market power (i.e., hedge
funds and ultra-short term day-traders) as well as shorter-term client
attitudes towards performance shortfalls, we needed to get our High Tech
Manufacturing model into shape for both growth and value markets. For a
relatively small industry of roughly 30 stocks and less than 4% of the market
indices we typically benchmark our portfolios against, the performance
impact of this industry (both positive and negative) was outsized and needed
to be fixed.

Our traditional approach to solving this problem would be to go out and
find a bunch of new (or old but unimplemented) factors that look like they
might work in this area. This had already been attempted a few times and
though we felt that we had sufficient elements to work with, we suspected
that we hadn’t combined them optimally. Given the number of possible
factors, the various degrees to which they are correlated, and the sheer
number of possible interactions that we would need to investigate, we turned
to the genetic programming technique that had been used to create fairly
straightforward portfolio trading rules in State Street Global Advisors’
Currency Department.

2. PROJECT DESCRIPTION OVERVIEW

The flowchart shown in Figure 6-1 describes the development process for
our project. Later sections of this paper describe in considerably more detail
some of the decisions and compromises made in this project. We start with
the upper left hand corner of the flowchart and begin with our set of
presumptively useful factors (properly transformed for the project, we call
these the alpha factors) pushed into the genetic programming system itself.
Using the output of the genetic programming system, we then translate the
models into mathematical formulae and calculate various translations to
decipher seemingly impenetrable equations. We then hit a decision node,

90 GENETIC PROGRAMMING THEORY AND PRACTICE 11

where we decide whether we have acceptable results for further testing or
whether we need to make adjustments to our genetic programming process,
in which case we loop again. Presuming we have acceptable equations to
test, we would then compare these equations against our current factor
combination.

Raw results of final 5 GP
Parameters

alpha factors }—h Models proposed based “ adjustment and set up

on Genetic
Programming method for runnlnsfl’ Process

! !

Current | Translate the models
Model into mathematical formulae

No

Acceptability

Compute the GP model
alpha time series

l

Evaluate GP alphas and current
alpha via “traditional” factor tests
{ICs and Spreads)

|

Portfolio simulation with
selected alphas

GP Model
Selected

Figure 6-1. Genetic Program Project Flowchart

2.1 Acceptability Criterion — Does the resulting model
agree with our intuition of how the markets work?
Does it improve our knowledge?

The acceptability decision node requires a bit more explanation, as this is
a central decision to the implementable goals of the project. As portfolio
managers and observers of markets, it is a central requirement that any
models used in our approach must be explainable and justified on economic
or behavioral theory. Hard-won experience shows that trading data can

Genetic Programming in a Stock Picking Context 91

mislead investors into drawing the wrong conclusions about history. Tying
empirical research back into current theory provides us with comfort that we
are at least looking at something potentially sustainable in the future.

One of the important questions that stirred this acceptability criterion was
this one: If the genetic programming system came back with the square root
of market capitalization, an equation that would have no theoretical basis,
would we use it? The answer had to be a resounding NO. The net result of
any implementable solution had to contain a link back into theoretical
justification of how stock markets work.

From a research standpoint, we were stymied by more traditional
approaches to the high technology manufacturing industry. By working
from a largely assumption-free stance, i.e., mining reasonable data, we felt
we would gain new intuition into how this challenging industry worked.

3. THE FINANCIAL ELEMENTS (THE DATA)

The data that we used in this project was initially drawn from a set of
more than 60 factors that were used in prior component weighting exercises.
These were financial factors of a variety of classes, such as technical models
(e.g., moving averages and oscillators), fundamental ratios built from
financial statements (such as a company’s balance sheets and income
statements), and a variety of other indicators from other data sources (such
as earnings estimate data). Also included were the component factors that
were already included in our existing composite model (also called Current
Alpha Model).

The data was cleaned and transformed in a variety of meaningful ways
(arctan, log, z-score, and percentiling transformations were used) to create
an even bigger dataset for entry to our genetic programming system. An
important side effect of this transformation work as well as the first genetic
program runs was the discovery of a variety of data errors. As we put more
pressure on our working dataset, we found a larger number of apparent
anomalies that needed adjustment — nothing like a data-mining tool for
discovering the errors in your data.

3.1 Factor Models Entering Problem

The final five alpha factors entering the last loop of our development
process were:

e EP: 12 month forward Earnings-per-Share valuation Score
e CF: Free Cash Flow valuation Score

92 GENETIC PROGRAMMING THEORY AND PRACTICE 11

ETD: Earnings Estimate Trend Score
NOA: Net Operating Assets — Financial Quality Score
WRSI: Price Trend Score

Monthly data were drawn from the time period: 1993-2003. Each of
these factors was cross-sectionally (within time periods) transformed. On
average, there were 30 stocks per month that entered our dataset. Earlier
data was unsuitable for use in the project as the number of stocks in the high
technology manufacturing industry quickly dropped below 15. 25 stocks per
month was considered to be a reasonable cutoff, fewer data points would be
too noisy, too sparse, and probably not representative of the future
performance and population of this group.

4. THE FITNESS FUNCTION

The fitness function, as we quickly found, was the linchpin to making the
genetic program produce progressively better results. Due to the nature of
the portfolio construction process, it is pretty hard to simulate the various
portfolio tradeoffs necessary to emulate the performance of a particular
model. In particular, there are a huge number of interactions of both risk and
return that can create massive combinatorial problems even with a small
number of candidate stocks.

As an illustration of this problem, imagine a portfolio holding exactly
one stock. From a risk standpoint, that one stock could represent overall
exposure to a variety of common market risks, such as volatility, industry
exposure, market size, and trading liquidity. By adding additional stocks to
the portfolio, covariance among stock returns has a non-linear impact on the
overall risk of the portfolio. Any individual position change may cause other
portfolio impacts seemingly unrelated to the choice of a particular stock.
The upshot is that we needed to find a proxy for the performance of the
tested model.

4.1 Fitness Elements as a Proxy for Portfolio
Performance

Over time, we’ve developed a variety of tests that proxies a factor’s (or
combination of factors’) performance within a portfolio context. These tests
include, among others, information coefficients (rank correlation of a priori
factor scores with ex post stock returns, also known as ICs) and top ranked

Genetic Programming in a Stock Picking Context 93

quantiles versus bottom-ranked quantiles (also known collectively as
spreads). Viewing spreads in relation to their temporal variance also
provides an important metric called an information ratio, a measure of
reward to risk. As both long-only (buy and sell stocks) and long-short
(buy/sell as well as short/cover stocks) investment managers, we need to
understand the whole distribution of returns.

In examining any factor, we look at a variety of these statistics and
receive a tableau of results — never have we seen a completely positive
report on any factor. There is always some tradeoff or compromise to be
made. For example, a factor may have great ranking ability (via the IC
statistics) but the overall spread may actually be very small or negative.
When reviewing this statistical “tableau,” experienced humans are quickly
able to distinguish between good and poor models, though we might argue
about finer gradations or a factor’s appropriateness for various applications.

For a proper fitness function to operate in an automated fashion, it needs
better specificity of what constitutes a good model and how various “warts”
should be penalized.

4.2 Fitness Function Specification

After much trial and error, we decided on a weighted sum of two
information ratios, penalized for non-monotonic results and program
complexity. The first information ratio is based on the return spread
between the highest ranked decile of stocks and the lowest ranked decile of
stocks (i.e., for a 30 stock universe per month, which was typical during this
period, a decile included 3 stocks). This provides a proxy into the returns
resulting from a long/short portfolio management strategy. The second
information ratio compared the top decile to the middle deciles, which
provides a proxy for long-only management. Penalties were assessed at
various weights for a lack of monotonic return spreads — high penalties if the
top was below the bottom and somewhat lower penalties were assessed if the
middle was out of order.

The genetic programming code that we used searched for the minimum
fitness from the most perfect score possible, i.e., a perfect foresight score.
This allowed for the possibility of a model of seemingly infinite ‘“badness”
without encountering numerical difficulties with scaling. You can well
imagine that we created such models during our search! As an aside, the
discussions that took place as we developed the fitness function were
illuminating and incorporated a lot of really good suggestions — we’ll see
additional benefits from these discussions in future factor model research.

94 GENETIC PROGRAMMING THEORY AND PRACTICE 11

Equation (6-1) describes our fitness function. Recall that the genetic
program was configured to minimize the fitness function value, i.e., the
closer we got to “perfect” the more “fit” the formula.

Fitness, = (TBperfect + TMpertect) - (TBy + TM, - Penalties,) (6-1)
where

Fitness, = the fitness score of formula y

TBoerteet, TBy = top to bottom deciles spread Information Ratios for

the perfect foresight and formula y cases
TMperteety TMy = top to middle deciles spread Information Ratios for
the perfect foresight and genetic program y cases
Penalties, = non-linear penalties for non-monotonic formula y as
well as a penalty on formula complexity based on the
size of the tree developed

S. GENETIC PROGRAMMING PARAMETERS

Next to the data and the fitness function definition, adjusting the genetic
program parameters and program representation provided a great deal of fun
in order to produce good results.

5.1 Program Representation

Our representation is a strongly typed (real numeric type) tree with at
most two child nodes per parent node. Internal nodes represent
mathematical or logical (converted to real) operations to be performed on its
child nodes. Keeping the tree strongly typed permitted a wide variety of
functions to be used without having to account for many incorrect function
operations. We found that keeping the crossover/mutation operations simple
was key to keeping the genetic program speedy.

Genetic Programming in a Stock Picking Context 95

Root Node

/

Function Node \

Leaf Nodes

Formula = (Sales_Price - CFO_Price) + ROE_1yFWD

Figure 6-2. Sample Program Representation

5.2 Time-Series Selection: Avoiding Data
Mining/Snooping Concerns

The data periods to be used were randomly selected upon program
initialization from our dataset, without replacement, to one of three sets:
Training, Selection, and Validation. The selection of dates was to be
balanced across years and market conditions, if a random selection
sufficiently violated our stratified sampling requirements, a new set of dates
were selected. This helped us to avoid time-period specific problems (over
fitting to a certain kind of market or calendar effect, for example). In
addition, we kept back a sample of data that were NEVER used in any
analysis until our final round of analysis was complete.

The training dataset, representing 50% of the in-sample data, was used to
form the raw formula. Winners with the dataset went on to the selection
dataset, a further 25% of the in-sample data. The winners from this round
were then tested, after termination of the genetic programming process
against our validation dataset, the last 25% of our in-sample data. By
creating successively higher hurdles for the genetic program’s formulae, we
balanced getting good results against over fitting the available data.

96 GENETIC PROGRAMMING THEORY AND PRACTICE II
53 Function Selection

A wide variety of binary and unary mathematical and logical functions
were used. We created methods to build trees using the following standard
mathematical operations:

Add, Multiply, Subtract, and Divide,

Log, Absolute Value, Unary Minus and Square-root,
Pass-through (or Null-unary function)

Basis Functions

The Log and Square-root functions required additional logic to protect
against negative numbers. Basis Functions provided a way for the genetic
program to “cut” a particular distribution at a certain point. Our hopes were
that these basis functions would find particular areas of interest, but rarely
were these functions adaptable and never made it into our final formulae.

We still wonder how we could have gotten more performance from these
functions.

For the most part, the simpler mathematical functions enjoyed the most
usage and were consistently used in the final acceptable formulae.

54 Other Genetic Program Parameters

We used many standard tree operators to grow, mutate, and express new
formulae from good fitness candidates. We experimented with a wide
variety of operators and found that the simplest crossover and mutation
operators provided very good results.

Where we found somewhat more interesting results than the literature
indicated was in the use of denies and limited migration.

5.4.1 Demes and Population Control

Given that we were using a SUN™ server with 16 CPUs, it made sense
to try to use all of the CPUs. One element that we found early on in our
research was that it was often quite possible for a single type of formula to
do well in early generations and then fail to improve because they are locked
into a local extrema. By using independent populations (loosely related to
genetic demes or islands) that were permitted to grow “better adaptations”
before subjecting them to greater competition (via migration to nearby
populations), we were able to obtain a more robust set of formulae that were

Genetic Programming in a Stock Picking Context 97

diverse enough to allow the formula to adapt beyond the sub-optimal models
produced by single populations.

54.2 Other Controls and Genetic Program Tuning

A variety of other controls were important in guiding our search for a
better genetic program, some with considerable effect, others with
(surprisingly) little effect:

e Number and Type of Mutations

Number and Type of Crossovers

Termination Conditions, including the Number of Generations, Fitness
Tolerance, and Fitness Invariance Over Time

Population Size

Number of Demes

Migration Wait

Depth of Allowable Tree

e O o o

The genetic programming results seemed fairly insensitive to the number
(probability) of mutations and crossovers, contrary to most literature that
we’ve read. We did find that there were some reasonable levels that allowed
convergence with fewer generations; it turns out they were awfully close to
the genetic program library defaults. The population sizes and number of
demes certainly had impact on the diversity of the initial formulae that were
built — generally the higher the better if you have time. Migration wait is
basically a parameter that controls how long the demes will act
independently of other demes before “local best” formulae migrate to nearby
populations. A moderate number (we used 100 generations) tended to work
best. Depth of allowable tree prevented very large trees from being built.
Note that this was also used as a penalty in our fitness function — less
complex formulae are preferred.

The Termination Conditions were interesting controls to experiment
with. We found that we got very good results under 500 generations, any
more than 500 generations were essentially a waste of time as the
complexity of the resulting genetic programs grew exponentially. We
experimented with generations as much as 50,000 with no useful
improvement in fitness. This “wait” for results also allowed us to
experiment with other functions related to best fitness and the current
number of generations. Knowing when to cut a run short seemed to be a
useful way to getting more knowledge out of our process.

98 GENETIC PROGRAMMING THEORY AND PRACTICE I

6. GENETIC PROGRAMMING RESULTS

6.1 Simplification and Interpretation of Formulae

The genetic programming procedure, in its final run, provided five
different formulae. Given the proprietary nature of these formulae, we are
not able to display them in this paper. Algebraic simplification and
interpretation of these formulae helped inform our changing intuition about
the high technology manufacturing industry and importantly, gain
acceptance for eventual implementation.

Viewing the partial derivatives of the formula and simplifications (both
numerical and analytical) of each formula provided additional insight into
market behavior. In a gratifying moment of this project, we were able to
provide significant improvement to our knowledge that was readily
verifiable through additional, directed, independent tests. = We also
performed various comparisons of the “new” genetic program formulae to
our current model formulation to provide a reasonable benchmark of
improvement.

Sample graphics of the partial programs in Figure 6-2 illustrate the
extent to which we attempted to make the genetic program formulae
accessible. Figure 6-3 illustrates how a particular formula was sensitive to a
particular factor. We strongly recommend the use of a symbolic algebra
program (such as MATHCAD™ to help with the analytical and numerical
simplification, differentiation, and factoring of the formulae. Using these
programs allowed non-mathematicians to readily grasp new insights by
simply rearranging and grouping terms of the formula.

Fortunately, we found considerable similarity among the formulae: the
same factors, at roughly equivalent ratios allowed us to consider them en
masse. We then picked the simplest one (which strangely also had the best
fitness function as well, himmm) using the time-honored Occam’s Razor.

Genetic Programming in a Stock Picking Context 99

-
o o

T

L L

8

. Model Candidate Score
& 8

—— Model Candidate 1
—— Model Candidate 2
—— Model Candidate 3

0 10 20 30 %PPCﬁ?}ankingo 70 80 90 100

Figure 6-3. Partial Derivative Analysis

7. POST GENETIC PROGRAMMING PORTFOLIO
SIMULATIONS

The penultimate step to final implementation of the new model was to
backtest (or simulate) the newly found model in a full portfolio construction
context. Recall that our genetic program’s fitness function was only a proxy
for this final, more involved step. Using our judgment, we produced results
that were somewhat out of sample (though not completely out of sample due
to data limitations). This process is similar to what we’d do in our more
traditional factor testing approach.

Figures 6-4 and 6-5 demonstrate the effectiveness of the new model
relative to our current model. Annual results, shown in Figure 6-4, as well
as market style results found in Figure 6-5, showed a significant
improvement over the current alpha model. The improvement of overall
return and the effectiveness of the new model in both growth and value
periods were noted as satisfying many of the investment goals for this
project.

100

GENETIC PROGRAMMING THEORY AND PRACTICE I

Average 1 Month and 3 Month Return Spreads
Universe: High Technology Cluster in Russell 1000
Period: January 1993 to December 2002

1 Month Return Spread 3 Month Return Spread
Current Alpha GP Alpha Current Alpha GP Alpha
Year Mean StdDev Mean StdDec Mean StdDev Mean StdDev
(%) [%] (%] %] (%] (%} %} %]
1993 2.86 8.21 1.93 7.10 951 1517 9.83 19.59
1994 1.48 4.69 -0.88 10.52 4.36 8.23 -1.74 14.88
1995 1.51 5.05 1.65 6.41 -298 1149 6.66 14.01
1996 -0.80 8.45 1.54 7.85 165 1452 10.54 20.35
1997 1.10 6.40 2.16 9.26 6.49 13.75 4.82 17.79
1998 232 1071 388 1245 -6.49 1878 746 1712
1999 -5.76 13.23 471 10.29 -9.85 17.62 16.36 14,48
2000 164 1591 7.5 10.18 931 2173 1291 6.28
2001 6.16 10.08 6.63 10.35 17.93 1275 14.03 19.35
2002 3.67 1291 0.26 11.49 6.23 18.28 0.67 10.77
Whole
Period 142 10.24 2.89 9.75 361 17.03 8.15 16.35

Figure 6-4. New Formula Performance Measures

Average 1 Month and 3 Month Return Spreads

Universe: High Technology Cluster in Russell 1000

Period: January 1893 to December 2002

1 Month Return Spread 3 Month Return Spread
Current Alpha GP Alpha Current Alpha GP Alpha
Market Regime Mean StdDev Mean StdDec Mean StdDev Mean StdDev
[%] %] %] [%] [%] [%] (%] %]
Growth Period (56 mo.) -2.00 10.22 155 11.14 -2.10 16.86 4.20 16.56
Value Period (64 (mo.) 4.41 9.34 4.06 8.26 862 1565 11.62 15.48
Overall Period (1/93 - 12/02) 142 1024 289 975 3.61 17.03 B.15 16.35

Market Regime Indicator

*Growth Period:

= Value Period:

R1K Growth - R1K Value > 0
R1K Growth - R1K Value <0

Figure 6-5. Growth and Value Market Measures

Genetic Programming in a Stock Picking Context 101

8. FINAL STEP TO IMPLEMENTATION

The final step to the project was demonstrating this new model and
investment capability to our Technical Committee (a sub-committee of our
Investment Committee) that has to approve all substantive model and
investment strategy changes. This is a bright and knowledgeable committee
of portfolio managers, (i.e., practitioners, not technical statisticians.)
Classical statistics (such as OLS regression) are well understood by this
group; other statistical techniques much less so. In hindsight, we should have
better prepared the committee members and given them more time to absorb
the content. Let’s just say our first presentation of this model to the
committee was uncomfortable for all.

First, the committee was for the most part, ill-prepared to discuss or
evaluate the genetic programming technique. We spent much of our time
describing the genetic programming technique rather than discussing the
results of the model. We highly recommend finding a really good metaphor
for the genetic programming technique and sticking to it! Also concentrate
on the results and touch on the technique only when necessary.

Second, there was just enough prior knowledge of the technique that
members of the committee were able to brand the technique, gasp, “a data
mining technique” — a highly pejorative label in our industry. By the time
we’d finished describing how we avoided data snooping, we had tired out
our audience.

Third, the new intuition developed from our process required bending the
committee members’ minds around the new concepts; concepts with which
the project team members were working with for months. This was too
much, too fast for the committee.

If we were to do this over again, we would have met with each
committee member individually and discussed the project and its results
prior to the acceptance meeting. This would have increased the time needed
to gain approval but would have also decreased the initial unease that this
project engendered in the committee.

9. SUMMARY

At the end of this project we have a newly implemented stock-picking
model (it is too early to tell how it is doing i