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Preface

The work described in this book was first presented at the Second Workshop
on Genetic Programming, Theory and Practice, organized by the Center for the
Study of Complex Systems at the University of Michigan, Ann Arbor, 13-15
May 2004. The goal of this workshop series is to promote the exchange of
research results and ideas between those who focus on Genetic Programming
(GP) theory and those who focus on the application of GP to various real-
world problems. In order to facilitate these interactions, the number of talks
and participants was small and the time for discussion was large. Further,
participants were asked to review each other’s chapters before the workshop.
Those reviewer comments, as well as discussion at the workshop, are reflected in
the chapters presented in this book. Additional information about the workshop,
addendums to chapters, and a site for continuing discussions by participants and
by others can be found at http://cscs.umich.edu:8000/GPTP-2004/.

We thank all the workshop participants for making the workshop an exciting
and productive three days. In particular we thank all the authors, without
whose hard work and creative talents, neither the workshop nor the book would
be possible. We also thank our keynote speakers Lawrence (“Dave”) Davis
of NuTech Solutions, Inc., Jordan Pollack of Brandeis University, and Richard
Lenski of Michigan State University, who delivered three thought-provoking
speeches that inspired a great deal of discussion among the participants.

The workshop received support from these sources:

The Center for the Study of Complex Systems (CSCS);

Third Millennium Venture Capital Limited;

State Street Global Advisors, Boston, MA;

Biocomputing and Developmental Systems Group, Computer Science
and Information Systems, University of Limerick;

Christopher T. May, RedQueen Capital Management; and

Dow Chemical, Core R&D/Physical Sciences.
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editorial efforts were invaluable from the initial plans for the book through its
final publication. Thanks also to Deborah Doherty of Kluwer for helping with
various technical publishing issues. Finally, we thank Carl Simon, Director of
CSCS, for his support for this endeavor from its very inception.

UNA-MAY O’REILLY, TINA YU, RICK RIOLO AND BILL WORZEL



Foreword

It was my good fortune to be invited to the 2004 Genetic Programming
Workshop on Theory and Practice, held in May in Ann Arbor, Michigan. The
goals of the workshop were unique, as was the blend of participants. To my
knowledge, this workshop is alone in focusing on and promoting the interaction
between theory and practice in the evolutionary computation world. There are
many workshops and conference tracks that are oriented toward one or the
other of these two, mostly disjoint, areas of evolutionary computation work.
To participate in a workshop promoting interactions between the two subfields
was a great joy.

The workshop organizers have summarized the various talks in the first chap-
ter of this volume, and the reader can get a feel there for the talk I gave on the
first day of the workshop. It is worth noting that a talk like mine – containing
actual slides from training sessions for industrial practitioners of evolutionary
computation, and containing a series of slides describing historically accurate
but prickly interchanges between practitioners and theoreticians over the last
twenty years – would most likely not have received a sympathetic hearing ten
or twenty years ago. The attendees of this workshop, practitioners and theo-
reticians in roughly equal numbers, were able to laugh at some points, consider
others, and during the course of the workshop, openly discuss issues related to
the integration of theoretical and practical work in evolutionary computation.
Our field is maturing in both areas, and so are our approaches to promoting
interactions between our field’s practical and theoretical subfields.

There is a good deal to be gained by all of this in these types of interactions,
and by the change in focus that they create. The papers in this year’s workshop
are very stimulating, and I look forward as well to reading next year’s workshop
volume, containing even more work lying on the frontiers between theory and
application of evolutionary computation.

Dr. Dave Davis, Vice President of Product Research
NuTech Solutions, Inc.,
Massachusetts, USA
June, 2004
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Chapter 1

GENETIC PROGRAMMING: THEORY AND PRACTICE

An Introduction to Volume II

Una-May O’Reilly1, Tina Yu2, Rick Riolo3 and Bill Worzel4

1CSAIL, Massachusetts Institute of  Technology; 2ChevronTexaco  Information Technology Com-

pany; 3Center for the Study of Complex Systems, University of Michigan; 4Genetics Squared

Keywords: genetic programming, coevolution, theoretical biology, real-world applications

1. Theory and Practice: Mind the Gap

Genetic programming (GP) is a rapidly maturing technology that is making
significant strides toward applications which demonstrate that it is a sustainable
science. In this year’s workshop, we are very pleased to receive more contribut-
ing papers describing the application of GP than last year. We therefore arranged
to have Dave Davis , Vice President of Product Research at NuTech Solutions,
Inc., kick off the workshop with a keynote entitled “Lessons Learned from
Real-World Evolutionary Computation (EC) Projects.”

Davis has over 15 years’ experience in deploying EC in industry. He talked
about EC project management by covering the project life cycle responsibilities
of sales, proposal preparation, contract fulfillment and sustaining the client rela-
tionship. A successful sales presentation, advised Davis, is one that addresses
the potential client’s business problems rather than the EC technology being
offered. When selling an EC solution, Davis warned, it is wrong to state the al-
gorithm “is random, and can be run as long as you want to get better solutions.”
Instead, explain that the algorithm “is creative and can be used to improve on
existing solutions.” This approach of communicating the advantages of GP
through the value of its solutions, rather than how it works, increases the like-
hood of EC being accepted by the clients. Both remarks resonated throughout
subsequent workshop conversations.
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In a provocative and admittedly somewhat exaggerated stance, Davis cited
personal interchanges in the context of Genetic Algorithm theory and practice
that might be interpreted as a warning call to the GP theory community and
advice vis-a-vis theory to its practitioners, Davis stated that “the jury is out
on the usefulness of theory to applications people.” He advised that theory
contributions should include their limitations. For example, it would be folly to
advocate any one operator (or representation) as the best over all others when
the operator has only been theoretically studied with simplifying assumptions or
within the context of infinite measure that does not reflect the bias of reality. He
felt that the knowledge of practitioners gained through experience, especially
their discoveries concerning what things work well in different cases should be
respected. Furthermore, he remonstrated that practitioners can not be expected
to wait to use a technique until its theoretical underpinnings are well understood.
Theoreticians should not hold experimenters back. As a constructive step, he
suggested that successful demonstrations by practitioners should be used by
theoreticians to choose what to examine and provide explanations for. He also
pointed out that currently much theory focuses solely on EC. In the “real” world
practitioners hybridize their EC with methods such as simulated annealing and
tabu search, a practice which challenges the pertinence of the theory.

2. The Accounts of Practitioners
Davis was followed by multiple contributions from application domains

which substantiated his claim that real world problems demand more than the
simplest form of GP that theory analyzes. In Chapter 2, Yu, Chen and Kuo
report on their use of GP with lambda abstraction to discover financial tech-
nical trading rules that use historical prices to forecast price movement and
recommend buy or sell actions. Lambda abstraction is a means of achieving
modularity in GP. In contrast to Automatically Defined Functions where the
position of a module in a program tree is determined by evolution, the position
of a lambda abstraction is predefined to sit under a function node. This al-
lows domain knowledge to be incorporated into design GP program structures.
When properly used, the lambda abstraction module mechanism will lead to
faster discovery of a solution. In this case study, the evolved GP trading rules
yielded strong evidence that there are patterns (modules) in the S&P 500 time
series. The authors made efforts to select data containing diverse financial mar-
ket trends to prepare the training, validation and testing sets. They examined the
evolved lambda abstraction GP rules, after simplification, and found there was
discernible differentiation of technical indicators with appropriate buy or sell
decisions for different factors in the data. This implies that a rule, regardless of
market climate, is able to identify opportunities to make profitable trades and
outperform a simple benchmark buy-and-hold strategy.
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Researchers from the Dow Chemical Corporation have two contributions in
the volume. In Chapter 3, Castillo, Kordon, Sweeney and Zirk outline how
industrial statistical model building can be improved through hybridization
with GP. When statistical analysis indicates that statistically derived models
have inadequate fit, transformations of the input variables are the practical way
to reduce the lack of fit . In this situation, the authors used GP symbolic
regression models to suggest (a) non-linear input transformations that would
reduce the lack of fit in designed data, and (b) linear input transformations
that reduce input multicollinearity in undesigned data. The newly inferred
statistical models demonstrated better fit and with better model structure than
models derived by genetic programming alone.

In the undesigned data example of Chapter 3, the evolved solution that bal-
anced accuracy with parsimony was derived using the Pareto front GP system
of Smits and Kotanchek that is described in Chapter 17. This multi-objective
approach to solving real-world symbolic regression problems allows one to
select easily among multiple Pareto optimal solutions, trading between the per-
formance and the complexity of the corresponding expression solution. Since
an expression with the lowest residual error yet high complexity is likely to
overfit the data, this argues for maintaining multiple solutions, and even com-
ponents (subtrees) of those solutions. Without requiring additional preserving
cost, these solutions are able to facilitate intelligent decision making. They may
also suggest additional runs to be made with derived function sets.

On the first day, the audience heard a very experiential account of putting
a GP-derived solution to the ultimate test. In Chapter 6 Caplan and Becker
of State Street Global Advisors recount the journey that eventually led to the
deployment of an evolved stock picking strategy in a quantitatively driven,
risk-controlled, US equity portfolio. Rather than focus on the details of the
specific market context, this story stressed how “success” depended not just on
technical performance (that involved much adjustment and refinement of data
for training and the fitness criteria) but also on winning the support of skeptical
decision makers who were not entirely knowledgeable of the technology, but
justifiably had to weigh the risk and uncertainty of the new approach. The sharp
risk of the final step of using the result to automatically pick stocks was keenly
conveyed, and made one deeply appreciative of the large amount of effort that
must be expended to support the use of what seems to be a technically simple
GP solution. This contribution is a perfect example of Dave Davis’ earlier
message: the non-technical aspects of GP must be considered in order to bring
it to successful fruition in business.

Similar to the Caplan and Becker account, two stories of working with GP
on problems that are not always well-behaved were presented on the final day
of the workshop. In Chapter 16, Howard and Roberts of QinetiQ, Inc. have
used GP for classification. Reminiscent of Yu, Chen and Kuo in Chapter 2,
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they communicate the large effort required to prepare the extensive data used
in training, validation and testing to evolve detectors that classify alerts for
night-time traffic incidents on the U.K. freeways. To cope with the many
challenging aspects of the traffic data (e.g., missing, noisy), they used a two
stage classification process. In stage one, high sensitivity was preferred over
high specificity so there were a high number of false positive alerts. In stage
two training was aimed to reduce false alarms while retaining at least a single
alert per incident. Obvious in the account, and similar to Caplan and Becker,
is how the problem-solving difficulty lay not in the GP technique itself, but in
how much time and effort it took to prepare the data and to partition them so
that a fairly straight-forward GP system could solve the problem. In both cases,
their efforts have put GP solutions on the front line of real world usage.

MacLean, Wolleson and Worzel of Genetics Squared, Inc., like Howard and
Roberts, have used GP for classification , though they work in the realm of
biological and pharmaceutical data. In Chapter 15, they shared their experi-
ences with a problem that exhibits good behavior and two problems that exhibit
bad behavior when solved using GP. Their practical advice on both cases can
be applied to problem domains where the number of explanatory (i.e., input)
variables is large (e.g., thousands) and only relatively few examples are avail-
able, hence overfitting is highly likely to occur. They normally run GP multiple
times and only consider a result reliable and the problem well behaved if the
results show (a) good training-test set correspondence, (b) a distinct selection of
variables unique to each class, (c) the same small number of features in classi-
fiers from different runs and (d) no pattern to the samples that are misclassified
across the different runs. In the instances of badly behaved problems, they
counsel that GP should not be used “dogmatically” in the sense that when it
does not work, the time spent understanding what GP may be revealing about
the problem is as worthwhile as (or better than) simply trying to make a change
to solve the problem. They demonstrated such practice by giving an example
of how the difficulty in creating successful classifiers for one type of tumors
led them to revisit the correspondence between molecular and physical level
data. Analyzing this information suggested revising how the samples should
be classified, and the new classifications led to more rational results.

3. GP Theory and Analysis
As GP systems in applications become more complex, the need for system-

aticity in the comprehension of their elements and behavior becomes more rel-
evant. Last year, Sastry, O’Reilly and Goldberg insisted that ensuring adequate
population size is crucial to systematic competent GP algorithm design. Now,
in Chapter 4, they have taken a logical step forward from their population sizing
model of a year ago. Whereas previously they considered sizing the population
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to ensure an adequate supply of raw building blocks in the initial population,
now they derive a decision making model that determines population size based
on ensuring a quantity sufficient to ensure, with some specifiable certainty, that
the best building block is favored over its second best competitor. Such models
do not directly transfer to practice because many of their factors are not mea-
surable for a real GP problem. However, they provided insight by identifying
critical factors that figure in population sizing, particularly ones unique to GP
such as bloat and program size, and illuminating their relationships.

In Chapter 10, Hall and Soule showed experiments that examine whether GP
uses a top-down design decomposition approach or not. Clearly, the tree repre-
sentation of traditional GP can implicitly map top down design since a complete
tree represents a solution to a full problem and solutions to subproblems exist
at tree levels. However, the tree structure does not guarantee that the broader,
more significant problem is decomposed first (at the root) and the successive
subproblems are then either decomposed or solved. It appears that, while GP
discovers a program from the root down, what is fixed at the root node does not
reflect design decomposition but depends instead upon selection bias. When
this selection bias leads to premature convergence, substantially increasing the
population size might help because it will improve GP’s sampling of root node
choices. This heuristic concurs with the concept of sizing a GP population to
ensure adequate optimal building block decision making as the contribution
by Sastry, O’Reilly and Goldberg suggested but only to the extent that it en-
sures that the correct decision will be made among competing building blocks.
Adequate population sizing will not enforce top-down design because in GP
problems there is no structure dictating that the most salient building block is
the first top-down design decision.

Chapter 5’s contribution by Jason Daida is also systematic in its rigorous use
of vast quantities of experimental data and its careful consideration of the role
of structure in GP’s ability to problem solve. Daida presented a tiered view
of the roles of structure in GP: lattice, network and content. This view can
be used to frame theory on how some problems are more difficult than others
for GP to solve. Lattice, the lowest level, presumes structure independent of
content and subsequent levels; network and context presume decreasing levels
of content abstraction. Daida and his group have devised a tunably difficult
test program to probe the behavior at each level. Their results indicate that GP
may be hampered if overloaded with choice. Based on his systematic analysis,
Daida offers speculative advice on using GP in real world problem solving: use
large populations, use tournament selection, do not use an excessive primitive
set, use structure-altering operations (e.g., automatically defined functions) to
mitigate overloading and consider using meta-programs to pare down the size
of primitive sets.
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Last year, much discussion took place around a problematic issue with evolv-
ing modularity in GP: whenever both modules and the main solution must be
evolved simultaneously, the latter frequently override the former due to the
fitness criteria focusing on the performance of main solution. Consequently,
evolutionary module identification and reuse occur on a slower timescale than
the evolution of the main solution. The concept of Run Transferable Libraries
(RTL) by Ryan, Keijzer and Cattolico in Chapter 7 seeks to address this issue.
They show how libraries of functions can be evolved from one run and then be
reused in a later run. In this way, the time gap between the evolution of main
solution and its useful modules (library functions) may be reduced. The fitness
of a library function is determined after each generation within a run, according
to how much it is used in the population rather than the performance of the
solutions that use it. In common with the standard programming libraries, the
intent of RTL is to evolve general purpose sets of functions that can be used on
different instances of a similar problem, hence enhance GP scalability to more
difficult problems. Their simple initial results are encouraging and indicate that
many of the choices opened up by this approach deserve further investigation.

Interestingly, the issues surrounding evolving modularity also present them-
selves in the problem of a GP system that learns its own rules of constraint and
heuristically advantageous primitive combination. When should such heuris-
tics and constraints be updated and how can they be learned when the system
is focused on solving its problem?
inxACGP In Chapter 12, Janikow offers two means of doing this. First, weights
assigned to existing heuristics can be strengthened when they produce an off-
spring fitter than its parents. Second, the distribution statistics of a pool of the
best solutions in terms of fitness and secondarily size can be extracted and used
to update the probabilities. This technique assumes that capturing distributional
information in partial solutions will lead to better solutions and that first order
statistics express essential structure of the genome. Janikow’s method, like that
of Ryan, Keizer and Cattolico, can be used within a run or for successive runs.

4. Achieving Better GP Performance
The second day started with an invited talk entitled “Recent Results in Co-

evolution” by Jordan Pollack. Pollack defines coevolution broadly: a coevolu-
tionary algorithm differs from an evolutionary algorithm in that individuals are
judged by relative fitness rather than absolute fitness. Not all coevolutionary
dynamics facilitate the progress of a system and the evolution of complexity.
Instead, some dynamics cause a system to stagnate. Pollack demonstrated such
a coevolution model using a “Teacher’s Dilemma” game in which the teacher
chooses a problem, from easy to hard, and the student tries to solve it.
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In this game, both student and teacher receive a “payoff” in terms of the utility
(satisfaction and correctness) of the outcome from their perspective. Unfortu-
nately, the strategy that dominates this game is one in which the teacher and
student “secretly share” joint utility and collude in mediocrity. Besides col-
lusive mediocrity, other non-progressive coevolutionary dynamics are “boom
and bust”, “winners take all”, “disengagement” and “death spirals” . By pre-
senting additional simple, formal models of coevolutionary dynamics, Pollack
showed that competition alone does not drive progress. A system needs both
competitiveness: fitness which is based on performance and informativeness:
fitness which is based on the information that an individual provides to oth-
ers. With this proper motivational structure, distributed self-interested adaptive
agents can continuously create their own gradient for open-ended progress.

Pollack’s talk encourages experimentation with coevolution because poten-
tially informativeness will complement competition and prevent evolution from
stymieing progress. Hu and Goodman in Chapter 9 note something similar in
that GP is often in need of an explicit fair competition mechanism to sustain
productive evolution. Last year, in this workshop they reported that too much
competition in a GP system can prevent sufficient alternatives from being ex-
plored. They presented a sustainable evolutionary computation model called
Hierarchical Fair Competition (HFC-GP). HFC-GP ensures that a sufficient
variety of new candidates is continually introduced to the top level of the pop-
ulation. This year they examine robustness in the context of dynamic systems
. Despite robustness being a key facet of dynamic systems, conventional dy-
namic system design decouples the functional or structural steps of designing
a solution from the determination of robust operating procedures. They show
how topologically open ended synthesis by GP offers an excellent alternative
which allows robustness to be considered from the beginning of the solution
design process. Their system exploits the representational advantages of bond
graphs for both representing a dynamic system and for evolutionary search. To
achieve their results they rely on a strongly typed GP tool enhanced with an
improved version of HFC-GP.

In Chapter 13 Moore and DeMaagd report their progress on using GP to
search for supply chain reordering policies. The system assigns fitness to agents
that participate in a supply chain “game” based on how well the chain performs
as a whole. This invites the question of how a coevolutionary view of the
system might contribute to improving the dynamics as related to Pollack’s def-
inition of coevolutionary systems and his conclusions regarding competition
and informativeness. Based on Pollack’s model, a setup where the evolving
agents need to cooperate with each other explicitly and to share information
with each other may yield progressively better policies. In the investigation
conducted, rather than evaluate GP’s ability to find optimal restocking policies,
the authors’ primary goal was to understand how changes in a set of ten GP



8 GENETIC PROGRAMMING THEORY AND PRACTICE II

parameters (each with three settings) correlated with its ability to progressively
and efficiently improve its policies for a given demand distribution and supply
chain setup. They employed design of experiments to narrow the number of
experiments down to 243 and evaluated five hypotheses concerning a param-
eter’s influence ranging from the rate of improvement of the best solution to
what generation gives the final best policy. Overall they have learned, under
narrow conditions, a set of expectations for their system’s behavior under the
given parameter choices. This will prove useful as they use GP to search in the
solution landscape.

In Chapter 14 Garmendia-Doval, Miller and Morley present a comprehensive
contribution that deals with a real-world problem employing Cartesian GP, and
analyze their system’s performance with respect to bloat and neutral drift. The
problem at hand is automating the removal of false positives from an initial stage
classifier that estimates binding modes for input ligands. Using Cartesian GP,
the evolved filter generalized well over the data by filtering out consistently bad
compounds while retaining interesting hits. Cartesian GP encodes a graph as a
string of integers that represents the functions and connections between graph
nodes, and program inputs and outputs. The representation is very general
for computational structures because it can encode a non-connected graph and
supports a many-to-one genotype phenotype mapping. Additionally, despite
having a fixed size, it can encode a variable-size graph. The evolutionary
process effectively capitalized on neutral drift and experienced no program
bloat, which seem to be inherent features of Cartesian GP’s encoding.

Koza, Jones, Keane, Streeter and Al-Sakran combine a variety of means to
upgrade previous approaches toward automated design of analog circuits with
GP and present their results in Chapter 8. Whereas their previous goal was to
show how GP can be used as an automated invention machine to synthesize
designs for complex structures with a uniform set of techniques, now attention
is turned to making the method “ industrial-strength,” to focus on analog circuit
synthesis problems of challenging character. Making the technique industrial-
strength involves using elementary general domain knowledge of analog circuits
and exploiting problem specific knowledge about the required circuit. It also
includes using automatically defined functions, faster simulators and an im-
proved primitive set. The challenging factors are dealing with multi-objective
fitness criteria and assessing circuits’ performance at the corners of various per-
formance envelope conditions. Using an ongoing project for illustration and
assessment, the authors describe their improvements in detail.

In contrast to the amount of effort that has to be exerted to bring GP up to snuff
for analog circuit synthesis, in Chapter 18, Lohn, Hornby and Linden present
one of the most compelling examples of GP being used entirely in a standard
manner to evolve something valuable: the design of an X-band antenna that may
actually fly on a NASA spacecraft. The antenna design was greatly facilitated by
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a high fidelity simulator. Despite flight worthiness, remarkably a very simple GP
primitive set that basically allowed branching and some standard construction
primitives is sufficient for the task. The evolved antenna is compliant with
its performance requirements and sports an unusual organic looking structure
which seems unlikely to have been designed by hand. If successful at space
qualification testing, it will become the first evolved hardware in space.

5. How Biology and Computation Can Inform Each Other

Richard Lenski describes himself as a biologist who studies evolution empir-
ically. One theme of his address was the study of contingency: the evolutionary
pathway passes through thousands of improbable stages. The pathway contains
events, that despite their apparent unimportance, if altered even so slightly, cause
evolution to cascade into a radically different channel.

Lenski reported on his investigations with the bacterium, E. coli, and related
how, in just one population, the ability to metabolize citrate (a carbon source)
evolved. The experimental task of isolating the mutational changes upon which
this adaptation is contingent will be arduous. Fortunately Avida, a fast and
tractable artificial life system, is providing Lenski with additional insights into
contingency. Lenski has established that only when he rewards simpler logic
functions does the complex logic function EQU evolve in Avida. Relevant to GP
(and all of evolutionary computation) he has shown that providing the rewards
for building blocks is necessary for complex adaptation. He has observed
considerable non-monotonicity in the mutational dynamics of populations that
evolve EQU. Neutral and deleterious mutations occur. Sometimes a trade-off
occurs – the final mutation leading to EQU will result in a simpler function
being eliminated. Each population that evolved EQU did so by a different path
and arrived at a different solution. In a case study of the lines of descent from
one run where EQU evolved, at least one deleterious mutation was necessary
for EQU because it interacted with the subsequent mutation to produce EQU.

Lenski’s analysis produced much nodding of heads and emphatic acknowl-
edgments from the audience. It indicates that we should not expect our evolu-
tionary populations to monotonically improve. It confirmed intuition that we
should choose representations and fitness functions to encourage and tolerate
deleterious mutations on the adaptive trajectory. It resonates with experience
using GP where GP runs for solving the same problem usually produce unique
solutions evolved from contingent paths.

While Lenski has used computation to investigate biology, Banzhaf and
Lasarczyk in Chapter 11 produced arguably the most provocative and spec-
ulative paper of the meeting by reversing this perspective and asking, instead,
how biology might inform a new model of computation. The observation that
concentration matters most in chemistry (e.g., consider the functioning of liv-
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ing cells) is mapped to programming terms by dissolving the sequential order
associated with an algorithm’s instructions. A program becomes an assemblage
of a fixed quantity of instructions that are chosen randomly and executed in an
arbitrary order. With that, what matters is the concentration of instructions and
the concentration of multiple outcomes, rather than their order. This is admit-
tedly inefficient on a small scale but if parallel and distributed computing were
freed from the need to synchronize and to maintain order, and when thousands
or millions of processors can be employed cheaply, the potential pay-off of this
computational model is immense. The authors term this type of system an “al-
gorithmic chemistry.” The authors’ perspective stimulates us to novelly regard
GP as a program-based computation at the cellular chemical level not just the
information processing level when this new notion of a program is considered.

6. Wrap up: Narrowing the Gap
Few would deny that the simplest and most standard GP system is com-

plex. The algorithmic definition of a population based search which uses an
executable representation that can vary in structure and size, and which uses
selection, recombination and perhaps mutation constitutes a rich, powerful com-
plex system. Although such richness and power have made GP an attractive
tool for solving real-world problems, they also make the establishment of GP’s
theoretical foundations very difficult. On top of that, many applied GP systems
are coupled with extension or hybridization in order’ to provide solutions of a
quality useful in the real world. Thus, it would seem that there is a widening
gap between GP practitioners and theoreticians. However, the close encounters
of the second time indicated otherwise. We heard laughter from theoreticians
during Davis’ provocative talk. We listened to practitioners defending theo-
retical work because they have benefited from their insights. At the end of
the workshop, many participants expressed enthusiasm to continue this kind of
close encounters to bridge GP theory and practice. Such open-minded attitudes
make us believe that despite the current state of theory is imperfect to precisely
describe the dynamics of GP and to strictly guide the use of GP (i.e., parame-
ter and representation choices), there will always be links between theory and
practice. Mapping the GP community to the coevolution model described by
Pollack, we hope this workshop series will continue fostering healthy coevolu-
tionary dynamics that allow each distributed self-interested adaptive researcher
to create his/her own gradient for the GP open-ended progress.
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Abstract We applied genetic programming with a lambda abstraction module mechanism
to learn technical trading rules based on S&P 500 index from 1982 to 2002. The
results show strong evidence of excess returns over buy-and-hold after transaction
cost. The discovered trading rules can be interpreted easily; each rule uses a
combination of one to four widely used technical indicators to make trading
decisions. The consensus among these trading rules is high. For the majority of
the testing period, 80% of the trading rules give the same decision. These rules
also give high transaction frequency. Regardless of the stock market climate,
they are able to identify opportunities to make profitable trades and out-perform
buy-and-hold.

Keywords: modular genetic programming, lambda abstraction modules, higher-order func-
tions, financial trading rules, buy-and-hold, S&P 500 index, automatically defined
functions, PolyGP system, stock market, technical analysis, constrained syntac-
tic structure, strongly typed genetic programming, financial time series, lambda
abstraction GP.

1. Introduction
In this chapter genetic programming (GP) (Koza, 1992) combined with a

lambda abstraction module mechanism is used to find profitable trading rules
in the stock market. Finding profitable trading rules is not equivalent to the
problem of forecasting stock prices, although the two are clearly linked. A
profitable trading rule may forecast rather poorly most of the time, but perform
well overall because it is able to position the trader on the right side of the
market during large price changes. One empirical approach to predict the price
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change is technical analysis. This approach uses historical stock prices and
volume data to identify the price trend in the market. Originated from the work
of Charles Dow in the late 1800s, technical analysis is now widely used by
investment professionals to make trading decisions (Pring, 1991).

Various trading indicators have been developed based on technical analysis.
Examples are moving average, filter and trading-range break. For the moving
average class of indicators, the trading signals are decided by comparing a
short-run with a long-run moving average in the same time series, producing
a “buy” signal when the short-run moving average is greater than the long-run
moving average. This indicator can be implemented in many different ways
by specifying different short and long periods. For example, on the left side
of Figure 2-1 is a moving average with a short of 10 days and a long of 50
days. For the filter indicators, the trading signals are decided by comparing
the current price with its local low or with its local high over a past period of
time. Similar to the moving average, it can be implemented with different time
length. When multiple filter indicators are combined together similar to the one
on the right side of Figure 2-1, it is called a trading-range break indicator.

Figure 2-1. A moving average (10,50) and a trading-range break indicator.

Previously, (Brock et al, 1992) reported that moving average and trading-
range break give significant positive returns on Dow Jones index from 1897
to 1986. Similarly, (Cooper, 1999) showed that filter strategy can out-perform
buy-and-hold under relatively low transaction cost on NYSE and AMEX stocks
for the 1962-1993 period. These studies are encouraging evidence indicating
that it is possible to devise profitable trading rules for stock markets.

However, one concern regarding these studies is that the investigated trading
indicators are decided ex post. It is possible that the selected indicator is favored
by the tested time period. If the investor had to make a choice about what
indicator or combination of indicators to use at the beginning of the sample
period, the reported returns may have not occurred. In order to obtain true
out-of-sample performance, GP has been used to devise the trading rules for
analysis. For the two attempts made, both of them reported that GP can not find
trading rules that out-perform buy-and-hold on S&P 500 index (see Section
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2 for details). One possible reason for this outcome is that the GP systems
used are not adequate for this task. The work described in this chapter extends
GP with a abstraction module mechanism and investigates its ability to find
profitable technical trading rules based on S&P 500 index from 1982 to 2002.

This chapter is organized as follows. Section 2 reviews related work. Section
3 presents the abstraction module mechanism. In Section 4, the PolyGP
system is described. In section 5, S&P 500 time series data are given. Section
6 explains the experimental setup while Section 7 presents the experimental
results. We analyze the GP trading rules in Section 8 and 9. Finally, concluding
remarks are given in Section 10.

2. Related Work

Targeted toward different financial markets, different researchers have ap-
plied GP to generate trading rules and analyzed their profitability. For example,
(Allen and Karjalainen, 1999) studied S&P 500 index from 1928 to 1995. They
reported that the evolved GP trading rules did not earn consistent excess returns
over after transaction costs. In contrast, (Neely et al., 1997) reported that their
GP trading rules for foreign exchange markets were able to gain excess returns
for six exchange rates over the period 1981-1995. (Wang, 2000) suggested that
this conflicting result might be due to the fact that foreign exchange markets
have a lower transaction cost than the stock markets have. Another reason
Wang suggested is that (Neely et al., 1997) did not use the rolling forward
method (explained in Section 5) to test their results for different time periods
while (Allen and Karjalainen, 1999) did. Finally, Wang pointed out that these
two works used different benchmarks to assess their GP trading rules: (Allen
and Karjalainen, 1999) used the return from buy-and-hold while (Neely et al.,
1997) used zero return , because there is no well-defined buy-and-hold strategy
in the foreign exchange markets.

Using a similar GP setup as that of (Allen and Karjalainen, 1999), Wang also
investigated GP rules to trade in S&P 500 futures markets alone and to trade in
both S&P 500 spot and futures markets simultaneously. He reported that GP
trading rules were not able to beat buy-and-hold in both cases. Additionally,
he also incorporated Automatically Defined Functions (ADFs) (Koza, 1994)
in his GP experiments. He reported that ADFs made the representation of the
trading rules simpler by avoiding duplication of the same branches. However,
no comparison was made between the returns from GP rules and the returns
from ADF-GP rules.

Another approach using GP to generate trading rules is by combining pre-
defined trading indicators (Bhattacharyya et al., 2002, O’Neill et al., 2002). In
these works, instead of providing functions such as average for GP to construct
a moving average indicator and minimum to construct filter indicators, some
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of the trading indicators are selected and calculated. These indicators are then
used to construct the leaves of GP trees. Since there are a wide range of trading
indicators, this approach has an inevitable bias; only selected indicators can be
used to construct trading rules. Modular GP relieves such bias by allowing any
forms of indicators to be generated as modules, which are then combined to
make trading decisions.

Our first attempt using modular GP to evolve financial trading rules was
based on ADF-GP (Yu et al., 2004). There, the evolved rules trade in both
stock markets and foreign exchange markets simultaneously. However, our
study results showed that most ADF modules were evaluated into constant value
of True or False. In other words, ADFs did not fulfill the role of identifying
modules in the trading rules. Consequently, ADF-GP trading rules gave similar
returns to those from vanilla GP trading rules; both of them were not as good
as the returns from buy-and-hold. This suggests either that there is no pattern
in financial market trading rules, or ADF is not able to find them. We find
this outcome counter-intuitive, since it is not uncommon for traders to combine
different technical indicators to make trading decisions. We therefore decide
to investigate a different modular approach abstraction) to better understand
GP’s ability in finding profitable trading rules.

3. Modular GP through Lambda Abstraction

Lambda abstractions are expressions defined in calculus (Church, 1941)
that represent function definition (see Section 4 for the syntax). Similar to a
function definition in other programming languages such as C, a abstraction
can take inputs and produce outputs. In a GP program tree, each abstraction
is treated as an independent module, with a unique identity and purpose. It is
protected as one unit throughout the program evolution process.

One way to incorporate abstraction modules in GP is using higher-order
functions, i.e., functions which take other functions as inputs or return functions
as outputs. When a higher-order function is used to construct GP program trees,
its function arguments are created as abstractions modules. These modules
evolve in ways that are similar to the rest of the GP trees. However, they can
only interact with their own kind to preserve module identities.

For example, Figure 2-2 gives two program trees. Each contains two different
kinds of abstraction modules: one is represented as a triangle and the other
as a cycle. Cross-over operations are only permitted between modules of the
same kind.

We use type information to distinguish different kind of abstraction mod-
ules. Two abstractions are of the same kind if they have the same number of
inputs and outputs, with the same input and output types. For example, in this
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Figure 2-2. Cross-over between   abstraction modules in two GP trees.

work we define a abstraction with type information Time Boolean: it
takes one input with type Time and returns a Boolean output.

Unlike an ADF, whose position in a program tree is determined by evolution,
a abstraction module is hard-wired to sit underneath a specified function node.
Therefore, this module mechanism can be use to incorporate domain knowledge
to design GP tree structure. In this work, we want GP to combine multiple
technical indicators. To achieve that, we first add Boolean function combinators
AND, OR, NAND, NOR to the function set. Additionally, we specify some
of the combinators as higher-order functions. In this way, technical indicators
can be evolved inside modules, which are then integrated together by the
higher-order function combinators.

Incorporating domain knowledge to design can speed up the GP evolution
process, and leads to faster discovery of meaningful solutions. In a previous
work, a similar concept was used to design recursive program structure for
the general even parity problem. With a very suitable design, the population
program structures were quickly converged (in the first generation) and most
GP evolution effort went to find the correct program contents (Yu, 2001).

4. The PolyGP System
PolyGP (Yu, 1999) is a GP system that evolves expression-based programs
calculus). The programs have the following syntax:

constant

identifier

built-in function

application of one expression to another

lambda abstraction

Constants and identifiers are given in the terminal set while built-in functions
are provided in the function set. Application of expressions and abstractions
are constructed by the system.
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Each expression has an associated type. The types of constants and identi-
fiers are specified with known types or type variables. For example, the stock
price index has a type Double.

The argument and return types of each built-in function are also specified.
For example, the function “+” takes two Double type inputs, and returns a Dou-
ble type output.

For higher-order functions, their function arguments are specified using
brackets. For example, the first argument of function IF-THEN-ELSE can
be specified as a function that takes two argument (one with type Time and the
other with Double type) and returns a Boolean value.

Using the provided type information, a type system selects type-matching
functions and terminals to construct type-correct program trees. A program
tree is grown from the top node downwards. There is a required type for the top
node of the tree. The type system selects a function whose return type matches
the required type. The selected function will require arguments to be created
at the next (lower) level in the tree: there will be type requirements for each
of those arguments. If the argument has a function type, a abstraction tree
will be created. Otherwise, the type system will randomly select a function (or
a terminal) whose return type matches the new required type to construct the
argument node. This process is repeated many times until the permitted tree
depth is reached.

abstraction trees are created using a similar procedure. The only difference
is that their terminal set consists not only of the terminal set used to create the
main program, but also the input variables to the abstraction. Input variable
naming in abstractions follows a simple rule: each input variable is uniquely
named with a hash symbol followed by an unique integer, e.g. #1, #2. This
consistent naming style allows cross-over to be easily performed between
abstraction trees with the same number and the same type of inputs and outputs.



Discovering Technical Trading Rules Using    Abstraction GP 17

5. S&P 500 Index Time Series Data

From Datastream, we acquired the S&P 500 index time series data between
January 1, 1982 and December 31, 2002. Since the original time series is non-
stationary, we transformed it by dividing the daily data by its 250-day moving
average. This is the same method used by (Allen and Karjalainen, 1999)
and (Neely et al., 1997). The adjusted data oscillate around 1 and make the
modeling task easier.

A different approach to normalize financial time series is converting the
price series into a return series . This is done by calculating the price difference
between two consecutive days (first-order difference) in the original price series.
Whether financial modeling should be based on price series or return series is
still a subject under much debate (Kaboudan, 2002). We adopt the approach
used by previous GP works on modeling technical trading rules so that we can
make sensible performance comparisons.

Figure 2-3 gives the original and the transformed time series. There are
three distinct phases in this time series. From 1982 to 1995, the market grew
consistently; between 1996 and 1999, the market bulled; after 2000, the market
declined. With such diversity, this data set is suitable for GP to model trading
rules.

While the transformed series are used for modeling, the computation of
the returns from GP trading rules are based on the original time series. One
implication of this data transformation is that GP is searching for rules based
on the change of price trend that give profitable trading rules.

Figure 2-3. Time series data before and after normalization.

Over-fitting is an issue faced by all data modeling techniques; GP is no
exception. When optimizing the trading rules, GP tends to make the rules
producing maximum returns for the training period, which may contain noise
that do not represent the overall series pattern. In order to construct trading
rules that generalize beyond the training data, we split the series into training,
validation and testing periods. We also adopted the rolling forward method,
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which was proposed by (Pesaran and Timmermann, 1995) and used by (Allen
and Karjalainen, 1999) and (Wang, 2000).

To start, we reserved 1982 data to be referred to by time series functions
such as lag. The remaining time series were then organized into 7 sequences,
each of which was used to make an independent GP run. In each sequence, the
training period is 4 years long, validation period is 2 years and testing period is
2 years. The data in one sequence may overlap the data in another sequence.
As shown in Figure 2-4, the second half of the training period and the entire
validation period of the first sequence are the training period of the second se-
quence. The testing period at the first sequence is the validation period at the
second sequence. With this setup, each testing period is 2 years, and covers a
different time period from 1989 to 2002.

Figure 2-4. Training, validation and testing periods for 7 time sequences.

For each data series, 50 GP runs were made. The three data periods are used
in the following manner:

1 The best trading rule against the training period at the initial population
is selected and evaluated against the validation period. This is the initial
“best rule”.

2 A new generation of trading rules are created by recombining/modifying
parts of relatively fit rules in the previous generation.

3 The best trading rule against the training period at the new population is
selected and evaluated against the validation period;

4 If this rule has a better validation fitness than the previous “best rule”,
this is the new “best rule”.

5 Goto step 2 until the maximum number of generation is reached or there
is no fitter rule found after a certain number of generations (50 in this
study).
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6 The last “best rule” is evaluated against the testing period. This is what
we use to evaluate the performance of the GP trading rule.

In summary, data from the training period are used to construct/optimize
GP trading rules, while data from the validation period are used to select the
GP trading rules, which are then applied to the testing period data to give the
performance of the rule. The evaluation of performance of the GP trading rules
is based on the results from testing periods.

6. Experimental Setup

We made two sets of runs: one with abstraction modules and one without.
The three higher-order functions defined for GP to evolve abstraction modules
are:

The first argument of AND and NOR is a function with takes one input with
type Time and returns a Boolean output. As described before, this function
argument will be created as a abstraction in the GP trees. Since the two
abstractions are of the same category, the left branch of an AND node in a GP
tree is allowed to cross-over with the left branch of either an AND or a NOR
node in another GP tree. The first argument of IF-THEN-ELSE, however, is a
function with a different type. Its left branch is therefore only allowed to cross-
over with the left branch of an IF-THEN-ELSE node in another GP tree. We
constrain a GP tree to have a maximum of 4 higher-order functions to preserve
computer memory usage.

Tables 2-1 and 2-2 give the functions and terminals that are used by both sets
of GP runs. The function avg computes the moving average in a time window
specified by the integer argument. For example, avg(t,250) is the arithmetic
mean of The function max returns the
largest index during a time window specified by the integer argument. For
example, max(t,3) is equivalent to Sim-
ilarly, the function min returns the smallest index value during a time window
specified by the integer argument. The function lag returns the index value
lagged by a number of days specified by the integer argument. For example,
lag(t,3) is These functions are commonly used by financial traders
to design trading indicators, hence are reasonable building blocks for GP to
evolve trading rules. Also, the ranges for integer values are 0 and 250 while the
ranges for double values are 0 and 1.
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For GP runs without abstractions, we redefine the AND, NOR and IF-
THEN-ELSE functions as follows:

Both sets of GP runs used the same control parameters given in Table 2-3. The
GP system is generation-based, i.e. parents do not compete with offspring for
selection and reproduction. We used a tournament of size 2 to select winners.
This means that two individuals were randomly selected and the one with a
better fitness was the winner. The new population was generated with 50% of
the individuals from cross-over, 40% from mutation (either point or sub-tree),
and 10% from the copy operator. The best individual was always copied over
to the new generation. A GP run stopped if no new best rule appeared for 50
generation on validation data, or the maximum number of generations (100)
was reached.
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Fitness Function

The fitness of an evolved GP trading rule is the return (R) it generates over
the tested period. Initially, we are out of the market, i.e. holding no stock.
Based on the trading decisions, buy and sell activities interleave throughout the
time period until the end of the term when the stock will be forcibly closed.
When in the market, it earns the stock market return. While out of the market,
it earns a risk free interest return. The continuous compounded return over the
entire period is the return (R) which becomes the fitness of the GP trading rule.

There are three steps in computing the return of a GP trading rule. First,
the GP rule is applied to the normalized time series to produce a sequence of
trading decisions: True directs the trader to enter/stay in the market and False
means to exit/stay out of the market. Second, this decision sequence is executed
based on the original stock price series and the daily interest rate to calculate
the compounded return. Last, each transaction (buy or sell) is charged with
a 0.25% fee, which is deducted from the compounded return to give the final
fitness.

Let be the S&P 500 index price on day t, be the interest rate on day t,
and the return of day t is

Let n denote the total number of transactions, i.e. the number of times a True
(in the market) is followed by a False (out of the market) plus the number of
times a False (out of the market) is followed by a True (in the market). Also, let
c be the one-way transaction cost. The return over the entire period of T days
is:

In this study, the transaction fee c is 0.25% of the stock price. Compared
to the transaction cost used by (Allen and Karjalainen, 1999) (0.1%, 0.25% &
0.5%) and (Wang, 2000) (0.12%), we have a reasonable transaction cost.



22 GENETIC PROGRAMMING THEORY AND PRACTICE II

7. Results
Table 2-4 gives the returns from abstraction GP trading rules while

Table 2-5 gives the returns from abstraction-GP trading rules. The last column
in both tables gives the returns from trading decisions made by the majority vote
over the 50 trading rules, generated from 50 different GP runs.

Both sets of GP runs find trading rules that consistently out-perform buy-
and-hold1. It is clear that their excess returns over buy-and-hold are statically
significant. Also, abstraction-GP rules give higher returns than ab-
straction GP rules. Moreover, trading decisions based on the majority vote by
50 rules give the highest returns. These are encouraging results indicating that
GP is capable of finding profitable trading rules that out-perform buy-and-hold.

1 With buy-and-hold , stocks purchased at the beginning of the term are kept until the end of the term when
they are closed; no trading activity takes place during the term. This is the most frequently used benchmark
to evaluate the profitability of a financial trading rule. Buy-and-hold returns for the 7 testing periods are
0.1681, 0.2722, 0.0477, 0.4730, 0.5015, 0.0665, -0.4109 respectively
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However, the GP rules returns may have two possible biases, from trading
costs and non-synchronous trading.

Trading Cost Bias. The actual cost associated with each trade is not easy
to estimate. One obvious reason is that different markets have different fees
and taxes. Additionally, there are hidden costs involved in the collection and
analysis of information. To work with such difficulty, break-even transaction
cost (BETC) has been proposed as an alternative approach to evaluate the prof-
itability of a trading rule (Kaboudan, 2002).

BETC is the level of transaction cost which offsets trading rule revenue and
lead to zero profits. Once we have calculated BETC for each trading rule, it
can be roughly interpreted as follows:

large and positive: good;

small and positive: OK;

small and negative: bad;

large and negative: interesting.

We will incorporate BETC to measure the profitability of the evolved GP
trading rules in our future work.

Non-Synchronous Trading Bias. Non-synchronous trading is the tendency
for prices recorded at the end of the day to represent the outcome of transactions
that occur at different points in time for different stocks. The existence of thinly
traded shares in the index can introduce non-synchronous trading bias. As a
result, the observed returns might not be exploitable in practice. One way to
test this is to execute the trading rules based on trades occurring with a delay
of one day. This could remove any first order autocorrelation bias due to non-
synchronous trading (Pereira, 2002). This is a research topic in our future
work.

Another way to evaluate the GP trading rules is by applying them to a different
financial index, such as NASDAQ 100. The returns may provide insights about
the rules and/or the stock markets themselves.

8. Analysis of GP Trading Rules
We examined all 50 rules generated from GP with abstraction modules

on sequence 5 data and found most of them can be interpreted easily; each
module is a trading indicator of some form. Depending on the number of
abstraction modules it contains, a rule applies one to four indicators to make
trading decisions (see Table 2-6). For example, index > avg(28) is a moving
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average indicator which compares today’s index (divided by its 250-days mov-
ing average) with the average index (divided by its 250-days moving average)
over the previous 28 days. Another example is index > max(8), which is a
filter indicator that compares today’s index (divided by its 250-days moving
average) with the maximum index (divided by its 250-days moving average) of
the previous 8 days.

Among the 50 abstraction GP trading rules, 23 use a combination of two to
four indicators to make trading decisions. The most frequently used combinator
is the AND function. This means many criteria have to be met before a stay-in-
the-market decision (True) is issued. In other words, the GP rules use various
indicators to evaluate the market trend and to make trading decisions. Such a
sophisticated decision making process has led to more profitable trading.

In contrast, most (48) of the 50 rules generated from abstraction GP
apply a single indicator to make trading decisions. Although some of the
single trading indicators can also give high returns (see Table 2-6), they are
not always easy to find. Without the structure protection, forming meaningful
trading indicators during evolution is not always easy. We have found many
rules having branches under a combinator (such as AND) that are evaluated
into constant value of True or False, instead of a meaningful indicator. This is
very different from the abstraction GP trading rules, where more meaningful
indicators were evolved as abstraction modules under the branches of higher-
order function combinators (AND & NOR & IF-THEN-ELSE).

Based on the analysis, we believe the abstraction module mechanism pro-
motes the creation and combination of technical indicators. Such combined
usage of different trading indicators gives a more, and leads to trades that gen-
erate higher returns.

We have also considered another possible benefit of the abstraction module
mechanism: it provides good seeding , which helps GP to find fitter trading
rules. However, after examining the initial populations of all the GP runs,
we find no evidence to support such a hypothesis. Sometimes, abstraction-
GP gives higher initial population fitness than the abstraction-GP does.
Sometimes it is the other way around.

9. Analysis of Transaction Frequency
As mentioned in Section 5, the S&P 500 index grew consistently between

1989 and 1995, bulled from 1996 to 1999 and declined after 2000. As expected,
buy-and-hold gives the best return during the years 1996-1998 and the worst
returns for the 2001-2002 period.

Regardless of the stock market’s climate, GP trading rules were able to iden-
tify opportunities to make profitable trading. The average transaction frequency
for abstraction GP rules is 22 for each testing period of 2 years: about
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one transaction every 33 days. The frequency for abstraction GP rules is
3 times higher, with an average of 76 transactions in each testing period. In
both cases, the higher the transaction frequency, the higher the return. This is
demonstrated at the bottom half of Figure 2-5 and 2-6 where 3 cross plots from
the 3 distinct time periods are given.

Figure 2-5. Transaction frequency vs. returns for abstraction GP rules.

Figure 2-6. Transaction frequency vs. returns for    abstraction GP rules.

We also compare the number of generations that each GP run lasted. As
mentioned in Section 5, a GP run terminated when either no better rule on vali-
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dation data was found for 50 generations or the maximum number of generation
(100) has reached. This means that the number of possible generations of a GP
run is between 50 and 100. We have found that on average abstraction GP
runs lasted 6 generations longer than abstraction GP runs. This indicates
that abstraction GP is better able to continue to find fitter trading rules.

Do longer runs always generate better trading rules? The top half of Figure
2-5 shows that abstraction GP rules which give higher than 20 were gen-
erated by runs terminated at generation 100 (there are a couple of exceptions).
In other words, longer runs generated trading rules that gave higher trading
frequency (> 20) and better returns. However, this pattern is not as evident in
the abstraction GP runs (the top half of Figure 2-6). Some of the runs that
terminated before generation 100 also generated trading rules that gave high
trading frequency (> 20) and good returns. Nevertheless, all runs that termi-
nated at generation 100 gave high trading frequency (> 20) which led to good
returns.

Figure 2-7 and 2-8 present the proportion of the 50 trading rules signaling
a True (in the market) over the entire testing period. They give a visual repre-
sentation of the degree of consensus among 50 rules and of the extent to which
their decisions are coordinated. The abstraction rules have high consensus;
during most of the testing period, 80% of the rules give the same decisions.
In contrast, abstraction rules have a slightly lower degree of consensus;
about 70% of the rules give the same decisions over the majority of the testing
period.

Figure 2-7. Proportion of abstraction GP rules signals“in the market”.

Both sets of GP rules were able to identify. They signaled mostly True (in
the market) during the year between 1996 and 2000 when the market was up
and mostly False (out of the market) during the year of 2001-2002 when the
market was down.
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Figure 2-8. Proportion of   abstraction GP rules signal “in the market”.

10. Concluding Remarks
The application of abstraction GP to find technical trading rules based on

S&P 500 index has generated many encouraging results:

The GP trading rules give returns in excess of buy-and-hold with statis-
tical significance.

The GP trading rules can be interpreted easily; they use one to four
commonly used technical indicators to make trading decisions.

The GP trading rules have high consensus; during the majority of the
testing period, 80% of the rules give the same decision.

The GP trading rules are able to identify market trends; they signal mostly
True (in the market) during the years between 1996 and 2000 when the
market was up and mostly False (out of the market) during the years of
2001-2002 when the market was down.

The GP trading rules give high transaction frequency. Regardless of
market climate, they are able to identify opportunities to make profitable
trades.

These are strong evidence indicating GP is able to find profitable technical
trading rules that out-perform buy-and-hold. This is the first time such positive
results on GP trading rules are reported.

Various analysis indicates that the abstraction module mechanism pro-
motes the creation and combination of technical indicators in the GP trading
rules. Such combination of different trading indicators gives more sophisticated
market evaluation and leads to trades that generate higher returns.

Lambda abstraction is a module mechanism that can incorporate domain
knowledge to design program structures. When properly used, it leads to the
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discovery of good and meaningful solutions. This chapter gives one such ex-
ample, in addition to the example of even parity problem reported in (Yu, 2001).
We anticipate there are more such domain-knowledge-rich problems that the
abstraction module mechanism can help GP to solve.

Future Work
The evolved GP trading rules give strong evidence that there are patterns in

the S&P 500 time series. These patterns are identified by GP as various forms
of technical indicators, each of which is captured in a abstraction module.
This feature is exhibited in all the rules generated from 50 GP runs.

These patterns, however, do not seem to exist in the initial population. In-
stead, it is through the continuous merging (cross-over) and modification (mu-
tation) of the same kind of modules for a long time (100 generations) when
meaningful technical indicators were formed.

Based on these application results, we are planning on a theoretical work to
formally define the convergence process of the abstraction GP:

Define each indicator in the 50 GP rules as a building block;

Formulate the steps to find one of the 50 rules.

We are not certain if such a theory is useful, since we might not be able to
generalize it beyond this particular application or data set. Nevertheless, we
believe it is a research worth pursuing.
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Chapter 3

USING GENETIC PROGRAMMING IN
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Abstract The chapter summarizes the practical experience of integrating genetic
programming and statistical modeling at The Dow Chemical Company. A
unique methodology for using Genetic Programming in statistical modeling of
designed and undesigned data is described and illustrated with successful
industrial applications. As a result of the synergistic efforts, the building
technique has been improved and the model development cost and time can be
significantly reduced. In case of designed data Genetic Programming reduced
costs by suggesting transformations as an alternative to doing additional
experimentation. In case of undesigned data Genetic Programming was
instrumental in reducing the model building costs by providing alternative
models for consideration.

Keywords: Genetic programming, statistical model building, symbolic regression,
undesigned data

1. INTRODUCTION

Recently the role of statistical model building in industry has grown
significantly. Many corporations have embraced the Six Sigma methodology
(Harry and Schroeder, 2000) as the backbone of their manufacturing and
new product development processes. One of the key objectives of Six Sigma
is to improve the business decisions by making them entirely data-driven.
An inevitable effect of this shift is that many people with wildly different
backgrounds like process engineers, economists, and managers are building
statistical models. Another industrial activity with growing demand for
statistical model building is high-throughput discovery where the strategy
for the designed experiments and the speed and quality of the analysis are
critical (Cawse, 2003).
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As a result of these large-scale efforts, the issue of reducing the cost of
statistical model building in industrial settings becomes central. A significant
component of the cost is due to the expense involved in running Design Of
Experiments (DOE)+. This is evident in the chemical industry where
running experiments can result in a temporary reduction in plant capacity or
product quality. In the case of statistical model building using undesigned
data (i.e. historical data), the cost is frequently based on non-linear models
development and maintenance.

Recently, Genetic Programming (GP), with its capability to
automatically generate models via symbolic regression, has captured the
attention of industry (Koza, 1992, Banzhaf et al, 1998). It has been
successfully implemented in several application areas like inferential
sensors, emulators, accelerated new product development, etc. (Kotanchek et
al, 2003). One of the areas where GP can significantly impact statistical
modeling is the cost reduction associated with empirical modeling utilizing
designed data and effective variable selection and alternative model building
with undesigned data.

This chapter will present the results from the current efforts to use GP in
industrial statistical model building at The Dow Chemical Company. The
chapter is organized in the following manner. First, the potential benefits
from the synergy between GP and statistical model building are defined,
followed by description of a methodology for using GP in empirical model
building from designed and undesigned data. The methodology is illustrated
on real industrial applications. We describe a case involving designed data
(data collected using designed experiments) where using GP reduced costs
by suggesting transformations as an alternative to doing additional
experimentation. Also we present a case involving undesigned data
(observational data collected during production process) where GP was
instrumental in reducing the model building costs by providing alternative
models for consideration. Finally, topics for future research are proposed.

2. SYNERGY BETWEEN GP AND STATISTICAL
MODEL BUILDING

To our surprise, there are very few papers that address the synergy
between statistical modeling and GP, especially in the statistical community
(with exception of Westbury et al., 2003). Statistical modeling often refers
to the local approximation of a functional relationship (affected by error)
between the inputs and the outputs using a Taylor series expansion. In the

+ A glossary of statistical terms is provided at the end of the chapter
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GP community, the issues of statistical analysis in GP are discussed in
(Banzhaf et al, 1998) and (Kaboudan, 1999). As a first step for analyzing
the synergetic benefits of the both approaches, the unique features of each
approach that are attractive to the other are discussed.

2.1 Unique Features of GP Attractive to Statistical
Model Building

GP has the following features that might be beneficial for statistical
modeling in industrial settings:

(a)

(b)
(c)

(d)

(e)

(f)

GP generates multiple diverse empirical models that could be used as
an alternative to statistical models.
GP doesn’t assume variable independence for model generation.
GP doesn’t need the regular assumptions for least-squares estimators
like multivariate normal distribution and independent errors with
zero mean and constant variance.
GP can generate non-linear transforms that can linearize the problem
and allow the use of linear regression with all the rigor and benefits
of statistical analysis.
GP allows inputs sensitivity analysis and variable selection that
reduces the dimensionality for statistical model building of
undesigned data.
GP generates models from small data sets.

2.2 Unique Features of Statistical Model Building
Attractive to GP

Statistical model building has the following important features that are
beneficial for empirical model building using GP: 1

(a)
(b)

(c)
(d)

(e)
(f)

Quantify the measure of performance of a model (ANOVA F test).
Ability to detect data outliers with respect to the data (Hat Matrix)
and the model (residuals).
Provides multiple measures of model Lack Of Fit ( LOF).
Calculates influence measures associated with data observations
(Cook Distance).
Potential for making cause and effect conclusions (DOE).
Confidence intervals to assess model and model parameter
uncertainty.

1 A glossary of statistical terms is provided at the end of the chapter.
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(g)

(h)

Statistical hypothesis testing for assessing parameter statistical
significance (t-test).
Quantifiable ways to assess the stability of a model (multicollinearity
and VIF).

2.3 Synergetic Benefits

It is obvious from the list of features attractive to both approaches that
there is a big potential to improve model development and reduce its cost by
their intelligent integration. First, the synergetic benefits in developing
models based on GP and statistical models will be discussed, followed by
the economic impact from the integration.

The key benefit from the synergy of GP and statistical model building in
industrial model development is broadening the modeling capabilities of
both approaches. On the one hand, GP allows model building in cases where
it would be very costly or physically unrealistic to develop a linear model.
On the other hand, statistical modeling with its well established metrics
gives GP models all necessary measures of statistical performance. Some of
these measures like the confidence limits of model parameters and responses
are of critical importance for the model implementation in an industrial
environment.

There are several economic benefits from the synergy between GP and
statistical model building. The most obvious, as previously mentioned, is
the elimination of additional experimental runs to address model Lack of Fit
(LOF). Another case of economic benefit is the potential for the elimination
of expensive screening DOE. Since the dimensionality of real industrial
problems can be high (very often the numbers of inputs is 30-50), the
screening process is often very time consuming and costly. Inputs screening
can be addressed using the GP algorithm. An additional potential benefit
from the synergy between GP and statistical model building is that the
applied models may have higher reliability (due to the confidence limits and
reduced instability) and require less maintenance in comparison to the non-
linear models generated by GP alone.

3. METHODOLOGY

We are suggesting a methodology that delivers the synergetic benefits
described in Section 2 in the following two cases of high practical
importance:

Designed data
Undesigned data
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3.1 Methodology for Designed Data

The complexity of some industrial chemical processes requires that first-
principle or mechanistic models be considered in conjunction with empirical
models. At the basis of empirical models is the underlying assumption that
for any system there is a fundamental relationship between the inputs and the
outputs that can be locally approximated over a limited range of
experimental conditions by a polynomial or a linear regression model. The
term linear model refers to a model that is linear in the parameters, not
the input variables (the x’s)2. Suitable statistical techniques such as design
of experiments (DOE) are available to assist in the experimentation process
(Box et al, 1978). The capability of the model to represent the data can
often be assessed through a formal Lack Of Fit (LOF) test when
experimental replicates are available (Montgomery, 1999). Significant LOF
in the model indicates a regression function that is not linear in the inputs;
i.e., the polynomial initially considered is not adequate. A polynomial of
higher order that fits the data better may be constructed by augmenting the
original design with additional experimental runs. Specialized designs such
as the Central Composite Design are available for this purpose (Box et al.,
1978).

However, in many situations a second-order polynomial has already been
fit and LOF is still present. In other cases the fit of a higher order polynomial
is impractical because runs are very expensive or technically infeasible
because of extreme experimental conditions. Furthermore, the extra
experimental runs introduce correlation among model parameters without
guarantee that LOF is removed. This problem can be handled if appropriate
input transformations are used, provided that the basic assumption of least-
square estimation regarding the probability distributions of errors is not
affected. These assumptions require that errors be uncorrelated and normally
distributed with mean zero and constant variance.

Some useful transformations have been previously published (Box and
Draper, 1987). Unfortunately, transformations that linearize the response
without affecting the error structure are often unknown, at times based on
experience and frequently becomes at best a guessing game. This process is
time consuming and often non-efficient in solving LOF situations.

Genetic programming (GP) generated symbolic regression provides a
unique opportunity to rapidly develop and test these transformations.
Symbolic regression automatically generates non-linear input-output models.
Several possible models of the response as a function of the input variables
are obtained by combining basic functions, inputs, and numerical constants.

2 A more detailed description of linear models is given in Appendix 2.
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This multiplicity of models with different analytical expressions provides a
rich set of possible transformations of the inputs, otherwise unknown, which
have the potential to solve LOF.

Figure 3-1. Methodology considered to find transforms that eliminate LOF.

Therefore, once LOF is confirmed with a statistical test and
transformations of the inputs seems to be the most practical approach to
address this situation, GP-generated symbolic regression can be used. The
process is illustrated in Figure 3-1 and consists of selecting equations with
correlation coefficients larger than a threshold level. These equations are
analyzed in terms of the The original variables are then transformed
according to the functional form of these equations. Then a linear regression
model is fit to the data using the transformed variables. The adequacy of the



Using GP in Industrial Statistical Model Building 37

transformed model is initially analyzed considering Lack Of Fit and
Then the error structure of the models not showing significant LOF is
considered and the correlation among model parameters is evaluated. This
process ensures that the transformations given by GP not only remove LOF
but also produce the adequate error structure needed for least square
estimations with no significant correlations among the model parameters.
This methodology is illustrated with the following specific example from a
real industrial process.

3.1.1 Application- designed data

The data considered in this example is a Box-Behnken design of four
input variables, with six center points (Castillo et al, 2004). A total of
30 experiments were performed. The output variable was the particle size
distribution of a chemical compound. This output was fit to the following
second-order linear regression equation considering only those terms that are
significant at the 95% confidence level.

The corresponding Analysis of Variance (obtained from the JMP3

statistical software) showing evidence of Lack Of Fit (p = 0.0185) is
presented in Table 3-1 4. Typically p-values less than 0.05 are
considered statistically significant.

3 JMP® is a registered trademark of SAS Institute Inc., Cary, NC, USA.
4 Glossary of key statistical terms are given at the end of the chapter.
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The ANOVA5 p-value (p = 0.0002) given in Table 3-1 indicates that the
model is statistically significant, however, the LOF p-value (p = 0.0185)
suggests that there exists significant model lack-of-fit (LOF); i.e. p <0.05.

Variable was found to be insignificant and it along with terms
involving was removed from the model fit. However, the resulting model
with nine parameters still had significant LOF with a p-value of 0.046.
Removal of LOF in this situation is particularly challenging because a
second order polynomial has already been considered. Furthermore, the
alternative of adding experiments to fit a third-order polynomial is not
feasible because it is costly, introduces correlations among the model
parameters, and can not guarantee that the resulting model will not have
significant LOF. The methodology presented in Figure 3-1 was implemented
and GP generated symbolic regression was employed. Function generation
takes 20 runs with a population size of 100, run for 50 generations, 0.01
parsimony pressure, and correlation coefficient and sum of squares as fitness
function. As a result, the analytical function given in equation 2 was
obtained. This function is referred to as the GP model.

The transformations given in Table 3-2 were then applied to the data as
indicated by the functional form of the derived GP function.

The transformed variables were used to fit a second order linear
regression model shown in equation (1). The resulting model, referred to as
the Transformed Linear Model (TLM), had an of 0.88, no evidence of
significant Lack Of Fit (p=0.1131), no evidence of large correlation among
the model parameters, and retained the appropriate error structure. A

5 More details about Analysis of Variance (ANOVA), degrees of freedom (DF), Sum of
Squares, Mean Square, and F Ratio can be found in any regression analysis book (see for

example Draper & Smith, 1981).
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summary of model numerical measures such as sum of square errors (SSE),
and LOF significance is given for comparison purposes in Table 3-3.

It is evident that the sum of squares error for the Transformed Linear
Model (TLM) is smaller than those of the original model and the GP model.
Additionally, the TLM model shows no significant Lack Of Fit with a larger

It is also worth noting that the TLM and the original model considered
the same number of parameters (9). This points out that the improvement of
the TLM was not achieved by model overfitting. These results indicate that
the input transformations suggested by GP successfully improved key model
measures of performance while eliminating significant model Lack Of Fit
without introducing additional experimental runs. The TLM with no
significant LOF offers more reasonable predictions than the other models
considered providing some assurance of the usefulness of the TLM model
for prediction purposes. An additional application of this methodology to
LOF situations in a factorial design is available as well (Castillo et al,
2002).

3.2 Methodology for Undesigned Data

The main objective for collecting undesigned data is often process
control (controlling the process variation not process improvement). In
many industrial applications, lots of observational (undesigned) data is
collected, stored, and later becomes the focus of a modeling exercise.
Statistically modeling undesigned data provides many challenges, among
them are data collinearity, the inability to draw cause-and-effect conclusions,
and limitations on variable ranges, just to name a few.

One nice feature of designed data (data generated using DOE) is that the
data structure relates to specific improvement objectives or scientific
hypotheses to be examined. Therefore, there is typically a corresponding
statistical model that can be fit to the designed data. Because undesigned
data is not collected with any specific improvement objectives in mind, there
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may not be an obvious statistical model to fit. Thus, it is often entirely up to
the modeler to decide what statistical model(s) to try. In situations where an
obvious model to fit is not available, the GP algorithm can help to suggest
several candidate models to consider. Using GP in this fashion can allow
both a wider selection of models to be considered and reduce the amount of
time required for empirical model identification.

Because undesigned data presents many challenges, there are many
situations in which a Linear Regression Model (LRM) might be suspect (i.e.
data collinearity). In those situations, the modeler may want to investigate
using another model technique like PCR (Principal Component Regression),
Neural Networks, or PLS (Partial Least Squares). One key advantage that
GP has over these others is that the model terms are in the form of the
original variables. Although the modeler should not consider this causal
information, this may provide some additional understanding of the potential
relationships between the variables studied and the response(s) of interest.

Sometimes the distinction between designed and undesigned data is not
quite clear. Data collection may have been originally planned as DOE.
However, the data may end up being undesigned because the defined levels
of the input variables are not achieved in practice due to plant restrictions
and operability conditions. Sometimes a set of data may even involve data
collected using a DOE and other data outside the region of the DOE. In this
case, the whole collection of data is often referred to as undesigned data.

3.2.1 Application- Undesigned data

The data to be illustrated in this example represents a typical situation
involving undesigned data in an industrial application. Data collection was
based on a three-month process history. Process conditions in four-hour
intervals were used for the modeling effort. The output variable of interest
(call it Y) is a measured concentration level of a process bi-product which is
considered detrimental to the process. Thus, Y should be minimized for the
process to operate successfully. One goal of this modeling effort was to
predict the process conditions necessary to maintain the response variable
(Y) at very low concentration levels. All other process conditions available
in the extracted data were considered potential inputs (X’s in a general Y =
f(X) model form).

The first models investigated were linear polynomials. These models are
often used because they tend to be very flexible and can approximate many
different relationship patterns between the inputs and the output(s).
However, because this was undesigned data, there was no obvious
polynomial model form to fit. A first-order polynomial model (as shown in
equation (3)) was fit to the data as a starting point.
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Characteristics of this model fit were assessed. The analysis of variance
revealed a significant regression equation (F ratio <0.0001) with an of
0.96. A subsequent residual analysis did not show any indication of
violations of the error structure required for least square estimation. This
suggested that nothing else was missing from the model (i.e. no higher-order
model terms required). With a high value (0.96) and no obvious patterns
in the model residuals, very little improvement could be expected from
investigating higher-order (more complex) polynomial mode ls. The model
parameter estimates are presented in Table 3-4.

Because this model was built using undesigned data, multicollinearity
(correlation structure among the inputs) was examined. Variance Inflation
Factors (VIF) [Montgomery and Peck, 1992] is a recommended method for
assessing the severity of data multicollinearity. The presence of severe
multicollinearty (strong relationships between the inputs) can seriously
affect the precision of the estimated regression coefficients, making them
very sensitive to the data in the particular sample collected and producing
models with poor prediction. If multicollinearity is severe enough, it can
cause real concerns with the stability, validity and usefulness of the resulting
model.
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The VIF for each model parameter were calculated and are listed in
Table 3-4. In general, high VIF’s suggest that severe multicollinearity exists
and the model is suspect; some authors suggest VIF’s greater than 10 are too
high (Myers & Montgomery, 1995). From the VIF’s listed in Table 3-4, it
was obvious that severe multicollinearity issues exist within the example
data. This happens frequently with undesigned data from industrial
situations. Many of the process variables will often vary together (being
highly correlated) resulting in severely unbalanced data. One remedy often
suggested is to remove any redundant inputs that may be included in the
model together. If this is not possible or does not reduce the collinearity
down to acceptable levels, then collecting more data (say from a suggested
DOE) should be explored. However, in many situations, collecting more
data to help with the modeling is not a viable economic solution. In our
example, removing the redundant inputs did not reduce the multicollinearity
to acceptable levels, and no additional data could be collected.

With a very unstable polynomial model, alternative candidate models,
generated by GP were investigated. The parameters of the GP-generated
models are as follows: functional set included addition, subtraction,
multiplication, division, square, change sign, square root, natural logarithm,
exponential, and power. The simulated evolution was done on 50 runs, each
with 20 generations, a population size of 100; parsimony pressure 0.1, and
the product between correlation coefficient and sum of squares as fitness
function.

The results from the sensitivity analysis are shown in Figure 3-2a, where
the sensitivity of each of the 13 inputs is proportional to the frequency of
selection in every functional tree or sub-tree during the whole simulated
evolution (Kordon et al., 2003). The inputs sensitivity analysis suggests five
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influential inputs and thus reducing the dimensionality of
the search space.

Multi-objective GP with and relative number of nodes as fitness
functions (Smits and Kotanchek, 2004) has been used for model selection.
The models on the Pareto-front are shown in Figure 3-2b, where the final
selected model with the “best” balance between performance and complexity
is shown with an arrow. The model includes the suggested five influential
inputs, has good performance, and acceptable error structure (see Figure 3-3)

The following equation was selected:

Note that the LRM shown in equation (3) and the GP model shown in
equation (4) are both linear in the parameters. However, the GP model has a
functional form that shows relationships between the different variables
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Equation (4) may be used to indicate that a transform can be applied to
the linear model presented in equation (3). The transforms used are shown in
Table 3-5.

The linear model presented in equation (3) was then fit using the
transformed variables shown in Table 3-5. This resulted in a transformed
linear model with a of 0.94 and no indication of severe multicollinearity
as indicated by the VIF shown in Table 3-6. The 95% confidence limits for
the model parameters are also presented in Table 3-6.

In this case both the GP and the transformed linear model are alternative
models that have good prediction capability without high multicollinearity.
These expressions are also in terms of the original variables which makes
model interpretation easier.

4. FUTURE RESEARCH

The methodology discussed and illustrated with real industrial examples
show the great potential of the synergy between statistical model building
and genetic programming. Many research possibilities are foreseen both in
applications of statistical model building to GP and in applications of GP to
statistical model building. Among these are:

The application of GP to pre-screening designs with available data.
This is an attractive opportunity given the availability of online
process data and the expense of industrial experimentation. In this
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situation GP offers a unique opportunity because sensitive inputs
can be identified (Kordon, et al, 2003) and used as the starting point
of discussion for further planned experimentation.
Application of GP in regression models in principal component
analysis (Hiden, et al, 1999). This may be an attractive alternative
given that the interpretation of some principal components is not
always obvious and can become quite difficult depending on the
number of inputs included.
Application of statistical model discrimination techniques. This
would involve the evaluation of multiple models generated by GP in
criteria other that the traditional fitness functions such as correlation
or sum square errors. This represents a real opportunity given the
number of models generated by GP and the difficulty in selecting
the best model.
Applications of designed of experiments prior to a GP run. In this
work, the effects of GP running conditions (such as parsimony
pressure, number of generations, and population size) on the quality
of the models produced (Spoonger, 2000) would be better
understood.

The possibilities are numerous and stem for the fact that both statistical
model building and GP offer unique characteristics than can be combined to
offer a better approach than each one individually.

5. APPENDIX 1: GLOSSARY OF STATISTICAL
TERMS

ANOVA F test: Overall statistical significance test (F-ratio) for
a model.
Center Points: A set of experiments usually at the middle levels
of the input variable ranges which are often included as part of a
designed experiment plan. In general, center points are typically
included in a designed experiment for two reasons: 1. The
experimental design plan specifically calls for inclusion of the
center point run; or 2. Center points are added in order to test for
model lack-of-fit (LOF) and provide an estimate of the
reproducibility of the data under the same set of conditions.
Cook Distance: Measures each observation’s influence on the
model fit by looking at the effect of the ith observation has on all
n fitted values.
Design of Experiments (DOE): A systematic approach to data
collection in a research application such that the information
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obtained from the data is maximized by determining the (cause-
and-effect) relationships between factors (controllable inputs)
affecting a process and one or more outputs measured from that
process.
Hat Matrix: diagonal values of the matrix X’ where X
is the input matrix of the original data.
Input variable: Typically a controllable variable within the
process to be modeled whose influence may or may not have an
impact on the process output variables. In other sources, input
variables may be referred to as predictors, factors, or X’s.
LOF: Lack Of Fit: measure that indicates that the models does
not fit the data properly.
Multicollinearity: Correlation structure among the inputs as
measured by Pearson’s correlation coefficient. Multicollinearity
among the inputs leads to biased model parameter estimates.
Output variable: Measure of process performance from changing
input conditions. In other sources, output variables may be
referred as responses, measures of performance, process quality
characteristics, or Y’s.
p-value: the probability of incorrectly claiming a real effect.
p-value in LOF test: the probability of concluding that significant
LOF is present in the model when in fact it really is not.
Typically p-values less than 0.05 are considered statistically
significant.

Proportion of total variability in the response that is
explained by the model.
Residual: differences between actual output and predicted output
SSE: Sum of Squares Error: The sum of the square of the
differences between actual output and predicted output.
T test or the probability of incorrectly claiming a real
effect. If the values are smaller than 0.05, the factor
is considered to be statistically significant.
Undesigned Data: Data collected NOT in a systematic fashion
through the use of internal DOW methodologies.
VIF: Variance Inflation Factor; a measure of the collinearity
between input variables.
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6. APPENDIX 2: DEFINITION OF A LINEAR
MODEL

A very important distinction that must be recognized is the difference
between linear and non-linear models. This is one of the most widely
misused and misunderstood terms. The term linear model refers to a model
that is linear in the parameters, not the input variables (the x’s). Indeed
models in which the output is related to the inputs in a non-linear fashion can
still be treated as linear provided that the parameters enter the model in a
linear fashion (Montgomery and Peck.,1992; Seber and Wild, 1989). For
example,

is linear in the parameters, while

is non-linear in the parameters (non-linear in ).

Another way to distinguish between linear and non-linear models is to
differentiate the output with respect to the parameters. If the resulting
derivatives are not a function of any of the parameters, the model is linear.
Otherwise the model is non-linear.
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Abstract This chapter derives a population sizing relationship for genetic programming
(GP). Following the population-sizing derivation for genetic algorithms in (Gold-
berg et al., 1992), it considers building block decision-making as a key facet. The
analysis yields a GP-unique relationship because it has to account for bloat and for
the fact that GP solutions often use subsolutions multiple times. The population-
sizing relationship depends upon tree size, solution complexity, problem difficulty
and building block expression probability. The relationship is used to analyze
and empirically investigate population sizing for three model GP problems named
ORDER, ON-OFF and LOUD. These problems exhibit bloat to differing extents and
differ in whether their solutions require the use of a building block multiple times.

Keywords: genetic programming, population sizing, facetwise modeling, scalability

1. Introduction
The growth in application of genetic programming (GP) to problems of prac-

tical and scientific importance is remarkable (Keijzer et al., 2004, Riolo and
Worzel, 2003, Cantú-Paz et al., 2003). Yet, despite this increasing interest
and empirical success, GP researchers and practitioners are often frustrated—
sometimes stymied—by the lack of theory available to guide them in selecting
key algorithm parameters or to help them explain empirical findings in a sys-
tematic manner. For example, GP population sizes run from ten to a million
members or more, but at present there is no practical guide to knowing when
to choose which size.

1
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To continue addressing this issue, this chapter builds on a previous paper
(Sastry et al., 2003) wherein we considered the building block supply problem
for GP. In this earlier step, we asked what population size is required to ensure
the presence of all raw building blocks for a given tree size (or size distribution)
in the initial population. The building-block supply based population size is
conservative because it does not guarantee the growth in the market share of
good substructures. That is, while ensuring the building-block supply is impor-
tant for a selecto-recombinative algorithm’s success, ensuring a growth in the
market share of good building blocks by correctly deciding between competing
building blocks is also critical (Goldberg, 2002). Furthermore, the population
sizing for GA success is usually bounded by the population size required for
making good decisions between competing building blocks. Our results herein
show this to be the case, at least for the ORDER problem.

This chapter derives a population-sizing model to ensure good decision-
making between competing building blocks. Our analytical approach is similar
to that used by (Goldberg et al., 1992) for developing a population-sizing model
based on decision-making for genetic algorithms (GAs). In our population-
sizing model, we incorporate factors that are common to both GP and GAs, as
well as those that are unique to GP. We verify the population-sizing model on
three different test problem that span the dimension of building block expres-
sion—thus, modeling the phenomena of bloat at various degrees. Using ORDER,
withUNITATION as its fitness function, provides a model problem where, per
tree, a building block can be expressed only once despite being present multiple
times. At the opposite extreme, the LOUD problem models a building block be-
ing expressed each time it is present in the tree. To cover the range between the
corners, the ON-OFF problem provides tunability of building block expression.
A parameter controls the frequency with which a “function” can suppress the ex-
pression of the subtrees below it, thus affecting how frequently a tree expresses
a building block. These experiments not only validate the population-sizing
relationship, but also empirically illustrate the relationship between population
size and problem difficulty, solution complexity, bloat and tree structure.

We proceed as follows: The next section gives a brief overview of past
work in developing facetwise population-sizing models in both GAs and GP.
In Section 3, we concisely review the derivation by (Goldberg et al., 1992) of a
population sizing equation for GAs. Section 4 provides GP-equivalent defini-
tions of building blocks, competitions (a.k.a partitions), trials, cardinality and
building-block size. In Section 5 we follow the logical steps of (Goldberg et al.,
1992) while factoring in GP perspectives to derive a general GP population siz-
ing equation. In Section 6, we derive and empirically verify the population sizes
for model problems that span the range of a BB being present and expressed.
Finally, section 7 summarizes and provides key conclusions of the study.
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2. Background

One of the key achievements of GA theory is the identification of the building-
block decision-making to be a statistical one (Holland, 1973). Holland illus-
trated this using a bandit model. Based on Holland’s work, De Jong
proposed equations for the 2-armed bandit problem without using Holland’s
assumption of foresight (De Jong, 1975). De Jong recognized the importance
of noise in the decision-making process and also proposed a population-sizing
model based on the signal and noise characteristics of a problem. De Jong’s sug-
gestion went unimplemented till the study by (Goldberg and Rudnick, 1991).
Goldberg and Rudnick computed the fitness variance using Walsh analysis and
proposed a population-sizing model based on the fitness variance.

A subsequent work (Goldberg et al., 1992) proposed an estimate of the pop-
ulation size that controlled decision-making errors. Their model was based on
deciding correctly between the best and the next best BB in a partition in the
presence of noise arising from adjoining BBs. This noise is termed as collateral
noise (Goldberg and Rudnick, 1991). The model proposed by Goldberg et al.,
yielded practical population-sizing bounds for selectorecombinative GAs. The
decision-making based population-sizing model (Goldberg et al., 1992) was
refined by (Harik et al., 1999). Harik et al., proposed a tighter bound on the
population size required for selectorecombinative GAs. They incorporated both
the initial BB supply model and the decision-making model in the population-
sizing relation. They also eliminated the requirement that only a successful
decision-making in the first generation results in the convergence to the opti-
mum. Specifically, Harik et al., modeled the decision-making in subsequent
generations using the well known gambler’s ruin model (Feller, 1970). The
gambler’s ruin population-sizing model was subsequently extended for noisy
environments (Miller, 1997), and for parallel GAs (Cantú-Paz, 2000).

While, population-sizing in genetic algorithms has been successfully studied
with the help of facetwise and dimensional models, similar efforts in genetic
programming are still in the early stages. Recently, we developed a population
sizing model to ensure the presence of all raw building blocks in the initial
population size. We first derived the exact population size to ensure adequate
supply for a model problem namedORDER. ORDER has an expression mechanism
that models how a primitive in GP is expressed depending on its spatial context.
We empirically validated our supply-driven population size result for ORDER
under two different fitness functions: UNITATION where each primitive is a
building block with uniform fitness contribution, andDECEPTION where each of

subgroups, each subgroup consisting of primitives, has its fitness computed
using a deceptive trap function.

After dealing specifically with ORDER in which, per tree, a building block
can be expressed at most once, we considered the general case of ensuring an
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adequate building block supply where every building block in a tree is always
expressed. This is analogous to the instance of a GP problem that exhibits no
bloat. In this case, the supply equation does not have to account for subtrees
that are present yet do not contribute to fitness. This supply-based population
size equation is:

where enumerates the partition or building block competition, is the
building-block size, is supply error and is average tree size.

In the context of supply, to finally address the reality of bloat, we noted that
the combined probability of a building block being present in the population
and its probability of being expressed must be computed and amalgamated into
the supply derivation. This would imply that Equation 4.1, though conservative
under the assumed condition that every raw building block must be present
in the initial population, is an underestimate in terms of accounting for bloat.
Overall, the building block supply analysis yielded insight into how two salient
properties of GP: building block expression and tree structure influence building
block supply and thus influence population size. Building block expression
manifests itself in “real life” as the phenomena of bloat in GP. Average tree size
in GP typically increases as a result of the interaction of selection, crossover
and program degeneracy.

As a next step, this study derives a decision-making based population-sizing
model. We employ the methodology of (Goldberg et al., 1992) used for deriving
a population sizing relationship for GA. In this method, the population size is
chosen so that the population contains enough competing building blocks that
decisions between two building blocks can be made with a pre-specified con-
fidence. Compared to the GA derivation, there are two significant differences.
First, the collateral noise in fitness, arises from a variable quantity of expressed
BBs. Second, the number of trials of a BB, rather than one per individual in
the GA case, depends on tree structure and whether a BB that is present in a
tree is expressed. In the GP case, the variable, related to cardinality (e.g.,
the binary alphabet of a simple GA) and building block defining length, is con-
siderably larger because GP problems typically use larger primitive sets. It is
incorporated into the relationship by considering BB expression and presence.

We start with a brief outline of the population-sizing model of (Goldberg
et al., 1992) in the following section.

3. GA Population Sizing from the Perspective of
Competing Building Blocks

The derivational foundation for our GP population sizing equation is the
1992 result for the selecto-recombinative GA by (Goldberg et al., 1992) enti-
tled “Genetic Algorithms, Noise and the Sizing of Populations.” That paper
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Figure 4-1. Two competing building blocks of size one is the best BB, and the other is
the second best BB,

considers how the GA can derive accurate estimates of BB fitness in the pres-
ence of detrimental noise. It recognizes that, while selection is the principal
decision maker, it distinguishes among individuals based on fitness and not
by considering BBs. Therefore, there is a possibility that an inferior BB gets
selected over a better BB in a competition due to noisy observed contributions
from adjoining BBs that are also engaged in competitions.

To derive a relation for the probability of deciding correctly between com-
peting BBs, the authors considered two individuals, one with the best BB and
the other with the second best BB in the same competition. (Goldberg et al.,
1992).

Figure 4-2. Fitness distribution of individuals in the population containing the two competing
building blocks, the best BB                       and the second best BB When two mean fitness distributions
overlap, low sampling increases the likelihood of estimation error. When sampling around each
mean fitness is increased, fitness distributions are less likely to be inaccurately estimated.

Let and be these two individuals with     non-overlapping BBs of size
as shown in figure 4-1. Individual has the best BB,          (111 • • • 111 in figure 4-
1) and individual has the second best BB, (000 • • • 000 in figure 4-1). The
fitness values of and are and respectively. To derive the probability
of correct decision-making, we have to first recognize that the fitness distribution
of the individuals containing and is Gaussian since we have assumed
an additive fitness function and the central limit theorem applies. Two possible
fitness distributions of individuals containing BBs and are illustrated in
figure 4-2.
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The distance between the mean fitness of individuals containing
and the mean fitness of individuals containing is the signal, That
is,

Recognize that the probability of correctly deciding between and is
equivalent to the probability that Also, since and are
normally distributed, is also normally distributed with mean and
variance where and are the fitness variances of individuals
containing and respectively. That is,

The probability of correct decision-making, is then given by the cumulative
density function of a unit normal variate which is the signal-to-noise ratio :

Alternatively, the probability of making an error on a single trial of each BB
can estimated by finding the probability such that

where is the ordinate of a unit, one-sided normal deviate. Notationally
is shortened to

Now, consider the BB variance, (and since it is assumed the fitness
function is the sum of independent subfunctions each of size (and
similarly is the sum of the variance of the adjoining subfunctions.
Also, since it is assumed that the partitions are uniformly scaled, the variance
of each subfunction is equal to the average BB variance, Therefore,

A population-sizing equation was derived from this error probability by recog-
nizing that as the number of trials, increases, the variance of the fitness is
decreased by a factor equal to the trial quantity:

To derive the quantity of trials, assume a uniformly random population
(of size Let represent the cardinality of the alphabet (2 for the GA) and
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the building-block size. For any individual, the probability of is where
There is exactly one instance per individual of the competition,

Thus,

By rearrangement and calling the coefficient (still a function of a
fairly general population-sizing relation was obtained:

To summarize, the decision-making based population sizing model in GAs
consists of the following factors:

Competition complexity, quantified by the total number of competing
building blocks,

Subcomponent complexity, quantified by the number of building blocks,

Ease of decision-making, quantified by the signal-to-noise ratio,

Probabilistic safety factor, quantified by the coefficient

4. GP Definitions for a Population Sizing Derivation
Most GP implementations reported in the literature use parse trees to repre-

sent candidate programs in the population (Langdon and Poli, 2002). We have
assumed this representation in our analysis. To simplify the analysis further,
we consider the following:

1

2

3

A primitive set of the GP tree is where denotes the set of
functions (interior nodes to a GP parse tree) and denotes the set of
terminals (leaf nodes in a GP parse tree).

The cardinality of and the cardinality of

The arity of all functions in the primitive set is two: All functions are
binary and thus the GP parse trees generated from the primitive set are
binary.

We believe that our analysis could be extended to primitive sets containing
functions with arity greater than two (non-binary trees). We also note that our
assumption closely matches a common GP benchmark, symbolic regression,
which usually has arithmetic functions of arity two.

As in our BB supply work (Sastry et al., 2003), our analysis adopts a defi-
nition of a GP schema (or similarity template) called a “tree fragment”. A tree
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fragment is a tree with at least one leaf that is a “don’t care” symbol. This
“don’t care” symbol can be matched by any subtree (including degenerate leaf-
only trees). As before, we are most interested in only the small set set of tree
fragments that are defined by three or fewer nodes. See Figure 4-3 for this set.

Figure 4-3. The smallest tree fragments in GP. Fragments (c) and (d) have mirrors where the
child is 2nd parameter of the function. Likewise, fragment (f) has mirror where 1st and 2nd
parameters of the function are reversed. Recall that a tree fragment is a similarity template:
based on the similarity it defines, it also defines a competition. A tree fragment, in other words,
is a competition. (At other times we have also used the term partition interchangeably with tree
fragment or competition)

The defining length of a tree fragment is the sum of its quantities of function
symbols, and terminal symbols,

Because a tree fragment is a similarity template, it also represents a competition.
Since this chapter is concerned with decision-making, we will therefore use
“competition” instead of a “tree fragment.” The size of a competition (i.e., how
many BBs compete) is

As mentioned in (Sastry et al., 2003), because a tree fragment is defined without
any positional anchoring, it can appear multiple times in a single tree. We denote
the number of instances of a tree fragment that are present in a tree of size
(i.e., the quantity of a tree fragment in a tree) as This is equivalent to the
instances of a competition as is used in the GA case (see Equation 4.8). For
full binary trees:

Later, we will explain how describes the potential quantity, per tree, of a BB.

5. GP Population Sizing Model
We now proceed to derive a GP population sizing relationship based on

building block decision-making. Preliminarily, unless noted, we make the same
assumptions as the GA derivation of Section 3.
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The first way the GP population size derivation diverges from the GA case
is how BB fitness variance (i.e., and is estimated (for reference, see
Equation 4.6). Recall that for the GA the source of a BB’s fitness variance was
collateral noise from the competitions of its adjoining BBs. In GP, the
source of collateral noise is the average number of adjoining BBs present and
expressed in each tree, denoted as Thus:

Thus, the probability of making an error on a single trial of the BB can be
estimated by finding the probability such that

The second way the GP population size derivation diverges from the GA
case is in how the number of trials of a BB is estimated (for reference, see
Equation 4.8). As with the GA, for GP we assume a uniformly distributed
population of size In GP the probability of a trial of a particular BB must
account for it being both present, and expressed in an individual (or tree),
which we denote as So, in GP:

Thus, the population size relationship for GP is:

where is the square of the ordinate of a one-sided standard Gaus-
sian deviate at a specified error probability For low error values, can be
obtained by the usual approximation for the tail of a Gaussian distribution:

Obviously, it is not always possible to factor the real-world problems in
the terms of this population sizing model. A practical approach would first
approximate trials per tree (the full binary tree assumption). Then,
estimate the size of the shortest program that will solve the problem, (one might
regard this as the Kolomogorov complexity of the problem, and choose
a multiple of this for in the model. In this case, To ensure an
initial supply of building blocks that is sufficient to solve the problem, the initial
population should be initialized with trees of size Therefore, the population-
sizing in this case can be written as
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Similar to the GA population sizing model, the decision-making based pop-
ulation sizing model in GP consists of the following factors:

Competition complexity, quantified by the total number of competing
building blocks,

Ease of decision-making, quantified by the signal-to-noise ratio,

Probabilistic safety factor, quantified by the coefficient

Subcomponent complexity, which unlike GA population-sizing, de-
pends not only on the minimum number of building blocks required to
solve the problem but also on tree size the size of the problem
primitive set and how bloat factors into trees (quantified by

6. Sizing Model Problems

This section derives the components of the population-sizing model (Equa-
tion 4.16) for three test problems, ORDER, LOUD, and ON-OFF. We develop the
population-sizing equation for each problem and verify it with empirical results.
In all experiments we assume that and thus derive Table 4-1 shows
some of these values. For all empirical experiments the the initial population
is randomly generated with either full trees or by the ramped half-and-half
method. The trees were allowed to grow up to a maximum size of 1024 nodes.
We used a tournament selection with tournament size of 4 in obtaining the em-
pirical results. We used subtree crossover with a crossover probability of 1.0
and retained 5% of the best individuals from the previous population. A GP run
was terminated when either the best individual was obtained or when a prede-
termined number of generations were exceeded. The average number of BBs
correctly converged in the best individuals were computed over 50 independent
runs. The minimum population size required such that BBs converge
to the correct value is determined by a bisection method (Sastry, 2001). The
results of population size and convergence time was averaged over 30 such
bisection runs, while the results for the number of function evaluations was av-
eraged over 1500 independent runs. We start with population sizing for ORDER,
where a building block can be expressed at most once in a tree.
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ORDER: At most one expression per BB

ORDER is a simple, yet intuitive expression mechanism which makes it
amenable to analysis and modeling (Goldberg and O’Reilly, 1998, O’Reilly
and Goldberg, 1998). For complete details refer elsewhere (Sastry et al., 2003).

The output for optimal solution of a ORDER problem is
and its fitness value is The building blocks in ORDER

are the primitives, that are part of the subfunctions that reduce error (alter-
natively improve fitness). The shortest perfect program is

For the ORDER problem, we can easily see that and
From (Sastry et al., 2003), we know that

Additionally, for ORDER,  is given by

where, is the average number of leaf nodes per tree in the population. The
derivation of the above equation was involved and detailed. It is provided
elsewhere (Sastry et al., 2004).

Substituting the above relations (Equations 4.18 and 4.19) in the population-
sizing model (Equation 4.16) we obtain the following population-sizing equa-
tion for ORDER:

The above population-sizing equation is verified with empirical results in
Figure 6.0. The initial population was randomly generated with either full trees
or by the ramped half-and-half method with trees of heights,

where, is the minimum tree height with an average of leaf nodes.
We observed that the population size scales quadratically with Kolmogorov
complexity,

LOUD: Every BB in a tree is expressed

In ORDER, a building block could be expressed at most once in a tree. How-
ever, in many GP problems a building block can be expressed multiple times
in an individual. Indeed, an extreme case is when every building block occur-
rence is expressed. One such problem is a modified version of a test problem
proposed elsewhere (Soule and Heckendorn, 2002, Soule, 2003), which we call
LOUD.
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Figure 4-4. Empirical validation of the population-sizing model (Equation 4.20) for ORDER and
LOUD problems. Tree height equals and

In LOUD, the primitive set consists of an “add“ function of arity two, and three
constant terminals: 0, 1 and 4. The objective is to find an optimal number of
fours and ones. That is, for an individual with 4s and   1s, the fitness function
is given by Therefore, even though a zero is
expressed it does not contribute to fitness. Furthermore, a 4 or 1 is expressed
each time it appears in an individual and each occurrence contributes to the
fitness value of the individual. Moreover, the problem size, and

For the LOUD problem the building blocks are “4” and “1”. It is easy to see that
forLOUD, and Furthermore, the
average number of building blocks expressed is given by
Substituting these values in the population-sizing model (Equation 4.16) we
obtain

The above population-sizing equation is verified with empirical results in
Figure 6.0. The initial population was randomly generated by the ramped half-
and-half method with trees of  heights yielding an average tree size of
4.1 (compared to the analytically derived value of 4.5). We observed that the
population size scales as

ON–OFF: Tunable building block expression
In the previous sections we considered two extreme cases, one where a build-

ing block could be expressed at most once in an individual, and the other where
every building block occurrence is expressed. However, usually in GP prob-
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Figure 4-5. Empirical validation of the population-sizing model (Equation 4.22) required to
obtain the global solution for ON-OFF problem. Note that

lems, some of the building blocks are expressed and others are not. Therefore,
the third test function, which we call ON–OFF, is one in which the building-block
expression probability is tunable (Sastry et al., 2004) and can approximate some
bloat scenarios of standard GP problem (Luke, 2000a).

In ON–OFF, the primitive set consists of two functions EXP and of arity
two and terminal and The function EXP expresses its child nodes, while

suppresses its child nodes. Therefore a leaf node is expressed only when
all its parental nodes have the primitive EXP. The probability of expressing a
building block can be tuned by controlling the frequency of selecting EXP for
an internal node in the initial tree. Similar to LOUD, the objective for ON–OFF is
to find an optimal number of and The problem size,
and

For the ON–OFF problem the building blocks are and
and Here, is the probability of a node

being the primitive EXP. The average number of building blocks expressed is
given by Substituting these values in the
population-sizing model (Equation 4.16) we obtain

The above population-sizing equation is verified with empirical results in
Figure 4-5. The initial population was randomly generated by the ramped half-
and-half method with trees of heights where is the
minimum tree height with an average of leaf nodes. We observed that the
population size scales as
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7. Conclusions

This contribution is a second step towards a reliable and accurate model for
sizing genetic programming populations. In the first step the model estimated
the minimum population size required to ensure that every building block was
present with a given degree of certainty in the initial population. In the process
of deriving this model, we gained valuable insight into (a) what makes GP
different from a GA in the population-sizing context and (b) the implications of
these differences. The difference of GP’s larger alphabet, while influential in
implying GP needs larger population sizes, was not a difficult factor to handle,
while bloat and the variable length individuals in GP are more complicated.

Moving to the second step, by considering a decision-making model, we
extended the GA decision-making model along these dimensions: First, our
model retains a term describing collateral noise from competing BBs
but it recognizes that the quantity of these competitors depends on tree size and
the likelihood that the BB is present and expresses itself (rather than behaving
as an intron). Second, our model, like its GA counterpart, assumes that trials
decrease BB fitness variance; however, what was simple in a GA – there is one
trial per population member – for the GP case is more involved. That is, the
probability that a BB is present in a population member depends both on the
likelihood that it is present in lieu of another BB and expresses itself, plus the
number of potential trials any BB has in each population member.

The model shows that, to ensure correct decision-making within an error
tolerance, population size must go up as the probability of error decreases, noise
increases, alphabet cardinality increases, the signal-to-noise ratio decreases and
tree size decreases and bloat frequency increases. This matches intuition. There
is an interesting critical trade-off with tree size with respect to determining
population size: pressure for larger trees comes from the need to express all
correct BBs in the solution, while pressure for smaller trees comes from the
need to reduce collateral noise from competing BBs.

The fact that the model is based on statistical decision-making means that
crossover does not have to be incorporated. In GAs crossover solely acts as
a mixer or combiner of BBs. Interestingly, in GP, crossover also interacts
with selection with the potential result that programs’ size grows and structure
changes. When this happens, the frequency of bloat can also change (see
(Luke, 2000a, Luke, 2000b) for examples of this with multiplexer and symbolic
regression). These changes in size, structure and bloat frequency imply a much
more complex model would be required if one were to attempt to account for
decision-making throughout a run. They also suggest that when using the model
as a rule of thumb to size an initial population, it may prove more accurate if
the practitioner overestimates bloat in anticipation of subsequent tree growth
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causing more than the bloat seen in the initial population, given its average tree
size.

It appears difficult to use this model with real problems where, among the
GP-particular factors, the most compact solution and BB size is not known
and the extent of bloat cannot be estimated. In the case of the GA model, the
estimation of model factors has been addressed by (Reed et al., 2000). They
estimated variance with the standard deviation of the fitness of a large random
population. In the GP case, this sampling population should be controlled for
average tree size. If a practitioner were willing to work with crude estimates of
bloat, BB size and most compact solution size, a multiple of the size of the most
compact solution could be substituted, and bloat could be used with that size
to estimate the probability that a BB is expressed and present and the average
number of BBs of the same size present and expressed, on average, in each
tree. In the future, we intend to experiment with the model and well known toy
GP problems (e.g., multiplexer, symbolic regression) where bloat frequency
and most compact problem size are obtainable, and simple choices for BB size
exist to verify if the population size scales with problem size within the order
of complexity the model predicts.

Population sizing has been important to GAs and is now important to GP,
because it is the principle factor in controlling ultimate solution quality. Once
the quality-size relation is understood, populations can be sized to obtain a
desired quality and only two things can happen in empirical trials. The quality
goal can be equaled or exceeded in which case all is well with the design of the
algorithm, or (as is more likely) the quality target can be missed, in which case
there is some other obstacle to be overcome in the algorithm design. Moreover,
once population size is understood, it can be combined with an understanding
of run duration, thereby yielding first estimates of GP run complexity, a key
milestone in making our understanding of these processes more rigorous.
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Chapter 5

CONSIDERING THE ROLES OF STRUCTURE IN
PROBLEM SOLVING BY COMPUTER
Cause and Emergence in Genetic Programming

Jason M. Daida
Center for the Study of Complex Systems and Space Physics Research Laboratory,
The University of Michigan

Abstract: This chapter presents a tiered view of the roles of structure in genetic
programming. This view can be used to frame theory on how some problems
are more difficult than others for genetic programming to solve. This chapter
subsequently summarizes my group’s current theoretical work at the
University of Michigan and extends the implications of that work to real-world
problem solving.

Key words: GP theory, tree structures, problem difficulty, GP-hard, test problems, Lid,
Highlander, Binomial-3

1. INTRODUCTION

In genetic programming (GP), the general consensus is that structure has
a role in GP dynamics. Beyond that general view, various researchers have
presented conflicting views as to the nature of that role.

Most maintain that structure is of secondary importance to content, which
involves the semantics and syntax of programs. After all, fitness is
determined by the evaluation of programs; only in special cases is fitness
determined by structure (e.g., Punch, Zongker et al., 1996; Clergue, Collard
et al., 2002). Consequently, it is not structure, per se, that matters but
schemata—building blocks of partial programs (e.g., Poli, 2000; Poli, 2001;
Langdon and Poli, 2002).

Others would suggest that structure is an emergent property—an effect
and not a cause—that arises as a result of fitness. Koza has actively
promoted this by introducing mechanisms that allow GP to “choose” an
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architecture (i.e., the size and shape) that suits the functionality of its
solutions (e.g., Koza, 1994; Koza, 1995; Koza, Bennett III et al, 1999).
Other researchers have also designed such mechanisms (e.g., Rosca, 1995).
Some have explored structure as an emergent property of fitness that occurs
without any additional mechanisms (i.e., Goldberg and O’Reilly, 1998;
O’Reilly and Goldberg, 1998). Emergent structure has not always been
considered in a positive light, in particular, excess structure—bloat—is
considered by some to be an emergent, albeit inefficient response to
maintaining fitness (e.g., Angeline, 1994; Langdon and Poli, 1997; Banzhaf
and Langdon, 2002; Soule and Heckendorn, 2002).

Still others consider structure as a causal influence that results in effects
that either would occur in spite of content or would drive the determination
of content. A number have studied the rapid convergence of a GP population
to a common root structure, which tends to drive the solutions that are
subsequently derived by GP (e.g., Rosca, 1997; Hall and Soule, 2004).
Others have proposed a structure-as-cause alternative to hypotheses
concerning evolution of size and shape and have proposed that the evolution
of size and shape is the result of a random walk in GP on the probability
distribution of possible sizes and shapes (e.g., Langdon and Poli, 2002). Still
others (i.e., (Luke, 2003) have proposed an alternative hypothesis and a
model of bloat that stems from a structural consequence of crossover.

My own group has also considered structure as a causal influence (Daida,
2003; Daida and Hilss, 2003; Daida, Hilss et al., 2003; Daida, Li et al.,
2003). However, we have adopted a perspective that structure is not only a
causal factor, but also a primary one, even when selection is specified solely
on content. However, we would claim that this perspective is not at odds
with any of the community’s views on structure.

I would further argue that although it is possible for all of these views to
be equally “correct,” it is not the most beneficial way to consider the roles of
structure. Structures that are causal are distinct from structures that are
emergent, as are structures that correspond to primary factors are distinct
from structures that correspond to secondary ones. What matters is the sense
and scale that is being applied to the term structure, which in turn helps to
determine which role to examine.

This chapter subsequently describes what these studies have to offer
concerning the roles of structure in GP. In particular, Section 2 presents my
group’s hierarchical view of structure. Each of Sections 3, 4, and 5 discusses
a level in this hierarchy. Section 6 concludes.
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2. A HIERARCHICAL VIEW OF STRUCTURE

In much of the field of GP, tree structures generally falls under the
category of problem representation (e.g., Angeline, 1997; Banzhaf, Nordin
et al., 1998). In spite of this, my group has considered tree structures as a
matter distinct from problem representation.

When one does an analysis in problem representation, one implicitly
assumes that what counts is information from a problem’s domain, as
opposed to the structure that carries that information. This view makes sense
when considering many algorithms in genetic and evolutionary computation.
In such cases, information structure—e.g., a matrix or a vector—does not
change in size or length for the duration of that algorithm’s processing. What
changes is content. For all practical purposes, information structure can be
(correctly) factored out of an analysis.

There are fields in computer science and in mathematics, however, where
a static information structure is not a given. Of interest, instead, are the
consequences of information structures that are variable and dynamic. Trees
are one such structure. Consequently, when one does an analysis of trees as
information structure, it is common to treat trees as mathematical entities
apart from the information such trees would carry (e.g., Knuth, 1997). This
treatment effectively renders information structure as a level of abstraction
that is distinct from that of problem representation.

Nevertheless, a treatment of trees as pure mathematical entities without
content can only go so far. GP ultimately produces programs, so at some
point there needs to be a consideration of tree structures with content. For
this and other reasons, my group has adopted a tiered view of structures. As
shown in Figure 5-1, we consider three hierarchically arranged tiers: lattice,
network, and content. Each level in this tiered view implies a certain level of
abstraction concerning content. The lowest level—lattice—presumes
structure apart from content, and subsequent levels—network and content—
presume decreasing levels of content abstraction.

Furthermore, each level in this tiered view implies a certain set of
behaviors and possibilities that apply to that level and that constrain possible
behaviors and outcomes in the next level up.

Of interest to theoreticians is that just as it has been possible to design
test problems that address theory in
genetic algorithms, my group has
designed test problems that address
structural theory in GP. We have
specifically devised test problems that
address each tier to illuminate that
level’s behaviors and outcomes. Of Figure 5-1. A tiered view for how

GP works.
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interest to practitioners is that findings associated with each tier also offer
insights on how to leverage the technology for solving problems.

Sections 3, 4, and 5 highlight lattice, network, and content, respectively.

3. LATTICE

The following summarizes the theoretical and practical implications
concerning our work at the lowest tier—lattice.

3.1 Theory Concerning Lattice

The term lattice refers to the hierarchical information structures—trees—
that GP uses without consideration of the content contained in the nodes of
those trees. As it turns out, there are consequences of using a variable-
length, hierarchical structure like a tree. Trees are not neutral to problem
solving in GP. In our work (Daida, 2002; Daida, 2003; Daida and Hilss,
2003), we have described a “physics” that occurs when larger trees are
assembled iteratively by using smaller trees. This “physics” is analogous to
diffusion-limited aggregation (Witten and Sander, 1981; Witten and Sander,
1983)—a well-known process that
describes diverse phenomena such as
soot, electrolytic deposition, and
porous bodies (Kaye, 1989).

Diffusion-limited aggregation
results in fractal objects that have
certain ranges for sizes and shapes.
These sizes and shapes can be
modeled so that theoretical ranges can
be determined. In a similar fashion,
processes in GP that iteratively
assemble larger trees by using smaller
ones result in fractal-like objects that
have certain ranges for sizes and
shapes. As in diffusion-limited
aggregation, these sizes and shapes
can be modeled; we developed our
lattice-aggregate model for this
purpose (Daida and Hilss, 2003). As in
diffusion-limited aggregation,
theoretical ranges can be determined.

Figure 5-2. Predicted Regions. A map
of likely tree structures can be derived
based on a process that is analogous to
diffusion-limited aggregation.
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A map of these ranges is given in Figure 5-2.
There are four general regions in this map. Region I is where most GP

binary trees occur. Region II is where increasingly fewer trees would be
found. Region III is where even fewer trees would typically occur. In
(Daida, 2002), we suggested that Region III might be impossible for all
practical purposes. Since then, however, we have tentatively identified those
conditions when the probability of trees occurring in this region approaches
zero. Region IV represents impossible configurations of trees, which occurs
in this case because the map presumes binary trees.

Region I occupies only a small fraction of the total allowable search
space. Region I only seems large because the map is depicted on a
logarithmic scale (which is a common convention). For the particular map
shown in Figure 5-2, Region I represents less than 0.01% of the entire
allowable search space in size and depth.

In (Daida, 2003; Daida and Hilss, 2003), we compared this map with
empirical data from several different problems, including: Quintic, Sextic, 6-
Input Multiplexer, 11-Input Multiplexer. We have also compared this map
against the tunably difficult Binomial-3 problem. In each case, nearly all of
the solutions that were derived by GP fit inside the area delineated by
Region I.

The model, however, presumes that the map applies to all GP problems,
regardless of the substance of what these problems are. Consequently, to test
for this, we de-vised a problem that is scored entirely on the structural
metrics of a tree (as opposed to exe-cuting the pro-gram associated with a
tree for
evaluating and
scoring that
program). This
test problem is
called the Lid.

The premise
behind the Lid
problem is fairly
straightforward.
There have been
efforts to limit
bloat by
including a
structural metric,
such as tree
depth as in
(Soule, Foster et

Figure 5-3. Lid Problem. The Lid problem demonstrates the
effects of tree structure at the level of lattice. Dark bold lines
indicate the boundaries for Region I; the dotted lines, the
boundaries for Region II. (a) Input (i.e., target sizes that GP needs
to reach). (b) Output (i.e., tree sizes that GP has derived in
response to input).
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al., 1996), as a part of the fitness measure. For the Lid problem, all of the
selection pressure is directed towards identifying a tree of a given size and
depth. A technical description of the Lid problem is given in (Daida, Li et
al., 2003). The question is then, If one were to do this, would GP be able to
cover the entire search space?

Our work has indicated “conditionally no” as an answer. Referring to
Figure 5-3a, each dot shows the location of a target shape for a single trial;
all GP would need to do is to assemble any tree with both a target number of
nodes and a target depth to succeed. The targets were randomly distributed
in the space of sizes and depths for depths 0–26. For this particular
experiment, GP used a population size of 4,000 and fitness-proportionate
selection. There were 1,000 trials in all.

Referring to Figure 5-3b, each dot shows the location of the best solution
for a single trial. In spite of diverting all of computational effort in GP to
simply coming up with a target tree shape, most solutions still exist within
either Regions I or II. In particular, 66% of the solutions are contained
within Region I; 94% of the solutions are contained within Regions I and II.

Our previous work on the Lid problem describes in detail empirical
results from both horizontal and vertical cuts across this map (Daida, Li et
al., 2003), instead of the Monte Carlo results shown here. In our current
investigations, we are finding a significant difference when using
tournament selection instead of fitness-proportionate selection. We suspect
other structural mechanisms are involved, which are not currently included
with the lattice-aggregate model.

3.2 Practical Implications of Lattice

“You can paint it any color, so long that it’s black.” (Attributed to H.
Ford about the Model T.) A similar saying could be quipped about GP.

It is true that GP can derive programs of a great many sizes.
Nevertheless, GP “prefers” that these sizes come in a specific range of
shapes. The range of allowable shapes is extremely limited and amounts to
fractions of a percent of what shapes could be possible. This limit implies a
constraint on the structural complexity that is attainable for standard GP,
which in turn affects the computational complexity of solution outcomes.

In (Daida, 2003), a longer discussion is given on the effects of structure
on problem solving.
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4. NETWORK

Of course, GP does more than put together tree structures. At the core of
it, GP builds up solutions from fragments of guesses. Somewhere scattered
in these guesses—the initial population of solutions—are the elements from
which GP must sift and reassemble. While many in the community would
take this for granted, this ability to reconstitute working solutions from
pieces does raise the following question: Just how small and just how
scattered can those fragments be in an initial population for GP to work?

If one took the time to map out the topology of interconnections between
various fragments in various individuals in an initial population, I would
claim that this topology constitutes a network. What these networks look like
in GP is currently an ongoing investigation. The following summarizes the
theory and the practical implications concerning our work at the level of
network.

4.1 Theory Concerning Network

We are not yet to the point of articulating a mathematical theory. We
have, however, designed a test problem to probe for their existence and, if
appropriate, their dynamics.

The chief difficulty in designing such a problem is a need to isolate the
topology of interconnections away from its substance. In other words, if it is
suitable to analyze networks in GP, there should be a set of behaviors and
phenomena that occur at this level, regardless of whatever executable
content is implicit in a GP population.

The closest parallel that the community of GP has in the discovery of a
set of behaviors and phenomena at this level would be investigations on
diversity (e.g., McPhee and Hopper, 1999; Burke, Gustafson et al., 2002a;
Burke, Gustafson et al., 2002b; Burke, Gustafson et al., 2004). At one level,
the goals between our study and these studies would be the same: an
investigation of where and how scattered fragments are within the context of
a population. At another level, the goals diverge. For example, what matters
in the studies of diversity is the uniqueness of those fragments, which often
presumes something about the content held within them. What also is
presumed in the studies of diversity is a tacit acknowledgement that more
diversity is better. Consequently, metrics that show a loss of diversity during
problem solving might either call into question the definition of diversity
that was used or whether the process of problem solving is somehow flawed
(e.g., premature convergence).

While we acknowledge that there are parallels between biological
diversity and the role of diversity in genetic and evolutionary computation,
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we have adopted a nuanced approach to this topic, similar to those taken in
investigations of ecosystems and networks. In particular, one raw count of
species in a given area is not by itself an indicator of ecosystem health.
Likewise, introducing more diversity into an indigenous network does not
necessarily result in a more diverse or robust ecosystem. For example, in
cases where an exotic invasive species is introduced, it is entirely possible
that a short-term increase in the number of different species for a given area
is a prelude to a collapse of an indigenous ecosystem as described in (Sakai,
Allendorf et al., 2001). Even in biology, diversity is a nuanced term.

The test problem that we have designed is called Highlander and was
first described in (Daida, Samples et al., 2004). The premise behind this
problem is simple and starts with a set of N uniquely labeled nodes, all of
which are distributed among M individuals in an initial population. All GP
has to do is to assemble an individual that contains a specified percentage of
N uniquely labeled nodes.

Put another way, the Highlander problem is like a game that begins with
a huge bag of marbles. Every marble corresponds to a node and there are as
many marbles as there are nodes in an initial population. The number of
marbles is known. Each marble has been labeled. Each label appears just
once. The object of the game is to grab enough marbles from the bag so that
one has a certain percentage of all of the unique labels in the bag.

Of course, the game would be easy if one had as many grabs as would be
needed and no one does anything else to the bag (like adding marbles).
Likewise, in GP, assembling an individual that consists of N uniquely
labeled nodes would be trivial if GP were allowed as many recombinations
as would be needed to create one individual while the population remained
static over time. However, each “child” in GP is a result of just one
recombination. Furthermore, the distribution of labels also changes over
time, in part because GP selects some “parents” more frequently than others.

It is possible, then, for bloat to occur in the Highlander problem. A label
counts just once, regardless of whether there is just one instance of that label
or a hundred instances of them. Consequently, a tree could consist of
thousands of nodes, but still have just three unique labels. Such a tree would
score the same as a tree that had three nodes with three different labels.

By the same token, it is irrelevant to the test problem to categorize which
fragments (i.e., subtrees) are introns and which are not, even if bloat were
present. Introns presume executability (i.e., syntactically correct code) and
functionality (i.e., upon execution, something happens). Neither applies to
Highlander because code is not executed during the course of evaluating an
individual. Consequently, it is entirely possible to point to a specific branch
in a Highlander solution and not know whether it is an intron or whether it is
the part of the tree that contributes to a fitness score. The specific
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programmatic content of nodes is rendered irrelevant in Highlander, which
is desirable when probing for and isolating network behavior.

As a probe, Highlander was designed as a tunably difficult problem as a
way to determine the conditions under which networking occurs in GP and
as a way to determine the factors that influence the combination of material

through networking. (For
this reason, then, no
mutation was used.) The
tuning parameter is the
specified percentage of N
uniquely labeled nodes
that an individual tree
must have. As a crude
measure of problem
difficulty, we used a
successful-trials ratio: i.e.,
the number of trials that
produced a correct
solution, which is then
normalized to the total
number of GP trials.
Figure 5-4 shows the
results of problem
difficulty as a function of
tuning parameter for
two different population
sizes for both tournament

Figure 5-4. Highlander Problem. Each plot corresponds
to a population size M and depicts the percentage of
successful trials as a function of tuning parameter
Parameter values that correspond to easier settings
have higher percentages of successful trials.

and fitness-proportionate selection. Each data point is the successful-trials
ratio for 1,000 trials. A total of 82,000 trials is depicted.

What is striking about the results shown is that GP is only able to
assemble a fraction of the total number of possible fragments into a single
individual. For population sizes that are commonly used in the GP
community, that fraction amounts to something between 2 – 18%.

The other striking finding was what happened when a comparison was
made between the map of Figure 5-2 and the shapes of the Highlander
solutions. Figure 5-5 shows the size and depth results for population size
1,000 and tournament selection for various tuning parameter values. Each
dot represents the size and depth for the best solution obtained for a trial.
There are 1,000 dots per plot. What is noteworthy about these results is an
absence of change in shape after the successful-trials metric goes to zero
(i.e., no trial resulted in a successful solution for An increase in
should result in an increase in the size of a tree, which is what happens when
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Figure 5-5. Size versus Depth Scatterplots for Tournament Selection, Population Size 1,000.
The boundaries for Region I are shown in bold. Since Region I has only been computed up
through depth 26, the Region I boundaries are truncated. An attractor is apparent when the
tuning parameter

GP is able to assemble a correct tree. The presence of an attractor at
in spite of what should be increasing selection pressure for trees to

grow, is noteworthy. What makes this attractor particularly striking is that it
exists even though there were no fitness criteria specified for either size or
depth. Similar behavior occurs for the other configurations of population
size and selection methods.

We speculate that the attractor represents an equilibrium point between
the rate at which solutions can be assembled versus the rate of losing of
individuals in a population due to selection.

GP can assemble a solution out of fragments that are distributed in a
population only so quickly. Assembly is further constrained by lattice
effects, which is evident in Figure 5-5. Although the boundaries for Regions
I and II have not been computed at the depths for which the Highlander
solutions lie, the shape and location of the attractor is consistent with a
lattice constraint at those depths.

At the same time, GP can lose fragments because not all individuals in a
population propagate. There has been work where it has been possible to
compute the rate of diversity loss because of tournament selection (e.g.,
Blickle, 1997; Motoki, 2002). In actuality, the attrition rate would be even
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higher because GP has a tendency to select longer branches and not roots for
subtree crossover (e.g., Luke, 2003), which subsequently means fragments
proximal to roots are lost.

Our analysis as of this writing is only preliminary and we have not yet
mapped out the topology of relationships between individuals. The
Highlander results hint at a network topology that exists and that has an
equilibrium point that is a consequence of how GP assembles all of its
solutions.

4.2 Practical Implications of Network

There have been anecdotes where GP is said to work reasonably with a
limited number of different kinds of functions and terminals. There have also
been anecdotes where GP has been known to fail when too many different
kinds of functions and terminals were needed to assemble a solution. Both
sets of anecdotes may reflect the same phenomena that occur at the level of
network.

GP has a sharply limited ability to assemble solutions from fragments
that are scattered throughout a population. When it is possible to construct a
solution from a limited number of different kinds of functions and terminals,
there is likely to be a number of redundant fragments. Consequently, a loss
of fragments would not likely be catastrophic.

However, if GP has to assemble a solution from many different kinds of
functions and terminals, the chance for redundant fragments would decrease.
The loss of fragments would be noticeable and consequential. The difficulty
curves of Figure 5-4 definitely indicated that there is an upper limit to just
how many different nodes can be used in the assembly of a solution. GP
might not be able to solve a problem at all if this upper limit is reached
before a solution is derived.

Furthermore, failure is likely to occur well before the upper limit is
reached, since this upper limit presumes that it does not matter as to the way
in which these nodes connect. If it does matter, which it does for most
problems in GP, there would be further constraints. These additional
constraints would occur at the next level of content.

5. CONTENT

What matters most to many who use GP is the solutions that the
technology generates. The solutions the technology is currently generating
are compelling in their own right. In a series of books and papers, Koza and
his colleagues have actively promoted GP as a discovery engine (Koza,
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Bennett III et al., 1999; Koza, Keane et al., 2000; Koza, Keane et al., 2003).
By 2003, 32 instances of solutions by GP met criteria that humans would
also need to meet if their solutions are to be deemed innovative (e.g., by
peer-review or by patent law). One of these 32 was sufficiently innovative to
merit a patent application. Koza and his colleagues contend that someday GP
will routinely make discoveries and inventions (Koza, Keane et al., 2003). I
would agree that merits of GP as a technology ultimately reside in its
substance, its solutions, and not whether it had the appropriate lattice
structure or constructed an appropriate network.

Of course, the substance of a solution in GP depends on its programmatic
content. The last and highest level—content—concerns how GP generates
functional solutions, which happen to be subject to the constraints at the
levels of lattice and network. The following summarizes the theory and the
practical implications concerning our work at this tier.

5.1 Theory Concerning Content

I would say that much of the theoretical work in the GP community
occurs at this level, where content is no longer abstracted away, where
problem domains matter, and where fitness depends on executing code.
Consequently, current theories on schema, bloat, and diversity (to name a
few) have resided at this level. My own group’s current work at this level is
characterized by the following motivating question: “How do the
consequences of lattice and network affect what happens at the level of
content? ”

We have just begun to explore what this question means, since much of
my group’s recent effort has involved lattice and network. Nevertheless, my
group’s oldest and first tunably difficult problem—Binomial-3—was
designed for understanding content issues in problem difficulty (Daida,
Bertram et al., 1999). Although it started off as a tool for exploring the role
of building blocks in determining what makes a problem GP-hard, the
Binomial-3 has instead been instrumental in our current understanding of
structure. Structure, as it seems to be turning out, plays various roles in
problem solving by GP and is a major factor in determining problem
difficulty (Daida, Polito 2 et al., 1999; Daida, Polito 2 et al., 2001; Daida, Li
et al., 2003). The interplay between lattice and content was discussed at
some length in (Daida, 2003) and so is not recapitulated here. Instead, what
is discussed are some of the new developments in our group.

What is new to us since last year’s workshop are the findings from the
Highlander problem. If only a fraction of the material in the initial
population can be assembled to form a solution, we wondered about how
this fraction was distributed and what the dynamics were that governed
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content. To explore the consequences of the Highlander findings on content,
we used the Binomial-3 to focus on the interplay between network and
content. See (Daida, Ward et al., 2004) for more details.

The Binomial-3 is an instance taken from symbolic regression and
involves solving for the function Fitness cases are 50
equidistant points generated from over the interval [-1, 0). The function
set is {+, -, ×, ÷}, which corresponds to arithmetic operators of addition,
subtraction, multiplication, and protected division. Its terminal set is {x, R},
where x is the symbolic variable and R is the set of ephemeral random
constants that are distributed uniformly over the interval The tuning
parameter is which is a real number. The Binomial-3 can be tuned from a
relatively easy problem (e.g., to a difficult one (e.g.,

As in Highlander, my group modified the Binomial-3 so that every node
in the initial population was uniquely labeled. In this way, the use of nodes
in any solution in any generation can be audited back to a particular
individual in an initial population. For the purposes of illustration, we call an
individual in an initial population an ancestor. Keeping track of ancestral
lineages for a current population allows us a rough measure of how GP uses
and assembles fragments from the initial population. For example, if GP
uses fragments that are distributed broadly in an initial population, an audit
would likely show a high number of ancestral lineages that belong to a
current population. Likewise, if GP uses fragments that are distributed
narrowly in an initial population, an audit would likely show a low number
of ancestral lineages that belong to a current population.

We ran an experiment where we used representative settings for “easy”
and “hard” problems (i.e., and respectively). We also used
two different selection methods: fitness-proportionate selection (which is a
selection method that is known to maintain diversity, e.g., Pincus, 1970;
Galar, 1985) and tournament selection (which is a selection method that is
known to lose diversity, e.g., Blickle and Thiele, 1995; Blickle, 1997)). This
represents a total of four different experimental configurations. We ran 200
trials per configuration, with each trial consisting of a population size of 500
that ran for 200 generations. The results are shown in Figure 5-6.

Figure 5-6 is a complete summary of approximately 80 million trees that
were audited into lineages of 400,000 ancestors. The summary is divided
into four density plots, where each density plot corresponds to a different
experimental configuration of selection method and tuning parameter
Each plot shows the number of ancestral lineages present in a population as
a function of time (in generations). The maximum number of ancestral
lineages for each trial was 500, which happened to occur just at generation 0
(i.e., at population initialization). For visualization purposes, only the range
[0, 150] is shown. Each density plot depicts 200 trials worth of data. Darker
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Figure 5-6. Surviving Number of Ancestor Lineages by Problem Difficulty and Selection
Method. Each plot corresponds to a particular selection method and tuning parameter setting.
The thermometer graph in each plot indicates problem difficulty: the lower the percentage,
the harder it was for GP to solve.

tones in a plot correspond to more trials that have that number of lineages
remaining at a given generation. The “thermometers” that are embedded in
each plot correspond to the measured problem difficulty (i.e., a successful-
trials ratio, where a higher percentage corresponds to an “easier” problem).

For our tiered view to be useful, the Binomial-3 results should be
constrained by the Highlander results. The results shown in Figure 5-6 do
support the tiered view, since surviving lineages roughly correspond to the
amount of material that is used. For each configuration, at most 12% of
ancestral lineages remained intact through generation 200. The surprise in
our findings was that fewer lineages are roughly correlated with easier
problem solving. In other words, with less diversity, GP yielded a high
success rate.

5.2 Practical Implications of Content

Barry Schwartz wrote in his recent book, The Paradox of Choice: Why
More is Less, “...the fact that some choice is good doesn’t necessarily mean
that more choice is better.... there is a cost of having an overload of choice.”
(Schwartz, 2004), p. 3. Schwartz was talking about Americans, but he could
have just as easily been talking about GP.
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Having more choices from which to devise a solution would at first blush
seem a reasonable strategy, particularly concerning genetic and evolutionary
computation. Having more choices is like having more biological diversity.
Nature has so many variations on a theme of life that even now there is not a
complete species catalog (Wilson, 1992). If that wasn’t enough, there have
been compelling theoretical arguments for having diversity (e.g., Pincus,
1970;Galar, 1985).

The allowable “space” in GP, as constrained by lattice and network, is
fairly small. For a set of commonly used conditions, the lattice constrains
GP to about 0.01% of the entire search space. Within what amounts to a
narrow strip of searchable space, something less than 20% of the material
given in an initial population can be reintegrated into a single solution.

What Figure 5-6 indicates is that it may be possible to overload GP’s
“space” with too many choices. Fitness-proportionate selection allows for a
significant fraction of what is theoretically allowable for recombination of
initial population material. In the Binomial-3, much of this allowable
material would be unique and in the form of ephemeral random constants.
The configuration                    fitness-proportionate selection) that retained
the highest number of ancestral lineages and consequently the most number
of unique nodes actually scored lowest in terms of GP’s ability to provide
correct solutions.

In GP, there is a basis for “hidden costs” for having too many choices.
For example, all nodes may be statistically permissible for their use in
assembling a solution, but not all nodes would be beneficial. The question
then becomes, what does GP do with the material that is not beneficial, even
detrimental, to problem solving? A number of different (emergent) methods
that GP could use have been described in (Daida, Bertram et al., 1999). One
could argue that each of these costs represents a penalty, since each
consumes computational resources.

So what does one do? The following is a list of our speculations that
could apply to real-world problem solving with GP:

Nonetheless, even in Nature, there are limits to diversity when one takes
into account analogs for lattice and network. For example, if lattice
corresponds to an island and network to that island’s ecosystem, there have
been seminal experimental and theoretical investigations (MacArthur and
Wilson, 1967) that have shown that there are limits to the number of species
that can coexist on that island. Although such works have been updated and
are now regarded as somewhat simple, the original notion remains that the
extent of a physical space is a constraining factor to the amount of biological
diversity that this space can support.
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Use large populations. As Figure 5-6 indicates, GP recombines initial
population material that is distributed among a small number of
ancestors. Using large populations increases the probability of having
suitable material concentrated in a handful of individuals in the initial
population.

Use tournament selection. For our work, we used a tournament selection
size of 7. Although fitness-proportionate selection is beneficial in
maintaining diversity, tournament selection removes “choices” as a
natural consequence of the method. Fewer choices might result in fewer
costs of overloading GP’s “space.”

Consider that having a large variety of  different functions and terminals
within GP solutions may actually initiate “overloading.” If this is the
case, it could mean that the function or terminal set is too large and needs
to be pared down.

Consider the use of structure-altering operations that delete material
from a population. Such structure-altering operations have been described
in (Koza, Bennett III et al., 1999; Koza, Keane et al., 2003). It may help
to mitigate against “overloading.”

If a solution likely requires the use of a large number of different kinds of
functions and terminals, consider the use of meta-programs. In other
words, GP wouldn’t directly derive a solution, but instead derives a
program that when executed, produces a solution. The meta-program
could then use a more limited function and terminal set than what is
required of a solution.

6. CONCLUSIONS

The roles of structure in problem solving by GP are multifaceted and
complex. This chapter has shown that it is possible for structure to be
simultaneously a cause and an effect, simultaneously a primary factor and a
secondary one. While these roles of structure may all be equally true, I shave
uggested that they are all not equally scaled.

The tiered view featured three levels: lattice, network, and content. Each
level corresponded to a particular structural scale. Lattice involved the
largest scales in which structure was a causal factor and a primary influence.
Network involved intermediate scales and allowed for emergent structures to
occur. Content involved the fine scales and considered the specifics of what
was in the network. It was at the level of content that structure was an effect
and a secondary factor.

Each level can be examined for a different set of system behaviors,
particularly with regards to how structure influences both problem solving
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and problem difficulty in GP. Although the theory is nascent, we have
devised a tunably difficult test problem for each level to probe for behaviors.
This chapter represents our first summary of how all three problems—Lid,
Highlander, and Binomial-3—serve as part of an integrated investigation
into the roles of structure in GP for problem solving.

The counterintuitive implication of our work was that because of
structure, it is possible to overload GP with too many choices and with too
much diversity implicit in those choices. The work indicated that there is a
“season” when diversity is best leveraged by the technology and that this
“season” occurs at population initialization (at least for standard GP). It is a
reason why large populations are argued for in difficult real-world problems,
rather than a strategy of maintaining diversity throughout the course of a run.
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Chapter 6

LESSONS LEARNED USING GENETIC
PROGRAMMING IN A STOCK PICKING
CONTEXT
A Story of Willful Optimism and Eventual Success

Michael Caplan1 and Ying Becker2

1Principal, Head of Quantitative US Active Equity, State Street Global Advisors, One Lincoln
Place, Boston, MA 02111 ;2Principal, Advanced Research Center, State Street Global
Advisors, One Lincoln Place, Boston, MA 02111;

Abstract: This is a narrative describing the implementation of a genetic programming
technique for stock picking in a quantitatively driven, risk-controlled, US
equity portfolio. It describes, in general, the problems that the authors faced in
their portfolio context when using genetic programming techniques and in
gaining acceptance of the technique by a skeptical audience. We discuss in
some detail the construction of the fitness function, the genetic programming
system’s parameterization (including data selection and internal function
choice), and the interpretation and modification of the generated programs for
eventual implementation.

Key words: genetic programming, stock selection, data mining, fitness functions,
quantitative portfolio management.

1. INTRODUCTION

This is the story of how the US Quantitative Equity Area and the
Advanced Research Center of State Street Global Advisors (a unit of State
Street  Corporation)  began  using  genetic  programming  techniques  to  discover
new ways of stock investing in specific industries. The story begins with a
poorly understood data mining technique, a discussion of previously
developed underlying stock picking factors that we thought might make



88 GENETIC PROGRAMMING THEORY AND PRACTICE II

sense, and a lot of disagreement on how to (if not whether to) implement a
final stock-picking model. We describe our tribulations, technical and
political, in defining the problem, codifying the solution, and finally
convincing someone to invest using this model. Importantly, we describe
how the genetic programming process improved our knowledge of how the
stock market worked in a small, but portfolio performance-significant,
industry.

This paper has the following broad sections:

The stock picking problems we faced,
The financial elements that we had in place,
Why a direct solution really wasn’t possible and how we needed to
construct (and adjust and adjust and adjust) our fitness function to proxy
portfolio  performance,
How we avoided/sidestepped data mining/snooping concerns,
How we interpreted and modified our raw genetic programs, and
The political battle to use the new model.

We promise that there are no special financial insights contained within
this paper and the details of the final model are absolutely proprietary and
are left purposefully vague but we think the story may be interesting to those
trying to find new applications for genetic programming techniques.

1.1 The Stock Picking Problems We Faced (a.k.a. Our
Growth Market Problem)

As quantitative portfolio managers at one of the largest institutional
money managers in the world, our task is to build risk-controlled, market-
beating stock portfolios using a composite model made of individual stock-
picking factors. These stock-picking factors fall into the following general
classes: valuation (price-based), market sentiment, and business quality.

An inherent part of our portfolio management task is to build portfolios
that work in a variety of market conditions and minimize the investors’ pain
in periods where our stock picking isn’t strong. To this end, we do quite a
bit of ex post analysis of our portfolio performance results and attempt to
decompose our returns into elements of market risk and residual stock-
picking performance as well as other more esoteric elements (volatility,
market cap size, labor intensity, etc.). The net result of this analysis is a
series of statistics that are suggestive of areas in which we do well and
poorly. Often these statistics are quite time-period specific and require



Genetic Programming in a Stock Picking Context 89

additional insight (or intuition) that is generally well beyond the degrees of
freedom permitted by the data.

One area that needed improvement was our performance in the high
technology manufacturing industry. We tend to have very good average
stock-picking performance in this industry over time but had dismal
performance in periods where the stock market was in a speculative growth
market mode. Given that the speculative growth markets had been of
relatively short duration during much of 1980s and early 1990s, our
composite model’s weakness in growth markets was masked by a
preponderance of value markets in the prior 20 years. With a newly
reinvigorated investor class gathering assets and market power (i.e., hedge
funds and ultra-short term day-traders) as well as shorter-term client
attitudes towards performance shortfalls, we needed to get our High Tech
Manufacturing model into shape for both growth and value markets. For a
relatively small industry of roughly 30 stocks and less than 4% of the market
indices we typically benchmark our portfolios against, the performance
impact of this industry (both positive and negative) was outsized and needed
to be fixed.

Our traditional approach to solving this problem would be to go out and
find a bunch of new (or old but unimplemented) factors that look like they
might work in this area. This had already been attempted a few times and
though we felt that we had sufficient elements to work with, we suspected
that we hadn’t combined them optimally. Given the number of possible
factors, the various degrees to which they are correlated, and the sheer
number of possible interactions that we would need to investigate, we turned
to the genetic programming technique that had been used to create fairly
straightforward portfolio trading rules in State Street Global Advisors’
Currency Department.

2. PROJECT DESCRIPTION OVERVIEW

The flowchart shown in Figure 6-1 describes the development process for
our project. Later sections of this paper describe in considerably more detail
some of the decisions and compromises made in this project. We start with
the upper left hand corner of the flowchart and begin with our set of
presumptively useful factors (properly transformed for the project, we call
these the alpha factors) pushed into the genetic programming system itself.
Using the output of the genetic programming system, we then translate the
models into mathematical formulae and calculate various translations to
decipher seemingly impenetrable equations. We then hit a decision node,
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where we decide whether we have acceptable results for further testing or
whether we need to make adjustments to our genetic programming process,
in which case we loop again. Presuming we have acceptable equations to
test, we would then compare these equations against our current factor
combination.

Figure 6-1. Genetic Program Project Flowchart

2.1 Acceptability Criterion – Does the resulting model
agree with our intuition of how the markets work?
Does it improve our knowledge?

The acceptability decision node requires a bit more explanation, as this is
a central decision to the implementable goals of the project. As portfolio
managers and observers of markets, it is a central requirement that any
models used in our approach must be explainable and justified on economic
or behavioral theory. Hard-won experience shows that trading data can
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mislead investors into drawing the wrong conclusions about history. Tying
empirical research back into current theory provides us with comfort that we
are at least looking at something potentially sustainable in the future.

One of the important questions that stirred this acceptability criterion was
this one: If the genetic programming system came back with the square root
of market capitalization, an equation that would have no theoretical basis,
would we use it? The answer had to be a resounding NO. The net result of
any implementable solution had to contain a link back into theoretical
justification of how stock markets work.

From a research standpoint, we were stymied by more traditional
approaches to the high technology manufacturing industry. By working
from a largely assumption-free stance, i.e., mining reasonable data, we felt
we would gain new intuition into how this challenging industry worked.

3. THE FINANCIAL ELEMENTS (THE DATA)

The data that we used in this project was initially drawn from a set of
more than 60 factors that were used in prior component weighting exercises.
These were financial factors of a variety of classes, such as technical models
(e.g., moving averages and oscillators), fundamental ratios built from
financial statements (such as a company’s balance sheets and income
statements), and a variety of other indicators from other data sources (such
as earnings estimate data). Also included were the component factors that
were already included in our existing composite model (also called Current
Alpha Model).

The data was cleaned and transformed in a variety of meaningful ways
(arctan, log, z-score, and percentiling transformations were used) to create
an even bigger dataset for entry to our genetic programming system. An
important side effect of this transformation work as well as the first genetic
program runs was the discovery of a variety of data errors. As we put more
pressure on our working dataset, we found a larger number of apparent
anomalies that needed adjustment – nothing like a data-mining tool for
discovering the errors in your data.

3.1 Factor Models Entering Problem

The final five alpha factors entering the last loop of our development
process were:

EP: 12 month forward Earnings-per-Share valuation Score
CF: Free Cash Flow valuation Score
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ETD: Earnings Estimate Trend Score
NOA: Net Operating Assets – Financial Quality Score
WRSI: Price Trend Score

Monthly data were drawn from the time period: 1993-2003. Each of
these factors was cross-sectionally (within time periods) transformed. On
average, there were 30 stocks per month that entered our dataset. Earlier
data was unsuitable for use in the project as the number of stocks in the high
technology manufacturing industry quickly dropped below 15. 25 stocks per
month was considered to be a reasonable cutoff, fewer data points would be
too noisy, too sparse, and probably not representative of the future
performance and population of this group.

4. THE FITNESS FUNCTION

The fitness function, as we quickly found, was the linchpin to making the
genetic program produce progressively better results. Due to the nature of
the portfolio construction process, it is pretty hard to simulate the various
portfolio tradeoffs necessary to emulate the performance of a particular
model. In particular, there are a huge number of interactions of both risk and
return that can create massive combinatorial problems even with a small
number of candidate stocks.

As an illustration of this problem, imagine a portfolio holding exactly
one stock. From a risk standpoint, that one stock could represent overall
exposure to a variety of common market risks, such as volatility, industry
exposure, market size, and trading liquidity. By adding additional stocks to
the portfolio, covariance among stock returns has a non-linear impact on the
overall risk of the portfolio. Any individual position change may cause other
portfolio impacts seemingly unrelated to the choice of a particular stock.
The upshot is that we needed to find a proxy for the performance of the
tested model.

4.1 Fitness Elements as a Proxy for Portfolio
Performance

Over time, we’ve developed a variety of tests that proxies a factor’s (or
combination of factors’) performance within a portfolio context. These tests
include, among others, information coefficients (rank correlation of a priori
factor scores with ex post stock returns, also known as ICs) and top ranked
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quantiles versus bottom-ranked quantiles (also known collectively as
spreads). Viewing spreads in relation to their temporal variance also
provides an important metric called an information ratio, a measure of
reward to risk. As both long-only (buy and sell stocks) and long-short
(buy/sell as well as short/cover stocks) investment managers, we need to
understand the whole distribution of returns.

In examining any factor, we look at a variety of these statistics and
receive a tableau of results – never have we seen a completely positive
report on any factor. There is always some tradeoff or compromise to be
made. For example, a factor may have great ranking ability (via the IC
statistics) but the overall spread may actually be very small or negative.
When reviewing this statistical “tableau,” experienced humans are quickly
able to distinguish between good and poor models, though we might argue
about finer gradations or a factor’s appropriateness for various applications.

For a proper fitness function to operate in an automated fashion, it needs
better specificity of what constitutes a good model and how various “warts”
should be penalized.

4.2 Fitness Function Specification

After much trial and error, we decided on a weighted sum of two
information ratios, penalized for non-monotonic results and program
complexity. The first information ratio is based on the return spread
between the highest ranked decile of stocks and the lowest ranked decile of
stocks (i.e., for a 30 stock universe per month, which was typical during this
period, a decile included 3 stocks). This provides a proxy into the returns
resulting from a long/short portfolio management strategy. The second
information ratio compared the top decile to the middle deciles, which
provides a proxy for long-only management. Penalties were assessed at
various weights for a lack of monotonic return spreads – high penalties if the
top was below the bottom and somewhat lower penalties were assessed if the
middle was out of order.

The genetic programming code that we used searched for the minimum
fitness from the most perfect score possible, i.e., a perfect foresight score.
This allowed for the possibility of a model of seemingly infinite “badness”
without encountering numerical difficulties with scaling. You can well
imagine that we created such models during our search! As an aside, the
discussions that took place as we developed the fitness function were
illuminating and incorporated a lot of really good suggestions – we’ll see
additional benefits from these discussions in future factor model research.
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Equation (6-1) describes our fitness function. Recall that the genetic
program was configured to minimize the fitness function value, i.e., the
closer we got to “perfect” the more “fit” the formula.

where
= the fitness score of formula y
= top to bottom deciles spread Information Ratios for
the perfect foresight and formula y cases
= top to middle deciles spread Information Ratios for
the perfect foresight and genetic program y cases
= non-linear penalties for non-monotonic formula y as
well as a penalty on formula complexity based on the
size of the tree developed

5. GENETIC PROGRAMMING PARAMETERS

Next to the data and the fitness function definition, adjusting the genetic
program parameters and program representation provided a great deal of fun
in order to produce good results.

5.1 Program Representation

Our representation is a strongly typed (real numeric type) tree with at
most two child nodes per parent node. Internal nodes represent
mathematical or logical (converted to real) operations to be performed on its
child nodes. Keeping the tree strongly typed permitted a wide variety of
functions to be used without having to account for many incorrect function
operations. We found that keeping the crossover/mutation operations simple
was key to keeping the genetic program speedy.
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Figure 6-2. Sample Program Representation

5.2 Time-Series Selection: Avoiding Data
Mining/Snooping Concerns

The data periods to be used were randomly selected upon program
initialization from our dataset, without replacement, to one of three sets:
Training, Selection, and Validation. The selection of dates was to be
balanced across years and market conditions, if a random selection
sufficiently violated our stratified sampling requirements, a new set of dates
were selected. This helped us to avoid time-period specific problems (over
fitting to a certain kind of market or calendar effect, for example). In
addition, we kept back a sample of data that were NEVER used in any
analysis until our final round of analysis was complete.

The training dataset, representing 50% of the in-sample data, was used to
form the raw formula. Winners with the dataset went on to the selection
dataset, a further 25% of the in-sample data. The winners from this round
were then tested, after termination of the genetic programming process
against our validation dataset, the last 25% of our in-sample data. By
creating successively higher hurdles for the genetic program’s formulae, we
balanced getting good results against over fitting the available data.
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5.3 Function Selection

A wide variety of binary and unary mathematical and logical functions
were used. We created methods to build trees using the following standard
mathematical operations:

Add, Multiply, Subtract, and Divide,
Log, Absolute Value, Unary Minus and Square-root,
Pass-through (or Null-unary function)
Basis Functions

The Log and Square-root functions required additional logic to protect
against negative numbers. Basis Functions provided a way for the genetic
program to “cut” a particular distribution at a certain point. Our hopes were
that these basis functions would find particular areas of interest, but rarely
were these functions adaptable and never made it into our final formulae.

We still wonder how we could have gotten more performance from these
functions.

For the most part, the simpler mathematical functions enjoyed the most
usage and were consistently used in the final acceptable formulae.

5.4 Other Genetic Program Parameters

We used many standard tree operators to grow, mutate, and express new
formulae from good fitness candidates. We experimented with a wide
variety of operators and found that the simplest crossover and mutation
operators provided very good results.

Where we found somewhat more interesting results than the literature
indicated was in the use of denies and limited migration.

5.4.1 Demes and Population Control

Given that we were using a SUN™ server with 16 CPUs, it made sense
to try to use all of the CPUs. One element that we found early on in our
research was that it was often quite possible for a single type of formula to
do well in early generations and then fail to improve because they are locked
into a local extrema. By using independent populations (loosely related to
genetic demes or islands) that were permitted to grow “better adaptations”
before subjecting them to greater competition (via migration to nearby
populations), we were able to obtain a more robust set of formulae that were
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diverse enough to allow the formula to adapt beyond the sub-optimal models
produced by single populations.

5.4.2 Other Controls and Genetic Program Tuning

A variety of other controls were important in guiding our search for a
better genetic program, some with considerable effect, others with
(surprisingly) little effect:

Number and Type of Mutations
Number and Type of Crossovers
Termination Conditions, including the Number of Generations, Fitness
Tolerance, and Fitness Invariance Over Time
Population Size
Number of Demes
Migration Wait
Depth of Allowable Tree

The genetic programming results seemed fairly insensitive to the number
(probability) of mutations and crossovers, contrary to most literature that
we’ve read. We did find that there were some reasonable levels that allowed
convergence with fewer generations; it turns out they were awfully close to
the genetic program library defaults. The population sizes and number of
demes certainly had impact on the diversity of the initial formulae that were
built – generally the higher the better if you have time. Migration wait is
basically a parameter that controls how long the demes will act
independently of other demes before “local best” formulae migrate to nearby
populations. A moderate number (we used 100 generations) tended to work
best. Depth of allowable tree prevented very large trees from being built.
Note that this was also used as a penalty in our fitness function – less
complex formulae are preferred.

The Termination Conditions were interesting controls to experiment
with. We found that we got very good results under 500 generations, any
more than 500 generations were essentially a waste of time as the
complexity of the resulting genetic programs grew exponentially. We
experimented with generations as much as 50,000 with no useful
improvement in fitness. This “wait” for results also allowed us to
experiment with other functions related to best fitness and the current
number of generations. Knowing when to cut a run short seemed to be a
useful way to getting more knowledge out of our process.
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6. GENETIC PROGRAMMING RESULTS

6.1 Simplification and Interpretation of Formulae

The genetic programming procedure, in its final run, provided five
different formulae. Given the proprietary nature of these formulae, we are
not able to display them in this paper. Algebraic simplification and
interpretation of these formulae helped inform our changing intuition about
the high technology manufacturing industry and importantly, gain
acceptance for eventual implementation.

Viewing the partial derivatives of the formula and simplifications (both
numerical and analytical) of each formula provided additional insight into
market behavior. In a gratifying moment of this project, we were able to
provide significant improvement to our knowledge that was readily
verifiable through additional, directed, independent tests. We also
performed various comparisons of the “new” genetic program formulae to
our current model formulation to provide a reasonable benchmark of
improvement.

Sample graphics of the partial programs in Figure 6-2 illustrate the
extent to which we attempted to make the genetic program formulae
accessible. Figure 6-3 illustrates how a particular formula was sensitive to a
particular factor. We strongly recommend the use of a symbolic algebra
program (such as MATHCAD™ to help with the analytical and numerical
simplification, differentiation, and factoring of the formulae. Using these
programs allowed non-mathematicians to readily grasp new insights by
simply rearranging and grouping terms of the formula.

Fortunately, we found considerable similarity among the formulae: the
same factors, at roughly equivalent ratios allowed us to consider them en
masse. We then picked the simplest one (which strangely also had the best
fitness function as well, hmmm) using the time-honored Occam’s Razor.
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Figure 6-3. Partial Derivative Analysis

7. POST GENETIC PROGRAMMING PORTFOLIO
SIMULATIONS

The penultimate step to final implementation of the new model was to
backtest (or simulate) the newly found model in a full portfolio construction
context. Recall that our genetic program’s fitness function was only a proxy
for this final, more involved step. Using our judgment, we produced results
that were somewhat out of sample (though not completely out of sample due
to data limitations). This process is similar to what we’d do in our more
traditional factor testing approach.

Figures 6-4 and 6-5 demonstrate the effectiveness of the new model
relative to our current model. Annual results, shown in Figure 6-4, as well
as market style results found in Figure 6-5, showed a significant
improvement over the current alpha model. The improvement of overall
return and the effectiveness of the new model in both growth and value
periods were noted as satisfying many of the investment goals for this
project.
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Figure 6-4. New Formula Performance Measures

Figure 6-5. Growth and Value Market Measures
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8. FINAL STEP TO IMPLEMENTATION

The final step to the project was demonstrating this new model and
investment capability to our Technical Committee (a sub-committee of our
Investment Committee) that has to approve all substantive model and
investment strategy changes. This is a bright and knowledgeable committee
of portfolio managers, (i.e., practitioners, not technical statisticians.)
Classical statistics (such as OLS regression) are well understood by this
group; other statistical techniques much less so. In hindsight, we should have
better prepared the committee members and given them more time to absorb
the content. Let’s just say our first presentation of this model to the
committee was uncomfortable for all.

First, the committee was for the most part, ill-prepared to discuss or
evaluate the genetic programming technique. We spent much of our time
describing the genetic programming technique rather than discussing the
results of the model. We highly recommend finding a really good metaphor
for the genetic programming technique and sticking to it! Also concentrate
on the results and touch on the technique only when necessary.

Second, there was just enough prior knowledge of the technique that
members of the committee were able to brand the technique, gasp, “a data
mining technique” – a highly pejorative label in our industry. By the time
we’d finished describing how we avoided data snooping, we had tired out
our audience.

Third, the new intuition developed from our process required bending the
committee members’ minds around the new concepts; concepts with which
the project team members were working with for months. This was too
much, too fast for the committee.

If we were to do this over again, we would have met with each
committee member individually and discussed the project and its results
prior to the acceptance meeting. This would have increased the time needed
to gain approval but would have also decreased the initial unease that this
project engendered in the committee.

9. SUMMARY

At the end of this project we have a newly implemented stock-picking
model (it is too early to tell how it is doing in “real life”). Along the way we
learned quite a bit more about how markets operated; something that is
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informing our general opinion of market behavior and future research
directions.

The use of the genetic programming techniques was important but not
necessarily central to the success of the project. The use of additional
analytics, algebraic simplification programs, and human judgment drove the
project to a successful completion. Our original hopes that this would be
essentially a drop-the-data-in-get-an-answer-out kind of analysis were
quickly dashed but were replaced by a more considered view of the promise
and limitations of the genetic programming technique.
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Abstract This chapter describes the notion of Run Transferable Libraries(RTLs), libraries
of functions which evolve from run to run. RTLs have much in common with
standard programming libraries as they provide a suite of functions that can not
only be used across several runs on a particular problem, but also to aid in the
scaling of a system to more difficult instances of a problem. This is achieved by
training a library on a relatively simple instance of a problem before applying it
to the more difficult one.

The chapter examines the dynamics of the library internals, and how functions
compete for dominance of the library. We demonstrate that the libraries tend to
converge on a small number of functions, and identify methods to test how well
a library is likely to be able to scale.

Keywords: genetic programming, automatically defined functions, run transferable libraries.

1. Introduction
This chapter extends work initially (Keijzer et al., 2004) presented on the

notion of Run Transferable Libraries(RTLs). Unlike traditional Evolutionary
Algorithms, RTL enabled methods accumulate information from run to run, at-
tempting to improve performance with each new iteration, but more importantly,
trying to build a library that can be used to tackle new, related, problems.

RTLs are similar to programming libraries in that they attempt to provide
a suite of functions that may be useful across a particular class of problems.
For example, the initial presentation of this work showed how an RTL enabled
system was able to outperform an ADF GP system after just a few iterations.
Moreover, it was demonstrated that RTLs can be transferred across increasingly
more difficult cases of a problem class, enabling the system to solve more
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difficult problems. For example, the system was able solve a number of parity
problems (from 4-parity to 11-parity) with an increasing number of inputs faster
than GP could solve each.

In the present chapter, the use of Run Transferable Libraries is investigated on
a few selected logical problems. In contrast with earlier work, the investigation
is not focused on performance per se, but on the contents of the libraries and
how they evolve to meet the objectives in a set of problems. To study this,
the parity problems are briefly revisited, but more effort is directed towards
the Multiplexer problems. Particularly of interest are the balance between
functions of different arity and the composition of the library, as these will
give insights into not only how GP uses RTLs, but also into what are the most
salient functions for the problems examined. Our hypothesis is that libraries
that converge to a small number of functions will be the most useful. Given
that we are examining Boolean problems, there is a finite number of possible
functions that can appear, and it is possible to examine the functions to test
if they are semantically identical. Furthermore, as the optimal functions are
known for the Multiplexer and Parity problems, it is possible to examine if the
libraries converge to these.

2. Background

Modularity and re-usability are two features much desired in many high level
programming languages. Modularity, in particular, can benefit most program-
ming exercises in that it can help divide a problem into more manageable pieces.
When this division is done on a logical basis, the overall effort required can
also be reduced, as programmers dealing with a well defined logical block can
concentrate their efforts on that, without concern for side effects such as the
modification of other variables. Similarly, virtually all handwritten programs
now depend to a large extent on prewritten libraries of functionality. Libraries
provide sets of functionality, where functions of a similar type are grouped
together, e.g. math functions, I/O functions etc.

There has been considerable work in GP on exploiting these features, mostly
modularity. There are two reasons why the use of modules in GP can be
beneficial. Firstly, taking a more divide and conquer approach to a problem
can often significantly reduce the difficulty, and, secondly, once a useful module
has been discovered, i.e. that at least partially solves part of the problem, it can
be propagated through the population, quickly improving the performance.

Module Acquisition Strategies
A review (Keijzer et al., 2004) of module acquisition in GP examined a

number of these schemes. Most can be described of their module acquisition
strategy and their module exploitation strategy. Module acquisition strategies
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are usually either explicit, where the modules are in some way predefined before
a run, or implicit, where modules are discovered during the run.

Examples of explicit strategies include standard Automatically Defined
Functions (Koza, 1990, Koza and Rice, 1991, Koza, 1994) (ADFs) in which in-
dividuals evolve local functions which can be called by individuals. Typically,
a user specifies the number and structure of ADFs that will be made available
to the system. Koza demonstrated that, on problems in which solutions can ex-
ploit modularity, any form of ADF, even an inappropriate (e.g., having a badly
chosen number of arguments) is better than having none.

Implicit module acquisition strategies are those that automatically discover
modules during a run. Examples include ARL (Rosca and Ballard, 1994),
Subtree Encapsulation (Roberts et al., 2001, Howard, 2003) and GLib (Angeline
and Pollack, 1992). Each of these has some mechanism to harvest a population
for useful modules that can be propagated through later populations. Most
modularity techniques work within a particular run. For example, ADFs start
with a similar random make up to the individuals that call them (the Result
Producing Branch) and evolve in parallel. At the end of a particular run, any
discovered ADFs are discarded and a new batch is generated for subsequent
runs. When a run is capable of finding a good modularization of the problem,
this is noticed as a success for the run, but no effort is undertaken to see if these
particular ADFs can function outside of the limitations of this single problem.

An exception to this is Subtree Encapsulation, which only harvests the popu-
lation for modules at the end of a run. This is done with a view to increasing the
number of functions and terminals for subsequent runs, so modules discovered
in one run are immediately available for the following one. However, the object
of this encapsulation is to solve a single problem in later runs.

Run Transferable Libraries adopt this technique, thus discarding the notion
of multiple independent runs for an evolutionary algorithm, as each run can
modify the library of modules available, and creates a self-evolved API for a
particular problem domain. The objective of a Run Transferable Library is thus
to evolve a comprehensive set of functionality that can be used to tackle different
problems in a problem domain. This is, effectively, an effort to automate what
is currently limited to the “genetic programmer”, the person who selects the
function set for a problem.

3. Run Transferable Libraries
This section provides an abstract view of how RTL enabled systems can op-

erate. It lists a few considerations and necessities to be able to develop a library
based genetic programming system that can be used on different problems from
a problem domain. In the present work, the domain is limited to logical prob-
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lems, but it is thought that the considerations contained in this section have
more wide applicability.

First and foremost: to be able to transfer knowledge from one run to the next,
it is necessary to make a distinction between problem specific functionality and
functionality that transcends specific problems and works in problem domains.
For example, for logic problems, the distinction is clear-cut. Terminals are
problem-dependent and cannot be expected to have the same meaning on a
different problem, while functions are problem independent. Therefore, in this
case, the library only contains logical functions, build up from some primitive,
logically complete, basis set. It is up to the evolution of the library to find that set
of functionality that helps in finding modular solutions. In particular this means
that functions of arity 0 — subtrees — are not kept in the library. For other
domains, where sensing the environment is a critical part of the functionality,
such arity 0 functions could very well be part of the library.

Thus, an RTL-based system needs to operate using two subsystems: one that
contains the problem-dependent information, the Result Producing Branches,
and one that contains problem-independent, yet problem domain specific infor-
mation, the library. The first subsystem needs a way to use the functionality in
the library, a process we refer to as linking. Linking can take many forms: in
a standard GP system with a pre-defined function set, it is simply the selection
and insertion of functions in the trees (call by name); in our system, described
below, it involves floating point tags that refer to localized functionality in the
libraries (call by tag), as this provides a convenient way to resolve calls to non-
existent tags, as discussed in section 4. Other approaches are imaginable. It
seems a good choice to let the problem-dependent subsystem do multiple, rela-
tively short runs, sampling from different sections of the library. The library is
expected to evolve considerably slower, as information needs to be accumulated
about the worth of its functionality in the face of changing requirements.

In contrast with the fixed-function set approach of standard GP, the elements
in the library need to have some way of changing their functionality. In our
approach this is done by using a similar syntax to ADFs for library functions,
where each element in the library has a number of arguments, which can be
used (and re-used) inside the function.

Finally, methods need to be devised to update the library in order to select
that functionality that performs well, and to change functionality to try out
new approaches. In this step the classical trade-off between exploration and
exploitation is present, only in this case the trade-off does not only apply to a
single run of the system, but to multiple runs, even runs done on new problems.

Currently, the concept of Run Transferable Libraries is mainly that, a concept.
Below a concrete implementation is described that is used to tackle problems
in logical problem domains.
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Figure 7-1. An overview of the Run Transferable Libraries system. Each DL-node consists of
a floating point label which will be used to is used to look up the appropriate library segment,
according to the arity of the function.

4. Mnemosyne

An RTL-enabled system named Mnemosyne, a modified version of ECJ, has
been written.

The library in Mnemosyne is divided into several segments, one for each
legal arity. Each item in the library is referred to as a Tag Addressable Function
(TAF) and is generated using a ramped half and half strategy, using the same
type of syntax as ADFs, that is, the function set from the problem being tackled,
and with parameters that will be bound at run time to ARGS. The actual problem
inputs are not part of the terminal set for TAFs to promote re-usability not only
in a particular run, but also across runs on a problem, and even across scaled
up versions of the problem. Each TAF is tagged with a floating point number
that is used by the main part of the trees, the Result Producing Branch)RPBs to
reference it. If an RPB tries to reference a non-existent tag, then the TAF with
the nearest tag in absolute terms is used.

The reference point in an RPB for a TAF is referred to as a Dynamically
Linked Node (DL-node), and also contains a floating point number, known as
its label. For example, in figure 7-1, each of DL and have their labels
looked up in the arity 2 segment, while is looked up in the arity 3 segment.

After each generation, and again after each run, the library can be updated,
with TAFs being rewarded for their usage by the RPBs.

TAFs are assigned fitness based on their usage statistics, that is, the more a
TAF is used by the RPB population, the fitter it will be. The reasoning behind
this simple update strategy is that GP, operating on the RPBs, will assign more
copies to better performing solutions. TAFs that are helpful in solving the
problem will thus likely be sampled more often than those that are not helpful.
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Thus, to assign credit to TAFs, such a simple update scheme might suffice. This
scheme is, however, still under investigation.

More highly used TAFs are selected for reproduction and variation. Repro-
duction involves copying a TAF, and slightly varying its tag, so the new TAF
will have a similar tag to the parent. Variation involves crossing over two TAFs,
again followed by a mutation on the tag that was donated by the same tree that
donated the root.

The RPB population is created in the same manner as a normal GP population,
except the function set is replaced by nodes known as Dynamically Linked nodes
(DL-nodes) which link to TAFs. Special segment weights are kept to first select
the arity of the DL-nodes, followed by a random selection of one of the tags
in that segment. At evaluation time, a linking step is performed where an RPB
is linked to its corresponding TAFs. If no TAF exists in the library with an
exact match, the closest one is chosen. As the initial population has exact tag
matches, inexact matching can only happen after mutation of the tag values
has occurred. This is an additional genetic operator. It permits the evolution
of locality in the library, where it may be possible for TAFs with identical or
similar tags to evolve in a locality. It is however still an open question what the
worth of the tags and tag-mutation is in the system.

The rate at which a library is updated can have a direct effect on its usefulness.
Libraries that aren’t updated quickly enough may be slow to converge on a
useful set of functions, while libraries that update too quickly may suffer from
convergence on a less than optimal or even damaging set of functions. Currently,
we use a simple moving average scheme on the usage statistics for driving the
library updates, but future work will revisit this.. More details on the algorithm
can be found in the appendix.

5. Initial Results
Mnemosyne has been applied to several problems associated with ADFs,

including the Boolean even-n-parity problems, the Lawnmower problem and
the Multiplexer. In all cases, the average performance of the system increased
as the number of library iterations increased. More importantly however, the
performance on unseen, more difficult problems, increased as well, indicating
that the library was able to find generalized functionality. As this chapter con-
centrates on the library activity for the even-n-parity and multiplexer problems
we first present their performances.

In the Parity problems, initially examined in (Keijzer et al., 2004) the initial
function set was {AND, NAND, OR, NOR} and the population size was 500,
while in the Multiplexer problems, the function set was {AND, OR, NOT},
and the population size was also 500, except for the 11-multiplexer problems
where it was 2500.
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Figure 7-2. Number of individuals needed to be processed to obtain a solution with 99%
probability on the parity problems using a library trained on parity 4, and applied to higher parity
problems. As a benchmark, the results presented by Koza with ADFs are drawn as straight lines.

Figure 7-3. Number of individuals needed to be processed to obtain a solution with 99%
probability on the parity problems using a library trained on parity 5.

Experiments
Figure 7-2 shows the results for training the library on the parity 4 and 5

problems and subsequently testing them on higher parities. Fifty independent
libraries were trained on the lower parity problems for 95 iterations. The end-of-
run libraries thus consisted of feedback obtained from 95 dependent runs, i.e.,
runs that use updated libraries. The system was also applied to the 6-multiplexer
problem, and these results are shown in 7-4.

6. Bias in Function Sets
Function sets inherently contain bias. Although GP is capable of evolving

required functions, as well as ignoring irrelevant functions, this information is
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Figure 7-4. Number of individuals needed to be processed to obtain a solution with 99%
probability on the 6-multiplexer problem using a population of 500. Koza reported 4,478,500
using a similar population.

Figure 7-5. Library segment usage on the 4-parity problem, left, and on the 6-multiplexer
problem, right.

typically lost for subsequent runs, each of which must make the same discoveries
as all the others. The intention of RTLs is to evolve a standard library of
functions that are useful for a particular problem domain, and thus bias function
selection in favour of these. We tested to see if there were particular functions,
or types of functions that were being favoured and, in each of the problems we
examined, typically, one library segment dominated the population, typically
being used around 60-80% of the time. Figure 7-5 shows how the segment
usage varies over time. Note that on the parity 4 problem, initially the segment
containing functions of arity 3 is sampled more often. Only when the optimal
building blocks XOR or EQ of arity 2 are evolved does the arity 2 segment
becomes more dominant. In both the multiplexer and the parity problem, the
arity 1 segment shows a steady decline. Because this segment has only one
non-trivial function to offer, NOT, this is not surprising.
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Figure 7-6. An overview of the evolution of the libraries for the Parity-4 problem.

Even Parity

The arity two segment was the most favoured in the parity problems. There
are only 16 different functions of arity two, and by far the most common were
XOR and EQ, two functions that are extremely helpful in solving the problem.
Virtually all libraries that we trained converged to either one or both of these
functions. Figure 7-6 shows the evolution of the TAFs over the lifetime of all
the libraries used in these experiments. Each function in the possible set can
be expressed as a decimal number from 0 to 15, where the decimal number is
equivalent to the binary string output by that function given a standard enu-
meration of all possible inputs. For example, an OR outputs the string 1110,
where the 0 refers to the case of 0 OR 0 while an AND outputs the string 1000.
In Figure 7-6, the higher peak refers to the boolean function EQ, while the
other refers to XOR. While both are increasing even at the end of the run, the
curve for EQ is steeper. The difference is thought to be caused by the fact that
the problem is even parity, where checking for equality instead of exclusive-or
leads to shorter solutions. Once the library starts using EQ or the combination
XOR NOT more often, the library starts to scale well, i.e., it has found the
essential block of code that can solve this problem.

Multiplexer
Quite a different picture emerges for the Multiplexer problem, as illustrated

in figure 7-7. In this case, the most favoured segment is the arity 3 segment.
This segment can express 256 different functions, although some of these
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Figure 7-7. An overview of the evolution of the libraries for the 6-multiplexer problem. This
indicates the total number of each function present across 50 different libraries.

are functionally identical. For example, the familiar IF-THEN-ELSE function
can be expressed in six different ways, each of which is functionally identical.
These other, less familiar forms, often use the second or third input as the
test condition, and the order of the THEN and ELSE parts can also change.
For example, functions such as IF-ELSE-THEN and THEN-IF-ELSE often
appeared which, although unlikely to ever be used by a human programmer,
offer the same functionality.

Figure 7-8 shows the distribution of the initial and final functions in the
library. In this case, some functions are very common at the start, and not
present in the final iteration, while two functions in particular are present in
relatively high numbers at the end, both of which are forms of IF-THEN-
ELSE . In all, ten functions made more than 1000 appearances in total in all
the libraries. Somewhat surprisingly, only four of these were bona fide IFs,
while the other six were all malformed IFs, similar in functionality to an IF, but
with one set of inputs not giving the expected output. The other two genuine
IFs, THEN-IF-ELSE and ELSE-IF-THEN made 970 and 643 appearances
respectively. The total number of IF-THEN-ELSE variants that appeared was
7636, out of a total of 25000.

The three functions that are strongest in the first iteration of the library
are 240, 204 and 170, which simply return arg0, arg1 and arg2 respectively.
Their over-representation in the initial libraries is due to a combination of the
initialisation strategy employed (ramped half-and-half) and the fact that so many
boolean functions evaluate to the same thing. For example, (arg0) and (arg0
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Figure 7-8. The initial (left) and final (right) distributions of functions in the arity 3 library for
the Multiplexer problem.

AND arg0) are functionally equivalent. This is the language bias our system,
in common with an ADF based system, has to overcome in order to solve the
problem.

Although figures 7-7 and 7-8 shows that there is a lot less convergence in the
libraries for the Multiplexer than with Parity, it should be stressed that this is an
aggregate view across all libraries. Examining individual libraries, we observed
that they tend to converge on one or two functions at the end of fifty iterations,
usually with between another five and ten other functions represented in the
library. Typically, one of the peaks was substantially higher than the other.
Certain runs exhibited quite different behaviour from this, however. Figure 7-9
shows a case where a single function, represented by the decimal value 202, took
over almost the entire library, occupying about 85% of the library. Function
202 corresponds to a standard IF-THEN-ELSE function. Another interesting
run is shown in figure 7-10. In this case, the highest peak at the end of the
iterations is actually substantially declining, indicating that, even at this late
stage, the library is still evolving. A final example was the case in which two
virtually identical (with a difference of one) peaks appeared, corresponding to
functions 200 and 202 already encountered above. We don’t show graph of
these as the 3D nature of the graphs makes it impossible to see both curves
at the same time. While the (arg0 AND arg1) OR (argl AND arg2) (200)
maintains quite a healthy presence in the library from quite early on, the IF-
THEN-ELSE (202) function only appears about halfway through the lifetime
of the library, and rapidly begins to take over. The functional similarity between
functions 200 and 202 can also be seen at the syntactic level, by noting that the
standard IF-THEN-ELSE function can be written as ((arg0 AND arg1) OR
(NOT arg0 AND arg2)).
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Figure 7-9. A sample library run from the Multiplexer problem where one function dominates
the library.

Figure 7-10. A sample library run from the Multiplexer problem where the most common
function is declines towards the end of the run
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7. Subsequent Library Performance

Figures 7-2 and 7-3 show the performance of libraries trained on simpler
versions of the parity problem and then applied to more difficult ones. Two
sets of libraries, one trained on Parity 4 and the other on Parity 5, were applied
to each parity problem up to Parity 10. These tests consisted of performing 50
independent runs of 100 iterations on each library and averaging the results.
Both sets of Parity libraries performed extremely well, with even the library
initially trained on Parity 4 being able to solve the Parity 10 problem with less
computational effort than ADF based GP on parity 4 after 50 iterations. Perhaps
surprisingly, the library trained on Parity 5 took over 70 iterations on average
to pass the same point. This level of performance wasn’t entirely unexpected,
however, when one considers the functions that appeared in the parity libraries,
i.e. EQ and XOR as in figure 7-6. Both of these functions are known to be
useful in all parity problems.

The libraries trained on 6-multiplexer were also successful when applied to
the 11 multiplexer, but the performance of individual libraries varied consider-
ably, as indicated in Figure 7-11. Here the mean performance (in hits) of the
last 10 iterations for each library is plotted against the mean performance of 10
independent runs on the more difficult, 11-multiplexer problem.

Figure 7-11. The performance of libraries trained on the 6-multiplexer problem, correlated
with the average number size of the best performing expressions produced by the libraries on
the 6-multiplexer problem. Performances are estimated using the last 10 iterations of the library
on the training problem, and 10 independent runs for each library on the testing problem. Size
is calculated only on the number of nodes in the RPB, thus ignoring size of the library elements.

Figure 7-11 shows how well these libraries did on the 11-multiplexer prob-
lem, and illustrates that the worst performer on 11-multiplexer also had the
fewest mean hits on the 6-multiplexer, and, similarly, that the best had the
highest mean hits. The correlation between performances is however weak
with a value of Also shown in figure 7-11 is how well libraries
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performed on 11-multiplexer given the average size of their best solutions on
the 6-multiplexer. In this case there is a strong correlation the
larger the expressions that are induced on the training problem, the lower their
performance on the testing problem. The size of the expression on the training
problem was however not indicative for their performance on the training prob-
lem, just the larger testing problem. The runs converging on the malformed IFs
did almost equally well on the 6-multiplexer. This finding indicates that the size
of proposed solutions during training might be a good indicator for the level
of modularization that is achieved inside the library. This is to be expected as
the optimality of the IF-THEN-ELSE function lies in its ability to be used in
a minimal sized solution.

There are a number of reasons why the multiplexer libraries didn’t enjoy the
degree of convergence as the parity ones. Firstly, the important function for the
multiplexer is an arity 3 function, and there are 256 possible functions in this
set, compared to only 16 for arity 2 functions. Secondly, there is redundancy in
this set, as there are six different ways to represent the crucial IF functionality.
Thirdly, there is a substantial step up in difficulty when moving from a 6-
multiplexer to an 11-multiplexer, and libraries with malformed IFs can still
produce perfectly fit individuals for the simpler problem, but fail with the more
difficult one.

As discussed in section 3, when updating the library, one is faced with a
trade off between exploration and exploitation. However, these results suggest
that libraries which will not be able to generalise well will produce, on average,
larger and less fit individuals than those that will generalise well, and can thus
be identified before compromising a library.

To compare the results obtained on the 11-multiplexer, two control experi-
ments were performed: one involved a standard GP system using the function
set {AND,OR,NOT} (the same as the initial function set for the library system),
and one with a standard GP system using the function set {AND,OR,NOT,IF}
, thus including the all-important IF function. With the reduced function set,
over 50 runs with a population size of 2500, GP was only capable of finding a
solution once. However, once the IF function was included in the function set,
the success rate of GP rises to 76% (out of 100 runs), considerably higher than
the 37% that was obtained using the library approach. Closer inspection of the
library results reveals that 16 out of the 50 libraries did not produce a solution
at all, while 12 libraries scored higher than 80% (over 10 independent runs).
These libraries can all be identified by the size of the solutions they produced
on the training set. It is, however, important to realize that the inclusion of
the IF function in the function set trivializes the problem and presupposes that
the user can select function sets for problems in an optimal or near optimal
way. What is attempted to show here is that this process might be automatable,
and indications are given to this effect. The fact that the system was able to
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Figure 7-12. Iterations versus hits for the Mnemosyne system on random problems. As a
comparison, standard GP performance is depicted as well.

bootstrap itself out of the difficult situation where GP was not able to perform
well is indicative of this.

8. Debiasing Function Sets

As a final experiment, 40 libraries were trained for 200 iterations on
random problems of 6 input variables, using an initial function set of
{AND,OR,NAND,NOR}. For each iteration, for each library, a new random
problem was constructed. As there is not much regularity to be found in such
a problem, the best a library can hope to achieve is to induce some general
set of functionality which works reasonably well across many problems. For
comparison purposes 500 runs of a standard genetic programming system us-
ing the same initial function set were performed. Figure 7-12 shows the mean
performance of the 40 libraries over the iterations.

Compared with a standard genetic programming system, the results on the
first iterations are disappointing. It seems that again the initialization of the
library is very biased toward very unhelpful functions. However, after a num-
ber of iterations, the RTL-based system is able to overcome this initial bias
and induces a set of functionality that is comparable with the standard genetic
programming setup. Although visually there seems to be a small slope upwards
from iteration 50 to 200, giving a small indication that the library based method
keeps on improving, this difference in comparison with the standard GP system
is however not statistically significant.

Given our experience in in the multiplexer problem with badly initialized
libraries, the 40 libraries that were induced on random problems for this sec-
tion might very well be a better starting point than the ramped-half-and-half
initialization procedure employed in the multiplexer and parity problems.
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9. Conclusions and future work

This chapter described the notion of Run Transferable Libraries, and showed
how useful information can be passed from run to run in GP through an RTL.
Furthermore, an RTL trained on a simpler version of a problem and can then
be subsequently applied to a more difficult one.

Analysis of the contents and evolution of the libraries has shown that the
libraries almost invariably converge to just one or two functions. In the case of
the libraries trained on parity problems, all of them were dominated by EQ and
XOR, two functions well known to be useful in parity problems.

The multiplexer library results were not so clear cut. The crucial function
required for a multiplexer library to scale properly is IF-THEN-ELSE or one of
its variants. The fact that there are six different forms of this function means that
a dramatic convergence like that experienced with the parity libraries is unlikely
to be repeated there. One surprising result, however, was the appearance and
thriving of malformed IFs, functions which differ very slightly at a functional
level. While these malformed functions weren’t deleterious enough to cause
a library to fail, they did make scaling the library to a more difficult problem
a more demanding task, forcing the population to learn the idiosyncrasies of
the malformed functions. Fortunately, there are indications that the size of the
solutions induced on a library can be predictive for the scalability of the library.

The system we used for our experiments, Mnemosyne, is our first implemen-
tation of RTLs. As indicated in section 3, there is ample scope for research
in this area, and many design decisions that were made for Mnemosyne were
done so on the basis of simplicity to enable us to test the concept. Strategies
such as how the library should be updated have not yet been examined.

As observed in section 7, it is possible for populations to thrive with sub-
optimal functions, only to fail when applied to more difficult problems. The
results there suggest that the level of influence an individual ran should have
on a library should be related in some way to the quality of the final individu-
als produced. An estimate of the quality of an individual can be arrived at by
examining the size of an individual relative to other, best-of-run individuals.
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Appendix: The Mnemosyne Algorithm
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Abstract: It has been previously established that genetic programming can be used as an
automated invention machine to synthesize designs for complex structures. In
particular, genetic programming has automatically synthesized structures that
infringe, improve upon, or duplicate the functionality of 21 previously
patented inventions (including six patented analog electrical
circuits) and has also generated two patentable new inventions (controllers).
There are seven promising factors suggesting that these previous results can be
extended to deliver industrial-strength automated design of analog circuits, but
two countervailing factors. This chapter explores the question of whether the
seven promising factors can overcome the two countervailing factors by
reviewing progress on an ongoing project in which we are employing genetic
programming to synthesize an amplifier circuit. The work involves a
multiobjective fitness measure consisting of 16 different elements measured
by five different test fixtures. The chapter describes five ways of using general
domain knowledge applicable to all analog circuits, two ways for employing
problem-specific knowledge, four ways of improving on previously published
genetic programming techniques, and four ways of grappling with the multi-
objective fitness measures associated with real-world design problems.

Key words: Automated design, automated circuit synthesis, analog circuits, amplifier,
evolvable hardware, developmental process, genetic programming
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1. INTRODUCTION

Genetic programming is an automatic method for solving problems. It is
an extension of the genetic algorithm (Holland 1975). Genetic programming
starts from a high-level statement of the requirements of a problem and
attempts to automatically create a computer program that solves the
problem. Specifically, genetic programming starts with a primordial ooze of
thousands of randomly created computer programs and uses the Darwinian
principle of natural selection (fitness-based selection); analogs of
recombination (crossover), mutation, gene duplication, gene deletion; and
certain mechanisms of developmental biology to progressively breed an
improved population over a series of generations (Koza 1992, Koza 1994;
Koza, Bennett, Andre, and Keane 1999; Koza, Keane, Streeter, Mydlowec,
Yu, and Lanza 2003; Banzhaf, Nordin, Keller, and Francone 1998; Langdon
and Poli 2002).

Genetic programming can be used as an automated invention machine to
synthesize designs for complex structures. In particular, genetic
programming has automatically synthesized complex structures that infringe,
improve upon or duplicate in a novel way the functionality of 21 previously
patented inventions (e.g., analog electrical circuits, controllers, and
mathematical algorithms), including six post-2000 patented inventions.
These 21 patented inventions are listed in Table 8.14.1 of (Koza, Streeter,
and Keane 2003). In addition, genetic programming has generated two
patentable new inventions (both controllers) for which patent applications
are currently pending (Keane, Koza, and Streeter 2002). Genetic
programming has also generated numerous additional human-competitive
results involving the automated design of quantum computing circuits
(Spector 2004) and antennae (Lohn, Hornby, and Linden 2004). Genetic
programming has generated results involving the automated design of
networks of chemical reactions and metabolic networks (Koza, Mydlowec,
Lanza, Yu, and Keane 2001) and genetic networks (Lanza, Mydlowec, and
Koza 2000).

The six patented inventions that were re-created by genetic
programming were analog electrical circuits. Automatic synthesis of analog
circuits from high-level specifications has long been recognized as a
challenging problem. As Aaserud and Nielsen (1995) noted:

“[M]ost ... analog circuits are still handcrafted by the experts or
so-called ‘zahs’ of analog design. The design process is
characterized by a combination of experience and intuition and
requires a thorough knowledge of the process characteristics and
the detailed specifications of the actual product.
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“Analog circuit design is known to be a knowledge-intensive,
multiphase, iterative task, which usually stretches over a
significant period of time and is performed by designers with a
large portfolio of skills. It is therefore considered by many to be a
form of art rather than a science.”

And, as Balkir, Dundar, and Ogrenci (2003) stated:

“The major reason underlying this lack of analog design
automation tools has been the difficulty of the problem, in our
opinion. Design in the analog domain requires creativity because
of the large number of free parameters and the sometimes obscure
interactions between them. ... Thus, analog design has remained
more of an ‘art’ than a ‘science.’ ”

There are seven promising factors suggesting that the previous results
can be extended to deliver industrial-strength automated design of analog
circuits and there are two countervailing factors that impede progress.

One promising factor is the unusually high success rate of previous work.
Multiple runs of a probabilistic algorithm are typically necessary to solve a
non-trivial problem. However, all 11 runs involving the six post-2000
patented circuits (ignoring partial runs used during debugging) yielded a
satisfactory solution. This high rate suggests that we are currently nowhere
near the limit of the capability of existing techniques.

A second promising factor (discussed in section 2) is that genetic
programming has historically demonstrated the ability to yield progressively
more substantial results in synchrony with the relentless increase in
computer power tracked by Moore’s law (thereby suggesting that evermore
complex problems can be solved as increased computer power becomes
available).

A third promising factor (discussed in section 3) is that our previous
work (and most other previous work) involving the automated synthesis of
circuits intentionally ignored many pieces of elementary general domain
knowledge about analog circuits. For example, none of our previous runs
culled egregiously flawed circuits, such as those drawing enormous amounts
of current or those that lacked a connection to the circuit’s incoming signal,
output port, or power supplies. Instead, our previous work approached each
problem with a relatively “clean hands” orientation—using as little human-
supplied domain knowledge about electrical circuits as possible. Although
this “clean hands” orientation highlighted the ability of genetic programming
to produce human-competitive results in a “clean hands” setting, this
orientation is entirely irrelevant to a practicing engineer interested in
designing real-world circuits.

A fourth promising factor (discussed in section 4) is that our previous
work (and most other previous work) intentionally ignored opportunities to
employ problem-specific knowledge about the to-be-designed circuit. For
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example, the starting point for circuit development in our previous runs
usually consisted merely of a single modifiable wire. Genetic programming
was then expected to automatically create the entire circuit from scratch.
However, a practicing engineer does not start each new assignment from
first principles. Instead, the starting point for real-world design typically
incorporates a core substructure that is known to provide a good head start.

A fifth promising factor (also discussed in section 4) is that the genetic
programming techniques used in our previous work to produce the six post-
2000 patented circuits were intentionally rigidly uniform. This uniformity
had the advantage of emphasizing the ability of genetic programming to
produce human-competitive results in a relatively “clean hands” setting. For
example, we did not use automatically defined functions (subroutines) even
on problems with manifest parallelism, regularity, symmetry, and
modularity. However, a practicing engineer does not “reinvent the wheel” on
each occasion requiring an already known solution to a sub-problem.

A sixth promising factor (discussed in section 5) is that current
techniques used for circuit synthesis can be improved by applying various
aspects of the theory of genetic algorithms and genetic programming. Many
of the current techniques go back to early work on automated circuit
synthesis and have not been critically reexamined since then.

A seventh promising factor is that considerable work has been done in
recent years to accelerate the convergence characteristics and general
efficiency of circuit simulators. For example, we used a version of the
SPICE3 simulator (Quarles, Newton, Pederson, and Sangiovanni-Vincentelli
1994) that we modified in various ways (as described in Koza, Bennett,
Andre, and Keane 1999). Today, there are numerous commercially available
simulators that are considerably faster (e.g., up to 10 times faster).

There are, however, at least two countervailing factors that impede
progress toward industrial-strength automated design of analog circuits.

The first countervailing factor (discussed in section 6) concerns the
multi-objective fitness measures that are typically associated with industrial-
strength problems. The fitness measures used in previously published
examples of the synthesis of analog circuits by means of genetic
programming (and genetic algorithms) typically consist of only a few
different elements (rarely as many as four). In contrast, the data sheets used
to specify commercial circuits typically contain a dozen or more different
performance requirements. It is difficult to quantify the tradeoff between
disparate elements of a fitness measure. Moreover, as the number of
disparate elements in a fitness measure increases, the strategy for combining
the various (“apples and oranges”) elements of the fitness measure usually
becomes vexatious. If, for example, gain, bias, and distortion (three
characteristics that are relevant to amplifier design) are naively assigned
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equal weight in a fitness measure, an unadorned wire will immediately
achieve a very good score (because a wire introduces no distortion and no
bias to an incoming circuit). What’s worse, almost any single modification
applied to this wire will be highly deleterious—thereby creating a local
optimum from which escape is difficult. The search for an amplifier may
easily become trapped in an area of the search space containing distortion-
free and bias-free circuits that deliver no amplification at all. Thus, the
handling of the type of multi-objective fitness measures associated with
industrial-strength design problems is a major issue.

The second countervailing factor arises from the need to evaluate
candidate circuits at the “corners” of various performance envelopes. For
example, circuit behavior depends on temperature. A real-world circuit
might be required to operate correctly over a range between, say, –40° C and
+105° C, not merely at room temperature (27° C). Separate simulations (or,
if reconfigurable hardware is being used, separate test scenarios with
different ambient temperatures) are required to measure the circuit’s
performance at each corner of the temperature envelope. Each additional
simulation multiplies the required computer time by a factor of two (if only
the two extreme values are considered), three (if the nominal value and two
extremes are considered), or more (if more values are considered because of
non-linear behavior). Similarly, a real-world circuit will be expected to
operate correctly in the face of variation in the circuit’s power supply (e.g.,
when the battery or other power supply is delivering, say, 90% or 110% of
its nominal voltage). Again, separate simulations are required to measure the
circuit’s performance at each voltage corner. In addition, a real-world circuit
will be expected to operate correctly in the face of deviations between the
behavior of an actual manufactured component and the component’s
“model” performance. For example, separate measurements may be required
for a entire circuit’s “fast,” “typical,” and “slow” behavior or when a
particular component is 75% or 125% of its nominal value. Circuits may
also be expected to operate correctly in the face of variations in load, input,
or other characteristics.

Thus, the answer to the question as to whether genetic programming can
deliver industrial-strength automated design of analog electrical circuits
depends on whether the seven promising factors overcome the two
countervailing factors.

The remainder of this chapter reports on progress on an ongoing project
in which we employed genetic programming to automatically synthesize
both the topology and sizing of an amplifier circuit.
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2. ABILITY OF GENETIC PROGRAMMING TO
PROFITABLY EXPLOIT INCREASED
COMPUTER POWER

Genetic programming generally requires significant computational
resources to solve non-trivial problems. Fortunately, the computer time
necessary to achieve human-competitive results has become increasingly
available in recent years because (1) the speed of commercially available
single computers continues to double approximately every 18 months in
accordance with Moore’s law, (2) genetic programming is amenable to
efficient parallelization, and (3) Beowulf-style parallel cluster computer
systems can be assembled at relatively low cost.

As shown in Table 8-1, GP has historically demonstrated the ability to
yield progressively more substantial results, given the increased computer
power tracked by Moore’s law. Column 1 lists the five computer systems
used to produce our group’s reported work on GP in the 15-year period
between 1987 and 2002. Column 4 shows the speed-up of each system over
the system shown in the previous row of the table. Column 7 shows the
number of human-competitive results generated by each computer system.
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The first entry in Table 8-1 is a serial computer and the next four entries
are parallel computer systems. The presence of four increasingly powerful
parallel computer systems reflects the fact that genetic programming has
successfully taken advantage of the increased computational power available
by means of parallel processing.

Table 8-1 shows the following:

There is an order-of-magnitude speed-up (column 3) between each
successive computer system in the table. Note that, according to
Moore’s law, exponential increases in computer power
correspond approximately to constant periods of time.

There is a 13,900-to-1 speed-up (column 4) between the fastest and
most recent machine (the 1,000-node parallel computer system)
and the slowest and earliest machine (the serial LISP machine).

The slower early machines generated few or no human-competitive
results, whereas the faster more recent machines have generated
numerous human-competitive results.

Four successive order-of-magnitude increases in computer power are
explicitly shown in Table 8-1. An additional order-of-magnitude increase
was achieved by making extraordinarily long runs on the largest machine in
the table (the 1,000-node Pentium® II parallel machine). The length of the
run that produced the genetically evolved controller for which a patent
application is currently pending (Keane, Koza, and Streeter 2002) was 28.8
days—almost an order-of-magnitude increase over the 3.4-day average for
runs that our group has made in recent years. If this final 9.3-to-1 increase is
counted as an additional speed-up, the overall speed-up is 130,660-to-1.

Table 8-2 is organized around the five just-explained order-of-magnitude
increases in the expenditure of computing power. Column 4 of this table
characterizes the qualitative nature of the results produced by genetic
programming. This table shows the progression of qualitatively more
substantial results produced by genetic programming in terms of five order-
of-magnitude increases in the expenditure of computational resources.

The order-of-magnitude increases in computer power shown in Table 8-2
correspond closely (albeit not perfectly) with the following progression of
qualitatively more substantial results produced by genetic programming:

toy problems,

human-competitive results not related to patented inventions,

patentable new inventions.

patented inventions,

patented inventions, and
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The progression in Table 8-2 demonstrates that genetic programming is
able to take advantage of the exponentially increasing computational power
tracked by iterations of Moore’s law.
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3. EXPLOITING GENERAL KNOWLEDGE ABOUT
CIRCUITS

The previously reported work involving the six patented
circuits intentionally did not take advantage of even the most elementary
domain knowledge applicable to analog circuits. As part of our ongoing
project of synthesizing commercially marketed amplifier circuits by means
of genetic programming, we have incorporated general domain knowledge
about circuits into our work in several ways.

First, in previously reported work, the initial population was created
entirely at random and new individuals were created during the run using the
usual problem-independent probabilistic genetic operations (e.g., crossover,
mutation). Many individuals in these populations inevitably represent
unrealistic or impractical electrical circuits. One particularly egregious
characteristic of some circuits is that the circuit fails to make a connection to
all input signals, all output signals, and all necessary sources of power (e.g.,
the positive power supply and the negative power supply). Circuits that do
not satisfy these threshold requirements are now being culled from the
population (by severe penalization). The removal of such egregiously flawed
circuits not only conserves computational resources, but also increases the
amount of useful genetic diversity of the population (thereby further
accelerating the evolutionary process).

Second, another egregious characteristic of some circuits in unrestricted
runs is that the circuit draws preposterously large amounts of current. In
order to cull circuits of this type from the population, each circuit is
examined for the current drawn by the circuit’s positive power supply and
negative power supply. Circuits that draw excessive current are now being
culled from the population.

Third, the components that are inserted into a developing circuit need not
be as primitive as a single transistor, resistor, or capacitor. Instead,
component-creating functions can be defined to insert frequently occurring
combinations of components that are known to be useful in practical
circuitry. Examples include current mirrors, voltage gain stages, Darlington
emitter-follower sections, and cascodes. Graeb, Zizala, Eckmueller, and
Antreich (2001) identified (for a purpose entirely unrelated to evolutionary
computation) a promising set of frequently occurring combinations of
transistors that are known to be useful in a broad range of analog circuits.
For the present work, we have implemented circuit-constructing functions
that insert a current mirror, two types of voltage references, a loaded current
mirror, and a level shifter from among these two-transistor groups. For
certain problems, the set of primitives can be expanded to include higher-
level entities, such as filters, amplifiers, and phase-locked loops.
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Fourth, minimization of a circuit’s total area is of great practical
importance because the cost of manufacturing a chip depends directly on its
size (because a given wafer contains more copies of a smaller chip and
because a particular flaw on a wafer has a less deleterious effect on the
wafer’s yield percentage when the flawed chip is smaller). Resistors are
often implemented on a silicon chip by laying down a serpentine chain of
small patches of resistive material. Capacitors are often created by laying
down two areas of conductive material. Thus, in many situations, a circuit’s
overall size is heavily influenced by the number of its resistors and
capacitors. Our previous work on circuit synthesis typically permitted the
creation of resistor and capacitor values over a very wide range (e.g., 10
orders of magnitude). Practical work requires choices of component values
that lie in a particular range of only about three orders of magnitude.

Fifth, there are additional general principles of circuit design that might
also be brought to bear on problems of circuit synthesis. For example,
(Sripramong and Toumazou 2002) have combined current-flow analysis
(and other improvements) into runs of genetic programming for the purpose
of automatically synthesizing CMOS amplifiers.

4. EXPLOITING PROBLEM-SPECIFIC
KNOWLEDGE

The previously reported work involving the six patented
circuits intentionally did not take advantage of opportunities to use
knowledge about the specific to-be-designed circuit. We have implemented
such elementary knowledge in three areas as part of our ongoing project of
synthesizing commercially marketed amplifier circuits by means of GP.

First, there are basic substructures that are known by practicing analog
engineers to be useful for particular types of circuits. Just as an engineer
would begin a design using these known substructures, every individual in a
run can be hard-wired with a substructure of known utility, thereby relieving
genetic programming of the need to “reinvent the wheel.”

As an example, the LM124 amplifier is a well-known commercial
amplifier that delivers 100 dB of gain. This circuit (described in detail by the
National Semiconductor data sheet available on the web at
http://www.national.com/pf/LM/LM124.html) has 13
transistors, two resistors, one capacitor, and four current sources. The
LM124 has two inputs (an inverting input and non-inverting input) and one
output. The circuit connects to a single +5 volt power source and ground. A
differential pair that receives the inverting input and non-inverting input
(shown in Figure 8-1) is a useful first stage in designing an amplifier with
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the characteristics of the LM124. In the figure, there are three construction-
continuing subtrees (CCS1, CCS2, and CCS3) corresponding to the three
output ports of the differential pair. After hard-wiring the differential pair,
the evolutionary process is left with the task of automatically designing a
satisfactory three-input sub-circuit that eventually connects to the overall
circuit’s single output port.

Figure 8-1. Substructure consisting of hard-wired differential pair.

The forced insertion of a substructure of known utility can be
implemented in two different ways. In one approach, the desired
substructure can be hard-wired into the embryo, thereby starting the
developmental process off with the desired substructure (Koza, Bennett,
Andre, and Keane 1999, section 52.2). In the second approach, when the
initial population (generation 0) is created, an S-sub-expression that
develops into the desired hard-wired structure can be hard-wired into the top
of every program tree. In later generations, the functions and terminals in
this fixed S-expression may either be immunized from modification by the
genetic operations or, if desired, they may be permitted to change.

Second, previous work involving the six post-2000 patented circuits was
intentionally uniform in terms of genetic programming technique in order to
emphasize the ability of genetic programming to produce human-
competitive results in a relatively “clean hands” setting. Thus, for example,
even when a problem had manifest parallelism, regularity, symmetry, and
modularity, we intentionally did not permit the use of automatically defined
functions (subroutines). The benefits of using automatically defined
functions in problems having parallelism, regularity, symmetry, and
modularity are considerable (Koza 1990, Koza and Rice 1991, Koza 1992,
Koza 1994). A practicing engineer would recognize that reuse is pervasive in
at least two of the six post-2000 patented circuits (namely the mixed analog-
digital integrated circuit for variable capacitance and the low-voltage high-
current transistor circuit for testing a voltage source) and would instinctively
take advantage of opportunities to reuse substructures.
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5. IMPROVING TECHNIQUES OF GENETIC
PROGRAMMING

Many of the current techniques for circuit synthesis by means of genetic
programming originate with early work starting in 1995 (Koza, Bennett,
Andre and Keane 1996). Many of these initially successful techniques have
not been subjected to critical reexamination since then. We believe that these
techniques can be improved in four ways by applying various principles of
the theory of genetic algorithms and genetic programming.

First, our earliest work on the automatic synthesis of circuits (Koza,
Bennett, Andre and Keane 1996) employed the VIA function to connect
distant points in a developing circuit. However, a connection could be made
only when the circuit-constructing program tree contained two (or more)
appropriately coordinated VIA functions. The PAIR_CONNECT function
(Koza, Bennett, Andre, and Keane 1999) eliminated this shortcoming.
Nonetheless, both the VIA and PAIR_CONNECT functions were brittle in
the sense that they were easily disrupted when crossover was performed on
the circuit-constructing program trees. The premise behind the crossover
operation in genetic programming (and the genetic algorithm) is that an
individual with relatively high fitness is likely to contain some local
substructures which, when recombined, will (at least some of the time)
create offspring with even higher fitness. In genetic programming, the
conventional crossover operation recombines a subtree from one parent’s
program tree with a subtree from the second parent. Over many generations,
functions and terminals that are close together in a program tree tend to be
preferentially preserved by crossover. In particular, smaller subtrees are
preserved to a greater degree than larger ones. Moreover, when representing
circuits by program trees containing the circuit-constructing (developmental)
functions that we generally use, a subtree tends to represent a local area in
the fully developed circuit. However, the VIA and PAIR_CONNECT
functions are highly context-dependent. They have the disadvantage that
when a subtree of one circuit-constructing program tree is swapped with a
subtree of another circuit-constructing program tree, the connectivity of a
point within both the crossover fragment and a point within the remainder is,
almost always, dramatically altered in a highly disruptive way. That is,
crossover usually significantly disrupts the nature of the preexisting
connections formed by the VIA and PAIR_CONNECT functions within a
local area of the developing circuit. However, it is precisely these local
structures that may have contributed to the individual’s comparatively high
fitness and to the individual’s being selected to participate in the genetic
operation in the first place. To the extent that crossover almost always
dramatically alters the characteristics of the swapped genetic material, it
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acquires the characteristics of the mutation operation. This, in turn, means
that the problem-solving effectiveness of the crossover operation is reduced
to the lesser level delivered by the mutation operation.

The issues caused by the excessive disruption of local substructures by
the VIA and PAIR_CONNECT functions were addressed in later work
(Koza, Keane, Streeter, Mydlowec, Yu, and Lanza 2003, section 10.1.1) by
introducing a two-argument NODE function to connect two or more points in
the developing circuit. However, recent experience with various problems
has indicated that, in practice, the NODE function is overly restrictive in that
it limits connections to a particular subtree. We have addressed this now-
recognized deficiency in two ways. We have replaced the NODE function
with a NODE_INCREASED_SCOPE function that permits connectivity
within larger subtrees (one level higher in the program trees, in our current
implementation). In addition, we have restored the original VIA function to
the function set in order to again allow arbitrarily distant connections. We
view these recent changes as an improvement, but not a complete solution.

Second, in our previous work on the automatic synthesis of circuits, a
two-leaded component (e.g., resistor, capacitor) remained modifiable after
insertion into the developing circuit whereas this was not the case for a
component with three leads (e.g., a transistor) or one with more than three
leads. We removed this asymmetric treatment of component-creating
functions so that all inserted component are non-modifiable after insertion.

Third, to increase the variety of junctions, the three-argument Y division
function was added to the repertoire of topology-modifying functions. This
function had previously been used in some earlier work (Koza, Bennett,
Andre, and Keane 1999, section 41.2.4).

Fourth, when the topology-modifying series division function is
performed on a resistor, the resulting new resistor is assigned the same
component value as the original resistor, thereby doubling the total
resistance after the topology-modifying function is executed. When a
parallel division function is performed on a resistor, the new resistor is also
assigned the same component value as the original resistor, thereby halving
the total resistance after the topology-modifying function is executed. The
same thing happens for capacitors, except that a series division halves the
total capacitance and a parallel division doubles the total capacitance. An
argument can be made that the topology-modifying functions that are part of
the overall circuit-constructing program tree (i.e., part of the developmental
process) should concentrate exclusively on their overtly stated purpose of
modifying topology so that the two components resulting from the series or
parallel division are each assigned values so that the new topological
composition has the same overall behavior as the original single component.
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Thus, for example, the two resistors produced by a series division would
each have half the resistance of the original single resistor.

6. GRAPPLING WITH A MULTI-OBJECTIVE
FITNESS MEASURE

The fitness measures used in previously published examples of the
automated synthesis of analog circuits by means of genetic programming
and genetic algorithms have usually consisted of only a few elements (rarely
as many as four). For example, only three elements (gain, bias, and
distortion) were incorporated into the fitness measure employed to
synthesize the amplifier in chapter 45 of Koza, Bennett, Andre, and Keane
1999 and only four elements (gain, bias, distortion, and the area of the
bounding rectangle after placement and routing) were considered in chapter
5 of Koza, Keane, Streeter, Mydlowec, Yu, and Lanza 2003. In contrast, the
data sheets for commercial circuits typically specify a circuit’s performance
for well over a dozen characteristics. As the number of disparate elements in
a fitness measure increases, it becomes increasingly difficult to combine the
elements in a way that enables the fitness measure to navigate a complex
search space.

Moreover, circuit behavior is typically ascertained by mounting it into a
test fixture. The test fixture feeds external input(s) into the circuit and has
probe points for evaluating the circuit’s output(s). The test fixture often has a
small number of hard-wired non-modifiable components (e.g., a source
resistor and a load resistor). In previous work involving genetic methods, a
single test fixture was typically sufficient to measure all the characteristics
under consideration. In contrast, the characteristics found in a typical
commercial data sheet are so varied that multiple test fixtures (each
consuming additional computational resources) are required.

In our ongoing project in which we are using genetic programming to try
to synthesize commercially marketed amplifier circuits (such as the LM124
amplifier), we use a multiobjective fitness measure consisting of 16 elements
measured by five different test fixtures. In this chapter reporting on our work
in progress on this project, we focus on synthesizing a 40 dB amplifier.

The 16 elements of the fitness measure are (1) 10dB initial gain, (2)
supply current, (3) offset voltage, (4) direction cosine, (5) gain ratio, (6)
output swing, (7) output swing direction cosine, (8) variable load resistance
signal output, (9) open loop gain for the non-inverting configuration, (10)
900 KHz unity gain bandwidth for the non-inverting configuration, (11)
phase margin for the non-inverting configuration, (12) open loop gain for the
inverting configuration, (13) 900 KHz unity gain bandwidth for the inverting
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configuration, (14) phase margin for the inverting configuration, (15)
inversion enforcement across test fixtures for the inverting and non-inverting
configurations, and (16) bias current.

When a human engineer designs an amplifier, all of the candidate circuits
under consideration will usually perform amplification to some degree.
However, when genetic and evolutionary methods are used to automatically
synthesize complex structures, many of the candidate structures do not even
remotely resemble the desired structure (i.e., do not perform amplification in
any way). Thus, although most of the above elements of the fitness measure
come from commercial data sheets for amplifiers, we included the direction
cosine in the fitness measure in order to establish that the candidate circuit is
doing something that resembles amplification of the difference between the
circuit’s two inputs. The direction cosine provides a measure of the
alignment of two time-domain signals, independent of signal magnitude. We
are interested in the difference, d, between the circuit’s two inputs and the
desired amplified output (called g). Specifically, the direction cosine is the
inner product divided by the product of the norms of d and g.

Figure 8-2 shows the first test fixture. This test fixture (with one probe
point) is used to evaluate three elements of the fitness measure applicable to
the non-inverting configuration, namely the open loop gain (in decibels), the
900 KHz unity gain bandwidth, and the phase margin. This figure (and
Figure 8-3) contains the hard-wired differential pair of Figure 8-1; however,
this space ordinarily contains the candidate circuit that is being evaluated.

Figure 8-2. Test fixture for non-inverting configuration

A second test fixture (not shown) differs from Figure 8-2 only in that the
inverting and non-inverting inputs are switched. This test fixture is used to
evaluate, for the inverting configuration, the desired open loop gain, the 900
KHz unity gain bandwidth, and the phase margin. The first two test fixtures
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are used for inversion enforcement to ensure that specified values are
achieved while the amplitude and phase of the output signals are inverted.

A third test fixture (not shown) measures the bias current. This test
fixture differs from Figure 8-2 only in that there is no signal source, there is
no capacitor, and there is a 1 mega-Ohm resistor between ground and the
inverting input.

A fourth test fixture (not shown) measures the offset voltage (bias). This
test fixture differs from Figure 8-2 only in that there is no signal source,
there is no capacitor, and a wire replaces the 1 mega-Ohm feedback resistor.

Figure 8-3. Test fixture with four probe points.

The fifth test (Figure 8-3) fixture is more complex than the others. The
fifth test has four probe points and is used to evaluate seven elements of the
fitness measure. The four probe points are VOUT (output of the evolved
circuit),VGAINRATIO, VDIRECTIONCOSINE, andVOFFSET. This test
fixture is used to evaluate the initial 10dB amplification, the output voltage
under different loads (two corners of the load envelope), direction cosine,
the gain ratio, the offset voltage, the output swing, and the output swing
direction cosine. This particular test fixture is noteworthy in that it illustrates
the use of hard-wired non-modifiable electrical components to enable the
test fixture to perform part of the fitness calculations (the remainder of the
calculations being performed in software). Specifically, the ideal norm,
VNORM-IDEAL, is computed by passing the incoming signals V1 and V2
through subtractor block MINUS1 (to obtain the differential input of V1 and
V2) and feeding the difference into gain block GAIN1 (which amplifies the
signal according to the DC power value connected to it). Then, the signal
GAIN1 is squared by feeding it to both inputs of multiplier block MULT2.
The output of MULT2 is fed into integrator block INTEG2. The output of
INTEG2 is then fed into square root block SQRT2 to produce VNORM-
IDEAL. Similarly, the norm for the evolved circuit, VNORM-EVOLVED, is
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obtained using multiplier block MULT1, integrator block INTEG1, and
square root block SQRT1. VREFERENCE is ascertained by multiplying
GAIN1 by VOUT (at MULT3) and integrating at INTEG3. The direction
cosine, VDIRECTIONCOSINE, is obtained by dividing VREFERENCE
by the product of the two norms (VNORM-EVOLVED and VNORM-
IDEAL). Finally, VGAINRATIO is obtained by dividing VNORM-
EVOLVED by VNORM-IDEAL (at division block DIVV2).

Our focus here is on the engineering techniques for conducting an
automated search in the absence of detailed information about the complex
interrelationships among the various elements of the fitness measure.

First of all, even a little information can go a long way toward
constructing a serviceable fitness measure that efficiently navigates a
complex search space. For example, one thing that is almost always known
is the identity of the preeminent element of the fitness measure (gain, in the
case of an amplifier). The subspace of circuits that can actually amplify an
incoming signal is an infinitesimal fraction of the space of possible circuits.

By heavily rewarding circuits that deliver even as little as 10 dB of gain
(which can be obtained from even a single poorly deployed transistor), the
search can be directed away from degenerate circuits (e.g., single wires) that
deliver no gain at all, but which achieve alluringly good sub-optimal scores
for secondary elements of the fitness measure (e.g., bias and distortion).

Second, after identifying the preeminent element of the fitness measure,
we can weight the remaining elements equally in the sense that they will
each make a certain common detrimental numerical contribution to fitness in
a worst case that is likely to be occur. For this problem, an arbitrary common
value of 30,000 was chosen.
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Third, the 16 elements of the fitness measure can be organized into four
groups, as shown in Table 8-3. Column 1 of the table pertains to the just-
discussed preeminent element of the fitness measure (gain). Column 2
contains elements of the fitness measure that ensure amplifier-like behavior.
The unity gain bandwidth gives the upper limit to the useful passband of the
amplifier. The phase margin is a mark of the amplifier’s stability. Checking
the phase and amplitude inversion ensures that we are dealing with a
differential amplifier. When satisfied simultaneously, these elements of the
fitness measure indicate the evolved circuit is a stable differential amplifier
operating in a passband of interest. These characteristics would be a starting
assumption of a practicing engineer when evaluating circuits for the
remaining criteria. Usually, pace-setting best-of-generation individuals
achieve satisfactory scores for these elements of the fitness measure during
early generations of a run. Column 3 contains elements of the fitness
measure that entail satisfactorily matching a single value. Column 4 contains
elements of the fitness measure that entail satisfactorily matching a signal
(curve) in the time-domain. The sum of the absolute errors is ideally 0;
however, a satisfactory amplifier can have some residual error.

Fourth, because we do not have detailed information about the
interrelationships among the various elements of the fitness measure, it is
desirable to minimize the number of occasions where we need to quantify
the tradeoff between disparate elements of the fitness measure. This can be
accomplished by identifying all elements of the fitness measure for which
there is no practical advantage to improvement once some minimal level of
performance has been achieved. As soon as a satisfactory level is achieved
for these elements, the detrimental contribution to fitness from that particular
element is set to zero and no subsequent reward is given for additional
improvement. In other words, these elements of the fitness measure are
treated as constraints in that they make a non-zero detrimental numerical
contribution to fitness only if the candidate circuit is considered to be in the
infeasible region, but make no detrimental contribution once the constraint is
satisfied. The elements in columns 2 and 3 of Table 8-3 can all be treated as
constraints in this way, in the hope and expectation that their contribution to
fitness will quickly become zero. If, and to the extent that, these
contributions quickly become zero, we avoid having to quantify the tradeoff
between these elements of the fitness measure.

There are four recognizable phases in typical runs of this problem: (1)
initial topology search, (2) formation of a core topology, (3) component
solution, and (4) refinement.

Phase 1 occurs in generations 0 and 1 and establishes initial topologies
that deliver at least 10 dB of gain (column 1 of Table 8-3) and that exhibit
amplifier-like behavior (the elements shown in column 2 of Table 8-3).
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Figure 8-4 shows, for selected generations, the fitness of the best-of-
generation individual for one run. The height of each bar represents the
individual’s fitness and the divisions within each bar show the contribution
of eight selected elements of the fitness measure that illustrate the progress
of the run. The eight selected elements are the differential gain direction
cosine, gain ratio, offset voltage, supply current, output swing, output swing
direction cosine, variable load resistance, and bias current. In Figure 8-5, the
logarithm of these same eight fitness element are stacked on top of each
other. The composition of each stack shows the progressive reduction (i.e.,
improvement) in the values of the eight elements.

Figure 8-4. Progressive change among eight selected elements of the fitness measure.

Phase 2 of the run searches for a core topology. In generation 17, a core
topology emerges that links the differential pair (Q1–Q4), a transistor (Q5),
a resistor (R1), the positive power supply (V+), and the output. This
topology persists for the remainder of the run. During this phase, the
magnitude of each of the remaining elements of the fitness measure in
Figure 8-5 is. substantially reduced. Although none of the elements are
driven to 0, this phase establishes a baseline value for the next phase.

In phase 3, the required values of the elements shown in the third column
of Table 8-3 are driven to 0. As progress is made in reducing the various
elements of the fitness measure, the core topology that first appeared in
generation 17 is augmented by additional electrical components.

During phase 3, there are 3 sub-phases in which the run concentrates on
one, two, or three elements of the six elements of the fitness measure shown
in the second column of Table 8-3. For example, in the second sub-phase of
phase 3 (between generations 18 and 29), a current mirror is added to the
circuit to help drive the penalties associated with the gain ratio and output
swing to 0. In the second sub-phase of phase 3 (between generation 30 and
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73), the run concentrates on offset voltage, bias current, and variable load
performance (i.e., the corners of the load envelope). The variable load
performance becomes satisfied with the addition of current source I1.

In the third sub-phase of phase 3 (generations 74 to 113), the offset
voltage and bias currents become satisfied. In generation 104 the bias current
is pulled below the target value with the introduction of current source 14.

Figure 8-5. Logarithmic scale showing progressive change among eight selected elements of
the fitness measure.

Generation 113 sees the offset voltage satisfied by substitution of a
previously placed transistor with a current mirror consisting of Q6 and Q7,
completing what would be the core of the solution circuit.

In phase 4, the remaining residual error of the fitness measure elements
in the third column of Table 8-3 are pushed toward their ideal values. The
best-of-run individual from generation 120 (Figure 8-6) satisfies all
constraints and all other minimum specifications, except that the supply
current is 30 milliamperes. Although the supply current is not in compliance,
its detrimental contribution to fitness is less than the sum of all of the errors.

A second run (using an arguably more realistic worst-case scaling for
supply current), followed a similar four-phase chronology. The best-of-run
individual satisfied all constraints and specifications except that the bias
current was 112 nano-amperes (instead of less than 80 nano-amperes).

7. CONCLUSIONS

The chapter discussed progress toward the synthesis of industrial-
strength automated design of analog circuits by means of genetic
programming by describing five ways for using general domain knowledge



Toward Automated Design of Analog Circuits by GP 141

about circuits, three ways for employing problem-specific knowledge, four
ways of improving on previously published genetic programming
techniques, and four ways of grappling with the multi-objective fitness
measure needed to synthesize an amplifier circuit.

Figure 8-6. Best-of-run circuit from generation 120.
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Chapter 9

TOPOLOGICAL SYNTHESIS OF ROBUST
DYNAMIC SYSTEMS BY SUSTAINABLE
GENETIC PROGRAMMING

Jianjun Hu and Erik Goodman
Genetic Algorithm Research & Application Group (GARAGe), Michigan State University

Abstract Traditional robust design constitutes only one step in the detailed design stage,
where parameters of a design solution are tuned to improve the robustness of the
system. This chapter proposes that robust design should start from the conceptual
design stage and genetic programming-based open-ended topology search can be
used for automated synthesis of robust systems. Combined with a bond graph-
based dynamic system synthesis methodology, an improved sustainable genetic
programming technique - quick hierarchical fair competition (QHFC)- is used to
evolve robust high-pass analog filters. It is shown that topological innovation by
genetic programming can be used to improve the robustness of evolved design
solutions with respect to both parameter perturbations and topology faults.

Keywords: sustainable genetic programming, automated synthesis,dynamic systems, robust
design, bond graphs, analog filter

1. Introduction
Topologically open-ended computational synthesis by genetic programming

(GP) has been used as an effective approach for engineering design innova-
tions, with many success stories in a variety of domains (Koza et al., 2003)
including analog circuits , digital circuits, molecular design, and mechatronic
systems (Seo et al., 2003a), etc. Much of the existing research focuses on em-
ploying genetic programming as a topologically open-ended search method to
do functional design innovation – achieving a specified behavior without pre-
specifying the design topology. In this chapter, we are interested in exploring
more thoroughly how genetic-programming-based open-ended design synthe-
sis can improve another dimension of engineering design: the robustness of the
systems designed. Specifically, we examine whether topological innovation
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by genetic programming can facilitate design of robust dynamic systems with
respect to environmental noise, variation in design parameters, and structural
failures in the system.

Robustness, as the ability of a system to maintain function even with changes
in internal structure or external environment (Carlson and Doyle, 2002, Jen,
2001), is critical to engineering design decisions. Engineering design systems,
in reality, do not normally take into account all the types of uncertainties or
variations to which the engineered artifacts are subjected, such as manufacturing
variation, degradation or non-uniformity of material properties, environmental
changes, and changing operating conditions. However, reliable systems, having
the least sensitivity of performance to variations in the system components or
environmental conditions, are highly desirable. Evolving robustness can also
contribute to genetic-programming-based design synthesis by increasing the
robustness of the evolved solutions, which make them easier to implement
physically despite the discrepancy between the simulator and real-world model
(Jakobi et al., 1995).

Our hypothesis here is that control factors (design variables) as used in the
robust design framework in (Chen et al., 1996) should not be limited to chang-
ing the dimensions (or sizing) and other numeric parameters of the systems. As
any given function of a dynamic system can be implemented in various ways,
we believe that the topological or the functional design in the conceptual design
phase may have a significant role in determining the robustness of the design
solutions with respect to both topology variation as well as parameter pertur-
bation in terms of traditional robust design. Actually, Ferrer i Cancho et al.
(Ferrer i Cancho et al., 2001) gave an analysis of topological patterns in electric
circuits and their relationship with the properties of the system behavior. There
is already a body of research on how the structure of a system affects its func-
tional robustness.For example, Balling and Sobieszczanski-Sobieski (Balling
and Sobieszczanski-Sobieski, 1996) discussed how the coupling structure of
the system may affect robust parameter design. But a systematic methodology
and investigation of robust design of dynamic systems based on topologically
open-ended search by genetic programming is still lacking.

2. Related Work
Robust design, originally proposed by Taguchi (Tay and Taguchi, 1993), has

been intensively investigated in the engineering design community since the
1980s and remains an important topic (Zhu, 2001). In robust design, a designer
seeks to determine the control parameter settings that produce desirable values
of the performance mean, while at the same time minimizing the variance of
the performance (Tay and Taguchi, 1993).
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Many aspects of traditional robust design such as performance sensitivity dis-
tribution have been investigated intensively (Zhu, 2001, Du and Chen, 2000).
However, most of these robust design studies assume that there already exists
a design solution for a system and the task of robust design is to determine its
robust operating parameters with respect to various kinds of variations. The
relation of how topological or functional structure of a system affects its robust-
ness is often not treated. One reason why these issues are unresolved is that the
prevailing approach for system design is a top-down procedure from functional
design to detailed design, and robust design is applied only in the detailed design
stage. Topologically open-ended synthesis by genetic programming provides
a way to move robust design forward to the conceptual/functional design stage
and thus consider design for robustness from the very beginning, which will
augment the current practice of design for robustness in parametric design.

Application of evolutionary computation to robust design has been investi-
gated since the early 1990s (Forouraghi, 2000) and can be classified into three
categories. The first type of work applies evolutionary algorithms to parametric
design for robustness, following the track of robust design in traditional engi-
neering. Tsutsui et al. (Tsutsui and Ghosh, 1997) proposed to use noise on
the design variables in the calculation of fitness values to evolve robust solu-
tions. This approach was later applied to parametric robust design of MEMS by
Ma and Antonsson (Ma and Antonsson, 2001). The second type of research on
evolving robustness focuses on evolving robust solutions in a noisy environment
(Hammel and Back, 1994). In these problems, the variation in the environment
leads to uncertainty in the fitness function evaluation and the true fitness of a can-
didate solution needs to be evaluated based on sampling multiple environment
configurations. In the evolutionary robotics area, for example, Lee et al. (Lee
et al., 1997) evolved robust mobile robot controllers by training them in mul-
tiple trials of simulation, using genetic programming and a genetic algorithm,
respectively. The active area of evolving robust systems is evolvable hardware
(Thompson and Layzell, 2000). Most of these approaches employ genetic al-
gorithms or evolution strategies as the search procedures. Very recent work is
the evolution of robust digital circuits (Miller and Hartmann, 2001, Hartmann
et al., 2002a). In this work, Miller, Hartmann, and their collaborators examine
the feasibility of evolving robust digital circuits using a type of “messy gate.”
Hartmann et al.(Hartmann et al., 2002b) investigated how evolution may ex-
ploit non-perfect digital gates to achieve fault tolerance, including tolerance to
output noise and gate failure. However, the noise introduced to improve robust-
ness is not applied to parametric values of the components, but to the analog
outputs of the messy gates, and an evolution strategy is used as the open-ended
topology search tool. This method is thus not as instructive as might be desired
in exploring effects of alternative topologies.
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3. Analog Filter Synthesis by Bond Graphs and
Sustainable Genetic Programming

Dynamic systems in this chapter are represented as bond graphs (Karnopp
et al., 2000). A strongly typed genetic programming tool, enhanced with the
sustainable evolutionary computation model, the Hierarchical Fair Competition
(HFC) model (Hu and Goodman, 2002), is used for topologically open-ended
search. In this section, bond graphs, the bond graph synthesis approach by
genetic programming and the HFC-GP algorithm (Hu and Goodman, 2002) are
introduced briefly.

Bond Graphs
The bond graph is a multi-domain modeling tool for analysis and design

of dynamic systems, especially hybrid multi-domain systems, including me-
chanical, electrical, pneumatic, hydraulic, etc., components (Karnopp et al.,
2000). The multi-domain nature of bond graph modeling facilitates evolution
of mechatronic system. Details of notation and methods of system analysis
related to the bond graph representation can be found in (Karnopp et al., 2000).
Figure 9-1 illustrates a bond graph that represents the accompanying electrical
system. A typical bond graph model is composed of inductors (I), resistors (R),
capacitors (C), transformers (TF), gyrators (GY), 0-Junctions (J0), 1-junctions
(J1), and Sources of Effort (SE). In this chapter, we are only concerned with
linear dynamic systems, or more specifically, analog filters as a case study rep-
resented as bond graphs, which are composed of I/R/C components, SE (as
input signal),SF (as output signal access point).

Figure 9-1. A bond graph and its equivalent circuit. The dotted boxes in the left bond graph
indicate the modifiable sites (explained in next section)
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Analog Filter Synthesis by Bond Graph and Genetic
Programming

In previous work (Fan et al., 2001), we applied developmental genetic pro-
gramming to automated synthesis of analog filters using a basic GP function
set. In that approach, the GP functions for topological operation were:

which allow evolution of a large variety of bond graph topologies. The
shortcoming of this approach is that it tends to evolve redundant and sometimes
causally ill-posed bond graphs (Seo et al., 2003b). In this chapter, we use a
well-posed modular GP function set as shown below to evolve bond graphs, as
in explained in (Hu et al., 2004):

where Add _J_CI_R adds a new alternative type of junction to an existing
junction with a randomly specified attached elements like C/I/R; Insert _J0CJ1I
inserts a pair of 0-junction and 1-junction into an existing bond, each junction
with a randomly specified attached elements like C/I/R; EndNode and EndBond
terminate the development (further topology manipulation) at junction and bond
modifiable sites correspondingly; ERC represents a real number that can be
changed by Gaussian mutation. As an example, the operation of Add_J_CI_R
is illustrated in Figure 9-2.

Figure 9-2. The Add_J_CI_R function, whose execution will attach a new junction with a certain
number of attached components to an existing junction

In this modular set approach, the bond graphs are composed of only alter-
nating 1-junctions and 0-junctions. Each junction is attached with three bits,
each representing the presence or absence of corresponding C/I/R components.
A flag mutation operator is used to evolve these flag bits. For the three C/I/R
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components attached to each junction, there are three parameters to represent
the component values, which are evolved by a Gaussian mutation operator of
the modified genetic programming system used here. This is different from our
previous work in which the “classical” numeric subtree approach was used to
evolve parameters of components. Figure 9-3 shows a GP tree that develops an
embryo bond graph into a complete bond graph solution.

As a case study, we are interested in evolving analog filters (bond graphs) as
defined in (Fan et al., 2001). The embryo bond graph and its equivalent circuit
are illustrated in Figure 9-1. Note that the two junctions and one bond with
dotted boxes are modifiable sites where further topological developments can
proceed as instructed by a GP program tree.

The fitness of a candidate analog filter is defined as follows: within the fre-
quency range of interest [1, uniformly sample 100 points. Compare the
magnitudes of the frequency response at the sample points with target magni-
tudes, compute their differences, and get a sum of squared differences as raw
fitness, defined as  Then calculate normalized fitness according
to:

Figure 9-3. An example of a GP tree, composed of topology operators applied to an embryo,
generating a bond graph after depth-first execution (numeric branches are omitted)
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Sustainable Genetic Programming Based on the Hierarchical
Fair Competition Model

Standard genetic programming has a strong tendency toward premature con-
vergence of the GP tree structures, as illustrated by the visualization of GP
tree populations by Daida et al. (Daida et al., 2003), which can be partially
explained by the loss-of-exploration-capability hypothesis (Hu et al., 2003).
In this work, we employ QHFC-GP, an improved version of the sustainable
genetic programming method, HFC-GP, as introduced in (Hu and Goodman,
2002). The basic idea of the HFC artificial evolution model (HFC) for sustain-
able search is that evolutionary search needs to be sustained by continuously
incorporating new genetic material into the evolving pool and by keeping lower-
and intermediate-level evolutionary processes going on all the time, rather than
relying only upon “survival of the fittest.” The strategy of HFC is to stratify the
population of standard genetic programming into cascading fitness levels and
to put a random individual generator at the bottom fitness level. In this way,
the convergent nature of conventional evolutionary algorithms is transformed
into a non-convergent one, which can support sustainable evolutionary discov-
ery of new solutions. Evolutionary algorithms based on the HFC sustainable
evolution principle have proved to be able to improve robustness, efficiency,
and scalability for both genetic algorithm and genetic programming problems
(Hu et al., 2003, Hu et al., 2005).

The basic HFC algorithm (Hu et al., 2005) has been the subject of continuing
experimentation and refinement. The continuous HFC model (CHFC) was
introduced in (Hu et al., 2003), and a further refinement of HFC, Quick HFC
(QHFC) is used in the work reported here in order to improve the efficiency
and sustainability of the topological innovation. As the focus of this paper is
on robust design by genetic programming rather than on the HFC model and
algorithms, we refer our readers to (Hu et al., 2005) for a description of the
QHFC algorithm and (Hu et al., 2003) for the ideas and advantages of HFC-
based genetic programming compared to other techniques.

4. Evolving Robust Analog Filters by QHFC-GP
The typical approach for evolving robust designs is to use multiple Monte

Carlo samplings with different environmental or system configurations to calcu-
late an average fitness for a given candidate solution. One speciality of evolving
robustness in genetic programming is that solutions evolved in GP are grown by
a developmental process and the robustness of early intermediate individuals
does not necessarily imply the robustness of the final solutions. But if the ro-
bustness is only evaluated after the fitness of the population reaches a high level,
standard genetic programming has difficulty coming up with much variety in
the space of solutions, because of convergence of the GP tree structure. The
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stratified sustainable search feature of QHFC tends to be able to solve this prob-
lem. In the following experiments, evaluation of the robustness of candidate
solutions is only applied to individuals of the top level, as we only care about
the final robustness rather than the robustness of intermediate solutions. This
saves much computing effort. However, a sufficient variety of new topological
candidates is continually introduced to the top level to allow for competition
among various topologies according to their relative robustness.

The fitness evaluation for top-level individuals is as follows:

where SPI is the number of Monte Carlo sampling evaluations for each indi-
vidual, is the fitness of the sampling evaluation with different Monte
Carlo perturbation of the parameters or topology. In the case of topology per-
turbation, since some sampled systems after topology perturbation cannot be
simulated because of ill-posed causality, SPI here would be replaced with a
specific number of well-behaved perturbed systems (explained later).

5. Experiments and Results

In this section, a series of experiments are conducted to verify the following
hypotheses about robust design by genetic programming. The first hypothesis is
that dynamic systems with equal performance in the deterministic formulation
of the design problem have differential capacity for noise and fault tolerance.
The second hypothesis is that topological innovation by genetic programming
can improve the robustness to component sizing noise or component failures in
dynamic systems.

As mentioned above, two types of robustness are examined. One is the ro-
bustness with respect to (w.r.t.) variation of parameter values of the components
in the system; the other is the robustness with respect to failure of components,
which in our case is simply modeled as removal of the components from the
system. The perturbation of the component values during evolution is imple-
mented by perturbing all component parameters with Gaussian noise
with mean at 0 and standard deviation at 25% of parameter values. The
failure of components during evolution is implemented by disconnecting a uni-
formly selected number (between 1 and 5) of components randomly from the
systems. The number of Monte Carlo samplings for fitness evaluation of each
individual with respect to parameter and topology perturbation is set as SPI=10.
The robustness of an evolved solution w.r.t. parameter perturbation is evaluated
against a series of perturbation magnitudes: Gaussian noise with mean

at 0 and standard deviation at 5% to 50% of parameter values in steps of
5%, each tested with 5000 samplings with different configurations of the com-
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ponent parameter perturbations. The robustness of an evolved solution w.r.t.
topology perturbation is evaluated against a series of topology perturbations:
removing a certain number (1 to 10 in steps of 1) of components randomly from
the systems, each tested with 100 samplings with different failure states of its
components.

All the following experiments aim to evolve robust high-pass filters passing
signals of frequency 100k Hz and higher. The running parameters for QHFC-
GP used here are in Table 5:

Analog Filters with Different Topologies Have Different Noise
Robustness and Fault Tolerance Capability

In this experiment, ten analog filters with approximately equal functional
performance but with different topologies are evolved, each with 2,000,000
evaluations without incorporating a robustness criterion in the fitness function
(9.1). We then choose two filters, one complex solution with 52 components
and one compact solution with only 23 components, to test their capabilities
for fault tolerance and noise tolerance over the degradation or variation of the
component parameters with different perturbation magnitudes.

As described above, the evaluation of robustness w.r.t. parameter pertur-
bation is conducted by running 5000 samplings of the configurations of the
perturbations. The robustness w.r.t. component failures is evaluated with only
100 samplings as topological robustness is much more complex to evaluate.
The reason is that topology modification usually leads to dramatic degradation
of functional performance or leads to invalid physical system models, which
can be checked out by the causality check procedure of a bond graph (Karnopp
et al., 2000). Some systems with randomly perturbed topologies are causally
valid but can not be simulated by our simulator. To deal with these difficulties,
we first collect the fitness of all the topologically perturbed sampling systems
that can be simulated. Then the average fitness of these performance values is
calculated. To remove the dominance of a few dramatically degraded systems
on the average fitness, we then remove all the fitness values that are worse than
the average fitness and recalculate the average fitness to get the final fitness for
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the individual as in (9.2). The performance degradation graphs of these two
analog filters are shown in Figure 9-4.

From Figure 9-4 (a), we see that without incorporating a robustness re-
quirement into fitness evaluation, the evolved filters are somewhat robust w.r.t.
parameter perturbation compared to their performance degradation in face of
topology perturbation in Figure 9-4 (b), which illustrates the principle that struc-
ture determines function. It can also be observed that the relatively simpler filter
has higher robustness w.r.t. parameter perturbation than the more complex one.
However, this advantage is offset by its very poor fault-tolerance capability: for
the 100 sampling evaluations, removing only 2 components invariably leads to
causally ill-posed systems or systems that cannot be simulated by our simu-
lator. We also identify the fact that topology perturbation of a system with
fewer components has much more dramatic effect on the function of the re-
sulting system, usually leading to much higher percentage of causally ill-posed
or non-simulatable systems among the 100 sampling topologically perturbed
systems.

Figure 9-4. Robustness of two evolved analog filters without incorporating a robustness crite-
rion into fitness function.

Evolving Robustness to Component Sizing Perturbations
In the following experiments, we try to evolve a robust analog filter that has

higher tolerance of the variation of component values and has graceful per-
formance degradation. In mechanical systems, where bond graphs are widely
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used, component sizing is often constantly changing due to friction, wear, and
damage. Figure 9-5 is the evolved bond graph (for simplicity, we omit the pa-
rameters here) and Figure 9-6 (a) is the performance degradation with respect
to noise level.

Figure 9-5. Evolved robust analog filter (represented in bond graph) w.r.t. parameter pertur-
bation. Component sizing values are omitted for simplicity.

Figure 9-6. Improved robustness of the evolved analog filters incorporating a robustness crite-
rion in the fitness function.
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The evolved robust filter in Figure 9-5 is very interesting. It has a cen-
tral 0-junction with 11 1-junctions attached, which means that many serially
connected C/I/R modules are connected in parallel. This topological struc-
ture reminds us of the scale-free topology (Ferrer i Cancho et al., 2001). One
plausible explanation is that simultaneous parametric perturbations on the com-
ponents of these symmetric modules tend to have some compensatory effects
on each other, thus achieving higher robustness to parameter noise. Comparing
Figure 9-6 (a) and Figure 9-4 (a), it is clear that QHFC-GP with robustness
fitness evaluation has improved the robustness w.r.t. the perturbation over the
component parameters of the filter. The performance degradation is smoother
than that evolved without considering robustness. We also find that for a noise
level below 20% or beyond 50%, the behavior of the robust filter is somewhat
similar to that of the filter evolved without incorporating a robustness criterion
in the fitness function.

Evolving Robustness to Component Failure

In the following experiments, we try to evolve a robust analog filter that can
tolerate the failure of its components and has graceful performance degradation.
The running parameters are the same as stated in the beginning of this section.
Remember that because a significant portion of the topologically perturbed
systems are causally ill-posed and can not be simulated with our simulator, the
final fitness of the solutions (and the resulting conclusion) is much less reliable
than that in the previous subsection. Topology perturbation during evolution is
applied by removing a uniformly chosen number (between 1 and 5) of compo-
nents from each candidate solution for 10 samplings. The evolved filter, in bond
graph form, is shown in Figure 9-7 and the performance degradation levels are
illustrated in Figure 9-6 (b).

Comparing Figure 9-6 (b) with Figure 9-4 (b), it is clear that a more fault-
tolerant filter has been evolved. Removing 3 faulty components, the robust
solution can still achieve 65% of the fitness of the original solution on average,
while the non-robust filter can only achieve 39% of the fitness of the original
solution. Another interesting observation is that the fault-tolerant filter in Figure
9-7 tends to be much more complex than the robust solution evolved in the
previous subsection. This can be explained like this: more complex structures
can have more redundancy, which serves as means for providing fault-tolerance.
The lower degree of symmetry of this solution compared to that of Figure 9-
5 seems to also contribute to its tolerance of component removal. It is clear
that different perturbation patterns lead to different topological structures of the
robust solutions.
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Figure 9-7. Evolved fault-tolerant filter represented as bond graph. Component sizing values
are omitted for simplicity.

6. Conclusions and Future Work

This chapter proposes to exploit open-ended topology search capability of
genetic programming for robust design of dynamic systems. We believe that
topological or functional innovation in the conceptual design stage can improve
the robustness of (the functionality of) the systems. Specifically, we apply an
improved version of sustainable genetic programming-QHFC and a bond graph-
based modular set approach to automated synthesis of robust dynamic systems.
We find that our sustainable genetic programming enables us to find more robust
analog filters with respect to the variations in their parameters and component
faults.

Evolving robustness is a rich research theme and there are several interesting
topics to be further investigated. First, we find that selection pressure for ro-
bustness w.r.t. parameter perturbation and component faults leads to different
topological patterns. It would be interesting to investigate how simultaneous
requirements for both types of robustness would affect topological structures.
Another related study would be to examine how perturbation pattern would
affect structures. For example, one could study how the evolutionary system
responds differentially to component removal by an absolute number of or by
a percentage of components. Next, our experiments suggest that symmetry or
scale-free topology may have a role in system robustness. More experiments
are needed to confirm this. Future work will also explore the tradeoffs between
improving robustness by parameter search and by topological innovation will
be studied and methods to control it will be developed.
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Chapter 10

DOES GENETIC PROGRAMMING INHERENTLY
ADOPT STRUCTURED DESIGN TECHNIQUES?

John M. Hall1 and Terence Soule2
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Abstract Basic genetic programming (GP) techniques allow individuals to take advantage
of some basic top-down design principles. In order to evaluate the effectiveness
of these techniques, we define a design as an evolutionary frozen root node. We
show that GP design converges quickly based primarily on the best individual in
the initial random population. This leads to speculation of several mechanisms
that could be used to allow basic GP techniques to better incorporate top-down
design principles.

Keywords: genetic programming, design, function choice, root node

1. Introduction
Top-down design is one of the cornerstones of modern programming and

program design techniques. The basic idea of top-down design is to make de-
cisions that will divide each problem into smaller, more manageable subprob-
lems (Lambert et al., 1997). The process is repeated on each of subproblem until
the programmer is left with easily solved subproblems. This process is referred
to as top-down because it focuses on the broader questions before addressing
the more specific subproblems.

A simple example of this process is the problem of writing a program to
calculate the area of a building. A typical top-down, approach might lead to the
following design process. A) divide the problem into how to sum the areas of
individual rooms and how to calculate the area of individual rooms. B) write a
function to sum individual areas while assuming that the areas will be available.
C) divide the problem of calculating the areas of individual rooms by the shape
of the rooms: square, rectangular, circular, etc. D) write a function for each
room shape. Note that the broader, more significant problems are addressed
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first; the design determines how to calculate the total area before addressing the
problem of a specific room shape, that may only occur in a few buildings.

Top-down design can be implicitly mapped to a tree representation. (Indeed,
top-down designs are often drawn as trees.) The complete tree represents the
solution to the full problem. The root node divides the tree into two or more
subtrees, which represent solutions to the first level of subproblems. The nodes
at the next level further subdivides the subtrees into the subproblems, etc., until
we reach problems that are simple enough to be solved via terminal instruc-
tions. Thus, the tree structure used in standard GP does inherently allow for
a limited form of top-down design and problem decomposition (although this
is no guarantee that GP uses a top-down approach). For example, if GP does
inherently adopt a top-down design approach and if GP were used to address the
problem of calculating the area of a building, we might expect to see numerous
addition functions near the root nodes (to sum the area of the individual rooms)
and multiplication functions near the leaves to calculate the areas of individual
rooms.

The focus of this chapter is to determine whether or not GP does use a top-
down approach. And, if so, to find out how quickly GP makes the decisions
that have the largest impact on individual fitness. For this research, we limit
ourselves to the first, and most significant, design decision–the root node choice.
Our results suggest that GP does inherently perform limited top-down design
for some problems, but is easily misled. Fixing the root node to the best design
choice only marginally improves performance.

2. Background

There is some evidence suggesting that GP does evolve trees following a
generally top-down, structured order, fixing upper-level nodes early (top-down
design) and fixing the overall tree structures (structured, decompositional de-
sign). However, it is unclear whether this order of evolution is followed because
it is effective or because the natures of the GP operations favor fixing root nodes
and structure early. McPhee and Hopper as well as Burke et. al. analyzed root
node selection in simple, tree-based GP (McPhee and Hopper, 1999, Burke
et al., 2002). They found that the upper levels of the individuals in a population
become uniformly fixed in the early generations of a run and are very difficult
to change in later generations. This suggests that GP adopts a structured de-
sign strategy; it works from the top-down, selecting higher level functions and
decomposing the problem among the sub-trees.

Work by Daida et al. has shown that in the later generations of a GP run there
is relatively little variation in the structure of the evolved trees (Daida et al.,
2003) and is also discussed in chapter 5 of this volume. This suggests that GP
selects a general structure and maintains it, adjusting the subtrees as necessary
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to improve fitness. However, it is unclear whether this structure is selected
randomly or whether it represents a good design. It has also been shown that
the typical GP tree structure falls within a region that can be defined by ran-
domly generated trees (Langdon et al., 1999, Langdon, 2000). Similarly, Daida
has shown that the typical GP tree structure can be defined using a stochas-
tic diffusion-limited aggregation model (Daida, 2003). This model defines a
relatively narrow region of the search space that most GP trees fall in. Thus,
it is clear that the typical structure of GP trees is bounded by likely random
structures. This suggests that the structure of GP trees is chosen randomly.

Within these bounded regions there are still a very large number of possible
structures for evolution to choose from. It is possible that within these bounded
regions GP is still actively selecting a beneficial structure. Further it is well
known that the majority of code within a typical GP tree consists of non-coding
regions. Non-coding regions are not subject to selective pressure based on
content or structure. Thus, it is entirely possible that the structure of GP trees
fall within the region bounded by random trees because the majority of the
structure of a GP tree consists of non-coding regions that are effectively random.
Whereas, the important coding regions, which are typically near the root (Soule
and Foster, 1998), may in fact have structures that are selected by evolution.

It has also been shown that GP can be improved by explicitly incorporating
structured design techniques into the evolutionary process. Several approaches
have been proposed to incorporate these standard design techniques into GP.
These examples are discussed here as examples of existing methods that allow
GP to perform design better. Probably the best known approach is the use
of automatically defined functions (ADFs) (Koza, 1994). In ADFs a normal
GP tree is subdivided into a result producing branch and one or more function
defining branches. Each of the function defining branches can be called from
within the result producing branch (and possibly the other function defining
branches). This makes typical top-down (or bottom-up) and decompositional
design techniques possible; the problem can be decomposed into sub-problems
solved by the function branches and the total program can be evolved either top-
down (starting with the result producing branch) or bottom-up (starting with
the function defining branches). ADFs have proven to be extremely successful
at improving GP performance, which suggests that GP can take advantage of
standard design techniques.

ADFs have been combined with architecture altering operators that allow the
number and form of the function defining branches of a program with ADFs
to be modified. Architecture altering operators further increase GP’s ability to
‘design’ programs by making the number and form of the functions evolvable
and the use of architecture altering operators have produced further performance
gains.



162 GENETIC PROGRAMMING THEORY AND PRACTICE II

Other, more limited, techniques for incorporating functions have also been
proposed, including subtree encapsulation and module acquisition (Rosca and
Ballard, 1996, Rosca, 1995, Angeline and Pollack, 1993). The techniques also
improved GP performance, but to a much more limited extent.

The results described above are significant for two reasons. First, they show
that GP algorithms that are capable of creating functions often perform better
than those that aren’t capable of creating functions. Second, they show that GPs
with greater function creation capabilities perform better than GPs with poorer
function creation capabilities. This suggests that GP uses, or at least imitates,
top-down and decomposition design techniques when possible (i.e. when it can
create separate reusable functions).

3. Experimental Methods

Experiments
For these experiments we simplify the question of design by focusing only

on the root node. The root node represents the first and most important design
decision that can be made if a top-down methodology is used. Thus, if GP does
follow a top-down, structured design process in evolving programs it should be
most apparent in the selection of the root node.

Our first experiment forces a design on the evolutionary process by fixing
the root node throughout the evolutionary process. In each of the experiments
a different function is chosen to be the root node. It is fixed in the initial
population and is not allowed to change either through mutation or crossover.
In order to ensure significant results 500 trials are performed with each non-
terminal function as the root. We then average the fitness of the best individual
in each trial and define the function that generates the highest average fitness
as the optimal root node and the best top-down design. The root node that
produces the best performance in this experiment is assumed to represent the
best initial design decision.

In the second experiment the population is initialized normally, that is with
completely random trees. We then measure which function the population
chose, via convergence, for the root node. Convergence is defined as at least
80% of the population having the same function at the root node, otherwise we
assume the population is unconverged (in practice this very rarely occurred).
In order to ensure significant results, 1000 trials are performed. This will deter-
mine whether the GP chooses the function for the root node as by experiment
1, and thus whether the GP is using ‘good’ design techniques.

The third experiment is designed to further understand the evolutionary forces
that determine the root node choice. We identify the function at the root node
of the best individual in each of the 1000 initial populations from the second
experiment. This best, initial function is compared to the converged function
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from experiment 2 to determine how frequently GP simply converges on the
best initial function.

The GP

Five test problems are used in this research: the Santa Fe Trail, intertwined
spirals, symbolic regression, even parity, and battleship. The first four are cho-
sen because they are commonly used benchmark problems. Additionally, they
include representatives of classes of common application problems including
classification, symbolic regression, and robot control. Thus, if inherent GP de-
sign is more or less likely in one type of problem, we should observe this in our
results. Finally, these problems cover a wide range of non-terminal functions
so if particular functions are more favorable to good design, we should also
observe this in our results.

The general GP settings are fixed for all populations. All populations consist
of 100 individuals. Populations are evaluated for 100 generations. It should be
noted that these values are fixed despite the range of difficulties of test problems.
Relatively small populations are used because we are not specifically interested
in obtaining high fitness solutions, only in looking at the dynamics of root node
selection. Previous research and our preliminary experiments demonstrated
that in the majority of trials 100 generations is more than sufficient for the root
nodes of a population to converge.

Individuals are created using ramped half and half (Koza, 1992). Grown
trees have an 80% probability of each node being a non-terminal. In addition,
all root nodes are non-terminals. As a slight simplification, all non-terminal
nodes have the same number of branches. Operations which do not use all
branches simply ignore the extra branches.

All individuals in the non-initial populations are created using the crossover
and mutation genetic operators. Selection is rank based with a tournament of
size 3. Crossover is performed 100% of the time. Crossover points are selected
according to the 90/10 rule (Koza, 1992). Mutation is included in an effort to
reduce any root node protectionism inherent to crossover. Mutation is applied
with an average rate of 1 mutation per 100 nodes. Mutation never changes
whether a node is a terminal or a non-terminal. New appropriate values are
chosen uniformly. This gives a fair chance that a node is mutated back to
its original value. A maximum depth limit of 20 is imposed. All individuals
exceeding this depth are discarded. This limit is applied in an effort to limit
code growth that may reduce the impact of crossover on the root of the tree.

In order to compare fitness values between test problems, the values are
scaled to the range 0.0 to 1.0, where 1.0 is the optimal fitness. Parsimony
pressure is applied as a tiebreaker in the event of an exact fitness match. This
is more common with problems that have discrete fitness values.
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Santa Fe Trail

The Santa Fe trail problem (Langdon and Poli, 1998), also known as the
artificial ant problem requires a program to guide an ant along a path of food.
The environment is modeled as a 32 by 32 discrete toroid. The ant starts in the
Northwest corner facing east. The program is repeated until either all the food
has been eaten or 500 actions have been performed. The fitness measure of a
program is the percentage of food along this trail that is eaten.

Intertwined Spirals
The intertwined spirals problem (Koza, 1992a) is a classification problem.

The goal is to evolve a program that correctly determines which of two spirals
a given point is on. The points used include 96 points from each spiral. The
fitness measure for a solution is what percentage of the 192 points are clas-
sified correctly. Because the classification requires a Boolean value, but the
calculations use floating point numbers, the value produced by an individual is
compared to 0. Values greater than or equal to zero are considered to be clas-
sified on the first spiral, and values less than zero are classified on the second
spiral. The constants used for this problem are created uniformly on the interval
–1.0 to 1.0. The division operator returns 1.0 when the divisor’s magnitude is
less than 0.000001.

Symbolic Regression
Symbolic regression attempts to evolve a function that approximates a group

of sampled points. For this experiment, the sampled points are taken from the
function  at intervals of 0.5 starting at 0.

This simple regression function was chosen to simplify the problem which
has many operators and tends to be ‘difficult’. The error measurement used
is simply the sum of the residuals between the actual points and the function
evolved. In order to scale this error to the common 0.0 to 1.0 scale, the fitness
function was The constant 0.933 was chosen to give a fitness of
0.5 when the evaluation function had an average error of 1.0 per point. The
constants used in this problem are generated uniformly on the interval -2.0 to
2.0. The division operator is protected in the same way as with the Santa Fe
Trail problem.

Even Parity
The 6 bit even parity problem tries to evolve a Boolean function that returns

the even parity of 6 input bits. The fitness of each individual is calculated by
trying all 64 possible input configurations. The fitness is the percentage of these
that give the correct output bit.
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Battleship

Figure 10-1. Battleship Problem

This chapter introduces the battleship problem. This problem is designed to
be similar to the Santa Fe Trail problem, but it is hoped that the different states
or behaviors allow more opportunity for design. The problem is based on the
Battleship board game with only one player. The game is played on a 10 by 10
grid which contains one ship of length 5, one of length 4, two of length 3, and
one of length 2. Figure 10-1 shows an example layout of ships. The goal is to
hit the ships by moving a target over their location and firing. The target starts
in the Northeast corner. The landscape does not wrap around from the left to
right or top to bottom. A program is allowed up to 500 operations and up to
70 shots per game. In order to calculate the fitness of a solution, 25 games are
played. The fitness is the total number of hits divided by the total number of
possible hits. The 25 boards are created randomly and are not changed between
generations.

The terminals for this problem are North, East, South, West, and No-Op.
The first four move the target in the indicated direction one step. No-Op leaves
the target unchanged. All 5 terminals count toward the 500 step limit.

The non-terminals for this problem are Fire, Prog2, and Loop. Fire con-
ditionally executes either the left or the right branch based on whether there is a
ship at the target location. This non-terminal counts toward the 70 shot limit and
if there is a ship at the current target location, it is hit. Prog2 unconditionally
executes its left and then its right branch. Loop is an unconditional loop that
terminates only when the loop has no effect or the step limit is reached. For
example if the only child of a Loop non-terminal is a West terminal, then the
target would move all the way to the left of the board. Once there, the West
terminal no longer has an effect and the loop terminates.
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4. Results

Table 10-1 shows the average fitness for each of the functions for each prob-
lem. The fixed root design that averaged the best fitness for each of the test
problems is shown in bold. For example, the best results for the Santa Fe Trail
problem occur when the root is fixed as Prog2. In general, the differences in
fitness are not statistically significant or, if significant, are fairly minor. This
suggests that GP can easily adapt to whatever function is fixed at the root node.

Table 10-2 shows the results from the second experiment. This table shows
the percentage of populations which converged to each function and the result-
ing average fitness and standard deviation (in parentheses). For reference, the
values corresponding to the best design found in the first experiment are shown
in bold. For example, with the Santa Fe Trail problem, in 42% of the 1000 trials
the population converged on the IfFood function as a root node and in those
trials the average best fitness was 0.6866.

These results show that the design/root node choice makes a small, but sig-
nificant, difference in the final fitness. Comparison of the best and worst root
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node choices shows a significant difference in all of the problems. In four of
the five problems the best function selected via experiment one also produced
the best fitness in experiment two. (The exception was the even parity prob-
lem where Xor is the best function with fixed root nodes, but Nand performed
better as an evolved root node.) Thus, although the fitness differences seen in
experiments 1 and 2 are small, the results are consistent between the fixed and
evolved cases.

This supports the idea that for these problems there is a good design and a bad
design as represented by the root node function. However, it is also clear that
GP does not always select the optimal root node. In only two problems (parity
and battleship) was the ‘best’ function, as determined in the first experiment,
clearly favored by the GP and in only one case (battleship) did the favored
function produce the best results. (Strictly speaking the favored function for
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intertwined spirals, Compare, also produced the best results, but it was favored
by such a small margin that the results are not conclusive.)

With both even parity and battleship an argument that GP adopts a top-down
design methodology could be made. In both cases the function that produced the
best results when fixed is heavily favored and produces the best or nearly the best
results when allowed to evolve. For these problems the evolutionary process
appears to be recognizing and applying a beneficial design in the majority of
trials. However, for the other problems this is not the case, instead the GP
settles on a function that does not generate the best results when fixed or when
evolved (e.g. for the Santa Fe Trail the GP settles on the IfFood root in the
majority of trials even though Prog2 and Prog3 both produce better results on
average, Table 10-2).

Our third experiment was designed to determine how GP selects the root
function, given that it does not appear to select the function that results in the
best solution. We hypothesize that GP either selects the function that produces
the best overall fitness in the initial population or that GP selects the function that
is most frequently the root node of the best individual in the initial population.
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To test these hypotheses we examine the frequency with which a particular
function produces the best of population member when that function is the
root node and the average fitness of the best of population members with that
function as the root node.

Table 10-3 shows how frequently each function is the root node of the best
individual in the initial random populations and the average fitness of the best
individuals with each function as the root node. E.g. for the Santa Fe Trail,
in the initial population the best individual had the root node Prog2 in 35% of
the trials and the average fitness of the best individuals from those 35% of the
trials was 0.3011. The best design, as determined by the first experiment, is
emphasized in bold.

The results suggest that both overall best fitness and frequency of best fitness
are important. Table 10-3 shows that for both even parity and battleship (the two
problems that seemed to adopt the best design) over half of the best individuals
in the initial populations used the best top-level design, as determined by the
first experiment, and that those individuals had the highest average fitness.

For the Santa Fe Trail, intertwined spirals, and symbolic regression problems
the function producing the best fitness in the initial population is different from
the function that most often produces the best fitness. For example, among
the best programs for symbolic regression in the 1000 initial populations the
programs with If Food as the root node have the highest average fitness, but
programs with Prog2 as the root are more likely to have the highest fitness.
Also, for these three problems, the node leading to the greatest number of best
of population programs is much less clearly defined.

Tables 10-4-10-8 show a more detailed breakdown of the results of the third
experiment. Each row in these tables shows the distribution of final designs
given the initial design of the population. For example, in Table 10-4, the first
row of data shows that with the Santa Fe Trail problem in the initial populations
where If Food is the design of the best individual, 70% of the populations con-
verged to If Food designs, 15% to Prog2 designs, and 14% to Prog3 designs.
Thus, for the Santa Fe Trail, the root function of the best individual in the initial
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population is significant in determining the converged root function after 100
generations.

In each table, the column which represents the best final design (from ex-
periment 1) has been emphasized in bold. In most cases the function that the
population converges on as the root node is the same function that generated the
best of population individual in the initial, random population. One exception
is Minus in the symbolic regression problem. In the trials where Minus was the
root node of the best individual 34% of the populations converged on Divide
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as the root node function and only 25% populations maintained Minus as the
root node function.

These results suggest that in most cases the root node converges on a function
before sampling sufficient individuals to identify the optimal design/function.
This is mostly clearly shown for the Intertwined Spirals problem, Table 10-5.
Along the diagonal where the initial best design matches the final design, all
the values are over 50%. This implies that in over 50% of the trials, the final
design is determined by the best individual in the initial random population.
This could be viewed as premature convergence.

With Even parity, Xor seems sufficiently better than the other operators that
it attracts from other designs. However, there is still a small ‘trap’ for the other
operators. For example 28% of the time when And is the design of the best
individual in the initial population, it is also the final design that is converged
to. The percentages of Nand and Or are smaller. The same appears true for the
battleship problem.

The ‘designs’ of the Santa Fe Trail, intertwined spirals, and symbolic re-
gression problems are misleading. Table 10-3 shows that in all three problems
the optimal root node function from the first experiment appears as the optimal
root node function in less than half of the trials. In addition, in the cases of the
intertwined spirals and symbolic regression problems, other designs appeared
more frequently than the optimal designs. The data for Santa Fe Trail is less
clear. It appears that there are several ‘traps’ with the initial design. If the
initial best design is If Food, 70% of the populations will evolve with the same
design. With Prog2, the best design, only 55% of the populations will evolve to
the same design. If the initial best design is Prog3, the final designs appear to
be randomly distributed. For Symbolic Regression, Divide seems to trap and
Plus and Minus seem to be redistributed. It is also interesting that different
designs rarely result in a Plus or Minus in the final design. So, there is some
‘design’ away from specific functions.
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5. Discussion and Conclusions

Genetic programming appears to mimic top-down design methods in that it
fixes programs from the root down. Thereby approaching the broadest problem
first by subdividing it into two (or more) sub-problems. GP also settles on a
general program structure early in the evolutionary process. However, the root
function appears to be chosen largely based on the results of the first generation.
This works well when the best initial root function is the overall best choice.
However, many problems appear to be deceptive; the function that produces the
best results in the initial population does not lead to the best results. For other
problems there is no clear favorite in the initial population and the favored root
node arises by chance.

In both of these cases the fixing of the root node can be viewed as an exam-
ple of partial premature convergence; the population converges on a particular
function for the root node without sufficient exploration to determine if that is
the ideal root node. However, unlike a GA where prematurely fixing a bit can
have significant affects on fitness, GP appears to be fairly adept at finding a
near optimal solution even when a poor choice is made for the root node.

Given that genetic programming appears to be converging on the top-level
nodes too quickly, at least for the more difficult and deceptive problems, there
are several methods that may be useful to improve performance. Increasing
the population size may allow the evolutionary process to sample enough in-
dividuals that the best design is more likely to be chosen. Sastry et al. have
proposed specific rules for population sizes based on the need to sample avail-
able building blocks (Sastry et al., 2003) and see chapter 4 of this volume. It is
unclear whether their sizing rules apply to our design question, as we are look-
ing at functions at a specific location (the root) whereas their rules are based on
position independent sampling.

An alternative, and more ad hoc approach, would be to begin with a very
large population. This would improve the GP’s sampling of the root node
choices and may make it more likely that the population will converge on the
optimal root function. After the population begins to converge, the population
size would be reduced to more typical values. However, if design complexity
were to increase linearly, it is expected that the population size would need
to increase exponentially to be as effective. Another possibility would be to
apply fitness sharing using the design of each individual. This would reduce
the convergence problem, but would become more expensive and less reliable
as the depth of the design considered increases. Manually forcing the root node
to a predetermined best function would not improve performance very much
(average fitness for experiments 1 and 2). In general, at least for these problems
the difference in fitness between optimal and non-optimal root functions did not
have a large effect on performance.
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Chapter 11

GENETIC PROGRAMMING OF AN
ALGORITHMIC CHEMISTRY
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Abstract We introduce a new method of execution for GP-evolved programs consisting of
register machine instructions. It is shown that this method can be considered as
an artificial chemistry. It lends itself well to distributed and parallel computing
schemes in which synchronization and coordination are not an issue.

Informally, an algorithm is a well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of values,
as output. An algorithm is thus a sequence of computational steps that transform
the input into the output.

(Introduction to Algorithms, TH Cormen et al)

1. Introduction

In this chapter we shall introduce a new way of looking at transformations
from input to output that does not require the second part of the definition
quoted above: a prescribed sequence of computational steps. Instead, the
elements of the transformation, which in our case are single instructions from a
multiset are drawn in a random order to produce
a transformation result. In this way we dissolve the sequential order usually
associated with an algorithm for our programs. It will turn out, that such an
arrangement is still able to produce wished-for results, though only under the
reign of a programming method that banks on its stochastic character. This
method will be Genetic Programming.
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A program in this sense is thus not a sequence of instructions but rather an
assemblage of instructions that can be executed in arbitrary order. By randomly
choosing one instruction at a time, the program proceeds through its transfor-
mations until a predetermined number of instructions has been executed. In
the present work we set the number of instructions to be executed at five times
the size of the multiset, this way giving ample chance to each instruction to be
executed at least once and to exert its proper influence on the result.

Different multi-sets can be considered different programs, whereas different
passes through a multi–set can be considered different behavioral variants of
a single program. Programs of this type can be seen as artificial chemistries,
where instructions interact with each other (by taking the transformation results
from one instruction and feeding it into another). As it will turn out, many
interactions of this type are, what in an Artificial Chemistry is called “elastic”,
in that nothing happens as a result, for instance because the earlier instruction
did not feed into the arguments of the later.l

Because instructions are drawn randomly in the execution of the program, it is
really the concentration of instructions that matters most. It is thus expected that
“programming” of such a system requires the proper choice of concentrations
of instructions, similar to what is required from the functioning of living cells,
where at each given time many reactions happen simultaneously but without a
need to synchronicity.

Even if the reader at this point is skeptical about the feasibility of such a
method, suppose for the moment, it would work. What would it mean for
parallel and distributed computing? Perhaps it would mean that parallel and
distributed computing could be freed from the need to constantly synchronize
and keep proper orders. Perhaps it would be a method able to harvest a large
amount of CPU power at the expense, admittedly, of some efficiency because
the number of instructions to be executed will be higher than in deterministic
sequential programs. In fact, due to the stochastic nature of results, it might
be advisable to execute a program multiple times before a conclusion is drawn
about its “real” output. In this way, it is again the concentration of output results
that matters. Therefore, a number of passes through the program should be
taken before any reliable conclusion about its result can be drawn. Reliability
in this sense would be in the eye of the beholder. Should results turn out to
be not reliable enough, simply increasing would help to narrow down the
uncertainty. Thus the method is perfectly scalable, with more computational
power thrown at the problem achieving more accurate results.

We believe that, despite this admitted inefficiency of the approach in the
small, it might well beat sequential or synchronized computing at large, if we

Elastic interactions have some bearings on neutral code, but they are not identical.1
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imagine tens of thousands or millions of processors at work. It really looks
much more like a chemistry than like ordinary computing, the reason why we
call it algorithmic chemistry.

2. Background
Algorithmic Chemistries were considered earlier in the work of Fontana

(Fontana, 1992). In that work, a system of expressions was exam-
ined in their interaction with each other. Due to the nature of the
each expression could serve both as a function and as an argument to a func-
tion. The resulting system produced, upon encounter of new

In our contribution we use the term as an umbrella term for those kinds of
artificial chemistries (Dittrich et al., 2001) that aim at algorithms. As opposed
to terms like randomized or probabilistic algorithms, in which a certain degree
of stochasticity is introduced explicitly, our algorithms have an implicit type of
stochasticity. Executing the sequence of instructions every time in a different
order has the potential of producing highly unpredictable results.

It will turn out, however, that even though the resulting computation is un-
predictable in principle, evolution will favor those multi-sets of instructions that
turn out to produce approximately correct results after execution. This feature
of approximating the wished-for results is a consequence of the evolutionary
forces of mutation, recombination and selection, and will have nothing to do
with the actual order in which instructions are being executed. Irrespective of
how many processors would work on the multi-set, the results of the compu-
tation would tend to fall into the same band of approximation. We submit,
therefore, that methods like this can be very useful in parallel and distributed
environments.

Our previous work on Artificial Chemistries (see, for example (Banzhaf,
1993, di Fenizio et al., 2000, Dittrich and Banzhaf, 1998, Ziegler and Banzhaf,
2001)) didn’t address the question of how to write algorithms “chemically”
in enough detail. In (Banzhaf, 1995) we introduced a very general analogy
between chemical reaction and algorithmic computation, arguing that concen-
trations of results would be important. The present contribution aims to fill that
gap and to put forward a proposal as to how such an artificial chemistry could
look like.

3. The Method
Genetic Programming (GP) (Koza, 1992, Banzhaf et al., 1998) belongs to

the family of Evolutionary Algorithms (EA). These heuristic algorithms try to
improve originally random solutions to a problem via the mechanisms of recom-
bination, mutation and selection. Many applications of GP can be described
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as evolution of models (Eiben and Smith, 2003). The elements of models are
usually arithmetic expressions, logical expressions or executable programs.

Here, we shall use evolution of a sine function (an approximation problem)
and of a thyroid pattern diagnosis problem (a classification problem). We
represent a program as a set of instructions only stored as a linear sequence in
memory due to technical limitations. These instructions are 2 and 3 address
instructions which work on a set of registers.

It should be noted that — in contrast to tree-based GP — each change in
an instruction of this representation will have global effects. If, as a result of
a change in an instruction, a certain register holds a different value, this will
affect all registers making use of this register as input argument.

Linear GP with Sequence Generators

Here we shall use 3-address machine instructions. The genotype of an indi-
vidual is a list of those instructions. Each instruction consists of an operation,
a destination register, and two source registers2. Initially, individuals are pro-
duced by randomly choosing instructions. As is usual, we employ a set of
fitness cases in order to evaluate (and subsequently select) individuals.

Figure 11-1 shows the execution of an individual in linear GP. A sequence

Figure 11-1. Execution of an individual in linear GP. Memory order and execution order cor-
respond to each other. Arrows indicate returned values of calls to the sequence generator.

generator is used to determine the sequence of instructions. Each instruction
is executed, with resulting data stored in its destination register. Usually, the
sequence generator moves through the program sequence instruction by instruc-

2Operations which require only one source register simply ignore the second register.
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tion. Thus, the location in memory space determines the particular sequence
of instructions. Classically, this is realized by the program counter.3

1–Point–Crossover can be described using two sequence generators. The first
generator is acting on the first parent and returns instructions at its beginning.
These instructions form the first part of the offspring. The second sequence
generator operates on the other parent. We ignore the first instructions this
generator returns4. The others form the tail of the offsprings instruction list.

Mutation changes single instructions by changing either operation, or des-
tination register or the source registers according to a prescribed probability
distribution.

A register machine as an Algorithmic Chemistry
There is a simple way to realize an chemistry by a register machine. By

substituting the systematic incremental stepping of the sequence generator by
a random sequence we arrive at our system. That is to say, the instructions are
drawn randomly from the set of all instructions in the program5. Still, we have
to provide the number of registers, starting conditions and determine a target
register from which output is to be drawn.

As shown in Figure 11-2 the chemistry works by executing the instructions
of an individual analogous to what would happen in a linear GP–System (cf.
11-1), except that the sequence order is different.

Figure 11-2.   Execution in the AC system. The sequence generator returns a random order for
execution.

3

4

5

(Conditional) jumps are a deviation from this behavior.
Should crossover generate two offspring, the instructions not copied will be used for a second offspring.
For technical reasons instructions are ordered in memory space, but access to an instruction (and subsequent

execution) are done in random order.
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It should be noted that there are registers with different features: Some
registers are read-only. They can only be used as source registers. These
registers contain constant values and are initialized for each fitness case at the
start of program execution. All other registers can be read from and written
into. These are the connection registers among which information flows in the
course of the computation. Initially they are set to zero.

How a program behaves during execution will differ from instance to in-
stance. There is no guarantee that an instruction is executed, nor is it guaranteed
that this happens in a definite order or frequency. If, however, an instruction is
more frequent in the multi-set, then its execution will be more probable. Simi-
larly, if it should be advantageous to keep independence between data paths, the
corresponding registers should be different in such a way that the instructions
are not connecting to each other. Both features would be expected to be subject
to evolutionary forces.

Evolution of an Algorithmic Chemistry
Genetic programming of this algorithmic chemistry (ACGP) is similar to

other GP variants. The use of a sequence generator should help understand this
similarity. We have seen already in Section 3.0 how an individual in ACGP is
evaluated.

Initialization and mutation. Initialization and mutation of an individual
are the same for both the ACGP and usual linear GP.

Mutation will change operator and register numbers according to a proba-
bility distribution. In the present implementation register values are changed
using a Gaussian with mean at present value and standard deviation 1.

Crossover. Crossover makes use of the randomized sequences produced
by the sequence generator. As shown in Figure 11-3 a random sequence of in-
structions is copied from the parents to the offspring. Though the instructions
inherited from each of the parents are located in contiguous memory locations,
the actual sequence of the execution is not dependent on that order. The prob-
ability that a particular instruction is copied into an offspring depends on the
frequency of that instruction in the parent. Inheritance therefore is inheritance of
frequencies of instructions, rather than of particular sequences of instructions.

Constant register values will be copied with equal probability from each
parent, as is done for choice of the result register.
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Figure 11-3. Crossover in an Artificial Chemistry.

Measures

Most measures, like the number of instructions of a program, can remain the
same as in other GP systems, some are not observable at all, e.g. edit distance,
or are completely new, as connection entropy described next.

If a register is written into from different instructions of a program which all
might be equally frequent in the program, reproducibility of a result is strongly
dependent on the sequence generator’s seed. If, however, all registers are only
written into from one instruction the result is more reproducible.

In order to increase reproducibility of results, the concentration of necessary
instructions needs to be increased and that of other instructions needs to be
decreased. One main influence on this is provided by crossover. At the same
time, however, it is advantageous, to decouple flow of data interfering with the
proper calculation. The connection entropy is designed to measure the progress
along this line.

Let W be the set of connection registers participating in any data path. A
connection register might be written into by operations of instructions

Each of these instructions might be in multiple copies in the program, with
the number of copies. We then have

the number of instructions that write into register Instruction has proba-
bility
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to have written into The entropy

of register states how reproducible the value in a register is. The connection
entropy finally reads

The lower the connection entropy the more reliable the results from the execu-
tion of a program in ACGP are.

4. Description of Experiments
We take two sample problems to demonstrate that the idea works in principle.

The first one is approximation of the sine function, the second problem is
classification of thyroid function on real world data. Table 11-1 lists parameters
chosen identically for both problems. Table 11-2 shows settings that differ for

both problems. Additionally, both problems vary in their fitness function. In
the following section we describe the applied fitness functions and give some
more information about the two problems.
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Regression — Sine Function Approximation
Approximation of a sine function with non-trigonometric functions is a non-

trivial but illustrative problem. The set of fitness cases
is created in the following way: In the interval random

values are used to calculate values
Given a subset of the training set V, the fitness function is the mean

squared error of the individual I applied to all fitness cases of the subset:

denotes a fitness case in the subset of size the input and the
desired output.

Classification — Thyroid Problem
The thyroid–problem is a real world problem. The individual’s task is to

classify humans thyroid function. The dataset was obtained from the UCI–
repository (Blake and Merz, 1998). It contains 3772 training and 3428 testing
samples, each measured from one patient. A fitness case consists of a measure-
ment vector containing 15 binary and 6 real valued entries of one human being
and the appropriate thyroid function (class).

There are three different classes for the function of the thyroid gland, named
hyper function, hypo function and normal function. As Gathercole (Gathercole,
1998) already showed, two out of these three classes, the hyper function and
the hypo function, are linearly separable. Given the measurement vector as
input, an individual of the ACGP system should decide whether the thyroid
gland is normal functioning (class 1), or should be characterized as hyper or
hypo function (class 2).

Because more than 92% of all patients contained in the dataset have a nor-
mal function, the classification error must be significantly lower than 8%. The
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classification error is the percentage of misclassified dataset. We use the clas-
sification error as our fitness function.

The selection algorithm picks its subsets out of the 3772 training examples.
From the set of testing examples we remove the first 1000 examples to form a
validation set. The remaining examples form the testing set.

We assign the following meaning to the output of the individuals. A negative
output (< 0) denotes normal function, otherwise hyper or hypo function.

5. Performance Observation

Figure 11-4 shows the characteristics of fitness, length and entropy for both
experiments described in section 4. All results are averaged over 100 runs.

Fitness
Fitness characteristics are shown for population average as well as popula-

tions best individual, based on a subset of the training set. All individuals are
tested on a validation set and the best individual is then applied to the testing
set. The third characteristics shows fitness on this set in average.

In Figure 11.4(a) one can see their variation in time for the thyroid problem.

Figure 11-4. Observations on classification of thyroid function.

In this example fitness is equal to classification error. The average clas-
sification error (on the test set) after 500 generations is 2.29%. The lowest
classification error ever reached is 1.36%, observed after 220 generations. Us-
ing different settings, Gathercole (Gathercole, 1998) reports classification er-
rors between 1.6% and 0.73% as best result using his tree–based GP system.
He also cites a classification error of 1.52% for neural networks from Schiff-
mann et. al. (Schiffmann et al., 1992).
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Figure 11.5(a) shows mean squared error (MSE) as fitness value for the
sinus approximation problem. The lowest MSE observed ever is 0.026. One

Figure 11-5. Observations on approximation of the sine function.

run achieved this value, but it got lost in subsequent generations. Runs better
than average (0.17) show values next to 0.11. Certainly, there is room for
improvement regarding these results.

The MSE might not be an adequate fitness function for Algorithmic
Chemistries. No evaluation of a fitness case is like another, because a new
random order of instructions is used for each fitness case. While an insufficient
order leads to a low error on classification problems (one misclassification),
it could lead to a large error on regression problems using MSE. Even if an
Algorithmic Chemistry leads to good results on almost every fitness case, a
single failure could have a large effect on the individual’s fitness value. This
complicates evolution. Limiting maximum error of a fitness case could be a
possible way out.

Program Length and Connection Entropy
program length
Due to our definition of entropy, its variation in time is comparable to length

of the individuals. For this reason they are shown in the same chart (Fig. 11.4(b)
and 11.5(b)). We plotted the population means as well as the characteristics
of population’s best individual averaged over 100 runs. Values of the best
individuals should give an impression on how selection pressure influences the
mean value.

At the outset individuals loose between 20% and 40% of their initial length
of 100 instructions immediately. Within the first 100 generations they reduce
length even more and keep a nearly constant length afterwards. We cannot
observe bloat by ineffective code as it is known in linear GP. For this behavior
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we take two reasons into account. First, bloat protects blocks of code belonging
together in a specific order from being separated by the crossover operation. As
there is no order in ACs, there is no need for such kind of protection. Second,
each nonessential instruction reduces the probability of calling an essential
instruction in the right period of time. This cannot reduce bloat in linear GP,
because there it is assured that every instruction is called once in sequential
order.

With decrease in average length, average connection entropy declines, too.
This increases the uniqueness of the value assigned to a register.

Visualization of an Algorithmic Chemistry
Figure 11-6 represents an Algorithmic Chemistry of the population at two

different time steps. Each register is represented by a node. Read-only registers

Figure 11-6. Graph of the best Algorithmic Chemistry for Thyroid problem at different gen-
erations.

are drawn as boxes. Other registers are symbolized by a diamond. Thus the
output register is a diamond, and it is also drawn bold. Instructions are presented
as hexagons. They are labeled by the name of the operation that belongs to the
instruction they represent with number of identical instructions in parenthesis.

Every instruction–node is connected by an edge to the register it uses. The
circle at the end of an edge symbolizes the kind of access. A filled circle shows
a write access, an empty circle shows an read access. Flow of information
between instructions happens when one instruction writes and the other reads
a particular register.
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Figure 11.6(a) shows a graph of an initial individual. It consists of 100 ran-
domly assembled instructions. Nearly all instruction are single instances, and
all registers are in use. Figure 11.6(b) shows a later time step in evolution. One
can clearly see the reduced number of different instructions. Some instructions
show a higher concentration than the others. Many registers that only allow
read access, proved to be useless during evolution and are not accessed any
more.

In Figure 11-7 one can see a part of the last graph with a different layout.

Figure 11-7. Most important part of the Chemistry shown in Figure 11.6(b). It shows all
operations and registers responsible for the chemistries result. The number in parenthesis in-
dicates how often this instruction is in the multiset. Brightness should indicate an instruction’s
frequency, with darker nodes having higher frequency.

The result register of this AC is register 11 shown at top left. Just one
instruction is doing a write access on this register. It is a subtraction available
six times in this AC. One of its source registers is register 29 of the register
set that just allows read access. While the first 21 Registers in this set contain
the inputs of the fitness case, the others contain evolved constants. The second
input is a writable register (numbered 26). At this point of time in evolution
there is also just one write access to this register. Here it is another subtraction
available three times in this chemistry. It subtracts two values of the fitness
case.

This illustrates how evolution achieves an evaluation with a high repro-
ducibility within Artificial Chemistries. The two main mechanisms are reduc-
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tion of competitive write-access to registers and an increase in the concentration
of important instructions.

6. Summary and Outlook

In this contribution it was not our intention to introduce simply a new rep-
resentation for Genetic Programming. Instead, we wanted to show that goal-
oriented behaviour is possible with a seemingly uncoordinated structure of
program elements. This way we wanted to draw attention to the fact that an al-
gorithmic chemistry could be a helpful concept for novel computer architecture
considerations.

In fact a lot can be said about the similarity of this approach to data-flow
architectures (Arwind and Kathail, 1981). Traditional restrictions of that archi-
tecture, however, can be loosened with the present model of non-deterministic
computation, “programmed” by evolution. Recent work in the data-flow com-
munity (Swanson et al., 2003) might therefore find support in such an approach.

Spinning the analogy of a genome further, we can now see that the instructions
used in ACGP are equivalent to genes, with each gene being “expressed” into
a form that is executed. Execution of an instruction can, however, happen
uncoordinated with execution of another instruction. So we are much nearer to
a regulatory network here than to a sequential program (Banzhaf, 2003).

The strength of this approach will only appear if distributedness is taken into
account. The reasoning would be the following: Systems of this kind should
consist of a large number of processing elements which would share program
storage and register content. Elements would asynchronously access storage
and register. The program’s genome wouldn’t specify an order for the execution
of instructions. Instead, each element would randomly pick instructions and
execute them. Communication with the external world would be performed via
a simple control unit.

It goes without saying that such a system would be well suited for parallel
processing. Each additional processing element would accelerate the evalua-
tion of programs. There would be no need for massive communication and for
synchronization between processing elements. The system would be scalable
at run-time: New elements could be added or removed without administrative
overhead. The system as a whole would be fault-tolerant, failure of processing
elements would appear merely as a slowed-down execution. Loss of informa-
tion would not be a problem, and new processes need not be started instead of
lost ones. Reducing the number of processors (and thus slowing down compu-
tation) could be allowed even for power management.

Explicit scheduling of tasks would not be necessary. Two algorithmic
chemistries executing different tasks could be unified into one even, provided
they used different connection registers. Would it be necessary that one task
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should be prioritized a higher concentration of instructions would be sufficient
to achieve that.

Finally (though we haven’t demonstrated that here) programs which are never
sequentially executed don’t need to reside in contiguous memory space. A good
deal of memory management would therefore also become superfluous.

According to (Silberschatz and Galvin, 1994) “[a] computer system has many
resources (hardware and software) that may be required to solve a problem:
CPU time, memory space, file storage space, I/O devices, and so on. The
operating system acts as a manager of these resources and allocates them to
specific programs and users as necessary for their tasks”. Architectural designs
as the ones considered here would greatly simplify operating systems.

It is clear that non-deterministic programs resulting from runs of an ACGP
system would not be suitable for all applications of computers. Already today,
however, a number of complex systems (like the embedded systems in a car)
have to process a large amount of noisy sensor data about the environment. It is
frequently necessary to measure the same quantity repeatedly in order to arrive
at safe observations. In such cases one would simply extend the repetition of
tasks into computing. Adding processing would therefore simultaneously lead
to more reliable conclusions from these observations.

Our real world is messy and non-deterministic. Would not a GP approach
driving a messy and non-deterministic computational system be well suited for
taking up these challenges?
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Chapter 12

ACGP: ADAPTABLE CONSTRAINED
GENETIC PROGRAMMING

Cezary Z. Janikow

Department of Math and CS, University of Missouri - St. Louis

Abstract Genetic Programming requires that all functions/terminals (tree labels) be given a
priori. In the absence of specific information about the solution, the user is often
forced to provide a large set, thus enlarging the search space — often resulting
in reducing the search efficiency. Moreover, based on heuristics, syntactic con-
straints, or data typing, a given subtree may be undesired or invalid in a given
context. Typed Genetic Programming methods give users the power to specify
some rules for valid tree construction, and thus to prune the otherwise uncon-
strained representation in which Genetic Programming operates. However, in
general, the user may not be aware of the best representation space to solve a
particular problem. Moreover, some information may be in the form of weak
heuristics. In this work, we present a methodology, which automatically adapts
the representation for solving a particular problem, by extracting and utilizing
such heuristics. Even though many specific techniques can be implemented in
the methodology, in this paper we utilize information on local first–order (parent–
child) distributions of the functions and terminals. The heuristics are extracted
from the population by observing their distribution in “better” individuals. The
methodology is illustrated and validated using a number of experiments with the
11-multiplexer. Moreover, some preliminary empirical results linking population
size and the sampling rate are also given.

Keywords: genetic programming, representation, learning, adaptation, heuristics

1. Introduction
Genetic Programming (GP), proposed by Koza (Koza, 1994), is an evolution-

ary algorithm, and thus it solves a problem by utilizing a population of solutions
evolving under limited resources. The solutions, called chromosomes, are eval-
uated by a problem–specific, user–defined evaluation method. They compete
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for survival based on this fitness, and they undergo simulated evolution by
means of crossover and mutation operators.

GP differs from other evolutionary methods by using different representa-
tion, usually trees, to represent potential problem solutions. Trees provide a
rich representation that is sufficient to represent computer programs, analyti-
cal functions, and variable length structures, even computer hardware (Koza,
1994, Banzhaf et al., 1998). The user defines the representation space by defin-
ing the set of functions and terminals labelling the nodes of the trees. One of
the foremost principles is that of sufficiency (Koza, 1994), which states that the
function and terminal sets must be sufficient to solve the problem. The reason-
ing is obvious: every solution will be in the form of a tree, labelled only with
the user–defined elements. Sufficiency will usually force the user to artificially
enlarge the sets to ensure that no important elements are missing. This unfortu-
nately dramatically increases the search space. Even if the user is aware of the
functions and terminals needed in a solution, he/she may not be aware of the
best subset to solve a subproblem (that is, used locally in the tree). Moreover,
even if such subsets are identified, questions about the specific distribution of
the elements of the subsets may arise — should all applicable functions and
terminals have the same uniform probability in a given context? For example, a
terminal may be required, but never as an argument to function and maybe
just rarely as an argument to function All of the above are obvious reasons
for designing methodologies for:

processing such constraints and heuristics,

automatically extracting those constraints and heuristics.

Methodologies for processing user constraints (that is, strong heuristics) have
been proposed over the last few years: structure–preserving crossover (Koza,
1994), type–based STGP (Montana, 1995), type, label, and heuristic–based
CGP (Janikow, 1996), and syntax–based CFG–GP (Whigham, 1995).

This paper presents a methodology, called Adaptable Constrained GP
(ACGP, for extracting such heuristics. It is based on CGP, which allows for
processing syntax, semantic, and heuristic–based constraints in GP (Janikow,
1996)). In Section 2, we briefly describe CGP, paying special attention to its role
in GP problem solving as a technology for processing constraints and heuristics.
In Section 3, we introduce the ACGP methodology for extracting heuristics, and
then present the specific technique, distribution statistics, that was implemented
for the methodology. In Section 4, we define the 11-multiplexer problem that
we use to validate the technique, illustrate the distribution of functions/terminals
during evolution, and present some selected results in terms of fitness curves
and extracted heuristics. Moreover, we also present some interesting empirical
results linking population size, ACGP, and sampling rate for the distribution.
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Finally, in concluding Section 5, we elaborate on current limitations and future
work needed to extend the technique and the methodology.

2. CGP Technology

Even in early GP applications, it became apparent that functions and ter-
minals should not be allowed to mix in an arbitrary way. For example, a
3–argument function should use, on its condition argument, a subtree that
computes a Boolean and not a temperature or angle. Because of the difficul-
ties in enforcing these constraints, Koza has proposed the principle of closure
(Koza, 1994), which allows any arity–consistent labelling, often accomplished
through elaborate semantic interpretations. The working environment for such
a GP system is illustrated in Figure 12-1 — initialization, and then mutation
and crossover choose from the complete set of functions and terminals, with
uniform distribution.

Figure 12-1. Working environment for a
standard GP.

Figure 12-2. Working environment for a
typed GP.

Structure–preserving crossover was introduced as the first attempt to handle
some strong constraints (Koza, 1994) (the initial primary initial intention was
to preserve structural constraints imposed by automatic modules — ADFs). In
the nineties, three independent generic methodologies were developed to allow
problem–independent strong constraints on tree construction. Montana pro-
posed STGP (Montana, 1995), which uses types to control the way functions
and terminals can label local tree structures. For example, if the function
requires a Boolean as its first argument, only Boolean–producing functions and
terminals would be allowed to label the root of that subtree. Janikow proposed
CGP, which originally required the user to explicitly specify allowed and/or
disallowed labels in different contexts (Janikow, 1996). These local constraints
could be based on types, but also on some problem specific semantics. In v2.1,
CGP also added explicit type–based constraints, along with polymorphic func-
tions. Finally, those interested more directly in program induction following
specific syntax structure, have used similar ideas in CFG–based GP (Whigham,
1995).
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CGP relies on closing the search space to the subspace satisfying the desired
constraints. That is, only trees valid with respect to the constraints are ever pro-
cessed. This is helped by the guarantee that all operators produce constraints–
valid offspring from constraints–valid parents (Janikow, 1996). The allowed
constraints, type–based, or explicitly provided, are only those that can be ex-
pressed in terms of first–order constraints (that is, constraints expressed locally
between a parent and one of its children). These constraints are processed with
only minimal overhead (constant for mutations, one additional traversal per
crossover parent) (Janikow, 1996).

The working environment for a typed–based system such as the ones men-
tioned above is illustrated in Figure 12-2 — the representation space is locally
pruned; however, the remaining elements are still subject to the same uniform
application distribution.

CGP has one additional unique feature. It allows constraints to be weighted,
in effect changing hard constraints into soft heuristics. For example, it allows
the user to declare that some function even though it can use either or
for its child, it should use more likely. Accordingly, the CGP working appli-
cation environment becomes that of Figure 12-3 — with the final distribution
of functions/terminals/subtrees for initialization, mutation, and crossover be-
coming non-uniform. This efficient technology is utilized in ACGP to express,
process, and update the heuristics during evolution.

Previous experiments with CGP have demonstrated that proper constraints/
heuristics can indeed greatly enhance the evolution, and thus improve problem–
solving capabilities. However, in many applications, the user may not be aware
of those proper constraints or heuristics. For example, as illustrated with the
11-multiplexer problem, improper constraints can actually reduce GP’s search
capabilities, while proper constraints can increase them greatly (Janikow, 1996).
ACGP is a new methodology allowing automatic updates of the weighted con-
straints, or heuristics, to enhance the search characteristics with respect to some
user–defined objectives (currently tree quality and size).

Figure 12-3. Working environment for
CGP.

Figure 12-4. Working environment for
ACGP.
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3. ACGP Methodology and the Local Distribution
Technique

CGP preprocesses its input constraints into weighted mutation sets: the mu-
tation set for a function is the set of functions and terminals that can label
the children of (separately for all children). CGP v2.1 uses more elaborate
mechanisms to process types and polymorphic functions. However, because
the current ACGP methodology has not been extended to utilize those features,
in what follows we will not be concerned with types and polymorphic functions
(just plain constraints and heuristics).

ACGP v1 is a methodology to automatically modify the weights on typed
mutation sets in CGP v1, thus to modify the heuristics during the evolution.
Its working environment is presented in Figure 12-4 — the user may still pro-
vide initial constraints and heuristics, but these will be modified during the
run. Of course, the obvious question is what technique to follow to do so.
We have already investigated two ACGP techniques that allow such modifica-
tions. One technique is based on observing the fitness relationship between a
parent and its offspring created by following specific heuristics. The heuris-
tics are strengthened when the offspring improves upon the parent. A very
simple implementation of this technique was shown to increase GP problem
solving capabilities. However, mutation was much more problematic and not
performing as well as crossover, due to the obvious bucket-brigade problem —
in mutation, one offspring tree is produced by a number of mutations before
being evaluated (Janikow and Deshpande, 2003).

The second technique explores the distribution statistics of the first–order
contexts (that is, one parent — one child) in the population. Examples of such
distributions are presented in Section 4. This idea is somehow similar to that
used for CFG–based GP as recently reported (Shan et al., 2003), as well as to
those applied in Bayesian Optimization Network (Pelikan and Goldberg, 1999),
but used in the context of GP and functions/terminals and not binary alleles.

ACGP Flowchart and Algorithm
ACGP basic flowchart is illustrated in Figure 12-5. ACGP works in iterations

— iteration is a number of generations ending with extracting the distribution
and updating the heuristics. During a generation on which iteration does not
terminate, ACGP runs just like GP (or CGP). However, when an iteration ter-
minates, ACGP extracts the distribution information and updates the heuristics.
Moreover, afterwards, the new population can be regrown from scratch (but
utilizing the new heuristics) if the regrow option is set. The regrowing option
seems beneficial with longer iterations, where likely some material gets lost be-
fore being accounted for in the distributions, and thus needs to be reintroduced
by regrowing the population (as will be shown in Section 4).
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The distribution information is collected from just the best samples. This
information is subsequently used to modify the actual mutation set weights
(the heuristics). The modification can be gradual (slope parameter on) or a
complete replacement (slope off).

Figure 12-5. ACGP basic flowchart loop. Figure 12-6. ACGP 1.1 iterations.

To improve the statistics, ACGP can use simultaneous multiple independent
populations. However, only one set of heuristics is currently maintained, as
seen in Figure 12-6. ACGP can in fact correlate the populations by exchanging
chromosomes. We have not experimented with this option, nor did we maintain
separate heuristics — which is likely to result in solving the problem in different
subspaces (via different constraints and heuristics) by different populations.

All trees are ordered with 2-key sorting, which compares sizes (ascending) if
two fitness values are relatively similar, otherwise compares fitness (descend-
ing). The more relaxed the definition of relative similarity, the more importance
is placed on sizes. The best trees (according to a percentage parameter) from in-
dividual populations are collected, resorted, and the final set is finally selected.
This set is examined to extract the distribution and update the heuristics.

Distribution Statistics
The distribution is a 2-dimension matrix counting the frequency of parent-

child appearances. For example, if the tree fragment of Figure 12-7 is in the
selected pool, its partial distribution matrix would be as illustrated in Table 12-
1. If these were the only extracted statistics, and the slope was off, at the end
of an iteration heuristics would be updated so that if there is a node labelled
and its right child needs a new subtree from mutation (initialization in regrow)
or crossover, the tree brought by crossover (or the node generated by mutation)
would be 1/3 likely to be labelled with and 2/3 with
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Figure 12-7. Sample partial GP tree.

Off–line vs. On–line Environment
ACGP methodology can be used in two different settings. If our goal is to

extract some knowledge about a particular problem or domain, to collect domain
heuristics into a library , or to learn some heuristics for a simpler version of a
problem in order to improve problem–solving capabilities when solving a more
complex instance of the problem — we may run the system in off–line manner,
meaning the heuristics are not extracted until the evolution converges. Iterations
spanning over multiple generations are examples of these approaches.

On the other hand, if our goal is to solve a particular problem with the
minimum effort and maximum speed, we would extract the heuristics as often
as possible, possibly every generation — thus shortening iteration length to just
one generation. This is the on–line environment.

Most of the experiments reported in Section 4 were conducted off–line, with
just a few on–line results.

4. Illustrative Experiments
To illustrate the methodology and the distribution technique, we use the 11-

multiplexer problem. Unless otherwise noted, all reported experiments used
1000 trees per population, the standard mutation, crossover, and reproduction
operators at the rate of 0.10, 0.85, and 0.05, tournament (7) selection, and for
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the sake of sorting, trees with fitness values differing by no more than 2% of
the fitness range in the population were considered the same on fitness (and
thus ordered ascending by size). Moreover, unless otherwise noted, all results
are averages of the best of five independent populations while executed with a
single set of heuristics.

Illustrative Problem: 11–multiplexer
To illustrate the behavior of ACGP, we selected the well–known 11–

multiplexer problem first introduced to GP in (Koza, 1994). This problem
is not only well known and studied, but we also know from (Janikow, 1996)
which specific constraints improve the search efficiency — thus allowing us to
qualitatively and quantitatively evaluate the learned here heuristics.

The 11–multiplexer problem is to discover a function that passes the correct
data bit (out of eight ) when fed three addresses There are 2048
possible combinations. Koza (1994) has proposed a set of four atomic functions
to solve the problem: 3-argument 2-argument and, or, and 1-argument not,
in addition to the data and address bits. This set is not only sufficient but also
redundant. In (Janikow, 1996) it was shown that operating under a sufficient
set, such as not with and, degrades the performance, while operating with only

(sufficient by itself) and possibly not improves the performance. Moreover,
it was shown that the performance is further enhanced when we restrict the

condition argument to choose only addresses, straight or negated (through
not), while restricting the two action arguments to select only data or recursive

(Janikow, 1996). Again, this information is beneficial as we can compare
ACGP–discovered heuristics with these previously identified and tested.

First, we trace a specific off–line run, observing the population distribution
dynamics, the change in fitness, and the evolved heuristics. Then, we em-
pirically test the relationship between iteration length, regrowing option, and
fitness. Finally, we empirically test the relationship between population size,
sampling rate, and the resulting fitness, for an on–line case.

Off–line Experiment
In this section we experiment with regrow on, iteration=25 generations, 10

sequential iterations, gradual update of heuristics (slope on), and 4% effective
rate for selecting sorted trees for distribution statistics.

Distribution. We trace the distribution changes separately for the entire
population (average of 5 populations is shown) and the selected best samples.
Figure 12-8 illustrates the distribution change in a population when compared
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with the initial population. As seen, the distribution difference grows rapidly
(each population diverges from the initial one), but eventually saturates.

Figure 12-8. Distribution of the func-
tion as a parent, with the initial population
as the reference.

Figure 12-9. Distribution of the func-
tion as a parent, with the previous genera-
tion as the reference.

Even though the distribution diverges from that of the initial population, does
it converge to a single set of heuristics? The answer is provided in Figure 12-9
— it illustrates the same distribution difference when compared to the previous
population. As seen, the changes diminish over subsequent iterations, except
of narrow spikes when the populations are regrown. Therefore, the heuristics
do converge.

Figure 12-10. Fitness growth, shown separately for each iteration (slope on).

Fitness. The next two figures illustrate the resulting fitness (average of
the best of each of the five populations) over sequential iterations: slope on
(Figure 12-10), resulting in gradual changes in the heuristics, and slope off
(Figure 12-11), resulting in a greedy instantaneous replacement of heuristics
on every iteration. In both cases, subsequent iterations both start with better
initially regrown populations (according to the newly acquired heuristics) and
offer faster learning curves. However, the more greedy approach (Figure 12-
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Figure 12-11. Fitness growth, shown separately for each iteration (slope off).

11) offers better initializations but also saturates below 100% - one of the five
populations would consistently get stuck in a local minimum.

Altogether, we may see that off–line learning does improve subsequent runs.
Thus, ACGP can learn meaningful heuristics (as also illustrated in the next
section), and improve on subsequent runs. Later on we will see that ACGP can
improve with on–line learning as well.

Heuristics. Recall that (Janikow, 1996) has empirically determined that the
best fitness curves were obtained when restricting the function set to use only

and not, with the test argument of using only straight or negated,
and with the other two arguments of using recursive and the data bits only.

Figure 12-12. Direct heuristics on the test argument of

Figure 12-12 traces the evolving heuristics on the test argument over the
course of the ten iterations. As illustrated, has discovered to test addresses.
However, only is highly represented, with and lower, respectively. This
does not seem like the most effective heuristic. However, the puzzle is solved
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Figure 12-13. Indirect heuristics on the test argument of (via not).

when we consider that not is also allowed as an argument. When considering
indirect heuristics (the evolved heuristics for not, Figure 12-13), we can see
that and are supported, with reversed proportions, and with virtually
absent - since it was already highly supported directly.

Figure 12-14. Combined heuristics on the two action arguments of

Figure 12-14 illustrates the evolved heuristics for the action arguments of
As seen, recursion is highly evolved (to build deeper trees with multiple
and all data bits are supported with the other labels all virtually disappeared.

Varying Iteration Length and Regrow
All the results shown so far were obtained with regrow and off–line (itera-

tion=25). The next question we set to assess is the impact of the iteration length
and the regrow option on the problem solving capabilities.

We set four separate experiments, with iteration=1, 5, 10, and 25 genera-
tions, respectively. In all cases we used slope on and off without noticeable
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differences. We used both regrow (what = 2) and no regrow (what = 1),
and compared against a baseline plain GP (what = 0).

Figure 12-15. Fitness growth for iteration = 1 generation.

Figure 12-16. Fitness growth for iteration = 5 generations.

The results are shown in Figure 12-15, 12-16, 12-17 and Figure 12-18. On-
line runs, as seen in the top figures, suffer from the regrow option, but those
without regrow beat the standard GP. In fact, the lengthened iteration to 5
generations does provide quality solutions even with regrow, but in one case
it takes longer to obtain those solutions.

Off–line runs, as seen in the second figure, clearly benefit from regrow,
especially for the longer iterations. Again, this may be justified by allowing
sufficient time to converge to meaningful heuristics, but with this convergence
it is advantageous to restart with a new population to avoid clear saturation.

As the iteration length decreases, regrowing causes more and more harm.
This is apparent - there is no time for the GP to explore the space, and the run
becomes a heuristics-guided random walk.
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Figure 12-17. Fitness growth for iteration = 10 generations.

Figure 12-18. Fitness growth for iteration = 25 generations.

Varying Population and Sampling Sizes
All the previous runs were conducted with the assumed population size 1000

and effective sampling rate 4% for the trees contributing to the heuristics.
In this section, we empirically study the relationship between population

size, sampling rate, and the resulting fitness. All results in this section were
obtained with on–line runs (iteration=1 generation).

Figure 12-19 illustrates the average fitness of the best individuals from the
5 populations, after 50 generations, as a function of the population size. The
top curve is that of a plain GP. As expected, the 50 generations lead to better
fitness with increasing population size, due to more trees sampled. ACGP
under–performs, but this was expected — Figure 12-15 already illustrated that
regrow in combination with iteration=l is destructive. One other observation
is that decreasing effective sampling rate does improve the performance, which
was observed especially for the larger populations.
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Figure 12-19. Average fitness after 50
generations with regrow.

Figure 12-20. Average fitness after 50
generations no regrow.

Figure 12-20 presents the same fitness curves but for no regrow. As seen,
ACGP does beat GP, especially for the lower sampling rates. Another important
observation is that ACGP clearly beats GP for very low population sizes.

The same can be seen in Figure 12-21, which presents the same fitness
learning for no regrow, but presented differently. The figure illustrates the
average number of generations needed to solve the problem with at least 80%
fitness. As seen, the baseline GP fails to do so for the smallest population of 75,
while ACGP accomplishes that, especially with the small–sampling runs. These
results, along with the others, indicate that ACGP can outperform GP especially
when working with smaller populations. One may speculate that ACGP is less
dependent on population size — to be studied further in the future.

5. Summary
We have presented the ACGP methodology for automatic extraction of

heuristics in Genetic Programming. It is based on the CGP technology, which
allows processing such constraints and heuristics with minimal overhead. The

Figure 12-21. The number of generations needed to solve for 80% for varying population sizes.
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ACGP algorithm implements a technique based on distribution of local first–
order (parent–child) heuristics in the population.

As illustrated, ACGP is able to extract such heuristics to an advantage, and
thus it performs domain learning while solving a problem at hand. Moreover,
the extracted heuristics match those previously identified for this problem by
empirical studies.

With the extracted heuristics, ACGP clearly outperforms a standard GP on
subsequent runs (subsequent iterations) in the off–line settings, sometime solv-
ing the problem in the initial population. Moreover, with the proper setting,
ACGP can also outperform GP even with the on–line settings, and it seems to
be more robust with smaller population sizes.

ACGP v1 does rely exclusively on the first–order heuristics. By evaluating
the resulting heuristics, one may say that the 11–multiplexer does possess such
simple heuristics. For more complex problems, we may need to look at higher–
order heuristics, such as those taking the siblings into account, or extending
the dependency to lower levels. Such extensions can be accomplished by ex-
tending the distribution mechanism to compute deeper–level distributions, or
by employing a Bayesian network or decision trees to the first-order heuristics.

Topics for further researched and explored include:

Extending the technique to deeper-level heuristics.

Using the same first–order heuristics, combined with the Bayesian net-
work or a set of decision trees, to allow deeper-level reasoning.

Linking population size with ACGP performance and problem complex-
ity.

Scalability of ACGP.

Varying the effect of distribution and the heuristics at deeper tree levels, or
taking only expressed genes into account while extracting the heuristics.

The resulting trade–off between added capabilities and additional com-
plexity when using deeper heuristics (CGP guarantees its low overhead
only for the first–order constraints/heuristics).

Other techniques for the heuristics, such as co–evolution between the
heuristics and the solutions.

Building and maintaining/combining libraries of heuristics with off–line
processing, to be used in on–line problem solving.
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Chapter 13

USING GENETIC PROGRAMMING
TO SEARCH FOR SUPPLY CHAIN
REORDERING POLICIES

Scott A. Moore and Kurt DeMaagd
Michigan Business School

Abstract The authors investigate using genetic programming as a tool for finding good
heuristics for supply chain restocking strategies. In this paper they outline their
method that integrates a supply chain simulation with genetic programming. The
simulation is used to score the population members for the evolutionary algorithm
which is, in turn, used to search for members that might perform better on the
simulation. The fitness of a population member reflects its relative performance
in the simulation. This paper investigates both the effectiveness of this method
and the parameter settings that make it more or less effective.

Keywords: genetic programming, parameter tuning, supply chain, simulation, restocking
policies, application

1. Introduction
Analytically determining optimal restocking policies for members of a sup-

ply chain is difficult in many circumstances, impossible in many more. In such
cases researchers and practitioners need tools for investigating the dynamics of
the supply chain. Combining genetic programming (GP) (Koza, 1992) with a
supply chain simulation as previously explored in (Parunak et al., 1998) allows
a researcher to look for good heuristics, to investigate the impact of alternate
supply chain configurations, and, generally, to research the supply restocking
policy problem without worrying about whether or not he or she is able to find
optimal restocking policies.

A problem with this approach is that it can be computationally burdensome.
Thus, before investigating it, we aim to understand how changing GP’s param-
eter values affects its ability to efficiently and effectively search the solution
landscape for this supply chain problem. Some previous work has been done
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related to tuning GP’s parameter values, but most researchers have simply used
some sort of standard value for the settings and assumed that these would pro-
vide satisfactory results. Feldt and Nordin (Feldt and Nordin, 2000) investigated
some of the settings in the context of different applications. Some of our results
on a simple supply chain configuration confirmed expectations while others did
not. More experiments are suggested before we can make firm conclusions.

In this paper we begin by describing the simulation and genetic programming
in some depth. We also describe an addition to this process, necessitated by
engineering concerns, that we call the championship rounds. In Section 3 we
describe GP settings that we are investigating. In Section 4 we provide a short
description of the experimental design we used to investigate the effects of
different parameter settings. In Section 5 we present our hypotheses along with
our results. We finish the paper in Section 6 with a short discussion.

2. The computational process

As an alternative to the standard analytical techniques that look for prov-
ably optimal solutions, we have implemented (Moore and DeMaagd, 2004) a
computer-based approach that has three parts. First, a program implements a
simulation in which agents participate in a supply chain and use their re-stocking
policies to help manage inventory. Second, we also implemented a GP-based
approach in which the population members are valued by the quality of those
policies. Third, the system has a process of keeping track of the one restocking
policy (created during the algorithm’s progress) that performs best on a wide
variety of problems. We describe all of these in the sections that follow.

The simulation

The supply chain simulation has four members: retailer, wholesaler, dis-
tributor, and manufacturer (see Figure 13-1). A customer, exogenous to the

Figure 13-1. Supply chain setup

system, demands goods from the retailer. The simulation allows demand to
come from a variety of distributions but in the scenarios in this experiment it
was selected from a uniform distribution from 50 to 150. (We refer to scenarios
throughout this work; each is a particular, complete evolutionary process that
was run with specific settings and under specific assumptions. For the work
reported on herein we ran 243 scenarios.) We chose this distribution in this first
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test of this approach simply to provide a baseline performance situation; we
will use more structured and realistic distributions in later experiments. Orders
for goods flow, one level at a time, toward the manufacturer (who makes the
goods in the plant) while goods flow from the manufacturer toward the retailer.
The orders take a constant 2 periods to go from one level to the next and the
goods take the same amount of time to flow the other direction. Each member
of the supply chain makes an independent decision about how much to order
based on the information it has available — in this case, the player’s current
inventory, the amount of the most recent order received, the current week, and
the total amount of backorders that it has to fulfill. The simulation consists of
a set number of weeks (unknown to the player), and each week each player
performs the same set of tasks (see Figure 13-2).

Figure 13-2. Player’s tasks

Each period the players review inventory positions of the one type of product
that they hold. The inventory does not deteriorate or in any way change while
in storage. As discussed above, backordering is allowed; no sales are lost due
to an out-of-stock position. Each player has an unlimited storage capacity and
the plant has an unlimited manufacturing capability.

A player in the supply chain is assessed costs based on the inventory it carries
(1 per unit per period), the amount of demand it is not able to meet that period
(5 per unit per period), and the number of orders placed (10 per order). Other
parameters are shown in Table 13-1. No players are given any revenue so the
goal of the game is to minimize costs over the duration of the game.

Certainly the current simulation is fairly complex but it will be made more
so in later investigations. We think the current simulation is complex enough
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so that it is not immediately obvious what the best general solution is to the
problem faced by each player; as has been pointed out in numerous places,
this type of supply chain exhibits non-linear behavior that is difficult to predict
(Sterman, 1989). Further, it is not our goal in this investigation to determine
optimal policies for different supply chain parameter settings. We are simply
attempting to understand how the GP parameter settings affects its ability to
work well on this problem.

Evolutionary process

The simulation described above allows a researcher to see the effects of
different settings for the game and for different restocking policies for each of
the players. GP provides a tool for searching through a population (of restocking
policies in this case) while the simulation provides the way of measuring the
worth of the players (and, therefore, their restocking policies) in that population.

Figure 13-3 contains a representation of the general structure of the evolu-
tionary scenario. The population (or, sometimes, populations — see discussion
below) of agents is filled with agents whose restocking policies are randomly
generated through various means ([1–2]). After this initialization, the agent
population evolves through a series of generations in which the same process is
repeated ([3–18]). For each new generation, the system generates a different
instantiation of the demand distribution ([4]); for example, in generation 23
the demand might be [93, 78, 142,. . ., 103] while in generation 24 the
demand might be [55, 134, 121,..., 76]. In each generation the demand
does not change so all retailers in all games in a particular generation face the
same demand.

After instantiating the demand pattern for that generation, the standard strat-
egy’s score is calculated ([5]). The standard strategy’s score provides a useful



Using GP to Searching for Supply Chain Reordering Policies 211

Figure 13-3. Evolutionary scenario

yardstick against which to measure the success of the strategies created by GP
because it plays the game under the same conditions and with the same demands.
(See (Weiss, 1998, p. 125) for a discussion of the utility of yardsticks.) Gener-
ally, we set a scenario’s standard strategy to be the analytical solution (if one is
available), a well-known heuristic, or accepted standard practice. The choice
of one standard strategy over another has absolutely no effect on the progress
of evolution, it is simply reflected in the reports that the system generates.

The next two lines ([6–7]) define two loops that ensure that each agent from
each population plays some minimum number of games in that generation.
Then, after filling the other roles in the simulation with a random selection of
agents ([8]; more on this below), the simulation runs for some W number of
weeks ([9]) . This value W is the same for each game in this generation but is
randomly generated for each generation.

After each game played during a generation, the system records the scores for
each agent who participated in that game ([10]). This is a rather complicated
process but the score ends up reflecting how well the value chain performs as
a whole. We could have made several different choices here but we wanted
to choose those agents who help their value chains do better as a whole rather
than doing well individually at the expense of the other agents. At the end of
the games for each generation (that is, after line [13]), the system calculates
both adjusted and normalized fitness values using as the basis of calculation
the average of the agent’s scores for each game it played during that generation
(Koza, 1992, pp. 95–98). The system next records the agent that had the best
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score for that generation ([14]), and then determines if this player is the sce-
nario’s current champion ([15]; more on this below). The system then breeds
the next generation of each population ([16]) using reproduction, crossover,
and mutation and starts over again if the termination condition has not been
met. (Other GP settings are discussed in Section 3.)

We are investigating three different ways in which to configure the number
of populations. The first one is as shown in Figure 13-4. In this situation four

Figure 13-4. Selecting an agent from a population for the simulation

separate populations are maintained, and each population evolves in order to
play one specific role in the supply chain. The second setup is one in which one
population exists, one member is chosen from the population, and it plays all
four roles in the supply chain. The third setup is one in which one population
exists and four separate selections are made from the population, one for each
role. The assumption in the last two setups is that one type of restocking policy
is optimal at any level of the supply chain and, therefore, it is reasonable to
evolve agents for all four roles within just one population.

We have, so far, referred to the agents or players as having restocking policies,
and that these agents can go through the evolutionary process. Here we discuss
how this is possible. The restocking policies, while internally represented as a
Lisp S-expression, are commonly depicted as trees. Each leaf of the tree must
belong to the set of terminals (either an integer or a symbol; see Table 13-2
for related details) while each inner branch must belong to the set of functions
(again, see Table 13-2). At the beginning of the scenario, a set of random trees
between depths 2 and 6 are generated for the population using the ramped half-
and-half method (Koza, 1992, p. 93). Given the values that were in effect for
this experiment, there are approximately different trees in the search
space for possible strategies. In future experiments we will look at investigating
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the effects of such a large search space on GP and whether or not we should
reduce the maximum depth of the trees.

Championship rounds

GP makes it possible that, at some time, the best performing agent from one
generation will not make it into the next. Different GP settings provide differ-
ent certainty levels for the high-performing strategies making it into the next
generation — but, no matter what the settings, it is always going to be a random
process. This is not a good state of affairs for the logistics researcher who
wants to use GP to find the best performing strategy over the entire evolution,
regardless of whether or not the strategy is present in the last generation. To
correct for this, we have created a process external to the evolutionary process
called the championship rounds (see Figure 13-5). The point of this process is
to find the strategy that performs best against a wide variety of instantiations of
the demand distribution used in this scenario.

The championship process is an engineering compromise. The full compu-
tational solution would require that in each generation each player plays not
one game with a certain set of partners but all 30 games (with each one of the
demand instantiations in the championship demand set) with those partners.
This was not feasible given our resources. Further, “elitism” (guaranteeing that
the top N members survive until the next generation), the usual approach to
ensuring the best player survives, does not suffice for this problem since the top
player against a particular demand distribution may not be a top player against
the championship demand set — and it is performance against this set that we
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Figure 13-5. The championship process

are most interested in. One of the basic questions this experiment addresses is
whether or not this compromise is effective.

3. Genetic programming parameters

We need to run the evolutionary algorithm many times. Its settings can
potentially affect the efficiency and effectiveness of this evolutionary search.
These settings can also greatly affect the running time of the algorithm; for
example, some of the scenarios took as little as 2 minutes while others took up
to 107 hours (4.5 days). Table 13-3 shows the settings that we investigate in
this experiment.

Number of generations After a number of preliminary tests, we decided to
limit the upper end in this experiment to 150.

Selection method The three choices that we test are tournament, fitness pro-
portionate, and rank. For the tournament method, two agents are selected
for the tournament; the agent with the lower (better) score wins and is
selected for the next generation. The more fit against the current demand
instantiation is guaranteed to win but it is still the case that fitness against
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the current demand instantiation does not guarantee fitness against the
championship demand set.

Probability of crossover When the system creates members for a new genera-
tion, it chooses between reproduction, mutation, and crossover. If a high
crossover rate is chosen, then fewer members of the current generation
will be directly transferred into the next generation.

Percent of internal crossover points The effects of crossover when done at
an external point is more like point-mutation. We vary this parameter
from 70% to 95% of all crossovers.

Probability of mutation We vary this parameter from 1% to 9%.

Priming The idea behind priming is that a set of agents, previously verified
to be good performers, are put into the initial population. We have two
different ways of priming a population of size P.

quick large An evolution of 1 generation is run with a randomly-
generated population of size 1.2 × P. At the end of the generation,
the best P agents are chosen and put into the initial population.
Evolution then runs as usual. The hypothesis is that it would be
useful to get the worst of the worst performers out of the popula-
tion because their bad performances also hurt the scores of other
members of the population.

long small An evolutionary process is run that is the same length as the
standard evolution but with only 0.2 × P members in the population.
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At the end of this priming evolution, all members are put in the
initial population while the remaining 0.8 × P agents are randomly
generated. The hypothesis is that the evolutionary process will start
with at least some of the members being able to perform well while
still having some variety in the initial population.

As a point of comparison with these two, we also ran scenarios without
priming.

Number of populations As discussed above, we are investigating 3 different
ways in which to configure the number of populations.

Members per population We looked at population sizes from 100 to 500 per
population.

Games per member per population Each generation a population member
(strategy) plays a certain number of games per generation. When the
same member plays all four roles, this value is irrelevant — each member
plays only one game per generation. In the other population setups, each
role that the member plays in a game counts as a separate game. The
value of this variable is stated in terms of a percent: a value of 1% means
that each member has to play games with at least 1 % of the members of
the population.

Weeks per game Longer games minimize the effects of the initial position on
the agent’s performance. We look at games from 35 up to 100 periods in
length in order to see how small this value can be while still effectively
searching the space of restocking policies.

4. Experimental design

The experiment examines ten factors and their influence on the effectiveness
of GP with this application. Each of the ten factors is set to three different
values. While similar experimental designs often test at only two levels, we
tested at three levels to identify possible non-linear effects. To measure all
combinations of the ten factors would require runs of the evolutionary
algorithm, for a total of 59,049 runs. Assuming that each run requires
on average, the simulation would require 3.37 years to complete. As a result,
a more efficient measurement method must be employed. Factorial design is
one such method and has been previously used to examine multiple genetic
programming parameters (Feldt and Nordin, 2000).

To complete the computation in a reasonable time frame, a design that re-
quired less than 500 runs was desirable. A fractional factorial design with
runs provided the greatest number of data points while still remaining computa-
tionally feasible. Given that only 243 runs were executed, not all combinations
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of the variables were looked at. Instead, an orthogonal array of the factors
was created (Shell Internationale Research Maatschappij, 1998) to examine the
different factors. The design generator for this orthogonal array is given in
Table 13-4. Assume that each of the 10 factors to be considered is assigned a

letter A-K. Factors A-E are assigned like a full factorial design; factors F-K are
determined by a function of A-E.

This design is of resolution V which implies that main effects are confounded
with four order interactions, two order interactions are confounded with third
order interactions; therefore, assuming that higher order interactions are negli-
gible, all of the main effects are strongly clear (Box et al., 1978). This design
minimizes any confounding while examining the main factor and two factor
interactions. For more details about developing fractional factorial designs, see
(Box et al., 1978) and (Wu and Hamada, 2000).

5. Hypotheses
For Hypotheses 5.3–5.5 we used ordinary least squares (OLS) to compute

the estimators and p-values. We are testing at the 95% confidence interval
for these hypotheses. For Hypotheses 5.1–5.2 we do not use OLS estimators.
The champion and challenger slopes (related to the first two hypotheses) are
mediating variables between the parameters and the final score, and the scores
are serially correlated. We use a model that is a hybrid of (Gelfand et al.,
1990) and (Waclawiw and Liang, 1993) to cope with these difficulties. The
result is a two stage random effects hierarchical model for analyzing time series
data. A Markov Chain Monte Carlo (MCMC) simulation using Gibbs sampling
allows us to create highly accurate approximations of the estimator (Casella and
George, 1992)). The MCMC was run for 50,000 iterations with 40,000 iterations
of burn-in and thinning of 1/2.

As a result of the above, for these same two hypotheses we use Bayes factors
instead of p-values to determine which variables increase the model’s explana-
tory power. (For more information on using Bayes factors instead of p-values,
see (Zellner, 1971).) Bayes factors of > 0.5 leads us to accept the null hypothe-
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ses. For each one of the experimental control parameters, we test the following
hypotheses, iterating through all ten variables in the model to determine if each
variable adds explanatory power. In theory, this method could be extended
to computing all possible combinations of variables. This would require ex-
amining different models, which is not computationally feasible.
Therefore we simplified the processes to only compare the full model versus
the model of iteratively dropping each variable.

In the following we highlight the most interesting results; the full set of
results are presented in the tables.

Hypothesis 5.1 (Champion slope) The parameter influences the slope of
the champion line. This hypothesis tests whether or not the rate of change in
the champions is affected by the parameter. This is a log-normal line so small
values actually have a larger effect than the value might appear to indicate.

The results for the main factors are shown in the middle two columns of
Table 13-5. Initial analysis indicated that the correct model should not in-
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clude the variables representing internal crossover points, the probability of
crossover, and priming. Of the remaining variables, increases in the probability
of mutation lead to relatively large increases in the slope of the champion line.
Surprisingly, increases in members per population had very little effect on the
slope. Finally, changes in the population setup had relatively significant effects.
One population for all gave the best results. This seems to indicate that some
information in a population is transferable between roles.

Hypothesis 5.2 (Challenger slope) The parameter influences the slope of the
challenger line. This hypothesis tests whether or not the rate of change in the
challenger is affected by the parameter. Again, this is a log-normal line.

The results for the main factors are shown in the last two columns of Ta-
ble 13-5. Initial analysis indicated that the correct model should drop the same
variables as above except that priming should be included. A very interesting
result is that almost every variable included in the model has a different sign
than for the results from the first hypothesis. Related to this point, probability
of mutation, which has the most positive effect on the champion slope, has the
most negative effect on the challenger slope. Quick-large priming has the most
negative effect on the challenger line while long-small priming was the most
positive.

Hypothesis 5.3 (Ratio of last champion) The parameter affects
the ratio of the last champion. With this first hypothesis we are testing if the
setting changes the ability of GP to find a good champion. Smaller scores are
better scores so negative beta values are better.

OLS estimators and p–values are shown in columns 2–3 of Table 13-6. In
theory the result of Hypothesis 5.1 and this one should be highly correlated since
the champion’s last score is simply the last point on the downward trending
champion line. However, some differences certainly can be found. It is still the
case that internal crossover points, probability of crossover, and priming do not
have a significant effect on the result. For the population setup it is again the
case that one population for all is the best setup while one member for all roles
dominates as the worst influence. On the other hand, probability of mutation
dominates as the best (that is, the most negative) influence. This is exactly the
opposite the result of the result for Hypothesis 5.1. Interestingly, the results
related to members per population is insignificant — increasing the number of
members in a population does not affect the performance of the algorithm in
this dimension. Tournament selection is significantly better than either of the
other two selection methods.

Hypothesis 5.4 (Generation of last champion) The parameter influences
in which generation the algorithm finds its last new champion. This hypothesis
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tests if the setting helps GP continue to search effectively in later generations.
Positive beta values mean that champions were found later than normal.

The results are shown in columns 4–5 of Table 13–6.

Larger internal crossover rates are associated with a decreased incidence of
finding new champions in later generations. On the other hand, increasing
the probability of mutation significantly affects the algorithm’s ability to find
champions in later generations. As for the indicator variables, we can conclude
the following: Tournament selection performs much better than fitness propor-
tionate, allowing the algorithm to find more champions in later generations.
Finally, one population for role allows champions to be found later than would
be expected for either of the other approaches.
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Hypothesis 5.5 (Number of new champions) The parameter influences
the number of new champions that the program finds. This hypothesis tests if
GP is able to make many improvements during its operations or if it makes just
a few and then stops finding improvements. Positive beta values mean that an
increase in the variable increases the expected number of champions found.

The results are shown in columns 6–7 of Table 13-6. Both the number of
generations and the number of weeks only marginally increase the number
of new champions found. For this hypothesis, the indicator variables have
much more effect: quick large priming finds more champions than no priming;
tournament selection finds more champions than fitness proportionate; and one
population for role finds significantly more champions than either of the other
approaches.

6. Discussion of results
The results here are limited in that the simulation was only played under

one demand distribution and supply chain setup. It might be the case that
different demand distributions or different supply chain configurations lead
to different performance characteristics for genetic programming. Further, a
wider range of parameter values should be investigated to determine if effects
are seen outside the values looked at here. One of the more intriguing setups
is related to populations: a member could be defined so that it defines possibly
different strategies for all four roles. How would the benefits of evolving role
players together measure up against the benefits of allowing role players to
evolve separately? Other setups involving ways that better take advantage of
co-evolution are also intriguing since the situation here is one in which different
agents might evolve to play roles that need to cooperate with agents in other
roles.

Also, many significant results based on the interaction of terms are possible;
future analysis of existing data remains to be performed but preliminary work
has indicated that they exist. Finally, it remains to be seen just how effective
this method of searching for restocking policies actually is. We have, however,
found some encouraging results even though we have only begun to understand
genetic programming’s performance on this problem. While the mean cham-
pion relative score was 3.9549, which means it found values about 300% higher
than the standard heuristic, the best score was 0.2511 or about 75% less than
the standard heuristic.

For now, let us see what we did find in this set of experiments. As expected,
the maximum number of generations should be as big as possible given com-
puting resources since it allows more champions to be found. The percent of
internal crossover should be small since that is associated with both a small
champion’s relative score and finding champions in later generations. The ex-
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periments found no actually significant results pertaining to the probability of
crossover or the number of games per member per population. More exper-
iments, with a more difficult problem, might lead to different results — or,
possibly, a different range of values should be investigated. Weak results were
found for both size of population and number of weeks; further investigation is
needed to say more about these.

Quick large priming led to both more champions being found and champi-
ons being found later in the evolutionary process. Quick large priming is also
significantly less computationally expensive than long small priming while not
being much more expensive than no priming at all. This is a fairly clear win for
quick large priming (over quick large) which probably is not a surprise given
that long small priming probably allowed too many very good members to take
over the population too quickly. It is interesting that it is also a winner over no
priming; this indicates that the negative effects of having very bad players in
the population outweigh the positive effects of the diversity they bring to the
population. The selection results also tell a relatively clear story. Selection,
in general, had little effect on either of the slopes; however, tournament selec-
tion led to a significantly smaller final score, finding more champions in later
generations, and finding more new champions.

As for the population setup indicator variables, all of the findings for the one
member for all roles setting were negative. The negative finding was expected
since this setup provides fewer degrees of freedom relative to the other settings.
The comparison of the other two setups are more complex. One population
for all led, in comparison with one population per role, to a lower final score
but it took longer to find the last champion and found fewer champions in the
process.

One of the underlying hypotheses being tested in the research reported in this
paper is whether or not genetic programming combined with a simulation that
measures fitness against one demand instantiation would be effective at gener-
ating strategies that would perform well against a large set of related demand
instantiations. Early reports, as embodied in the research contained within,
are positive. The evolutionary algorithm generated strategies that continued to
improve the champion’s score. Certainly, more results are needed before a final
conclusion can be reached. Also, it is also nearly certain that improvements to
this process could be made. For example, it might be the case that testing the
top 5 strategies from the population at the end of each generation would lead
to a significant reduction in the final champion score.

We have begun the process of investigating the effects of many parameters
on GP and the championship process. Some effects have been found but many
more experiments are necessary before we can make any firm conclusions. We
are continuing with this process so that we can know more about this complex
system.
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Chapter 14

CARTESIAN GENETIC PROGRAMMING AND THE
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Abstract Structure-based virtual screening is a technology increasingly used in drug dis-
covery. Although successful at estimating binding modes for input ligands, these
technologies are less successful at ranking true hits correctly by binding free
energy. This chapter presents the automated removal of false positives from
virtual hit sets, by evolving a post docking filter using Cartesian Genetic Pro-
gramming(CGP). We also investigate characteristics of CGP for this problem
and confirm the absence of bloat and the usefulness of neutral drift.

Keywords: Cartesian genetic programming, molecular docking prediction, virtual screen-
ing, machine learning, genetic programming, evolutionary algorithms, neutral
evolution

1. Introduction
In this chapter we present the application of Cartesian Genetic Program-

ming (CGP) to the real-world problem of predicting whether small molecules
known as ligands will bind to defined target molecules. We have found CGP
to be effective for this problem. The solution is currently in use in a com-
mercial company. In addition to presenting a successful CGP application we
have investigated empirically a number of methodological issues that affect the
performance and characteristics of CGP. We have found, in accordance with
previous studies of CGP on other problems, that neutral drift (see Section 2)
in the genotype can be highly beneficial. In addition, unlike some other forms
of GP we see very little bloat (even though we use many thousands of gener-
ations). The chapter consists of eight sections. In Section 2 we describe the
CGP method and discuss some of its characteristics (some of which led us to
adopt the technique). In Section 3 we describe the ligand docking problem and
how we implemented a CGP system for it. In Section 4 we performed a large
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number of experiments to find optimum parameter settings and investigate how
they influence the behaviour of CGP. In Section 5 we examine empirically the
relative performance and behaviour of an algorithm which utilizes neutral drift
with one that doesn’t. In Section 6 we discuss the evolved post-docking filters
and show how we selected the best candidates using seeded libraries. In Section
7 we examine the evolved filters on real data rather than idealised test sets. We
end the chapter with our conclusions in section 8.

2. Cartesian Genetic Programming

CGP (Miller and Thomson, 2000) is a graph based form of GP that was
developed from a representation for evolving digital circuits (Miller et al.,
1997, Miller, 1999). In essence, it is characterized by its encoding of a graph as
a string of integers that represent the functions and connections between graph
nodes, and program inputs and outputs. This gives it great generality so that
it can represent neural networks, programs, circuits, and many other compu-
tational structures. Although, in general it is capable of representing directed
multigraphs, it has so far only been used to represent directed acyclic graphs. It
has a number of features that are distinctive compared with other forms of GP.
Foremost among these is that the genotype can encode a non-connected graph
(one in which it is not possible to walk between all pairs of nodes by following
directed links). This means that it uses a many-to-one genotype phenotype map-
ping to produce the graph (or program) that is evaluated. The genetic material
that is not utilised in the phenotype is analogous to junk DNA. As we will see,
mutations will allow the activation of this redundant code or de-activation of it.
Another feature is the ease with which it is able to handle problems involving
multiple outputs. Graphs are attractive representations for programs as they are
more compact than the more usual tree representation since subgraphs can be
used more than once.

CGP has been applied to a growing number of domains and problems: digital
circuit design (Miller et al., 2000a, Miller et al., 2000b), digital filter design
(Miller, 1999), image processing (Sekanina, 2004), artificial life (Rothermich
and Miller, 2002), bio-inspired developmental models (Miller and Thomson,
2003, Miller, 2003, Miller and Banzhaf, 2003), evolutionary art (Ashmore,
2000) and has been adopted within new evolutionary techniques cell-based
Optimization (Rothermich et al., 2003) and Social Programming (Voss, 2003,
Voss and James C. Howland, 2003).

In its original formulation, CGP was represented as a directed Cartesian grid
of nodes in which nodes were arranged in layers (rows) and it was necessary
to specify the number of nodes in each row and the number of columns. The
nodes in each column were not allowed to be connected together (rather like a
multi-layer perceptron neural network). In addition an additional parameter was
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Figure 14-1. General form of Cartesian Program for an n input m-output function. There are
three user-defined parameters: number of rows (r), number of columns (c) and levels-back (see
text). Each node has a set of connection genes (according to the arity of the function) and a
function gene which defines the node’s function from a look-up table of available functions.
On the far left are seen the program inputs or terminals and on the far right the program output
connections

introduced called levels-back which defined how many columns back a node in
a particular column could connect to. The program inputs were arranged in an
“input layer” on the left of the array of nodes. This is shown in Figure 14-1

It is important to note that in many implementations of CGP (including this
one) the number of rows (r) is set to one. In this case the number of columns
(c) becomes the maximum allowed number of nodes (user defined). Also the
parameter levels-back can be chosen to be any integer from one (in which case,
nodes can only connect to the previous layer) to the maximum number of nodes
(in which case a node can connect to any previous node). It should be noted
that the output genes can be dispensed with by choosing the program outputs
to be taken from the rightmost consecutive nodes (when only one row is used).

The Cartesian genotype (shown below) is a string of integers. denotes
in general a set of connection points that the inputs to the node are connected.
Each node also has a function, chosen from a list of available functions
(defined by the user). Sometimes it happens that the node functions in the
function list have different arities (so the cardinality of varies). Usually this
is handled (as in this work) by setting the node arity to be the maximum arity
that appears in the function list. Nodes with functions that require less inputs
than the maximum ignore the extra inputs.
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If the graphs encoded by the Cartesian genotype are directed then the range
of allowed alleles for are restricted so that nodes can only have their inputs
connected to either program inputs or nodes from a previous (left) column.
Function values are chosen from the set of available functions. Point mutation
consists of choosing genes at random and altering the allele to another value
provided it conforms to the above restrictions. The number of genes that can
be mutated is chosen by the user (usually defined as a percentage of the total
number of genes in the genotype). Although the use of crossover is not ruled
out, most implementations of CGP (including this one) only use point mutation.

We emphasize that there is no requirement in CGP that all nodes defined in the
genotype are actually used (i.e. have their output used in the path from program
output to input). This means that there is a many-one genotype phenotype
mapping. Although the genotype is of fixed size the phenotype (the program)
can have any size up to the maximum number of nodes that are representable in
the genotype. It should also be observed that although a particular genotype may
have a number of such redundant nodes they cannot be regarded as purely non-
coding genes, since mutation may alter genes “downstream” of their position
that causes them to be activated and code for something in the phenotype,
similarly, formerly active genes can be deactivated by mutation.

When Cartesian genotypes are initialised one finds that many of the nodes are
inactive. In many CGP implementations on various problems it is often found
that this figure changes relatively little. Thus it is clear that during evolution
many mutations have no effect on the phenotype (and hence do not change the
fitness of the genotype). We refer genotypes with the same fitness as being
neutral with respect to each other. A number of studies (mainly on Boolean
problems) have shown that the constant genetic change that happens while the
best population fitness remains fixed is very advantageous for search (Miller
and Thomson, 2000, Vassilev and Miller, 2000, Yu and Miller, 2001, Yu and
Miller, 2002). In the results section of this chapter we will show that such
neutral search is also highly beneficial for the ligand docking problem.

To date no work on CGP has required any action to deal with bloat. Bloat is
not observed even when enormous genotypes are allowed. Miller (Miller, 2001)
investigated this phenomenon in CGP and found it to be intimately connected
with the presence of genes that can be activated or deactivated. He argued
that when the fitness of genotypes is high, it becomes more likely that equally
good genotypes will be favourably selected. In tree-based GP models most
equally good phenotypes differ from one another in useless (bloated) code
sections, and they will be strongly selected for when fit. This, unfortunately,
propagates the spread of such useless code but paradoxically compresses the
useful code (Nordin and Banzhaf, 1995). On the other hand, in CGP, the
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increased proportion of genetically different but phenotypically identical code
is able to exist without harm (i.e. it does not have to be processed as it is
not in the phenotype). It is as if the bloat can exist in the form of genetically
redundant code that resides in the genotype (but bounded by the fixed genotype
size) but not in the phenotype. This has the side effect of reducing the size of
the phenotype without requiring any parsimony pressure.

Evolutionary Algorithm

The evolutionary algorithm used for all experiments is that recommended
in (Miller and Thomson, 2000). It is a simplified (1+4) Evolution Strategy
for evolutionary search (Schwefel, 1965), i.e. one parent with 4 offspring
(population size 5). The algorithm is described as follows:

1

2

3

4

5

6

Generate initial population of 5 individuals randomly;

Evaluate fitness for each individual in the population;

Select the best of the 5 in the population as the winner;

Carry out point-wise mutation on the winning parent to generate 4 off-
spring;

Construct a new generation with the winner and its 4 offspring;

Select a winner from the current population using the following rules:

(a)

(b)

(c)

If there are offspring that have a better fitness than the parent has,
the best offspring becomes the winner.

Otherwise, if there are offspring which have the same fitness as
the parent then one is randomly selected and becomes the winner
(NDEA)

else the parent remains the winner.

7 Go to step 4 unless the maximum number of generations has reached.

The evolutionary strategy can be mistaken for a form of hillcimbing. How-
ever it should be remembered that the application of the mutation operator
causes a sampling of a whole distribution of phenotypes. A single gene change
can cause an enormous change in the phenotype, however when the genotype is
quite fit, in most cases it will only cause little change (as large change is likely
to be deleterious). Thus we can see that the genotype representation in CGP
allows a very simple mutation operator to sample a large range of phenotypes.
If the neutral drift is not allowed in selection of the genotype to be promoted
to the next generation, the step emphasized (NDEA - neutral drift evolution-
ary algorithm) is removed. We refer to such an algorithm as simply an EA.
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If this is done, the only way a genotype can supplant its parent is by having a
superior fitness. Some have argued that allowing neutral drift is equivalent to
using a higher mutation rate in an EA (Knowles and Watson, 2002). In results
later we show empirically that this is not the case for the problem studied here,
this accords with previous work reported on Boolean problems (Yu and Miller,
2001).

In this chapter, we show that fixing the output gene to be the rightmost node
is sometimes advantageous. This accords with findings on other problems (Yu
and Miller, 2001, Yu and Miller, 2002). It is important to note that CGP is
continuing to develop and recently a form of automatically defined functions
has been implemented that promises to make the technique more powerful
(Walker and Miller, 2004).

3. Docking
Structure-based virtual screening (Lyne, 2002) is an increasingly important

technology in the hit identification (identification of compounds that are poten-
tially useful as drugs) and lead optimisation (process of refining the chemical
structure of a hit to improve its drug characteristics) phases of drug discov-
ery. The goal of structure-based virtual screening is to identify a set of small
molecules (ligands) that are predicted to bind to a defined target macromolecule
(protein or nucleic acid). Through the combination of fast molecular docking
algorithms, empirical scoring functions and affordable computer farms, it is
possible to virtually screen hundreds of thousands or even millions of ligands
in a relatively short time (a few days). The output from the docking calculation
is a prediction of the geometric binding conformation of each ligand along with
a score that represents the quality of fit for the binding site. Only a small frac-
tion of the top-scoring virtual hits (typically up to 1000) then are selected for
experimental assay validation. If successful, this virtual hit set will be signifi-
cantly enriched in bioactive molecules relative to a random selection and will
yield a number of diverse starting points for a medicinal chemistry ‘hit-to-lead’
programme.

Although many factors contribute to the success of virtual screening, a critical
component is the scoring function employed by the docking search algorithm.
Whilst reasonably effective at reproducing the binding geometries of known
ligands, empirical scores are less successful at ranking true hits correctly by
binding free energy. This is a natural consequence of the many approximations
made in the interests of high throughput and, as such, all virtual hit sets contain
false positives to a greater or lesser extent. Many of these false positives can
be removed manually by visual inspection of the predicted binding geometries
by an expert computational chemist, but this is a time consuming process.
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There have been previous studies that used Genetic Algorithms to improve
the coefficients of the scoring function (Smith et al., 2003). Also Böhm (Stahl
and Böhm, 1998) developed an empirical post-filter for the docking program
FlexX using penalty functions. Here we present the results of our initial attempts
to apply CGP techniques to automate the removal of false positives from virtual
hit sets.

Virtual Screening
At Vernalis rDock (Morley et al., 2004) and its predecessor RiboDock (Af-

shar and Morley, 2004) were developed as docking platforms that can rapidly
screen millions of compounds against protein and RNA targets.

During docking rDock tries to minimise the total score:
where stands for the sum of all the intermolecular

scoring functions, is the ligand intramolecular term and is a
penalty term that considers the deviation from certain restraints, for instance
when part of the ligand is outside the docking cavity.

Using this score rDock searches for the best conformation for a given ligand
over a given docking site. At the end, rDock stores the ligands for which a
conformation with a low enough score has been found. These are the ligands
that will be considered virtual hits.

Filtering

Once all the hits are found, the value of the score is no longer meaningful.
The score is good enough to compare two different conformations of a given
ligand, but not good enough to accurately rank order different ligands.

rDock outputs the score and its constituents. rDock also outputs additional
descriptors for both the ligand and the target docking site such as molecular
weight, number of aromatic rings, charge, number of atoms, etc., that are not
used directly during docking. This information is used in an ad hoc manner
by the computational chemists to filter out manually the virtual hits, often
on a per-target basis, for example to ensure a desired balance between polar
and apolar interaction scores. We have explored the use of GP techniques
to automatically evolve more complex, target-independent post-docking filters
(Garmendia-Doval et al., 2004).

Implementation
In our experiments we used a single row of 200 nodes. We chose the levels-

back parameter to be 100 and we counted the input variables as the first nodes.
All nodes have three inputs and one output. So if their true arity is lower, the
extra inputs are ignored. The operations implemented can be seen in Table 14-1.
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The input to the program is the data returned by rDock. There are components
to and ligand descriptors and docking site descriptors.
Some of these descriptors are explained in detail in Table 14-2.

Apart from the input variables, there is also a pool of 15 constants introduced
as program inputs. Each time the CGP is run, 13 of them will be created at
random. The other 2 are the constants 0.0 and 1.0. A random constant is equal
to where a is a float (with just one decimal place) number between -10
and 10 and b is an integer between -5 and 5.

In total there were 66 input variables, although a given filter did not have to
use all of them. On average 10 to 15 variables were used by individual filters.

Training Set

We assembled a set of 163 targets, such that for each of them there is a
structure available of the target and of a native ligand, a compound which is
experimentally known to dock into that target.

Each of the 163 ligands have been docked against each of the targets. If the
scoring function used in docking were perfect, then the lowest (best) score for
each target would be obtained for the native ligand bound.

As our current ability to calculate physical properties is quite limited, the
native ligand only ranks first in a few cases. Therefore, this cross-docking set
contains a large number of false positives. These can be used to drive a genetic
program to evolve appropriate filters based on various calculated properties.

From the targets for which the corresponding native ligand ranks in the 9th
position or higher, 30 were chosen at random. The training set is then these
30 targets, where the native ligands are considered hits and the ligands with a
higher rank are considered misses.

Fitness Function

The CGP system implemented evolves numerical functions. For each input
(i.e., docking score components of a given ligand over a given docking site, to-
gether with the ligand and docking site descriptors), a float number is returned.
It was decided to interpret these numbers in the following manner:

For each protein in the training set there is one hit (native ligand) and a list
of size between 0 and 8 with misses (ligands that score better than the native
ligand). The fitness function counts the number of proteins for which the hit
was recognised as hit and at least of the misses were recognised as
misses
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4. Experiments Investigating CGP Behaviour with
Parameter Variation

For all the following experiments, the results are the average of 100 runs.
Every 500 generations the best individual and its program size was stored. The
program size is understood as the phenotype size, i.e., the number of nodes, in-
cluding the input variables, that are present in the function/program represented
by the genotype. We are using the NDEA version of the evolutionary strategy
discussed in Section 2.

Genome Sizes
Figure 14-2 is a comparison of results with different genome sizes. For all

of them, the levels-back parameter was set equal to the genome size.
Examining the plot of average best of population fitness versus number of

generations (Figure 14-3) we see that even after 10,000 generations the fitness is
still improving. More interestingly we see that the maximum allowed number
of nodes provides a good ordering of this behaviour: the larger the allowed
number of nodes the higher the average best fitness. However, it looks like
much larger genotypes would offer diminishing improvements over smaller,
provided the allowed size is large enough. The growth in phenotype size is
fairly rapid initially but settles down to a very small growth. It should be noted
that even when 1000 active nodes are allowed the average best size eventually
settles at about 43, leaving 957 inactive nodes. Despite this enormous level
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of redundancy in the genotype we find the evolutionary algorithm described is
very effective.

Levels-Back

When the levels-back parameter is varied we see that with low values (25
out of a possible 200) the performance of the algorithm is much poorer and the
program size is very much larger. Interestingly we find that intermediate values
of local graph connectivity give the best results (levels-back 75 and 100).

Output Node

In the implementation used for the docking problem, the output of the filter
was taken to be one of the CGP nodes taken at random. This output node could
afterwards be mutated during the CGP run. Another option is to take always
the last node as the output node without possibility of mutating it, i.e., it is
taken out of the genome. A comparison of these two implementations was
done using for both of them with 200 nodes, 0.08 mutation rate and NDEA

Figure 14-2. Comparison Genome Sizes

Figure 14-3. Comparison Levels-Back
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Figure 14-4. Comparison with/without output node: 50, 200

algorithm. A mutation rate of 0.08 means that for every mutation operation,
each gene has a 0.08 probability of being mutated. With 200 nodes each one
represented by 4 genes (3 inputs and the operator), it means on average 64
genes will be mutated. The parameter levels-back was modified to be 50, 75,
100, 150 and 200. The results for 50 and 200 can be seen in Figure 14-4. It
is clear from the results that the performance of the evolutionary algorithm is
not greatly affected by whether the program has a fixed output node or whether
it is subject to evolution. However having no output gene appears to give
better results when the levels-back parameter is large. Even though there is
little difference in fitness improvement the average size of the best programs
is very different especially with smaller values of levels-back. The weakness
of the correlation between fitness improvement and the presence or absence of
an output gene was unexpected as it has been found that in Boolean function
search the performance is much more reliably good when the program output
is taken from the rightmost node. This is because it can sometimes happen by
chance that the best individual in the initial population has a small phenotype
length. This means that nearly all mutations affect redundant code thus leading
to trapping in a sub-optimum. The output gene is unlikely to hit by mutation
and so sometimes one has to wait for many generations for a larger phenotype
to be created. The continuous nature of the data may be the reason why the
presence or absence of an output gene is of minor importance.
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5. Experiments Comparing NDEA vs. EA

In the next set of experiments (Figures 14-5) we compare the performance of
the evolutionary algorithm with and without neutral drift and also the behaviour
of both scenarios with varying amounts of mutation. It is immediately clear that
at mutation rates below 0.3 NDEA is superior to the EA. With high mutation
rates (>=0.3) the behaviour of the two algorithms is similar both in fitness and
program size. Fitness stagnates at about 12 and program size randomly varies
around 22 active nodes (out of 200). The behaviour of the NDEA when the
mutation rates are much lower is very different. Firstly we see a continuous
improvement in fitness with time which is still growing after 10,000 generations.
Secondly the improvement in fitness is accompanied by a steady growth in
program size. It is interesting that the optimal mutation rate also produces the
strongest growth in active code. The rate of code growth drops eventually. This
indicates that if evolution was continued longer the active code would stabilize
at about 60 nodes (for the best mutation rate). It is also noteworthy that the
program growth stabilizes much earlier without neutral drift and that there is
much less variation in program sizes (lower variance). The graphs show very
clearly that neutral drift is not equivalent to turning neutral drift off and allowing
higher mutation rates.

Figure 14-5. Comparison of NDEA vs. EA
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6. Application of NDEA over Docking

In the initial implementation of CGP for the docking problem, a series of
experiments were conducted in which system parameters such as the structure
of the matrix, mutation rate, etc. were varied, although not in such detail as
the experiments shown in sections 4 and 5. At that time it was not possible to
conduct very rigorous tests because of the severe time restrictions associated
with the business environment, although another reason was caused by this be-
ing a classification problem. The fitness function in the CGP implementation is
based on the result of applying the current filter on the training set. Since we are
considering a classification problem, our aim is to maximize the classification
accuracy over the test set. Our goal was not to find the global optimum for
the training set as this would have almost surely been equivalent to overfitting
and would have produced a filter that would have performed poorly over new
data. Because of this, once a system capable of finding good local optima
was identified, the system parameters were fixed to be the following: mutation
rate 0.08, genome size 200 nodes and levels-back 100. From the results of the
experiments described one can see that it was a good enough choice.

Test Set

The test set corresponded to the rest of the cross-docking matrix, i.e., the 133
proteins left after removing the 30 that were used for training. The reason for
the test set being so much larger than the training set was due to the fact that
only half of the matrix was available at the beginning of the project. Once the
other half was made available, it was added directly to the test set.

CGP was run several hundred times and the filters that performed best over
the test set were chosen. These were then further tested over our validation set.

Seeded Libraries
Seeded libraries are one of a number of methods that have been developed

to assess the performance of virtual screening programs. A seeded library for
a given target is a library of drug-like compounds that includes several native
ligands known to bind to that target. All the compounds are docked into the
given target using the docking platform. The output conformations are then
sorted by the score. The ability of the virtual screening software to distinguish
between the native ligands and the non native ones can then be measured,
typically by calculating the percentage of native ligands found in the top

We tested the best filters over four seeded libraries, and the most promising
was chosen. This filter can be seen in Figure 14-7. The variables used by this
filter are described in Table 14-2 and the results obtained in the training set and
the test set can be seen in Table 14-3.
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Figure 14-6. Seeded Libraries

Figure 14-6 shows the top 1% (black), top 2% (dark gray) and top 5% (light
gray) completeness for these four seeded libraries, where completeness is de-
fined as the percentage of true active retrieved in the slice. We had 10 native lig-
ands for proteins Estrogen and Thymidine Kinase, and 17 for proteins Thrombin
and COX-2. The first column shows the results of rDock. The second column
shows the results of applying the Figure 14-7 filter.

For Estrogen, there is not a great improvement using the filter, as rDock
already produces very good results and is therefore difficult to improve upon
them.

Thrombin shows a nice improvement as some of the native ligands that were
previously found on the top 2% are now found on the top 1%. Similarly for
COX-2, all the native ligands found before in the top 2% are now found in the
top 1%.

Finally Thymidine Kinase gives the best results as more native ligands are
found in the top 1% (40% vs. 30%), more in the top 2% (80% vs. 60%) and
again more in the top 5% (100% vs. 90%) where all the native ligands are
found.
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Best Filter

There were several filters that worked well for the cross-docking matrix but
most of them did not generalise well for the seeded libraries. They either filtered
out native ligands or, most commonly, they filter almost nothing out. However,
we found the following filter to generalise quite well.

Figure 14-7. Best filter found to date
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It should be emphasised that the cross-docking matrix is a quite different
experiment from the seeded libraries. The fact that this filter is able to filter
out true misses while maintaining most of the true hits in both experiments is
quite encouraging and is relatively safe to infer that somehow it has found some
general trends in the data.

Although it is difficult to understand exactly what the filter is doing, the filter
combines intermolecular score components (as used during docking) with both
protein and ligand properties in a chemically meaningful way. For example,
highly strained conformations (SCORE.INTRA.VDW.raw) and steric clashes
between ligand and target (SCORE.INTER.VDW.nrep) are more likely to be
rejected.

Finally it should also be noted that the only simplifications done over the
original filter output by the CGP program and this filter were replacing the
expression exp(–0.0087) for 0.9913 and the expression –(900 * –0.76) for
684. Some parenthesis that were not necessary were also removed to make it
more readable. As reported in (Miller, 2001), in all the programs found by CGP
for this problem, there was “either very weak program bloat or zero bloat”

7. Results with Real Data
All the previous results shown were obtained over idealised test sets used rou-

tinely to measure docking performance. As a final validation we have applied
the filter in Figure 14-7 to real virtual screening data from docking campaigns
performed at Vernalis, specifically against an oncology target protein, HSP90.

From an initial docking library of around 700000 compounds, a total of
around 40000 virtual hits were identified over several docking campaigns
against HSP90. Around 1500 of the virtual hits were selected by a compu-
tational chemist for experimental assay using a variety of ad hoc post filters,
and knowledge and experience of the target protein, in a process taking around
a week. Thirty of the assayed compounds were confirmed as real hits, in that
they showed significant activity against HSP90.
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The filter shown in Figure 14-7 was applied to the virtual hits (see Table 14-4)
and was able to remove 29% of the original unfiltered hits, whilst only removing
4% of the compounds manually selected for assay. Three of the true actives
were also removed.

The GP-derived filter therefore shows very good agreement with the manual
filtering process, in that the filter passes almost all of the original assayed
compounds, but is able to reduce automatically the initial size of the data set by
almost 30%. This provides further evidence that the filter is generalising across
docking targets quite distinct from those in the training and test sets.

The filter is currently being used and tested with each new docking cam-
paign, with very good results. It promises to be a useful additional tool in the
computational chemist’s armoury of post-docking filters.

8. Conclusions

Removal of false positives after structure-based virtual screening is a recog-
nised problem in the field. This chapter describes what we believe is the first
attempt at using Genetic Programming to evolve a post-docking filter automat-
ically. We found the simple 1+4 evolutionary strategy with neutral drift to be
very effective and also confirmed that for this real world problem, program
bloat was not a problem.

The cross docking matrix used for training and evolving post-docking filters
is quite different from the seeded libraries and the HSP90 data. The post-
docking filter chosen from the ones found by the GP platform is filtering out
consistently bad compounds in all cases, while retaining interesting hits. We
can say that it is generalising over the data. The HSP90 data is the first real
data on which the filter has been tested and the results are very promising. This
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filter is now being used as standard in all the projects in the company. Early
results confirm its usefulness.

The GP platform offers immediately a pragmatic, automated post-docking
filter for cleaning up virtual hit sets. It can be easily applied again for different
descriptors or scoring functions.

Longer-term the filters found may offer a way of “boot-strapping” docking
scoring function improvements, by identifying non-obvious, yet systematic,
defects in the scoring function.

This technique is also not specific to docking programs, and we plan to apply
it in the near future for other problems where a list of variables and descriptors
is available and there is a need for a generic filter.
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Chapter 15

LISTENING TO DATA: TUNING A GENETIC
PROGRAMMING SYSTEM

Duncan MacLean, Eric A. Wollesen and Bill Worzel
Genetics Squared Inc

Abstract: Genetic Programming (GP) may be used to model complex data but it must be
“tuned” to get the best results. This process of tuning often gives insights into
the data itself. This is discussed using examples from classification problems
in molecular biology and the results and “rules of thumb” developed to tune
the GP system are reviewed in light of current GP theory.

Key words: classifier, molecular biology, genetic programming, cancer, microarray,
genetics

1. INTRODUCTION

Genetic Programming (GP) may be used to create a functional
description of data by discovering classification functions or by modeling
dynamic processes as described by (Banzhaf et al., 1996). The process of
discovering such functions usually calls for successive iterations adjusting
the parameters, fitness function, population size and other characteristics of
the genetic programming system to arrive at a satisfactory result. Loosely
speaking this may be viewed as “tuning” the GP system to the problem at
hand. The process of tuning the system and the results arrived at may reveal
something about the problem, the data and ultimately about genetic
programming itself.

Several classifier problems will be described along with the tools and
rules of thumb that were developed for tuning the GP system. A “well
behaved” problem is described and two specific “ill behaved” problems are
described. These studies are reviewed, information about the data and the
problem that was discovered because of the behavior of the GP system is
described, and the lessons learned discussed.
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2. BACKGROUND

Genetics Squared is a life science company focused on the analysis of
biological and pharmaceutical data with the goal of developing better
diagnostics and therapeutics. A common kind of problem we address is the
development of diagnostic and prognostic rules that can inform treatment
decisions by classifying disease characteristics into sub-types, often based on
therapeutic results. Using genomic microarray data (Gerhold et al., 1999), it
is often possible to gain insight into a disease state based on cellular
behavior at the molecular level (Khan et al., 2001).

Because of the expense of developing microarray data, the number of
tissue samples in a study are often limited, yet there may be up to 20,000
genes in a single microarray. This creates a challenge in that it is often easy
to overfit the results to the training set and the difficulty of the problem
varies tremendously from one to another. Typically studies that call for
differentiating between healthy and diseased tissue are fairly easy to solve
while problems involving prognostic outcomes or multiple sub-types (e.g.,
tumor stages) that are not necessarily tied to behaviors at the molecular level
can be quite difficult. This provides a range of problems, some of which will
demonstrate “good” behaviors (i.e., the behavior of a well-tuned GP system)
and some of which are “bad” behaviors (i.e., the behavior of a badly-tuned
GP system) in terms of the interaction of the GP system with the problem.

Given the small number of samples for the large number of variables, the
standard procedure is to use an N-fold cross validation approach where the
data is divided into N partitions and N-1 are used to produce classification
functions and the Nth partition is used to test the best function discovered.
Then the evolution of classifier programs starts over with a different
partition used as the test set. This continues until all partitions have been
used as the test set. The results from each separate fold are summed giving a
cumulative result assessing the average ability of the GP system to find
robust results.

We typically make a number of runs of N-folds to assess the tractability
of a problem and GP parameters are changed to find the best combination
for producing high-fitness, robust results. Typically the crossover and
mutation rates are adjusted along with the population size, operator set and
tournament size. If the average is good across several runs of multiple folds,
then the entire set is taken as a whole and run as a single fold and the
function with the best fitness on the entire set is selected as the diagnostic
rule.

An example rule is shown in Figure 15-1 where the variables are
represented by the name of genes whose expression levels were measured.
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Figure 15-1. Example Classification Rule

2.1 Post-Processing Analysis

Over the three years that Genetics Squared has worked on these
classification problems, we have developed a set of post-processing tools
that have proven useful for tracking the behavior of the GP system. While
some of the tools are fairly usual, some were developed because of the
unusual nature of the problems. These tools and the reasons for them are
discussed below. By “post-processing,” what is meant is the analysis of
several GP runs to look for salient characteristics within the results.

2.1.1 Logfiles

During GP runs, logfiles are generated that record the current “front
runner” or best function for classification across all demes. Typically
multiple processors were used and the best individual may come from any
processor. It is often the case that the successive front-runners will come
from different processors.

2.1.2 Fitness Traces

A fitness trace is a plot of the fitness of the current frontrunner over time.
An example of a fitness trace is shown in Figure 15-2. The fitness is the
accuracy of the rule in predicting a sample’s class membership with perfect
being 1.0. The top line shows the fitness of the best individual from the
training set. The bottom line is the fitness on the same individual when
calculated on the test set.
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Figure 15-2. Example Fitness Trace

2.1.3 Gene Frequencies

Because many runs are typically made on the same data using the same
parameters, we have developed a tool that tabulates the number of times a
particular gene appears in each of the best-of-run functions. An example is
shown in Figure 15-3.

Figure 15-3. Example Gene Frequency List
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In this example gene number 6720 appears in 24 best-of-run rules out of
30 rules altogether.

2.1.4 Misclassified Samples

Many of the studies are incorrectly classed or are based on gross physical
characteristics that may not correspond to behaviors at the molecular level.
For example, many cancers are diagnosed on the basis of cell staining and
microscopic examination of the stained tumor cells. Occasionally mistakes
are made and some of the samples that are used for training are incorrectly
labeled. In this case the mislabeled samples will continually show up as
being misclassified by the GP system, particularly when they appear in the
test set. so we have developed a tool that counts the frequency of
misclassification for each sample. Obviously a well characterized set will
have few misclassifications and most will not be “repeat offenders.”

2.1.5 Motifs

One of the things that we look for in classification studies are repeating
“motifs” in the functions. These are combinations of genes and operators
that appear repeatedly within a set of runs such as “GeneA * GeneB” or
“(GeneC + GeneD) / GeneE”. Because the rule expressions may be fairly
complex, we have not yet developed a tool that can discover such motifs
reliably since there may be many genes and other gene sub-calculations
between two genes that appear in a motif. For example, consider the function
fragment:

The motif “GeneA*GeneB” is present but widely separated and could
easily be missed without considering closely the algebra of the expression.

3. EXAMPLE STUDIES

What we have developed is an attitude that might best be summed up as
“listening to the data.” This is a case of working with a data set, changing
GP parameters and then watching the response of the outcome to these
changes. In tuning the GP parameters we have often found that the
difficulties we encounter suggest something about the data being analyzed. It
is easy to become dogmatic about how to use GP but in our experience, this
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will not get the best results nor will it achieve the ultimate goal of gaining
insight into the problem being studied.

What follows are somewhat anecdotal examples of difficult problems and
the “behavior” of the GP system as it struggled to find solutions. We start
with a “well behaved” study (i.e., one where the GP system produced
reliable results and showed a distinct behavior in how it reached the results)
and then talk about two problems where the GP system struggled to find
good answers but ultimately revealed more about the data than expected. All
of these studies are cancer studies using gene expression profile data as
inputs and some known physiological state as the class that is being
predicted. Details of gene chip data and its application to diagnostics and
therapeutics may be found in (Driscoll et al., 2003).

The characteristics of a run that we classify as well behaved are as
follows:

Good training-test set correspondence; few signs of overfitting
Distinct selection of variables; each class uses different variables
in the classification rules
A small number of features that are selected in preference to any
others across multiple runs
Little or no pattern to the samples that are misclassified when
viewed across multiple runs

Overfitting is the often a serious problem in GP, particularly when there
are a limited number of samples from which to create a generally descriptive
function. Contrary to what one might expect, it is not the difficulty of
finding solutions that causes the most trouble, but the tendency of GP to find
solutions that are too particularized to the training set. These solution tend to
be “brittle” and don’t generalize when applied to other data. A good
correlation between accuracy (or other similar measures) on the training set
and accuracy on the test set is the first and most important characteristic of a
well-tuned classification system.

A distinct preference to select certain variables is a characteristic we have
noticed in the high-dimensionality studies we have been involved in
recently. (By “high-dimensionality” what is meant is that there are a very
large number of inputs compared to the number of samples) Each class tends
to have its “favorites” that the GP system “reaches for” in finding a solution.
This may be because of the underlying biology where a few key marker
genes often indicate the activation of specific pathways that distinguish the
target classes but we have observed it in other studies of very different types
of data, so it is not limited to biological problems.

There are a number of reasons why this may be a good sign: If the tree
depth or number of terminals is too large in classification problems such as
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the ones described here, rather than introns becoming prevalent, overfitting
occurs. One of the signs of this is that the choice of variables is very
different in each run. While this may also occur if there are a large number
of solutions to the problem, even in these cases some variables are better (or
at least easier to find in useful combinations) than others so that we still find
that the reinforcement of variables is consistent. We have seen all of these
behaviors at one time or another and as a result this is one of the main
features we look for.

Finally, because the data we are working with is often poor, not only
because of noise in the data, but because of uncertainties in the sample labels
used in training, looking at the frequency of misclassifications can provide
insight into samples that may be skewing the results. If a sample is
misclassified, GP will often “bend” the classification to try and include the
wrongly labeled sample. Nonetheless this can either cause overfitting to
include the sample or it may lead to consistent misclassification of samples
that belong to the class that the mislabeled sample actually belongs to. For
this reason we believe it is never enough to look only for overfitting in the
training-test results: one should also look for patterns of misclassification
that may indicate the problem is outside of the behavior of the GP system.

3.1 Well-behaved Runs

We recently completed a toxicity study of pre-clinical data for a major
pharmaceutical company. Though the actual details of the results are
confidential, the GP behavior is described here as it was a fairly interesting
application of GP to a real problem having noisy data.

3.1.1 Toxicity Study

The data was composed of gene expression profiles for a number of
samples taken from toxic doses of particular compounds. There were four
separate types of toxicity in the study and the vehicle (carrier material for the
compounds) as a control (i.e., it had nothing that would be expected to cause
a toxic response). Of the five classes, two were relatively easy to match, one
was moderately difficult and two were downright stubborn. As is often the
case, there was more to be learned from the stubborn cases and in the end,
reasonable classification rules were found for both of them.

The data was based on a common gene chip having 8,740 genes per
sample as input and 194 samples for the entire data set. A summary of the
data is provided in Table 15-1.



252 GENETIC PROGRAMMING THEORY AND PRACTICE II

In this study we typically used a 3-fold cross-validation scheme where
the sample set was partitioned into 3 equal parts at random with roughly
equal representation of each class in each partition. Each partition then took
a turn as the test set and the other two folds were used as the training set.
Each successive run started from scratch so that the results of the previous
fold-trial did not influence the results in the next fold-trial. A number of runs
were made using the same GP parameters and then, if overfitting was
detected, the GP parameters were adjusted. While it may be argued that this
amounted to “peeking” at the test set, since the results were run many times
with the same settings and random recomposition of the folds for each run,
there was no bias in the composition of partitions. However it has been
argued that this biases the entire evolutionary process. Nevertheless, since it
is impossible a priori to know when overfitting is going to occur on a
particular data set with a particular set of GP parameters, this was the best
compromise we could come up with while using the N-fold cross validation
scheme.

We created classifiers that differentiated between a target class and “all
the others” and then combined the best classifiers using the voting algorithm.
The results were quite good with three of the five classes being perfectly
classified and only two having any errors. Table 15-2 shows the results of
combining the classifiers using the voting algorithm. This is a confusion
matrix with the prediction read down each column and the truth for each
sample read across a row. This shows that there was a Class A sample that
was misclassified as an ‘V’ sample and 4 Class C samples identified as ‘V’
samples.

The interesting thing about this is that the best single Class V rule had 12
errors and the best Class C rule had 5 errors but combined the rules covered
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the solution space very well. This result also showed some interesting points
about this approach. The first is that the rules for classifying Vehicle
samples frequently identified the Class C samples as belonging to the
Vehicle class. However, by looking at the genes used, we can see that there
are few genes that are used in both. This suggests that the characterization of
Class C is weak in some samples and that the characterization of the vehicle
is identifying these samples as belonging to the vehicle class because of the
lack of the Class C response in these samples.

3.1.2 Gene Frequency Analysis

Table 15-3 shows the most commonly used genes from the logfile
generated from a set of C class runs. This list shows the genes that were used
most often in the best rules found (in all cases, “best” means “best on
training”) out of 30 folds. On average there were 7.1 genes in each rule.
(Note: to protect the confidentiality of the data, the gene names or other
identifiers are not used.)

Comparing this to the list in Table 15-4 from another set of 30 runs, one can
see the difference: In the second set of runs, the most commonly used genes
are much less strongly chosen. The first set shows the kind of profile that we
have learned are often associated with robust rules: A few genes are used
almost twice as frequently as any other gene and the selection frequency
quickly falls off into long tails where genes appear only in one or two rules.
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3.1.3 Fitness Trace

Figure 15-4 shows a fitness trace of one of the runs from the logfile
referred to in Table 15-3. Here the x-axis is time in generations and the y-
axis is fitness scaled proportionally to the number of target class samples
compared to the overall number of samples (i.e., if there are half as many
target samples in the data set, then a false negative has twice the impact as a
false positive). Figure 15-5 shows a typical fitness trace of one of the runs
from the logfile associated with Table 15-4. Again, the traces show that the
first set of runs were “well behaved,” in this case they were not overfitting as
often and the fitnesses were higher. The second set of runs tended to
overfitting and lower fitness values. The fitness traces show this by the lack
of correlation between the training and test fitnesses. Looking at the settings
for the runs, they were identical except for an increased crossover rate of 0.9,
mutation rate of 0.1 compared to a crossover rate of 0.5, mutation rate of 0.5
in the first set of runs. This result suggests that a higher crossover rate leads
to faster convergence which may reduce the diversity in the population. This
lack of diversity suggest that if the building blocks used are not desirable for
generalization, overfitting may occur. This agrees with (Banzhaf et al.,
1998), and (Banzhaf et al., 1996) where it is suggested that increasing the
mutation rate on hard problems increases diversity and reducing the
crossover rate allows this additional diversity to be preserved.
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Figure 15-4. Fitness Trace From First Set of Class C Runs

Figure 15-5. Fitness Trace From Second Set of Class C Runs
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The first fitness trace shows an interesting pattern that we often see: Once
the run reaches a certain point, the training fitness exceeds the test fitness but
they both continue to increase. Is this overfitting? If so, why do they both
track together and continue to improve? If not, why is the training fitness
continually higher than the test fitness?

3.1.4 Sample Misclassification Frequencies

The last step is to review the frequency of misclassification of the samples
– are all the samples equally likely to be misclassified, or are certain samples
more likely to be misclassified, suggesting some substantive difference in
the samples?

Table 15-3, an aggregate of all the Class C runs, suggests that the top
four samples may well be mislabeled. The long, gradual progression that
follows including the heavy trailing tail suggests that this may not be the
case as the misclassification is widespread and not strongly limited to a few
samples. A quick glance at the Class A list of misclassified samples in Table
15-16 sheds some light on the problem. In this case there are two distinct
differences: only two samples (106 and 123) are misclassified during
training and testing. Sample 106 was misclassified almost twice as often as
the next most misclassified sample. In addition, this was for 10 runs of 3
folds each so only 5 samples (106, 123,176,122 and 164) were misclassified
more than 1/2 the time they were in the test set with the first 3 being
misclassified every time they were in the test set.
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Compared to this, the Class C samples had many (most) samples
misclassified when they were in both the training and test sets and there was
not a dramatic drop in frequency between the first few samples and the later
ones. This suggests a number of things:

1.

2.

3.

The C class does not have a strong, independent signature. It
resembles one or more of the other classes (primarily the V class)
The tendency toward overfitting in Class C is probably caused by
this weak class signature
Sample 106 and possibly 123,176,122 and 164 in Class A may
be mislabeled, causing difficulties in the classification of those
samples.

This is a simple example of gaining insight into the data and the problem
from the behavior of the GP system.

3.1.5 Summary

Even in a well behaved run there is something to be learned from looking
at the “behavior” of the GP system. What follows are brief summaries of two
particular studies that departed from the well behaved model and the possible
causes of these departures. We will not present all of the analytic steps we
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took to reach our conclusions again but will summarize the results of our
analysis.

3.2 Under-specified Behavior

(Shipp et al., 2002) studied Diffuse Large B-Cell Lymphoma (DLBCL)
using gene expression profiles and postulated a different cause for this
disease than (Alizadeh et al., 2000) had proposed. Using a number of
different algorithms the authors were able to derive a correct prognosis for
the disease in approximately 75% of the cases, depending on the algorithm
used. This is about the best level of accuracy that can be reached in most
prognostic studies as the outcome is a rather “soft” endpoint in the sense that
while there are clearly bad outcomes (e.g., fast progressions of cancer
development) and good outcomes (e.g., slow disease progression), there is
inevitably a gray area where an outcome could be classed either way
depending on how progression was defined. Nevertheless, a 75% accuracy
level is still a useful result.

When we used GP to analyze the samples, approximately the same level
of accuracy in classifying the patient’s responsiveness to treatment was
achieved. But what was most striking was that the behavior of the GP system
when applied to this problem led to the conclusion that there were some
difficulties with the data, since every effort to improve the accuracy of
results actually decreased it. Specifically, the best results were achieved by
making short, shallow runs (i.e., few generations and shallow GP trees).
Longer runs or deeper trees produced severe signs of overfitting with much
worse results on the blind test samples.

This behavior was much different from any other study we’ve done,
including other prognostic studies. Furthermore, the samples that were
misclassified using GP were almost identical to the samples misclassified by
Shipp et al., which is significant given the very different approaches they
used. Our first hypothesis was that the misclassified subset might be a third
class that was perhaps “partially responsive”. But attempts to classify by
separately evolving classifiers for this set were complete failures. We
concluded that that there is some other information needed to make a more
accurate classification such as demographics or patient history.

Subsequent to this study Dr. Michael Krawetz of Wayne State University
in a personal communication indicated that the problem with the study is that
certain key genes were missing from the gene chip used. This suggests that
the problem (and the associated behavior) is symptomatic of an
underspecified problem, that is, one that has incomplete data, particularly
key data.
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It is also worth noting that this came to light not because of the accuracy
of the GP prediction, but because of the behavior of the GP system. It was
the uncharacteristic tendency to quickly overfit in the extreme not the results
produced by the classification that led to this conclusion.

3.3 Unsupervised Results From Supervised Learning

The final study is a collaboration with Dr. Richard Cote’s lab at the
University of Southern California to correlate molecular data in the form of
quantitative RT-PCR measurements with successive stages of bladder
cancer. In this case the tumor stages refer to the degree of invasiveness and
size of the tumor and range through five stages, Ta and T1-T4. Also
included as a control were normal tissue samples taken from tissue near the
tumor were included. In this case, while the primary goal was met, other
unexpected results came from analysis of the behavior of the GP system.

3.3.1 Study Details

The study used a selection of 70 genes known to have an association with
bladder cancer. They were profiled using a multiplexed RT-PCR system. The
genes selected included anti-oxidant, angiogenesis, apoptosis, cell cycling,
transcription factor, growth factor, invasion and signal transduction genes.
There were 74 tissue samples in all, 36 of which were used to develop the
rules and 38 were used as a blind test set. On the blind test set, 26 of 38
samples were correctly classified (68%) and 7 more predicted staging in
advance of actual assigned stage (e.g., T2 for a T1 sample, T3 for a T2, etc.)
which may indicate molecular changes in advance of physical evidence of the
change. If these 7 samples are assumed to be correct then the rules were 86%
accurate in predicting cancer stage.

3.3.2 System Behavior

As with the toxicity study, classifiers for each of the six classes were
created and then combined in a voting algorithm. As mentioned in the
previous paragraph, the results were quite good but some of the classes were
simpler to classify than others. In particular, the T1 class was difficult to
distinguish from the Ta and T2 classes and the normal samples were
extraordinarily difficult to classify.

The system behavior with the normal samples was particularly odd in
that they would be misclassified into quite different classes; sometimes they
would be T3 or T4 misclassifications, sometimes T1 or T2. What we finally
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realized was that since most of the samples were taken during tumor
resection from tissue from beyond the surgical margins, the “normal” tissue
in these cases actually had the profile of the tumor type being removed – in
other words the tumor was either invasive beyond the surgical margins or
was causing a “sympathetic” behavior in nearby tissue. This is being
investigated further but at a recent conference, other researchers reported the
same results.

3.3.3 Reforming the Classes

The difficulty in creating successful classifiers for the T1 class led us to
revisit the question of the correspondence between the molecular level and
the physical level. While the Ta and T2 classifiers were reasonably solid, the
T1 classifiers were much more problematic with many more
misclassifications. It was not until we viewed the gene selection frequencies
in the evolved classification rules that a pattern emerged.

Fundamentally the tumors broke down into two classes: early and late
stage tumors. The genes used in the Ta, T1 and T2 classifiers were quite
similar to one another with many of the same genes appearing in the “top
10” list of genes selected by the GP system. The T3 and T4 classifiers used
an almost completely different set of genes with little overlap in the genes
used in the earlier stage tumors.

The most interesting thing about the differences in the genes used
between the early-stage and late-stage tumors is that they were biologically
suggestive, providing an interesting validation of the GP result. In particular,
early stage tumors had a consistent “motif” in the form of a Boolean
expression comparing two particular genes, one an angiogenesis gene
indicating blood vessel formation, the other was a growth factor associated
with tumor growth. This indicated that as the tumor began to grow, certain
growth factor genes were up-regulated while the blood vessels needed to
supply the tumor with blood began to form in response.

In the late-stage tumors these genes did not appear, instead a set of cell
signaling genes, a different set of growth factors genes and repressor genes
were used. This suggests that the tumor had reached a stage that was the
equivalent of cellular chaos with a blood supply to feed the tumor in place,
normal communication between cells interrupted and, most interestingly,
genes that would help stop growth had been down-regulated suggesting that
the normal feedback mechanisms to stop cellular growth were shutting
down.

Among other things these results, if valid, suggest that anti-angiogenesis
therapies that stop the growth of blood vessels will only be effective in early
stage tumors. This is significant because such re-purposed therapies are
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normally not given during early stage cancers because of the uncertainty of
side effects. These results strengthen the likelihood that such drugs could be
tested sooner in the disease cycle than would normally be the case for a new
therapy.

Recently we have reclassified the samples into two classes: early-stage
and late-stage tumors. The results bear out this supposition as the accuracy
of this study was better than the earlier results.

This re-classing of tumor types was developed because of the behavior of
the GP system and in particular, because of the variables selected by the
system followed a different pattern than was suggested by the initialclasses.
It might be considered an unsupervised result from a supervised learning
approach.

4. CONCLUSIONS

The tools developed by Genetics Squared have proven helpful in solving
classification problems such as those described here. In particular they help
to identify unexpected features and combinations of genes that provide
insight into the underlying nature of the problems considered.

The techniques described here illustrate some of the advantages of GP
over other machine learning techniques. In particular the human readable
nature of the solutions can be very important to understanding something
about the data being studied. The variables selected, and how they are
combined can be quite revealing and the stochastic nature of GP gives
additional information about a problem by reinforcing the choice of features
and confirming the robustness (or lack thereof) of a solution.

However the problem of overfitting is common to many machine
learning techniques, including GP, particularly in problems such as those
described here that have a large number of inputs and a comparatively small
training set. What could be done to improve the robustness of the results? It
is obvious that brining in additional information where possible can help.
For example, (Keijzer and Babovic, 1999) describes the use of dimensional
analysis for physical problems. Here they used a variety of techniques
including brood selection (“culling”) and multi-objective optimization to
encourage consistency of units within functions.

In this domain, the literature of molecular biology is broadly focused on
gene pathways (interacting sets of genes) and the impact of disease on
normal cellular functioning. While much of the work we are doing is
focused on understanding such disease functions, it may be possible to bring
more of the domain knowledge into the GP world. The pathways that genes
are associated with could be included into the GP process, either as part of
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the fitness function or as a multi-objective function where different niches
are explicitly used that look for genes that belong to the same pathway. By
creating separate niches for different solutions that are separated by pathway
associations, it may be possible not only to reduce the amount of overfitting
based on casual associations of genes found only in the training set, but it
may make the results more accessible to domain experts. It may also suggest
interacting networks of genes that were not previously known.

Finally adding these constraints to GP it may not only reduce the
problem of overfitting, but may also introduce a more topic specific
environment for evolution to take place in, increasing the utility of the
results produced to the real world.
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Chapter 16

INCIDENT DETECTION ON HIGHWAYS

Development of GP Alarms for Motorway Management

Daniel Howard and Simon C. Roberts
QinetiQ, Malvern, UK

Abstract This chapter discusses the development of the Low-occupancy INcident Detec-
tion Algorithm (LINDA) that detects night-time motorway incidents. LINDA is
undergoing testing on live data and deployment on the M5, M6 and other mo-
torways in the United Kingdom. It was developed by the authors using Genetic
Programming.

Keywords: automatic incident detection, freeway, motorway, highways, genetic program-
ming, traffic management, control office, low flow, high speed, occupancy, re-
versing vehicles, roadworks, HIOCC, California Algorithm, MIDAS, LINDA.

1. Introduction

A traffic incident on a freeway is something that would cause an inexperi-
enced motorist to swerve or brake unnecessarily harshly. The development of
automatic incident detectors on highways is motivated by the delays and dangers
associated with incidents. In daytime, the cost of delays is very considerable
indeed and the impact of an incident can be reduced by locating and removing
it promptly. During the night, incidents are a great hazard because they occur
in conditions of low traffic flow, high traffic speed and poor visibility. Danger
is reduced if they are located quickly, reported to the traffic management center
and remedial action is taken (e.g. send the police to the scene).

The UK Highways Agency protects the back of traffic queues, which have
formed or are about to form on freeways, by automatically setting suitable sig-
nals to warn approaching traffic. The trigger is an algorithmic manipulation
of the data that is generated by the MIDAS (Motorway Incident Detection and
Automatic Signalling) system. MIDAS comprises double loop inductive sen-
sors on each lane of a carriageway at 0.5 km intervals (see Figure 16-1). Each
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Figure 16-1.    Photograph of the carriageway showing a single row of loops, with loops on the
hard shoulder and in each of four lanes. Each loop occupies a square area with 2.0 meter long
sides. More typically, double loops are arranged in two rows that are separated by 4.5 meters.
The grey roadside chamber on the left is connected to a MIDAS outstation by loop feeder cables.

MIDAS double loop aggregates quantities such as ‘occupancy’ over 60 second
intervals. Occupancy is the percentage of time a loop is occupied and is calcu-
lated every second. In the UK, the HIOCC algorithm (Collins, 1979) is used
to trigger queue protection and signalling during periods of traffic criticality
and congestion. A HIOCC alert is raised if a loop has 100% occupancy for
2 seconds. Loops are connected via the transmission network to an in-station
which can either directly or indirectly operate motorway signalling systems
(but queue protection signalling is always set indirectly). In some areas MI-
DAS data is used for congestion management (mandatory speed limits) and
plays an important role in general traffic data collection.

This chapter discusses the development of the Low-occupancy INcident De-
tection Algorithm (LINDA) that locates night-time motorway incidents and
their time of onset. LINDA uses the MIDAS loop sensor output during periods
of low flow and high speed (usually between 10:30 pm and 5:30 am) to warn
control offices of hazardous situations on the road. These include commence-
ment of scheduled roadworks; breakdowns; debris; and reversing vehicles. The
idea is to pick up any odd and often subtle anomaly in MIDAS patterns and
to alert the operators immediately. Currently LINDA is undergoing trials on
motorways that have large CCTV coverage. Its warnings will not only alert
the control office staff but also point CCTV to the area of interest to reveal the
nature of the “incident”.

LINDA was developed by the authors with Genetic Programming (GP). GP
was used in a two-stage strategy (Howard and Roberts, 1999) to evolve detectors
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by training and validating on archived traffic data. This exposure to extensive
traffic data scales up our previous work (Howard and Roberts, 2002, Roberts
and Howard, 2002) in order to evolve more robust detectors that can distinguish
a greater variety of incidents from more diverse examples of normal traffic.
Optimal detectors were selected during off-line validation. These detectors
were then integrated into an on-line implementation.

2. MIDAS Traffic Data

Incident detectors presented here were evolved and validated using archived
MIDAS data for both carriageways of the M25 motorway which surrounds the
city of London. This section explains how the traffic data was prepared for
input to GP.

Traffic data types

The archived MIDAS traffic data comprised the following minute-averaged
quantities, where the first four quantities were lane specific but the last quantity
was carriageway specific.

flow (vehicles per minute)

occupancy (%)

speed (km/h)

headway (0.1s resolution)

categorized flow using four vehicle length classes (vehicles per minute)

Manual incident identification

Automatic incident detectors were trained from examples of incident onsets
and normal traffic. Hence, the precise locations of incident onsets needed to be
manually identified and recorded. This was achieved by manually examining
visualisations of archived MIDAS data for the specification given in Table 16-1.

Visualization software was developed to display traffic data in order to man-
ually identify incidents to meet the following requirements:

The station and minute axes must be displayed adequately to precisely
locate a data point. It is essential to accurately identify an incident’s onset
time.

Data for multiple lanes has to be displayed simultaneously, to facilitate
the identification of questionable incidents.

Data from multiple control offices associated with consecutive stations
must be displayed simultaneously for continuity at the adjoining stations.
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A high display speed and and minimal user intervention (with simulta-
neous displays) makes the viewer practicable to examine many months
worth of data from the two carriageways.

The visualization software was developed to display speed against station
and time for a single night, carriageway and lane. Three images were simulta-
neously viewed for the three most offside lanes for each night and carriageway.
Incidents were manually identified by examining these images to subjectively
locate abnormal data on any of the lanes. Colour rectangles were drawn over
the full extent of each incident, where the colour denoted the type of incident
as shown in Table 16-2.

Major incidents spanned many stations and minutes, often affecting other
lanes and upstream stations, and were typified by very slow speeds. Minor in-
cidents were more localized, i.e. spanning few stations and minutes and perhaps
only evident in a single lane, and they often involved only slight reductions in
speed. Intermediate incidents were evident when the extent was between these
extremes. Roadworks were evident by a very slow vehicle at the start and end
of the incident (presumably laying-out and retrieving cones) and their onsets
were staggered across adjacent lanes. An example of unusual traffic is a very
slow vehicle that occupies multiple lanes (a police-escorted wide load).

The marked-up images were automatically processed to catalogue each in-
cident’s time limits and station limits on each specific lane. These lane-specific
incidents were then automatically merged to give the final carriageway-specific
incidents. The colour coding was automatically processed to specify incident
class as given in Table 16-2.

Detectors were evolved to give alerts for incidents of class 1 to 3. Class 4
“incidents” were only used to discard spurious traffic data and the detectors were
never exposed to this data. Preliminary detectors were evolved and common
false alarms were manually analyzed to revise the incident set.
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Correcting traffic data
The traffic data included the following anomalies: (a) missing data that re-

sulted from single loop or double loop failure at a single station; (b) missing data
due to lost connections between out-stations and control offices - this usually
persisted for many hours at many adjacent stations; (c) “no-flow” data that was
assigned when no vehicles occurred within the current minute - this was very
common for night traffic especially on the outer lanes of the carriageway (speed
and headway needed to be defined for the no-flow state to avoid discontinuities
in the input data); (d) spurious data from faulty sensors; (e) Spurious data from
incorrectly calibrated sensors. While the failure of a single loop results is no
speed data the failure of the double loop results in no data at all.

Training on traffic data that included the anomalies was deemed to over-
complicate the problem by disguising the characteristic subtleties that distin-
guish incidents from normal traffic. Hence, a correction procedure was devised
to improve the quality of the traffic data input to the detectors. The same pro-
cedure was used for each data type but headway correction had an additional
algorithm dependent on the flow for the current and previous minutes.

Anomalous data was flagged by a value, in order to invoke the cor-
rection procedure. The procedure attempted to correct the data by interpolating
from the nearest current and previous valid raw data. The search for valid data
was conducted first by station, then by lane and finally by time to analyze past
data. Up to 4 adjacent stations were analyzed during the search to be equivalent
to a maximum deviation of one minute, assuming a typical speed of 120 km/h
(75 mph) and a station separation of 0.5 km. Weighted averaging was used to
bias the interpolation towards nearer stations.

When corrective data was found on a different lane to the current lane, an
offset was applied to represent the typical difference for the missing quantity for
that particular lane combination. For example, a different offset applied when
correcting the offside lane from offside-1 compared to correcting offside-1 from
offside-2, as opposed to using the same offset to correct an adjacent outer lane
of the carriageway.
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The search process was terminated after no valid raw data was found during
the previous 5 minutes worth of data. The current missing data thus remained
at a value of and the correction procedure advanced to the next missing
data. If a single application of the correction procedure could not correct all
missing data from valid raw data, then the procedure was simply re-applied to
correct from previously corrected data. Iterations were repeated until all missing
data had been corrected. However, the iterative procedure could still fail for
excessive missing data at the start of a night. In this case, the current night
and carriageway was omitted from the data set unless it contained a worthwhile
incident, in which case the night’s start time was reset to an earlier time in order
to allow the iterative procedure to succeed.

Empirical analysis of many months of known normal night-time traffic data
allowed the setting of:

headway based on flow in the current and previous minutes,

lane offsets for each data type (except headway because there was a high
variability in the difference between headway values on different lanes
and so headway was not corrected from adjacent lanes),

thresholds for each data type to retain data at faulty sensors when it was
similar enough to the data at neighbouring valid stations,

default values for each data type to be used when data could not be
corrected in the on-line implementation.

Traffic data sets

The development of the incident detectors was data driven due to an evolu-
tionary procedure that trained from traffic examples. Hence, it was important
to define training, validation and test sets that represented similar distributions
of incidents over a similar extent of valid raw traffic data.

The extent of missing data for each month was significant. A month was
deemed to be “good” if it contained ample diverse incidents and had relatively
little missing or spurious data. Consecutive months were partitioned to separate
good months from bad months, and the resulting grouped months were then
assigned to the following three traffic sets such that the numbers of each class
of incident were fairly even: (a) 9 months for training: 06.1998-09.1998 and
01.2000-05.2000; (b) 9 months for validation: 07.1999-12.1999 and 06.2000-
08.2000; and the remaining 12 months: 03.1998-05.1998, 10.1998-12.1998,
01.1999-03.1999 and 04.1999-06.1999 were left out of the exercise. The final
specification for the training and validation sets is shown in Table 16-3. Note
that the total number of nights is much larger than would correspond to 18
months (about 547 days). This is because data from the opposite carriageway
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is considered as data for ‘another day’. Such data was included in training and
validation sets when it was deemed to be “good” data.

Traffic data input to GP
Incident detectors were evolved and validated using the archived MIDAS

data specification given in Table 16-1 but with time limits from 10:30 pm to
5:30 am the following morning. However, some nights used different time
limits to capture slightly earlier or later incident onsets, or to avoid periods of
spurious data or excessive missing data.

GP simultaneously processed local data on each lane (or vehicle class for
categorized flow) via an input window as shown in Figure 16-2. A detector could
process each of the five MIDAS quantities listed in Section 2.0 for the current
minute and T previous minutes and for the current station and S downstream
stations. The variables T and S were optimized during the evolution phase. The
lane-specific quantities were input for each of the three most offside lanes.

3. First Detection Stage
This section discusses the evolution and validation of first-stage incident

detectors.

Fitness Measure
GP evolves a population of GP trees. Each tree represents a detector and

so the fitness measure should quantify the detection performance. A detector
outputs a positive value when it judged the current traffic data to represent an
incident onset. Each detector processed a set of training examples including
incident cases and non-incident cases. Let TP denote the number of true pos-
itives (incidents detected) and FP denote the number of false positives (false
alarms) that result after a detector had processed all the training cases. The
detection performance was quantified by the following fitness measure where
the variable controlled the balance between high sensitivity (high TP) and
high specificity (low FP):
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Figure 16-2. Input window showing quantity F at the current and previous minutes and at the
current and downstream stations.

TPS is an incident score and was calculated by weighting the incidents ac-
cording to class, to give the detection of a class 1 incident the highest reward
and the detection of a class 3 incident the lowest reward. This was because
incidents of a lower-numbered class were rarer and furthermore such incidents
were more major and thus should not be missed. TPS was the score obtained for
the incidents detected and was the score obtained when all incidents
were detected (although a subjective ‘incident class’ was considered, evolved
GP detectors detected ‘incident’ or ‘no incident’)

Evolving first-stage detectors
Even though incidents occur at a single time and station, the incidents gen-

erally manifested themselves in the traffic data over many minutes (after the
incident) and stations (more upstream than downstream). Furthermore, an inci-
dent could affect the traffic in a single lane or multiple lanes and, for the latter,
the onset may be staggered in adjacent lanes (as was observed for roadworks).
Therefore, even though the extent of an incident was manually marked-up for
each lane, the precise position of traffic data that characterized an incident’s
onset could not be located manually. Hence, first-stage detectors were trained
to automatically locate characteristic traffic data by sweeping from 5 minutes
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before to minutes after the marked incident time, and by sweeping from
upstream to downstream stations for each minute. The number of stations to
sweep over was incident-specific and was obtained from the maximum extent of
the marked-up incidents with an additional margin of a single station. The time
limit was dependent on total incident duration such that longer incidents had
a longer post-onset sweep, as the onset was more likely to be staggered across
adjacent lanes. The value of was limited to between 5 and 20 minutes.

An incident’s onset was said to be detected if a GP tree returned a positive
output for any one of the times and stations in the onset sweep. During evo-
lution, the sweep was terminated after the first positive output was obtained,
because any further positive outputs for the current incident would not affect
the detector’s fitness. Non-incident training data was sampled at 10 minute
steps using all possible stations at each minute. However, non-incident cases
were sampled only from the nights on which the incidents occurred in order to
minimize computation time.

Note that after the best first-stage detector was chosen, it was applied to
process all times and stations in each incident onset sweep in order to locate
all points to feed onto the second detection stage. Similarly, it processed all
non-incident training data.

The general GP parameters are specified in Table 16-4. Some problem-
specific parameters were varied to investigate their effect on detection perfor-
mance (as explained below). At least 10 GP runs with different randomizer
seeds were conducted for each parameter configuration.

The input window contained only a single downstream station (S=1) to en-
courage the evolution of a simple first-stage detector that was fast to apply in
the final implementation. This was desirable because the first-stage detector
processed all incoming data, whereas the second-stage detector processed only
data at the first stage alerts and it could thus be more computationally expensive.
The time width of the input window (T) was varied between 1 and 6 minutes.
Setting T at 4 minutes tended to give better results than a smaller T setting, but
no improvement was gained by using a larger setting. It was also desirable to
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Figure 16-3. Incident score against false alarm rate for the first-stage detectors on training.
More detectors were evolved but are not shown in the plot due to their worse performance.

use a smaller T setting to minimize the input window size to develop a simple
first-stage detector.

First-stage detectors were trained to have high sensitivity in preference to
high specificity in order to maximize the number of incident onset points to
feed onto the second stage. The fitness variable fv was thus set to low values
ranging from to 1. Setting fv between 0.01 and 0.1 tended to give the
best results, whereas higher settings caused incidents to be missed whilst lower
settings tended to give an excessive false alarms.

Figure 16-3 plots the incident score against false alarm rate for the best first-
stage detectors from all GP runs. A maximum score of 433 was obtained when
all incidents were detected.

Validating first-stage detectors
First-stage detectors were only validated if they achieved a sufficient perfor-

mance during training. The candidate detectors for validation were the best 10
from each generation of each GP run. A total of 8199 first-stage detectors were
validated.

Figure 16-4 plots the incident score against false alarm rate for the validation
results. Note that comparison of this plot against that for training (Figure 16-3)
suggests that the false alarm rate greatly increased upon validation. This is
misleading because the validation scheme used many more non-incident cases
due to the following two issues. Firstly, non-incident validation data was sam-
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Figure 16-4. Incident score against false alarm rate for the first-stage detectors on validation.
More detectors were validated but are not shown in the plot due to their worse performance.

pled at two minute steps using all possible stations at each minute, whereas the
training scheme sampled at 10 minute steps. Secondly, non-incident validation
cases were sampled from all nights whereas non-incident training cases were
sampled only from the nights on which incidents occurred. The percentage
false alarm rate was generally highly consistent on training and validation (as
shown for the best first-stage detector in Table 16-6).

A maximum score of 396 was obtained when all 226 incidents were detected.
In addition to having a near-maximal score, the best first-stage detectors were
deemed to miss only minor incidents (class 3). Many detectors satisfied these
requirements and thus the missed incidents were manually observed in order
to select the best detector. It was discovered that some of the missed incidents
were questionable, and thus the best detectors could have a score significantly
lower than 396. Note that considering not only the performance on validation
but on training also identified the best detectors.

All agreed that a low false alarm rate was desirable, even if this was at the
expense of detection, in order to ensure the operators had faith in the system.
Therefore, the final best detector was selected because of its relatively low false
alarm rate as it gained a score of 380 and FP of 5156 (0.14%). Its performance
is summarized in Table 16-6 after it processed all incident and non-incident
validation data. Note that the best detector was trained using T=4 and

4. Second Detection Stage
This section discusses the evolution and validation of second-stage incident

detectors.
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Fitness measure
The fitness measure for the second stage of evolution was the same as that for

the first stage (Section 3.0) but with the incident score (TPS) redefined to give
a bias towards earlier onset alerts. This is explained by considering a single
incident that obtained multiple first-stage hits distributed throughout its onset
sweep. Each of these hits was assigned a score depending on its proximity to
the onset time t that was manually defined during the incident mark-up phase.
The hit score was initialized to 6. A hit before time t was rewarded with an
extra point for each minute that it preceded t, and as the onset sweep started at
t-5 the earliest possible hit was assigned a score of 11.

A similar scheme was devised for later hits but this was complicated by the
fact that the onset sweep stopped at between t+5 and t+20 depending on the
incident’s total duration (Section 3.0). Hence, a time bin was set to equal a fifth
of this post-onset sweep duration, so that a bin width was set between 1 and
4 minutes. A hit after time t was then punished by deducting a point for each
time bin that it followed t, so the latest possible hit was assigned a score of 1.
Note that a hit at time t retained the initial score of 6.

Therefore, when an incident was hit in the second stage it was assigned a
score of between 1 and 11. However, an additional score was awarded based
on the class of the incident, in a manner similar to that for the first-stage fitness
measure. TPS was then simply set to equal the sum of the incident scores over
all incidents.

Evolving second-stage detectors

When the best first-stage detector processed all incident and non-incident
training data it produced 7756 alerts distributed across 259 incidents and it
gave 12847 false alarms. Second stage detectors were trained to reduce these
false alarms whilst retaining at least a single alert per incident. The first-stage
incident alerts were processed in chronological order so that the processing of
the current incident onset could be terminated after the second-stage detector
produced its first positive output.
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The use of extensive traffic data posed a challenging generalization task
(compared to the proof of concept study (Howard and Roberts, 2002) (Roberts
and Howard, 2002)). Hence, many GP runs were conducted to investigate
the influence of many input parameters on detection performance. Some of
these parameters were specific to GP (e.g. population size and tournament
size) whereas others were problem specific. The population size was increased
to range between 1000 and 32000, and in order to compensate for this with
regards to computation time, the maximum number of generations was reduced
to 20 (other GP parameters are given in Table 16-4). The most important
problem-specific parameters were the fitness variable and the input window
dimensions T and S (as explained below). At least 10 runs were conducted for
each parameter configuration.

Second-stage detectors were trained to have high specificity in preference to
high sensitivity in order to minimize the false alarm rate. The fitness variable

was thus set between 0.1 to 10.0 to focus on two groups of detectors, those
targeted at one false alarm per night and those targeted at one false alarm for
every five nights.

The input window dimensions were varied to set T between 4 and 8 min-
utes and to set S between 1 and 7 stations. A larger input window allowed a
detector to characterize incident onsets from more traffic data, but it resulted
in a more complex search space due to an increase in the number of termi-
nal nodes and thus a combinatorial increase in the number of possible GP tree
structures. Furthermore, it was beneficial for the on-line implementation to use
few downstream stations, i.e. low S, as explained in Section 5.0.

Figure 16-5 plots the incident score against false alarm rate for the best de-
tectors from all GP runs. A maximum score of 3417 was obtained when all
incidents were detected. Note that the plot was produced by re-evaluating detec-
tors in order to gather detection properties that were not required on evolution,
e.g. incident hit coverage. Furthermore, a detector had to have a sufficient
performance to warrant re-evaluation and consequently the plot shows discon-
tinuities in regions of relatively poor performance.

Validating Second-Stage Detectors
Second-stage detectors were only validated if they achieved a sufficient per-

formance during training. The candidate detectors for validation were the best
10 from each generation of each GP run. When the best first-stage detector
processed all incident and non-incident validation data it produced 8531 alerts
distributed across all incidents and it gave 9753 false alarms.

Figure 16-6 displays the second-stage performance on validation. The plot
shows two clusters of points due to the fact that the fitness variable was
set to target for two different false alarm rates on evolution. The false alarm
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Figure 16-5. Incident score against false alarm rate for the second-stage detectors on training.
More detectors were evolved but are not shown in the plot due to their worse performance (the
two right angles pertain to stakeholder wishes).

Figure 16-6. Incident score against false alarm rate for the second-stage detectors on validation.
More detectors were validated but are not shown in the plot due to their worse performance (the
two clusters correspond to stakeholder wishes).

rates achieved on validation were generally consistent with those obtained on
training.

A maximum incident score of 2827 was possible if a second-stage
detector hit all incidents at the earliest opportunity. 25198 detectors achieved a
score of at least 2000. Many detectors hit all major incidents and most interme-
diate incidents (approximately 95%) but a significant number of minor incidents
could be missed (giving a hit rate of approximately 75%). However, this in-
ability to detect the subtle differences that distinguish some minor incidents
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from normal traffic may be deemed acceptable in order to achieve the target
false-alarm rates. The overall incident detection rates prove that the detectors
were not over-trained and could generalize across the validation data.

The best second-stage detectors were identified by considering not only the
performance on validation but on training also. The best detectors were deemed
to maximize the incident score by missing no major incidents and only very
few intermediate incidents. Multiple detectors achieved this whilst satisfying
the false alarm requirement of one false alarm per night.

The final best detector was selected because of its relatively low false alarm
rate and its dependence on relatively few downstream stations. It gained an
incident score of 2455 and a false alarm rate of 260, i.e. 2.7% of the false
alarms output from the first stage and 0.0037% of the total number of non-
incident validation cases. Note that the best detector was evolved using T=4,
S=2 and and that, on training, it achieved incident hit rates for major,
intermediate and minor incidents of 100%, 99% and 93% respectively.

Performance metrics for the best first-stage and second-stage detectors are
summarized in Table 16-6. The following evolution metrics are also given: the
generation on which the detectors were evolved, their fitness rank (out of the
10 fittest detectors of their generation) and their GP tree size.

The onset metrics give the time between the detected hits and the incident
onsets that were manually marked up. The first incident onset metric is the
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average earliest detected onset over all incidents, and the average incident onset
metric is the average hit time over all hits (potentially many per incident).
These times are negative showing that the incidents were generally hit after
their marked-up onset, but most incidents were detected within two minutes.

The hit coverage metric is the average percentage hit coverage over all in-
cidents. Its definition is slightly different for each detection stage because the
maximum number of possible incident hits were derived from different sources.
For the first stage, an incident’s fractional coverage was calculated by dividing
its number of hits by the total number of points in its onset sweep. For the
second stage, an incident’s fractional coverage was calculated by dividing its
number of second-stage hits by its number of first-stage hits.

Comparison of the hit score (% of max score) and false alarm rate (%) metrics
for training and validation shows that the detectors performed consistently on
the two data sets, thus proving their generalization capability.

A false alarm rate of 0.004% translates to a single false alarm for every 25000
points processed. Recall that the traffic data corresponded to 60 stations and
that two downstream stations were required in the second-stage detector’s input
window. Hence, 58 stations could be processed. Therefore, when the detector
processed these stations it produced, on average, a single false alarm every 431
minutes (7 hours and 11 minutes). This approximates to a single false alarm
per night for the time limits 10:30 pm to 5:30 am.

5. Detection visualization
This section visualizes the performance of the best fused detector (the inte-

gration of the best first and second stage detectors) on archived MIDAS data
from the validation set. Figure 16-7 show the output alerts superimposed on
traffic data plotted in a manner similar to that used to manually mark-up the inci-
dents. The horizontal axis presents advancing time in minutes (left to right) and
the vertical axis presents stations from upstream (top) to downstream (bottom).
Speed is plotted for each minute and station such that brighter cells represent
lower speeds. All images correspond to lane offside-1 only. A coloured cross
depicts each incident alert, where the colour corresponds to the value output
by the second-stage detector. The detector was trained to output any positive
value to indicate an alert, so the colours do not imply any detection property.
Figure 16-7 shows examples of the hit coverage for major, intermediate and
minor incidents. The images show multiple blocks of traffic data where each
block corresponds to a single incident onset. The detectors were trained on
incident onsets only and consequently incidents tended to be hit near the onset
time and on the upstream approach.
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Figure 16–7. From top: hit coverage (crosses) for major, intermediate, and minor incidents.



280 GENETIC PROGRAMMING THEORY AND PRACTICE II

On-Line Implementation

Differences arise due to on-line processing. LINDA’s input buffer stores 10
minutes worth of data to allow the earliest minute in the input window (T=4)
to be corrected from 5 minutes worth of earlier data, to be analogous to the
off-line implementation. LINDA archives all raw and corrected traffic data for
the three most offside lanes.

The online system gathers data from the out-stations in the order that the
data arrives and thus data may not be received in time for LINDA to process the
current minute. This gives another source for missing data and the absent data
is defaulted to similar to the other anomalous data listed in Section 2.0.
Consequently, it is beneficial to minimize the number of stations in LINDA’s
input buffer. The number of downstream stations in the input window can be
set to two during the off-line development, but this setting is made with regard
to the current consideration. LINDA also requires additional stations adjacent
to the input window to correct missing data from. However, only two additional
upstream and downstream stations are used in the on-line implementation, as
opposed to the four used in the off-line implementation, and thus the correction
procedure is likely to fail more often (Section 2.0 describes the correction
procedure). Therefore, LINDA’s input buffer corresponds to 7 stations. For
computational economy, the correction procedure does not iterate to correct
from previously corrected data. Instead, data that remains missing after a single
application of the procedure is simply corrected by averaging the corrected data
for the previous minute. When no previous data is available, default values are
used based on empirical analysis of archived MIDAS data. To minimize the
use of previously corrected data or default data, the number of earlier minutes
from which the current data could be corrected from is extended to the earliest
data held in LINDA’s input buffer , whereas the off-line implementation uses
at most five earlier minutes on a single iteration.

6. Conclusions
Motorway incident detectors were trained and validated on many months of

archived MIDAS data from March 1998 to August 2000. The detectors were
trained using GP to discriminate between incident onsets and normal traffic at
periods of low occupancy (night traffic). The two-stage strategy introduced in
(Howard and Roberts, 1999) was applied to evolve two detectors:

A first-stage detector that automatically identified characteristic incident
onset points by distinguishing traffic proximate to manually defined in-
cident onsets from a sample of normal traffic. The first-stage detector
was required to contain relatively few processor nodes in order to be
computationally economical.
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A second-stage detector that filters the first-stage alerts to minimize the
false alarm rate whilst maximizing the number of detected incidents.
The second-stage detector was biased to detect incident onsets as early
as possible to provide motorway controllers with a maximal response
time.

Many detectors were evolved in each evolution stage but optimal detectors
were chosen to achieve a desirable balance between sensitivity and specificity.
Optimal detectors were deemed sensitive enough to miss only minor incidents
whilst being specific enough to have relatively low false alarm rates. The best
detectors were selected by considering detection performance on training and
validation.

The incident hit rate and false alarm rate were consistent across training and
validation, thus proving that the detectors had not memorized the training cases
but instead could generalize across the validation data. The best first-stage and
second-stage detectors were fused to give the following performance during
off-line validation.

Incident detection rates of 100% for major incidents, 95% for intermedi-
ate incidents and 76% for minor incidents were achieved.

On average, incident onsets were detected within one minute after the
manually marked-up incident onsets.

Multiple alerts were raised for most incident onsets, although some minor
incidents were hit only once due to their subtle difference from normal
traffic.

A false alarm rate of 0.004% was achieved which corresponds, on av-
erage, to a single false alarm every 7 hours and 11 minutes. This is
equivalent to a single false alarm per night for the time limits 10:30 pm
to 5:30 am.

GP evolved detectors in the form of explicit mathematical formulae, thus
allowing the detection scheme to be interpreted and re-implemented (e.g. to
minimize computation time).

On-line testing further verified the capability of generalized incident detec-
tion, but the fused detector tended to be over-sensitive to the subtle variations
in the traffic data and thus produced false alarms. Fewer false alarms were
output for the stations used in training, suggesting that different sections of
carriageway have different traffic characteristics.

Currently, a different optimal second-stage detector is being experimented
with to reduce the false alarm rate. For example, some second-stage detectors
were evolved to produce on average a single false alarm for every five nights
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worth of archived MIDAS data. However, such detectors had a lower sensitivity
and thus missed more minor incidents. As already stated, the end-user prefers
to tolerate this to achieve fewer false alarms. Improvements will ensue with
knowledge from the CCTV recording of incident alerts.

The processing of extensive traffic data poses a challenging generalization
task because many diverse incident onsets need to be discriminated from many
variations of normal traffic conditions. This chapter has shown that the two-
stage detection strategy can scale-up to extensive training and validation data
sets. Further algorithmic refinements and calibration has taken place in trials.
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Abstract Symbolic regression via genetic programming (hereafter, referred to simply as
symbolic regression) has proven to be a very important tool for industrial em-
pirical modeling (Kotanchek et al., 2003). Two of the primary problems with
industrial use of symbolic regression are (1) the relatively large computational
demands in comparison with other nonlinear empirical modeling techniques such
as neural networks and (2) the difficulty in making the trade-off between expres-
sion accuracy and complexity. The latter issue is significant since, in general, we
prefer parsimonious (simple) expressions with the expectation that they are more
robust with respect to changes over time in the underlying system or extrapola-
tion outside the range of the data used as the reference in evolving the symbolic
regression.

In this chapter, we present a genetic programming variant, ParetoGP, which
exploits the Pareto front to dramatically speed the symbolic regression solution
evolution as well as explicitly exploit the complexity-performance trade-off. In
addition to the improvement in evolution efficiency, the Pareto front perspective
allows the user to choose appropriate models for further analysis or deployment.
The Pareto front avoids the need to a priori specify a trade-off between competing
objectives (e.g. complexity and performance) by identifying the curve (or surface
or hyper-surface) which characterizes, for example, the best performance for a
given expression complexity.

Keywords: genetic programming, Pareto front, multi-objective optimization, symbolic re-
gression, ParetoGP

1. Introduction
Unlike normal regression in which a model structure (e.g., second-order

polynomials) is hypothesized and fit to available data, symbolic regression
involves the discovery of the structure as well as the coefficients within that
structure. One way to accomplish this is to use genetic programming (GP)



284 GENETIC PROGRAMMING THEORY AND PRACTICE II

techniques to evolve expressions which match the observed system behavior. In
this section, we briefly review the practical motivations for symbolic regression
as well as the classical problems characteristic to the GP approach. Finally, we
outline a variant of GP which addresses some of the classical issues and has
resulted in a significant improvement in the speed and robustness of symbolic
regression. This variant focuses on the evolutionary effort on improving the
Pareto front (which captures the trade-offs between competing objectives) rather
than optimizing a single composite criteria. The rest of the paper is devoted to
exploring the algorithm, its benefits and its performance.

In this chapter we assume that the reader has a working knowledge of GP con-
cepts (Banzhaf et al., 1998, Jacob, 2001)) as well as its application to symbolic
regression (Kotanchek et al., 2003).

Motivations for Symbolic Regression
In addition to the real-world benefits of empirical modeling for system model-

ing, emulation, monitoring and control, symbolic regression has several unique
contributions. These contributions, which are especially important when faced
with multivariate data from a nonlinear but unknown system, include:

Human insight — examination of the evolved expressions can be in-
dications of underlying physical mechanisms as well identification of
metavariables (combinations or transforms of variables) which can sim-
plify subsequent empirical modeling efforts. Additionally, examining
the structure of an evolved model can be comforting in the sense that the
model behavior, variables and metavariables agree with human expecta-
tion; this explainability helps to instill trust in the model(s).

Compact models — generally solutions can be identified which perform
well and are parsimonious with respect to structure complexity and/or
number of input variables. Such models are attractive because they can be
interpreted more easily and deployed easily in many environments. Such
models may also be more robust and capture underlying fundamentals
rather than system noise in the data.

Limited a priori assumptions — unlike traditional regression which
assumes a model structure for the data, symbolic regression allows the
data to determine which structures of variables, functions and constants
are appropriate to describe the observed behavior. Of course, appropriate
functional building blocks as well as the pertinent data variables must be
supplied for the evolution.

Natural variable selection — the evolutionary processes of GP have a
remarkable ability to focus on the driving variables necessary to capture
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the system behavior. Furthermore, post-processing can do sensitivity
analysis on the evolved expressions to discard superfluous variables.

Diverse models (possibly) — the evolutionary process will often develop
models of similar performance using different variables (symbolic re-
gression does not require that correlated variables be eliminated a priori)
or different structures. Although it is difficult to characterize nonlinear
model diversity, ensembles of diverse models can be useful to: (1) indi-
cate operation outside the domain of the training data (due to divergence
of model predictions) as well as (2) assemble robust online predictive
models which are resistant to sensor failures and related pathologies.

Physical model integration — integration with fundamental (first princi-
ples) models can control the extrapolation behavior of developed models
and, thereby, result in more robust models which are aligned with the un-
derlying physics. Of course, examining the structure of evolved models
within the context of theoretical insight can help to identify the nature of
the applicable fundamental behavior.

Problems with Symbolic Regression

Despite the plethora of advantages discussed above, there are at least three
fundamental problems with symbolic regression via GP:

slow discovery — classically, symbolic regression is very CPU intensive
and slower than other nonlinear modeling techniques such as neural net-
works. That said, it is impressively efficient when the infinite size of the
search space is considered.

difficulty in selection of good solutions — during the course of an
evolution, many candidate solutions will be evolved. Selecting the “best”
solutions while balancing performance vs. model complexity trade-offs
is a difficult exercise, as is the issue of detecting model pathologies in
regions in which a model is not constrained by data.

good-but-not-great models — other nonlinear techniques will typically
outperform the symbolic regression models on training data. That said,
symbolic regression can be a precursor to great models due to its capabil-
ities for variable selection, metavariable identification, secondary rounds
of symbolic regression evolutions and iterative prototyping including hu-
man input.

As will be demonstrated by the rest of this paper, the proposed symbolic
regression variant which exploits the Pareto front can mitigate these problems.
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New Variant: Exploit the Pareto Front

Unconstrained, GP has a terrible problem with bloat wherein the size of
the evolved expressions grows to massive proportions due to the presence of
introns (nonfunctional substructures) as well as the pursuit of mimicking each
nuance of the data — i.e., modeling noise rather than fundamentals. Typically,
the approach adopted to control this tendency has been to apply parsimony
pressure so that the fitness metric considers both the performance of the evolved
expression in terms of matching the data behavior and the complexity of the
evolved expression. The problem with this single metric approach is that the
complexity-performance trade-off cannot be made prior to model discovery
despite the need to do so.

To resolve this quandary, we can leverage the notion of a Pareto front from
the multi-objective optimization community. Given a population of solutions,
the Pareto front considers all objectives to be equally important and identifies
those solutions which are nondominated. This is illustrated in Figure 17-1
wherein the performance of a population is shown for two performance criteria
with smaller values of each being preferable. The Pareto front consists of those
members of the population for which there exists no solution which is better
in both criteria than the Pareto set member. Thus, we can easily focus on the
proper population members to explicitly make trade-offs of model complexity
vs. performance.

Given that the Pareto front represents the best individuals in a population,
it is reasonable to assume that we want to focus the evolutionary process on
individuals on or near the Pareto front with a goal of pushing the Pareto down
and to the left (in the case of the example shown in Figure 17-1) At the same
time, given the limited size of the Pareto set relative to the overall population,
we do not want to lose the diversity of building blocks present in that population
nor the ability to discover new solutions and structures.

Once we realize the significance of the Pareto-based criteria, there are many
ways to exploit the representation. As will be described below in more detail,
an approach which has proven effective is to breed the Pareto set members
with the best (in terms of model error) members of the population At the end
of each generation, the Pareto set is updated to reflect any improvements in
the Pareto set and the process is repeated. The Pareto archive is maintained
across multiple GP cascades with each independent GP cascade contributing
new genetic material in the exploration of the model structure space. Multiple
independent runs (each containing their own set of cascades) are used to mitigate
against evolutionary lock-in on a successful structure.
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Figure 17- 1. Here we illustrate the Pareto front (large red dots) in a population where the two
axes represent competing objectives (with smaller values being better). This illustration uses the
results from a conventional GP symbolic regression run; note that much of the computational
effort was spent exploring entities of high complexity despite marginal (if any) incremental
improvements over their less complex peers.

2. Pareto (Optimization) Axes
In this section, we discuss possible definitions of “good” — i.e., the various

criteria which might be used to define the axes of the Pareto front. Symbolic re-
gression will need to include model performance as well as model complexity;
however, there are many possible definitions within these characteristics. Since
the notion of a Pareto front is not constrained to two dimensions, we can also
incorporate other performance metrics into the Pareto front. However, in gen-
eral, the number of dimensions should be kept relatively low for computational
performance reasons.

Model Performance
Model performance defines the absolute fitness (quality or accuracy) of an

evolved structure and characterizes how well the model matches the observed
data behavior. In our industrial applications, we have used:

1-norm (sum of absolute values of error)

2-norm (i.e., least squares criteria)

n-norm (higher values of n weight large errors more; returns
magnitude of largest error)

absolute correlation (measures response surface matching independent
of scaling and translation)



288 GENETIC PROGRAMMING THEORY AND PRACTICE II

products of the above

epsilon-insensitive zones (only errors greater than some threshold count
against performance)

Selection of the model performance criteria is model dependent. Also note
the role of data balancing as a data conditioning step since the typical industrial
symbolic regression data set is not the result of a designed experiment and,
therefore, is likely to have some regions of parameter space over-represented
relative to others — which can skew the performance metrics towards those
regions at the expense of overall performance.

Model Complexity Measures
Characterizing the complexity of an expression should, in principle, consider

two aspects: (1) the complexity of the expression structure and (2) the complex-
ity of the derived response surface. Although the first aspect is difficult, it is
much more tractable than the second aspect — especially for targeted systems
having many input parameters. Hence, for computational simplicity reasons,
we have chosen to define model complexity based upon the structure rather than
the response. Even with this reduction in scope, there are many possible metrics
for complexity; these include (assuming a tree-based GP implementation):

Tree depth — the number of levels in the structure

Tree nodes — the number of leaves and branch points in the structure

Component function nonlinearity — e.g., “+” is less nonlinear than
exponentiation, sines or if-than-else constructs

Number of variables — either number of variables as leaves or the count
of unique variables within the expression

Combinations of the above

Although still an open area of research, we are currently using as a complexity
metric the sum of the complexities of the tree structure and all subtrees —
where the complexity is defined as the number of nodes (branch points plus
leaves). This sort of metric has the advantage of favoring fewer layers as well
as providing more resolution at the low end of the complexity axis of the Pareto
front so that more simple solutions may be included in the Pareto front. Figure
17-2 illustrates the computation of this complexity measure whereas Figure
17-3 illustrates the complexity difference possible when two different genotype
representations result in the same phenotype expression.
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Figure 17-2. Here we illustrate the computation of expression complexity with two simple
three node structures. This complexity metric of the sum of the number of nodes of all subtrees
will favor flatter and balanced structures for equivalent node counts.

Figure 17-3. These two genome tree representations are equivalent to the expression
Despite their equivalent raw performance, the left one has a complexity measure of 36 whereas
the right one has a measure of 17; hence, the second structure would dominate the first from
a Pareto perspective. (Here the genome representation is S subtract, sum, D divide,
P power, and product.)

Other Dimensions

There are other criteria which we may want to include in evaluating symbolic
regression expressions. For example,

performance on different data sets (e.g., training, test, and validation)

uniqueness of included variables, number of variables, structures etc.

Although we could articulate these as additional dimensions in the multi-
objective optimization space represented by the Pareto front, we generally want
to keep the dimensionality as low as possible for practical reasons, since ad-
ditional dimensions bring the “curse of dimensionality” to bear and greatly
increases the difficulty of covering the Pareto front (hyper)surface.

3. Defining Pareto Optimality
Although defining the Pareto set is relatively straightforward since the defini-

tion if unambiguous, a definition of Pareto optimality is required if our interest
extends to solutions not on the Pareto front or if we have an objective to fully
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populate the front (i.e., fill in gaps). This isn’t as critical for the symbolic regres-
sion application as it is for more traditional multiobjective optimization where
having a detailed understanding of the shape of the Pareto front is critical. For
symbolic regression, “good enough” can be more easily achieved.

Although the subtleties of Pareto optimality are not critical for the currently
proposed algorithm, an understanding of such issues may be important for
successor algorithms. Hence, we include the discussion of this section. This
section draws heavily from (Eckart Zitzler and Bleuler, 2004) and (Jensen,
2003).

Definition of Pareto-Front

As discussed in Section 2 the notion of the Pareto front is founded on a concept
of dominance with the Pareto front at any instant consisting of nondominated
solutions — for example, no other solution is better than the solutions of the
Pareto front in both complexity and performance. The curve (or surface or
hyper-surface, depending upon the number of objectives considered) defined
by the Pareto points does not need to be convex. Thus, the user can judge
whether an incremental gain in performance is worth the associated increase
in expression complexity or if there is major improvement associated with an
incremental increase in complexity.

Pareto Performance Metrics

There are a variety of ways to characterize the Pareto performance. We
would, in general, prefer to fully explore and populate the Pareto front as well
as refine and enhance the demonstrated success of the known members of the
Pareto set. Thus, we are faced with the common problem of evolutionary
algorithms of balancing exploration and exploitation.

A natural approach to ensuring the exploration of the Pareto front is to reward
uniqueness. Unfortunately, explicitly rewarding this is difficult due to difficulty
of choosing a proper scaling and distance metric for the diverse axes of the
multiobjective optimization and, as a result, should typically be avoided. The
alternative is to adopt a dominance-based criterion; there are three basic types
of dominance-based building blocks:

Domination (or Dominance Rank) — by how many entities is an entity
dominated? A small number is good. This tends to reward exploration
at the edges of the known Pareto front or in new regions.

Dominance (or Dominance Count) — how many entities does an entity
dominate? A large number is good. This tends to reward exploitation in
the middle of the front.
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Dominance Layer (or Dominance Depth) — at which depth front is an
entity located? This rewards being in layers (where a layer is defined as
entities having a common dominance rank) close to the Pareto front.

From these fundamentals, many metrics have been derived, e.g., NGSA,
NSGA-II, SPEA, SPEA2, MOGA, NPGA, DMOEA, VLSI-GA, PDE, PAES,
PES A, etc. The summary is that it is possible — although not necessarily trivial
— to shift the selection process away from the actual Pareto front to include
those individuals near the front and reward uniqueness using the dominance
based building blocks.

Computational Issues
As noted by Jensen (Jensen, 2003), brute force computation of the Pareto

dominance of a population of N entities for M objectives will have a
computational bound. For large population sizes, this can dominate al-
gorithm performance. More clever algorithms can reduce that demand to

depending upon the Pareto performance
metric flavor. However, as a general rule, the computational load effect of
population size needs to be considered in the algorithm design.

4. Pareto Exploitation: User Selection

There are two potential users of the Pareto front: the human and the algo-
rithm. Although the focus of this chapter is the algorithmic exploitation, we
should note that the evolutionary process will identify a Pareto front of discov-
ered solutions. The ability to characterize this front has two major benefits to
the user:

allows the user to focus on the top solutions for inspection and trade-offs
of complexity vs. performance and

provides insight into the problem difficulty by examining the shape of
the Pareto front.

Of course, the user also benefits from the improved discovery speed and
performance (both accuracy and robustness) which result from the algorithmic
exploitation of the Pareto front. An example is shown in Figure 17-4 which
displays the Pareto front for a biomass inferential sensor (Kordon et al., 2004).
Every dot in this graph represents a GP-model with its associated fitness (in this
case i.e. lower values are better) and a normalized complexity measure
indicated as the ratio of the number of nodes. Of the 88 models displayed, only
18 are lying on the Pareto front. The number of interesting models is actually
even lower since it is clear that little can be gained by having models with a
normalized complexity measure larger than 0.3.
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Figure 17-4.    Here we show the Pareto front of (normalized) complexity vs. performance for a
biomass inferential sensor derived using GP. Lower complexity corresponds to lower ratio of the
number of constituent nodes; hence, we see the diminishing returns from increases in expression
complexity.

5. Pareto Exploitation: GP Strategies

The Pareto front representation allows algorithms as well as humans to
quickly scan for promising solutions from large populations of expressions
and focus subsequent analysis effort on those solutions. In this section, we
describe one algorithm to exploit that representation. Although exploiting the
multi-objective representation is a relatively unexplored topic, there have been a
number of other strategies proposed (e.g., (Bleuler et al., 2001, de Jong and Pol-
lack, 2003, Saetrom and Hetland, 2003)); we will discuss these after presenting
the ParetoGP algorithm.

Algorithm Objectives
The objectives of ParetoGP are threefold:

1 Multi-Objective Characterization of Evolved Expressions — Opti-
mizing the Pareto front instead of a single fitness measure (even includ-
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ing parsimony pressure) allows the automatic generation of a hierarchy of
solutions of increasing complexity and fitness without having to specify
a problem-dependent parsimony pressure a priori.

2

3

Accelerated and Robust Evolution — Significantly accelerate the search
as well as improve the quality of the solutions. ParetoGP significantly
alleviates the problem of bloat.

Metavariable Identification — Use the low-complexity equations as
potential variable transforms that can lead to more physical insight.

The ParetoGP Algorithm
ParetoGP algorithm
In this section we’ll discuss a number of aspects in which the proposed

algorithm differs from a more conventional GP system. The main features are:

Pareto front archive definition & persistence across generations and cas-
caded evolutions

Generation-based update of the Pareto front archive

Random crossover between Pareto archive members and generation pop-
ulation ranked by expression accuracy performance

Random mutation of Pareto archive members

An archive of potential solutions is maintained between generations and
between different cascades (except for the persistence of the archive, a cascade
is an independent run with a freshly generated starting population). The end
result of the computation is the archive which contains all the models on the
Pareto front. As discussed before there are several benefits associated with
this. One is that the shape of the Pareto front gives the user quite some insight
into the intrinsic complexity of the problem. The shape of the Pareto front
turns out to be very reproducible across independent runs. Also, the particular
choice of the complexity measure (sum of the number of nodes of all subtrees)
allows for additional resolution in the description of the Pareto front beyond
that offered by a simple node count metric. An additional benefit is that the
models at the low-complexity end of the Pareto front very often turn out to be
“building blocks” or relatively simple variable transformations that can lead to
more physical insight. These building blocks then sometimes can be used to
develop linear models with new variables (Castillo et al., 2002). Of course the
notion of extracting the Pareto front from a collection of models can also be used
to analyze the population resulting from a conventional GP run. Here significant
benefits can result from the fast analysis of large collections of models. There
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is, however, a significant difference between using a Pareto front as a post-run
analysis tool vs. actively optimizing the Pareto front during a GP-run. In the
latter case the Pareto front becomes the objective that is being optimized instead
of the fitness (accuracy) of the “best” model.

At the end of every generation the archive is updated and contains the Pareto
front of the combination of all models and (optionally) all the subtrees of the
current population as well as the current archive. By including all the subtrees
of all the models in the population (this involves no overhead in our MATLABTM

implementation of the system) we are effectively using a population size equal
to the sum of the number of nodes in all equations in the population. Depending
on how much complexity we allow, this can lead to effective population sizes
which are significantly larger than usual.

In generating the new population, crossover occurs between a random mem-
ber of the archive and members of the current population. Selection of from
the population is based on the conventional GP paradigm of accuracy. Random
members of the archive are chosen to maintain diversity in the Pareto front.
This is important since we want to develop the entire Pareto front and not bias
the search into the low nor the high complexity region. It is important to note
that in ParetoGP there is often still a lot of progress even while the model
with the highest fitness does not change. This model is just one point at the
high-complexity end of the Pareto front.

An archive of potential solutions is maintained not only between generations
but also between different cascades. Whereas in a conventional GP system
multiple runs are executed starting from scratch i.e. all runs are independent,
the archive is maintained between runs in the current system. The result is
that while the starting population is regenerated the subsequent generations
quickly rediscover the results from the previous runs because of the cross-
breeding with the archive. This changes the mode of execution to more runs
with less generations compared to a conventional GP-system. The purpose of
the independent runs is, therefore, to introduce new genetic material into the
Pareto front development.

Practitioner Comments
Although ParetoGP has already proven itself to be a major addition to the

Dow Chemical empirical modeling capability, we are still exploring the features
and nuances of its behavior and performance. (Symbolic regression toolboxes
have been developed internally in The Dow Chemical company both in Matlab
and Mathematica.)  Maintaining a minimum size archive (nominally 5-10% of
the population size) helps the robustness of the symbolic regression in situations
where a single variable explains a large portion of the targeted response behav-
ior; if required, the additional models are assembled by adding Pareto layers
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until the threshold archive size is met. By construction, each layer has a dif-
ferent accuracy metric which, presumably, avoids inclusion of a more complex
version of a model already contained within the archive.

Surprisingly, we often turn off parsimony pressure; however, we do maintain
hard limits on expression complexity as a safety. Intuitively, assigning breeding
rights to the population based upon accuracy would seem to make the evolution
emphasis be model accuracy and, therefore, place the evolutionary effort on
the complex side of the Pareto front — which, to some extent, is what we want
for the symbolic regression. Using the Pareto archive as half of the breeding
pool constrains the complexity of the overall population. Watching the shape
of the evolving Pareto front is interesting in the sense that a “tail” of increasing
complexity with incremental accuracy gains will be eliminated as a higher
performing but much simpler expression is discovered. We also tend to see step
changes (major jumps in accuracy) in the Pareto front backfilled in succeeding
generations or cascades as the evolutionary process explores this new structure.
Evaluating the constituent subtrees may help in this respect by maintaining a
bias in the search process for simpler solutions.

The human aspect involved in assessing the evolved models is critical. Hence,
we have developed tools for response surface visualization, statistical analysis,
error analysis, etc. to facilitate understanding of the developed models.

Other Pareto Front Exploitation Algorithms
Other researchers have proposed algorithms to exploit the Pareto front. For

example, (Bleuler et al., 2001) assign breeding rights based upon the SPEA2
metric of a population with members of the Pareto front persisting across gener-
ational boundaries. Their approach is not dependent upon the use of the SPEA2
metric — other than the requirement to have some scalar-valued criteria to award
propagation rights. Philosophically, this is a conventional GP approach with
the Pareto front used to transfer genetic material across generational boundaries
and a selection metric which combines the competing objectives. (Saetrom and
Hetland, 2003) have also essentially followed this approach, (de Jong and Pol-
lack, 2003) propose a Pareto front–centric approach wherein they synthesize
new entities each generation which are merged with a persistent Pareto front
and used to define an updated Pareto front. The Pareto front has three crite-
ria: performance, size and diversity. Genetic propagation is restricted to those
entities on the Pareto front.

6. ParetoGP Algorithm Performance

In these following figures we compare the results of multiple runs for a
polymer reactivity problem. Figure 17–5 shows the results from 300 runs of a
conventional GP implementation for 128 generation; notice that conventional
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GP was rarely able to generate any solutions with fitness greater than 0.9 for the
300 runs. In contrast, ParetoGP generated superior results with the maximum
fitness exceeding 0.9 for almost every case of a similar set of 300 runs as shown
in Figure 17–6. Similar results have been confirmed in a number of other projects
(Kordon et al., 2004).

Figure 17-5. Example of ten runs of 150 generations with conventional GP for a polymer
reactivity problem The highest performance (accuracy) is displayed.

7. Conclusions
ParetoGP is a major advancement in Dow Chemical’s empirical modeling

tool portfolio due to greatly increasing the efficiency and robustness of symbolic
regression. In this section we summarize the improvements as well as indicate
future research directions.

Major Improvements Over Classical GP
The advantages of ParetoGP relative to classical GP implementations essen-

tially reduces to (a) symbolic regression speed and robustness and (b) under-
standing of the complexity-accuracy trade-off of evolved models.

Changing the objective function from a single fitness criterion to the Pareto
front of fitness versus a measure of complexity has proven to speed up symbolic
regression significantly. Our current estimate is that the entire development
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Figure 17-6. Example of five runs of thirty generations with Pareto GP for a polymer reactivity
problem. The highest performance is displayed.

process speeds up at least tenfold — and even more if one includes the post-
analysis phase. Because there are fewer problems with bloat and because of the
improved discovery process, bigger problems can be tackled within the same
CPU and memory constraints.

The fact that the user can pick one or more functions at the right level of
complexity generates more buy-in from the end-user as well as more robust
solutions. Also, the natural development of low-complexity transforms between
variables at one end of the Pareto front helps to generate more physical insight
and end-user buy-in.

Obvious Extensions
The current implementation of ParetoGP is still basic in many aspects and

can be enhanced in various directions.

Metavariable identification — One obvious direction is a more system-
atic consideration of the discovery of metavariables or building blocks
that simplify the evolution process or to identify transforms that linearize
the problem. This is currently being investigated.

Expression complexity metrics — Another direction that is being ex-
plored is the generation of better complexity measures that not only de-
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pend on the tree structure but also take into account the functions that are
present at the nodes. Some of these function obviously generate more
nonlinearity than others. This is not a simple exercise since this needs to
consider the particular scaling of the input variables.

Diversity metrics — More work is probably also needed in developing
explicit diversity metrics for the Pareto front. Perhaps this can also be
used to direct and make the discovery process even more efficient.

Diverse model identification — As in any empirical modelling effort,
there is no such thing as the perfect model so very often the final im-
plementation is built from an aggregate of different models. This model
stacking helps us to calculate a “model disagreement” factor that is used
to the decide whether the models are interpolating or extrapolating with
respect to the original training data set. We have used the Pareto front
as a source for these stacked models, but there is also a need for metrics
that quantify the diversity in these model sets.

Convergence criteria — Our convergence criteria are currently still
based on the fitness of the best individual, but future measures could
take the movement or lack of movement of the Pareto front into account
to develop better measures.

One last point which is the subject of considerable research is more active
control of the parsimony pressure as a function of the particular problem. Pare-
toGP solves many of the practical problems related to bloat, but there still is
a parsimony factor (which is far less critical compared to standard GP) that
controls the maximum size of the equations that can be generated. In this sense
it is used to control how far the Pareto front extends to the high complexity side.
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Chapter 18

AN EVOLVED ANTENNA FOR
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Abstract We present an evolved X-band antenna design and flight prototype currently
on schedule to be deployed on NASA’s Space Technology 5 (ST5) spacecraft.
Current methods of designing and optimizing antennas by hand are time and la-
bor intensive, limit complexity, and require significant expertise and experience.
Evolutionary design techniques can overcome these limitations by searching the
design space and automatically finding effective solutions that would ordinar-
ily not be found. The ST5 antenna was evolved to meet a challenging set of
mission requirements, most notably the combination of wide beamwidth for a
circularly-polarized wave and wide bandwidth. Two evolutionary algorithms
were used: one used a genetic algorithm style representation that did not allow
branching in the antenna arms; the second used a genetic programming style
tree-structured representation that allowed branching in the antenna arms. The
highest performance antennas from both algorithms were fabricated and tested,
and both yielded very similar performance. Both antennas were comparable
in performance to a hand-designed antenna produced by the antenna contractor
for the mission, and so we consider them examples of human-competitive per-
formance by evolutionary algorithms. As of this writing, one of our evolved
antenna prototypes is undergoing flight qualification testing. If successful, the
resulting antenna would represent the first evolved hardware in space, and the
first deployed evolved antenna..

Keywords: design, computational design, antenna, wire antenna, spacecraft, genetic pro-
gramming, evolutionary computation.

1. Introduction
Researchers have been investigating evolutionary antenna design and opti-

mization since the early 1990s (e.g., (Michielssen et al., 1993, Haupt, 1995, Alt-
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shuler and Linden, 1997a, Rahmat-Samii and Michielssen, 1999)), and the field
has grown in recent years as computer speed has increased and electromagnetics
simulators have improved. Many antenna types have been investigated, includ-
ing wire antennas (Linden and Altshuler, 1996), antenna arrays (Haupt, 1996),
and quadrifilar helical antennas (Lohn et al., 2002). In addition, the ability to
evolve antennas in-situ (Linden, 2000), that is, taking into account the effects
of surrounding structures, opens new design possibilities. Such an approach is
very difficult for antenna designers due to the complexity of electromagnetic
interactions, yet easy to integrate into evolutionary techniques.

Below we describe two evolutionary algorithm (EA) approaches to a chal-
lenging antenna design problem on NASA’s Space Technology 5 (ST5) mis-
sion (ST5). ST5’s objective is to demonstrate and flight qualify innovative
technologies and concepts for application to future space missions. Images
showing the ST5 spacecraft are seen in Figure 18-1. The mission duration is
planned for three months.

Figure 18-1.   ST5 satellite mock-up. The satellite will have two antennas, centered on the top
and bottom of each spacecraft.

2. ST5 Mission Antenna Requirements
The three ST5 spacecraft will orbit at close separations in a highly elliptical

geosynchronous transfer orbit approximately 35,000 km above Earth and will
communicate with a 34 meter ground-based dish antenna. The combination
of wide beamwidth for a circularly-polarized wave and wide bandwidth make
for a challenging design problem. In terms of simulation challenges, because
the diameter of the spacecraft is 54.2 cm, the spacecraft is 13-15 wavelengths
across which makes antenna simulation computationally intensive. For that
reason, an infinite ground plane approximation or smaller finite ground plane
is typically used in modeling and design.
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The antenna requirements are as follows. The gain pattern must be greater
than or equal to 0 dBic (decibels as referenced to an isotropic radiator that
is circularly polarized) at and for right-hand
circular polarization. The antenna must have a voltage standing wave ratio
(VSWR) of under 1.2 at the transmit frequency (8470 MHz) and under 1.5 at
the receive frequency (7209.125 MHz) – VSWR is a way to quantify reflected-
wave interference, and thus the amount of impedance mismatch at the junction.
in the At both frequencies the input impedance should be The antenna is
restricted in shape to a mass of under 165 g, and must fit in a cylinder of height
and diameter of 15.24 cm.

In addition to these requirements, an additional “desired” specification was
issued for the field pattern. Because of the spacecraft’s relative orientation to
the Earth, high gain in the field pattern was desired at low elevation angles.
Specifically, across gain was desired to meet: 2 dBic for

and 4 dBic for
ST5 mission managers were willing to accept antenna performance that

aligned closer to the “desired” field pattern specifications noted above, and the
contractor, using conventional design practices, produced a quadrifilar helical
(QFH) (see Figure 18-2) antenna to meet these specifications.

3. Evolved Antenna Design
From past experience in designing wire antennas (Linden, 1997), we decided

to constrain our evolutionary design to a monopole wire antenna with four
identical arms, each arm rotated 90° from its neighbors. The EA thus evolves
genotypes that specify the design for one arm, and builds the complete antenna
using four copies of the evolved arm.

In the remainder of this section we describe the two evolutionary algorithms
used. The first algorithm was used in our previous work in evolutionary antenna
design (Linden and Altshuler, 1996) and it is a standard genetic algorithm (GA)
that evolves non-branching wire forms. The second algorithm is based on
our previous work evolving rod-structured, robot morphologies (Hornby and
Pollack, 2002). This EA has a genetic programming (GP) style tree-structured
representation that allows branching in the wire forms. In addition, the two
EAs use different fitness functions.

Non-branching EA

In this EA, the design was constrained to non-branching arms and the en-
coding used real numbers. The feed wire for the antenna is not optimized, but
is specified by the user. The size constraints used, an example of an evolved
arm, and the resulting antenna are shown in Figure 18-3.
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Figure 18-2. Conventionally-designed quadrifilar helical (QHF) antenna: (a) Radiator; (b)
Radiator mounted on ground plane.

Representation

The design is specified by a set of real-valued scalars, one for each coordinate
of each point. Thus, for a four-segment design (shown in Figure 18-3), 12
parameters are required.

Adewuya’s method of mating (Adewuya, 1996) and Gaussian mutation are
used to evolve effective designs from initial random populations. This EA has
been shown to work extremely well on many different antenna problems (Alt-
shuler and Linden, 1997b, Altshuler, 0002, Linden and MacMillan, 2000).
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Figure 18-3. (a) size constraints and evolved arm; (b) resulting 4-wire antenna after rotations.

Fitness Function

This EA used pattern quality scores at 7.2 GHz and 8.47 GHz in the fitness
function. Unlike the second EA, VSWR was not used in this fitness calculation.
To quantify the pattern quality at a single frequency, the following was
used:

where gain is the gain of the antenna in dBic (right-hand polarization) at a
particular angle, T is the target gain (3 dBic was used in this case), is the
azimuth, and is the elevation.

To compute the overall fitness of an antenna design, the pattern quality mea-
sures at the transmit and receive frequencies were summed, lower values cor-
responding to better antennas:

Branching EA

The EA in this section allows for branching in the antenna arms. Rather than
using linear sequences of bits or real-values as is traditionally done, here we
use a tree-structured representation which naturally represents branching in the
antenna arms.

Representation

The representation for encoding branching antennas is an extension of our
previous work in using a linear-representation for encoding rod-based robots
(Hornby and Pollack, 2002). Each node in the tree-structured representation
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is an antenna-construction command and an antenna is created by executing
the commands at each node in the tree, starting with the root node. In con-
structing an antenna the current state (location and orientation) is maintained
and commands add wires or change the current state. The commands are as
follows:

forward(length, radius) - add a wire with the given length and
radius extending from the current location and then change the current
state location to the end of the new wire.

rotate-x(angle) - change the orientation by rotating it by the specified
amount (in radians) about the x-axis.

rotate-y(angle) - change the orientation by rotating it by the specified
amount (in radians) about the y-axis.

rotate-z(angle) - change the orientation by rotating it by the specified
amount (in radians) about the z-axis.

An antenna design is created by starting with an initial feedwire and adding
wires. For the ST5 mission the initial feed wire starts at the origin and has a
length of 0.4 cm along the Z-axis. That is, the design starts with the single
feedwire from (0.0, 0.0, 0.0) to (0.0, 0.0, 0.4) and the current construction state
(location and orientation) for the next wire will be started from location (0.0,
0.0, 0.4) with the orientation along the positive Z-axis.

To produce antennas that are four-way symmetric about the z-axis, the
construction process is restricted to producing antenna wires that are fully
contained in the positive XY quadrant and then after construction is com-
plete, this arm is copied three times and these copies are placed in each of
the other quadrants through rotations of 90°/180°/270°. For example, in ex-
ecuting the program rotate-z(0.523598776) forward(1.0,0.032), the
rotate-z () command causes the the current orientation to rotate 0.523598776
radians (30°) about the Z axis. The forward () command adds a wire of length
1.0 cm and radius 0.032 cm in the current forward direction. This wire is then
copied into each of the other three XY quadrants. The resulting antenna is
shown in Figure 18-4(a).

Branches in the representation cause a branch in the flow of execution
and create different branches in the constructed antenna. The following is an
encoding of an antenna with branching in the arms, here brackets are used to
separate the subtrees:

rotate-z(0.5235) [ forward(1.0,0.032) [ rotate-z(0.5235)
[ forward(1.0,0.032) ] rotate-x(0.5235) [ forward(1.0,0.032)
] ] ]
This antenna is shown in Figure 18-4(b).
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Figure 18-4.  Example antennas: (a) non-branching arms; (b) branching arms.

To take into account imprecision in manufacturing an antenna, antenna de-
signs are evaluated multiple times, each time with a small random perturbation
applied to joint angles and wire radii. The overall fitness of an antenna is the
worst score of these evaluations. In this way, the fitness score assigned to an
antenna design is a conservative estimate of how well it will perform if it were
to be constructed. An additional side–effect of this is that antennas evolved
with this manufacturing noise tend to perform well across a broader range of
frequencies than do antennas evolved without this noise.

Fitness Function

The fitness function used to evaluate antennas is a function of the VSWR and
gain values on the transmit and receive frequencies. The VSWR component of
the fitness function is constructed to put strong pressure to evolving antennas
with receive and transmit VSWR values below the required amounts of 1.2 and
1.5, reduced pressure at a value below these requirements (1.15 and 1.25) and
then no pressure to go below 1.1:

The gain component of the fitness function uses the gain (in decibels) in 5°
increments about the angles of interest: from and
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360°:

While the actual minimum required gain value is 0 dBic for
and desired gain values are 2 dBic for and 4dBic for only
a single target gain of 0.5 dBic is used here. This provides some headroom
to account for errors in simulation over the minimum of 0 dBic and does not
attempt to meet desired gain values. Since achieving gain values greater than 0
dBic is the main part of the required specifications, the third component of the
fitness function rewards antenna designs for having sample points with gains
greater than zero:

These three components are multiplied together to produce the overall fitness
score of an antenna design:

The objective of the EA is to produce antenna designs that minimize F.

4. EA Run Setup

As mentioned earlier, the ST5 spacecraft is 13-15 wavelengths wide, which
makes simulation of the antenna on the full craft very compute intensive. To
keep the antenna evaluations fast, an infinite ground plane approximation was
used in all runs. This was found to provide sufficient accuracy to achieve several
good designs. Designs were then analyzed on a finite ground plane of the same
shape and size as the top of the ST5 body to determine their effectiveness at
meeting requirements in a realistic environment. The Numerical Electromag-
netics Code, Version 4 (NEC4) (Burke and Poggio, 1981) was used to evaluate
all antenna designs.

For the non-branching EA, a population of 50 individuals was used, 50% of
which is kept from generation to generation. The mutation rate was 1%, with
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the Gaussian mutation standard deviation of 10% of the value range. The non-
branching EA was halted after 100 generations had been completed, the EA’s
best score was stagnant for 40 generations, or EA’s average score was stagnant
for 10 generations. For the branching EA, a population of 200 individuals were
created through either mutation or recombination, with an equal probability.
For both algorithms, each antenna simulation took a few seconds of wall-clock
time to run and an entire run took approximately 6-10 hours.

5. Evolved Antenna Results

The two best evolved antennas, one from each of the EAs described above,
were fabricated and tested. The antenna named ST5-3-10 was produced by the
EA that allowed branching, and the antenna named ST5-4W-03 was produced
by the other EA. Photographs of the prototyped antennas are shown in Figure 18-
5. Due to space limitations, only performance data from antenna ST5-3-10 is
presented below.

Since the goal of our work was to produce requirements-compliant antennas
for ST5, no attempt was made to compare the algorithms, either to each other,
nor to other search techniques. Thus statistical sampling across multiple runs
was not performed.

Evolved antenna ST5-3-10 is 100% compliant with the mission antenna
performance requirements. This was confirmed by testing the prototype antenna
in an anechoic test chamber at NASA Goddard Space Flight Center. The data
measured in the test chamber is shown in the plots below.

The genotype of antenna ST5-3-10 is shown in Figure 18-6. The complexity
of this large antenna-constructing program, as compared to the antenna arm
design having one branch, suggests that it is not a minimal description of the
design. For example, instead of using the minimal number of rotations to specify
relative angles between wires (two) there are sequences of up to a dozen rotation
commands.

The 7.2 GHz max/min gain patterns for both evolved antenna ST5-3-10 and
the QFH are shown in Figure 18-7. The 8.47 GHz max/min gain patterns for both
antennas are shown in Figure 18-8. On the plots for antenna ST5-3-10, a box
denoting the acceptable performance according to the requirements is shown.
Note that the minimum gain falls off steeply below 20°. This is acceptable as
those elevations were not required due to the orientation of the spacecraft with
respect to Earth. As noted above, the QFH antenna was optimized at the 8.47
GHz frequency to achieve high gain in the vicinity of 75° – 90°.

6. Results Analysis
Antenna ST5-3-10 is a requirements-compliant antenna that was built and

tested on an antenna test range. While it is slightly difficult to manufacture



310 GENETIC PROGRAMMING THEORY AND PRACTICE II

Figure 18-5. Photographs of prototype evolved antennas: (a) ST5-3-10; (b) ST5-4W-03
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without the aid of automated wire-forming and soldering machines, it has a
number of benefits as compared to the conventionally-designed antenna.

First, there are potential power savings. Antenna ST5-3-10 achieves high
gain (2-4dB) across a wider range of elevation angles. This allows a broader
range of angles over which maximum data throughput can be achieved and
would result in less power being required from the solar array and batteries.

Second, unlike the QFH antenna, the evolved antenna does not require a
matching network nor phasing circuit, removing two steps in design and fab-
rication of the antenna. A trivial transmission line may be used for the match
on the flight antenna, but simulation results suggest that one is not required if
small changes to the feedpoint are made.

Third, the evolved antenna has more uniform coverage in that it has a uniform
pattern with small ripples in the elevations of greatest interest (40° – 80°). This
allows for reliable performance as elevation angle relative to the ground changes.

Fourth, the evolved antenna had a shorter design cycle. It was estimated
that antenna ST5-3-10 took 3 person-months to design and fabricate the first
prototype as compared to 5 person-months for the quadrifilar helical antenna.

From an algorithmic perspective, both evolutionary algorithms produced
antennas that were satisfactory to the mission planners. The branching an-
tenna, evolved using a GP-style representation, slightly outperformed the non-
branching antenna in terms of field pattern and VSWR. A likely reason as to
why the GP-style representation performed better is that it is more flexible and
allows for the evolution of new topologies.

7. Conclusion

We have evolved and built two X-band antennas for potential use on NASA’s
upcoming ST5 mission to study the magnetosphere. ST5 antenna requirements,
our evolutionary algorithms, and the resulting antennas and performance plots
were presented.

Evolved antenna ST5-3-10 was shown to be compliant with respect to the
ST5 antenna performance requirements.  It has an unusual organic-looking
structure, one that expert antenna designers would likely not produce.

If flight qualification testing is successful, antenna ST5-3-10 would represent
the first evolved hardware in space, and the first evolved antenna to be deployed.
As the mission’s primary goal is to test and validate new technologies for future
NASA missions, flying an evolved antenna would fulfill this goal.
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Figure 18-7. Maximum and minimum gain at 7.2 GHz for antennas (a) ST5-3-10; (b) QFH.
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Figure 18-8. Maximum and minimum gain at 8.47 GHz for antennas (a) ST5-3-10; (b) QFH.
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