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Preface
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Most books on electromagnetics describe how to solve particular problems 
using classical analysis techniques and/or numerical methods. These books 
help in formulating the objective function that is used in this book. The objec-
tive function is the computer algorithm, analytical model, or experimental 
result that describes the performance of an electromagnetic system. This book 
focuses primarily on the optimization of these objective functions. Genetic 
algorithms (GAs) have proved to be tenacious in fi nding optimal results where 
traditional techniques fail. This book is an introduction to the use of GAs to 
optimizing electromagnetic systems.

This book begins with an introduction to optimization and some of the com-
monly used numerical optimization routines. Chapter 1 provides the motiva-
tion for the need for a more powerful “global” optimization algorithm in 
contrast to the many “local” optimizers that are prevalent. The next chapter 
introduces the GA to the reader in both binary and continuous variable forms. 
MATLAB® commands are given as examples. Chapter 3 provides two step-
by-step examples of optimizing antenna arrays. This chapter serves as an excel-
lent introduction to the following chapter, on optimizing antenna arrays. GAs 
have been applied to the optimization of antenna arrays more than has any 
other electromagnetics topic. Chapter 5 somewhat follows Chapter 4, because 
it reports the use of a GA as an adaptive algorithm. Adaptive and smart arrays 
are the primary focal points, but adaptive refl ectors and crossed dipoles are 
also presented. Chapter 6 explains the optimization of several different wire 
antennas, starting with the famous “crooked monopole.” Chapter 7 is a review 
of the results for horn, refl ector, and microstip patch antennas. Optimization 
of these antennas entails computing power signifi cantly greater than that 
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required for wire antennas. Chapter 8 diverges from antennas to present 
results on GA optimization of scattering. Results include scattering from 
frequency-selective surfaces and electromagnetic bandgap materials. Finally, 
chapter 9 presents ideas on operator and parameter selection for a GA. In 
addition, particle swarm optimization and multiple objective optimization are 
explained in detail. The Appendix contains some MATLAB® code for those 
who want to try it, followed by a chronological list of publications grouped by 
topic.

State College, Pennsylvania Randy L. Haupt
 Douglas H. Werner
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Genetic Algorithms in Electromagnetics, by Randy L. Haupt and Douglas H. Werner
Copyright © 2007 by John Wiley & Sons, Inc.

1
Introduction to 

Optimization in 
Electromagnetics

As in other areas of engineering and science, research efforts in electromag-
netics have concentrated on fi nding a solution to an integral or differential 
equation with boundary conditions. An example is calculating the radar cross 
section (RCS) of an airplane. First, the problem is formulated for the size, 
shape, and material properties associated with the airplane. Next, an appropri-
ate mathematical description that exactly or approximately models the air-
plane and electromagnetic waves is applied. Finally, numerical methods are 
used for the solution. One problem has one solution. Finding such a solution 
has proved quite diffi cult, even with powerful computers.

Designing the aircraft with the lowest RCS over a given frequency range is 
an example of an optimization problem. Rather than fi nding a single solution, 
optimization implies fi nding many solutions then selecting the best one. 
Optimization is an inherently slow, diffi cult procedure, but it is extremely 
useful when well done. The diffi cult problem of optimizing an electromagnet-
ics design has only recently received extensive attention.

This book concentrates on the genetic algorithm (GA) approach to opti-
mization that has proved very successful in applications in electromagnetics. 
We do not think that the GA is the best optimization algorithm for all prob-
lems. It has proved quite successful, though, when many other algorithms have 
failed. In order to appreciate the power of the GA, a background on the most 
common numerical optimization algorithms is given in this chapter to familiar-
ize the reader with several optimization algorithms that can be applied to 



electromagnetics problems. The antenna array has historically been one of the 
most popular optimization targets in electromagnetics, so we continue that 
tradition as well.

The fi rst optimum antenna array distribution is the binomial distribution 
proposed by Stone [1]. As is now well known, the amplitude weights of the 
elements in the array correspond to the binomial coeffi cients, and the resulting 
array factor has no sidelobes. In a later paper, Dolph mapped the Chebyshev 
polynomial onto the array factor polynomial to get all the sidelobes at an equal 
level [2]. The resulting array factor polynomial coeffi cients represent the 
Dolph–Chebyshev amplitude distribution. This amplitude taper is optimum in 
that specifying the maximum sidelobe level results in the smallest beamwidth, 
or specifying the beamwidth results in the lowest possible maximum sidelobe 
level. Taylor developed a method to optimize the sidelobe levels and beam-
width of a line source [3]. Elliot extended Taylor’s work to new horizons, 
including Taylor-based tapers with asymmetric sidelobe levels, arbitrary side-
lobe level designs, and null-free patterns [4]. It should be noted that Elliot’s 
methods result in complex array weights, requiring both an amplitude and 
phase variation across the array aperture. Since the Taylor taper optimized 
continuous line sources, Villeneuve extended the technique to discrete arrays 
[5]. Bayliss used a method similar to Taylor’s amplitude taper but applied to 
a monopulse difference pattern [6]. The fi rst optimized phase taper was devel-
oped for the endfi re array. Hansen and Woodyard showed that the array 
directivity is increased through a simple formula for phase shifts [7].

Iterative numerical methods became popular for fi nding optimum array 
tapers beginning in the 1970s. Analytical methods for linear array synthesis 
were well developed. Numerical methods were used to iteratively shape the 
mainbeam while constraining sidelobe levels for planar arrays [8–10]. The 
Fletcher–Powell method [11] was applied to optimizing the footprint pattern 
of a satellite planar array antenna. An iterative method has been proposed to 
optimize the directivity of an array via phase tapering [12] and a steepest-
descent algorithm used to optimize array sidelobe levels [13]. Considerable 
interest in the design of nonuniformly spaced arrays began in the late 1950s 
and early 1960s. Numerical optimization attracted attention because analytical 
synthesis methods could not be found. A spotty sampling of some of the tech-
niques employed include linear programming [14], dynamic programming 
[15], and steepest descent [16]. Many statistical methods have been used as 
well [17].

1.1 OPTIMIZING A FUNCTION OF ONE VARIABLE

Most practical optimization problems have many variables. It’s usually best 
to learn to walk before learning to run, so this section starts with optimizing 
one variable; then the next section covers multiple variable optimization. 
After describing a couple of single-variable functions to be optimized, several 
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single variable optimization routines are introduced. Many of the multidimen-
sional optimization routines rely on some version of the one-dimensional 
optimization algorithms described here.

Optimization implies fi nding either the minimum or maximum of an objec-
tive function, the mathematical function that is to be optimized. A variable is 
passed to the objective function and a value returned. The goal of optimization 
is to fi nd the combination of variables that causes the objective function to 
return the highest or lowest possible value.

Consider the example of minimizing the output of a four-element array 
when the signal is incident at an angle φ. The array has equally spaced ele-
ments (d = λ/2) along the x axis (Fig. 1.1). If the end elements have the same 
variable amplitude (a), then the objective function is written as

AF1
2 30 25( ) .a a e e aej j j= + + +Ψ Ψ Ψ  (1.1)

where Ψ = k du
k = 2π/λ
λ = wavelength
u = cos φ

A graph of AF1 for all values of u when a = 1 is shown in Figure 1.2. If u = 0.8 
is the point to be minimized, then the plot of the objective function as a func-
tion of a is shown in Figure 1.3. There is only one minimum at a = 0.382.

Another objective function is a similar four-element array with uniform 
amplitude but conjugate phases at the end elements

AF2
2 30 25( ) .δ δ δ= + + + −e e e e ej j j j jΨ Ψ Ψ  (1.2)

Figure 1.1. Four-element array with two weights.
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4 INTRODUCTION TO OPTIMIZATION IN ELECTROMAGNETICS

Figure 1.2. Array factor of a four-element array.

Figure 1.3. Objective function with input a and output the fi eld amplitude at u = 0.8.

where the phase range is given by 0 ≤ δ ≤ π. If u = 0.8 is the point to be 
minimized, then the plot of the objective function as a function of δ is as shown 
in Figure 1.4. This function is more complex in that it has two minima. The 
global or lowest minimum is at δ = 1.88 radians while a local minimum is at 
δ = 0.

Finding the minimum of (1.1) [Eq. (1.1), above] is straightforward—head 
downhill from any starting point on the surface. Finding the minimum of (1.2) 
is a little more tricky. Heading downhill from any point where δ < 0.63 radian 
(rad) leads to the local minimum or the wrong answer. A different strategy is 
needed for the successful minimization of (1.2).



1.1.1 Exhaustive Search

One way to feel comfortable about fi nding a minimum is to check all possible 
combinations of input variables. This approach is possible for a small fi nite 
number of points. Probably the best example of an exhaustive search is graph-
ing a function and fi nding the minimum on the graph. When the graph is 
smooth enough and contains all the important features of the function in 
suffi cient detail, then the exhaustive search is done. Figures 1.3 and 1.4 are 
good examples of exhaustive search.

1.1.2 Random Search

Checking every possible point for a minimum is time-consuming. Randomly 
picking points over the interval of interest may fi nd the minimum or at least 
come reasonably close. Figure 1.5 is a plot of AF1 with 10 randomly selected 
points. Two of the points ended up close to the minimum. Figure 1.6 is a plot 
of AF2 with 10 randomly selected points. In this case, six of the points have 
lower values than the local minimum at δ = 0. The random search process can 
be refi ned by narrowing the region of guessing around the best few function 
evaluations found so far and guessing again in the new region. The odds of all 
10 points appearing at δ < 0.63 for AF2 is (0.63/π)10 = 1.02 × 10−7, so it is unlikely 
that the random search would get stuck in this local minimum with 10 guesses. 
A quick random search could also prove worthwhile before starting a downhill 
search algorithm.

Figure 1.4. Objective function with input d and output the fi eld amplitude at u = 0.8.
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6 INTRODUCTION TO OPTIMIZATION IN ELECTROMAGNETICS

Figure 1.5. Ten random guesses (circles) superimposed on a plot of AF1.

Figure 1.6. Ten random guesses (circles) superimposed on a plot of AF2.

1.1.3 Golden Search

Assume that a minimum lies between two points a and b. Three points are 
needed to detect a minimum in the interval: two to bound the interval and 
one in between that is lower than the bounds. The goal is to shrink the interval 
by picking a point (c) in between the two endpoints (a and b) at a distance Δ1

from a (see Fig. 1.7). Now, the interval is divided into one large interval and 
one small interval. Next, another point (d) is selected in the larger of the two 
subintervals. This new point is placed at a distance Δ2 from c. If the new point 



on the reduced interval (Δ1 + Δ2) is always placed at the same proportional 
distance from the left endpoint, then

Δ
Δ Δ Δ

Δ
Δ Δ

1

1 2 1

2

1 2+ +
=

+
 (1.3)

If the interval is normalized, the length of the interval is

Δ Δ Δ1 2 1 1+ + =  (1.4)

Combining (1.3) and (1.4) yields the equation

Δ Δ1
2

13 1 0− + =  (1.5)

which has the root

Δ1
5 1
2

0 38197=
−

= . . . .  (1.6)

This value is known as the “golden mean” [18].
The procedure above described is easy to put into an algorithm to fi nd the 

minimum of AF2. As stated, the algorithm begins with four points (labeled 
1–4 in Fig. 1.8). Each iteration adds another point. After six iterations, point 
8 is reached, which is getting very close to the minimum. In this case the golden 
search did not get stuck in the local minimum. If the algorithm started with 
points 1 and 4 as the bound, then the algorithm would have converged on the 
local minimum rather than the global minimum.

1.1.4 Newton’s Method

Newton’s method is a downhill sliding technique that is derived from the 
Taylor’s series expansion for the derivative of a function of one variable. 
The derivative of a function evaluated at a point xn+1 can be written in terms 
of the function derivatives at a point xn

′ = ′ + ′′ − + ′′′ − ++ + +f x f x f x x x
f x

x xn n n n n
n

n n( ) ( ) ( )( )
( )
!

( ) . . .1 1 1
2

2
 (1.7)

Figure 1.7. Golden search interval.
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Keeping only the fi rst and second derivatives and assuming that the next step 
reaches the minimum or maximum, then (1.7) equals zero, so

′ + ′′ − =+f x f x x xn n n n( ) ( )( )1 0  (1.8)

Solving for xn+1 yields

x x
f x
f x

n n
n

n
+ = − ′

′′1
( )
( )

 (1.9)

If no analytical derivatives are available, then the derivatives in (1.9) are 
approximated by a fi nite-difference formula

x x
f x f x

f x f x f x
n n

n n

n n n
+

+ −

+ −
= −

−[ ]
− +1

1 1

1 12 2
Δ ( ) ( )

[ ( ) ( ) ( )]
 (1.10)

where

Δ = − = −+ −x x x xn n n n1 1  (1.11)

This approximation slows the method down but is often the only practical 
implementation.

Let’s try fi nding the minimum of the two test functions. Since it’s not easy 
to take the derivatives of AF1 and AF2, fi nite-difference approximations will 
be used instead. Newton’s method converges on the minimum of AF1 for 
every starting point in the interval. The second function is more interesting, 

Figure 1.8. The fi rst eight function evaluations (circles) of the golden search algorithm when 
minimizing AF2.



though. Figure 1.9 shows the fi rst fi ve points calculated by the algorithm from 
two different starting points. A starting point at δ = 0.6 radians results in the 
series of points that heads toward the local minimum on the left. When the 
starting point is δ = 0.7 rad, then the algorithm converges toward the global 
minimum. Thus, Newton’s method is known as a local search algorithm,
because it heads toward the bottom of the closest minimum. It is also a non-
linear algorithm, because the outcome can be very sensitive to the initial 
starting point.

1.1.5 Quadratic Interpolation

The techniques derived from Taylor’s series assumed that the function is 
quadratic near the minimum. If this assumption is valid, then we should be 
able to approximate the function by a quadratic polynomial near the minimum 
and fi nd the minimum of that quadratic polynomial interpolation [19]. Given 
three points on an interval (x0, x1, x2), the extremum of the quadratic interpo-
lating polynomial appears at

x
f x x x f x x x f x x x

f x x x
3

0 1
2

2
2

1 2
2

0
2

2 0
2

1
2

0 12
=

−( ) + − + −
−

( ) ( )( ) ( )( )

( )( 22 1 2 0 2 0 12 2) ( )( ) ( )( )+ − + −f x x x f x x x
 (1.12)

When the three points are along the same line, the denominator is zero and 
the interpolation fails. Also, this formula can’t differentiate between a 
minimum and a maximum, so some caution is necessary to insure that it 
pursues a minimum.

Figure 1.9. The convergence of Newton’s algorithm when starting at two different points.

 OPTIMIZING A FUNCTION OF ONE VARIABLE 9



10 INTRODUCTION TO OPTIMIZATION IN ELECTROMAGNETICS

MATLAB uses a combination of golden search and quadratic interpolation 
in its function fminbnd.m. Figure 1.10 shows the convergence curves for the 
fi eld value on the left-hand vertical axis and the phase in radians on the right-
hand vertical axis. This approach converged in just 10 iterations.

1.2 OPTIMIZING A FUNCTION OF MULTIPLE VARIABLES

Usually, arrays have many elements; hence many variables need to be adjusted 
in order to optimize some aspect of the antenna pattern. To demonstrate the 
complexity of dealing with multiple dimensions, the objective functions in 
(1.1) and (1.2) are extended to two variables and three angle evaluations of 
the array factor.

AF ,3 1 2 2 1
2 3

1
4

2
5

1

31
6

( )a a a a e e e a e a ej j j j j

m

m m m m m= + + + + +
=

∑ Ψ Ψ Ψ Ψ Ψ  (1.13)

AF ,4 1 2
2 3 4 51

6
2 1 1 2( )δ δ δ δ δ δ= + + + + +e e e e e e e e ej j j j j j j j jm m m m mΨ Ψ Ψ Ψ Ψ

mm=
∑

1

3

   (1.14)

Figure 1.11 is a diagram of the six-element array with two independent 
adjustable weights. The objective function returns the sum of the magnitude 
of the array factor at three angles: φm = 120°, 69.5°, and 31.8°. The array 
factor for a uniform six-element array is shown in Figure 1.12. Plots of the 
objective function for all possible combinations of the amplitude and phase 
weights appear in Figures 1.13 and 1.14. The amplitude weight objective func-

Figure 1.10. Convergence of the MATLAB quadratic interpolation routine when minimizing 
AF2.



Figure 1.11. A six-element array with two independent, adjustable weights.

Figure 1.12. The array factor for a six-element uniform array.

tion has a single minimum, while the phase weight objective function has 
several minima.

1.2.1 Random Search

Humans are intrigued by guessing. Most people love to gamble, at least occa-
sionally. Beating the odds is fun. Guessing at the location of the minimum 
sometimes works. It’s at least a very easy-to-understand method for minimiza-
tion—no Hessians, gradients, simplexes, and so on. It takes only a couple of 
lines of MATLAB code to get a working program. It’s not very elegant, 
though, and many people have ignored the power of random search in the 

 OPTIMIZING A FUNCTION OF MULTIPLE VARIABLES 11
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development of sophisticated minimization algorithms. We often model pro-
cesses in nature as random events, because we don’t understand all the com-
plexities involved. A complex cost function more closely approximates nature’s 
ways, so the more complex the cost function, the more likely that random 
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guessing plays an important part in fi nding the minimum. Even a local opti-
mizer makes use of random starting points. Local optimizers are made more 
“global” by making repeated starts from several different, usually random, 
points on the cost surface.

Figure 1.15 shows 10 random guesses on a contour plot of AF4. This fi rst 
attempt clearly misses some of the regions with minima. The plot in Figure 1.16 
results from adding 20 more guesses. Even after 30 guesses, the lowest 
value found is not in the basin of the global minimum. Granted, a new set of 
random guesses could easily land a value near the global minimum. The 
problem, though, is that the odds decrease as the number of variables 
increases.

1.2.2 Line Search

A line search begins with an arbitrary starting point on the cost surface. A 
vector or line is chosen that cuts across the cost surface. Steps are taken along 
this line until a minimum is reached. Next, another vector is found and the 
process repeated. A fl owchart of the algorithm appears in Figure 1.17. Select-
ing the vector and the step size has been an area of avid research in numerical 
optimization. Line search methods work well for fi nding a minimum of a 
quadratic function. They tend to fail miserably when searching a cost surface 
with many minima, because the vectors can totally miss the area where the 
global minimum exists.
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Figure 1.17. Flowchart of a line search minimization algorithm.
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Figure 1.16. Thirty random guesses for AF4.

The easiest line search imaginable is the coordinate search method. If the 
function has two variables, then the algorithm begins at a random point, holds 
one variable constant, and searches along the other variable. Once it reaches 
a minimum, it holds the second variable constant and searches along the fi rst 



variable. This process repeats until an acceptable minimum is found. Mathe-
matically, a two-dimensional cost function follows the path given by

f v v f v v f v v f v v( ) ( ) ( ) ( ) . . .1
0

2
0

1
1

2
0

1
1

2
1

1
2

2
1, , , ,→ → → →  (1.15)

where vn
m+1 = vn

m + �nm+1 and �mn+1 is the step length calculated using a formula. 
This approach doesn’t work well, because it does not exploit any information 
about the cost function. Most of the time, the coordinate axes are not the best 
search directions [20]. Figure 1.18 shows the paths taken by a coordinate 
search algorithm from three different starting points on AF4. A different 
minimum was found from each starting point.

The coordinate search does a lot of unnecessary wiggling to get to a 
minimum. Following the gradient seems to be a more intuitive natural choice 
for the direction of search. When water fl ows down a hillside, it follows the 
gradient of the surface. Since the gradient points in the direction of maximum 
increase, the negative of the gradient must be followed to fi nd the minimum. 
This observation leads to the method of steepest descent given by [19]

v v f vm m m m+ = − ∇1 α  ( )  (1.16)

where αm is the step size. This formula requires only fi rst-derivative informa-
tion. Steepest descent is very popular because of its simple form and often 
excellent results. Problems with slow convergence arise when the cost function 
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Figure 1.18. A coordinate search algorithm fi nds three different minima of AF4 when starting 
at three different points.
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16 INTRODUCTION TO OPTIMIZATION IN ELECTROMAGNETICS

has narrow valleys, since the new gradient is always perpendicular to the old 
gradient at the minimum point on the old gradient.

Even more powerful methods are possible if second-derivative information 
is used. Starting with the Taylor series expansion of the function

f v f v f v v v v v v vm m m m m T m m m m T( ) ( ) ( )( ) . ( ( ) . . .+ + + += + ∇ − + − − +1 1 1 10 5 )H
 (1.17)

where vm = point about which Taylor series is expanded
vm+1 = point near vm

T =  transpose of vector (in this case row vector becomes column 
vector)

 H = Hessian matrix with elements given by hij = ∂2f/∂vi∂vj

Taking the gradient of (1.17) and setting it equal to zero yields

∇ = ∇ + − =+ +f v f v v vm m m m( ) ( ) (1 1 0)H  (1.18)

which leads to

v v f vm m m m+ −= − ∇1 1α H  ( )  (1.19)

This formula is known as Newton’s method. Although Newton’s method prom-
ises fast convergence, calculating the Hessian matrix and then inverting it is 
diffi cult or impossible. Newton’s method reduces to steepest descent when the 
Hessian matrix is the identity matrix. Several iterative methods have been 
developed to estimate the Hessian matrix with the estimate getting closer after 
every iteration. The fi rst approach is known as the Davidon–Fletcher–Powell
(DFP) update formula [21]. It is written here in terms of the mth approxima-
tion to the inverse of the Hessian matrix, Q = H−1:

Q Q
v v v v

v v f v f v
Q

m m
m m m m T
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+
+ +
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− ∇ − ∇

−

1
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1 1
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1 ∇∇ −∇+f v f vm m( ) ( ))1  (1.20)

A similar formula was developed later and became known as the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) update [22–25]:

H H
f v f v f v f v

f v f v
m m

m m m m T

m m
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+ +

+= + ∇ − ∇ ∇ − ∇
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1 1
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+
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 (1.21)



As with the DFP update, the BFGS update can be written for the inverse of 
the Hessian matrix.

A totally different approach to the line search is possible. If a problem has 
N dimensions, then it might be possible to pick N orthogonal search directions 
that could result in fi nding the minimum in N iterations. Two consecutive 
search directions, u and v, are orthogonal if their dot product is zero or

u v uvT⋅ = = 0  (1.22)

This result is equivalent to

uHvT = 0  (1.23)

where H is the identity matrix. If (1.23) is true and H is not the identity matrix, 
then u and v are known as conjugate vectors or H-orthogonal vectors. A set of 
N vectors that have this property is known as a conjugate set. It is these vectors 
that will lead to the minimum in N steps.

Powell developed a method of following these conjugate directions to the 
minimum of a quadratic function. Start at an arbitrary point and pick a search 
direction. Next, Gram–Schmidt orthogonalization is used to fi nd the remain-
ing search directions. This process is not very effi cient and can result in some 
search directions that are nearly linearly dependent. Some modifi cations to 
Powell’s method make it more attractive.

The best implementation of the conjugate directions algorithm is the con-
jugate gradient algorithm [26]. This approach uses the steepest descent as its 
fi rst step. At each additional step, the new gradient vector is calculated and 
added to a combination of previous search vectors to fi nd a new conjugate 
direction vector

v vm m m m+ = +1 α �  (1.24)

where the step size is given by

αm
mT m

mT m

f v

H
= −

∇�
� �

( )
 (1.25)

Since (1.25) requires calculation of the Hessian, αm is usually found by mini-
mizing f(vm + αm�m). The new search direction is found using

� �m m m mf+ + += −∇ +1 1 1β  (1.26)

The Fletcher–Reeves version of βm is used for linear problems [18]:

βm
T m m

T m m

f v f v

f v f v
=

∇ ∇
∇ ∇

+ +( ) ( )
( ) ( )

1 1

 (1.27)

 OPTIMIZING A FUNCTION OF MULTIPLE VARIABLES 17



18 INTRODUCTION TO OPTIMIZATION IN ELECTROMAGNETICS

This formulation converges when the starting point is suffi ciently close to the 
minimum. A nonlinear conjugate gradient algorithm that uses the Polak–
Ribiere version of βm also exists [18]:

βm
m m T m

T m m

f v f v f v

f v f v
=

∇ − ∇ ∇
∇ ∇

⎧
⎨
⎩

⎫
⎬
⎭

+ +

max
[ ( ) ( )] ( )

( ) ( )

1 1

0,  (1.28)

The nonlinear conjugate gradient algorithm is guaranteed to converge for 
linear functions but not for nonlinear functions.

The problem with conjugate gradient is that it must be “restarted” every N
iterations. Thus, for a nonquadratic problem (most problems of interest), 
conjugate gradient starts over after N iterations without fi nding the 
minimum. Since the BFGS algorithm does not need to be restarted and 
approaches superlinear convergence close to the solution, it is usually pre-
ferred over conjugate gradient. If the Hessian matrix gets too large to be 
conveniently stored, however, conjugate gradient shines with its minimal 
storage requirements.

1.2.3 Nelder–Mead Downhill Simplex Algorithm

Derivatives and guessing are not the only way to do a downhill search. The 
Nelder–Mead downhill simplex algorithm moves a simplex down the slope 
until it surrounds the minimum [27]. A simplex is the most basic geometric 
object that can be formed in an N-dimensional space. The simplex has N + 1 
sides, such as a triangle in two-dimensional space. The downhill simplex 
method is given a single starting point (v0). It generates an additional N points 
to form the initial simplex using the formula

v vn n
0

1
0= + μ�  (1.29)

where the �n are unit vectors and μ is a constant. If the simplex surrounds the 
minimum, then the simplex shrinks in all directions. Otherwise, the point cor-
responding to the highest objective function is replaced with a new point that 
has a lower objective function value. The diameter of the simplex eventually 
gets small enough that it is less than the specifi ed tolerance and the solution 
is the vertex with the lowest objective function value. A fl owchart outlining 
the steps to this algorithm is shown in Figure 1.19.

Figure 1.20 shows the path taken by the Nelder–Mead algorithm starting 
with the fi rst triangle and working its way down to the minimum of AF3.
Sometimes the algorithm fl ips the triangle and at other times it shrinks or 
expands the triangle in an effort to surround the minimum. Although it can 
successfully fi nd the minimum of AF3, it has great diffi culty fi nding the global 



find verticies, v = v1, v2, …, vNpar
calculate f(v)

sort f from fmax,…, fmin-1, fmin
vavg = average of v, excluding vmax

reflect vmax through vavg: vref = 2vavg – vmax

f(vmax-1) < f(vref) < f(vmax)?
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vexp = 2vavg – vmaxf(vref)  < f(vmin)?

Figure 1.19. Flowchart for the Nelder–Mead downhill simplex algorithm.

minimum of AF4. Its success with AF4 depends on the starting point. Figure 
1.21 shows a plot of the starting points for the Nelder–Mead algorithm that 
converge to the global minimum. Any other point on the plot converges 
to one of the local minima. There were 10,201 starting points tried and 2290 
or 22.45% converged to the global minimum. That’s just slightly better 
than a one-in-fi ve chance of fi nding the true minimum. Not very encouraging, 
especially when the number of dimensions increases. The line search 
algorithms exhibit the same behavior as the Nelder–Mead algorithm in 
Figure 1.21.
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Figure 1.20. Movements of the simplex in the Nelder–Mead downhill simplex algorithm when 
fi nding the minimum of AF3.
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1.3 COMPARING LOCAL NUMERICAL OPTIMIZATION ALGORITHMS

This section compares four local optimization approaches against a more for-
midable problem. Consider a linear array along the x axis with an array factor 
given by

AF , , , ,  el( )u w x N w en
jkx u

n

N
n

el

λ =
=

∑
1

 (1.30)

where Nel = number of elements in the array
wn = an exp( jδn) = complex element weight
xn = distance of element n from the origin

Some of these variables may be constants. For instance, if all except u
are constant, then AF returns an antenna pattern that is a function of 
angle.

The optimization example here minimizes the maximum relative sidelobe 
level of a uniformly spaced array using amplitude weighting. Assume that the 
array weights are symmetric about the center of the array; thus the exponential 
terms of the symmetric element locations can be combined using Euler’s 
identity. Also assume that the array has an even number of elements. With 
these assumptions, the objective function is written as a function of the ampli-
tude weights

AF ,5
1

2 0 5( ) max cos .a a n u un m
n

N

b= −( )[ ] >
=

∑ Ψ  (1.31)

where ub defi nes the extent of the main beam. This function is relatively 
simple, except for fi nding the appropriate value for ub. For a uniform aperture, 
the fi rst null next to the mainlobe occurs at an angle of about λ/(size of the 
aperture) ≅ λ/[d(N + 1)]. Amplitude tapers decrease the effi ciency of the 
aperture, thus increasing the width of the mainbeam. As a result, ub depends 
on the amplitude, making the function diffi cult to characterize for a given set 
of input values. In addition, shoulders on the mainbeam may be overlooked 
by the function that fi nds the maximum sidelobe level.

The four methods used to optimize AF5 are

1. Broyden–Fletcher–Goldfarb–Shanno (BFGS)
2. Davidon–Fletcher–Powell (DFP)
3. Nelder–Mead downhill simplex (NMDS)
4. Steepest descent

All of these are available using the MATLAB functions fminsearch.m and 
fminunc.m. The analytical solution is simple: −∞ dB. Let’s see how the differ-
ent methods fare.
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The four algorithms are quite sensitive to the starting values of the am-
plitude weights. These algorithms quickly fall into a local minimum, be-
cause their theoretical development is based on fi nding the minimum of 
a bowl-shaped objective function. The fi rst optimization run randomly 
generated a starting vector of amplitude weights between 0 and 1. Each 
algorithm was given 25 different starting values and the results were averaged. 
Table 1.1 shows the results for a linear array of isotropic point sources 
spaced 0.5λ apart. A −∞ sidelobe level would ruin a calculation of the mean 
of the best sidelobe level found over the 25 runs, so the median is as reported 
in Table 1.1. The mean and median are very close except when a −∞ sidelobe 
level occurs.

These results are somewhat disappointing, since the known answer is −∞
dB. The local nature of the algorithms limits their ability to fi nd the best or the 
global solution. In general, a starting point is selected, then the algorithm pro-
ceeds downhill from there. When the algorithm encounters too many hills and 
valleys in the output of the objective function, it can’t fi nd the global optimum. 
Even selecting 25 random starting points for four different algorithms didn’t 
result in fi nding an output with less than −50 dB sidelobe levels.

In general, as the number of variables increases, the number of function 
calls needed to fi nd the minimum also increases. Thus, Table 1.1 has a larger 
median number of function calls for larger arrays. Table 1.2 shows how increas-

TABLE 1.2. Algorithm Performance in Terms of Median Maximum Sidelobe Level 
versus Maximum Number of Function Callsa

 1000 3000 10000
Algorithm Function Calls (dB) Function Calls (dB) Function Calls (dB)

BFGS −24.3 −26.6 −28.2
DFP −24.0 −26.6 −28.3
Nelder–Mead −17.6 −17.2 −17.5
Steepest descent −23.3 −21.8 −23.4

a Performance characteristics of four algorithms are averaged over 25 runs with random starting values for 
the amplitude weights. The 42 isotropic elements were spaced 0.5λ apart.

TABLE 1.1. Comparison of Optimized Median Sidelobes for Three Different 
Array Sizesa

 22 Elements 42 Elements 62 Elements

 Median Median Median Median Median Median
 Sidelobe Function Sidelobe Function Sidelobe Function
 Level (dB) Calls Level (dB) Calls Level (dB) Calls

BFGS −30.3 1007 −25.3 2008 −26.6 3016
DFP −27.9 1006 −25.2 2011 −26.6 3015
Nelder Mead −18.7 956 −17.3 2575 −17.2 3551
Steepest descent −24.6 1005 −21.6 2009 −21.8 3013

a Performance characteristics of four algorithms are averaged over 25 runs with random starting values for 
the amplitude weights. The isotropic elements were spaced 0.5λ apart.



ing the maximum number of function calls improves the results found using 
BFGS and DFP whereas the Nelder–Mead and steepest-descent algorithms 
show no improvement.

Another idea is warranted. Perhaps taking the set of parameters that pro-
duces the lowest objective function output and using them as the initial start-
ing point for the algorithm will produce better results. The step size gets 
smaller as the algorithm progresses. Starting over may allow the algorithm to 
take large enough steps to get out of the valley of the local minimum. Thus, 
the algorithm begins with a random set of amplitude weights, the algorithm 
optimizes with these weights to produce an “optimal” set of parameters, these 
new “optimal” set of parameters are used as a new initial starting point for 
the algorithm, and the process repeats several times. Table 1.3 displays some 
interesting results when the cycle is repeated 5 times. Again, the algorithms 
were averaged over 25 different runs. In all cases, the results improved by 
running the optimization algorithm for 2000 function calls on fi ve separate 
starts rather than running the optimization algorithm for a total of 10,000 
function calls with one start (Table 1.2). The lesson learned here is to use this 
iterative procedure when attempting an optimization with multiple local 
minima. The size of the search space collapses as the algorithm converges on 
the minimum. Thus, restarting the algorithm at the local minimum just expands 
the search space about the minimum.

An alternative approach known as “seeding” starts the algorithm with a 
good fi rst guess based on experience, a hunch, or other similar solutions. In 
general, we know that low-sidelobe amplitude tapers have a maximum ampli-
tude at the center of the array, while decreasing in amplitude toward the 
edges. The initial fi rst guess is a uniform amplitude taper with a maximum 
sidelobe level of −13 dB. Table 1.4 shows the results of using this good fi rst 
guess after 2000 function calls. The Nelder–Mead algorithm capitalized on this 
good fi rst guess, while the others didn’t. Trying a triangle amplitude taper, 
however, signifi cantly improved the performance of all the algorithms. In fact, 
the Nelder–Mead and steepest-descent algorithms did better than the BFGS 
and DFP algorithms. Combining the good fi rst guess with the restarting idea 
in Figure 1.11 may produce the best results of all.

TABLE 1.3. Algorithm Performance in Terms of Median 
Maximum Sidelobe When the Algorithm Is Restarted Every 
2000 Function Calls (5 Times)a

Algorithm 10,000 Function Calls (dB)

BFGS −34.9
DFP −36.9
Nelder–Mead −29.1
Steepest descent −26.1

a Performance characteristics of four algorithms are averaged over 25 runs 
with random starting values for the amplitude weights. The 42 isotropic 
elements were spaced 0.5λ apart.
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1.4 SIMULATED ANNEALING

Annealing heats a substance above its melting temperature, then gradually 
cools it to produce a crystalline lattice that has a minimum energy probability 
distribution. The resulting crystal is an example of nature fi nding an optimal 
solution. If the liquid cools too rapidly, then the crystals do not form and the 
substance becomes an amorphous mass with an energy state above optimal. 
Nature is seldom in a hurry to fi nd the optimal state.

A numerical optimization algorithm that models the annealing process is 
known as simulated annealing [28,29]. The initial state of the algorithm is a 
single random guess of the objective function input variables. In order to 
model the heating process, the values of the variables are randomly modifi ed. 
Higher heat creates greater random fl uctuations. The objective function 
returns a measure of the energy state or value of the present minimum. The 
new variable set replaces the old variable set if the output decreases. Other-
wise the output is still accepted if

r e f p f p T≤ ( )− ( )[ ] /old new  (1.32)

where r is a uniform random number and T is a temperature value. If r is too 
large, then the variable values are rejected. A new variable set to replace a 
rejected variable set is found by adding a random step to the old vari-
able set

p dpnew old=  (1.33)

where d is a random number with either a uniform or normal distribution with 
a mean of pold. When the minimization process stalls, the value of T and 
the range of d decrease by a certain percent and the algorithm starts over. 
The algorithm is fi nished when T gets close to zero. Some common cooling 
schedules include (1) linearly decreasing, Tn = T0 − n(T0 − Tn)/N;
(2) geometrically decreasing, Tn = 0.99Tn−1; and (3) Hayjek optimal, Tn =
c/log(1 + n), where c = smallest variation required to get out of any local 
minimum, 0 < n ≤ N; T0 = initial temperature, and TN = ending temperature.

TABLE 1.4. Algorithm Performance in Terms of Median Maximum Sidelobe after 
2000 Function Calls When the Algorithm Seeded with a Uniform or Triangular 
Amplitude Tapera

Algorithm Uniform Taper Seed (dB) Triangular Taper Seed (dB)

BFGS −23.6 −35.9
DFP −26.0 −35.7
Nelder–Mead −23.9 −39.1
Steepest descent −21.2 −39.3

a The 42 isotropic elements were spaced 0.5λ apart.



The temperature is lowered slowly, so that the algorithm does not converge 
too quickly.

Simulated annealing (SA) begins as a random search and ends with little 
variations about the minimum. Figure 1.22 shows the convergence of the 
simulated annealing algorithm when minimizing AF4. The fi nal value was 
0.1228 or −33.8 dB. Simulated annealing was fi rst applied to the optimization 
of antenna arrays in 1988 [30].

SA has proven superior to the local optimizers discussed in this chapter. 
The random perturbations allow this algorithm to jump out of a local minimum 
in search of the global minimum. SA is very similar to the GA. It is a random 
search that has tuning parameters that have tremendous effect on the success 
and speed of the algorithm. SA starts with a single guess at the solution and 
works in a serial manner to fi nd the solution. A genetic algorithm starts with 
many initial guesses and works in a parallel manner to fi nd a list of solutions. 
The SA algorithm slowly becomes less random as it converges, while the GA 
may or may not become less random with time. Finally, the GA is more adept 
at working with continuous, discrete, and integer variables, or a mix of those 
variables.

1.5 GENETIC ALGORITHM

The rest of this book is devoted to the relatively new optimization technique 
called the genetic algorithm (GA). GAs were introduced by Holland [31] and 
were applied to many practical problems by Goldberg [32]. A GA has several 
advantages over the traditional numerical optimization approaches presented 
in this chapter, including the facts that it

Figure 1.22. Convergence of the simulated annealing algorithm for AF4.
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1. Optimizes with continuous or discrete parameters.
2. Doesn’t require derivative information.
3. Simultaneously searches from a wide sampling of the cost surface.
4. Works with a large number of variables.
5. Is well suited for parallel computers.
6. Optimizes variables with extremely complex cost surfaces.
7. Provides a list of optimum parameters, not just a single solution.
8. May encode the parameters, and the optimization is done with the 

encoded parameters.
9. Works with numerically generated data, experimental data, or analytical 

functions.

These advantages will become clear as the power of the GA is demonstrated 
in the following chapters. Chapter 2 explains the GA in detail. Chapter 3 gives 
a step-by-step analysis of fi nding the minimum of AF4. Many other more 
complex examples are presented in Chapters 3–8. For further enlightenment 
on GAs, please turn to the next chapter.
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2
Anatomy of a 

Genetic Algorithm

A genetic algorithm (GA) offers an alternative to traditional local search 
algorithms. It is an optimization algorithm inspired by the well-known biologi-
cal processes of genetics and evolution. Genetics is the study of the inheritance 
and variation of biological traits. Manipulation of the forces behind genetics 
is found in breeding animals and genetic engineering. Evolution is closely 
intertwined with genetics. It results in genetic changes through natural selec-
tion, genetic drift, mutation, and migration. Genetics and evolution result in 
a population that is adapted to succeed in its environment. In other words, 
the population is optimized for its environment.

A combination of genetics and evolution is analogous to numerical optimi-
zation in that they both seek to fi nd a good result within constraints on the 
variables. Input to an objective function is a chromosome. The output of the 
objective function is known as the cost when minimizing. Each chromosome 
consists of genes or individual variables. The genes take on certain alleles 
much as the variable have certain values. A group of chromosomes is known 
as a population. For our purposes, the population is a matrix with each row 
corresponding to a chromosome:
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Each chromosome is the input to an objective function f. The cost associated 
with each chromosome is calculated by the objective function one at a time 
or in parallel:
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It is the cost that determines the fi tness of an individual in the population. A 
low cost implies a high fi tness.

As you will see, GA operations work only with numbers. Thus, nonnumeri-
cal values, such as a color or an opinion, must be assigned a number. Often, 
the numerical values assigned to genes are in binary format. Continuous 
values have an infi nite number of possible combinations of input values, 
whereas binary values have a very large but fi nite number of possible combi-
nations of input values. Binary representation is also common when there are 
a fi nite number of values for a variable, such as four values of permittivity for 
a dielectric substrate.

A basic, “no thrills” GA is quite simple and powerful. The algorithm has 
the following steps:

1. Create an initial population.
2. Evaluate the fi tness of each population member.
3. Invoke natural selection.
4. Select population members for mating.
5. Generate offspring.
6. Mutate selected members of the population.
7. Terminate run or go to step 2.



These steps are shown in the fl owchart in Figure 2.1. Each of these steps is 
discussed in detail in the following sections. MATLAB commands are used 
to demonstrate the basic concepts.

2.1 CREATING AN INITIAL POPULATION

The initial population is the starting matrix of chromosomes. Each row is a 
random “guess” at the optimum solution. If nvar variables are used to calcu-
late the output of the cost function, then a chromosome in the initial popula-
tion consists of nvar random values assigned to these variables. As an example, 
a MATLAB command that yields a random population matrix of npop chro-
mosomes is given by

pop=rand(npop,nvar)

A population of eight chromosomes each having four variables was generated 
from the MATLAB command:

pop =

0.44510 0.83812 0.30462 0.37837

0.93181 0.01964 0.18965 0.860001

0.46599 0.68128 0.19343 0.85366

0.41865 0.37948 0.68222 0.593566

0.84622 0.83180 0.30276 0.49655

0.52515 0.50281 0.54167 0.89977

00.20265 0.70947 0.15087 0.82163

0.67214 0.42889 0.69790 0.64491
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 (2.3)

Figure 2.1. Genetic algorithm fl owchart.
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Each variable is constrained to be between zero and one. If binary numbers 
are used, then the population matrix is simply generated by

pop=round(rand(npop,nvar*nbits))

where nbits is the number of bits per variable. A population of eight chromo-
somes each having four variables represented by 3 bits was generated from 
the MATLAB command:

pop =

1 1 1 1 0 0 1 0 0 1 0 0

1 1 1 1 0 0 1 0 0 0 0 0

0 0 1 0 0 1 0 1 0 0 1 0

0 1 1 0 1 1 1 0 1 1 1 0

0 1 0 1 1 1 11 1 0 1 0 1

1 0 1 0 0 1 0 1 1 0 1 0

1 1 0 0 1 0 1 1 1 1 0 0

0 1 0 1 0 0 0 1 0 1 0 1
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 (2.4)

2.2 EVALUATING FITNESS

The chromosomes are passed to the cost function fun for evaluation. Each 
chromosome then has an associated cost:

cost=fun(pop)

An example of a cost function is

cost f x x xN n
n

N

= =
=

∑( )1
2

1

, . . . ,  (2.5)

Here, we assume that the cost function does the work of translating the vari-
able values into the proper range and/or converting from binary to quantized 
real numbers. A variable x is bounded by xhi and xlo, so

x=xlo+(xhi-xlo)*pop(1,:)

Thus, if the variables for the population in (2.3) are bound by −5 ≤ xn ≤ 5, then 
the fi rst chromosome has the values

chrom1 0 549 3 3812 1 9538 1 2163= − − −[ ]. . . .  (2.6)



Using the population in (2.3) as input to (2.5) results in

cost =
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 (2.7)

Binary variables may have to be converted to continuous values by the 
MATLAB command

x=xlo+(xhi-xlo)*([2.^(-[1:nbits])]*reshape(pop(1,:),
 nbits,nvar))

If the variables for the population in (2.4) are bound by −5 ≤ xn ≤ 5, then the 
fi rst chromosome has the values

chrom1 = 3.75 0 0 0[ ]  (2.8)

Sometimes, the binary string does not need conversion, or the string repre-
sents a selection rather than a continuous number.

Formulating the cost function is an extremely important step in optimiza-
tion. Since the function must be called many times to evaluate the cost of the 
population members, there is usually a tradeoff between calculation accuracy 
and evaluation time. To reduce convergence time, only relevant variables of 
the cost function should be included. For instance, when maximizing the gain 
of a microstrip antenna, the size of the patch is important, while the color of 
the antenna is not. Some formulations of the cost function are easier to opti-
mize than other formulations. For instance, optimizing the location of the 
zeros on the unit circle for an array factor works better than optimizing the 
element weights when minimizing the sidelobe levels of the array factor. Time 
spent carefully formulating the cost function before optimizing will reap con-
siderable rewards later.

Frequently, the cost function must satisfy more than one goal. As an 
example, the antenna gain may be maximized while at the same time, the 
volume of the antenna is minimized. This type of problem is known as 
multiple-objective optimization. A common way of dealing with multiple 
objectives is to normalize the cost of each objective, weight each cost, then 
add the weighted costs together to get a single cost for the overall cost func-
tion. Thus, the output of the cost function that has N objectives is

EVALUATING FITNESS 33
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cost =
=

∑w cn n
n

N

1

 (2.9)

where ΣN
n=1wn = 1 and 0 ≤ cn ≤ 1. Normalizing the cost is important to ensure 

control over the relative weighting of each cost.

2.3 NATURAL SELECTION

Only the healthiest members of the population are allowed to survive to the 
next generation. There are two common ways to invoke natural selection. The 
fi rst is to keep natsel healthy chromosomes and discard the rest. First, the cost 
is sorted in order to determine the relative fi tness of the chromosomes:

[cost ind]=sort(cost)

Sorting the cost in (2.7) leads to

[ ] =

  6.310 4
  9.485 8
16.219 6
17.031 1
25.308 3
26.888 5
35.7

cost ind
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64.313 2
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The ind column vector is the row where the cost resided in (2.7). Next, the 
population is sorted so that it corresponds to the cost and only natsel = 4 
chromosomes are retained:

pop=pop(ind(1:natsel),:)

cost=cost(1:natsel)

The resulting population and cost are given by

[ ] =

0.41865 0.37948 0.68222 0.59356 6.3100

0.67214 0.42889
pop cost

00.69790 0.64491 9.4852

0.52515 0.50281 0.54167 0.89977 16.2190

0.444510 0.83812 0.30462 0.37837 17.0310
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A second approach, called thresholding, keeps all chromosomes that have a 
cost below a threshold cost value.



pop=pop(find(cost < maxcost));

If maxcost is the average value of the cost vector, then the result is identical 
to (2.11). If maxcost = 10, then only the fi rst two rows in (2.11) remain. Thresh-
olding avoids the sorting step. Some alternatives for maxcost might be the 
mean of the costs or the median of the costs. The chromosomes that survive 
form the mating pool, or the group of chromosomes from which parents will 
be selected to create offspring.

2.4 MATE SELECTION

The most fi t members of the population are assigned the highest probability 
of being selected for mating. The two most common ways of choosing mates 
are roulette wheel and tournament selection.

2.4.1 Roulette Wheel Selection

The population must fi rst be sorted for roulette wheel selection. Each chromo-
some is assigned a probability of selection on the basis of either its rank in the 
sorted population or its cost. Rank order selection is the easiest implementa-
tion of roulette wheel selection. The MATLAB code to create the roulette 
wheel is

parents=1:natsel

prob=parents/sum(parents)

odds=[0 cumsum(prob)]

When natsel = 4, these MATLAB commands produce

parents

prob

odds

=[1 2 3 4]

=[0.1 0.2 0.3 0.4]

=[0 0.1 0.3 0.6 1]

(2.12)

The roulette wheel for a selection pool of four parents is shown in Figure 2.2. 
Chromosomes with low costs have a higher percent chance of being selected 
than do chromosomes with higher costs. In this case, the fi rst or best chromo-
some has a 40% chance of being selected. As more parents are added, the 
percent chance of a chromosome being selected changes. For instance, Figure 
2.3 shows a roulette wheel for eight parents in the mating pool. Now, the best 
chromosome has a 22% chance of being selected. The roulette wheel needs to 
be computed only once, since the number of parents in the mating pool 
remains constant from generation to generation.

MATE SELECTION 35
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It is possible to develop a roulette wheel on the basis of the costs associated 
with the chromosomes. There are several problems related to this approach:

1. The roulette wheel must be recomputed every generation.
2. If the mutation rate is low, then in later generations all the chromosomes 

will have approximately the same probability of selection.
3. The costs must be normalized in order to develop the probabilities. The 

normalization is arbitrary.

As a result, we recommend rank order selection over a cost-based approach.
Once the probability of selection is assigned to each parent, then a uniform 

random number (r) is generated. For the four parent mating pool, the chromo-
some selected is based on the value of r:

Figure 2.2. Roulette wheel probabilities for four parents in the mating pool.

Figure 2.3. Roulette wheel probabilities for eight parents in the mating pool.
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For example, if r = 0.5678, then the second chromosome is selected.

2.4.2 Tournament Selection

A second approach to fi nding parents randomly selects two small groups of 
chromosomes from the mating pool (usually two or three per group). The 
chromosome with the lowest cost in each group becomes a parent. Enough of 
these tournaments are held to generate the required number of parents. The 
tournament repeats for every parent needed. Tournament selection works well 
with thresholding, because the population never needs sorting. Sort speed 
becomes an issue only with large population sizes. Figure 2.4 diagrams the 
tournament selection process when three chromosomes are selected for each 
tournament. Rank order roulette wheel and tournament seletion result in 
nearly the same probability of selection for the chromosomes [1].

2.5 GENERATING OFFSPRING

Offspring can be generated from selected parents in a number of different 
ways. For binary chromosomes, uniform crossover is the most general proce-
dure. A mask that consists of ones and zeros is generated for each set of 
parents. The mask has the same number of bits as the parent chromosomes. 
Some mask examples include

Single-point crossover:

mask=zeros(1,ceil(rand*(nvar*nbit -1))).
 *ones(1,nvar*nbit)

Figure 2.4. Tournament selection.
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Uniform crossover:

mask=round(rand(1,nvar*nbit))

The offspring are created from portions of each parent. When the bit in the 
mask is a one, then the corresponding bit from the mother is passed to off-
spring1 and the corresponding bit from the father is passed to offspring2. In 
a similar manner, when the bit in the mask is a zero, then the corresponding 
bit from the mother is passed to offspring2 and the corresponding bit from 
the father is passed to offspring1. In MATLAB code, this process appears 
as

offspring1=mask.*mother+not(mask).*father

offspring2=not(mask).*mother+mask.*father

Many other types of binary crossover are possible.
To demonstrate the concept of binary crossover, consider the following two 

parents:

mother=[1 0 1 0 1 0 1 0 1 0 1 0]

father=[1 1 1 1 1 1 0 0 0 0 0 0]

If the mask for single point crossover is given by

mask=[1 1 1 0 0 0 0 0 0 0 0 0]

then the offspring are

offspring1=[1 0 1 1 1 1 0 0 0 0 0 0]

offspring2=[1 1 1 0 1 0 1 0 1 0 1 0]

If the mask for double-point crossover is given by

mask=[1 1 1 0 0 0 0 1 1 1 1 1]

then the offspring are

offspring1=[1 0 1 1 1 1 0 0 1 0 1 0]

offspring2=[1 1 1 0 1 0 1 0 0 0 0 0]

If the mask for uniform crossover is given by

mask=[1 1 0 0 0 1 1 0 1 0 0 1]



then the offspring are

offspring1=[1 0 1 1 1 0 1 0 1 0 0 0]

offspring2=[1 1 1 0 1 1 0 0 0 0 1 0]

It is possible to use a mask for nonbinary chromosomes as well. This 
approach shuffl es variable values between parent chromosomes to produce 
the offspring. More common approaches combine the variable values from 
the parents. One approach is to weight the parents and then add them together 
to produce offspring [2]

offspring1

offspring2

= mother+(1- )father

=(1- )mother+ fath

β β

β β eer
 (2.14)

where 0 ≤ β ≤ 1. When β = 0.5, the result is an average of the variables of the 
two parents. This linear combination process is done for all variables to the 
right or to the left of some crossover point, or it can be applied to each vari-
able. The variables can be blended by using the same β or by choosing differ-
ent values for each variable [3]. These blending methods create values of the 
variables between the values bracketed by the parents. They do not introduce 
values beyond the extremes already represented in the population.

An extrapolating method fi nds offspring that have variable values not 
bounded by the values of the parents. Linear crossover [4] creates values 
outside the values of the variables by fi nding three new values given by

offspring1=0.5*mother+0.5*father

offspring2=1.5*mother–0.5*father

offspring3=–1.5*mother+0.5*father

Only two of the three are kept. Any value outside the constraints is discarded. 
Heuristic crossover [5] is a variation where some random number (β) is chosen 
on the interval [0,1] and the variables of the offspring are defi ned by [5]

offspring=b*(mother–father)+mother

Another possibility is to generate different β values for each variable. This 
method also allows generation of offspring outside the values of the two 
parent variables. Sometimes values are generated outside the allowed range. 
If this happens, the offspring is discarded and the algorithm tries another β.
Quadratic crossover [6] performs a quadratic interpolation of the cost as a 
function of each variable. Three parents and their costs are necessary to 
perform a quadratic fi t. The offspring from these three parents is the chromo-
some that corresponds to the minimum of the quadratic.
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Continuous single point crossover closely mimics single-point crossover for 
binary GAs [1]. It begins by randomly selecting a variable as the crossover 
point within the parent chromosomes:

q=ceil(rand*nvar)

Let

mother = [m1m2  .  .  .  mq
  .  .  .  mnvar]

father = [f1f2  .  .  .  fq
  .  .  .  fnvar]

The selected variables are combined to form new variables that will appear in 
the offspring

bq = mq − β[mq−fq]

gq = fq + β[mq−fq]

where β is also a random value between 0 and 1. The fi nal step is to complete 
the crossover with the rest of the chromosome as before:

offspring1 = [m1m2  .  .  .  bq
  .  .  .  fnvar]

offspring2 = [f1f2  .  .  .  gq
  .  .  .  mnvar]

If the fi rst variable of the chromosomes is selected, then only the variables to 
the right of the selected variable are swapped. If the last variable of the chro-
mosomes is selected, then only the variables to the left of the selected variable 
are swapped. This method does not allow offspring variables outside the 
bounds set by the parent unless β > 1.

To demonstrate the concept of continuous variable crossover, consider the 
following two parents:

mother = [1 2 3 4 5 6]

  father  = [3 2 1 0 1 2]

First, perform crossover with one random weighting variable:

b=rand=0.78642

chrom3=b*chrom1+(1-b)*chrom2

chrom3=[1.4272 2 2.5728 3.1457 4.1457 5.1457]

chrom4=(1-b)*chrom1+b*chrom2

chrom4=[2.5728 2 1.4272 0.85433 1.8543 2.8543]



Next, a random weighting variable is tried for each variable in the 
chromosome:

b=rand(1,6)=[0.30415 0.79177 0.22736 0.24999 0.61258 0.61086]

chrom3=b.*chrom1+(1-b).*chrom2

chrom3=[2.3917 2 1.4547 0.99997 3.4503 4.4434]

chrom4=(1-b).*chrom1+b.*chrom2

chrom4=[1.6083 2 2.5453 3 2.5497 3.5566]

Linear crossover results in

chrom3=0.5*chrom1+0.5*chrom2

chrom3=[2 2 2 2 3 4]

chrom4=1.5*chrom1-0.5*chrom2

chrom4=[0 2 4 6 7 8]

chrom5=-.5*chrom1+1.5*chrom2

chrom5=[4 2 0 -2 -1 0]

Heuristic crossover produces

b=0.78642

chrom3=chrom1-b*(chrom1-chrom2)

chrom3=[2.5728 2 1.4272 0.85432 1.8543 2.8543]

chrom4=chrom1+b*(chrom1-chrom2)

chrom4=[-0.57284 2 4.5728 7.1457 8.1457 9.1457]

Continuous single-point crossover produces

a=round(rand*6)

a=5

chrom3=[chrom1(1:a-1) chrom1(a)-b*(chrom1(a)-
 chrom2(a)) chrom2(a+1:6)]

chrom3=[1 2 3 4 1.8543 2]

chrom4=[chrom2(1:a-1) chrom2(a)+b*(chrom1(a)-
 chrom2(a)) chrom1(a+1:6)]

chrom4=[3 2 1 0 4.1457 6]
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2.6 MUTATION

Mutation induces random variations in the population. The mutation rate is 
the portion of bits or values within a population that will be changed. A binary 
mutation changes a one to a zero or a zero to a one. The MATLAB commands 
to accomplish this are

pop(mutindx)=abs(pop(mutindx)-1)

Mutation for continuous variables can take many different forms. One way is 
to totally replace the selected mutated value with a new random value

pop(mutindx)=rand(1,nmut);

This approach keeps all variable values within acceptable bounds. An alterna-
tive is to randomly perturb the chosen variable value. Care must be taken to 
ensure that the values do not extend outside the limits of the variables.

2.7 TERMINATING THE RUN

This generational process is repeated until a termination condition has been 
reached. Common terminating conditions are

• Set number of iterations.
• Set time reached.
• A cost that is lower than an acceptable minimum.
• Set number of cost function evaluations.
• A best solution has not changed after a set number of iterations.
• Operator termination.

These processes ultimately result in the next-generation population of 
chromosomes that is different from the initial generation. Generally the 
average fi tness will have increased by this procedure for the population, since 
only the best chromosomes from the preceding generation are selected for 
breeding.
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3
Step-by-Step Examples

The last chapter provided the details of how a GA works. This chapter pres-
ents two detailed array optimization examples. The fi rst example applies a GA 
to one of the cost functions in Chapter 1. As will be seen, the GA outperforms 
all the traditional methods. The second example exploits the power of the 
binary GA through optimizing a thinned linear array for the lowest maximum 
sidelobe level. This example demonstrates the power of using a GA to solve 
problems with discrete variables. Both examples are presented in minute 
detail, so the novice can easily follow all the steps.

3.1 PLACING NULLS

The fi rst example is an objective function from Chapter 1: AF4. This objective 
function was selected, because it has multiple minima yet has only two vari-
ables, so the process can be monitored using plots of the objective function.

Each chromosome contains two variables. The variables have values 
between zero and one. Since the actual extent of the variables is between 0 
and 2π, the objective function must perform the necessary scaling. The binary 
GA encodes each value using 7 bits. Thus, the binary chromosome contains 
14 bits. A uniform random-number generator creates each population. Binary 
digits are obtained by rounding the output of the random-number generator. 
Here, we start both GAs at the exact same spots on the objective function 
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(see Fig. 3.1). The chromosomes are passed to the objective function and the 
corresponding outputs are listed in Table 3.1. The objective function converts 
the continuous values into binary form.

The next step sorts the initial population from the lowest to the highest 
value of the objective function as shown in Table 3.2. Using a 50% discard 
rate results in discarding the bottom four chromosomes. Note that chromo-
somes 4 and 5 differ by less than 4% but 4 survives while 5 does not. They do 
not come from the same area of the objective function, so one area remains 
active in the population while the other area does not.

Roulette wheel selection will be used to pick two sets of parents that will 
produce four offspring to replace the discarded chromosomes in the popula-
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Figure 3.1. Plot of the initial generation for the GA with and without binary coding.

TABLE 3.1. Initial Population

 GA with Binary Encoding GA without Binary Encoding

Chromosome AF4 Chromosome AF4

01011001011000 1.4502 0.3465 0.6929 1.4502
10010001000110 1.1159 0.5669 0.5512 1.1159
00101101011001 1.3266 0.1732 0.7008 1.3266
00000101100011 1.1597 0.0157 0.7795 1.1597
11110000110001 0.5534 0.9449 0.3858 0.5534
11101000010111 0.6919 0.9134 0.1811 0.6919
10100001101011 0.5362 0.6299 0.8425 0.5362
01101011000100 1.5472 0.4173 0.5354 1.5472



tion. The probability of selection is based on the position of the ranked chro-
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In this case, the fi rst chromosome is 4 times more likely to be selected than 
the last chromosome. Next, generate a uniform random number (r). If 0 ≤ r ≤
0.4, then the fi rst chromosome is selected. If 0.4 < r ≤ 0.7 then the second 
chromosome is selected, and so on (see Fig. 3.2). For our example, the parent 
selection parameters are shown in Table 3.3. For the GA with binary encod-
ing, chromosomes 2 and 4 mate with crossover occurring between bits 11 and 
12 to produce chromosomes 5 and 6, and chromosomes 3 and 1 mate with 
crossover occurring between bits 4 and 5 to produce chromosomes 7 and 8. In 
the GA without binary encoding, chromosomes 2 and 1 mate with crossover 
occurring at variable 1 to produce chromosomes 5 and 6, and chromosomes 1 
and 2 mate with crossover occurring at variable 1 to produce chromosomes 7 
and 8. The new crossover values are given by

0 9324 0 9449 0 03960 0 9449 0 6299

0 6424 0 6299 0 03960

. . . [ . . ]

. . . [

= − −

= + 00 9449 0 6299

0 7927 0 6299 0 5167 0 6299 0 9449

0 7821 0

. . ]

. . . [ . . ]

.

−

= − −

= .. . [ . . ]9449 0 5167 0 6299 0 9449+ −

 (3.2)

TABLE 3.2. Initial Population Sorted. (Chromosomes in 
Italics are Discarded)

 GA with Binary Encoding GA without Binary Encoding

Chromosome AF4 Chromosome AF4

10100001101011 0.5362 0.6299 0.8425 0.5362
11110000110001 0.5534 0.9449 0.3858 0.5534
11101000010111 0.6919 0.9134 0.1811 0.6919
10010001000110 1.1159 0.5669 0.5512 1.1159
00000101100011 1.1597 0.0157 0.7795 1.1597
00101101011001 1.3266 0.1732 0.7008 1.3266
01011001011000 1.4502 0.3465 0.6929 1.4502
01101011000100 1.5472 0.4173 0.5354 1.5472
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Parents and new offspring are shown in Table 3.4. Some of the offspring have 
lower values of AF4 than the parents.

Mutation occurs after crossover. A mutation rate of 20% was used for both 
GAs. Consequently, the GA with binary encoding has

TABLE 3.3. Chromosomes Paired Using Roulette Wheel Selection

 GA with Binary Encoding GA without Binary Encoding

  Crossover   Crossover at
r Chromosome after Bit r Chromosome Variable

0.6265 2 11 0.6762 2 1
0.9410 4 11 0.1685 1 1
0.8905 3  4 0.04999 1 1
0.05746 1  4 0.4373 2 1

Figure 3.2. Roulette wheel selection of the top four chromosomes.

TABLE 3.4. Population of Generation 1 after Crossover

 GA with Binary Encoding GA without Binary Encoding

Chromosome AF4 Chromosome AF4

10100001101011 0.5362 0.6299 0.8425 0.5362
11110000110001 0.5534 0.9449 0.3858 0.5535
11101000010111 0.6919 0.9134 0.1811 0.6919
10010001000110 1.1159 0.5669 0.5512 1.1159
11110000110110 0.5648 0.9324 0.8425 0.7485
10010001000001 1.1426 0.6424 0.3858 1.0555
11101000010011 0.6821 0.7927 0.3858 0.3820
10100001101111 0.5727 0.7821 0.8425 0.3272



14 7 0 2 19 6
bits chromosomes mutation

rate

� � �× × =. .  (3.3)

or 20 bits to be mutated. Only seven chromosomes can be mutated because 
elitism is used. The mutated (row,column) pairs are given by

( ( ( ( ( ( ( ( ( (

(

5,9) 7,10) 5,7) 2,8) 6,14) 8,5) 6,4) 6,13) 3,8) 4,6)

3,6) (( ( ( ( ( ( ( ( (6,4) 3,8) 3,9) 5,11) 6,3) 2,2) 8,1) 8,10) 2,2)
 (3.4)

The GA without binary encoding mutates three variables by replacing them 
with a uniform random number. These mutated pairs are given by

( )( )( )2 1 4 2 7 1, , ,  (3.5)

Table 3.5 lists the mutated chromosomes and their associated value of AF4.
Several chromosomes improved, while several others lost ground. When the 
chromosomes are sorted as shown in Table 3.6, new chromosomes moved into 
the top positions. A major difference in the binary encoding is that all the 
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TABLE 3.5. Population of Generation 1 after Mutation. 
(Boldface Indicates a Mutation)

 GA with Binary Encoding GA without Binary Encoding

Chromosome AF4 Chromosome AF4

10100001101011 0.5362 0.6299 0.8425 0.5362
10110001110001 0.2619 0.7157 0.3858 0.6584
11101101110111 0.6048 0.9134 0.181 0.6919
10010101000110 1.0621 0.5669 0.4644 1.2453
11110010011110 0.6588 0.9324 0.8425 0.7485
10100001000010 0.8956 0.6424 0.3859 1.0555
11101000000011 0.4016 0.7164 0.3858 0.6547
00101001111111 0.4002 0.7821 0.8425 0.3272

TABLE 3.6. Sorted Results after First Generation

 GA with Binary Encoding GA without Binary Encoding

Chromosome AF4 Chromosome AF4

10110001110001 0.2619 0.7821 0.8425 0.3272
00101001111111 0.4002 0.6299 0.8425 0.5362
11101000000011 0.4016 0.7164 0.3858 0.6547
10100001101011 0.5362 0.7157 0.3858 0.6584
11101101110111 0.6048 0.9134 0.1811 0.6919
11110010011110 0.6588 0.9324 0.8425 0.7485
10100001000010 0.8956 0.6424 0.3858 1.0555
10010101000110 1.0621 0.5669 0.4644 1.2453
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chromosomes except the top one received at least one mutation while only 
three chromosomes were mutated in the GA without binary encoding. After 
the fi rst generation, the binary GA is in the lead.

The second generation begins with the population in Table 3.6 (Figure 3.3). 
The probabilities of selection for the top four chromosomes do not change. A 
new set of random numbers are generated to pick the parents and crossover 
points as shown in Table 3.7. The value of the crossover variable is the same 
for chromosomes 3 and 4 as well as for chromosomes 1 and 2. As a result, the 
offspring are exact replicas of the parents. The mutated and sorted population 
appears in Table 3.8 and Figure 3.4. All the binary encoded chromosomes are 
unique at this point, but the nonencoded chromosomes have two identical 
pairs. The binary GA seems to be way ahead at this point.
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Figure 3.3. Population after the fi rst generation: o binary coding, + no binary encoding.

TABLE 3.7. Chromosomes Paired Using Roulette Wheel Selection

 GA with Binary Encoding GA without Binary Encoding

  Crossover   Crossover at
r Chromosome after Bit r Chromosome Variable

0.04064 1 13 0.8062 3 2
0.8391 3 13 0.9494 4 2
0.1394 1 11 0.1743 1 2
0.9086 4 11 0.6071 2 2



The GAs are run for two more generations. Results are shown in Tables 
3.9 and 3.10 as well as in Figures 3.5 and 3.6. We stopped the minimization 
after four generations, because the GAs were getting very close to the true 
minimum of 0.11659 at (0.75693,0.87021). Not all the chromosomes ended up 
in the valley containing the global minimum. Mutations keep the algorithms 
exploring diverse areas. Figure 3.7 is a plot of the convergence of both GAs. 
The lower two curves are the best results after each generation. Generation 
0 is the initial random population. The upper two curves are the population 
averages. The best curves either stay the same or go lower than the previous 
generation. The average curves can increase because some chromosomes may 
have higher costs.
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Figure 3.4. Population after the second generation: o binary coding, + no binary encoding.

TABLE 3.8. Sorted Results after Second Generation

 GA with Binary Encoding GA without Binary Encoding

Chromosome AF4 Chromosome AF4

10110011101011 0.2306 0.7821 0.8425 0.3272
10110001110000 0.2503 0.7821 0.8425 0.3272
10110001110001 0.2619 0.7157 0.9473 0.4180
11010101110011 0.4264 0.9223 0.9983 0.4698
11100000001011 0.6396 0.6299 0.8425 0.5362
10100001000011 0.8997 0.6299 0.8425 0.5362
00101001100010 1.1912 0.7164 0.3858 0.6547
10101110010011 1.2526 0.7157 0.3858 0.6584
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TABLE 3.10. Sorted Results after Fourth Generation

 GA with Binary Encoding GA without Binary Encoding

Chromosome AF4 Chromosome AF4

10110111110001 0.1481 0.7157 0.8925 0.1451
10110101110001 0.1746 0.7157 0.9034 0.1634
00011011110111 0.3985 0.7157 0.9034 0.1634
10100011101111 0.5335 0.7821 0.8864 0.2230
10100100110001 1.0387 0.7821 0.8425 0.3272
01001101101001 1.0541 0.7821 0.4340 0.4442
01011101111011 1.0602 0.6397 0.9034 0.5678
01011101111111 1.1281 0.7157 0.6715 0.6430

TABLE 3.9. Sorted Results after Third Generation

 GA with Binary Encoding GA without Binary Encoding

Chromosome AF4 Chromosome AF4

10110101110001 0.1746 0.7157 0.9034 0.1634
10110011101011 0.2306 0.7821 0.8864 0.2230
11011101110011 0.5348 0.7821 0.8425 0.3272
00011001110011 0.5827 0.7157 0.9473 0.4180
11110101111000 0.6028 0.9223 0.9983 0.4698
11100001101001 0.6804 0.4647 0.8425 1.0072
10110010110000 0.7523 0.7157 0.2786 1.0146
00110010110000 1.2198 0.5362 0.9473 1.0620
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Figure 3.5. Population after the third generation: o binary coding, + no binary encoding.
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It is important to note that these runs proved successful in a very short 
period of time. Reinitializing the random-number generator and running the 
algorithms again will produce different results. Changing the GA parameters, 
such as population size and mutation rate, will also produce different results. 

Figure 3.6. Population after the fourth generation: o binary coding, + no binary encoding.

Figure 3.7. Convergence of the GA with (solid lines) and without (dashed lines) binary encoding 
for optimizing AF4.
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The random nature of the GA makes it unpredictable. It usually gives a good 
result, but not necessarily the best result, when optimizing a complex 
function.

3.2 THINNED ARRAYS

Low sidelobes can be obtained through carefully amplitude weighting the 
signals received at each element. An alternative for large arrays is space taper-
ing [1]. Space tapering produces the low-sidelobe amplitude taper by making 
the element density proportional to the desired amplitude taper at a particular 
location on the array [2]. One approach is aperiodic or nonuniform spacing of 
the elements. Nonuniformly spaced elements generate a low-sidelobe ampli-
tude taper by placing equally weighted elements in such a way that the spacing 
of the elements creates a tapered excitation across the aperture. A second 
approach is the thinned array [3]. Thinning turns off some elements in a 
uniform array to create a desired low-sidelobe amplitude taper. An element 
that is “on” is connected to the feed network. One that is “off” is connected 
to a matched load. The periodic nature of this array versus the aperiodic array 
facilitates construction of the array.

Since analytical methods do not exist for aperiodic array synthesis, optimi-
zation or statistics must be used to fi nd appropriate thinning confi gurations. 
The element density is greatest at the center of the array and decreases toward 
the edges. Space tapering decreases the maximum sidelobes of the array but 
increases the lowest array sidelobes. In an optimum solution, the peaks of all 
the sidelobes are at about the same level. A numerical optimization approach 
was fi rst tried in 1964 [4]. Dynamic programming provided a numerical opti-
mization method to fi nd the lowest sidelobe level of a thinned array. The 
binary GA is a natural for this problem and was one of the fi rst uses of a GA 
in antenna design [5].

The objective function returns the highest sidelobe level of the array
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Since the array is assumed to be symmetric about its physical center, a cosine 
is used in the array factor instead of a complex exponential. The center two 
elements and both edge elements are always turned on. Consequently, the 
weight vector has its fi rst and last elements equal to one. The center elements 
are assumed to be on because low-sidelobe amplitude tapers always have a 
maximum at the center. The edge elements are assumed to be on in order to 
keep the mainbeam width the same. This is important when searching for the 
maximum sidelobe level. Dividing by the number of elements turned on nor-
malizes the array factor to its peak. The chromosome is a 1 × Ncbits vector full 
of ones and zeros. Forcing the edge elements to be one establishes a well-
defi ned mainbeam for all possible chromosomes; hence the sidelobe region 
begins at the fi rst null next to the mainbeam. A good estimate of the location 
of the fi rst null is u = 1/(dNT).

An exhaustive search of all possible chromosomes requires 2Ncbits objective 
function evaluations. This approach quickly bogs down in computer time. A 
graph of the lowest sidelobe level as a function of NT was found through an 
exhaustive search for 16 ≤ NT ≤ 44 and is plotted in Figure 3.8. For the most 
part, the sidelobe level decreases as NT increases. Calculating AFth for all pos-
sible thinning combinations when NT = 44 took approximately 20 min. The 
computation time approximately doubles every time NT increments by 2. If 
this holds true as NT increases, then to fi nd AFth for NT = 62 would take 
approximately one week.

A binary GA for an array with NT = 62 has an initial population as given 
in Table 3.11. The population after sorting appears in Table 3.12. None of the 
chromosomes are better than a uniform array. Parents are found through 
tournament selection. Two contenders are randomly selected. The one with 

Figure 3.8. The minimum value of AFth versus NT was found using exhaustive search.
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the best cost becomes a mother. Another two contenders are randomly 
selected, and the best one becomes a father. Since the population is already 
sorted, the winner is always the one highest on the list. Table 3.13 shows that 
two chromosomes were randomly selected (4 and 1) and chromosome 1 was 
the winner. Its mate is also chromosome 1, which was selected from chromo-
somes 2 and 1. The next set of parents also were chromosomes 1 and 1. 
Random masks were generated and applied to the parents in order to create 

TABLE 3.11. Initial Population for Array Thinning

Chromosome AFth

100111001110000111010000 −9.071
101101000110110000011001 −7.267
010101101010011101010101 −7.252
100111001111011111101101 −10.722
010010111010000101101000 −8.374
010101010010100100100011 −9.557
100101010111100010000111 −8.167
101001000011101001010000 −5.734

TABLE 3.12. Population after Sorting

Chromosome AFth

100111001111011111101101 −10.722
010101010010100100100011 −9.557
100111001110000111010000 −9.071
010010111010000101101000 −8.374
100101010111100010000111 −8.167
101101000110110000011001 −7.267
010101101010011101010101 −7.252
101001000011101001010000 −5.734

TABLE 3.13. Parents for Generation 1 Were Found Using 
Tournament Selection

Contenders Winners Parents

4,1 1 100111001111011111101101
2,1 1 100111001111011111101101
1,1 1 100111001111011111101101
1,4 1 100111001111011111101101



the offspring (see Table 3.14). In this case, all the parents were chromosome 
1, so all the offspring are also chromosome 1. No improvements result from 
these crossovers. A 5% mutation rate results in 9 random bit changes in the 
population outside of the top chromosome. Table 3.15 lists the mutated chro-
mosomes and their costs. Two of the mutated chromosomes result in AFth

values higher than those of the best value in the initial population. Table 3.16 
displays the sorted population at the end of generation 1 and the beginning 
of generation 2.

Generation 2 starts with a new tournament as shown in Table 3.17. This 
time there is some diversity in the parents. Creating new masks and perform-

TABLE 3.14. Random Masks Are Generated for Uniform Crossover to Create Offspring 
in Generation 1

Random Mask Offspring AFth

001110100110000110010010 100111001111011111101101 −10.722
110001011001111001101101 100111001111011111101101 −10.722
011010100011001110110101 100111001111011111101101 −10.722
100101011100110001001010 100111001111011111101101 −10.722

TABLE 3.15. Population of Generation 1 after Mutation. 
(Boldface Indicates a Mutation)

Chromosome AFth

100111001111011111101101 −10.722
010101010011100100100011 −9.6814
110111001100000111000000 −8.1671
010010111010000101101000 −8.374
100111011111011111101101 −11.378
100111001111011111101100 −10.857
100111001111011111101101 −10.722
100101101111111111101101 −9.7262

TABLE 3.16. Population after Sorting Generation 1

Chromosome AFth

100111011111011111101101 −11.378
100111001111011111101100 −10.857
100111001111011111101101 −10.722
100111001111011111101101 −10.722
100101101111111111101101 −9.726
010101010011100100100011 −9.681
010010111010000101101000 −8.374
110111001100000111000000 −8.167
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TABLE 3.18. Random Masks Are Generated for Uniform Crossover to Create Offspring 
in Generation 2

Random Mask Offspring AFth

000101111011011000001111 100111001111011111101101 −10.722
111010000100100111110000 100111011111011111101101 −11.378
011011000101111001100101 100111001111011111101101 −10.722
100100111010000110011010 100111011111011111101100 −11.378

TABLE 3.19. Population of Generation 2 after Mutation. 
(Boldface Indicates a Mutation)

Chromosome AFth

100111011111011111101101 −11.378
100111001111010111101100 −12.12
100111011111011111101101 −11.378
100111001111011101101101 −11.679
100110001111011111101101 −9.567
100111111111001111001101 −12.987
100111001111011111001101 −11.962
100110011111011111101100 −10.138

TABLE 3.20. Population after Sorting Generation 2

Chromosome AFth

100111111111001111001101 −12.987
100111001111010111101100 −12.12
100111001111011111001101 −11.962
100111001111011101101101 −11.679
100111011111011111101101 −11.378
100111011111011111101101 −11.378
100110011111011111101100 −10.138
100110001111011111101101 −9.567

ing the mating results in four new offspring (Table 3.18). Although the off-
spring are not all the same, they are just replicas of already existing parents. 
Consequently, mutation will provide the needed population diversity as before. 
Table 3.19 shows the mutated bits in the population. Table 3.20 ranks the 
mutated population in preparation for generation 3. After two generations, 
the peak sidelobe level has decreased by 2 dB in the best chromosome. So far, 
mutation provides the diversity while crossover results in replication of only 
some of the good chromosomes. A uniform array still has lower sidelobes at 
this point.

TABLE 3.17. Parents for Generation 2 Were Found Using 
Tournament Selection

Contenders Winners Parents

3,3 3 100111001111011111101101
3,1 1 100111011111011111101101
1,1 1 100111011111011111101101
3,2 2 100111001111011111101100



The GA continues this process. At generation 31, it fi nds the optimum 
solution. Table 3.21 presents the fi nal population with their values of AFth. If 
we assume that seven different chromosomes are mutated every generation 
(the maximum possible), the number of function evaluations needed to fi nd 
the minimum in this example is

Function evaluations = + × =8 31 7 225  (3.7)

The GA does not always perform this well. The random variables produce 
different results every independent run. Some are good and some are not. To 
demonstrate the varied performance of the GA, 200 independent runs were 
made and the results analyzed. Figure 3.9 is a bar graph of the number of runs 
that attained a given best value for AFth. Over half of the time, the GA found 
a thinned confi guration that had a best result with a peak sidelobe level below 

TABLE 3.21. Final Population after Generation 31

Chromosome AFth

111111111111101111001110 −18.35
111111111011110111001111 −16.652
111111111011101111001110 −16.087
111111111011101111001110 −16.087
111111111011100111001111 −15.556
111111111011111111001111 −15.118
111011111011101111001111 −14.231
111111111001101111001101 −13.664

Figure 3.9. The GA performance was averaged over 200 runs. This plot shows the number of 
these runs that attained a best value of AFth after 200 generations.
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Figure 3.10. Plot of the best AFth in the population as a function of generation when averaged 
over 200 independent runs.

Figure 3.11. Limiting the GA to 50 generations and performing 200 independent results pro-
duces this histogram.

−18 dB. Figure 3.10 is a graph of the best result averaged over the 200 inde-
pendent results for each generation. On the average, the GA starts out fast 
and then slows down. Decreasing the maximum number of generations to 50 
signifi cantly decreases the performance as shown in Figure 3.11. Stopping too 
soon can deny you the solution you seek. Figure 3.12 shows a small improve-
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ment when the number of generations increases to 500. In particular, there 
are about 20 solutions in Figure 3.11 that are worse than the worst solution in 
Figure 3.12.

The following chapters cover a wide range of applications of GAs in elec-
tromagnetics but do not provide as much detail as this chapter. In most cases, 
the GAs operate very similar to the ones used in this chapter. Only the cost 
functions are much more complex and diffi cult to compute. The Appendix  
presents some MATLAB fi les for binary and continuous GAs.
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4
Optimizing Antenna 

Arrays

An array response based on the weighting and placement of isotropic point 
sources is called the array factor and, for a linear array, is given by

AF =
=

∑w en
j

n

N
nΨ

1

 (4.1)

where wn = anejαn = element weights
Ψn = phase due to element position and observation direction

 N = number of elements in the array

In many situations, it is important to take into account the type of antenna 
elements used in the array. The array factor can be converted to a far-fi eld 
antenna radiation pattern by the following expression

FF EP AF= ×  (4.2)

where EP (element pattern) is an angular description of the far fi eld (FF) of 
a single antenna in the array, assuming that all the elements in the array have 
identical patterns. A full-wave solution must be used to take into account 
coupling between elements and any scattering from the environment, such as 
a ground plane. One effect of mutual coupling is that EP is different for every 
element, so (4.2) cannot be used.

The cost function for the GA normally includes some aspect of the array 
factor or antenna pattern. Including element impedance or feed network 
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design is also important when practical. Optimizing the amplitude weights is 
not common, because there are many linear methods available for array factor 
synthesis based on amplitude weights. Optimizing the amplitude weights is 
important when certain restrictions on the weights or pattern make linear 
synthesis diffi cult. The element phases and positions are contained in the argu-
ments of the exponents, so linear methods do not apply and GAs work well.

Arrays come in many different confi gurations. A linear array along the x
axis has an array factor given by

AF =
=

∑w en
jkx

n

N
nsinθ

1

 (4.3)

and a linear array along the z axis has an array factor given by

AF =
=

∑w en
jkz

n

N
n cosθ

1

 (4.4)

Amplitude-only synthesis has an = 0, while phase-only synthesis implies 
an = 1. If the elements are equally spaced, then

x z n dn n, = −( )1  (4.5)

Symmetry allows some simplifi cation of the array factor equation. Planar and 
conformal array factors have array factor expressions that satisfy the element 
locations of the particular array. Steering the array mainbeam is possible by 
forcing the sum of Ψn and the element weight phase to equal zero at the 
desired steering angle. For instance, a linear array along the x axis has its 
mainbeam pointing in the direction θs when each element has a phase shift 
given by

−kxn ssinθ  (4.6)

The use of GAs for solving complex antenna array optimization problems 
has been and continues to be an extremely active area of research. In fact, the 
body of published work dealing with this topic of research is considerably 
larger than any other category related to applications of GAs in electromag-
netics. This chapter presents an overview of the various methodologies that 
have been developed for the optimization of antenna arrays using GAs, along 
with several illustrative design examples.

4.1 OPTIMIZING ARRAY AMPLITUDE TAPERS

As mentioned before, many excellent analytical techniques exist for synthesiz-
ing low-sidelobe amplitude tapers for arrays. A binary GA is appropriate to use 
when the amplitude weights are quantized [1]. When the quantization is one bit, 
then the array is thinned. Array thinning will be discussed in section 4.4.1.



Another interesting example is the use of a GA to synthesize low sidelobe 
levels in almost uniformly excited arrays. It has been shown [2] that the side-
lobe level of a uniformly excited array can be lowered signifi cantly by reducing 
the excitation amplitudes on only a relatively small number of elements 
throughout the array. A GA method has been introduced [2] for determining 
which amplitudes to reduce and by how much. The amplitude weights of a sym-
metric linear array consisting of 50 uniformly excited elements spaced a half-
wavelength apart results in the radiation pattern represented by the solid curve 
plotted in Figure 4.1. The sidelobe level in this case is approximately −13.3 dB. 
Next, a GA is used to optimize this 50-element array with the objective of 
achieving a −20 dB sidelobe level by modifying (i.e., reducing) the excitation 
amplitudes of only 10 elements. The radiation pattern of the optimized array is 
shown by the dashed curve in Figure 4.1, which has a sidelobe level of −19.0 dB. 
The corresponding current distribution on the optimized array is shown in 
Figure 4.2. Sidelobes close to the main beam were lowered at the expense of 
increasing the sidelobes everywhere else.

Figure 4.1. Array factor comparison of two 50-element arrays with 0.5l periodic spacing 
between elements. The fi rst array has uniform current excitation and possesses a −13.27 dB 
sidelobe level. The second array is optimized such that 10 elements of the array have reduced 
current magnitudes. This array has a sidelobe level of −19.04 dB.

Figure 4.2. Optimized current magnitude excitation for an almost uniformly excited array with 
50 elements and a 0.5l periodic spacing between elements.
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4.2 OPTIMIZING ARRAY PHASE TAPERS

As discussed in Chapter 1 and in Section 4.1, the conventional approach for 
synthesizing array far-fi eld radiation patterns with low-sidelobes has been to 
use some form of amplitude tapering. However, it is also possible to synthesize 
low-sidelobe radiation patterns by setting the element amplitudes to one and 
varying the phases. This process of phase tapering is known as phase-only
array synthesis. One of the main advantages of phase-tapered arrays is the 
relatively simple feed network that is required compared to amplitude tapered 
arrays. More specifi cally, instead of amplitude weighting the signal to each 
element through a complex feed network, the signal to each element can be 
phase weighted via the beam steering phase shifters that are already part of 
the antenna array.

Despite its potential advantages for practical phased array systems, only a 
relatively small amount of available literature has been devoted to the subject 
of phase-only array pattern synthesis. This is due primarily to the fact that the 
phase-only synthesis problem generally requires the application of nonlinear 
optimization techniques for its solution, whereas most array pattern synthesis 
approaches that employ amplitude tapering are based on linear methods. For 
instance, a nonlinear phase-only synthesis technique was introduced by 
DeFord and Gandhi [3] that is capable of minimizing the maximum sidelobe 
level for both linear and planar array geometries. A numerical search proce-
dure based on the steepest-descent method (SDM) was used to minimize the 
expression for the pattern sidelobe level with respect to the element phases. 
More recently, GAs have been successfully applied to the phase-only array 
synthesis problem [4–8]. These GA approaches for phase-only optimization 
of arrays will be discussed in the sections to follow.

4.2.1 Optimum Quantized Low-Sidelobe Phase Tapers

In this section we consider the application of a GA to determine optimum 
quantized low-sidelobe phase tapers for linear arrays. This technique was fi rst 
introduced in Ref. 4 and has the advantage that the optimum taper is found 
in quantized phase space rather than in continuous phase space. Another 
advantage of this technique is that optimal quantized phase tapers can be 
evolved by the GA for arrays with a relatively large number of digital phase 
shifters.

A typical objective of phase-only array synthesis is to determine the optimal 
set of values {αn}N

n=1 such that the array factor results in the lowest maximum 
sidelobe level. In the most general case, the array synthesis may be performed 
assuming that the excitation current phases can have any continuous value 
between 0 and 2π. However, for practical phased array antenna systems that 
use digital phase shifters, better results may be achieved by fi rst quantizing 
the excitation phases and then performing the optimization. An example is 



presented next that illustrates how a GA can be used to determine an optimum 
quantized phase taper for a linear array.

Let us start by considering a uniformly excited and equally spaced linear 
array of N elements as illustrated in Figure 4.3. If we assume that the individ-
ual array elements are short dipole antennas oriented along the x axis, then 
their element patterns can be approximated by

EP( ) cosθ θ=  (4.7)

The phase settings for a digital phase shifter with B bits may be expressed in 
the form

α πn
n n

B
n Bb b b= + + +− −[ . . . ]( )

1 2
1 12 2  (4.8)

where the coeffi cients bn
1, bn

2,  .  .  .  , bn
B represent the binary sequence associated 

with a specifi c phase setting for the nth element of the array. Moreover, in the 
context of a GA, this binary encoding of the phase provides a convenient way 
to express the genes. For example, suppose that a phase shifter on the fi rst 
element of an array with a 3-bit accuracy is set to 90°, then the gene in this 
case would be

gene b b b= [ ]1
1

2
1

3
1  (4.9)

A chromosome is formed by placing several genes together in a sequence. 
If we consider a four-element array with phase settings of 90°, 0°, 270°, and 
90°, then it has a chromosome representation of

chromosome b b b b b b b b b b b b= =[ ] [1
1

2
1

3
1

1
2

2
2

3
2

1
3

2
3

3
3

1
4

2
4

3
4 0100001110010]  (4.10)

Hence, an individual chromosome contains the binary encodings for one pos-
sible quantized phase taper.

Figure 4.3. Geometry for an N-element linear array.
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Next we consider using a binary GA to evolve the optimal phase tapers 
that produce the lowest possible maximum relative sidelobe level for a 70-
element array with 3-bit phase shifters (i.e., N = 70 and B = 3). During the 
evolutionary process, the sidelobe performance of each candidate array is 
evaluated and ranked according to its fi tness. The optimum phase taper that 
results in a −19.7 dB maximum relative sidelobe level for this array is shown 
in Figure 4.4, while the corresponding far-fi eld radiation pattern is graphed in 
Figure 4.5.

Figure 4.4. Plot of optimum phase weights as determined from a GA.

Figure 4.5. Low-sidelobe broadside far-fi eld radiation pattern resulting from optimized phase 
taper on a 70-element uniformly excited array.



4.2.2 Phase-Only Array Synthesis Using Adaptive GAs

It was shown in Section 4.2.1 that it is possible to lower the maximum sidelobe 
level of a uniformly excited array through phase-only adjustment of the 
element excitations by using a GA. In this section we will demonstrate that it 
is also possible to use a GA to lower the sidelobes via phase-only optimization 
for an array with some fi xed (i.e., built-in) amplitude taper. A GA with an 
adaptive mutation rate is used to speed convergence for phase-only array 
synthesis problems.

The time-consuming cost function evaluations required in many electro-
magnetic synthesis problems has prompted research into ways to reduce the 
number of iterations and function evaluations required for GAs. It has been 
observed that the best choice for GA parameters at the beginning of an opti-
mization, when the solution has not yet coalesced, usually differs from the best 
parameters to use toward the end of the optimization, when the fi nal answer 
is being refi ned. This observation has led to the development of adaptive GA 
schemes, where two broad categories of supervisory parameter control have 
been identifi ed [9]. The fi rst category, often referred to as self-adaptive param-
eter control, involves encoding algorithm parameters into the candidates and 
allowing them to evolve as the optimization proceeds. On the other hand, the 
second category involves adjusting parameters using time-varying quantities 
such as iteration number, population diversity, solution quality, or relative 
improvement.

Adaptive GAs have only recently been introduced to the electromagnetics 
community. Most of the emphasis to date has been placed on the develop-
ment and application of adaptive GA schemes that considerably speed up the 
convergence for array synthesis problems [5–7]. Boeringer and Werner [5] 
introduced an adaptive GA for phase-only array synthesis that works 
by toggling between a small set of parameters during the optimization 
process to maximize relative improvement. More recently, a real-valued 
GA has been presented [6,7] that is capable of simultaneously adapting 
several parameters such as mutation rate, mutation range, and number of 
crossovers. This adaptive GA was shown to outperform its static counter-
parts when used to synthesize the phased array weights (amplitude-
only, phase-only, or complex) required to satisfy specifi ed far-fi eld sidelobe 
constraints.

Let us consider the phase-only array synthesis technique presented in Ref. 
5, which is based on an adaptive mutation parameter toggling GA. The appli-
cation chosen to illustrate this technique is determination of the optimal 
phase-only array weights required to best meet a specifi ed far-fi eld sidelobe 
requirement, which includes the presence of several 50 dB notches in the 
radiation pattern. Suppose that we have a linear array consisting of 100 antenna 
elements uniformly spaced a half-wavelength apart along the z axis. In this 
case the expression for the far-fi eld radiation pattern (4.2), based on the form 
of the array factor given in (4.4), reduces to
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FF( ) sin [( ) cos ]θ θν π θ α= − +

=

=

∑ a en
j n

n
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1

100

 (4.11)

It will also be assumed for this example that the elements have a 30 dB Taylor 
taper [10]. Finally, the element pattern is a function of ν, where ν = 0 would 
represent ideal isotropic array elements and ν > 0 represents directive array 
elements. Various values for ν are cited in the literature for different radiating 
element types; for example, ν = 1.5 [11] or ν = 1.6 [12] have been shown to 
provide good approximations for the patterns of dipole antenna array ele-
ments. Moreover, the value of ν is often chosen to match the half-power 
beamwidth of the radiating element under consideration [13,14]. An ideal 
value of ν = 1.0 will be assumed here for the purposes of this example.

A continuous GA is used to optimize the excitation phases αn. The cost 
function is the sum of the squares of the far-fi eld magnitude above the speci-
fi ed sidelobe envelope. This penalizes sidelobes that are above the envelope, 
while neither penalty nor reward is given for sidelobes that fall below the 
specifi cation.

For the adaptive toggling GA considered here, an initial population of 100 
random sets of phase weights is generated and scored. The scoring process 
assigns more importance or weight to those solutions that better meet the 
notched sidelobe specifi cation. For the generations that follow, 20 pairs of 
parents are chosen by tournament, whereby each parent is selected as the best 
of fi ve randomly chosen from the best ten candidates. A simple single-point 
crossover scheme is employed to produce two children from each of the 20 
sets of parents. These 40 children have mutations applied according to the 
adaptive toggling procedure described below. On completion of this process, 
the resulting 40 children are evaluated for their performance and assigned a 
corresponding value of fi tness. Of the 140 total individuals (100 parents plus 
40 children), the best-scoring 100 survive to the next generation, and the 
process repeats itself. The termination criterion in this case is to take the best-
scoring individual after 1000 generations as the fi nal phase-only distribution 
for the array.

The mutation operation within the GA is accomplished by replacing the 
phase of an individual radiating element with a randomly chosen value. More-
over, the mutation rate and range of the mutation process are adaptively 
controlled during the course of the optimization. The mutation rate in this 
case is defi ned to be the probability that any given radiating element will be 
assigned a new phase weight, while the mutation range governs how far a 
mutated element phase weight may be from its original (premutation) value. 
For the adaptive toggling scheme considered fi rst, the algorithm has the 
freedom to choose between a mutation rate of 2%, 4%, or 6%. On the other 
hand, if the mutation range is r (where 0 ≤ r ≤ 1), the original value is x, and 
the allowable weight limits are xmin and xmax, then the mutated value is chosen 
with uniform probability from the range
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Note that since the range determined from (4.12) is centered on its original 
value x, smaller mutation ranges imply a more local search, while larger muta-
tion ranges are better suited for introducing diversity into the population. First 
we will limit the adaptive toggling algorithm to choosing a mutation range 
from one of three possible values, namely, 0.009, 0.09, or 0.9.

To begin the adaptive toggling process, the algorithm will start off by alter-
nating between 2% and 4% mutation rates as well as between 0.9 and 0.09 
mutation ranges. Hence, there are four possible combinations, each of which 
is tested 8 times, yielding a total of 32 generations. On completion of these 
fi rst 32 generations, the 16 results obtained using a 2% mutation rate and the 
16 results obtained using a 4% mutation rate are compared. If the 4% case 
provides better average cost function improvement, then, for the next 32 
generations the algorithm will toggle between mutation rates of 4% and 6%. 
Otherwise, if the average cost function did not improve, then the algorithm 
will continue to toggle between 2% and 4% mutation rates. An analogous 
procedure is followed for the mutation range, where the 16 results for a 0.9 
mutation range are compared to the 16 results for a 0.09 mutation range. If 
the 0.09 case provides greater average cost function improvement, then for 
the next 32 generations the algorithm will toggle between mutation ranges of 
0.09 and 0.009. On the other hand, if the average cost function did not improve, 
then the algorithm will continue to toggle between a mutation range of 0.9 
and 0.09. Choosing to update the parameters every 32 generations provides 
some averaging of the results, which helps mitigate the inherent noisiness that 
would otherwise be associated with improvements in the cost function.

An example of a far-fi eld radiation pattern with three 50 dB notches that 
was synthesized using the adaptive mutation parameter toggling GA scheme 
described above is shown in Figure 4.6. The 30 dB Taylor weights as well as 
the optimized phase weights are also shown in Figure 4.6, as the left and right 
insets, respectively. The discrete mutation rate and mutation range parameter 
values chosen by the adaptive toggling GA for this example are shown in 
Figure 4.7. We see from Figure 4.7a that the mutation range tends downward 
as the solution is refi ned, which is consistent with the intuitive notion that 
diversity should be greatest at the beginning and less toward the end of the 
evolutionary process. Finally, Figure 4.8 compares the convergence perfor-
mance of the adaptive toggling algorithm (solid line) to the nine static cases 
(dashed lines) corresponding to holding constant each of the possible combi-
nations of mutation rate and mutation range. The comparisons made in Figure 
4.8 clearly demonstrate that the adaptive toggling technique has the fastest 
convergence.

The implementation of this method can be easily generalized to include 
toggling between more than three choices, which can produce even further 
improvement in the results. Extending the concept outlined above from 3 
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Figure 4.6. Optimized far-fi eld pattern with sidelobe notches. Left inset—amplitude weights 
(constrained to be 30 dB Taylor weights in this case); right inset—optimized phase weights.

Figure 4.7. Parameter values chosen by adaptive toggling genetic algorithm.

Figure 4.8. Adaptive toggling of parameters outperforms static parameter choices. The 
values in parentheses for each static parameter combination are the mutation rate and range, 
respectively.



parameter choices to 10 parameter choices, the same example is synthesized 
more quickly, or more accurately for an equivalent number of iterations. In 
this case the possible mutation rates are 10 equally spaced values ranging from 
2% to 6% and the mutation ranges are 10 logarithmically spaced values 
ranging from 0.009 to 0.9, so for both parameters the range of values is the 
same as previously considered but there are fi ner gradations. The optimized 
far-fi eld pattern that results after the same number of iterations is shown in 
Figure 4.9, where the three 50 dB notches are somewhat cleaner than those of 
Figure 4.6 obtained using just three parameter choices. The newly optimized 
phase weights are shown in the right inset of Figure 4.9. Both patterns meet 
the sidelobe requirements and clearly show the specifi ed notches. The discrete 
mutation rate and mutation range parameter values chosen by the adaptive 
toggling GA for this example are shown in Figure 4.10. We see from Figure 

Figure 4.9. Optimized far-fi eld pattern with sidelobe notches, using 10 parameter choices for 
slightly better results than those of Figure 4.6 using three parameter choices. Left inset—
amplitude weights (constrained to be 30 dB Taylor weights in this case); right inset—optimized 
phase weights.

Figure 4.10. Parameter values (10 choices each) chosen by adaptive toggling genetic 
algorithm.
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4.10a that again the mutation range tends downward as the solution is refi ned. 
Figure 4.11 compares the convergence performance of the adaptive toggling 
algorithm using 10 choices (thick solid line) to the adaptive toggling algorithm 
using 3 choices as previously described (thin solid line) and 15 choices equally 
spaced along the same range (dashed line). The comparisons made in Figure 
4.11 clearly demonstrate that the adaptive toggling technique with 10 choices 
has the fastest convergence. Having more choices is not always better; as 
illustrated by the case with 15 choices, if there are too many choices, then they 
will necessarily be closely spaced, and the algorithm can stagnate because the 
performance of one choice may not be consistently discernable from the 
nearby neighboring choices and the algorithm cannot readily choose the best 
direction to adjust the parameters. This aimless wandering can be seen in 
the parameter choices taken when there are 15 possibilities as shown in 
Figure 4.12.

Figure 4.11. Adaptive toggling algorithm converges faster with 10 parameter choices than 
either 3 choices or 15 choices.

Figure 4.12. Parameter values (15 choices each) chosen by adaptive toggling genetic algo-
rithm. Too many closely spaced choices cloud the algorithm’s ability to determine which way 
to adjust the various parameters, especially during the latter half of this optimization, where the 
convergence has stagnated as shown above in Figure 4.11.



4.3 OPTIMIZING ARRAYS WITH COMPLEX WEIGHTING

So far, we’ve presented approaches to controlling the array pattern using 
either amplitude or phase weights. This section presents examples of the more 
powerful method of using complex amplitude weights to achieve the desired 
antenna array pattern.

4.3.1 Shaped-Beam Synthesis

GAs have been used for shaped-beam radiation pattern synthesis of arrays by 
optimizing the complex weighting [6–8,15–19]. For example, a technique was 
reported in Ref. 15, where a GA evolved a set of amplitude and phase weights 
for a linear array to synthesize a narrow, fl attop beam design, given a limited 
number of amplitude and phase states. It was also shown that the GA opti-
mization was able to produce better results by operating on the states directly 
than could be achieved by optimizing linear variable weights and rounding off 
to the nearest available digital state.

A simple and versatile GA methodology has been introduced [16] for radia-
tion pattern synthesis of antenna arrays with an arbitrary geometric confi gura-
tion. This GA approach directly represents the array excitation weighting 
vectors in terms of complex-valued chromosomes, as opposed to using a more 
conventional binary coding scheme. In other words, the chromosomes are 
represented directly by complex weighting vectors of the form

C c c c cn N= [ . . . . . . ]1 2  (4.13)

where each cn is a gene that corresponds to the complex weighting of the nth
radiating element in the array and N is the length of the weighting vector. The 
technique also employs a decimal linear crossover rather than a binary cross-
over, which has the advantage of not entailing the need to choose a crossover 
location or locations as would be required in a binary crossover. Several 
examples are provided in Ref. 16 that demonstrate the effectiveness of this 
synthesis method for linear and circular arrays.

Another technique that utilizes a GA for the synthesis and optimization of 
shaped-beam radiation patterns is presented in Ref. 17. This approach is based 
on a modifi cation of the Woodward synthesis method with an additional sid-
elobe minimization. In this case the optimization of synthesized array excita-
tions is achieved by using a combination of array polynomial complex root 
swapping and the GA. Similarly, a technique that combines Schelkunoff’s 
method with a GA for the synthesis of linear arrays with complex weighting 
and arbitrary radiation patterns has been reported [18]. A radiation pattern 
synthesis technique for an M × N planar array with rectangular cells is also 
discussed in Ref. 18, where a GA is used to determine the optimal excitation 
amplitude and phase for each element in the array.
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The synthesis of amplitude-only, phase-only, and complex weighting for a 
specifi ed far-fi eld sidelobe envelope has been demonstrated [8,19] for a GA 
as well as for particle swarm optimization, with good performance obtained 
by both methods. The application considered in Refs. 8 and 19 is the deter-
mination of complex phased array weights to best meet a specifi ed far-fi eld 
requirement that includes a 60 dB notch on one side. To illustrate the utility 
of this synthesis technique, let’s consider a linear array of equally spaced 
antenna elements along the x axis with elements having cosν θ element pat-
terns, where ν can be any real number greater than or equal to zero. The cost 
measure to be minimized is the sum of the squares of the excess far-fi eld 
magnitude that exceeds the specifi ed sidelobe envelope. This penalizes side-
lobes above the envelope, while it provides neither a penalty nor a reward for 
sidelobes that fall below the specifi cation. Figure 4.13 shows an example of a 
synthesized far-fi eld radiation pattern with a 60 dB sidelobe notch obtained 
using the GA, with the fi nal amplitude and phase weights inset. The array used 
in this example consists of 100 half-wavelength spaced antenna elements, each 
assumed to have an element pattern with ν = 0.6.

As mentioned in Section 4.2.2, an effi cient real-valued adaptive GA has 
been developed and applied [6,7] to the synthesis of phased array radiation 
patterns using amplitude-only, phase-only, and complex weights. To accom-
plish this, an adaptive supervisory algorithm is employed that periodically 
updates the parameters of the GA to maximize relative improvement. The 
interaction of the supervisory algorithm with the GA is illustrated in Figure 
4.14. When compared to conventional static parameter implementations, com-
putation time is saved in two ways: (1) the algorithm converges more rapidly 
and (2) the need to tune the parameters by hand (generally done by repeatedly 

Figure 4.13. Complex synthesis of a 60 dB sidelobe notch using a GA (Boeringer and Werner, 
© IEEE, 2004 [19]).



running the code with different parameter choices) is signifi cantly reduced. 
As an example, the same synthesis problem considered in Figure 4.13 has been 
performed using the adaptive GA technique, the results of which are shown 
in Figure 4.15. The progress of the mutation range, mutation rate, and number 
of crossovers as the solution adaptively evolves is shown in Figures 4.15a, 
4.15b, and 4.15c, respectively. From Figure 4.15a we see that the mutation 
range adapts downward as the solution becomes refi ned, which is consistent 
with the intuitive notion that diversity should be highest at the beginning and 
less at the end of the evolutionary process. Finally, the cost performance for 
this synthesis example is shown in Figure 4.15d.

Two additional examples are now considered to further demonstrate the 
versatility of the adaptive GA approach to the synthesis of shaped-beam radia-
tion patterns [6,7]. Figure 4.16 shows the outcome of the adaptive GA with 
two different array sizes (40 and 60 elements) for the same fl attop beam goals. 
Figure 4.17 compares optimization with directive versus isotropic elements 
(ν = 0.6 and ν = 0) for some arbitrary pattern goals, with excellent results 
obtained in both cases. The optimized amplitude and phase weights are shown 
as insets in Figures 4.16 and 4.17.

The array failure correction problem represents another interesting and 
useful application of the GA to array synthesis [20–24]. A GA approach has 
been introduced [20] for failure correction in digital beamforming of arbitrary 
arrays, where the weights of the array are represented directly by a vector of 
complex numbers. The GA in this case employs a decimal linear crossover 
scheme so that no binary coding and decoding is necessary. In addition, the 
utility of the array failure correction approach has been demonstrated [20] by 
considering an example of a 32-element linear array with single-, double-, and 
triple-element failures. A technique that combines the GA with a fast Fourier 

Figure 4.14. Flowchart of GA with adaptive supervisory algorithm (Boeringer et al., © IEEE, 
2005 [6]).
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Figure 4.15. Complex synthesis of a 60 dB sidelobe notch using an adaptive GA (Boeringer 
et al., © IEEE, 2005 [6]): (a) algorithm’s choice of mutation range; (b) algorithm’s choice of 
mutation rate; (c) algorithm’s choice of number of crossovers; (d) cost performance; (e) resulting 
far-fi eld pattern with desired sidelobe constraints. Left inset—resulting amplitude weights; right 
inset—resulting phase weights.

transform (FFT) for array failure correction is presented in Ref. 21. The FFT 
is used to speed up the evaluation of the far-fi eld array pattern, which conse-
quently speeds up the convergence of the GA. Array failure correction tech-
niques have also been proposed on the basis of amplitude-only optimization 
using a GA [22,23]. Finally, a GA optimization technique has been described 
[24] for the diagnosis of array faults from far-fi eld amplitude-only data.

4.3.2 Creating a Plane Wave in the Near Field

Accurate far-fi eld antenna pattern measurements require separating the trans-
mit antenna and the antenna under test (AUT) by a distance suffi cient to 
ensure that the fi eld amplitude and phase variations across the test aperture 



Figure 4.16. Flattop beam with limited ripple synthesized for two different array sizes using an 
adaptive GA (Boeringer et al., © IEEE, 2005 [6]): (a) 40-element phased array; (b) 60-element 
phased array with the same pattern goals. Insets: optimized amplitude and phase weights for 
each case.

are small. The IEEE defi nes the far-fi eld [25] in terms of a maximum phase 
deviation. For uniform apertures the maximum phase variation is π/8 radians, 
which results in a far-fi eld distance defi ned by

R
D

ff ≥
2 2

λ
 (4.14)

where D is the largest dimension of the aperture. The ratio of the maximum 
fi eld amplitude to the minimum fi eld amplitude at a distance prescribed by 
(4.14) is approximately

8
8

2

2 2

R

R D
ff

ff +
 (4.15)

In practice, (4.15) is almost equal to one, since Rff is much larger than D.
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Figure 4.17. Arbitrary beam with limited ripple synthesized for two different types of array ele-
ments using an adaptive GA (Boeringer et al., © IEEE, 2005 [6]): (a) 50-element phased array 
of directive sources (n = 0.6); (b) 50-element phased array of isotropic sources (n = 0). Insets: 
optimized amplitude and phase weights for each case.

If the distance between the transmit antenna and AUT does not satisfy 
(4.14), then some other approach, such as a compact range, is needed to gener-
ate a plane wave at the AUT. The compact range refl ector is large, making 
applications that require moving the plane-wave location impractical. One 
possibility of generating the plane wave in the near-fi eld is to build an array 
that projects a plane wave at a specifi ed distance. Projection differs from 
focusing in that focusing requires the fi elds to add in phase at a specifi c point 
in space [26], while projecting requires that there be a minimum variation in 
the fi eld phase over a specifi ed plane. Minimizing the amplitude and phase 
over a plane in the near-fi eld implies an optimization or least-squares approach 
[27]. Additional background information on creating a plane wave in the near-
fi eld is presented in Ref. 28.



A GA has been used to create a plane wave with linear arrays [29,30] and 
planar arrays [31,32]. These approaches are summarized in the next two exam-
ples. A linear array of line sources that are infi nite in the y direction has a 
relative radiation pattern at the point (xm, zp) given by

E w H kRm n mn
n

N

=
=

∑ 0
2

1

( ) ( )  (4.16)

where H 0
(2)( ) = zero-order Hankel function of the second kind

R x x z zmn n m n p= − + −( ) ( )2 2

 (xn,zn) = element locations

The objective function for minimizing the phase and amplitude oscillations is 
given by

cost c
E E

P
c

E E
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m m m m
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=
∠ − ∠

+ −
−

1 11
max min

( )
max min

min
 (4.17)

for all sample points. In the cost function, the fi rst term compares the maximum 
phase deviation across the AUT to a constant, P. For this example, P = π/8.
The second term compares the ratio of the maximum amplitude value to the 
minimum value across the AUT to the ratio of the maximum amplitude to 
the minimum amplitude across that same AUT due to a line source. A third 
term can be added to keep the optimal solution out of a null, although this 
term is not necessary if the array is assumed to have symmetric phase 
weighting.

The fi rst example optimizes the weights of a 9 element linear array along 
the x axis with an element spacing of d = 0.5λ to produce a “plane-wave” across 
an AUT that has a width of 10λ at a distance of 20λ. Figure 4.18 shows the 
optimized amplitude and phase weights for the array, and Figures 4.19 and 
4.20 show the amplitude and phase values of the projected fi eld. The optimized 
fi eld amplitude is an improvement over the uniform array, but the optimized 
fi eld phase is about the same as that of the uniform array. Optimizing the 
element locations as well as the amplitude and phase tapers provides improve-
ment to the projected plane-wave at close and far distances. Tradeoffs exist 
in the ripples in the phase and the ripples in the amplitude of the projected 
plane-wave. Adjusting the z location of the elements improves the quality of 
the projected plane-wave but makes the array confi guration more sensitive. 
Since out of plane elements would produce some blockage of the elements in 
the rear, adjusting the x spacing of the elements is the recommended proce-
dure and the most practical to implement.
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Figure 4.18. Optimized amplitude and phase weights of a nine-element array (d = 0.5l) for an 
AUT of 10l at a distance of 20l.

Figure 4.19. Field phase of an optimized nine-element array (d = 0.5l) across an AUT of 10l
at a distance of 20l.

The electric fi eld of the planar array of isotropic point sources shown in 
Figure 4.21 is given by

E x y z w
e

R
m m p n

jkR

mnn

N mn

( ), , =
=

∑ 41 π
 (4.18)

where Rmn is the distance from element n to the fi eld point (xm, ym, zp) on the 
plane-wave. In this example, a 6 × 6 element array with a square lattice having 



Figure 4.20. Field amplitude of an optimized nine-element array (d = 0.5l) across an AUT of 
10l at a distance of 20l.

Figure 4.21. The planar transmit array generates an approximate plane-wave in the near 
fi eld.

a spacing of d = 1.0λ projects a plane-wave over a 4λ × 4λ area that is at zp =
10λ. At the normal far-fi eld distance of zp = 64λ, the phase variation is 22.5° 
and the amplitude variation is 0.33 dB. The amplitude and phase plots at zp =
10λ for the array with uniform weighting appear in Figures 4.22 and 4.23, 
respectively. The maximum phase variation is 60°, and the maximum ampli-
tude variation is 8.6 dB.

The objective function is given by (4.17) with P = π. The continuous vari-
able GA used a population size of 80 with a 1% mutation rate, 50% crossover 
rate, single-point crossover, and ran for 30,008 function evaluations. In the 
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Figure 4.22. Field amplitude at a 2l × 2l quadrant of the desired plane-wave region due to a 
6 × 6 uniform array that is 10l away.

Figure 4.23. Field phase at a 2l × 2l quadrant of the desired plane wave region due to a 
6 × 6 uniform array that is 10l away.
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Figure 4.24. Field amplitude in dB found using a GA over a 2l × 2l quadrant of the desired 
plane-wave region that is 2l away from a 6 × 6 uniform array.

end, the GA found the weights in Table 4.1, which produce the fi elds shown 
in Figures 4.24 and 4.25. The maximum amplitude variation is 0.75 dB, and the 
maximum phase variation is 32.4°.

4.4 OPTIMIZING ARRAY ELEMENT SPACING

A considerable amount of discussion in the literature has been devoted to the 
problem of using GAs to optimize array element spacing. This is primarily 
because this class of array synthesis problems has been extremely challenging 
for traditional optimization methods due to the large number of variables that 
are typically involved. Moreover, conventional aperiodic array synthesis 
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TABLE 4.1. Optimized Weights Found by the GA

x-Element
Spacing → 0.5λ  1.5λ  2.5λ

y-Element Normalized Phase Normalized Phase Normalized Phase
Spacing ↓ Amplitude (deg) Amplitude (deg) Amplitude (deg)

0.5λ 1.00  0 0.29   29 0.67 −18
1.5λ 0.61  4 0.34 −140 0.59  58
2.5λ 0.39 15 0.61    4 0.29 108
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techniques based on statistical methods fall far short of optimal confi gurations. 
It has been demonstrated, however, that GA approaches are robust enough 
to successfully handle this type of array optimization problem.

4.4.1 Thinned Arrays

GAs were fi rst introduced in Ref. 33 for the design of optimally thinned arrays. 
The GA is used to determine which elements are turned off in a periodic array 
to yield the lowest maximum relative sidelobe level. In other words, a thinned 
array has discrete parameters, where a single bit represents the element state 
as “on” = 1 or “off” = 0. Thinned designs for both 200-element linear arrays 
and 200-element planar arrays were considered in Ref. 33. An example of a 
40-element GA thinned array with 0.3λ spacing has also been presented [34]. 
These arrays were thinned by a GA to obtain sidelobe levels of less than −
20 dB. To illustrate the thinning process, we consider a design example for a 
uniformly excited broadside 400-element planar array of isotropic sources 
spaced a half-wavelength apart in a square lattice. A GA is used to thin this 
array in order to achieve the lowest possible maximum relative sidelobe level. 
The cost function is given by

cost a k m d u k n d vmn y x
mn

= − −⎧
==

∑∑max cos[ ( . ) ]cos[( ( . ) )]0 5 0 5
1

10

1

10

⎨⎨
⎩

⎫
⎬
⎭

+ >for 2u v c2
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plane-wave region that is 10l away from a 6 × 6 uniform array.



where u = sin θ cos φ
v = sin θ sin φ
c1 = start of mainbeam

This cost function assumes symmetry about the x and y axes, and the element 
closest to the origin has an amplitude of 1. Thus, a chromosome has 99 vari-
ables. The radiation pattern for the thinned array evolved using the GA is 
shown in Figure 4.26, which has a sidelobe level of −22.6 dB. The resulting 
thinned array (60% fi lled) is also shown in Figure 4.27. An element that is 
“on” is represented by a white square, while one that is “off” is represented 
by a black square. Figure 4.28 shows the convergence of the GA with a popu-
lation size of 8, a mutation rate of 0.15, and uniform crossover. Only very small 

Figure 4.27. Optimally thinned planar array. White squares indicate that the element has an 
amplitude of one; black squares, zero.

Figure 4.26. The array factor for the optimally thinned planar array. The maximum sidelobe 
level is −22.6 dB.
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improvements are noticed after 1000 iterations. After an initial sharp drop, 
the population average remains relatively constant, due to the high mutation 
rate. Finally, a comparison of simulated annealing with GAs for linear and 
planar array thinning problems is reported in Ref. 35.

A hybrid approach to peak sidelobe level reduction by array thinning was 
introduced in Ref. 36, which combines the attractive features of GAs with a 
combinatorial technique known as the difference sets method. The main goal 
of this hybrid approach is to effectively synthesize massively thinned arrays 
that have relatively low peak sidelobe levels. This hybrid approach has been 
shown to yield better sidelobe level control than is possible with a conven-
tional GA. Several design examples of massively thinned linear and planar 
arrays have been provided [36] that serve to demonstrate the utility of the 
hybrid synthesis technique based on GAs and difference sets.

4.4.2 Interleaved Thinned Linear Arrays

As more sensor and communication systems are placed on vehicles, the 
demand for antenna real estate increases. Multifunctional antennas and shared 
aperture antennas make effi cient use of the area. When elements dedicated 
to different array antennas appear intermixed in a shared aperture, then the 
array is said to be interleaved. Examples of interleaved apertures are reported 
in Refs. 37–41.

Thinned arrays already have some antenna elements that could be con-
nected to a second beamformer rather than to a matched load. Optimizing the 
sidelobes of one array via thinning and then using the thinned elements to 
form a second array does not work well, because the second array has very 
high sidelobes and low directivity. It is possible to simultaneously optimize 

Figure 4.28. Convergence of the GA that found the optimally thinned planar array.



two thinned arrays in either a full or partial interleave confi guration [42]. 
Figure 4.29 shows how two arrays could be interleaved.

A fully interleaved array has every element in the aperture attached to a 
beamformer. Assume all the elements are identical and equally spaced. Ele-
ments in the arrays are antisymmetric in that when one array has an element 
on/off, the other array has it off/on. Hence, we may defi ne

w w w w w w wN N= − − −[ , . . . . . . , ]1 2 2 11 1 1, , , , ,  (4.20)

and

′ = −w w1  (4.21)

Adding w and w′ yields a vector of all ones, which implies that the aperture 
effi ciency ηap is 100%:

ηap
number of elements in aperture turned on

total number of element
=

ss in aperture
 (4.22)

This arrangement ensures that each interleaved array has half of the elements 
and an aperture effi ciency of 50% where aperture effi ciency is

ηar
number of elements in array turned on

total number of elements in
=

aarray
 (4.23)

There are many different ways to fully interleave two arrays over the same 
aperture area. For example, suppose that a (2N = 60)-element equally spaced 
(d = 0.5λ) array is the starting aperture. One approach is to divide the aperture 
in two, so that wn = 1 for n = 1,  .  .  .  , N and wn = 0 otherwise. The array on the 
left side forms one beam, and the array on the right side forms the other beam. 
The pattern of one array is shown by the dashed line in Figure 4.30. Another 
approach is to interleave the two arrays where every other (alternate) element 
belongs to one array and the remaining belongs to the other array, or w2n = 1 

Figure 4.29. Diagram of the interleaved array concept.
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and w2n−1 = 0 for n = 1,  .  .  .  , N. The pattern of one array (d = 1.0λ) is the dotted 
line in Figure 4.30. As seen in Figure 4.30, the side-by-side arrays have the 
advantage of lower average sidelobe levels, while the interleaved arrays have 
the advantage of narrower beamwidth. Now, if a GA picks the element assign-
ments, then the array factor with the solid line is found. The optimized weight 
assignments are shown at the top of Figure 4.30. This optimized array has the 
narrow beamwidth of the full aperture and has the same peak sidelobe level 
of a uniform array. Thus, it is a compromise between the side-by-side uniform 
array and the every-other-element (alternate-element) interleaved array.

It is also possible to interleave a sum-and-difference array while optimizing 
both for low sidelobes. In this case, the thinning is assumed to be symmetric 
about the center of the array. Half of the elements in the difference array 
receive 180° phase shifts. A better approach is to defi ne the aperture size and 
element spacing and let a GA decide which elements should be on/off for the 
sum and difference arrays. The resulting optimized sum and difference pat-
terns for a 0.6λ-spaced dipole array of 120 elements are shown in Figures 4.31 
and 4.32, respectively. The peak sidelobe level for the sum pattern is −13.1 dB 
and for the difference pattern, −13.3 dB. Effi ciency for the sum array is ηar =
0.45 and for the difference array, ηar = 0.55. The array of dipoles was modeled 
using the method of moments, so mutual coupling is included.

Fully interleaving two arrays limits the peak sidelobe reduction. One way 
to increase sidelobe control at the expense of aperture effi ciency is to shift 
one array half an aperture to the right and then interleave the two arrays. The 
heavily populated center of the fi rst array overlaps the lightly populated edge 

Figure 4.30. The array factors for an optimized fully interleaved array, a side-by-side array 
(d = 0.5l), and an alternate-element interleaved array (d = 1.0l) when there are 60 total ele-
ments with 30 turned on for one beam.



Figure 4.31. Sum array factor for a 120-element aperture in which sum and difference arrays 
are interleaved.

Figure 4.32. Difference array factor for a 120-element aperture in which sum and difference 
arrays are interleaved.

of the second array. Aperture effi ciency is less than 100%. Elements not con-
nected to one of the matched array feed networks are terminated in a matched 
impedance.

Another approach to interleaving is to partially interleave two arrays so 
that they are interleaved over 50% of their elements. Now, the right half of 
one array is interleaved with the left half of the other array. The center third 
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of the aperture is 100% effi cient, while the end thirds are thinned. The element 
weights are given by

w w w w w w w wM M N M N M M= − −+ + + +[ . . . . . . . . . ]/ /1 2 1 2 2 11 1, , , , , , , , ,  (4.24)

where wn = 1 means that the element contributes to beam 1 and wn = 0 means 
that the element contributes to beam 2 where the arrays overlap or is attached 
to a matched load where the arrays do not overlap. The fi rst M elements have 
no overlap or interleaving. The remaining 2N − M elements are interleaved 
with the adjacent array. The adjacent array has element weights given by

[ . . . . . . . . . ]/ /1 11 2 2 1 2 1− −+ + + +w w w w w w wM N M N M M M, , , , , , , , ,  (4.25)

Optimizing two 120-element interleaved arrays produces the array factor 
shown in Figure 4.33. The maximum sidelobe level is −19.8 dB with ηar = 0.83 
and ηap = 0.91.

4.4.3 Array Element Perturbation

A method has been presented [43] for pattern nulling that works by perturbing 
the element positions within a uniformly spaced linear array. To achieve the 
best possible results, the perturbations of the array elements from their origi-
nal positions were treated as optimization variables within a GA. This tech-
nique has been shown to be useful for null steering, where nulls with specifi ed 
depths can be placed in the directions of undesirable interfering signals. Two 
examples are presented in Ref. 43, where perturbed array patterns have been 
determined for a 20-element array of isotropic sources by using a GA. In the 

Figure 4.33. Array factor for a 120-element array using asymmetric partial interleaving.



fi rst case the elements are perturbed along the array axis to produce two nulls 
at 14.5° and 40.5°, while in the second case the elements are perturbed in a 
direction normal to the array axis to produce two nulls at 26° and 32.5°.

Finding the element spacings of a uniformly weighted array that produced 
the lowest possible sidelobe levels was fi rst investigated using a GA in Ref. 
44. We illustrate this technique by considering an example where a GA opti-
mizes the sidelobe level of a 19-element nonuniformly spaced linear array 
lying along the x axis. In this case the spacings of the elements are quantized 
to 3 bits. The array factor cost function is given by

sll k x dn n
n

= + + +⎧
⎨
⎩

⎫
⎬
⎭

>−
=

∑max cos[ sin ( )]1 2 1 0
1

9

θ θ θΔ for MB  (4.26)

where x0 = 0
d0 = λ/2
Δn = variable spacing between 0 and λ/2

 θMB = fi rst null next to the mainbeam

The GA had a population size of 8 and mutation rate of 0.15. After 1000 
generations, a Nelder–Mead algorithm polished the results. Figure 4.34 shows 
the resulting array factor with a maximum sidelobe level of −20.6 dB. The 19 
round dots in the fi gure represent the relative element spacings of the array 
elements. This method of using a GA to optimize nonuniformly spaced linear 
arrays is also outlined in a review article [45].

If an array is optimally thinned for low sidelobes at boresite, then scanning 
the mainbeam will cause the sidelobes to go up (assuming directional ele-
ments). Sidelobes can be optimized for the entire scan range as shown in 

Figure 4.34. Array factor of nonuniformly spaced array. Maximum sidelobe level is −20.6 dB. 
The optimum relative element spacings are shown along the x axis.
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Ref. 33. If the array elements have a spacing greater than λ/2, then grating 
lobes could emerge, depending on the scan angle. This problem has been 
addressed [46–48] by considering a different representation of the thinned 
array. Instead of removing elements from a fully populated half-wavelength 
spaced array, the thinned array is based on a periodic linear phased array with 
an interelement spacing greater than a half-wavelength. In this case the GA 
optimization parameter is a perturbation added to each interelement spacing 
in such a way as to create an aperiodic array that maintains low sidelobes 
during scanning. In addition, the GA places restrictions (i.e., an upper bound 
and a lower bound) on the driving-point impedance of each element in the 
array to ensure that they are well behaved during scanning. A GA approach 
was also developed [47,48] for the purpose of evolving an optimal set of the 
simplest possible matching networks to be used in conjunction with impedance 
constrained thinned arrays.

The maximum angle that a uniformly spaced thinned linear phased array 
can be scanned from broadside before a grating lobe will appear is given by 
[49]

θ
λ

max sin= −⎛
⎝⎜

⎞
⎠⎟

−1 1
d

 (4.27)

where θmax is the maximum steering angle from broadside (θ = 0°) and d is the 
uniform element spacing. From this equation it can be seen that half-
wavelength-spaced arrays will have a complete theoretical scan range of 90° 
from broadside. However, as the uniform spacing of the array is increased 
beyond a half-wavelength, the scan range of the array begins to be severely 
reduced. For example, with a uniform spacing of just 0.8 wavelength the 
maximum scan angle of the array without grating lobes is only 14.5° from 
broadside. Even though uniform thinned arrays have a reduced scan range 
due to grating lobes, they are nevertheless very important because they require 
fewer elements to fi ll a given aperture, compared to more conventional half-
wavelength-spaced arrays.

Next we will discuss how a GA technique can be used to perturb, in an 
optimal fashion, the element positions of uniform thinned arrays in order to 
eliminate the presence of undesirable grating lobes during scanning. Figure 
4.35 shows a thinned periodic array along the x axis (shaded dipole elements) 
with a uniform spacing d. In order to reduce the grating lobes in the periodic 
array, it is transformed into an aperiodic array (unshaded dipole elements) by 
adding a perturbation (δdn to the position of each element in the array 
where

x d n dn n= − +( )1 δ  (4.28)

An eight-element thinned array of half-wave dipoles with a uniform spacing 
of 0.8 wavelengths and a uniform current excitation is used as the starting 



point for GA optimization. It has already been established using (4.27) that 
this array would have a maximum scan angle of 14.5° from broadside without 
generating grating lobes. The goal of the GA for this design will be to optimize 
the element position perturbations so that the mainbeam can be scanned to 
60°, well beyond the scan angle limitation of the periodic array. This is accom-
plished by representing the phased array as a list of element position perturba-
tions, which is the chromosome to be optimized by the GA. In addition, the 
real part of the driving-point impedance for each dipole element in the opti-
mized aperiodic array was limited to between 20 and 250 Ω over the entire 
scanning range of the array (in this case, for all angles between 0° and 60°). 
Imposing these additional restrictions within the GA will guarantee that a set 
of matching networks can be designed for the array that have a minimal 
number of components as well as practical component values.

Figure 4.36 compare the results for the far-fi eld radiation pattern obtained 
from the GA optimized eight-element aperiodic array of half-wave dipoles 

Figure 4.35. An illustrative example of a thinned periodic array with a uniform spacing d 
(shaded dipole elements) compared to an aperiodic array formed by perturbing the element 
locations of the periodic thinned array (unshaded dipole elements) (Bray et al., © IEEE, 2002 
[48]).

Figure 4.36. Far-fi eld radiation pattern obtained from the GA optimized eight-element aperiodic 
array compared with that of its periodic array counterpart.
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with those of its periodic array counterpart. Note that, due to the orientation 
of the half-wave dipole elements, the resulting radiation patterns shown in 
Figure 4.36 will be the same as those produced by an equivalent array of iso-
tropic sources. The grating lobe has been clearly eliminated in the optimized 
array, which has a pattern with a maximum sidelobe level of about −10 dB. 
The optimized aperiodic array can now be scanned from 0° to 60° without the 
sidelobe level rising above about −10 dB, a vast improvement over the steer-
ability of the thinned periodic array. Moreover, the input resistance for each 
half-wave dipole element in the eight-element aperiodic array is plotted in 
Figure 4.37 as a function of scan angle between 0° and 90°. Note that these 
values of input resistance are well behaved and stay within the desired 
minimum and maximum bounds imposed by the GA of 20 and 250 Ω, respec-
tively. By constraining the variations in input impedance over scan range, it 
becomes possible to design a simple matching network for each element in 
the array so that the voltage standing-wave ratio (VSWR) seen at the input 
of each port is below 2  :  1. Next, a simple three-element reactive network with 
a Π topology is adopted for the purpose of matching the antenna impedances 
to 50 Ω [47,48]. Figure 4.38 shows the VSWR versus scan angle at the input to 
the matching network for each element in the array. Finally, a prototype of 
this GA designed eight-element aperiodic array was built and tested using 
monopole elements mounted above a metallic ground plane as shown in the 
photograph of Figure 4.39. The dimensions of the monopole array are listed 
in Table 4.2, while comparisons of the simulated and measured radiation 
patterns for this array are shown in Figure 4.40.

Figure 4.37. Input resistance for each half-wave dipole element in the eight-element aperiodic 
array plotted versus scan angle from broadside.



TABLE 4.2. Positions of Monopole Elements for Operation at 1296.1 MHz

Element 1 2 3 4 5 6 7 8

Centimeters 0 13.8 35.4 46.1 57.6 82.4 104.9 113.6
Wavelengths 0  0.598  1.532  1.992  2.490  3.561   4.537   4.910

Figure 4.38. VSWR versus scan angle at the input to the GA optimized matching network for 
each element in the array.

Figure 4.39. Photograph of an optimized aperiodic eight-element monopole array designed for 
1296.1 MHz mounted above a metallic ground plane.

The driving-point impedance for the nth element of an N-element linear 
array may be expressed in the form
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where n = 1,2,  .  .  .  , N. Hence, the driving-point impedance of an individual 
array element is a function of the self-impedance of the element (i.e., Znn), the 
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mutual impedance of the element due to coupling with other elements in the 
array (i.e., Znm for m ≠ n), and the excitation currents on each array element 
(i.e., I1, I2,  .  .  .  , IN). A novel approach to the design optimization of compact 
linear phased arrays is introduced in Ref. 50. The utility of the technique is 
demonstrated by using fractal dipoles as array elements. A GA is applied to 
optimize the shape of each individual fractal element (for self-impedance 
control) as well as the spacing between these elements (for mutual impedance 
control) in order to obtain compact array confi gurations with dramatically 
improved driving-point impedance versus scan angle performance.

In Ref. 51, a design methodology is presented for the optimization of ape-
riodic planar arrays of periodic planar subarrays with an emphasis on the 
application to satellite mobile earth stations. In this case the steepest-descent 
method was used to optimize the arrangement of subarrays in order to elimi-
nate grating lobes as well as reduce sidelobes within a certain scan volume. 
An example of an aperiodic array consisting of 16 subarrays designed to 
operate in the 14 GHz band, which is capable of tracking a geostationary 
satellite up to a maximum of 2° from broadside, was provided in Ref. 51.

4.4.4 Aperiodic Fractile Arrays

A new family of fractal arrays, known as fractile arrays, has been introduced 
[52,53]. A fractile array is defi ned as any array which has a fractal boundary 
contour that tiles the plane. Fractals are a class of geometric shapes capable 
of being divided into parts that are similar to the whole. Fractal geometries 
are a consistent theme found in nature. Terrain such as coastlines, mountain 
ranges, and river systems can all be described using fractal geometries. In 
addition, the shapes of vascular and bronchial systems in animals and the 

Figure 4.40. Simulated and measured radiation patterns for the array shown in Figure 4.39.



overall shape of trees and plants are fractal in nature. It is possible to create 
deterministic fractal designs by repeatedly applying a simple geometric pattern 
called a generator. However, natural objects are rarely fully deterministic and 
often have at least some degree of random properties.

Fractal tiles, or fractiles, represent a unique subset of all possible tile 
geometries that can be used to cover the plane without gaps or overlaps. An 
example of a fractile is shown in Figure 4.41. The unique geometrical proper-
ties of fractiles have been exploited [52–56] to develop a new design methodol-
ogy for modular broadband antenna arrays. Another important property of 
fractile arrays is that their self-similar tile geometry can be exploited to develop 
a rapid iterative procedure for calculating the far-fi eld radiation patterns cor-
responding to these arrays, which is much faster than conventional approaches 
based on the discrete Fourier transform (DFT).

A considerable amount of research has been devoted to the analysis and 
design of a specifi c type of fractile array that is based on the Peano–Gosper 
family of space-fi lling curves [52–54]. The elements of the array are uniformly 
distributed along a Peano–Gosper curve, which leads to a planar array con-
fi guration with a regular hexagonal lattice on the interior that is bounded by 
an irregular closed Koch fractal curve around its perimeter. The far-fi eld 
radiation characteristics of the uniformly spaced Peano–Gosper fractile array 
are compared with the conventional square and hexagonal array in Ref. 54. It 
was shown that the Peano–Gosper array has the same desirable grating lobe 
conditions as the hexagonal array, because the elements are arranged in the 
same equilateral triangular lattice on the interior of both arrays. It was also 
shown, however, that the Peano–Gosper array has a considerably lower overall 

Figure 4.41. Stage 3 Gosper island fractile.
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sidelobe level than does the hexagonal array even though both arrays are 
uniformly excited. This highly desirable property of Peano–Gosper arrays is 
a direct consequence of their irregular Koch fractal boundaries.

Grating lobes will occur when the mainbeam of the Peano–Gosper fractile 
array is steered from broadside for a uniform element spacing of one wave-
length or greater. In Refs. 55 and 56 a GA is applied to optimize the Peano–
Gosper fractile array geometry with a goal to eliminate the presence of grating 
lobes during scanning. A binary GA is employed along with two-point cross-
over and mutations. The GA perturbs the element locations along the stage 
1 curve to produce a radiation pattern with no grating lobes within a specifi ed 
conical scan volume and the lowest sidelobe level possible for a predetermined 
higher-order stage array. By optimizing the stage 1 array in this manner, it is 
possible to preserve the benefi cial properties of the fast iterative beamforming 
algorithm, which can then be used to considerably speed up the convergence 
of the GA. The end result of this GA optimization procedure is a Peano–
Gosper array with an irregular boundary contour and a nonuniform or aperi-
odic arrangement of elements on the interior.

There are a total of eight elements in the stage 1 array, where the positions 
of the uniformly spaced elements are indicated in Figure 4.42a by an “x.” 
However, the GA will output only six perturbed element locations as the two 
endpoint element positions are held fi xed. The genetically optimized stage 1 
Peano–Gosper curve, shown in Figure 4.42a, with perturbed element locations 
denoted by an “•” can then be used to create higher-order stage arrays and 

(a) Stage 1

(b) Stage 2

Figure 4.42. Peano–Gosper fractile array geometry showing GA perturbed element locations 
for (a) stage 1 and (b) stage 2 arrays with the initial unperturbed element spacing set to 2l.
The unperturbed element locations are indicated by ×, while the perturbed element locations 
are indicated by •.



evaluate their corresponding radiation characteristics effi ciently via an itera-
tive approach. Figure 4.42b shows the stage 2 Peano–Gosper fractile array 
with GA perturbed element locations. For the optimized Peano–Gosper frac-
tile array design shown in Figure 4.42, a restriction was placed on the GA such 
that the spacing between any two consecutive elements in the array would be 
no less than one wavelength. Moreover, the optimization starts with an initial 
uniform element spacing of 2λ and the mainbeam steered to θ = 30° and ϕ =
180°. The fi nal GA-optimized array has a minimum spacing between elements 
of 1.13λ. Also, the average element spacing for the same array was found to 
be 1.68λ. Figure 4.43 shows the ϕ = −86.9° plane cut while varying θ. There 
are four grating lobes present in Figure 4.43a when the elements are equally 
spaced along the stage 3 Peano–Gosper fractile array. The GA was used to 
eliminate these grating lobes by perturbing the element spacing as is demon-
strated in Figure 4.43b. In the case of the GA-optimized stage 4 Peano–Gosper 
fractile array, the maximum sidelobe level over the entire visible region and 
for scan angles up to and including 30° from broadside was found to be −
10.12 dB. Finally, we note that for a stage 4 Peano–Gosper fractile array the 
iterative beamforming algorithm is 19.5 times faster than the conventional 
beamforming technique based on a DFT.

4.4.5 Fractal–Random and Polyfractal Arrays

One of the most promising concepts in optimizing element spacing is the use 
of layouts based on fractal–random geometries. Fractal–random geometries 
can be used to create objects that more closely resemble natural structures. 
Fractal–random structures can be created in a manner similar to deterministic 
fractals; however, the generator pattern must fi rst be randomly selected from 

(a) Equal element spacing (b) GA perturbed element spacing

Figure 4.43. Plot of the normalized array factor for the stage 3 Peano–Gosper fractile array 
with initial element spacing dmin = 2l and j = −86.9152°: (a) equal element spacing; (b) GA 
perturbed element spacing.
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a set of multiple generators and then applied [57]. We visualize how multiple 
generators can be employed to construct fractal–random arrays by using the 
fractal–random tree geometry. Figure 4.44 shows a 51-element fractal–random 
array constructed from two generators, one 4-branch generator, and one 3-
branch generator. Each generator is scaled according to its level in the tree 
structure. Finally, the positions of the antenna elements are represented by 
the tips of the tree’s topmost branches.

The properties of fractal–random arrays were originally studied by Kim and 
Jaggard in 1986 [57]. One of the key benefi ts of these array layouts is that they 
act as an intermediary between purely periodic arrays and random arrays, 
possessing physical and electrical attributes of both. The fractal nature of these 
arrays makes them partially deterministic; however, the random selection of 
generators also introduces a degree of randomness into these arrays. The 
deterministic properties of the array keep the peak sidelobe levels lower than 
a purely random array.

The primary diffi culty with using fractal–random arrays in optimization 
problems is that the array layouts cannot be exactly recreated from the gen-
erators alone. An additional parameter must be used to specify the combina-
tion of the generators selected. The number of combinations can be extremely 
large. For instance, 345,600 different three-level fractal–random arrays can be 
created from the two generators shown in Figure 4.44. For higher-level fractal–
random arrays the number of combinations increases exponentially. To over-
come this problem, a special subclass of fractal–random arrays has been 
introduced [58], called polyfractal arrays, which are particularly suitable for 
use in GA optimizations. Polyfractal arrays are constructed from multiple 
generators as are fractal–random arrays; however, the generator attached to 

Generator 1 Generator 2

Figure 4.44. Fractal–random tree analogy for the construction of a 51-element linear fractal-
random array. The element positions are represented by the tips of the topmost branches.



the end of each branch is not selected randomly but instead in accordance 
with the branch’s connection factor [58]. Each branch of each generator has a 
connection factor associated with it. In addition, one global connection factor 
is introduced to specify which generator is used for the base of the tree. An 
example shown in Figure 4.45 describes how a 46-element polyfractal array 
can be constructed from the same two generators and an accompanying set of 
connection factors. By using the connection factors, a polyfractal array can be 
recreated with ease.

Polyfractal arrays are well suited for optimization techniques not only for 
their ability to be reproduced but also for the speed in which their radiation 
characteristics can be evaluated [58]. The fractal properties of polyfractal 
arrays create subarrays in which the layouts and therefore the radiation pat-
terns are identical. To take full advantage of this self-similarity, the topmost 
subarrays in the fractal tree are fi rst evaluated. Next, the radiation patterns of 
the immediately lower-stage subarrays are evaluated using the radiation pat-
terns of the upper-stage subarrays as elemental radiation patterns. In this way 
the polyfractal array can be treated as an array of arrays. Finally, this proce-
dure is repeated until the bottom level is reached, at which point the radiation 
pattern of the entire array is found. This recursive procedure can evaluate 
radiation patterns many times faster than the conventional methods based on 
the DFT. An illustration of this procedure is shown in Figure 4.46 for a 46-
element polyfractal array. Note that in this fi gure the fractal tree structure of 
the array is shown inverted.

An example of a genetically optimized polyfractal array is now presented. 
The example was evolved from a population size of 500 members for over 400 
generations. The resulting array consists of 256 elements, has a peak sidelobe 
level of −18.84 dB, and has a half-power beamwidth of 0.203°. The average 

1

Generator 1 Generator 2

12 2 2 2 2

Figure 4.45. Fractal–random tree analogy for the construction of a 46-element polyfractal array. 
The connection factors are illustrated by the numbers above the branches of the four- and 
three-branch generators.
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spacing between elements is 1.05λ, while the minimum spacing is equal to 0.5λ.
The array factor and the layout of the elements for this array are shown in 
Figure 4.47. The performance properties of this array are summarized in 
Table 4.3. The recursive beamforming algorithm signifi cantly reduces the time 

Figure 4.46. Illustration of the recursive beamforming algorithm for a 46-element polyfractal 
array.

Figure 4.47. Radiation pattern and element layout of a 256-element GA optimized polyfractal 
array.
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required to calculate the radiation pattern of the polyfractal array. For the 
radiation pattern of the 256-element array with a resolution of 0.001°, the 
calculation is performed 454% faster using the recursive method versus a 
DFT-based method. Because of this speed increase, optimizations for large 
arrays that would normally take weeks now only take a matter of days or even 
hours.

4.4.6 Aperiodic Refl ectarrays

Nonuniform element spacings can also be exploited in refl ectarray design in 
order to achieve performance improvements such as reduced sidelobe levels. 
To this end, a technique for the design of unequally spaced microstrip refl ec-
tarrays has been presented [59]. An optimization approach was used for deriv-
ing the refl ectarray element positions that is a variant of the GA known as 
the differential evolution algorithm. The technique was used to design a non-
uniformly spaced 18 × 18-element refl ectarray for operation at 10 GHz. A 
prototype of the refl ectarray was fabricated with measured radiation patterns 
compared to simulations.

4.5 OPTIMIZING CONFORMAL ARRAYS

A particularly important area of practical interest is the application of robust 
optimization techniques to the design of conformal arrays. This is a very 
challenging problem in many respects. Nevertheless, signifi cant progress in 
this area has recently been made. Conformal array synthesis techniques were 
presented in Ref. 60 for the design of one-dimensional circular arc arrays as 
well as for rectangular arrays on circular cylinders of infi nite length. These 
conformal array synthesis methods were based on using simulated annealing 
(SA) techniques to determine the optimal set of current excitations (both 
amplitudes and phases) required to best approximate a desired far-fi eld radia-
tion pattern. Examples considered in Ref. 60 include the synthesis of a fl at-
topped shaped beam with a −30 dB maximum sidelobe level and a sum pattern 
with a −34 dB sidelobe level in addition to three nulls on either side of the 
mainbeam, each obtained via SA optimization of a conformal array with 25 
half-wavelength spaced axial dipoles arranged along a 120° circular arc. 
Another example discussed in Ref. 60 concerns using SA to synthesize a 
cosec2 (θ)-shaped radiation pattern for an 8 × 8 cylindrical–rectangular array 

TABLE 4.3. Performance Characteristics for a 256-Element Polyfractal Array Evolved 
Using a GA

    Half-power
Minimum Spacing Average Spacing Number of Elements SLL (dB) Beamwidth

0.5λ 1.05λ 256 −18.84 0.203°
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that is conformal to the surface of a 5λ radius circular cylinder with half-wave-
length spacing between elements. Finally, we note that GA techniques could 
just as easily be used in place of the SA approaches for these types of array 
synthesis problems.

A hybrid domain decomposition/reciprocity procedure has been presented 
[61] that allows the radiation patterns of microstrip patch antennas mounted 
on arbitrarily shaped three-dimensional metallic platforms to be computed 
accurately as well as effi ciently. Domain decomposition in this context refers 
to the process of separating the composite problem into two parts, each of 
which can be solved with much less computational complexity than the origi-
nal. The fi rst problem involves computing the magnetic currents 

�
M1 in the 

aperture of the microstrip patch antenna, while the second involves computing 
the tangential magnetic fi elds 

�
H2  induced on the platform due to plane-wave 

scattering in the absence of the patch antenna. Once these two separate 
calculations have been performed, the results are used in conjunction with 
the reciprocity theorem to determine the far-fi eld radiation pattern of the 
microstrip patch antenna when placed on the arbitrarily shaped platform. In 
its standard form the reciprocity theorem states that [62]

� � � � � � � �
E J H M dV E J H M dV

V V

1 2 1 2 2 1 2 1

2 1

⋅ ⋅ ⋅ ⋅−( ) = −( )∫∫∫ ∫∫∫  (4.30)

In order to make use of the reciprocity theorem for this procedure, it is 
assumed that source 1 is a microstrip patch antenna and source 2 is an ideal 
dipole current source located at (x0, y0, z0) in the far-fi eld of source 1 such 
that

�
J x x y y z z p2 0 0 0= ( ) ( ) ( )δ δ δ− − − ˆ  (4.31)
�

M2 0=  (4.32)

where
�
p = Ilû is the dipole moment and û represents the unit vector tangent 

to the dipole. The microstrip patch antenna is assumed to be embedded in a 
cavity between a dielectric substrate and superstrate layer. The fi elds in the 
aperture of the cavity due to the presence of the microstrip patch antenna are 
denoted by 

�
Eap, which through equivalence may be transformed into surface 

magnetic currents denoted by

� �
M n E1 = − ×ˆ ap  (4.33)

The incident plane wave radiation produced by the far-zone source 
�
J2  causes 

an electric current to be induced on the surface of the arbitrarily shaped 
perfect electric conductor (PEC) platform, denoted here as 

�
Js . This current 

may be transformed into a tangential magnetic fi eld 
�

H2  on the surface of the 
platform using the equivalence principle, such that
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� �
H n Js2 = ×ˆ  (4.34)

We also note that 
�
E2 = 0 since 

�
Ms = 0. Hence, under these conditions, the 

general reciprocity expression given in (4.30) reduces to

� � �
E p H M dS

S

1 2 1( , ) = ( )θ φ ⋅ ⋅− ′∫∫ˆ  (4.35)

where S represents the surface of the microstrip antenna aperture. This pro-
vides a useful expression for determining the far-zone electric fi elds radiated 
by a cavity-backed microstrip patch antenna mounted on a metallic platform 
of arbitrary shape [61].

As an example, let us consider the practical case of a cylindrical metallic 
platform with a circular cross section and fi nite length. Suppose that a uni-
formly spaced array of microstrip patch antenna elements is mounted along 
the length of the circular–cylindrical platform as shown in Figure 4.48. The 

Figure 4.48. Geometry of a nine-element microstrip patch antenna array mounted conformally 
to the surface of a fi nite-length metallic circular cylinder.
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cylindrical mounting platform is assumed to be oriented along the z axis. 
In this case, the far-fi eld radiation pattern produced by a linear array of N
elements may be expressed in the form

FF , EP ,( ) ( ) cosθ ϕ θ ϕ θ=
=

−

∑ w en
n

N

n
jnkd

0

1

 (4.36)

where EPn(θ, ϕ) are the individual array element patterns. If the cylindrical 
mounting platform is assumed to be infi nitely long, then all the individual 
radiation patterns of the antenna elements in the array will be identical, pro-
vided that the effects of mutual coupling are neglected.

If the cylindrical platform is truncated (i.e., is fi nite in length), then the 
assumption that the radiation patterns for each element in the array are identi-
cal is no longer valid [61]. For instance, the radiation patterns for elements 
near the ends of the cylinder will be different from those produced by the 
elements near the center of the cylinder. In general, each individual array 
element pattern may be different and the simple expression based on a pro-
gressive phase shift (i.e., αn = −nkdcosθs) can no longer be used to steer the 
mainbeam.

A synthesis technique based on the GA has been introduced [61] for deter-
mining the optimal set of excitation amplitudes and/or phases required in 
order to compensate for platform effects on the individual array element pat-
terns. The GA optimization procedure employs the domain decomposition/
reciprocity approach described above as a means of effi ciently evaluating the 
radiation patterns of microstrip patch antennas when placed at arbitrary loca-
tions on a cylindrical platform. At this point a specifi c design example will be 
presented to illustrate the GA-based radiation pattern synthesis technique.

Suppose that we consider a nine-element conformal array of microstrip 
patch antennas mounted axially along a fi nite-length metallic (PEC) circular 
cylinder. The cylinder is assumed to have a length of 60 cm and a radius of 
7.5 cm (a half-wavelength at 2 GHz). The microstrip patch antenna elements 
used in this example consist of a probe-fed square patch that is 4.915 cm on a 
side and is designed to be resonant at 2 GHz. Moreover, the patch antennas 
are sandwiched between a duroid substrate and superstrate, each with a 
dielectric constant of 2.33 and a thickness of 5 mm.

The fi rst step is to determine the currents on the surface of the fi nite-length 
PEC cylinder in the absence of the microstrip antenna array. To accomplish 
this, a method of moments (MoM) approach based on the fast multipole 
method (FMM) is used to calculate the surface currents due to plane-wave 
incidence from far-fi eld angles in the range 0° ≤ θ ≤ 360°. The tangential com-
ponents of the magnetic fi eld at the surface of the cylinder can then be found 
from (4.34). Next, an isolated patch antenna element is considered and the 
aperture fi elds 

�
Eap  are calculated at the surface of the dielectric superstrate 

layer using a suitable full-wave analysis technique such as MoM, fi nite-element 
method (FEM), fi nite-element boundary integral (FEBI), or fi nite-difference 
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time domain (FDTD). The corresponding magnetic surface currents 
�

M1  are 
then determined using (4.33). Finally, the results obtained from (4.33) and 
(4.34) can be combined together via the reciprocity expression given in (4.35) 
to fi nd the far-fi eld radiation pattern produced by an individual microstrip 
patch antenna element when placed at any arbitrary location on the circular–
cylindrical platform.

Once the individual element patterns for each of the microstrip patch 
antennas in the cylinder-mounted array have been determined, the far-fi eld 
radiation pattern of the array may be found using (4.36) for a specifi c set of 
excitation currents (amplitudes and phases). For the synthesis problem, a 
desired far-fi eld radiation pattern is specifi ed and the set of excitation currents 
is sought that produces the “best” approximation to this desired pattern. Here 
we will consider a radiation pattern synthesis technique for the cylinder-
mounted nine-element microstrip patch antenna array described above that 
is based on a GA. The radiation pattern chosen as the objective for the GA 
is an ideal cosine pattern defi ned by [63]

f
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 (4.37)

where θs is the desired steering angle (measured from the z axis), δ is the 
half-power beamwidth, and θa and θb are limits on the extent of the 
mainbeam.

Two examples will now be considered where the design parameters for the 
desired ideal cosine pattern (4.37) are chosen to be θs = 60° (mainbeam steered 
to 30° from broadside), δ = 16°, θa = 44°, and θb = 76°. In the fi rst case a GA 
approach was used to evolve the optimal set of complex weightings (i.e., 
current amplitudes and phases) for the array that would be required to best 
approximate this radiation pattern, while in the second case a phase-only 
optimization was performed by the GA. The synthesized radiation patterns 
for these two cases are indicated in Figure 4.49 by the solid curve and the 
dashed curve respectively.

In Ref. 64 a general methodology based on the GA was developed to opti-
mize positioning for any number of radiators on the surface of an aircraft. 
Moreover, the technique was demonstrated for positioning of antennas that 
operate in the VHF (very high-frequency) band (150–300 MHz) on a realistic 
model of a Boeing 747-200 aircraft. A novel aggregate objective function is 
used in the GA that incorporates surface wave coupling predicted via uniform 
theory of diffraction (UTD), variance of the coupling values, and far-fi eld 
radiation pattern analysis. Simple GA, micro-GA, and GA population seeding 
techniques were all used and compared with an exhaustive GA/local search 
benchmark. The problem scenarios that were considered include one, three, 
and eight movable antennas.
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A robust synthesis technique has been introduced [65] that uses a GA to 
evolve optimal low-sidelobe radiation patterns for spherical arrays (i.e., arrays 
that conform to the surface of a sphere). The far-fi eld radiation pattern pro-
duced by a spherical array may be expressed in the form [66,67]

FF , ,( ) ( ) (cos cos )θ ϕ θ ϕ ξ ξ=
=

− −∑w EP en
n

N

n
jkR n

1

0  (4.38)

where

ξ θ θ ϕ ϕ θ θn n n n= − +sin sin cos( ) cos cos  (4.39)

ξ θ θ ϕ ϕ θ θ0 0 0 0= − +sin sin cos( ) cos cosn n n  (4.40)

R = radius of the sphere  (4.41)

( )θ ϕn n n, angles for element=  (4.42)

Radiation pattern synthesis for two types of spherical arrays is considered 
in Ref. 65. The fi rst type is called a spherical–planar array, where the spherical 
array layout is generated by molding a planar array to the surface of a sphere. 
The second type is called a spherical–circular array, where a series of circular 
arrays are created on the surface of a sphere. In addition to this, a GA 
approach for adaptive nulling with spherical arrays has been reported [68].
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Figure 4.49. Comparison between magnitude and phase (solid line) and phase-only (dashed 
line) GA optimization of the radiation pattern for a nine-element array mounted along the cylinder 
axis (Allard et al., © IEEE, 2003 [61]).
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As an example of optimizing the array factor of a spherical array, consider 
a spherical circular array with one center element and six rings. This array lies 
on a sphere of radius 10λ. The spacing between rings when projected on the 
x–y plane is 0.557λ. A model of the array appears in Figure 4.50. When this 
array has uniform weights, then the maximum relative sidelobe level is 
−2.61 dB. Placing a phase taper on the array that compensates for the z dis-
tance between the ring elements and the center element results in a relative 
sidelobe level of −17.5 dB. This sidelobe level reduces to −17.9 dB after apply-
ing a 30 dB, n̄ = 2 Taylor taper.

In order to further reduce the sidelobe levels, a hybid GA is used. In this 
case, a continuous variable GA is linked with a Nelder–Mead downhill simplex 
algorithm. The center element is assumed to have an amplitude of 1 and a 
phase of 0. Thus, a single chromosome has 12 variables: six for amplitude and 
six for phase. The cost function returns the maximum relative sidelobe level. 
After running the algorithm, the resulting amplitude weights for the rings 
are

amplitude = [0.73 0.73 0.66 0.51 0.25 0.36]

and the corresponding phase weights are

phase = 2π[0.24 0.19 0.32 0.36 0.57 0.71]

These weights produce a maximum array factor sidelobe level of −26.7 dB. 
Figure 4.51 is a plot of the resulting array factor.

A method for the generation of optimal distribution sets for single-ring 
cylindrical arc arrays was presented in Ref. 69. In this case a GA is used to 
optimize the amplitude and phase coeffi cients of the conformal cylindrical arc 
array in order to achieve a desired radiation pattern goal. A design procedure 
for microstrip patch antenna arrays with aperture-coupled elements that has 
application to point-to-multipoint radio links at 25 GHz is described in Ref. 
70. The array synthesis has been performed through an optimization scheme 
based on the GA. In Ref. 71 a GA technique is applied to optimize the design 

Figure 4.50. Model of the spherical circular array.
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of a novel array prototype with seven microstrip patch elements in a hexagonal 
arrangement. Furthermore, this hexagonal array was shown to be capable of 
confi guring its radiation pattern adaptively in real time and is thereby suitable 
for wireless communications applications. Finally, an effi cient methodology 
based on an accelerated hybrid evolutionary GA has been introduced [72] for 
printed array pattern synthesis that takes into account the effects of coupling 
between the radiating elements. Numerical design results were presented that 
illustrate the advantages of the proposed technique when compared to con-
ventional synthesis methods.

4.6 OPTIMIZING RECONFIGURABLE APERTURES

Reconfi gurable aperture (RECAP) antennas are attractive, because they can 
provide a high degree of versatility in their performance when compared to 
more traditional antennas. For example, electronic reconfi guration can be 
used to change the bandwidth of operation or steer the radiation pattern of 
the antenna. Another advantage of reconfi gurable apertures is that they can 
be designed to have similar performance to conventional phased arrays, but 
with only a single feed point rather than multiple feeds.

A novel RECAP antenna based on switched links between electrically 
small metallic patches has been described in [73–75]. The antenna can be 
reconfi gured to meet different performance goals by simply changing the 
switches that are open and closed in an appropriate way. A GA was used to 
determine the optimal switch confi guration (i.e., which should be open and 
which should be closed) that is required to achieve a particular goal, such as 
maximum gain over a specifi ed bandwidth. A fi nite-difference time-domain 
(FDTD) method was used in conjunction with the GA to provide rigorous 

Figure 4.51. Optimized array factor for the spherical circular array.



full-wave simulations of the RECAP antenna during the evolutionary process. 
Finally, various switch technologies were considered for the RECAP antenna 
including fi eld effect transistor (FET)-based electronic switches with optical 
control and microelectromechanical system (MEMS) switches.

Previous research has shown that a certain degree of beam steering is 
achievable with reconfi gurable antennas. For example, a reconfi gurable 
antenna capable of a ±30° beam tilt has been demonstrated [76]. Tuning for 
operation within multiple frequency bands has also been shown, thereby 
allowing for multiple conventional antennas to be replaced with a single 
reconfi gurable antenna in some applications. Such capabilities were demon-
strated in Ref. 77, in which MEMS-based RF (radio frequency) switches were 
integrated into microstrip patch antennas.

A new and innovative design methodology was introduced in 2004 [78] for 
a planar reconfi gurable aperture antenna that combines many of the features 
of previous reconfi gurable antenna designs into a single antenna system. This 
antenna was shown to be steerable over a full 360° in the azimuthal plane. 
Moreover, the ability to tune the resonance of the antenna was demonstrated 
by considering three different frequency bands. The same antenna design can 
also be tuned for dual-band operation. This reconfi gurable antenna design 
concept was extended from a planar geometry to a volumetric geometry where 
a planar reconfi gurable array is placed on each of the six faces of a cube [78]. 
The reconfi gurable volumetric array design allows beam steering to be achieved 
in three dimensions, without the degradation usually associated with conven-
tional planar arrays.

The planar reconfi gurable antenna design introduced in Ref. 78 is based on 
a rectangular wire grid geometry similar to those used in Refs. 79 and 80. A 
nonreconfi gurable antenna design was described in Ref. 79, where segments 
of a wire grid geometry were removed or left in place via a GA in order to 
design optimal convoluted wire antennas. This method was shown to be effec-
tive for the design of multiband and broadband antennas. Another type of 
wire grid geometry was used for the reconfi gurable antenna design considered 
in Ref. 80. In this case the geometry of the wire grid was assumed to be fi xed. 
Relays located in the centers of 48 segments of a 10 × 10 wire grid were used 
as RF switches for tuning the antenna. This antenna was effectively optimized 
for maximum receive signal strength using a GA. A similar wire grid geometry 
is also adopted for the planar antenna introduced in Ref. 78, with the notable 
exception that variable capacitors are used for tuning as an alternative to 
relays. This new reconfi gurable antenna design methodology is more fl exible 
and can support simultaneous tuning and beam steering in the azimuthal 
plane. A 2 × 2 wire grid with only 11 variable capacitors was found to be suf-
fi cient to achieve these results. Beam steering in three dimensions was accom-
plished by generalizing the design concept to a volumetric wire cube geometry 
with 47 variable capacitors. Tuning of both 2D and 3D reconfi gurable antenna 
designs is accomplished by means of variable capacitors, whose values are 
determined via a GA optimization process. Several examples of planar and 
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volumetric reconfi gurable antennas, based on the design methodology intro-
duced in Ref. 78, are presented in the following sections.

4.6.1 Planar Reconfi gurable Cylindrical Wire Antenna Design

In this section we present a 2 × 2 reconfi gurable planar wire grid antenna 
designed to operate in free space. Variable capacitors were placed in the 
centers of 11 of the 12 wire segments that constitute the grid. The center of 
the 12th segment, located on the edge of the grid, was reserved for the antenna 
feed. An antenna size of 4 × 4 cm was used for this design in order to provide 
optimal tunability near 2400 MHz. These dimensions equate to electrical 
lengths of 0.320λ at 2400 MHz, 0.267λ at 2000 MHz, and 0.213λ at 1600 MHz. 
The geometry for this antenna is shown in Figure 4.52.

The values of the variable capacitors were constrained to lie between 0.1 
and 1.0 pF. These capacitors were then adjusted using a robust GA in order 
to achieve the desired performance characteristics for the antenna. Each 
capacitor value was encoded in a binary string, and these values were appended 
to form a chromosome. The fi tness of each antenna was evaluated from the 
gain and input impedance values calculated via full-wave MoM simulations.

4.6.2 Planar Reconfi gurable Ribbon Antenna Design

While the planar reconfi gurable antenna design shown in the previous section 
proved to be versatile in that it can be optimized relatively quickly for many 
performance goals, in certain applications a dielectric-loaded version of the 
antenna might be preferable. To this end, a 2 × 2 grid geometry was used with 

Figure 4.52. Planar reconfi gurable cylindrical wire antenna geometry.



the cylindrical wires replaced by conducting ribbons. A thin fi nite-size dielec-
tric substrate was also added, as a physical antenna requires a substrate on 
which to print the conducting ribbons. A dielectric substrate also provides a 
surface on which supporting components can be fabricated and/or tuning ele-
ments can be mounted. The source and variable capacitor locations are identi-
cal to those of the cylindrical wire version of the planar reconfi gurable antenna. 
The antenna geometry is shown in Figure 4.53.

4.6.3 Design of Volumetric Reconfi gurable Antennas

The volumetric reconfi gurable antenna introduced here is based on the cubical 
geometry shown in Figure 4.54, which is composed of 48 individual wire seg-
ments on the surface of the cube. A variable capacitor was placed at the center 
of 47 of these wire segments, while the antenna feed was assumed to be located 

Figure 4.53. Planar reconfi gurable ribbon antenna geometry.

Figure 4.54. Volumetric reconfi gurable cylindrical wire antenna geometry.
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at the center of the 48th segment. Each edge of the cube antenna measures 
3.5 cm, which equates to an electrical length of 0.280λ at 2400 MHz. The values 
of the variable capacitors were again constrained to lie between 0.1 and 1.0 pF. 
In this case a GA was used to determine the settings for each capacitor 
required to steer the beam of the antenna to any desired location in three-
dimensional space.

4.6.4 Simulation Results—Planar Reconfi gurable Cylindrical 
Wire Antenna

To demonstrate the fl exibility of the new design approach, the planar recon-
fi gurable cylindrical wire antenna was optimized for several different perfor-
mance goals. In the fi rst case, the antenna was optimized by tuning the capacitor 
values within the aforementioned range of values with the objective of achiev-
ing dual-band performance. The center frequencies for each band were speci-
fi ed as 2000 and 2400 MHz. The antenna was optimized for minimum return 
loss and maximum gain in the φ = 270° direction within both frequency bands. 
Maximum gains greater than 4 dB were achieved in the φ = 270° direction at 
both center frequencies. The impedance bandwidth (i.e., the frequency range 
over which the value of S11 is below −10 dB) exceeded 100 MHz for both bands 
as indicated by the return loss plot shown in Figure 4.55.

Next, optimizations were performed to demonstrate the ability of the planar 
reconfi gurable antenna to be tuned for operation at specifi c frequencies within 
a band. The antenna was tuned for resonance at three different arbitrarily 
chosen center frequencies of 1600, 2000, and 2400 MHz. These optimizations 
were performed without respect to radiation patterns. Impedance bandwidths 
greater than or equal to 100 MHz were achieved in all three cases as indicated 
by the return loss plots shown in Figure 4.56.

Figure 4.55. Return loss of the planar reconfi gurable cylindrical wire antenna tuned for dual-
band performance.



Another optimization was performed in order to achieve a relatively large 
impedance bandwidth irrespective of radiation patterns. To do so, the GA 
optimizer was confi gured to minimize return loss in the frequency range of 
2300–2500 MHz, and to suppress out-of-band resonances. An impedance 
bandwidth of 200 MHz was obtained, as shown in Figure 4.57.

A fi nal set of optimizations were performed on the planar reconfi gurable 
cylindrical wire antenna to demonstrate its beam steering capabilities. The 
antenna was optimized for maximum gain in eight directions in the azimuthal 
plane. Return loss was also simultaneously minimized in each case assuming 

Figure 4.56. Tuning of the planar reconfi gurable cylindrical wire antenna for resonance in three 
frequency bands.

Figure 4.57. Tuning of the planar reconfi gurable cylindrical wire antenna for broadband 
operation.
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a center frequency of 2400 MHz. Optimizations were run over several fre-
quency points in order to suppress out-of-band resonances. Gains exceeding 
5 dB at the center frequency, as well as 2  :  1 SWR bandwidths of at least 
50 MHz, were achieved in all cases. The resulting set of radiation patterns 
demonstrating the beam steering capability in the azimuthal plane are shown 
in Figure 4.58. The values of the variable capacitors that were selected by the 
optimizer for four cases are given in Figure 4.59. The current distributions on 
the antenna aperture are shown as well. It can be seen that the optimized sets 
of capacitor values controls the current distribution on the antenna aperture, 
thereby changing the radiation pattern characteristics in the desired way. 
Finally, return loss is plotted throughout the 2000–3000 MHz band for each 
case in Figure 4.60.

Figure 4.58. Gain (dB) in the azimuthal plane of the planar reconfi gurable cylindrical wire 
antenna tuned for maximum gain in eight different directions.



Figure 4.59. Current distributions and capacitor values of the planar reconfi gurable cylindrical 
wire antenna optimized for maximum gain in four selected directions.

4.6.5 Simulation Results—Volumetric Reconfi gurable Cylindrical 
Wire Antenna

The volumetric reconfi gurable cylindrical wire antenna shown in Figure 4.54 
was optimized to steer the mainbeam in the x, y, −y, and z directions. Return 
loss was also simultaneously minimized in each case assuming a center 
frequency of 2400 MHz. Optimizations were performed with the additional 
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Figure 4.60. Return loss of the planar reconfi gurable cylindrical wire antenna when optimized 
for maximum gain in eight different directions.



Figure 4.60. Continued
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(a) (b)

Figure 4.61. Gain (dB) of the volumetric reconfi gurable cylindrical wire antenna tuned for 
maximum gain in the x direction (a) and the y direction (b).

goals of achieving a bandwidth of 50 MHz while suppressing out-of-band 
resonances. The resulting radiation patterns for these beam scanning 
directions are shown in Figures 4.61 and 4.62. Gains of �5 dB as well as 2  :  1 
SWR bandwidths of 50 MHz or greater were achieved in all cases. The return 
loss for each case is shown in Figure 4.63. The current distributions on the 
antenna aperture vary signifi cantly for each set of optimized capacitor values, 
as can be seen in Figure 4.64.

4.6.6 Simulation Results—Planar Reconfi gurable 
Ribbon Antenna

The planar reconfi gurable ribbon antenna was optimized for maximum gain 
in the −y direction, and for resonance at a center frequency of 2400 MHz [78]. 



(a) (b)

Figure 4.62. Gain (dB) of the volumetric reconfi gurable cylindrical wire antenna tuned for 
maximum gain in the −y direction (a) and the z direction (b).

The performance of this antenna was evaluated via full-wave method of 
moments simulations. The length and width of the antenna were set to 2.9 cm, 
and the ribbon width used was 1.0 mm. Capacitor values were again con-
strained to the range of 0.1–1.0 pF. A fi nite dielectric substrate was added with 
a relative dielectric constant of 3.8 and dimensions 3.2 × 3.2 × 0.1524 cm. The 
gain at the center frequency in the −y direction was approximately 5 dB, as 
shown in Figure 4.65. A bandwidth of approximately 75 MHz was achieved, 
as indicated in Figure 4.66. Three dimensional views of the radiation pattern 
superimposed on the antenna model are shown in Figure 4.67. These results 
indicate that performance similar to that of the planar cylindrical wire geom-
etry can be achieved with the ribbon geometry for this particular optimization 
goal.
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Figure 4.63. Return loss of the volumetric reconfi gurable cylindrical wire antenna when opti-
mized for maximum gain in four different directions.



Figure 4.64. Current distributions for the volumetric reconfi gurable cylindrical wire antenna 
optimized for maximum gain in four different directions.
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(a) (b)

Figure 4.65. Gain (dB) of the planar reconfi gurable ribbon antenna in the azimuthal plane when 
optimized for maximum gain in the −y direction.

Figure 4.66. Return loss of the planar reconfi gurable ribbon antenna when optimized for 
maximum gain in the −y direction.

Figure 4.67. Radiation pattern of the planar reconfi gurable ribbon antenna when optimized for 
maximum gain in the −y direction: (a) top view; (b) side view.
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5
Smart Antennas 

Using a GA

As the frequency spectrum becomes more crowded, wireless systems become 
more vulnerable to interference. When the mainbeam gain times the desired 
signal is less than the sidelobe gain times the interference signal, the desired 
signal is overwhelmed by the interference. A smart or adaptive antenna is one 
alternative for recovering desirable signals. A smart antenna adapts its receive 
and/or transmit pattern characteristics in order to improve the antenna’s per-
formance. It may place a null in the direction of an interference source or steer 
the mainbeam in the direction of a desired signal. At least two different anten-
nas constitute a smart antenna, usually in the form of an antenna array. The 
amplitude and phase of the received signals are weighted and summed in such 
a way as to meet some desired performance expectation. MIMO (multiple 
input/multiple output) communications systems have adaptive transmit and 
receive antennas.

Using a GA as an adaptive antenna algorithm is a new approach to smart 
antennas. The original smart antenna was a sidelobe canceler [1]. It consists 
of a high-gain antenna that points at the desired signal. Interfering signals are 
assumed to enter the sidelobes. One or more low-gain antennas receive both 
the desired and interfering signals in its mainbeam (Fig. 5.1). The gain of the 
small antennas is approximately the same as the gain of the peak sidelobes of 
the high-gain antenna. Appropriately weighting the low-gain antenna signal 
and subtracting it from the high-gain antenna signal results in canceling the 
interference in the high gain antenna. One low-gain antenna is needed for 
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each interfering signal. The low-gain antenna minimally perturbs the main-
beam of the high-gain antenna.

The sidelobe canceler works well for a high-gain dish antenna. With slight 
modifi cation, the concept can be applied to the elements of a phased array 
[2]. The output of an adaptive array at a time sample n is given by

f n n nT( ) ( ) ( )= w s  (5.1)

where wT(n) =  [w1(n), w2(n),  .  .  .  , wN(n)] = transpose of weight vector at time 
sample n

 s(n) = signal vector at time sample n

This output differs from the desired output at sample n[d(n)] by

ε( ) ( ) ( ) ( )n d n n nT= − w s  (5.2)

The mean-square error of (5.2) is

E n E d n n n n n n[ ( )] [ ( )] ( ) ( ) ( ) ( ) ( )ε2 2 2= + −w R w w q† †  (5.3)

where † is the complex conjugate transpose of the vector and E[ ] is the 
expected value. The autocovariance matrix is defi ned to be

R = E
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Figure 5.1. Sidelobe cancellor.



and

q s( ) [ ( ) ( )]n E d n n=  (5.5)

Taking the gradient of the mean square error with respect to the weights 
results in

∇ = −E n n n n[ ( )] ( ) ( ) ( )ε2 2 2R w q  (5.6)

The optimum weights make the gradient zero, so

2 2 0R w q( ) ( ) ( )n n nopt − =  (5.7)

Solving for the optimum weights yields the optimal Wiener–Hopf solution 
[3]:

w R qopt ( ) ( ) ( )n n n= −1  (5.8)

Finding the solution requires two very important pieces of information:

1. The signal at each element
2. The desired signal

The signal at each element is found by placing a receiver at each element. If 
we know the desired signal, then why even have a receive antenna? Overcom-
ing this problem is discussed in detail in Ref. 3.

Although the Wiener–Hopf solution is not a practical approach to adaptive 
antennas, it forms the mathematical basis of the adaptive least-mean-square 
algorithm (LMS) [4]. The LMS algorithm is very similar to the Howells–
Applebaum adaptive algorithm but was developed independently. The LMS 
formula is given by

w w s w s( ) ( ) ( )[ ( ) ( )]n n n d n n+ = + −1 μ †  (5.9)

Note that the expected values are dropped because of the diffi culty in imple-
menting the expected value operator in real time. Instead, the expected values 
are replaced by the instantaneous values.

The LMS algorithm and variations thereof are canonical adaptive signal 
processing algorithms. They are based on the steepest-descent algorithm, 
which is easy to implement but can get stuck in a local minimum. A major 
problem with the LMS algorithm is the need to know the signals incident at 
each element in order to form the covariance matrix, resulting in impractical 
hardware requirements for the array:
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1. The array needs a receiver at each element to detect the signals (see Fig. 
5.2). Typically, an array has one receiver after all the signals are weighted 
and added together. Receivers are very expensive, so the cost of this 
type of an array is extremely high.

2. These receivers require calibration to ensure that the signals are weighted 
correctly [5].

3. The array needs variable amplitude and phase weights at each element. 
Usually, a phased array has only digital phase shifters to steer the beam. 
As you will see, the GA offers a powerful alternative to the LMS style 
of algorithm.

Another class of algorithms adjusts the phase shifter settings in order to 
reduce the total output power from the array [6–8]. These algorithms are 
cheap to implement because they use the existing array architecture without 
expensive additions, such as adjustable amplitude weights or more receivers. 
Their drawbacks include slow convergence and possibly high pattern distor-
tions. One approach to phase only nulling is to use a random search algorithm 
[9]. Random search algorithms check a small number of all possible phase 
settings in search of the minimum output power. The search space for the 
current algorithm iteration can be narrowed around the regions of the best 
weights of the previous iteration. A second approach forms an approximate 
numerical gradient and uses a steepest-descent algorithm to fi nd the minimum 
output power [10]. This approach has been implemented experimentally but 
is slow and gets trapped in local minima. As a result, the best phase settings 
to achieve appropriate nulls are seldom found. This chapter presents several 
applications of a GA for smart antennas. All are based on minimizing the total 
output power by making small adjustments that do not null the desired signal 
entering the mainbeam.

5.1 AMPLITUDE AND PHASE ADAPTIVE NULLING

The GA functions as an adaptive antenna algorithm by minimizing the total 
output power of the array [11]. This approach only works if the desired signal 
is not present or if the adaptive algorithm is constrained to making small 

Figure 5.2. Diagram of an adaptive array.



amplitude and phase perturbations at each element. Although adapting while 
the desired signal is absent may work for a stationary antenna with relatively 
stationary interference sources, it would fail to provide reasonable protection 
for most communications and radar systems. Limiting the amplitude and 
phase perturbations at each element is actually quite easy to do, especially 
with a GA, since the GA inherently constrains its variables. Most phase shift-
ers and attenuators are digital, so a binary GA naturally works with binary 
control signals.

In order to minimize total output power, which consists of the interference 
signal and possibly the desired signal, without sacrifi cing the desired signal 
requires the antenna to place nulls in the sidelobes and not the mainbeam. It’s 
reasonable to assume that the desired signal enters the mainbeam and the 
interference enters the sidelobes. Large phase shifts are required to place a 
null in the mainbeam. Large reductions in the amplitude weights are required 
in order to reduce the mainbeam. Consequently, if only small amplitude and 
phase perturbations are allowed, then a null can’t be placed in the mainbeam 
but can be placed in the sidelobes. Lower sidelobes require smaller perturba-
tions to the weights in order to place the null. Using only a few least signifi cant 
bits of the digital phase shifter and attenuator bits prevents the GA from 
placing nulls in the mainbeam. It’s a natural mainbeam constraint. The ampli-
tude and phase perturbations as a function of the number of least signifi cant 
bits used out of a total of 6 bits are shown in Table 5.1.

Let’s look at a 20-element, 20-dB, n̄ = 3 Taylor adaptive linear array with 
elements spaced half a wavelength apart. Assume the amplitude and phase 
weights have 6-bit quantization. If the only source enters the mainbeam, then 
the adaptive algorithm tries to reduce the mainbeam in order to reduce the 
total output power. Figure 5.3 shows the mainbeam reduction when 0–4 least 
signifi cant bits (LSBs) in the amplitude weights are used for nulling. Zero bits 
corresponds to the quiescent pattern. A maximum reduction of 1 dB is possible 
using 4 bits of amplitude. In contrast, Figure 5.4 shows the mainbeam reduc-
tion when 0–4 LSBs least in the phase weights are used for nulling. Using 1–
3 LSBs results in very little perturbation to the mainbeam. Unlike amplitude-only 
nulling, phase-only nulling causes beam squint. Also, 4 bits of phase had more 

TABLE 5.1. Amplitude and Phase Values of Nulling Bits Assuming Amplitude and 
Phase Weights Totaling 6 Bits

Number of Nulling Bits Amplitude with Maximum of 1 Phase (deg)

1 0, 0.015625 0, 5.625
2 0, 0.015625,  .  .  .  , 0.046875 0, 5.625,  .  .  .  , 16.875
3 0, 0.015625,  .  .  .  , 0.10938 0, 5.625,  .  .  .  , 39.375
4 0, 0.015625,  .  .  .  , 0.23438 0, 5.625,  .  .  .  , 84.375
5 0, 0.015625,  .  .  .  , 0.48438 0, 5.625,  .  .  .  , 174.38
6 0, 0.015625,  .  .  .  , 0.98438 0, 5.625,  .  .  .  , 354.38

 AMPLITUDE AND PHASE ADAPTIVE NULLING 137



138 SMART ANTENNAS USING A GA

1 The amplitude weights described here are based on a linear voltage scale. Commercial variable 
amplitude weights are based on a decibel power scale.

Figure 5.3. Maximum mainbeam reduction possible when 1–4 least signifi cant bits out of 6 
total bits in an amplitude weight are used to null a signal at f = 90°; 0 bits is the quiescent 
pattern.

Figure 5.4. Maximum mainbeam reduction possible when 1–4 least signifi cant bits out of 6 
total bits in a phase weight are used to null a signal at f = 90°; 0 bits is the quiescent 
pattern.

effects on the mainbeam than did 4 bits of amplitude.1 This example demon-
strates that adaptive nulling with the LSBs would not cause signifi cant degra-
dation to the mainbeam.

A diagram of the adaptive array appears in Figure 5.5. The array has a 
standard corporate feed with variable weights at each element. The phase 
shifters in the weights are available for beamsteering as well as nulling. Since 
the phase shifters and attenuators are digital, their inputs are in binary format. 



If both weights have 5-bit accuracy, then a subset of these bits is used for the 
nulling. Figure 5.6 demonstrates the process of taking the 3 LSBs out of the 5 
bits for each element and placing them into a chromosome. Each chromosome 
forms a row in the population matrix. Parents are selected from the population 
and mate to form offspring as shown in Figure 5.7 (single-point crossover is 

Figure 5.5. An adaptive antenna that minimizes the total output power.

Figure 5.6. The least signifi cant bits of the amplitude and phase weights are put in a 
chromosome.

Figure 5.7. Two parents are selected from the mating pool. Two offspring are created using 
single-point crossover and placed into the population matrix to replace discarded 
chromosomes.
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used here). Mutations occur inside the population (italicized digits in Fig. 5.8). 
Each chromosome in the population is then passed to the antenna to adjust 
the weights and the output power measured (Fig. 5.8).

As an example, consider a 20-element array of point sources spaced 0.5λ
apart. The array has 6-bit amplitude and phase weights and a 20-dB, n̄ = 3 
low-sidelobe Taylor amplitude taper. Two LSBs of the amplitude weights and 
three of the phase weights are used for nulling. Some guidance on the number 
of LSBs to use for nulling is given in Ref. 12. The desired signal is incident on 
the peak of the mainbeam and is normalized to 1 or 0 dB. Two 30-dB jammers 
enter the sidelobes at 111° and 117°. The GA has a population size of 8 and 
a 50% selection rate, uses roulette wheel selection and uniform crossover, and 
has a mutation rate of 10%. Convergence of the algorithm is shown in Figure 
5.9. Generation −1 represents the received signals from the quiescent pattern. 
Generation 0 is the best of the initial random population of the GA. Perfor-
mance levels off in about 17 generations. Since the GA uses elitism and has 
a population size of only 8, the maximum number of output power measure-
ments is 8 + 17 × 7 = 127. The total power output decreases monotonically, 
but the reduction in an individual jammer’s contribution to the total output 
power can go up or down. Sometimes decreasing the null at one jammer loca-
tion is done at the expense of the null at the other jammer location. The output 
power due to the desired signal remains relatively constant, because the main-
beam remains virtually unperturbed. A track of the signal to interference ratio 
appears in Figure 5.10. Nulls appear in the array factor at the angles of the 
two jammers as shown in Figure 5.11. The nulls come at a cost of increased 
average sidelobe level.

The next example has the same array with 4 amplitude and 3 phase LSBs 
doing the nulling of two symmetric 30 dB jammers at 50° and 130°. Conver-

Figure 5.8. Random bits in the population are mutated (italicized bits). The chromosomes are 
sent to the array one at a time and the total output power is measured. Each chromosome then 
has an associated output power.



Figure 5.9. The GA minimizes the total output power. In the process, it places nulls in the sid-
elobes and reduces the jammer power. Generation −1 is the quiescent pattern, and generation 
0 is the best of the initial population.

Figure 5.10. Signal : interference ratio as a function of generation.

gence is shown in Figure 5.12. The resulting array factor appears in Figure 
5.13. More bits were needed to create adequate nulls at symmetric locations 
in the pattern. As a result, the sidelobes go up and the time needed to place 
the nulls is longer compared with nonsymmetric jammers.

This concept was experimentally demonstrated on a phased array antenna 
developed by the Air Force Research Laboratory (AFRL) at Hanscom AFB, 
MA [11]. The antenna has 128 vertical columns with 16 dipoles per column 
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Figure 5.11. Nulls are adaptively placed at 111° and 117°.

Figure 5.12. Since amplitude and phase weights are used in the adaptive process, symmetric 
nulls can be placed.

equally spaced around a cylinder that is 104 cm in diameter. Figure 5.14 is a 
cross-sectional view of the antenna. Summing the outputs from the 16 dipoles 
forms a fi xed-elevation mainbeam pointing 3° above horizontal. Only eight 
columns of elements are active at a time. A consecutive eight elements form 
a 22.5° arc ( 1–16th of the cylinder), with the elements spaced 0.42λ apart at 5 GHz. 
Each element has an 8-bit phase shifter and 8-bit attenuator. The phase shift-
ers have a LSB equal to 0.0078125π radians. The attenuators have an 80 dB 
range with the least signifi cant bit equal to 0.3125 dB. The antenna has a qui-
escent pattern resulting from a 25 dB n̄ = 3 Taylor amplitude taper. Phase 
shifters compensate for the curvature of the array and unequal pathlengths 
through the feed network.



A 5-GHz continuous-wave source served as the interference. Only the 
4 LSBs of the phase shifters and attenuators were used. The GA had a popula-
tion size of 16 chromosomes and used single-point crossover. Only one bit in 
the population was mutated every generation, resulting in a mutation rate of 
0.1%. Nulling tended to be very fast with the algorithm placing a null down 
to the noise fl oor of the receiver in less than 30 power measurements. Two 
cases of placing a single null are presented here. The fi rst example has the 
interference entering the sidelobe at 28° and the second example has the 
interference at 45°. Figure 5.15 plots the sidelobe level at 28° and 45° as a 
function of generation. The resulting far-fi eld pattern measurements are 
shown in Figures 4.16 and 4.17 superimposed on the quiescent pattern. These 
examples demonstrate that the GA quickly places nulls in the sidelobes in the 
directions of the interfering signals by minimizing the total power output.

Figure 5.13. Nulls are placed at symmetric locations in the antenna pattern.

Figure 5.14. The cylindrical array has 128 elements with 8 active at a time.
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Figure 5.15. Convergence of GA for jammers at 28° and 45°.

Figure 5.16. Null placed in the far-fi eld pattern at 28°.

Figure 5.17. Null placed in far-fi eld pattern at 45°.



5.2 PHASE-ONLY ADAPTIVE NULLING

Normally, a phased array does not have variable amplitude weights. Since a 
phased array does have phase shifters, nulling with only the phase shifters 
would signifi cantly simplify the adaptive antenna design. Phase-only nulling 
differs from amplitude and phase nulling, because the weights in Figure 5.5 
have amplitude of 1. The theory behind phase-only nulling is explained in Ref. 
6. The authors present a beam-space algorithm derived for a low sidelobe 
array and assume that the phase shifts are small. When the direction of arrival 
for all the interfering sources is known, then cancellation beams are generated 
in the directions of the sources and subtracted from the original pattern. 
Adaptation consists of matching the peak of the cancellation beam with the 
culprit sidelobe and subtracting. A similar approach is also presented in Ref. 
8. Other authors have suggested using gradient methods for phase-only adap-
tive nulling where the source locations do not have to be known [10,13].

Using a GA for adaptive phase-only nulling was fi rst reported in 1997 [14]. 
Chromosomes only contain the phase nulling bits, so they are much shorter 
than the chromosomes in amplitude and phase nulling. Small population sizes 
help the algorithm converge reasonably rapidly. A GA can be real-time only 
if the population size is small. Otherwise, large population sizes require too 
many function evaluations (see Chapter 9).

For purposes of comparison, the two scenarios used in the amplitude–phase 
nulling examples are repeated here. The array has 20 elements spaced a half-
wavelength apart and a 20-dB n̄ = 3 Taylor amplitude taper. Figures 5.18–5.20 
show the results of phase-only nulling when the interference sources are at 
111° and 117°. The GA successfully places the nulls in the sidelobes using only 

Figure 5.18. Signal levels as a function of generation for the phase-only algorithm.
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Figure 5.19. The signal : interference ratio for the phase-only adaptive algorithm with two 
jammers at 111° and 117°.

Figure 5.20. Adapted pattern for phase-only nulling with two jammers.

3 least signifi cant phase bits out of 6 total bits. The power received from the 
two jammers decreases at different rates. The total output power either 
decreases or stays the same.

Moving to the case of two 30-dB interference sources at 50° and 130° con-
fronts the algorithm with the problem of symmetric interference sources. The 
GA could null only one of the interference sources with 3 least signifi cant 
phase bits, so a minimum of 4 bits had to be used. Adding a fourth bit resulted 
in nice convergence as shown in Figure 5.21. As noted previously, 4 phase bits 
results in noticeable mainlobe degradation as shown in Figure 5.22. The side-
lobe levels of the adapted phase-only pattern are noticeably higher than in the 
amplitude-phase nulling case.



Phase-only nulling has the advantage of simple implementation. The trad-
eoff is that more bits must be used to null interference signals that are at 
symmetric locations about the mainbeam. The additional nulling bits result in 
higher distortions in the mainbeam and sidelobes. Small phase shifts produce 
symmetric cancellation beams that are 180° out of phase. When they are added 
to the quiescent pattern to produce a null at one location, the symmetric sid-
elobe increases [8]. This problem can be overcome by either large phase shifts 
[15] or adding amplitude control.

A number of other adaptive nulling schemes with GAs have been tried. 
Weile and Michielssen [16] used a GA to optimize the signal-to-noise-plus-

Figure 5.21. Convergence of the phase-only algorithm with symmetric jammers.

Figure 5.22. Adapted pattern for phase-only nulling with symmetric jammers.
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interference ratio. Their GA used diploid individuals and a dominance rela-
tion. They found that the diploid scheme worked better than the normal 
haploid scheme of a simple GA. Some proposed implementations involve 
open-loop calculations rather than true adaptive schemes with feedback. For 
instance, in Refs. 17 and 18, nulls were placed in array factors by shifting zeros 
on the unit circle. Adapting for element failures with a GA was shown in 
Ref. 19. The location of the element failures and the precise weighting must 
be known in advance. Another paper describes precisely placing nulls in an 
antenna pattern to control sidelobes in specifi ed sectors [20]. Some papers 
applied a GA to design an array for use as a smart antenna [21–23]. Other 
papers describe how to use a GA for adaptive beamforming applications 
[24,25]. An adaptive GA is used to fi nd the weights that place a null in the 
far-fi eld pattern of a spherical array in [26]. A GA proved superior to steepest 
descent when applied to a constant modulus algorithm adaptive array [27]. A 
real-time GA compared favorably with an Applebaum algorithm for interfer-
ing signals with random directions of arrival [28]. An adaptive GA algorithm 
also place nulls in the far-fi eld pattern of a hexagonal planar array [29]. The 
future looks bright for real-time applications of GAs.

5.3 ADAPTIVE REFLECTOR

So far, we’ve looked at adaptive nulling with phased array antennas. The more 
commonly used refl ector antenna needs protection from interference as well. 
As mentioned previously, sidelobe cancelers were developed for use with 
refl ector antennas but require the use of additional antennas. It is also possible 
to place a phased array at the feed of the refl ector and perform nulling at the 
feed. The phased array feed is large and results in blockage and added weight. 
An alternative is to cause the cancellation to occur by altering the refl ector 
surface.

Nulls can be placed in the far fi eld of a refl ector antenna by creating a 
dimple in the refl ector surface. The dimple is formed by moving a fl exible 
region of the surface. This idea was fi rst proposed in Ref. 30, where an adap-
tive refl ector surface was made using electrostatic actuators. The concept 
alters a portion of the refl ector surface, as shown in Figure 5.23, in order to 
change the phase of the signal scattered from that region so that the scattering 
fi eld cancels the signal entering a sidelobe. A very similar approach was imple-
mented on the surface of an 85-cm-diameter offset wire mesh refl ector at 
10 GHz with 52 adjustable points that shape the refl ector to produce a desir-
able pattern [31]. One of the adjustable points on the refl ector surface was 
pulled back until a null formed in the desired direction. The authors stated 
that the adaptation should be done only in the absence of the desired signal. 
They said that two or more mesh control points are needed to place a single 
null and that nulls cannot be placed at certain angles. Experiments with alter-
ing the refl ector surface were performed for the haystack main refl ector [32] 



and subrefl ector [33] to reduce the root-mean-square (RMS) surface error. 
Piezoelectric actuators are another way to alter the shape of refl ector antennas 
in order to steer the mainbeam or produce a desired pattern shape [34]. These 
actuators could be used for adaptive nulling.

Movable conducting plates parallel to the axis of the parabolic refl ector can 
also place nulls in the sidelobes. The idea is that the scattered fi eld from the 
plates will cancel the fi eld generated by the refl ector antenna in the desired 
direction of interference. Jacovanco reported results of an experiment in 
which he manually moved disks in and out from the surface of a parabolic 
refl ector antenna [35,36]. A source was pointed at one of the receive sidelobes. 
He generated a null in the sidelobe by minimizing the measured signal received 
at the refl ector feed. He reported that the disks must be large enough to scatter 
suffi cient fi eld amplitude to cancel a sidelobe but small enough to not perturb 
the mainbeam. Physical optics (PO) was used to model this concept, and some 
rules of thumb were developed to estimate disk size needed to cancel sidelobes 
[37]. The concept can be improved by making the disks from a metal grating 
rather than solid metal [38]. This approach permitted control over the polar-
ization, consequently the amplitude of the scattered fi eld when the disk is 
rotated. The authors reported only open loop nulling without any adaptation. 
Lam et al. [39] attached small refl ectors to the interior or exterior of a main 
refl ector surface. Using PO to model the concept, they rotated the auxiliary 
refl ectors until the fi rst two sidelobes of the antenna pattern were reduced by 
10 dB. The diameters of the auxiliary refl ectors were determined to be 0.3 
times the size of the main refl ector. When the auxiliary refl ector was on the 
interior of the main refl ector, the blockage caused a loss in gain and raised 
sidelobe levels in general. No mention was made of applying this concept to 
adaptive nulling or of the effect on the sidelobes beyond the fi rst two.

The GA is a suitable candidate to adaptively control the Jacovanco nulling 
refl ector [40,41]. As with the adaptive arrays presented in the previous 
sections, this algorithm works by minimizing the total output power of the 

Figure 5.23. A small region of the refl ector is fl exible enough to move.

 ADAPTIVE REFLECTOR 149



150 SMART ANTENNAS USING A GA

refl ector. If the interference enters the sidelobes and the desired signal the 
mainlobe, then, as long as the movable scattering plates are not too large, nulls 
are placed in the sidelobes while not in the mainbeam.

The parabolic refl ector is a perfectly conducting two-dimensional refl ector 
surface and has a line feed with a 0.5λ-wide strip placed 0.25λ behind it. The 
conformal perfectly conducting scattering plate(s) translate in the x direction. 
The equation describing a parabolic refl ector with its focal point (F) on the x
axis is

x
y
F

=
2

4
 (5.10)

A refl ector having F = 5λ and D = 10λ is shown in Figure 5.24. The scattering 
plate extends a distance d in the x direction. If there is more than one scatter-
ing plate, then each one extends a distance dn from the surface where n = 1 
refers to the scattering plate with the smallest y coordinates. Increasing values 
of n refer to scattering plates with increasing y locations. Note that changing 
dn has no effect on y coordinates. Plates do not overlap.

The surface currents on all perfectly conducting surfaces are found using 
the electric fi eld integral equation formulation [40]

IH k J H k dc J H k df
C Cn

0
2

0
2

0
2

0

( ) ( ) ( )( ) ( ) ( ) ( ) ( )ρ ρ ρ ρ ρ ρ ρ+ ′ − ′ ′ + ′ − ′′∫ ∫ ′′′ =
=

+

∑ c
n

N

1

1

0

(5.11)

where k = 2π/λ
 λ = wavelength
 I = electric current
 H 0

(2) (⋅) = zero-order Hankel function of the second kind

Figure 5.24. Model of refl ector with one scattering plate.



 J = surface current
 C0 = contour of main refl ector surface
 Cn = contour of scattering plates for 1 ≤ n ≤ N
 CN+1 = contour of subrefl ector
 N = number of scattering plates
 (xf, yf) = feed location
 (x, y) = observation point
 (x′, y′) = source point
 ρ̄ f = xf x̂ + yŷ = feed vector
 ρ̄ = xx̂ + yŷ = observation point vector
 ρ̄′ = x′x̂ + y′ŷ = source point refl ector vector
 ρ̄″ = (x′ + δn)x̂ + y′ = ŷ source point on scattering plate vector

The currents are found on all the surfaces using the method of moments. Pulse 
basis functions and point matching reduce the integral equation to a matrix 
equation. The pulses are 0.05λ wide. Figure 5.25 shows the complete quiescent 
pattern of the parabolic refl ector with no moving plates and a line source 
feed with a 0.5λ-wide strip placed 0.25λ behind it. This added strip behind 
the line source reduces spillover by increasing the feed directivity and 
adds a realistic aperture blockage (which accounts for the sidelobe variations 
in Fig. 5.25). Once the currents are found, then the far-fi eld pattern is 
calculated via

FF e ejk x y jk x yf f n n( ) ( sin cos sin cos ) ( sin cos sinθ ϕ θ ϕ θ ϕ θ ϕ θ, = − −+ +Δ ccos )ϕ Jn
n

M

=
∑

1

 (5.12)

Figure 5.25. Quiescent antenna pattern for the parabolic refl ector. There are no scattering 
plates present.
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where M = total number of segments on all refl ector parts
 (θ, ϕ) = far-fi eld direction
 (xn, yn) = centerpoint of segment n
 Δ = segment width
 Jn = surface current on segment n

The number, size, and location of the scattering plates determine the refl ec-
tor’s ability to place nulls in its sidelobes. Figure 5.26 shows the upper half of 
the cylindrical parabolic refl ector with scattering plates 1–4. Plates 1 and 2 are 
at the edge of the refl ector, while 3 and 4 are at the center. Plates 1 and 4 are 
0.5λ tall in the y direction, and plates 2 and 3 are 1.0λ tall. Only the fi elds due 
solely to these four possible scattering plates when d = 0 are shown in Figure 
5.27 with the quiescent refl ector pattern superimposed. The short plates have 
much wider 3-dB patterns but are approximately 6 dB below the peaks of the 
patterns of the long plates. This is logical, since the large plates are twice the 
size of the small plates. The center plates have higher peak scattering patterns 
than the edge plates, because the directional source at the feed has higher gain 
in the direction of the center plates. None of the plates reach the same level 
as the peak of any sidelobe, so total cancellation of a sidelobe is not possible. 
Increasing the size of the scattering plate increases its gain in the region near 
the mainbeam but decreases the gain outside that region. The long center 
plate would be much less effective at canceling the sidelobes in the quiescent 
pattern for 80° ≤ ϕ ≤ 90° because the pattern of the long center plate is about 
30 dB below that of the short center plate. Consequently, increasing the size 
of the plate helps null sidelobes near the mainbeam but hinders null placement 
in sidelobes far from the mainbeam. The effect was noted but not explained 

Figure 5.26. The dotted line is the upper half of the main refl ector. The short edge scattering 
plate (1) is 0.5l long; the long edge scattering plate (2) is 1.0l long; the short center scattering 
plate (3) is 0.5l long; the long center scattering plate (4) is 1.0l long.



in Ref. 31. Next, the 1.0λ long edge plate was moved. Figure 5.28 shows the 
scattered fi elds when the plate is at d = 0, 0.5λ, and 1.0λ. Moving the plate 
changes the scattered fi eld amplitude near the mainbeam by a few decibels. 
The scattered fi eld amplitude far from the mainbeam can vary as much as 
∼15 dB. A phase plot is shown in Figure 5.29 for d = 0.5λ and d = 1.0λ and −90°
≤ ϕ ≤ 90°. The phase is a linear function of ϕ until ϕ > 45°. At that point, the 
observation point moves behind the refl ector, so the phase variation is no 
longer linear.

Figure 5.27. These are the fi elds from the scattering plates in Figure 5.3 superimposed on the 
quiescent refl ector pattern.

Figure 5.28. The fi elds from the 0.5l edge scattering plate when at d = 0.0l, 0.5l, and 
1.0l.
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Figure 5.29. Phase of a 0.5l edge scattering plate when at d = 0.5l and 1.0l.

As a quick check of the concept, the Jacavanco experiment is repeated 
using two different-sized scattering plates to place nulls at three different 
angles. The fi rst scattering plate extends 0.5λ in the y direction starting at y =
4.5λ, and the second one extends 1λ in the y direction starting at y = 4λ. The 
plates are moved between 0 ≤ d ≤ 2λ in order to place a null in the sidelobe 
at 8.5°, 14.5°, and 75.5°. The angle 8.5° is chosen because it is the location of 
the highest sidelobe and is closest to the mainbeam. The angle 75.5° is chosen 
because it is in the low gain region of the scattering plate as shown in Figure 
5.28. Figure 5.30 contains plots of the variation in sidelobe level at 8.5°, 14.5°, 
and 75.5° (solid line) and fi eld strength at ϕ = 0° (dashed line) when continu-
ously moving the scattering plate for 0 ≤ d ≤ 2λ. Ideally, the optimal d maxi-
mizes the mainbeam and minimizes the sidelobe level. Instead, the minimum 
mainbeam and minimum sidelobe level occur at nearly the same angle. Since 
the gain of the short scattering plate is much less than the gain of these side-
lobes, it does not cause much sidelobe cancellation. The long plate, however, 
puts a 25-dB null in the sidelobe at 14.5° and lowers the sidelobe at 8.5° by 
about 3 dB. The long plate does not have much of an impact on the sidelobe 
level at 75.5° because of its very low gain in that direction. This example 
demonstrates the Jacavanco idea for placing a single null in the antenna 
pattern by manually adjusting the position of a perfectly conducting scattering 
plate. It also shows the dependence of the null depth on the size of the scat-
tering plate and position and gain of the sidelobe.

A single scattering plate is adequate for placing a null in the antenna 
pattern at certain locations as was done by Jacavanco. An adaptive algorithm, 
however, is needed to make this approach credible in a realistic system. The 
results in Figure 5.30 show that there are several minima for a single movable 



a.  0.5 λ edge plate  

b.  0.5 λ edge plate  

c.  0.5 λ edge plate  

Figure 5.30. The 0.5l (a–c) and 1.0l (d–f) edge scattering plates are continuously moved from 
0 ≤ d ≤ 2l; these plots show the sidelobe level at three null locations and the mainbeam strength 
at j = 0°.
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d.  1.0 λ edge plate  

e.  1.0 λ edge plate  

f.  1.0 λ edge plate  

Figure 5.30. Continued



plate and one null. A local search algorithm might get caught in one of the 
local minima. The GA is a more appropriate choice in this case than tradi-
tional local minimization algorithms. In addition, placing multiple nulls using 
several scattering plates requires searching a very complex cost surface that 
would confuse local optimizers but not the GA.

The GA program for the results presented here has a population size of 8, 
a selection rate of 50%, and a mutation rate of 15%. These values are some-
what arbitrary but have worked well for other applications. The goal of the 
GA is to minimize the total output power by moving the scattering plates. A 
consequence of minimizing the total output power is that the algorithm also 
tries to null the desired signal. Keeping the scattering plates small, toward the 
edges, and less than 50% of the surface area of the refl ector prevents the 
algorithm from nulling the mainbeam. The adaptive process described in Ref. 
31 was capable of placing a null in the mainbeam. Consequently, the authors 
stated that the adaptive nulling must be done when the desired signal was not 
present.

The fi rst example places a null at 14.5° using one 0.5λ-tall scattering plate 
at each edge of the refl ector. Figure 5.31 is a graph of the GA convergence. 
The GA reaches a minimum in about 10 generations. Figure 5.32 shows the 
optimum positions of the plates. The resulting adapted pattern appears in 
Figure 5.33. There is a slight decrease in the mainbeam and a small increase 
in the sidelobe level. A relatively minor penalty was paid for placing a deep 
null in the direction of the interference source.

The next example places nulls at −35°, −14.5°, and 8.5° using two adjacent 
λ-tall scattering plates at each edge of the refl ector. Figure 5.34 is a graph 
of the GA convergence. The GA reaches a minimum in 48 generations. 

Figure 5.31. The GA converges in ∼10 generations.
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Figure 5.32. Placement of the scattering plates to put a null at 14.5°.

Figure 5.33. Null in the far-fi eld pattern at 14.5°.

Figure 5.35 shows the optimum positions of the four plates. The resulting 
adapted pattern appears in Figure 5.36. The refl ector was able to place three 
nulls using four small plates. Sidelobe levels do not excessively go up, but the 
mainbeam gain decreases by 3 dB. Four plates result in enough scattered fi eld 
to have a major impact on the mainbeam.

Finally, six interference sources with power levels of 10 dB are incident at 
−75°, −64.5°, −45°, 14.5°, 35°, and 54.5°. The refl ector uses three adjacent 0.5λ-



Figure 5.34. Convergence of the GA when placing nulls in the far-fi eld pattern at −35°, −14.5°,
and 8.5°.

Figure 5.35. Resulting locations of the four scattering plates for placing nulls at −35°, −14.5°,
and 8.5°.

tall scattering plates at each edge. Figure 5.37 is the resulting adapted antenna 
pattern. Not all the sources could be nulled, and the mainbeam underwent 
signifi cant degradation. As with other adaptive schemes, this method needs 
enough degrees of freedom to deal with the number of jammers. Six plates in 
this small refl ector were too many and resulted in a large decrease in antenna 
gain.
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Figure 5.36. Resulting nulls in the far-fi eld pattern at −35°, −14.5°, and 8.5°.

Figure 5.37. Adapted pattern for six interference sources.

5.4 ADAPTIVE CROSSED DIPOLES

The amount of power received by a moving antenna depends on the gains and 
polarization characteristics of the transmit and receive antennas. Antenna 
gain and polarization change as a function of angle. If the orientations of the 
transmit and receive antennas change as one or both antennas move, then the 
power received changes. The Friis transmission formula provides a way to 
calculate the received power in a communications system
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where Pt = transmitter power
Gt(θt, φt) = gain of transmit antenna
Gr(θr, φr) = gain of receive antenna

r = distance between transmit and receive antennas
r̂t(θt, φt), r̂r(θr, φr) =  polarization vectors of the transmit and receive 

antennas

The square of the magnitude of the dot product of the transmit and 
receive antenna polarization vectors is called the polarization loss factor 
(PLF). Assuming that the frequency, power transmitted, and separation 
distance remain the same, then the antenna gains and polarization vectors 
are the remaining ways to improve the link budget. Since these quantities 
are a function of angle, the antennas can be positioned to maximize the 
power transfer. When pointing the transmit and receive beams at each other 
is not possible, then adaptively altering the currents on the antennas to 
change the gains and polarization vectors is another way to improve the link 
budget.

The directivity and polarization of a crossed dipole antenna can be changed 
by varying the amplitude and phase of the currents fed to the individual 
dipoles. It has been experimentally shown that polarization diversity in the 
form of crossed dipoles improved a wireless link better than through spatial 
diversity (antenna separation) in a high-multipath environment [42]. Using 
three orthogonal crossed dipoles can also signifi cantly increase the channel 
capacity of a wireless communication system inside a building [43]. Adaptive 
crossed dipoles change their polarization and gain to maximize the received 
power. A circularly polarized millimeter wave propagating through rain 
becomes elliptically polarized. The amount of depolarization is a function of 
the rainfall rate. In [44] an open-loop adaptive transmit antenna adjusted its 
polarization based on the amount of rainfall measured in the propagation 
path. Using an LMS (least-mean-square) algorithm to adapt the polarization 
and pattern of a two-element array of crossed dipoles improves the signal-to-
interference-plus-noise ratio (SINR) [45]. The LMS algorithm was also used 
to fi nd the complex weights of three orthogonal dipole antennas in order to 
improve the SINR. Rejection for interference signals at most angles of arrival 
and polarizations was possible [46]. A GA works well as an adaptive algorithm 
for a communications system that uses crossed dipoles [47].

In Figure 5.38 the transmit antenna is located at an angle of (θr, ϕr) from 
the receive antenna, and the receive antenna is located at an angle of (θt, ϕt)
from the transmit antenna. In the nonadaptive mode, maximum power trans-
fer occurs when θt = 0° and θr = 0°. Maximum power transfer occurs when the 
mainbeams point at each other.
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If the dipoles are short (L << λ), then the crossed dipole has a current that 
is the sum of the constant currents on each short dipole:

I r I I Ix y z( ) = + +′ ˆ ˆ ˆx y z  (5.14)

The magnetic vector potential associated with this current is

A x y z= ( + + )
μ
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I L I L I L
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−

ˆ ˆ ˆ  (5.15)

where r = distance from the origin to the fi eld point at (x, y, z)
Lx,y,z = dipole length in the x, y, and z directions

μ = permeability
Ix,y,z = constant current in x, y, or z direction

The electric fi eld far from the antenna is given by

E A= − jω  (5.16)

where ω = radial frequency. Substituting (5.15) into (5.16) leads to
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Calculations are easier if the electric fi eld is in spherical coordinates, so the 
rectangular components can be written in spherical coordinates as
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4
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Figure 5.38. Three orthogonal dipole antennas are used for the transmit and receive 
antennas.
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We are most interested in the directivity and polarization loss factor, which 
are given by
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where 0 ≤ ⏐r̂t(θt, φt) ⋅ r̂r(θr, φr)⏐ ≤ 1. Transmit and receive quantities are repre-
sented by the t and r subscripts, respectively.

As an example, a satellite communications system has an earth station with 
a pair of orthogonal crossed dipoles in the x–y plane transmitting a circularly 
polarized fi eld (Ix = 1, Iy = j, and Iz = 0) in the z direction. While θ increases 
from 0° to 90°, the polarization transitions from circular through elliptical and 
fi nally linear polarization at 90°. Figure 5.39 is a plot of the directivity and 
inverse axial ratio as a function of θ. Both quantities decrease as a function 
of θ. The axial ratio is the ratio of the major axis to the minor axis of the 
polarization ellipse. The inverse is often used to keep the quantity between 
zero and one.
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The directivities and polarizations of the transmit and receive antennas are 
the primary quantities in the Friis transmission formula that can be adaptively 
controlled by a GA. The fi tness function uses the amplitude and phase weights 
for the received dipole and calculates the affected part of the Friis transmis-
sion formula

F I I I D Dx y z t r t r r( , , ) ( , ) ( , )| |= × × ×ˆ ˆr rt t rθ φ θ φ  (5.21)

where Dt is the directivity of the transmit crossed dipoles in the direction 
of the receive crossed dipoles and Dr is the directivity of the receive 
crossed dipoles in the direction of the transmit crossed dipoles. The crossed 
dipoles have a maximum directivity close to 1, so the directivities are not 
normalized in the objective function. This fi tness function has a maximum 
value of 2.25.

A GA optimized the continuous values of the amplitude and phase of the 
receive dipole currents in order to maximize (5.21). The GA has a population 
size of 8 and a mutation rate of 2%. It uses single-point crossover and has 
50% replacement. The optimization process quickly improves the communica-
tions link but does not necessarily fi nd the global minimum. A small popula-
tion size and large mutation rate result in the best performance.

In all the examples presented here, the orientation of the ground and satel-
lite antennas are assumed to change with time unless otherwise specifi ed. Even 
though the distances between the antennas would also change, this variation 
is ignored. As the orientations of the antennas vary with time, so do their 
directivity and polarizations in the directions of each other.

The fi rst example assumes that the transmit antenna tracks a satellite (θt =
0°) and the receive antenna points at the ground (θr varies). The ground 
antenna transmits a circularly polarized signal with maximum directivity point-
ing at the moving receive antenna. If the transmit and receive antennas do not 
adapt, then the receive power follows the dashed line in Figure 5.40. The 
decrease in receive power results from the reduction in the directivity and 
increased PLF. Adaptively weighting the currents on the receive dipoles 
improves the received power for all angles (dotted–dashed line in Fig. 5.40). 
The maximum link improvement of 3 dB occurs at θr = 90°. Since the receive 
antennas consist of two dipoles, the adaptation compensates only for the loss 
in directivity and not the PLF.

Adapting three orthogonal dipoles allows the receive antenna to compen-
sate for polarization and directivity. The solid line in Figure 5.40 shows that 
the link loss can be compensated at all angles. A maximum of 6 dB improve-
ment occurs at θt = 90°.

In the second example the transmit antenna does not track the receive 
antenna (Fig. 5.41). Thus, θr = θt, and they change as the satellite passes over-
head. Adapting with two or three crossed dipoles at the receive end results in 
as much as 3 dB improvement at θr = 90°. Adding a third dipole, however, does 



not provide signifi cantly better improvement this time. At θt = 0°, the transmit 
antenna transmits linear polarization, so the receive antenna can compensate 
only for the loss in directivity.

This technique works in the presence of noise and when the antennas 
move. In Ref. 47, it was found that a high mutation rate works best for a no-
noise environment, and a low mutation rate works best in the presence of 
noise.

Figure 5.40. The crossed dipole transmit antenna follows the receive antenna, so qt = 0° while 
the receive antenna moves.

Figure 5.41. The two antennas point at each other at qt = qr = 0°. The transmit antenna does 
not follow the receive antenna as the receive antenna moves.
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6
Genetic Algorithm 

Optimization of 
Wire Antennas

6.1 INTRODUCTION

The advent of the GA has provided antenna engineers with a new and power-
ful design tool for wire antenna structures and systems. For example, the 
GA has been successfully applied to such complex design problems as wire 
antennas loaded with lumped elements to achieve broadband or multiband 
operation, the optimization of miniature two-dimensional meander-line and 
three-dimensional crooked-wire antennas, and the performance enhancement 
of Yagi–Uda arrays. These and other related applications of the GA to wire 
antenna design are discussed in the remainder of this chapter.

6.2 GA DESIGN OF ELECTRICALLY LOADED WIRE ANTENNAS

GAs have been demonstrated to be a powerful tool for the design of electri-
cally loaded wire antennas. Several studies have shown the utility of GAs for 
solving this class of challenging design optimization problems, where a wire 
antenna is loaded with either stubs or lumped components such as LC, RL,
or RLC networks. In some cases, the design of matching networks, transform-
ers, and/or attenuators have also been included as part of the GA optimization 
process for loaded wire antennas.

A GA has been used [1] to design a monopole loaded with a modifi ed 
folded dipole. The geometry has six design variables as shown in Figure 6.1. 
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The objective is to fi nd values for the variables that result in a radiation pattern 
with uniform hemispherical coverage. It was found that a GA can rapidly 
produce an antenna confi guration that possessed a nearly uniform power 
pattern over the entire hemisphere.

A novel GA design methodology has been introduced for miniature mul-
tiband monopole and whip-type antennas [2]. The miniaturization and multi-
band response are simultaneously achieved by placing a fi xed number of thin 
stubs at strategic locations along the antenna as illustrated in Figure 6.2. A 
GA is used to determine the optimal lengths and locations of the stubs required 
to achieve a specifi ed percent reduction in monopole length. For example, a 
GA is used to design a miniature dual-band VHF monopole antenna capable 
of operating at 100 and 210 MHz. The maximum length of the monopole and 
stubs is fi xed at 51 and 40 cm, respectively. The antenna was optimized over 
an infi nite PEC ground plane, and the fi nal structure evolved by the GA is 
shown in Figure 6.3. The lengths of the fi rst and second stubs were selected by 

2

   h2

w1

w2
t1

t

h1

Figure 6.1. Geometry for a monopole loaded with a modifi ed folded dipole.

Figure 6.2. Example of a stub-loaded miniature multiband monopole antenna (P. L. Werner 
and D. H. Werner, © IEEE, 2005. [2]).



the GA to be 20.53 and 22.14 cm, respectively, while the width of the stubs is 
0.6 cm. The locations of the stubs chosen by the GA are 40.3 cm for the fi rst 
stub and 38.3 cm for the second stub. The VSWR plot shown in Figure 6.4 
clearly demonstrates the dual-band performance of the stub-loaded monopole. 
The radiation patterns for the two operating frequencies of the antenna appear 
in Figure 6.5, with a maximum gain of 4.95 dBi at 100 MHz and 4.84 dBi at 
210 MHz. Finally, the total length of this antenna is 51 cm, which represents a 
32% size reduction relative to a conventional quarter-wavelength monopole 
operating at 100 MHz.

Figure 6.3. Dual-band stub-loaded VHF monopole antenna geometry evolved by the GA.

Figure 6.4. VSWR plot for the dual-band VHF monopole antenna shown in Figure 6.3 with 
respect to a 50 W impedance.
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(a) X-Z Plane at 100 MHz

(b) Y-Z Plane at 100 MHz

(c) X-Z Plane at 210 MHz

(d) Y-Z Plane at 210 MHz

Figure 6.5. Radiation patterns of antenna over an infi nite ground plane for operating frequen-
cies 100 and 210 MHz: (a) X–Z plane at 100 MHz; (b) Y–Z plane at 100 MHz; (c) X–Z plane at 
210 MHz; (d) Y–Z plane at 210 MHz.



Design approaches have been investigated [3–9] for the possibility of using 
a GA to synthesize wire antennas loaded with lumped components. For many 
of these designs, a GA is employed to simultaneously optimize the loading 
circuit variables, locations of the loads along the antenna, and the matching 
network variables. The objective is to evolve optimal loaded wire antenna 
designs that exhibit ultrawideband performance. Figure 6.6 illustrates the geo-
metric confi guration for a simple monopole antenna, which is loaded with 
parallel RLC resonant traps and a corresponding matching network. Loaded 
monopole antennas of this type have been considered [3,7]. For example, fol-
lowing the development outlined in Ref. 7, a micro-GA was used to optimize 
the values of three load circuits and one matching inductor in the monopole 
antenna/matching network system of Figure 6.6. The monopole is loaded with 
an inductor near its base and has two parallel inductor–resistor circuits near 
the middle and top. In order to simplify the problem for this example, the 

Figure 6.6. Loaded wire monopole antenna of diameter d = 0.635 cm and total height 
h = 42.5 cm with matching network consisting of an inductor and 4  :  1 impedance ratio 
transformer.
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transformer impedance ratio, load positions, and load circuit topologies were 
chosen in advance of optimization. These variables were known beforehand 
to lead to good results for similar problems as described by Rogers [7,8]. The 
method of moments (MoM) was used to numerically analyze the basic antenna 
structure. Further details about the fast analysis, optimization, realization, and 
electrical measurements of loaded antennas similar to this example are avail-
able in Refs. 7 and 8.

The design goals for this antenna system are maximum voltage standing-
wave ratio (VSWR) of 3.5 and minimum system gain at the horizon (Gsys)
equal to −2 dBi over the frequency range 100–1500 MHz. The system gain is 
sometimes called the “realized gain” and is equivalent to the mismatch loss 
(1 − ⏐Γ⏐2) multiplied by the antenna gain. An objective function that describes 
these goals explicitly is

F u f u G fi
i

N

i
i

Nf f

= (VSWR( ), 3.5) ( 2, ( ))
=1

sys
=1

− − −∑ ∑  (6.1)
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One nice feature of this objective function is that it yields a fi tness value 
equal to zero if all of the design goals are met. If some of the design goals are 
not met for certain frequencies in the band of interest, then the objective func-
tion value is negative. This allows the user to know how close the system is to 
meeting the design goals as the optimization progresses.

D. L. Carroll created the FORTRAN micro-GA driver used in these studies 
[10,11] based on the algorithm described by Krishnakumar [12]. The micro-
GA starts with an initial population of fi ve members chosen randomly from 
the solution space. The fi tness of each member is calculated and the best solu-
tion is preserved in the subsequent generations (elitism). Tournament selec-
tion determines the parents used to create the next generation. Uniform 
crossover with a probability of crossover of 0.5 was used. One desirable 
feature of the micro-GA is that jump and creep mutations are not used, which 
eliminates the need to choose these probabilities. Each generation is tested 
for an intermediate convergence that occurs when less than 5% of the total 
number of bits in the four worst designs are different than those of the best 
solution. If this condition is met, then the micro-GA is restarted with the best 
design and four random designs. Otherwise, the algorithm continues with the 
tournament selection. The micro-GA is stopped when the maximum number 
of generations set by the user has been reached.

In this example, the total number of bits in the chromosome string is 54, 
which leads to a total number of possibilities in the solution space equal to 



1.8 × 1016. The number of bits used to represent each variable and the corre-
sponding variable resolutions are given in Table 6.1. An optimum solution 
that meets all of the design goals was found after 389 generations or 1945 
function evaluations. One sees in Figure 6.7 that the VSWR is less than 3.5 
over the band of 100–1500 MHz and in Figure 6.8 that the system gain is 
greater than −2 dBi over the 100–1500 MHz bandwidth. The overall conver-
gence of the micro-GA for this example is graphed on a logarithmic scale in 
Figure 6.9. The micro-GA is successful in fi nding a solution that meets all 
design goals in a very effi cient manner considering that only a small percent-
age of the designs in the whole solution space were evaluated.

Other more complex wire confi gurations loaded with lumped components 
have also been considered, including twin-whip antennas [3], folded mono-
poles [3], stacked dipoles [5,6], diamond and kite antennas [4], and even 
crooked-wire antennas [9]. To further demonstrate the versatility of this GA 
antenna design synthesis approach, we will next consider the bifolded mono-
pole shown in Figure 6.10. In this example, a broadband antenna will be 
designed using a reactively loaded bifolded monopole [13], where a binary GA 
is employed to optimize the lengths of the monopole, location, and component 

TABLE 6.1. Variable Ranges and Number of Possibilities for Micro-GA Optimization of 
Antenna and Matching Network of Figure 6.6a

 Minimum Maximum Number Number of
 Value Value of Bits Possibilities Resolution

L values   0.01 μH    1.1 μH  8  256 0.0043 μH
R values 100 Ω 2500 Ω 11 2048 1.17 Ω
Lm   0.01 μH    0.8 μH  8  256 0.0031 μH

a The three inductance values, two resistance values, and one Lm value make the total number of bits 54 and 
total number of possibilities 1.8 × 1016.

Figure 6.7. VSWR of antenna and matching network system of Figure 6.6 with L1 = 0.01  mH,
L2 = 0.0442  mH, L3 = 0.557  mH, Lm = 0.177  mH, R2 = 1156  W, and R3 = 529  W.
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values of the reactive loads. The GA is also used to design a simple matching 
network and impedance transformer for the bifolded monopole. The objective 
here was to use the GA to design an antenna that operates from 250 to 
500 MHz with a VSWR under 3  :  1 without using any resistive elements.

Figure 6.10 shows a schematic diagram of a bifolded monopole antenna. 
The total length of the antenna was restricted to be in the 10–30 cm range with 
the length of each horizontal wire constrained to be less than 8 cm. The opti-
mized width of this design is 8.875 cm and the length is 25.687 cm. In addition, 
the GA was given the task of placing four reactive LC loads anywhere on the 

Figure 6.8. System gain of antenna and matching network system of Figure 6.6 with 
L1 = 0.01  mH, L2 = 0.0442  mH, L3 = 0.557  mH, Lm = 0.177  mH, R2 = 1156  W, and R3 = 529  W.

Figure 6.9. Progress of micro-GA optimization of the antenna and matching network system 
of Figure 6.6 with solution space defi ned in Table 6.1. A fi tness value of 0 in this example indi-
cates that all design goals are met.



Figure 6.10. Bifolded monopole with reactive series and parallel LC loads. The locations and 
component values of these loads were optimized using a binary GA.
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Figure 6.11. VSWR versus frequency for the bifolded monopole with and without the matching 
network.
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antenna and to optimize their values for the best VSWR performance over 
the desired frequency range of 250–500 MHz. The maximum allowable induc-
tance and capacitance values were set at 600 nH and 600 pF, respectively. The 
GA in this case utilized 10 bits for each load. Figure 6.11 shows the VSWR 
versus frequency for the GA optimized bifolded antenna illustrated in Figure 
6.10 (with and without a matching network). Over the optimized range of 
250–500 MHz the VSWR remains below 6  :  1 when no matching network is 
used. Next, a GA is also used to optimize the variables of a simple matching 
network that includes an ideal impedance transformer. The GA optimized 
design for this matching network is shown in Figure 6.12. The resulting VSWR 
after the matching network remains below 3  :  1 over the desired frequency 
range as shown in Figure 6.11. The radiation patterns and gain for this antenna 
are shown in Figure 6.13 for lowband, midband, and highband operating fre-
quencies (i.e., 250, 375, and 500 MHz). These results are seen to be very similar 
to what would be produced by three separate conventional narrowband reso-
nant length monopole antennas: one for each band. Finally, it should be noted 
here that the VSWR can be further improved to below 2  :  1 over the desired 
frequency band for this antenna by introducing resistive components into 
either the reactive elements on the antenna, into the matching network, or 

Figure 6.13. Radiation patterns for the bifolded monopole at lowband, midband, and highband 
(q plot with j = 90°).

Figure 6.12. GA-designed matching network for the bifolded monopole shown in Figure 6.10.



both. However, this will also have the adverse affect of simultaneously reduc-
ing the overall system gain.

The use of dielectric bead loading has been investigated [14] as an alterna-
tive to lumped elements for controlling the currents on wire antennas. In this 
case a 4λ-long wire antenna is considered, and a GA is used to determine the 
optimal locations of the dielectric beads to provide performance comparable 
to a half-wave dipole. It has been shown [14] that this approach can yield 
results very similar to those obtained using resonant RLC traps or chokes, but 
with the advantage of being less bulky.

The majority of the work on the design synthesis of electrically loaded 
antennas has been done by combining a GA with full-wave analysis techniques 
that are based on a thin-wire method of moments formulation in the frequency 
domain (MoM-FD) [1–9,14]. However, some more recent work has considered 
a direct GA-based optimization of resistively loaded wires in the time domain 
[15,16]. In this case, a thin-wire method of moments technique is formulated 
directly in the time domain (MoM-TD) and used in conjunction with a GA. 
This approach has been used successfully to design optimal broadband thin-
wire antennas for various applications including ground-penetrating radar 
(GPR).

6.3 GA DESIGN OF THREE-DIMENSIONAL 
CROOKED-WIRE ANTENNAS

The genetic antenna (also known as the “crooked-wire antenna”) and the 
process of creating it was invented in early 1995 by Dr. Edward E. Altshuler 
and Dr. Derek S. Linden, and patented by the U.S. Air Force [17]. The process 
was fi rst applied to design an antenna with hemispherical coverage and right-
hand circular polarization using a single feedpoint. Research regarding this 
antenna has been published in many journal articles, conference papers, and 
other works [18–36]. This section will explain the unique features of crooked-
wire antennas and present an example of an application effectively solved by 
such an antenna.

A crooked-wire genetic antenna is an antenna that neither has a precon-
ceived method of operation nor uses a preexisting design, beyond very basic 
operational constraints (such as a monopole-like means of excitation and the 
presence of a ground plane). Its method of operation is determined by an 
optimization algorithm (which is not necessarily a GA). It is not constrained 
to be a predefi ned antenna design (Yagi, helix, spiral, etc.), but essentially 
forms its own method of operation during optimization.

Crooked-wire antennas are generally random-looking in shape (although 
they are far from random), and many of those who see them for the fi rst time 
remark that they “look like paper clips.” Because these antennas are so under-
constrained, they tend to appear very different from each other, even when 
they are optimized to solve the same problem and have similar performance 
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characteristics. As a result, they are almost impossible to classify by their 
specifi c shape. Instead, they have been given the name “genetic antennas” 
regardless of their resulting shape to indicate that their defi ning characteristic 
is their genetic code, which is manipulated by an optimizer to defi ne its 
electromagnetic characteristics and hence its fi nal shape. Note again that the 
genetic antenna received its name from the underlying and defi ning genetic 
code, and not because it is optimized by a GA.

The genetic antenna usually is subject to very basic constraints such as 
maximum size, number of wires and loads, and the number of feedpoints and 
their corresponding locations. For an antenna to be classifi ed as a genetic 
antenna, these constraints cannot be so strict that they defi ne a specifi c method 
of operation, but they can be set to help push the optimization toward a 
method of operation that solves the problem effectively, as will be demon-
strated by the example considered here.

The fi rst application of a genetic antenna was to solve a satellite communi-
cations problem, which has been published in several references [19,20,23,25,28]. 
As it turned out, this was a very good application for the genetic antenna, 
producing excellent results that were very counterintuitive and paving the way 
for many additional designs.

Ground-based transceivers for earth-to-satellite communication links 
require antennas that are circularly polarized and have near-hemispherical 
coverage. Circular polarization is necessary for systems operating at frequen-
cies below 3 GHz, since the Faraday rotation produced by the ionosphere can 
cause a linearly polarized wave to rotate out of alignment with the receiving 
antenna. In a worst-case scenario, the incoming wave becomes cross-polarized 
so that no signal is received. A circularly polarized signal eliminates this 
problem.

Near-hemispherical coverage is also desirable since the earth-based antenna 
is often required to receive a signal from a satellite anywhere above the 
horizon, except at low elevation angles (at low angles, signals have multipath 
components that can disrupt system performance). Usually, helical or patch 
antennas are used for this application, but these antennas are generally nar-
rowband and require a phasing network, which increases their complexity and 
cost. In addition, these antennas are usually somewhat directional, meaning 
that they need to be pointed more precisely toward the satellite to be used 
effectively—an inconvenience for mobile systems.

At this point we consider a specifi c design example for the genetic crooked-
wire antenna. The antenna design requires a fl at gain above 10° elevation 
(i.e., near hemispherical coverage) for a right-hand circularly polarized signal, 
and an operating frequency centered around 1600 MHz. It was decided to 
make the antenna vehicle-mounted, so it was designed over an infi nite ground 
plane. Also, for simplicity in construction and lower cost, only a single feed-
point was specifi ed. Since near-hemispherical coverage was desired for this 
antenna, it was expected to be confi ned to a cube 0.5λ on a side. This design 
space is shown in Figure 6.14.



Both real and binary GAs have been used to design this antenna. When 
this design was fi rst optimized using the binary GA, 5 bits were allowed for 
each component of the (X, Y, Z) coordinate for the beginning and end of each 
wire. In other words, each axis of the design space had 32 levels that could be 
selected from one side of the search space to the other, and there were, there-
fore, 323 possible vertices at which the wires could be connected. Five bits 
were chosen because that allowed the GA to work in units of 1–64th of a 
wavelength, which was close to the limit of fabrication tolerances at the chosen 
frequency of 1600 MHz. For the real GA, one real gene specifi ed each 
variable.

Next, the number of wires and the connection scheme that a design could 
use had to be specifi ed. Initially, antennas consisting of 5, 6, 7, and 8 connected 
wire segments were investigated. Preliminary results showed the 7-wire genetic 
antenna to perform slightly better than the 5-, 6-, and 8-wire antennas, so the 
7-wire genetic antenna was chosen to investigate in detail. In addition, the 
decision was made to connect all wires in series for simplicity. This constraint 
seems to allow for quite a bit of fl exibility while maintaining ease of 
construction.

With 5 bits for each axis coordinate, 3 axis coordinates per point, and 7 
points to be designated (1 point per wire, since each wire starts at the previous 
wire’s endpoint, and the fi rst wire begins at the origin), each 7-wire genetic 
antenna required a binary chromosome with 5 × 3 × 7 = 105 bits. Each antenna 
with a real chromosome required 21 real genes. The bits for each coordinate 
were placed next to each other in the chromosome, as follows:

[X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, .  .  .  , X7, Y7, Z7]

0.5λ

0.5λ

0.5λ

Ground
Plane

Figure 6.14. Search space for crooked-wire genetic antenna (E. Altshuler and D. Linden, 
© IEEE, 1997, [23]).
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The goal was to obtain right-hand circular polarization 10° above the 
horizon over the hemisphere at a frequency of 1600 MHz, ignoring impedance, 
the cost function for this system was relatively simple. The GA program used 
the Numerical Electromagnetics Code, version 2 (NEC2) [37] to compute the 
hemispherical radiation pattern at increments of 5° in elevation and 5° in 
azimuth. The GA then read the output of NEC2, and the cost function routine 
calculated the average gain for a right-hand circular polarization (RHCP) 
wave for elevation angles above 10°, and then calculated the sum of the 
squares of the deviation of all measured points from the mean. In equation 
form, the cost function was

cost gain average gain= −∑ [ ( ) ]θ φ
θ φ

,
over all ,

2
 (6.3)

The GA’s goal was to minimize this cost. For an isotropic gain pattern 
cost = 0.

The antenna design evolved by the GA has an unusual shape, as seen by 
the photograph in Figure 6.15. The coordinates for its vertices are listed in 
Table 6.2. The computed radiation patterns of the antenna over an infi nite 
ground plane are shown in Figure 6.16 for elevation cuts corresponding to 
azimuth angles of 0°, 45°, 90°, and 135° at a frequency of 1600 MHz. Note that 
the response to a circularly polarized wave varies by less than 4 dB for angles 
above 10° over the horizon.

The measured normalized radiation patterns for the crooked-wire genetic 
antenna over a ground plane are shown in Figure 6.17 for the same elevation 
cuts that were previously computed at a frequency of 1600 MHz. There is 

Figure 6.15. Photograph of the seven-wire genetic antenna; height of antenna is 8.7 cm (photo 
provided by Derek S. Linden).



TABLE 6.2. Coordinates of 7-Wire Genetic Antenna

7-Wire Genetic Antenna with Ground Plane

 Startpoint Endpoint
 (Coordinates in Meters) (Coordinates in Meters)

X Y Z X Y Z

 0.0000  0.0000 0.0000 −0.0166  0.0045 0.0714
−0.0166  0.0045 0.0714 −0.0318 −0.0166 0.0170
−0.0318 −0.0166 0.0170 −0.0318 −0.0287 0.0775
−0.0318 −0.0287 0.0775 −0.0318  0.0439 0.0140
−0.0318  0.0439 0.0140 −0.0318  0.0045 0.0624
−0.0318  0.0045 0.0624 −0.0106  0.0378 0.0866
−0.0106  0.0378 0.0866 −0.0106  0.0257 0.0230

Figure 6.16. Computed f dependence of 1600-MHz seven-wire genetic antenna with infi nite 
ground plane (calculated using WIPL-D [38]).
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Figure 6.17. Measured f dependence of seven-wire genetic antenna with fi nite ground plane 
(E. Altshuler and D. Linden, © IEEE, 1997, [23]).
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approximately a 6 dB variation in the fi eld above an elevation angle of 10° as 
compared to the computed variation of ∼4 dB. This discrepancy can for the 
most part be attributed to the fact that the measurements were made over a 
1.2 × 1.2-m ground plane, whereas the computations for the GA were done 
for an infi nite ground plane. The ripples in the pattern arise from refl ections 
from the edges of the ground plane. The rolloff at the edges is also due to the 
fi nite size of the ground. Note in particular that the four azimuth angles 
produce very similar results, demonstrating the uniformity of the design. These 
angles were produced by rotating the antenna only—the ground plane was 
not rotated—showing more clearly that the variation is due to the ground 
plane and not the antenna.

It should be mentioned that true circular polarization is not achievable over 
wide angles, at least with an unbalanced, single-feed design. From a practical 
standpoint this antenna has elliptical polarization for which the magnitudes of 
the orthogonal signals approach unity and their respective phases approach 
quadrature. Note that as long as the receiving antenna has the same sense of 
polarization as the transmitter, the maximum polarization loss of 3 dB occurs 
when the receiver is linearly polarized. If, however, the receiving antenna has 
the opposite sense polarization, the polarization loss can become very large.

6.4 GA DESIGN OF PLANAR CROOKED-WIRE AND 
MEANDER-LINE ANTENNAS

In this section we discuss the application of GA techniques to the design 
optimization of planar wire antennas, including those with crooked or zigzag 
patterns, meander-line confi gurations, and even fractal geometries [39–52]. The 
main objective of the GA in the majority of these cases is to evolve the optimal 
shape of the wire antenna, subject to certain size constraints, which would 
provide the best possible performance in terms of bandwidth and/or effi ciency. 
Several designs have been considered for these GA-optimized planar wire 
antennas such as dipoles and monopoles of reduced electrical size as well as 
miniaturized antennas for radiofrequency identifi cation (RFID) applications.

GAs have been employed [39–43] to optimize the shape of miniature Koch-
type fractal antennas. A GA has been used in conjunction with an iterated 
function system (IFS) approach to generate fractal geometries and a full-wave 
computational electromagnetics analysis technique based on the method of 
moments (MoM) to effectively optimize the performance characteristics of 
fractal-shaped wire antennas [39–42]. Moreover, the GA approach developed 
in Refs. 39–42 was used to evolve designs for miniature dual-band fractal 
dipoles by simultaneously optimizing the geometry of the antenna, the loca-
tions of reactive loads along the wire, and the corresponding component values 
of the loads. Figure 6.18 shows a prototype of a miniature Koch-type fractal 
dipole. The optimal geometry for this fractal antenna was arrived at by com-
bining the robustness of a GA together with the versatility and effi ciency of 



an IFS. Another GA design technique for miniature Koch-like fractal mono-
pole antennas is considered in Ref. 43, with comparisons to the performance 
characteristics of other optimized nonfractal designs such as zigzag and 
meander-line antennas. A multiobjective GA was applied in these cases to the 
design of the wire antennas with the goal of optimizing their bandwidth and 
effi ciency while reducing their resonance frequency. Finally, the performance 
of other types of GA optimized fractal and nonfractal small wire monopole 
antenna geometries were compared in Ref. 44.

GA optimization techniques used to evolve miniature meander-line antenna 
elements (also referred to as stochastic antennas) with linear and circular 
polarization are described in the literature [45–47]. To initiate the process of 
generating linear meander-line or stochastic elements, the overall maximum 
projected lengths LX and widths LY of a candidate antenna are predetermined 
by the size of a fi xed grid as shown in Figure 6.19a. The number of horizontal 
wire segments in each of the vertical columns is preset at 2N, where N is a 
positive integer. The GA will then select one of the 2N horizontal elements in 
each column of the grid. These selected horizontal elements are then 

Figure 6.18. Photograph of a miniature GA optimized Koch fractal dipole antenna with balun 
(photo provided by Michael J. Wilhelm).

(a) (b)

Figure 6.19. Procedure for creating a miniature linear meander-line dipole antenna. Steps 1 
and 2 are illustrated in panels (a) and (b), respectively.
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connected together by vertical wire segments to form a continuous conducting 
meander-line antenna structure such as the one shown in Figure 6.19b. The 
excitation source is placed at the center of the antenna structure as indicated 
in Figure 6.19 and assumed fi xed throughout the optimization. An example of 
a miniature meander-line dipole antenna designed using this GA optimization 
process is shown in Figure 6.20. Another interesting example is shown in 
Figure 6.21, where the GA was used to design a miniature 50 Ω meander-line 
dipole antenna for a credit-card-size 916 MHz AM transmitter with compo-
nents directly written on glass, including the antenna. Finally, Figure 6.22 
shows a photograph of a miniature GA optimized meander-line dipole antenna 
with a planar spiral balun designed to operate at 1.4 GHz [46].

Figure 6.20. Photograph of a miniature GA-optimized meander-line (stochastic) dipole antenna 
(photo provided by Michael J. Wilhelm).

Figure 6.21. Miniature credit-card-size 916 MHz AM transmitter with components directly 
written on glass including a miniature 50 W meander-line dipole antenna (photo provided by 
Michael J. Wilhelm).



The GA optimization techniques introduced by the Werners and colleagues 
[45,46] for creating small planar linearly polarized meander-line dipoles were 
modifi ed and extended [47] to synthesize small antennas that are circularly 
polarized. The steps in the algorithmic procedure developed for generating 
these miniature circularly polarized antennas are graphically illustrated in 
Figure 6.23. Two meander-line elements are required in forming a crossed 

Figure 6.22. Photograph of a miniature GA-optimized meander-line dipole antenna with a 
planar spiral balun designed to operate at 1.4 GHz (K. O’Connor, R. Libonati, J. Culver, D. H. 
Werner, and P. L. Werner, © IEEE, 2003, [46]).

Figure 6.23. Procedure for creating a miniature crossed meander-line dipole antenna.
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dipole antenna. These two dipole antenna elements are fed (or combined) with 
equal voltage amplitude and a 90° phase shift. The geometry of one half of a 
dipole element is the mirror image of the other half. Hence, the GA selects 
only one half of the geometry in the fi rst dipole element; it then forms the 
second half by taking its mirror image about the feed, as shown in Figure 6.23a. 
The second element is simply obtained by rotating the fi rst element in Figure 
6.23a by 90°, which is depicted in Figure 6.23b. The fi nal geometry of a circu-
larly polarized meander-line antenna can then be created by the combination 
of the two dipoles in Figures 6.23a and 6.23b as illustrated in Figure 6.23c.

Next, two design examples of miniature, circularly polarized, crossed 
meander-line dipole antennas for RFID tag applications are considered. These 
designs were synthesized using the GA optimization procedure introduced in 
Ref. 45. To demonstrate the design potential of this process, a desired input 
impedance of Zin = 68 + j100Ω was targeted for operation over the 902–
928 MHz frequency band with a power transfer requirement of at least 80%. 
The targeted value of input impedance corresponds to the impedance that 
would provide the best match to the RFID chip at the feedpoint of the 
antenna. In addition to this, the fi nal design for the antenna must fi t on a 
credit-card-size object. The fi rst example with a size reduction of 86% and a 
power transfer of 60% is depicted in Figure 6.24, while the second example 
with a size reduction of 81% and a power transfer of 77% is shown in Figure 
6.25. Both examples meet the goal of fi tting on a credit-card-size object; 
however, the second example is acceptably close to the desired power transfer 
of 80%. Tables 6.3 and 6.4 compare simulated and measured values of Zin for 
the fi rst and second antenna design examples, respectively. These tabulated 
results demonstrate good agreement between the theoretical predictions and 
measurements. Finally, a GA has also been employed [48] to design miniature 
linearly polarized meander-line antennas for RFID applications.

Figure 6.24. Photograph of a 915 MHz miniature credit-card-size GA optimized meander-line 
crossed-dipole RFID tag antenna (P. L. Werner, M. Wilhelm, R. Salisbury, L. Swann, and 
D. H. Werner, © IEEE, 2003, [47]). The antenna is on a substrate composed of 0.060 in. 
(1.5  mm) RO4003 dielectric.



While generating these planar meander-line antenna designs, the GA selects 
the optimal geometry by evolving until it fi nds the confi guration that best 
meets the desired design objectives. A full-wave MoM analysis technique is 
used in conjunction with the GA to evaluate the radiation characteristics of 
individual population members (i.e., candidate antenna designs). Typically, 
a population of >100 candidate antennas is employed in the optimization 
process.

6.5 GA DESIGN OF YAGI–UDA ANTENNAS

The design of Yagi–Uda antennas typically involves adjusting the number of 
wires and the corresponding wire lengths, the spacing between the wires, the 
radius of the wires, and even in some cases the shape of the wires. This design 

Figure 6.25. Photograph of a 915 MHz miniature credit-card-size GA-optimized meander-line 
crossed-dipole RFID tag antenna (P. L. Werner, M. Wilhelm, R. Salisbury, L. Swann, and 
D. H. Werner, © IEEE, 2003, [47]). The antenna is on a substrate composed of 0.060 in. (1.5 mm) 
RO4003 dielectric.

TABLE 6.3. Simulated and Measured Input Impedance 
Values for the Meander-Line Crossed Dipole RFID Tag 
Antenna Shown in Figure 6.24

Frequency (MHz) Simulated Zin (Ω) Measured Zin (Ω)

902 14.0 + j89.4 13.8 + j89
915 14.8 + j108 15.9 + j107
928 15.7 + j128 14.9 + j125

TABLE 6.4. Simulated and Measured Input Impedance 
Values for the Meander-Line Crossed Dipole RFID Tag 
Antenna Shown in Figure 6.25

Frequency (MHz) Simulated Zin (Ω) Measured Zin (Ω)

902 23.5 + j87.9 23.6 + j95.7
915 25.0 + j107 25.4 + j115
928 26.9 + j128 26.2 + j136
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process has traditionally been carried out via a trial-and-error procedure. 
However, because of the potentially large number of design variables, a con-
siderable number of papers have been published on the topic of using GAs to 
optimize the performance of Yagi–Uda antennas [53–65]. These studies dem-
onstrate that GAs provide an extremely versatile and robust tool for the 
design optimization of this class of wire antennas.

Approaches for using GAs to optimize the element spacing and lengths of 
conventional Yagi–Uda antennas have been presented in Refs. 53 and 54. 
These results were compared with well-designed equally spaced Yagi–Uda 
arrays and shown to provide superior performance characteristics. The use of 
GAs for the optimization of gain, impedance, and bandwidth in the design of 
Yagi–Uda antennas was considered in Ref. 55. Multiobjective GA techniques 
have been investigated [56–58] as an effective means of evolving Pareto 
optimal solutions, which enable the selection of variables in accordance with 
the Yagi–Uda antenna design requirements.

GAs have also been used to develop unconventional designs for Yagi–Uda 
antennas, such as those considered in [54,59–62]. For example, Linden and 
Altshuler [54] developed a design approach using a GA to determine the 
optimal way to rotate the individual wires in a Yagi–Uda array in order to 
achieve a desired polarization. This technique was demonstrated by evolving 
an optimal design for a rotated Yagi with the goal of achieving a circularly 
polarized gain pattern. Another technique [59] uses a GA to optimize the 
confi guration of a V-shape Yagi–Uda array. In this case the design variables 
are the spacing, lengths, and angles of the wire elements. GAs have also been 
used to optimize the performance of Yagi fractal arrays in Ref. 60, where it 
has been suggested that a certain degree of miniaturization relative to the 
design of conventional Yagi–Uda antennas could be achieved by using fractal-
shape wires. Moreover, the objective for these designs was to achieve a 
maximum gain of 10–13 dB with a real part of the input impedance as close 
as possible to 50 Ω.

An effective technique based on particle swarm optimization (PSO) for 
designing miniature Yagi–Uda arrays with meander-line elements has been 
proposed [61,62]. To accomplish miniaturization of such arrays, a simple but 
effective grid searching technique was introduced for use in conjunction with 
the PSO. Designs utilizing both parallel and planar grids have been consid-
ered. It was found that the overall array length and width could be reduced 
by as much as 70% and 44%, respectively, compared to conventional Yagis. 
Finally, a comparison of the miniature stochastic Yagis designed using PSO 
was made to similar designs obtained via GA.

To illustrate this novel GA design technique for miniature Yagi–Uda anten-
nas, two examples of a three-element array will be presented here: one having 
planar elements and the other having parallel elements. In the fi rst confi gura-
tion, the grids are assumed to be coplanar as shown in Figure 6.26. This will 
be referred to as the planar element confi guration. In the second confi guration, 
the grids are rotated 90° so they are parallel to each other as shown in 



Figure 6.27. This will be referred to as the parallel element confi guration. The 
advantage of this latter confi guration is that the elements can be placed closer 
together consequently allowing for increased mutual coupling.

A binary-valued GA with a population of 100 members is used where the 
wires on each row are represented by 3 bits and each element distance by 10. 
In each generation, the cost of every population member is compared to the 
cost of a randomly selected member. If a new member has a better cost (cost1)
than the other randomly selected member (cost2), it is assigned a probability 
of survival given by

Figure 6.26. Planar stochastic meander-line three-element Yagi–Uda antenna designed using 
a binary GA.

Figure 6.27. Parallel stochastic meander-line three-element Yagi–Uda antenna designed using 
a binary GA. The units of the horizontal and vertical axes (abscissa and ordinate) are in 
meters.
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P cost costsurvive = − − −1
1
2

5000 1 2exp{ }| |  (6.4)

If Psurvive is higher than a randomly generated value in the range of [0, 1], then 
the member with better cost survives to the next generation. However, if Psurvive

is lower than a randomly generated number, then the member with less cost 
is allowed to survive to the next generation. After reproduction of the popula-
tion, the surviving members undergo single-point crossover with a crossover 
probability of 0.5. Afterward, mutation is applied with a probability of 0.05 
and this process is repeated for at least 100 iterations, with an option to run 
more iterations if required.

The VSWR, forward gain and the front-to-back ratio are optimized in a 
weighted sum fi tness function. A representative fi tness function is defi ned as

cost k k k= − + − + +[ ( ) ] [ ( ) ] [ ( ) ]1
2

2
2

3
21 8 10VSWR FG BG  (6.5)

where kn (n = 1,2,3) is a weighting term, FG represents the forward gain, and 
BG represents the backward gain. In this cost function, an 8 dBi forward gain 
and a −10 dBi gain in the backward direction are targeted, while the VSWR is 
to be less than 2  :  1 (i.e., as close to 1  :  1 as possible) with respect to a 50 Ω
transmission line.

Figure 6.28 displays the VSWR versus frequency results for both designs, 
specifi cally, the parallel and planar element confi gurations. Figures 6.29 and 
6.30 display the θ radiation patterns for both confi gurations corresponding to 
ϕ = 0° and ϕ = 90°, respectively. Both confi gurations result in comparable per-

Figure 6.28. VSWR versus frequency for both planar and parallel three-element Yagi–Uda 
designs.



formance for a 50% projected length reduction and a 68% boom length reduc-
tion in the case of the parallel element confi guration.

Jones and Joines introduced a novel methodology for optimizing both the 
topology and the variables of an antenna design [63]. The approach combines 

Figure 6.29. q radiation patterns (in dBi) with j = 0° for both planar and parallel three-element 
miniature Yagi–Uda designs.

Figure 6.30. q radiation patterns (in dBi) with j = 90° for both planar and parallel three-element 
miniature Yagi–Uda designs.
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an antenna language, which defi nes how antennas are constructed, with a GA 
that will create new designs within the context of this language. The grammati-
cal rules of the language are fl exible and can range anywhere from very vague 
to very specifi c. The method was demonstrated by considering some very 
interesting design examples where the antenna language was confi ned to 
the familiar topologies of Yagi–Uda and logperiodic antennas, which are 
known to perform well. As a result, the GA was able to evolve some 
better-performing hybrid antenna designs that were a cross between conven-
tional Yagi–Uda and logperiodic antennas. This new family of antennas was 
called Yagi–log antennas.
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7
Optimization of 

Aperture Antennas

This chapter presents GA optimization of refl ector, horn, and microstrip 
antennas. These antennas have very complicated cost functions compared to 
wire antenna and arrays of isotropic point sources. Since the cost functions 
take a long time to calculate a single solution, they tend to have few input 
variables. GAs work well on aperture antennas, because the cost surfaces are 
often multimodal and variable constraints are easy to implement.

7.1 REFLECTOR ANTENNAS

Scattering from the edges of a refl ector antenna determines the sidelobe level 
and beamwidth of the refl ector. Attempts at controlling this scattering have 
been successful. One approach is to place an absorber inside a cylinder that 
fi ts around the refl ector edge [1]. This “shroud” creates a “tunnel antenna” [2] 
that has a reduced front-to-back ratio and sidelobe levels compared to the 
parabolic refl ector alone. Other edge treatments include serrated edges and 
rolled edges [3] for compact range refl ectors. These treatments create a large 
quiet zone in a compact range. Another approach is to taper the resistivity of 
the refl ector edge to lower sidelobe levels [5].

As of the writing of this book, there has been little application of the GA 
to the design of refl ector antennas. Cost functions for refl ector antennas tend 
to take much longer to compute than, for example, the cost function associated 
with a linear array of point sources. Since the GA must make many cost 
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function evaluations, refl ector antennas have not been the focus of GA appli-
cations. Vall-llossera et al. [6] used a GA to shape the beam of an array-fed 
mesh refl ector antenna. A GA outperformed conjugate gradient in fi nding an 
optimal beamshape to cover Japan from a satellite refl ector antenna [7]. The 
refl ector surface had several control points that were moved in order to change 
the locations of nulls and maxima in the cost function. The far-fi eld patterns 
were found using physical optics. The GA has also been applied to minimize 
the sidelobe level of a corner refl ector fed by a Yagi–Uda antenna [8]. The cost 
function employed the Numerical Electromagentics Code (NEC) called by 
MATLAB and accepted various design parameters from the Yagi–Uda antenna 
while keeping the wire refl ector antenna constant. A GA was used to optimize 
the gain and cross-polarization of the pattern of an offset dual Cassegrain 
refl ector [9]. The axis tilt angle and eccentricity were the input variables to the 
cost function. Another beam shaping refl ector synthesis approach using a GA 
was reported [10] in which the shape of an offset refl ector was varied in order 
to produce a pattern with maximum gain over the country of Brazil. Physical 
optics was also used in this analysis. Several papers have appeared on the GA 
optimization of microstrip refl ectarrays. These arrays consist of microstrip 
patches arranged so that they produce a desired scattering pattern due to an 
incident source, such as a horn antenna. Both the sidelobe level [11,12] and 
bandwidth performance have been optimized [13].

As an example, consider a cylindrical parabolic refl ector antenna with a line 
source feed at the focus. The refl ector diameter is 13.8λ and the focus is 5λ
from the vertex. A GA shapes the last 2λ of each edge of the refl ector in order 
to minimize the maximum sidelobe level. By assuming that the shaping is 
symmetric, only one edge needs to be optimized by the GA. The same method-
of-moments (MoM) model used in Chapter 5 for the parabolic cylinder 
antenna is employed here. The refl ector surface is approximated by 0.05λ seg-
ments. The last 40 segments have adjustable orientations but remain contigu-
ous. The fi rst adjustable segment has a pivot point on the last refl ector segment 
(Fig. 7.1). Its endpoint is movable. When its endpoint is set by the optimization, 
then that endpoint serves as the pivot point for the next segment. Thus, the 
chromosome contains 40 continuous elements with values between 0 and 1. 
These values translate to relative angles through the formula

0.0
5λ (xn,yn)

(xn+1,yn+1)

Δγmax

Figure 7.1. Appending a new strip to the last one to form the refl ector surface.
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where (xn, yn) are the endpoints of a 0.05λ segment. The last segment on the 
refl ector is defi ned by a parabola. The next segment can vary ±Δγmax from the 
angle γn formed by the last segment as shown in Fig. 7.1. The parameter Δγn is 
given as

Δ Δγ γn nc= −( )2 1 max  (7.2)

when a chromosome is represented by
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and 0 ≤ cn ≤ 1. Once the relative angle between the old and new segments is 
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After the new refl ector surface is formed, the surface currents are found using 
the method of moments and the far fi eld determined through integration of 
the currents.

Prior to optimization, the feed is a line source with a λ/2-wide refl ector 
placed λ/4 behind the feed. The antenna has a maximum sidelobe level of 
−14.48 dB relative to the mainbeam. Two 2λ appendages are added to each 
edge. These edges are bent by the GA to reduce the maximum sidelobe level 
of the refl ector. After running a GA using continuous values for the chromo-
some for 1000 iterations, the algorithm found a refl ector confi guration that 
yielded a maximum sidelobe level of −16.10 dB relative to the mainbeam. 
Figure 7.2 shows the convergence of the GA as a function of the average and 

Figure 7.2. Convergence as a function of the population average and best.
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best sidelobe level of the population at each generation. In the end, the GA 
found the refl ector that appears in Figure 7.3. Figure 7.4 shows plots of the 
unperturbed and normal refl ector antenna patterns.

7.2 HORN ANTENNAS

GAs have been used to optimize various types of horn antennas. Chung et al. 
optimized [14] an ultrawideband tapered resistive transverse electromagnetic 
(TEM) horn using a GA. The cost function tried to keep the antenna 3 dB 
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Figure 7.3. The shape of the surface 2l from each edge is optimally shaped.

Figure 7.4. The solid line is the optimized pattern while the dashed line is the normal 
pattern.



beamwidth at 47° over the frequency range of 2–18 GHz. The input parame-
ters to the cost function were the fl are angle, the length of the perfect electric 
conductor, the major and minor axes of the ellipse that models the curved 
edge, and the angle of the ellipse. The resulting horn had a 49° beamwidth over 
the desired bandwidth. Results were confi rmed by experimental measure-
ments. A GA was also applied to fi nding the optimal choke distribution for a 
horn at X band [15]. A wideband corrugated multisectional conical horn was 
designed using a GA [16]. The cost function input was the length and number 
of sections, fl are angles, and depth of the fi rst slot in each horn section. The 
objectives were the input admittance, the VSWR, and the desired copolariza-
tion and cross-polarization patterns. The resulting horn had a VSWR <1.6
ranging from 11 to 18 GHz. Other authors also reported success at optimizing 
corrugated horns using a GA [17–19].

The phase center of a horn antenna is the point that is the center of a sphere 
of constant phase radiated from the horn. Analytical methods have been used 
to fi nd the phase center of rectangular horns [20]. Generally, a horn antenna 
does not have a single phase center [21]. Consequently, placing the horn at the 
focal point of a refl ector becomes diffi cult. The horn can be placed so that the 
halfway point between the two phase centers is located at the focal point of 
the refl ector. Another way is to place the horn antenna at the point that results 
in the maximum refl ector gain. Finally, a horn can be designed in such a way 
that the E-plane and H-plane phase centers are collocated [22].

Improved modeling of horn antennas allows a better calculation of the 
phase center. For instance, a MoM solution of a pyramidal horn provides the 
currents necessary to calculate the radiated far fi eld. The phase should be 
constant over a sphere that has a phase center somewhere inside the horn. 
Assume that the horn is centered on and points along the x axis as shown in 
Figure 7.5. The phase center is found by fi rst calculating the electric fi eld far 
from the horn over a small angular range in the E and H planes. Since the 
phase is calculated relative to the origin of the coordinate system, translating 
the coordinate system along the x axis until the fi eld phase is constant, will put 
the origin at the phase center of the horn. Calculating the mean square error 
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Figure 7.5. Optimized horn antenna.
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of the phase provides a good measure of the phase variations over two arcs 
of a sphere that has its center at the approximate phase center of the horn. 
Since the horn is polarized in the z direction, only the θ component of the 
electric fi eld will be calculated

σ θ φ θ φθ θ θ= ∠ = − ∠ =⎡
⎣

⎤
⎦

1
0 0

2

N
E En n( ) ( ), ,o o  (7.5)
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where N = number of angles
 ∠E = phase of E
 Ē = mean of E

The mean-square error is calculated in the E and H planes for N = 11 points 
given by

θ φn n, , , , ,o o o o= 0 5 10 45. . .  (7.7)

When σθ = 0, the phase center in the E plane is at the origin; when σφ = 0, the 
phase center in the H plane is at the origin.

The goal is to design a pyramidal horn at 10.34 GHz that has σθ and σφ as 
small as possible. Assume the waveguide feeding the horn has dimensions a =
2.29 cm and b = 1.02 cm, and the coaxial feed is λ/4 from the back wall. The 
cost function for the GA is given by

σ σ σθ φph , , , ,p A Bc �( ) = { }max  (7.8)

where pc =  distance of phase center from horn aperture, 0 ≤ pc ≤ � + 2 cm
 � =  distance from waveguide/horn junction and horn aperture, 0.5λ ≤

� ≤ 4.5λ
 A = horn dimension in z direction, 2.29 cm ≤ A ≤ 11.43 cm
 B = horn dimension in y direction, 1.02 cm ≤ B ≤ 7.11 cm

The basic horn layout appears in Figure 7.5. Running the GA using continuous 
variables and having a population size of 8 and a mutation rate of 20% resulted 
in values of pc = 0.04 cm, � = 4.38 cm, A = 3.80 cm, and B = 1.65 cm after 100 
iterations. Convergence slowed down after 100 iterations, so a local optimizer 
is used to fi nd an even better result. Letting a Nelder–Mead downhill simplex 
algorithm run with a starting point given by the best result found using a GA 
produced optimal variables of pc = 0.28 cm, � = 4.31 cm, A = 4.22 cm, and B =
2.19 cm. The fi nal cost function output is σph = 0.57°. Running the local opti-
mizer resulted in a signifi cant improvement to the GA output with little effort. 
Combining a GA with a local optimizer is called a hybrid GA. The resulting 
optimized horn appears in Figure 7.5. This horn has very little phase variation 
in the E- and H-plane cuts over ±45° from the peak of the mainbeam.



7.3 MICROSTRIP ANTENNAS

Next to wire antennas and arrays, microstrip antennas have received the most 
attention in terms of using the GA as a robust and powerful design optimiza-
tion tool. GAs have proved to be particularly useful in the design of microstrip 
patch antennas since there are typically several design parameters that require 
simultaneous optimization as well as multiple and sometimes competing per-
formance goals. For example, the design of stacked patch antennas can involve 
adjusting a relatively large number of parameters, including the length and 
width of each metallic patch, the thickness and material properties of each 
dielectric layer, and usually one or more additional parameters associated with 
the design of a feed for the antenna (e.g., coaxial probe, microstrip line, 
recessed microstrip line, or aperture coupled feed). The performance goals for 
microstrip stacked patch antennas can include broadband or multiband opera-
tion, maximum gain, no surfaces waves, high radiation effi ciency, linear or cir-
cular polarization, and low cross-polarized radiation.

A GA approach has been applied [23] to aid in the design of a coaxially 
fed circularly polarized rectangular microstrip antenna. To this end, the GA is 
used to optimize the size (i.e., length and width) and feeding point of the 
antenna based on a relatively complex cost function derived from the cavity 
model. The cost function takes into account the input impedance, effective loss 
tangent, and the axial ratio when evaluating the fi tness of a particular design. 
A GA technique has been introduced and shown [24] to be an effective opti-
mization tool for the design of dual-frequency probe-fed microstrip antennas. 
The dual-band performance is achieved by using the GA to optimize the posi-
tions of multiple slots in the patch or multiple short-circuiting strips between 
the patch and the ground plane. A design procedure for a circularly polarized 
microstrip antenna with a matched dual-feed network is presented in Ref. 25. 
In order to achieve the desired performance goals, a GA was employed to 
optimize eight critical design parameters subject to practical constraints of the 
feed network confi guration. Finally, a GA has been applied [26] to improve 
the bandwidth of microstrip antennas by optimizing the design of the feed 
network.

GAs have also been used effectively to optimize microstrip antenna designs 
by evolving new shapes for resonant metallic patch structures [27–35]. In these 
cases the GA is used as an optimizer for the microstrip patch antenna shape 
in order to achieve a broadband or multiband operation. The patch antenna 
geometry consists of an N × N-pixel grid of binary values indicating the pres-
ence (1) or absence (0) of metal on a given pixel. By pixelizing the antenna 
geometry in this way, it may be readily incorporated into a binary chromosome 
representation for the GA. Other design parameters such as the substrate 
thickness and dielectric constant can also be included as additional genes in 
the chromosome. The fi tness of each candidate microstrip antenna design is 
measured against a desired broadband or multiband response. The majority 
of the approaches considered in the literature use a subdomain MoM 
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formulation with Rao–Wilton–Glisson (RWG) basis functions to evaluate the 
fi tness of each candidate antenna design. Alternatively, a GA optimization 
methodology has been proposed [34,35] for microstrip patch antennas using 
a fi nite-difference time-domain (FDTD) technique to perform the required 
full-wave electromagnetic analysis.

Microstrip patch antennas are in widespread use because of their simple 
construction, good performance, low profi le, and low cost. A typical single-
layer microstrip patch antenna has modest broadside gain and a narrow 
impedance bandwidth. It is possible to increase the bandwidth of these anten-
nas by adding a superstrate and parasitic patch to the single-layer antenna. By 
carefully adjusting of the parameters of these stacked patch antennas, it is 
possible to obtain wideband and dual-band VSWR responses.

GAs have been successfully applied to optimize designs of probe-fed 
stacked patch antennas [34–39]. The design objective in all cases was to achieve 
broadband operation. Designs having circular polarization, in addition to a 
broad impedance bandwidth, have been considered [37]. In order to achieve 
this goal, the cost function for the GA used in Ref. 37 consisted of two parts: 
one that takes into account the axial ratio and another that depends on the 
input impedance matching. The specifi c form of the cost function used in that 
study [37] is given by
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where Ai denotes the axial ratio in decibels and Γi is the refl ection coeffi cient 
of the antenna at a specifi ed frequency. Γmax is the maximum tolerable value 
for the input refl ection coeffi cient, and Nf represents the total number of fre-
quency sampling points. Furthermore, in Ref. 39, the practical case is consid-
ered where a GA is used to optimize the performance of a truncated stacked 
patch antenna (i.e., a stacked patch antenna with fi nite dielectric layers and a 
fi nite ground plane).

The geometry of a probe-fed microstrip stacked patch antenna and its nine 
basic design parameters are shown in Figure 7.6. The design parameters include 

(b)(a)

Figure 7.6. (a) Exploded view of a stacked patch antenna with its design parameters; 
(b) standard view of a stacked patch antenna.



the length (L1) and width (W1) of the lower patch, the length (L2) and width 
(W2) of the upper patch, the dielectric constant (ε1) and thickness (t1) of the 
lower substrate, the dielectric constant (ε2) and thickness (t2) of the upper 
substrate, and the feed location from the edge of the lower patch (F). By 
adjusting these parameters it is possible to tailor the bandwidth and gain of 
the antenna. In the design of these antennas, one could use a procedure that 
is based on a combination of physics-based reasoning and trial-and-error. 
While this procedure can work, it often proves to be quite tedious and time-
consuming. Therefore, a design procedure that is based on a GA optimization 
is much more favorable.

Designs are presented for stacked patch antennas that are optimized via a 
GA for a broadband response and a dual-band response. For both designs the 
GA is used to optimize the nine parameters of the antenna to achieve a desired 
impedance response and broadside gain. The analysis of the antennas is carried 
out using method-of-moments (MoM) software that is linked with the GA. 
The MoM stacked patch model assumes infi nite dielectric layers and an infi -
nite ground plane. The feed wire radius for both designs was fi xed at 
0.25 mm.

The GA that is used in the optimizations is binary-coded with each of the 
nine genes of the chromosome encoded by 16 bits. A population size of 100 is 
used, and the optimization is carried out through 100 generations or until an 
acceptable design is obtained. Mating is performed using tournament selection 
and single-point crossover with a crossover rate of 50%. In order to introduce 
diversity into the population, a creep mutation rate of 4% and a jump muta-
tion rate of 4% are applied to the chromosomes after the crossovers are per-
formed. Elitism is enforced to carry the best population members over to the 
next generation.

The goal of the fi rst stacked patch optimization is to achieve a design that 
has a broadband response centered at 8.5 GHz. Additionally, the antenna 
should have a broadside gain that is greater than 5 dB over the desired band-
width. The performance of the antenna is evaluated at three sampling frequen-
cies: 7.5, 8.5, and 9.5 GHz. The following cost function is used to judge the 
performance of the antennas:
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where N is the number of sampling frequencies that are used to evaluate the 
response of the antenna, VSWRi is an element of the sampled VSWR data, ai

is a weighting factor, and gaini is the sampled broadside gain.
A crest in the VSWR response at the center of the band often results when 

a stacked patch antenna is designed for a wideband response. In order to 
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achieve a more balanced response, the weighting factors in (7.11) can be 
adjusted to place more emphasis on minimizing the VSWR at the center fre-
quency of the band. For this particular design, the weighting factor at the 
center of the band is made 1.5 times larger than the other weighting factors.

The optimized broadband design has a bandwidth (VSWR ≤ 2) of 27% that 
is centered around 8.5 GHz. A plot of the VSWR versus frequency is shown 
in Figure 7.7. A plot of the broadside gain versus frequency is shown in Figure 
7.8. The parameters of the optimized design are listed in Table 7.1.

Figure 7.7. Voltage standing-wave ratio (VSWR) versus frequency for the optimized broadband 
stacked patch antenna. The markers indicate the sampling frequencies used by the GA.

Figure 7.8. Broadside gain versus frequency for the optimized broadband stacked patch 
antenna.



The goal of the second stacked patch antenna optimization is to obtain a 
design that exhibits a dual-band response and modest broadside gain (≥5 dB) 
at 7.5 and 9.75 GHz. Similar to the method used in broadband optimization, 
three sampling frequencies are chosen to evaluate the performance of the 
antenna. Two of the frequencies correspond to the centers of the desired 
operation bands. The other sampling frequency is located between the bands 
at 8.75 GHz. The fi tness function that is used to evaluate the antennas is similar 
to the one used in the broadband stacked patch optimization (7.10). For this 
particular design, all of the weighting factors are set to unity magnitude. At 
the two operating bands the sign of the weighting factors is positive, and at 
8.75 GHz the sign is negative. The aim of this weighting scheme is to minimize 
the VSWR at the two operating bands and maximize the VSWR in between 
the bands.

The optimized design has bands at the desired frequencies of 7.5 and 
9.75 GHz. At the center of these bands the VSWR values are 1.27 and 1.2, 
respectively. A plot of VSWR versus frequency is shown in Figure 7.9. The 
design has a broadside gain of 7.5 dB at 7.5 GHz and 8.4 dB at 9.75 GHz. A 
plot of the broadside gain versus frequency is shown in Figure 7.10. The para-
meters of the optimized design are listed in Table 7.1.

When an antenna is placed within an array environment, its performance 
is altered by mutual coupling between the antenna and other elements of the 
array. Therefore, it seldom suffi ces to design a standalone antenna that is to 
be placed within an array environment. It is desirable to optimize the antenna 
while taking into account its interaction with the other elements of the 
array.

A design is presented for an infi nite periodic array of stacked patch antennas 
that is optimized by a GA to have a broadband response [40]. Full-wave simula-
tions are used to analyze the performance of the antenna in an array environ-
ment while accounting for mutual coupling effects. The full-wave simulations 
are carried out using the periodic fi nite-element–boundary integral (PFEBI) 
method [41,42]. A GA is used to optimize the nine parameters of the stacked 
patch antenna (Figure 7.6) to obtain the desired broadband response.

TABLE 7.1. Optimized Parameters of Broadband and 
Dual-Band Stacked Patch Designs

 Broadband Design Dual-Band Design

L1 (mm) 11.85 13.75
W1 (mm) 7.24 6.63
ε1 2.49 2.22
t1 (mm) 2.18 2.77
L2 (mm) 11.96 12.97
W2 (mm) 13.21 12.76
ε2 1.27 1.09
t2 (mm) 1.47 0.55
F (mm) 1.46 2.06
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Figure 7.9. VSWR versus frequency for the optimized dual-band stacked patch antenna. The 
markers indicate the sampling frequencies used by the GA.

Figure 7.10. Broadside gain versus frequency for the optimized dual-band stacked patch 
antenna.

A binary-coded micro–genetic algorithm (MGA) was utilized to increase 
the convergence rate of the optimization. The MGA uses tournament selection 
and single-point crossovers with a crossover rate of 50%. Elitism is used to 
retain the best population members. The MGA uses a population size of 50 
and it is set to optimize through 100 generations.

The MGA was parallelized to reduce the overall simulation time of the 
stacked patch optimization. The parallelization of the MGA is based on a 
“master–slave” model. The model uses a single population with selection and 



mating controlled globally by the “master” processor. Evaluations of the fi tness 
function of the population members are performed in parallel by the “slave” 
processors. Communication between the “master” and “slaves” occurs only 
when the “slaves” receive the population members to evaluate and when the 
fi tness values are returned to the “master” processor. The communication 
between the processors is controlled using the message-passing interface 
(MPI) library.

The goal of the optimization is to create an array with a broadband response 
that is centered at 8.5 GHz. For this design, the element spacing in both direc-
tions is fi xed at 1.3 cm. The performance of the antenna elements is sampled 
at three frequency points (N = 3): 7.5, 8.5, and 9.5 GHz. The relative merit of 
the antennas is evaluated using the following cost function:
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The parameters of the optimized stacked patch antenna are listed in Table 7.2. 
A plot of S11 versus frequency is shown in Figure 7.11. Radiation pattern cuts 
of a stacked patch element within the array environment are shown in Figure 
7.12.

TABLE 7.2. Parameters of Optimized Stacked Patch Array Elements

Parameters L1 W1 H1 ε1 L2 W2 H2 ε2 F

Optimized values (mm) 11.375 4.875 1.5 1.2 9.75 11.375 1.5 2.4 0

Figure 7.11. S11 versus frequency for the optimized broadband stacked patch array.
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(a)

(b)

Figure 7.12. Radiation pattern cuts of an element of the broadband stacked patch array at 
f = 0° (a) and f = 90° (b).

Other novel applications of GAs to the design of microstrip antennas have 
been investigated [43,44]. Xiao et al. [43] combined a GA with a FDTD tech-
nique to optimize the design of a reconfi gurable microstrip patch antenna with 
MEMS switches. The objective behind this design strategy is to use a GA to 
fi nd the optimal MEMS switch settings required to reconfi gure the radiation 
patterns of the antenna over an extremely wide band. Finally, a new family of 
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microstrip patch antennas introduced by Werner et al. [44] was based on frac-
tile (i.e., fractal tile) geometries. It was shown that by utilizing the unique 
properties of fractiles, it is possible to create high-gain single-feed modular 
designs for microstrip patch antennas. In this case, the GA is used as an opti-
mization tool for determining the best place to attach a coaxial probe feed to 
the fractile patch antenna.
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8
Optimization of 

Scattering

This chapter takes a break from antenna topics and looks at the closely related 
topics of scattering and radar cross section (RCS). Scattering occurs when an 
incident electromagnetic wave induces currents on an object and those cur-
rents radiate a scattered fi eld. The RCS of an object is how large it appears 
to a radar. The RCS in three dimensions is given by

σ θ φ π3
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24D
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E
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in units of area. If the objects are limited to the two-dimensional x–y plane, 
then
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in units of length. Frequently, the RCS is expressed in dBsm (dB relative to a 
square meter) for 3D or dBm (dB relative to a meter) for 2D formats.

For an infi nite, planar structure, the scattering from the device can be rep-
resented by refl ection and transmission coeffi cients, where the refl ection coef-
fi cient is the ratio between the total refl ected and the incident electric fi elds. 
The transmission coeffi cient would then be the ratio between the total trans-
mitted and the incident electric fi elds. For a fi ltering application, such as 
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described in Section 8.2.2, a planar device is designed to exhibit stopbands, 
with low transmission magnitude and high refl ection magnitude, and/or pass-
bands, with high transmission magnitude and low refl ection magnitude. The 
phases of the transmission and/or refl ection coeffi cients can also be designed 
to have specifi c values, such as discussed in Section 8.2.3 for electromagnetic 
bandgap devices. Here, the refl ection phase is optimized to have a phase of 
0°, so that the refl ected wave is in phase with the incident wave just above 
the surface of the planar device. In Section 8.3.4, both the magnitude and 
phase of the refl ection coeffi cient are optimized to be small for absorber 
applications.

8.1 SCATTERING FROM AN ARRAY OF STRIPS

This section explains how to use a GA to control the scattering patterns from 
arrays of strips. A strip is defi ned as having a fi nite width in the x direction, is 
infi nitely thin in the y direction, and is infi nitely long in the z direction. Placing 
strips side-by-side forms an array or grid. The size and spacing of the strips 
are variables that affect the scattering pattern when a plane wave is incident. 
An optimum spacing between strips can be found that results in the lowest 
maximum backscatter sidelobe level. The model is an array of perfectly con-
ducting strips as shown in Figure 8.1. Each strip is 0.25λ wide. A plane wave 
in which the electric fi eld is parallel to the edge of the strips and a magnetic 
fi eld of unity amplitude is incident at an angle φ. The spacing between the 
strips is variable and limited to 0–0.5λ. The currents fl ow in the z direction and 
are found for each relevant angle by solving

H e
k

J x H k x x dxz
jkx

z

a

b

n

N

n

n

cos ( )( ) ( )φ = ′ − ′ ′∫∑
=4 0

2

1

 (8.3)

for the surface current density using the method of moments (MoM). The 
left-hand side of this equation is the incident magnetic fi eld. A physical optics 
(PO) formulation for the current density is

J x H ez z
jkx( ) sin cos′ = ′2 φ φ  (8.4)

Figure 8.1. Diagram of an array of unequally spaced strips that are 0.25l wide.



The surface current density is substituted into the expression for the backscat-
tering RCS

σ φ φ( ) ( ) cos= ′ ′′
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4 1
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where N = number of strips
 Jz(x′) = surface current density in z direction
 xn = beginning of strip n
 Δ = strip width = 0.25λ
 Hz = 1 = magnitude of incident magnetic fi eld
 H 0

(2)(⋅) = zero-order Hankel function of the second kind

Backscattering assumes that the incident angle and the observation angle are 
equal.

The goal here is to minimize the maximum sidelobe level by fi nding the 
optimum spacing between strips. Eight minimization techniques

• Nelder Mead downhill simplex
• BFGS (Broyden–Fletcher–Goldfarb–Shannon)
• DFP (Davidon–Fletcher–Powell)
• Steepest-descent method
• Random search
• Binary GA
• Continuous GA
• Hybrid GA

were applied to minimizing the cost function

cos sidelobet level[ ]= max{ ( ) }σ φ  (8.6)

for N = 10, 40. The local optimizers started at 20 independent random points. 
All optimizers were terminated after 1000 cost function evaluations. Better 
results might have been found with more cost function evaluations. The binary 
GA has a population size of 16, a 3% mutation rate, and a 50% discard rate. 
The continuous parameter GA has a population size of 8, an 8% mutation 
rate, and a 50% discard rate. The hybrid GA combines the strengths of the 
GA and a local optimizer. It begins the optimization with a continuous param-
eter GA. The local optimizer kicks in after 700 function evaluations.

Table 8.1 displays the results from optimizing (8.6) using the 8 different 
approaches and averaging over 20 independent runs (i.e., each run starts with 
a new random seed). An independent run consists of a new random starting 
point or population. The hybrid GA produces the best results. Surprisingly, 
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steepest descent found the lowest minimum when the method of moments 
cost function was used. The binary and continuous GAs performed quite well. 
These results show that this cost function is multimodal with many local 
minima. Convergence for the best run by the Nelder–Mead algorithm for the 
physical optics cost function is shown in Figure 8.2. Spikes in the convergence 
are due to bad movements by the algorithm. Convergence for the best runs 
by the three derivative-based local optimizers appears in Figure 8.3. DFP 
worked the best, while the steepest descent came in third. Figure 8.4 shows 
the convergence for the best runs by the three GA algorithms. The hybrid GA 
is equivalent to the continuous GA up to 700 function calls. At that point, a 
Nelder–Mead algorithm completes the remaining 300 function calls before 
stopping. This hybrid GA resulted in the best performance. Figure 8.5 displays 
the best grid spacing found by each of the eight optimization algorithms.

TABLE 8.1. Backscattering Maximum Sidelobe Level (dB) after Optimizing Spacing 
between 10 Strips with 8 Different Optimization Methods and Averaging over 20 
Independent Runs Bold Font Indicates Best Value in Column. (Lowest Cost in 
Boldface)

 Method of Moments Physical Optics

 Maximum Minimum Mean Maximum Minimun Mean

Nelder–Mead −13.7 −15.8 −15.0 −14.3 −19.9 −16.9
BFGS −13.3 −16.4 −14.8 −14.4 −19.4 −17.0
DFP −12.0 −16.2 −14.3 −12.2 −20.4 −16.9
Steepest descent −12.6 -17.8 −15.4 −13.6 −19.9 −16.8
Random search −13.7 −15.5 −14.4 −12.5 −19.0 −16.3
Binary GA (6-bit) −14.8 −16.0 −15.5 −17.7 −21.1 −19.2
Continuous GA −13.3 −16.3 −15.0 −16.6 −20.8 −18.6
Hybrid GA -15.3 −16.7 -16.2 -18.0 -21.3 -19.5

Figure 8.2. Convergence of the Nelder–Mead downhill simplex algorithm.



Figure 8.3. Convergence of the steepest descent, BFGS, and DFP algorithms.

Figure 8.4. Convergence of the continuous, binary, and hybrid GAs.

Figure 8.5. Optimum strip confi gurations found by the eight different optimization methods for 
the method of moments cost function.
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Increasing the number of strips to 40 gives GA-based algorithms a clear 
advantage over the local search algorithms (see Table 8.2). The hybrid GA 
provides better results than does a GA by itself. Increasing the number of 
strips increases the number of local minima. As a result, the GAs are better 
equipped to search the cost function output. Once a region with a suitable 
minimum is found by the GA, then a local search moves to the bottom of that 
local minimum more rapidly than a GA can. The binary GA performed slightly 
better than did the continuous GA.

Another cost function returns the RCS at a specifi ed angle φfull:

cost null= σ φ( )  (8.7)

Minimizing this function places a null in the scattering pattern. Finding the 
spacing of 10 strips to place a null at φ = 73.7° is the next example. Table 8.3 
summarizes the results for each algorithm. The hybrid GA proved best this 
time, too. The median is calculated in place of the mean, since an output of −∞

TABLE 8.2. Backscattering Maximum Sidelobe Level (dB) after Optimizing Spacing 
between 40 Strips with 8 Different Optimization Methods and Averaging over 20 
Independent Runs. (Lowest Cost in Boldface)

 Method of Moments Physical Optics

 Maximum Minimum Mean Maximum Minimun Mean

Nelder–Mead −12.7 −17.7 −16.1 −13.0 −18.9 −16.2
BFGS −13.9 −16.4 −15.3 −15.5 −18.7 −16.9
DFP −13.6 −17.0 −15.2 −15.0 −18.1 −16.6
Steepest descent −13.4 −16.9 −15.2 −14.7 −18.6 −16.7
Random search −15.1 −16.0 −15.6 −16.7 −18.0 −17.4
Binary GA (6-bit) −17.7 −19.3 −18.5 −19.3 −21.4 −20.0
Continuous GA −17.1 −19.1 −18.0 −18.2 −20.9 −19.3
Hybrid GA -18.1 -21.0 -19.6 -19.6 -21.6 -20.2

TABLE 8.3. Null Depth (dB) in Backscattering Pattern at f = 73.7° Created by 
Optimizing Spacing between 10 Strips with 8 Different Optimization Methods and 
Averaging over 20 Independent Runs. (Lowest Cost in Boldface)

 Method of Moments Physical Optics

 Maximun Minimun Median Maximun Minimun Median

Nelder–Mead −11.5 -• −303.6 −7.2 -328.7 −205.3
BFGS −8.6 −171.8 −100.6 0.0 −119.1 −9.4
DFP 1.2 −174.0 −25.4 0.8 −65.5 −10.7
Steepest descent −12.7 −15.4 −14.1 −0.3 −195.6 −8.3
Random search −21.1 −38.6 −26.4 −13.3 −27.2 −20.9
Binary GA (6-bit) −34.1 −54.2 −44.4 −47.7 −67.2 −55.1
Continuous GA −32.9 −56.4 −43.5 −41.8 −67.7 −52.7
Hybrid GA -305.5 −329.2 -314.2 -307.9 −326.0 -318.0



is possible. The hybrid GA had the best maximum and median values, but the 
Nelder–Mead algorithm had the lowest median null depth for MoM and PO.

Table 8.4 shows the results for 40 strips. The median results for the binary 
and continuous GAs were consistently good, but one of the local optimizers 
did better. The hybrid GA gave the lowest maximum and median values by 
far. Some of the local optimizers were able to fi nd very low minima in one or 
more of the runs.

Additional results and information on optimizing (8.6) and (8.7) can be 
found in Ref. 1. Other researchers have optimized scattering from strips. In 
Ref. 2, the refl ection and transmission properties of multilayered dielectric 
structures periodically loaded with metal strips are optimized. The chromo-
somes consisted of binary and continuous values. The choice of dielectric 
constant and the presence or absence of a strip were represented with binary 
numbers. On the other hand, the thicknesses of the dielectric layers were rep-
resented by continuous values. The GA was able to fi nd confi gurations that 
allowed refl ection and transmission for several different frequency bands. A 
GA has also been used to solve inverse scattering problems. A GA is used to 
fi nd the widths and locations of strips given the scattered fi eld at various angles 
[3]. Other objects have also been imaged from scattered fi eld data using a GA. 
The shape and location of a cylinder are found in Ref. 4. A GA using a method 
of moments cost function was used to predict the shape of objects from mea-
sured data in Ref. 5.

8.2 SCATTERING FROM FREQUENCY-SELECTIVE SURFACES

Frequency-selective surfaces (FSSs) are planar structures consisting of a 
doubly periodic metallic screen usually backed by one or more dielectric layers 
[6]. A schematic diagram of a FSS screen and dielectric substrate is shown in 
Figure 8.6. Additional substrates or superstrates can be incorporated into 

TABLE 8.4. Null Depth (dB) in Backscattering Pattern at f = 86° Created by Optimizing 
Spacing between 40 Strips with 8 Different Optimization Methods and Averaging over 
20 Independent Runs. (Lowest Cost in Boldface)

 Method of Moments Physical Optics

 Maximun Minimun Median Maximun Minimun Median

Nelder–Mead 14.5 −85.3 −49.4 7.1 −92.6 −64.9
BFGS 9.1 −23.3 −4.5 2.4 −34.0 −12.0
DFP 5.9 −26.8 −2.5 4.7 −29.3 −9.5
Steepest descent 7.9 -193.4 −89.9 2.6 -181.3 −11.9
Random search −10.0 −27.9 −18.9 −18.8 −51.8 −25.4
Binary GA (6-bit) −24.8 −51.0 −31.8 −38.2 −60.7 −46.3
Continuous GA −22.9 −41.9 −31.3 −32.5 −55.0 −41.2
Hybrid GA -140.6 −151.1 -144.3 -144.0 −141.7 -142.1
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the structure to enhance the desired scattering performance of the device or 
to protect the metallic screen elements from damage. A ground plane may be 
added to the back of the device for certain applications such as constructing 
electromagnetic bandgap (EBG) surfaces as discussed in Section 8.2.3.

An FSS can be designed to behave as a lowpass, highpass, bandpass, stop-
band, or multiband fi lter for electromagnetic waves. When illuminated by 
electromagnetic radiation, wavelengths at which the metallic screen patches 
resonate are refl ected back from the FSS. The FSS screen is transparent to 
other wavelengths of electromagnetic radiation. For example, the crossed 
dipole metallic patches depicted in Figure 8.6 are resonant at a wavelength 
approximately twice the crossed dipole armlength in the dielectric [6]. Thus, 
this FSS fi lter exhibits a single stopband at the resonant frequency of the 
crossed dipole screen elements.

In practice, there are many variables, such as metallic element shape, spacing, 
orientation, and dielectric layer properties, which must be adjusted simultane-
ously to achieve a desired high-performance fi lter response. Hence, GAs are 
a natural choice for synthesizing FSS designs with optimal performance. Rep-
resentation of the design variables within binary chromosomes is straightfor-
ward, as will be shown in the next section. Calculating the gradient of the 
scattering coeffi cients in terms of the design variables is quite diffi cult, and not 
worthwhile, as there are many local minima in which a local optimization could 
potentially become stuck. A robust global optimization scheme is needed for 
FSS synthesis. In addition, the desired scattering properties can be cast in 
terms of a cost function, as will be shown in the examples to follow.

GA techniques have successfully optimized the designs for several types of 
FSS devices. The fi rst device type, which will be discussed in more detail in 
Section 8.2.1, is an FSS fi lter. For this application, the FSS scattering variables 
are optimized for minimum transmission at desired stopband frequencies and 
maximum transmission at desired passband frequencies.

Another interesting twist is to add reconfi gurability into the FSS structure. 
Reconfi gurable frequency-selective surfaces (RFSS) have been studied more 

Figure 8.6. Diagram of a frequency-selective surface (FSS) composed of a periodic array of 
metallic crossed dipoles printed on a dielectric substrate.



recently, where a static metallic FSS screen geometry, such as an array of linear 
or crossed dipoles, is interconnected with switches that can be independently 
turned on or off [7]. The switch settings are then optimized via a GA to achieve 
a desired scattering response. This topic is discussed further in Section 8.2.2.

Metamaterials that possess an effective negative refractive index (Re 
[n] < 0) are currently receiving much attention due mainly to the promise they 
hold for realizing a “perfect lens,” which can resolve features smaller than the 
wavelength of light [8]. One of the most critical issues with realizing a fl at 
negative-index metamaterial (NIM) lens capable of imaging beyond the dif-
fraction limit has been overcoming the relatively high losses inherent in these 
materials. To this end, a planar NIM synthesis technique has been developed 
by using a GA to optimize the scattering from planar FSS screens to exhibit 
negative-index behavior as well as extremely low losses (i.e., low refl ection 
mismatch together with low effective material losses) [9]. A similar technique 
has also been used to synthesize zero-index metamaterials (ZIM) [10,11].

EBG devices represent another important class of FSS-based metamater-
ials that have been given a lot of attention in recent years. These are made by 
placing a metallic ground plane on the bottom of the FSS substrate. By doing 
so, the phase of the refl ection coeffi cient from the FSS passes through 0° at 
its resonant frequencies. This surface would then act like an artifi cial magnetic 
conductor (AMC) under the 0° refl ection phase condition, since the refl ected 
wave is in phase with the incident wave. A perfect electric conductor (PEC), 
on the other hand, has a refl ection phase of 180°, such that the refl ected wave 
is exactly out of phase with the incident wave. According to image theory, a 
horizontal dipole antenna should be placed a quarter-wavelength above a 
PEC ground plane in order for the refl ected image of the antenna to radiate 
in phase with the physical antenna. Theoretically, an antenna could then be 
placed extremely close to the AMC surface, as opposed to requiring a quarter-
wavelength standoff in the case of a conventional ground plane made from a 
PEC. EBG FSS metamaterials have been synthesized using GA optimization 
to possess a variety of advantageous properties, including multiband response, 
angular stability, and small size. This topic is discussed further in Section 8.2.3. 
EBG FSS metamaterials have also been used in electromagnetic absorber 
applications, which are described in Section 8.3.

8.2.1 Optimization of FSS Filters

FSS are used as spatial fi lters at microwave frequencies for a variety of appli-
cations, including radomes, waveguide fi lters [12], and refl ectors for satellite 
communication [13]. At infrared (IR) and visible wavelengths, FSS fi lters with 
micrometer- and nanoscale features are being synthesized for signal process-
ing applications [14–17] and as IR emitters [18]. Since metallic losses become 
signifi cant at optical wavelengths, all-dielectric FSS (DFSS) are also being 
studied for use in fi ltering applications. DFSS are composed of multiple dielec-
tric materials with no metallic screens and are more advantageous at optical 
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wavelengths where a variety of dielectric materials are available with extremely 
low losses [16,19].

For these applications, the design goal is to achieve a set of desired fi lter 
characteristics. This includes specifi ed frequency points for stopbands or pass-
bands and can also include shaping the transitions between stopbands and 
passbands. In terms of scattering variables, S21 should be minimized (S11 maxi-
mized) for stopbands, and S21 should be maximized (S11 minimized) for pass-
bands. Typically, the mean-squared error (MSE) is minimized between the 
calculated S parameters and the desired transmission or refl ection value at 
each specifi ed frequency point. Specifi c cost functions will be given for two 
synthesis examples presented later in this section.

Various studies on GA synthesis of FSS and DFSS fi lters have been pub-
lished [12–17,20–24]. While most of these studies generalize the metallic screen 
geometry to a pixelized grid that can be optimized by the GA, two approaches 
are based on choosing a fi xed screen geometry a priori and then optimizing a 
smaller subset of FSS variables to achieve a desired fi lter response. For example, 
it is well known that an FSS with a conventional square array of crossed 
dipoles has a stopband that changes its center frequency for different angles 
of incidence. However, it has been shown [21] that a GA could be used to 
optimize the spacing and orientation of the crossed dipole elements in the FSS 
to achieve a design with a robust frequency response that is essentially inde-
pendent of the incidence angle. In a second study [16], a GA is used to optimize 
the variables of a specifi c FSS unit cell geometry. In this case a DFSS with 
dielectric blocks embedded in a slab of a different dielectric material is opti-
mized to have a strong stopband at a desired frequency. This is accomplished 
by using the GA to evolve the best size and periodicity of the embedded 
dielectric blocks.

A number of other studies consider pixilated FSS screens, which allow the 
screen geometry to be included as an additional variable for the GA to opti-
mize. Typically, an 8-fold symmetry condition is imposed on the unit cell 
geometry as shown in Figure 8.7 to ensure that the FSS fi lter response is the 
same for both vertically and horizontally polarized incident waves (i.e., its 
response is polarization-independent). The unit cell is divided into eight trian-
gular folds, such that a single fold is parameterized in the GA and the remain-
ing unit cell is generated by mirroring the geometry across the diagonal, 
horizontal, and vertical lines shown in Figure 8.7.

The individual pixels have binary values with 1 representing the presence 
of metal and 0 representing the absence of metal. For a binary-coded GA, it 
is straightforward to represent the screen geometry with 8 genes. The gene 
corresponding to the fi rst row of the pixelized screen geometry would be

gene b b b b b b b b= [ ]1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1  (8.8)

A chromosome is formed by placing the genes for each row of the geometry 
together in sequence followed by the cell size, substrate variables, and any 



other variables to be optimized by the GA. If we encode the geometry shown 
in Figure 8.7, then the chromosome would be
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The transmission and refl ection from the FSS screen is typically calculated 
using a periodic method of moments (PMoM) full-wave simulation code 
[25,26]. Because of the computational complexity of using a full-wave simula-
tion tool to calculate the scattering variables for every population member at 
multiple frequencies over many generations, several schemes have been inves-
tigated in the literature for synthesizing FSS fi lters that speed up the conver-
gence of the GA. A hybrid GA has been presented [22] that uses a local 
optimizer between generations to optimize variables other than the screen 
geometry, upon which the cost function has a smooth dependence. The local 
optimizer uses an interpolation scheme, reducing the number of times that the 
PMoM code must be run. A similar scheme called a hierarchical GA which 
also allows the number of screens in the FSS to be chosen by the GA has been 
reported [23]. A micro–genetic algorithm (MGA) approach that uses a small 
population size and includes no mutation operator has also been considered 
[24]. While the MGA sparsely samples the cost function, it has the advantage 
of converging more rapidly to a local solution, which may be suffi cient to meet 
the intended design requirements. Another method for speeding up the GA 
optimization interpolates the impedance matrices across a wide frequency 
band in the PMoM analysis [27]. This provides a fi ne frequency resolution over 

Figure 8.7. Unit cell of a FSS screen with 8-fold symmetry enforced. Chromosome values are 
shown over one triangular fold of the screen.
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a wide frequency band for each population member at a considerably reduced 
computational cost.

Another consideration in synthesizing FSS is ease of fabrication. Depend-
ing on the fabrication technique, it may be diffi cult to construct the synthesized 
FSS screen produced by the GA. Two studies have included fabrication con-
straints, or geometry refi nement techniques, in the GA [13,14]. In both of these 
studies, features that are diffi cult or unnecessary to fabricate are removed from 
the geometry prior to simulation. For example, single island pixels are not 
taken into account by the PMoM simulation and thus may be removed. Diago-
nally touching pixels are not connected in the PMoM simulation and may be 
diffi cult to fabricate with no electrical connection. These diagonal connections 
are suppressed in both studies [13,14].

In order to demonstrate GA optimization of FSS fi lters, we will consider 
here a design example in the infrared (IR) regime. For this example, a PMoM 
full-wave analysis technique is used to calculate the transmission and refl ec-
tion from the FSS screen [25,26]. The current basis functions on the screen 
geometry are represented by “rooftops,” which conveniently allow the screen 
to be generalized to pixels [27]. For IR wavelengths, the loss in the metallic 
screen begins to impact the performance of the FSS and must be taken into 
account. Frequency-dependent loss models in the optical and IR regimes have 
been published for common metals [29]. The loss models presented in Ref. 29 
can be incorporated into the PMoM code in the form of a surface impedance 
given by

Z
Z

j
s =

−
0

1 2ε ε
 (8.10)

where Z0 ≈ 377 Ω is the intrinsic impedance of free space [19]. A 4-μm-thick
fl exible slab of polyimide is used as the dielectric substrate for this FSS fi lter. 
The permittivity of polyimide is estimated to be εr = 3.0 − 0.3j.

The unit cell geometry is represented by a 16 × 16 array of binary pixels. 
As shown in Figure 8.7, 8-fold symmetry is enforced to achieve polarization 
insensitivity. Because the substrate variables are chosen a priori, the chromo-
some for this optimization consists of one triangular fold of the geometry as 
shown in (8.9) and an 8-bit string representing the unit cell dimension. Fabri-
cation constraints as described earlier were enforced during optimization, so 
that each population member was modifi ed for ease of fabrication prior to 
PMoM simulation [17].

The cost function used for this optimization is given by

FF
pass stop

= +∑ ∑Γ 2 23 T  (8.11)

where Γ is the refl ection coeffi cient and T is the transmission coeffi cient. A 
weighting coeffi cient of 3 is used to achieve greater attenuation in the specifi ed 



stopbands. There were three stopband frequencies specifi ed around 2.7 THz 
and three stopband frequencies specifi ed around 5.9 THz. Additionally, 18 
passband frequencies were specifi ed elsewhere from 1 to 10 THz.

A population of 75 was optimized over 300 generations with a crossover 
probability of 0.5 and a mutation probability of 0.1%. The synthesized geom-
etry shown in Figure 8.8a has a cell size of 35.9 μm on a side. This design was 
fabricated using standard optical photolithography. An optical microscope 
image of the fabricated FSS shown in Figure 8.8b demonstrates that the geom-
etry was able to be easily and accurately fabricated. The simulated and mea-
sured transmission spectra in Figure 8.9 show excellent agreement between 
the design goals and the response of the fabricated structure.

As a second example, consider the design of a DFSS fi lter. The analysis of 
DFSS can be carried out by the fi nite-element boundary–integral (FEBI) 

(a) (b) 

Figure 8.8. IR FSS fi lter designed to have stopbands at 2.7 and 5.9 THz: (a) unit cell geometry 
is shown along with (b) optical microscope image of fabricated FSS structure.

Figure 8.9. Simulated and measured transmission spectra for the dual-band IR FSS fi lter 
shown in Figure 8.8.

 SCATTERING FROM FREQUENCY-SELECTIVE SURFACES 229



230 OPTIMIZATION OF SCATTERING

method, which can effi ciently model the material inhomogeneities and can 
simulate periodic boundaries without any diffi culty. Moreover, it can be used 
in conjunction with a GA to provide a powerful tool for the design optimiza-
tion of DFSS.

The FEBI method, a hybridization of the traditional MoM with the fi nite-
element method (FEM), is one of the most powerful and effi cient full-wave 
numerical methods for handling the analysis of inhomogeneous problems 
[30,31]. For periodic structures, the method begins with a functional descrip-
tion of the fi eld problem where only a single unit cell of the array is considered. 
This unit cell is meshed with three-dimensional cubic elements and the electric 
fi eld intensity is discretized with edge-based basis functions. Periodic boundary 
conditions are enforced on the opposite sidewalls of the unit cell. On the top 
and bottom planar surfaces of the structure, the FEM computation domain is 
terminated by applying the mixed potential integral equation (MPIE) [31]. 
The calculation of the periodic Green’s function is accelerated by using the 
Ewald transformation [31]. Inside the boundary, a standard FEM technique 
[30] is employed. The matrix equation can be effi ciently solved by using itera-
tive techniques such as the conjugate gradient (CG) method [32], which yields 
the coeffi cients of the basis functions. The electric fi eld on the top and bottom 
surfaces of the unit cell is then constructed through the basis functions to fi nd 
the scattering variables of the periodic structure.

GAs have been proven to be very effective in metallodielectric FSS design. 
As to the DFSS, however, the computation time requirements can be very 
demanding since the evaluation of each population member is based on the 
volumetric discretization of the entire unit cell structure. Even with a nume-
rical technique as effi cient as FEBI, fi nding a way to shorten the design cycle 
is highly desirable. To this end, a parallel GA can provide considerable gains 
in terms of performance and scalability. A GA lends itself to parallelization 
in that the evaluation of the cost function of candidate designs, which is usually 
the bottleneck in the computations, can be carried out independently for each 
member of the population. In addition, the crosstalk in a parallel GA requires 
a low communication bandwidth. Parallelism can be easily implemented on 
networks of heterogeneous computers or on parallel mainframes.

A GA can be parallelized in many different ways depending on how the 
cost is evaluated and mutation is applied, whether multiple populations are 
used and how individuals are exchanged among multiple populations, and so 
on. Interested readers are referred to the literature [33–35] for more details 
on this subject. The parallelism is known as a “mater–slave model”, or distrib-
uted fi tness evaluation [36]. The algorithm uses a single population and the 
evaluation of the individuals is performed in parallel. The selection and mating 
is done globally; hence each individual may compete and cooperate with any 
other individuals in the population. Evaluation of the cost functions, which 
requires only the knowledge of the individual being evaluated, is distributed 
to multiple “slave” processors by assigning a fraction of the population to each 
processor available. Communication occurs only when each “slave” processor 



receives the individual (or subset of individuals) to evaluate and when the 
“slaves” return the cost values to the “master” processor, which performs 
mutation (sometimes with crossover), selection, and recombination. The evo-
lution and the convergence of the parallel GA implemented in this way are 
exactly the same as those in a traditional sequential GA. However, the time 
savings brought about by the parallelization is roughly proportional to the 
number of processors involved in the calculation.

With this parallel GA scheme, DFSS optimization can be done much more 
effi ciently. At each generation, FEBI is used to analyze each candidate design. 
The distribution of the materials, the number and the thickness of the layers, 
and the electromagnetic properties of the materials can be optimized indepen-
dently or simultaneously to achieve the desired frequency response.

The FSS considered in this section consists of an inhomogeneous dielectric 
slab made up of two different materials. The unit cell of the DFSS is volumetri-
cally pixelized into 16 × 16 small cubes, as shown in Figure 8.10, and a GA is 
used to optimize the distribution of the two materials in these small cubes so 
that the desired frequency response can be achieved. The dielectric constant 
of the two materials, the periodicity of the DFSS and the thickness of the 
dielectric layer are chosen in advance. In order to get a polarization insensitive 
frequency response from the DFSS, a rotationally symmetric scheme is 
enforced on the material distribution, which means that only a quarter of the 
unit cell needs to be optimized. To improve the speed of convergence, a MGA 
is used in this example with a population size of 50. A crossover probability 
of 0.5 is used with no mutations. The iteration is terminated after completion 
of 100 generations. The goal of the GA in this example is to determine the 
optimal material distribution in the dielectric slab to provide a single stopband 
at 100 THz. The cost function of the GA, given by
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is designed to simultaneously minimize the transmission coeffi cient T in the 
stopband and refl ection coeffi cient Γ in the passband. The geometry of the 
DFSS as well as the corresponding scattering response of the periodic struc-
ture are shown in Figures 8.11 and 8.12, respectively. Note that the scattering 

Figure 8.10. Pixelization of the DFSS unit cell.
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(a)

(b) 

Figure 8.11. Material distribution inside the DFSS unit cell with scattering response shown 
in Figure 8.12. The dark pixels represent material with relative dielectric constant 1.82, and 
the light pixels represent material with relative dielectric constant 2.82: (a) unit cell geometry; 
(b) DFSS screen geometry.

Figure 8.12. Frequency response for both TE and TM polarizations of the DFSS with the unit 
cell structure shown in Figure 8.11.



responses of the DFSS are the same for both TE and TM (transverse electric 
and magnetic) polarizations. The periodicity of the DFSS is 2.29 μm, and the 
thickness of the DFSS is 0.97 μm. The relative dielectric constants of the two 
materials are 1.82 and 2.82, respectively. Finally, Figure 8.13 shows a conver-
gence plot for the MGA optimization used in this case.

8.2.2 Optimization of Reconfi gurable FSSs

For some applications, it is desirable to construct a FSS fi lter that is capable 
of changing its fi ltering characteristics in real time. A methodology for accom-
plishing this using a FSS screen with fi xed metallic features interconnected by 
switches has been presented [7]. Consider the cell geometry shown in Figure 
8.14a. If the short dipoles in the unit cell are connected by ideal switches, then 
the stopband of the FSS screen will change in frequency when the switches 
are toggled off and on. When the switches are off, or open, the unit cell has 
four shorter dipoles, producing a stopband for linearly (e.g., vertically) polar-
ized incident waves at a wavelength approximately twice the length of the 
dipoles. When the switches are on, or closed, the unit cell consists of two 
longer dipoles. In this case, the screen will be resonant at a lower frequency 
when the wavelength is approximately twice the length of the longer dipoles. 
Thus, the fi lter response of this FSS is reconfi gurable. If we generalize this 
simple unit cell geometry to a larger array of 8 × 8 dipoles, connected by a 
grid of 8 × 8 independent ideal switches as shown in Figure 8.14b, we can 
potentially reconfi gure the switches to produce a wide variety of desired fi lter 
responses for linearly polarized incident waves.

Figure 8.13. Convergence plot for the MGA optimization of the single stopband fi lter shown in 
Figure 8.11.
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The RFSS illustrated in Figure 8.14b lends itself to binary GA optimization. 
The only variables in the RFSS that are not fi xed are the switch settings. These 
switch settings are encoded into a chromosome such that a 1 corresponds to 
the switch being on, or closed, and a 0 corresponds to the switch being off, or 
open. Thus, the chromosome for the RFSS in Figure 8.14b has 64 bits corre-
sponding to the 64 switches in the unit cell. The dimensions of the RFSS unit 
cell are chosen to be 32 mm on a side, while the dipoles are 3 mm long and 
1 mm wide with a 1 mm gap between each dipole where a switch is placed. The 
substrate thickness and relative permittivity are assumed to be 0.2 mm and 2, 
respectively. The scattering from the RFSS is calculated at specifi ed desired 
stopband and passband frequencies by the PMoM code described in Section 
8.2.1. The scattering variables are then used to calculate the cost of each design 
according to the cost function given in (8.11).

In order to demonstrate the fl exibility of this RFSS concept, let us consider 
the design of a triband fi lter with the optimal switch settings determined using 
a MGA. Three desired stopband frequencies were specifi ed at 4, 7, and 9 GHz. 
In addition, nine passband frequencies were specifi ed elsewhere throughout 
the band from 1 to 10 GHz. For the MGA, a population of 50 was optimized 
over 100 generations with a crossover probability of 0.5 and no mutation. The 
RFSS geometry with optimized switch settings is shown in Figure 8.15. The 
simulated transmission and refl ection spectra shown in Figure 8.16 demon-
strate that the MGA was able to evolve a set of switch settings that produce 
the desired triband response.

This RFSS concept can also be used with alternate geometries such as 
metallic crossed dipole elements that can produce either the same or different 

(a) (b)

Figure 8.14. (a) Unit cell for a simple RFSS; (b) RFSS unit cell composed of an 8 × 8 array of 
linear dipoles (J. A. Bossard et al., © IEEE, 2005 [7]).



fi lter responses depending on the polarization of the incident wave (i.e., ver-
tical or horizontal polarizations) as discussed in Ref. 7. Several other examples 
have also been presented [7] that demonstrate the considerable fl exibility of 
this concept.

Figure 8.15. RFSS optimized for triband response (J. A. Bossard et al., © IEEE, 2005 [7]).

Figure 8.16. Transmission and refl ection spectra for the RFSS unit cell geometry shown in 
Figure 8.15 (J. A. Bossard et al., © IEEE, 2005 [7]).
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8.2.3 Optimization of EBGs

There have been a variety of studies on GA synthesizing of EBG structures. 
For example, a GA has been used to synthesize EBG metamaterials that 
exhibit multiband AMC responses [37,38]. Further efforts have been made to 
improve the angular stability of the AMC condition by using a GA [38]. EBG 
metamaterials with multiple FSS screens have also been proposed and synthe-
sized using a GA [39]. A hierarchical GA has been developed that allows the 
optimal number of FSS screens and dielectric layers to be chosen during the 
synthesis process for a targeted EBG design [40]. Several studies have also 
been performed on the effects of an AMC ground plane on microstrip patch 
and conformal low-profi le antennas [41–43]. Finally, it has been demonstrated 
that because of the coupling that exists when an antenna is placed in very 
close proximity to an AMC ground plane, best results are achieved when the 
antenna and the AMC surface are optimized together as a system rather than 
separately [43,44].

In order to demonstrate the synthesis of an EBG structure using GA opti-
mization, a design example will be considered that possesses a multiband 
AMC response as well as angular stability. The fi rst step to generalizing the 
unit cell geometry is to encode the unit cell as a 16 × 16 square grid of pixels, 
each representing either the presence or absence of metal. The unit cell is 
analyzed using a full-wave PMoM code that employs Floquet’s theorem and 
rooftop basis functions. To improve angular stability, two analyses are per-
formed: one in the frequency domain and the other by varying the incidence 
angle at the center frequency. The cost function for the frequency domain is 
calculated according to
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where nc is the total number of frequencies fi in the desired band and the 
refl ection coeffi cient ΓE is evaluated at normal incidence. Then, a similar quan-
tity is computed for different incidence angles:
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where na is the total number of incidence angles θi at the central frequency of 
the desired band. It is useful to note that the separation of the refl ection coef-
fi cient into real and imaginary parts allows for the maximization of the ampli-
tude of ΓE in the presence of losses in the dielectric materials or the metallic 
conducting FSS screen. For both of these cases, the desired value for the 
refl ection coeffi cient ΓE is 1 + 0 j.



To obtain the cost for each frequency band, the TE and TM responses are 
averaged, while a weighted mean is used for the frequency and incidence angle 
cost data. The cost is calculated as
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where Nbands is the number of frequency bands of the EBG that exhibit AMC 
resonances and 0 ≤ α ≤ 1 is the weight assigned to the frequency cost function. 
The average of the TE and TM responses for the different frequencies of 
interest and angles of incidence are represented by F j

freq and F j
inc, respectively. 

The frequency bands optimized for this design include the GPS (Global Posi-
tioning System) L1 frequency of 1.575 GHz and the cellular band covering 
1.93–1.99 GHz. In the actual design, the cell phone band is approximated by 
its center frequency of 1.96 GHz. Five frequency points (nc = 5) were chosen 
around each band, and three incidence angles (na = 3) were chosen between 
normal incidence (θ = 0°) and grazing (θ = 90°). The weighting coeffi cient for 
the frequency function was chosen to be α = 0.65. A dielectric material with 
permittivity εr = 13 and a thickness value t = 0.508 cm has also been imposed, 
corresponding to a commercially available substrate. Eight-fold symmetry is 
enforced on the FSS screen as shown in Figure 8.7 in order to ensure the same 
response for vertical and horizontal polarizations.

A GA was used to optimize a population of 200 members over 200 generations, 
successfully synthesizing the desired dual-band AMC structure. A unit cell of the 
FSS screen is shown along with a 5 × 5 tiling of the periodic structure in Figure 
8.17. The dimensions of the unit cell were found to be Tx = Ty = 2.6254 cm. The 

(a) (b)

Figure 8.17. EBG AMC surface optimized for triband response; (a) unit cell geometry with black 
as “metal” and white as “no metal”; (b) 5 × 5 tiling of screen geometry (D. J. Kern et al., © IEEE, 
2005 [38]).
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frequency response shown in Figure 8.18 indicates an AMC condition at the 
targeted bands of 1.575 and 1.96 GHz. Since the system contains no loss, only 
the phase of the refl ection coeffi cient is shown. The relative bandwidths, defi ned 
by the ±90° phase points, are 8.5% in the fi rst band and 2.14% in the second. 
The angular performance of the dual-band AMC structure is shown in Figure 
8.19. A properly tuned GA optimization procedure can provide very robust 
solutions with respect to the variation of the incidence angle; in 
this case, phase values below ±45° were obtained up to an incidence angle of θ
= 60° at the resonant frequencies.

8.3 SCATTERING FROM ABSORBERS

In addition to the FSS structures examined in the previous section, GAs have 
also been applied to the design of electromagnetic absorbers. Absorber struc-
tures range from the conical or wedge-shape designs commonly found in 
anechoic chambers to single or multiple layers of lossy dielectrics stacked 
together. In most applications, it is desired to have a wide bandwidth of absorp-
tion, although newer design concepts for narrowband absorbers based on 
EBG surfaces have been introduced as well, with the aim of creating an ultra-
thin electromagnetic absorber.

8.3.1 Conical or Wedge Absorber Optimization

The effect of a wedge or conical absorber on electromagnetic absorption 
is dependent on the shape and dielectric properties of the material in the 

Figure 8.18. Frequency response of EBG AMC surface shown in Figure 8.17 for normal inci-
dence (D. J. Kern et al., © IEEE, 2005 [38]).



(a)

(b)

Figure 8.19. Angular performance of EBG AMC surface shown in Figure 8.17 at (a) 
f = 1.575 GHz and (b) f = 1.96 GHz (D. J. Kern et al., © IEEE, 2005 [38]).

frequency band of interest. By altering the shape and dielectric material prop-
erties, one can signifi cantly modify the frequency response. A typical wedge 
absorber is shown in Figure 8.20. In general, the wedge absorber may consist 
of two dielectric layers with different properties. However, in most conven-
tional designs, the two materials are considered to be the same. A GA is useful 
in this design because it allows for the optimization of the dielectric properties 
for maximum absorption, as well as optimizing the total height and width of 
the wedge shape itself.
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Figure 8.20. Geometry for a typical wedge absorber. This absorber could be conical or pyra-
midal. In most conventional designs, material 1 and material 2 are the same; however, for the 
more general case, the two materials could be different.

An alternative method of utilizing a GA for optimizing wedge absorbers is 
to allow the wedge shape itself to be modifi ed [45,46]. Rather than using a 
standard wedge or conical shape, the angle of the wedge can be changed at 
many points along the absorber. An example of this type of design is shown 
in Figure 8.21. As can be seen, varying the height of the wedge at various loca-
tions allows for a completely different shape of absorber to be designed. This 
structure can be optimized for performance similar to that of the conventional 
wedge absorber, but with a smaller maximum height, a narrower width, or 
both. It is useful to note that the design presented in Figure 8.21 is far from 
intuitive, which highlights another advantage of the GA when designing these 
structures. A conical absorber shape that is seemingly random in structure in 

Figure 8.21. Sample geometry for a genetic-algorithm-optimized wedge absorber.



fact allows for improved absorption, and it would be nearly impossible to 
arrive at this design shape by means of trial and error. It has been shown that 
such an absorber designed with the help of a GA can achieve comparable 
performance to the conventional conical absorber [46].

8.3.2 Multilayer Dielectric Broadband Absorber Optimization

In addition to the conventional wedge absorber designs, it is also possible to 
create a planar electromagnetic absorbing structure capable of obtaining a 
reasonably wide bandwidth [47]. Two methods have been used to obtain this 
type of design: a multilayer dielectric substrate solution consisting of N layers 
of varying dielectrics backed by a PEC ground plane and a multilayer dielec-
tric substrate absorber with multiple FSS screens placed between the dielectric 
layers.

For the designs utilizing only dielectric substrate layers backed with a 
ground plane, the optimization procedure is fairly straightforward. The number 
of layers can be fi xed or included as a variable within the GA, and the dielec-
tric variables can be stored in a lookup table for future optimization. The 
thickness of each layer can be fi xed or variable as well. Therefore, by encoding 
these variables into the GA, a full description of the absorber can be obtained. 
This type of solution is ideally suited for a GA because the various dielectric 
layers can be chosen at random for each member of the population. The evo-
lutionary procedure of the GA results in a drastic reduction of time required 
as compared to testing every possible confi guration of dielectric layers. In fact, 
since there are no gradients or integrals to compute for the choice of the next 
members of the population, the GA will outperform most other optimization 
methods. The result is a robust solution to the problem of a broadband, con-
formal electromagnetic absorber [48].

Additionally, it has been shown that a GA is successful in optimizing a 
multilayer dielectric absorber with multiple FSS screens embedded through-
out the structure. The GA can be used to determine the FSS unit cell size, 
FSS cell symmetry if desired, the number of dielectric substrates, dielectric 
properties of each layer such as permittivity and thickness, and the total thick-
ness of the absorber [49]. By incorporating FSS screens within the multiple 
dielectric layers, an overall reduced thickness of the absorber structure is pos-
sible. Furthermore, the ability to optimize multiple FSS screens embedded in 
multiple dielectrics provides a solid foundation for analyzing absorbers with 
only one or two layers and FSS screens for narrowband operation.

8.3.3 Ultrathin Narrowband Absorber Optimization

In many practical design situations the physical thickness of the absorber itself 
is of critical importance. For instance, in many military or radar applications 
it is desirable to have a radar-absorbing material (RAM) coating for an 
aircraft to avoid detection [50]. However, when coating any object with an 
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additional material, the thickness and weight of the coating, as well as the 
durability, are principal concerns. Conical absorbers would be obviously 
impractical for such applications. While the multilayer dielectric coatings 
would not be as susceptible to aerodynamic and weather effects, these designs 
still have considerable weight issues to be dealt with for any application such 
as RAM coatings.

Therefore, it becomes necessary to investigate the potential solution to such 
a problem, as well as the signifi cant tradeoffs in the design procedure to allow 
for a thin, lightweight, conformal RAM coating to be developed. A typical 
method of reducing the RCS of a structure is to coat the surface with some 
type of lossy material that can increase the absorption of electromagnetic 
waves at the operating frequency of interest. A classical absorber design of 
this type is the Salisbury screen [51], which consists of a resistive metallic 
screen placed a quarter-wavelength above a ground plane, separated by 
a dielectric spacer. While such a structure is very simple to build, it suffers 
from the quarter wavelength restriction on the minimum thickness. A typical 
Salisbury screen and its corresponding frequency response are shown in 
Figure 8.22.

It has been shown [52] that the absorber thickness can be considerably 
reduced by utilizing a superdense dipole surface (also called a “gangbuster 
FSS” [53]) and a resistive sheet placed above the ground plane. When the FSS 
is placed correctly above the PEC ground plane the surface acts as an artifi cial 
magnetic conductor (AMC). The resistive sheet is then placed directly above 
the gangbuster FSS to provide loss. However, the complexity of such a design 
can be reduced by incorporating the resistive sheet directly into the FSS itself 
[54,55]. By allowing the metallic FSS screen to have large enough loss, it can 
act in the same manner as the gangbuster FSS with resistive sheet.

Figure 8.22. Conventional Salisbury screen with quarter wavelength thickness and the corre-
sponding frequency response when Rs = 377  W.



The EBG designs from the previous section are of interest in these types 
of narrowband absorber structures because the optimization procedure is 
quite similar. Instead of optimizing lossless structures for an AMC surface, the 
GA must now optimize for minimum refl ection phase at the desired resonant 
frequency to ensure the AMC condition, as well as a minimum in the refl ection 
magnitude to act as an effective absorber. By allowing the FSS screen to have 
signifi cant loss, the refl ection phase curve is quite similar to that of a typical 
EBG surface described in Section 8.2, yet with a minimum refl ection magni-
tude at the AMC resonance. Hence, effective designs for ultrathin electromag-
netic absorbers can be realized through this GA optimization approach. An 
example cost function for such a design can be expressed as

FF =
+

1
0 2 180 0 8. .max max/ϕ Γ

 (8.16)

where ϕmax (in degrees) and Γmax are the maximum refl ection coeffi cient phase 
and magnitude, respectively. The weighting of 0.2 and 0.8 was found to be the 
most effective in generating the desired results, but other values could also be 
used.

The question remains as to how much of an improvement such a design 
actually provides over the conventional Salisbury screen. In many applications, 
a quarter-wavelength is not a desirable thickness, yet a slightly thinner design 
will result in signifi cantly degraded performance. For this type of structure to 
be useful and worth the additional complexity, a dramatic reduction of thick-
ness is required. The exact thickness necessary depends on the specifi c engi-
neering solution; however, a design that is at least 4 times thinner would 
represent a reasonable improvement.

The design shown in Figure 8.23 has a total thickness of λ/50 at the resonant 
frequency, where λ is the wavelength in the dielectric. This is a reduction of 
thickness by more than 12 compared to that of the conventional Salisbury 
screen. The dielectric used in this design has a permittivity of εr = 1.044, with 
a total thickness for the design of h = 0.952 mm. Thus, by using a substrate with 
dielectric properties close to that of air, a dramatic reduction in total thickness 
is possible. The unit cell geometry and a portion of the FSS screen evolved by 
the GA are shown in Figure 8.24, where the black and white portions of the 
screen correspond to the presence and absence of metal, respectively.

Increasing the dielectric permittivity could potentially reduce the overall 
thickness even further, with the unwanted effect of reducing the already 
narrow bandwidth. However, an alternative solution for reduced thickness 
exists. It has been shown [55] that by including a relatively small amount of 
magnetic loading within the dielectric substrate, it is possible to further reduce 
the overall thickness without causing a loss of bandwidth or reduced absorp-
tion. It is important to note here that the magnetic permeability must not be 
too large compared to the permittivity of the substrate, as that would result 
in an unrealistic substrate material. Rather, the dielectric permittivity is 
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assumed to be considerably greater than the permeability, which is quite 
common in many high-frequency substrates.

The next design demonstrates this ability by including magnetic permeabi-
lity as well as dielectric permittivity within the substrate. This design was 
optimized using a GA with the cost function of (8.16), for a resonant frequency 
of 2 GHz. The permittivity, permeability, thickness, unit cell size, and resistance 
of the FSS screen were all included in the optimization variables for the GA. 
The optimal material properties were found to be

Figure 8.24. Unit cell geometry and a portion of the FSS screen for the sample EBG 
absorber.
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Figure 8.23. Example of a GA-designed EBG absorber and corresponding refl ection magnitude 
versus frequency.



unit cell size = 1.45 cm
 εr = 15.12
 μr = 2.13
 h = 1.98 mm (λ/76)
 R = 1.866 Ω

where R is the resistance of the FSS screen. The magnitude and phase of the 
frequency response are shown in Figure 8.25. It is important to note here that 
the resonant frequency of 2 GHz is also the frequency of AMC operation, as 
can be seen by the refl ection phase of zero degrees. The unit cell and sample 
screen geometries are shown in Figure 8.26.

(a) (b)

Figure 8.25. Refl ection coeffi cient magnitude and phase response versus frequency.

Figure 8.26. Unit cell geometry and a portion of the FSS screen. 
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9
GA Extensions

This chapter provides additional information relevant to GAs. Selecting GA 
parameters, such as population size and mutation rate, is controversial. Appro-
priate GA parameters depend on the particular implementation of the algo-
rithm, the fi nal goal, and the cost function. Thus, recommendations vary widely. 
We present a brief introduction to the subject. Since the GA is a random 
search, averaging results to arrive at any conclusions about adjusting parame-
ters is mandatory. A brief introduction to particle swarm optimization (PSO) 
is also given. PSO offers a possible alternative to the GA. Finally, the very 
important subject of multiple objective optimization is addressed. Many times, 
there is more than one cost or objective associated with a cost function.

9.1 SELECTING POPULATION SIZE AND MUTATION RATE

The mutation rate and population size for a GA are the major contributions 
to the convergence speed of a GA. Other operators and parameters affect GA 
convergence but to a lesser extent. De Jong did the fi rst study of GA param-
eters versus performance [1]. He tested his GAs on the fi ve cost functions in 
Table 9.1. After trying various mutation rates, population sizes, crossover rates, 
and replacement percentages, he deduced that

• A small population size improved performance in early generations, while 
a large population size improved performance in later generations.
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• A high mutation rate improved offl ine performance, while a low mutation 
rate improved online performance. Offl ine performance is the best cost 
found up to the present generation. Online performance is the average 
of all costs up to the present generation.

• The best crossover rate is approximately 100%.
• The type of crossover was not a factor.

Grefenstette used a GA to optimize parameters for GAs [2]. The six param-
eters he varied were mutation rate, population size, crossover rate, number of 
chromosomes replaced, cost normalization, and whether elitism is used. The 
cost function was a GA that ran until 5000 cost function evaluations were 
performed on one of the De Jong test functions. After fi nding the 20 best 
parameter settings for GAs, he unleashed those GAs on De Jong’s test func-
tions over fi ve independent runs. The best online performance resulted when 
the population size was 30, the crossover rate 0.95, the mutation rate 1%, the 
cost function was scaled, and elitism was used. He also found that a wide range 
of parameter settings gave excellent performance.

Another study added fi ve more cost functions and used 8400 possible com-
binations of parameter settings [3]. The GAs terminated after 10,000 function 
evaluations and results were averaged over 10 independent runs. The best 
parameter values for this study were a population size of 20 or 30, a crossover 
rate between 0.75 and 0.95, a mutation rate of 0.005 or 0.01, and two-point 
crossover.

Thomas Back postulated that the optimal mutation rate is 1/�, where � is 
the length of the chromosome [4]. He also found that convergence improved 
when starting the GA with large mutation rates of up to 50% and gradually 
decreasing to 1/�. Gao showed that the larger the probability of mutation and 
the smaller the population, the faster the GA should converge for short-term 
performance [5]. Iterative approaches where mutation rate varies over the 
course of a run such as done by Back [6,7] and Davis [8] are probably best, 
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but there is no acceptable strategy as to how to adaptively change the 
parameters.

Another GA parameter study was done on antenna array factors [9], and 
the results are summarized here. The objective function returns the maximum 
sidelobe level of an 18-element array with d = 0.5λ spacing for a given set of 
weights

f a e en
j j n kdu

n

N
n= ⎧

⎨
⎩

⎫
⎬
⎭

−

=
∑max ( . )sidelobe of δ 0 5

1

 (9.1)

where N = number of array elements
anejδn = element weights

d = element spacing
u = angle variable

The amplitude taper is symmetric about the center of the array with the two 
center elements having an amplitude of 1. The algorithm stops whenever the 
maximum sidelobe level is 25 dB below the peak of the mainbeam or after 
50,000 function calls. The results were averaged for population sizes, 4, 8, 
12,  .  .  .  , 64, and mutation rates 0.01, 0.02, 0.03,  .  .  .  , 0.4 after 20 independent 
runs. Figure 9.1 is a plot of the number of function calls required versus the 
population size and mutation rate. The best results occur when the population 
size is between 4 and 16 and the mutation rate is between 0.1 and 0.2. Table 
9.2 presents the minimum, maximum, and mean numbers of function calls 
when the GA is averaged 200 times for eight different combinations of popula-
tion size and mutation rate. A population size of 4 with a mutation rate of 15% 
produced the best average results.

The next example fi nds a low-sidelobe symmetric phase taper for a linear 
array. Table 9.3 shows the results after running a GA 100 times to fi nd the best 
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Figure 9.1. Number of function calls needed for the GA to fi nish for many different combinations 
of population sizes and mutation rates.
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phase taper that minimizes the highest sidelobe level of a 40-element array. A 
GA optimization stopped when the sidelobe level fell below −14 dB or the 
number of function calls exceeded 50,000. The minimum, maximum, and mean 
numbers of function calls calculated from the 100 independent runs are shown 
here. The best results occur for the smaller population size combined with a 
relatively large mutation rate.

In these experiments, the best mutation rate for GAs used on these prob-
lems lies between 5% and 20% while the population size should be less than 
16. These results disagree with some of the previous studies cited and common 
usage. The primary reasons for these results are that offl ine performance was 
used and a broader range of population size and mutation rate was included. 
In addition, the criterion judged here is the number of function evaluations, 
which is a good indicator of the amount of computer time required to solve 
the problem. Also, most of the published studies do not perform many 
independent runs and average the results. Since the GA is a random search, 

TABLE 9.2. Minimum, Maximum, and Mean Numbers of Function Calls from Running 
a GA 200 Times to Find Optimum Amplitude Taper for an 18-Element Array that 
Minimizes the Maximum Sidelobe Levela

Mutation Rate Population Size Minimum Maximum Mean

0.15 4 26 3,114 398
0.20 4 110 50,002 7,479
0.15 8 60 2,457 461
0.20 8 49 2,624 654
0.01 64 300 50,031 1,158
0.02 64 277 11,818 1,028
0.01 128 393 2,535 1,410
0.02 128 1215 50,071 10,208

a A single GA run stopped when the sidelobe level went below −25 dB or the number of function calls exceeded 
50,000.

TABLE 9.3. Minimum, Maximum, and Mean Numbers of Function Calls from Running a 
GA 100 Times to Find the Optimum Phase Taper that Minimizes the Maximum Sidelobe 
Level of a 40-Element Arraya

Mutation Rate Population Size Minimum Maximum Mean

0.15 4 134 50,002 2,973
0.20 4 163 50,000 5,232
0.15 8 168 8,223 1,827
0.20 8 124 21,307 3,220
0.01 64 614 50,024 7,914
0.02 64 546 50,036 6,624
0.01 128 955 50,043 4,791
0.02 128 933 50,033 3,942

a A single GA run stopped when the sidelobe level went below −14 dB or the number of function calls exceeded 
50,000.



performance measures make sense only after observing many independent 
runs. An extensive investigation into GA parameters is found in Ref. 10. 
Another difference here is that the GA stopped when the cost fell below a 
target value, rather than running the GA for a very large fi xed number of 
function calls. There is no foolproof acceptable way to evaluate GA perfor-
mance. Counting function evaluations is important in electromagnetics, because 
calculating the cost tends to take considerable computer time. Be wary of 
results that prove a certain GA works better than others if the authors do not 
average results over many independent runs and do not count function 
evaluations.

9.2 PARTICLE SWARM OPTIMIZATION (PSO)

PSO was inspired by the social behavior of animals, such as bird fl ocking or 
fi sh schooling [11,12]. Like a GA, the PSO begins with a random population 
matrix. Unlike the GA, PSO does not have operators such as crossover and 
mutation. The rows in the matrix are called particles instead of chromosomes.
They contain the continuous (not binary) variable values. Each particle moves 
about the search space with a designated velocity. Updates to the velocities 
and positions of each particle are based on the local and global best 
solutions

v v r p p r pm n m n m n m n m n, , , , ,( ) (new old local best old g= + × × − + × ×� �1 1 2 2
llobal best old− pm n, )  (9.2)

p p vm n m n m n, , ,
new old new= +  (9.3)

where νm,n = particle velocity
pm,n = particle variables
r1,r2 = independent uniform random numbers
�1 = �2 = learning factors = 2

pm n,
local best = best local solution

pm n,
global best = best global solution

The PSO algorithm updates the velocity vector for each particle and then adds 
that velocity to the particle position or values. Velocity updates are infl uenced 
by both the best global solution associated with the lowest cost ever found by 
a particle and the best local solution associated with the lowest cost in the 
present population. If the best local solution has a cost less than the cost of 
the current global solution, then the best local solution replaces the best global 
solution. Since velocity is the derivative of position, the particle velocity is 
similar to the derivative used in local minimizers. The constant �1 is called the 
“cognitive parameter.” The constant �2 is called the “social parameter.” The 
advantages of PSO are that it is easy to implement and there are few para-
meters to adjust.
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The PSO is able to tackle tough cost functions with many local minima, just 
like a GA. Consider the problem of fi nding the nonuniform spacing of 40 ele-
ments in a linear array that yields the lowest maximum sidelobe level. The 
array lies along the x axis and is symmetric about its center. The objective 
function is given by

af x kx un
n

( ) = ⎧
⎨
⎩

⎫
⎬
⎭=

∑max cos( )sidelobe of
1

20

 (9.4)

Figure 9.2 shows plots of pm n,
local best and pm n,

global best  as well as the population average

as a function of generation. pm n,
global best  serves the same function as elitism

strategy in the GA. The resulting optimum array is illustrated in Figure 9.3. 
Its corresponding array factor is shown in Figure 9.4. The maximum sidelobe 
level is −19.95 dB below the peak of the main beam.

Several researchers have used PSO to tackle various electromagnetics 
problems. Finding optimum sidelobe levels for linear phased arrays [13–15], 
optimum design of corrugated horns [16], and to search for miniaturized 
designs for Yagi–Uda arrays [17] are three excellent applications. So far, 
though, there is no compelling reason to use PSO over a GA other than 
perhaps for simplicity of the algorithm.

Figure 9.2. Convergence of PSO. The top solid line is the local best, and the bottom solid line 
is the global best particle after each generation. The bottom dotted line is the best particle found 
so far by the algorithm.

Figure 9.3. The optimum element spacing found by the PSO.



9.3 MULTIPLE-OBJECTIVE OPTIMIZATION

9.3.1 Introduction

GAs, simulated annealing, and other global optimization techniques evolve 
solutions based on a single objective; however, many complex design problems 
require the optimization of more than one variable. Determining which solu-
tions are best in a multidimensional solution space can be diffi cult, especially 
if one does not understand the tradeoffs between the solutions. One of the 
more common techniques for comparing cases involves specifying a line in the 
solution space and basing the fi tness on an orthographic projection of 
the solution on that line. This is achieved simply by using a weighted sum 
of the parameters for the fi tness. This method is ideal if a specifi c ratio or 
balance between these parameters is desired, such as the methods used to 
optimize adaptive arrays [18]. In addition, more complicated functions can be 
used to determine the global fi tness, essentially creating a contour mapping 
of the solution space. These techniques can be very effective if one can fully 
anticipate the nature of the solution space and understand what tradeoffs are 
more important.

The main drawback with creating single objective optimization problems 
from multiobjective problems is that one limits their search to a small sector 
of the solution space. In an ideal case, engineers would like to know all the 
solutions that lie on the Pareto front (i.e. the set of all nondominated solutions) 
so that they can compare the results and choose the case which is best to use. 
The fi rst attempt at a multiple objective optimization algorithm was the vector-
evaluated GA (VEGA), introduced by Schaffer in 1984 [19]. Instead of fi nding 
the entire Pareto front, VEGA often fi nds groups of solutions along the front. 
The next major advances in this fi eld were the concepts of nondominated 
sorting and fi tness sharing, introduced by Goldberg in 1989 [20]. Non-
dominated sorting and fi tness sharing are used together to ultimately judge 

Figure 9.4. The array factor of the optimized array.
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population members by a single fi tness parameter related to their dominance 
over and proximity to other members in the solution space. These concepts 
sparked a fury of research in the fi eld leading to several different versions of 
the nondominated sorting GA (NSGA) [21–24]. NSGA optimization tech-
niques have been applied to many different design problems, including some 
in the fi eld of electromagnetics. Weile et al. used the NSGA to optimize 
broadband microwave absorbers [25]. In addition, Weile and Michielssen used 
the NSGA to evolve planar arrays that had both narrow beamwidths and low 
peak sidelobe levels [26].

In the time since NSGA has been introduced, several unique multiobjective 
GAs have been implemented [27–30]. One multiobjective optimization tech-
nique, the strength Pareto evolutionary algorithm (SPEA) [27], has become 
of particular interest because of its simplicity and effectiveness. This algorithm 
was developed by Zitzler and Thiele in 1998 [27], inspired by the NSGA work 
of Horn et al. [23,24] a few years earlier. Like the NSGA, SPEA also ultimately 
evaluates members by a single fi tness value, which they called the “strength”; 
however, this strength is not based on individual fi tness values or proximity to 
other members but solely on the domination of members of the population 
over others. In this section, we will introduce SPEA and apply the algorithm 
to optimize both planar thinned periodic arrays and planar polyfractal 
arrays.

9.3.2 Strength Pareto Evolutionary Algorithm—Strength 
Value Calculation

The strength Pareto evolutionary algorithm sorts all solutions into two groups: 
one group containing the Pareto front (solutions not dominated by any solu-
tion) and the other containing all solutions dominated by at least one solution. 
A member of the population A is considered dominated by another solution 
B when

Fitness tness for every valuei iA B i( ) ( )<  (9.5)

After dividing the solutions into groups, the strength of each member of the 
Pareto front can be found. The strength of a Pareto optimal solution is deter-
mined by the number of solutions in the general population that it dominates. 
The following equation is used to calculate the value of the strength:

SPareto
number of population members dominated

total number of pop
=

uulation members + 1
 (9.6)

Finally, the strength of each member of the general population can be found. 
The strength of a dominated population member can be calculated by knowing 
the strengths of each Pareto optimal solution that dominates the population 
member. The calculation of this strength can be represented by

fi



S Spopulation Pareto
    dominating
Pareto solutions

= +∑ 1  (9.7)

Through this process, the solutions that have the smallest strength value 
are said to be the most optimal. More specifi cally, a Pareto optimal solution 
that dominates only a few solutions is ranked better than one that dominates 
a majority of the solutions. In addition, a solution in the general population 
that is dominated by a Pareto solution with a small strength is more optimal 
than one dominated by a Pareto optimal solution with a large strength. The 
goal of this process is to reduce the number of dominated solutions bunched 
together by decreasing the fi tness of the solutions that are bunched together. 
The strength values for a sample Pareto front and population are illustrated 
in Figure 9.5. In this example, adapted from [27], strength values are calculated 
from two fi tness values evaluating each member of the population. The three 
solutions not dominated by any possible solution make up the Pareto front 
and the other eight solutions make up the general population.

9.3.3 Strength Pareto Evolutionary Algorithm—Pareto Set Clustering

During an optimization procedure, all members of the Pareto set are carried 
over to the next generation. This is done because the Pareto set contains the 
most desirable solutions. In addition, because their fi tness values have already 
been evaluated, it costs nothing computationally to keep these solutions. But 
because no Pareto optimal solution is thrown away, the Pareto set can become 
very large and densely populated, especially when the algorithm begins to 
converge. In such a case, the strength value calculation becomes ineffective in 
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Figure 9.5. Strength values for a sample population and Pareto front evaluated by two fi tnesses 
[27].
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ranking Pareto optimal and dominated population members. Figure 9.6 illus-
trates such a case. In this example, there is a large group of dominated solu-
tions near the bottom of the fi gure, each of which is given the strength of 9–

10.
In addition, near the top of the fi gure are two dominated solutions. Ideally, a 
few of the bottom solutions would be removed so that the cluster near the top 
can expand, possibly to fi ll the gap in the Pareto front directly below it. 
Instead, it is likely that a second solution near the top with a strength of 9–

11

will be removed because it is the only member of the population dominated 
by two solutions. This problem can restrict the GA from fi nding a smooth 
Pareto front.

To combat this problem, a clustering method was devised that artifi cially 
thins the Pareto set and provides an even sampling [27]. Instead of comparing 
dominated solutions with the Pareto set, dominated solutions are compared 
with the set of clusters. To begin, every member of the Pareto set is considered 
to be a cluster. When the number of clusters is greater than a user-defi ned 
limit, the algorithm fi nds the two clusters with the smallest distance between 
them in the solution space and combines them into a single cluster placed at 
their midpoint. This process continues until the number of clusters is under 
the user-defi ned limit. Figure 9.7 illustrates this process for a small group of 
solutions. This process effectively eliminates the ambiguity associated with an 
overpopulated Pareto front while evenly representing the curve.

9.3.4 Strength Pareto Evolutionary Algorithm—Implementation

The description of the strength Pareto evolutionary algorithm’s operation 
begins with the Pareto set and the general population of dominated solutions. 
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Figure 9.6. Strength values for a sample population and Pareto front when the Pareto front 
becomes large in size.



These sets of solutions come from the previous generation of the evolutionary 
algorithm. The fi rst step the algorithm takes is to create a new set of solutions. 
This is accomplished by fi rst randomly pairing members from the population 
and Pareto set. After that, the crossover and mutation functions are performed 
on the chosen members at specifi ed rates. These solutions are then evaluated 
and placed in an unsorted population of solutions. The Pareto set from the 
previous generation is also copied to the unsorted population; however, these 
solutions do not need to be reevaluated because their fi tness parameters are 
known. If this is the initial generation, the unsorted population is fi lled with 
random solutions. Next, SPEA determines which members of this unsorted 
population belong to the Pareto set and which are dominated by Pareto 
members. These solutions are separated into two different groups, one for the 
Pareto members and one for the dominated population members. At this 
point, the Pareto set is copied to create the set of clusters. If there are too 
many Pareto optimal solutions, the clustering procedure is performed. Finally, 
the strength of the dominated solutions is evaluated. The size of the population 
of dominated solutions is reduced to its original size through a natural selec-
tion based on the strength parameter. This process, outlined in Figure 9.8, is 
repeated until the Pareto set no longer improves.

9.3.5 SPEA-Optimized Planar Arrays

The strength Pareto evolutionary algorithm has been used to evolve thinned 
periodic planar arrays. The optimized arrays are based on a 20 × 20 square 
periodic lattice, with 0.5λ spacing between the lattice sites. The strength values 
are based on three fi tness values. The fi rst fi tness value is equal to the peak 
sidelobe level of the array. The second fi tness value is based on the conformity 
of the widest mainbeam cross section to, in this example, a cosine pattern with 
a 12° half-power beamwidth. The third fi tness value is based on the conformity 
of the narrowest mainbeam cross section to another cosine pattern with an 
8.4° half-power beamwidth. This smaller cross section is 70% the width of the 
maximum cross section. A cosine function is often used to model an element 
pattern in a linear array
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where 2δ is the fi rst null beamwidth of the array. SPEA optimizes the popula-
tion of arrays over 100 generations, adding 300 new arrays to the population 
on each generation and keeping only 100 dominated solutions for the next 
generation. The arrays are compared against a maximum of 75 clusters. The 
fi nal population is illustrated at several angles in Figure 9.9.

From the population of thinned periodic planar arrays shown in Figure 9.9, 
two Pareto optimal solutions are chosen for discussion. The fi rst example is an 
optimized 178-element array with a −20.92 dB peak sidelobe level, a maximum 
half-power beamwidth of 11.5°, and a minimum half-power beamwidth of 7.5°. 
This solution had the best sidelobe level suppression in the population. The 
geometry of this array and its respective radiation pattern are shown in Figure 
9.10, and the performance parameters of this array are summarized in Table 
9.4. The second example is an optimized 164-element array with a peak side-
lobe level of −18.97 dB, a maximum half-power beamwidth of 12.0°, and a 
minimum half-power beamwidth of 7.93°. This array was chosen because the 
shape of the mainbeam is closest to the desired design goals. In fact, the 
maximum half-power beamwidth is exactly equal to the design goal of 12°. 
This array’s geometry and its respective radiation pattern are shown in Figure 
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Figure 9.8. Flowchart of the strength Pareto evolutionary algorithm (SPEA).
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Figure 9.9. Final three-dimensional solution space of optimized thinned periodic planar arrays 
found by the strength Pareto evolutionary algorithm. Image (a) shows the solution space in 
three dimensions, while images (b), (c), and (d) show two-dimensional cross sections of the 
solution space.

(a) (b)

Figure 9.10. Layout (a) and radiation pattern (b) for a 178-element SPEA-optimized thinned 
periodic planar array.
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TABLE 9.4. Performance of the 178-Element SPEA-Optimized Thinned Periodic Planar 
Array

No. Elements SLL (dB) Maximum HPBW Minimum HPBW Minimum Spacing

178 −20.92 11.5° 7.5° 0.5λ

(a) (b)

Figure 9.11. Layout (a) and radiation pattern (b) for a 164-element SPEA-optimized thinned 
periodic planar array.

TABLE 9.5. Performance of the 164-Element SPEA-Optimized Thinned Periodic Planar 
Array

No. Elements SLL (dB) Maximum HPBW Minimum HPBW Minimum Spacing

164 −18.97 12.0° 7.93° 0.5λ

9.11, while the performance parameters are listed in Table 9.5. These results 
illustrate the effectiveness of multiobjective algorithms when applied to elec-
tromagnetic design problems.

9.3.6 SPEA-Optimized Planar Polyfractal Arrays

The strength Pareto evolutionary algorithm is also a useful tool for evolving 
large-N planar–polyfractal arrays [31]. Polyfractal arrays, as discussed in Section 
4.4.5, are well suited for large-scale optimizations because of their compact 
chromosome size and their application in recursive beamforming algorithms. 
In this optimization, the strength is determined from two fi tness values: (1) 



fi tness equal to the peak sidelobe level of the array and (2) fi tness equal to 
the ratio of the maximum and minimum half-power beamwidths, with the 
objective of having this ratio equal to unity. This fi tness function keeps the 
mainbeam highly circular. For the examples considered here, the optimization 
began with an initial population of two-generator polyfractal arrays. These 
initial arrays are based on a 6561-element periodic array with 0.5λ interele-
ment spacing. During each generation, 200 new population members are 
created. A maximum of 30 clusters are used to calculate the strength of each 
array. Finally, the resulting set of dominated solutions is reduced back to an 
original value of 100 members. During the optimization process, the number 
of generators of the arrays is strategically increased several times so that every 
member of the fi nal Pareto front is constructed from 8 generators. The fi nal 
Pareto front, illustrated in Figure 9.12, results after 300 generations and con-
sists of arrays between 2115 and 2652 elements.

Two examples of planar polyfractal arrays are chosen from the Pareto front 
for discussion. The fi rst example is an optimized 2542-element planar polyfrac-
tal array with a −18.11 dB sidelobe level and a beam ratio of 93%. This solution 
was chosen from the part of the Pareto front with the best sidelobe level sup-
pression. This polyfractal array geometry is shown in Figure 9.13 along with 
its radiation pattern. Performance parameters are listed in Table 9.6. When a 
more circular beam is desired, a 2192-element array can be chosen from the 
Pareto front that has a sidelobe level of −16.62 dB and a beam ratio of 96%. 
The geometry and radiation pattern of this polyfractal array are shown in 
Figure 9.14, and the performance parameters are listed in Table 9.7. Both 
arrays have a 0.5λ minimum spacing between elements. Finally, the radiation 
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Figure 9.12. Final two-dimensional solution space of optimized planar polyfractal arrays found 
by the strength Pareto evolutionary algorithm (SPEA).
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(a) (b)

TABLE 9.7. Performance of the 2192-Element SPEA Optimized Planar Polyfractal Array

No. Elements SLL (dB) Maximun HPBW Minimum HPBW Minimum Spacing

2192 −16.62 1.08° 1.03° 0.5λ

TABLE 9.6. Performance of the 2542-Element SPEA-Optimized Planar Polyfractal Array

No. Elements SLL (dB) Maximum HPBW Minimum HPBW Minimum Spacing

2542 −18.11 1.14° 1.06° 0.5λ

(a) (b)

Figure 9.13. Layout (a) and radiation pattern (b) for a 2542-element SPEA-optimized planar 
polyfractal array.

Figure 9.14. Layout (a) and radiation pattern (b) for a 2192-element SPEA-optimized planar 
polyfractal array.



REFERENCES 267

patterns of polyfractal arrays can be calculated much more rapidly by taking 
into account their self-similar structure. For instance, the arrays with two gen-
erators of this size can be evaluated with approximately 100 times the speed 
using recursive beamforming as compared to conventional DFT methods. 
These results translate into better overall performance and faster convergence 
of the SPEA algorithm.
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Appendix

MATLAB Code

There are two GAs in this appendix. The fi rst is a binary GA using uniform 
crossover and tournament selection. The second is a continuous GA using 
single-point crossover and roulette wheel selection. You are encouraged to try 
other crossover and mutation operators. The population size and mutation 
rates are easily changed. Stopping criteria include the maximum number of 
iterations, maximum number of function calls, and a minimum cost.

The cost function can be changed by placing the name of the MATLAB®

function between the single quotes in the line ff=”. It returns a column cost 
vector of costs. Three cost functions are provided here. The fi rst two are the 
mathematical functions
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1

x( ) =
=

∑  (A.1)

f x xn n
n

nvar

2
2

1

60 10 2x( ) = + − ( )⎡⎣ ⎤⎦
=

∑ cos π  (A.2)

Both have a minimum of zero when all xn = 0. The third cost function returns 
the maximum sidelobe level for an amplitude weighted array factor. Its equa-
tion is written as
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For this function the amplitude weights are assumed symmetric, so nvar = N/2.
This cost function may be tested using thinning and the binary GA or ampli-
tude tapering and the continuous GA.

The MATLAB code is as follows:

% bga
%
% This is a typical GA that works with binary 
variables
% Uses - uniform crossover
% - tournament selection
%
% Randy Haupt
% 11/21/05

clear
global funcount
funcount=0;

% Defining cost function
nvar=6;
nbits=3;
Nt=nvar*nbits;
ff=’testfun3’;

% GA parameters
npop=8; % population size
mutrate=0.2; % mutation rate
el=1; % number of chromosomes not mutated
Nmut=ceil(mutrate*((npop-el)*Nt)); %# mutations
% stopping criteria
maxgen=400; % max # generations
maxfun=2000; % mas # function calls
mincost=-50; % acceptable cost

% initial population
P=round(rand(npop,Nt));

% cost function
cost=feval(ff,P);
[c,in]=min(cost);
tp=P(1,:); tc=cost(1);
P(1,:)=P(in,:); cost(1)=cost(in);
P(in,:)=tp; cost(in)=tc;
minc(1)=min(cost); % best cost in each generation
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for gen=1:maxgen

  % Natural selection
  indx=find(cost<=mean(cost));
  keep=length(indx);
  cost=cost(indx); P=P(indx,:);
  M=npop-keep;

  % Create mating pool using tournament selection
  Ntourn=2;
  for ic=1:M
    rc=ceil(keep*rand(1,Ntourn));
    [c,ci]=min(cost(rc)); % indicies of mother
    ma=rc(ci);
    rc=ceil(keep*rand(1,Ntourn));
    [c,ci]=min(cost(rc)); % indicies of father
    pa=rc(ci);
    % generate mask
    mask=round(rand(1,Nt));
    % crossover
    P(keep+ic,:)=mask.*P(ma,:)+not(mask).*P(pa,:);
  end

  % Mutation
  elP=P(el+1:npop,:);

elP(ceil((npop-el)*Nt*rand(1,Nmut)))=round(rand(1,
 Nmut));

  P(el+1:npop,:)=elP;

  % cost function
  cost=feval(ff,P);
  [c,in]=min(cost);
  tp=P(1,:); tc=cost(1);
  P(1,:)=P(in,:); cost(1)=cost(in);
  P(in,:)=tp; cost(in)=tc;

  minc(gen+1)=cost(1);
  [gen cost(1)]
  % Convergence check

if funcount>maxfun | gen>maxgen | minc(gen+1)
 <mincost

    break
  end

end
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% Present results
day=clock;
disp(datestr(datenum(day(1),day(2),day(3),day(4),day(5),day(6)),0))
disp([‘optimized function is ‘ ff])
format short g
disp([‘# variables = ‘ num2str(nvar) ‘ # bits = ‘ 
 num2str(nbits)])
disp([‘min cost = ‘ num2str(mincost)])
disp([‘best chromosome = ‘ num2str(P(1,:))])

figure(1)
plot([0:gen],minc)
xlabel(‘generation’);ylabel(‘cost’)

% cga
%
% This is a typical GA that works with continuous 
variables
% Uses - single point crossover
% - roulette wheel selection
%
% Randy Haupt
% 11/21/05

clear
global funcount
funcount=0;

% Defining cost function
nvar=10;
ff=’testfun3’;

% GA parameters
npop=8; % population size
mutrate=0.15; % mutation rate
natsel=npop/2; % #chromosomes kept
M=npop-natsel; % #chromosomes discarded
el=1; % number of chromosomes not mutated
Nmut=ceil(mutrate*((npop-el)*nvar)); %# mutations
parents=1:natsel; % indicies of parents
prob=parents/sum(parents); % prob assigned to parents
odds=[0 cumsum(prob)]; Nodds=length(odds); % cum prob
% stopping criteria
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maxgen=500; % max # generations
maxfun=2000; % mas # function calls
mincost=-50; % acceptable cost

% initial population
P=rand(npop,nvar);

% cost function
cost=feval(ff,P);
% Natural selection
[cost ind]=sort(cost);
P=P(ind(1:natsel),:);
cost=cost(1:natsel);

minc(1)=min(cost); % best cost in each generation

for gen=1:maxgen

  % Create mating pool
  for ic=1:2:M
 r=rand;ma=max(find(odds<r)); % indicies of mother
 r=rand;pa=max(find(odds<r)); % indicies of father
 xp=ceil(rand*nvar); % crossover point
 r=rand; % mixing parameter
 xy=P(ma,xp)-P(pa,xp); % mix from ma and pa
 % generate masks
 mask1=[ones(1,xp) zeros(1,nvar-xp)];
 mask2=not(mask1);
 % crossover
 P(natsel+ic,:)=mask1.*P(ma,:)+mask2.*P(pa,:);
 P(natsel+ic+1,:)=mask2.*P(ma,:)+mask1.*P(pa,:);
 % create single point crossover variable
 P(natsel+ic,xp)=P(natsel+ic,xp)-r*xy;
 P(natsel+ic+1,xp)=P(natsel+ic+1,xp)+r*xy;
  end

  % Mutation
  elP=P(el+1:npop,:);
  elP(ceil((npop-el)*nvar*rand(1,Nmut)))=rand(1,Nmut);
  P(el+1:npop,:)=elP;

  % cost function
  cost=feval(ff,P);
  % Natural selection
  [cost ind]=sort(cost);
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  P=P(ind(1:natsel),:);
  cost=cost(1:natsel);

  minc(gen+1)=cost(1);
  [gen cost(1)]
  % Convergence check

if funcount>maxfun | gen>maxgen | minc(gen+1)<
 mincost

    break
  end

end

% Present results
day=clock;
disp(datestr(datenum(day(1),day(2),day(3),day(4),day(5),day(6)),0))
disp([‘optimized function is ‘ ff])
format short g
disp([‘ # par = ‘ num2str(nvar)])
disp([‘min cost = ‘ num2str(mincost)])
disp([‘best chromosome = ‘ num2str(P(1,:))])

figure(1)
plot([0:gen],minc)
xlabel(‘generation’);ylabel(‘cost’)

% a test function with one local minima at xn=0
%
% Randy Haupt
% 11/21/05

function sll=testfun1(chrom)
global funcount

[nr,nc]=size(chrom);
funcount=funcount+nr; % keeps counting number of 
 function calls
bb=10*(chrom-.5); % transforms chromosome variables

sll(:,1)= bb.^2*ones(nc,1);

% a test function with many local minima at xn=0
%
% Randy Haupt
% 11/21/05
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function sll=testfun2(chrom)
global funcount

[nr,nc]=size(chrom);
funcount=funcount+nr; % keeps counting number of 
 function calls
bb=10*(chrom-.5); % transforms chromosome variables

sll(:,1)=10*nc+[bb.^2-10*cos(2*pi*bb)]*ones(nc,1);

% a test function for cga – place a null with phase 
only weighting
%
% Randy Haupt
% 11/21/05

function sll=testfun3(chrom)
global funcount

[nr,nc]=size(chrom);
funcount=funcount+nr; % keeps counting number of 
 function calls

k=2*pi; % wavenumber
d=0.5; % element spacing
N=2*nc; % number of elements in array
x=(0:(N-1))*d; % element spacing
u=0:2/10/N:1; % u=cos(phi)
Q=exp(j*k*x’*u); % phase

for ic=1:nr
w=[fliplr(chrom(ic,:)) chrom(ic,:)]; % amplitude 
 weights

 af=20*log10(abs(w*Q)).’; % array factor in dB
 af=af-max(af); % normalize array factor
 saf=flipud(sort(af));
 ind=min(find(saf>af));
 sll(ic,1)=saf(ind(1)); % max sidelobe level
end
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