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9
Further Work

and Conclusions

9.1 Introduction

This thesis has described the investigation and creation of a computer program capable of the

generic evolutionary design of solid objects. A wide and far-reaching review of existing

literature related to this topic was performed, with the conclusion that no such computer system

currently exists. All aspects of the system were then described in depth: the new solid object

representation used to define designs, the genetic coding and novel genetic operators used to

allow the system to modify designs, the variety of new techniques used within the genetic

algorithm used to allow acceptable designs to be generated, and the library of new analysis

software used to evaluate designs. The abilities of this generic evolutionary design system were

then demonstrated by using the system to evolve solutions to fifteen different design problems.

In the introduction to this thesis, a list of the intended capabilities of the system that was

created as part of this research was given. This chapter summarises the actual capabilities of

the system, as observed through experimentation, in terms of this list. Following this, a

discussion of how the capabilities of the system could be extended and expanded is given, with

suggestions for future research following on from this work. Finally, conclusions are drawn

and the new and significant advances made by this research project are summarised.
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9.2 Summary of System Capabilities

In Chapter One, it was stated that the generic evolutionary design system should have five

principal capabilities. Explicitly, it was desired that the system should have the capability to:

1. Evolve solid object designs from purely random beginnings, or from a combination of

random and user-specified initial values.

As was shown in the previous chapter, the system is indeed capable of evolving highly fit

designs (as judged by the evaluation software) from initial populations of entirely random

individuals. Beginning with such free-form ’blobs’ permitted the system to create new and

sometimes unconventional designs from scratch. These designs used a range of different design

concepts, which were all ’discovered’ independently by the system. Alternatively, by defining

some values and initialising the remaining with random values, the system was able to evolve

designs around fixed, inflexible skeletons, evolve new designs from previously evolved

components, or to re-evolve selected portions of designs.

2. Evolve a range of different types of solid object design.

The generic nature of the new solid-object representation developed for this work, and the

robust nature of the genetic algorithm have both helped to ensure that the evolutionary design

system is generic. These general design capabilities have been demonstrated by the successful

evolution of designs for fifteen different solid-object design problems by the system. Of these

problems, the optical prism tasks were found to be the most ’difficult’ for the system. However,

by increasing the accuracy of the problem specification in the evaluation software, the system

was able to evolve good solutions even for these ’hard’ or deceptive problems.

3. Allow the simple specification of a range of different solid object design tasks.

The use of modular evaluation software permits new design applications to be very quickly

specified. In order to define a new design problem, the user simply has to pick which modules
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should be used in combination, and specify some desired parameter values. By maintaining a

library of reusable modules, this means that a new module of evaluation software need only

ever be created once. In this way, the amount of additional software development required for

new design applications is minimised. Moreover, the performance of the system is not

dependent on the fine-tuning of system parameter values. Almost all of the designs were

evolved using the system with its default settings, i.e. mutation rates, population sizes, life

spans, percentage of parents selected, and so on, were not changed. In addition, the new SWGR

multiobjective ranking method used within the system entirely removes the difficult problem of

weighting separate criteria to allow them to be treated equally (and to allow explicit relative

importance values).

4. Successfully evolve designs guided only by evaluation software during the evolution

process.

All designs evolved by the system shown in the previous chapter were judged only by the

selected modules of evaluation software. Human interaction is limited to selecting whether

evolution should be prematurely terminated or whether the system should be used to re-evolve

selected portions of designs. This removes the potential restriction of ’conventional wisdom’

from preventing the system from evolving unusual and unexpected solutions to design

problems. Indeed, as was seen with the ’tables’ problem, the system is capable of creating

highly unusual and distinctive designs that a human designer would be unlikely to originate.

5. Evolve useful and innovative designs.

As stated in Chapter One, the long-term goal of this research is to produce a design system

capable of evolving truly useful solutions to real-world design problems. These designs could

either be used directly, or could be used by human designers for inspiration. For this project, it

was intended that the system should have the ability to successfully evolve acceptable and

potentially innovative solutions to model design tasks, created to test the major faculties of the

system. As was illustrated by the designs evolved for the fifteen design tasks, the system is

indeed capable of evolving such solutions to a range of different problems.
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9.3 Further Work

This thesis has described pioneering research in the evolutionary design of general solid objects

from scratch. Because this was a new area of research, the main aim of this project was to

demonstrate the feasibility of using a computer to evolve solid-object designs. Having now

shown that this is possible, some potential future avenues of research following on from this

project can be discussed.

9.2.1 Additions to the Solid Object Representation

The new spatial-partitioning representation created as part of this work, allows the definition of

a wide range of solid object designs using as few parameters as possible. Designs with flat

surfaces (e.g. heat sinks, prisms) can be defined with a high degree of precision, but this

representation is unable to accurately represent curved surfaces. Although the ’streamlined’ set

of design problems demonstrated that the system is capable of producing designs with good

approximations of curved surfaces, it seems likely that the designs could be substantially

improved if curved surfaces could be directly defined by the representation.

As was described in Chapter Four, most existing surface representations that allow curves to

be defined (e.g. Hermite, Fourier, Parametric, or Bézier surfaces) typically require numerous

parameters, and would be difficult to use in combination with the existing solid-object

representation. However, work recently published demonstrates the use of 'reparameterised

superquadrics' with a GA to allow the evolution of solids with curved surfaces (guided by a

human evaluator). This representation was shown to be evolveable by a GA and to be capable

of the accurate definition of a wide range of solids with curved surfaces, using relatively few

parameters (Husbands, Jermy, McIlhagga, & Ives, 1996).
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Fig. 9.1  Using a ’skin’ stretched over primitives to define curved surfaces.

Alternatively, a suitable alternative could be to use the idea of a ’skin’ that would be ’stretched’

over a design defined using the current spatial-partitioning representation. This ’skin’ could

consist of a Parametric surface extrapolated from a variable number of evolveable control

points defined on any part of the underlying design. These points would define the distance

between the design and the surrounding surface, see fig. 9.1 [A]. Any part of a ’skin’ with no

’thickness points’ would have, by default, an extrapolated grid of virtual thickness points

specifying diminishing thicknesses, thus potentially defining parts of the surface to be tight

against the primitives of the spatial-partitioning representation, see fig. 9.1 [B]. (The thickness

at these virtual points would decrease by a pre-defined rate of descent between thickness points,

until they reached zero.) The greater the thickness, the further from the underlying primitives

the ’skin’ becomes, allowing true curves, their shape based on the internal primitives, to be

defined, see fig. 9.1 [C]. Likewise, the more thickness points, the more undulations in the

surface that could be defined, see fig. 9.1 [D]. In this way, complex curves could be defined,

using only a very small number additional parameters (and corresponding genes in the

genotype).
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Other additions to the solid object representation could also be made. For instance, designs

made from non-homogeneous materials could be simply defined by allowing each primitive of

the design to have a ’material’ identifier. This would then allow the system to evolve not only

the shape, but also the materials used within each design. (Alternatively, to keep the search-

space continuous, a ’density’ variable could be used to indirectly define the material.)

Moreover, the surface appearance of designs (e.g. colours and textures) could also be added to

the representation in the same way, and be evolved by the system. (Indeed, Todd and Latham

added evolveable textures to their evolved art, resulting in surfaces with intricate patterns and

colours; Todd & Latham, 1992).

Another addition to the representation that could be made is movement. Most designs will only

perform their function because of the internal motion of components (i.e. stretching, bending,

rotation or translation). It is possible that separate primitives or groups of primitives could be

allocated certain behaviours in the representation (e.g. rotate clockwise, or expand by 10%)

which would then be modified by the system to allow the motion as well as the shape of

components in designs to be evolved. This is similar to the approach used by Sims to evolve the

swimming and walking motions of his evolved ’creatures’ (Sims 1994a,b) and the approach

used by Chakrabarti to generate conceptual designs of simple mechanical devices (Chakrabarti,

1995).

However, strictly speaking, all motion is created because of external forces (or energies)

exerted on shapes made from specific materials. For example, a clockwork mechanism

generates many rotational movements because of an initial rotational force applied to a coiled

piece of metal (the spring). An electronic circuit generates a wide variety of output (the flow of

electrons, photons, or the emission of various types of electromagnetic radiation) because of a

flow of electrons applied to it, which is then channelled through a complex shape composed of

many different types of material (to offer conductivity, resistance, capacitance, and so on). This

means that the motion of designs (or the motion of anything within designs, e.g. electrons

within circuits, light within prisms) should be generated as part of the evaluation process, and
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should not be an element of the representation. In other words, primitives in designs should not

have fundamental behaviours associated with them - they represent inanimate objects. Any

forces or energies that are required to make the design function should be applied at the time of

the evaluation of that design. If it is desired that the nature of the forces or energies is alterable

by evolution, then this can be easily achieved using a separate chromosome (or even a separate

coevolving ’species’; Husbands 1994), independent of the representation.

The only exception to this are the types of substances that continuously exert forces or emit

radiation because of their composition (e.g. magnetised materials, radioactive materials, or

electric cells). These ’special’ substances could have the magnitude of their ’behaviours’

legitimately specified as part of the representation and hence evolved by the system, although

this is merely an extension to the ’material’ identifier discussed earlier.

9.2.2 Artificial Embryology

A simple form of artificial embryology was used in the generic evolutionary design system to

allow illegal genotypes (those that defined designs with overlapping primitives) to be mapped to

legal phenotypes. In addition, simple genotypes (defining partial designs) were mapped onto

symmetrical phenotypes. As was described in previous chapters, this mapping process was

used within the system to allow evolution to be unconstrained and to allow simple genotypes to

define more complex phenotypes, and hence reduce the number of genes that needed to be

considered by the system.

An extension to this mapping process would create a more realistic artificial embryology.

Currently, symmetry is a user-defined external option, specified for all phenotypes being

evolved by the system. By the addition of a ’symmetry’ control gene to genotypes, to be used by

the mapping process, this characteristic could be made evolveable by the system, allowing the

degree of symmetry in designs to be automatically determined. Moreover, by using multiple

symmetry control genes in a genotype to define which groups of primitives should be
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symmetrical in which planes, different portions of phenotypes could be made symmetrical

independently of each other.

Nature commonly uses embryology in order to allow the definition of multiple duplicated parts

of creatures, e.g. body segments of a caterpillar, limbs, eyes (Dawkins, 1976). This permits

mutation to duplicate entire body parts or organs of creatures, removing the need to keep re-

evolving the same thing (a feature used extensively in Todd’s ’Form Grow’ embryology,

resulting in shapes with multiple ’ribs’ or ’tentacles’; Todd & Latham, 1992). In the same way,

’duplicate’ control genes could be added to the genotypes of designs in the system. These

control genes would define which primitive or groups of primitives should be duplicated, how

many times they should be duplicated, and where the duplicated primitive(s) should be placed

during the mapping stage from genotypes to phenotypes. Just as in nature, this would permit

complex structures to be duplicated during evolution and would probably be beneficial for

many types of designs, e.g. the multiple flat surfaces of the ’steps’ problem, or multiple upright

’slats’ for the ’heat sink’ problem.

9.2.3 Overspecification, Underspecification and Dominance

As was described in Chapter Five, Hierarchical Crossover is capable of generating meaningful

offspring from two parent chromosomes with variable numbers of bits in genes, variable

numbers of genes, and variable numbers of groups of genes. The generic evolutionary design

system currently only uses mutation to vary the number of groups of genes in a chromosome

(i.e. vary the number of primitives in a design). By adding another mutation operator to vary

the number of genes per group of genes, deliberate overspecification, underspecification, and

dominance would occur within the system. In other words, the number of alleles for a gene

could be zero (underspecification), one, or more than one (overspecification).

The system will automatically use a default value if a gene is underspecified, or will use the

first (dominant) duplicate allele found for an overspecified gene. Hierarchical Crossover

preserves the order of alleles within chromosomes during crossover, so a child will inherit the
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order (and hence the dominance) of duplicated alleles (Bentley & Wakefield, 1996d). If another

random mutation operator was added to change the ordering of alleles within chromosomes, the

GA could not only evolve the values of genes and number of genes, but also which duplicate

allele should be dominant for a gene.

This enhanced level of control over chromosomes is similar (but not as extensive) as that found

in natural evolution (Paton, 1994). Researchers using similar techniques have discovered that

such extensions can increase the diversity of individuals in populations and reduce the

propensity towards premature convergence (Deb & Goldberg 1991, Smith & Goldberg 1992b).

A modification to the data structures of the system would allow the number of bits per gene to

be variable. Theoretically, this could permit the GA to evolve the precision of genes in addition

to their values. If single bits were also permitted to be underspecified, overspecified and

dominant, the diversity of individuals could be increased further. To the author’s knowledge, no

GA with variable numbers of bits per genes has been developed as yet.

9.2.4 Multiple Design Solutions

The GA used in the generic evolutionary design system converges to a single design solution

every time it is run. Although the range of solutions that the system will converge to is a small

sub-set (determined by the ’importance’ values) of the range of Pareto-Optimal solutions,

because the system is seeded randomly, for most problems the system will evolve a different

solution every time. This means that the only way to generate a number of alternative solutions

to any problem is to repeatedly run the system.

However, there are certain types of GA that permit the concurrent co-evolution of multiple

different solutions. These GAs use ’niching’ to segregate the population into separate ’species’

(Horn et. al. 1994). These separate and often non-interbreeding sub-populations of individuals

are then evolved by the GA, each independently converging on a solution. This results in

multiple solutions to a single problem being evolved every time the GA is run.
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The addition of some form of niching to the GA used in the system would not be difficult, and

would permit a number of alternative designs to be evolved in each run - a potentially useful

feature. If co-operation was permitted between the solutions in separate species (e.g. a

distributed GA; Whitley and Starkweather 1990), more than one type of design could be

evolved at once (e.g. tables and chairs, or interlocking gears). This could also increase the

performance of the GA and quality of the solutions (Levine, 1994). Moreover, the use of

parallel processors to run such a GA (i.e. a parallel GA; Levine 1994) would enable the

increased computation to be performed in an acceptable time.

9.2.5 New Applications

Having demonstrated that a number of different types of design problem can be adequately

specified using modular evaluation software, and that the system is capable of evolving good

solutions to these problems, the obvious next step would be to apply the system to some real-

world design problems. It seems likely that the most suitable types of problem for the system

are those that do not have tightly constrained solutions, i.e. there should be a wide variety of

alternatives available to the system. Moreover, acceptable solutions must be evolveable by the

system, i.e. the system must be able to begin with a very poor solution and slowly optimise it in

a continuous series of steps, to produce the final solution.

Both these requirements are evident from using the system to evolve the different ’model’ design

problems. For example, the ’optical prisms’ problems were the most tightly constrained of all

the design tasks, with many types having only a single acceptable solution. Not only that, but

some problems (e.g. the rhomboid prism) were very difficult to evolve from random beginnings,

since every part of the design relied on every other part being correct before the design could

perform its function at all. Hence, for these problems, the system could only generate a single

type of solution, and additional problem-specific knowledge was required in order to help guide

evolution. In comparison, the ’steps’ problem was less constrained, but still had much of its

shape precisely determined (e.g. the three desired steps at specific positions, having specific
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sizes), and had a desired function that was difficult to perform (i.e. support a very heavy mass

on each step, whilst remaining stable). This reduced the number of alternative designs that the

system could evolve. However, the ’tables’, ’heat sinks’ and ’streamlined’ problems all had a

large number of possible good solutions, and all could be evolved from random beginnings.

Because of this, the system was able to evolve a wide variety of unusual and sometimes

unconventional designs for these problems.

Consequently, examples of perhaps the most suitable type of design applications are true

aerodynamic or hydrodynamic shapes (using computational fluid dynamics in evaluation) such

as racing-cars, submarines, propeller blades, and aircraft. In addition, structural designs, such

as bridges, transmission towers, electricity pylons. Alternatively, floorplanning design

problems for factories, oil-rigs or shops (using primitives to define either individual rooms or

the walls between rooms) could be attempted.

All of these applications are common in real life, all have multiple solutions, and it is highly

desirable to find good solutions for them. Indeed, GAs are commonly used to optimise existing

solutions for most of the problems listed (as was described in Chapter Two).

An alternative type of suitable application could be the evolution of designs based on their

aesthetics. A simple modification to the system would allow the user to be presented with a

number of individual designs from each population, and give scores to each of them based on

how attractive the user finds them. This is the approach used by Dawkins, and Todd and

Latham to allow the evolution of shapes that resemble creatures or attractive shapes (Dawkins

1986, Todd & Latham 1992). The same method was also used by Furuta to allow the evolution

of aesthetic bridges (Furuta et. al., 1995). However, throughout the development of the generic

evolutionary design system, natural selection was favoured over the artificial selection of such

systems, i.e. the aim of this work has always been to create a program capable of evolving new

designs without human interaction. It is currently unknown whether it is possible or not to

formulate a number of evaluation modules capable of adequately analysing how attractive a
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design is. Perhaps a potential solution could be to train an artificial neural network to

’recognise’ aesthetically pleasing designs, and use that to determine the corresponding fitness

scores.

Finally, for some new applications it may be desirable to interface to some existing analysis

packages and use them as evaluation modules. Indeed, the solid object representation used for

this work can be converted to the standard CSG representation very simply. However, some

analysis packages are incapable of analysing objects of any shape, so at least for the early

stages of evolution, no fitness scores could be calculated for the designs. By placing constraints

on which shapes are allowable in the representation, this problem could possibly be overcome,

but it seems likely that such restrictions would also limit the ability of evolution to evolve

creative solutions. An alternative could be to perform evolution in two stages: first evolve

designs from scratch using a simple ’guiding’ evaluation module, then fine-tune these partially

evolved designs (that are now acceptable for the analysis software) by evolving them using the

analysis software. However, it seems probable that the best results would be obtained by re-

developing such analysis software, to allow it to evaluate designs of any shape.

9.2.6 Enhancements to the User-Interface

The current user-interface to the system permits the overall control of the system and allows the

best current design to be displayed during evolution. However, all input commands and

parameters must be defined in one initialisation file. A substantially more user-friendly

alternative would be the use of a ’point-and-click’ interface to allow options and commands to

be specified by simply clicking on the appropriate control in a window.

Perhaps the biggest improvement that could be made to the user-interface would be a graphical

display used to define the desired input parameters for evaluation modules. Currently, to define

for example, the outer and inner ’size’ extents, the user must type twelve appropriate parameter

values into the initialisation file. A far easier method would be to allow the user to draw the
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two outer and inner cubes using a mouse, and use the corresponding dimensions for the desired

input parameters of the evaluation module, see fig. 9.2.

Fig. 9.2  Using a mouse to draw desired inner and outer extents for a design.

Likewise, if a flat upper surface was required, the user could delineate its desired size and

position on the screen. If the user wished to initialise the size or position of any primitives, they

could simply use the mouse and draw their positions or sizes. Finally, this method would allow

a user to easily select portions of an evolved design to be re-evolved by selecting the acceptable

primitives or groups of primitives with the mouse and defining them to be fixed or inflexible.
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9.4 Conclusions

This thesis has presented a new way of using computers in design. It has shown that it is

possible, feasible and useful to produce a generic evolutionary design system capable of

successfully creating new and original designs of a range of solid objects.

The following specific conclusions can be drawn from the research described in this thesis:

• The genetic algorithm is a highly suitable type of search algorithm to form the core of the

system.

• The novel spatial-partitioning solid-object representation: ’Clipped Stretched Cubes’ allows

a wide range of different solid object designs to be defined and manipulated using very few

definition parameters.

• The novel concept of a ’semantic hierarchy’ (i.e. tree of meaning) of a chromosome in

conjunction with the new ’hierarchical crossover’ operator ensures that meaningful

offspring are always produced from two parent chromosomes of different lengths.

• The ’split’ and ’delete’ mutation operators allow the generic evolutionary design system to

vary the number of primitives in phenotypes, and, when used with hierarchical crossover,

to optimise this number in designs.

• The novel multiobjective ranking method SWGR, which makes use of the new concepts of

range-independence and importance, has been shown to generate consistently a user-

defined subset of acceptable solutions in the Pareto-Optimal range, without laborious fine-

tuning of weights.

• The use of an explicit genotype to phenotype ’mapping stage’ in the GA allows a small

number of unconstrained genes to define more complex, legal phenotypes.



224

• The use of steady-state-replacement with preferential selection in the GA ensures that very

fit solutions will not be lost from populations and helps to reduce the number of

evaluations needed before the system converges to an acceptable solution.

• The novel technique of using a maximum ’life span’ in the GA, prevents ’lucky’ individuals

from becoming immortal and corrupting evolution.

• A range of different solid object design tasks can be adequately and quickly defined by the

use of different combinations of reusable evaluation modules, picked by a user from a

library of such modular software.

This research has proved the concept of a generic evolutionary design system. This was

demonstrated by evolving consistently acceptable designs for fifteen different design problems.

Designs evolved by the system were based on sound conceptual ideas, ’discovered’

independently by the system. The shapes of designs were optimised in order to ensure that they

performed the desired function accurately. The system evolved a range of conventional and

unconventional designs for all problems presented to it. The less constrained the design

problems were, the wider the variety of alternative, and sometimes highly unusual design

solutions the system evolved. The use of ’special features’ such as symmetry, fixed and

inflexible primitives in designs, increased the ability of the system to evolve various types of

design solution.

In conclusion, evolutionary design has been performed in nature for millennia. This research

has made the first steps towards harnessing the power of natural evolutionary design, by

demonstrating that it is possible to use a genetic algorithm to evolve designs from scratch, such

that they are optimised to perform a desired function, without any human intervention.
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Appendix A

PRIMITIVE EXTRACTION ALGORITHM

This algorithm is used to extract the positions of the sides and vertices of a primitive from the
nine definition parameters within a phenotype. It is used within some phenotype information
modules (described in Chapter Seven) and to allow the graphical display of the primitives
defined by phenotypes (see end of Chapter Seven).

Use (x, y, z, width, height, depth) to generate the 8 vertices;

(the 8 vertices define 6 sides and 12 edges)

Calculate the new vertices (if any) generated by the plane (angle1, angle2, distance)

intersecting the 12 edges.

Calculate the distance of each vertex from the plane, if the value is positive, remove that

vertex. (Remove any vertices that are on the outside of the plane.)

Divide vertices into groups of coplanar vertices - each group defines a side

(each vertex will be shared amongst three different groups)

Sort the vertices for each side into the correct order for displaying

(i.e. all vertices of a side must be connected by edges, but no 2 edges should intersect)
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HIERARCHICAL CROSSOVER ALGORITHM

STAGE 1
Establish point(s) of similarity (POS) between parent 1 and parent 2:
(i.e. pick a viable hierarchical crossover point for both parents)

start at roots of both parents

loop until finished
{ pick at random a child node common to both parents (not previously picked)

if successful then
{ store node as a POS

traverse down to node in both parents
if node is a leaf of both parents then
{ finished
}
if node is a leaf of only one parent, but not the other then
{ reject node as a POS

traverse back up to parent of node
}

}
else (no nodes in common or all previously picked)
{ if at root then

{ parents have no point of similarity and cannot reproduce
give up (finished)

}
else
{ reject node as a POS

traverse back up to parent of node
}

}
}

STAGE 2
Perform hierarchical crossover at POS to generate new offspring:
(*Replacing with (node < POS) here will make hierarchical crossover equivalent to uniform
single-point crossover, but a purely random choice will mix parents’ genes more thoroughly.)
(**Using normal crossover here instead will mix any fixed length genes or blocks of genes.)

start at roots of both parents
find/create new roots for children

loop until finished
{ pick from parent 1 the first child node ¹ POS[current depth] not picked before

if successful then
{ pick from parent 2 the first corresponding child node not picked before

if toss_a_coin equals heads* then
{ attach child node (with all connected sub-nodes) from parent1 to

  current node of child1
attach child node (with all connected sub-nodes) from parent2
  (if it exists) to current node of child2

}
else (if it equals tails)
{ attach child node (with all connected sub-nodes) from parent1 to

  current node of child2
attach child node (with all connected sub-nodes) from parent2
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  (if it exists) to current node of child1
}

}
else (parent 1 only has the POS node left)
{ pick from parent 2 the first child node ¹ POS[current depth] not picked before

if successful (parent 2 has an extra node) then
{ if toss_a_coin equals heads* then

{ attach child node (with all connected sub-nodes) to current
  node of child2

}
else (if it equals tails)
{ attach child node (with all connected sub-nodes) to current

  node of child1
}

}
else (parent 2 also only has the POS node left) then
{ traverse down to child node in parent1 and parent2

if the remaining two nodes are leaves then**
{ if toss_a_coin equals heads

{ attach leaf from parent1 to current node of child1
attach leaf from parent2 to current node of child2

}
else (if it equals tails)
{ attach leaf from parent1 to current node of child2

attach leaf from parent2 to current node of child1
}
finished

}
else
{ empty and extract both nodes from parents

attach one new empty node to each child
traverse down to empty node in child1 and child2

}
}

}
}



248

MULTIOBJECTIVE FITNESS RANKING ALGORITHMS

Method 1: Sum of Weighted Objectives (SWO)

for every solution in the population
solution_fitness  =  0
for every criterion fitness_value ’n’ of the solution

solution_fitness = solution_fitness+weight [n]*fitness_value[n]

where weight [] is an array of pre-defined weights.

Method 2: Non-Dominated Sorting (NDS)

current_rank = 1
set every solution_rank = unranked
repeat

for every solution in the population
if solution_rank = unranked and
    solution is not dominated by any unranked solutions

solution_rank = current_rank

current_rank = current_rank + 1
until all solutions have been ranked

Method 3: Weighted Maximum Ranking (WMR)

for every objective in problem
form a list of the fitness of each solution and pointer to this solution

for current objective
sort fitness_list into order of fitness

set every solution.rank = 99999

for every ranking position ’p’ in population
for every objective ’o’ in problem

if (fitness_list for ’o’ [p] -> solution.rank > p / importance [o]
then fitness_list for ’o’ [p] -> solution.rank = p / importance [o]

where importance [] is an array of pre-defined ’importance’ weights.

Method 4: Weighted Average Ranking (WAR)

for every objective in problem
form a list of the fitness of each solution and pointer to this solution

for current objective
sort fitness_list into order of fitness

set every solution.rank = 0

for every ranking position ’p’ in population
for every objective ’o’ in problem

fitness_list for ’o’ [p] -> solution.rank += p * importance [o]
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where importance [] is an array of pre-defined ’importance’ weights.

Method 5: Sum of Weighted Ratios (SWR)

for every objective ’o’ in the problem
max_fitness [o] = worst fitness_value in current population
min_fitness [o] = best fitness values in current population

for every solution in the population
for every criterion fitness_value ’n’ of the solution

fitness_value [n] = (fitness_value [n] - min_fitness [n]) /
(max_fitness [n] - min_fitness [n])

for every solution in the population
solution_fitness  =  0
for every criterion fitness_value ’n’ of the solution

solution_fitness += importance [n] * fitness_value [n]

where importance [] is an array of pre-defined ’importance’ weights.

Method 6: Sum of Weighted Global Ratios (SWGR)

for every objective ’o’ in the problem
max_fitness [o] = worst fitness_value ever, of all populations
min_fitness [o] = best fitness values ever, of all populations

for every solution in the population
for every criterion fitness_value ’n’ of the solution

fitness_value [n] = (fitness_value [n] - min_fitness [n]) /
(max_fitness [n] - min_fitness [n])

for every solution in the population
solution_fitness  =  0
for every criterion fitness_value ’n’ of the solution

solution_fitness += importance [n] * fitness_value [n]

where importance [] is an array of pre-defined ’importance’ weights.
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SYSTEM INITIALISATION COMMANDS

Name of system initialisation file: GADESIGN.INI
Any line beginning with the character ’#’ is ignored.

COMPOUND COMMANDS

GLOBAL:
EVALUATE . . . END
VALUES primtive_num . . . END

BOOLEAN COMMANDS

GLOBAL:
NO_IPLANES
X_SYMMETRY
Y_SYMMETRY
Z_SYMMETRY
INVARBLEPRIMS

WITHIN ’EVALUATE...END’:
UNFRAGMENTED
MUSTHAVEVERTS
INTERSECTED

SINGLE PARAMETER COMMANDS

GLOBAL:
INT_POP #individuals
EXT_POP #individuals
MAX_GEN generations
PRIMITIVES #primitives (-1 = random)
LIFESPAN age
BITMUTATE probability
PRIMMUTATE probability
PARENTS percentage
INFLEXIBLE primitive_num
TWODEE designwidth

WITHIN ’VALUES...END’:
XPOS value
YPOS value
ZPOS value
WIDTH value
HEIGHT value
DEPTH value
ANGLE1 value
ANGLE2 value
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PLANEDIST value

WITHIN ’EVALUATE...END’:
MASS desired_value
SURFACEAREA desired_value
SUPPORTIVENESS mass

MULTIPLE PARAMETER COMMANDS:

GLOBAL:
IMPORTANCE
i1 i2 i3 i4 i5 ...
FIXED primitive_num
b1 b2 b3 b4 b5 b6 b7 b8 b9

WITHIN ’EVALUATE...END’:
SIZE
minleft minrght minbttm mintop minback minfrnt maxleft maxrght maxbttm maxtop maxback
maxfrnt
FLATUPPERSURFACE
height width depth
FLATSURFACE
height xpos zpos width depth
RAYTRACING
xsrc ysrc zsrc xdrn ydrn zdrn xdest ydest zdest xrdrn yrdrn zrdrn A B C D xund yund zund
refraction
PARTICLEFLOWSIM #volumes
left right back front bottom top xforce yforce zforce
 ...
left right back front bottom top xforce yforce zforce
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Appendix B

The seven papers written as part of the research undertaken for this thesis follow:

1. Bentley, P J & Wakefield, J P (1996). The Evolution of Solid Object Designs using
Genetic Algorithms. In Rayward-Smith, V. (ed) Modern Heuristic Search Methods. Ch.
12, John Wiley & Sons Inc., 199-215.

2. Bentley, P J & Wakefield, J P (1995). The Table: An Illustration of Evolutionary Design
using Genetic Algorithms. In Genetic Algorithms in Engineering Systems: Innovations
and Applications (GALESIA ’95), Sept. 1995, Sheffield (pp. 412-418).

3. Bentley, P. J. & Wakefield, J. P. (1996). An Analysis of Multiobjective Optimisation
within Genetic Algorithms. Submitted to Evolutionary Computation.

4. Bentley, P. J. & Wakefield, J. P. (1996). Conceptual Evolutionary Design by Genetic
Algorithms. Engineering Design and Automation Journal v2:3, John Wiley & Sons, Inc.

5. Bentley, P. J. & Wakefield, J. P. (1996). Overview of a Generic Evolutionary Design
System. In Proceedings of the 2nd On-line Workshop on Evolutionary Computation, (pp.
53-56), Nagoya University, Japan.

6. Bentley, P. J. & Wakefield, J. P. (1996). Hierarchical Crossover in Genetic Algorithms. In
Proceedings of the 1st On-line Workshop on Soft Computing (WSC1), Nagoya
University, Japan.

7. Bentley, P J & Wakefield, J P (1996). Generic Representation of Solid Geometry for
Genetic Search. Microcomputers in Civil Engineering 11:3, Blackwell Publishers, 153-
161.


