
35

3
Overview of the

Evolutionary Design

System

3.1 Introduction

When applying a genetic algorithm to any new application, four main elements must be

considered. First, the phenotype must be specified, i.e. the allowable solutions to the problem

must be defined by the specification and enumeration of a search space. Second, the genotype

(or coding of the allowable solutions) must be defined. Third, the type of genetic algorithm

most suitable for the problem must be determined. Fourth, the fitness function must be created,

in order to allow the evaluation of potential solutions of the problem for the GA.

Since it is proposed that a genetic algorithm is to be used to form the core of the system

introduced in this thesis, these four elements can be identified in the generic evolutionary design

system. Designs are searched for using a multiobjective genetic algorithm as the ’search-engine’

to evolve solutions. To achieve this, the GA manipulates hierarchically organised genotypes (or

coded solutions). The genotypes are mapped to phenotypes (or designs) defined by a low-

parameter spatial-partitioning representation. These phenotypes are analysed by modular

evaluation software, which provides the GA with multiple fitness values for each design. Figure

3.1 illustrates how these four elements are combined to allow the evolution of a range of

different solid object designs from scratch.

36

Fig. 3.1 Block diagram of the evolutionary design system.

3.2 System Organisation

This section outlines the organisation of the generic evolutionary design system and gives a

brief overview of the elements of the system. Each of these four elements are fully explained

and justified in the following four chapters.

3.2.1 Phenotype

Designs, or phenotypes, are defined by a spatial-partitioning representation. This representation

combines methods from constructive solid geometry (CSG) and traditional spatial partitioning

representations, to allow the definition of a wide range of solid objects using a number of

primitive shapes in combination (Bentley & Wakefield, 1996b). Primitive shapes consist of a

rectangular block or cuboid with variable width, height and depth, and variable three

dimensional position. Every block can also be intersected by a plane of variable orientation (see

37

fig. 3.2), to allow the approximation of curved surfaces. Blocks require nine parameters to

fully define their geometry. Designs are defined by a number of non-overlapping blocks or

primitives.

Fig. 3.2 Examples of primitive shapes used to represent designs.

A phenotype simply consists of a flat list of ordered parameters which define the geometry of

every primitive making up the design. Figure 3.3 shows the list of parameters in an evolved

phenotype and the corresponding design that they specify.

Fig 3.3 An example of a simple four-primitive evolved phenotype (the hull of a small boat).

3.2.2 Genotype

The genetic algorithm within the system never directly manipulates phenotypes. Only coded

designs, or genotypes are actually modified by the genetic operators of the GA. Every genotype

consists of a single chromosome arranged in a hierarchy consisting of multiple blocks of nine

genes, each gene being defined by sixteen bits, see fig. 3.4. This arrangement corresponds to

38

the spatial partitioning representation used to define the phenotypes, with each block of genes

being a coded primitive shape and each gene being a coded parameter.

A mutation operator is used within the genetic algorithm to vary the number of primitives in a

design by adding or removing new blocks of nine genes from chromosomes. This permits

evolution to optimise the number of primitives in addition to the geometries of primitives in

designs. However, varying the length of chromosomes in this way can cause the crossover

operator to produce meaningless offspring. To overcome this, a new type of crossover operator,

known as hierarchical crossover, was developed. This new version of the genetic operator uses

the hierarchical arrangement of the chromosomes to find points of similarity between two

chromosomes of different sizes. Once such points are found, hierarchical crossover uses the

tree-structure of the chromosomes to efficiently generate new offspring without loss of meaning

(Bentley & Wakefield, 1996d).

IN
D

IV
ID

U
A

L

bl
oc

k
1

bl
oc

k
2

bl
oc

k
n

. .
 .

.

ge
ne

 1
ge

ne
 2

ge
ne

 9
...

10
10

01
10

10
10

10
01

01
10

10
10

10
01

11
01

11
01

10
11

11
01

00
10

ge
ne

 1
ge

ne
 2

ge
ne

 9
...

10
10

01
10

10
10

10
01

01
10

10
10

10
01

11
01

11
01

10
11

11
01

00
10

ge
ne

 1
ge

ne
 2

ge
ne

 9
...

10
10

01
10

10
10

10
01

01
10

10
10

10
01

11
01

11
01

10
11

11
01

00
10

F
ig

 3
.4

 H
ie

ra
rc

hi
ca

l g
en

ot
yp

e
of

 a
 s

in
gl

e
in

di
vi

du
al

 in
 th

e
po

pu
la

tio
n.

40

3.2.3 Genetic Algorithm

The genetic algorithm used within the system is slightly different compared to the simple GA

outlined in the previous chapter (see fig. 3.5). For example, two populations of solutions are

maintained: the main external population, and the smaller internal population. All new

solutions are held in the internal population where they are evaluated. They are then moved into

the external population (i.e. ’born’ into the ’real world’), replacing only the weakest members of

the external population. Other different features include the use of an explicit mapping stage

between genotypes and phenotypes, and the use of multiobjective techniques within the GA.

To begin with, the GA has the internal population of solutions initialised with random values to

allow the evolution of designs from scratch (see fig. 3.5, box 1). However, if required, a

combination of random values and user-specified values can be used to allow the evolution of

pre-defined components of designs, or of selected parts of designs (Bentley & Wakefield,

1996e).

The GA then uses an explicit mapping stage to map the genotypes to the phenotypes (fig. 3.5,

box 2). This resembles nature, i.e. the DNA of an organism is never ’evaluated’ directly; first

the phenotype must be grown from the ’instructions’ given in the DNA, then the phenotype is

evaluated (Dawkins, 1986). By performing this process explicitly, the system is able to gain

some advantages. For example, should a symmetrical design be required, only half a design

needs to be coded in the genotype and hence evolved by the GA. This partial design can then be

reflected during the mapping stage to form a complete design, which is then evaluated (Bentley

& Wakefield, 1995b).

Next, the GA calls the relevant user-specified evaluation software to analyse the phenotypes

and obtain multiple fitness values for each individual solution (most design problems are

multicriteria problems), see fig. 3.5, box 3. The GA must then determine from these multiple

fitness values which individuals are fitter overall than others. In other words, the GA has to be

able to calculate a single overall fitness value (fig. 3.5, box 4), using multiobjective

41

optimisation techniques to handle the many separate fitness values produced by the evaluation

software (Bentley & Wakefield, 1996f). The new method used to calculate this overall fitness

value also incorporates the concept of ’importance’, allowing a user to increase or decrease the

relative importance of any criteria. (Note that the words ’multiobjective’, and ’multicriteria’ are

used interchangeably throughout this thesis.)

initialise genotypes

random user-specified
valuesvalues

map genotypes in intrnl.

call evaluation

3, 5, 1, 4

7, 5, 1, 4

9, 5, 1, 4

3, 6, 5, 8

calculate overall fitness

1

2

3

4

generate new genotypes in

genotypes in extrnl. pop.

replace weakest genotypes
in extrnl. pop. with value for phenotypes

pop. to phenotypes

1

2

3
software to obtain

45

6

fitness values

with multiple fitnesses

in internal population

genotypes from intrnl. pop.

intrnl. pop. from fittest

Fig. 3.5 The genetic algorithm used as the core of the system.

42

The GA then moves the individuals from the internal population where all new individuals are

held, into the main external population (fig. 3.5, box 5). However, unlike the simple GA, this

GA does not replace an entire population of individuals with new individuals every generation.

In a similar way to the steady-state GA (Syswerda, 1989), this GA only replaces the weakest

(less fit) individuals in the external population with new individuals from the smaller internal

population, allowing the fittest individuals to remain in the external population over multiple

generations (Bentley & Wakefield, 1996c). Unusually, the GA also prevents very fit

individuals from becoming immortal (i.e. never being replaced by offspring) by giving every

individual in the external population a pre-defined lifespan. Once the individual reaches this

lifespan, they become very unfit and thus are quickly ’killed’ by new individuals taking their

places.

Finally, the GA favours individuals with higher overall fitnesses when picking ’parents’ from

the external population. The randomly chosen parent solutions (with fitter solutions

preferentially selected) are then used to generate a new internal population of offspring using

crossover and mutation operators (fig. 3.5, box 6). These operators are more advanced than

those found in the simple GA. For example, mutation can not only alter the values of genes in

individuals, but also the number of genes in individuals. Moreover, the crossover operator can

efficiently generate new chromosomes from two parent chromosomes of different sizes without

loss of meaning (Bentley & Wakefield, 1996d).

The GA then maps the new genotypes to the phenotypes, evaluates the new phenotypes, and

continues the same process as before. This iterative process continues until either a specified

number of generations (i.e. loops) have passed, or until an acceptable solution has emerged.

3.2.4 Evaluation Software

All parts of the system described so far are generic, i.e. they can be applied to a wide range of

different solid-object design problems. However, there is an element of the system that will

inevitably be specific to individual design applications: the evaluation software. As mentioned

43

previously, designs must be evaluated to instruct the GA how fit they are, i.e. how well they

perform the desired function described in the design specification. Hence, the evaluation

software is a software version of the design specification, which must be changed for every new

design task.

In an attempt to reduce the time needed to create evaluation software for a new design problem,

all parts of the various different types of evaluation software created so far have been

implemented as re-usable modules (Bentley & Wakefield, 1996c). In other words, it is

proposed that many designs can be specified by using a number of existing evaluation modules

in combination. Moreover, wholly new design tasks will only require the creation of modules of

evaluation software that do not already exist, thus dramatically shortening the time needed to

apply the system to a new application. Over time a large library of such modules could be

developed, to reduce the future need for new modules. Figure 3.7 shows some of the existing

modules in the library of evaluation software developed as part of this project.

min. size max. size specific mass

flat toplight output wind resistance

specific
stability supportiveness

surface area

Fig 3.6 Examples of evaluation software modules in current library.

In addition to a library of different evaluation software modules (or fitness functions), a library

of phenotype information modules is maintained. This is necessary because many modules of

evaluation software require specific information about a design in order to calculate how fit

that design is. Using a distinct information module to calculate, say, the mass of a design,

allows all evaluation modules that need this value to share the information generated. In other

words, such information on phenotypes need only be generated once, to supply all evaluation

44

modules that require it. Figure 3.7 shows some of the information modules in the library

developed as part of this project.

vertices

planes

mass

surface area

centre of mass

extents
primitive
extents

Fig 3.7 Examples of phenotype information modules in current library.

For every evaluation module selected by a user to partially specify a design application, there

will be corresponding information modules that are automatically used by the system.

Additionally, every evaluation module requires the user to input a number of desired parameter

values. For example, if a design was required which was streamlined in shape, the ’wind

resistance’ module would be selected. This would automatically enable the information modules

’primitive extents’, ’extents’ and ’planes’, with the user then needing to input parameter values to

specify the forces (generated by the air-flow on the design) that were required. When evaluating

phenotypes during evolution, the module would then provide the GA with fitness value(s) that

correspond to how well the phenotype allows air to flow past itself, see fig. 3.8.

wind resistance

extents

PHENOTYPE

fitness values

planes
primitive

desired values
of X,Y,Z forces
on phenotype

GENETIC
ALGORITHM

extents

Fig. 3.8 Using an evaluation software module with phenotype information modules.

45

Consequently, complete design applications are specified to the evolutionary design system by

the selection of a combination of modules of evaluation software, and the input of desired

parameter values. The system then enables the appropriate information modules which supply

all of the evaluation modules with the necessary information on the phenotype. A number of

separate fitness values are generated by the evaluation modules for each design, which are used

by the GA to guide evolution to good solutions, see fig. 3.9.

min. size

max. size

mass surface areaextents

specific mass

specific
surface area

min. size

max. size

desired

desired

desired

desired

surface area

PHENOTYPE

G
E
N
E
T
I
C

A
L
G
O
R
I
T
H
M

mass

fitness value 1

fitness value 2

fitness value 3

fitness value 4

Fig 3.9 Specifying a simple application using modules of evaluation software, phenotype

information modules and user-specified parameter values.

3.3 Summary

This chapter has given an overview of the generic evolutionary design system. Each of the four

distinct elements of the system was identified and summarised. First, the new spatial-

partitioning representation used within the phenotypes to define solid object designs was

described. Second, the hierarchical structure and coding of the genotypes was shown, and it

was explained that this structure allows a novel hierarchical crossover operator to efficiently

generate meaningful new chromosomes from two chromosomes of different lengths. Third, it

46

was explained that the core of this system consists of a multiobjective genetic algorithm with a

distinct mapping stage between genotypes and phenotypes, overlapping populations,

preferential selection of parents, and other advanced features such as chromosomes of variable

lengths, and lifespans. Fourth, the evaluation software was outlined, with an explanation of

how information modules are used in combination with user-definable evaluation modules to

provide the fitness values of phenotypes to the GA.

These four elements: phenotype, genotype, GA, and evaluation software, will be fully explained

in the following four chapters of this thesis.

