
129

7
Evaluation of Designs

7.1 Introduction

The evaluation software forms the fourth and final element of the generic evolutionary design

system. This chapter describes how this software analyses designs, and gives details of the

evaluation software that has been created as part of this work in order to allow the specification

of a number of different design problems. The user-interface, which allows the user of the

system to specify which parts of the evaluation software should be used (as well as all other

system parameters) is described at the end of the chapter.

Evaluation software embodies the fitness functions used by the genetic algorithm described in

the previous chapter. It is the job of the evaluation software to analyse how well the evolved

designs, or phenotypes, fulfil the function of the desired design. The results of this analysis

must be presented to the GA in the form of multiple fitness values for each phenotype, which

the GA then uses to calculate the overall fitness of each individual. Hence, the evaluation

software is responsible for guiding the evolution of designs, directing it to the areas of the

search space that contain designs that perform the desired function.

130

As was stated earlier, the design system does not permit human intervention during evolution.

In other words, only the evaluation software can judge the fitness of designs. This minimises

the danger of the ’conventional wisdom’ of a human designer influencing the outcome of

evolution, and maximises the creative potential of the system. However, because the evaluation

software is solely responsible for specifying the desired function of the required design, it is

essential that it is adequate and correct. The GA in the design system will blindly follow the

judgement of the evaluation software - if this software ’asks’ for the designs to perform an

incorrect function, then the GA will evolve an unsatisfactory design.

The evolutionary design system is intended to be generic, i.e. have the ability to evolve good

solutions for a wide range of solid object design problems. Although the evaluation software

must inevitably be specific to each particular design problem, the creation of entirely new

suites of evaluation software for every new design problem would be laborious, and would

require users of the system to have extensive expertise in programming. Consequently, the

evaluation software must be as general as possible, consisting of as many reusable elements as

possible. This would save the time required to specify the function of new designs, and would

allow less computer-literate people to use the system with ease.

7.2 Software Specification of Design Function

7.2.1 Modularity

Traditional design analysis packages are highly specialised pieces of software that are only

capable of assessing the performance of a single type of design (Libes 1990). Although

attempts have been made to allow generic design optimisation systems to use such analysis

tools, the amount of work needed to create an interface to every new analysis package is

substantial (Tong, 1992). Moreover, such optimisation systems are limited to the available

analysis tools.

131

For the generic evolutionary design system, a new and different approach to the analysis of

designs was taken. Based on the hypothesis that it is possible to break down the function of any

design into a number of desired characteristics, a number of separate modules of evaluation

software are used, each module analysing a design for a single characteristic. These reusable

modules can then be used in different combinations to fully judge the quality of designs for a

wide range of design problems.

By building a library of such modules, new design problems can be specified for the

evolutionary design system simply by the user selecting which of the existing modules are

required. Although some very different design tasks may require the creation of one or two new

modules, this will still be substantially less work than creating an entirely new suite of analysis

software. Moreover, with every module of evaluation software being reusable, the more design

tasks that are set for the design system, the larger the library of modules will become, and the

quicker new design tasks can be set.

However, before modules of evaluation software can be selected (or created), the user of the

system must determine exactly which modules of evaluation software are needed to specify a

design problem adequately. In other words, the user must discover which desired characteristics

comprise the desired function of the required design.

Fortunately, the problem of breaking down the specification of the function of a design can be

achieved relatively easily, by using the evolutionary design system to build this specification

from the bottom up. Because the GA in the system will always attempt to evolve designs that

perform exactly as defined by the currently selected modules of evaluation software, if any

module is incorrect or absent, the evolved designs will consistently show deficiencies in those

areas. The entire specification of the function of a design can thus be quickly built up, by

adding more and more modules of evaluation software (or removing some) and checking to see

what the corresponding evolved designs look like (Bentley & Wakefield, 1995a/1996a). Indeed,

132

after a little practice, it is possible to surmise correctly which modules are needed for most

design tasks almost immediately.

7.2.2 Example: Evaluation of a Table

To demonstrate how the desired function of designs can be built up using a number of modules

of evaluation software, the specification of the very first design problem presented to the

evolutionary design system will be described. The problem was to evolve a simple table

(Bentley & Wakefield, 1995a/1996a). Note that for this initial problem, all designs were

represented by five primitive shapes without intersecting planes.

Perhaps the most fundamental characteristic of the design of any table is its size: too big or too

small and the design is useless. So, the first module of evaluation software to be used was the

’correct size’ module. This allowed the user to specify acceptable outer and inner extents for the

required design, penalising any designs that conflicted with these constraints (full

implementation details and justification of all modules are given in the next section). Running

the evolutionary design system with this single criteria, generated designs that were the correct

size, see fig 7.1.

When these designs were examined, it became clear that they were usually very massive. A

characteristic of most tables is a low mass, to reduce material costs and allow them to be

moved more easily. Hence, the second module of evaluation software to be utilised was the

’correct mass’ criteria. This gradually penalised any designs that have a mass greater or less

than a user-specified value. Designs produced by the system with these two criteria were

always the desired size and the desired low mass, see fig 7.2.

However, some designs were becoming fragmented (primitives becoming detached from the

design, and ’floating’ in mid-air). This was happening because the easiest way for the GA to

create designs of low mass was to reduce the dimensions of the primitive shapes that make up

the designs. When dimensions are reduced, the sides of primitives can pull away from the sides

133

of other primitives, causing the fragmentation of a design. To prevent this, a third module of

evaluation software was introduced, which heavily penalised the fitness of fragmented designs.

Another deficiency in the designs was soon apparent - they would not always be able to stand

upright under the force of gravity. Since an important characteristic of any table that is it

should not fall over, a fourth module of evaluation software was added. This calculated

whether designs were stable under gravity, and increased the fitness of designs in proportion to

their ability to remain upright. Running the design system with these four modules of

evaluation software activated, designs that were the correct size, mass, unfragmented, and

stable were consistently produced. Often the stability was achieved by intricate counter-balance

weights, see figs 7.3 and 7.4.

An obvious missing characteristic in the designs at this stage was the lack of a table top - an

essential feature of tables. To remedy this, a fifth module of evaluation software was added.

This allowed the user to specify that designs should have a flat upper surface at a particular

height and covering a particular area. With these five criteria, the system was able to produce

designs that resembled tables for the first time. Fig. 7.5 shows a table with a good table top and

slightly unusual counter-balance at the front, fig. 7.6 shows a table with a slightly imperfect

multi-level table top.

134

Fig. 7.1 Evaluation of size only.

Fig. 7.3 Evaluation of size, low mass, no

fragmentation, and stability.

Fig. 7.5 Evaluation of size, low mass, no

fragmentation, stability and flat top.

Fig. 7.2 Evaluation of size and low mass.

Fig. 7.4 Evaluation of size, low mass, no

fragmentation and stability.

Fig. 7.6 Evaluation of size, low mass, no

fragmentation, stability and flat top.

135

Fig. 7.7 Evaluation of size, low mass, no

fragmentation, flat top and supportiveness.

Fig. 7.8 Evaluation of size, low mass, no

fragmentation, flat top and supportiveness.

Finally, a less noticeable deficiency was identified in some table designs. Although these

designs were all capable of standing upright under their own mass, if an object was placed on

them, many would still topple over. In other words, a table must be able to support objects on

the edges of its table top, and remain standing. To complete the specification of the required

function of the table designs, the ’stability’ module was replaced by a ’supportiveness’ module of

evaluation software. This new criteria set the corresponding fitness value of a design depending

upon how stable the design was with a heavy object placed on each edge of the upper surface in

turn. With these five modules of evaluation software, the system was able to consistently

evolve usable designs for tables, see figs 7.7 and 7.8 (Bentley & Wakefield, 1995a/1996a).

It seems likely that this modular approach to the specification of design problems could be

expanded to allow the system to evolve realistic designs suitable for manufacture (e.g. by

adding evaluation modules for criteria such as stress-analysis, cost, and availability of

materials for the table design problem). It should be emphasised, however, that it was not the

aim of this work to create perfect evaluation software suitable for real-world applications. The

purpose of all of the evaluation software created was to allow the investigation and

demonstration of the capabilities of the system to evolve a range of designs with different

shapes.

136

Consequently, using this idea of building the specification of the desired function of designs

from the bottom up, the generic evolutionary design system was applied to a number of

different design problems.

7.3 Modules of Evaluation Software

7.3.1 Information Modules

Although the list of multiple groups of nine parameters contained within the phenotype does

fully define the shape of a design, most modules of evaluation software require additional

information about the phenotype they are analysing. For example, data describing the co-

ordinates of the corners of the design is required by the ’size’ evaluation module in order to

calculate the fitness values for this criterion.

Since such additional information is often required by many different evaluation modules for a

design problem, it seems logical to allow the information to be shared. In other words, only

generate the additional information on phenotypes once, to supply all evaluation modules that

require it. In this way, the speed of the system can be increased by minimising the amount of

processing required for each evaluation module. Consequently, in addition to the creation of a

library of reusable modules of evaluation software, a second library of phenotype information

modules was created as part of this work. These modules are not directly chosen by the user,

they are activated by the system. Hence, for every evaluation module selected by a user to

partially specify a design application, there will be corresponding information modules that are

automatically used by the generic evolutionary design system.

A total of six different information modules were created, each one generating a range of data

about the phenotype being currently evaluated:

137

Information Module 1: VERTICES

Input: phenotype

Output: - a list of the x,y,z coordinates of the vertices for each primitive in phenotype

- a count of how many vertices for each primitive.

This module generates the co-ordinates of the vertices (i.e. corners) of every primitive in the

phenotype, using the equations given in Section 4.2.5 and the Primitive Extraction Algorithm

given in Appendix A.

Information Module 2: PLANES

Input: phenotype & vertices of phenotype

Output: - a list of planes (A, B, C, D coefficients) for each primitive in phenotype

- a count of how many planes constitute each primitive

- a Boolean list of whether each ’stretched cube’ was intersected by the

moveable plane or not.

The four coefficients of the equation of a plane are calculated for the planes forming the sides

of every primitive in the phenotype. Each plane is identified by locating three corresponding

coplanar vertices from the list of vertices produced by the first information module.

Consequently, this module requires the prior execution of the ’vertices’ module. Once all of the

planes for the primitives have been calculated, they are translated by the centre (x, y, z) position

of each primitive (see equation given in Section 4.3.4) in order to make the plane equations

relative to the global origin of the phenotype, rather than the centre of each primitive. In

addition, a Boolean list of primitives that have been intersected by their moveable plane is

created (a primitive is not intersected if its moveable plane has no coplanar vertices).

Information Module 3: PRIMITIVE EXTENTS

Input: vertices of phenotype

Output: - a list of the six extents of each primitive in the phenotype

(left, right, top, bottom, back, front).

138

The six outer extents of each primitive in the current phenotype are calculated by examining

the corners (vertices) of the phenotype. For example, the topmost extent of a primitive is

denoted by the z-position of the highest vertex of the primitive. Once again, this module

requires the prior execution of the ’vertices’ module.

Information Module 4: EXTENTS

Input: primitive extents of phenotype

Output: - a list of the six extents of the phenotype

(left, right, top, bottom, back, front).

This module calculates the overall outer extents of the phenotype, using the extents of the

individual primitives in the phenotype calculated by the previously described module. For

example, the leftmost left extent of any primitive becomes the left extent of the phenotype.

However, any primitive that has been defined as being ’inflexible’ is ignored by this module. In

other words, the extents of a phenotype are determined by the primitives that can be freely

evolved by the system. Inflexible primitives are typically used as fixed ’skeletons’, and hence

are not considered part of the design that is being evolved. This module requires the prior

execution of the ’primitive extents’ module.

Information Module 5: MASS

Input: phenotype

Output: - a list of the mass for each primitive in the phenotype

- the value of the total mass of the entire phenotype

- the x,y,z coordinates of the centre of mass of the phenotype.

This module calculates the volume of each primitive in turn, multiplying this value by a pre-

defined density constant to produce the value of the mass of each primitive. In addition to

generating the separate mass of each primitive, the total mass of the phenotype is calculated,

and the co-ordinates of the centre of mass of the phenotype is calculated (by taking the mean

co-ordinate values of each primitive multiplied by the corresponding mass of the primitive).

This module can only be activated when primitives are defined as having no intersecting planes.

139

Information Module 6: SURFACE AREA

Input: phenotype

Output: - a list of the surface area for each primitive in the phenotype

- the value of the total surface area of the entire phenotype

The final information module generates a list of the surface areas of every primitive in the

phenotype (by calculating the area of each side and summing them). The total surface area is

then calculated by summing the surface areas of each primitive and subtracting the total area

lost by primitives touching each other. This module can only be activated when primitives are

defined as having no intersecting planes.

7.3.2 Evaluation of Tables

As described earlier, the first design problem presented to the system was to evolve a simple

table (Bentley & Wakefield 1995a/1996a, 1995b). This task was chosen because the table is an

easily recognisable, every-day object, allowing the early performance of the prototype design

system and accuracy of the evaluation software to be readily assessed. Five separate modules

of evaluation software were used to guide the evolution. Figure 7.9 shows a block diagram of

the evaluation modules selected to specify this design problem, and the information modules

automatically used by the system.

140

size

extents

flat upper
surface

and max size

desired

desired surface

desired min.

height and area

PHENOTYPE

mass

fitness value 1

fitness value 2

fitness value 3

fitness value 5

primitive
planes mass

extents

unfragmented
fitness value 4

supportiveness
mass of object

fitness value 6

specific mass

to be supported

Fig. 7.9 Block diagram of the evaluation software used to evaluate tables.

EVALUATION MODULE 1: SIZE

Information module: extents

User-specified parameters: 12 (max. left, min. left, max. right, min. right,..., min. front)

Number of fitness values: 2 (correctness of min. size, correctness of max. size)

This was the first evaluation module selected for the table design problem. The size of the

design is specified by user-defined minimum and maximum extents for the left, right, back,

front, top and bottom of the design, see fig. 7.10. Two fitness values are returned by this

module.

Figure 7.10 Desired minimum and maximum extents

(shown by dotted lines) of evolved design.

141

The module examines the six outer extents of each phenotype (generated by the ’extents’

information module). Any extent that exceeds the corresponding desired maximum extent

proportionately sets the fitness value for ’correctness of maximum size’. For example, if the

front extent of a phenotype was 75 and the desired front extent was 50, then the ’max. size’

fitness value would be set to the difference of 25. Thus, the more the size of a phenotype

exceeds the limits defined by the ’maximum size’ constraint, the worse the fitness value

becomes.

Exactly the same process is used for the ’minimum size’ constraint. For example, if the front

extent of a phenotype was only 10, and the desired front extent was 40, then the ’min. size’

fitness value would be increased by the difference of 30. Thus, the more the extents of a

phenotype fall below the lower limits defined by the ’minimum size’ constraint, the lower the

second fitness value becomes.

An alternative approach to the use of an explicit size constraint for designs would be to use

scaling, i.e. for each design use three scaling factors based on the x, y, and z extents of the

design to fit the desired limits on size. However, it was felt that such a scaling operation would

be disruptive to evolution, since it could radically alter the entire shape of designs if, say, a

primitive was deleted. Moreover, when the system is used to evolve the relative positions of

components of fixed dimensions or to evolve designs around fixed ’skeletons’, it is essential that

the shapes of some primitives are not distorted by scaling operations. For this reason, a soft

’size’ constraint to simply penalise phenotypes of undesirable size was thought to be more

appropriate.

EVALUATION MODULE 2: SPECIFIC MASS

Information module: mass

User-specified parameter: 1 (desired mass)

Number of fitness values: 1 (correctness of mass)

142

The second module of evaluation software defines an acceptable mass for phenotypes. This

module returns a single fitness value proportional to how closely the mass of the phenotype

(given by the ’mass’ information module) matches a user-specified desired mass value. For

example, if the mass of a phenotype was 190 and the desired mass was 25, the fitness value

returned would simply be the difference of 165.

EVALUATION MODULE 3: NO FRAGMENTATION

Information modules: primitive extents, planes

User-specified parameters: none

Number of fitness values: 1 (degree of fragmentation)

This evaluation module calculates whether a design is fragmented, and if it is, a fitness value

equal to the sum of the distances from the origin of each primitive in the phenotype is returned.

In other words, if a phenotype is found to have one or more primitives that are detached from

the rest of the design, a fitness value proportionate to how far each of the primitives is from the

origin, is returned. This means that, in the unlikely event of most of the population being

initially fragmented, evolution will first attempt to move all primitives in designs closer

together (at the origin), and thus generate unfragmented designs. If the design is not

fragmented, a perfect fitness value of zero is returned.

Fragmented designs are detected by creating a network of the primitives and their connections

in a design, and traversing it recursively. Any primitive that is not part of the main design will

not be visited, meaning that the design is fragmented.

A primitive is connected to a primitive if it touches that primitive. Touching primitives are

detected by first temporarily increasing the dimensions of all primitives by a negligible amount.

This converts all touching primitives into overlapping primitives. Next, the conditional check

described in Chapter Four (see fig. 4.9) is used to discover if the extents of any primitives

(generated by the ’primitive extents’ information module) in the phenotype overlap. If the

primitives do not have any intersecting planes, then this means they must overlap, and hence

143

are touching. However, if the two primitives have intersecting planes and their extents overlap,

the system then proceeds to identify whether the ’stretched cubes’ intersect each other after

being ’sliced’ by their respective planes. This is performed by using the equations of the planes

that form the sides of each primitive (generated by the ’planes’ information module) to calculate

the lines formed by the intersection of planes from each primitive. These lines are clipped to

each primitive (i.e. any part of the line that falls outside either primitive is removed). As soon

as a single line has not been clipped out of existence, it is known that the two primitives must

overlap, and hence are touching, see fig. 7.11.

Fig. 7.11 A line of intersection between two planes forming the sides of primitives, that still

exists after being clipped to both primitives, means that the two primitives overlap.

Although this algorithm may seem complex, it was found to be the most accurate and reliable

method (compared to a number of alternatives tried) for detecting whether two primitives touch

(Bentley & Wakefield, 1995a/1996a). It was implemented to ensure that the minimum number

of calculations are performed; in use this process requires a negligible amount of computation

time, even for large numbers of primitives in a design.

EVALUATION MODULE 4: FLAT UPPER SURFACE

Information modules: primitive extents

User-specified parameters: 3 (height of surface from ground, width & depth of surface)

Number of fitness values: 1 (correctness of upper surface)

144

The fourth module of evaluation software used to specify the ’table’ design problem, analyses

how well the upper surfaces of phenotypes match the desired flat upper surface as specified by

three user-defined parameter values. These values define the required height of the table-top,

and the desired two-dimensional area of the table-top (with the assumption that it is positioned

centrally, above the origin).

To avoid the computational cost of exhaustively sampling the upper surface of a design, the

evaluation is performed by picking five random points within the desired area of the table top.

The position of the top of the highest primitive at each of these points is then compared with the

required height of the table top. If the primitive is higher or lower, then the difference is added

to the fitness value. If there is no primitive at a sample point, a value equal to the desired height

of the design is added to the fitness score. This process is analogous to five objects of negligible

mass, e.g. feathers, being dropped onto the design within the area the table-top is required.

Should a feather be supported at too high or too low a height, or not be supported at all, the

fitness of the design decreases proportionately, see fig. 7.12. This module does not consider the

intersecting planes of primitives (i.e. the user should specify that primitives have no intersecting

planes when using this module).

Fig. 7.12 Dropping ’feathers’ within the desired area of the table-top and measuring how

the height at which they are supported compares to the desired height of the table-top.

EVALUATION MODULE 5: SUPPORTIVENESS

Information modules: primitive extents, extents, mass

User-specified parameters: 1 (mass of object to be supported at edges of upper surface)

145

Number of fitness values: 1 (degree of stability when supporting object)

The final evaluation module used for the ’tables’ problem calculates the fitness of table designs

based on their ability to support a ’virtual object’ and remain standing. This module first

evaluates the degree of stability of a phenotype with no object on its upper surface. A table will

topple over if its centre of mass lies outside its base. Hence, this module finds the lowest

primitive(s) in the phenotype (the primitive(s) with bottom extent equal to the phenotype

bottom extent), and determines whether the centre of mass (calculated by the ’mass’ information

module) lies inside or outside the area defined by the primitive’s base. If the centre of mass falls

inside the base of the phenotype, the fitness value remains at a perfect score of zero. If the

centre of mass falls outside, then the fitness value is set to the distance between the base and

the centre of mass, see fig 7.13.

Fig. 7.13 The fitness of an unstable design is proportional to how far the

centre of mass is from the base of the design.

Next, the primitive(s) defining the upper surface of the phenotype is/are identified, and a

’virtual primitive’ of no dimensions, but having a user-defined mass, is positioned at each of the

four edges of this upper surface in turn (i.e., the centre of mass of the phenotype is temporarily

modified to produce this effect). The stability of the phenotype is re-evaluated each time, in the

same way as before, with the fitness value being incremented further if the design is found to be

unstable.

146

7.3.3 Evaluation of Steps

The second problem presented to the generic evolutionary design system was the task of

evolving a set of portable steps, suitable for use in a library. Three steps were required, with

each one being capable of supporting the weight of a person without the set of steps toppling

over. This problem was defined by four evaluation modules used for the previous design task:

’size’, ’specific mass’, ’unfragmented’, ’supportiveness’, and one new evaluation module: ’flat

surface’ (which allows a desired flat surface at a specific 3D position to be defined). However,

unlike the previous ’table’ problem, this design problem uses two evaluation modules

(’supportiveness’ and ’flat surface’) three times with different parameters in order to define the

three separate flat, supportive surfaces required for the steps.

extents

flat surface
desired surface 1
height and area

PHENOTYPE

fitness value 5

primitive
planes mass

extents

flat surface
desired surface 2
height and area

fitness value 6

desired surface 3
height and area

fitness value 7

flat surface

Fig. 7.14 Partial block diagram showing the new evaluation software used to evaluate steps.

This design task was chosen for three reasons: firstly it illustrates the reuse of existing

evaluation modules for a new design problem. Secondly, it demonstrates how the same

evaluation modules can be used more than once with different user-specified parameters to

evaluate phenotypes, see fig. 7.14. Thirdly, a high number of fitness values are generated: two

from ’size’, one from ’mass’, one from ’unfragmented’, three from the three ’flat surface’ modules

147

and three from the three ’supportiveness’ modules (ten in total). This high number of fitness

scores was deliberate, because the ’steps’ design problem was used to test the six different

multiobjective ranking methods in the design system (described in the last chapter). The more

fitness values generated by evaluation software, the more difficult it is for the GA to calculate

the overall fitness of a phenotype. Consequently, this design problem was found to be very

effective in identifying unsuitable multiobjective techniques for the design system (Bentley &

Wakefield, 1996f).

EVALUATION MODULE: FLAT SURFACE

Information modules: primitive extents

User-specified parameters: 5 (height of surface from ground, x position, z position,

 width & depth of surface)

Number of fitness values: 1 (correctness of upper surface)

This module of evaluation software was the only new module needed for the ’steps’ design

problem (replacing the similar ’flat upper surface’ module used for the ’tables’ problem). The

’flat surface’ module allows a desired flat surface to be specified at any 3D position. Because

this means that the surface may not always be the upper surface of a phenotype (i.e. the surface

could be below another surface), this module cannot use the method of ’dropping feathers’ onto

the top of phenotypes, used previously.

Instead, five random sample points are picked in the desired area of the flat surface. The

primitive with its top surface closest to each point is then identified, and the difference between

this upper surface and the desired height of the flat surface is added to the output fitness value.

Thus, the less the top surface of the primitive(s) in the vicinity of the desired flat surface

matches the desired flat surface, the higher the fitness value (i.e., the lower the fitness) for the

phenotype will be. Like the ’flat upper surface’ module, this module does not consider the

intersecting planes of primitives.

148

7.3.4 Evaluation of Heat Sinks

The third design task presented to the generic evolutionary design system was to create a heat

sink for the processor of a computer. The purpose of a heat sink is to dissipate as much heat

from a silicon chip as quickly as possible. Although the simulation of heat dissipation is not

simple, because the surface area of heat sinks partly determines their ability to radiate heat, the

quality of heat sink designs can be roughly determined by measuring the surface area of

designs. Hence, heat sinks can be adequately evaluated by reusing three existing modules of

evaluation software: ’size’, ’specific mass’, ’unfragmented’, and adding one new module: ’specific

surface area’, see fig. 7.15.

extents

and max. size

desired

desired min.

PHENOTYPE

mass

fitness value 1

fitness value 2

fitness value 3

primitive
planes mass

extents

unfragmented
fitness value 4

surface area
desired

fitness value 5

specific mass

surface area

size

specific

Fig. 7.15 Block diagram of the evaluation software used to evaluate heat sinks.

This design problem was chosen for two reasons. First, it demonstrates the ability of the design

system to evolve a design on top of a ’fixed skeleton’ (a base the size of the processor that it is

cooling). Second, it demonstrates the ability of the system to add new primitives to designs (i.e.

locating an appropriate design hyperspace). This is because the easiest way to increase the

surface area of a design (when the overall size is limited) is to add more primitives. Indeed, for

149

this application, optimising the precise shape of primitives is far less important than optimising

the number of primitives in designs.

EVALUATION MODULE: SPECIFIC SURFACE AREA

Information modules: surface area

User-specified parameters: 1 (desired surface area)

Number of fitness values: 1 (correctness of surface area)

This is the only new module of evaluation software needed for the ’heat sink’ design problem.

The fitness value returned is simply the difference between the desired surface area of designs,

and the actual surface area of the current phenotype (as calculated by the ’surface area’

information module). By specifying that an almost impossibly large surface area is required,

this module can be used, in effect, to maximise the surface area of designs.

7.3.5 Evaluation of Optical Prisms

The fourth design problem presented to the system was to evolve a number of different types of

optical glass prism. Prisms are used in many optical devices, for numerous reasons. Binoculars

require a prism erecting system to both ’squash’ their overall length to a more manageable size,

and to keep the images erect (in the same orientation as the object being viewed) (Brown,

1966). Periscopes require derotating prisms to keep the image erect for the observer, no matter

to what degree they are rotated (Meyer-Arendt, 1989). An SLR camera requires a constant-

deviation prism (usually a penta prism) to ensure that the deviation of the optical axis is

unchanged by rotation of the prism (Brown, 1966). Whilst mirrors can also be used for these

tasks, prisms have a number of advantages. Firstly the relation between their reflecting faces is

not subject to change because of mechanical misalignment or movement. Secondly, dust does

not affect reflectivity in the same way as with mirrors, and finally, when total internal reflection

occurs within a prism, reflectivity is higher than can be obtained with a mirror (Brown, 1966).

As fig. 7.16 shows, all optical prisms to be evolved by the system have their function specified

by four modules of evaluation software: the ’size’ and ’unfragmented’ modules, and two new

150

modules ’raytracing’ and ’intersected’. The ’raytracing’ module is the most significant piece of

evaluation software for this class of design problems. This software module traces ’light rays’

through phenotypes, calculating the effect each design has on the light. Usually five separate

’rays’ are used to specify the four corners of an image and a centre point, so the ’raytracing’

module is normally used five times with different parameters. This allows the evaluation of the

size and orientation of the output image, as well as the position and direction of the separate

light rays.

size

extents

and max. size
desired min.

PHENOTYPE

fitness value 1

fitness value 2

fitness value 3

primitive
planes

extents

fitness value 4

ray tracing
characteristics of input

fitness value 5

intersected

and desired output light

unfragmented

ray tracing

fitness value 9

characteristics of input
and desired output light

for light ray 1

for light ray 5

Fig. 7.16 Block diagram of the evaluation software used to evaluate optical prisms.

These prism design problems were chosen for three reasons. First, to demonstrate that the

system can successfully optimise the orientation of clipping planes of primitives. (The first

three design tasks did not require the use of primitives with intersected planes.) Optical prisms

require the precise positioning of these planes in order to direct light correctly through them

151

(Bentley & Wakefield, 1996e). Hence, for these problems, the parameters that specify the

planes of primitives are the most significant parameters to optimise.

The second reason for this choice of problem is that correctly evolving the shape of optical

prisms is a very hard, or even deceptive problem, for the design system (Bentley & Wakefield,

1996e). Hence, these design tasks allowed the investigation of how the performance of the

system and the accuracy of the functional specification of designs could be improved in order

to overcome such difficulties (see Chapter Eight). Finally, these prism design problems allowed

the system to be demonstrated evolving prism designs using previously evolved components, in

addition to evolving new designs from scratch.

EVALUATION MODULE: INTERSECTED

Information modules: planes

User-specified parameters: none

Number of fitness values: 1 (whether a design is intersected or not)

This is the first of the two new modules of evaluation software needed for the ’optical prism’

problems. This module simply returns the number of primitives that have not been intersected

by their planes (calculated by the ’planes’ information module). If all primitives have been

intersected, zero is returned (a perfect fitness score). Hence, the fitness of a phenotype for this

criterion is proportional to the number of intersected primitives in the phenotype. This

evaluation module is used to encourage reflections and refractions of light in phenotypes by

ensuring that all primitives have some portion sliced off them.

EVALUATION MODULE: RAYTRACING

Information modules: planes, primitive extents

User-specified parameters: 20 (x, y, z coords of light source,

 x, y, z direction of light at source,

 x, y, z, coords of required light destination,

 x, y, z required direction of light at destination,

152

 A, B, C, D projection plane coefficients,

 x, y, z coords of undesired light destination,

 Boolean ’refraction allowed’ parameter)

Number of fitness values: 1 (correctness of output light)

Optical prisms are designed to bend and refract light from source to destination along a specific

path and in a specific way in order to perform their various functions. However, in order to

give the design system complete freedom during the design process, this software module does

not directly specify the path the light should take within designs. Instead, the co-ordinates of a

light source and an initial direction vector is given by the user. This ’light ray’ is then traced

through the current design being evaluated and the emerging ray intersected by a user-specified

’projection plane’. The output direction and destination point of the ray is then compared to the

required direction and destination point to allow calculation of the fitness of the design, see fig.

7.17.

Figure 7.17 Specifying input and output light characteristics.

Light rays are traced through phenotypes by first calculating the line defined by the co-

ordinates of the light source and the initial direction vector of the light ray. This line is then

checked to see if it intersects any of the sides of the primitives in the phenotype (using the data

produced by the ’planes’ and ’primitive extents’ information modules). The intersection closest

to the light source (along the direction of the light) is picked, the light source is changed to the

point of intersection, and the new direction vector is calculated. Depending on whether the ray

153

is travelling into, or out of the design, and on the angle of incidence at the intersection, the ray

is either refracted (i.e. bent) or reflected (a total internal reflection in the design), using

standard ray-tracing equations (Klein, 1970). This process continues until the closest

intersection by the light ray is with the projection plane (or until the ray does not intersect

anything), at which point the final direction vector and point of intersection are evaluated.

The single fitness value is formed by summing the x, y, z differences between the final direction

vector of the emerging ray and the desired direction vector as specified by the user. In addition,

this fitness value is incremented by the x, y, z differences between the point of intersection of

the emerging ray with the projection plane, and the desired point of intersection as specified by

the user. Thus, the further the actual direction vector differs from the required direction vector,

the less fit the design is. Likewise, the further the actual destination point of the ray is from the

desired destination point, the worse the fitness of the design for this criterion. Any designs with

output direction vectors so incorrect that they do not intersect the projection plane at all

(resulting in no destination points) are penalised heavily, by incrementing the returned fitness

value by a large amount.

The ’raytracing’ module also allows the definition of two additional characteristics of

phenotypes: whether refraction is permitted, and the co-ordinates of an undesirable destination

point. Some prisms must not refract light - if the user specifies that refraction should be

forbidden, then the fitness value for a phenotype is penalised by a large incrementation for

every time the ray of light is refracted by the phenotype. If the user defines an ’undesired

destination point’ for the light, then the fitness of a phenotype is gradually penalised as the

actual destination point of the output light approaches this undesired point (when it is closer

than a pre-defined constant distance).

The module assumes that all phenotypes consist of optical glass with the common refractive

index of 1.5 (Meyer-Arendt, 1989). Phenotypes are assumed to be surrounded by air (with a

refractive index of 1.0003). Only monochromatic light (light of a single wavelength) is

154

considered, with surface reflections being ignored. These restrictions are purely to simplify and

speed up the evaluation process; more realism could be introduced by repeatedly evaluating

designs using light of varying wavelengths. Surface reflections are usually insignificant with

optical prisms (as opposed to total internal reflections) and can be safely ignored without

significant loss of realism for most applications (Klein, 1970).

7.3.6 Evaluation of ’Streamlined’ Shapes

The fifth and final design problem to be presented to the generic evolutionary design system

was to evolve a number of different ’streamlined’ shapes (Bentley & Wakefield, 1996c,d).

Examples of such designs include the hulls of boats, the fronts of trains, and aerodynamically

shaped cars (Pope & Harper, 1966).

Although it is possible to simulate the flow of air and water over a wide range of designs with

some accuracy (Kuethe & Schetzer, 1959), the creation of such analysis software is not trivial,

and hence is beyond the scope of this project. However, it is possible to crudely model the flow

of liquid and gas past a design by ’firing’ separate particles at designs, and calculating their

trajectories over the designs, and the forces generated by them (Foley, et. al. 1990).

This is the approach used to judge how phenotypes react to water or air flowing past them. A

new evaluation software module, ’particle-flow simulator’ is used to allow the evaluation of

how well the flow of particles over the shape of a phenotype generates user-specified desired

forces on various areas of the phenotype. In addition to this new module, two existing

evaluation modules are used: ’size’ and ’unfragmented’, and also one other new module: ’must

have vertices’, see fig. 7.18.

155

size

extents

and max. size
desired min.

PHENOTYPE

fitness value 1

fitness value 2

fitness value 3

primitive
planes

extents

fitness value 4

particle-flow desired forces on specified

fitness values

enclosing volumes of space

vertices

simulator

must have
vertices

unfragmented

Fig. 7.18 Block diagram of the evaluation software used to evaluate streamlined designs.

The ’streamlined’ class of problems was chosen for two reasons. First, they allow the

demonstration of the system to evolve good solutions for more realistic applications. Unlike the

previous design tasks, the creation of streamlined, or aerodynamic designs is a common and

very challenging problem faced by designers in the real world (Obavashi and Takanashi, 1995).

Second, this type of design problem allows every part of the system to be demonstrated in

combination, e.g. the evolution from scratch or using parts of previously evolved designs, the

evolution of the shape and number of primitives, symmetry, fixing genes, and so on.

EVALUATION MODULE: MUST HAVE VERTICES

Information modules: vertices

User-specified parameters: none

Number of fitness values: 1 (whether a design has vertices or not)

This is the simplest of the two new modules of evaluation software used to analyse streamlined

phenotypes. It simply returns the number of primitives in the current phenotype that do not

have any vertices (i.e. if every primitive has at least one vertex, a perfect fitness of zero is

returned). The purpose of the module is to discourage the system from ’removing’ primitives by

156

slicing them out of existence with their intersecting planes. Although this effect is relatively

uncommon, the use of this module ensures that every primitive in a phenotype contributes to

the shape of the phenotype.

EVALUATION MODULE: PARTICLE FLOW SIMULATOR

Information modules: planes, primitive extents, extents

User-specified parameters: variable (a number of required x, y, z forces on specifically

 defined volumes of space enclosing the phenotype)

Number of fitness values: variable (correctness of x, y, z forces on phenotype)

This module returns a variable number of sets of three fitness values which denote how closely

the actual x, y, z forces generated by particles passing over the phenotype match the desired x,

y, z forces, for a corresponding number of user-defined volumes enclosing the phenotype. The

user is required to specify the number of volumes, the dimensions of these volumes, and desired

values for the x, y, z forces to be produced on the design within each volume, see fig. 7.19.

Fig. 7.19 Two user-defined volumes enclosing a phenotype, and the desired forces

on the part of the phenotype that is enclosed by each volume.

The use of volumes to specify that different areas of designs should have different forces on

them, allows the definition of more representative real-world problems. For example, some

racing cars require substantial forces to push the back wheels down onto the track and improve

the grip of the tyres, but less force on the front wheels to aid steering (Scibor-Rylski, 1975).

Moreover, returning a separate fitness value to denote the accuracy of the x, y, z forces instead

157

of a single, overall force, allows the user to specify that some forces are more important than

others.

The module calculates forces produced on a design by firing a pre-defined number of particles,

one at a time, at the phenotype (typically between ten and twenty per design, see the next

chapter). Each particle begins at an initially random point (within the extents of the sides of the

phenotype), at a pre-defined distance in front of the phenotype, with a random velocity

(between pre-defined ranges). The position of the particle is then repeatedly updated in

proportion to this velocity (to emulate movement over time). Collision detection is performed

by continuously checking to see if the line formed by the current position and the next position

of the particle intersects any part of the phenotype. Using the same method as for the raytracing

module, the closest intersection point of the trajectory of the particle and the side of a primitive

is identified, and the particle is reflected (or ’bounced’) off the primitive it has hit, by updating

its velocity vector. In order to approximate the effect other particles would have on this

reflected particle, its velocity is subsequently slowly modified over time until it is travelling in

the same direction and towards the same distance point as it was before colliding with the

design. Although this means that factors such as turbulence are not considered, it does allow a

reasonably realistic curved ’flow’ of particles over designs to be produced, see fig. 7.20.

Fig. 7.20 Actual path of particles as calculated by the particle flow simulator.

Whenever a particle hits a phenotype (and this can happen a number of times for a single

particle), it generates a force on that phenotype, at the position of the collision. This force is

proportional to the velocity at which the particle was travelling, and is in the direction of the

158

normal of the side of the primitive that was hit. If this position lies within a volume of space

defined by the user, the x, y, z forces are added to the values of the overall x, y, z forces

produced so far on the phenotype in that volume. The trajectory of each particle is updated up

to twenty-five times (to stop a trapped particle from being ’bounced’ around forever), or until it

has passed the back extent of the phenotype.

When all particles have been fired, the forces generated in each volume are averaged (because

some regions of the phenotype may be hit by more particles than others, giving artificially

higher forces in those areas). The difference between every desired x, y, z force specified by the

user, and the corresponding actual forces is then returned in a number of corresponding fitness

values.

7.4 User-Interface

7.4.1 Choosing Evaluation Modules and Specifying Parameter Values

Before the generic evolutionary design system can begin evolution, the user must define which

modules of evaluation software are required, and give the necessary parameter values for these

modules. In addition, the user has the option of changing default system values such as

population sizes, mutation rates, and whether designs should be symmetrical, should have fixed

genes, primitives without intersecting planes, inflexible primitives, and so on.

All such user-definable options and parameter values are input into the system by a single

initialisation file which is automatically read by the system upon execution. The file, named

’GADESIGN.INI’, consists of a selection of commands and values, which allow almost every

variable of the system to be controlled by the user. Commands take four forms: compound

commands, Boolean commands, single parameter commands, and multiple parameter

commands.

159

Compound commands are used to group a number of other (non-compound) commands. For

example, the command ’EVALUATE END’ informs the system which modules of

evaluation software are selected. Compound commands may have a single parameter value, for

example, the command ’VALUES 3 END’ informs the system that user-specified alleles

should be used for some of the genes of the third primitive in every genotype.

Boolean commands are used to activate certain options of the system that are inactive by

default. For example, the command ’NO_IPLANES’ informs the system that primitives should

not have intersecting planes. Likewise, the command ’Y_SYMMETRY’ informs the system that

phenotypes should be reflected in the plane y = 0, in order to produce symmetrical designs.

Single parameter commands are used to define a single value for some variable of the system.

For example, the command ’EXT_POP 200’ specifies that the external population should hold a

maximum of 200 individuals. Alternatively, when used within the ’VALUES’ compound

command group, the command ’WIDTH 35’ specifies that the value of the width gene (for the

primitive in every genotype specified by the ’VALUES’ command) should be given the initial

value of 35.

Finally, multiple parameter commands allow the user to specify a number of different

parameter values for a single element of the system. For example, when used within the

’EVALUATE’ compound command group, the command ’SIZE 50 -50 30 -30 50 -50 45 -45 25

-25 45 -45’ specifies that the ’size’ evaluation module should be used, and defines the twelve

desired extents.

When reading the initialisation file, the system ignores all whitespace and all lines beginning

with a hash: ’#’. This allows comments to be added to the file, in order to explain the use and

function of every command. A complete list of all system initialisation commands is given in

the appendix. Figure 7.21 shows an example of a ’GADESIGN.INI’ file.

160

 # define the design problem:
 EVALUATE
 SIZE
 50 -50 30 -30 50 -50 45 -45 25 -25 45 -45
 MASS 15
 SURFACEAREA 9999999
 UNFRAGMENTED
 MUSTHAVEVERTS
 END

 # define population sizes
 INT_POP 180
 EXT_POP 200

 # specify that we want 7 primitives in all genotypes *before reflections*:
 PRIMITIVES 7

 # specify that we don’t want any intersecting planes:
 NO_IPLANES

 # give initial values for 3 genes of primitive 0 in all genotypes:
 VALUES 0
 XPOS 0.0000
 WIDTH 100.0000
 ANGLE2 0.0000
 END

 # specify that all designs must be symmetrical in z=0 and x=0:
 Z_SYMMETRY
 X_SYMMETRY

 # define fixed genes for primitive 0
 # (0=not fixed 1=fixed, order: x y z wdth hght dpth ang1 ang2 plndist):
 FIXED 0
 1 0 0 1 0 0 0 1 0

 # specify that genotype primitive 0 is inflexible
 INFLEXIBLE 0

Fig. 7.21 A sample ’GADESIGN.INI’ file.

7.4.2 Using the System

The system was implemented in ANSII standard ’C’ on an IBM compatible PC and can be

recompiled and executed on any computer with a ’C’ compiler with negligible changes to the

code required. As stated above, when executed, the system first reads and parses its

initialisation file. As the various commands are parsed, the system outputs to the screen the

options that were selected by the user. Evolution then begins automatically. In order to increase

the speed of evolution and keep the system platform-independent, the system does not

graphically display the designs that it is evolving. Instead, it saves a text file containing the

phenotype of the fittest design, every generation (in addition to displaying the fitness values of

this design on the screen). Evolution continues until a pre-defined number of generations have

passed (the default is 500), or until the user presses ’ESCAPE’.

161

Although this is the fastest way to use the generic evolutionary design system to evolve designs,

because the designs are not displayed during evolution, it is difficult to determine how well

evolution is proceeding. Consequently, a simple graphical user interface was developed for

Microsoft WindowsTM 3.x on IBM-compatible PCs to control the system and allow designs to

be displayed during evolution, see fig. 7.22.

Fig. 7.22 The graphical user-interface of the generic evolutionary design system.

As figure 7.22 shows, the graphical user-interface consists of three main windows: the ’control

window’, the ’system information window’, and the ’3D graphical display window’. These three

windows correspond to three entirely distinct programs: a control program, the evolutionary

design system, and a 3D graphical display program, all running concurrently under MS

WindowsTM 3.x. To launch all three, the control program is executed. This places the control

window at the top left of the screen and then launches and positions the evolutionary design

system and the 3D graphical display program.

To permit the design system to run in parallel with the other two programs, it was compiled as

a partially WindowsTM-compatible program, allowing all of its output to appear in a separate

window. This ’system information’ window also allows evolution to be temporarily paused or

resumed, and permits the system to be terminated, by the user clicking on the appropriate,

162

standard menu items. The window is automatically positioned by the control program to cover

two-thirds of the right of the screen, whatever the screen resolution.

Fig. 7.23 Global controls in the control window.

In addition to launching the design system, the control program also allows various global

operations to be performed. As figure 7.23 shows, the control window has four iconised

buttons. When clicked on with a mouse, the first of these buttons allows the initialisation file to

be edited by launching a standard text editor with the ’GADESIGN.INI’ file. The second button

informs the design system that evolution is to be restarted (re-reading the initialisation file).

The third button terminates the design system and relaunches it (allowing another design to be

evolved after evolution is complete) and the fourth button terminates all programs.

Communication between the control program and the design system takes place via messages in

a temporary file (standard messages handled by WindowsTM 3.x are not possible since the

design system is not a true WindowsTM program).

While the generic evolutionary design system is running, the control program also monitors the

output of the design system. Whenever the phenotype of a new, fit, evolved design is saved to

disk by the system, the control program automatically informs the 3D graphical display

program (this time using a standard WindowsTM message) to update its current image by re-

reading the saved phenotype.

The graphical display program created as part of this work continuously shows a three-

dimensional rotating image of the phenotype it was instructed to display when launched. It first

reads the ’3D’ format phenotype output file produced by the system, and calculates the position

163

of the vertices of the design using the algorithm given in Section 4.2.5. The vertices for each

side of a primitive are then ordered by calculating the bounding envelope around them, and

transformed by standard rotation and perspective equations, allowing separate sides to be

realistically displayed as polygons (Foley, et. al., 1990). Hidden-surface removal is performed

using a simplified variation of the z-buffer method (Foley, et.al., 1990), i.e. polygons are

displayed in order of the average z-position of the vertices of the polygon, the furthest first.

The program continuously and smoothly animates the design by using a bit-block-transfer to

move the next image from memory to the window. The image can be toggled from a wire-

frame, to unshaded solid, to shaded solid by clicking in the window. (The shade of a polygon is

simply determined by calculating the average proximity of its vertices to a light source.) In

addition, this program allows the image to be rotated in any direction, at any speed, and

permits the user to zoom in and out, by clicking on the appropriate iconised button, see fig.

7.24. Although at the beginning of this research a version of this display program was also

created to run under X-Windows, because of the proliferation of advanced accelerated graphics

cards in most PCs today (Bentley & Thorn, 1994), the WindowsTM 3.x version was found to be

substantially faster.

Fig. 7.24 3D viewing controls for the graphical display window.

164

7.5 Summary

This chapter has described the fourth and final element of the generic evolutionary design

system - the evaluation software. Evolution of solid object designs by the system is guided

solely by such software, i.e. the evaluation software is used to specify the desired function of

designs, by judging the fitnesses of phenotypes.

Based on the hypothesis that the function of designs can be broken down into a number of

smaller functional elements, the evaluation software is modularised into a number of discrete,

reusable elements, known as ’evaluation modules’ and ’information modules’. These modules

permit a range of different designs to be analysed, with the user simply needing to pick which

evaluation modules should be used in combination. If necessary, the appropriate combination

of modules can be built up slowly, by adding new modules and running the design system to

identify any deficiencies of evolved designs. As was shown by the ’table’ example, this allows

the complete specification of the function of the desired design to be assembled quickly and

easily.

Evaluation modules were used in different combinations to define the desired function of five

different types of design problem: ’tables’, ’steps’, ’heat sinks’, ’optical prisms’, and ’streamlined’

shapes. Each problem was designed to allow the investigation of a particular aspect of the

design system. For example, ’heat sinks’ problem was created to check that the system could

cope with variable-length genotypes as the number of primitives was optimised, while the

’steps’ task was to allow the comparison of different multiobjective techniques.

A library of eleven different modules of evaluation software was described: ’size’, ’specific

mass’, ’unfragmented’, ’flat upper surface’, ’supportiveness’, ’flat surface’, ’specific surface area’,

’intersected, ’raytracing’, ’must have vertices’ and ’particle flow simulator’. When selected by the

user, each module shared appropriate information from some of the six information modules:

’vertices’, ’planes’, ’primitive extents’, ’extents’, ’mass’, and ’surface area’.

165

The modules of evaluation software are selected and their appropriate parameters (in addition

to all other system parameters) are input to the system in the form of commands in an

initialisation file. This text file is automatically read by the design system upon execution of the

system, prior to evolution beginning.

The quickest way to use the system to evolve new designs is to execute it in isolation. However,

if designs are to be viewed during evolution, and if additional control over the system is

required, the graphical user-interface running under Microsoft WindowsTM 3.x should be used.

This consists of three windows: the ’information window’ of the design system, the ’control

window’ of a control program, and the ’3D graphical display window’ of the graphical display

program which shows a rotating shaded image of the current best evolved design.

