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2
General Review of

Relevant Work

2.1 Introduction

The work described in this thesis is the first attempt to create a computer system capable of

evolving a wide range of solid object designs from scratch. Since there are no directly

equivalent systems to compare with the work described in this thesis, this chapter will review

and appraise significant research in all areas related to this subject.

Research relevant and related to the evolution of solid object designs can be divided into six

main categories:

(i) Engineering design theory

(ii) Natural evolution of designs

(iii) Genetic algorithms

(iv) The optimisation of existing designs

(v) The creation of shapes and images by computers

(vi) The creation of new designs by computers

Further appraisal of literature concerning the more detailed problems encountered during the

development of the system (e.g. the representation of solid objects, multiobjective optimisation
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within GAs, variable-length chromosomes, and the evaluation of specific types of design) is

performed in later chapters.

2.2 Engineering Design Theory

2.2.1 Classification of Human Design

Before attempting to automate the design process, it seems sensible to try to define and

understand the human design process. Unfortunately, there is no universally accepted definition

of engineering design (Dym and Levitt, 1991). However, for the purposes of this work, the

process of design can be adequately summarised by the words of Dym:

Engineering Design is the systematic, intelligent generation and evaluation of

specifications for artefacts whose form and function achieve stated objectives and

satisfy specified constraints. (Dym and Levitt, 1991)

Although the precise definition of design is often debated, there is perhaps more agreement

concerning the functional composition of design. Hence, the engineering design process

performed by a human designer can be generally summarised as consisting of the following

stages (Pahl and Beitz 1988, Dym and Levitt 1991, Goldberg 1991b, Pham and Yang 1993):

1. conceptual or preliminary design

2. detailed design

3. evaluation or analysis

4. iterative redesign, if the evaluation results are unsatisfactory

To date, computers have been used successfully for all of these stages except the first:

conceptual or creative design (Dym and Levitt 1991, Goldberg 1991b). As stated by Goldberg:

"The creative processes of engineering design have long been regarded as a black art. While the

engine of analysis steamrolls ever forward, our understanding of conceptual design seems
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locked in a timewarp of platitudes, vague design procedures, and problem-specific design

rules." (Goldberg, 1991b).

Modern research has started to provide the beginnings of a more rigorous theory of human

conceptual design (French 1994, Goldberg 1991b). Discussions viewing design as evolution

(French, 1994) and evolution as design (Thompson 1961, Tributsch 1982) are common.

Goldberg goes further by comparing the work of inductive designers, who integrate

combinations of previous designs in an attempt to create improved designs, with the similar

workings of the genetic algorithm. He concludes that "...genetic algorithms can be thought of as

a bounding model of discriminative and recombinative invention. As human designers

recombine bits and pieces of previous designs to form new, possibly better proposals, GAs

recombine bits and pieces of artificial chromosomes to search for globally optimal solutions."

(Goldberg, 1991b).

By allowing the system to create new designs from scratch, this project is attempting to create a

system capable of generating new conceptual designs. However, as stated by Pham: "While the

above-mentioned four major stages [of engineering design] are usually recognisable within a

design process, in general no clear boundaries between them can be defined." (Pham & Yang,

1993). Hence, with no easy way to determine when creative design stops and the optimisation

of the design begins, the system being created for this project will perform the whole design

process without explicitly dividing the process into stages.

2.2.2 Evolution of Human Designs

It is clear that human designs have progressed over time, but can this progressive refinement

accurately be described as evolution? The answer is yes - in a very real sense our designs

evolve (French, 1994). From the moment of their construction, designed objects must perform

their function to survive. If they are found to be inadequate, they are discarded and forgotten

quickly. As with living creatures, our artefacts have limited lifespans before they wear out. In a

process very similar to reproduction in nature, these objects are replaced by new artefacts that
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use or ’inherit’ design features from existing designs in addition to the occasional new invention

or ’mutation’ (Goldberg 1991b, French 1994). Just as in nature, where the environment is

constantly changing (e.g. new predators, variations in terrain or climate), the problem that the

design is intended to solve is often constantly changing (Dym and Levitt, 1991). For example,

at first the only purpose of the car was to carry passengers, then comfort and safety became

important, and today a car must also be economical and not pollute the environment.

As the ’population’ of new designs grows, so ’selection pressure’ is increased. In other words,

the more designs that exist to solve a single problem, the quicker some designs will be

discarded. Perhaps one of the most extreme examples of this is with computer processors,

where designs become obsolete and are replaced with faster, more efficient models barely

eighteen months after being introduced. Likewise, in nature, the more trees in a wood that

attempt to consume the limited resource of sunlight, the quicker the less tall varieties will die -

the selection pressure is so strong that evolution is compelled to create trees that grow evermore

faster and taller. Moreover, just as the struggle between predator and prey can trigger rapid

evolution and counter-evolution in nature, the struggle between armies often triggers an

explosion in new designs of weapons and counter-weapons in war (Thompson 1961, French

1994).

2.3 Natural Evolution of Designs

2.3.1 Creatures as Designs

Just as human designs evolve, it is often conversely argued that natural evolution produces

designs. This is perhaps argued most eloquently by Dawkins, who compares natural selection

with a blind watchmaker, "...blind because it does not see ahead, does not plan consequences,

has no purpose in view. Yet the living results of natural selection overwhelmingly impress us

with the appearance of design as if by a master watchmaker, impress us with the illusion of

design and planning." (Dawkins 1986, p.21).
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Indeed, before the revolutionary theories of Darwin (Darwin, 1859), every living thing was

widely believed to have been the direct creation of God. Some still hold this view today, often

using arguments stating that, for example, all the parts of an eye must have been created

together, for an eye without a cornea, lens, and retina all working in perfect synchrony is of

little survival value (Hitching, 1982). In other words, it is argued that a more primitive eye,

with say 5 per cent of the function of our eye, would be of no use to the organism and thus

could never evolve to the intricate complexity of our eyes. However, as Dawkins argues

vehemently: "Vision that is 5 per cent as good as yours or mine is very much worth having in

comparison with no vision at all. So is 1 per cent vision better than total blindness. And 6 per

cent is better than 5, 7 per cent better than 6, and so on up the gradual, continuous series."

(Dawkins 1986, p.81). Indeed, creatures with more primitive eyes (e.g. insects), and creatures

with more advanced eyes than our own (e.g. hawks) are well known in nature, illustrating that

there is great survival value in having eyes of any degree of function (Dawkins, 1982).

Consequently, today the widely accepted view is that the extraordinary designs of life were

evolved, and not consciously created (Dawkins, 1995).

2.3.2 Designs Evolved in Nature

From the perspective of engineering design, it is clear that nature far exceeds us in countless

aspects. For example, one of the most common and familiar living things we see every day is a

marvel of design: the tree. As described by French, the tree exhibits a number of elegant design

solutions: structurally trees are stressed in tension at the outside and in compression in the

middle, at all stages of growth to give great strength overall. A cascade of chemical reactions

driven by the sun’s radiation provides carbohydrates for ’food’. Water is ingeniously pulled up

from the ground in long free-hanging threads, rather than being pumped or sucked. Numerous

control systems open and close the millions of tiny pores or stomata in the leaves (which collect

carbon dioxide), to prevent loss of water (French, 1994).

A more widely appreciated design in nature is that of bats. As described by Dawkins, in

addition to their unique position as the only flying mammals, bats have extraordinary sonar.
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Many types of bats have independently developed sonar, and some have perfected it to such an

extent that their faces have become highly distorted to help receive and direct the ultrasound

echoes to their sensitive ears. Because their ears are so sensitive, bats have muscles to

’disengage’ their ears while they emit their loud echo-location calls. The calls are ultrasound as

the higher frequency helps to resolve smaller objects and hence provides clearer detail in the

returning echoes to the bat. Usually pulses of sound are emitted, for some species at 10 per

second in normal flight and up to 200 a second when homing in on prey, to provide quicker

updates of the world. In some bats, the frequency of each pulsed call is changed, like a high-

speed wolf whistle (similar to our chirp radar) to allow them to detect echoes of echoes. In

addition to this, horseshoe bats rapidly move their outer ear flaps to gain still further

information from the returning sound. Yet despite the amazingly complex design of their echo-

location, no bat is ever confused by the echo-location of the thousands of other bats it lives

with. (Dawkins, 1986)

Clearly, even from just two brief descriptions of the countless designs produced by natural

selection, evolution has much to offer human designers. Natural evolution forms the inspiration

for this work, and it is hoped that an artificial evolutionary design system using a genetic

algorithm will have some of the potential of natural evolution, and will be able to create novel,

elegant and successful designs in the same way.

2.4 Genetic Algorithms

2.4.1 Algorithm

Natural evolution acts through large populations of creatures which reproduce to generate new

offspring that inherit some features of their parents (because of random crossover in the

inherited chromosomes) and have some entirely new features (because of random mutation).

Natural selection (the weakest creatures die, or at least do not reproduce as successfully as the

stronger creatures) ensures that, on average, more successful creatures are produced each

generation than less successful ones. As described previously, evolution has produced some
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astonishingly varied, yet highly successful forms of life. These organisms can be thought of as

good ’solutions’ to the problem of life. In other words, evolution optimises creatures for the

problem of life.

In the same way, within a genetic algorithm (GA) a population of solutions to the problem is

maintained, with the ’fittest’ solutions (those that solve the problem best) being favoured for

’reproduction’ every generation, during an otherwise random selection process. ’Offspring’ are

then generated from these fit parents using random crossover and mutation operators, resulting

in a new population of fitter solutions (Holland, 1975).

Genetic algorithms differ from traditional algorithms in four ways (Goldberg, 1989):

1. GAs usually work with a coding of the parameter set, not the parameters themselves.

2. GAs search from a population of points, not a single point.

3. GAs use payoff (objective function) information, not derivatives or other auxiliary 

knowledge

4. GAs use probabilistic transition rules, not deterministic rules.

Coded parameters are normally referred to as genes, with the values a gene can take being

known as alleles. A collection of genes in one individual of the population is held internally as

a string, and is often referred to as a chromosome. The entire coded parameter set of an

individual (which may be anything from a single gene to a number of chromosomes) is known

as the genotype, while the solution that the coded parameters define is known as the phenotype.

The simple or canonical GA is summarised in figure 2.1. Typically, populations are initialised

with random values. The main loop of the algorithm then begins, with every member of the

population being evaluated and given a fitness value according to how well it fulfils the

objective or fitness function. These scores are then used to determine how many copies of each

individual are placed into a temporary area often termed the ’mating pool’ (i.e. the higher the

fitness, the more copies that are made of an individual). Two parents are then randomly picked
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from this area. Offspring are generated by the use of the crossover operator which randomly

allocates genes from each parent to each offspring. For example, given two parents:

’ABCDEFG’ and ’abcdefg’, and a random crossover point of, say, 4, the two offspring

generated by the simple GA would be: ’ABCDefg’ and ’abcdEFG’. Mutation is then

occassionally applied (with a low probability) to offspring. When it is used to mutate an

individual, typically a single allele is changed randomly. For example, an individual ’111111’

might be mutated into ’110111’. Using crossover and mutation, offspring are generated until

they replace every parent in the population. This entire process of evaluation and reproduction

then continues until either a satisfactory solution emerges or the GA has for run a specified

number of generations. (Holland 1975, Goldberg 1989, Davis 1991, Fogel 1995).

INITIALISE POPULATION WITH RANDOM ALLELES

EVALUATE ALL INDIVIDUALS TO DETERMINE THEIR FITNESSES

REPRODUCE (COPY) INDIVIDUALS ACCORDING TO THEIR FITNESSES
INTO ’MATING POOL’ (HIGHER FITNESS = MORE COPIES OF AN INDIVIDUAL)

RANDOMLY TAKE TWO PARENTS FROM ’MATING POOL’

USE RANDOM CROSSOVER TO GENERATE TWO OFFSPRING

RANDOMLY MUTATE OFFSPRING

PLACE OFFSPRING INTO POPULATION

HAS POPULATION BEEN FILLED WITH NEW OFFSPRING?

YES
NO

NO

YES

FINISHED

IS THERE AN ACCEPTABLE SOLUTION YET?
(OR HAVE x GENERATIONS BEEN PRODUCED?)

Fig. 2.1  The simple genetic algorithm.

The simple GA is just that - very simple and a little naive. This GA is favoured by those that

try to theoretically analyse and predict the behaviour of genetic algorithms, but in reality,

typical GAs are usually more advanced. Common features include: more realistic natural

selection (i.e. automatic selection without human guidance), ability to detect when evolution

ceases, and overlapping populations or elitism (where some fit individuals can survive for more

than one generation) (Davis, 1991). Because of this improved analogy with nature, the term
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reproduction is normally used as it is in biology to refer to the entire process of generating new

offspring, encompassing the crossover and mutation operators. (This is in contrast to the

somewhat confusing use of the word ’reproduction’ to mean an explicit copying stage within the

simple GA).

2.4.2 Theory

The genetic algorithm is perhaps the most well-known of all evolution-based search algorithms.

GAs were developed by John Holland over twenty-five years ago in an attempt to explain the

adaptive processes of natural systems and to design artificial systems based upon these natural

systems (Holland 1973, 1975). Whilst not being the first algorithm to use principles of natural

selection and genetics within the search process (others include Evolutionary Programming:

Fogel, 1963 and Evolutionsstrategie: Rechenberg, 1973), the genetic algorithm is today the

most widely used. More experimental and theoretical analyses have been made on the workings

of the GA than any other evolutionary algorithm. Moreover, the genetic algorithm (and

enhanced versions of it) resembles natural evolution more closely than most other methods.

Having become widely used for a broad range of optimisation problems in the last ten years

(Holland, 1992), the GA has been described as being a "search algorithm with some of the

innovative flair of human search" (Goldberg, 1989). GAs are also very forgiving algorithms -

even if they are badly implemented, or poorly applied, they will often still produce acceptable

results (Davis, 1991). GAs are today renowned for their ability to tackle a huge variety of

optimisation problems (including discontinuous functions), for their consistent ability to

provide excellent results and for their robustness (Holland 1975, Goldberg 1989, Davis 1991,

Fogel 1995).

For a search algorithm to be robust, it must be capable of producing good solutions to a broad

range of problems. In his book, Goldberg compares traditional search methods (calculus-based,

enumerative, and random) with genetic algorithms (Goldberg, 1989). He concludes: "while our

discussion has been no exhaustive examination of the myriad methods of traditional
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optimisation, we are left with a somewhat unsettling conclusion: conventional search methods

are not robust." (Goldberg, 1989, p.5). The general view of many researchers appears to be in

agreement with this, although it is often debated exactly which algorithm would give the best

results for specific problems. Typically, it is argued that a traditional algorithm designed

specifically for a problem will provide better results for that problem than a GA could, but that

a GA will provide good solutions for a much broader selection of problems, compared to such

problem-specific methods (Fogel, 1995).

Significantly, the design system described in this thesis requires an algorithm capable of

consistently finding good solutions to a range of design problems, i.e. the evaluation software

specifying new design tasks for the system could consist of literally any type of function. For

this reason it is felt that the genetic algorithm is an appropriate choice to form the core search-

engine of the system.

Whilst there is no formal proof that the GA will always converge to an acceptable solution to a

given problem, a variety of theories exist (Holland 1975, Kargupta 1993, Harris 1994), the

most accepted of these being Holland’s Schema Theorem and the Building Block Hypothesis

(Holland 1975).

Briefly, a schema is a similarity template describing a set of strings (or chromosomes) which

match each other at certain positions. For example, the schema *10101 matches the two strings

{110101, 010101} (using a binary alphabet and a metasymbol or don’t care symbol *). The

schema *101* describes four strings {01010, 11010, 01011, 11011}. As Goldberg (1989)

elucidates, in general, for alphabets of cardinality (number of alphabet characters) k, and string

lengths of l characters, there are (k + 1)l schemata.

The order of a schema is the number of fixed characters in the template, e.g. the order of

schema *1*110 is 4, and the order of schema *****0 is 1. The defining length of a schema is



20

the distance between the first and last fixed character in the template, e.g. the defining length of

1****0 is 5, the defining length of 1*1*0* is 4, and the defining length of 0***** is 0.

Holland’s Schema Theorem states that the action of reproduction, crossover and mutation

within a genetic algorithm ensures that schemata of short defining length, low order and high

fitness exponentially increase within a population (Holland, 1975). Such schemata are known

as building blocks.

The building block hypothesis suggests that genetic algorithms are able to evolve good

solutions by combining these fit, low order schemata with short defining lengths to form better

strings (Goldberg, 1989). However, this still remains an unproven (though widely accepted)

hypothesis.

2.4.3 Analyses

Experimental results show that for most GAs (initialised with random values), evolution makes

extremely rapid progress at first, as the diverse elements in the initial population are combined

and tested. Over time, the population begins to converge, with the separate individuals

resembling each other more and more (Davis, 1991). Effectively this results in the GA

narrowing its search in the solution-space and reducing the size of any changes made by

evolution until eventually the population converges to a single solution (Goldberg, 1989). When

plotting the best fitness value in each new population against the number of generations, a

typical curve emerges, fig 2.2 (Parmee and Denham, 1994).

generations

fitness

100fit

unfit

Fig. 2.2  Typical curve of evolving fitness values over time.
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Theoretical research to investigate the behaviour of the various varieties of GAs for different

problems is growing rapidly, with careful analyses of the transmission of schemata being made

(De Jong 1975, Kargupta 1993). The use of Walsh function analysis (Goldberg 1989,

Goldberg and Rudnick 1991, Deb et. al. 1993) and Markov Chain analysis (Horn 1993,

Mahfoud 1993a, 1993b) has led to the identification of some ’deceptive’ and ’hard’ problems for

GAs (Deb and Goldberg 1992, 1993, Goldberg, Horn & Deb 1992a, 1992b).

2.4.4 Advanced Genetic Algorithms

When applying GAs to highly complex applications, some problems do arise. The most

common is premature convergence where the population converges early onto non-optimal

local minima (Davis, 1991). Problems are also caused by deceptive functions, which are, by

definition, ’hard’ for most GAs to solve. In addition, noisy functions (Goldberg et. al. 1992a,

1992b, Lomborg 1991) and the optimisation of multiple criteria within GAs can cause

difficulties (Fonseca and Fleming, 1995). In an attempt to overcome such problems, new, more

advanced types of GA are being developed (Goldberg, 1993). These include:

• Parallel GAs, where multiple processors are used in parallel to run the GA (Adeli and

Cheng 1994c, Levine 1994).

• Distributed GAs, where multiple populations are separately evolved with few interactions

between them (Whitley and Starkweather 1990, Mühlenbein 1992)

• GAs with niching and speciation, where the population within the GA is segregated into

separate 'species' (Horn 1993, Horn and Nafpliotis 1993, Horn et. al. 1994).

• Messy GAs (mGA), which use a number of 'exotic' techniques such as variable-length

chromosomes and a two-stage evolution process (Deb 1991, Deb and Goldberg, 1991).

• Multiobjective GAs (MOGAs), which allow multiple objectives to be optimised with GAs

(Schaffer 1985,  Srinivas and Deb 1995, Bentley and Wakefield 1996).

• Hybrid GAs (hGAs), where GAs are combined with local search algorithms (George 1994,

Radcliffe and Surrey 1994a).
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• Structured GAs (sGAs), which allow parts of chromosomes to be switched on and off

using evolveable ’control genes’ (Dasgupta and McGregor 1992, Parmee and Denham

1994).

2.4.5 Applications of Genetic Algorithms

The genetic algorithm has only become popular for optimisation problems in the last ten or

fifteen years (Holland 1992, Goldberg 1994). However, in that time, literally thousands of

different problems in many different areas have had solutions successfully optimised by GAs.

As will be shown in the following sections of this chapter, one of the most common problem

areas is design, with perhaps more design problems having been optimised by GAs than any

other type of problem. To avoid repetition, there follows a brief list of just some of the

problems tackled by GAs that are not directly related to the design of physical objects:

• Machine learning (Goldberg 1989, Goldberg et. al. 1992b, Holland 1992, Smith and

Goldberg 1992a, Horn et. al. 1994).

• Strategy acquisition (Greffenstette, 1991).

• Ordering problems (Kargupta et al. 1992, Schaffer & Eshelman 1995).

• Control systems (Krishnakumar and Goldberg 1992, Lansbury et al. 1992, Husbands et al.

1996, Morris and Martin 1996).

• Fault-tolerant systems (Thompson, 1995).

• Scheduling (Yamada and Nakano, 1995).

• Data mining (Radcliffe and Surrey 1994b).

• Artificial life (Bedau et. al. 1992, Cliff et. al. 1994, Sims 1994a, 1994b).

• Game playing (Axelrod 1987, Lomborg 1991, Adachi and Kazuhiro 1992, Albin 1992,

Mühlenbein 1991, Vincent 1992).

• Set covering and partitioning (Beasley and Chu 1994, Levine 1994).

• Signal timing (Foy et. al., 1992).

• Composition of music (Horner and Goldberg, 1991)
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2.5 The Optimisation of Existing Designs

2.5.1 Application-Specific Optimisation of Designs

The development of non-generic optimisation systems, capable of optimising explicitly

parameterised parts of existing designs, has been attempted for many years (Dym and Levitt

1991, Adeli 1994). Traditionally, calculus-based approaches have been favoured, for example

the designs of structures such as bridges or transmission towers have been optimised using

optimality criteria methods (Rozvany and Zhou, 1994).

These and many other techniques have been tried to optimise designs (Dym and Levitt, 1991),

but in recent times the use of GAs and similar adaptive search methods for such problems has

become widespread (Parmee and Denham 1994, Rayward-Smith 1995). Results from

comparisons between GAs and other algorithms inevitably vary depending on the application,

but for a typical design optimisation task, it seems that the GA can outperform other traditional

algorithms. For example, Tennant compares a GA with simulated annealing and downhill

simplex algorithms, in the design of microwave absorbers, with only the GA locating the

maximum of the function correctly every run (Tennant and Chambers, 1994). Similar results

were found by Husbands, who compared a GA with simulated annealing and gradient descent

algorithms in the optimisation of the structural design of a wing boxes (Husbands et. al., 1996).

Today, numerous examples of the optimisation of designs exist, most using GAs or other

adaptive search methods. For example, computers have been used to optimise:

• Adaptive antenna arrays and radar absorbers (Chambers et. al., 1995).

• Airfoil and aircraft geometries (Bouchard et. al. 1988, Bramlette and Bouchard 1991,

Obavashi and Takanashi 1995, Husbands, Jermy, McIlhagga, & Ives 1996).

• Analogue filters (Reeves et al., 1994).

• Architecture of buildings (Glaskin 1995, describing the work of Cawthorne).

• Building heating systems (Dickinson and Bradshaw, 1995).

• Aesthetic bridges (Furuta et. al., 1995).



24

• Low noise engine blocks (Fisher, 1995).

• Encastré beams (McMahon et al., 1994).

• Floorplans (Koakutsu et al., 1992).

• Sizes of gas pipes (Boyd, 1994).

• Hydraulic networks (Savic and Walters 1994, Donne et al., 1994).

• Microwave absorbing materials (Tennant and Chambers, 1994).

• Minimum length nozzle design (King et al. 1993).

• Satellite Booms (Keane and Brown, 1996).

• Servo and micro motors (Hameyer and Belmans, 1996).

• Spacecraft systems (Garipov et. al., 1994).

• Structural topology (Shankar and Hajela 1991, Adeli and Cheng 1994a, 1994b, 1994c,

Rozvany and Zhou 1994).

• Transmission towers (Cai and Thierauf, 1996).

• VLSI layouts (Schnecke and Vornberger 1995).

Many of these applications are simple demonstrations and are often implemented crudely, with

seemingly little knowledge of the genetic algorithm used. However, some systems have been

used with considerable success to optimise real-world problems. For example, as described by

Holland (1992), a design of a high-bypass jet engine turbine was typically optimised in eight

weeks by an engineer; the genetic algorithm optimised a design in only two days, "with three

times the improvements of the manual version".

Whilst the wide variety of applications being tackled shows that computers can be used to

successfully evaluate and optimise many different types of design, every one of these

optimisation systems, without exception, suffers from two major drawbacks. Firstly, every one

can only optimise existing designs - it would be quite impossible to use any of them to create a

new design. Secondly, every one is application-specific - they can only optimise the single type

of design they were created to optimise, and no others.
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2.5.2 Generic Optimisation of Designs

Generic design optimisation (i.e. the optimisation of more than one type of design by a single

system) is a less common subject for research. Kant’s ’CONFIG’ system (Kant, 1988) allows a

variety of different designs to be analysed, but performs no optimisation. Similarly, Libes’

’EXPECT’ (Libes, 1990) allows multiple application analysis tools to be linked, but does not

incorporate optimisation. Bouchard’s ’Engineer’s Associate’ (Bouchard et. al., 1988) provides a

limited generic framework to work with systems that can be represented by equations. Culley’s

general purpose optimisation system ’GPOS’ (Culley and Wallace, 1994) consists of a toolbox

of optimisation algorithms, capable of optimising a range of different applications (once

interfaced appropriately).

However, Tong’s ’Engineous’ (Tong, 1992) is perhaps the most successful generic system,

having been demonstrated on over 20 design optimisation tasks, including the optimisation of

3D turbine blades, cooling fans, DC motors, power supplies and a nuclear fuel lattice. A large

portion of the system consists of complex interfacing software to allow the use of existing

design evaluation packages. The system relies heavily on expert systems containing much

application-specific knowledge to guide the evolution of a GA, which has to be changed for

every new application. Tong claims that "the current version of Engineous has demonstrated

the profound impact such a system can have on productivity and performance" (Tong, 1992).

2.6 The Creation of Shapes and Images by Computers

2.6.1 Evolution of Art

The use of computers to create art (again, often with GAs and similar adaptive search

algorithms) is growing in popularity amongst some artists. For example, Stephen Todd and the

artist William Latham have successfully evolved many three dimensional ’artistic’ images and

animations (Todd and Latham, 1992). Their system uses an elegant artificial embryology

known as ’Form Grow’ to allow the definition of intricate three-dimensional shapes and

textures. These shapes are composed of a number of primitive shapes (e.g. spiral, sphere,
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torus) selected to give a distinctive ’biological’ appearance to the images, see fig. 2.3. A simple

evolution-based search algorithm, known as ’Mutator’ (not unlike an Evolutionary Strategy

(ES), Rechenberg, 1973) allows the creation and modification of the shapes, directed by the

user of the software. This work has now been redeveloped by Latham and Atkinson, to create a

commercially available product known as ’Organic Art’ (as described by Boxer, 1996).

A similar system was recently developed by Husbands, Jermy, McIlhagga and Ives. This uses

superquadrics as primitive shapes in combination with a recursive shape description language,

allowing the specification of a variety of three-dimensional shapes. Guided by a human

observer, a distributed genetic algorithm was used to evolve free-form shapes resembling

corkscrews or propellers (Husbands, Jermy, McIlhagga, & Ives, 1996).

Another example is the work of John Mount, who shows his ’Interactive Genetic Art’ on the

internet (at http://robocop.modmath.cs.cmu.edu:8001). He employs a GA to modify fractal

equations that define two dimensional images. Visitors are then invited to vote on how

attractive each image is, which provides the GA with fitness scores to allow a new generation

of theoretically more attractive images to be produced.
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Fig. 2.3  Evolved art: ’Breeding Forms on the Infinite Plane’

(reproduced with kind permission of William Latham)



28

Fig. 2.4  A selection of evolved ’biomorphs’

(reproduced with kind permission of Richard Dawkins)

Finally, the biologist Richard Dawkins has demonstrated the ability of computers to evolve

shapes resembling those found in nature (Dawkins, 1986). Using hierarchical tree-structures to

define shapes and a simple mutation-based program that modifies the shapes, he has produced

images (or ’biomorphs’) resembling the shapes of life-forms, e.g. ’spiders’, ’beetles’, and

’flowers’, see fig. 2.4.

All of these systems can be said to create images and shapes, since none involve the

modification of existing images, i.e. all images are evolved from random beginnings (from

scratch). However, all of these systems require the images being evolved to be evaluated by a
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human (i.e. artificial selection instead of natural selection). Moreover, because of limited

representations, most of these systems cannot produce anything more than ’pretty pictures’.

Nevertheless, such systems do demonstrate the ability of computers using evolutionary search

to generate a wide range of different two and three-dimensional images. In addition, and

perhaps more importantly, by evolving a variety of highly original and unusual-looking images,

these systems all demonstrate creativity by a computer.

2.6.2 Evolution of Shape and Behaviour

Typical work in the field of Artificial Life consists of investigations into the creation of control

systems (or ’brains’) for robots, capable of producing behaviour such as action selection,

planning and learning (Meyer and Guillot, 1994). Recent work involves the evolution of

connections between artificial neurons, and in some cases, the evolution of the form of the

artificial creature or ’animat’. For example, Harvey has successfully evolved both the ’brains’

and the visual morphology (i.e. position and size of three visual receptive fields) of robots,

resulting in robots capable of visually distinguishing between a rectangle and a triangle

(Harvey et. al., 1994).

However, perhaps the most notable work in this area is that of Karl Sims, who evolves both the

’brains’ and the entire ’bodies’ of virtual creatures (Sims 1994a, 1994b). Using rectangular

blocks arranged hierarchically to define the simple shapes of the creatures and a genetic

algorithm to evolve them, Sims has evolved turtle-like creatures with astonishing abilities to

’swim’ and follow lights, as well as ’walking’ creatures, and ’jumping’ creatures (Sims, 1994a).

By co-evolving two competing creatures simultaneously (each trying to ’grab’ a virtual block

before the other), Sims has shown how the evolution of many designs and counter-designs can

develop, see fig. 2.5. For example, one creature might evolve a long arm to snatch the block

quickly, only to have the other creature evolve an arm to block this movement (Sims, 1994b).
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Fig. 2.5  Evolved Competing Creatures

(reproduced with kind permission of Karl Sims)
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Whilst the evolutionary design system to be described in this thesis focuses on the shape of

designs only, disregarding behaviour, the ’animats’ such as those evolved by Sims, clearly

demonstrate that computers are capable of evolving functional designs from scratch, evaluated

without any human interaction.

2.7 The Creation of Designs by Computers

As described previously, the optimisation of existing designs is relatively common, with the

creation of artistic images and artificial life growing rapidly. However, the creation of new

designs seems to be a less common subject for research, with little literature in existence. Early

work concentrated in the cognitive area of creative design automation (Dyer et al. 1986, Maher

et. al. 1989, Dym and Levitt 1991), i.e. attempting to make a computer ’think’ in the same way

as a human, when designing. Such systems attempted to create descriptions of designs at an

abstract level, typically using an expert system to ’design’. For example Dyer’s ’EDISON’ (Dyer

et. al., 1986) represented simple mechanical devices such as doors and can-openers

symbolically in terms of five components: parts, spatial relationships, connectivity,

functionality and processes. A combination of planning and invention using ’generalisation’,

’analogy’ and ’mutation’ attempted to modify these components to fulfil the design specification.

Unfortunately, the abstract level at which reasoning was performed was too low, so the system

was unable to handle any problems apart from the simplest cases (Pham and Yang, 1993).

Another approach consisted of invention based on ’visualising potential interactions’ (Williams,

1990). This generated descriptions of designs in terms of high-level components and the

interactions between them, using qualitative reasoning and quantitative algebra. Again, the

proposed system could only deal with highly simplified designs (Pham and Yang, 1993).

Some researchers do claim to have produced preliminary design systems (Ulrich and Seering

1987, Michielssen 1992, Pham and Yang 1993), but on closer inspection, such systems seem to

either consist of the optimisation of connections between existing high-level building blocks or

to be simply optimisation of existing designs. For example, Michielssen (1992) describes an
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approach for designing optimal multilayer optical filters that "does not require a preliminary

design". However, the author then describes how a GA is used to determine "the thicknesses of

the layers of the filter required for an optimal response". In other words, the GA is presented

with a simple preliminary filter design consisting of a fixed number of layers, whose

thicknesses are to be optimised. Alternatively, Pham describes a "preliminary design system"

known as TRADES (TRAnsmission DESigner) (Pham & Yang, 1993). When given the type of

input (e.g. rotary motion) and the desired output (e.g. perpendicular linear motion), the system

generates a suitable transmission system to convert the input into the output. However, this GA

is presented with a set of high level design building blocks (such as rack and pinion, worm

gear, belt drive), reducing the design task to a simple ordering problem. In other words, the GA

simply finds the optimal order of existing components within a design; this pre-defined and

limited choice could reduce the potential for truly creative design by the system.

In a similar way, Chakrabarti has demonstrated a program capable of creating simple designs

of devices and machines which involve motion (Chakrabarti, 1995). Using a knowledge-base

and a search-engine, ’FuncSION’ can generate a number of different designs by combining

different basic elements such as pivots, rods and levers. So far the system has been used to

suggest alternative designs for a door-handle and an arm support for sufferers of muscular

dystrophy. However, again designs are generated by combining existing components.

Moreover, the knowledge-base determines the operation and combinations of the components

that are permitted, thus potentially limiting the scope for radically different conceptual designs.

Other researchers favour closer analogies with nature, using artificial embryologies that

resemble natural embryology. In other words, genes are used as instructions on how shapes

should be ’grown’, rather than used to specify the shapes directly. For example, de Garis

attempted to grow simple shapes using collections of ’cells’ with a genetic algorithm (de Garis

et. al., 1992). However, all results produced by the system were disappointing, with even a

simple ’L’ shape proving difficult. To show how difficult it was to evolve any more complex

shapes, the final attempt was to evolve a ’turtle’ shape (comprised of six filled circles: one for
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the body, one for the head, and four for the legs). The authors concluded: "The fitness was only

80% and does not look anything like a turtle. It looks more like a blob." (de Garis et. al., 1992).

Rosenman has had more success using a similar idea to evolve new floorplans for houses

(Rosenman, 1996). This is perhaps the work that can most accurately be described as design

creation, since actual designs are generated from scratch. Two dimensional plans are ’grown’

using a simplified GA to modify ’cells’ organised hierarchically using grammar rules

(Rosenman, 1996). This spatial representation, although sounding conceptually elegant

(’growing’ cells to form designs), requires huge, complicated structures to define any design

composed of more than just a few cells. Just as de Garis had difficulties, it is possible that this

over-complexity will prevent the system from being scalable to allow the creation of more

complex and realistic designs.

2.8 Summary

This chapter has examined six distinct areas of research relevant to the evolution of general

solid object designs from scratch. First, by reviewing the theories of human design, it becomes

clear that although the human design process can be divided into distinct stages, it is not

usually explicitly performed in these stages. In reality human design is an evolutionary process,

with designs being refined iteratively. Likewise, after reviewing natural evolution, it is clear

that evolution can justifiably be thought of as a highly efficient design process, capable of

inspiring and teaching human designers.

The genetic algorithm is the closest analogy in computer science to natural evolution. The

review of the nature and properties of the GA makes it apparent that the GA does manage to

’borrow’ some of the amazing search potential of natural evolution. The GA is one of the most

effective and generic of search algorithms known, and has become popular in use for a long list

of different applications, particularly design.
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Finally, the three areas of research most related to generic evolutionary design were critically

appraised. The first of these was the optimisation of existing parameterised designs, showing

the ability of the computer, and often of the GA, to optimise many different types of design

beyond the ability of a human designer. Another related area was the creation of artistic images

by the computer (and again, often by the GA) which demonstrates that computers are able to

create a wide range of intricate and detailed images when guided by a human. In addition, the

evolution of artificial ’creatures’ demonstrates that evolutionary search can also create

functional designs from scratch with no human interaction. However, research into the

automatic creation of designs is still in its infancy, with very few successful systems in

existence. Moreover, as yet no system that creates new designs from scratch (rather than

simply ordering pre-defined components) has been demonstrated in more than one problem

domain.

From this extensive literature review it was identified that a generic evolutionary design system,

capable of creating, from scratch, a range of different solid object designs and optimising those

designs without human interaction, does not exist.

Such a system will be described in the remainder of this thesis. This system combines the

creative evolutionary techniques pioneered by artists (and biologists) with the more rigorous

methods of automatic creative design. This has resulted in a generic design system which has

the ’creative properties’ of the art systems and is capable of the generation of a wide range of

useful designs. Furthermore, it is the ’innovative flair’ (Goldberg, 1989) of the genetic

algorithm that gives the system such capabilities.


