FUZZY MODELS
AND ALGORITHMS FOR
PATTERN RECOGNITION
AND IMAGE PROCESSING

THE HANDBOOKS
OF FUZZY SETS SERIES

Series Editors
Didier Dubois and Henri Prade
IRIT, Université Paul Sabatier, Toulouse, France

FUNDAMENTALS OF FUZZY SETS, edited by Didier Dubois and Henri Prade

MATHEMATICS OF FUZZY SETS: Logic, Topology, and Measure Theory, edited
by Ulrich Hohle and Stephen Ernest Rodabaugh

FUZZY SETS IN APPROXIMATE REASONING AND INFORMATION

SYSTEMS, edited by James C. Bezdek, Didier Dubois and Henri Prade

FUZZY MODELS AND ALGORITHMS FOR PATTERN RECOGNITION AND
IMAGE PROCESSING, by James C. Bezdek, James Keller, Raghu Krisnapuram
and Nikhil R. Pal

FUZZY SETS IN DECISION ANALYSIS, OPERATIONS RESEARCH AND
STATISTICS, edited by Roman Slowinski

FUZZY SYSTEMS: Modeling and Control, edited by Hung T. Nguyen and Michio
Sugeno

PRACTICAL APPLICATIONS OF FUZZY TECHNOLOGIES, edited by Hans-
Jiirgen Zimmermann

FUZZY MODELS
AND ALGORITHMS FOR
PATTERN RECOGNITION
AND IMAGE PROCESSING

James C. Bezdek
University of West Florida

James Keller
University of Missouri

Raghu Krisnapuram
Colorado School of Mines

Nikhil R. Pal
Indian Statistical Institute

@_ Springer

Library of Congress Cataloging-in-Publication Data

Fuzzy models and algorithms for pattern recognition and image processing / James C.
Bezdek ... [etal.].
p. cm. — (The handbooks of fuzzy sets series)

Includes bibliographical references and index.

ISBN 0-387-24515-4 (softcover : alk. paper)

ISBN 0-7923-8521-7 (hardcover) © 1999 Kluwer Academic Publishers

1. Optical pattern recognition. 2. Fuzzy algorithms. 3. Cluster analysis. 4. Image

processing. 5. Computer vision. 1. Bezdek, James C., 1939- l1. Series.

TA1650.F89 2005
006.4°2--dc22
2005042541

©® 2005 Springer Science+Business Media, Inc. (First softcover printing)

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms,
even if the are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America.
987654321 SPIN 11384601

springeronline.com

http://springeronline.com

Contents

Series Foreword
Preface

1 Pattern Recognition
1.1 Fuzzy models for pattern recognition
1.2 Why fuzzy pattern recognition?
1.3 Overview of the volume
1.4 Comments and bibliography

2 Cluster Analysis for Object Data
2.1 Cluster analysis
2.2 Batch point-prototype clustering models
A. The c-means models
B. Semi-supervised clustering models
C. Probabilistic Clustering
D. Remarks on HCM/FCM/PCM
E. The Reformulation Theorem
2.3 Non point-prototype clustering models
A. The Gustafson-Kessel (GK) Model
B. Linear manifolds as prototypes
C. Spherical Prototypes
D. Elliptical Prototypes
E. Quadric Prototypes
F. Norm induced shell prototypes
G. Regression models as prototypes
H. Clustering for robust parametric estimation
2.4 Cluster Validity
A. Direct Measures
B. Davies-Bouldin Index
C. Dunn's index
D. Indirect measures for fuzzy clusters
E. Standardizing and normalizing indirect indices
F. Indirect measures for non-point prototype models
G. Fuzzification of statistical indices
2.5 Feature Analysis
2.6 Comments and bibliography

vi FUZZY PATTERN RECOGNITION

3 Cluster Analysis for Relational Data 137
3.1 Relational Data 137
A. Crisp Relations 138

B. Fuzzy Relations 143
3.2 Object Data to Relational Data 146
3.3 Hierarchical Methods 149
3.4 Clustering by decomposition of fuzzy relations 153
3.5 Relational clustering with objective functions 158
A. The Fuzzy Non Metric (FNM) model 159

B. The Assignment-Prototype (AP) Model 160

C. The relational fuzzy c-means (RFCM) model 165

D. The non-Euclidean RFCM (NERFCM) model 168
3.6 Cluster validity for relational models 178
3.7 Comments and bibliography 180
4 Classifier Design 183
4.1 Classifier design for object data 183
4.2 Prototype classifiers 190
A. The nearest prototype classifier 190

B. Multiple prototype designs 196
4.3 Methods of prototype generation 201
A. Competitive learning networks 203

B. Prototype relabeling 207

C. Sequential hard c-means (SHCM) 208

D. Learning vector quantization (LVQ) 209

E. Some soft versions of LVQ 211

F. Case Study : LVQ and GLVQ-F 1-nmp designs 212

G. The soft competition scheme (SCS) 219

H. Fuzzy learning vector quantization (FLVQ) 222

L. The relationship between c-Means and CL schemes 230

J. The mountain "clustering” method (MCM) 232
4.4 Nearest neighbor classifiers 241
4.5 The Fuzzy Integral 253
4.6 Fuzzy Rule-Based Classifiers 268
A. Crisp decision trees 269

B. Rules from crisp decision trees 273

C. Crisp decision tree design 278

D. Fuzzy system models and function approximation 288

E. The Chang - Pavlidis fuzzy decision tree 303

F. Fuzzy relatives of ID3 308

G. Rule-based approximation based on clustering 325

H. Heuristic rule extraction 359

I. Generation of fuzzy labels for training data 368
4.7 Neural-like architectures for classification 370
A. Biological and mathematical neuron models 372

B. Neural network models 378

C. Fuzzy Neurons 393

D. Fuzzy aggregation networks 403

E. Rule extraction with fuzzy aggregation networks 410

Contents

4.8 Adaptive resonance models

A. The ART1 algorithm

B. Fuzzy relatives of ART

C. Radial basis function networks
4.9 Fusion techniques

A. Data level fusion

B. Feature level fusion

C. Classifier fusion
4.10 Syntactic pattern recognition

A. Language-based methods

B. Relation-based methods
4.11 Comments and bibliography

5 Image Processing and Computer Vision
5.1 Introduction
5.2 Image Enhancement
5.3 Edge Detection and Edge Enhancement
5.4 Edge Linking
5.5 Segmentation
A. Segmentation via thresholding
B. Segmentation via clustering
C. Supervised segmentation
D. Rule-Based Segmentation
5.6 Boundary Description and Surface Approximation
A. Linear Boundaries and Surfaces
B. Circular Boundaries
C. Quadric Boundaries/Surfaces
D. Quadric surface approximation in range images
5.7 Representation of Image Objects as Fuzzy Regions
A. Fuzzy Geometry and Properties of Fuzzy Regions
B. Geometric properties of original and blurred objects
5.8 Spatial Relations
5.9 Perceptual Grouping
5.10 High-Level Vision
5.11 Comments and bibliography

References cited in the text

References not cited in the text

Appendix 1 Acronyms and abbreviations
Appendix 2 The Iris Data: Table I, Fisher (1936)

vil

413
414
421
425
442
443
453
454
491
493
507
523

547
547
550
562
572
579
580
582
588
592
601
603
611
615
621
624
625
630
639
651
658
663

743

759

Series Foreword

Fuzzy sets were introduced in 1965 by Lotfi Zadeh with a view to
reconcile mathematical modeling and human knowledge in the
engineering sciences. Since then, a considerable body of literature
has blossomed around the concept of fuzzy sets in an incredibly wide
range of areas, from mathematics and logic to traditional and
advanced engineering methodologies {from civil engineering to
computational intelligence). Applications are found in many
contexts, from medicine to finance, from human factors to
consumer products, from vehicle control to computational
linguistics, and so on.... Fuzzy logic is now used in the industrial
practice of advanced information technology.

As a consequence of this trend, the number of conferences and
publications on fuzzy logic has grown exponentially, and it becomes
very difficult for students, newcomers, and even scientists already
familiar with some aspects of fuzzy sets, to find their way in the
maze of fuzzy papers. Notwithstanding circumstantial edited
volumes, numerous fuzzy books have appeared, but, if we except very
few comprehensive balanced textbooks, they are either very
specialized monographs, or remain at a rather superficial level.
Some are even misleading, conveying more ideology and
unsustained claims than actual scientific contents.

What is missing is an organized set of detailed guidebooks to the
relevant literature, that help the students and the newcoming
scientist, having some preliminary knowledge of fuzzy sets, get
deeper in the field without wasting time, by being guided right away
in the heart of the literature relevant for her or his purpose. The
ambition of the HANDBOOKS OF FUZZY SETS is to address this
need. It will offer, in the compass of several volumes, a full picture of
the current state of the art, in terms of the basic concepts, the
mathematical developments, and the engineering methodologies
that exploit the concept of fuzzy sets.

This collection will propose a series of volumes that aim at
becoming a useful source of reference for all those, from graduate
students to senior researchers, from pure mathematicians to
industrial information engineers as well as life, human and social
sciences scholars, interested in or working with fuzzy sets. The
original feature of these volumes is that each chapter - except in the
case of this volume, which was written entirely by the four authors -
is written by one or several experts in the topic concerned. It
provides an introduction to the topic, outlines its development,
presents the major results, and supplies an extensive bibliography
for further reading.

X FUZZY PATTERN RECOGNITION

The core set of volumes are respectively devoted to fundamentals of
fuzzy sets, mathematics of fuzzy sets, approximate reasoning and
information systems, fuzzy models for pattern recognition and
image processing, fuzzy sets in decision research and statistics,
fuzzy systems in modeling and control, and a guide to practical
applications of fuzzy technologies.

D. Dubois H. Prade
Toulouse

Preface

The authors Rather than compile many chapters written by various
authors who use different notations and semantic descriptions for
the same models, we decided to have a small team of four persons
write the entire volume. Each of us assumed the role of lead author
for one or more of the chapters, and the other authors acted like
consultants to the lead author. Each of us helped the lead author by
contributing examples, references, diagrams or text here and there;
and we all reviewed the entire volume three times. Whether this
approach was successful remains to be seen.

The plan What we tried to do is this: identify the important work
that has been done in fuzzy pattern recognition, describe it, analyze
it, and illustrate it with examples that an interested reader can
follow. As with all projects of this kind, the material inevitably
reflects some bias on the part of its authors (after all, the easiest
examples to give already live in our own computers). Moreover, this
has become an enormous field, and the truth is that it is now far too
large for us to even know about many important and useful papers
that go unrecognized here. We apologize for our bias and our
ignorance, and accept any and all blame for errors of fact and/or
omission. How current is the material in the book? Knuth (1968)
stated that "It is generally very difficult to keep up with a field that is
economically profitable, and so it is only natural to expect that
many of the techniques described here eventually be superseded by
better ones". We cannot say it better.

The numbering system The atomic unit for the numbering system is
the chapter. Figures, tables, examples and equations are all
numbered consecutively within each chapter. For example, Figure
3.5 is Figure 5 of Chapter 3. The beginning and end of examples are
enclosed by goofy looking brackets, like this:

Example 5.4 Did you ever have to finally decide? To pick up on
one and let the other one ride, so many changes,.......

m sy e

The algorithms: art, science and voodoo There are a lot of
algorithms in the book. We ran many, but not certainly not all, of
the experiments ourselves. We have given pseudo code for quite a few
algorithms, and it is really pseudo in the sense that it is a mixture of
three or four programming languages and writing styles. Our intent
is to maximize clarity and minimize dependence on a particular
language, operating system, compiler, host platform, and so on. We
hope you can read the pseudo code, and that you can convert it into
working programs with a minimum of trouble.

Xii FUZZY PATTERN RECOGNITION

Almost all algorithms have parameters that affect their
performance. Science is about quantitative models of our physical
world, while art tries to express the qualitative content of our lives.
When you read this book you will encounter lots of parameters that
are user-defined, together with evasive statements like "pick a value
for k that is close to 1", or "don't use high values for m". What do
instructions such as these mean? Lots of things: (i) we don't have
better advice; (ii) the inventor of the algorithm tried lots of values,
and values in the range mentioned produced the best results for her
or him,; (iii) 0.99 is closer to 1 than 0.95, and 22 is higher than 1.32,
you may never know which choice is better, and (unfortunately) this
can make all the difference in your application; (iv) sometimes we
don't know why things work the way they do, but we should be happy
if they work right this time - call it voodoo, or call it luck, but if it
works, take it.

Is this cynical? No, it's practical. Science is NOT exact, it's a
sequence of successively better approximations by models we invent
to the physical reality of processes we initiate, observe or control.
There's a lot of art in science, and this is nowhere more evident than
in pattern recognition, because here, the data always have the last
word. We are always at the mercy of an unanticipated situation in
the data; unusual structures, missing observations, improbable
events that cause outliers, uncertainty about the interactions
between variables, useless choices for numerical representation,
sensors that don't respect our design goals, computers that lose bits,
computer programs that have an undetected flaw, and so on. When
you read about and experiment with algorithmic parameters, have
an open mind - anything is possible, and usually is.

The data Most of the numerical examples use small data sets that
may seem contrived to you, and some of them are. There is much to
be said for the pedagogical value of using a few points in the plane
when studying and illustrating properties of various models. On the
other hand, there are certain risks too. Sometimes conclusions that
are legitimate for small, specialized data sets become invalid in the
face of large numbers of samples, features and classes. And of
course, time and space complexity make their presence felt in very
unpredictable ways as problem size grows.

There is another problem with data sets that everyone probably
knows about, but that is much harder to detect and document, and
that problem goes under the heading of, for example, "will the real
Iris data please stand up?". Anderson's (1935) Iris data, which we
think was first published in Fisher (1936), has become a popular set
of labeled data for testing - and especially for comparing - clustering
algorithms and classifiers. It is of course entirely appropriate and
in the spirit of scientific inquiry to make and publish comparisons
of models and their performance on common data sets, and the

Preface xiii

pattern recognition community has used Iris in perhaps a thousand
papers for just this reason - - - or have we?

During the writing of this book we have discovered - perhaps others
have known this for a long time, but we didn't - that there are at least
two (and hence, probably half a dozen) different, well publicized
versions of Iris. Specifically, vector 90, class 2 (Iris Versicolor) in
Iris has the coordinates (5.5, 2.5, 4, 1.3) on p. 566, Johnson and
Wichern (1992); and has the coordinates (5.5, 2.5, 5, 1.3) on p. 224 in
Chien (1978). YIKES !! For the record, we are using the Iris data as
published in Fisher (1936) and repeated in Johnson and Wichern
(1992). We will use Iris (?) when we are not sure what data were used.

What this means is that many of the papers you have come to know
and love that compare the performance of this and that using Iris
may in fact have examples of algorithms that were executed using
different data sets! What to do? Well, there isn't much we can do
about this problem. We have checked our own files, and they all
contain the data as listed in Fisher (1936} and Johnson and Wichern
(1992). That's not too reassuring, but it's the best we can do. We have
tried to check which Iris data set was used in the examples of other
authors that are discussed in this book, but this is nearly
impossible. We do not guarantee that all the results we discuss for
"the" Iris data really pertain to the same numerical inputs. Indeed,
the "Lena" image is the Iris data of image processing, - after all, the
original Lena was a poor quality, 6 bit image, and more recent
copies, including the ones we use in this book, come to us with
higher resolution. To be sure, there is only one analog Lena
(although PLAYBOY ran many), but there are probably. many
different digital Lenae.

Data get corrupted many ways, and in the electronic age, it should
not surprise us to find (if we can) that this is a fairly common event.
Perhaps the best solution to this problem would be to establish a
central repository for common data sets. This has been tried several
times without much success. Out of curiosity, on September 7, 1998
we fetched Iris from the anonymous FTP site "ftp.ics.uci.edu" under
the directory "pub/machine-learning-databases"”, and discovered
not one, but two errors in it! Specifically, two vectors in Iris Sestosa
were wrong; vector 35 in Fisher (1936) is (4.9, 3.1, 1.5, 0.2) but in the
machine learning electronic database it had coordinates (4.9, 3.1,
1.5, 0.1); and vector 38 in Fisher is (4.9, 3.6, 1.4, 0.1), but in the
electronic database it was (4.9, 3.1, 1.5, 0.1). Finally, we are aware of
several papers that used a version of Iris obtained by multiplying
every value by 10, so that the data are integers, and the papers
involved discuss 10*Iris as if they thought it was Iris. We don't think
there is a way to correct all the databases out there which contain
similar mistakes (we trust that the machine learning database will
be fixed after our alert}), but we have included a listing of Iris in
Appendix 2 of this book (and, we hope it's right). What all this means

http://ftp.ics.uci.edu

xiv. FUZZY PATTERN RECOGNITION

for you, the pattern recognition aficionado is this: pattern
recognition is data, and not all data are created equally, much less
replicated faithfully!

Numerical results We have tried to give you all the information you
need to replicate the outputs we report in numerical examples. There
are a few instances where this was not possible (for example, when
an iterative procedure was initialized randomly, or when the results
were reported in someone's paper 10 or 15 years ago, or when the
authors of a paper we discuss simply could not supply us with more
details), and of course it's always possible that the code we ran
implemented something other than we thought it did, or it simply
had undetected programming errors. Also, we have rounded off or
truncated the reported results of many calculations to make tables
fit into the format of the book. Let us know if you find substantial
differences between outputs you get (or got) and the results we report.

The references More than one reference system is one too many. We
chose to reference books and papers by last names and years. As
with any system, this one has advantages and disadvantages. Our
scheme lets you find a paper quickly if you know the last name of
the first author, but causes the problem of appending "a", "b" and so
on to names that appear more than once in the same year. There
may be a mistake or two, or even O(n) of them. Again, please let us
know about it. We have divided the references into two groups: those
actually cited in the text, and a second set of references that point to
related material that, for one reason or another, just didn't find
their way into the text discussion. Many of these uncited papers are
excellent - please have a look at them.

The acronyms Acronyms, like the plague, seem to spread unchecked
through the technical literature of pattern recognition. We four are
responsible for quite a few of them, and so, we can hardly hold this
bad habit against others. This book has several hundred acronyms
in it, and we know you won't remember what many of them mean for
more than a few pages. Consequently, Appendix 1 is a tabulation of
the acronyms and abbreviations used in the text.

Acknowledgments The authors wish to acknowledge their gratitude
to the following agencies, who graciously supplied partial support as
shown during the writing of this book:

J. C. Bezdek : ONR grant # NO0014-96-1-0642
NSF grant # IRI-9003252

J. M. Keller : ONR grant # NO0O014-96-1-0439
ARO MURI grant # DAAG55-97-1-0014

R. Krishnapuram: ONR grant # NO0014-96-1-0439
NSFgrant # IRI-9800899

Preface xv

We also want to express our thanks to Andrea Baraldi, Alma Blonda,
Larry Hall, Lucy Kuncheva and Thomas Runkler, all of whom were
kind enough to review various parts of the manuscript and/or
supplied us with computations for several examples that we could
not find in the literature, and whose helpful comments save us at
least a few embarrassments.

The quotes Everyone nowadays seems to have a pithy quote at each
chapter head, at the end of each email, on their web page, tattooed on
their leg, etc., so we wanted to have some too. Rather than choose one
quote for the book that all of us could live with (quite a range of
tastes exists amongst us four), we decided to each supply one quote
for this preface. We give the quotes here, but don't identify who
contributed each one. That will be revealed in the pages of this
volume - but only to those readers alert enough to recognize the
patterns.

"What use are all these high-flying vaunts of yours?
O King of Birds! You will be the world's laughing stock.
What a marvel would it be if the hare
were to void turd the size of elephant dung!”
Vishnu Sharma, in Panchatantra, circa AD 400

"Only the mediocre are always at their best"
Blue Wave, circa 1995

"All uncertainty is fruitful ... so long as it is accompanied by the
wish to understand"
Antonio Machado, Juan de Mairena, 1943

"You gotta pay your dues if you want to play the blues, and you know
that don't come easy”
Ringo Starr, circa 1973

You may think you know which of us contributed each of these
quotes - but you might be surprised. Life is full of surprises, and so is
this book. We hope you enjoy both.

Jim Bezdek

Jim Keller

Rags Krishnapuram
Nik Pal

1 Pattern Recognition

1.1 Fuzzy models for pattern recognition

There is no lack of definitions for the term pattern recognition. Here
are a few that we like.

Fukunaga (1972, p. 4): "pattern recognition consists of two parts:
feature selection and classifier design."

Duda and Hart (1973, p. vii) "pattern recognition, a field concerned
with machine recognition of meaningful regularities in noisy or
complex environments".

Pavlidis (1977, p. 1): "the word pattern is derived from the same root
as the word patron and, in its original use, means something which
is set up as a perfect example to be imitated. Thus pattern
recognition means the identification of the ideal which a given
object was made after.”

Gonzalez and Thomason (1978, p. 1) : "Pattern recognition can be
defined as the categorization of input data into identifiable classes
via the extraction of significant features or attributes of the data
from a background of irrelevant detail."

Bezdek (1981, p. 1) : "pattern recognition is a search for structure in
data."

Schalkoff (1992, p. 2) " Pattern recognition (PR) is the science that
concerns the description or classification (recognition) of
measurements.”

And here is our favorite, because it comes from the very nice book by
Devijver and Kittler (1982, p. 2), titled Pattern Recognition: A
Statistical Approach: "pattern recognition is a very broad field of
activities with very fuzzy borders" !!!

What all these definitions should tell you is that it's pretty hard to
know what to expect from a book with the term pattern recognition
in its title. You will find texts that are mostly about computer
science topics such as formal language theory and automata design
(Fu, 1982), books about statistical decision theory (Fukunaga, 1972,
1991), books about fuzzy mathematics and models (Bezdek, 1981),
books about digital hardware (Serrano-Gotarredona et al., 1998),
handbooks (Ruspini et al., 1998}, pure math books, books that
contain only computer programs, books about graphical
approaches, and so on. The easiest, and we think, most accurate
overall description of this field is to say that it is about feature
analysis, clustering, and classifier design, and that is what this
book is about - the use of fuzzy models in these three disciplines.

2 FUZZY PATTERN RECOGNITION

Regardless of how it is defined, there are two major approaches to
pattern recognition, numerical and syntactic. With the exception of
Section 4.10, this book is exclusively concerned with the numerical
approach. We characterize numerical pattern recognition with the
four major areas shown in Figure 1.1. The nodes in Figure 1.1 are
not independent. In practice, a successful pattern recognition
system is developed by iteratively revisiting the four modules until
the system satisfies (or is at least optimized for) a given set of
performance requirements and/or economic constraints.

(Process Description)

Feature Nomination

X = Numerical Object Data |[«#—— Sensors

Humans ¢ X xX R
= Pair-relational Data
Design Data Test Dataj
(Feature Analysis\ ([Clas sifier Desi gn\
Preprocessing = = Classification
Extraction Estimation
Selection Prediction
Visual Control
XN J \ LX)
ﬁluster Analysis w
Tendency
Validity
Labeling
XX

Figure 1.1 Typical elements of numerical pattern recognition

The upper block of Figure 1.1 - process description - is always done
by humans. Things that must be accomplished here include the
selection of a model type, features to be measured and sensors that
can collect the data. This important phase of system design is not
well represented in the literature because there are many factors
such as time, space, weight, cost, speed, etc. that are too problem-
dependent to admit much generality. You need to give careful
thought to process description because your decisions here will be
reflected in the ultimate performance of your system.

INTRODUCTION TO PATTERN RECOGNITION 3

@ Notation Vectors are boldface (x, v, V, etc.); xe RP is the px1

matrix x=(x .,xp)T. Matrices and set names are not shown

L
boldface (even though a ¢xp matrix U is a vector in RP = R x RP).
For the matrix U e R, we may write the i-th row as U € RP, and

the k-th column as U, € ®°. By this convention, when interpreting
U as a cpxl column vector, we may write

U=(U,,....U,) =(Uy,...,U,)" e RP. When interpreting the rows or
columns of a matrix as a set, we use set brackets; e.g., the ¢ rows

U=(U,,.... U) eRP «U={Uy,...Ugylc RP. We use O for the zero

vector in all vector spaces; specifically, in both RP and RP.

Two data types are used in numerical pattern recognition: object
data (feature or pattern vectors); and (pairwise) relational data
(similarities, proximities, etc.). Object data are represented

throughout the volume as X = {x , x,,,..., x}c RP, a set of n feature

vectors in feature space RP. Writers in some fields call the features
of each object "attributes”, and others call them "characteristics".
The j-th object is a physical entity such as a tank, medical patient,
stock report, etc. Column vector x_ is it's numerical representation;

i
x, . is the k-th feature or attribute value associated with object j.

Kj
Features can be either continuously or discretely valued in R.

We will also deal with non-numerical data called categorical data in
Chapter 4. Categorical data have no natural order. For example, we
can represent animals with numerical attributes such as number of
legs, weight, etc. ; or we might describe each one with categorical
attributes such as skin texture, which itself has values such as furry,
feathery, etc. When needed, we denote the objects themselves as O =
{o, 0, ..., on}. Chapter 2 is about clustering numerical object data.

Instead of object data, we may have a set of (mn) numerical

relationships, say {rjk}, between pairs of objects (oj, ok) in

O, x Oy, |0y|=m, [Oy|=n. The number I, Tepresents the extent to
which o€ O, is related to o, € O, in the sense of some binary

relation p. It is convenient to array the relational values as an mxn
relation matrix R = [r.k] = [p(o,, o,)]. Many functions can convert
object data into relational data. For example, every metric {distance

measure) 8 on RP x RP produces a square (dis)-similarity relation
matrix R(X; 8) on the n objects represented by X, as shown in Figure
L.1. f every r,_is in {0, 1}, Ris a crisp binary relation. If any r, isin
[0, 1], we call R a fuzzy binary relation. Chapter 3 is about clustering
relational data.

4 FUZZY PATTERN RECOGNITION

One of the most basic structures in pattern recognition is the label
vector. No matter what kind of data you have (including the case of n
objects as opposed to numerical data that represent them), there are
four types of class labels - crisp, fuzzy, probabilistic and
possibilistic. Letting n be the number of objects (or feature vectors or
number of rows and columns in relational data) integer ¢ denote the
number of classes, 1 £ ¢ £ n. Ordinarily, ¢ will not be 1 or n, but we
admit this possibility to handle special cases that sometimes arise.

We define three sets of label vectors in R¢ as follows:

N, ={ye®:y elo, 1 V i y,>0 3 i}=[0,1]° - {0}; (1.1)
C

Nfc ={y€Npc: ZYi =1} ; (12)
i=1

N, ={yeN :y, c{o,nvi}={e e, . e} : (1.3)

In (1.1) O is the zero vector in R°. Note that Ny, < Ng, © Np.. Figure
1.2 depicts these sets for ¢ = 3. th is the canonical (unit vector) basis

of Euclidean c-space, so €, =(0, 0 ,..., 1 ,..., 0)7, the i-th vertex
i
of th, is the crisp label for class i, 1 £i<c.

0
e, = ?
Nhz ={e;,e;, €3}

N WA i
e1 =0

7 Nps =[0.1° - {0}
Nf3 = ConV(Nh3)

Figure 1.2 Label vectors for ¢ = 3 classes

INTRODUCTION TO PATTERN RECOGNITION 5

The set N, . a piece of a hyperplane, is the convex hull of N, .- The

vector y = (0.1, 0.6, 0.3)T is a constrained label vector; its entries lie
between O and 1, and sum to 1. The centroid of Nfc is the

equimembership vector 1/e=(1/c,...,1/c)". If y is a label vector

for some x € R? generated by, say, the fuzzy c-means clustering
method, we call y a_fuzzy label for x. If y came from a method such as
maximum likelihood estimation in mixture decomposition, y

would be a probabilistic label. In this case, 1/ ¢ is the unique point
of equal probabilities for all ¢ classes.

Npc = [0, 1]¢-{0} is the unit hypercube in R°, excluding the origin.
Vectors such as z = (0.7, 0.2, 0.7)T with each entry between 0 and 1
that are otherwise unrestricted are possibilistic labels in N 5

Possibilistic labels are produced by possibilistic clusterix;lg
algorithms (Krishnapuram and Keller, 1993) and by computational
neural networks that have unipolar sigmoidal transfer functions at
each of ¢ output nodes (Zurada, 1992).

Most pattern recognition models are based on finding statistical or
geometrical properties of substructures in the data. Two of the key
concepts for describing geometry are angle and distance. Let A be

any positive-definite pxp matrix. For vectors x, v ¢ RP, the
functions (), :RP xRP > R, || |,:RP > R*, and 3, : RP x RP > R*

(%, v), = xTAv ; (1.4)

I%], =+(x.x), =VxTAx ; and (1.5)

8,(%,v)=|x-v|, =\/(x—v)TA(x—v) , (1.6)

are the inner product (dot product, scalar product), norm (length),
and norm metric (distance) induced on RP by weight matrix A. We
say that x and v are orthogonal (normal, perpendicular) if their dot
product is zero, (x,v), =x"Av=0. Sometimes we write x1, v to

indicate this, and note particularly that orthogonality is always
relative to matrix A that induces the inner product.

Equation (1.6) defines an infinite family of inner product induced
distances, the most important three of which, together with their
common names and inducing matrices, are:

Ix - v, =V(x-v)T(x-v) Euclidean, A=I ;o (L7)

P

6 FUZZY PATTERN RECOGNITION

|x - vy = \/(x -v)'Dlx-v) Diagonal, A=D! ;o (1.8)

I - v]y-1 = \/(x -v)TM(x-v) Mahalanobis, A=M"!. (1.9)

@ Notation In (1.7) Ip is the pxp identity matrix. Henceforth, we
drop the subscript Ip, writing the Euclidean forms of (1.4)-(1.6) more

simply as (x,v), || and ||x - v| respectively.

Equations (1.8) and (1.9) use M=cov(X)= 3 (x, - ¥)(x, -¥)" /n,
k=1

n
the covariance matrix of X, and v = ¥ x, / n, the grand mean of X.
k=1
We will always indicate sample means as in statistics, with an
overbar. The matrix D is the diagonal matrix extracted from M by
deletion of its off-diagonal entries, D = diag(M). D is not the
diagonalized form of M.

A second infinite family of lengths and distances that are

commonly used in pattern recognition are the Minkowski norm and
Minkowski norm metrics

D qé
=l = j;}le Y ; (1.10)

=1

P q\q
5, (x,v)=|x - v], = Zx_—vjl g2l . (1.11)

Only three Minkowski distances are commonly used in pattern
recognition, and the Minkowski 2-norm is just the Euclidean norm,

= =i, == - v]:

= - v, =(§|xj —VJU City Block (1-normy); g=1; (1.12)
j=1
P 22
|x-v|, = (2|Xj - le j Euclidean (2-norm); q=2; (1.13)
=1
lx-v|_ = max{lxj - VJ-‘} Sup or Max norm; q — ce. (1.14)

1<j<p

INTRODUCTION TO PATTERN RECOGNITION 7

A classifier is any function D:RP i» Npc. The value y = D(2) is the

label vector for z in ®P. D is a crisp classifier if D[‘J{p]=th;

otherwise, the classifier is fuzzy or probabilistic or possibilistic.
Designing a classifier simply means finding the parameters of a
"good" D. This can be done with data, or it might be done by an expert
without data. If the data are labeled, finding D is called supervised
learning; otherwise, the problem is unsupervised learning. Notice
that we use the terms supervised and unsupervised to specifically
connote the use of labeled or unlabeled data - it is the labels that do
(or do not) supervise the design. When an expert designs a classifier,
this is certainly supervised design, but in a much broader sense than
we mean here. Chapter 4 is about fuzzy models for classifier design.

Since definite class assignments are usually the ultimate goal of
classification and clustering, outputs of algorithms that produce
label vectors in Npc or N are usually transformed into crisp labels.

Most non-crisp classifiers are converted to crisp ones using the
function H:N_ > N_,
pc he

H(y)=e1<:>“y—ei”<Hy—ej“':::»yi>yj 7 j#i . (1.15)

In (1.15) ties are resolved arbitrarily. H finds the crisp label vector e
in N_closest (in the Euclidean sense) to y. Alternatively, H finds the

index of the maximum coordinate of y, and assigns the
corresponding crisp label to the object vector, say z, that y labels.
The rationale for using H depends on the algorithm that produces y.
For example, using (1.15) for outputs from the k-nearest neighbor
rule is simple majority voting. If y is obtained from mixture
decomposition, using H is Bayes decision rule - label z by its class of
maximum posterior probability. And if the labels are fuzzy, this is
called defuzzification by the maximum membership rule. We call
the use of H hardening.

1.2 Why fuzzy pattern recognition?

Rather than conclude the volume with the information in this
subsection, it is provided here to answer a basic question you might
have at this point: should you read on? Retrieval from the Science
Citation Index for years 1994-1997 on titles and abstracts that
contain the keyword combinations "fuzzy" + either "clustering" or
"classification" yielded 460 papers. Retrievals against "fuzzy" +
either "feature selection" or "feature extraction” yielded 21 papers.
This illustrates that the literature contains a large body of work on
fuzzy clustering and classifier design, and relatively fewer studies of
fuzzy models for feature analysis. Work in this last area is widely

8 FUZZY PATTERN RECOGNITION

scattered because feature analysis is very data and problem-
dependent, and hence, is almost always done on a case by case basis.

A more interesting metric for the importance of fuzzy models in
pattern recognition lies in the diversity of applications areas
represented by the titles retrieved. Here is a partial sketch:

Chemistry: analytical, computational, industrial, chromatography,
food engineering, brewing science.

Electrical Engineering: image and signal processing, neural
networks, control systems, informatics, automatics, automation,
robotics, remote sensing and control, optical engineering, computer
vision, parallel computing, networking, instrumentation and
measurement, dielectrics, speech recognition, solid state circuits.

Geology/Geography: photogrammetry, geophysical research,
geochemistry, biogeography, archeology.

Medicine: magnetic resonance imaging, medical diagnosis,
tomography, roentgenology, neurology, pharmacology, medical
physics, nutrition, dietetic sciences, anesthesia, ultramicroscopy,
biomedicine, protein science, neuroimaging, drug interaction.

Physics: astronomy, applied optics, earth physics.

Environmental Sciences: soil sciences, forest and air pollution,
meteorology, water resources.

Thus, it seems fair to assert that this branch of science and
engineering has established a niche as a useful way to approach
pattern recognition problems. The rest of this volume is devoted to
some of the basic models and algorithms that comprise fuzzy
numerical pattern recognition.

1.3 Overview of the volume

Chapter 2 discusses clustering with objective function models using
object data. This chapter is anchored by the crisp, fuzzy and
possibilistic c-means models and algorithms to optimize them that
are discussed in Section 2.2. There are many generalizations and
relatives of these three families. We discuss relatives and
generalizations of the c-means models for both volumetric (cloud
shaped) and shell clusters in Section 2.3. Roughly speaking, these
two cases can be categorized as point and non-point prototype
models. Section 2.3 also contains a short subsection on recent
developments in the new area of robust clustering. Chapter 2
contains a long section on methods for validation of clusters after
they are found - the important and very difficult problem of cluster
validity. Separate subsections discuss methods that attempt to

INTRODUCTION TO PATTERN RECOGNITION 9

validate volumetric and shell type clusters; and this section
concludes with a discussion of fuzzy versions of several well known
statistical indices of validity. This is followed by a short section on
feature analysis with references to a very few fuzzy methods for
problems in this domain. Finally, we close Chapter 2 {and all
subsequent chapters as well) with a section that contains comments
and related references for further reading.

Chapter 3 is about two types of relational clustering: methods that
use decompositions of relation matrices; and methods that rely on
optimization of an objective function of the relational data. This is
a much smaller field than clustering with objective function
methods. The main reason that relational models and algorithms
are less well developed than those for object data is that sensors in
fielded systems almost always collect object data. There are,
however, some very interesting applications that depend on
relational clustering; for example, data mining and information
retrieval in very large databases. We present the main topics of this
area in roughly the same chronological order as they were
developed. Applications of relational clustering are also discussed
in the handbook volume devoted to information retrieval.

Chapter 4 discusses fuzzy models that use object data for classifier
design. Following definitions and examples of the nearest single
and multiple prototype classifiers, we discuss several sequential
methods of prototype generation that were not covered in Chapter 2.
Next, k-nearest neighbor rule classifiers are presented, beginning
with the classical crisp k-nearest neighbor rule, and continuing
through both fuzzy and possibilistic generalizations of it. Another
central idea covered in Chapter 4 is the use of the fuzzy integral for
data fusion and decision making in the classification domain.
Following this, rule based designs are introduced through crisp and
fuzzy decision trees in Section 4.6, which contains material about
the extraction of fuzzy rules for approximation of functions from
numerical data with clustering.

Chapter 4 next presents models and algorithms that draw their
inspiration from neural-like networks (NNs). Two chapters in
Nguyen and Sugeno (1998) by Pedrycz et al.,(1998) and Prasad (1998)
discuss the use of fuzzy neurons and fuzzy NNs in the context of
control and functional approximation. These chapters provide good
ancillary reading to our presentation of related topics in the context
of pattern recognition. The feed forward multilayered perceptron
trained by back propagation (FFBP) is the dominant structure
underlying "fuzzy neural networks" (neurofuzzy computing, etc.}, so
our discussion begins with this network as the standard classifier
network. Then we present some generalizations of the standard
node functions that are sometimes called fuzzy neurons. We discuss
and illustrate perceptrons, multilayered perceptrons, and
aggregation networks for classification. Then we discuss the crisp

10 FUZZY PATTERN RECOGNITION

and several fuzzy generalizations of adaptive resonance theory
(ART), including a short subsection on radial basis function
networks. Section 4.9 is concerned with the increasingly important
topic of classifier fusion (or multistage classification). The last
section in Chapter 4 is a short section on the use of fuzzy models in
syntactic pattern recognition. Our Chapter 4 comments include
some material on feature analysis in the context of classifier design.

Chapter 5 is about image processing and computer vision. It is here
that the models and algorithms discussed in previous chapters find
realizations in an important application domain. Chapter 5 begins
with low level vision approaches to image enhancement. Then we
discuss edge detection and edge following algorithms. Several
approaches to the important topic of image segmentation are
presented next, followed by boundary description and surface
approximation models. The representation of image objects as fuzzy
regions is followed by a section on spatial relations. The last section
in Chapter 5 discusses high level vision using fuzzy models. Chapter
7.3.2 of volume 7 of this handbook (Bezdek and Sutton, 1998)
contains an extended discussion of fuzzy models for image
processing in medical applications.

1.4 Comments and bibliography

There are many good treatments of deterministic, statistical and
heuristic approaches to numerical pattern recognition, including
the texts of Duda and Hart (1973), Tou and Gonzalez (1974}, Devijver
and Kittler (1982), Pao (1989) and Fukunaga (1991). Approaches
based on neural-like network models are nicely covered in the texts
by Zurada (1992) and Haykin (1994).

The earliest reference to the use of fuzzy sets in numerical pattern
recognition was Bellman, Kalaba and Zadeh (1966). RAND Memo
RM-4307-PR, October, 1964, by the same authors had the same title,
and was written before Zadeh (1965). Thus, the first application
envisioned for fuzzy models seems to have been in pattern
recognition.

Fuzzy techniques for numerical pattern recognition are now fairly
mature. Good references include the texts by Bezdek (1981), Kandel
(1982), Pal and Dutta-Majumder (1986} and the edited collection of
51 papers by Bezdek and Pal (1992). Chi et al. (1997) is the latest
entrant into this market, with a title so close to ours that it makes
you wonder how many of these entries the market will bear. Surveys
of fuzzy models in numerical pattern recognition include Keller and
Qiu(1988), Pedrycz (1990b), Pal (1991), Bezdek (1993), Keller and
Krishnapuram (1994), Keller et al. (1994) and Bezdek et al. (1997a).

2 Cluster Analysis for Object Data

2.1 Cluster analysis

Figure 2.1 portrays cluster analysis. This field comprises three
problems: tendency assessment, clustering and validation. Given an
unlabeled data set, is there substructure in the data? This is
clustering tendency - should you look for clusters at all? Very few
methods - fuzzy or otherwise - address this problem. Panayirci and
Dubes {1983}, Smith and Jain (1984), Jain and Dubes (1988}, Tukey
(1977) and Everitt (1978) discuss statistical and informal graphical
methods (visual displays) for deciding what - if any - substructure is
in unlabeled data.

Unlabeled Data Set

X={x;,%,,....x,} c RP

p Assessment W
L X has clusters ? J-’ No : Stop

Yes

@ Clustering w
_"L UeM,, J

') —
No Validity w

< Uis OK? g?; r;

Figure 2.1 Cluster analysis: three problems

Once you decide to look for clusters (called U in (2), Figure 2.1), you
need to choose a model whose measure of mathematical similarity
may capture structure in the sense that a human might perceive it.
This question - what criterion of similarity to use? - lies at the heart
of all clustering models. We will be careful to distinguish between a
model, and methods (algorithms) used to solve or optimize it. There
are objective function (global criteria} and graph-theoretic (local
criteria) techniques for both relational and object data.

12 FUZZY PATTERN RECOGNITION

Different algorithms produce different partitions of the data, and it
is never clear which one(s) may be most useful. Once clusters are
obtained, how shall we pick the best clustering solution (or
solutions)? Problem in Figure 2.1 is cluster validity, discussed in
Section 2.4.

Problem in Figure 2.1 is clustering (or unsupervised learning) in

unlabeled data set X = {x , X,,..., X }, which is the assignment of (hard

or fuzzy or probabilistic or possibilistic) label vectors to the {xk}.

The word learning refers to learning good labels (and possibly
prototypes) for the clusters in the data.

A c-partition of X is a ¢xn matrix U = U, T, .. Un] = [uik], where U

denotes the k-th column of U. There are three sets of c-partitions
whose columns correspond to the three types of label vectors
discussed in Chapter 1

Mo, = {U e R, e N Vk;0 < kiluik Vi} ; 2.1)
M, ={UeM, U, eN, vk} : 2.2)
M, = {U eM, U, € NhCVk} . 2.3)

Equations (2.1), (2.2) and (2.3) define, respectively, the sets of
possibilistic, fuzzy or probabilistic, and crisp c-partitions of X. Each
column of U in Mpcn (M, . M,) is a label vector from Npc (Nfc, th).

n
Note that My, © Mg, © Mpe,. Our notation is chosen to help you

remember these structures; M = (membership) matrix, h=crisp
(hard), f=fuzzy (or probabilistic), p=possibilistic, c=number of
classes and n=number of data points in X.

fen?

@ Notation For Uin M, c=1is represented uniquely by the hard
1-partition 1, =[1 1 -+ 1], which asserts that all n objects belong
| S ——

n times
to a single cluster; and c=n is represented uniquely by U=1 , the nxn

identity matrix, up to a permutation of columns. In this case each
object is in its own singleton cluster. Crisp partitions have a
familiar set-theoretic description that is equivalent to (2.1). When

U=({X,, ...,Xc} is a crisp c-partition, the c¢ crisp subsets {X;}c X
satisfy UX;=X; X;nX;=@ifi# j;and X, # JVi. We denote the
i

cardinality of a crisp set of n elements as |X|=n, and |X;|=n, Vi.

CLUSTER ANALYSIS 13

Choosing c=1 or c=n rejects the hypothesis that X contains clusters
in these cases. The lack of a column sum constraint for

U e (Mpe, — Mg,) means that there are infinitely many U's in both
(Mpln - Mfln) and (Mpnn - ann) .

n
The constraint 0< Y, u, Vi in equation (2.1) guarantees that each
k=1
row in a c-partition contains at least one non-zero entry, so the
corresponding cluster is not empty. Relaxing this constraint results
in enlarging Mpcn to include matrices that have zero rows (empty

clusters). From a practical viewpoint this is not desirable, but we
often need this superset of Mpcn for theoretical reasons. We designate
the sets of degenerate (crisp, fuzzy, possibilistic) ¢c-partitions of X as

(thnO’ MfcnO’ MpcnO) '

The reason these matrices are called partitions follows from the
interpretation of their entries. If U is crisp or fuzzy, u, is taken as

the membership of x,_in the i-th partitioning fuzzy subset (cluster) of
X. If U is probabilistic, u,_is usually the (posterior) probability
pl| xk) that, given x, it came from class (cluster) i. We indicate the
statistical context by replacing U = [uik] with P=p m] = [pli] xk)]. When
U is possibilistic, u, is taken as the possibility that X belongs to
class (cluster) i.

Clustering algorithms produce sets of label vectors. For fuzzy
partitions, the usual method of defuzzification is the application of
(1.15) to each column Uk of matrix U, producing the maximum

membership matrix we sometimes call Ulrm from U. We will
formalize this operation as equation (2.10).

Example 2.1 Let X = {x, = peach, x, = plum, x

= nectarine}, and let
c=2. Typical 2-partitions of these three objects are:

3

U; € Mpp3 Uy € M3 Us € Mpa3
Object X x, X, | X x, X, | X X, X,

Peaches| 1.0 00 00| 10 02 04| 10 02 05
Plums 00 10 10} 00 08 06| 00 08 06

The nectarine, X,, is labeled by the last column of each partition,

and in the crisp case, it must be (erroneously) given full membership
in one of the two crisp subsets partitioning this data. In U, X5is

labeled "plum". Non-crisp partitions enable models to (sometimes!)

14 FUZZY PATTERN RECOGNITION

avoid such mistakes. The last column of U2 allocates most (0.6) of
the membership of x, to the plums class; but also assigns a lesser
membership (0.4) to x4 as a peach. U, illustrates possibilistic label
assignments for the objects in each class.

Finally, observe that hardening each column of U, and U, with
(1.15) in this example makes them identical to U, . Crisp partitions

of data do not possess the information content to suggest fine details
of infrastructure such as hybridization or mixing that are available
inU, and U, Consequently, extract information of this kind before

you harden U!

Columns like the ones for the nectarine in U and U 5 Serve a useful

purpose - lack of strong membership in a smgle class is a signal to
"take a second look". In this example the nectarine is a peach-plum
hybrid, and the memberships shown for it in the last column of
either U, or U, seem more plausible physically than crisp

as51gnment of x to an incorrect class. M , and M, can be more
realistic than M, _ because boundaries between many classes of real
objects are badly delineated (i.e., really fuzzy). M, reflects the
degrees to which the classes share {x }, because of the constraint
inherited from each fuzzy label vector (equation (1.2)) we have

o u =1.M_ reflects the degrees of typicality of {x } with respect
to the prototypical (ideal) members of the classes.

We believe that Bill Wee wrote the first Ph.D. thesis about fuzzy
pattern recognition (Wee, 1967); his work is summarized in Wee and
Fu (1969). Ruspini (1969) defined M, , and Ruspini (1970) discussed
the first fuzzy clustering method that produced constrained c-
partitions of unlabeled (relational) data. Gitman and Levine (1970)
first attempted to decompose "mixtures” (data with multimodality)
using fuzzy sets. Other early work includes Woodbury and Clive
(1974), who combined fuzziness and probability in a hybrid
clustering model. In the same year, Dunn (1974a) and Bezdek (1974a)
published papers on the fuzzy c-means clustering model. Texts that
contain good accounts of various clustering algorithms include
Duda and Hart (1973), Hartigan (1975), Jain and Dubes (1988),
Kaufman and Rouseeuw (1990), Miyamoto (1990), Johnson and
Wichern (1992), and the most recent members of the fold, Chi et al.
(19964a) and Sato et al. (1997).

2.2 Batch point-prototype clustering models

Clustering models and algorithms that optimize them always
deliver a c-partition U of X. Many clustering models estimate other

CLUSTER ANALYSIS 15

parameters too. The most common parameters besides U that are
associated with clustering are sets of vectors we shall denote by
V={v1,v2,...,vc}c<ﬁp. The vector v is interpreted as a point

prototype {centroid, cluster center, signature, exemplar, template,
codevector) for the points associated with cluster i. Point prototypes
are regarded as compact representations of cluster structure.

As just defined, v is a point in RP, hence a point-prototype.
Extensions of this idea to prototypes that are not just points in the
feature space include v's that are linear varieties, hyperspherical

shells, and regression models. General prototype models are covered
in Section 2.3. Probabilistic clustering with normal mixtures
produces simultaneous estimates of a ¢xn partition P (posterior
probabilities), ¢ mean vectors M = {m P mc}, ¢ covariance matrices

S, .0 SC} and c prior probabilities p = (p oo pc)T. Some writers
regard the triple (pi, m, Si) as the prototype for class i; more
typically, however, m is considered the point prototype for class i,
and other parameters such as p, and S, are associated with it through
the model.

The basic form of iterative point prototype clustering algorithms in
the variables (U, V) is

(U, V)=€CX:U, ;,V,), t>0 , (2.4a)

where € stands for the clustering algorithm and t is the index of
iteration or recursion. Non-iterative models are dealt with on a case

by case basis. When € is based on optimization of an objective
function and joint optimization in (U, V) is possible, conditions

(2.4a) can be written as (Ut,Vt) =C(X: He(Ut—-l’Vt—l))’ where He is

determined by some optimality criterion for the clustering model.
More typically however, alternating optimization (AO) is used,
which takes the form of coupled equations such as

U, =F(Vi_;) ; V. =G(U,) [V-initialization]; or (2.4b)
Vi =Ge(U,_;);U; = 3(V,) [U-initialization]. {(2.4¢)

The iterate sequences in (2.4b) or (2.4c} are equivalent. Both are
exhibited to point out that you can start (initialize) and end
{terminate) iteration with either U or V. Specific implementations
use one or the other, and properties of either sequence {such as
convergence) automatically follow for iteration started at the
opposite set of variables. Examples of clustering models that have
(U, V) as joint parameters are the batch hard, fuzzy and possibilistic
c-means models. Alternating optimization of these models stems

from functions 3, and g, which arise from first order necessary

16 FUZZY PATTERN RECOGNITION

conditions for minimization of the appropriate c-means objective
function.

A. The c-means models

The c-means (or k-means) families are the best known and most
well developed families of batch clustering models. Why? Probably
because they are least squares models. The history of this
methodology is long and important in applied mathematics because
least-squares models have many favorable mathematical
properties. (Bell (1966, p. 259) credits Gauss with the invention of the
method of least squares for parameter estimation in 1802, but states
that Legendre apparently published the first formal exposition of it
in 1806.) The optimization problem that defines the hard (H), fuzzy
(F) and possibilistic (P} c-means (HCM, FCM and PCM, respectively)
models is:

i < & mp2 < n m
min Jn (U, Viw) = 2 3 ugDi + 2w, Y(1-uy)" , where (2.5)
(U, v} i=lk=1 i=1 k=1

UeM ,M__orM for HCM, FCM or PCM respectively ;
hen fen pen

V=(v, Vyoeens vc) € gtep; v,€ gp is the i-th point prototype ;

1
w = (wl. W,oeens WC)T; w, € gt is the i-th penalty term (PCM) ;

m > 1 is the degree of fuzzification ;

D2 2
ik = "xk - villA

Note especially that w in (2.5) is a fixed, user-specified vector of
positive weights; it is not part of the variable set in minimization
problem (2.5).

3"' Caveat: Model optima versus human expectations. The
presumption in (2.5) is that "good" solutions for a pattern
recognition problem - here clustering - correspond to "good"
solutions of a mathematical optimization problem chosen to
represent the physical process. Readers are warned not to expect too
much from their models. In (2.5) the implicit assumption is that
pairs (U, V) that are at least local minima for J will provide (i)
good clusters U, and {ii) good prototypes V to represent those clusters.
What's wrong with this? Well, it's easy to construct a simple data set
upon which the global minimum of J_ leads to algorithmically
suggested substructure that humans will disagree with (example 2.3).
The problem? Mathematical models have a very rigid, well-defined
idea of what best means, and it is often quite different than that held
by human evaluators. There may not be any relationship between
clusters that humans regard as "good" and the various types of

CLUSTER ANALYSIS 17

extrema of any objective function. Keep this in mind as you try to
understand your disappointment about the terrible clusters your
favorite algorithm just found. The HCM, FCM and PCM clustering
models are summarized in Table 2.1. Problem (2.5) is well defined
for any distance function on RP. The method chosen to approximate
solutions of (2.5) depends primarily on Di. J is differentiable in U
unless it is crisp, so first order necessary conditions for U are readily
obtainable. If Dy is differentiable in V (e.g., whenever Dy is an inner
product norm), the most popular technique for solving (2.5) is
grouped coordinate descent (or alternating optimization (AO}}.

Table 2.1 Optimizing J, (U, V;w) when D =[x - vi|,

First order necessary conditions for
Minimize (U, V) when Dic = Hx k- vi"A >0Vik
{inner product norm case only)
J1(U, V; w) LDy =D, j=1i
uy =1 v Vik; 2.6a
over (U, V) %70, otherwise (2.62)
inM R n
HCM hcrz):l) 2 U X, E X,
D I =5 g Vi (2.6b)
2 Uy o
k=1
J (U, V;w) o 11
U,V c{D. -1)
over(U, V) 4 =] 5| B ik (2.7a)
inMg, xR® =1\ Djk
FCM m>1
w; =0Vi v—(%umx ium) Vi (2.7b)
i i = ik XKk ik -
k=1 k=1
Jm (U, V, W) 1 -1
over (U, V) | uy =|1+ (D?k / wi)m‘l Vi k; (2.82)
PCM | inMy, xR
w>0Vi | v | Sumg, / Sum| Vi 2.8b
! v = zulkxk Euxk 1 (.)
k=1 k=1

Column 3 of Table 2.1 shows the first order necessary conditions
U, =Fc(V); V=G (U) for U and V at local extrema of Jm that

each model requires at extreme points of its functional when the
distance measure in {2.5) is an inner product norm metric.
Derivations of the FCM and PCM conditions are made by zeroing the
gradient of Jm with respect to V, and the gradient of (one term of) the

18 FUZZY PATTERN RECOGNITION

LaGrangian of J with respect to U. The details for HCM and FCM

can be found in Bezdek (1981), and for PCM, see Krishnapuram and
Keller (1993).

The second form, ¥, for v, in (2.6b), emphasizes that optimal HCM-
AO prototypes are simply the mean vectors or centroids of the points

in crisp cluster i, n; = |U(i)|, where U is the i-th row of U. Conditions

(2.7) converge to {2.6) and J _—J, as m—1 from above. At the other

extreme for (2.7), lim{uy}=1c Vik as m increases without bound,
m—oo

and lim{v;}=v = ixk/n Vi (Bezdek, 1981).
k=1

m-—yeo

Computational singularity for u, in HCM-AO is manifested as a tie

in (2.6a) and may be resolved arbitrarily by assigning the
membership in question to any one of the points that achieves the
minimum. Singularity for u in FCM-AO occurs when one or more

2
ka -v, t"A =0 at any iterate. In this case (rare in practice), (2.7a)

cannot be calculated. When this happens, assign 0's to each non-
singular class, and distribute positive memberships to the singular

C
classes arbitrarily subject to constraint 3 uy, =1. As long as the w's
i=1
are positive (which they are by user specification), PCM-AO cannot
experience this difficulty. Constraints on the {uik} are enforced by

the necessary conditions in Table 2.1, so the denominators for
computing each v, are always positive.

Table 2.2 specifies the c-means AO algorithms based on the
necessary conditions in Table 2.1 for the inner product norm case.
The case shown in Table 2.2 corresponds to (2.4b), initialization and

termination on cluster centers V. The rule of thumb c <+/n in the
second line of Table 2.2 can produce a large upper bound for c. For
example, this rule, when applied to clustering pixel vectors in a
256 x 256 image where n=65,536, suggests that we might look for c =
256 clusters. This is done, for example, in image compression, but
for segmentation, the largest value of ¢ that might make sense is
more like 20 or 30. In most cases, a reasonable choice for C, ., can be
made based on auxiliary information about the problem. For
example, segmentation of magnetic resonance images of the brain
requires at most ¢ = 8 to 10 clusters, as the brain contains no more
than 8-10 tissue classes.

All three algorithms can get stuck at undesirable terminal estimates
by initializing with cluster centers (or equivalently, rows of U 0) that

have the same values because U(ﬂ and v, are functions of just each

CLUSTER ANALYSIS 19

other. Consequently, identical rows (and their prototypes) will
remain identical unless computational roundoff forces them to
become different. However, this is easily avoided, and should never
present a problem.

Table 2.2 The HCM/FCM/PCM-AO algorithms

Store | Unlabeled Object Data X < RP

number of clusters: 1 <c<n
maximum number of iterations: T

weighting exponent: 1 < m < e (m=1 for HCM-AO)
inner product norm for J_: ||, =x"Ax

Pick
termination measure: E, = “V -V H" = big value

termination threshold: O < £ = small value
weights w > 0 Vi (w = 0 for FCM-AO/HCM-AO)

§ §8 § 8§ 3§33

Guess initial prototypes: V,=(v, ...,V)eR? (2.4b)

t«<0
REPEAT

tet+1
U, = Fo(V,_,) Wwhere 3,(V,_;) (cf. 2.6a, 2.7a or 2.8a)

Iterate V, = Ge(U,) where G,(U,) (cf. 2.6b, 2.7b or 2.8b
UNTIL (t=T or Et <g)
(U9 v) — (Ut’ Vt)

The rows of U are completely decoupled in PCM because there is no

C
constraint that Y u, =1. This can be an advantage in noisy data
i=1
sets, since noise points and outliers can be assigned low
memberships in all clusters. On the other hand, removal of the
C
constraint that Juy
i=1
tendency to produce identical rows in U unless the initial prototypes
are sufficiently distinct and the specified weights {Wl} are estimated

reasonably correctly (Barni et al., 1996, Krishnapuram and Keller,
1996). However, this behavior of PCM can sometimes be used to
advantage for cluster validation - that is, to determine c, the number
of clusters that are most plausible (Krishnapuram and Keller (1996)).
Krishnapuram and Keller recommend two ways to choose the
weights w for PCM-AO,

=1 also means that PCM-AO has a higher

n In
w, = K(ki_‘,luED?k kglug;],x >0 ; or (2.9a)

20 FUZZY PATTERN RECOGNITION

w,= XDj /[U(Ua] , (2.9b)
xk €U(j)a

where Uma is an a-cut of Um, the i-th row of the initializing c-

partition for PCM-AO. An initial c-partition of X is required to use
(2.9), and this is often taken as the terminal partition from a run of
FCM-AOQO prior to the use of PCM-AO. However, (2.9a) and (2.9b) are
not good choices when the data set is noisy. It can be shown (Davé
and Krishnapuram, 1997) that the membership function
corresponds to the idea of "weight function” in robust statistics and
the weights {w} correspond to the idea of "scale". Therefore, robust
statistical methods to estimate scale can be used to estimate the {wi}

in noisy situations. Robust clustering methods will be discussed in
Section 2.3.

Clustering algorithms produce partitions, which are sets of n label
vectors. For non-crisp partitions, the usual method of
defuzzification is the application of (1.15) to each column U, of

matrix U. The crisp partition corresponding to the maximum
membership partition of any U € Mpcn is

H_ —
Uk —H(Uk)-ei@uik>u,

K VK . (2.10)

The action of H on U will be denoted by U = [H(U)---H(U_)]. The
conversion of a probabilistic partition P e M fon by Bayes rule (decide

x,_e class i if and only if p(i[xk)] 2 plj lxk)]for j# 1) results in the crisp

partition PH™. We call this the hardening of U with H.

Example 2.2 HCM-AO, FCM-AO and PCM-AO were applied to the
unlabeled data set Xoo illustrated in Figure 2.2 (the labels in Figure

2.2 correspond to HCM assignments at termination of HCM-AO).
The coordinates of these data are listed in the first two columns of
Table 2.3. There are c=3 visually compact, well-separated clusters in
X0

The AO algorithms in Table 2.2 were run on X,, using Euclidean

distance for J and E_until E = [V, -V || <e = 0.01. All three
algorithms quickly terminated (less than 10 iterations each) using
this criterion. HCM-AO and FCM-AO were initialized with the first
three vectors in the data. PCM-AO was initialized with the final
prototypes given by FCM-AO, and the weight w, for each PCM-AO

cluster was set equal to the value obtained with (2.9a) using the

CLUSTER ANALYSIS 21

terminal FCM-AO values. The PCM-AO weights were w ,=0.20,
W2=O.21 and W, = 1.41. FCM-AO and PCM-AO both used m = 2 for the

membership exponent, and all three algorithms fixed the number of
clusters at ¢ = 3. Rows Um of U are shown as columns in Table 2.3.

14

12 ¥,
+ +
++

10

2 4 6 8 10 12 14
Figure 2.2 Unlabeled data set X,

The terminal HCM-AO partition in Table 2.3 (shaded to visually
enhance its crisp memberships) corresponds to visual assessment of
the data and its terminal labels appear in Figure 2.2. The cells in
Table 2.3 that correspond to maximum memberships in the
terminal FCM-AO and PCM-AO partitions are also shaded to help
you visually compare these three results.

The clusters in this data are well separated, so FCM-AO produces
memberships that are nearly crisp. PCM-AO memberships also
indicate well separated clusters, but notice that this is evident not by

22 FUZZY PATTERN RECOGNITION

many memberships being near 1, but rather, by many memberships
being near zero.

Table 2.3 Terminal partitions and prototypes for X_

DATA | HCM-AO FCM-AO PCM-AO
PT.| x X, T

1 2 U(2]
1 1.5 2.5 0.01
2 1.7 2.6 0.01
3 1.2 2.2 0.01
4 2 2 0.01
5 1.7 2.1 0.00
6 1.3 2.5 0.01
7 2.1 2 0.01
8 2.3 1.9 0.02
9 2 2.5 0.01
10| 1.9 1.9
11 5 6.2
12 | 5.5 6
131 4.9 5.9
14 5.3 6.3
15 | 4.9 6
16 | 5.8 6
17| 5.5 5.9
18| 5.2 6.1
19| 6.2 6.2
20| 5.6 6.1
21 1 10.1 12.5 0.
22| 11.2 115 0.00
23| 10.5 10.9 0.00
24 | 12.2 12.3 0.00
25| 10.5 11.5 0.00
26 11 14 0.00
27 | 12.2 122 0.00
28 | 10.2 10.9 0.00
29 | 11.9 12.7 0.00
30 | 12.9 12 0.00
V1 V2 V3 Vl V2 v
177 539 113 5.39 1128 | 1.92 5.37 11.8
222 6.07 12.0 6.07 12.0 2.08 6.07 12.2

For example, the third cluster has many relatively low maximum
memberships, but the other memberships for each of points 21 to 30
in cluster 3 are all zeroes. The greatest difference between fuzzy and
possibilistic partitions generated by these two models is that FCM-
AO memberships (are forced to) sum to 1 on each data point, whereas
PCM-AOQ is free to assign labels that don't exhibit dependency on
points that are not clearly part of a particular cluster. Whether this
is an advantage for one algorithm or the other depends on the data
in hand. Experiments reported by various authors in the literature
support trying both algorithms on the data, and then selecting the
output that seems to be most useful.

Because the columns of U in M o are independent, PCM actually

P
seeks c independent possibilistic clusters, and therefore it can locate
all ¢ clusters at the same spot even when an algorithm such as FCM
is used for initialization. In some sense this is the price PCM pays -

CLUSTER ANALYSIS 23

losing the ability to distinguish between different clusters - for the
advantage of getting possibilistic memberships that can isolate
noise and outliers.

The bottom three rows of Table 2.3 enable you to compare the point
prototypes produced by the three algorithms to the sample means

{VI, VZ, VS} of the three clusters. HCM-AO and FCM-AO both
produce exact (to two decimal places) replicates; PCM-AO cluster

centers for the second and third clusters are close to 72 and VS,

while the PCM-AO prototype for cluster 1 differs by about 15% in
each coordinate. This is because PCM memberships vary
considerably within a cluster, depending on how close the points are
to the prototype.

Applying (2.10) to the FCM-AO and PCM-AO partitions in Table 2.3
results in the same terminal partition as found by HCM-AO (i.e., the

H H
shaded cells in Table 2.3 show that Urem = Upem = HCM) This

happens because the data set is small and well-structured. In large,
less well structured data sets, the three algorithms may produce
partitions that, when hardened, can be significantly different from
each other. Needless to say, the utility of a particular output is
dependent on the data and problem at hand, and this determination
is, unfortunately, largely up to you.

B. Semi-supervised clustering models
Objective functions such as J, and J_ that minimize sums of

squared errors are well known for their propensxty to find solutions
that "balance" the number of members in each cluster. This
illustrates the sometimes confusing and always frustrating fact that
lower values of J_ do NOT necessarily point to better partitions of X.

Semi-supervised ¢ -means clustering models attempt to overcome
this limitation. In this category are models due to Pedrycz (1985),
Hirota and Iwama (1988} and Bensaid et al. (1996a). They are
applicable in domains where users may have a small set of labeled
data that can be used to supervise clustering of the remaining data
{this is often the case, for example, in medical image segmentation).
Algorithms in this category are clustering algorithms that use a

finite design set X® c RP of labeled (crisp or otherwise) data to help

clustering algorithms partition a finite set X" < RP of unlabeled
data. These algorithms terminate without the capability to label

additional points in RP - that is, they do not build classifier
functions. X? is used to guide FCM-AO to a good c-partition of X".
Let X = XqU XY, IXd] =ng,]X“| =n_, [X|=n4 +n, =n. Without loss
we assume that the labeled data are the first n 4 points in X,

24 FUZZY PATTERN RECOGNITION

— d d d u u u — wd u
X= xl,xz,...,xnd U xl,xz,...,xnu =X%u X", 2.11)
labeled unlabeled

Pedrycz (1985) defined pointer bk = 1if x_is labeled, and bk =0

otherwise. Then he defined the matrix F=[fy] _ with the given

label vectors in appropriate columns and zero vectors elsewhere.
Pedrycz modified J at (2.5) to the new functional

- cC n
Jm(U, V)= a1§1k=1(uik

mem , < 2 mm
—-bf) D1k+1§‘1kz=’1(uik} D, (2.12)
where >0 and U in M. is a ¢ Xn matrix to be found by
minimizing (2.12). Under the same assumptions as in Table 2.2,

Pedrycz derived first order necessary conditions for Jm by

differentiating (2.12) with respect to U and V in the usual fashion.
The formula for V remains (2.7b), while (2.7a) is replaced by the
more complicated expression

C
) 1+ [al/(m—U] 1- bkjglfjk] + (xl/(m—l)bkfik

uik = 1 + al/(m-l) p 2/(m—l) . (2. 13)

Replacing (2.7a) with (2.13) yields the semi-supervised FCM-AO of
Pedrycz which we call ssfem-AO. J_, includes a new term whose
minimization "forces" U to follow F for the patterns that are already
labeled. Weight factor o is used to balance unequal cluster
population. Notice especially that U is a new partition of all of X, so
at termination the supervising labels are replaced by the computed
labels.

The approach to semi-supervision taken by Bensaid et al. (1996a) is
to heuristically alter the equations for FCM-AO given in (2.7). Their
premise is that the supervising data are labeled correctly, so the n q
labels (crisp or fuzzy) in U? should be fixed. They use AO scheme
(2.4c), and take the initial matrix as Uy = [UdlU‘gl, where only U} is

initialized. The terminal matrix has the form U, = [UdIUfu].

CLUSTER ANALYSIS 25

In ordinary HCM-AO or FCM-AO, once U, is determined, the next
step is to compute cluster centers {v } usmg all n columns of U,.

However, since the last n_ columns of U are user-initialized, these
authors compute the first set of cluster centers using only the n 4
columns in UY. This is justified by their belief that using only the

labeled data to find the initial cluster centers makes them "well-
seeded". Consequently, they calculate

m m
V=2 (ufeo) =i z (o) »lsisc : (2.14)
=1
Next, AO c-means ordinarily calculates U using the {v } to update
all n columns of U,. However, Bensaid et al use the funct10na1 form

at (2.7a) and update only the n, columns in U" by calculating, for 1 <
i<c 1<k< n,

u
- =
ikt | = 1(Vit / 31,

The cluster centers are then allowed to migrate in feature space, by
using all n columns of U to subsequently recompute the {v } after
the first pass. To counter the possible effect of unequal cluster
populations, the few samples that are labeled are weighted more
heavily than their unlabeled counterparts. This is done by

introducing non-negative weights w= (w,, w,_,..., w_)T as follows:
a

-1

2
)m"l t=1,...T. (2.15)

v = ’ ,1<i<¢; t=1,....,T (2.16)
it n, m o\ .
kz='1 Wk(ulk ¢ F k=1 (uik't
xﬁ is replicated w, times by this weighting scheme. Equations (2.14)-

(2.16} comprise the basis of the semi-supervised FCM (ssFCM)
algorithm of Bensaid et al. (1996a). The major difference between
ssFCM and ssfcm-AO is that Pedrycz's scheme is an attempt to solve
a new (different than (2.5)) optimization problem, whereas Bensaid
et al.'s method is a heuristically defined approach based on (2.5} that
is not a true optimization problem {and hence, does not bear the
designation AO).

Each point in X9 can be given a different weight in ssFCM. The vector
of weights in (2.16) is analogous to the factor ain (2.13): it is chosen
by the user to induce the labeled data to drive the clustering

26 FUZZY PATTERN RECOGNITION

algorithm towards a solution that avoids the problem of population
balancing that is illustrated in our next example.

Example 2.3 Figure 2.3(a) shows the results of processing a data set
given in Bensaid et al. (1996a) called X ,, which has ¢ = 2 visually

apparent clusters, with FCM-AO. Cluster 1 (Xl) on the left has 40
points, while cluster 2 (X2) on the right has only 3.

————————————

i
1 ® Swe
:
1 L4 ‘\;
\ N
1 L4 N
i A
/ \
’, [x‘
[] LY
Y
i
® v L] P
w2 *
i
L] [] 4
[J e
° i
’
4
[J
4
[] #
pE
",f
° P
-

Figure 2.3(a) A hardened FCM-AO partition of X 43

Data very similar to these appear on p. 220 of Duda and Hart (1973),
where they were used to illustrate the tendency of J to split large

clusters. Figure 2.3(a) is essentially the same as Figure 6.13(a) in
Duda and Hart, except that our figure is a crisp partition of X "

obtained by hardening the terminal partition of a run of FCM-AO.
The basic parameters used were the Euclidean norm for both J 9 and

E,c=m=2 and € = 0.0001. The terminal cluster centers are
indicated by the symbol (g§). Notice how the large number of points
in X, draws v, far to the left of its visually desirable position. Here,
unequal cluster sizes cause J, to identify a visually disagreeable

solution. This exemplifies our caveat about mathematical models:
J, prefers this partition to the one we would choose because its

measure of similarity and method of aggregation is only a crude and
very limited representation of what we do in order to see the obvious
structure in the data.

CLUSTER ANALYSIS 27

View 2.3(b) shows a partition obtained by hardening the terminal
ssFCM (Bensaid et al., 1996a) partition of X 43 found using the same

basic parameters as for FCM-AO. As shown in Figure 2.3(b}, ssFCM
used four points from X and 1 point from X, as the supervising

labeled data (son 4= 5), and equal weights w =6 for each supervising

point. Apparently ssFCM overcomes the problem illustrated in
Figure 2.3(a). The three points in X, are isolated from the large

cluster in the hardened partition, and v, occupies a position that is

visually correct. However, the supervising points for the left cluster
were well chosen in the sense that they, like v , occupy the visually

apparent center of X . Loosely speaking, the weight w = 6 essentiall
1 1 y

gives these four points 6 times as much influence as any unlabeled
individual during iteration of ssFCM.

Supervising points

Figure 2.3(b) A hardened ssFCM-AO partition of X,

View 2.3(c) shows a partition obtained by hardening the terminal
ssfcm-AO (Pedrycz) partition of X | found using the same basic

parameters and supervising points as for ssFCM, with scale factor o
in (2.12) set at o = 200. Figures 2.3(a) and 2.3(c) are very similar, and
based on the difference between views 2.3(b) and 2.3(c), it appears
that ssFCM-AOQ is superior to ssfcm-AO. However, this may be due
more to a fortuitous choice of supervising points and weights than
by any inherent superiority in ssFCM. Some insight into this aspect
of comparing various methods is gained by simply altering the
points used for supervision of ssfcm-AO, with all other parameters
fixed.

28 FUZZY PATTERN RECOGNITION

/ []
...............
T e e —d———
° ° Le T e
Y N\ [] N
N
® \ N
® ° 1 e AN
] i N,
7 A
o v 'e ;
. / * ;
o ol v \
& f0 42 o
J
* i * V4
L4 e O ‘e . 7
'. * s
[] ® 1 Vi
1 [4 Vs
[/
o [] :. s~
i L4 5
® H ’
i .’
\
@
L N

T ——.
.

.. 'o

pd

N

Figure 2.3(d) Another hardened ssfcm-AO partition of X,

Figure 2.3(d) shows the Pedrycz (1985} ssfcm-AO result when the six
peoints shown there are used to supervise it. For this alternate choice
of supervision, the algorithm of Pedrycz produces a hardened
partition that is quite similar to the one shown in view 2.3(b); only 2
of the 43 points are mislabeled in this crisp partition of the data. We
have no doubt that some combination of supervising points and
algorithmic parameters would enable ssfcm-AO to produce the same
partition that ssFCM does here. This emphasizes an important
point. Most clustering methods will produce almost identical results

CLUSTER ANALYSIS 29

if you have enough time to find the parameters that yield the same
solution. For p > 3, the luxury of choosing supervising data that are
"just right" is not available even when some of the data are labeled.
See Bensaid et al. (1996a) for further discussion about this problem.

C. Probabilistic Clustering

Chapter 6 of Duda and Hart (1973) gives a very readable account of
the decomposition of normal mixtures using maximum likelihood.
This subsection follows their development closely. More complete
accounts of probabilistic clustering are found in Everitt and Hand
(1981), Titterington et al. (1985), and McLachan and Basford (1988).

The expectation-maximization (EM) algorithm is used to optimize
the maximum likelihood model of the data, and it generates
probabilistic labels for X under the assumptions of statistical
mixtures (Titterington et al., 1985). We briefly discuss the
connection between this scheme and fuzzy clustering. X is assumed
to be drawn from a mixed population of ¢ p-variate statistical
distributions that have, fori = 1, 2, ... ¢: random variables {Xi}; prior

probabilities {ni}; and class-conditional probability density

functions (PDFs) {g(x|i)}. The PDF formed by taking the convex
combination

flx) = Srig(xl) 2.17)

is a distribution which is called a mixture of the components
{mglx {1)}. Each component g(x|i) can be continuous or discrete, and

(2.17) can have some components of either type. The case that
dominates applications is when every component of f(x) is
multivariate normal. Then the PDF of component i has the familiar
form

R P
nip, T)=gx|i)=e 2l jll“’:1"1/(21r)21/det z , where (2.18a)
K= (n ¥ Ppi)T = population mean vector of class i; and (2.18Db)
Oi11 G2 7 Oyp
g, (e} e O
L =[ecoviX)|=| T2 R T : (2.18¢)
[e) G. v O

i,pl i,p2 i,pp

30 FUZZY PATTERN RECOGNITION

X, is the (positive definite) population covariance matrix of class i.

Oy = cov(Xy, Xy) is the population covariance between variables j

and k for class i and the norm in (2.18a) is the Mahalanobis norm
for class i (equation (1.9)) computed with the population parameters

®y)

Let the a posteriori probability that, given x, x came from class i, be
denoted by =n(i|x). Bayes rule relates the elements of (2.18) to the
probabilities {r(i|x)} as follows:

n(i| x) = 7, g(x|1)/f(x) . (2.19)

For a sample of n points X = {xl, X,,..., xn} assumed to be drawn
independently and identically distributed (iid) from (2.17) with
PDFs as in (2.18), the ¢ x n posterior matrix I1= [nik = n(ilxk)] is in
M., the set of constrained c-partitions of X. T (or more accurately,
estimate p of it) is a probability that plays much the same role in
statistical clustering that the membership value u, plays in fuzzy
clustering.

The scheme usually employed for mixture decomposition assumes
the Gaussian functional form (2.18a) for the {g(x]|i)}. Under this

hypothesis, we attach an unknown parameter vector [51 to each PDF
in the mixture:

f(x:B) = 'inig(x] i:8,) . (2.20)

The mixture density now depends on a parameter vector B = ([3

[ic) where the parameters for class i are [3 (n B) for component

PDFs as in (2.18a). Alternatively, estimates for posterlor matrix IT
can be viewed as the parameters of (2.20) since equation (2.19)
couples IT to the parameters B we use here.

One of the most popular ways to estimate B using either labeled or
unlabeled data is maximum likelihood estimation (MLE). Given X =

{x 1 Kyrens xn}, we form the log-likelihood function In[L(B; X)] of the

samples as a function of B and try to maximize it (In denotes the
logarithmic function to the base e). When the component densities

are Gaussian, g(x|i)=n(p, X), first order necessary conditions for
the MLE (p,,m ,S) of each [3 =(n,n, X) are known (Wolfe, 1970).
Letting P = [P ik] denote the MLE of H [n 1, Wolfe showed that

CLUSTER ANALYSIS 31

p=3p, /o s 1sisc ; (2.21a)
I n
mi=k§1pikxk/k§1pik ; 1<i<c ; (2.21b)
_ n T n . <i< .
8,= 3 p, e, ~m)x, -m)"/$ p; 1<i<ciand @219
x |i(p,m,S
Py = Cpig(il 5Py, ™, S,)) : 1<i<c ; 1<k<n. (2.22)
jglpjg(xkljz (p;,mS))
The vector of means, M= (m _, ..., m) at (2.21b) is a set of ¢ point

prototypes analogous to the vector V of cluster centers in the c-
means models; and the matrix P at (2.22) is the obvious analog to U
for the FCM model. Equations (2.21) are a set of highly non-linear
equations that are coupled through Bayes rule (2.22) to the MLE
estimators for the population parameters of the ¢ component
normal densities. Hence, numerical methods are used to find
candidates for local maxima of In[L(B; X)]. The AO algorithm given
in Table 2.4 that is based on equations (2.21) and (2.22) for normal
mixtures is called the Gaussian mixture decomposition (GMD-AQ)
AO algorithm : it is a special case of the EM algorithm.

Table 2.4 The GMD-AO algorithm for normal mixtures

Store | Unlabeled Object Data X < RP

number of clusters: 1 < ¢ < n. Rule of thumb: ¢ € Vn
maximum number of iterations: T

termination criterion: 0 < £ = small value

-
-
Pick » norm for termination: Et = ”Pt - Pt—l" = big value
-
-

Guess initial partition: P 0 €M (2.4¢)
t«0
REPEAT

Iterate tet+1

B, =G.,(P,_,) where g, (P,) is (2.21a-¢)
P, =3,,(B,) whereP =3,(B) is (222
UNTIL (t =T or Et <€)
(P.B)«(P,B)

When the covariance structure of one or more components is
arbitrary, In[L(B; X)] may not have a finite maximum (Duda and
Hart, 1973). Nonetheless, numerical solutions of this system are
known to produce useful estimators in many real problems, so

32 FUZZY PATTERN RECOGNITION

probabilistic clustering (that is, estimates of the matrix P) is
popular. The efficacy of this approach depends mainly on the data
satisfying the assumption that it be drawn iid from mixture (2.17)
with components (2.18a). If this is not the case (and often, it is not),
substructure found by maximizing In[L(B; X}] can be very
misleading.

Note that Mahalanobis distances are needed in (2.18a}, and
therefore in (2.22) as well, so each iteration of GMD-AO requires the
inversion of the ¢ (p X p) covariance matrices at (2.21c). Hence, GMD-
AO is quite a bit more computationally intense than any of the c-
means algorithms. In view of this, and because the EM algorithm is
very sensitive to initialization, many authors prefer to preprocess X
with a simpler scheme to improve the chance that GMD-AO gets
started at a point in its parameter space that is close to a useful
solution (Duda and Hart, 1973).

It has been shown that FCM-AO can provide good initializations for
GMD-AO (Bezdek and Dunn, 1975, Bezdek et al., 1985, Davenport et
al., 1988). Gath and Geva (1989b) also studied the estimation of
components of normal mixtures using a fuzzy clustering approach
that we discuss in Section 2.3. These papers point out the
similarities of and differences between estimates produced by FCM-
AO and GMD-AO algorithms. See Hathaway and Bezdek (1986b) for
an example that proves that the point prototypes {vi} from FCM-AO

cannot be a statistically consistent estimator of the means {mi}

from an arbitrary univariate mixture. Another approach to
initialization by clustering with a deterministic competitive
learning model is given by McKenzie and Alder (1994). Many fuzzy
clustering algorithms have been proposed that are either hybrids of
or are related to GMD-AO, or that use the maximum likelihood
principle in some other way. Among these, we mention the paper by
Kaufman and Rouseeuw (1990), and we discuss the model of Gath and
Geva (1989a) in Section 2.4.

Example 2.4 Data set Xoo from Table 2.3 was processed with the
GMD-AO algorithm using the same initialization and termination
parameters as in Example 2.2. Specifically, Vio= (1.5, 2.5)", Voo
(1.7, 2.6)Tand Voo = (1.2, 2.2)" The results are shown in Table 2. 5.
Since GMD-AO produces a partition in M o W€ compare P aMD-a0 O
the terminal U_ produced by FCM-AQO for m=2 that appears in the
third set of columns in Table 2.3. The hardened versions of both

; . H _yg# _Z
partitions are also identical, Piyp = Uren = Vnenr-

CLUSTER ANALYSIS 33

Table 2.5 Terminal EM and FCM partitions and prototypes for X,

Pt. Data Pt. GMD-AO FCM-AO (m=2})
*1 X2 P} Pj UG, Ugs,
1 | 1.5 25| 1.00 0.0 0.01 _ 0.00
2 1.7 26 | 1*.00,?1\ 0.00 0.01 0.00
3 1.2 2.2 00 0.00 0.01 0.00
4 2.0 2.0 0.00 0.01 0.00
5 1.7 2.1 0.00 0.00 0.00
6 1.3 2.5 0.00 0.00
7 2.1 2.0 0.00 0.00
8 2.3 1.9 0.00 0.00
9 2.0 2.5 0.00 0.00
10 1.9 1.9 0.00
11 5.0 6.2 0.00
12 5.5 6.0 0.00
13 4.9 5.9 0.00
14 5.3 6.3 0.00
15 4.9 6.0 0.00
16 58 6.0 0.00
17 5.5 5.9 0.00
18 52 6.1 0.00
19 6.2 6.2 0.01
20 56 6.1 -~ 0.00
21 | 10.1 12.5 097
22 11.2 11.5 '0 99 \
23 10.5 10.9 0 00 . -
24 12.2 12.3 0.00
25 105 11.5 0.00
26 11.0 14.0 0.00
27 12.2 12.2 0.00
28 10.2 10.9| 0.00
29 11.9 12.7 0.00
30 129 12.0 0.00
v, vy V3 ml
1.77 5.39 11.3| 1.77
2.22 6.07 12.0| 2.22

To two significant digits, the terminal GMD-AO partition is crisp

before hardening,

p
GMD

= UHCM' This is not unexpected in view of the

well separated, Gaussian-like clusters in X3 o A similar very crisp
result can be obtained by setting the FCM parameter m to a value
close to 1. The terminal estimates {mi} of the (assumed normal)

means are practically identical to the FCM cluster centers {vi} and

the sample means {Vi}. Also available at termination of GMD-AO
are the covariance matrices,

34 FUZZY PATTERN RECOGNITION

S 0.11 —O5S_016 0.01], dS_084 0.24 |,
-0.05 0.07]) 0.01 0.027 0.24 0.57)

and estimates of the prior probabilities, which were all p,= 1/3 to six

significant digits. The terminal covariance matrices are useful for
analysis of the shape of each cluster - this will become evident in
Section 2.3. To summarize, when the clusters are well separated and
essentially spherical and well distributed throughout their basic
domains as they are in X3 o’ the mixture decomposition and fuzzy c-

means models produce almost identical results. This is, of course,
not always the case.

D. Remarks on HCM/FCM/PCM

The remaining paragraphs of this section offer comments on
various aspects of the point prototype c-means models.
Generalizations based on prototypes that are not points in feature
space is so large and important that we will devote Section 2.3 to
this topic.

Choice of parameters. HCM-AO, FCM-AO and PCM-AO share the
algorithmic parameters (U, /V T, s> Plere » € and €). FCM-AO adds

weighting exponent m, and PCM AO adds m and the weight vector w
to this list. Variation in any of these parameters can affect
algorithmic results for a fixed set of unlabeled data. Choosing the
most basic parameter, ¢ = the number of clusters, will be discussed in
Section 2.4.

Justifying your choice of m is always a challenge. FCM-AO will

produce partitions that approach U=][1/c] as m increases. In
theory, this happens as m — <, but in practice terminal partitions
usually have memberships close to (1/c) for values of m between 10
and 20. At the other extreme, as m approaches 1 from above, FCM
reduces to HCM, and terminal partitions become more and more
crisp. Thus, m controls the degree of fuzziness exhibited by the soft
boundaries in U. Most users choose m in the range [1.1, 5], with m =2
an overwhelming favorite. See Bezdek (1976) for an electrical analog
of J_ that offers a physical explanation for preferring m = 2.

Macbratney and Moore (1985) discuss an empirical scheme for
choosing m.

Choice of norms. Many authors have used distances (1.7), (1.8) and
(1.9) for D & with J . The results do not indicate a clear advantage for

any distance, nor should they. The data themselves have the last say
about which distance will provide the best results. Euclidean
distance is the overwhelming favorite, probably because it is the one
we live with. Mahalanobis distance is useful when there are large

CLUSTER ANALYSIS 35

disparities in the ranges of the measured features because it rotates

the basis of ®R” so that the data are scaled equally and are pairwise
uncorrelated.

Differentiability of the inner product norm leads to the conditions
for V. shown in Table 2.1. When D, in (2.5) is replaced by a
Minkowski norm other than the 2-norm, this property fails, and
other means are necessary for finding the function g, that is

needed for V, =g,(U,). Authors who have studied the use of the city
block (1- norm) and sup norm (e norm) for J_ include Bobrowski

and Bezdek (1991), Jajuga (1991) and Kersten (1995). g, in Table 2.2

is defined by a method such as linear programming or Newton's
method when these norms are used. Kersten (1995) has shown that

ge for the 1-norm is the weighted (or fuzzy] median. Trauwaert

(1987) also discusses several issues and algorithms related to the use
of the 1-norm in fuzzy clustering.

Initialization. Initialization is important. Many examples have been
published that show termination at different solutions when c-
means AO algorithms are initialized from different starting points.
There is no general agreement about a good initialization scheme.
The three most popular methods are: (i) using the first ¢ distinct
points in the data; (ii) using ¢ points randomly drawn from a
hyperbox containing X; and (iii) using ¢ points uniformly distributed
along the diagonal of the hyperbox containing X. Some authors
recommend initializing FCM with the output of HCM, and in turn,
some initialize PCM with FCM. Be careful not to initialize any of
these algorithms with equal rows in U o Or equal cluster centers in v,

because iterative updates cannot subsequently change them unless
there is a benevolent roundoff error that upsets equality.

Termination. The tradeoff between speed and accuracy is affected by
both Et and €. The 1, 2 and sup norms have all been used for Et. The

most popular norm for Et is certainly the Euclidean norm, but the 1-

norm probably provides comparable results at a savings in time,.
The choice of ¢ controls the duration of iteration as well as the
quality of terminal estimates. If € is too small, limit cycles may

occur. Most authors report good success with ¢ in the interval [0.01,
0.0001].

The choice of initialization in V as in (2.4b) or U as in (2.4c¢) is
almost a matter of taste. However, there is a large and important
difference in terms of storage and speed. When initialization and
termination are made on U as in (2.4c¢), (cn) variables must all be
close before termination occurs, and two c¢cxn matrices must be
stored. On the other hand, only (cp) variables must have small

36 FUZZY PATTERN RECOGNITION

successive differences when initializing and terminating with V,
and storage for successive iterates of V requires only two cxp
matrices. To see the difference, suppose you apply c-means to a
256 x 256 monochromatic image. Then n=65,536 whereas p=1. Since
¢ is common to both schemes, initializing and terminating on V
realizes an O(10%) savings in storage and usually reduces CPU
(central processing unit) time considerably. On the other hand, €
will usually have to be smaller to achieve termination at estimates
comparable to using U for initialization and termination instead of
V. Some authors normalize the termination error by the number of
variables being estimated, comparing ¢ to either

”Ut - Ut—-l” or v - Ve
cn cp '

Convergence. Convergence always means in some well-defined
mathematical sense; termination is when and where an algorithm
stops. Sequences converge, algorithms terminate - hopefully, close
to a point of convergence. FCM-AO generates an iterate sequence
that contains a subsequence that converges g-linearly from any
initialization to a local minimum or saddle point (local maxima are
impossible) of J_. Convergence theory for FCM (and HCM as well)

began with Bezdek (1980), and has progressed through a series of
papers that include Selim and Ismail (1984), Ismail and Selim
(1986), Hathaway and Bezdek (1986a, b}, Sabin (1987), Bezdek et al.
(1987b), Hathaway and Bezdek {1988}, Kim et al. (1988) and Wei and
Mendel (1994).

Acceleration. In this category are methods that seek to improve
computational properties (speed and storage) of the c-means AO
algorithms. The algorithms in Table 2.2 require many distance
calculations as well as fractional exponentiation at each half
iterate. For large data sets (e.g., images), this can mean relatively
slow iteration and lots of storage. Two methods for acceleration are
used: exploitation of special properties of the data; and alteration
the equations used for iteration.

As an example of exploiting special properties of the data, consider
the case when X is an 8 bit image. Since there are only 256 possible
values for each X, a great reduction in both memory and CPU time
can be realized by using the frequency of occurrence of each gray
level as follows. Let the number of pixels with gray level q be fq. All
of these pixels will have the same membership in all ¢ clusters. Let
u, be the membership of all pixels with gray level g for cluster i, 1 <i

< c¢. There are 256 values of u, . one for each gray level.

CLUSTER ANALYSIS 37

Now consider the computation of, say, the i-th cluster center for
FCM with equation (2.7b) when the image has 256x256 = 65,536
pixels:

65536 65536 285
vy= Y upX,/ X ugp= Z fougx, / T fqujg
k=1 k=1 q=0 q=0

The second form on the right follows because all of the pixels
(exactly f of them) with gray level q will have the identical

membership u,. This means that only 256 membership vectors in

g¢ need to be stored and used, as opposed to 65,536. Histogramming
easily obtains the {f }, and equations (2.6) - (2.8) for all the c-means
models can be implemented much more efficiently.

The approximate FCM (AFCM-AQO) algorithm of Cannon et al.
(1986a) was the first technique studied to speed up FCM-AO by
changing equations (2.7), and it also made use of the special nature
of image data. AFCM-AO reduced the CPU time for FCM-AO by
replacing the exact necessary conditions at (2.7) with approximate
ones that could be implemented using six look-up tables. However,
AFCM-AO was restricted to discrete data (such as image data), and
contained several approximations that degraded output quality.
AFCM-AQO saved roughly an order of magnitude in time, but has been
largely overshadowed by more recent developments such as those
given by Kamel and Selim (1994}, Shankar and Pal (1994), Cheng et
al. (1995) and Hershfinkel and Dinstein (1996).

E. The Reformulation Theorem

Minimization of the c-means functionals can be attempted in many
ways besides AO. Hathaway and Bezdek (1995) show that problem
(2.5) can be reformulated by eliminating either U or V from J by

direct substitution of the necessary conditions for one or the other
from Table 2.1 into equation (2.5). This idea had its roots in Bezdek
(1976), where the reformulation of J_ for FCM was exhibited, but the

effect of using it to replace the original optimization problem was
not discussed. The reformulations of J as a function of V alone for
the three cases are:

n
Rl(V; 0)=k2=,1 mm{le, 2k,...,Dck} (2.23a)
n c 1-m
R,(V;0)= Y (11{“-“"] ; (2.23b)
k=1\i=1
1
Rp(Viw)= 3 3 (DY 4 wl/0-m) ™ : (2.23¢)

—
1|
s
w
]
it

38 FUZZY PATTERN RECOGNITION

Let J denote a particular instance of (2.5) (hard, fuzzy or
possibilistic) and R denote the corresponding reformulated version

in (2.23). Let M be Mh o Mfm, or M o and U = F(V) denote the

function of V defined bycthe right han(f side of (2.6a), (2. 7a) or (2 8a),
depending on the model used. Let the distances D_, for i=1,...,c and

k=1,...,n, be continuous functions of Ve V, where V is an open subset
of R and VeR®. (Using t instead of p admits more general

prototypes than points in RP; the theorem holds for many non-
point prototype cases which are discussed later.) Let V be such that
the corresponding distances satisfy D x> 0, for i=1,...,c and k=1,...,n.

Then:
For the hard, fuzzy or possibilistic cases:

(i) (U, V) globally minimizes J over MxV = V globally
minimizes R over V; and

(ii) V globally minimizes R over V = (F(V), V) globally minimizes
Jover MxV.

For either the fuzzy or possibilistic case:
(iii} (U, V) locally minimizes J = V locally minimizes R; and
(iv) V locally minimizes R = (F(V), V) locally minimizes J.

This theorem can be used to convert problem (2.5) into an equivalent
unconstrained optimization problem where R in (2.23) is minimized
with any optimization scheme. Without the reformulation theorem,
there is no assurance that AO and R - based solutions will even be
similar, much less the same. This theorem guarantees that while
approaches based on reformulation will undoubtedly have different
computational properties (such as speed and storage), they will not
produce markedly different clustering solutions from AO-based
solutions.

For example, consider optimization of J_ using a genetic algorithm

(GA) approach (Goldberg, 1989). One of the most important issues for
using GA is representation of the model in a form that is amenable
to the GA paradigm. J_ in (2.5) is not well suited to be a fitness

function for this type of optimization because of the constraints on
the {u }. Reformulations of J in terms of V alone are much more

likely to be good fitness functlons because the number of
parameters that must be represented and estimated in the
reformulation is far less than in the original form. For example,
consider segmenting an unlabeled magnetic resonance image of size
256 x 256 in its standard three dimensional parameter space. For c=

CLUSTER ANALYSIS 39

10 tissue classes, the number of unknowns sought by FCM-AO is
c(n+p)= 10(65,536+3) = 655,363; but the reformulated version, FCM-
R, seeks only cp = 10(3) = 30. Moreover, (2.5) demands maintaining
65,536 constraints on the memberships, which makes the use of GA
ondJ_ quite impractical.

Several authors have experimented with the GA approach to solving
(2.5) via {2.23). The reformulation theorem gives this idea a solid
footing. Desired (but not guaranteed) advantages include
elimination of dependency on good initialization as well as
avoidance of local trap states. For small problems (that is, small
values of n and p), the GA approach seems to deliver good solutions.
As the size of the data set increases, however, it is less clear that
optimization of Jm by GA methods is an improvement to AO

schemes. This is a fairly new area: representative papers include
Hathaway and Bezdek (1994a) and Hall et al. (1994).

2.3 Non point-prototype clustering models

An important aspect of clustering with the EM method is that the
eigenstructure of the covariance matrices {Si} at (2.21c¢) lets clusters

assume locally different hyperellipsoidal shapes. This enables the
GMD-AO algorithm to represent each cluster drawn from a normal
mixture more accurately than the c-means models. When using the

norm D} =|x, - vi"i in (2.5), only one cluster shape can be matched

well - the hyperellipsoidal shape determined by the eigenstructure of
the fixed weight matrix A. This is fine if all ¢ clusters have that
shape, but most real data have more variability than this. The
deficiency of global minima for least squared error functions that is
illustrated by Figure 2.3(a) is due at least in part to exactly this
limitation, and ssFCM can be viewed as an attempt to trick the FCM
functional in hopes of overcoming this problem. Knowledge of this
deficiency may have been one of the reasons that Gustafson and
Kessel (1979) introduced the model we discuss next.

The basic variables that can be altered in the c-means models are
the way proximities {Dik} of x to the point prototypes {vi} are

measured; and the kind of prototypes that are used. Geometric
shapes in clusters can be matched either by adjusting the norm (and
hence, the shape of open and closed unit balls in feature space), or by
changing the fitting prototypes V. There have been many studies on

the effect of changing A in D} =|x, - vi||i on the assumption that

all of the clusters in X have roughly the same A-norm geometry and
that they are "cloud-like" - that is, they are more or less uniformly
distributed over their convex hulls. Gustafson and Kessel (1979)
introduced the first fuzzy method for localized shape matching via
individual norms that adapted to the shapes of individual clusters.
Algorithms of this kind are called adaptive because individual

40 FUZZY PATTERN RECOGNITION

norms change at each iteration in an attempt to adapt to the
geometry of individual clusters.

Some authors prefer to interpret the weight matrix A inducing an
individual norm for a cluster as part of the prototype of the cluster.
This leads to the idea of choosing non-point prototypes to match the
shape of the expected clusters. A linear prototype, rather than a
point, could be used to represent line-like clusters, and a circular
prototype could be used to find ring-shaped clusters. Clusters which
have no "interior points" are called shell clusters to distinguish
them from cloud type or volumetric structures. Figure 2.4 illustrates
this idea for three two-dimensional structures that are best
represented by different kinds of prototypes. The volumetric cloud
on the left is represented by a point prototype, while the linear and
circular shells in the other two views are best represented by more
general (non-point) prototypes, namely, a line and a circle.

V = Point B = Line B = Circle

oO
R \ Q

Figure 2.4 Appropriate prototypes for various clusters

Sets of ¢ point prototypes are called V, and the collection of ¢ non-
point prototypes will be denoted by B. Sometimes, but not always, a
model admits V as a special case of B. Non-point prototype-based
clusters are usually defined by least-squared error models that
attempt to fit the prototypes to the clusters. The generalization of
problem (2.5) for non-point prototypes is

min<J (U,B:w)= i ﬁ ump? +§EW 3 (l—u)m where (2.24a)
ol ™ 07 =) TR L L o= R S} LY)

B=@f.B,... [ic); B, is the i-th non-point prototype; and (2.24b)

D2 = S(x,,B;) measures the proximity or similarity
of x to the i-th non-point prototype. (2.24¢)

The exact nature of § (and hence S) depends on the particular model.
A variety of models and AO algorithms have been developed by
varying #,and S. In AO algorithms the membership update equation
U, = F(B,_;) is still given by (2.6a), (2.7a) and (2.8a) for the hard,

CLUSTER ANALYSIS 41

fuzzy and possibilistic cases respectively, except that D now
represents an appropriate proximity measure rather than
|zx - v;|,- The prototype update equation B, = g,(U,) depends on

the particular choice of the prototype. In this section we discuss
several non-point prototype models.

A. The Gustafson-Kessel (GK) Model

Gustafson and Kessel (1979) proposed that the matrix A in equation
(2.5) be a third variable. They put A = (Al,..., AC), A1 being a positive-

definite p xp matrix, and modified (2.5) to

min {J _(UV,A)=% % um"x v "2 .25
(U, V,A) m,GK " ekl Tl . i
det(Al)sz

The variables estimated by the GK model are the triplet (U, V, A)
where V is still a vector of point prototypes. This model predates
possibilistic partitions by some 15 years, so the weights tw} in (2.5)

are all zero. The important idea here is that the i-th cluster in U
might be best matched by a hyperellipsoidal shape generated by the
eigenstructure of the variable matrix A, much like S, does for GMD-

AO at (2.21c). The additional constraint that det(Ai) =p,> 0
guarantees that A is positive-definite; p, is a user defined constant
for each cluster. Gustafson and Kessel showed that minimization of

J_ ok with respect to A, leads to the necessary condition

A, =[p, det(c,)]Pct 1<i<c . (2.26)

In (2.26) Ci is the fuzzy covariance matrix of cluster i,

3 m .
u ,1<i<cmz21, (2.27)

where v, is the i-th point prototype or cluster center. In the sequel we
may represent the set of fuzzy covariance matrices calculated with
(2.27) as the vector C=(C,,...,C_) € RP*P) . Gustafson and Kessel

used p =1 for all i. With this choice, the fixed norm D = |x, - v1||i
used for the ¢ distances from x,_to the current {v} during calculation
of (2.7a) is replaced in the GK-AO algorithm with the ¢ distances

42 FUZZY PATTERN RECOGNITION

D% ok = det(C)V?x, ~ v, ”iil , 1gi<c : (2.28)

When crisp covariance matrices are used, the distance measure in
(2.28) is the one suggested by Sebestyen (1962). This distance
measure was also used by Diday (1971), Diday et al. (1974) and Diday
and Simon (1976) in their adaptive distance dynamic clusters
(ADDC) algorithm. Thus, the GK-AO algorithm can be viewed as the
fuzzification of ADDC, and may be regarded as the first (locally)
adaptive fuzzy clustering algorithm.

For AO optimization of J (U V, A), the partition U and centers
{v} are updated using (2. 7a b) as in FCM-AQ, and the covariance

matrlces are updated with (2.26). The GK-AO algorithm is more
sensitive to initialization than FCM-AO because its search space is
much larger. Typically, FCM-AO is used to provide a reasonably
good initialization for this algorithm. Experimental evidence
indicates that 1 £ m <2 gives good results, with m = 1.5 often being
the recommended value.

Example 2.5 Figure 2.5 shows two data sets that were processed with
the FCM-AO, GK-AO, and the GMD-AO algorithms. The parameter m
was set at 2.0 for FCM-AQO, and 1.5 for the GK-AO algorithm. All runs
were initialized with the first two points in the left views (Vo= (30,

35)7, \ (42, 45)") or first three points in the right views (v o= (21,

104)", v, = (22, 101 and v, = (22, 104)"). The termination criterion
was E, = NVt V| se=0. OOl The Euclidean norm was used for J,,.

The left side of Figure 2.5 contains points drawn from a mixture of ¢
= 2 fairly circular Gaussians. The clusters on the right are drawn
from a mixture of ¢ = 3 bivariate normals, one of which (in the upper
right portion of each view) has a covariance structure that tends
toward linear correlation between x and y. The three clusters on the
right exhibit visually different shapes, so we expect GK-AO and
GMD-AO to use their localized adaptivity to find these clouds more
accurately than FCM-AO, which has a ﬁxed norm-inducing weight
matrix.

Terminal partitions hardened with (2.10) are shown in Figure 2.5 by
assigning different symbols to the crisp clusters. The shaded areas
in views a, b, d, e and f correspond to the points that, when compared
with the labels of the samples drawn, were labeled incorrectly. For
the data on the left, FCM-AO tends to divide the data into circular
(because the norm is Euclidean) clusters of roughly equal size (the
problem illustrated in Figure 2.3(a)). The GK-AO result in view 2.5(b)
shows an even stronger encroachment of the right cluster into the

CLUSTER ANALYSIS 43

left one. View 2.5(c) shows that GMD-AQ labels every point in the 2
clusters data correctly; it reproduces the a priori labels flawlessly.

(a) FCM {d) FCM

Figure 2.5 Hardened partitions for 2 sets of Gaussian clusters

44 FUZZY PATTERN RECOGNITION

The GMD-AO model also produces visually better results with the
three clusters on the right side of Figure 2.5. Here FCM-AO draws
four points up towards the linear cluster from the centrally located
large group, and loses three points from the linear cluster to the
lower cluster on the right (7 mistakes). GK-AO draws three points to
the left from the lower right hand cluster and loses one point to the
linear cluster (4 mistakes). GMD-AO reproduces the a priori labels
almost flawlessly, missing just one point in the bottom right cluster
to the linear cluster {1 mistake).

oy - = i : =

Visually, GMD gives much better results than FCM or GK for both
data sets in Figure 2.5. Is GMD generally superior? Well, if the data
are really from a mixture of normals, the GMD model matches the
data better than the other two models. But if the geometry of the data
does not fit the pattern expected for draws from a mixture of
normals very well, GMD does not produce better results than other
models. Moreover, (2.28) reduces to the Euclidean distance when

C, = 02I. If this is true for all i = 1,...,¢, the behavior of GK and FCM
are very similar.

Bezdek and Dunn (1975) studied the efficacy of replacing GMD-AO
parameter (P, M) with terminal (U, V)'s from FCM, and then
calculating the remaining MLE of components (the priors and
covariance matrices) of normal mixtures non-iteratively.
Hathaway and Bezdek (1986b) proved that this strategy could not
produce correct MLEs for (P, M) in even the univariate case.

Gath and Geva {1989a) discuss an algorithm they called fuzzy
maximum likelihood estimation (FMLE). Specifically, they used the
fuzzy covariance matrix C, at (2.27) with m = 1 (this does not mean or

require that the partition matrix U is crisp) to define an exponential
1 2

det(C,)1/2] il

—1l e i

P;
the prior probability of class i shown in (2.21a). This distance was
then used in FCM formula (2.7a) with m = 2, resulting in the

» where p, is the estimate of

. 2 _
distance Dik'GG —[

C 2 -
memberships {u, =L§1(Dik‘GG /Dij’GG) } , which were taken as

estimates for the posterior probabilities in equation (2.22). It is not
hard to verify that this with updating scheme 1, _is identical to P,

in (2.22). It is not hard to show that the update equations for FMLE
are identical to those for GMD-AO. Thus, FMLE is essentially
equivalent to GMD-AO with the {pik} interpreted as fuzzy

memberships. We will illustrate FMLE in Section 2.4 in conjunction

CLUSTER ANALYSIS 45

with several measures of cluster validity defined in Gath and Geva
(1989a).

Although the GK algorithm was developed for, and both it and GMD-
AO are used to detect ellipsoidal clusters, since lines and planes can
be viewed as extremely elongated or flat ellipsoids, these two models
can also be used to detect lines and planes. Other algorithms that
generate prototypes of this kind are described in the next subsection.
Chapter 5 contains a more detailed discussion of how the clustering
algorithms described in this subsection can be used for boundary
description.

B. Linear manifolds as prototypes

The earliest reference to the explicit use of non-point prototypes in
connection with generalizations of FCM was Bezdek et al. (1978).
These authors discussed a primitive method for fitting fuzzy clusters
with lines in the plane. The fuzzy c-varieties (FCV) models (Bezdek et
al. 1981a,b) grew out of this effort, and were the first generalizations
of FCM that explicitly used many kinds of non-point prototypes.
FCV uses r-dimensional linear varieties, O < r < p-1 as prototypes in
(2.24a). This model predates possibilistic partitions, so the weights
{wi} in (2.24) are zero for the FCV objective function. The linear

variety (or manifold) of dimension r through the point vV €GP

spanned by the linearly independent vectors {b,;,b,,,...,b,} = RP is
- Plv — J .
Ly={ye®ly=v,+ 3tb;t &%) : (2.29)

S0 Bi = {vi,bil,biz,...,bir} are the parameters of Lﬂ. These prototypes
can be thought of as "flat” sets in g;p. Dimension r is the number of

directions in which the flatness extends. FCV uses the perpendicular
distance from x to Lri as the distance measure in (2.24a). When the

{bij} are an orthonormal basis for their span, the orthogonal

projection theorem yields

2 r 2
-2 <xk - V.,b..> : (2.30)
Dogfa

2
Dy = “xk - v'l
r,ik A j:l

1

D, isjust the A-norm length of (xk~v1) minus the A-norm length of
rik

its unique best approximation by a vector in the span of the {bijl

j=1,....r}. When r = 0 equation (2.30) reduces to D} =|x, —vi"i as

46 FUZZY PATTERN RECOGNITION

used in (2.5), so for r = 0, FCV reduces to FCM. For r = 1, FCV becomes
Fuzzy c-Lines (FCL), for r = 2, Fuzzy c-Planes (FCP), etc., and forr = p
-1, Fuzzy c-Hyperplanes (FCHP). In the FCV-AO algorithms derived
to optimize the FCV model, the fuzzy c-partition matrix U and the
centers {v} are updated with FCM formulae (2.7a, b) except that the

squared distance in (2.30) is used in place of D§ =[x, - villi. First

order necessary conditions for minimizing the FCV functional now
include the spanning vectors {bij}, which are updated at each

iteration by finding
IJij = the j-th unit eigenvector of C_j=1, 2, ...p , (2.31)

where the {b } are arranged in the same order as the descending
eigenvalues of C, and C is the fuzzy covariance matrix of cluster i

given by (2.27). The eigenvectors are assumed to be arranged
corresponding to a descending ordering of their eigenvalues. For r >
0 it is of course necessary to get the eigenvalues and eigenvectors of
the fuzzy covariance matrices at each pass through FCV-AO. This is
usually done with singular value decomposition, and makes FCV
and its relatives more computationally intense than the simpler
point prototype models.

Since FCV-AO uses perpendicular distance to the linear varieties, it
does not take into account the extent (i.e., length, area, etc.) of the
flat clusters being sought. For example, if r = 1, FCV seeks (infinitely
long) lines, and thus can lump approximately collinear clusters
together, even when they are very far apart (see Figure 24.1 in Bezdek
(1981)). One solution to this problem is to choose a distance measure
given by

2 = 2 — 2 M [} (2'32)
D1o,1k aDLm +(1 oc)DLmk, O0<ua<l
[—— ———
lines points

which is a convex combination of the perpendicular distance from
x to L, g and the point distance from x_to v. See Figure 4.50 for a
geometric interpretation of the distance in equation (2.32).

Parameter o can vary from O for spherical clusters (having point
prototypes) to 1 for linear clusters (having line prototypes).

The algorithm resulting from first order necessary conditions for
J_(U, B) with distance (2.32) is called the fuzzy c -elliptotypes (FCE-
AQ) algorithm (Bezdek et al., 1981b). More generally, AO algorithms
to optimize any convex combination of FCV terms with dimensions
{ri} and convex weights {oci} were derived by Bezdek et al. (1981a, b).
The purpose of this is to allow the clusters to have shapes built from
convex combinations of flat shapes. However, the actual prototypes

CLUSTER ANALYSIS 47

from the convex combinations model are not easily recognizable
geometric entities such as ellipses; rather, they are mathematical
entities described in terms of level sets of certain functions.

While the parameters V and A in the GK model can be jointly viewed
as "generalized" prototypes, FCV was the first generalization of FCM
that explicitly used non-point prototypes for B. The FCV algorithms
and the particular convex combination FCE have found various
applications over the years (Jacobsen and Gunderson, 1983,
Gunderson and Thrane, 1985, Yoshinari et al., 1993). However, a
rough idea of the shape of the clusters in the data set must be known
a priori (which is impossible for p > 3) to select proper values for the
dimensions {ri} and convex weights {oci}. An important exception is

rule extraction for function approximation in fuzzy input-output
systems. FCE seems well suited to this problem because the input-

output space of often 3, and linear Takagi-Sugeno (1985) output

functions can be fitted quite well with FCE (Runkler and Palm, 1996;
Runkler and Bezdek, 1998c; and Example 4.17).

Adaptive fuzzy c-elliptotypes (AFCE). Perhaps the biggest drawback
of FCV and convex combinations like FCE is that these models find
¢ clusters with prototypical "shapes" that are all the same. The
reason for this is that FCV uses the same real dimension (r) and its
convex combinations all use the same "mixture of dimensions" for
all ¢ clusters, so cluster substructure having these characteristics is
imposed on the data whether they possess it or not. This problem
resulted in the first locally adaptive fuzzy clustering method (the GK
model), and the next generation of locally adaptive clustering
methods followed rapidly on the heels of the FCV models.

There are a number of ways to make FCV adaptive. The earliest
scheme for local adaptation in the FCV models was due to Anderson
et al. (1982). They suggested that the value of o used in convex
combinations of the FCV functionals should be different for each
cluster, reflecting a customized distance measure that best
represents the shape of each cluster. When convex combinations are
used, there is no dimensionality of prototypes. (We remind you that
it is the distances in the FCV objective function that become convex
combinations in Bezdek et al. (1981a, b), and not the fitting
prototypes. The fitting prototypes in AFCE, as in FCE, are no longer
recognizable geometric entities.) The basic idea in FCE is to mediate
between geometric needs for point prototypes (central tendencies)
and varietal structure (shape or dispersions). But convex
combinations of FCV such as FCE fix the amount by which each
factor contributes to the overall representation of all ¢ clusters.

Anderson et al. (1982) regulated each cluster through the shape
information possessed by the eigenstructure of its fuzzy covariance

48 FUZZY PATTERN RECOGNITION

matrix. Adaptation is with respect to the convex weights in (2.32)
used for each cluster, For X c %2 the modification of FCE to AFCE is

Mo =12

Oti = 1 el ’ (2.33)

M max

where 7» max 18 the larger eigenvalue and k min 18 the smaller
elgenvalue of the 2x2 fuzzy covariance matrix C of cluster i, i=1,2.

Equation (2.33) covers only the 2D case. Extenswns to higher
dimensions may be found in Phansalkar and Davé (1997) and Kim
(1997). The AFCE-AO algorithms are exactly the same as the FCE-AO
methods just described except that the convex weights in (2.32) are
updated at each iteration with (2.33).

9 ‘
Example 2.6 Figure 2.6 shows the results of clustering two data sets
with FCL-AO, AFCE-AO and GK-AO. Each of these models has a
different kind of prototype (lines, elliptotypes and points,
respectively); all three are configured for possible success with data
of this kind. FCL, however, is more rigid than the other two because
it does not have a feature that enables localized adaptation. The left
panel depicts three intersecting noisy linear clusters of different
sizes, and the right side shows three noisy linear clusters, two of
which are collinear.

Run time protocols for this example were as follows. The covariance
matrices for all three methods were initialized with the (U, V) output
of the fifth iteration of FCM-AO, m = 2, ¢ = 3 using the Euclidean
norm. FCM-AO was 1tse1f initialized w1th the first 3 points in each

data set (v, ;= (80, 81)', v, /= (84, 84) and v, = (87, 89)) in the left
views, and(1o = (10, 11) v, 2o = (11,189 and v, = (14, 14)") in the
right views). Termination of all three methods by either of
[V - Vi| £0.001o0r Uy, —Uy|, <0.01 yielded the same results.

FCV and AFCE both used m=2, and GK used m = 1.5 {our experience is
that GK does much better with a value near 1.5 than it does with a
value near 2).

The results shown are terminal partitions hardened with (2.10),
each cluster identified by a different symbol. In the collinear
situation for the right hand views, FCL finds two almost
coincidental clusters and the points belonging to these two clusters
are arbitrarily assigned to the two prototypes in view 2.6d. The
AFCE result in 2.6f is much better, having just two squares that are
erroneously grouped with the dots. GK makes perfect assignments,
as shown in Figure 2.6e. Terminal values of o for AFCE were very
nearly 1 for both data sets.

CLUSTER ANALYSIS 49

() FCL o, (d) FCL K
., .ﬁg.
o
B h‘h o
egery , ® R X2 .aoo-n X X J:Lh"f D.d:F
17000 %" Z0 gl %4 % 44 To
+
o
o
n_ .&,D""
o o
o d'-'"‘Pd]
|=EI
o
(b) GK 4y (e) GK
N
+ 4y
L by
sgreg_w ."+q... - oy .00 #++
e ere % o?i{-_ e % o0 ¢ *
a“+
o
+ -
+ o'
b -®
+ o°
L -
+ K
+ .®
o
(c) AFCE ﬁ*&- (f) AFCE
'y
*ry
ES ++1.
4 :
o 4*"’*;.
10000,0 . 0%" o.&ﬁ. 0,080,080, ,%00 L
o
o5
H i
+ ."
+ i
1’+ .'o
L3 ..0‘

Figure 2.6 Detection of linear clusters with FCL, GK and AFCE

For the three well separated lines (the right views in Figure 2.6), all
three values were 0.999; for the intersecting lines in the left views of
Figure 2.6, the three terminal values of o were 0.999, 0.997 and

50 FUZZY PATTERN RECOGNITION

0.999. These are the expected results, since the clusters in both data
sets are essentially linear, so the ratio of eigenvalues in (2.33) is
essentially zero.

The tendency of FCV to disregard compactness is seen in the cluster
denoted by the six "+" signs in panel 2.6(a). Here the pluses and dots
are clearly interspersed incorrectly. For this data, both GK and
AFCE produce flawless results. One possible explanation for this is
that the FCV functional is more susceptible to being trapped by local
minima, since it cannot adapt locally like GK and AFCE.

AFCE is called AFC (adaptive fuzzy clustering) in many of the later
papers on this topic, especially those of Davé (1989a, 1990a). Because
several other adaptive schemes discussed in this chapter are not
based on FCE, we prefer to call this method AFCE. Davé and Patel
(1990) considered the problem of discovering the unknown number
of clusters. They proposed progressive removal of clusters that are
good fits to subsets of the data. This idea was further developed for
lines and planes in Krisnapuram and Freg (1992).

S

Adaptive Fuzzy c-Varieties (AFCV) Gunderson (1983) introduced a
heuristic way to make the integer dimension (ri) of the fitting

prototype for class i independent of the dimensions used by other
clusters sought in the data. His adaptive fuzzy c - varieties (AFCV)
scheme is based on the eigenstructure of the fuzzy covariance
matrices {Ci} at (2.27) that are part of the necessary conditions for

extrema of the FCV functional.

Gunderson observed that the distance calculations made in the
necessary conditions for U the i-th row of partition matrix U

shown at {2.7a), are independent of how the distances themselves are
computed - that is, (2.7a) does not care what value of r is used in
equation (2.30). He reasoned that making a heuristic adjustment to

the optimality conditions by allowing different Di 's to be used in
rik

(2.7a) for different i's might enable FCV to seek manifolds of
different dimensions for the various clusters. A second
modification of the necessary conditions was to introduce a non-

convex weight & into distance equation (2.30} as follows:
N2 2 .U 2
DLri.ik = ”xk - vi"A o El(xk - vi’bij>A . (2.34)

The user defined parameter & in (2.34) essentially controls the
importance of the non-point or r > 0 part of the distance calculation
for each cluster, and not much guidance is given about its selection.
Gunderson's modification of FCV also calls for the selection of (p-1)

CLUSTER ANALYSIS 51

shaping coefficients {cr: 1<r < p-1} which are compared to ratios of
eigenvalues from the fuzzy scatter matrices {Ci} at (2.27). In
particular, if {Kip <A b S8 A} are the ordered eigenvalues of C,
Gunderson adapts the dimension of each FCV prototype during
iteration as follows: If there exists a least integer k, k=1, 2, ..., p-1 so
that (xi,kﬂ/xi‘k) <o, ; 1sis<c, setr = k; otherwise, set r=0. The
parameter o, is also user defined, and again, is fine tuned during

iteration, much like many other algorithmic parameters, to secure
the most acceptable solution to the user. Then, U(i) is updated with r =

r,in (2.30). These two changes are analogous to the modifications of
FCM that Bensaid et al. (1996a) used to create ssFCM: the resultant

algorithm no longer attempts to solve a well-posed optimization
problem.

Example 2.7 Figure 2.7 is adapted from Figure 5 in Gunderson (1983).
Figure 2.7 shows the output obtained by applying Gunderson's
adaptive FCV to a data set in R? that contains four visually
apparent clusters. The two upper clusters are roughly circular,
cloud-type structures while the two lower are elongated, linear
structures.

Using the Euclidean norm, ¢ =4 and m = 1.75in (2.24), and & =0.95
in (2.34), Gunderson's algorithm iteratively chooses r =r,=0,s0

that the cloud shaped clusters are represented, respectively, by the
point prototypes v, and v, as shown in Figure 2.7. And the algorithm

settlesonr, =1, =1, so that the linear clusters have prototypes that
are shown as the lines L, 3 and L, in Figure 2.7. The value of o, is not
specified.

Summarizing, Gunderson's method makes FCV adaptive with
respect to the dimensions {ri} of the linear varieties {Lri}. Different

clusters are allowed to have representation as linear manifolds of
possibly different dimensions. In contrast, the adaptive GK model
does not provide non-point prototypes; instead, it adapts the norms
{Ai} of the clusters so that their level sets implicitly match the

cluster shapes.

52 FUZZY PATTERN RECOGNITION

C. Spherical Prototypes

Coray (1981) first suggested the use of circular prototypes for clusters
resembling circular arcs - that is, shell-like structures, as opposed to
cloud like structures (it is arguable whether linear clusters such as
those in Figure 2.6 are clouds or shells - they seem to be the
boundary case between the two types of structures). This line of
research evolved to the fuzzy c-shells (FCS) algorithms (Davé and
Bhamidipati, 1989, Davé, 1990b, 1992) and the fuzzy c-spherical
shells (FCSS) algorithms of Krishnapuram et al. (1992). In these
algorithms the i-th prototype 1is the hypersphere

CLUSTER ANALYSIS 53

Si(x; vi,ri) = {x € iRp:"x— vi" = rl}centered at \A with radius I, so [3i =
(vi, ri). The proximity measure Dik used by these two models is
different, and hence, the parameters [Siare updated differently.

Davé's FCS uses the exact distance from feature vector X, to the
spherical shell of cluster i,

Dizk = ("xk - vi" - ri)z . (2.35)

This distance, illustrated in Figure 2.8 for p=2, is the (squared)
Euclidean distance between data point x and (the tangent to) the

prototypical circle S, that lies along a radius directed towards the
datum.

Figure 2.8 The distance basis for Davé's FCS

Minimization of (2.24a) in the non-possibilistic case when all
distances between data and point prototypes {vi} are non-zero and
distance (2.35) is used for (2.24c) yields the usual necessary
conditions for U (namely, FCM equation (2.7a)). However,
differentiation with respect to v, and I when (2.35) is used yields the

necessary conditions

T
$ uml1- (x. -v)=0 , and (2.36a)
K=1 ik X —v k i
k i
S U™ =0 2.36b
k2=,1 uik("xk - vi" - ri) = . (2.)

These equations are not explicit in r and v. Therefore a technique
such as Newton's method that solves a set of coupled nonlinear

54 FUZZY PATTERN RECOGNITION

equations must be used at each half iterate to estimate these
parameters. This makes FCS computationally expensive. Bezdek
and Hathaway (1992) showed that an exact solution of (2.36) is not
required. Instead, only one step of Newton's method is needed at
each half iterate. Man and Gath (1994) have suggested another
variant of FCS in which the center and radius estimates are updated
independently rather than found by simultaneous solution using
(2.36). This avoids the need for numerical techniques, but may
increase the overall number of iterations required for termination.

Krishnapuram et al.'s FCSS avoids the need for numerical solution
of necessary conditions at each half iterate by using the
algebraically defined proximity

2
2 CI)
Dik = (”xk - vi” -r j . (2.37)
Defining
b4 —2Vi
= k Av..r.) =
A [! } and p,(v;,ry) [ViTVi —r?} , (2.38)

it is easy to show that this minor modification of (2.35) makes the
parameter update equations explicit:

1,..-

p,=-5H 1Wi , where (2.39)
_ 38 m T _ad mT

H = kZ:,I wyy and w = 2121 uik(xkxk)yk . (2.40)

In theory the exact geometric distance used in FCS gdives more
accurate results than the algebraically motivated distance used in
FCSS, but in most practical applications the difference may not
justify the higher computational cost of FCS. As a compromise, FCS
is typically applied to the data after FCSS terminates (that is, FCS is
often initialized with the terminal outputs from FCSS). There are
quite a few early papers on these two algorithms, but both have been
subsumed by the more general case of elliptical prototypes, so an
example of spherical prototypes is deferred to a later subsection.

D. Elliptical Prototypes

Davé and Bhaswan (1992) proposed the adaptive fuzzy c-shells
(AFCS) model for elliptical shells. This model uses a hyperellipse
for the i-th prototype,

E(xv, A)= {x e RP: “x - vl_”i = 1} , (2.41)

CLUSTER ANALYSIS 55

where A, is a positive definite symmetric matrix which determines
the major and minor axes lengths as well as the orientation of the
hyperellipse, and v, is its center. Consider the distance D2 defined

by
D2 = [Ux - vi"A - 1}2 . (2.42)

Davé and Bhaswan showed that minimization of (2.24a) when all
distances between data and point prototypes {vi} are non-zero with

D2 as in (2.42) results in the following equations for updating the
parameters B, = (v;, A) of ellipse E:

D
3 ik |x —v)=0 , and (2.432)
=1 ik “x _ "J ki
D
S m i T _
k2=,1 u, - ViH (xk - vi)(xk - vi) =0 . (2.43Db)
A

i

Like {2.36}, system (2.43) must be solved numerically at each half
step in the iteration. The usual necessary conditions for U hold for
AFCS. The evolution of AFCS is traced through Davé and Bhaswan
(1991a,b), Davé (1992) and Davé and Bhaswan (1992).

In their fuzzy c-ellipsoidal shells (FCES) model, Frigui and
Krishnapuram {1996a) use the "radial distance" defined by

2
v, - b v

R 2
ik -
”(xk vi)NA
1

2 (2.44)

D%ik is a good approximation to the exact (perpendicular) distance

between the ellipse E and points located close to its major and
minor axes. If z_denotes the point of intersection of the line joining

v tox and E, then DZR = "xk —zkuz. We also see from (2.42) and
1 1 ik

k

(2.44) that D} =D} (”xk —v1||ii /||xk ’Vilm' Thus, D) is a

56 FUZZY PATTERN RECOGNITION

normalized version of Dék, with the normalization a function of
1

the position of x, . D%ik has the advantage of being simpler to

compute when compared with the exact distance to Ei (see next
subsection). Minimization of (2.24a} when all distances between
data and point prototypes {vi} are non-zero with D%ik in (2.24c)

results in the following update equations for B, = (v,, A):

éjl uE W “xk Y ’(xk -v)=, - vi)T =0 ,and (2.45a)
k i Ai
— 2
n uirﬁ DR;k "xk SviH - DR,k 5 I (xk _ vi) -0. (2.45b)
SR R .

Equations (2.45} can be solved numerically with the Levenberg-
Marquardt algorithm. Frigui and Krishnapuram (1996a) have

shown that D2R performs better than Dﬁ{, especially when the data

ik
are scattered and when the ellipses are of widely varying sizes.
E. Quadric Prototypes

(Krishnapuram et al., 1991) first generalized shell clustering to the
quadric case. The general hyperquadric shell in p with coordinate
axes X,,...X can be written as

Q,(x;p)= {x e RP; <pi, q> = O} , where (2.46a)
T _

p1 - l:pli’ e ppi’ p(p+1)1"‘) 'pri’ p(r+1]1’ Tt p(r+p)i’ p(r+p+1)i:|’ (2.46b)

qT=[x129~~~!Xlz)vxlxzy'--aXp_IXp,x19-~'vXp91] ,and (2.46C)

r=p(p+1)/2 . (2.46d)

Define the algebraic (or residual) distance from a point x, to

prototype Q, with parameters Bi= p, as

CLUSTER ANALYSIS 57

2 _ Ty of
Dy, =P 9,9,P, , where (2.47a)
T _[,2 2
q = [Xlk""’ka’xlkXZk""’X(p—l)kxpk’xlk"'"ka’1:|' (2.47b)

In order to obtain a fuzzy c-partition of the data, Krisnapuram et al.
minimize the non-possibilistic form of (2.24a) when all distances

between data and point prototypes {vi} are non-zero with D?> as the
ik

underlying distance measure. However, since the objective function
is homogeneous with respect to p;, we need to constrain the problem

in order to avoid the trivial solution. In their fuzzy c-quadrics (FCQ)
model Davé and Bhaswan (1992) use the constraint p,, =1. However,

the resulting proximity is not invariant to rotation. Moreover, it
preciudes linear prototypes and certain paraboloids. Another
possibility is (Krishnapuram et al., 1991)

1 1
pi+... +p}2)1 +5 p{"‘p+1)i+. wt5ph =1 . (2.48)

This constraint was used by Bookstein (1979) for fitting quadrics
and has the advantage that the resulting distance measure is
invariant to rigid transformations of the prototype. However, it
does not allow the solution to be linear or planar. Many other
constraints are also possible. Krishnapuram et al. (1995a) have
shown that the above constraint is the best compromise between
computational complexity and performance in the 2-D case. If for
the i-th prototype we define

Py 1sjsp
a.=<p. , and (2.49a)
ji i, :

—= , pt+t1l<j<r

V2
bji=pji forj=r+1lr+2,...,r+p+1 , (2.49b)

2
then the constraint in (2.48) simplifies to "31” =1. It is easy to show
that the necessary conditions under this constraint are

= eigenvector of (F, - GIH;'G,) for its smallest eigenvalue;(2.50a)
b =-H 'Ga ; where (2.50b)

F=§:u§‘(rkrT G, = Zut

H = z u®t t’, (2.50c)
i ¥ k’

kk’ 21 ik ok ok’

58 FUZZY PATTERN RECOGNITION

T [.2 2
r = [xlk,...,xpk,ﬁxlkx%,...,ﬁx(p_l)kxpk} , and (2.50d)
T _
and t_= [Xxk""’xpk’l] . (2.50€)

The algebraic distance in (2.47a) is highly nonlinear in nature.
When there are curves (surfaces) of highly-varying sizes, the
algebraic distance is biased toward smaller curves (surfaces), and for
a particular curve (surface) the distance measure is biased towards
points inside the curve (surface) as opposed to points outside. This
can lead to undesirable fits (Davé and Bhaswan, 1992,
Krishnapuram et al. 1995a). To alleviate this problem, use the exact

(perpendicular) distance denoted by D%ik between the point x, and

the shell Q.. To compute D & » (2.46a) is first rewritten as

xTAix + bei +c¢, =0 . (2.51)

In (2.51), it is assumed that the coordinate system has been rotated
to make the matrix A diagonal. The closest point z on the

2
hyperquadric to point xj can be obtained by minimizing “xk = ZH
subject to

z'Az+2'b +c =0 . (2.52)
By using a LaGrange multiplier A, the solution is found to be
z=1(1-24,)" (Wb, +2x,) . (2.53)

In the 2-D case (i. e., p=2), substituting (2.53) into (2.52) yields a
quartic equation in A, which has at most four real roots A, j =1,...,4.

i
The four roots can be computed using the standard closed-form
solution. For each real root kj, the corresponding z vector z, can be

computed with (2.53), and Dlz_) is finally computed using

ik
2 ; 2
D2 = mjmuxk -z : (2.54)
Minimization of the non-possibilistic form of (2.24a) with respect to
P, when all distances between data and non-point prototypes {[31} are

non-zero (with DI%ik as the underlying proximity measure} can again

be achieved only by numerical techniques. To reduce the

CLUSTER ANALYSIS 59

computational burden, we assume we can obtain approximately the
same values for P, by using (2.49) and (2.50), which will be true if all

the feature points lie reasonably close to the hyperquadric shells.
The resulting algorithm, in which the memberships are updated
using Dlz) of (2.54) in (2.7a), but the prototypes are updated using

ik

Déik, is known as the fitzzy c -quadric shells (FCQ@S) algorithm. The

2D case leads to a quartic equation whose roots can be found in
closed form; for higher dimensions, we must resort to numerical
solutions.

Krishnapuram et al. (1995a) have shown that FCQS is adequate for
some boundary description applications, and we return to this
application in Chapter 5. The procedure described above to solve for
the exact distance is practical only in the 2-D case. In higher
dimensions, one needs to solve for the roots of a sixth (or higher)
degree polynomial. To overcome this, Krishnapuram et al. (1995a)
developed an alternative algorithm that uses an approximate
distance (Taubin, 1991). Roughly speaking, this approximate
distance corresponds to the first-order approximation of the exact
distance. It is given by

D2 T T
D12-\1k — Qik .= p’}‘ qkql’(rpi , (255)
|VDQik) P; DDy py

where VDg, is the gradient of p'q evaluated at x . In (2.55) the
matrix Dk is the Jacobian of q evaluated at X . The minimization

with respect to p, of the non-possibilistic form of (2.24a) with Diik

as the underlying proximity measure leads to coupled nonlinear
equations which can be solved only iteratively. To avoid this
problem, Krishnapuram et al. (1995) choose the constraint

piTGipi =n, i=1,...,c , Where {2.56)
— g m
G 2 ukaDk and n = kﬁz‘,l u, . (2.57)

This constraint is a generalization of the constraint used by Taubin
(1991) for the (crisp) single curve case. Minimization of (2.24a)
subject to (2.56) yields complicated equations that cannot be solved
explicitly for P, To avoid iterative solutions we assume that most of

the data points are close to the prototypes, so the memberships {uik}

will be relatively crisp (i. e., close to O or 1). This assumption is also
valid if we use possibilistic memberships.

60 FUZZY PATTERN RECOGNITION

The magnitude of the gradient at all points with high memberships
in cluster i is approximately constant, i.e., pfD,Dfp, ~1. In fact,
the condition p!ID,Dfp, =1 holds exactly for the case of
lines/planes and certain quadrics such as circles and cylinders.

Since D> and Di differ only in the denominator which is = 1, we
ik ik
will obtain approximately the same solution if we minimize (2.24a)

with Déﬂ((rather than Di,k) as the distance measure subject to the

constraint in (2.56). This leads to the generalized eigenvector
solution for the prototype update:

Fip; = MGpy , where (2.58)
F, =) uiq,q; . (2.59)
k=1

Unfortunately, since G, is rank-deficient, (2.58) cannot be converted
to the standard eigenvector problem. (The last row of D,_= [0,...,0].)
However, (2.58) can still be solved using other techniques that use

the modified Cholesky decomposition (Taubin, 1991), and the
solution is computationally inexpensive when p=2 or 3.

T

The assumption that p, DkDZp1 ~1 is not valid for many geometric

shapes when p > 3. One solution is to treat piTDszpi as a weighting

factor which is treated as a constant while deriving the update
equation for p . If we assume that the value of p does not change

drastically from iteration to iteration, the weighting factor can be
computed using the parameter values from the previous iteration. In
this case, the update equation for P, will remain the same as (2.58),

except that

_ @ T _[T T !
o = k2=,1u$w[t)quqk,where Wik TP (t—l)kaka(t-l)i] : (2.60)

In (2.60), the subscripts in parentheses indicate iteration numbers.
Since this reweight procedure is heuristic, it is not guaranteed that
the fit obtained after reweighting will always be better than the one
without reweighting. Therefore, it is necessary to compute the
parameter vector p, both with and without the weights and accept the

p, resulting from the reweight procedure only when the error of fit

decreases. The sum of exact or approximate distances for each
individual cluster may be used as a measure of the error of fit. The
reweight procedure is highly recommended when p = 3.

CLUSTER ANALYSIS 61

Since constraint (2.56) allows lines and planes in addition to
quadrics, the algorithm that uses (2.55) to update memberships and
(2.58) (with or without reweighting) to update prototype parameters
is known as the fuzzy c - plano-quadric shells (FCPQS) algorithm.
Krishnapuram et al. (1995a) have also generalized the FCPQS
algorithm to the case of hypersurfaces defined by sets of higher-
order polynomials.

Shell clustering algorithms are very sensitive to initialization.
Initializing FCQS and FCPQS randomly works well only in the
simplest cases. When the data contain highly intermixed shell
clusters, reliable initialization can sometimes be obtained with
another clustering algorithm (or several of them), as illustrated in
Example 2.8. We will return to the issue of sensitivity to
initialization for shell clustering algorithms in Section 2.4.F.

L
Example 2.8 Figure 2.9 shows a typical example of the results
obtained by the FCQS algorithm on a synthetic data set containing
about 200 points. Fig. 2.9(a) shows the original data set, a pair of
randomized ellipses. Noise uniformly distributed over [-1.5, 1.5} was
added to the x and y coordinates of data points generated by
sampling functional representations of the three curves so that the
points do not lie on ideal curves. Figure 2.9(b) shows the resulting
prototype curves superimposed on the original data set when c=3
was used.

(a) Data (b) FQCS fit

x
®

Figure 2.9 Two randomized ellipses and a circle

The results in Figure 2.9 were obtained by the sequential application
of four algorithms, viz., FCQ@QS o FCSS o« GK « FCM. First, FCM with m
= 3 is applied to the data for 10 iterations. This locates initial cluster
centers and memberships for the GK method. Then, 2 iterations of

62 FUZZY PATTERN RECOGNITION

the GK algorithm are made with m = 2, resulting in longer, thinner
clusters than are produced by FCM. The GK outputs are then used to
initialize FCSS, which is again run for 5 iterations. This converts
the long thin clusters to circular arcs. Finally, the FCSS outputs are
used as inputs to the shell clustering method FCQS, which is run to
termination with the outputs shown in Figure 2.9(b). The
termination criterion for this example was to stop when the
maximum change in the membership of any point in any cluster
was less than 0.01. This hybrid FC@QS model typically terminates in
about 20 iterations and the CPU time on a Sun Sparc 1 workstation
is less than 10 seconds.

2

Although we have only discussed the fuzzy cases in detail, the non
point-prototype algorithms discussed in this section can all be used
either in the hard, fuzzy or possibilistic modes. The possibilistic
mode, with an initialization provided by the fuzzy mode, may be

C
useful in noisy situations. This is because the constraint Fu, =1
i=1
will cause noise points to have relatively high memberships in the
fuzzy clusters, which can lead to unacceptably high errors in
prototype parameter estimates. However, the possibilistic mode

requires that we estimate the scale parameter W, for each cluster. In

most shell clustering models, w, may be set equal to the square of the
expected thickness of the shells (Krishnapuram et al. 1995a,b).

W
A -

Example 2.9 The top left view of Fig. 2.10 shows two visually
apparent ellipses imbedded in a very noisy environment. Crisp,
fuzzy and possibilistic quadric c-shells were all applied to this data
set. All parameters for these runs were as in Example 2.9 except that
c=2 and the initializations varied. Specifically, the initialization
schemes were hybrid sequences of different algorithms that were
applied to the data sequentially. The crisp case was the sequence of
algorithms HCQS o HCSS e ADDCo.HCM. The fuzzy case was the
sequence FCQSoFCSSoGKo-FCM. The possibilistic case was
initialized by the output of FCQS, so that the bottom right view in
Figure 2.10 is the result of a five algorithm sequence,

PCQS - FCQS - FCSSGK o« FCM-

CLUSTER ANALYSIS 63

XK KRR

®
x %
x

Figure 2.10 (con't.) Three outputs for two ellipses in noise

The top right view of Figure 2.10 depicts the result of a HCQS with
the prototypical ellipses superimposed on the data. The fits are very
poor. The bottom left in Figure 2.10 shows the result of the FC@QS
algorithm. This is an improvement over the HCQS result, but the
effect of the noise points on the fits is still fairly significant. The
bottom right view in Figure 2.10 displays the result of PCQS. The fit
to the underlying pair of ellipses is quite good. This is a nice
illustration of the power of hybrid models.

o~

64 FUZZY PATTERN RECOGNITION

F. Norm induced shell prototypes

Bezdek et al. (1995) introduced a method that generates shell

prototypes corresponding to level sets of any norm on RP. To
describe this model we need to define norm-induced shell-
prototypes. The level set of any norm function for constant A2 0 is
L"x"k={xe9{p:|]x|}=7»}. Another common notation for L"x“
emphasizes that this is also the closed (boundary) ball centered at O
(the zero vector in RP) of radius A in the norm ||*” ie.,

Lygs = 9By (0.1 = (x € RP: [z - O] = x| = A}

%y

Figure 2.11 NISPs for various norms on %2

For many, the word ball connotes roundness, and this is indeed the
case for |[4,, the Euclidean norm. More generally, the shape of the
ball is determined by level sets of the norm. Figure 2.11 depicts some
level sets (they are the boundaries shown) of various norm functions
on ®2. For A = 1, the boundaries are just the unit vectors for the
norm in question. Along the boundary of the unit circle, for
example, the Euclidean is 1, x|, =1. All of the level sets of |x|, are
hyperspherical. If A is any positive-definite pxp matrix, the inner

CLUSTER ANALYSIS 65

product norm ||, =Vx"Ax has hyperelliptical level sets, such as
the one depicted in Figure 2.11 where |x|, =1. In other words, the
ellipse where |x|, =1 is the set of points that are equidistant from

the origin of %* when |x| A is the measure of distance. Inner product
norm-induced shells, are sets generated this way.

More generally, any norm on %RP has such level sets, and these are
responsible for the shape of open and closed balls in their particular
topology. Shown in Figure 2.11, for example, are the unit vectors
{closed balls of unit radius) in the 1 and sup or «~ norms,

e = B} anc 1ol - s

1< j<p
cases of the infinite family of Minkowski g-norms in (1.10). These
norms cannot be induced by an inner product (except at q=2, the
Euclidean norm), but they generate norm-induced shell prototypes
just the same. Of particular importance for the example to follow is

the shell induced by [}#|,, which is the "diamond" shown in Figure

j|} These two norms are special

2.11 for x| =1, xin %2. The points on the diamond are equidistant
from the origin in the 1-norm.

Another important fact about norms is that the square of any inner
product norm is everywhere differentiable, while the squares of
almost all non-inner product norms are not. This causes a great
shift in the importance of using AO for approximate minimization
of functionals that use norms to define the measure D% = S(x,,B,)
in (2.24c), because most easily obtainable AO algorithms depend on
solving necessary conditions obtained through differentiation. This
has impeded the development of norm-induced shell prototypes that
use non-inner product norms.

Recall that the FCS model of Davé is based on AO of the fuzzy
version of (2.24a) with distance (2.35). Bezdek et al. (1995) proved
that Davé's formula (2.35) was much more generally applicable. The
main result is stated here as

Theorem NISP. Let xand ve ®P, 1> 0, || *| be a given norm on RP

and aB“*“(v,r)={ye9{p|"Y—VH=r} be the closed ball of radius r

centered at v. Then the shortest distance, as measured by |-|, from

any point in 9B, ,(v,r) toxis ||x - v|-r|.

!

This result is the basis of the NISP-AO algorithms which iteratively
optimize (2.24a) when the distance in (2.24c) is defined by any norm

66 FUZZY PATTERN RECOGNITION

on p. For example, this means that any Minkowski norm can be
used in (2.24c¢), and theorem NISP tells us how to achieve the
minimization of (2.24a) with respect to the parameters [Bi = (vi, ri) of

the i-th shell, whose equation is 8B (vi,ri) ={ye SKP‘ ”y - vi“ = ri}.

!
Theorem NISP enables us to use other families of norms in (2.24c),
by redefining f; to include the shell center v, radius r,, and all other

parameters needed to specify a particular member of the family of
norms. As an example, suppose we seek a framework whereby it is
possible to specify any rectangle in the plane as the i-th cluster
shell. One possibility is to define a family of norms using the two

real parameters a and 6 as

||x||ai,ei = max{ai|x1 cos(8,)+x, sin(ei)H—x1 sin(6,) + x, cos(61)|},(2.6 1)

i

where O< a < land O < 6 <m. The NISP corresponding to the i-th shell
is just the closed ball centered at v, with radius r for which, in this

norm, “x - Vi

, =T as shown in Figure 2.12.
a,.9,

@B”*"ai»ei (vi’ ri) = {x (S] %pZ”x - Vi ” = ri

aj,04

Figure 2.12 Rectangular NISP corresponding to "x - vi“a o =T
i1

CLUSTER ANALYSIS 67

To verify that (2.61) is a vector norm on XP, note that
||, , =AQx]_, where A and Q are nonsingular matrices, so it is just
i1

a weighted version (weighted by nonsingular matrix AQ) of another

norm. The nonsingular weighting matrix is AQ, where A = [%‘ (1)j|

cos(6;) sin(6;)
—sin(8;) cos(6,)

and Q=l:

the norm property ||X]| = 0 implies that x = 0 holds. The two matrices
correspond to the operations that are required to turn the square
into the rotated rectangle, namely: a rotation through 6, (represented

by @), and a stretch (represented by A}.We then let pi=(vi, r,a, 91) and

]. Nonsingularity is crucial to insure that

2
use Dy (% ,B;) = I”xk - vi"ai,ei - rii in (2.24c). Optimization of (2.24a)

in all three cases (hard, fuzzy and possibilistic) can be done using AO
directly or after reformulation as in (2.23) via the reformulation
theorem. Alternatively, optimization can be done using, say, a
genetic algorithm approach. In example 2.10 from Bezdek et al.
{1995}, a hybrid algorithm composed of FCM followed by
reformulation optimization is used.

' .
Example 2.10 The data for this example are a pair of diamond
shaped shells, shown as hollow circles in Figures 2.13(a) and 2.13(b).
The first stage in this example uses the FCM point-prototypes
algorithm to find shell parameters that fit the data reasonably well.
FCM estimates for the shell parameters in this problem correspond
to shell centers (the terminal cluster centers v) and v, found by

FCM); and shell radii computed as r = \/ ﬁ u™D._ / i u® for1 i<
i k=1 ik ik 77 ik

2 and the terminal FCM partition U. Here D is the 1-norm on R? -

i.e., the NISP norm of choice for this problem. We initialized FCM

with a partition Uye M . The choice of U_did not matter in the

cases examined, and the standard choice was to simply alternate 1's
and O's in each row of U. This choice is a poor initialization since
every other point in each diamond starts out belonging to the wrong
cluster.

68 FUZZY PATTERN RECOGNITION

0.8

Figure 2.13(a) Stage 1 NISP shells obtained using FCM

In 18 iterations FCM with ¢ = m = 2 and the Euclidean norm for J 9

terminated with |U; - U], <0.001, approximate cluster centers v,
=V, and v y = Vs, and a fuzzy partition U = Ut. The terminal cluster

2
centers were used to calculate the squared distances Dij = Nx = vi" ,
1

for i=1,2 and j=1,...,n, which were then used with U to calculate the
initial shell radii r and r,. The stage one shell estimates are shown

in Figure 2.13(a). They fit the overlapping diamonds pretty well, but
further processing with NISP-AO will improve the fit.

In stage 2 the fuzzy c-means shell estimates from stage 1 are used to
initialize an optimization routine (we used the function "fmins"
from the MATLAB optimization toolbox) that is then applied to the

1-m
2/(1-m)
I of

n C
fuzzy reformulation R (B)= 3 (ZI”xk -vil, -1y
k=1\i=1
{2.24a) using the 1-norm as the shell inducing norm with m= 2. The
final results produced using this two stage approach is shown in
Figure 2.13(b). The 1l-norm induced shell prototypes (the two
diamonds) shown in Figure 2.13(b) fit the data quite well.

CLUSTER ANALYSIS 69

0.2 L I 1 I

Figure 2.13(b) Stage 2 NISP shells obtained by fminson R,

If the matrix A in equation (1.6) or the power q in the Minkowski
norm in equation (1.11) are considered part of the prototype along
with v andr, it can be shown that the shapes generated by the NISP

model using these two families of norms are superquadrics (Solina
and Bajczy, 1990). We will discuss a recent model due to Hoeppner
(1997) in chapter 5 - the fuzzy c-rectangular shells model - that is
very similar to and in some ways slightly more general than the
NISP model. To appreciate how similar the two models are, peek
ahead to Figure 5.39, and compare it to Figure 2.12.

G. Regression models as prototypes

Another family of objective functions that use non-point prototypes
was introduced in Hathaway and Bezdek (1993). They called this
family fuzzy c-regression models (FCRM). Minimization of
particular objective functions in the family yields simultaneous
estimates for the parameters of ¢ regression models; and a fuzzy c-
partitioning of the data.

Let S = {{x L yl),...,(xn, yn)} be a set of data where each independent

observation x € R° has a corresponding dependent observation y, €

70 FUZZY PATTERN RECOGNITION

%', In the simplest case we assume that a single functional
relationship between x and y holds for all the data in S. In many
cases a statistical framework is imposed on this problem to account
for measurement errors in the data, and a corresponding optimal
solution is sought. Usually, the search for a "best" function is
partially constrained by choosing the functional form of f in the
assumed relationship

y=flx;B) +¢ , (2.61)

where B € Q ¢ R¥ is the vector of parameters that define f to be
determined, and ¢ is a random vector with mean vector p = 0 ¢ R*
and covariance matrix ¥. The definition of an optimal estimate of B

depends on distributional assumptions made about ¢, and the set Q
of feasible values of B. This type of model is well known and can be
found in most texts on multivariate statistics.

The model considered by Hathaway and Bezdek (1993) is known as a
switching regression model (Hosmer, 1974, Kiefer, 1978, Quandt and
Ramsey, 1978, De Veaux, 1989). We assume S to be drawn from c
models

y=f(xp)+e ,1<gige, (2.62)

where [iie Qc %51, and ¢ is a random vector with mean vector p=0
e Rt and covariance matrix Z. Good estimates for the parameters B
{[3 ,p are desired as in the single model case. Here, as in (2.24),

[5 is the set of parameters for the i-th prototype, which in this case is
the regression function f. However, we have the added difficulty that
S is unlabeled, That is, for a given datum (x ¥,), it is not known
which model from (2.62) applies.

One approach for estimating the parameters {Bi} is to use the GMD-

AO algorithm (Table 2.4).The approach taken here is more akin to
fuzzy cluster analysis than statistics. The main problem is that the
data in S are unlabeled, so numerical methods for estimation of the
parameters almost always lead to equations which are coupled
across classes. If S were partitioned into ¢ crisp subsets
corresponding to the regimes represented by the models in (2.62),

then estimates for {f 1,...,ﬁc} could be obtained by simpler methods.

One alternative to using GMD-AO is to first find a crisp c-partition
of S using an algorithm such as HCM; and then solve ¢ separate
single-model problems using S, with (2.61). This is usually not done

CLUSTER ANALYSIS 71

because it may not explain the data structure properly. The
effectiveness using of (2.61) for each crisp cluster depends on how
accurate the crisp clusters are.

Hathaway and Bezdek formulated the two problems (partitioning S
and estimating {f3 1,...,[SC}, the parameters of the prototype functions

{fi(x; pi)}) so that a simultaneous solution could be attempted. A

clustering criterion is needed that explicitly accounts for both the
form of the regression models as well as the need to partition the
unlabeled data so that each cluster of S is well-fit by a single model
from (2.62). For the switching regression problem we interpret u, as
the importance or weight attached to the extent to which the model
value fi(xk; [ii) matches Y, Crisp memberships (0's and 1's) in this
context would place all of the weight in the approximation of y,_ by
f1 [xk; [ii) on one class for each k. But fuzzy partitions enable us to

represent situations where a data point fits several models equally
well, or more generally, may fit all ¢ models to varying degrees.

The measure of similarity in (2.24c¢) for the FCRM models is some
measure of the quality of the approximation of y, by each fiz for

1<i<c; 1<k<n, define

E ik[[Bi) = measure of error in fi(xk;fii) =Y.

c (2.63)

The most common example for such a measure is the vector norm
E@)=|f=x:B)-y, |. The precise nature of (2.63) can be left
unspecified to allow a very general framework. However, all choices
for E are required to satisfy the following minimizer property. Let
a=(a.a,..a) witha >0 Vi, andEB)=(E B)...E_B)T 1<i<c
We require that each of the ¢ Euchdean dot products

(a,E;(B;)); 1<i<c (2.64)

have a global minimum over Q, the set of feasible values of . The
general family of FCRM objective functions is defined, for U € Mfcn

and (f 1,...,[BC) € Q XQ,xXQ € R¥L % RE2 ... xREe | by the fuzzy
instance of (2.24a) with (2.63) that satisfy (2.64) inserted into (2.24c)
- that is, D2 =E, (B,). The basis for this approach is the belief that
minimizers () of J (U, B) are such that U is a reasonable fuzzy

partitioning of S and that {B;.....p.} determine a good switching
regression model.

72 FUZZY PATTERN RECOGNITION

Minimization of (2.24a) under the assumptions of FCRM can be done
with the usual AO approach whenever grouped coordinate
minimization with analytic formulae is possible. Specifically,
given data S, set m > 1, choose ¢ parametric regression models {f (x;
[31]}, and choose a measure of error E = {(E ik} so that E ik([i 1) > 0 for i and

k, and for which the minimizer property defined by (2.64) holds.
Pick a termination threshold t > 0 and an initial partition Uo €

Mfcn. Then for r = 0,1,2,...: calculate values for the ¢ model

parameters ﬁi(r) that globally minimize (over Q xQ xXx Qc) the
restricted objective function Jm(Ur, ﬁl,...,pc). Update U_— U, fen
with the usual FCM update formula (2.7a). Finally, compare either
|Urs1 = Ug] or |B,,, -B,| in some convenient matrix norm to a

termination threshold e. If successive estimates are less than ¢, stop;
otherwise set r = r+1 and continue.

Solution of the switching regression problem with mixture
decomposition using the GMD-AO algorithm can be regarded as the
same optimization approach applied to the objective function

n C
L(U,yl,...,yc)=kfz,lgluik(Eik(yCH1n(uik)), see equation (11) of

Bezdek et al. (1987a). In this case, the {*yi} are the regression model
parameters (the {Bi}), plus additional parameters such as means,

covariance matrices and mixing proportions associated with the ¢
components of the mixture. Minimization with respect to B is
possible since the measure of error satisfies the minimizer property
and J_ can be rewritten to look like a sum of functions of the form

in (2.64).

For a specific example, suppose that t=1, and for 1<i<c: ki =s,Q =
xs. £ B) = (xk)Tpi, andE (B) =0, - (xk)T[Bi)2. Then J (U, B)isa
fuzzy, multi-model extension of the least squares criterion for

model-fitting, and any existing software for solving weighted least
squares problems can be used to accomplish the minimization. The

explicit formulae for the new iterates [iim, 1 £1i< ¢, can be easily

derived using calculus. Let X denote the matrix in ®™ having x _as

its k-th row; Y denote the vector in X" having y, as its k-th
component; and D, denote the diagonal matrix in R™ having (u dor ym

as its k-th dlagonal element. If the columns of X are linearly

independent and u,_ >0 for 1 <k <n, then

p 0 _ = [X DX] IXTDY . (2.65)

CLUSTER ANALYSIS 73

If the columns of X are not linearly independent, [31(” can still be

calculated directly, but techniques based on orthogonal
factorizations of X should be used. Though it rarely occurs in

practice, uik(r) can equal O for some values of k, but this will cause
singularity of [XTDiX] only in degenerate (and extremely unusual)

cases. As a practical matter, [31(’) in (2.65) will be defined throughout
the iteration if the columns of X are linearly independent.

Global convergence theory from Zangwill (1969) can be applied for
reasonable choices of Eik([ii) to show that any limit point of an
iteration sequence will be a minimizer, or at worst a saddle point, of
Jm(U,p 1,...,[Sc). The local convergence result in Bezdek et al. (1987a)

states that if the error measures {Eik([ii]} are sufficiently smooth and
a standard convexity property holds at a minimizer (U, B) of J
then any iteration sequence started with U 0 sufficiently close to U

will converge to (U, B). Furthermore, the rate of convergence of the
sequence will be g-linear.

The level of computational difficulty in minimization of J_ with
respect to B is a major consideration in choosing the particular
measure of error Eik([ii). The best situation is when a closed form

solution for the new iterate pi‘r’ exists such as in the example at

(2.65). Fortunately, in cases where the minimization must be done
iteratively, the convergence theory in Hathaway and Bezdek (1991)
shows that a single step of Newton's method, rather than exact
minimization, is sufficient to preserve the local convergence
results. The case of inexact minimization in each half step is further
discussed and exemplified in Bezdek and Hathaway (1992) in
connection with the FCS algorithm of Davé.

N
Example 2.11 This example illustrates the use of FCRM to fit c = 2
quadratic regression models. The quadratic models are of the form

y=8, +Bx+p , and (2.66a)

y =B, +Bx+p,x . (2.66b)

The four data sets A, B, C and D specified in Table 2.6 were generated
by computing y from 2.66(a) or 2.66(b} at n/2 fixed, equally spaced x-
values across the interval given in Column 3 of Table 2.6. This
resulted in sets of n points (which we pretend are unlabeled), half of

74 FUZZY PATTERN RECOGNITION

which were generated from each of the two quadratics specified by
the parameters in Columns 4 and 5 of Table 2.6. These four data sets
are scatterplotted in Figure 2.14.

Table 2.6 Data from the quadratic models y =8, + B,,x + B;3x>

n X-interval i . B ,

46| 15,2751 fp =(21,-2,00625) |B,=(5,2,-0.0625)
28| 19,2251 |p =(21,-2,00625 |B, =(-52-0.0625)
80| 19,2351 |p =(18,-1,003125) | B, = (2, 1,-0.03125)
46| [10.5,21.75] | g =172, 26, 1) B, =(364,-38, 1)

oo wm»

FCRM iterations seeking two quadratic models were initialized at a
pair of quadratics with parameters [i —(19, 2, 0); [3 = (-31, 2, 0).
Since the coefficients of the x2 terms are zero, the initializing
models are the dashed lines shown in Figure 2.14. FCRM run
parameters werec=m=2andE (B)=(y, - B, - ﬁiz%{ - B 2)2, Iteration
was stopped as soon as the maximum change in the absolute value of
successive pairs of estimates of the six parameter values for that
model was found to be less than or equal to € =.00001, that is,

IB,.; - B.|_ <0.00001.

Data Set A 16 Data Set B

Figure 2.14 Initial (dashed) and terminal (solid) models

CLUSTER ANALYSIS 75

Figure 2.14 shows the initial (dashed lines} and terminal regression
models FCRM found when started at the given initialization. The
initializing lines were neither horizontal nor vertical - they were
inclined to the axes of symmetry of the data in every case. This
initialization led to successful termination at the true values of the
generating quadratics very rapidly (6-10 iterations) for all four data
sets. The terminal fits to the data are in these four cases good
(accurate to essentially machine precision). In the source paper for
this example FCRM detected and characterized the quadratic models
generating these four data sets correctly in 9 of 12 attempts over
three different pairs of initializing lines.

FCRM differs from quadric c-shells most importantly in the sense
that the regression functions - which are the FCRM prototypes - need
not be recognizable geometric entities. Thus, data whose functional
dependency is much more complicated than hyperquadric can (in
principle at least) be accommodated by FCRM. Finally, FCRM
explicitly recognizes functional dependency between grouped
subsets of independent and dependent variables in the data, whereas
none of the previous methods do. These are the major differences
between FCRM and all the other non-point prototype clustering
methods discussed in this section. In the terminology of Section 4.6,
FCRM is really more aptly described as a "system identification"
method, the system being the mixed c-regression models.

H. Clustering for robust parametric estimation

The term "robust clustering", sometimes used to describe the
algorithms in this subsection, is somewhat of a misnomer, since it
seems to promise a clustering method that is somehow "more
robust" than, for example, the c-means models. However, the
algorithms in this subsection do not look for clusters in the same
circumstances as our previous models. Here, we develop methods
that can be used as tools to make (more) robust estimates of
statistical parameters than, say, GMD-AO could, when certain
assumptions are made about the data. Consequently, this topic fits
equally well into the framework of subsection 4.6.G, where we
discuss the use of clustering as a tool for estimating parameters of
two kinds of fuzzy systems that are used for function
approximation. This is really the aim of robust clustering too -
estimation of model parameters that provide good approximations
to unknown parameters of the assumed model.

To understand the intent of robust statistics, imagine that you are
measuring electronically the weights (w) of Chinook Salmon as they
are being taken out of a fishing net. The weights of all Chinook
Salmon will almost certainly resemble a normal distribution

n(w,02), and you hope to estimate the parameters of this

76 FUZZY PATTERN RECOGNITION

distribution using the collected samples. Suppose the population
mean weight of all the fish of this species (excluding fish less than 6
inches long) is 10 pounds, with a standard deviation in the
population of 1 pound. Then your expectation is that about 95% of
all the measured weights will fall in the weight interval [8, 12],
accounting for two standard deviations on either side of the mean.
You will have no trouble visualizing the scatterplot of the first
10,000 samples of this process along the real line - it should look
much like Sketch A.

e L 1 3 °
0 5 10 15 20

v

Sketch A 10,000 samples of /(10,1)

The probability of seeing even one observation close to 5 or 15 in
this situation is so small that the observations shown in sketch A
are already far-fetched. If you ran the HCM algorithm with the
Euclidean norm on the data in Sketch A with ¢ = 1, all the points
would be put unequivocally into one cluster. What estimate would

you get for the cluster center? Since p = 1, ||x; - v”2 = (%, - v)? and

ulk = 1‘v’k the cluster center estimated with (2.6b) would be
V= Zxk /10,000, the arithmetic mean of the 10,000 points. This

is exactly what you want, and the estimate would be very close to 10.
Of course, you can compute this statistic without clustering, but this
illustrates how clustering can be used in statistical estimation,

Now suppose the voltage to the electronic scale that is measuring the
w's suddenly jumps, causing the sensor to record just one
measurement of, say, w = 10,000 (this is a fish the authors would like
to catch!). Most estimates we might make for u and ¢ from the data
collected would be effected dramatically by this single mistake,
since now the situation in sketch A becomes that of sketch B.

- o> w
0 10,000
Sketch B 9,999 samples of /#(10,1) + one sample with value 10,000

If you ran HCM with ¢ = 1 on the data in Sketch B, the estimate of the
mean would be pulled far to the right, as it would if you simply
computed the new arithmetic mean of the data. This sensitivity to
"noise”, or "outliers", or whatever you prefer to call unusual
perturbations of the data, is termed lack of robustness. In this
example, we say that the statistic used (here the arithmetic mean)
has a breakdown point of 1/n = 1/10,000 - that is, 1 bad point in n

CLUSTER ANALYSIS 77

samples can give an estimate that is arbitrarily far from the true
value.

According to Huber (1981), a robust procedure for statistical
parametric estimation can be characterized by the following: (1) it
should have a reasonably good efficiency (statistically) at the
assumed model, (2) small deviations from the model assumptions
should impair the performance only by a small amount, and (3)
larger deviations from the model assumptions should not cause a
catastrophe.

Statistics that can overcome sensitivity to outliers (to various
extents) are called robust estimators. For example, if you use the
median instead of the mean to estimate p for the data in Sketch B,
you will still obtain a very reasonable estimate, because all but one
of the points to the right of the median is very close to p relative to
the one outlier. This estimate can also be obtained by clustering the
Sketch B data with HCM if you replace the Euclidean norm in J L by

the 1-norm. In this case the necessary conditions (2.6) do not apply,
and there are a number of alternative methods that find estimates of
extreme points of J y In particular, the median of the data is known

to minimize J) in the situation of Sketch B (Kersten, 1995), so again,

we can obtain a reasonable estimate of the mean p, using a
clustering algorithm that is robust in this well defined statistical
sense. Two things to note: first, we still run the clustering algorithm
at ¢ = 1, presumably because the physical process here tells us it must
be 1 (unless there is a large school of giant Chinooks somewhere,
feeding on sperm whales); and second, although we know (or suspect)
that the collected samples are contaminated by noise, we don't know
which ones are the bad ones.

The question is not "how many clusters are there in sketches A and
B" - there are two; rather, the question posed in robust statistics is
"how badly will the estimators of the mean and variance of the
single distribution we assume produced these samples be affected by
the addition of the "noise point" whose value is 10,000. To
underscore this more dramatically, suppose 45% of the 10,000
points were "accidentally” recorded at values near 10,000. This
would result in the situation shown in Sketch C.

— - -y W
0 10,000

Sketch C 5,500 samples of //(10,1) + 4,500 samples
with values near 10,000

From the point of view of clustering, the data in Sketch C have -
without question - two visual clusters, and any clustering algorithm

78 FUZZY PATTERN RECOGNITION

we have discussed so far would find these two clusters in short order
- provided we ran it at ¢ = 2. But from the point of view of parametric
estimation, if we knew (or assumed, anyway) that the data must
come from a single normal distribution, we would want a method
that somehow still produced reasonable estimates for the

parameters of #(10,1). The corrupted observations may or may not
form a "cluster", but are still perfidious to statistical estimators.

Ordinary statistics such as the average of the 10,000 samples, which
in this case would produce an estimate of about 4,500 for the mean,
would be unreliable. In fact, the mean can be made arbitrarily far
from the "correct" estimate by increasing the values of the
"corrupted" observations. On the other hand, in the overdramatized
situation depicted in Sketch C, the median will do much better, since
the estimate produced by it will not be arbitrarily far from the
actual (population) value, no matter how high the values of the
corrupted observations are. The median will break down only when
the fraction of corrupted samples exceeds 50% - i.e., the breakdown
point of the median is 50%.

So, this is the problem set out for "robust clustering” : to find
reasonable estimates for the model parameters under the
assumptions that: (i) the model is known, and (ii) there are
(unknown) samples in the data that are aberrant. Fuzzy clustering
algorithms have been used to estimate parameters of normal
mixtures for quite a while (Bezdek and Dunn, 1975, Bezdek et al.,
1985, Gath and Geva, 1989b), but the methods used are "intolerant"
to the problem of robust estimation. Non-point prototype clustering
algorithms such as fuzzy c-lines (FCL) and fuzzy c-shells (FCS) can
be used to estimate lines and curves in unlabeled data, and these
algorithms may suffer from the same intolerance to aberrant data.
The aim of the techniques discussed in this subsection is to design
clustering models (albeit not quite unsupervised) that overcome or
at least obviate sensitivity to noise under the specific assumptions
just stated.

In robust statistics, the breakdown point of an estimator is defined
to be the smallest fraction of noise or outlier points that can result
in arbitrarily large errors in the estimate (Hampel, 1975). (Outliers
are misrecorded observations or points otherwise included in data
whose values can be arbitrarily distant from the correct ones.)
Prototype-based clustering algorithms may be viewed as estimators
of prototypes. Therefore, when the prototype estimates
corresponding to the global minimum of the objective function can
have arbitrarily large errors, we may say that the (formulation of
the) clustering algorithm breaks down.

The breakdown point of a clustering algorithm can be used as a
measure its robustness. When there is only one cluster in the data,
theoretically the best breakdown point one can be achieve is 0.5 (or

CLUSTER ANALYSIS 79

50%). This is because if the noise points "conspire" to form a cluster
that is equal in size to the good cluster, and if the noise cluster is
arbitrarily far away, then there is no way to guarantee that any
clustering algorithm will pick the right cluster instead of the
spurious one. (If the algorithm picks the wrong one, the estimate
will be arbitrarily off.} Similarly, when we have a known number of
clusters in the data set, the best breakdown point any clustering
algorithm can achieve is n.,/n, where n;, is the number of points
in the smallest "good" cluster (Davé and Krishnapuram, 1997).

Bobrowski and Bezdek (1991) first investigated the use of the 1-norm
in the FCM model. Kaufman and Rousseeuw showed that the c-
means algorithm can be made more robust by using the 1-norm (see
Kaufmann and Rousseeuw, 1990). Kersten (1995) later showed that
when the 1-norm is used, the update equation for the cluster centers
is the fuzzy median. Davé (1991a} proposed the idea of a noise cluster
(NC) to deal with noisy data. In this approach, noise is considered to
be a separate class, and is represented by a fictitious prototype that

has a constant distance & from all the data points. The membership
W,y of point x; in the noise cluster is defined to be

C
ty = 1= Ty, : (2.66)

Thus, the membership constraint for the good clusters is effectively

C
relaxed to 3, U, < 1, a strategy that is very similar to the use of slack
i=1
variables in other optimization domains. This allows noise points
to have arbitrarily small membership values in good clusters. The
objective function for the fuzzy noise clustering (FNC) model is

J (U, V;0)=3 3 u™D? + 3 ums? (2.67)
Ner T = T ' '
Jq (UV:0)
The second term on the right side of (2.67) corresponds to the
weighted sum of distances to the noise cluster. The membership
update equation in Davé's FNC modification of FCM-AO that
replaces necessary condition (2.7a) is, form > 1 and all i, k

(1/Di2k)l/m—l

c m- - e (2.68)
3yms) ")

u, =

Together with necessary condition (2.7b), (2.68) forms an AO pair for
the fuzzy robust clustering (FRC) algorithm. When the initial

80 FUZZY PATTERN RECOGNITION

prototypes are reasonably close to the actual ones, D.i=1..c¢in

(2.68) will be large for outliers, so the numerator and the first term
in its denominator will be small relative to the second term in the
denominator. This results in small membership values in the good
clusters for the outliers. Davé and Krishnapuram (1997) have shown
that the FNC approach is essentially the same as Ohashi's (1984)
method. (To our knowledge, Ohashi's work was never published, but
a brief description of this method can be found in DeGruijter and
McBratney, 1988.)

In the FNC approach, § plays a role similar to that of w; in PCM (see
(2.5)). PCM and FNC can be shown to be equivalent to the M-
estimator technique of robust statistics (Huber, 1981). As a result,
their asymptotic breakdown point is limited to 1/n_, where n_ is the

number of parameters to be estimated. Davé and Krishnapuram
(1997) discuss the connection between several robust techniques,
including the mountain method (Yager and Filev, 1994a); the
generalized minimum volume ellipsoid (GMVE) algorithm (Jolion et
al. 1991), and a method that seeks to minimize the probability of
randomness (MINPRAN, Stewart, 1995).

The approach in (Frigui and Krishnapuram, 1995, 1996a), discussed
later in this section, was the earliest attempt to incorporate a robust
statistical loss function into fuzzy clustering. There have been
several other methods studied to make FCM more robust (Frigui and
Krishnapuram, 1995; Kim et al., 1995; Choi and Krishnapuram,
1996; Nasraoui and Krishnapuram, 1997). The methods in last three
papers just mentioned are based on the reformulation theorem,
equations (2.23), of Hathaway and Bezdek (1995). All of these
algorithms have the potential to achieve the theoretical breakdown
point of ny,;,/n.

Recall that the reformulated objective function for FCM is (2.23b):

n c 11 1-m
R _(V,0)= (D —m) =
m k%l E’l ik

=
u MB

H, : (2.69)

1-m
C
where H,_ =[ED}{(“‘“‘)J . Hy is 1/c times the harmonic mean of
=1

the distances {Djk:j=1,...,c} when m=2. Since the H, values

(measured from true prototypes) corresponding to outliers are large,
the idea is to design the objective function so that its global
minimum is achieved when large Hy are discounted or even
completely ignored. The objective function of Choi and
Krishnapuram (1996) that defines the robust FCM (RoFCM) model
and whose gradient supplies necessary conditions for the
corresponding AO algorithm is

CLUSTER ANALYSIS 81

Ry ooy (V.0) = él p(H,) : 2.70)

This objective function applies a loss function p(.) to each of the H's

to reduce the effect of outliers (Huber, 1981). The loss function is
typically chosen to be linear for small distances and then it
saturates for larger distances. The membership update equation for
this formulation remains the same as that of the original FCM, i.e.,
u, is computed with (2.7a). However, update equation (2.7b} for the

cluster centers is replaced by, for m > 1,

n

Y O URXy
=L =1, .0 : (2.71)
kZ Oy Ui

where o, =o(H,)=dp(H,)/dH, can be interpreted as the degree of
"goodness" of point x.. The RoFCM algorithm is AO of the pair (2.71)
and (2.7a). Ideally, for noise points, o, should be as low as possible.

In robust statistics, the function o, is typically chosen as

(2.72)

1, Hy <v-med{H}
= Q) H =
Pk () {O; otherwise

In (2.72) v is called the tuning constant, and is typically between 2
and 8. Note that w, must be updated at every iteration because the
{H, } change whenever the {v,} do. Moreover, there is no guarantee

that AO achieves the global minimum of (2.70), and other
optimization methods may be more effective for some problems.

The objective function of the fuzzy trimmed c-prototypes (FTCP)
model of Kim et al. (1995, 1996) is

q
RppcolV.0)= X Hy : (2.73)

where Hpy is the k-th item when the quantities H;, i=1,...,n are
arranged in ascending order, and q is a value less than n. The idea
here is to place the c prototypes in such a way that the sum of the
smallest q H 's is minimized. If the value of q is set equal to n-

Npintl, FTCP will achieve the theoretical breakdown point.

The fuzzy c-least median of squares (FCLMS) algorithm (Nasraoui
and Krishnapuram, 1997) replaces the summation that appears on

82 FUZZY PATTERN RECOGNITION

the right side of (2.69) with the median. The objective function of
FCLMS is

Rycps (V. 0) = med(H, } : (2.74)

The crisp version of this algorithm minimizes the median of the
distances from the points to their closet prototypes. The median can
be replaced by the g-th quantile (e. 8. g=n-ny;,+1). AO algorithms
that heuristically minimize the FTCP and RoFCM functionals can
(but are not guaranteed to) achieve a high breakdown point with
relatively low computational complexity. However, the AO
technique cannot be applied in these two cases, which both require a
random (or exhaustive) search procedure. Kim et al. (1996) give a
heuristic AO technique to minimize (2.73). A genetic search is used
for minimizing the FCLMS functional at (2.74) in (Nasraoui and
Krishnapuram, 1997).

Recently, Frigui and Krishnapuram (1996b, 1997) have introduced
an algorithm based on competitive agglomeration (CA). This
algorithm tries to determine the number of clusters in a data set
automatically, without the use of an explicit validity measure. (See
Section 2.4 for a detailed discussion on cluster validity.] CA
combines the advantages of agglomerative and partitional
clustering and achieves relative insensitivity to initialization by
initially approximating the data set by a large number of small
clusters. Agglomerative (hierarchical) clustering (see Section 3.3)
has the advantage that it is insensitive to initialization and local
minima, and that the number of clusters need not be specified.
However, one cannot incorporate a priori information about the
shape and size of clusters, as can be done in partitional prototype-
based clustering. Agglomerative algorithms produce a nested
sequence of partitions (dendrograms), and they are static in the
sense that data points that are committed to a cluster in early stages
cannot move to another cluster. In contrast, partitional prototype-
based clustering is dynamic. The fuzzy CA model uses the following
objective function, which seems to combine the advantages of both
paradigms

C n 2
JCA(U,V;OL) EZu D —oc‘2|:2 uik] . (2.75)

i=1j=1 =} k=1
Jo (U, V:0)

This objective function is minimized subject to Zu =1,and ais a

user defined constant. The first term in (2.75) is J at (2.5) with m=2
and w = 0. It represents the sum of fuzzy 1ntrac1uster distances,
allows us to obtain compact clusters and is minimized when c=n.
The second term (including the minus sign) is minimized when all

CLUSTER ANALYSIS 83

good data points are lumped into one cluster. Thus, conceptually
(2.75) tries to find a balance between c=n and c=1, and thereby
attempts to partition the data set into the smallest possible number
of compact clusters. Using LaGrange multipliers, it can be shown
that the membership update equation for AO of the function at (2.75)
is given by

_ 1,FCM Bias
u, =ug s Uy , (2.76)

where ug(CM is the FCM membership with (2.7a) at m = 2, i.e.,

-1
2
FCM _ i Zik , 2.77)
U, [j=1[Djzk J}

and ug{ias is the bias membership given by

: o —
ups = = (N, - N . (2.78)
ik

In (2.78) N, = ﬁ u, is the cardinality of cluster i and N, is the
"

=1
weighted average of cardinalities of all clusters (from the point of
view of x),

_ Z(/oR, 2o
- S(i/m2) | |
i=1 ik

The second term in (2.76) can be either positive or negative, and it
allows strong clusters to agglomerate and weak clusters to
disintegrate. CA is usually initialized by applying FCM to X with a
large value of ¢ to find an initial U and V. The value of c is
continually updated in CA as clusters become extinct. After the
memberships are updated, if the cardinality of a cluster falls below a
specified threshold, the prototype corresponding to that cluster and
the corresponding row in U are discarded. When this happens, the
memberships are redistributed amongst the remaining clusters
according to (2.77). The value of o needs to be initially increased
slowly, beginning from o = 0, to encourage agglomeration, and is
then gradually reduced. The following "annealing schedule" is
recommended for the control of o:

84 FUZZY PATTERN RECOGNITION

, where (2.80)

f 1 }) (2.81)

In (2.80) and (2.81) o, N, u,, and D, are shown as functions of
iteration number t. Values for ng, to and t are typically 1, 5 and 10
respectively. Equation (2.81) shows that . increases until t = to’ and
then decays towards zero.

The CA technique can potentially find clusters of various types if we
use appropriate prototypes and distance measures in the first term
of (2.75). Since the second term in (2.75) does not involve prototypes,
the update equations for the prototype parameters are the same as
those in the corresponding fuzzy clustering algorithms that do not
use the second term.

Frigui and Krishnapuram (1995) present a robust clustering
algorithm called the robust c-prototypes (RCP) based on the M-
estimator. This algorithm wuses the objective function

C
Jrep(U.B)= 3 3 uZp,(D2), where p, is the loss function for cluster i.
i=1k=]
Each cluster in RCP has its own loss function, as opposed to RoFCM
in (2.70), which has only one loss function for all ¢ clusters. Davé
and Sen (1998) have shown that with suitable modifications, FNC
(see equation (2.67)) can be made to behave like RCP.

CA can be made robust (Frigui and Krishnapuram, 1996b) by
incorporating the RCP approach into (2.75), resulting in the
objective function

¢ n 2 2 C n 2
Jrea(U,Biw,a) = ¥ Y ujp; (D) -aX| Twyuy | - (2.82)
i=1k=1 i=1{ k=1
Thus, the objective function for robust CA (RCA) applies a loss
function pi(*) to the squared distances to reduce the effect of outliers
(Huber, 1981). However, unlike RoFCM, which associates only one
weight with each point, RCA uses c robust {possibilistic) weights
with each point, where w, € [0,1] is the typicality of X, with respect to
cluster i. As is customary in robust statistics, the robust weights are
related to the loss function viaw, =w 1(D12k) = dpi(ka) / dDizk.

CLUSTER ANALYSIS 85

If a point x is an outlier, the weights {wﬁ} will be low for the proper
choice of p (¥), and the second term in (2.82) will effectively ignore the

contribution of such points. Thus, the second term in (2.82) can be
interpreted as the sum of squares of robust cardinalities. The

memberships ui™ and ub® are now given by
0?) 1/(m-17!
o= | 3] P ; and (2.83)
=1 pj(Djk)
. a(N, -N,)
upes = —L k- . (2.84)
p,(DL)
where N, = k§ w, u, is the robust cardinality of cluster i, and Nk is

the Weightedzaverage of robust cardinalities of all clusters given by

Mo

— (l/pi(D?k))Ni
N, = &l . (2.85)
(1/ pi(Dizk))

I}

Meo

i=1

The prototype update equation for prototype B; of cluster i (which
could be a scalar, vector or a matrix), can be obtained from the
following necessary condition:

dJgea(U,B;w,0) 1 , dp, dDZ 9 dDZ
= Yuf —-—E = Yui w, —E& =0. (2.86)
ap, &k gDz ap, o kWi g,

A proper loss function p (+) is needed for this algorithm to get good
results. An alternative to simply guessing pi(*) is to estimate Wi(*)
from the data at each iteration and then compute p,(#) as the integral
of wi(*). Example 2.12 illustrates this approach.

Y L
Example 2.12 Figure 2.15(a) shows a synthetic data set consisting of
six Gaussian clusters of varied sizes and orientations. Uniformly
distributed noise was added to the data set so that the noise points
constitute about 40% of the total points. The distance measure used

in this example, Dizk=|Ci|1/p(xk—vi)TC;l(xk—vi), is due to
Gustafson and Kessel (see (2.28)). The initial value for ¢ was

overspecified as ¢ = 20. RCA-AO was initialized by running 5
iterations of GK-AO on the data; GK-AO was initialized by randomly

86 = FUZZY PATTERN RECOGNITION

choosing 20 points in the data for Vo' When "v1 Rz H” <0.001Vi,
termination occurred.

For this distance measure the update equations for the center and
the covariance matrix of cluster i can be shown to be:

v =kl 1<i<c ; and (2.87)

C, =kl — ,1<i<c : (2.88)
2
k§1 WU

The weight function is estimated as follows. In each iteration, the
fuzzy partition is hardened. Let X, denote the i-th cluster of the

hardened partition, let T; denote the median of the distances Dizk
such that x; € X|, and let S; denote the median of absolute deviations
(MAD) of ka for x, e X,.T he weight function is chosen such that
points within T; of the prototype have a weight > 0.5, points within

T;+YS; of the prototype have a weight < 0.5, and points beyond T+yS;
have a weight of O:

D4
ik -T2

- ;D2 [0, T,]

i

1-

2
[ka ~(T, + «{Sl)]
272512

- 2y _ ‘N2
Wy =W, (Dy) = D €T, T, +45,1¢

(2.89)

0 ;D2 > T, +78,

\

This weight function (softly) rejects 50% of the points within each
component while updating the prototype parameters. Thus, it can
tolerate up to 50% outliers in each component. The loss function pi(*)

which is needed to update u is obtained by integrating the weight

function. Figure 2.15(a) shows the input data, which has six clusters
which are visually apparent due to higher local densities than the
data distribution over the rest of the square. The initial prototypes,
obtained by running the GK algorithm for 5 iterations with ¢=20, are
shown in Figure 2.15(b), where the ellipses enclose points with a
Mahalanobis distance less than 9. After 6 iterations of RCA-AO the

CLUSTER ANALYSIS 87

robust cardinalities of the remaining clusters have dropped below
the threshold (=3}, so the number of clusters is reduced to 9 as shown
in Figure 2.15(c). The final result, after 10 iterations of RCA-AO, is
shown in Figure 2.15(d).

(a) input ﬂata

(c) After 6 RCA iterates (d) Final RCA result

Figure 2.15 The robust competitive agglomeration technique

2.4 Cluster Validity

Now that we have some ways to get clusters, we turn to the problem
of how to validate them. Figure 2.3(a) shows that the criterion
driving a clustering algorithm towards an optimal partition
sometimes produces a result that is disagreeable at best, and wrong
at worst. This illustrates the need for approaches to the problem of
cluster validity.

Clustering algorithms {€} will produce as many partitions as you
have time to generate. Let VP ={Cj(X)=U, e Mp,:1<j<N}, where

pen*
index (j) indicates: (i) clustering X with one € at various values of c;
(if) clustering X over algorithmic parameters of a particular €, or

88 FUZZY PATTERN RECOGNITION

(iii) applying different €'s to X. Cluster validity (problem (3), Figure
2.1) is an assessment of the relative attractiveness of different U's in
#. The usual approach is computational, and is based on one or more

validity functionals V: D, R, D, denoting the domain of V, to rank
each U, e p.

You may wonder: if the global minimum of, say J > cannot produce

the clusters you want, then why not directly optimize a validity
functional V? First, no model can capture all the properties that
"good' clusters might possess, and this of course includes any
particular V we might propose. For example, we seek, from data set
to data set, clusters with: compactness, isolation, maximal
crispness, density gradients, particular distributions, etc. And more
importantly, many of the validity indices that will be discussed do
not fit naturally into a well behaved framework for mathematical
optimization. So, we use validity measures as an "after the fact" way
to gain further confidence in a particular clustering solution.

There are two ways to view clustering algorithms. First, it is

possible to regard € as a parametric estimation method - U and any
additional parameters such as B in the c-means and c-shells models
are being estimated by € using X. In this case V is regarded as a
measure of goodness of fit of the estimated parameters (to a true but
unknown set!). This interpretation is usually (but not exclusively)
made for validity measures in the context of probabilistic
clustering.

The second interpretation of € is in the sense of exploratory data
analysis. When V assesses U alone (even if the measure involves
other parameters such as B), V is interpreted as a measure of the
quality of U in the sense of partitioning for substructure. This is the
rationale underlying most of the methods discussed in this section.

When D,=M, ., we call V a direct measure; because it assesses
properties of crisp (real) clusters or subsets in X; otherwise, it is
indirect. When D, = M,,., X other parameters, the test V performs is

e.g. prototypes B
still direct, but addition of the other parameters is an important
change, because these parameters often contain valuable
information about cluster geometry {for example, measures that
assess how well the prototypes B fit the cluster shapes). We call
indices that fall into this category direct parametric indices.

When U is not crisp, validity measures are applied to an algorithmic
derivative of X so they are called indirect measures of cluster
validity. There are both indirect and indirect parametric measures
of partition quality.

CLUSTER ANALYSIS 89

Finally, many validity measures also use X. This is a third
important aspect of validity functionals: do they use the vectors in X
during the calculation of V? We indicate explicit dependence of V on
X by adding the word data when this is the case. Let Q represent the
parameter space for B. Table 2.7 shows a classification of validity
functionals into six types based on their arguments (domains).

Table 2.7 One classification of validity measures

Type of Index Variables | Domain D, of V
Direct U Myen

Direct Parametric (U, B) Myen XQ

Direct Parametric Data {U,B, X) M, ., XQXRP
Indirect U (Mpen = Mpen)
Indirect Parametric (U, B) (Mpcn —Mpen) XQ
Indirect Parametric Data | (U, B, X) (M = My) X QX RP

Choosing c=1 or c=n constitutes rejection of the hypothesis that X
contains cluster substructure. Most validity functionals are not
equipped to deal with these two special cases. Instead, they
concentrate on 2 < ¢ < n, implicitly ignoring the important question
of whether X has clusters in it at all.

@ Notation It is hard to choose a notation for validity indices that
is both comprehensive and comprehensible. Ordinarily, validation
means "find the best ¢", so the logical choice is to show V as V(c). But
in many cases, ¢ doesn't even appear on the right side of an equation
that defines V. X in Table 2.7 is fixed, but U and B are functions of ¢
through the algorithm that produces them, so any index that uses
either of these variables is implicitly a function of ¢ as well. A
notation that indicates functional dependency in a precise way
would be truly formidable. For example, the Xie and Beni (1991)
index (which can be used to validate the number of clusters found)

depends on (U, B, X), U and B depend on @, the clustering algorithm

that produces them, and € either determines or uses ¢, the number of
clusters represented in U. How would you write the independent
variables for this function? Well, we don't know a best way, so we
will vacillate between two or three forms that make sense to us and
that, we hope, will not confuse you. Dunn's index (Dunn, 1974a), for

example, will be written as V,(U;X)when we feel it important to

show the variables it depends upon, but when the emphasis is on its
use in its application context, recognizing the fact that U is a

function of ¢, we will write V(c). The partition entropy defined

90 FUZZY PATTERN RECOGNITION

below depends on both U (and hence c) as well as (a), the base of the
logarithmic function chosen: thus, we may use

Vog (U,c,a), Vg (U)or Vor (c).
A. Direct Measures

IfUe M, is crisp, it defines nonfuzzy subsets in X, and there are
many validity functionals that can be used to assess U. Most direct
validity indices are based on measuring some statistical or
geometric property that seems plausible as a definition of good
clusters in X. Statistical indices tend to be estimators of the
goodness of fit of the clusters to an assumed distribution. Usually,
cluster free data are assumed to be uniformly or randomly
distributed over some sampling window, and statistical indices
measure the departure of a proposed set of clusters from this
assumption. Geometric indices are based on properties such as
cluster volume, cluster density and separation between clusters (or
their centroids).

B. Davies-Bouldin Index

Davies and Bouldin (1979) proposed an index that is a function of
the ratio of the sum of within-cluster scatter to between-cluster

separation. Let U={X,,...,X_} be a c-partition of X, so that
UX; =X X;nX,;=@ifi=j;and X; #JVi. Since scatter matrices
i

depend on the geometry of the clusters, this index has both

statistical and geometric rationales, and is designed to recognize
good volumetric clusters.

VpB,qt(€) =(%) i[@vﬁ} {(ai,t + a],t)/("vi "Vj"q)}} ;tq21, (2.90a)

i=1 j,j#i

1/t
ocu=(z{|x-vi|{t/[xi|J V=1, ., ¢t 2] ,and (2.90b)
xeXj
V.= x/[X]|.EL..c . (2.90¢)
xeXi

Integers q and t can be selected independently. In (2.90a) ||*||qis the

Minkowski - norm. In (2.90b) “*”t is the t-th power of the Euclidean
norm. For p = q = 2, Davies and Bouldin state that the term

(00 + 0y 0) / (”V1 —71"2) is the reciprocal of Fisher's classical measure

CLUSTER ANALYSIS 91

of separation between clusters X and X (Duda and Hart, 1973, p.116).

However, it differs from Fisher's criterjion by having square roots on
each term in the numerator, and by using cardinalities of the crisp
clusters in the denominator. In any case, these two criteria share
similar geometric rationales.

VDB'qt(xn) is undefined, and VDB ot

cluster dispersion and maximum between class separation are both
desirable, low values of V. pBqt 2T€ taken as indicants of good cluster

(I }=0. Since minimum within-

structure. In our classification of validity indices in Table 2.7,
VpB.qt 1S @ direct parametric data index. As a reminder, this would be
formally indicated by writing Vpg 4 as a function of U, V and X,
Vs qt(U V; X). We avoid this cumbersome notation when discussing
its use by writing V. qt(c).

Araki et al. (1993) proposed a fuzzy generalization of Vpg,, that is

explicitly tied to the FCM clustering algorithm. For U, e M, and

point prototypes V generated from X at some value of m>1, they
define

n um 2 n
A 2_ vi' gl Xk |
ai’t= i - where v1= —i——-r:— ,l=1,‘..C.
u
k=1 ik k=1 ke

Notice that the square root is not taken, as it would be in (2.90) for t =
2. Moreover, Araki et al. also use q = 2 in (2.90) without taking the
square root.

Substituting {&; ;}and {v,} for {0} and {v,} respectively into (2.90),
Araki et al. arrive at a well defined indirect parametric data index
vggg’z for validation of fuzzy clusters in U. Vgggz is a fuzzy
generalization of Vpgq, but cannot be called the fuzzy Davies-
Bouldin index because of its explicit dependence on FCM.
Furthermore, Vgg,‘g’z does not reduce to Vpg o, when U is crisp.

Araki et al. incorporate Vf)‘g,‘gz into FCM by adding an external loop
forc=2toc= C .. to the iteration phase of FCM in Table 2.2. At
termination, this outputs the (U, V) found by FCM that minimizes
Vgggz over candidate pairs generated by FCM for 2 < ¢< C ooy’ They

report that this strategy leads to good segmentations of thermal
images.

92 FUZZY PATTERN RECOGNITION

C. Dunn's index

Dunn (1974a) proposed an index based on geometric considerations

that has the same basic rationale as VDB " in that both are designed

to identify volumetric clusters that are compact and well separated.

Let S and T be non empty subsets of RP, and let & RP x RP > R* be
any metric. The standard definitions of the diameter A of S and the

set distance § between S and T are

A(S)= %{ 3(x.y)} ; and (2.91)
x,yeS

8,(S, T) = min{ 3(x,y)} . (2.92)
xeS
yeT

Dunn defined the separation index for the crisp c-partition
U {X1""’Xc} of X as

Vp(U; X) = S(X X)) (2.93)
) mm min SR i L . .
P 1<1<c 1<j<c max{ A (Xk)}
j#i 1<k<c

The quantity & 1(X;,X;) in the numerator of V, is analogous to

Hvi —vj" in the denominator of VDB o Sl(Xi,XJ) measures the

distance between clusters directly on the points in the clusters,
whereas ”vi -v J|| uses the distance between their cluster centers for
q

the same purpose. The use of Al(Xk) in the denominator of Vp is

analogous to ay ; in the numerator of 1S Bt both are measures of
scatter volume for cluster X . Thus, extrema of V, and V DB.qt share
roughly the same geometric objective: maximizing intercluster
distances while simultaneously minimizing intracluster distances.

Since the measures of separation and compactness in V, occur

inversely to their appearance in VDB o’ large values of Vv

correspond to good clusters. Hence, the number of clusters that

maximizes V, is taken as the best solution. Vp is not defined on

1n when c=1 or on In when c=n.

CLUSTER ANALYSIS 93

Dunn called U compact and separated (CS) relative to the (point)
metric 8 if and only if: for all s, q and r with g#r, any pair of points
x,ye X are closer together (with respect to §) than any pair u,v with

ue Xq and v e X Dunn proved that X can be clustered into a compact
and separated c-partition with respect to & if and only if

max { V. (c)} > 1. Dunn's indexis a direct data index.
UeM D

hen

Example 2.13 Table 2.8 shows values of V5 5, and Vp for terminal
partitions of X 30 produced by HCM-AO using the same protocols as in
Example 2.2. Table 2.8 reports values of each index for c¢=2 to 10.
Each column of Table 2.8 is computed by applying the two indices to

the same crisp c-partition of X. The highlighted (bold and shaded)
entries correspond to optimal values of the indices.

Table 2.8 Direct cluster validity for HCM-AO partitions of X,

c | 2 3 4 5 6 7 8 9 10

Vop.22 0.35 | 18 048 063 079 087 082 088 082

v | 096 153 052 012 004 004 004 004 004

|

+1.6

+1.4

+1.2

C
i ; & L & o »
0 1 2 3 4 5 6 7 8 9 10

Figure 2.16 V, and V from Table 2.8 for HCM-AOon X

DB,22

94 FUZZY PATTERN RECOGNITION

Vpp 2o indicates ¢ = 3 by its strong minimum value of 0.18. The table

shows only two significant digits so ties may appear to occur in it,
but there are no ties if four digit accuracy is retained. For this very

well separated data set, V), which is to be maximized, also gives a
very strong indication that ¢ = 3 is the best choice.

Figure 2.16 is a graph of the values in Table 2.8 that shows how
strongly ¢ = 3 is preferred by both of these direct indices. Don't expect
these {or any other) indices to show such sharp, well-defined
behavior on data that do not have such clear cluster structure.
Another point: don't forget that the graphs in Figure 2.16 are explicit
functions of HCM-AO, the clustering algorithm that produced the
partitions being evaluated. You might get different graphs (and infer
a different best value of ¢} simply by changing the initialization, or
the norm, or the termination criterion ¢, etc. of HCM.

Our next example illustrates the use of V and V.,

found by HCM-AO in the ubiquitous Iris data (Anderson, 1935).
Interestingly, Anderson was a botanist who collected the data, but
did not publish their values. Fisher (1936) was apparently the first
author to publish the data values, which he used to illustrate the
method of linear discriminant analysis. Several scatterplots of Iris
are shown in Section 4.3. And finally, please see our comments in
the preface about the real Iris data.

L

Example 2.14 Iris has n = 150 points in p = 4 dimensions that
represent 3 physical clusters with 50 points each. Iris contains
observations for 50 plants from each of three different subspecies of

Iris flowers, but in the numerical representation in ®* of these
objects, two of the three classes have substantial overlap, while the
third is well separated from the others. Because of this, many
authors argue that there are only c=2 geometric clusters in Iris, and
so good clustering algorithms and validity functionals should

indicate that c=2 is the best choice. Table 2.9 lists the values of V
and Vg ,, on terminal HCM-AO partitions of Iris. All parameters of
the runs were as in Example 2.2 except that the initializing vectors
were from Iris. Figure 2.17 shows graphs of the values of V and

VDB,ZZ in Table 2.9.

on clusters

The Davies-Bouldin index clearly points to ¢ = 2 (our first choice for
the correct value), while Dunn's index seems to equally prefer ¢ = 3
and ¢ = 7. To four place accuracy {not shown here), ¢ = 3 is slightly
higher, so Dunn's index here would (weakly) indicate the partition
corresponding to ¢ = 3. The lesson here is not that one of these

CLUSTER ANALYSIS 95
answers is right. What is important is that these two indices point to
different "right answers" on the same partitions of the data.

Table 2.9 Direct cluster validity for HCM-AO partitions of Iris

2 3 4 5 6 7 8 9 10
047 073 084 099 100 096 1.09 125 123

008 010° 008 006 009 010 008 006 006

4
A — VDB,22

Iris

T12

1 0.8

and VDB.22 from Table 2.9 for HCM-AO on Iris

The numerator and denominator of V are both overly sensitive to

changes in cluster structure. 81 can be dramatically altered by the
addition or deletion of a single point in either S or T. The
denominator suffers from the same problem - for example, adding
one point to S can easily scale A (S) by an order of magnitude.
Consequently, ¥ can be greatly influenced by a few noisy points

(that is, outliers or inliers to the main cluster structure) in X, and is
far too sensitive to what can be a very small minority in the data.

To ameliorate this Bezdek and Pal (1998) generalized V,, by using
two other definitions for the diameter of a set and five other

96 FUZZY PATTERN RECOGNITION

definitions for the distance between sets. Let A be any positive semi-

definite (diameter) function on P(%RP), the power set of RP. And let &
denote any positive semi-definite, symmetric (set distance) function

on P(RP) x P(RP). The general form of V,, using § and A is

80X, X))

V.

M((2.94)

U; X) =V.. (c) = min< min{ ————
84 I<i<c | 1gj<e | NAX A(Xk)}

J#i [1gk<e

Generally speaking indices from family (2.94) other than V,, show
better performance than V. The classification of V;; as in Table

2.7 depends on the choices of § and A. All of these indices are direct
data indices (they all use U and X), and several also use the sample
means V.

D. Indirect measures for fuzzy clusters

If Ue(Mpen —Mpen) is not crisp, there are two approaches to validity

assessment. First, direct measures such as VDB ot

applied to any crisp partition derived from U. For example, we can
harden U using (2.10) and then assess the resultant crisp partition as
in Examples 2.13 and 2.14. Other defuzzifications of U (e.g., o-cuts at
different levels) can produce different crisp partitions, and hence,
different values for validity indices.

and VD can be

The alternative to hardening U followed by direct validation is
validation using some function of the non-crisp partition, and

possibly, X as well as other parameters found by €. Almost all of the
measures in this category have been developed for fuzzy partitions
of X, so we concentrate on this type of index.

Indirect indices that do not involve B and X are nothing more than
estimates of the fuzziness (or typicality if U is possibilistic) in U. As
such, it is not possible for them to assess any geometric property of
either the clusters or prototypes that some algorithm chooses to
represent them. Given this, it may surprise you to discover how
much effort has gone into the development of indirect measures.

A measure of fuzziness estimates the average ambiguity in a fuzzy
set in some well-defined sense (Pal and Bezdek, 1994). (Measures of
fuzziness and imprecision are covered extensively in Volume 1 of
this handbook.) Our discussion is limited to the use of such
measures as indicants of cluster validity.

CLUSTER ANALYSIS 97

The first measure of fuzziness was the degree of separation between
two discrete fuzzy sets U, and Uy 0on n elements (Zadeh, 1965):

p(Up), Uy =1~ [k\il(ulk A u‘2k)] . (2.95)

Zadeh used p to characterize separating hyperplanes; he did not
impose the crisp or fuzzy partitioning constraint (ulk +u2k) =1 on

each pair of values in the vectors Uy, and U,,. That is, they were not

necessarily fuzzy label vectors (p is applicable to possibilistic
labels, however).

The first attempt to use a measure of fuzziness in the context of

cluster validity was discussed by Bezdek (1973), who extended p to ¢
fuzzy sets (the rows of U in Mfcn) by writing

n c
pUeM)=1- [k\él(izz\l uik):’ . (2.96)
P., which can be interpreted as (1- the "height" of the intersection of

the ¢ fuzzy sets), is inadequate for cluster validity. To see this,
consider, for odd n,

1 05 - 05 O|__J1 -1 05 0 - O]_

Pz[o 0.5 - 0.5 1}*92[0 .+ 0 051 - 1]*0-5' .97
In (2.97) the membership 0.5 occurs 2(n-2} times in the first fuzzy 2-
partition, but only twice in the second one. The value P, = 0.5
indicates that the two partitions at (2.97) are in some sense (exactly,

in the sense of P_!) equivalent, but the structure these two partitions

portrays is certainly very different. The first partition has one point
each in two clusters, and (n-2) shared equally between them, while
the second has just one shared point and ((n-1)/2) points in each of
two distinct sets.

The failure of P, led to the first pair of (sometimes) useful indirect
validity measures for U in M, . viz, the partition coefficient and
partition entropy of U (Bezdek, 1973).

n 2 T
Vpo(U,C) = }-(% iui) _ ol _ ruuh) ; and (2.98)
I \k=1i=1 n n

98 FUZZY PATTERN RECOGNITION

(Uca)_--—(i S lu, In_(u)1) . (2.99)

I \k=1i=1

In (2.99) a e (1, «) is the logarithmic base, and is a direct extension to
c-partitions of the fuzzy entropy of Deluca and Termini (1972).
Properties of these two indices as functions of U and ¢ were studied
in Bezdek (1973, 1974b, 1975). For convenience, we drop dependency
on c and a. Here are the main results:

7,.U=1 & 7,.(U)=0 & UeM,_ is crisp; and (2.100a)

v, V=1 & v, (=1 (0 U=[l]iﬁ. (2.100b)
Cc C

Equation (2.100) shows that Y, maximizes (and Vo minimizes) on
every crisp c-partition of X. And at the other extreme, ¥, takes its
unique minimum (and %, takes its unique maximum) at the
centroid U=[l/c]=TU of M, . {7 is the "fuzziest" partition you can
get, since it assigns every point in X to all c classes with equal

membership values 1/c. Observe that both of these indices take
extremal values at the unique crisp partitions llxn =1 1. 1] at

c=1and [_ , the nxn identity matrix for ¢ = n. Neither of these

indices can be used to accept or reject the hypothesis that X contains
cluster substructure (i.e., they cannot be used for tendency
assessment} because they cannot discriminate between different
hard partitions of the data.

The bounds in (2.100a) seem to justify the heuristic validation
strategy of, for example, maximizing ¥, over candidate U's to pick

the best one, where "best" means nearest to some crisp partition in
the sense of the 2-norm of U. This is a weak strategy, however, for
several reasons. First, there are an infinite number of different

fuzzy partitions that produce any fixed value of %, in the open
interval (1/c, 1), or of %, in the open interval (O, Lnac), because a
fixed value of either functional can be used to define a hypersphere

in R centered at [1/c] = U whose radius gives a surface upon which

the fixed value is attained. Consequently, every crisp partition of X -
a vertex of the convex hull of the degenerate partition set M, n0” 1S

equidistant from the surface of the hypersphere! Thus, all these two
indices really measure is fuzziness relative to partitions that yield

other values of the indices. Second, there are roughly (c“/c !) crisp

CLUSTER ANALYSIS 99

matrices in M, and ¥, is constantly 1 (¢ is constantly 0) on all
of them. For example, ¥,,(U;)=1 on:

100 111 000 000
U;=(0 1 0,Uy;={000,Us=|{111LU,=/00.0{. (2.101
001 000 000 111

The first matrix in (2.101) has ¢ = 3 singleton clusters. Each of the
other three partitions has only ¢ = 1 cluster. Since the last three
matrices put all the data into class 1, 2 or 3, respectively, these are 4
very different partitions of the n=3 objects. But they are all equally

valid in the eyes of %,, and %,;. Since ¥,,= 1 (#,z= 0) for every U in

M, . itis misleading to infer that just because ¥, is near 1 (or 7%,

is near 0}, U is a good clustering of X.

On the other hand, in the context of validation it is clear that when
an algorithm produces a partition U that is close to [, that
algorithm is not finding distinct cluster structure. This may be the
fault of the algorithm, or the data simply may lack substructure.

Consequently, values near the unique minimum of %,, (or

maximum of %,;) are helpful in deciding when structure is not being

found. It is less clear, as shown in (2.101), that when U approaches

M . cluster structure has been found. Empirical studies vary: some

show that maximizing %,, (or minimizing ?%,;) leads to a good
interpretation of the data; others have shown that different indirect
indices such as the proportion exponent (Windham, 1981, 1982} and
Rouben's indices (1978) are sometimes more effective. This simply
confirms what we already know: no matter how good your index is,
there's a data set out there waiting to trick it (and you).

Yy and %, essentially measure the distance U is from being crisp
by measuring the fuzziness in the rows of U. Normalizations of both
indices that scale their ranges so that it is fixed are discussed in the
next subsection. A much more subtle point, the dependency of %,

and ¥, on secondary parameters of the algorithm producing U
(specifically, m in FCM-AO) are considered in Pal and Bezdek (1995).

The separation coefficient of Gunderson (1978) was the first indirect
validity index that explicitly used the three components (U, V; X),
where U € Mfcn and V is a vector of ¢ prototypes that are associated

with the clusters in U - in the language of Table 2.7, the first indirect
parametric data index. More recent indices in this category include
the functionals of Fukuyama-Sugeno (1989) and Xie-Beni (1991).

The Xie-Beni index Vyg 1s defined as

100 FUZZY PATTERN RECOGNITION

C n 92

X 2
v, (U, V;X) = 4=L k=L

T el)

i#]

(2.102)

Xie and Beni interpreted their index by writing it as the ratio of the
total variation o of (U, V) and separation sep(V) between the vectors
inV:

o(U,V; X} = é}(él ufk“xk - vi”z) ; (2.103)

sep(V) = r_n\}g{”v1 - vj 2} . (2.104)

1]
If (U, V) is an extrema of the FCM functional J) thenc=J 5 A good (U,

V) pair should produce a small value of ¢ because u 18 expected to be

high when “xk - Vi“ is low, and well separated v,'s will produce a high
value of sep(V). So, when WXB(UI,VI;X) < ’I/XB(UZ,VZ;X) for either of
these reasons (or both), U L is presumably a better partition of X than

U,. Consequently, the minimum of %y, over p is taken as the most

desirable partition of X. This strategy makes sense, because the
geometric and statistical flavor of %, is very similar to the Davies-
Bouldin index: the numerators of both are functions of the

Euclidean distances {”xk -V, ”} and the denominators both depend

on measures of separation (distances {"vj -v j”}) between the cluster

centers.

Example 2.15 Table 2.10 shows values for the five indices discussed
in this section on terminal FCM-AO partitions of X, Processing
parameters were: m = 2, the Euclidean norm for both similarity and
termination, € = 0.001, and initialization by random selection of ¢
distinct points in the data. Crisp partitions of the data for the direct

indices v, and V,, were obtained from terminal FCM-AO

estimates by hardening with (2.10). The values for v, and Vg ,, in

Table 2.10 are slightly different than those in Table 2.8 because the
hardened partitions from FCM for ¢ > 4 were slightly different. As

CLUSTER ANALYSIS 101

expected, all five indices point to the visually correct partition of the
data at the value ¢ = 3.

Table 2.10 Validity for terminal FCM-AO partitions of X/

¢ ,I/PC WPE

2 0.91 0.18

3 097 008

4 0.92 0.15

5 0.86 0.25

6 0.83 0.77

7 0.80 0.38

8 0.79 0.41

9 0.79 0.41

10 0.77 0.46 O 21

Our next example replicates the experlments just described in
Example 2.15 usmg the Iris data instead of X

25

Example 2.16 Table 2.11 shows values for the five indices on
terminal FCM-AO partitions of Iris obtained with the same
protocols as in Example 2.15, including hardening of the fuzzy

partitions before validation with V|, and Vg ,,. Please compare the

first two columns of Table 2.11 with the corresponding values in the
rows of Table 2.9 for ¢ = 2 to 6 to see that only three of the 10 pairs of
corresponding values are the same. This is because the hardened
FCM partitions of Iris are somewhat different than the crisp
partitions obtained directly from HCM except in these three cases.
Four of the five indices in Table 2.11 agree that the best partition
occurs for ¢ = 2; only Dunn's index, applied to the hardened partition
obtained by FCM-AO, points to c = 3.

Table 2,11 Validity for terminal FCM-AO partitions of Iris

VD » WPC

OO NOUR WD o

1.41 O 08 O 45 1 18 O 63

http://Pl63.se

102 FUZZY PATTERN RECOGNITION

In the four dimensional data space chosen by Anderson there are
two geometrically well-defined clusters, so the best partition of Iris
from (four of the five) indices' point of view, ¢ = 2, is (perhaps)
correct. Since the best solution from the modeler's point of view is
(perhaps) ¢=3, this again illustrates the caveat about models and our
expectations for them stated immediately after equation (2.5). And
we again see disagreement among validity indices about the best
value for ¢ on the same partition of the data.

Several generalizations and relatives of the Xie-Beni index have
been studied recently. See, for example, Pal and Bezdek (1995), who

define and analyze limiting properties of the index ’I/,Izglt'[n which is

the Xie-Beni index with memberships raised to the power m >1 that
is explicitly tied to FCM.

Bensaid et al. (1996a) introduced another vahdlty index similar

toVyy, V(U ViX) = g{%um”x "" /[11 Vi~ J“ m

and call the ratio inside square brackets the compactness to
separation ratio of cluster i. They illustrate the use of this index for
progressive clustering (adjustments to individual clusters during
processing) for different tissue types in magnetic resonance images
of the brain.

The last indices covered in this subsection are due to Gath and Geva
(1989a), who introduced three very useful indirect parametric data
indices. These indices involve one more set of clustering outputs
than any of the previous measures that are constructed by
algorithms such as GK, FCV, GMD and FMLE which produce point
prototypes V, (fuzzy or probabilistic) partitions U and covariance
matrices {C}. Chronological order would place our discussion of
these indices before the Xie-Beni index, but we prefer to discuss them
here, just before validation of shell clusters, because these three
indices involve one more set of parameters, and because they have
played an important role in generalizations for shell validity. Gath
and Geva (1989a) defined the fuzzy hypervolume of U e My, as

Vi (C) = z \Jdet(C,) , (2.105)

where C =(C,,...,C.)e Re(PxP) is the set of fuzzy covariance matrices

given by (2.27) with m=1 (this amounts to using the covariance
matrices at (2.21c)). C is a function of (X, U, V), but only C appears on
the left side of (2.105). To be consistent with the notation in Table

2.7, we call Vv an indirect index. This index should be small when

CLUSTER ANALYSIS 103

clusters are compact, so good clusters are identified by minima of
Vv - For consistency with the next two indices, users often calculate

1/ Vv and search for the maximum.

Gath and Geva (1989a) also discussed an indirect parametric data
measure of dispersion they called the average partition density Vp,

of Ue Mfcn:

ef g2l
Vor(U,C)=—= 3| k=2 , 2.106
wl0.C=2% det(C,) (2.106)

where o, = {x e RP:|x - Vi"i—l < 1},1 =1,...,c is the open ball centered
i
at v, of radius 1 with respect to the fuzzy Mahalanobis norm

2 - s
|x - v,|o-1. This index measures the compactness of points in each
i

cluster that have a strong central tendency - the more points within
o, , the larger will be V), so this index should be maximized. Lastly,
they defined the partition density Vppof U e My, as

2| Zuy

Vo (U, C) = M . (2.107)
PD Ve (C)

We classify (2.106) and (2.107) as indirect parametric indices. V,,

should maximize when clusters which are geometrically desirable
are submitted to it, achieved either by a large numerator (dense
clusters), or a small denominator (compact clusters), or both. This
index has a geometric rationale that is quite similar to Dunn's index
(and the inverse of the Davies-Bouldin index). Gath and Geva
illustrate the use of these measures on clusters in various data sets.

For example, V, . and V_ both select ¢ = 3, the physically correct
HV PD P

choice, for the Iris data when tested in a situation analogous to the
experiments described in Tables 2.9 and 2.11.

Example 2.17 This example is a combined illustration of the Gath
and Geva (1989a) clustering algorithm called FMLE and cluster
validation with their three indices at (2.105)-(2.107). Recent papers
of Geva and his coauthors call the combination of FMLE with the
use of these three validity indices the unsupervised optimal fuzzy
clustering UOFC) algorithm. As pointed out in Section 2.3, this
method is essentially GMD-AQO. The data we chose for this example

104 FUZZY PATTERN RECOGNITION

is the unbalanced data set called X 13 shown in Figure 2.3(a) that has

40 points in the left cluster and 3 points in an isolated cluster on the
right. Although the sample size is quite small, the data can be
viewed as having been drawn from a mixture of ¢ = 2 (roughly)
circular bivariate Gaussian distributions. Computing protocols for
this example: m = 2 in both the FCM and FMLE clustering stages
(don't forget that m = 1 when using (2.27) with FMLE).

The algorithm was initialized at ¢ =1. No clusters are computed for
this value, but the GG validity indices do take meaningful values.
Subsequently, ¢ was incremented from 2 to 5, and for each value of c,
FMLE was executed to termination. Initialization at each new value
of ¢ is done as explained in Gath and Geva's 1989a paper, by adding
one more cluster prototype to the set found at the previous value. The
new prototype is placed very far away from every point in X.
Specifically, the distance from all data points to the new center are
set to 10 times the sum of the variances of all 43 data points.

Table 2.12 lists the values of 1/V,,, Vpp and Vg obtained on the

terminal outputs of FMLE for each c from 2 to 5. All three indices are
to be maximized. First note that the fuzzy hypervolume points to ¢ =
3, which is clearly wrong. This index is felt by Gath and Geva to be
least reliable of the three in this group, but it is needed to compute
the other two in any case. The average partition density points to ¢ =
4, which is also wrong, and the partition density points to ¢ = 2. We
conclude from this (again) the same thing that we learn from
previous examples: using just one index of validity is a very
dangerous strategy, for there is great inconsistency in the
recommendations that various indices can make.

Table 2.12 Validity measures for FMLE partitions of X .

co | 2 3 4 5

1/ Vyy | 0.00045 000049 0.00040 0.00044
Voo 0.0025 0.0015 0.0036 0.0027
Vpp | 00080 0.0044 0.0047 0.0043

(Right cluster) terminal FMLE memberships for c = 2

data pt. left: u right: u ok
X0 0.000310 0.999690
X, 0.000221 0.999729
X, 0.000053 0.999947

At ¢ = 2 the terminal FMLE partition of X3 has cluster memberships

that are crisp up to 3 or 4 places past the decimal for the 40 points in
the left cluster. Membership columns in both clusters for the three

CLUSTER ANALYSIS 105

points in the right cluster are shown in the bottom portion of Table
2.12. As you can see, the FMLE algorithm solves the problem
illustrated in Example 2.3 without recourse to the trick of semi-
supervision illustrated there. Hardening the terminal FMLE
partition of X 13 found at ¢ = 2 produces the visually correct solution.

The terminal cluster centers for ¢ = 2 were, to two decimal places,

vIEME = (44.8,48.8)T and v =(91,49)". The labeled sample

means for the two visually apparent clusters in X 45 are exactly these
values!

Remark Processing X with the standard GMD-AO algorithm gives

the same result as long as a solution is requested for ¢ = 2. Thus, the
added value of FMLE seems to be the three validity indices. On the
other hand, all three of these indices fail to indicate ¢ = 3 on data set
X3 o in Figure 2.2 {possibly because the small number of points in

each of the three clusters in X,, do not follow the expected shapes of

samples from 2D Gaussians very well). This illustrates the point we
continue to emphasize: no validity index has proven very reliable
across wide variations of data, clustering algorithms, or partitions.

E. Standardizing and normalizing indirect indices

Indirect indices such as 7, and 7 have at least four problems.
First, they are at best indirectly connected to real substructure in X.
Second, justification for using them often relies on heuristic
rationales - e.g., U, is better than U, if U, is "crisper” than U,. We

have shown this to be a misleading heuristic. Third, many indirect
indices can be shown to be, or have been experimentally observed to
be, monotonic in ¢. And fourth, their range is sometimes itself a
function of c¢. This last property makes their use for cluster validity
problematical.

For example, equation (2.100) shows that 1/c < 'Z/PC(U) <1 for every
Ue M, Thus, as c¢ increases from 2 to n-1, the range of 7,

1 1
increases: c=2=%~e|l=,1|, c=n-1= % € ,1[. 7. has
we [2 } °e [n—l] P

the same problem. Moreover, the range of %, is also a function of
logarithmic base a.

Variable ranges make interpretation of values of ¥,, and %,
difficult, since they are not referenced to a fixed scale. The
significance, for example, of %,.(U)=0.04 is not as high when
¢ = n -1 as it would be for ¢ << n because of the change in the range of

106 FUZZY PATTERN RECOGNITION

Vog - Moreover, Vop = Oat 11><n ={11-.. 1] atc=1 and at Inxn, forc =

n. Hence, minimization of Vop 18 confined to c€{2,3,...,n-1}.

Many authors have attempted to address this problem through
standardizations and normalizations of various indices. The first
normalization of this kind was introduced by Bezdek (1974a), who
transformed the partition entropy %, by a simple scaling so that
the normalized index was valued in the unit interval,

. Y. (U)

Vpg (U) = l‘f — UeMg, : (2.108)
a

The limits for % given at (2.100) immediately yield
’Z7PE,B(U) =0 %p(U)=0UeMg, is crisp ;and (2.109a)

Vg gV =14, (U)=In c>U=T . (2.109b)

This scaling fixes the range of %y so that %, . (U)el0,1] is

independent of c. This makes the comparison of values of ’Z7PEB at
different numbers of clusters more appealing than the direct use of

Vog - Roubens (1978) gave a similar normalization of the partition
coefficient,

- cVpe(U)-1

Vpcr(U) = (—%—) » U e Mg, . (2.110)

Comparing (2.100) with (2.110) establishes that

Upor(U)=1 %pe(U)=1UeM, is crisp ;and (2.111a)

Uper(U)=0 & Upc(U)===U=TU . (2.111b)

O |

Consequently, Roubens' normalization of %,, scales its range so

that '17pc,R (U) €10,1] for any value of c. Backer (1978) discussed the

related index Zpgp,(U)= (—C—J(l - 'Z/PC[U)) =1-%cg, but used his
, c— .

index as an objective function upon which a cluster seeking
algorithm was based. Apparently unaware of Roubens work, Davé

(1996) recently (re)introduced %pcr Wwith a new name, viz., the

CLUSTER ANALYSIS 107

modified partition coefficient (MPC). In any case, éPC,R is, in the

end, just like % 5. Both of these indices are normalized measures

of the fuzziness in U, and as such, really address just one of the four
problems mentioned above - the problem of variable range.

Dunn (1977) first suggested that normalizations of indirect validity
indices be referenced somehow to data substructure - i.e., that they
be held accountable more directly for substructure in the data. Dunn
proposed the index

U o0) = 250 ~ (22)

WPE O(U) n—-c¢) U € Man . (2. 1 12)

This quasi-statistical normalization was given as an
approximation to the ratio of %,;(U) to the null hypothesis value we

call %sg ((U). Dunn used FCM on a reference set X, of n vectors

uniformly distributed over a hypercube in %¥ to estimate %pg ((U),
which he took to be approximately (n-c)/n. Dunn's idea was that if X
contained ¢ compact, well-separated clusters, the value ’I/PE(U) on
any reasonable partition U of X should be low relative to the value

Vpg,0(U) on X Roughly speaking, %y , takes the form of an inverse

likelihood ratio test, so minimizing ’UAPE,D ostensibly corresponds to

maximizing the approximate likelihood that X contains cluster
substructure.

Dunn used FCM to generate the clusters that lead to his

approximation of %y (U), so (2.112), like %355, of Araki et al.

(1993), is implicitly linked to the fuzzy c-means model. Whether the
same approximation is useful for fuzzy clusters found by other
algorithms is an open question.

Numerical experiments given by Dunn (1977) indicate that ﬁPE‘D isa
useful modification of ;. However, substituting U = U into (2.112)
with the upper bound for %, (U) in (2.100b) gives the upper bound

n-c¢ n-c
of X, which is again a function of ¢. Thus, Dunn's normalization of
% does not solve the variable range problem, but it does

(approximately) reference the indirect index %, to a property that

seems desirable for characterizing data with clusters: namely, that
data with cluster structure be non-uniformly distributed over a
hypercube in gp.

’l?pE_D(ﬁ) = [HWPE(U)) = (n loga Cj at the equi-membership partition

108 FUZZY PATTERN RECOGNITION

Bezdek et al. (1980) gave probabilistic standardizations for both %,
and ¢, based on the well known fact that the linear
—HBx
Ox

and standard deviation (uy,0y) is a random variable whose mean
and standard deviation are (i,,0)=(0,1). The assumption used in

their analysis was that the validity indices in question were
random variables uniformly distributed over the degenerate fuzzy c-
partitions M, . of X. This is necessary because the derivations are

done on one column of U, and it is necessary to have independent (in
the probabilistic sense) columns to aggregate the results across an
entire partition of X. They derived the mean and standard deviation

of ¥, and %,; under this assumption. Specifically, they prove that

of the random variable X with mean

transformation Y =

for UeMg,,: the expected value (E) and variance (var) of Voo and

Vp, A€
1
E(®pe(U)) = (C] : 2.1134)
4(c-1)
v, : 2.113b
var(tpc(U ((c+1)° c+2)(c+3)) ()
c 1
E(%pg(U)) = g X ; (2.114a)
var(¥p, (U) = (c-DYm® (2.114b)
PE 2 k2 (c+1) 6 ' :
X-u
Results (2.113) can be used with Y = S X to standardize (79 ’I/pC,R
X

and ¥pc g, . And results (2.114) can be used to standardize %, ¥ p

and WPE,D the same way.

For large enough n, the central limit theorem tells us that a
standardized random variable is approximately normal (Gaussian)
with mean 0 and variance 1, indicated as #(0, 1). Thus, for example,
when u e Ny, is uniformly distributed over the fuzzy label vectors

N_, and because M, <M , we have the standardizations
fc fen fcnO

CLUSTER ANALYSIS 109

0.5 _
V. (U) = (n(c +2)(c+ 3)) ((c + 1) (U) - 2

1 5]zn(o,l). (2.115a)

¢ 1
(5.1
* (U)= - k=2 K ~ n(0,1). (2.115b)

Vpg(5 05
}02 (1 j_(c—l) -6
ko \ nk? c+1) 6n

Since X is always finite, the actual distribution of standardizations
such as these can be far from normal. Nonetheless, they provide
another way to link statistical tests to properties of substructure in
X by providing a basis for significance tests for cluster validity. Like
Dunn's normalization of %, these standardizations are attempts
to characterize clusters statistically as a departure from uniformity
in the feature space. And again, this happens at the expense of a
fixed range for the validity measure in question.

F. Indirect measures for non-point prototype models

The validity criteria discussed so far were designed largely on the
expectation that X contains volumetric or cloud type clusters. This
is mirrored in the use of functions that measure central tendency
(means) and dispersion (variances) about the means. All of the direct
indices discussed above (Davies-Bouldin, Dunn's index and the
generalized Dunn's indices) are designed for cloud type clusters, as
are the indirect parametric indices of Gath and Geva and the
indirect parametric data index of Xie and Beni.

In order to evaluate partitions that represent shell clusters,
different validity measures are needed. To see this, let X be any finite
set of points uniformly distributed on the surface of a hypersphere

in RP with radius 1; and let 100X be the same data drawn from a
hypersphere of radius 100. These data sets will have the same
statistic, Vv, as their classical measure of central tendency of the
points. The covariance structure of X will also be the same, even
though X is more compact than 100X. The surface density of X is
much greater than that of 100X. But when these points are regarded
as shell clusters, the correct hyperspherical prototypes fit them
equally well, so measures of validity should indicate this. The
standard measures that assess them for central tendency and
dispersion can be very misleading.

Several indirect validity measures that relate to the fitting
prototypes have their roots in the work of Gath and Geva (1989a).
Their three indices were not designed for shell clusters - they
measure properties which are optimized by compact clouds.
However, these indices paved the way towards similar measures that

110 FUZZY PATTERN RECOGNITION

are customized for shell clusters. Man and Gath (1994) defined
indices for shell clusters that are related to the measures of Gath and
Geva (1989a), and Davé (1996) refined the hypervolume and
partition density measures for the cases of spherical and ellipsoidal
shells. Krishnapuram et al. (1995b) generalized these definitions to
more general shell types; the development of these measures
follows.

Let [51 be the parameters of (i.e., coefficients of the equation of) a shell
prototype S, which is a hyperquadric surface in R”. For any

X € RP, define
ty = Xy — 2y . (2.116)

where zi{ is a closest point (measured in Euclidean distance) on the
shell S tox. When S, is a hypersphere with center v, and radius 1, the

(X —Vvy))
=i = v

other hyperquadric surfaces z. can be determined using (2.53). For

vector z! in (2.116) takes the explicit form z} = v, +1; For

k

more general types of shells z; may be difficult to compute. In these
cases we can use a convenient point on the shell or simply use the
"approximate closest point" (Krishnapuram et al., 1995b) on the
shell. For example, in the case of ellipsoidal shells, we can use the
point of intersection of the radial line joining x _and v_with the
ellipsoidal shell (cf. ellipsoidal prototypes, Section 2.3). The fuzzy
shell covariance matrix for shell S is defined as

uftyti

Cg, ==l ——, 1<i<c : (2.117)
2 uj

k=1

T Ms

Let Cg =(Cg,,....Cg) € RePxP) The shell hypervolume of a fuzzy c-
partition U of X with parameters B = (8 e fic) is defined as

Veuy (Cg) = 3 ,/det(Cg,) : (2.118)

i=1

Equation (2.118) is a direct generalization of (2.105) for
hyperquadric shells. The extension of (2.106) and (2.107) to the non-
point prototype case requires some terminology associated with

shell clusters. We illustrate the basic ideas using %®? as the feature

CLUSTER ANALYSIS 111

space with circular prototypes, but many of these ideas can be
extended to RP and other types of hyperquadric prototypes.

Complete [] Partial
] Dense " Dense }-
] []]
\
- N
| | I

O f /
v , /o |
Complete > | Partialé
Sparse | Sparse
. | RNy,
N ' N ‘

Figure 2.18 "Circular" clusters with different properties

First we point out that clusters are necessarily finite sets of points,
while non-point prototypes (shells) that the clusters may be fitted to

are continuous structures. So, for example, a circle in %% has
infinitely many points, but a "circular cluster” has only finitely
many. The following definitions assume a spatial grid of pixels with
fixed resolution underlying the points in the clusters. We assume
that each pixel can be represented by a square. See Chapter 5 for
more on this terminology, which is derived from image processing
considerations.

We will say that a "circular" cluster of pixels is dense (or not sparse)
if and only if its points are either 4-connected or 8-connected in the
plane. A circular cluster that is not dense will be called sparse. A
circular cluster is complete if and only if each point on the prototype
touches or falls within some (square) pixel belonging to the cluster
of pixels. A circular cluster that is not complete will be called a
partial circular cluster. The thickness of a circular cluster is the
average distance from its points to the circular prototype. These
definitions are illustrated in Figure 2.18. During optimization of
functions designed to find good circular prototypes to represent

112 FUZZY PATTERN RECOGNITION

clusters of pixels such as these, the distance used is almost always
measured from the "center" of the pixel to the fitting prototype.

Extending (2.106}, Krishnapuram et al. define the average shell
partition density Vg, for a fuzzy c-partition U of X with parameters
B=(V, Cs) as

L e 2 Uk
— Xk EOS;
Vepp(U,Cs) ==X et

Ci=1| 4 det(CSi) ,

(2.119)

where og, ={xe9§p:]|x—vi"i_1 <1},i=1,...,c. Finally, the shell
Sy

partition density for a c-shell partition U of X with parameters B =
(v, CS) is defined as (cf. (2.107))

i [> uik]
i=l} xk ey

Vspp(U,Cgl) =
SPD S Vemy (Cs)

(2.120)

Krishnapuram et al. also proposed an alternative definition for wg,,

the core or central members in X whose memberships are used in the
calculation of the numerators of (2.119) and (2.120),

s, ={xk e%p:|[t1k||<‘cmax,i;i=1,...,c} , 2.121)

where 71.,.; is the expected thickness of the i-th shell. When
possibilistic versions of the shell clustering algorithms are used,
Krishnapuram et al. suggest T,,.; =\/v_v:. Davé (1991b, 1996)
proposed an indirect parametric data validity index V. for fuzzy
partitions that consist of ¢ hyperspherical shells with parameters B,

Y
z k=1 —
i=1 Z uifﬁ
Ver(U,B; X) = kel i (2.122)

CLUSTER ANALYSIS 113

Recall ||x, - v{|-r, as shown in Figure 2.8 when interpreting this

equation. Each factor of the numerator of {2.122) is interpreted as
the thickness of the i-th hyperspherical shell since it is a
generalized average distance from the points in the i-th cluster to
the i-th shell. The denominator in (2.122) is called the average
radius of the shells and is used to normalize this index so that the
shell thickness is measured relative to the size of the circles. The

index Vg can be extended to ellipsoidal shells, and is to be
minimized for identification of the best partition of X.

Krishnapuram et al. (1995b) also define the total fuzzy average shell
thickness Vg, for fuzzy partitions that consist of ¢ hyperquadric

shells with parameters B = (f3 e [ic) as

n
> ulp
k=1

Mo

Ver(U,B) = (2.123)

1

n
1 Yuf

k=1
The validity measures in equations (2.118), (2.119), (2.120), (2.122)
and (2.123) suffer from many drawbacks. Their biggest problem is
large variability depending on the size, sparsity and incompleteness
of shell clusters. They also lack normalized or standardized
(theoretical) values to compare against the validity of a particular c-
partition. Hypervolume and shell thickness may be misleadingly
small when c is overspecified because there may be only a few points
in each shell cluster. For example, if there are only three points in a
circular shell cluster, the error of a perfect fit is zero, the volume is
zero while the density is infinite, regardless of the relative
placement of the three points.

With a view towards ameliorating these drawbacks, Krishnapuram
et al. (1995b) introduced a surface density criterion for validation of
hyperquadric shell clusters. In the two-dimensional case, the shell

surface density Vssp,, of the i-th cluster of a fuzzy partition U whose

parameters are [ii = (vi, Ci) is defined as the number of points per unit
of estimated surface density (along the fitting prototype), i. e.,

2
i=1\ xk g,

274/ Tr(C;)

Vssp;o (U.Cy) = (2.124)

C in {2.124) is the fuzzy covariance matrix in (2.27), not the shell
covariance matrix at (2.117), and it is not involved in the iterative

114 FUZZY PATTERN RECOGNITION

calculations of the algorithm; rather, this matrix is computed once
after the algorithm terminates. The quantity +Tr(C;} in the
denominator of {2.124) is interpreted as the effective radius,
A Tr(C,) =1, of the i-th shell because the "equivalent circle" with
radius /Tr(C,) has the same second moment as the shell cluster

under consideration. 274/ Tr(C,) is an estimate of the arc length of

the prototype that represents the (possibly partial) cluster, since the
exact arc length cannot be computed easily for clusters that are
sparse or partial. In the continuos case for a complete circle of

radius r, it can be shown that r; =4/ Tr(C;).

In the three-dimensional case, the shell surface density VSSD13 of

the i-th cluster of a fuzzy partition U whose parameters are Bi =(v, Ci)
is defined as

c
2 uy
i=l{ Xk ed)s1

V U,C)=——2,1<iZ , 2.
SSD13(1) 4:75(’1‘1'(01)) 1sC (125)

where Tr(C,;)=rZ%;, is the square of the effective radius. In this case
Vssoig measures the number of points per unit of estimated surface
area of the i-th shell. The average shell surface density in the two
(Vssn,) or three (Vsgp,) dimensional cases is

— 1(¢
i=
— 1/ ¢
i=

These measures are used to evaluate fuzzy hyperquadric c-shell
partitions U of X characterized by the shell parameters B. After the
algorithm terminates, if desired, the parameters (V, C) are computed
non-iteratively.

Example 2.18 Figure 2.19 shows a 158-point data set X _ consisting

of three shell clusters (a circle, an ellipse and a parabola).
Initialization and termination criteria were the same as those used

CLUSTER ANALYSIS 115

in Example 2.8. To decide on the central members of each cluster,

(2.121) was used with 1 . =2Vi.
max,i
%
® x
,ee* LS P
Ed X x ®
¥ #
% oy M
= %o
® ® X
® R
% % Ho
*®
* i x :
% o " % ®
% & xw* k ® *
% = H] % i %
®
= % H t
x 3 ¥
x ¥ H x’&#x u¥ xx
M Xy ‘ ®
w¥ % w ¥
x % x
¢ ®
xux
¥R x %
X ®
x ® *
%) ® ®
’Scxx id ® %
®
% % % F o

Figure 2.19 Three shell clusters X _.

The FCQS algorithm was applied to X 58 for c=2,...,10, and the

validity indices Vg, Vegy» Vpp. and Vssoz were computed using

terminal partitions and parameters from FCQS. Table 2.13
summarizes the validity values obtained.

Table 2.13 Validity measures for FCQS partitions of X, 58

¢ Vsr Vsnv Vep Vsspa
2 296.14 127.35 0.13 0.021
3 4.87 1.69 75.93 0.138
4 40.89 16.33 7.10 0.070
5 19.29 7.44 15.25 0.067
6 13.86 5.70 21.34 0.070
7 15.35 4.93 26.28 0.058
8 6.88 1.72 83.85 0.071
9 |"7435 = 164 8965 0050
10 9.36 2.58 54.56 0.052

VSSDZ, which is to be maximized, indicates the visually correct

value of ¢=3. The other three measures all indicate that the optimum
number of clusters is 9. As mentioned just below equation (2.123),
this is because many clusters are able to provide good (low error) fits
to various pieces of the shell clusters.

To provide a better understanding of this problem, the left view in
Figure 2.20 shows the prototypes obtained with ¢ = 3 superimposed

116 FUZZY PATTERN RECOGNITION

onX . The right view in Figure 2.20 shows the prototypes obtained
with ¢=9 superimposed on X158' This does not to imply that the
validity functionals Vg, Vg, and Vp, are without merit. When
used in conjunction with VSSDZ they can provide valuable

information in boundary description applications (cf. Chapter 6).

We have already mentioned the idea of progressive clustering in
connection with the work of Bensaid et al. (1996a). The indirect
validity measures for non point prototypes discussed in this section
may be used to determine the optimal number of clusters in a c-
shells partition of X. However, repetitively clustering the data for an
entire range of c-values is very time consuming, and is never
guaranteed to work due to local minima of the objective function,
particularly for noisy or complex data sets. Progressive clustering
based on the validity of individual clusters seems very appropriate
for shell type algorithms, and will be discussed in more detail in
Chapter 6.

Equation (2.94) provides a very general paradigm for defining

cluster validity indices. Appropriate definitions of & and A lead to
validity indices suitable for different types (e.g., clouds or shells) of
clusters. Pal and Biswas (1997), for example, used minimal
spanning trees, relative neighborhood graphs and Gabriel graphs to
define the denominator of (2.94}). These modifications result in
graph theoretic validity indices that are applicable to chain or shell
type clusters. These authors also extended the Davies-Bouldin index
for chain type clusters using graph theoretic concepts.

CLUSTER ANALYSIS 117

G. Fuzzification of statistical indices

Table 2.7 provides one classification of validity measures and
procedures. Jain and Dubes (1988) offer another way to subdivide
validation methods for crisp partitions of the data. Specifically,
they discuss (i) external criteria; {ii) internal criteria; and (iii)
relative criteria for validation of: (a) a particular clustering method;
(b) nested hierarchies of clusters found by methods such as single
linkage (see Chapter 3); (c) individual partitions; and (d) individual
clusters. This provides 12 subgroups of methods, all for crisp
partitions of X.

External criteria are those that match the structure of a partition
UX) computed with X to a partition U* of X that pertains to the data
but which is independent of it. For example, every crisply labeled
data set comes with a crisp partition U* of X. Or, an investigator may
hypothesize a partitioning U* of X under some assumption (e.g., the
random label hypothesis used by Hubert and Arabie (1985)). When a
measure is a function of (U*, U(X)), it is called an external criterion.
None of the criteria discussed in this section are external.

Internal criteria assess the goodness of fit between an
algorithmically obtained crisp partition U(X) and the input data
using only the data themselves, usually in the form of the distance

matrix D(X) = [3(x;, X;],,, Of the data. This group of indices are thus

functions of (U(X), D(X) or X), and it intersects (but is not equal to) the
measures we call direct data indices in Table 2.7.

Relative indices are used to decide which of two crisp partitions, U(X)
or V(X), is a "better choice", where better is defined by the measure
that is being used. The Davies-Bouldin index discussed earlier, for
example, is a member of this group. This group includes almost all
internal indices, which are simply used differently for this different
problem, and almost all of the non-crisp indices that have been
discussed in this section, most of which apply to fuzzy partitions as
well as (hardened) crisp ones derived from them. Most of these crisp
validation methods are statistically oriented, and require
assumptions about the distribution of the data that are often hard to
justify. Nonetheless, several are widely used and have recently been
fuzzified, so we provide a short discussion of two popular external
indices for crisp partitions.

Let U,S e My, be crisp partitions of X. Define four counts on pairs
of objects (xi,xj) eXxX

A = # of pairs in the same cluster in U and S ; (2.1273a)
B = # of pairs in the same cluster in U butnot S ; (2.127b)
C= # of pairs in the same cluster in Sbutnot U (2.127¢)

D = # of pairs in different clusters in both U and S. (2.1274)

118 FUZZY PATTERN RECOGNITION

A convenient formulation of the indices we describe next is in terms
of the entries of the so-called ¢ x ¢ matching matrix M of U and S,

M(U,S) =M = [m,] =US™ . (2.128)

Associated with M are three numbers that aggregate the counts in
(2.127):

T=(§ im?j—n . (2.129a)
j=l=1 Y
2
P=§(§m..] -n . (2.129b)
=1 j=1
C C 2
Q=Z(Zmij] -n ; (2.129¢)
j=1\i=1

For U,SeM, Rand (1971) defined the crisp validity measure

v (U,S)=(A+D jz 2T-P-Q+n(n-1) (2.130)
R A+B+C+D n{n-1)
It is easy to show that
VR=1=>U=S ; (2.131a)
Vg =0=U and S contain no similar pairs ; (2.131b)
0<V, £1V(U,S)eM, xM, . (2.181¢)

Consequently, high values of Vare taken as indicants of a good

match between U and S. Several corrections of V, based on
normalizations that are in spirit very similar to the ones shown in
(2.115) have been proposed to offset its monotone increasing
tendency with c¢. Jain and Dubes (1988) provide a nice discussion of
such corrections.

A second external index to compare two crisp partitions of X that is
often cited is the index of Fowlkes and Mallow (1983), which for

U,Se M, ., is defined as
cn

Vi (U,) = L—T—J . (2.132)

NZe)

CLUSTER ANALYSIS 119

Just as in (2.131), we have

VFM=1<:>U=S ; (2.133a)
Vey =0 e Uand S are completely different ; (2.133b)
0<Vpy S1VIU,8)eM, xM, . (2.1330)

High values of V, are again interpreted as indicating a good match

between U and S. V, tends to decrease with increasing ¢. Milligan

and Cooper {1986, e.g.) have studied at least 30 external indices of
this type in a series of papers over several years, and they conclude
that the adjusted Rand index and the Fowlkes - Mallow measure are
probably more reliable than many others of this kind.

Back and Hussain (1995) proposed fuzzy generalizations of V_ and
Ven- Given two fuzzy partitions U,S e M, , define, in direct analogy
with (2.128), the cxc¢ fuzzy matching matrix between U and S as

- - = T
M,(U,S) =M, =[m]=US . (2.139)

Entries in M, are no longer counts of matches and mismatches
between pairs in XxX; rather, m, is now interpreted as the

similarity between the fuzzy cluster whose membership values are
the i-th row of U and the fuzzy cluster whose membership values are

the j-th row of S (which is the j-th column of S%).

The numbers T, P and Q in (2.129) are well defined for Mf, and can be

used to make direct extensions of VR and VFM. For U,SeM fon® Back

and Hussain define the fuzzy Rand index and fuzzy Fowlkes-Mallow
index as, respectively,

Ve (U S) = (zT - Pn_(fjlr)l(n - 1)) ; (2.135)
Vg (U, S) = (—\/_I%J . (2.136)

The partition coefficient V. at (2.98) is a function of UUT instead

of UST as in (2.134). Thus, one way to interpret (2.135) or (2.136) is

that they are generalizations of V.., which really compares U to

itself, whereas Ve and V. compare U to a second fuzzy partition

120 FUZZY PATTERN RECOGNITION

S in different ways. Properties of these two indices are interesting.
For example,

Ve =12U=8,U,SeMg, ; (2.1373a)
Vi =0=U and S are completely dissimilar ; (2.137b)
0<Vp<1V(U,S)eMg xMp . (2.137¢)

Vg ¢ cannot be used to compare two truly fuzzy partitions because

the implication in (2.137a) is one way; in particular, V (U, U)#1
for UeM, -M, .
cn Ccn

against a crisp V. Results similar to (2.137) hold for V., .. Since

neither Vp . nor V. can be used to compare two truly fuzzy
partitions of X to each other, Back and Hussain propose a measure
that they call the MC index for this job. Let U,S e M, , and define

so its usefulness lies in validation of a fuzzy U

2n A\ k=1i=1 2n

n C —_ 2
Vie(U,S)=1- (L)(2 X, - slk)zj =1 —[UJ; (2.138)

From (2.98) 7,,(U)= U /n so %,,(U-S)=|U-S|*/n. Comparing
this with (2.138), we have

{2.139)

U-9)
2

VMC(U’ S)=1- (_VP_C(___

Thus, the MC index is a relative of the partition coefficient that can
be used for the comparison of U to S. If V. =1, U and S are

identical. If V. =0, U and S are crisp and share no object in the

same class. In this case V., becomes the ratio of equally labeled
objects in U and S.

To summarize, (2.137a) means, for example, that V. is really

useful only for comparing a fuzzy U to a crisp S. When might this
happen? Often. For example, Table 2.3 in Example 2.2 shows
terminal FCM and PCM partitions of Xoor Our comparison of the

three matrices in Table 2.2 was confined to hardening the FCM and
PCM partition matrices and then noting that all three were
identical. If we let S be U*, the visually correct 3-partition of X, We

can compare it to U from FCM using either V.. and Vg, .. This
extends the idea of external cluster validation for different terminal

fuzzy partitions of X to the case where there is a known crisp

CLUSTER ANALYSIS 121

partition of the data (usually just the labels of labeled data, such as
we have for Iris) without using the defuzzification or hardening of U.

2.5 Feature Analysis

Methods that explore and improve raw data are broadly
characterized as feature analysis. This includes scaling,
normalization, filtering, and smoothing. Any transformation

O: RP 1> R does feature extraction when applied to X. Usually g <<
p, but there are cases where q > p. For example, transformations of
data can sometimes make them linearly separable in higher
dimensions (cf. functional link nets, Zurada, 1992). For a second
example where q > p, in image processing each pixel is often
associated with a vector of many variables (gray level at the pixel,
gradients, texture measures, entropy, average, standard deviation,
etc.) built from, for example, intensity values in a rectangular
window about the pixel. Examples of feature extraction
transformations include Fourier transforms, principal
components, and feature vectors built from window intensities in
images.

The goals of extraction and selection are: to improve the data for
solving a particular problem; to compress feature space to reduce
time and space complexity; and to eliminate redundant (dependent)
and unimportant (for the problem at hand) features. When p is large,
it is often desirable to reduce it to q<<p. Feature selection consists of
choosing subsets of the original measured features. Features are
selected by taking & to be a projection onto some coordinate

subspace of RP. If q << p, time and space complexity of algorithms
that use the transformed data can be significantly reduced. Our next
example uses a cartoon type illustiration to convey the ideas of
feature nomination, measurement, selection and the construction
of object vector data.

Example 2.19 Three fruits are shown in Figure 2.21; an apple, an
orange and a pear. In order to ask and attempt to answer questions
about these objects by computational means, we need an object
vector representation of each fruit. A human must nominate
features that seem capable of representing properties of each object
that will be useful in solving some problem. The choices shown in
column two are ones that allow us to formulate and answer some
(but not all!) questions that might be posed about these fruits.

Once the features (mass, shape, texture) are nominated, sensors
measure their values for each object in the sample. The mass of each
fruit is readily obtainable, but the shape and texture values require
more thought, more time, more work, and probably will be more
expensive to collect.

122 FUZZY PATTERN RECOGNITION

Objects Nominate Sensor Object

Features Measures Data
Mass Weight 1.9

A Shape Diameter =12
Texture Smooth 0
Mass Weight
Shape Diameter
Texture Rough
Mass Weight 1.3
Shape Diameter =i 1.1
Texture Smooth 0

Figure 2.21 Feature analysis and object data

A number of definitions could yield shape measures for the
diameter. We might take the diameter as the maximum distance
between any pair of points on the boundary of a silhouette of each
fruit. This will be an expensive feature to measure, and it may not
capture a property of the various classes that is useful for the
purpose at hand. Finally, texture can be represented by a binary
variable, say O = "smooth” and 1 = "rough". It may not be easy or
cheap to automate the assignment of a texture value to each fruit, but
it can be done. After setting up the measurement system, each fruit
passes through it, generating an object vector of measurements. In

Figure 2.21 each feature vector is in p=3 space, x, € R3.

Suppose the problem is to separate the citrus fruits from the non-
citrus fruits, samples being restricted to apples, oranges and pears.
Given this constraint, the only feature we need to inspect is the third
one (texture). Oranges are the solution to the problem, and they will
(almost) always have rough texture, whereas the apples and pears

CLUSTER ANALYSIS 123

generally will not. Thus, as shown in Figure 2.21, we may select
texture, and disregard the first and second features, when solving
this problem. This reduces p from 3 to 1, and makes the
computational solution simpler and possibly more accurate, since
calculations involving all three features use measurements of the
other variables that may make the data more mixed in higher
dimensions. The feature selection function @ that formally
accomplishes this is the projection ®(x,, x,, X3) = Xg. It is certainly
possible for an aberrant sample to trick the system - that is, we
cannot expect a 100% success rate, because real data exhibits noise
(in this example noise corresponds to, say, a very rough apple).

Several further points. First, what if the data contained a
pineapple? This fruit has a much rougher texture than oranges, but
is not a citrus fruit, so in the first place, texture alone is insufficient.
Moreover, the texture measurement would have to be modified to,
perhaps, a ternary variable; 0 = smooth, l=rough, and 2 = very
rough. Although it is easy to say this verbally, remember that the
system under design must convert the texture of each fruit into one
of the numbers O, 1 or 2. This is possible, but may be expensive.

Finally, the features selected depend on the question you are
attempting to answer. For example, if the problem was to remove
from a conveyor belt all fruits that were too small for a primary
market, then texture would be useless. One or both of the first two
variables would work better for this new problem. However, the
diameter and weight of each fruit are probably correlated.
Statistical analysis might yield a functional relationship between
these two features. One of the primary uses of feature analysis is to
remove redundancy in measured features. In this example, the
physical meaning of the variables suggests a solution; in more
subtle cases, computational analysis is often the only recourse.

N

It is often unclear which features will be good at separating the
clusters in an object data set. Hence, a large number - perhaps
hundreds - of features are often proposed. While some are intuitive,
as those in Example 2.19, many useful features have no intuitive or
physically plausible meaning. For example, the coefficients of the
normalized Fourier descriptors of the outline of digitized shapes in
the plane are often quite useful for shape analysis (Bezdek et al.,
1981c), but these extracted features have no direct physical
interpretation as properties of the objects whose shapes they
represent. Even finding the "best” subset of selected features to use is
computationally so expensive as to be prohibitive.

Any feature extraction method that produces Y = ®[X] < %9 can
be used to make visual displays by taking q = 1, 2, or 3 and plotting Y

124 FUZZY PATTERN RECOGNITION

on a rectangular coordinate system. In this category, for example,
are feature extraction functions such as the linear transformations
defined by principal components matrices, and feature extraction
algorithms such as Sammon's method (Sammon, 1969). A large
class of transformations, however, produce only visual displays

from X (and not data sets Y ¢ R, %2 or %R®) through devices other
than scatterplots. In this category are functions such as
trigonometric plots (Andrews, 1972) and pictogram algorithms such
as Chernoff faces (Chernoff, 1973), and trees and castles (Kleiner and
Hartigan, 1981).

The simplest and most natural method for selecting 1, 2 or 3 features
from a large feature set is to visually examine each possible feature
combination. Even this can be computationally challenging, since p
features, for example, offer p(p-1) two dimensional planes upon
which to project the data. Moreover, visual assessment of projected
subsets can be very deceptive, as we now illustrate.

Example 2.20 The center of Figure 2.22 is a scatterplot of 30 points X
= {(Xr X 2)} whose coordinates are listed in columns 2 and 3 of Table

2.14. The data are indexed so that points 1-10, 11-20 and 21-30
correspond to the three visually apparent clusters. Projection of X
onto the first and second coordinate axes results in the one-
dimensional data sets X1 and X2. This illustrates feature selection.

X=X, xX, cR? X1+X2<:ER

b CEID Wie) «o) > @31 :

Figure 2.22 Feature selection and extraction

CLUSTER ANALYSIS 125

The one dimensional data %(X1 +X,) in Figure 2.22 (plotted to the

right of X, not to scale) is made by averaging the coordinates of each
vector in X. Geometrically this amounts to orthogonal projection of
X onto the line x L= Xy This illustrates feature extraction.

Table 2.14 Data and terminal FCM cluster 1 for four data sets

X, x, |Init}Init|Init} X X %(X1+X2) X,

Yo Y%en | Ysa | Yu | Yy Y Yy
X 1.5 | 25 |1 0 0 1099]100; 100 0.00
x, | 1.7 | 26 |0 1 0 1099|100 0.99 0.03
x, | 12 22 |0 0 1 1099099, 098 | 096
x, | 18 20 |1 0 0 {1.00}100, 100 | 0.92
x| 17 21 10 1 0 {100,100, 100 | 0.99
x. | 13 23 10 0 1 {099]099; 099 | 0.63
x, | 21 20 i1 0 0 1099/099;, 100 | 092
x, | 23 1.9 10 1 0 1097098, 100 | 0.82
x, | 20 24 | 0 0 1 1099100 0.98 0.17
x| 19| 22 |1 0 0 [100;100 100 | 0.96
x, | 60 1.2 {0 1 0 [0.01;0.01; 0.01 0.02
x,| 66 1.0 | O 0 1 {0.00]0.00; 0.00 0.00
x.| 59 | 09 |1 0 0 {1002]0.02! 0.07 0.02
x,| 63 1.3 |0 1 0 {0.00}000, 0.00 0.07
x_ | 59 10 |0 0 1 {0.02]0.02] 0.05 0.00
x| 71 10 |1 0 0 /001001, 0.02 0.00
x| 65|09 |0 1 0 ;000000 0.00 0.02
x.| 62 1.1 {0 0 1 10.00{0.00] 0.01 0.00
x| 72 1.2 |1 0 0 10.02]002}] 0.03 0.02
x| 75 1.1 |0 1 0 ;0.03]003| 004 | 0.00
x, | 101} 25 10 0 1 1001001 0.01 0.00
x, 112} 26 |1 0 0 {0.00]0.00; 0.00 0.03
x,,| 105} 25 |0 1 0 [001}001{ 0.00 0.00
x,| 122} 23 |0 0 1 1001{0.01; 0.01 0.63
x| 105} 22 |1 0 0 1001001, 0.01 0.96
x| 11.0}| 24 |0 1 0 10.00]0.00; 0.00 0.17
x| 1221 22 |0 0 1 1001{0.01} 0.01 0.96
x| 102} 21 |1 0 0 1001;001} 002 | 099
x,| 119} 27 {0 1 0 (001}001; 0.01 0.09
x,| 1.5 22 10 0 1 1000]000; 000 | 096

126 FUZZY PATTERN RECOGNITION

Visual inspection should convince you that the three clusters seen in

X, X and %(X1 +X,) will be properly detected by most clustering

algorithms. Projection of X onto its second axis, however, mixes the
data in the two upper clusters and results in just two clusters in X,

This illustrates that projections of high dimensional data into
lower (often visual) dimensions cannot be relied upon to show much
about cluster structure in the original data as explained next.

The results of applying FCM to these four data sets withc=3, m=2, ¢
= 0.01, and the Euclidean norm for both termination and J are

m
shown in Table 2.14, which also shows the (poor) initialization
used. Only memberships in the first cluster are shown. In Table 2.14
the three clusters are blocked into their visually apparent subsets of
10 points each. As expected, FCM discovers three very distinct fuzzy

clusters in X, Xl and %(X1 +X,) (not shown in Table 2.14). For X, X1

and -;-(Xl + Xz) all memberships for the first ten points are > 0.97,

and memberships of the remaining 20 points in this cluster are less
than or equal to 0. 07. For X, however, this cluster has eight

anomalies with respect to the original data.

When the columns of UF oM for X2 are hardened, this cluster contains

the 12 points (underlined in Table 2.14) numbered 3, 4, 5, 6, 7, 8, 10,
24, 25, 27, 28 and 30; the last five of these belong to cluster 3 in X,
and the points numbered 1, 2, and 9 should actually belong to this
cluster, but do not.

Example 2.20 shows the effects of changing features and then
clustering the transformed data. Conversely, clustering can
sometimes be used to extract or select features. Bezdek and
Castelaz(1977) illustrate how to use terminal point prototypes from
FCM to select subsets of triples from a set of 11 (binary-valued)
features for 300 stomach disease patients. Their experiments
showed that the average error committed by a nearest prototype
classifier (cf. Chapter 4) was nearly identical for the original data
and the selected feature triples. We discuss this in more detail in
Chapter 4, but mention it here simply to illustrate that fuzzy
clustering can be used in the context of feature analysis.

Another possibility is to use the ¢ distances from each point in the
original data to the cluster centers as (c-dimensional) extracted
features that replace the original p-dimensional features. We close
chapter 2 with an example that shows how important feature
selection can be in the context of a real data application -
segmentation of a digital image.

CLUSTER ANALYSIS 127

Example 2.21 To show how feature selection can effect a real world
pattern recognition problem, consider the segmentation of a 7
channel satellite image taken from (Barni et al., 1996,
Krishnapuram and Keller, 1996). Figure 2.23(a) shows channel 1.
Barni et al. applied FCM pixel-based clustering with ¢ = 4 to this
multispectral image, which had p = 7 bands with spatial dimensions
512x699. Thus, data set X contained n = 512x699 = 357,888 pixel

. o) B T]
vectors in p = 7-space. (pixel vector X, —(xlyij,...,x”j) e X is the

vector of 7 intensities taken from the spatial location in the image
with address (i,j), 1 £i £ 512; 1 £j £ 699.) In this example we
processed the image for two sets of features with FCM using c =4, m =
2, the Euclidean norm for both termination and Jd and ¢ = 0.1. FCM

was initialized with the first four pixel vectors from the image as V o

Figure 2.23 (a) Channel 1 of a 7 band satellite image

While this image has 4 main clusters (water, woods, agricultural
land, and urban areas), when viewed in proper resolution there are
many regions that do not fit into any of the four main categories.
For example, what about beaches? Do we distinguish between roads,
bridges and buildings or lump them all into the category of urban
areas? In the latter case, do the features allow us to do that?

FUZZY PATTERN RECOGNITION

128

Figure 2.23 (b) FCM segmentation using all 7 features

Figure 2.23(c) FCM segmentation using only 2 features

CLUSTER ANALYSIS 129

The seven channels in this image are highly correlated. To illustrate
this, we show the FCM segmentation when all 7 channels are used
(Figure 2.23(b)), and when only channels 5 and 6 are used (Figure
2.23(c)). Visually similar results imply that channels 1- 4 and 7 don't
contribute much to the result in Figure 2.23(b). From Figure 2.23(b) it
appears (visually) that the FCM misclassification rate is high. This
is mainly due to the choice of these features, which are not
sufficiently homogeneous within each class, and distinct between
classes to provide good discrimination.

250 1

200

150

channel 6

100

50

T T T
0 50 100 150 200 250

channel 5
Figure 2.24 Scatter plot of channel 5 vs 6 of satellite image

Figure 2.24 is a scatterplot of the two features (channels 5 and 6) used
for the segmentation shown in Figure 2.23(c). Since the number of
data points is very large (512x699), to prevent clutter, only a
subsample of the data set is shown, and in the subsample only two
distinct clusters can be seen. The water region appears as the
smaller and denser cluster, because in this region, there is relatively
less variation in the intensity values in all 7 channels. The highly
reflective areas that appear white in the image show up as outliers in
this mapping.

The larger cluster includes samples from all the remaining regions,
and it is hard if not impossible to distinguish the remaining three
classes within this cluster. If this data were to be used for classifier
design (instead of clustering) we could tell from the scatterplot that

130 FUZZY PATTERN RECOGNITION

the features would not be sufficient to distinguish 4 classes. Other
more complex features, such as texture, would be needed.

2.6 Comments and bibliography

Clustering algorithms

The crisp or hard c-means clustering model has its roots in the work
of Gauss, who wrote to Olbers in 1802 about the method of least
squared errors for parameter estimation (Bell, 1966). Duda and Hart
(1973) credit Thorndike (1953) as the first explicit user of the HCM
functional for clustering. There are now thousands of papers that
report theoretical results or applications of the HCM model. There is
also a very large body of non-fuzzy work in the signal and image
processing literature that is a very close relative of (indeed, perhaps
it is) HCM. The basic method for this community is the Lloyd-Buzo-
Gray (LBG) algorithm. See Gersho and Gray (1992) for an excellent
summary of this material. A new approach to signal processing
based on clustering has been recently discussed by Geva and Pratt
(1994).

The FCM model and FCM-AO were introduced by Dunn (1974a) for
the special case m=2, and both were generalized by Bezdek (1973,
1974a) for any m > 1. Krishnapuram and Keller's (1993) PCM model
and PCM-AO was published in 1993. The newest entrant to the c-
means families is a mixed fuzzy-possibilistic c-means (FPCM)
model and AO algorithm for optimizing it that simultaneously
generates both a fuzzy partition of and typicality matrix for
unlabeled data set X {Pal et al., 1997a). See Yang (1993) for a nice
survey of many other generalizations of the basic FCM model,
including some to the case of continous data processes, in which the
double sum for J_is replaced by integrals.

There are several points to be careful about when reading papers on
c-means clustering. First, many writers use k instead of ¢ for the
integer that denotes the number of clusters. Our notation follows
Duda and Hart (1973). Second, many papers and books refer to the
sequential version of ¢ or k-means more simply as, e.g., "k-means".
The well-known sequential version is not an AO method and has
many adherents. Its basic structure is that of a competitive learning
model, which will be discussed in Chapter 4. Be very careful, when
reading about c-means or k-means, to ascertain whether the author
means the sequential (Section 4.3.C) or batch version (Section
2.2.A); their properties and performance can be wildly different.

The term ISODATA was used (incorrectly) for both HCM-AO and
FCM-AO in early papers that followed the lead of Dunn (1974a) and
Bezdek (1973). Conditions (2.6) were used by Ball and Hall (1967) in
their crisp ISODATA (iterative self-organizing data analysis)

CLUSTER ANALYSIS 131

algorithm, which is our HCM-AO combined with a number of
heuristic procedures for (dynamic) determination of the correct
number of clusters to seek. Early papers by Dunn and Bezdek called
the FCM-AO algorithm "fuzzy ISODATA", even though there were no
heuristics attached to it analogous to those proposed by Ball and
Hall. Later papers replaced the term fuzzy ISODATA by fuzzy c-
means, but the incorrect use of fuzzy ISODATA still occurs now and
then. To our knowledge, a generalization of crisp ISODATA that
could correctly bear the name fuzzy ISODATA has - surprisingly- yet
to be studied. There is a crisp iterative self-organizing entropy
(ISOETRP) clustering algorithm due to Wang and Suen (1984) that
uses some of the same heuristics as ISODATA. ISOETRP is an
interactive clustering model that builds classifier decision trees,
and it attempts to optimize an entropy functional instead of J o we

will discuss this method in Section 4.6.

Suppose you have T sets of unlabeled data, X ={X,,...,X}, where
X ={x

I jl,...,xjn}ci)ip, ‘Xj'=n, for j = 1 to T. Sato et al. (1997} call
data of this kind 3-way object data, and refer to Xj as the j-th

situation in the data. Data like these are common. For example, in
estimates of brain tumor volume such as those made by Clark et al.
(1998), Xj corresponds to the j-th slice in a set of T slices of 3D

magnetic resonance images. In this example, the data are not
collocated either spatially or temporally. For a second example, X

might be the j-th image in a temporal sequence of frames collected
by an imaging sensor such as a Ladar on a flying seeker platform
that sweeps the scene below it. In this second case the data are not
temporally collocated, but after suitable adjustments to register the
images, they are spatially collocated.

In the first step of tumor volume estimation in Clark et al. (1998)
each of the T magnetic resonance slices is independently segmented
by unsupervised FCM, leading to a set of T computationally

uncorrelated terminal pairs, say {(U,,V,),...,(U;,V)} for the input
data sets X ={X,,...,X}. In such a scheme the number of clusters
could be - and in this application should be - a variable, changing
from slice to slice as the number of tissue classes changes. In the
seeker example, however, when images are collected at very high
frame rates, only the locations of the targets (the V,'s) in the
images should change. The number of clusters for each frame in a
(short time window) of this temporal data should be fixed. You can
cluster each image in such data independently with ¢ fixed, of
course, and the sequence {(U,V,),...,(U;, V.)} might be a useful
representation of unfolding events in the illuminated scene.
However, Sato et al. (1997) discuss a different approach to this

132 FUZZY PATTERN RECOGNITION

problem that involves a very minor change to the FCM functional
that seems like a useful alternative.

Sato et al. extend the basic FCM function J_(U,V)= i ﬁ upD2 by
i=1k=1
adding together T terms (one for each Xj), and each telrm is weighted

with a user specified weight o, j = L,...,T. Their temporal fuzzy c-
T

means (TFCM) function is defined as J© ™ UV H=XoJ UV Pl
=1

mj > O for all j. (TFCM is our name for their model and algorithm;

they don't really give it a name.) JTM js a positive linear

combination of T copies of the FCM functional, so an easy corollary
that follows from the proofs for necessary conditions (Bezdek, 1981)

yields necessary conditions for AO minimization of J “that are
simple extensions of (2.6a) and (2.6b). The fuzzy partition common
to all T terms of JIF°M is calculated as

!
I m-1
c lejsz(xjk"’ﬁ)
U = z =
s=1 thsz(xﬂ(;vts)

t=1

,1<i<c¢, 1<k<n. (2.140a)

]

The c prototypes V, one for each data set X, are updated with the

common fuzzy c-partition in (2.140a) using tﬂe standard equation in
(2.7b),

n n
v, =(k2=1u$xjk/kz=lugj, 1<j<T, 1<i<c : (2.140D)

In (2.140) the values {uik} define a common fuzzy c-partition for all T
data sets X = {Xl,...,XT}, and for each data set Xj there is a set of ¢

point prototypes, V | = {vjl,...,v jc} < RP. Sato et al. only discuss the

case where 8 is the Euclidean norm, but equations (2.140) are easily
generalized to any inner product norm, and, we suspect, are also
easily generalizable to many instances of non-point prototype
models as well. AO between (2.140a) and (2.140b) produces, at

termination, the set {(U,V)),...,(U,VJ}. Thus, U is a common fuzzy
c-partition of all T situations, and the {V J} provide an estimate of

the trajectory of the ¢ point prototypes through time (that is,
through the 3-way data). Because tumors come and go in a set of
magnetic resonance image slices of a human with a brain tumor,

CLUSTER ANALYSIS 133

TFCM seems inappropriate for the application discussed by Clark et
al. (1998), but we can imagine the sequence {V j} being very useful in

situations such as the seeker example in automatic target
recognition, or hurricane tracking via real time satellite imagery.
However, it is clear that the effectiveness of TFCM is very dependent
upon "good" choices for the T fixed, user-defined weights {(oj}.

Sato et al. give several examples of TFCM, including a data set of 60
dental patients who have had underbite treatment. Each patient has
p=8 numerical features measured at T=3 different post-treatment
times. TFCM with ¢ = 4, m = 2 and the Euclidean norm are applied to
this data, and the resultant prototypes of the four clusters seem to
have physically interpretable meanings over time. The only
complaints we have about the examples in Sato et al.'s book are that
none of them are compared to other methods (such as applying FCM
to each data set in the sequence independently); and no guidance is
given about the choice of the T weights {®}. Nonetheless, we think

this is a very promising extension of FCM for some problems with a
temporal aspect.

Much of the general theory for AO (also called grouped coordinate
descent) is contained in Bezdek et al. (1986a, 1987a), Redner et al.
(1987) and Hathaway and Bezdek (1991). AO schemes are essentially
split gradient descent methods, and as such, suffer from the usual
numerical analytic problems. They need good initializations, can
get trapped at undesirable local extrema (e.g., saddle points), and can
even exhibit limit cycle behavior for a given data set. Karayiannis
(1996) gives fuzzy and possibilistic clustering algorithms based on a
generalization of the reformulation theorem discussed in Section
2.2.E.

There are many hybrid clustering models that combine crisp, fuzzy,
probabilistic and possibilistic notions. Simpson (1993) uses fuzzy
sets to find crisp clusters (directly, without hardening). Moreover,
this method adjusts the number of clusters dynamically, so does not
rely on posterior validation indices. The method of Yager and Filev
(1994a) called the "mountain clustering method" is often described
as a fuzzy clustering method. However, this method, and a relative
called the subtractive clustering method (Chiu, 1994} are not fuzzy
clustering methods, nor are they even clustering methods. They both
seek point prototypes in unlabeled data without reference to good
partitions of the data, and then use the discovered prototypes non-
iteratively to construct crisp clusters with the nearest prototype rule
(equation 2.6a). These models will be discussed in Chapter 4.

Runkler and Bezdek (1998a) have recently introduced a new class of
clustering schemes that are not driven by objective function models.
Instead, they propose alternating cluster estimation (ACE), a scheme
whereby the user selects update equations for prototypes and

134 FUZZY PATTERN RECOGNITION

memberships from toolbars of choices for each of these sets of
variables. All of the AO models of this chapter can be imbedded in
the ACE framework (including probabilistic models), and
additionally, ACE enables users to build new clustering algorithms
by a "mix and match" paradigm, that is, by mixing formulae from
various sources. This type of algorithm trades mathematical
interpretability (the objective function and necessary conditions for
it) for user-defined properties of presumably desirable prototypes
and membership functions (e.g., convexity of membership
functions, a property not enjoyed by continuous functions
satisfying the FCM necessary condition (2.7a)).

Cluster Validity

A third way (besides direct and indirect validity measures) to assess
cluster validity is to assign each U € p some task, and then compare
its performance on the task to other candidates in © (Backer and
Jain, 1981). For example, the labels in U can be used to design a
classifier, and empirical error rates on labeled data can then be used
to compare the candidates. This is performance-based validity. It is
hard to give more than a general description of this idea because the
performance criteria which dictate how to select the best solution
are entirely context dependent. Nonetheless, for users with a real
application in mind, this is an important methodology to
remember. A best strategy when the end goal is known may be to
first eliminate badly incorrect clustering outputs with whatever
validity measures seem to work, and then use the performance goal
to make a final selection from the pruned set of candidates.

Our discussion of cluster validity was made in the context that the
choice of ¢ is the most important problem in validation studies.
Duda and Hart (1973) call this the "fundamental problem of cluster
validity". A more complete treatment of cluster validity would also
include validation of clustering methods as well as validation of
individual clusters, neither of which was addressed in Section 2.4.

Applying direct, indirect or performance-based validity criteria to
each partition in /2 is called static cluster validity. When assessment
criteria are integrated into the clustering scheme that alter the
number of clusters during computation (that is, other than in the
obvious way of clustering once at each ¢ in some prespecified range),
as in Ball and Hall's (1967) ISODATA or Tou's (1979} DYNOC, the
resulting approach is called dynamic cluster validation. In this
approach /# is not generated at all - rather, an algorithm generates U,
assesses it, and then adjusts (or simply tries other) parameters (and
possibly algorithms) in an attempt to find a “most valid” U or P for
X. Surprisingly enough, a fuzzy version of ISODATA per se has never
been developed. However, many authors have added merge-split (or
progressive) clustering schemes based on values of various validity
functionals to FCM/PCM in an attempt to make them dynamic (see

CLUSTER ANALYSIS 135

Davé and Bhaswan, 1991b, Krishnapuram and Freg, 1992, Bensaid
et al., 1996b, Frigui and Krishnapuram, 1997).

Given the problems of indirect indices (functions of U alone, which
are usually mediocre at best), it is somewhat surprising to see so
much new work on functionals of this type. For example, Runkler
(1995) discusses the use of a family of indirect indices (the mean,
median, maximum, minimum and second maximum) of the ¢ row

maximums {M; = max{uy}i=1...,c} of U for validation of clusters
1<ks<n

found by the FCE algorithm. Continued interest in measures of this
type can probably be attributed to three things: their simplicity; the
general allure of computing "how fuzzy" a non-crisp entity is; and
most importantly, how important cluster validity really is for users
of clustering algorithms. Trauwaert (1988) contains a nice
discussion of some of the issues raised here about the use of the
partition coefficient (historical note: Trauwaert mistakenly
attributed the partition coefficient to Dunn in the title of and
throughout his paper; Bezdek (1973) introduced the partition
coefficient to the literature). See Cheng et al. (1998} for a recent
application of the partition entropy at (2.99) to the problem of
(automatically) selecting thresholds in images that separate objects
from their backgrounds.

There are several principles that can be used as guides when building
an index of validity. First, computational examples on many data
sets with various indices suggest that the more reliable indices
explicitly use all of the data in the computation of the index. And

second, most of the better indices also use the cluster means V(U) if
U is crisp or whatever prototypes B in (2.24a) are available in their

definition. Even when X is not used, using V(U) or B implicitly
involves all of X, and insulates indices from being brittle to a few
noisy points in the data.

If it is possible to know, or to ascertain, the rough structure of the
data, then of course an index that is designed to recognize that type
of structure is most appealing. For example, mixtures of normal
distributions with roughly equal covariance structure are expected
to generate hyperellipsoidal clusters that are most dense near their
means, and in this case any index that optimizes for this type of
geometry should be more useful than those that do not. Bezdek et al.
(1997b) discuss this idea at length, and show that both crisp and
fuzzy validity indices as reliable as many of the most popular
probabilistic criteria for validation in the context of normal
mixtures.

When an indirect index is used (partition coefficient, partition
entropy, etc.), the quality of B either as a compact representation of
the clusters or as an estimate of parameters is never directly

136 FUZZY PATTERN RECOGNITION

measured, so this class of indices cannot be expected to perform well
unless the data have very distinct clusters. Thus, indirect indices that
involve only U are probably not very useful for volumetric or shell
cluster validation - in either case they simply measure the extent to
which U is a non-crisp partition of the data. When parameters such
as B are added to an indirect index (Gath-Geva or Xie-Beni for
example), the issue of cluster type becomes more important. When the
clusters are volumetric (because they are, or because the algorithm
that produced them seeks volumetric structure}, B should be a set of
point prototypes. When the clusters use B, a parameter vector of a set
of non-point prototypes as representatives, the cluster structure is
shell like. In either case, the validity index should incorporate B into
its definition. We feel that the best indices are direct or indirect
parametric data indices. This is why we chose the classification of
indices in Table 2.7 as the fundamentally important way to
distinguish between types of measures.

The literature of fuzzy models for feature analysis when the data are
unlabeled as in this chapter is extremely sparse and widely scattered.
The few papers we know of that use fuzzy models for feature analysis
with labeled data will be discussed in Section 4.11.

Finally, we add some comments about clustering for practitioners.
Clustering is a very useful tool that has many well documented and
important applications: to name a few, data mining, image
segmentation and extraction of rules for fuzzy systems. The problem
of validation for truly unlabeled data is an important consideration
in all of these applications, each of which has developed its own set of
partially successful validation schemes. Our experience is that no
one index is likely to provide consistent results across different
clustering algorithms and data structures. One popular approach to
overcoming this dilemma is to use many validation indices, and
conduct some sort of vote among them about the best value for c.
Many votes for the same value tend to increase your confidence, but
even this does not prevent mistakes (Pal and Bezdek, 1995). We feel
that the best strategy is to use several very different clustering
models, vary the parameters of each, and collect many votes from
various indices. If the results across various trials are consistent, the
user may assume that meaningful structure in the data is being
found. But if the results are inconsistent, more simulations are
needed before much confidence can be placed in algorithmically
suggested substructure.

3 Cluster Analysis for
Relational Data

3.1 Relational Data

In Chapter 1 we mentioned that two types of data, object (X) and
relational (R}, are used for numerical pattern recognition.
Relational methods for classifier design are not as well developed as
methods for object data. The most compelling reason for this is
probably that sensors collect object data. Moreover, when each
object is not represented by a feature vector, the problem of feature
analysis is non-existent. Consequently, the models in this chapter
deal exclusively with clustering. There are many applications that
depend on clustering relational data - e.g., information retrieval,
data mining in relational databases, and numerical taxonomy, so
methods in this category are important. Several network methods
for relational pattern recognition are given in Chapter 5.

The basic idea in relational clustering is to group together objects in
an object set O that are "closely related" to each other, and "not so
closely" related to objects in other clusters, as indicated by relative
relational strengths. The objects are usually implicit, so we find
groups in O by clustering based on the strength of relationships

between pairs of objects. If we have object data X < RP, we can
generate many relations R(X) from X.

Relational clustering algorithms are usually hierarchical (local,
graph theoretic) or partitional (global, objective function driven).
Many hierarchical algorithms are designed to find clusters in any
proximity relation and hence, these methods will also work for
fuzzy relational data. Consequently, this chapter describes several
non-fuzzy methods that produce crisp partitions; and several fuzzy
methods that can produce crisp or fuzzy partitions from proximity
relations.

Hierarchical clustering can be divided into agglomerative (bottom
up, clumping) and divisive methods. Agglomerative algorithms start
with each object in its own singleton cluster (c=n), and subsequently
merge similar clusters until the procedure terminates at a single
cluster (c=1). In the top down or divisive approach all points begin in
a single cluster (c=1) and then clusters are split by some rule until
every object eventually ends up in its own singleton cluster {c=n).
Good expositions of many of these methods appear in Sneath and
Sokal (1973) and Jain & Dubes (1988). We will briefly describe one
family of agglomerative algorithms - the linkage algorithms -
because of their connection to some fuzzy relational methods that
produce hierarchical clusters. The chapter concludes with

138 FUZZY PATTERN RECOGNITION

discussions about several partitional algorithms that are driven by
minimizing relational objective functions.

A. Crisp Relations

Relations on finite data sets need not be square nor binary, but in
pattern recognition they almost always are square and binary, so
our presentation is confined to this special case. Let the set of objects

be O = {01,...,on}. A crisp binary relation R in O is a crisp subset
R < Ox Q. Pairs of objects, say (0,,0 j) are either fully related under
R, or they are not related at all. Since R is a crisp subset, we can
describe it by a membership function, say p:Ox O {0,1}. The n?
numbers {p(oi,oj)} characterize the membership of (oi,oj) in the

relation R, and we write p(o;, oj) =1 0;Ko j ©0, is R-related to oj.

It is convenient to array the relationships as an nxn relation
matrix R(p;0) = [r.. = p(oi,oj)] K We may write R(p;0) simply as R,

Y nx
and we follow others in sloppily calling the matrix R variously "the
relation (even though the subset R actually is, by writing, e.g., aRb
instead of akb)", "the relation matrix™ and even "the relational
data". This terminology accrues from crisp relations where the three
descriptions of R are equivalent. Since crisp relations are crisp

subsets, the notation R c K, is well defined for two relations
R,R, 2 Ox0. We extend this notation to the relation matrices R,
and R, of R, and R, by writing R <R, meaning Ty < Ty for 1 £i,j<n.
More generally, real binary relations in O are functions
p:0x 0 — R called proximity relations that represent similarity or
dissimilarity between pairs of objects. In this case R is a proximity
matrix. When p(o;,0;) ¢{0,1}, it is customary to regard r, as the
strength of the relationship between o, and o) Given an object data

set X ={x,,....,x }c®RP, x, e RP characterizing object o,, there are
many functions that can be used to convert X into a proximity

relation. For example, every metric 8 on RP xRP produces a
proximity relation in X x X. We discuss this in detail in Section 3.2.

The conceptual basis of relational clustering is p:Ox0 — R. We
identify three basic types of relations:

p: 0O x O — R Real Binary Relation (on or in) O (3.1a)

p:0 x O — [0,1] Fuzzy Binary Relation (on or in) O (3.1b)

RELATIONAL CLUSTERING MODELS 139

p:0x O — {0,1} Hard Binary Relation (on or in) O (8.1¢)

These relations are binary because p has two arguments. Equation

{3.1c) displays the membership function of a crisp subset R c OxO.
Similarly, equation (3.1b) shows that we can regard fuzzy relations
in O as fuzzy subsets of Ox O characterized by the membership
function r. An arbitrary finite proximity relation R can always be
converted into a fuzzy relation by a suitable normalization.

A (square binary) relation R is reflexive if r; =p(o,0,}=1Vo,€0.
(I, <R). Reflexivity means that every element is fully related to
itself. R is symmetric when r, =r, Vjk (R= RT). This means that
whenever o, is related to o, atany level, o is related to 0, at the same

level. R is transitive if rjk=1 whenever, for some i, rji=1 and
r, =1 (R%A =R(vA)R = R, where R\Z/A is the Boolean matrix product

of R with itself, [R\Z/] = \r; (T /\I‘kj)).
My k=1

A finite crisp binary relation on O x O can be viewed as a graph G =
(V, E) where V={oj} are the vertices of G; and E is the set of edges in G,

(oi,oj) ceEe r, = 1. In this context R is the adjacency matrix of G. A
path from o, to o, in G is any set of nodes that have edges connecting
o, and o. The path length is the number of edges in the path. R is

J
transitive if, whenever there is a path of length greater than 1 from
o, to o there is a direct path of length 1 from o, to o

1 1
1 1
1 1

0 0
OxO. This R is reflexive, symmetric and transitive. Reflexivity is
represented by self loops at each node as in Figure 3.1(a) ; symmetry
is expressed by pairs of edges (shown in Figure 3.1(b) as edges
directed in both directions) between pairs of related nodes. Figure

3.1(c) gives the complete graphical representation of the reflexive,
symmetric, and transitive relation R.

Example 3.1 Let O ={a,b,c,d} and R= be a relation on

el elele)

1
1
1
0

140 FUZZY PATTERN RECOGNITION

g — w
K DO o @

- N

(a) Reflexivity (b) Symmetry (c) The graph of R
Figure 3.1 Reflexivity, symmetry and transitivity of R

It is easy to see that R is transitive: the only paths of lengths > 1 in R
are paths of length 2 between any pair of the nodes 1,2 and 3; and for
each such path, there is a direct path of length 1. So transitivity adds
no edges to the graph of this relation that are not required for
reflexivity and symmetry.

Definition 3.1 A crisp square binary relation R in OxO is an
equivalence relation (ER} if it is (i) reflexive, (ii) symmetric and (iii)
transitive. The set of all ERs on n objects will be called R,,.

The ER is important in pattern recognition because it defines a set of
¢ equivalence classes which are isomorphic to a crisp c¢- partition of

O. To see this, let C,, = {oj: o;Ro;,0, € O} be the set of objects that are
equivalent to 0. Then for two objects o, and oj, since the relation is
transitive, either C, = Coj or C,, mCoj = . Moreover, oiLeJo Co =0.
In Example 3.1 R is a crisp ER, and it induces the unique 2-partition
{a,b,c} u{d} on the objects O ={a,b,c,d}.

An important concept for any crisp relation R is its closure with
respect to a given property P that R might possess. Generally, the P-
closure of R is the smallest relation containing R that has property
P. The symmetric closure of R = {(a, b), (a, c}, (¢, a), (b, ¢}, {c, b)} on {a, b,
c} is formed by adding the single pair (b, a) to R. Other pairs such as
(a, a) can be added too, but the smallest relation that is symmetric
and contains R as a subset is {{a, b), (b, a}, (a, ¢, (¢, a), (b, ¢}, (c, b}}. Ris
not reflexive either. The reflexive closure of R is formed by adding
the three pairs (a, a), (b, b} and (c, ¢ to the original relation R without
adding (b, a). The smallest relation that contains R that is both
reflexive and symmetric is the union of its reflexive and symmetric
closures, obtained by adding the four pairs just displayed to R.

RELATIONAL CLUSTERING MODELS 141

Similarly, the transitive closure R™ of a crisp relation R is the
smallest transitive relation that contains R as a subset. The

construction of R* from a given R does not require that R be
reflexive or symmetric. If R is not transitive, we add just enough
pairs to the relation to give it this property. In the example of the
preceding paragraph, making R symmetric also makes it transitive
(coincidentally), and hence, the union of the reflexive and
symmetric closures of this Ris an ERon {a, b, c}.

If R is not an ER, we can take its closure with respect to the three

properties required by Definition 3.1. This gives us an ER R on the
objects which is the smallest extension of R that is an ER. Clusters

in the given objects are obtained from the equivalence classes of R.

=

be a

01
01
Example 3.2 Let O={a,b,c,d,e} and R= 8 (1)

0 o0
relation on Ox 0. R is not reflexive, symmetric or transitive.
Adding 1's at addresses (1,1) and (3,3) yields the reflexive closure of
R. Adding 1's at addresses (2,1), (2,3), (3,1) and (5,4) yields the
symmetric closure of R. Taking the union of these two closures

[elelelel
(ol jelole)
——=OQO

. |1 1

yields the relation R=|1 1 1
0 0O

0 0 01

nodes in R can be realized by a direct path, so R =R” is an ER on O,
and the unique partition it corresponds to is the 2-partition

{a.b,c}u{d,f} of O. This partition of O is based on R, not on the

. Every path between pairs of

=000

given data R. Since R is a transformation of the given data, it is not
correct to assert that {a, b,c} u{d,f} is a partition of O obtained from
R. It is proper to regard this partition as the partition of O supported
by the ER closest to R.

Comparing matrices of the ERs in Examples 3.1 and 3.2, notice that
they both have ¢ sub-blocks of 1's that are n xn in size, where n is

the number of points in the equivalence class (and therefore, the
number of points in the i-th crisp cluster in O). This is always the
case, up to a permutation of the objects (and hence the columns) of
the matrix representing the ER.

142 FUZZY PATTERN RECOGNITION

R”™ can be constructed in various ways. Conceptually, the easiest
method is the well known result that combines the n (Boolean)
powers of R:

RZ =RVvRZ v..vRZ, , where 3.2

the k-th power, for k > 2, is defined as le,\ = R(VA)JR(VA)--(VAIR.

k times

When R is symmetric and transitive (3.2) collapses to
R, =RJ' (I, <RandR=R") _ (3.3)

These equations are convenient for small n, but direct calculation of

R> by matrix multiplication has time complexity O(n*), so this
method is impractical for large n (Cormen et al., 1990). Warshall's
algorithm for the transitive closure of a crisp relation is O(ns), and
there are minimal spanning tree approaches {Dunn, 1974b) that are
O(nz). Nonetheless, (3.2) is useful for small to moderately sized data
sets and also for pedagogical purposes, so we illustrate its use in
Example 3.3.

0100
Example 3.3 Find the transitive closure of R = é 8 (1) (1) . First
0 0 0O

we compute the max-min powers of R:

1 01 0
R2_0101.
va=|0 O 0 0OFf

000 0

f0 1 01
R3_1010.
va— [0 O 0 0Op

0 00 0

[1 0 1 O
R4__0101
v~a—10 0 0 O}

0 0 0 0]

It is easy to check that all higher even powers will equal R\ZM, and

that all higher odd powers will equal RsA. Now use (3.2): take the
element by element maximum of all three relations:

RELATIONAL CLUSTERING MODELS 143

0100 1 010 0101 1 111
R =1 0 1 0/ ,10 1 0 1/ 11 0 1 O _ |1 1 11
vAT10 0 0 1 0 00O 0 00O |00 O0 1
0 00O 0 00O 0 00O 00 0O

Notice that R is neither reflexive or symmetric, so it is not an ER
and does not induce a crisp partition on its set of objects.

ﬂmn s

B. Fuzzy Relations

R A

Symmetry and reflexivity extend uniquely and naturally to fuzzy
relations. Extending transitivity, however, is a much more subtle
task. A fuzzy relation R can be regarded as a weighted graph G = (V, E,

R), with R the (weighted) adjacency matrix of G. = o,Ro ; 1s the
weight of edge (o,, oj) € E. This view is advantageous for interpreting
transitivity in fuzzy relations.

. . 2 n .
r = . AT). Th
For a crisp relation [RVA]ij k\il(rlk/\ kJ) e min and max

operators correspond to intersection and union in crisp logic. Fuzzy
transitivity is defined in terms of two more general operators that
are used for the intersection and union of pairs of fuzzy sets.
Specifically, intersections are represented by T-norms and unions
with S-norms (T co-norms) of fuzzy sets (Klir and Yuan, 1995).

Weuse @, @ respectively as the S and T-norms of any pair of real
numbers a, bin [0, 1], S(a,b)=a®b, T(a,b)=a ®b. (There are seven
infinite families of T and S norms. See Volume 1 of this handbook
for an extensive treatment.) In the fuzzy literature the min and max

operators are called T_and S_, T (a,b)=aAb, S_(a,b)=avb.
3 3" 73 3

The ij-th element of the nXn relation matrix in the ®-®

composition of two square fuzzy relations R1 and R2 is

[R,(@®)R,], = ® (1 ®T5y). R =R =R, the k-th power of R, for k
k=1

>2,is Ry = RIOX)R(R)--- (®@Q)R.

k times

Definition 3.2 Zadeh (1971) A square fuzzy relation R is v—-®

transitive if and only if r > v (r, ®r,) V izj (e, R2R2)),

where ® is associative and monotone non-decreasing in each of its
arguments.

144 FUZZY PATTERN RECOGNITION

Zadeh (1971) gave T, and T, as examples of intersection operators
that could be used for ® in Definition 3.2. Bezdek and Harris (1978)
studied v - A transitivity for T,(a,b) = aAb = max{0,a + b -1}, and
interpreted fuzzy v -® transitivity graphically for T,. T, and T,.
More generally, a fuzzy relation R is ®-® transitive when

I, Zri@@) @ (r1k ®r,) YV ij. (R=R2.), but this is a little too
general for our purposes. In practice, the only S norm that finds
applications in pattern recognition is S, =v. Zadeh used his

concept of fuzzy v —® transitivity to extend the concept of ERs to
fuzzy relations as follows:

Definition 3.3 Zadeh (1971) A fuzzy relation R is a fuzzy similarity
relation (or fuzzy equivalence relation) if R is reflexive, symmetric

and v —® transitive.

The set of all fuzzy v - ® transitive similarity relations on n objects
will be called Rv®. The sets {RV®: ® is a T-norm} are important in

relational clustering, so we formalize them as

R,e ={Re®X™: I, <R, R=RT, R>R(V®)R} . (3.4)

If R is crisp and ® = A, the condition in Definition 3.3 guarantees
that R is a crisp equivalence relation, so R, c R, . Zadeh noted that

because ab<aAb, R <R, For the choice ® = A the condition

Iy 2 kv (ry ATy) V i#jrequires that the weight of any direct path
in G = (V, E, R) from node i to node j be at least as large as the smallest
weight of any other path from i to j. Not surprisingly, Zadeh used
this to show that ReR,g & 8(0;,0;)=1-ry was an ultrametric on
the object set. Bezdek and Harris (1978) established that
ReR,, © 8(0;,0))=1-ry was a psuedometric, and exhibited a
hierarchy of seven nested sets of fuzzy similarity relations, the most
important of which are R, cR, <R cR ,

Zadeh (1971) also gave the first exposition of transitive closures of
fuzzy relations, confining his analysis to the v—-A case. More

generally, the v —® transitive closure R{g of fuzzy relation R is the
smallest fuzzy relation containing R that is v-® transitive. R,
can be computed as

RELATIONAL CLUSTERING MODELS 145

R3e = RVRZgv...vRZg . (3.5)

Furthermore, if R is reflexive and symmetric, then at worst we need
only the (n-1)-st power of R,

R~ = RXy. where k= min {j:R)y =RI3} . (3.6)
1<jsn-1

L s .

1.0 0.4 0.5
Example 3.4 Find the v — A transitive closure of R=|0.4 1.0 0.3].
0.5 0.3 1.0
1.0 0.4 0.5 L0 0.4 0.5
RZ =|0.4 1.0 0.4|;R3 =/0.4 1.0 0.4{=R2? =Ry, the last
0.5 0.4 1.0 0.5 0.4 10

equality holding because R is reflexive and symmetric.

Table 3.1 The v — ® transitive closure by matrix multiplication

Store| R ¢[0,1]™" (fuzzy) or R €{0,1}™*® (crisp)
Pick | ®=any T-norm. If R € {0,1}®, ® = A
Rlg =
Forj = 2ton
RJ =RIJ(v®R
If(, <RandR=RTandR} =R})

Do R:, =R!_; Stop
Next j
RUe = Rb@
Forj = 2ton
R =Rle VR
Next j

Equations (3.5) and (3.6) can be used to compute the v -~ ® transitive
closure of a fuzzy relation, and like (3.2) and (3.3), they both have

complexity O(n*). Faster algorithms for computing R, will be
discussed in the next section. Table 3.1 gives the naive algorithm for
R7, based on (3.5) and (3.6). Since every crisp relation is fuzzy, this

algorithm also produces the transitive closure of any crisp relation
via (8.2) or (3.3) provided the T-norm is the minimum, ® = A. Bezdek
et al. (1986b) showed that the algorithm in Table 3.1 was correct for

146 FUZZY PATTERN RECOGNITION

the six T-norms now called T, T,,T,5,T,, Ty 5, T3 See Nguyen and
Sugeno (1998) for a more complete discussion of T-norms.

3.2 Object Data to Relational Data

Before discussing algorithms that find clusters in relational data,
we discuss some methods for constructing a proximity relation

matrix R(X) from an object data X < RP. Once this is done, clustering
may be done in X (as in Chapter 2}, or in R(X) using methods
discussed in this chapter. Sometimes it is advantageous to make
this conversion from object data to relational data.

A similarity measure is a real binary relation s:0x0 — R*. s(o,,0 j)
is the similarity (for dissimilarity, we use 38(0;,0;)) between o, and
0y. The values {s(o,,0 j)} or {8(o;,0,)} are sometimes assigned by an

expert. For example, this is often the case in numerical taxonomy
(Sneath and Sokal, 1973). More commonly, {s(oi,oj)} or {8(01,oj)}

are computed from characteristics - numerical or otherwise - of
pairs of the objects. There are many similarity measures: for
example, measures of association, resemblance, correlation,
matching, and so on. Similarity measures may be based on
heuristic, probabilistic, deterministic, fuzzy or semantic principles.

An object data set X cRP can be converted into a dissimilarity
relation R = [rij] using any metric § on RP x RP,

ry =p(0;,0y) = 8(x;, %), 1 <ij<n . (3.7)

If the objects are characterized by qualitative attributes, e.g., color ¢
{red, blue, green}, then we cannot use (3.7) directly. Using numerical
representations such as 1 for red, 2 for blue and 3 for green before
applying (3.7) may distort structural relationships that exist or do
not exist between pairs in the qualitative data. For example, any
distance relation using these numerical values for colors suggests
that 3 is closer to 2 than it is to 1, even though red, blue and green are
qualitatively equivalent.

Numerical representation of qualitative features can be based on
binary vectors. For example, red, blue and green can be represented
by the strings 100 = red, 010 = blue and 001= green. More generally, if
there are p qualitative features and the i-th feature can take n

. P
values, then the original p features can be represented by a p= Y. n,
i=1
dimensional binary vector x e {0, 1}?. With this representation (3.7)
can be used because distances between any two vectors are unbiased

RELATIONAL CLUSTERING MODELS 147

and well defined. On the other hand, the feature values may or may
not make sense physically, and the dimension of x can be very large.
In our colors example, the Euclidean distance between any pair of
colors is 1, so false proximity is not imposed on the data by this
numerical representation.

Table 3.2 lists a few of the many different ways object data can be
converted to relational data. In this table the data type real means

that x and y are in ®P, and data type 0-1 means that x and y are in
{0,1}P.

Table 3.2 Some transformations of X < RP into R € ™"

Symbol Name Data Formula for p(x,y)
Typ?
b A-Norm Rea
A (1.6) oro-1 | Ix-¥l\= \/(x -y Alx-y)
1
S q-Norm | Real ol =] B I _ 'q 4
a 111 | oro-1 | I®-¥ly= A5t
s cos(x_y) Real X,
¢ if real or 0-1 "i" Ky>"
S; Tanimoto | Real (x,y)
coefficient | or O-1 x x) " (y y) - (x y)
S simple 0-1 a+d
match P
S oM double 0-1 2(a +d)
match 2@+d)+b+c
S VM double 0-1 a+d
mismatch a+d+2(b+c)
S, ignore 0-0 0-1 a
(Jacard) a+b+c

In Table 3.2 the last four similarity coefficients are shown as
functions of a, b, ¢ and d. These four numbers are computed from the
binary vectors x and y as follows:

a = # of 1-1 matches
b = # of 1-0 mismatches
¢ = # of 0-1 mismatches
d = # of 0-O matches

Lyn

between the p binary coordinates in x and y. For example, if
xT=(100111), y"=(001010),thena=1b=3,c=1,d=1.

148 FUZZY PATTERN RECOGNITION

Example 3.5 For the 10 dimensional binary vectors x and y given by

xT=(0011010110) and y'=(1001110010), we have
a=3, b=2, ¢c=2 and d =3. Consequently,

3,(x,y)
8,(x,y)
d.(x,y)

il

4
2
1

_{=y) __3 _
BN ™ I 7 IR i

(x.y) __ 3
x,x)+(y,y)-(x,y) 5+5-3
s.(x,y)=0.60
s
s

=0.42

sixy)= {

S
DM(x,y)=0.75;
DMM(x, y) =0.42;
s;(x,y)=0.42

As an example of transforming an object data set X into relational
data, we transform data set X (the first two rows of Table 3.3 and

Figure 3.2) by the Euclidean norm, which yields the relation R, in

the last nine rows of Table 3.3. We show only the lower triangular
part of the symmetric relation Rg. R9 will be used to exemplify

several of the clustering algorithms in subsequent sections of this
chapter.

Table 3.3 X, and relational data Rq = §,[X,]

X 1 2 2 1 4 5 4.5 5 4

y 1 1 3 3 1.5 | 15 1.5 { 25 | 2.5
X % X3 X4 5 Xs X Xs Xy

X 0

x, | 1.00} O

x, 224,200 O

x, 2002241100} O

x. [3.04]206 250133, O

X, 403} 3.04 | 3.35 | 4.27 | 1.00 0

x, 354225292381 0501050| O

X, 427} 3351304} 4.03{ 141100 1.12 0

x, 33512501206 3.04 1.00; 141 1.12 | 1.00 0

RELATIONAL CLUSTERING MODELS 149

y
A
31 o¢ &3
&o &8
2 4
]) o o
X; X7 Xg
1 @xl %2
} } } —t —> X
1 2 3 4 5
Figure 3.2 Data set X
3.3 Hierarchical Methods

Sequential Agglomerative Hierarchical Non-Overlapping (SAHN)
models (Sneath & Sokal, 1973) yield crisp clusters in fuzzy
relations. Cluster merger (agglomeration, clumping) is based on a set

distance & (X, Y) between crisp sets X and Y. The three most common

set distances used are Smin = 81 at (2.92), Smax and Sav o

Figure 3.3 depicts the geometric meaning of these three set distances.

Sm. and 8 are the nearest and furthest distances (as measured by
in max

any metric 6 on X x Y) between pairs of points in XxY. Sav g 1S the

average of all the pairwise distances between points in the two sets,
and uses their cardinalities, n_= |X], n = [Y].

We describe and illustrate the SAHN bottom up approach with
relational data set R . Each object begins in its own singleton cluster

so ¢ = n = 9. Next, find the pair of most closely related objects, as
indicated by values in relational data matrix R (find the pair of
indices in R that satisfy some criterion for merger). To group the two
objects in X that are closest in the sense of Euclidean distance,
search R, and find the minimum distance (0.50) : this occurs at two
pairs (5,7) and (6,7). Deciding ties arbitrarily, suppose we merge

points 5 and 7. At this first step the set distance 5 plays no role -
two objects will be merged if their dissimilarity is minimum (or
their similarity is maximum). We now have c¢=8 clusters in R9 and

150 FUZZY PATTERN RECOGNITION

Xg, The cluster {x5, x7} has two points, and the other 7 points are still
singleton subsets of X,

.
- ’ Y
e —y S~ ™o " y3 1
t 1 . ’
X R - ~.) /'
/..——.____,' . K
' + “ ’
[} x3 X ‘\ N . 1 Y
\ 2 “a. yz [l
“ . —_———— “\~- J
\ l' i
A . ! > .
“; X N 6x’nin (X, Y) = w{a(x! Y)} = 8(x2 ’ yl)
.~ 1 ,
~ o xeX
~ =t yeY
".- - '\
- ’ 1
-"'y Teall Vs '
)

§‘~ y

- -

]
N

Bmax(X, Y) = max{8(x,y)} = 8(x5,¥5)

S~ - xeX
~ = yeY

. : -~

§~~ I -~ _
N Savg(X,Y) = X 3%, ¥) /anY
- - yeY
Figure 3.3 Inter-cluster distances 6 _, , 3 _ and §_, ¢

Next, merge the two clusters in the current set of 8 that are closest to

each other in the sense of set distance & . Two other singletons
might merge, or perhaps one or more singletons will join x,x} In

RELATIONAL CLUSTERING MODELS 151

any case, different & 's may result in different ensuing sequences of
crisp clusters. This merging process continues until c=1.

The SAHN procedure is hierarchical in that ¢ proceeds from c=n to
c=1, nesting more and more objects together as it proceeds. Since the
process is non-iterative, there is no need for initialization, and the
clusters found at each value of ¢ are unique. The algorithms that use

8 s Oy and 8 g are known as the single, complete and average

linkage clustering algorithms respectively. The linkage methods are
well defined for any relational data matrix that has positive real-
valued proximities. In particular, these algorithms generate
hierarchies of crisp partitions in the object set from arbitrary fuzzy
relational data.

Partition hierarchies produced by single and complete linkage
applied to R, are displayed as dendrograms (trees) in Figure 3.4. The

left half of Figure 3.4 shows the dendrogram obtained by single

linkage for R The vertical scale is set distance Smm. This indicates

the level at which clusters are merged. At the top of the tree each
point is in its own cluster and c=9. For single linkage at the first
stage points (5 and 7} and (6 and 7) are possible candidates for
merging. Breaking ties arbitrarily, suppose we merge (5 and 7) first,
and then this cluster merges with 7 at the same level in the next step.

Then, at level 8 . =1, points 1 and 2 merge, as do points 3 and 4, and
5,7,6 merge with 8 and 9. In this example single linkage never
produces, e.g., ¢=7 clusters if we generate clusters by cutting the
dendrogram horizontally. However, in the process of development
of the dendrogram a unique (up to arbitrary breaking of ties)
partition is generated for every possible value of ¢, 1< ¢ < n. Cutting
the dendrogram horizontally at any level in-between merger levels
shows c¢ as the number of vertical lines cut. In Figure 3.4 at
8 ..=1.60, the single linkage cut shows 3 clusters resulting in the

crisp 3 - partition {1,2} v {3,4} v {5,6,7,8,9}.

The right half of Figure 3.4 shows the complete linkage dendrogram

using set distance Smax. Comparing the single and complete linkage
solutions shows that the two hierarchies are structurally quite

different. For example, ¢ = 3 at Smm =1.60, but c = 4 for Smax= 1.60.

152 FUZZY PATTERN RECOGNITION

Complete Linkage
23 4 5 67 89

Single Linkage
2 34 5 67 89

Figure 3.4 Single and complete linkage dendrograms on Ry

In terms of the fuzzy graph G = (V, E, R), the single linkage algorithm
can be interpreted as follows. At initialization, each object (node) is
in its own singleton cluster; this corresponds to a forest of n trees in
G. At any succeeding time in the procedure, say at ¢ = q, the graph is
composed of q subtrees that are again a forest in G. Each merger of
two clusters via §mi, corresponds to adding a minimum weight edge

between the two closest subtrees, thereby creating a forest with one
less tree. At termination of single linkage there is ¢ = 1 cluster. In
terms of G, the sequence of linking edges is at this point a minimal
spanning tree (MST). This is essentially Kruskal's (1956) MST

algorithm, which has complexity O(E|log,|V|) for a relation on
|[V]=n objects that has |E| edges.

RELATIONAL CLUSTERING MODELS 153

3.4 Clustering by decomposition of fuzzy relations

Clustering in fuzzy relational data often utilizes a-cuts of R. An -
cut or crisp a-level-set, ae(0,1], of a fuzzy relation R is the crisp

binary relation iQ(X:{(oi,oj)erO:rij=p(oi,oj)2oc}. As o runs

through (0, 1], the a- cuts of R form a nested sequence of crisp

relations such that o, 20, = K| SRy 1€, Ry SR,
In this section we give two methods for fuzzy relational data that
yield sets of crisp c-partitions of the objects. One method produces
hierarchically nested clusters while the second approach does not.
We begin with clustering in the max-min transitive closure of R.
Given a fuzzy similarity relation, Zadeh's (1971) resolution identity
can be used to generate nested partitions of the objects. The
algorithm is based on:

Theorem Z (Zadeh, 1971): Any fuzzy relation R on X x X has the
decomposition R=VR O<o<l where R, =oR is the fuzzy

o (o) ?
o if Rx,y)2a

3.8
0; otherwise (3.8)

relation defined by R(a)(x,y) = {

We give an example illustrating the use of Zadeh's theorem to
decompose a fuzzy relation on 3 objects.

Example 3.6

0.5 0.0 0.7]

R=/0.3 1.0 0.0

|0.5 0.3 1.0
(0.3 0.0 0.3] 0.5 0.0 0.5 0.0 0.0 0.7 [0 0 0]
={0.3 0.3 0.0 V|0.0 0.5 0.0| V|0.0 0.7 0.0| V|01 O
10.3 0.3 0.3 0.5 0.0 0.5 0.0 0.0 0.7 [0 0 1]
101 101 001 [0 0 0]
=0.3|110/V o5(010|VO0o7|010/V1i010
111 101 001 |0 0 1]

If R is a v-atransitive similarity relation, then R, is an
equivalence relation on O. To see this, note that reflexivity and

154 FUZZY PATTERN RECOGNITION

symmetry are preserved for all a. Now suppose (i, j)eR(a) and

(hk)eR,, then ry20 and ry 2a. Since R is v-A transitive

Iy 2 srzr%??'(n{min{ris,rsk}} =ry 2 minfryrgl=r, 2a=(0Kk)e R,

Therefore for v - A transitive similarity relations on n objects
theorem Z will generate a unique set of nested crisp partitions of the
objects.

1.0 0.8 0.4 0.8 0.8
0.8 1.0 0.4 0.8 0.9
Example 3.7 R=10.4 0.4 1.0 0.4 0.4 on X={x,%,,X5,X,,X.}
0.8 0.8 0.4 1.0 0.8
0.8 0.9 0.4 0.8 10

isa v — A transitive similarity relation. Using theorem Z,

11111 11011
11111 11011
R=0.4/1 111 1/Vo.80 0 1 00
11111 11011
11111 11011

1 0000 10000

010 01 01000
V090 0 1 0 0|V10 01 0O
00010 00010
01001 00001

The ERs in this decomposition yield the following partitions :
Up.q =1{%y, X3, X3, X4, X5}

Ugs =1x1. X, X, X5 U {x5}

Upg =1{x ulxy, xgtuixgluixg)s

U ={x}ulxluixglui{xsluixs}-

Figure 3.5 illustrates this graphically with a dendrogram. The
vertical axis corresponds to the values of o at which clusters are
merged bottom up, startingatc=5and «= 1.

RELATIONAL CLUSTERING MODELS 155

-1 0.90

0.80

1 0.40

\J

o cut level

Figure 3.5 o cut tree for Example 3.7

i

Zadeh (1971) used matrix multiplication (O(n4)) to find the max-
min transitive closure of a symmetric, reflexive fuzzy relation.
Tamura et al. (1971) gave a slightly different method based on
successive approximations that is at worst O(nslog n) and at best
O(ns). Dunn (1974b) showed that the hierarchies generated by
Tamura et al.'s {1971) method were equivalent to single linkage
hierarchies, and that the equivalence classes used by Tamura et al.
could be generated from a family of nested graphs obtained by

deleting edges in a maximal spanning tree defined on O, assuming ry

as the edge weight between o, and o;. Dunn gave an algorithm for

constructing the max-min transitive closure of a symmetric,
reflexive fuzzy relation based on maximal spanning trees and

maximal capacity routes that is O(nz). Other authors have studied
construction of the transitive closure (see Kandel and Yelowitz, 1974
or Larsen and Yager, 1990), but none are asymptotically faster than
Dunn's method. A result giving the equivalence between partitions
generated by four relational algorithms is :

Theorem M (Miyamoto, 1990)

O={o,...,0,}, RIOx0 —[0,1] is a symmetric, reflexive fuzzy

relation. For arbitrary o <[0,1], the crisp partitions of O obtained by
the following four schemes are identical.

156 FUZZY PATTERN RECOGNITION

() Perform hierarchical clustering using the single linkage
algorithm. Cut the resulting dendrogram at level o to generate a

hard partition of O = {01,...,on}.

(i) G=(V,E,R) is a complete graph. (R need not be reflexive and
symmetric). Let the maximal spanning tree of G be G. Let Ga be the
graph that is obtained by deleting all edges in E with weights ry <«

(edges in G satisfy r; = o). Let the connected components of Ga be

§ 2
denoted by subgraphs {Gfx; i=1,...,k}. Then the vertices of the

connected components of Ga are a partition of O.

(iii} G =(V,E,R), and G, =(O,Ea,Ra) is any a-cut of G. If R is
reflexive and symmetric, the vertices of the connected components
in G, are a partition of O.

(iv) Let the transitive closure of R be R™. Then the o-cuts of R~
induce a partition of O.

The method of this section has been studied in information
retrieval, where it has been used, for example, to construct fuzzy
thesauri. Good articles related to this include: Radecki (1976),
Miyamoto et al. (1983), Zenner et al. (1985), Bezdek et al. (1986b) and
Larsen and Yager (1993).

Theorem Z affords a way to decompose a fuzzy similarity relation
into a nested hierarchy of crisp partitions of O with associated

scalars o in [0, 1]. A different decompositional method was suggested
by Bezdek and Harris (1978, 1979). Recall that R is the set of all
hard ERs on O,

R, = {Re®™:r;e{0,1LI, <R, R=R",R=R%} . (3.9)

Let conv(R) be the convex hull of R . R econv(R) guarantees at
least one convex decomposition

!
=Y c¢R,. R eR V k , (3.10)
k=1

where {c } in [0, 1] are convex weights, / is the length of the convex

decomposition, Z ¢, =1,and each R, R is a hard ER and hence,

k
isomorphic to a hard c-partition of O. Equation (3.10) holds for any

RELATIONAL CLUSTERING MODELS 157

R e conv(R). Unlike decomposition by resolution of the transitive

closure of R, the set of partitions generated by convex decomposition
is not a hierarchy of nested partitions.

OO+
OwoO
oro
NOw
—~00
oM
coo
[elole)

is reflexive and symmetric but not max-

0.0 0.0 0.0 1.

min transitive. Because of the special structure of column 4, R has a
unique convex decomposition :

1 000 1110 1010
0110 1110 0100
R=045 37 1 0/*937 1 1 o|*%31 01 0
000 1 000 1 000 1

The ERs in this convex decomposition yield the partitions
Ups ={x}uixy, x5t U {x,} :
Ug s ={x1,Xg, X3} U {x4} ; and (8.11)

Ups ={x1. 33} uixu{x,}

There are two partitions for c, = 0.3, one with ¢ = 2 clusters, and one
with ¢ = 3 clusters. For comparison we decompose the max-min
transitive closure of R.

10 0.6 0.6 0.0
0.6 1.0 0.7 0.0

R"=10.6 0.7 1.0 0.0
0.0 0.0 0.0 1.0
1110 1000 1000
ot 11Ol g 00l o100
1110 0110 0010
0001 000 1 000 1

The ERs in this decomposition by theorem Z yield the partitions

158 FUZZY PATTERN RECOGNITION

Upes =1{x1, X2, X3 U {x4]} ;
U =X} uix,, x5 Uix,) ; and 3.12)

U, o =Ix}uix,)ulxsluix,}

Comparing the partitions at (3.11) with those at (3.12), convex
decomposition suggests U, , ={x;}u{x,,x;}U {x } with ¢ = 3 as the
best description of the structure in the data. The hierarchy based on
transitive closure does not have a preferred value for ¢ based on the
values of o. However, at ¢ = 3, the unique choice suggested by (3.12) is
U,, ={x}u{x,.x;}uix,}, which is the partition "most highly
recommended" by convex decomposition in the sense that its convex

weight is maximum. Notice that convex decomposition never
produces a partition for ¢ = n.

Since (3.10) is applicable only to R's in conv(R_), the important open
question of how to recognize when this is true must be solved before
this method is generally useful. Any R admitting decomposition
(3.10) must be symmetric and reflexive. Bezdek and Harris (1978)
showed that R, cconv(R)cR , for n > 3, where R ,R , are the
sets of fuzzy similarity relations defined at (3.4) that are v— A and
v —A transitive, respectively. Thus, every fuzzy similarity relation
in the sense of v — A transitivity on more than three objects also has
at least one convex decomposition. Bezdek and Harris (1979) give
three algorithms for the computation of convex decompositions of
fuzzy c-partitions into crisp c-partitions, and show several ways to
construct relations from them, but do not solve the problem of how

to usefully characterize conv(Rn). The related question of when a
convex decomposition is unique is, to our knowledge, also unsolved.

3.5 Relational clustering with objective functions

In this section we describe several models and algorithms which
generate a fuzzy partition from relational data based on
minimization of an objective function. These models all assume R
to be a pairwise dissimilarity relation between objects in O. The first
method of this type was given by Ruspini (1970). Here we discuss four
representative models due to Roubens (1978), Windham (1985},
Hathaway et al. (1989) and Hathaway and Bezdek (1994b).

RELATIONAL CLUSTERING MODELS 159

A. The Fuzzy Non Metric (FNM) model

Rouben's (1978) model assumes that R is a dissimilarity relation
satisfying three conditions : Vi, j, Ty 20, r; =0 and Ty =Ty For

example, every relation matrix produced from X c %P using (3.7)
satisfies these three conditions. In order to partition the objects to ¢
fuzzy clusters, Roubens proposed the objective function model

Mo

non o, 9,
1k21 .Zluikuijrkj . (3.13)
= J:

UeMfen 1

Rewrite the objective function in (3.13) as

cn 2 n 2 cn 2
Kpnm(U)= % 3 uj| X Uyl | = Y YupDy , (3.14)
i=1k=1 =1 i=1k=1
where
L
Dy = T ujry . (3.15)
=1

Using the LaGrange multiplier technique under the assumption that
D, >0 Vik, Roubens obtained the usual first order necessary
conditions for optimality of U,

-1
c D.
u, =| =% : 1<i<c; 1<k<n) (3.16)
ik

J=1Djk

(3.16) is just an instance of (2.7a) when Dy = |z, - v, Hi is replaced by
Dy = E} u%rkj and m = 2. An alternating optimization scheme based
j=1

on (3.15) and (3.16) can be used to iteratively minimize K

Initialization is made on U, the {D,} in (3.15) are computed with it,
U is updated with (3.16), and then return to (3.15) results in a new set
of values for {D,, }. This algorithm is summarized in Table 3. 4.

160 FUZZY PATTERN RECOGNITION

Table 3.4 The fuzzy non-metric (FNM-AO) algorithm

Store Relation matrix R = [rjk]nxn

Vi j ry20, ry=0and ry=ry
@ number of clusters: 1 <c<n
Pick & maximum number of iterations : T
@ termination threshold : O < ¢
Guess Initial partition U, e M,

te1
While t<T)
Fork=1ton
Fori=1toc

2.2
D11 = Zluij,t—lrkj
J:
Next i
Fors=1toc

-1
¢ D
Uge = { 3 S J

J=1 Djk,t—l

Iterate

Next s
Next k

If [o (U) = Ko (U,)| < € Then Exit While

te—t+1
End while

U« U,

Using an argument such as that in Diday (1975), it can be shown that
the FNM algorithm converges to a local minimum of K enye bert

and Roubens (1982) give some extensions and additional material
on cluster validity associated with this model.

B. The Assignment-Prototype (AP) Model

Windham's (1985) AP algorithm assumes that R satisfies the same
conditions as the FNM model. Suppose the objects are to be grouped
into ¢ crisp clusters X,,...,X.. Windham assumes that for each
cluster X, there is an object (o,) which is the best representative or

prototype of that cluster. Then the quality of the clustering can be
measured by

RELATIONAL CLUSTERING MODELS 161

'c=ﬁ‘,(s rjkij : (3.17)

The smaller the value of 1, the more similar the objects in X, are to

the prototype of the class. Minima of t point to crisp partitions of O
that are well represented by their prototypes. Optimization of 7 in
(3.17) produces hard partitions. Windham modified t so that it seeks
fuzzy partitions U as part of optimal pairs (U, T) of the AP model

C N n
. min ,{KAP(U, T)= E,lka glu-zlkt%rkj} , where (3.18)
Mfen XM;cn e E
UeM,, and M, ={T e R™: Ty e N, vk } : (3.19)

In (3.19) T(k) is the k-th row of the cxn matrix T. In component form,

the constraints on elements of T are that each row sum to one,

Sty =1V i=l....,c;andthat t, >0 ¥ 1k,
k=1

U in (3.18) is a fuzzy partition of O, so u, gives the degree to which
o, belongs to fuzzy cluster u,. The entry t, represents the degree to

which o, represents (or is typical of) the i-th prototype. Windham
calls U an assignment matrix, and T the prototype weight matrix.
Using the LaGrange multiplier technique twice (holding T fixed and
optimizing on U, and then conversely) results in the usual first order
necessary conditions

t, = (1/% ufkrkl)/é (1/% uizkrkmj Vit , and {3.20a)

u, = (1/; tferke] / % (1/; t?erkej Vik : (3.20b)

These equations can also be derived directly from (2.7a) in Chapter 2
by grouping the fixed variables for each problem together and
calling them D as in FCM for the special case m=2. Estimates of

optimal pairs (U, T) are obtained through alternating optimization
between (3.20a) and (3.20b). The AP algorithm is summarized in
Table 3.5. Windham and Roubens both advocate termination when
successive values of the objective function become close, rather than
terminating when successive estimates of the fuzzy partition are
close. However, termination on the closeness of successive estimates

162 FUZZY PATTERN RECOGNITION

of U is better because a proper choice for ¢ when terminating on
successive values of the objective function is very delicate. This is
because the correct choice for € depends strongly on the actual value
of a local minimum in the attractmg neighborhood, which is, of
course, unknown.

Table 3.5 The assignment-prototype (AP-AO) algorithm

Store Relation matrix R = [rjk]nxn'
Vi j, ry20,ry=0and ry=ry
@« number of clusters: 1 <c<n
Pick @ maximum number of iterations : M
@ termination threshold : 0 < ¢
Guess | Initial partition U, e Mg,
te1
While (t<M)
Fori=1toc
Fore¢=1ton
n n n
tir = [1/ Yud il j/ hX [1/)y ulzk,t—lrkmj
k=1 m=1\/ k=1
Next ¢
Next i
Iterate Fori=1toc
Fork=1ton
C n
Ut = (/Ztie trklj/jzl(l/ezlt?e,trklj
Next k
Next i
K p(U,, T)-K,,(U_|,T,_,)| < € Then Exit While
Else t «t+1
End while
(U, T) « (U, Ty)

W&« ! e
Example 3.9 Windham (1985) considered the (11 x 11) symmetric
relational matrix R, listed in Table 3.6. Entries for object 6 are

highlighted because this object plays a special role when
interpreting the output of the AP algorithm.

R | was generated from a two dimensional object data set X, The

coordinates shown in Table 3.7 are roughly correct. Windham
rounded off the squared Euclidean distance between each pair of
points in Table 3.7 to the nearest integer to obtain the (relational
data) integers in Table 3.6. For example, the squared distance

RELATIONAL CLUSTERING MODELS 163

between points 1 and 3 in Table 3.7 is 2.77, but in Table 3.6 this value
is rounded up to 3.

Table 3.6 Windham's dissimilarity data R,,

1 2 3 4 5 6 7 8 9 10 11

1, O 6 3 6111 {1256 {44 {72 {69 | 72 | 100
2 0 3311 6 114 28 | 56 |47 | 44 72
3 0 3 3111 {25 |47 {44 | 47 69
4 0 6 114 | 28 | 44 | 47 | 56 72
5 0] 3,11 28 {25 |28 44
6 0 3114 {11 | 14 25
7 0 6 3 6 11
8 0 311 6
9 0 3 3
10 0 (6
11 0

Table 3.7 (Approximate) coordinates of X,

Datum X y
X -5.00 0.00
X, -3.34 1.67
x, -3.34 0.00
x, -3.34 -1.67
X, -1.67 0.00
x 0
x, 1.67 0.00
X, 3.34 1.67
X, 3.34 0.00
X, 3.34 -1.67
X, 5.00 0.00
2 y 8
o o

Figure 3.6 Data set X,

164 FUZZY PATTERN RECOGNITION

Figure 3.6 displays the 11 points in Table 3.7. Although the AP
algorithm uses only relational data R | interpretation of the results

is facilitated by knowing the (approximate) structure of the object
data from which it was built.

The visual configuration of X, suggests that it possesses c=2

clusters, (the left and right 5-point sets}, with a bridge or neck
between them provided by object 6. We initialize the AP algorithm
with the 2-partition

_(xk ® X
UO_(‘DDD

K KV DDV UV O

O K) , where (8.21)
¥=0.75 and v = 0.25. Using other protocols specified in Windham
(1985) leads to the outputs shown in Table 3.8. The rows of U and T
are shown transposed, and as required, columns of U and rows of T
sum to 1.

Table 3.8 (U, T) produced by AP-AO for R, ,

Memberships Prototype weights
Patum | uf, Utz Ty T(y)
X 0.92 0.08 0.13 0.01
X, 0.90 0.10 0.14 0.02
X, 0.95 0.05 0.27 0.02
x, 0.90 0.10 0.14 0.02
X, 0.86 0.14 0.16 0.03
x, 0.50 0.50 0.06 0.06
x, 0.14 0.86 0.03 0.16
X, 0.10 0.90 0.02 0.14
x, 0.05 0.95 0.02 0.27
X 0.10 0.90 0.02 0.14
X, 0.08 0.92 0.01 0.13

The membership values in Table 3.8 are symmetric with respect to
the y axis in Figure 3.6. Objects 3 and 9 have the highest
memberships in clusters 1 and 2, respectively. The prototype
assignment values suggest that object 3 is the best representative for
cluster 1, and that object 9 is the best prototype for cluster 2. Visual
inspection of X | agrees with this.

A

RELATIONAL CLUSTERING MODELS 165

Diday (1975) proposed a problem that seeks crisp clusters in R based
on minimizing an objective function which is quite similar to the
AP objective function,

K(U, T} = ZZZulk 3k , (3.22)

C n

subject to uy,ty €{0,1} V Lk, Xuy =1V k and Yty =n; V i.
i=1 k=1

Relation ry is a measure of dissimilarity between o, and 0 satisfying

Vi j,ry20, ry=0and ry=r
crisp cluster i.

ji» where n, is the number of points in

C. The relational fuzzy c-means (RFCM) model

Recall from Chapter 2 that for object data X < ®RP, the FCM
clustering model is defined by the optimization problem

cC n
min{Jm(U,V) =3 zuﬂ";Dik} . (3.23)
(U, v) i=1k=1

Equation (2.23b) shows the reformulation of J_ in terms of V alone

when Dy =[x, - v; |]i For relational clustering Hathaway et al.
(1989) applied the opposite-case reformulation to Jm, using {2.7a) to
eliminate V instead of U from J . The effect of this substitution is to
restrict J _to a surface in (U, V) space which satisfies two important
propertles (i) J is a function of U alone on this surface; and (ii) by

the reformulatlon theorem, this surface contains all minimizing
pairs (U*,V*) of dJ . We represent the reformulation of J_ in terms of

Uas K_. After some algebraic manipulation K takes the form

K, (U) = z[z Z(uu ul]x, - xk|[) (zélu;;ln. (3.24)

=1\ j=1 k=1

Equation (3.24) can be rewritten as

K, ,U)= i(ﬁ i (ug‘ui‘{{’rjk) / (2 i uj j] , where (3.25a)
t=1

=1\ j=1 k=1

2
Ly = ij - xk"A . (8.25b)

166 FUZZY PATTERN RECOGNITION

By the reformulation theorem, minimization of K, at {3.25) is
equivalent to minimization of Jm in (3.23) or Rm at (2.23b) provided

R satisfies (3.25b). Condition (3.25b) holds for some X c RP and

positive definite A # I if and only if it holds for some Y < RP and A =
I. When there exists a set of n object data in some dimension p such
that the pairwise distances define R, we say that K, is the relational
dual of J,.

Table 3.9 The relational fuzzy c-means (RFCM-AQO) algorithms

Store Relation matrix R = [rjk]nxn satisfying, Vi, j k,
2
ry20,r; =0, ry=r; andry =“J!:j —xk“A
@ number of clusters: 1 <c<n
Pick @ maximum number of iterations : T
@ weighting exponent : 1 <m < e
@ termination threshold : 0 < ¢
Guess | Initial partition U, e M,
te1
While (t <T)
Fori=1toc
T /n
Vit = (uir?,t—lv"" ug.t—l) /kE_: U
Next i
Fork=1ton
Fori=1toc
dizk,t =(Rv;)i - ((vi,t)T Rv,.)/2
Next i
Iterate If dy>0Vi
C
Then uy ¢ = 1/[51&1‘“ / djk’t)Z/(m—l):I
0 ydye ¢ >0
R = C
Else e Ot ikt SO0y €(0,1), Togey =1
i=1
Next k
If Km(Ut) _Km(Ut—l) < ¢, Then Exit While
te—t+1
End while
U« Uy

RELATIONAL CLUSTERING MODELS 167

RFCM implicitly assumes that R is obtained from (inner product)
distances between pairs of object data. It is important to note that R
is not necessarily a fuzzy relation. R must satisfy the same
requirements as the AP and FNM models, and (3.25b) as well. First
order necessary conditions for minimization of Km lead to the

alternating optimization scheme called the relational fuzzy c-
means (RFCM) algorithms which are summarized in Table 3.9.

Protocols needed in case djk = O for some (j, k) are the same as for

2
FCM. Let X c ®? have n points and R=[rjk =||xj —xk“A} be the

associated nxn relation matrix. If started at the same initial
partition, FCM and RFCM yield identical iterate sequences of
partition matrices (Hathaway et al., 1989). The update equation for
U in FCM and RFCM has the same functional form, but the vectors

{vi} in the iteration of Table 3.9 lie in ", not in gp as they do for

FCM. That is, RFCM does not generate cluster centers of object data
during iteration because RFCM processes relational data. However,

2
if object data satisfying rjk=“xj—kaA are known, the

reformulation theorem guarantees that non-iterative computation
of the cluster centers with (2.7b} based on the terminal partition
found by RFCM will be the same as the cluster centers found directly
with FCM, provided both algorithms are initialized at the same
partition of X. The reformulation theorem can also be used to design
relational versions of HCM and PCM.

Example 3.10

Table 3.10 shows terminal membership values for fuzzy cluster U(I)
(uz(ok)=1— u 1(ok) Vk) in partitions generated by the FNM, AP and
RFCM {m=2) relational clustering models.

Since R | in Example 3.9 is derived from X,, with Euclidean

distance, we expect RFCM to produce reasonably good results for this
data. All three algorithms were initialized with the 2- partition U o

at (3.21), and all were terminated (in less than 18 iterations) when
the absolute difference between successive values of their objective
function was less than € = 0.0001.

Table 3.10 shows that all three models behave similarly on this data
set. They all produce membership functions that are symmetric
with respect to the y axis, and they all assign the membership value
0.5 to object 6 in both fuzzy clusters. The RFCM result is the crispest
of the three outputs, and FNM is very slightly the fuzziest, even

168 FUZZY PATTERN RECOGNITION

though all three algorithms use squares for membership exponents
in this example.

Table 3.10 Terminal cluster 1 memberships for R,

FNM AP RFCM
Datum U(Tl) U[Tl) U(Tl)
x, 0.91 0.92 0.95
x, 0.88 0.90 0.94
x, 0.93 0.95 1.00
x, 0.88 0.90 0.94
X, 0.82 0.86 0.91
x, | 050 | 050 | 050
x, 0.18 0.14 0.09
x, 0.12 0.10 0.06
X, 0.07 0.05 0.00
x 0.12 0.10 0.06
X, 0.09 0.08 0.05

oy

AP and FNM require one less assumption on R than RFCM. Thus,
the AP and FNM models have a wider reach in applications than
RFCM. What happens when RFCM is applied to arbitrary
dissimilarity data that does not satisfy (3.25b)? Hathaway and
Bezdek (1994b) provide a partial solution to this problem through an
extension of RFCM that is discussed next.

S

D. The non-Euclidean RFCM (NERFCM) model

RFCM can be used to cluster a set of n objects described by pair-wise
dissimilarity values in R if (and only if) there exist n object data
points in some p-space whose squared Euclidean distances match
values in R. More formally, a relation R is Euclidean if there exists a

2
data set X ={x,...,x } in ®"' such that R=[rlk =”xj_xk" }

otherwise, R is said to be non-Euclidean. Any object data set X
corresponding to a Euclidean relation R is called a realization of R.
If there exists a realization of R in p-space, p < n-1, we can get a
realization in n-1 space by adding n-p-1 components with constant
values to each point in the p dimensional data.

The duality theory of the relational (RFCM) and object (OFCM) data
versions of the fuzzy c-means models says that RFCM applied to R
corresponds to OFCM applied to object data X if and only if there

RELATIONAL CLUSTERING MODELS 169

exists a set of n points in ®"~! whose squared Euclidean distances
match the given dissimilarity data R. Given an arbitrary relation
there is no reason to believe that the duality condition will hold.
And if it does not, RFCM may fail. We will see later an example of
this type where the relational data are generated as squared, pair-
wise (object-data) distances in 1-norm:.

NERF c-means assumes that dissimilarity relation R is irreflexive,
positive and symmetric :

r;=0,j=L...n ; (3.264a)
rg 20 ,1<jk<n ; and (3.26Db)

Given a non-Euclidean R that satisfies (3.26), the basic idea in NERF
c-means is to convert R into a Euclidean relation Ry using a §-

spread transformation, and then apply RFCM-AO to Rg. This is very
similar in spirit to clustering in the transitive closure of a relation

after finding it, as we did in Example 3.2. The transformation is:

Rg =R + By, — 1) : (3.27)

where f is a suitably chosen real scalar, [, is the nxn identity

matrix and 1 s the nxn matrix with 1's at every address.
Choosing B = 0 in (3.27) reduces Ry to the original relation, R =Ry.

The operation in (3.27) is called B-spreading since the addition of B
> 0 to the off-diagonal elements of any Euclidean matrix R has the
effect of spreading out the corresponding realization. We discuss the
case f§ < O after Example 3.11.

0 81 100
R=R,=|81 0 1 (3.28)
100 1 O

One realization of R = R, is given by the three points

X, = G) X, = (110) and x5 = (111) , (3.29)

which are plotted along the horizontal line segment in Figure 3.7
indicated by =0.

170 FUZZY PATTERN RECOGNITION

0 >

16

0

Figure 3.7 Some 3-point realizations for R;using R from (3.28)

Figure 3.7 also exhibits realizations for R;, R,,, Ry, and R, . This
demonstrates geometric spreading of the realization as B increases.

Realizations are not generally unique. However, the ones shown in
Figure 3.7 are the only ones satisfying these three conditions: the
left point is x v (2) the second coordinate of the right point = 1; and (3)

the second coordinate of the middle point is at least 1. Visually, the
natural crisp clustering of these three points for small values of § is
c=2groups, {x}uU{x,,x;};as B increases, this becomes less and less
obvious.

To illustrate the effect of B on clustering, Ry was clustered with
RFCM-AOQO for various values of f with m = ¢ = 2. Initialization was
at the {(visually unnatural) crisp clusters {xl,xZ} u{x3}. Results for

every value of B shown in Figure 3.7 and several others as well are
listed in Table 3.11.

The values shown in Table 3.11 are the terminal memberships of the
three points in cluster 1 at each value of . Cluster 2 memberships
can be obtained by u, =l-u,, k =1, 2, 3. First observe that RFCM-

AO works for B = -0.25 and -0.50, even though R, ,5 and R, 5, are

non-Euclidean. This, as well as the failure of RFCM-AO at B = -1 will
be explained below.

RELATIONAL CLUSTERING MODELS 171

Table 3.11 Terminal RFCM -AO membership values in cluster 1

B Iter. u, (%) u,(x5) u;(x3)
-1.00 0 Fails Fails Fails
-0.50 4 1.000 0.002 0.001
-0.25 4 1.000 0.002 0.002

0 4 1.000 0.003 0.003

1 4 1.000 0.006 0.005

10 6 1.000 0.027 0.024

50 11 1.000 0.094 0.078
100 16 0.999 0.134 0.112
500 46 0.995 0.207 0.177
1,000 78 0.994 0.221 0.192
5,000 336 0.992 0.230 0.210
10,000 131 0.818 0.730 0.010

For B 2 -0.5, terminal partitions become fuzzier and the work
required (iterations to termination) increases as B increases to
5000. In all cases except § = 10,000 the final partition reflects a
strong association of the center point x, with the right point x,; the

hardened version of U in these cases is [(1) (1) ﬂ For g = 10,000 the

spread is finally great enough that RFCM-AO stalls near the initial
partition {x ,x,}U{x,}, as indicated by the memberships in the last
row of Table 3.11.

. : \\%’W&m

Ry is non-Euclidean for any B < 0. To understand this recall the
well-known result (Mardia et al., 1979) that

Ris Euclidean & 2zTRz<0 V ze X" with EZ] =0. (3.30)
=1

With 1. and [asin (3.27),

1
P=1I_- (-5)1nxn (3.31)

is the projector onto the n-1 dimensional subspace orthogonal to the
n-vector 1__ . A condition equivalent to (3.30) is

Ris Euclidean < PRP is negative semi-definite. (3.32)

172 FUZZY PATTERN RECOGNITION

In other words, R is non-Euclidean, and RFCM-AO may fail,
whenever the matrix PRP has a positive eigenvalue. It is also well-
known in the literature on multidimensional scaling that for a
Euclidean matrix R the number of strictly negative eigenvalues of
PRP equals the (minimum) dimension s required for a realization of
R. Example 3.12 illustrates this.

Example 3.12 Consider the dissimilarity matrix R of equation (3.28)
in Example 3.11 where n = 3. To determine whether R is Euclidean or
not, we calculate the eigenvalues of

|i2/3 -1/3 —1/3J]:O 81 100} |:2/3 -1/3 -1/3:|
PRP=(-1/3 2/3 -1/3|x/81 O 1 |x|-1/3 2/3 -1/83]|,
3 -1/3 2/3 100 1 O -1/3 -1/3 2/3

which are {0, 0, -364/3}. Since all eigenvalues are non-positive, PRP
is negative semi-definite, and R is Euclidean. Now the minimum
dimension required for a Euclidean realization of R is 1, since only
one of the eigenvalues is negative. It is easy to verify that the real
numbers {yl, Yy ys} = {0, 9, 10} «cR are a one dimensional
realization of R. (Another would be {25, 34, 35}.) We can always find
a higher dimensional realization by adding constant components to
a lower dimensional one. For example, a 3-dimensional Euclidean

0){9)(10
realization of this R is {x,,x,,X3}= {(y}(y}(Y J} Y,x € R. If the
XJ\XJ\ X

eigenvalues of PRP had been, for example, {0, -4, 1}, then R would not
have been Euclidean, and no Euclidean realization of it would exist
in any dimension.

B

A result that gives insight about the construction of a Euclidean
relation using the B-spread transformation follows.

L

Theorem HB (Hathaway and Bezdek, 1994b)

Let R € R™*" satisfy (3.26), and let Ry and P be the matrices in (3.27)
and (83.31) respectively. Then:

(a) PRgP = P(R - BI,,)P.

(b) 1 ., is an eigenvector, with corresponding eigenvalue
0 for both PRP and PRgP.
(c) w is an eigenvector of PRP if and only if it is an

eigenvector of PRgP.

RELATIONAL CLUSTERING MODELS 173

(d) if w is an eigenvector of PRP and PRBP other than a

multiple of 1__,, then the corresponding eigenvalues
A and KB of PRP and PRgPsatisfy A~ = kﬁ.

This shows that adding B to the off diagonal elements of a matrix R
satisfying (3.26) effects a shift of - B to all the eigenvalues of PRBP’

except the zero eigenvalue corresponding to the eigenvector 1 __ ,
which is left unchanged. Now, let a given non-Euclidean R satisfy
(3.26) and let A be the largest eigenvalue of PRP. We must have A > 0
by (3.32) since R is non-Euclidean, so it follows by (3.32) and
Theorem HB that Ry will be Euclidean for all choices of g 2 A.

Figure 3.8 depicts the general case for any relation R that satisfies
(3.26) and the additional constraint that R = 1(1,,,, -I,,) for any 1 in

nxn
R. Then there is some value f for which R; is Euclidean and
realizable by a set {x,,...x_} c R® for some s, 1 <'s < n-2. Moreover,

Ry is non-Euclidean for f< B and Euclidean for p> [3 but
realizable only for s 2 n-1.

Realization in R for |
some s satisfying
1<s<n-2

No Realization & Realization in %™
< >

A

B<p B B>p

Figure 3.8 Minimum realization dimension for R,

In Example 3.11, the cutoff value is B =0, where R= R, is realizable
in M. For any choice of § > 0, the realization requires n-1 = 2
dimensions, and for any B < 0, no realization exists and Ry is non-
Euclidean. Observe that rows 2 and 3 of Table 3.11 correspond to
cases when RFCM-AO worked even though Ry was non-Euclidean.

174 FUZZY PATTERN RECOGNITION

Table 3.12 The NERFCM-AQO algorithms

Relation matrix R = [rjk]nxn satisfying, V1, j,

Store
T, 20,1, =0, Ty =Ty and Rrﬁt(lnxn -1),1eR
@ number of clusters: 1 <c<n
@ maximum number of iterations : T
Pick w weighting exponent : 1 <m <eo
@ termination threshold : 0 < ¢
Guess | Initial partition U, e M,
B=0; t «1
While (t<T)
Fori=ltoc
(W,) (1 ™) /3,)" (3.39)
Vit ™ (Wip gt e Wy) k§1 Wi t-1 :
Next i
Fori=ltoc
Fork=1ton
T
d, (RBv‘t) ((v) RB n) /2 (3.34)
Next k
Next i
If dik<0 for any i and k, then
2
AB = mix{-z *dy /v, e } (3.352)
i,
Iterate For i=1 to ¢
For k=1 ton
2
dy =dy + (a8 /2, —e] (3.35b)
Next k
Next i
B=B+AB (3.35¢}
Fork=1ton
fde>0 Vi

Mo

(dy /d,)Wm-“}

1

e
(3.36)

Else u, —Olfdik > Oandukt_O\mth Zu =1
Next k
If [K,(U)-K_ (U,_) <& Then Exit While

te—t+1
End while

U« U,

RELATIONAL CLUSTERING MODELS 175

A straightforward way of using (3.27) with RFCM would be to simply
compute (numerically) the largest non-negative eigenvalue A (= f in

Figure 3.8) of PRP, and then cluster the Euclidean matrix RB:A with

RFCM-AO. Instead of doing unnecessarily costly eigenvalue
computations, Hathaway and Bezdek (1994b) suggested an alternate
approach that dynamically estimates in a computationally efficient
way the B-spread needed to continue RFCM-AO. This approach is

efficient because it depends primarily on by-products of the original
RFCM iteration. Table 3.12 lists the NERFCM-AQO algorithm

NERFCM-AO and RFCM-AO are identical except for the
modifications in (3.35) that are active whenever some negative value
of d,, is encountered. The duality theory asserts that d,, values
correspond to certain squared Euclidean distances if an object-data

realization of Ry exists. It follows that a negative value of d;, signals
the non-existence of a realization of Ry, which indicates that the
current value of § should be incremented by some AB > O so that the
basic (RFCM-AO] iteration can be continued using the new shifted
value B+ AP. Hathaway and Bezdek in (1994b) showed that the
increment AP in (3.35a) is reasonable in the sense that it provides a
meaningful lower bound of the minimum increment needed to make
the new Ry Euclidean. They also proved that NERFCM-AO was
correct in that the updated d; values in (3.35b) are non-negative and
correspond to the d; values for the newly updated § in (3.35c).

To summarize, modification of the original RFCM-AO algorithm
using (3.35) calculates a reasonable (under)estimate of the minimum

shift required to transform the current Ry into a Euclidean matrix,
and then implements this shift by updating the current d,, values
and value of 3. The quantities used to determine the shift are the

original d,, values and the values {||v; - ek”2 }. Since these are exactly
the quantities needed to perform the updating of the d,, there is no
wasted computation done in determining the new increment to Rg.

Moreover, whenever an increment in the shift is not needed, which
is in the large majority of iterations, the work requirements for that
particular iteration of NERFCM-AO are no greater than that for a
RFCM-AOQ iteration, except for the additional negativity checks on
d,., which are negligible in cost.

Example 3.13 Table 3.13 lists the coordinates of the data set X,
produced by truncating the decimal parts of X, in Table 3.7.

176 FUZZY PATTERN RECOGNITION

Table 3.13 Coordinates of X,

Datum X y
X, -5 0
X, -3 2
X, -3 0]
X, -3 -2
' -2 0
X 0 0
x, 2 0
Xg 3 2
Xq 3 0
X0 3 -2
Xy 5 0

11 Which shows that 5(11 has the same
basic structure as X,, (Figure 3.6). Visually, there are again clusters
to the left and right of the bridge point x4 =(0,0)".

Figure 3.9 is a scatterplot of X

y
o [o
|
(s} O OO0 O O X
X5
i
(o} i o

Figure 3.9 Data set X,

All runs of NERFCM-AO reported here used ¢ = m = 2, a stopping
criterion € = 0.0001, and the initialization shown at (3.21). Three

transformations of 5(11 were made, resulting in three dissimilarity
relation matrices Ry Specifically, the entries of R“*" were

computed using: (i) squared Euclidean distances R 2 ; (if) squared 1-
2

I+

norm distances R|| " ; and (iii) squared 1-norm distances with an
i

off-diagonal shift of 48.0, R . The third choice is motivated by

17 +48
the eigenvalues of PR"*”P, all three sets of which are displayed in
Table 3.14.

Table 3.14 Eigenvalues of PR, P for three cases

RELATIONAL CLUSTERING MODELS

Rn*n% Rn*u% Rn*u%+48
0.00 48.00 0.00
0.00 22.11 0.00
0.00 4.94 -25.89
0.00 0.00 -43.06
0.00 0.00 -48.00
0.00 0.00 -48.00
0.00 0.00 -48.00
0.00 -3.32 -51.32
0.00 -47.12 -95.12

-32.00 -80.00 -128.00

-212.00 -278.79 -326.79

177

The pair of negative eigenvalues for PR , P shown in column 1 of

I3

12 has a two-dimensional object-data
12

realization. This is no surprise, since R

Table 3.14 imply that R

o was derived using
2

Il
squared Euclidean distances between two-dimensional vectors.
Table 3.14 also suggests that using the 1-norm gives a non-Euclidean
R (also no surprise} as indicated by three positive eigenvalues, the

largest of which is 48. Apparently RII*I|2 can be made Euclidean using
1

a f-spread with f >48. Using B = 48 in (3.27) with R=R_, renders
i

I*]
RB Euclidean, and this transformed matrix has a nine-dimensional
object-data realization. This is seen in the third column of Table

3.14; R" 2 a8 has 9 negative and no positive eigenvalues.
i

Terminal membership values in cluster 1 obtained by applying
NERFCM-AO to the three relational data sets generated by

transforming 5(11 are listed in Table 3.15.

Membership values for R , and R ,are relatively crisp and

I3 2
similar to each other, the maximum difference being 0.05.

Membership values for clusters in R"*"2+48 (corresponding to
1

Euclidean distances for some object data set in ¢;9) are much fuzzier,

as expected. The shift needed for the R"*||2 data was only B = 3.56,
1

much less than the B = 48 required to have actual Euclidean
dissimilarities. Note that bridge point x, receives equal

178 FUZZY PATTERN RECOGNITION

membership in both clusters in all three cases; this is expected and
desirable.

Table 3.15 Terminal NERFCM-AO memberships in cluster 1

DataSet | Ry R Ripas
Iter. 11 11 9
Final B 0 3.56 0
il 0.93 0.90 0.75
%, 0.91 0.89 0.73
is 1.00 1.00 0.77
24 0.91 0.89 0.73
25 0.81 0.76 0.62
2 050 | 050 | 050
i7 0.19 0.24 0.38
%, 0.09 0.11 027
ig 0.00 0.00 0.23
% 0.09 0.11 0.27
ill 0.07 0.10 0.25

i

NERFCM shares all the good properties of RFCM. If negative d,,
values are not encountered, then NERFCM is RFCM; and when they
are encountered, a simple modification adjusts the "spread" of
(implicit realizations of) the data just enough to keep the iteration
sequence {Ut} in Mg,.

3.6 Cluster validity for relational models

Methods for validation of clusters found from relational data are
scarce. Validity for partitions based on object data X was discussed

in Section 2.5. When X c %P is transformed into relational data R
using the techniques in Section 3.2, subsequent processing with a
relational algorithm leads to a crisp or fuzzy c-partition of X. In this
case many of the indices in Section 2.5 can be used for validation of
U, since X is available.

When the data are relational to begin with, validation methods that
explicitly require numerical data (for example, all direct indices)
are not applicable to the question of cluster validity. When a
relational algorithm produces fuzzy partitions of O, indirect indices
such as the partition coefficient and partition entropy can be used
for validation.

RELATIONAL CLUSTERING MODELS 179

Jain and Dubes (1988) cover several statistical hypothesis tests for
validation of entire hierarchies (dendrograms) of clusters that are
obtained from methods such as the linkage algorithms and Zadeh's
decomposition of the transitive closure. Another validation
strategy for linkage type algorithms is associated with the size of

Jjumps taken by the set distance § that controls merger or splitting
(Hartigan, 1975). For example, when the procedure begins with §=0
at ¢ = n and terminates at 6= maximum at ¢ = 1, the usual strategy is

to look for the largest jump in A3 =d{c —1) ~3(c). This is taken as an
indicator that c¢ is the most natural choice for the best number of
clusters, on the presumption that the SAHN method works hardest
to merge clusters that cause the biggest jump. In Figure 3.4, for
example, successive jumps in the single linkage merger distances
are 0.50, 0.50, 0.85 and 0.21. The largest jump, (0.85 fromc=3toc

=2) identifies the crisp partition X ={1,2}u{3,4} U {5,6,7,8,9},c=3

clusters at Smm=1.00, as the most natural ones. The configuration of

the data in Figure 3.2 seems to confirm this visually, although a case
can be made that ¢ = 2 is just as natural.

The sequence of jumps for the complete linkage solution shown in
Figure 3.4 is 0.50, 0.50, 0.75, 0.45 and 1.9, indicating that the
clusters associated with ¢ = 2 are the best choice, which is of course
different than the solution offered by single linkage. One problem
with this method is that the biggest jump can be severely influenced
by the presence of a few outliers.

Zadeh's algorithm decomposes a fuzzy relation into crisp partitions
with different values of c at values of o corresponding to «-cuts of

R”. The scalars {a} are sometimes regarded as a rough indication of
the validity of each hard clustering of O. In Example 3.7, we might
assert that each object belongs by itself (c = 5) with confidence o = 1.
But this is always true, and leads to the wrong conclusion - i.e., that
the best clustering is one with all singletons. Continuing this
reasoning, X, and X would belong together with confidence o = 0.9,

and so on. Since o is just the edge weight of the strongest adjacency
link between each pair of nodes in R , the word confidence as used

here has no statistical connotation, and this use of the values of o is
pretty misleading, for they do not portray "better and better"
partitions as o gets closer and closer to 1. Indeed, you might argue
that the confidence in a partition by ROc should be inversely

proportional to o, and we would not object. In view of Theorem M,
we know that single linkage generates the same clusters as Theorem
Z for fuzzy similarity relations. Consequently, the largest jump
method can also be used for validation of clusters such as those
associated with the dendrogram in Figure 3.5. In this figure, the

180 FUZZY PATTERN RECOGNITION

successive jumps in o are : 0.10, 0.10, and 0.40, indicating a strong
preference for ¢ = 3 clusters.

P

When R is clustered with convex decomposition, since Y ¢, =1, .
k=1

indicates the "percentage" of R needed for convex factorization of R.

In terms of cluster validity then, ¢, can be loosely interpreted as an

indicator of the relative merit of the associated c-partition induced
onObyR . In Example 3.8, this leads to interpreting the 3-partition

U, 4 as the most valid choice, and the two partitions with ¢ =0.3at
different values of ¢ are regarded as less but equally valid.

3.7 Comments and bibliography

The SAHN, transitive closure and convex decomposition techniques
produce hard partitions from certain crisp or fuzzy relations. FNM,
AP, RFCM and NERFCM all produce fuzzy partitions from
particular classes of fuzzy relations by minimizing a relational
objective function with alternating optimization. Kaufman and
Rouseeuw (1990) discuss a method called FANNY that is closely
related to RFCM. Sen and Dave (1998) show that using the method of
LaGrange multipliers with the RFCM objective function in (3.25a)
leads to the RFCM algorithm without making the assumption in
(3.25b), but the derivation does not ensure that all of the
memberships will be non-negative, because LaGrange multipliers
only enforce equality constraints. Following Kaufmann and
Rousseeuw's derivation of FANNY, these authors have very recently
obtained an even stronger result using Kuhn-Tucker theory that
proves that the memberships will satisfy the required non-
negativity condition. This result will be published in a forthcoming
paper. The equations obtained in their Kuhn-Tucker approach are
slightly different than the ones given in our description of the RFCM
algorithm.

Fuzzy partitions enable the user to quantitatively distinguish
between objects which are strongly associated with particular
clusters from those that have only a marginal (borderline)
association with several classes. The AP algorithm assumes the
existence of prototypical objects which should be good
representatives of different clusters (but does not give a method for
finding them, although the object with maximum typicality would
be an obvious candidate}, and has the least restrictions on relations
that it can process. Runkler and Bezdek (1998b) give a relational
version of the alternating cluster estimation method called RACE
that explicitly finds prototypical object indices (and hence,
prototypical objects too), even though the data are known only in
relational form. RACE finds a fuzzy partition of the objects too, and,
like its object data counterpart (ACE, Runkler and Bezdek, 1998a), is
not objective function driven.

RELATIONAL CLUSTERING MODELS 181

Using NERFCM-AO is in one sense like extracting clusters from a
crisp relation by first computing its v — A transitive closure as in
Example 3.2. Both methods group the n objects underlying the
original relation by clustering in a transformed relational data
matrix. For NERFCM-AO it is difficult to estimate of how closely

clusters in Rg might resemble those extracted from R by some other
method. Intuitively, if the required spread is not too large, structure
inherent in R should be mirrored by that in Rg. Hathaway and

Bezdek (1994c) discuss a crisp version of this model called,
naturally, non-Euclidean relational hard c-means (NERHCM).

The usefulness of relational clustering methods is limited by several

things. First is the matter of their computational complexity. on?
run times are fine if n = 150, as in the Iris data. But in large relational

databases, n may be on the order of 10°, and CPU time becomes an
important factor. On the other hand, some information retrieval
problems, for example, are cast naturally in the form of relational
clustering, and there may be little choice but to use one of these
schemes. Another limitation with the methods in this chapter is that
they are explicitly limited to square relations, while a real
application may have rectangular relational data.

Delgado et al. (1995) propose the use of hierarchical clustering
algorithms such as single linkage for cluster validity. In their view
the failure of cluster validity functionals such as the ones discussed
in Chapter 2 can be ameliorated by pre-clustering data with a SAHN
algorithm, and using the results to limit the range of ¢ and provide
good initializations for the "real” clustering to follow (presumably by
a non-crisp clustering algorithm). Having said this, they try to
address the topic of Section 3.6 - how to validate relational clusters -
by proposing several validity measures for their SAHN algorithms.
In other words, they end up with the same problem in one domain
they are trying to avoid in another domain! They give several
numerical examples of their methods, including one with the Iris
data.

Sato et al. (1997) propose three relational clustering models they call
additive clustering models. In the language of our book these
correspond to crisp (ordered additive), fuzzy (simple additive) and
possibilistic (overlapping additive) clustering schemes. All three
methods are regarded as relatives of the crisp relational model of
Shephard and Arabie (1979), extended using fuzzy data, fuzzy
dissimilarity and multicriteria clustering. The basic objective
function for Sato et al.'s three additive models is

182 FUZZY PATTERN RECOGNITION

2
C
(rkj -y uikuij)

i=1

=
i1 MB
L

]

J

L Ms

min {Kpou(U, o) = 5 , where (3.37a)

UeM, a3 _¥F
oce‘.R*[jzzl k§1 (rkj r)
jzk

n n

25

J: =
= _ jzk
Fo : : 3.37b

n{n -1) ()

Sato et al. build three models (one each for U e M, M, - M) based

pen
on variations of (3.37) that are used with ratio, interval and ordinal
relational data. The relational data matrix in their models is not
restricted to inner product norm distance relations or even
symmetric relations. Sato et al. also discuss a "generalized fuzzy
clustering model" for relational data that uses an aggregation
operator in the objective function

2
n n C
min KT(U)= '2 > (rkj—.ZT(uik,uij)) , (3.38)
UEM‘-C“ i;%(k=1 i=1

where T is any T-norm. Three choices are discussed and exemplified
in Sato et al. : the minimum (Ts)’ product (T, 2) and Hamacher T-norms

(Klir and Yuan, 1995). Also given are methods for optimizing (3.38} in
each of the three cases. They give several examples of clustering with
each of these models using small relational data sets, but like their
discussion of TFCM (Section 2.6), no numerical comparisons to other
relational clustering models are offered, so we are again at a loss to
make any assessment of the utility of these models. However, the
work presented in this little book considerably extends the body of
fuzzy clustering algorithms available for relational data, so if this is
the type of data you have, by all means consider trying one or more of
these approaches.

4 Classifier Design

4.1 Classifier design for object data

In Section 1.1 we defined a classifier as any function D:%” > Npc.

The value y = D(z) is the label vector for z in RP. D is a crisp classifier
if D[RP] = NhC; otherwise, the classifier is fuzzy, possibilistic or

probabilistic, which for convenience we lump together as soft
classifiers. This chapter describes some of the most basic (and often
most useful) classifier designs, along with some fuzzy
generalizations and relatives.

Soft classifier functions D:ERPHNpc are consistent with the

principle of least commitment (Marr, 1982), which states that
algorithms should avoid making crisp decisions as long as possible,
since it is very difficult (if not impossible) to recover from a wrong
crisp classification. This is particularly true in complex systems
such as an automatic target recognition system, or a computer aided
medical diagnostician that uses image data, because there are
several stages where decisions are made, each affecting those that
follow. For example, pixels in a raw image need to be classified as
noise points for preprocessing, objects need to be segmented from
the preprocessed images, features must be extracted and the objects
classified, and the entire "scene" needs to be labeled. While we use
mostly simple data sets to illustrate some of the algorithms in this
chapter, keep in mind complex scenarios such as the ones just
described to appreciate the potential benefits of fuzzy recognition
approaches.

Many classifiers assign non-crisp labels to their arguments. When
this happens, we often use the hardening function H:NpC > th

defined at (1.15) to convert non-crisp labels into crisp ones; for ¢
classes, Ho D(y) = H(D(y)) € {el, . ec}.

Designing a classifier simply means "finding a good D ". When this is
done with labeled training data, the process is called supervised
learning. We pointed out in Chapter 2 that it is the labels of the data
that supervise; we will meet other forms of supervision later in this
chapter, and they are also appropriately called supervised learning.

D may be specified functionally (e.g., the Bayes classifier), or as a
computer program (e.g. computational neural networks or fuzzy
input-output systems). Both types of classifiers have parameters.
When D is a function, it has constants that need to be "learned”
during training. When D is a computer program, the model it
implements has both control parameters and constants that must

184 FUZZY PATTERN RECOGNITION

also be acquired by "learning". In either case the word learning
means finding good parameters for D - and that's all it means.

In supervised classifier design X is usually crisply partitioned into a
training (or design) set X with label matrix U, and cardinality

'Xtrl =N, and a test set Xte = (X - Xtr) with label matrix Ute and

cardinality |X . |=n_. Columns of U_and U _ are label vectors in
te te tr te

N,.. Testing a classifier designed with X means estimating its error

rate (or probability of misclassification). The standard method for
doing this is to submit X to D and count mistakes (U, must have

CI‘lSp labels to do thls) This yields the apparent error rate

te|X) Apparent error rates are conveniently tabulated using
the cxc confusion matrix C = [c,] [# labeled class j| but were
really class i]. (Some writers call CT the confusion matrix.) More
formally, the apparent error rate of D when trained with Xtr and
tested with Xte is

Ep(X,.|X,)= [—# “r’lrongj - [1 - L——# :ghtD - [1 - [t;(C)D. 4.1)
te te te

Equation (4.1) gives, as a fraction in [0, 1], the number of errors
committed on test. This number is a function not only of D, but of
two specific data sets, and each time any of the three parameters
changes, E_ will in all likelihood change too.

Other common terms for the error rate ED(XtelXtr) include test error

and generalization error. Our notation indicates that D was trained
with X, and tested with X..- E, is often the performance index by

which D is judged, because it measures the extent to which D
generalizes to the test data. Some authors call E (X, | X,) the "true”

error rate of D, but to us, this term refers to a quantity that is not
computable with estimates made using finite sets of data.

E (X|X) is the resubstitution error rate (some authors use this term

synonomously with apparent error rate, but we prefer to have
separate terms for these two estimates}. Other common terms for
ED(X|X) include training error and recall error rate. Resubstitution

uses the same data for training and testing, so it usually produces a
somewhat optimistic error rate. That is, ED(X|X) is not as reliable as

E X, | X,) for assessing generalization, but this is not an
impediment to using ED(X|X) as a basis for comparison of different
designs. Moreover, unless n is very large compared to p and ¢ (an

CLASSIFIER DESIGN 185

often used rule of thumb is n €{10pc,100pc]), the credibility of
either error rate is questionable. An unfortunate terminology
associated with algorithms that reproduce all the labels (i.e., make
no errors) upon resubstitution of the training data is that some
authors call such a method consistent (Dasarathy, 1994). Don't
confuse this with other uses of the term, as for example, a consistent
statistic.

A third error rate that is sometimes used is called the validation
error of D. This idea springs from the increasingly frequent practice
of using Xte to decide when D is "well trained", by repeatedly
computing E (X |X) while varying the parameters of D and/or X
Knowing that they want the minimum test error rate, many
investigators train D with Xtr test it with X and then repeat the
training cycle with X for other choices (such as the number of nodes
in a hidden layer of a neural network), until they achieve a minimal
or acceptable test error. On doing this, however, X unwittingly

becomes part of the training data (this is called "training on the
testing data by Duda and Hart, 1973).

To overcome this complication, some researchers now subdivide X
into three disjoint sets: X=X, uX, UX_ ., where X is called a

validation set. When this is done, X w X, can be regarded as the

"overall" training data, and X, as the "real" (or blind) test data.

Some authors now report all three of these error rates for their
classifiers : resubstitution, test and validation errors. Moreover,
some authors interchange the terms test and validation as we have
used them, so when you read about these error rates, just make sure
you know what the authors mean by each term. We won't bother
trying to find a sensible notation for what we call the validation
error rate (it would be something like ED(XvaIXte; Xtr)). For the few

cases that we discuss in this chapter that have this feature, we will
simply use the phrase "validation error" for this third error rate.
Finally, don't confuse "validation error" with the term "cross-
validation”, which is a method for rotating (sometimes called
jackknifing) through the pair of sets X, and X without using a third

setsuchas X .
va

The small data sets used in some of our examples do not often justify
worrying about the difference between E_(X|X) and E X, |Xtr), but in

real systems, at least ED(Xte |Xtr) should always be used, and the
selection and manipulation of the three sets {Xte, X Xva} is a very

important aspect of system design. At the minimum, it is good
practice to reverse the roles of X and X redesign D, and compute

{4.1) for the new design. If the two error rates obtained by this "cross

186 FUZZY PATTERN RECOGNITION

validation" procedure are quite different, this indicates that the
data used for design and test are somehow biased and should be
tested and/or replaced before system design proceeds.

Cross validation is sometimes called "1-fold cross validation", in
contrast to k-fold cross validation, where the cross validation cycle
is repeated k > 1 times, using different pairs (Xte, Xtr) for each pair of

cross validation tests. Terms for these training strategies are far
from standard. Some writers use the term "k-fold cross validation"
for rotation through the data k time without "crossing" - that is, the
total number of training/test cycles is k; "crossing" each time in the
sense used here results in 2k train/test cycles. And some authors use
the term '"cross validation" for the scheme based on the
decomposition of X into {Xte, Xtr, Xva} just discussed, e.g., (Haykin,

1996). There are a variety of more sophisticated schemes for
constructing design and test procedures; see Toussaint (1974) or
Lachenbruch (1975) for good discussions of the "rotation"” and
"leave-one-out" procedures.

There is another aspect to the handling of training and test data in
the design of any real classifier system that is related to the fact that
training is almost always based on some form of random
initialization. This includes most classifiers built from, for
example: clustering algorithms, single and multiple prototype
decision functions, fuzzy integral classifiers, many variants of
sequential classifier designs based on competitive learning models,
decision tree models, fuzzy systems, and recognition systems based
on neural networks. The problem arises because - in practice -
training data are normally limited. So, given a set X of labeled data,
the question is: how do you get a good error estimate and yet give the
"customer" the best classifier. If the classifier can change due to
random initialization (we will see this happen in this chapter), then
you are faced with the training and testing dilemma:

Mrir you use all the data to produce (probably) the best classifier
you can for your customer, you can only give the
resubstitution error rate, which is almost always overly
optimistic.

&If you split the data and rotate through different training sets
to get better test statistics, then which of the classifiers built
during training do you deliver to your customer?

Consider, for example, the leave-one-out estimate of the error rate,
in which n classifiers {Dk} are designed with n-1 of the data, and

each design is then tested with the remaining datum, in sequence, n
times. Since the {Dk} can all behave differently, and certainly will

have different parameters, it is not clear that the leave-one-out
error rate is very realistic as far as estimating the performance of a

CLASSIFIER DESIGN 187

delivered system. Averaging the parameters of the n D ‘s, for

example, may not give a system that performs anything like any of
the tested classifiers.

This is a real world trade-off that, many times, those of us who earn
our keep by teaching and doing research tend to ignore. Do we know
the answer to this perplexing problem? Nope. The real solution, of
course, is to design the classifier with all the data available, and
then have someone who is not associated with the design collect a
separate test set to generate error statistics. In Section 4.9 we will
discuss classifier fusion, one methodology that at least in principle
can be used to ameliorate the training versus testing dilemma. Our
objective here is to simply point out that constructing a training
approach for classifier design is the first step in delivering a
workable system, and doing it correctly so that error rate statistics
have reliable meanings is far from a trivial consideration.

Crisp labels assigned to data that are collected by domain experts
are usually accepted at face value as being physically correct (aside
from errors that can always occur), but in many instances the
numerical representation of each object is not distinct from a
computational point of view. Anderson's (1935) Iris data is a famous
example of this. He assigned physical labels to individuals from
populations of three subspecies of Iris flowers (Sestosa, Versicolor
and Virginica). But the four numerical features he chose to measure
for each object (petal width, petal length, sepal width and sepal
length) do not provide many algorithms with enough
discriminatory power to recognize and represent three
algorithmically well-defined classes.

Don't be surprised if your favorite algorithm wants to use a different
number of classes than the number of physical labels. It may mean
nothing more than the classes are inseparable (to your model,
anyway) in the chosen numerical representation. Clustering is
sometimes performed on labeled data for just this purpose - to detect
whether or not the data do in fact seem to agree with their labels. A
danger in doing this is, of course, that clustering algorithms always
produce clusters, so algorithmic disagreement does not prove that
the data have this disquieting property. On the other hand,
agreement is reassuring, and establishing a class (such as
"unknown" or "in-between") in labeled data with a clustering
algorithm can be used to improve classifier performance by biasing
it away from the objects whose representations fall in the overlap
portions of the feature space. See House et al. (1999) for a nice
application of this technique, where FCM is used with ¢ = 3 to
establish an intermediate class in data with ¢ = 2 labeled classes
(faulty and non-faulty states in an air handling unit).

Another aspect of training is related to the (much overworked) word
adaptive, which in our context refers to the style used to acquire the

188 FUZZY PATTERN RECOGNITION

parameters of D. So many authors have used this word in so many
different ways that we cannot avoid a short discussion of it here.
Indeed, we have already used adaptive in Chapter 2 in several ways,
principally to distinguish between local cluster estimation (as the
GK and adaptive FCV algorithms do) from global approaches such as
the c-means models. In the current context we can distinguish three
cases:

Non-adaptive off-line training. X, is used non-iteratively just once

to find D, and is not revisited with a view towards improving it
thereafter. This is the case, for example, when designing a Bayes
classifier with labeled data under the assumptions of the normal
mixture case discussed in connection with probabilistic clustering
in Chapter 2. Fori =1 to ¢, labeled data X, , are used to estimate the

parameters of the i-th discriminant function by substitution into
analytic necessary conditions, and the design is complete.

Static off-line adaptive training. X, 1is used to improve estimates of

the parameters of D either iteratively or recursively. The most
common example of this case is iterative training of a learning
model such as a fuzzy system or neural network. In either case input
vectors from Xtr are used over and over while parameters are

adjusted to improve some measure of model performance. Once
trained, however, X is put aside during the operational phase of

classification. A familiar example from calculus may help you to
understand this case. Newton's method for estimating a root of the
real equation f(x) = 0 adjusts iterative estimates of the root at each
step in the algorithm - this is "adaptive learning" in the same sense
as it is often used in the literature of learning models.

Dynamic on-line adaptive training. In this scheme the initial
classifier might be found using either non-adaptive or adaptive off-
line training. As time passes, {features of) the observed data may
change, or new data may be available, and the classifier attempts to
keep up with these changes by continuocusly reevaluating (adapting)
its parameters in response to changes in the incoming data. Some
authors refer to this as a temporally adaptive classifier. We all want
classifiers that are temporally adaptive, but we are aware of only a
very few cases that actually come close to this type of operation.

Classifier performance depends on the quality of Xtr. If Xtr is large

enough and its substructure is well delineated, we expect classifiers
trained with it to yield small error rates. On the other hand, when
the training data are large in dimension p and/or number of
samples n, classifiers such as the k-nearest neighbor rule (cf.
Section 4.4) can require too much storage and CPU time for efficient
deployment. To circumvent time and storage problems caused by
very large data sets, as well as to improve the efficiency of

CLASSIFIER DESIGN 189

supervision by Xtr, many authors have studied ways to edit the
training data (Dasarathy, 1990).

Two common schemes for editing a labeled data set are selection and
replacement. Selection means : find a proper subset X o © Xy

Replacement means : use a transformation Q:RP — RP to find

X, = QIX,]. Subset selection is a special case of replacement.
Replacements are almost always labeled prototypes (such as V from
one of the c-means clustering models) produced by Q.

Figure 4.1 Editing by selection of labeled data in X

Figure 4.1 depicts data selection. {Be careful to distinguish this from
feature selection, Section 2.6.) The density of labeled data over each
cluster in the left side of the figure is high. A selected subset (or
skeleton) of the original data is shown on the right. This approach
has many variants, and is well summarized in Devijver and Kittler
(1982). The aim is to condense X, while approximately preserving

the shape of the decision boundaries set up by training D with it.

5
sl =
g

Figure 4.2 Replacing X with multiple point prototypes

190 FUZZY PATTERN RECOGNITION

Figure 4.2 illustrates replacement by multiple point prototypes,
where X is replaced by V, a set of labeled prototypes for classes 1

(Q) and 2 (O). There is more than one prototype per class in Figure
4.2, but we will use the notation V for both the single and multiple
prototype cases. The self-organizing feature map (SOFM) discussed
later is one very good way to accomplish replacement (Kohonen,
1989). It is also possible to replace the data in Figure 4.2 with non-
point prototypes (called B in Chapter 2) such as rings, lines,
hyperquadric surfaces, etc., leading to more sophisticated
classifiers that can match prototypical shapes to objects having
similar representations.

4.2 Prototype classifiers

Prototype representation is based on the idea illustrated in Figure
4.3. The vector v, is taken as a prototypical representation for the

vectors in the crisp cluster Xi'

vl
4 .
7

O’C’)O

Figure 4.3 Representation of many vectors by a point prototype

For simplicity, our presentation of prototype classifier design is
confined to the point prototype case, but you should bear in mind that
many of the ideas discussed in this section generalize easily to non-
point prototypes. There are many synonyms for the word prototype:
centroid, vector quantizer (VQ), signature, template, codevector,
paradigm, exemplar, etc. In the context of clustering as in Chapter 2

v, is usually called the cluster center of crisp cluster X < X.

A. The nearest prototype classifier

Once the point prototypes are found (and possibly relabeled to agree
most usefully with the data if the training data have physical
labels), they can be used to define a crisp nearest prototype (1-np)

classifier DV.E,B:

CLASSIFIER DESIGN 191

Definition 4.1 (1-np classifier). Let V be a set of ¢ crisply labeled
prototypes, one per class, ordered so that e is the crisp label for v, 1

<i<c; let 3 be any distance measure on RP, and let
(V.E)={(v,,e)i=1,...,c}eR?P XN} . The crisp nearest prototype (1-

np) classifier D is defined, for z € RP, as

3

Decideze i< D z)=e, © 6(z,vi)36(z,vj) Vo j#i. 4.2)

V,E.S(

Equation (4.2) says : find the closest prototype to z, and assign its
label to z. Ties are broken randomly. Note that HCM uses (4.2) to
determine the crisp memberships shown at (2.6a). The most
familiar choice of dissimilarity is the inner product induced norm
metric shown in equation (1.6). The crisp 1-np design can be
implemented using prototypes from any algorithm that produces

them. It would be careless to call D, . a fuzzy classifier, for
example, just because fuzzy c-means produced the prototypes V.

One of the most important classifier structures is the hyperplane H A

in RP defined, for any positive definite matrix A, as
Hp(w,0) = {x € RP:(x, W), =X Aw = o; 00 € K} . 4.3

As usual, when A is the identity, the inner product is Euclidean and
we suppress the subscript A. Without loss of generality, we confine
further discussion to the Euclidean case.

H(w, 0) is a vector subspace of dimension p-1 through the origin of
RP, and g(x)=(x,w) is a linear function of x. H(w, a) is a p-1
dimensional affine subspace parallel to H(w, 0), and the function
glx) = (x, w) + o is an affine function of x (linear plus a constant).

The parameter o is the offset of the hyperplane H from the origin,
and the vector w is called a (there are infinitely many) normal
vector to H, because w is perpendicular to H in the given inner

product, i.e., whenever a vector, such as (x-Xx) in Figure 4.4, is
parallel to H (lies in H), ((x-%),w), =0.

These properties are illustrated in Figure 4.4, which shows the
geometric structure of H in terms of its two parameters. Changing w
rotates H, and changing o translates H parallel to itself. The effect of
using a weight matrix A other than the identity in (4.3) can now be
seen. Letting w’=Aw, (x,w), =xTAw = x"(Aw) = (x, Aw) = (x, W),
so changing the inducing weight matrix rotates the normal vector w,

192 FUZZY PATTERN RECOGNITION

and hence, the hyperplane, keeping it perpendicular to w in the new
inner product.

0c %P /

H (w,a):(w,y)<a

Figure 4.4 Geometry of hyperplanes

For fixed w a family of parallel linear varieties (hyperplanes) are
generated by (4.3) as o runs through %R. Hyperplanes are the "flat"

sets in RP, and consequently, g(x)=(x,w)+a is called a linear
decision function even though it is by definition affine.
Consequently, classifier functions defined by g are called linear
classifiers whether g is linear or affine. When w is a unit vector, it is
routine to check that, given any point in Hf{w, o) such as x in Figure

4.4, the orthogonal distance §_ from z to H(w, 0) is 5, = (z-%,w).

As illustrated in Figure 4.4, H divides %P into three disjoint sets,

viz., RP =H UHUH". The set H* is the positive half-space
associated with H, so called because, as shown in Figure 4.5, every

vector z that lies "above" H (and therefore in H*) yields a value for
the dot product that is greater than o, (z,w)>o. Similarly, vectors y
that lie in the negative half space H™ yield (y,w) < o; and of course,

for vectors x in H, (x,w)=o. H is calied a separating hyperplane
between its two half spaces, and when a labeled data set X with ¢ = 2
classes can be completely separated by H (so that all points from one
class lie on one side of H, while all points from the other class lie on
the opposite side}, X is said to be linearly separable.

The geometry of the crisp l-np inner product norm classifier is
shown in Figure 4.5, using Euclidean distance for &. This 1-np design
erects a linear boundary between the i-th and j-th prototypes, viz.,
the hyperplane H{w, o) through the midpoint of and perpendicular to

CLASSIFIER DESIGN 193

the line joining v_and v.. Figure 4.5 illustrates the labeling decision

represented in equation (4.2); vector z is assigned to class i because it
is closest to the i-th prototype. Some authors use the terms
prototypes and neighbors interchangeably, but we will consistently
call nearest prototypes new vectors made from the data or points in
the data, while nearest neighbors are labeled points in the data.

H(w, o) X

Figure 4.5 The 1-np classifier for the Euclidean norm

All 1-np designs that use inner product norms erect (piecewise)
linear decision boundaries. Thus, the geometry of 1-np classifier
boundaries is fixed by the way distances are measured in the feature
space; and not by geometric properties of the model that produces

the cluster prototypes. The location in %P of the prototypes
determines the location and orientation of the c(c-1)/2 hyperplanes
that separate pairs of prototypes. The locations of the prototypes do
depend importantly on both the computational model and data used
to produce them. Hence, 1-np classifiers based on different prototype
generating schemes can certainly be expected to yield different error
rates, even though they all share the same type of decision surface
structure.

Example 4.1 Table 4.1 lists 20 vectors in %®? in c = 2 labeled classes,
10 apples in class 1 (crisp label e,), and 10 pears in class 2 (crisp label

=¥, =(1.22,0.40)T and v, =¥, =(2.43,1.03)Tare the sample

mean vectors for the apples and pears, respectively. These two
prototypes are listed in the last row of Table 4.1 and appear
graphically along with the 20 labeled data in Figure 4.6.

194 FUZZY PATTERN RECOGNITION

Table 4.1 Apples and pears data

¢ X X i © X X Y
& 1 1.00 0.60 6 11 2.00 0.70
& 2 175 040 | & 12 2.00 110
& 3 1.30 0.10 13 1.90 0.95
& 4 0.80 020 | & 14 200 0.95
oo 5 1.10 0.70 15 2.30 1.20
& 6 130 060 | & 16 250 115
& 7 0.90 0.50 5 17 2.70 1.00
& 8 160 060 | X 18 290 110
& 9 140 015 | X 19 2.80 0.90
& 10 100 0.10 20 3.00 1.05
v, = Vl - 1.22 0.40 vy, = 72 - 241 1.01
y
¢1.20
s Go
X3 6 v, &
10.80
< *s
i (o0 < < o,
c W/WMM
0.40 [c
Cf Va=V) X
¢ ¢v .
| : o | >
1.00 1.50 2.00 2.50

Figure 4.6 Data in Table 4.1 and their sample mean prototypes

Once the prototypes - which in this example are the sample means

V- are determined, (their physical labels are known since the set E
is known, and each prototype is built from data with only one class
label), we need only to choose a distance measure to implement the
1-np classifier in (4.2). Choosing Euclidean distance, suppose that
the vector z = (2.0, 0.5)T shown in Figure 4.6 is unlabeled, and we

submit it to this 1-np classifier. The distances §(z,v,)=0.68 and

5(z,v,)=0.79 thenyield 8(z,v,)<d(z,v,)=D (z) =e, ="pear".

V.E§

CLASSIFIER DESIGN 195

The geometry shown in Figures 4.4 and 4.5 is illustrated by
computing three parameters. First we calculate a normal to H,
which is any scalar multiple of the intermean vector

w=vp-v, =(119, 0.61)T : (4.4)
With § as Euclidean distance, we compute

ool < Ivall] oy

| R S el =1.94 . (4.5)
2fjw] [lw]

Since "vp“ > “v A”, {(4.5) yields a =2.59. To graphically construct the
hyperplane HAP(W, o) just found for the apples and pears data, we

find a third parameter, the midpoint m of the line joining v, tov,,

m=(v, +v,)/2=(1.82,0.71)" . (4.6)

Figure 4.7 The 1-np classifier for Example 4.1

The geometric structure of this classifier is shown in Figure 4.7. The
decision that z be labeled a pear can be reached another way by

simply calculating (z,w)=2.69 > o =2.59. This tells us that z has

196 FUZZY PATTERN RECOGNITION

landed in the pears decision region H,(w,o) as shown in Figure 4.7;
similarly, the apples decision region is the negative half-space
H7,,(w,0). Although you cannot see it in Figure 4.7 (because the data
are not shown), H AP(W, o) is a separating hyperplane between the

apples (A) and pears (P) regions - that is, these data are linearly
separable.

Geometrically, the 1-np classifier grows neighborhoods about the
point z that take their shape from the topology induced by the metric
8. The circles in Figure 4.7 remind you that the norm is Euclidean, so
the shape of the neighborhoods is circular. Changing the metric
changes the shape of the neighborhoods. For example, if the 1- norm
had been used instead, the neighborhoods would be diamond shaped
as shown in Figure 2.11, and the hyperplane structure illustrated
here would be invalid, since the l-norm is not inner product
induced.

B. Multiple prototype designs

What can we do when a single prototype is not sufficient to describe a
class accurately? This can easily happen when feature vectors that
possess the same physical label for a particular class fall into two or
more clusters, as in the famous "XOR" data that cannot be separated
by a single hyperplane (Zurada, 1992). For example, defective parts
may have oversized holes drilled into them or they may have
surface defects in the material. If those two defects are manifested in
the measured feature vectors, then the defective-part class could
have three clusters, one where the "hole diameter” is big, one where
the "material homogeneity" is low, and one where both problems are
present. Single prototype classifiers will not provide good
classification accuracy in this situation. Another situation that can
require multiple prototypes for a single class is when two physically
labeled classes overlap in the chosen feature space (as in classes 2
and 3 of the Iris data). In this case, and for that matter, in almost all
real data sets, it is advantageous to have several prototypes for each
class.

Definition 4.2 (1- nearest multiple prototype (1-nmp) classifier).
(V.E)={v e k=l ci(f)=1...¢cleR? xN¢. . Here X has ¢
classes, ¢ <¢c, V_is a set of ¢ crisply labeled prototypes, with more
than one per class for at least one class if ¢ <c, €0 labels v, as class i,

and & is any distance measure on R”. The crisp 1- nearest multiple

prototype (1-nmp) classifier D, . is defined, for z € RP, as
crUer

CLASSIFIER DESIGN 197

Decideze i & DVC,EE,S(Z) = ei(j)

= 6(z,vj) <8z, v) V sz2j. (4.7
When ¢ = ¢ equation {4.7) reduces to (4.2). Two opportunities arise
from this simple extension of the 1-np design. First, we now have
more flexibility to generate prototypes, as will be discussed in the
next section. Perhaps a bigger opportunity, however, afforded by the
increase of exemplars from ¢ to ¢, is the possibility of assigning
fuzzy labels to the prototypes, and hence, to construct fuzzy decision
rules with them. Instead of discussing this prospect here, we will
postpone it to Section 4.4 on nearest neighbor rules since, in the

"limit" case i.e., when ¢=n, we can consider each training vector as a
prototype. In other words, the decision rules (crisp, fuzzy and
possibilistic) that are described for the k-nearest-neighbor
classifiers in Section 4.4 can be implemented in the multiple
prototype framework.

Example 4.2 This example demonstrates a novel use of multiple
prototypes in a real world application: detection of landmines. The
landmine problem has become a crisis in the world. It is estimated
that more than 100 million active mines are scattered in 62
countries, with an equal number stockpiled around the world just
waiting to be planted. Landmines kill or maim approximately
26,000 innocent civilians every year.

Currently, landmines are detected individually by prodding, metal
detection or dogs. Gently prodding the ground is slow, confusing and
dangerous, especially when the mines are laid in hard-packed or
stony soil. Metal detection works well with metal mines, but
recently, metal has been increasingly replaced by plastic. Dogs are
effective, but like humans, can become easily distracted.

A variety of sensors have been proposed or are under investigation
for landmine detection. In view of the life threatening nature of this
application, it is desirable to have a very high detection rate with a
low false alarm rate. However, many sensors can detect land mines
reliably only at the expense of a high false alarm rate.

Frigui et al. (1998a) and Gader et al. (1998a, b) consider the problem
of detecting landmines with sensor data obtained from a novel,
three-dimensional Ground Penetrating Radar (GPR) system
developed by Geo-Centers, Inc. (Rappaport and Reidy, 1996).
Following Frigui et al. (1998a), multiple prototypes of objects and
background are first generated by fuzzy clustering of features
generated from the GPR imagery. Rather than use the prototypes
generated from the clustering algorithm to form a nearest (multi-)
prototype classifier, the authors used them to provide a more
reliable estimate of the strength of the radar return from a
particular spatial location.

198 FUZZY PATTERN RECOGNITION

The Geo-Centers GPR system is mounted on the front of a moving
truck. Every two inches of forward travel in the y direction, a scan is
formed by sweeping the radar signals across 16 bins in the x
direction perpendicular to travel (cross-track) and 64 bins down
into the ground in the time = t direction, thereby producing a 64 x 16
array of intensity values I(t, x, y). For fixed y, the array is referred to
as a scan. A scan is formed every 2 inches, thereby producing a
volume of data. Figure 4.8 depicts one such scan.

Figure 4.8 A typical 64 x 16 scan from the Geo-Centers GPR

We can look at the data from a different perspective by holding x
constant and letting y and t vary, generating what we refer to as a
vertical plane. A typical vertical plane from the Defense Advanced
Research Projects Agency (DARPA) backgrounds data is shown in
Figure 4.9.

__ _ / .

Figure 4.9 Vertical slice (down-track)

A 6-dimensional feature vector f(t, x, y} is computed at each point (t,
X, y) and then used to evaluate membership in fuzzy sets defined by
feature prototypes. f(t, x, y) is a vector of edge magnitudes from
points in a pattern around (t, x, y) that roughly resembles the
signature of a mine in a vertical plane. Let E(t, x, y) denote the edge
strength in the horizontal direction {down-track). Since the shape of

CLASSIFIER DESIGN 199

mine is variable and there is a considerable amount of uncertainty,
the edge strengths are averaged in the vertical direction:

Alt,x,y) = -;—(k_%g)(t + k., x, y)j . (4.8)

For the experiment discussed in Frigui et al. (1998a), this value was
clipped at 150. The 6-D feature vector is given by

Alt+5,x,y-5)
Alt+3,x,y-3)
Alt+1,x,y-1)
Alt+1,x,y+1)
At +3,x,y+3)
A(lt+5,x,y+b)

f(t,x,y)= 4.9)

The goal is to use the features generated from a "calibration lane" to
determine prototypes, and then to apply those prototypes in a
classifier on test mine lanes. Generally, target pixels in GPR data
constitute less than 5% of the data. Hence, traditional FCM-type
algorithms have problems due to the large difference in size of the
target and background clusters. Instead, the competitive
agglomerative or CA clustering algorithm (cf. equations (2.75)-
(2.81)) was run on the calibration lane. This choice may not be the
best one for discovering clusters (because of greatly unequal cluster
population sizes, the problem illustrated in Figure 2.3(a) }, but the
authors felt it was a good choice for finding multiple prototypes.

One prototype was sufficient for the background, whereas several
were needed to describe the variation in the mine responses. The
algorithm was run using Euclidean distance for FCM with ¢ = 6, m =
2, and ¢ = 0.1. The prototypes were initialized heuristically based on
"expected" gradient patterns for background and objects. The
initialization was

50 150 150 50 50 150
50 150 150 50 150 150
v 50 150 150 50 150 50
|50 150 50 150 150 50
50 150 50 150 150 150
50 150 50 150 50 150

FCM was run for two iterations to "prime" the partition matrix.
Then the CA algorithm was run to termination (with a maximum of
30 iterations). Instead of using the prototypes directly in a classifier
with ¢ =2 asin (4.7), Frigui et al. (1998a) used the non-background
prototypes to supply partial evidence for the confidence that a mine-
like object is present at a point (t,x,y). This is due to the high degree
of uncertainty present in the landmine detection problem.

200 FUZZY PATTERN RECOGNITION

Specifically, the strength of the gradient values represented by the
prototypes directly relate to the presence of an object reflecting the
radar wave. Hence, in the test lanes, the inverse distance from each
non-background prototype to a feature vector was calculated, and
the mine confidence membership c(t, x, y) was generated as the
weighted sum of the inverse distances, where the weights were
proportional to the magnitudes of the prototypes. The confidence
that a mine is present at a point on the surface was then computed as

conf(x,y) = mtax(c(t, X,y)) . (4.10)

The confidence map on the surface of a mine lane was then
smoothed and a size-contrast filter applied to eliminate large
"bright regions". Figure 4.10 shows the confidence and size-contrast
filter outputs on part of Dirt Lane 17 containing the following
mines: CULVERT (this is not a mine}, M19, VS2.2, M15, TM46, VS2.2
at the positions indicated in the size-contrast output.

(a) Raw confidence map for a dirt test lane

(b) Output of the size-contrast filter with the object locations marked
Figure 4.10 Confidence and size -contrast filter outputs

A threshold was generated on the training data (which gave 100%
detection), and then it was fixed for all of the tests. The hits were
then examined to produce final detection marks in the tests. This
initial approach at using multiple crisp point prototypes generated
by a fuzzy model was tested on data collected by Geo-Centers at Fort
A.P. Hill in October 1996. The data was collected from four passes
over two mine lanes by Geo-Centers (two passes over each lane). The
standard approach for GPR-based mine detection was to threshold
the energy signature produced by the GPR at each point (x,y) formed
by summing the values over t. Table 4.2 shows the results of the
standard approach, while Table 4.3 lists the multi-prototype
confidence results.

CLASSIFIER DESIGN 201

Table 4.2 Results from standard approach on mine lanes

No. of mines No. of No. of false
Lane detected mines alarms
1 13 19 49
2 15 19 43
3 16 20 49
4 19 21 39

The number of mines detected is not increased by using multiple
prototypes, but the number of false alarms is significantly reduced.
This is a good result, because false alarms caused by sensor noise,
clutter, algorithmic processing, etc. are the major problem in mine
remediation activities.

Table 4.3 Results of Multi-prototype approach on the same data

No. of mines No. of No. of false
Lane detected mines alarms
1 15 19 13
2 13 19 9
3 19 20 10
4 18 21 12

Much work continues to be done towards improving the sensing
modalities and detection algorithms in this area. This example
demonstrates the advantage that can be gained by a fairly simple
application of multiple prototypes acquired by a fuzzy model over
the simpler nearest prototype classifier.

ﬂ«a mz =

4.3 Methods of prototype generation

Nearest prototype classifiers are simple, effective and cool. However,
you got to pay your dues if you want to use {them). That is, you have to
generate the prototypes, and you know that don't come easy! That's
what this section is about. Roughly speaking, there are three
approaches to prototype generation : (i) models such as the leader
algorithm and sequential HCM (Hartigan, 1975), and batch models
such as the c-means models (Chapter 2); (ii) network models such as
learning vector quantization and its generalizations (Kohonen, 1989)
and the generalized Lloyd algorithm (Gersho and Gray, 1992); and (iii)
statistical models such as mixture decomposition (subsection 2.2.C).

The common denominator in all prototype generation schemes is a
mathematical definition of how well prototype v, represents Xi. Any

measure of similarity on RP can be used. The usual choice is
distance (dissimilarity), the most convenient is squared distance,
and the most popular is squared Euclidean distance. Local methods

202 FUZZY PATTERN RECOGNITION

attempt to optimize some function of the ¢ squared distances

{”xk - vi"izl i< c} at each x_in X. Global methods usually seek

2
extrema of some function of {“xk - viuA: 1<i<cl<k< n}, ie., allcn

squared distances. Don't confuse our use of the terms local and
global methods with the local and global extrema found by a
particular method.

One of the simplest approaches to multiple prototype generation
when crisply labeled data are available is to run any clustering
algorithm (e.g., from Chapter 2) that generates prototypes on the
training data X _ one class at a time. This generates one or more

prototypes for class i - already labeled by e - which can then be used

for classifier design. All of the issues raised in Chapter 2 about
clustering such as choice of distance and validation are relevant
when clustering in X

Another way to find prototypes with a clustering algorithm is to run
€ on the entire labeled training set X, In an unsupervised mode (that

is, simply ignoring the labels during training). When this is done
using the knowledge that there are c labeled subsets in the training
data, the result is (presumably) one prototype per class. Why do this
if you have labeled data? We pointed out that the Iris data has 3
physically labeled classes, but that most researchers regard it as
having 2 geometrically well separated clusters in the 4 dimensional
feature space that was chosen by Anderson (1935). From the
botanical point of view then, ¢ = 3 is certainly the most useful
interpretation of Iris, but from the computational viewpoint,
forcing three clusters on this data strains algorithms that want it to

have but two. Ignoring the labels during clustering may enable € to
discover geometrically better prototypes than the labeled sample
means for the classes because this allows geometric properties of the
data (which are not necessarily captured by their labeled
representatives) to drive the model towards a more useful solution.

A third possibility is to run any clustering algorithm (unsupervised,
by definition) on all of X , again ignoring the given physical labels,
but with values for c that are greater than the given number of class
labels (¢ in Definition 4.2). This introduces the necessity for cluster
validation, but with labeled test data and a well defined
performance objective (viz., minimum apparent error rate), this is
less of a problem than with truly unlabeled data. This leads to
multiple prototypes for classifier design.

The result of clustering X in the unsupervised mode at any value of
¢ is a set of prototypes with algorithmic labels. Now the given labels

CLASSIFIER DESIGN 203

in N, for X, must be put into play, usually by a relabeling

algorithm that assigns physical labels to the algorithmic
prototypes. So, the labels are used in any case, and the data itself
will determine which method (clustering in Xm or in Xtr) is more

productive. Since X is available to test classifiers designed using
both strategies, that is what we recommend - try both.

There also are many, many prototype generation algorithms based
on crisp and fuzzy models that are not, per sé, clustering algorithms.
Indeed, it would take an entire monograph to adequately discuss
prototype generation methods. The best we can do here is review and
illustrate a few methods not discussed in Chapter 2 that are fuzzy,
have been generalized to a fuzzy case, or have appeared in
connection with a fuzzy model in the literature. Many models of this
kind are competitive learning models, the topic we now turn to.

A. Competitive learning networks

The primary goal for competitive learning (CL) models is to portray
the input data by a much smaller number of prototypes that are good
representatives of structure in the data for classifier design.
Prototypes that are good for classifier design are not necessarily the
same (even in form) as those that are used for other purposes. For
example, prototypes good for compression, transmission and
reconstitution of images may be quite poor as representatives of
classes for pixel labeling in the same image. Identification of
clusters is implicit, but not active, in the pursuit of this goal.

.

Competitive
Layer

Input Layer

X e RP

..

Figure 4.11 A general competitive learning network

204 FUZZY PATTERN RECOGNITION

The salient features of one general CL model are shown in Figure
4.11. The input or fanout layer is connected directly to the output
layer. The circles in Figure 4.11 are sometimes called nodes, and the
prototypes are then called node weights. In this context the p
components {V'i} of v are often regarded as weights or connection

strengths of the edges that connect the p inputs to node i. The
prototypes V= (vl,..., v) v e RP for 1 <1 £ ¢, are the (unknown)

vector quantizers we seek. The norm used in competitive layer nodes
is most typically Euclidean, but there is no overpowering reason to
restrict the measure of distance this way.

Sequential CL models update estimates of one or more of the {v} at

each of n input events during pass t (one iteration is one pass
through X). Upon presentation of an X from X, the general form of

the update equation is:

VTV +cxik't(xk—vi’t_1),i= 1,...,¢ct=1,...T . 4.11)

See Figure 4.81 for an illustration of the geometric meaning of
(4.11), which is just vector addition, with the length of the side
parallel to the difference vector between the input and the prototype

controlled by learning rate o ;. In (4.11) {ocik_t} is the learning rate
distribution over the c prototypes for input X, during iterate t. When
x is submitted to this network, distances are computed between it
and each v. The output nodes "compete", a (minimum distance)
winner node, say v, is found ; and finally, it and possibly other

prototypes are then updated using one of many update rules that are
most often of the form (4.11). There are at least four cases :

(i) Only \A is updated (winner take all, LVQ, SHCM e.g.)
(ii) Only one v, isupdated (some vector takes all, ART], e.g.)
{iii) Some vj's are updated (elite updates, SOFMs, e.g.)

(iv) Every vj is updated (all share updates, GLVQ -F, e.g.)

The acronyms we just used are : learning vector quantization (LVQ),
sequential hard c-means (SHCM), adaptive resonance theory (ART),
self-organizing feature maps (SOFMs) and generalized learning
vector quantization - fuzzy (GLVQ-F). The prototypes that get
updated (the update neighborhood) depend on the model chosen, and
the update neighborhood can be imbedded in the definition of the
learning rates for a particular model. A template that can be used for
many CL models is given in Table 4.4.

CLASSIFIER DESIGN 205

Table 4.4 A general CL algorithm for unlabeled data

l A. Training phase : find V without U_

Store | (Un)labeled Object Data X, ={x ,x,,....x_}c RP

U,eM, = Labels of vectors in X
CIl tr
© number of nodes: 1 <c<n
© max. # of iterations : T
© distance measure : lek -v, HHA
Pick
te © termination measure : Et = ”Vt ~ VH“
© termination criterion : ¢
o> special choices for a particular model
Get | @ initial prototypes: Ve %P
t « 1, E, = high value
DO UNTIL (t >T or E,_, <¢)
Fork=1ton
xec X, X <X, X<—X—{xk}
Do Get distances {"xk - vi_H“ 1<i< c} (4.12a)
Get learning rates {a, ,;1<i<c} (4.12b)
Vit = Ve + 0 (B — V) (4.12¢)
Next k
tet+1
END UNTIL
VeV

B. Prototype relabeling of V with U, using, e.g., equation (4.13) J
C. Optional (crisp) clusters if U, is unknown,with, e.g., (2.6a) :

u, = 1; ”xk—vi"<llxk—vjl,ISch,j;ti Vi, k
; otherwise. Resolve ties arbitrarily

Several points need to made about Table 4.4. Notice that the data are
considered to be unlabeled in step A, even if they are not. The labels
for Xtr are used in step B after the training phase is completed to

assign a physical label to each prototype. Different ways to use the
labels in the context of CL models such as LVQ1-LVQ3 are discussed
by Kohonen (1989). In either case, notice especially that no partition
is needed or generated in training step A.

In the general CL model of Table 4.4, any norm can be used in (4.12a)
and in Step C. Computation of the learning rates in (4.12b) is not
specific in Table 4.4. Different models require choosing various
parameters (B> special choices in the "pick" block of the table), and

206 FUZZY PATTERN RECOGNITION

all of them compute quantities which are functions of the distances
in (4.12a). Thus, a good specific implementation might be laid out a
little differently than the one shown in Table 4.4. We will identify
the items needed for each model discussed in Chapter 4, and trust to
your good judgment as to how best arrange the code for an actual
implementation.

One of the main differences between various CL schemes is the form
for the learning rate distribution (including the update
neighborhood) in (4.12b). Prototype updating in (4.12c) cannot be
done until the learning rates are well defined. Generally - but not
very often - o is a function of i, k and t, but in some models it is fixed
for all k's during each pass through X, and then we write o . Most

frequently, o is fixed for both i and k, depending only on t 1n this
case we write o Infrequently, only one pass is made through X, in

which case we write o | . The sign of o determines whether the update

in {(4.11) moves Vi towards x (attraction) or away from x

(repulsion). Most competitive learning models use only positive
learning rates, but there are algorithms that use negative learning
rates for vectors that are far from the update neighborhood (e.g., the
so called "Mexican hat function" discussed in Kohonen, 1989). We
will discuss this more in connection with Figure 4.81.

The standard method of achieving stability for prototypes (we will
make this notion specific in Section 4.8.4) is to begin with values

for the {ay ¢} close to, but less than, 1; and then to decrease the {oy }

towards zero as time (iteration number t) increases. If oy, — 0,

updates will become very small, and so will successive estimates of
the prototypes. This is how termination of many (but not all)

competitive learning algorithms is effectively achieved. But. - this
strategy causes a problem that Grossberg (1976a, b) recognized and
called the plasticity problem. We will return to this idea in Section
4.8.A.

The optional clustering phase, Step C in Table 4.4, produces n crisp
label vectors for the points in X . They are usually (usually, because

there is no guarantee that each of the c classes defined by the nearest
prototypes has at least one point in it) a crisp c-partition of X. This
optional step, or one like it using some other strategy, often leads to
semantic confusion. For example, Yager and Filev's (1994a)
mountain clustering method, which does not produce clusters
without using an equation such as (2.6a) after termination of the
training phase, is incorrectly called a clustering algorithm. More
precisely, it is a prototype generation algorithm whose terminal
prototypes can be used to find clusters.

http://schem.es

CLASSIFIER DESIGN 207

This terminology is fairly pervasive however. Any c¢ point
prototypes V ={v,,...,v.} ¢ RP can be substituted into (2.6a), and the
result is a crisp partition, say U(V)e My.,, which is sometimes
called the nearest prototype (np) partition of X. When we want to
emphasize this construction of U from V with (2.6a), we write U(V) =
U, (V). Moreover, subsequently applying (2.6b) to the rows of

Unp

circumstances it is not incorrect to regard the prototypes V = Vasa
representation of the crisp partition U,,(V), and this is why many

point prototype generator algorithms are called clustering
algorithms. Recognizing this, we nevertheless reserve the term
“clustering algorithm” for those models that actively involve a
partition of X during training, and in this sense the CL models
embodied as special cases of the general scheme in Table 4.4 are not
clustering algorithms.

np
(V) results in the sample means, V=V. Under these

A final comment: most CL models are not explicitly designed to find
good clusters in the sense that partitions of the data are never
examined during the training phase. Consequently clusters built
“after the fact" by approaches such as step C of Table 4.4 may or may
not be satisfactory in the sense of partitioning X for substructure.
Forewarned, don't be surprised if a CL model produces
unsatisfactory clusters in unlabeled data - that's not its job.

B. Prototype relabeling

What should we do when the labels of points in X are not used

during training to guide iterates towards a good V? In this case, at
the end of the learning phase the ¢ prototypes have algorithmic
labels that may or may not correspond to the physical labels of X

The relabeling algorithm discussed next uses the labels in U_to

attach the most likely (as measured by a simple percentage of the
labeled neighbors) physical label to each v.

Recall that ¢ is the number of classes in X+ labeled by the crisp
vectors {el,ez,...,eé} = Nhé Now define pij, i=1,2,..., ¢, j=1,2,..., c, to be
the percentage (as a decimal) of training data from class i closest to
v, via the 1-np rule. Matrix P = [pij] has ¢ rows in N, , and c columns

pj in Npé. We assign label e to vj when H(pj) =e, with ties broken
arbitrarily,

1abe11<—vj<:>H(pj)=e i=12,...,¢;j=L2,...,c. (4.13)

208 FUZZY PATTERN RECOGNITION

We illustrate the labeling algorithm at (4.13). Suppose Xtr has ¢ =3

classes, labeled with the crisp vectors {e ,e,,e ;} =N, .. Let V = (vl,

Vy Vo, V 4) be four prototypes found by some algorithm. Let P be the 3

x 4 percentage matrix shown in Table 4.5. Labeling algorithm (4.13)

assigns v toclass 1, v, and v, to class 3, and v, to class 2.

Table 4.5 Example of a multiple prototype labeling algorithm

v Yy Vs Vs
e [057 ! 0.10 0.13 0.20
e, 0.15 k 0.10 0.15 0.60
e 0.05 0.40 0.40 0.15
{ d { d
H(p1)=e1 H(p 2)=e 3 H(p 3)=e3 H(p4)=e2

C. Sequential hard c-means (SHCM)

The oldest model that can properly be identified as a CL model is
probably sequential hard c-means (SHCM). As we shall see, the
update rule of MacQueen's (1967) SHCM algorithm is very similar to
the more recent and popular LVQ designs. MacQueen attempted to

partition feature space R* into ¢ subregions, say (S P>), insuch a
way as to minimize the functional

J, (V)= é{ oS fr -, dtco) , (4.19)

where f is an (unknown) probability density function (pdf),
V= (\‘r1 irc) e RP, fri is the (conditional) mean of x estimated by
the pdf f obtained by restricting f to S., normalized by the prior
probability 7 of class i, i.e., f1 (x) = f(x)| s /™

i

In MacQueen's SHCM algorithm to approximately minimize Jyp the

weight vectors are initialized with the first ¢ samples in the data set
X. In other words, v =x, r=l,..c. Let q__ =1 for r=1,..,c (q,,

represents the number of samples that have so far been used to
update v,). MacQueen's process terminates when all the samples

have been used once (i.e., take V = Vafter one pass through X). For
this implementation, we need only indices k and i in Table 4.4.

Suppose x,_ is the current input and that Vo is closest to it, as in

k k

CLASSIFIER DESIGN 209

Figure 4.11, i = arg min{”xk -V, k—l“}‘ MacQueen's algorithm updates
:

r
the vr's as follows :

Vi = W Gy + 579, +1) (4.15a)
G = Gyper + : (4.15b)
Vo=V forr# i ; (4.15¢)
q,=q, forr=i . (4.15d)

Other versions of SHCM pass through the data set many times
(Forgy, 1965). Rearranging (4.15a), we can rewrite Macqueen's update
equation for the winning prototype as

Vo = Vi Y& V) /a4, . (4.16)

1

Equation (4.16) takes the general form shown in equations (4.12b)
and (4.12¢) by setting o™ =1/q,, in (4.16).

If crisp clusters are desired, the sample points can then be labeled
using HCM necessary condition {the 1-np rule) in equation (2.6a).
This usually produces a hard c-partition Ug,. Since the {v;=v}
are conditional means, the partition obtained this way may not be
desirable from the point of view of clustering. Moreover, this
method does not eliminate the possibility of slow but indefinite
oscillation of the centroids (limit cycles). Nonetheless, this is a
historically important and still popular method of prototype
generation, and the terminal prototypes can be used for nearest
prototype classifier design.

D. Learning vector quantization (LVQ@)

The learning rate distribution for LVQ that is used in equation
(4.12b) of our CL template is well known:

o o+ 1-agmmflx, v,]

[4.17)

o J
0 , j=12,...c; j=#i

Equation (4.17) shows that, like SHCM, this form of LVQ is a winner
take all strategy - that is, the update neighborhood is just a single
point. In (4.17) learning rate a, is usually: (i) independent of i and k;
(ii), initialized to some value in (0, 1); and (iii), decreased
nonlinearly with t, usually o, = (1/1t). There are some differences
between our version of unsupervised LVQ and MacQueen's

210 FUZZY PATTERN RECOGNITION

algorithm: (i) in LVQ sample points are used repeatedly until
termination is achieved, while in MacQueen's method, sample
points are used only once; (i) in MacQueen's algorithm oM is
inversely proportional to the number of points found closest to v,

SHCM SHCM

t-1’

so it is possible to have o <op when t >t

So much has been written about supervised and unsupervised
versions of LVQ (there are many variations to the form embodied by
using (4.17) in (4.12c¢)) that our discussion of it here will be limited to
several examples that compare it to several soft generalizations of
it. But before we leave this subsection, we point out that LVQ is a
special case of a more general model due to Kohonen (1989) called
the self-organizing feature map (SOFM), which will put in an
appearance in Example 4.26. '

We give a very brief description of the SOFM scheme, again using t to
stand for iterate number (or time). In SOFM each prototype
v, € RPis associated with a display node,say d;; e R?. Usually q =
1 or 2, but the display "space" could have more dimensions, and it is
not really a space, but a set or lattice D of integers (addresses) in %9,
The purpose of the display set is to establish a topological
neighborhood for the address or index associated with each
prototype vector, so there are exactly as many cells in the display
space as there are prototypes. For example, if you have 100
prototypes for the Iris data, then V ={v,,...v,50} € ®*, so a natural
display set for these prototypes would be a linear array, the integers
D={1,...,100}. On the other hand, if the prototypes had spatial
identities in two dimensions, they might be doubly indexed, as, for
example V={v};,..v5;0}c®R*, and then a natural display set

would be the 100 pairs of integers D ={{1,1),...,(10,10)} arranged in a
square lattice. Topological neighbors in D are neighboring
addresses - the cells in D are only indices, and do not possess
numerical features (like pixels in images in Chapters 4 and 5, for
example, which contain at least intensities at their addresses). In
the SOFM scheme, each address is associated with a unique

prototype in RP.

In SOFM the winning vector v, that best matches (usually, but not
necessarily, in the sense of minimum Euclidean distance) an input
vector x, is found. Next, a topological (spatial) update neighborhood
N(d,) c D centered at d; € D is defined in D, and the winner node

neighbors are located in D. This means that you must define what a
neighborhood is in D, and this requires two concepts - shape and

size. For linear arrays, the shape of N(di,t) is usually adjacent

CLASSIFIER DESIGN 211

indices to the left and right of D out to a specified radius; for 2D
display sets, it could mean the 4-connected neighbors of d;;
diagonally or parallel to the axes of D, or the 8-connected neighbors
of d,; that surround it in D, etc. Along with the shape of N(d, ,) there

must be a concept of order or size, usually defined through its radius,
which will decrease with time (iteration).

Finally, v;; and other prototype vectors in the inverse image

[N(d,)I"*of the spatial neighborhood N(d,;)are updated using
equation (4.12c). We mentioned that the update neighborhood could
be imbedded into the learning rate schedule (the {ay) in
connection with equation (4.11), and SOFM is an example of the
need to do this. For the current situation, we accomplish this by
setting oy, =0 for all v;, ¢ (N(d; JI"!, and use whatever learning

rates are defined at this set of subscripts to update the prototypes in
the update neighborhood. The usual way to operate SOFM is to
decrease both the values of the learning rates and size of the update
neighborhood over time. When the update neighborhood is reduced

to the winner alone (v;,=[N(d;,)]"'), SOFM becomes the LVQ
algorithm. The relationship between and manipulation of V and
N(d,,) can a pretty difficult concept to grasp for first time readers
about SOFM; please refer to Kohonen (1989) for amplification.

E. Some soft versions of LVQ

SHCM and LVQ attempt to minimize objective functions that place
all of their emphasis on the winning prototype for each data point.
However, structural information due to data point x is carried by all

¢ of the distances {Hx—vi"}. Many authors have suggested

modifications to winner take all models that update all ¢ prototypes
during each updating epoch, thereby eliminating the need to define
an update neighborhood. We will discuss three CL models of this
type, GLVQ-F (this subsection), SCS (subsection 4.3.G) and FLVQ
(subsection 4.3.H). The model underlying GLVQ-F contains LVQ as a
subcase and is discussed extensively in Karayiannis et al. (1996).
GLVQ-F is based on minimizing the functional

2
JGLVQ—F(xk;V) = élur"xk - vr"
(ol)

2
"2/(m -1) lek -V . m>1. (4.18)

212 FUZZY PATTERN RECOGNITION

In (4.18) the vector u =(u;,u,,...,u,)’ € N, is a fuzzy label vector

whose entries take the form of FCM necessary condition (2.7a). The
real number m > 1 in (4.18) is the same fuzziness parameter that
appears in FCM and PCM. The value of m affects the quality of
representation by the terminal prototypes it finds. And m also
controls the speed of termination of the GLVQ-F algorithm, which is

just steepest descent applied to J GLVQ-F" The GLVQ-F update rule for

the prototypes V at iterate t in the special (and simple) case m=2
gives the following learning rate distribution for use in equation
(4.12b) :

2 -2

GLVQ-F(m=2) c .\xk_vi,t—l .
i = =2co) Y| = || . 1sigc . 4.19)
’ r=1
ka vr.t—l“
2
Uik, t-1

Equation (4.19) has the same singularity condition as FCM in its
denominator. When no "xk rt- 1“ (4,19) produces a learning

rate for each value of i, so all ¢ prototypes are updated at each input.

As in (4.17), o, in (4.19) - now one factor of the learning rates {oc1k t}

is usually proport10na1 to 1/t, and the constant (2c) is absorbed in it
without loss. Limiting properties of GLVQ-F are : (i) as m approaches
infinity, all ¢ prototypes receive equal updates and the v's all

converge to the grand mean Vv of the data; whereas (ii) as m
approaches 1 from above, only the winner is updated, and GLVQ-F
reverts to LVQ. Finally, we mention that the winning prototype in
GLVQ-F for m=2 receives the largest (fraction) of o tat iterate t; and

that other prototypes receive a share that is mversely proportional
to their distance from the input. The GLVQ-F learning rates satisfy

C
the additional constraint ¥ oy <1.
i=1

F. Case Study : LV@ and GLVQ-F 1-nmp designs

This subsection abstracts part of an example discussed in Bezdek et
al. (1998b). Here Anderson's (1935) Iris data is used to illustrate 1-
nmp classifier design with prototypes found by LVQ and GLVQ-F.
Figure 4.12 scatterplots the third and fourth features of Iris
(hereafter called Iriss4) and the subsample means (listed in Table 4.6)

for each of the three classes. Class 1 is well separated from classes 2
and 3 in these two dimensions; classes 2 and 3 show some overlap in
the central area of the figure, and this region contains the vectors
that are usually mislabeled by nearest prototype designs. The
dashed boundaries indicate the physically labeled 2D cluster

boundaries. Thus, ¢ = 3 in the terminology of Definition 4.2.

CLASSIFIER DESIGN 213

x, = Petal Width 3 = Virginica

Sy

)@WM\’&\W\‘%

s

= Mean of class 1
* = Mean of class 2
- 2 + = Mean of class 3

1.5

2 = Versicolor
1 = Sestosa

p WM%N@§@~< s,

X4 = Petal Length

1 2 3 4 5 6 7

Figure 4.12 The Iris data : {(feature 3, feature 4)} = Iris34

The resubstitution error rate for the supervised 1-np design that uses
the class means (listed in Table 4.6 and shown on Figure 4.12) as
single prototypes is 11 errors in 150 submissions using the

Euclidean norm, i.e., ED_ (Iris|Iris) = 7.33% (see the confusion
V.E?d,
matrix for this case in Table 4.14).

Table 4.6 Labeled sample (mean) prototypes V in R* for Iris

Symbol Name Xy X, Xg Xy
{:‘If v, 5.01 3.43 1.46 0.25
* v, 5.94 2.77 4.26 1.33

+ v, 6.59 2.97 5.55 2.03

214 FUZZY PATTERN RECOGNITION

The "hyberbox diagonal" method is used to generate an initial set of
¢ prototypes V for this example. To build the hyperbox compute

Minimum of feature j : rnj = rnkm{ Xjk}: j=1L2,...,p; {4.20a)
Maximum of feature j : Mj = mfx{ xjk}: ji=12,...,p. (4.20Db)

The set hb(m,M)=[m,,M,}x...xIm .M] is a hyperbox in RP. The

main diagonal of hb(m,M) connects m and M with the line segment
{m + a(M-m);0 <a<1}. Initial prototypes for LVQ and GLVQ-F in
this example were:

vm=m+(1_11)(M—m);i=1,2,...,c . @.21)
C_
Thus, vl‘o=m=(rr11,m2,.‘.,mp)T ; vc'0=M=(M1,M2,...,Mp)T; and

the remaining (c-2) initial prototypes are uniformly distributed

along the diagonal of hb(m,M). A useful variation of this
initialization strategy is to choose c points randomly from the

diagonal {m +a(M-m);0 <o <1}. For the present case, Table 4.7

shows the initial prototypes produced by uniform draws as in (4.21)
with the Iris data at ¢ = 6.

Table 4.7 Initial prototypes for Iris at ¢ = 6 computed with (4.21)

v, o= (4.302.001.000.10)=m
V, o= (5.022.482.180.58)
Vs o= (5.742.96 3.36 1.06)
V, 0= (646344454 1.54)
Vo= (7.183.925.722.02)
Ve o= (7:904.406.902.50) = M

The Euclidean norm was used in (4.12a), and the number of
prototypes generated ranged from ¢ = ¢ = 3 to ¢ = 30. The termination
threshold € had one of the three values ¢= 0.1, 0.01 and 0.001. The
primary termination criterion that was compared to € was the 1-
norm between successive estimates of the c prototypes, i.e.,
c P
Et = ”Vt —Vt—lul = rél]E:Iv
algorithm, secondary termination occurred at the iterate limit T =
1000. The initial learning rate was o = 0.4 and o was decreased

et ™ Vintea) if this failed to stop an

CLASSIFIER DESIGN 215

linearly, viz., o, = ao((T —1)/T) for both algorithms. For the results
displayed, (4.19) was used for GLVQ-F.

Samples were drawn randomly from X = Iris without replacement.

One iteration corresponds to one pass through Iris. Each algorithm
was run 5 times for each case discussed to see how different input
sequences affected the terminal prototypes. For the less stringent
termination criteria (¢ = 0.1 and 0.01), different terminal
prototypes were sometimes obtained on different runs. For ¢ = 0.001,
this effect was nearly (but not always) eliminated. Most of the runs
using € = 0.001 were completed in less than 300 iterations through
Iris.

Unsupervised nearest prototype designs for Iris that seek ¢= 3
prototypes report resubstitution errors ranging from 5 to 20. Table
4.8 exhibits the terminal prototypes found by each algorithm for ¢ =
6, as well as the resultant 1-nmp error rates they produce when used
in (4.7) on all of Iris. Each of the three physical clusters is
represented by two prototypes for both LVQ and GLVQ-F, and the
overall error rate produced by these two classifiers is 9.33% - 14
mistakes, not really much better than any unsupervised design at

¢= 3, and not as good as the supervised sample means design.

Table 4.8 Typical prototypes, confusion matrices and 1-nmp
resubstitution error rates for c = 6 prototypes (Iris data)

LvVQ LvVQ GLVQ-F GLVQ-F (m=2)
labels prototypes labels prototypes

1 4.69 3.12 1.39 0.20 1 4,75 3.15 1.43 0.20
1 5.23 3.65 1.50 0.28 1 5.24 3.69 1.50 0.27
2 5,62 2.61 3.90 1.20 2 5.60 2.65 4.04 1.24
2 6.21 2.84 4.75 1.57 2 6.182.87 4.73 1.56
3 6.53 3.06 5.49 2.18 3 6.54 3.055.47 2.11
3 7.47 3.12 6.31 2.02 3 7.44 3.07 6.27 2.05

50 0 O 50 0 O

C={0 B0 O C=0 50 O

0 14 36 0 14 36
Error rate = 9.33 % Error rate = 9.33 %

The third and fourth features of the prototypes in Table 4.8 are
plotted in Figure 4.13 against a background created by roughly
estimating the convex hull of each physical class in these two
dimensions by eye. Some of the prototypes are hard to see because
their coordinates are very close in these two dimensions. The LVQ
and GLVQ-F prototypes that seem to lie on the boundary between
classes 2 and 3 are highlighted by enclosing these points with the

jagged star £ . These prototypes are the ones that incur most of the

216 FUZZY PATTERN RECOGNITION

misclassifications that are committed by the LVQ and GLVQ-F 1-
nmp classifiers.

A

2.5
© 6:LVQ
4 9 m 6:GLVQ-F
4+ 1.5
+ 1
+ 0.5
o | @
e] Xq
} }] »
2 4 6

Figure 4.13 Terminal prototypes in Iris ~ atc=6

Table 4.9 lists the same information as Table 4.8 for typical runs
made at ¢ = 7. There is a sharp drop in the error rate for both the LVQ
and GLVQ-F 1-nmp designs. Be careful to note that the seventh
prototype is not "added” to the previous six; rather, seven new
prototypes are found by each algorithm. The error rates in Table 4.9
are very low for designs that do not use the labels during training.
Note that LVQ and GLVQ-F continue to use 2 prototypes for each of
classes 1 and 2, and add a third representative for class 3 at ¢ = 7.
Thus, neither LVQ nor GLVQ-F provides an efficient representation
of the data because only one prototype is needed to represent the 50
class 1 points with no resubstitution errors. This point is brought
out in Bezdek et al. (1998b), where the so-called "dog-rabbit"
prototype generation algorithm is used to achieve this somewhat
more desirable result.

Table 4.9 Typical prototypes, confusion matrices and 1-nmp

CLASSIFIER DESIGN

resubstitution error rates for ¢ = 7 prototypes (Iris data)

217

LvVQ LVQ GLVQ-F GLV@-F (m=2)
Labels prototypes Labels prototypes
1 4.68 3.11 1.39 0.20 1 4.74 3.15 1.43 0.20
1 5.23 3.65 1.50 0.28 1 5.24 3.69 1.50 0.27
2 5.53 2.62 3.93 1.21 2 5.57 2.61 3.96 1.21
2 6.42 2.89 4.59 1.43 2 6.262.92 4.54 1.43
3 6.57 3.09 5.52 2.18 3 6.62 3.09 5.56 2.16
3 7.47 3.12 6.31 2.02 3 7.50 3.05 6.35 2.06
3 5.992.755.02 1.79 3 6.04 2.794.95 1.76
5 0 O 50 0 O
C={ 0 47 3 C={0 46 4
0O 1 49 0 1 49
Error rate = 2.66 % Error rate = 3.33 %
Xy
=+ 2.5
o 7:LVQ
4 2 m 7:GLVQ-F
4+ 1.5
+ 1
4 0.5
€y
} } } P x,
2 4 6

Figure 4.14 Terminal prototypes in Iris g ate=7

218 FUZZY PATTERN RECOGNITION

Figure 4.14 shows that the crucial "boundary” prototypes from LVQ
and GLVQ-F in the ¢ = 6 case have roughly "divided" into two sets of
new prototypes, enclosed again by the jagged star. These two pairs of
prototypes have moved away from the apparent boundary of the
lower left part of the convex hull of class 3. Both new pairs move
further into the convex hulls of their respective classes.

When these two CL algorithms are instructed to seek ¢ = 8 prototypes,
the resubstitution error rate for both designs typically remains at
2.66%, and at ¢ = 9 the results are quite similar. These results suggest
that the replacement of Iris with 8 or 9 prototypes found by either
LVQ or GLVQ-F results in a 1-nmp design that is quite superior (as
measured by the resubstitution error rate) to the labeled 1-np design

based on the ¢ = 3 subsample means V. It is reasonable to assume
that this trend would also hold for apparent error rates computed
with test data reserved from Iris - i.e., that the 1-nmp designs would
generalize better than classifiers based on 1-np designs - reasonable,
but certainly not guaranteed.

How few prototypes are needed by the 1-nmp rule to achieve good
results? And conversely, at what point does prototype
representation become counter-productive? Table 4.10 shows the
best case results (as number of resubstitution errors) reported in
Bezdek et al. (1998b) using each algorithm at various values of c.

Table 4.10 Best case resubstitution errors

co | 3 4 5 6 7 8 9 15 30
V@ 17 24 14 14 3 4 4 4 4
GLVQF | 16 20 19 14 5 3 4 4 4

Observe that on passing from ¢ = 3 to ¢ = 4, even the best case error
rate increased, followed by a decrease on passing from c =4 to ¢ = 5.
Table 4.10 shows that the Iris data can be fairly well represented in
the sense of minimal resubstitution error by 7 or 8 labeled
prototypes (see Kuncheva and Bezdek (1998) for a non fuzzy design
that yields zero resubstitution errors using 12 prototypes). At the
other extreme, increasing c past ¢ = 7 has little effect on the best case
results. Taken together, these observations suggest that Iris (and
more generally, any labeled data set) has upper and lower bounds in
terms of high quality representation by multiple prototypes for
classifier design. There seems to be little hope, however, of
discovering this on a better than case-by-case basis.

Finally, some comments on the sensitivity of each CL model to
changes in its control parameters. Bezdek et al. (1998b) did not
experiment with changes in m for GLVQ-F. Certainly this parameter
affects terminal prototypes. However, we doubt that small changes
in m will cause radical changes in the results given above. The

CLASSIFIER DESIGN 219

initial learning rate o,; was varied from 0.4 to 0.6 in both LVQ and
GLVQ-F without noticeable changes in typical results.

G. The soft competition scheme (SCS)

Yair et al. (1992) proposed two vector quantization models, a
stochastic relaxation scheme (SRS) and a soft competition scheme
(SCS). Like GLVQ-F, algorithms for these two models eliminate the
need to define an update neighborhood by extending the update to all
¢ nodes; and they use learning rates that are functions of the ¢

distances {Hx - vill}. Our discussion here is limited to the SCS model
and algorithm.

SCS is a deterministic algorithm (the algorithm is deterministic
because its steps are not stochastically controlled, but it does use
probabilities as part of the learning rates). In SCS all ¢ prototypes
are simultaneously updated by a scheme which directs them - like
LVQ - towards the current training vector. The step size of each
update is scaled by the probability of that prototype being the
winner. At time (iterate) t, the probability of the i-th prototype
winning is defined as

e PtlEk—vit 2
L=) 4.22
Pict i o PelEK v -1l)

=1

where Iim{Bt}=oo. The probability p, , is one factor in the SCS

t—ooo

update equation. The choice for Bt specified by Yair et al. is
B, =7"¢/T, . T, is regarded as an initial "temperature”, and ¥ is a
constant which Yair et al. stipulate should be greater than 1. The
quantity (1/B,) is regarded as the temperature T at time t, so as
t >, B, >, and T— 0. Hence, this procedure is analogous to
simulated annealing.

Next, let n,, =n,_, +p, , (approximately the total number of times
that v, has been updated). This parameter is reset to 1 whenever

iteration counter t is a perfect square. Yair et al. use this to define
the other factor of their learning rates as

Ny =| — | =] — 22— . (4.23)
' n, 0y TPy

220 FUZZY PATTERN RECOGNITION

The overall learning rate for SCS that is substituted into {4.12¢} is
the product of these two factors,

aﬁ(c?s = Nik,t "Pik,t . (4.24)

Table 4.11 gives the implementation of SCS that was used by Bezdek
and Pal (1995) for the results presented in Example 4.3.

Table 4.11 The SCS algorithm (Yair et al., 1992)

Store | (Un)labeled Object Data X, ={x,x,,...,x_} c RP

gre
U, e M, = Labels of vectors in Xtr (if available)

© number of nodes: 1 <c<n
© max. # of iterations : T
© distance measure : ”xk - vi,t—lll
Pick © termination measure : E = “Vt - VH”
© termination criterion : ¢
© ¥>1
© To = initial temperature
Get | g initial prototypes: ~ V_ e R
t « L;E, = high value
DO UNTIL (t >T or Et_) <g)
B, = ‘t/c/ Ty
Fork=1ton
xeX, X <X X(—X—{xk}
Fori=1ltoc
~Byllxy - 2/8& ~Belxi-vyel?
Do Dy, =€ BllEe—vy ¢l v e TtV

j=1
If (t = a perfect square) n =1

Else n, =n, ,+py,
My =1/ 1y)

Vit ™ Vit Pt 'pik.t(xk - vi,t-l)
Next i
Next k

te—t+1
END UNTIL

V'V,

CLASSIFIER DESIGN 221

We call attention to the handling of n ¢ In Table 4.11, which

necessitates further modifications to the standard CL model set out
in Table 4.4, but reports what Yair et al. used in their original paper.
Since SCS is an unsupervised method, optional blocks B and C of
Table 4.4 are applicable to this scheme too. SCS starts with a low

value of Bt (i.e., with approximately uniform {p, ,}), and then Bt

slowly increases with time. As a result, at the beginning of the
procedure no prototype is strongly attracted to a particular class.
With time (i.e., as the number of iterations increases} prototypes

become more strongly separated from each other as p, , begins to

peak around the Euclidean winner, but at the same time Myt = 0.
Thus in the limit (as iterate t goes to infinity) SCS behaves like a

winner-take all (LVQ type) competition.
The ¢ numbers {p, ,} are probabilities, so they satisfy 0 < p, , <1

4
and ‘leik‘t=1. Consequently, pt(xk)=(plk‘t,p2k't,...,pck_t)T is a
i=

probabilistic label vector for X, p,(x,)e N, . Since Myet =[—r;l—]s 1,
it
the sum of the learning rates for a fixed input vector x_at any iterate

t satisfies the constraint 0< zascs <1. Bezdek and Pal (1995)

showed that there is a strong relationship between SCS and
mixtures of normal distributions as discussed in Section 2.2.C.
Bezdek and Pal made two simplifying assumptions about the
mixture of normals obtained by substituting (2.18a) into (2.17). For
each class i, 1 <i<c, they assumed that

= 1/¢c ; and (4.25a)

E = 021 . (4.25b)

i

In other words, all classes are equally likely and all classes have a
population covariance matrix which is a scalar multiple of the

identity. Then Zi‘lzc%l and 1/det(Ei)=<5 for every class, so the

Mahalanobis norm becomes a multiple of the Euclidean norm,

|

takes the form

; 2. For this special case Bayes rule at (2.19)

L ==
Zl [o}

222 FUZZY PATTERN RECOGNITION

)6 ux Hx" / ((2TC)p/2 G)

T~
€| -

n{i|x) =

1) s

Rty - .20

5)

J=1

For a given x_ this becomes

R S I A (0 S N
nlilx,)= e (2"2[‘ -]/ 2 e [2"2“ e) : (4.27)
J

=1

If we define Bt=1/2cs2 and Vil =R fori =1 to ¢, then Py, and

n(i|x,) are identical. Thus the component p, , of the SCS learning
rate used by Yair et al. can be interpreted as an estimate of the
posterior probability of X being from class i under the assumptions

in Section 2.2.C and (4.25). However, Bt =1/2<52 does not ensure

hm{B } o. To achieve this Yair et al. use t in the definition for §,
t—oo

ie., B, =(yYe / T,). Thus, at time t we take 0 =(T, ¥ y~¢ /2) . Then
P, (and n(i|x,) are still identical, and B, =1/2¢% = zl_rg{ﬁt}=oo,

In summary, p, , can be interpreted as the posterior probability
that x is from class i when all classes are equally likely, and class i
is modeled as a p-variate normal distribution with parameters
(pi_t =V, Zi’t =(T0 yue /2)1). Example 4.3 will compare SCS to
FLVQ, the next CL model we discuss.

H. Fuzzy learning vector quantization (FLVQ)

A possible connection between batch FCM and sequential LVQ was
first discussed by Huntsberger and Ajjimarangsee (1990), who

suggested fuzzification of LVQ by replacing the learning rates {oclk t}
in (4.12c¢) with the fuzzy membership values {u } computed with
FCM formula (2.7a). While this approach was 1nn0vat1ve it was to

CLASSIFIER DESIGN 223

some extent unmotivated. Moreover, their method still required
choosing m, and it seemed to improperly mix the objectives of LVQ
(vector quantization) and FCM (clustering).

Tsao et al. (1993) proposed a batch prototype generator model that
required the use of fuzzy partitions that was initially called a fuzzy
Kohonen clustering network (FKCN). Like fuzzy ISODATA, this
initial name seemed inappropriate, so the model and algorithms for
it have subsequently become known as FLVQ (Bezdek and Pal, 1995).
FLVQ has three objectives: (i) to overcome the two problems we
identified for LVQ (which nodes to update and how to use the non-
winner prototypes in the determination of learning rates); (ii) to
circumvent (to some extent} the problem of how to choose m for
FCM-AQ; and (iii) to provide a substantial link between the batch c-
means and sequential LVQ families of prototype generators.

As noted in Section 2.3, the choice of m for the FCM model is very
important. When m is small (close to 1), (2.7a) tends to produce
almost crisp label vectors. If prototype updates in equation (4.12c)
use learning rates based on (2.7a), and u " is close to 1, the update for

node i may be very large compared to the other updates because of

c
the column constraint Yu, =1. If, additionally, the current

i=1
prototypes have an unfavorable geometry compared to the central
tendencies of clusters in the data, some prototypes may move
rapidly towards a cluster, while others may move but little. This

effect is illustrated in Figure 4.15 for the data set X =X uUX,

ik

ok
X, 5 sﬁlgggt;ﬂg o O X,
O O o © o
O @) © O 0
O
© O o o Y0 9 ¢
OOO o O ©c o ©0 0O
O O Q @) O Q
O O .
OV v,

Figure 4.15 A low value of m may produce bad prototypes

224 FUZZY PATTERN RECOGNITION

In Figure 4.15 prototype v, is closer to every point in X than v, is.

The result of this is that for any m at ¢ = 2, the class 1 memberships
{u ud of every point in X computed with (2.7a) will be higher than the

class 2 memberships {u } Sinceu, +u, =1 for all k, the two rows

of membership matrices produced w1th (2.7a) for any m will look
like this:

o (30.5) 5] m_t, _

—-. (_>1)..._>}

So, when m is close to 1, memberships of points in both X . and X, in

class 1 will be close to 1. The effect of this is that the sequential
updating strategy (4.12a) with learning rates based on (2.7a) will
force prototype v in Figure 4.15 to migrate towards the grand mean

VofX andv 2 will not change much.

On the other hand, if m is large (say > 7) all of the u,, 's will be nearly
1/c. In this case both prototypes in Figure 4.15 will be pulled towards
the data very slowly because (u,)™ =1/ c™. So when m is large, for

any competitive learning scheme whose update rate is a monotonic
function of the {u } every prototype will be updated to almost the

same very small extent {e.g., with ¢ = 3 and m = 7, every
u, . =0. 0004).

Thus, if the memberships at (2.7a) are to be used in (4.12c), neither
low nor high values of m seem desirable. However, if we start with a
high value of m, and then slowly reduce it during iteration, this
undesirable situation is avoided. Motivated by this, Tsao et al.
(1993) defined the batch fuzzy learning vector quantization (FLVQ)
algorithm via the heuristic learning rates

2 Mt
FLVQ _ ™t = m, -1 .
o —ug =| & ([v,], v, 7|V a2
n
Vie = Viga t kél‘*gf,\tlg[xk - Vi,t_l) / SE_: afSLXQ Vi ,where (4.28b)
mt=m0+t[(mf—-m0)/T] m, +tAm ; m.mg >1;t=1,..., T. (4.28c)

Equation (4.28b) can be rewritten as vit— }: aFngx / ZaFLVQ.

Comparing this to (2.7b), equation (4.28c) asserts that when m0 =m,
= m is fixed, FLVQ@ is FCM-AO. Since m, in (4.25c¢]) is variable, we can

CLASSIFIER DESIGN 225

have three families of FLVQ algorithms, depending on the choice of
the initial (m,) and final (m,) values of m. For t e {1,2,..., T},

m, > m, = {m }{ m_: Descending FLVQ = | FLVQ (4.292)
m, <m; = {m,} T m : Ascending FLvQ = TFLVQ (4.29b)
m, =m = m, =m,=m:FLVQ = FCM {(4.29¢)

We have included a discussion of TFLVQ here for completeness, but
its properties as functions of m, seem opposite to the intuitively

desirable properties shared by SCS and »LFLVQ. Here we concentrate

on and describe in Table 4.12 the implementation of ~LFLVQ based
on equations (4.28) and (4.29a), which is used in Example 4.3, and
with modifications as set out in Baraldi et al. (1998), Example 4.26.

Table 4.12 Descending FLVQ (| FLVQ), Tsao et al. 1993

Store | (Un)labeled Object Data X, ={x,x,,....x _}cRP
U,eM, = Labels of vectors in Xtr (if available)

number of nodes: 1 <c<n
max. # of iterations : T

distance measure : "xk ~V, ”
l,t—l A

Pick .

termination measure : Et = “Vt - VH"

termination criterion : ¢

7>m0>rnf>1.1

©0 6 0 00

Get | @ initia] prototypes: Ve ReP

t « LE, = high value
DO UNTIL (t >T or Et_1 <¢g)
m, =mg+ t[(mf - mo) / Tl
Fork=1ton
2 \"Mt

o0 = &l vyl B vy, 7

Next k
Fori=1ltoc

n
_ L Q _ FLVQ
Vie = Vig 2_ %y (x Vit- 1)/ 2_1axst

Next i

t—t+1
END UNTIL

V<V, UeU

226 FUZZY PATTERN RECOGNITION

As with LVQ and SCS, J/FLVQ prototypes can be used with equation
(2.6a) to produce a crisp partition of X. Notice, however, that at
termination a fuzzy partition is also available, and it will be part of

an optimal pair (U,,V,) for the FCM objective function Jmt at the
terminal value of m,. In either case, the final prototypes can be used

to define a 1-np or 1-nmp classifier. Our implementation of iFLVQ
is necessarily batch, and this preserves its relationship to FCM-AO.

Another difference worth noting is that unlike FCM-AO, J«FLVQ
does not optimize a fixed objective function. All we can say about

this is that since J«FLVQ uses equations (4.28) at each iteration with
m=m_, every full step of JzFLVQ finds a pair (Ut, Vt) that are

necessary for a local extrema of J .
t

Observe the constraints 7>m,>m.>11 in our specification of

0

\LFLVQ. These empirically chosen limits may prevent numerical
instability - in other words, stay away from 1 and infinity (see

Baraldi et al., 1998 for more discussion on this aspect of ~LFLVQ).
)’I‘

The vector u, (x,)=(u is a fuzzy label vector for

1k,t* Yokt Yk t
X, ut(xk) eNg . This means that the sum of the JzFLVQ learning
rates for input vector x_at any iterate t satisfies the same constraint

C
as the SCS learning rates: 0< Y ajV9 <1,
=1

To understand how m, acts to control the distribution and values of

the learning rates {ag(”t’g} in FLVQ, we discuss JzFLVQ in more
detail. The general situation can be understood by examining the
learning rates at (4.28a) for fixed c, {vi‘t} and m,. In this case,

) {4.30)

-2m¢ f(my ~1)
FLVQ _ ..~ _ t/H
Ot =K (”xk Vit A

c 2/(m -1)
where x = 2(1 / “xk -V, t") is a positive constant. Equation
j=1 A

(4.30) shows that the contribution of x, to the next update of the node

weights is inversely proportional to their distances from it, so the
winner for this k is the v, , closest to x,. Larger values of m_lead to

fuzzier values of u, (values closer to 1/c¢), and

CLASSIFIER DESIGN 227

Yu, =l= EGFLVQ <1. So, in the initial stages of ! FLVQ large
values of m, [near m,) yield updates with lower individual learning
rates.

In the initial stages of SCS (for low values of t) p. et = 1/ ¢, and since
the counters {n } all start at 1, at the beginning of the SCS learning
process each prototype is (more or less) updated to the same extent.
In other words ocik,t =Myt - Puc,t) =Myt - Piie,e) = jk,t for all i and j at

low values of t. What happens for ~LFLVQ9 In this case we start with

a high value of m = m . For high values of m, u, , =1/c Vi, andasa

FLVQ mt ~ aFLVQ

result o, 7~ = (u,) it (u,)™t for alliand j at low values

jk,t)

of t. Thus, in 4 FLVQ all ¢ prototypes will have about the same
importance at the beginning of iteration, with learning rates at each
x,_that are roughly uniformly distributed across the c nodes during

updates. Thus, J«FLVQ and SCS start with similar learning rates.

As iteration continues p, , for SCS and u, , for xLFLVQ both tend
to peak at the winner. For SCS, p, , — 1 when node i is the winner,

but n, ., — 0, so if the iteration is allowed to continue indefinitely

ikt
the overall SCS learning rate my . -py.¢ — O almost everywhere -
that is, except on a set of measure zero in R (recall that ny , =1 is
reset at all the perfect squares in %). On the other hand, u, , —» 1 for

d FLVQ when node i is the winner but since m, -1, the overall

learning rate for this method also goes to 1, ocﬁf“{g —1. Asm ~ m,

(rnt gets closer to 1), more and more of the update is given to the
winner node. That is, the lateral distribution of learning rates is a

function of t, which in FLVQ sharpens at the winner node as m, %

m,. Indeed, the learning rate characteristics of »LFLVQ are roughly

opposite to the usual behavior imposed on them by other
competitive learning schemes. In LVQ and SCS all c learning rates at
x, decrease towards O (everywhere for LVQ, and almost everywhere
for SCS) as t increases (this imbues them with stability and
improves the chance they will satisfy the termination condition),

but in sLFLVQ, the winner learning rate tends to increase towards 1
during learning, while the other c-1 rates tend towards zero. So, SCS

behaves more like LVQ as iteration proceeds than) FLVQ does.

Nonetheless, 4 FLVQ@ seems to terminate rapidly in the literature
that illustrates its use.

228 FUZZY PATTERN RECOGNITION

Example 4.3 We abbreviate some results given by Bezdek and Pal
{1995) to illustrate and compare LVQ, SCS and FLVQ by again using
Anderson's (1935) Iris data. Two initializations, shown in Table

4.13, are used: 1 s the set V of subsample means; and I , is computed
with (4.21).

Table 4.13 Two initializations for the numerical experiments

Init. I, = (Means) (! Init. 1, via (4.21)

501 343 146 0.25 v 4.30 2.00 1.00 0.10
594 277 426 1.33 <—v2‘0—> 6.10 320 395 130

6.59 2.97 5.55 2.03 <——v3’0-—> 7.90 440 6.90 2.50

None of the algorithms used class information (that is, are
supervised) during learning. Table 4.14 shows the results of 1-np
classification (with & the Euclidean metric) of Iris using the
(relabeled) terminal centroids recommended by LVQ, SCS and FLVQ.

Table 4.14 Sample Mean, LVQ, SCS and FLVQ@ 1-np classifiers
on the Iris data when initialized with I 1

Initial Prototypes L Confusion Matrix

5.01 3.43 1.46 0.25 50 0 0

5.94 2.77 4.26 1.33 0 46 4

6.59 2.97 5.55 2.03 0 7 43
Final Prototypes : LVQ

T=50, 0,=0.6 Confusion Matrix

5.00 3.42 1.46 0.25 50 0 0

5.87 2.74 4.37 1.41 0] 47 3

6.81 3.08 5.68 2.08 0 13 37
Final Prototypes : SCS

T=50, y=1.3, T,=40 Confusion Matrix

5.01 3.42 1.46 0.25 50 0 0

5.88 2.74 4.370 1.41 0 47 3

6.78 3.05 5.63 2.03 0] 18 37

Final Prototypes : 2 FLVQ

T=50, my=5, m:=1.5 Confusion Matrix
5.01 3.42 1.47 0.25 50 0 0
5.88 2.75 4.37 1.41 0 47 3
6.82 3.06 5.70 2.06 0 14 36

CLASSIFIER DESIGN 229

The confusion matrix associated with D when V V = I shows

that the sample means yield a 1-np c1a351f1er that comrmts 11
errors; 4 class 2 points are labeled class 3; and 7 class three points
are labeled class 2. All three algorithms produce very similar
prototypes. The confusion matrices for the LVQ and SCS based 1-np
designs are identical, showing 16 resubstitution errors. FLVQ is very
nearly the same, committing one more error than LVQ and SCS on a
class 3 data point.

SCS seems very sensitive to the choice of and interaction between ¥
and To‘ Table 4.15 studies the effect on SCS outputs to the

parameters ¥ and T,

Table 4.15 Some outputs of the SCS 1-np Classifier on Iris

Init. ¥=1.30, T0= 40 Confusion Matrix
5.006 3.425 1.465 0.247 50 0 0
A 1 5884 2743 4370 1414 0 47 3

6.776 3.047 5.634 2.031 0 13 37
Confusion Matrix

¥=1.15, T = 40
5.843 3.057 3.758 1.199 50 O O
B I 5843 3057 3758 1199 5 0 O
5.843 3.057 3758 1199 5 0 O

¥=1.30, T0= 40 Confusion Matrix
5.006 3.425 1.465 0.247 50 0 0
C I 5884 2.743 4.370 1.414 0 47 3
6.776 3.047 5.634 2.031 0 13 37

¥=1.15, T,= 40 Confusion Matrix
5.843 3.057 3.758 1.199 50 0 0
D 1 5.843 3.057 3.758 1.199 50 0 0
5843 3.057 3.758 1.199 50 0 0

¥=1.30, T,= 60 Confusion Matrix
5.008 3.378 1548 0.284 50 0 0
E I 6.272 2.884 4.945 1.690 3 0 47
6.292 2.884 4.945 1.690 0 0 50

¥=1.30, To= 70 Confusion Matrix
5.843 3.057 3.758 1.199 50 0 0
F I 5843 3.057 3.758 1.199 50 0 0
5.843 3.057 3.758 1.199 50 0 0

230 FUZZY PATTERN RECOGNITION

All runs used T=50; rows A are repeated from Table 4.14. First
compare A, B, C and D, all of which have T, =40. Changing ¥ from
1.30 to 1.15 using either I or I, has the dramatic result of forcing all

three SCS centroids to terminate at ¥ = (5.843,3.057,3.758,1.199)T
- the grand mean of Iris. This has the very predictable bad effect on
the 1-np design based on these prototypes of it committing 100
mistakes in both cases.

Next, compare sets C and F in Table 4.15 to see that it is not just a
change of ¥ that has this effect on SCS, for in this case you will see
that the same result occurs with ¥ fixed at 1.30 but To increased from

40 to 70. Finally, look at sets C, E and F for I, and ¥=1.30 fixed.
Intermediate between the good result at T 0=4O and the worst result at
T,=70 is the case T, = 60, for which SCS terminates with a good

estimate of the first centroid, but identical vectors for the second
and third prototypes, resulting in a 1-np error rate of 50 mistakes.

Table 4.15 - and many other experiments with other values for ¥
and T, not reported here - suggest that SCS is very sensitive to

choices for these two parameters.

Anocther set of runs (not shown here) for all three algorithms that
used the same parameters but which were started at initialization I,

yielded prototypes that were identical {to three decimal places) to
those shown in Table 4.14. This does not establish that these three
algorithms are insensitive to initialization, but it gives us some
confidence that the Iris data are (in the eyes of these algorithms)
rather well structured. The important point is that there are
combinations of initializations and algorithmic parameters for all
three algorithms that produce very similar and predictable results.
This is usually the case for competing algorithms - given enough
time, most models for a particular class of problems can be made to
yield pretty similar results.

I. The relationship between c-Means and CL schemes

In (2.7a) and (2.7Db) the weighting exponent m for J_ is fixed, but in
(4.28a) it is a variable. Since m is replaced by a parameter whose
value depends on the number of iterations that have elapsed, m,

plays a role that is somewhat analogous to ociLIX ? in LVQ. To see this,

C
remember that zu,
i=1

learning rates in (4.28a)} that are applied to all ¢ nodes via (4.28b) for

=1 for each x,_ in X. Consequently, the

CLASSIFIER DESIGN 231

each x_are dependent on each other, and themselves must satisfy

FLVQ

C
the condition X0y

i=1
rates this way is best understood by considering a simple example,
Suppose c=5 and m =4 at some iterate. Two label vectors for X for

the five nodes, and the resultant learning rate distribution vectors
they induce via (4.28a) are shown below:

<1. The effect of controlling the learning

0 0
1 1

ulx,)=|0|=2afV9 =0 for any m, : and (4.31a)
0 0
0 0
0.1 0.0001
0.6 0.1296

u(x,) =| 0.0 |= &9 =] 0.0000 |, (m, = 2 is illustrated). (4.31b)
0.2 0.0016
0.1 0.0001

In (4.31a) node 2 is the crisp winner since it receives all of the
membership of this data point in the five clusters. From (4.25a) it
follows that for any value of m, the learning rates applied to this

data point will also be crisp, and will be the same as the labels used
to compute them, as shown in (4.31a). Thus, when a single node can
win all of the membership, none of the non-winner nodes are
allowed to influence the update in (4.28b) for that data point. In this
special case, FLVQ reverts to an LVQ - like strategy - but only for data
points that have crisp memberships.

On the other hand, if the distribution of memberships for x _is truly
fuzzy, as in (4.31b), exponentiation of the membership values by m,

has a noticeable effect on the role played by each node in the update
scheme. The winner node in (4.31b) in the sense of maximum
membership (which is, as previously noted, also the minimum
distance prototype} is still node 2. But in this second case, non-
winner nodes with non-zero memberships will also participate in
the determination of how much to change their corresponding
weight vectors for that data point. Finally, if m =m, then clearly

FCM=FLVQ.

If all n membership columns in U from the FCM formula (2.7a) were
crisp, (4.28b) would become a batch version, LVQ-style update, with

232 FUZZY PATTERN RECOGNITION

V.=V, o+ 3 (=, -V, t_1) /n,,, where n . is the number of points in
¢ ot xy €l ’ ’ ’

the i-th crisp cluster of X at iterate t. The previous estimate for v 1

it -
can be eliminated from this last equation by distributing the sum
over the minus sign, leaving the HCM update formula (2.6b). Suppose
we replace equation (4.12c) with this batch update formula and
require the calculation of U, 9 with the nearest prototype rule (2.6a)

or (4.2) at each pass through X (remember that LVQ does not do so).
Call this extended batch LVQ (EBLVQ). Then FLVQ reduces to EBLVQ
whenever U is crisp, and further, EBLVQ is precisely HCM. In this
sense FLVQ is a true generalization of both LVQ and HCM that
integrates their models in perhaps the strongest possible way.

A somewhat more formal analysis of the relationship between FLVQ
and FCM is elaborated in Karayiannis and Bezdek (1997).
Karayiannis (1997a) provides a fairly comprehensive survey of
learning vector quantization that includes not only FLVQ, but a
number of more general formulations that have interesting
connections to generalizations of all three c-means families.

J. The mountain "clustering" method (MCM)

Yager and Filev (1994a) developed a prototype generation algorithm
for unlabeled data that is very different in spirit than all of the
previous methods discussed in this section. In their scheme a very
large finite set of candidate prototypes are specified and fixed, and
the MCM objective function is then used to select ¢ good prototypes
from the fixed set of candidates. In short, prototypes are not
initialized and then iteratively updated, but simply chosen
iteratively from a (very large and fixed) discrete set.

MCM begins by specifying a lattice of coordinates that capture the

unlabeled data X =({(x,,x,,...,x } c RP. Without loss of generality we
describe a simplified version of MCM that uses an integer lattice. We

construct the lattice by first enlarging the hyperbox hb(m, M) using
the floors and ceilings of the features instead of the given values in

equations (4.20). Thus, with l_xij and ’-xjk] denoting the integer

floor and ceiling of x, respectively, we compute hb(m |,[M),

which is the smallest hyperbox with corners having integer
coordinates that contains X as a proper subset.

For 1 £ j < p, the j-th edge of hb((m |,[MY)) is composed of, say, r

integers that run from the floor of the minimum, (_m J to the

]
ceiling of the maximum, [-M j-‘. The lattice Lhb({m |,[M]))=Lhb of

CLASSIFIER DESIGN 233

integer grid points (or nodes) in hb(m ,[M]) comprises the set of
candidate prototypes for the MCM model. We will use our usual
notation for the point prototypes in this set, i. e., v, € Lhb, and ask
you to remember that their coordinates are integers in this
subsection only.

Next, calculate the n-r; -ry -+ r, distances {S(Vi,xk}. Yager and

Filev (1994a) discuss using only Minkowski metrics (1.11) for this,
but it is clear that inner product metrics in the family at (1.6) are
equally applicable. Unlike, say, any of the c-means models, the
MCM objective function is not fixed. Instead, the model begins with
an initial objective function J vem 1 and then uses the current set of
values in subsequent iterations to define a new objective function
Jyem,¢ @t each t > 1, very much like the objective function Jmt used

by FLVQ. The initializing objective function is

. _ D -adlvy.xy)
Iyema (Vi X) = Se "%, v, eLlhb , (4.32)

" ~ad(vj,
where o is a positive constant. If we regard e =) a5 the

"potential" at v, due to x , then Jycy(v;;X) measures the total

potential at v due to the data. Thus, the total potential Jyeym(vy;X)
will be high when many data points are concentrated near v. Yager
and Filev thus argue that maxima of (4.32) identify good prototypes.

Put another way, for a fixed v, € Lhb, the maximum (minimum)

i
value of J_ . occurs at the minimum (maximum) value of (v, xy)

over 1 <k <n. Since J sums up the n values {e_amvj’xk]} atnode v,
J ey Will be proportional to the density of points in X in the
neighborhood of v.. A plot of the values {J MCM(vj;X)} over v;e Lhb

should, for compact well separated clusters at least, be a digital
surface with (mountain) peaks at nodes where the density of the data
is highest - i.e., where there are clusters. Hence the term "mountain
function" for (4.32).

Maximization of J . . over v, € Lhb is accomplished by simply

enumerating its values and finding the largest one, ties being
resolved arbitrarily. We let the set of initial mountain function
values (MFVs) be

234 FUZZY PATTERN RECOGNITION

. P
MFV, = {JMCMJ(V ;X):v elhbl<js< Ir j} : (4.33)

If v, =arg max{JMCM_I(vJ.;X)}, lattice point v, is taken as the first
J

prototype. The next step in MCM is to "destroy" the peak at v,

redefining the mountain function by subtracting from each

JMCM‘I(vj;X) a fractional amount of Jy ... (v;X) that is also

inversely proportional to the distance 8(‘71,VJ). This results in a new

set of values MFV, , of the modified objective function J
which after t 21 steps, take the form

MCM,t”’

. _ . ~Bé(v, .v) -
Jvem 41V X) _JMCM.t(vj’X)_(e o)(JMCM,t(vt’X))’ (4.34)

p
for v, € Lhb,1<j<Ir i where B is a second user-defined positive
=1

constant and i't is the t-th prototype. Maximization over MFV2

9 and frl is a candidate to

> an occurrence which is called "node reuse" by

Barone et al. (1995). In any case, v, is the second MCM prototype,

etc. Equation (4.34) thus defines an iterative procedure that
continues to select nodes from the lattice as prototypes for the data
until a user-defined termination criterion is met. Yager and Filev
(1994a) recommend termination when the ratio of successive
maximum values of the mountain function is small, i.e., at the first
i for which

produces a second winning node, say v
also become Vv

J (v..:X)
MCM.t~ it <eg , (4.35)

JMCM,t—l (‘Arl—l,t—l; X)

for some termination threshold € > 0. At this point MCM has

produced the set V., ={ 1,...,\‘7t} c Lhb, which are taken as
prototypes for t (as yet undefined) clusters in X.

v

This method is simple, and like all algorithms, has some
parameters to pick. As mentioned above, it may happen that MCM
uses the same node more than once, since the amount subtracted
from each mountain value in (4.34) depends on B, and for the wrong
choice, may not be enough to flatten a particularly strong peak.
Barone et al. (1995) provide an in depth analysis and empirical

CLASSIFIER DESIGN 235

recommendations for choosing «, B and ¢, and also discuss the issue
of peak reusability. Our simplified description of MCM uses an
integral grid size, but the lattice of prototypes could be either finer or
courser than this. Barone et al. (1995) consider the issue of grid size,
and also discuss the choice of a metric for the distance calculations.
Table 4.16 summarizes the MCM method of prototype generation.

Table 4.16 MCM prototype generation (Yager and Filev, 1994a)

Store | Unlabeled Object Data X ={x ,x,,...,x_}c RP

positive constants o and p
distance measure : ”xk -V, H"

termination measure :

E = JMCM.twi,t;X) /d

termination criterion : €
Lattice Lhb({m |,[M]) = Lhb
0= high value

MCM,t-1 (vi.t—l; X)

&
£
Pick |
]
[
E

61 = arg ma_x{JMCM,l(vj; X)}
v.eLhb

]
te1
DO UNTIL (Et <g):

v , = arg max{JMCM’m(vj;X)}

t+
Vi eLhb

tet+1
END UNTIL

Vyen ={¥1- ¥, } cLhb

If no peak is reused before MCM terminates, then c = t, that is, the
number of distinct prototypes corresponds to the last value of t in
Table 4.16. On the other hand, when one or more peaks is reused, the
number of distinct prototypes determined by MCM is, say, c < t. In
either case, MCM starts with ¢ = 1 prototype, much like a divisive
hierarchical clustering method, and continues to add (possibly non-
distinct) prototypes until its termination criterion is met. At first
glance, this seems to bypass the cluster validity problem. However,
the number of prototypes determined by MCM depends on o, 3 and €,
so validation is still a problem - just not an explicit one. Barone et
al. do discuss cluster validity, and suggest validating the number of
prototypes selected by a novel application of singular value
decomposition applied to the txp matrix V. They recommend

looking for one or more "breaks" in the list of singular values (very
similar in spirit to Hubert's knees in Chapter 2), and basing the final
estimate of ¢ on this procedure.

236 FUZZY PATTERN RECOGNITION

The clustering part of MCM amounts to using Vi oy t0 compute, for

example, the crisp nearest prototype labels of X. Some
computational experiments report finding good clusters this way,
but it is easy to construct data for which this method fools the user
badly. This disclaimer aside, MCM has been used some for one
important application, and that is as a simple and often successful
way to initialize other clustering and/or prototype generator
algorithms. Indeed, Barone et al. (1995) advocate this themselves,
and offer several examples to support their claim that terminal
MCM prototypes are often very similar to those found by other
methods.

Example 4.4 (Barone et al., 1995). Table 4.17 juxtaposes the terminal
prototypes found by MCM and FCM on the data set Iris3 " shown in
Figure 4.12. The first column in Table 4.17 also shows the symbols
used for the 2D means shown in Figure 4.12

i

Table 4.17 Terminal MCM and FCM prototypes for Iris 24

Means v Viem “,MCM

sa1 | 146 025 | 146 025 | 1.66 | 0.37
3a2| 426 133 | 428 1.35 | 428 | 1.43
343 | 555 203 | 562 2.05 | 559 | 2.23

<l

<l

403

Barone et al. used the Euclidean norm for both algorithms, and set ¢
= 3 for FCM. They state that o was set at 4 for MCM, but do not
specify B and ¢, or any of the other processing parameters for FCM
that give the results in Table 4.17. Since the MCM values in Table
4.17 are non integral, we know that the lattice used by MCM for
these calculations was considerably finer (at least fine enough to
have grid points with coordinates to two decimal places) than the

unit lattice Lhb(| m |,[M]) used in our specification of MCM.

The conclusion we draw from Table 4.17 is that, given the right
choices for MCM, it can produce prototypes that are reasonable

initializers for FCM. Notice that the MCM estimate of v, seems to
be the worst of the three, but the 50 points which it represents are

very compact and well separated from the remaining 100 points in
Iris 34 (cf. Figure 4.12).

CLASSIFIER DESIGN 237

Perhaps the biggest and certainly most evident problem with MCM
is computational complexity. If p is more than two or three, and/or
the range of the data set X in any of its p dimensions is large, the
lattice Lhb used in our description of MCM will be very large indeed,

because [Lhb((m |,[MJ|=r, ry - r,. For the two dimensional data
set Iris_ , this amounts to (700)(300)=210,000 initial prototypes to

cover the lattice Lhb((0,0)", (7.3)"). In a non-specific setting, suppose
X contains data points in 10 dimensions - a not uncommonly large
number of features. If each of the 10 axes is subdivided by 10, the

unit lattice Lhb(|m |,[M7) will have 10'° candidate prototypes - too
many to make MCM computationally tractable.

Chiu (1994, 1995, 1997) proposed a modification of MCM wherein
the lattice of candidate grid points is abandoned, and replaced with
X, the unlabeled input data. Chiu called his modification of MCM
the subtractive clustering method (SCM), and it is not sufficiently
novel or different from MCM to warrant a separate discussion here.
(We will, however, discuss SCM again in Example 4.18.)

Since the candidate prototypes in SCM now coincide with the data,
there are only n of them, and the complexity issue would seem to
resolved. However, Davé and Krishnapuram (1997) have shown that
the complexity of SCM is still O(n?), while the complexity of FCM is
O(n). They further discuss the relationship between SCM, PCM and
other clustering algorithms, including the potential function
approach (Tou and Gonzalez, 1974).

Velthuizen et al. (1997) discussed a different set of modifications to
MCM, and called the resultant algorithm the modified mountain
method (M3). Noting that MCM is useful only if "good" values are
chosen for the MCM parameters o and f, they suggest computing o

based on a sample statistic of X. Letting S = i (xk -¥)T(x, -¥)/n
k=1

k

n
be the sample covariance matrix with ¥v= 3 x,_/n the grand mean
k=1

of n input points X in %P, Velthuizen et al. suggest computing o as

o= S S , where (4.36)
rn+/trace(S)

1

2p+2r(p+2) m

ypra) |\ 2)
(p+2)(p/2]+l

r=n (4.37)

238 FUZZY PATTERN RECOGNITION

Unlike MCM, the M3 model fixes c, the number of prototypes to seek,
in (4.36). Velthuizen et al. also present a method for eliminating the
sensitivity of MCM to B. The essence of this part of M3 is to pick a
"reasonable" B - presumably by trial and error (= 0.06 in
Velthuizen et al.), isolate a neighborhood of the current winner
prototype v, by finding the 5 nearest prototypes to it, and then
introducing a finer local subgrid just in some enlargement of this
neighborhood, over which the distribution of the data in the
neighborhood is then fit with a multivariate normal distribution
{(you have to wonder a little about a fit to 5 points). Finally,

JMCM,t(\‘rt;X) in (4.34) is replaced by the value of the Gaussian

density just found in the neighborhood of v,. The authors assert

that this modification overcomes the sensitivity of MCM to
parameter .

The application domain of interest to Velthuizen et al. is magnetic
resonance (MR) 1mage segmentation. Let Tl T2 and Py denote,

respectively, the spin lattice relaxation, transverse relaxatlon and
proton density of pixel (i,j) in an MR slice (three images at the same
location in time and space) of size m x n. If we aggregate these 3

numbers into a pixel vector X, (Tl T2 Py), the data set X = {x, |,

X e X ooy X Fisin ®3; we w111 meet thls 3D pixel vector data in
ij, mn

several other examples in Chapters 4 and 5. The basic algorithm
used by Velthuizen et al. proceeds as follows. Let X stand for a set of
pixel feature vectors derived from any MR image, and denote the
prototypes found by M3 as V| 5 to distinguish them from Ve Then

[M3.1] run M3 on (unlabeled) X to find VMS’

[M3.2] construct U, a crisp 1-np labeling of X with DVMS’E’S with

equation (4.2): the label assigned to pixel vector X, is the
algorithmic label (index) of the closest prototype;

[M3.3] physically relabel each cluster in U as a tissue class by
matching the pixels in each algorithmic cluster to one of the
ground truth tissue clusters. Assign the algorithmic cluster
to the tissue class that enjoys maximum pixel matching (this
is a different relabeling method than the one given in
Section 4.3.B);

[M3.4] artificially color the labeled image.

CLASSIFIER DESIGN 239

s sy =

Example 4.5 (Velthuizen et al., 1997) Velthuizen et al. (1997)
evaluated segmentations of 13 MR images using two types of ground
truth. Three of the test images had manual ground truth (GT1) for ¢ =
10 tissue classes derived by visual inspection and marking of each
image by a trained radiologist. Segmentations were produced by four
methods: a supervised 7-nearest neighbor (k-nn, see Section 4.4)
rule, which was used to construct type GT2 ground truth for the other
10 images; and unsupervised M3, unsupervised FCM(VO) and
unsupervised FCM(VM3)~ Comparisons were made visually and

quantitatively.

Segmentation of an MR image by FCM was done with two
initializations: a "standard" initialization V0 (cf. (9) in Velthuizen et

al., 1997); and with VM3' We write FCM(V) to indicate FCM initialized
with V. FCM generates a terminal fuzzy c-partition U FoM of X which

is hardened using equation (1.15), and finally, steps [M3.3] and
[M3.4] are performed on the resultant crisp partition.

Figure 4.16 shows the T1 (weighted) input data for a patient that has
a brain tumor. Figure 4.16(b) is the color key for the images: csf =
cerebro spinal fluid; wm = white matter; gm = gray matter; gm-2 =
(falsely labeled) gray matter. Edema is an abnormal accumulation
of tissue fluid resulting in swelling.

csf
w
gm
gm-2

tumor

edema

(a) T1 Weighted MR Image o Tesend
Figure 4.16 MR segmentations (Velthuizen et al., 1997)

A supervised k-nn segmentation is shown in Figure 4.16(c). This
image results from an operator choosing labeled subsets of pixels

240 FUZZY PATTERN RECOGNITION

from each tissue class, and then using the standard k-nn rule to
label the remaining pixels. This is repeated until a panel of
radiologists agree that the k-nn segmentation is good enough to be
used as type GT2 ground truth. Ten of the thirteen images discussed
in this study used this method (GT2) as a basis for comparing the
results of the three algorithms (unsupervised M3, unsupervised
F CM(VO) and unsupervised FCM(VMS).

{c) -nn (type GT2,¢c =) | (d) FCM(V)

@M3 (0 FCMV,)
Figure 4.16 (con't.) MR segmentations (Velthuizen et al., 1997)

CLASSIFIER DESIGN 241

Figure 4.16(d} shows a segmentation achieved by FCM(VO). The
tumor is not detected. Instead, FCM(VO] finds two false gray matter

regions that do not correspond to anatomical tissues. The M3
segmentation in Figure 4.16(e) is much better - it finds many of the
tumor pixels and does not have false gray matter tissue regions.
Panel (4.16f) shows a segmentation resulting from the initialization
of FCM with the output of M3. This view should be compared to
Figure 4.16(c). It's hard to see on a printed copy, but there is excellent
correspondence between the tumor regions in these two views.

Table 4.18, adapted from Velthuizen et al. (1997), shows the average
performance on pathological tissues for segmentations of the
thirteen images made by unsupervised M3, unsupervised FCM(VO)

and unsupervised FCM(VMS).

Table 4.18 Average true and false positive pixel counts (in %)
for pathological tissues (Velthuizen et al., 1997, Table 1)

False Positives True Positives
FCM(VO] M3 FCM(VMS) FCM(VO) M3 FCM(VMS)
Tumor 10.3 5.6 5.2 59.4 66.1 75.5
Edema 5.9 5.9 8.7 75.9 77.9 81.2

When FCM is initialized with VO, segmentation is not as good as M3 -

it has nearly 5% more false positives and about 7% less true
positives in tumor. In edema, the recognition rates are about the
same. When FCM is initialized with Vs there is substantial

improvement in the true positive rate for both tissue classes and a
slight decrease in edema false positives.

MCM, SCM and M3 are not really clustering methods - they generate
prototypes in the feature space. Sometimes they find good clusters,
but like LVQ and SCS, partitions of the data are not involved in the
iterative procedure that produces the prototypes. Nonetheless, the
examples of this subsection suggest that MCM, SCM and M3 are
useful for initializing clustering algorithms such as the c-means
families.

4.4 Nearest neighbor classifiers

Another widely used classifier design is the k-nearest neighbor (k-
nn) rule, which requires labeled samples from each class. Figure
4.17 dispiays the geometry of this scheme. All that is needed is to
choose k, the number of nearest neighbors to find in the

neighborhood of any unlabeled vector z in ®”; and some measure of

distance between pairs of vectors in %, usually Euclidean distance.
The metric 6 defines the shape of the capture neighborhood for the k

242 FUZZY PATTERN RECOGNITION

nearest neighbors to z. The easiest voting scheme to justify and
implement is to accept a simple majority of the votes for any class
represented by points in the k-nn neighborhood. In this case, k is
usually taken as an odd integer, precluding ties in the ¢ = 2 class
case.

The labeled data shown in Figure 4.17 consist of 11 objects, each of
which has one of the ¢ = 3 crisp labels shown in the upper portion of
the figure. With the Euclidean norm and k = 6 nearest neighbors
having ¢ = 3 class labels, the point z will be labeled (and
subsequently colored) as a class 2 point, because 3 of its nearest 6
Euclidean neighbors (the ones inside the circular disk centered at z)
have this crisp label.

Class 1 (1 Class 2 (¢ Class 3 [
0 1) |0
HE 9

Figure 4.17 Geometric idea of the crisp k-nn rule classifier

} be the nearest neighbors of z, arranged in order of
)s,...,<8(z, x,,); and let n; (2) be the
,i=1,...,c. Then the crisp k-nn

Let {x),.... Xy,
ascending distance, i.e., 8(z, X
number of neighbors of z with label €,

)

rule classifier D, . . can be written formally as

k.8

Decidez e (i) < D =—e

hnn:k,S(z)

W e n(i)(z] = r?_fix{n(k)(z)}. (4.38)

In (4.38) ties are broken arbitrarily. Generalization of the crisp k-nn
rule vote begins with an alternative way to compute (4.38). First we
consider the weighted sum

CLASSIFIER DESIGN 243

[
. Xnglzle
D, slz)=| 2 — (4.39)

3 ngy(2)
j=1

Since in(j)(z) =Kk, ﬁn
j=1

vectors, so it is a point in Nfc. In our view formula (4.39) always

produces fuzzy label vectors, but statistics aficionados will disagree,

interpreting (4.39) as a probabilistic label vector because Cover and

Hart (1967) proved that these labels converge to Bayesian labels.

Regardless of your bias, ﬁnn‘k& is, formally anyway, either a

probabilistic or fuzzy classifier function, even though the labels and
reasoning leading to it are crisp. For example, equation (4.39) for the
situation in Figure 4.17 yields

34813
2 +3/1|+1
0.33
D (z)= 0 0 1 =[o.50J) (4.40)

ok 5(2) is a convex combination of crisp label

pniled 6 0.17

Notice that n (z)=max{n, (2)}= 3 is just the coefficient that
(k)

(1) (k)

multiplies the crisp class 2 label vector, the majority class in the
neighborhood of z shown in Figure 4.17. The decision rendered by
the crisp k-nn rule can be realized by applying H at (1.15) to the
result in (4.40). Thus,

D, . ,(Z=HD_ (2) (4.38)

is equivalent to (4.38). Formula (4.40) is not needed to crisply label z;
it is simply convenient for computer implementation of the crisp k-
nn rule (convenient, but at the cost of more computation, so if you
are only interested in the crisp k-nn rule, this is not the most
efficient way to implement it). However, the construction at (4.40)
shows how to arrive at a truly fuzzy k-nn design. Suppose the six
neighbors of z shown in Figure 4.17 had fuzzy label vectors as
follows:

x2 x3 x5
0.9) (0.9) (0.3} (0.03) (0.2) (0.3 (4.41)
0.0/ |01| |0.6] |0.95| |0.8] |0.0 ‘ '
0.1 (0.0} {o.1) l0.02) (0.0) (0.7

244 FUZZY PATTERN RECOGNITION

The generalization of simple majority voting in the crisp case is to
assign z to the class in which it has the highest membership. Using
formula (4.40) with these labels results in

0.9 0.9 0.3 0.03 0.2 0.3
0.0(+10.1|+/0.6|+]|0.951+{0.8|+| 0.0
2) = 0.1 0.0 0.1 0.02 0.0 0.7

P 6 . (442
0.44
=1{0.41
0.15

is a fuzzy label vector produced by fuzzy labels.

D

and Dy .5

Consequently, Dﬁm;k’8 is a fuzzy k-nn rule classifier. There are
many other ways to generalize (4.38)}, so this cannot be interpreted
as the fuzzy k-nn rule - rather, it is one of many possible designs.
Applying H at (1.15) to the label vector in (4.42) results in this fuzzy
6-nn rule assigning z the crisp label for class 1 instead of class 2, the
label produced by the crisp 6-nn rule for the data in Figure 4.17.

If any label vector in (4.41) were possibilistic, the calculation at
(4.42) would result in a possibilistic label vector for z. Consequently,

we have described fuzzy (Dg ., ;) and possibilistic (Dpnn;k,s) versions

of D, 5. Since there are many other implementations that can

also be called fuzzy and possibilistic k-nn designs, we call the
algorithms summarized in Table 4.19 a set of "basic" k=nn rules.

Table 4.19 Basic crisp, fuzzy and possibilistic k-nn rules

Labeled data X=X_ c®P, [X|=n

Label matrix U, of X, , U,;€N,.j=L...n
@ k = # of nn's to find

o 5 RP X RP 5 R = metric on RP

Given To label : z in RP

Store

Pick

Compute The distances {8j = 0(z, x, :j=1,...,n}
Rank 8(1) < 8(2) <..< 8(1{) < 8(k+1) <..< Sm)
k-nn _indices
1/ k
Compute me;k,g(Z) = X .ZIUU‘-U)) € Npe (4.43)
i=
Optional _
(Harden) | Prtpnnyics(®) = H(Dpnn;k,s(z)) €Ny,

CLASSIFIER DESIGN 245

e = e

W&;“’? - i T

Example 4.6 We illustrate the basic k-nn rules with the apples and
pears data listed in Table 4.1 and plotted in Figure 4.6. Figure 4.18

shows a shaded disk with radius "x13 - zn2 = 0.46 centered at z using

Euclidean distance for 8. The disk captures three neighbors - X .x
and X,- labeled pears and two neighbors - x ; and X, - labeled apples
in Table 4.1. The crisp 5-nn rule labels z a pear,

1 0
, 2(J+3()
X o)71) (0.4 0.4\ /0
e [o. 6) = Droniszy (22 HKO. 6)} i (1]

5

10.80 _‘,E:jj:

Lo X
i 1 t f >
1.00 1.50 2.00 2.50
Figure 4.18 A crisp k-nn rule on the apples and pears data

To see that k and J affect the crisp decision, Table 4.20 shows the

distances from the point z = (2.0, 0.5)T in Figure 4.6 to each of the 20
data points listed in Table 4.1 (whose coordinates and labels are
repeated here for convenience).

Distances from z to each of its five nearest neighbors in the three
norms are shown in Table 4.21, where x,is the j-th ranked nearest
neighbor to z and U(x-(j)] is the crisp label for X Whenever there is

a tie, the label assigned to z is arbitrary. There are fwo possible
kinds of ties: label ties (U-ties), and distance ties (6-Ties).

246 FUZZY PATTERN RECOGNITION

Table 4.20 Distances from z to the 20 points in Table 4.1
X, Y,) 1(z, x) 62(2, x} o (z %
1.00 0.60 1.10 1.00 1.00
1.75 0.40 0.35 0.27 0.25
1.30 0.10 1.10 0.81 0.70
0.80 0.20 1.50 1.24 1.20
1.10 0.70 1.10 0.92 0.90
1.30 0.60 0.80 0.71 0.70
0.90 0.50 1.10 1.10 1.10
1.60 0.60 0.50 0.41 0.40
1.40 0.15 0.95 0.69 0.60
10 1.00 0.10 1.40 1.08 1.00
11 2.00 0.70 0.20 0.20 0.20
12 2.00 1.10 0.60 0.60 0.60
13 1.90 0.95 0.55 0.46 0.45
14 2.00 0.95 0.45 0.45 0.45
15 230 1.20 1.00 0.76 0.70
16 250 1.15 1.15 0.82 0.65
17 270 1.00 1.20 0.86 0.70
18 290 1.10 1.50 1.08 0.90
19 2.80 0.90 1.20 0.89 0.80
20 3.00 1.05 1.55 1.14 1.00

Table 4.21 Crisp labels with Dhnmk 5 (z) as a function of k and 3

©XNOUTA W | K

XXX XA AKX A R A BB AT OGO

k x,, Ulxy) 8,(z, x,) U(z)
I x, & 0.20 s
2 x, () 0.35 U-Tie
3 x, & 0.45 5
4 x8 & 0.50 U-Tie
5 x, § 0.55 5
k x,, Ulx,) 3z x, U(z)
I =, & 0.20 5
2 x2 < 0.27 U-Tie
3 x8 < 0.41 <
4 x, & 0.45 U-Tie
5 x, § 0.46 5
L
k x,, Ulx,) 3 (z x,) (2)
Tz, & 0.20 X
2 x, & 0.25 U-Tie
3 x & 0.40 5
4 x, 0.45 5-Tie
5 x 5 0.45 5

o,
w

CLASSIFIER DESIGN 247

The nearest neighbor, X=X is closest to z in all three distances,
and labels it a pear. All three rules yield a label tie using k = 2, so
either label may be assigned to z by these three classifiers,
depending on the outcome of the tie-breaking rule employed. For k =
3 the 1 and sup norm distances label z a pear, but the 2 norm labels it

an apple. At k = 4 the sup norm has a distance tie between X4 and

X5 but both points are labeled pear so the decision is pear
regardless of how the tie is resolved. This illustrates that the label
assigned by D, . depends on both k and §; the five nearest

neighbors are not ranked in the same order by all three distances.

If we apply FCM and PCM to these data (c = m = 2, both norms
Euclidean, ¢ = 0.01, initialization random for HCM and FCM, PCM
initialized with the terminal prototypes from FCM, PCM weights w,

= 0.15, w, = 0.16), we get terminal label vectors for each of the 20

points that are fuzzy or possibilistic, respectively. Using the FCM
labels for the five nearest neighbors to z yields

0.33 + 0.77 + 0.41 + 0.10 + 0.84
ent _l0:67)*(0:23)*(0:59)7(0.90)*|0.16) (0.49
Diniss, (2) = 5 = 0.51)’50

H(g g?) = (?) =e, =Z=pear.

PCM labels for these five points would result in the same decision
here but this is not always the case. The 20-nn rules based on all 20
crisp (given or HCM, which produces the given labels}, FCM and PCM
labels yield

20
H| DECM ()= -1_[U, ”’D - H(g: gg) o tie (4.44a)

FCM ENE _1(0.52)_(1 _ 4.445
H Dfnn;20,82 (z)__z—o' j§1UFCMU) =H 0.48) =10 = z = apple {)

130 0.33) _(1
PCM _ _ - -
HID 05, =55 [2 UPCM(j)D = H(O. 31) = (O) =z =apple (4.44c)

J=1

Equations (4.44) show that using all 20 nn's to z results, for all three
classifiers, in the label switching from pear for k = 5 to apple for k =
20 (up to resolution of the tie in (4.44a)). An important point is that

248 FUZZY PATTERN RECOGNITION

if all 20 labels are used, the rule-based on crisp labels is ambiguous,
while the fuzzy and possibilistic based rules both label z an apple.

Terminology Even though the final outputs in (4.44b) and (4.44c) are
crisp, some writers refer to the overall crisp decision as the result of
a fuzzy or possibilistic k-nn rule. More properly, perhaps, a fuzzy k-
nn rule is an algorithm that produces the fuzzy labels which are
subsequently hardened. Similarly, we regard the input or argument
of H in (4.44c) as the output of a possibilistic k-nn rule.

s

Example 4.7 As an example of the utility of the k-nn rule on a real
problem, we revisit the segmentation of MR imagery to demonstrate
that excellent classification results can be obtained from a very
simple algorithm such as the crisp k-nn rule.

Views (a)-(c} of Figure 4.19 show three MRIs of the T1, T2 and p slices,
respectively, of a patient who has a tumor in the upper right-central
portion of the brain. The circular dot in the lower right side of these
views is for color registration.

Figure 4.19(d) is a segmentation of the images made by having a
human operator select training sets (Xtr i) of pixels in each of i=1,...,7
tissue regions, and then assigning each vector in the training
subsets a crisp tissue label. An operator usually labels a very few

pixels from each tissue class (on the order of 100 pixels per class).

() MR Data - T1 Image (b) MR Data - T2 Image
Figure 4.19 Segmentation of an MR Image with the crisp 5-nn rule

CLASSIFIER DESIGN 249

PR—— | (tation via 5. e }

Figure 4.19 (con't.) Segmentation of an MR Image
with the crisp 5-nn rule

The remainder of the pixels were then labeled using the crisp 5-nn
rule {4.38). The tumor, comprising the regions of lightest gray and
white in Figure 4.19(d), is visually well defined in this segmentation
of the three dimensional data. It may seem surprising that the k-nn
rule yields good segmentations with a relatively small subset of
labeled data, but this method is often rated as the best of many
supervised techniques for image segmentation (Bezdek et al., 1997a).

There are many generalizations of the k-nn rules (Dasarathy, 1990).
One important class of extensions is the inverse distance weighted

(IDW) k-nn algorithms which modify Dpnn:k,S by replacing the fixed

weights of 1/k in Table 4.19, equation (4.43), which simply average
the k-nn labels, with (normalized) weights that are inversely
proportional to the distances of the k neighbors to z. The idea is that
neighbors that are closer in feature space (as measured by the
distance metric) should exert more influence in the generation of the
membership vector for the point being labeled. The IDW k-nn
algorithm (Keller et al., 198b) is typical of this type of extension and
uses the following equation instead of the one given in (4.43),

-2

k 2
IDW El(ﬁ(z, xm))m—l Ui
Dpnn;‘l?:ls (Z) =

-2 pc

> (8(z, x(g))) -1

s=1

250 FUZZY PATTERN RECOGNITION

Equation (4.45) contains a fuzzifier value, m > 1, as in the FCM, PCM
and GLVQ-F models, and is the basis of the crisp, fuzzy and
possibilistic IDW k-nn rules. Like (4.43), equation (4.45) will produce
a fuzzy label vector even when the training data have crisp labels.
The choice m = 3 simplifies (4.45) considerably. For example,

suppose the 6 nearest neighbors to z=(0,0)T in Figure 4.17 are
x, =(2,0)", x,=(-15D", x,=01,2)", x,=(1,-2)", x,=(-1,-1)7

and x, =(-0.5,3)T. Using (4.41) and D35 instead of D; 65, D
(4.42) with m = 3, we calculate
0.9 0.9 0.3 0.03 0.2 0.3
0.5/ 0.0 {+0.56[0.1 |+0.42/| 0.6 |+|0.95||+0.71/ 0.8 |+0.33/ 0.0
0.1 0.0 0.1 0.02 0.0 0.7 ,
0.5+0.56+0.42+0.42+0.71+0.33
DW 3 0.45
SO Dfnn;i{,s(z) = %411411 . (4.46)

As in (4.42), the inverse weighted distance fuzzy 6-nn rule will assign
z to class 1 upon hardening of (4.46). The class memberships in (4.46)
for classes 1 and 2 are a little closer than they are in (4.42), so the
IDW rule indicates that z is in a region of uncertainty between
classes 1 and 2 a little more strongly than simple averaging does.

Example 4.8 To illustrate the difference between the basic and IDW
versions of the k-nn rules, we repeat some of the calculations of
Example 4.6 using (4.45) instead of (4.43) for various m's and &'s.

Table 4.22 D°V:3 - on the apples-pears data using crisp labels

H(DPY3)withm =3 and 8= 1-norm

hnn;k,8;
K %, Uxy) 8'@Ex,) yf2 uwe.d Ue
Iz, & 5.00 1.00 _ 0.00
2 x & 2.86 064 036 &
3 x, 2.22 072 028 &
4 x8 < 2.00 0.60 0.40 5
5 x & 1.82 065 035 &

CLASSIFIER DESIGN 251

[} IDW.3
Table 4.22 (con't.) Dhm;k,i3 on the

apples-pears data using crisp labels

H(DP¥:3) with m = 3 and § = 2-norm

hnnk,89
-1
k x, Ux) 3% @x,) 42 uc,2 Ue
1 x, 5.00 100 000
2 X, < 3.70 0.57 0.43
3 x, < 2.44 0.45 0.55 ¢
4 x, 2.22 0.54 0.46
5 X, 5 2.17 0.60 0.40

RIS,) withm =3 and 6 = sup-norm

k x, Ux) 8@x,) 42 uc.2 Us
I x, S 5.00 1.00 _ 0.00
2 x & 4.00 055 0.45
3 x, & 2.50 043 057 &
4 x, 2.22 053 047
5 x, 5 2.22 059 0.4l

Table 4.22 shows the results of applying the IDW k-nn rules to the
apples and pears data with the Euclidean norm for m = 3. Hardening
in the last column of the tables in this example is done via (1.15),
although the memberships themselves could be used in later
processing. Notice that the ties that were recorded in Table 4.21 for
the crisp k-nn rule using the same three norms disappear because
the memberships induced by inverse distance weighting are distinct,
even in the situation where the training data has crisp labels. With
the 2-norm, the resultant class memberships are closer, even though
the final crisp label for z is the same as in the crisp k-nn.

The results of using IDW k-nn classification with the 2-norm fixed
for two values of m other than m = 3 are displayed in Table 4.23 to
give an idea of the effect of this parameter in the membership
calculations. Compare the two blocks in Table 4.23 with the center
block in Table 4.22 to see changes as m goes from 2 to 3 to 5. For a
relatively small value of m, i.e., m = 2, all hardened class

assignments are to class &, even in the 3-nn case where two of the
closest neighbors (a majority!) are from the ¢ class. Table 4.23
shows what is expected - that smaller values of m tend to magnify
the effect of the closer points, whereas larger values of m produce the
opposite result.

252 FUZZY PATTERN RECOGNITION

Table 4.23 DPW.m

fnin;

H(D

k.55,

IDW.2) with m = 2 and & = 2-norm

on the apples-pears data using crisp labels

fonk,89

-2
k x, U= & Exy) wfz ue.z Ue
T x, 25.00 1.00 0.0
2 X, < 13.69 0.65 0.35 5
3 x ¢ 5.95 056 044 X
4 X, 4,93 0.60 0.40 5
5 x4 4.71 0.80 0.20

H(legr,’fsz) with m = 5 and § = 2-norm

-0.5
k x, Ux) 5 7°@x,) o2 ue.?d Uz
I x, & 2.24 1.00 000 &
2 x, ¢ 1.92 054 046 [
3 Xg < 1.56 0.39 0.61 <
4 Xy 5 1.49 0.52 0.48 5
5 X4 5 1.47 0.60 0.40 5

L S — Vi

Finally, there is no reason that the training data must have crisp
labels. In fact, the use of fuzzy or possibilistic labels for the training
data is perhaps the real advantage of the soft k-nn rules. Table 4.24
gives a simple example of this where the neighbors have been

assigned (subjectively, by us) the fuzzy labels in columns 3 and 4.

Table 4.24 Using fuzzy labels : D}Bxg’sz with m = 3 and § = 2-norm
. -1
k Xy u(’x(k)) u(c ’xuq) & (z.x,) uf, 2 ul¢,2 U
1 x, 070 030 5.00 100 0.00
11
2 X, 0.20 0.80 3.70 0.49 0.51 <
3 X, 0.25 0.75 2.44 0.44 0.56 <
4 X, 0.75 0.25 2.22 0.49 0.51 <
5 X, 0.70 0.30 2.17 0.52 0.48

CLASSIFIER DESIGN 253

For the 2-nn and 4-nn cases in Table 4.24, the final crisp label for z
switches from & to ¢¢. This is due to the stronger memberships for x Y
and X, in the ¢ class and the "weakening" of the effect of the closest

neighbor, x 11 in the 5 class. While this example is contrived, it

points out that if meaningful fuzzy labels can be assigned to the
training data of a nearest neighbor classifier, the resultant fuzzy
labels for unknown points will reflect that partial commitment.

Section 4.7.1 will describe one way that soft labels can be generated
for training data. Of course, you can run any clustering algorithm
such as FCM or PCM on the data and simply ignore the given crisp
labels. This yields fuzzy or possibilistic labels for the points in X,
but it is arguable whether this is a plausible strategy. Some feel that
rejecting given crisp labels constitutes a loss of known information,
while others support the idea that the structure of the data itself (as
discovered by a "reliable" clustering algorithm) is more important
in determining useful labels for k-nn designs. Both camps have good
points.

4.5 The Fuzzy Integral

The fuzzy integral is a numeric-based approach which has been used
for both pattern classification and image segmentation {Keller et al.,
1986, Tahani and Keller, 1990, Keller and Krishnapuram, 1994,
Keller et al., 1994a, Grabisch and Nicolas, 1994}). It uses a
hierarchical network of evidence sources to arrive at a confidence
value for a particular hypothesis or decision. A distinguishing
characteristic of the fuzzy integral is that it utilizes information
concerning the worth or importance of the sources in the decision
making process.

The fuzzy integral is a nonlinear approach to combining multiple
sources of uncertain information as often happens in automated
pattern recognition. In these applications the integral is evaluated
over a set of information sources (sensors, algorithms, features, etc.)
and the function being integrated supplies a confidence value for the
object under consideration in a particular hypothesis or class from
the standpoint of each individual source of information.

The fuzzy integral relies on the concept of a fuzzy measure (Sugeno
(1977), Dubois and Prade (1982), Wang and Klir (1992)) which
generalizes the concept of a probability measure. A fuzzy measure

(FM) over a set X with power set P(X) is a function g: P(X)— [0,1]such
that VA,B A, e P(X),

g(@)=0;g(X)=1 : (FM1)
gB)2gA)if BoA ; (FM2)

254 FUZZY PATTERN RECOGNITION

If (A,}7, is monotonic, then lim{g(A,)}=g(UA,) . (FM3)
i—eo i=1

When X is finite, (FM3) holds trivially. A particularly useful class of
fuzzy measures is due to Sugeno (1977). A fuzzy measure g, is called

a Sugeno or A-fuzzy measure if it satisfies (FM1-FM3) and the
following additional property for some A > -1:

HANB=), then g (AUB) = gx(A] + g}\(B) + KgX(A)gx(B). 4.47)

If A=0 in (4.47) then g isa probability measure. Suppose X is a
finite set of information sources, X = {X1""’ xn}, and let gi = gh({xi}).

The values g', g%,..., g", are called the fuzzy densities associated with
X

These densities are interpreted as the importance of the individual
information sources. The measure of a set A of information sources
is interpreted as the importance of that subset of sources toward
answering a particular question (such as class membership).

Using these definitions we can show that gx(A) can be constructed

from the fuzzy densities of the elements of A for any subset A of X.
Given the set of densities, the value of A can be easily found as the
unique root greater than -1 of the simple polynomial in (4.48)
obtained from (4.47) and the fact that g(X) = 1 (Sugeno, 1977),

A+1=T1(1+2g") . (4.48)

i=1

Thus, estimating the densities is a core problem when using Sugeno
(and some other classes of] fuzzy measures.

Sugeno measures are a large subset of all fuzzy measures. All belief
and plausibility measures (Shafer, 1976) are Sugeno measures.
Sugeno measures are useful because (4.47) provides a way to
calculate the measure of a union of two sets from a pair of
component measures, Other classes of fuzzy measures exhibit a
similar computational advantage. For example, the traditional
possibility measure has the defining property that

Zposs(AUB) =g, (A)V g,0(B). A similar fuzzy measure can be
defined with any T co-norm.

Still, there are many fuzzy measures which do not fit into nice
classes, but which are useful in pattern recognition. The trick is to
find a way to choose a measure that is "optimal” for a given problem.

CLASSIFIER DESIGN 255

Grabisch and Nicolas {1994) give some methods for learning useful
general fuzzy measures from training data.

Let Z ={z,,...,z,} denote the objects to be classified. For each class
hypothesis c , let hy:Zx X - [0,1]. The value hy(z;, x;) is called the
partial evaluation or support for object z; in class k from the
perspective of information source x,. When the context is clear, we

suppress the object name and class label from the partial support
function.

The information sources X = {x,,..., X} could be a set of individual
feature types or simple classifiers. The fuzzy measure, g, supplies the
expected worth of each subset of sources for a classification

hypothesis. The Sugeno fuzzy integral S,(h) of a function h over X
with respect to g is defined using a-cuts of h, ha ={x:h(x)=z o} as
{Sugeno, 1977),

Sg(h) = [h(x)o g = supf{aagh,)} . (4.49)
X ——

0<axsl

In applications to pattern recognition, the computational cost of
computing the confidence value Sy(h) can be reduced significantly
since the set of information sources is finite. If X = {x;,..., x} is
arranged so that h(x,) > h(x,) 2... 2 h(x), then Sugeno (1977) showed
that

(4.50)

i]

S,(h)=vih(x;) A g(X,)]

where X, = {x,,..., x} fori =1, ..., n. This reduces the number of subsets

needed to evaluate the fuzzy integral for each function h from 2" to
just n. Also, for a Sugeno measure g, the values {gX(Xi)} can be

determined recursively from the densities as

g (X)) =g (x) =g ; 4.51a)
G (X)) =g X vix) =g (X) +g' +Ag (X)-8 (4.51Db)

Sorting the function h adds some complexity to the evaluation. For
a general fuzzy measure, it is still possible to use look-up table
methods to extract the appropriate n subsets to compute the integral.
The reader is referred to Dubois and Prade (1982), Sugeno (1977),
Grabisch et al. (1992), Wang and Klir (1992), and Grabisch et al.
{1995, 1998) for more extensive theoretical background on fuzzy
measures and the fuzzy integral.

256 FUZZY PATTERN RECOGNITION

The definition given by Sugeno (1977) for the fuzzy integral is not a
proper extension of Lebesgue integration, in the sense that the
Lebesgue integral is not recovered when the measure is additive. To
avoid this drawback, Murofushi and Sugeno (1991) proposed the
Choquet integral as an alternative, referring to a functional defined
by Choquet in a different context. Let h be a function on X with
values in [0,1] and g be a fuzzy measure. The Choquet integral Cg(h) is

1
C4(h) = [h(x)o g = [g(h,)da . (4.52)
X 4]

where again h ={x:h(x)2za}. If X is discrete, X = {x;,..., x} and
arranged so that h(x,) 2 h(x,) 2... 2 h(x,)), then Cg(h) can be computed
as

C,(h) = ég(Xi) [n(x) - hx,,,)] , (4.53)

where h(x_,,) is defined to be 0, and X, = {x;,..., xj} fori=1,..., n. It is
also informative to write the discrete Choquet integral as a
(nonlinear) weighted sum of these values in which the weights
depend on their order. Fori= 1, 2,..., n, assume g(XO) = 0 and define

o, (g) = g(X;) - 8(X,_,) . (4.54)

Combining (4.53) and (4.54),
Cylh) = 3 hix,)- o, (g) . (4.55)
i=1

In the general case, the sum in (4.55) is a nonlinear function of h
because the ordering of the arguments depends upon the relative
sizes of the values of the function h. This ordering can determine the
values of the weights {®,(g)}, and which products, h(x;)- o,(g), will
be formed. As for the Sugeno integral, calculating the Choquet
integral for a)-fuzzy measure requires only the fuzzy densities.
Assigning densities (on the entire fuzzy measure) appropriately is
crucial for successful application of the fuzzy integral to pattern
recognition.

-

Example 4.9 To display the mechanics of S and C , we compute the

integrals for an object, z, whose class confidence (the h function)
from the standpoint of 4 sources of information (perhaps features or
other classifiers) is given in Table 4.25. Also listed are the densities
assigned to each source for a A-fuzzy measure.

CLASSIFIER DESIGN 257

Table 4.25 Class confidences and densities for fuzzy integrals

Sourcex; Confidence h(x)) Density g

1 0.9 0.2
2 0.7 0.2
3 0.4 0.2
4 0.3 0.2

Notice that X ={x,,x,,X,,x,} is already sorted by decreasing h
values. Even though all densities are equal, the fuzzy measure g is
not a probability measure since the sum of the densities is less than
1. Solving equation (4.48) (by, for example, Newton's method) for A
gives A = 0.746, and so, the 4 values of the measure that are needed to

compute either fuzzy integral are generated by (4.51) and given in
Table 4.26.

Table 4.26 Measure values to compute S and C
for the data given in Table 4.25

Source Set X; Measure g(X;)

X, 0.200
Xo 0.430
Xq 0.695
Xy 1.000

For these values the two fuzzy integrals are

S, (h)= V(0.9 A 0.2, 0.7 A 0.43, 0.4 A 0.695, 0.3 A 1.0) = 0.43; and

Cg(h)=(O.9—0.7)(0.2)+(O.7—0.4)(O.43)+(O.4—O.3)(O.695)+(O.3—0.0)(1.0)
=0.54.

P

In comparison with probability theory, the fuzzy integral
corresponds to the concept of expectation. Fuzzy integral values
provide a different measure of certainty in a classification than
posterior probabilities. Since the integral evaluation need not sum
to one, lack of evidence and negative evidence can be distinguished.
Dempster-Shafer belief theory (Shafer, 1976), can also distinguish
between lack of evidence and negative evidence. A conceptual
difference between the fuzzy integral and a Dempster-Shafer
classifier is in the frame of discernment. For the fuzzy integral, the
frame of discernment contains the knowledge sources related to the

R

258 FUZZY PATTERN RECOGNITION

hypothesis under consideration, whereas with belief theory, the
frame of discernment contains all of the possible hypotheses. The
fuzzy integral can assess the importance of all groups of knowledge
sources towards answering the questions as well as the degree to
which each knowledge source supports the hypothesis.

We can view the action of a single fuzzy integral as a local filter on a
set of values. For example, if the h function is just the scaled gray
level in an image window, then applying the fuzzy integral to the
window and replacing the gray level of the center pixel with the
integral value induces a filter on the image. (Note that while we
discuss filters on image windows - we can't help it because we like
image processing - this discussion holds for any sequence of data
values, for example, in signal processing). Selection of different
fuzzy measures yields different types of filters. Several examples of
fuzzy integral filters are given in the literature (Grabisch, 1994,
Grabisch and Schmitt, 1995, Hocaoglu et al., 1997, Keller et al., 1998,
Hocaoglu and Gader, 1998). We note a few for the Choquet integral.

Assume that all neighborhoods are of size n {neighborhoods are
usually square regions of odd length centered at a point &). Here, n
represents the total number of points in the neighborhood). If the
measure g is an additive measure with all densities equal to 1/n,
then the filter is the simple local average. Suppose n = 2k+1. If the

measure, g, is defined for any subset A of the window to be

_J1if|Al2k
g, (A) = {o clse : (4.56)

then the Choquet integral is the median filter. This is easy to see
using equation (4.55) because o, will be nonzero for only one value of

the index, which is the index required to “pick off” the median of the
input values. In fact, replacing k with any i between 1 and 2k+1 in
the above definition yields the i-th order statistic (including the
maximum for i = 1 and the minimum for i = 2k+1). More generally,
all stack filters (a class which includes the median filter and all
other order statistic filters} can be represented by Choquet integral
filters (Shi et al., 1998).

Choquet integral filters can also represent combinations of linear
order statistic (LOS) filters defined by the convex sum

LOS,(h) = 3 w;h(x;) , (4.57)
i=1

where the weights satisfy i ®; =1 and the function values are sorted
i=1

in descending order. This operator can be seen as a Choquet fuzzy

integral filter by defining the measure g according to

CLASSIFIER DESIGN 259

If |A] =1, then g(A)= S o
j=1

I (4.58)

These filters can also be referred to as ordered weight average (OWA)
filters since they implement the operator given that name by Yager
(Yager, 1988). They have also been referred to as generalized order
filters by Grabisch. They are useful for implementing robust
estimators (Huber, 1981, Rousseeuw and Leroy, 1987), such as the
alpha-trimmed mean {(Shi et al., 1998).

Example 4.10 This example shows the use of a Choquet integral
noise filter in an automatic target recognition application
(Hocaoglu et al. 1997, Keller et al., 1998). (OK, this really belongs in
Chapter 5, but hey, it seems like a good place to demonstrate the use
of the fuzzy integral as a data filter.) Figure 4.20 shows a portion of a
LADAR range image where the scaling has been performed
artificially to give a clear picture of the convoy located in the
middle. The figure shows 6 of the 9 targets in the image. The white
rectangles enclosing the vehicles in the convoy in the image were
inserted manually.

Figure 4.20 A (nonlinearly scaled) LADAR range image

Notice the noisy background caused by sensor dropout as well as
other phenomena (although it may be somewhat hard to see the full
extent of the noise in these small images). The original image was
processed by three filters: (a) a standard 5 x5 median filter, (b) a 3 x
3 OWA filter with weights 0, 0, 0, 0.25, 0.5,0.25,0,0,0,and (c)a5 x 5
Choquet integral filter based on a A-fuzzy measure with the densities
described in Hocaoglu et al. (1997). Basically, the density for a given
pixel, i.e., for the singleton set containing the pixel, in a window
measures how similar this pixel's range value is with its neighbors.
In all cases, the center pixel's range value is replaced by the value
obtained from the filter. The Choquet integral filter preserved edge
structure better than the other filters while smoothing the
background more. (Note: a 3x3 OWA was used because the 5x5 OWA

260 FUZZY PATTERN RECOGNITION

filter "looked" the same as the 5x5 median). Detailed discussion is
provided in Hocaoglu et al. (1997).

Figure 4.21 shows the output of the three filters on the LADAR range
image (nonlinearly scaled for display purposes to show the convoy).
It's hard to see, but there is texture in the background for the OWA
and median filters. The background in Choquet-filtered image is
flat. The Choquet filter managed to remove some of the noise pixels
that otherwise caused 3 false alarms. In any case, these examples
illustrate the wide range of behaviors that can be obtained with
Choquet integral filters by choosing different measures and classes
of measures.

(a) 3x 3 OWA filter

" (b) 5 x 5 median filter

(c)5x5 Choqueter

Figure 4.21 Application of filters to LADAR range image

The fuzzy integral can be used in pattern recognition problems as
follows. Information sources are identified. These sources could be
individual features, pattern classifiers, context information, etc. A
fuzzy measure is generated subjectively or estimated from training
data for each pattern class. Generation of the measures is the
training phase for the fuzzy integral approach. Given a pattern to be

CLASSIFIER DESIGN 261

classified, an evidence function hi(xj) is evaluated for each
information source xj and each class i. The functions {hi } are then

integrated with respect to their corresponding class fuzzy measures
resulting in one confidence value for each class. These confidence
values are used to make a final classification decision, e.g., assign
the pattern to the class with the highest confidence. The fuzzy
integral approach is summarized in Table 4. 27.

Table 4.27 A fuzzy integral-based classifier

Given o A set X= {Xl,...,Xn} of information sources
@ To label : object z
@ For 1<1i < ¢, a function hi:X — [0,1] which evaluates

the strength of object z in class i with respect to X

Get Densities {gg : 1< < ¢; 1<j < n} for measures {gi}, or the
entire measures {gi}.

Find hi(xj) for each source j and each class i for object z
Sort X: {hx(xx) > hi(X2) >, 2> hi(xn) : 1<i<c}

S (h)=vih(x)Ag(X)] Vi: or (4.59)

g‘ i j:l 1 j 1]
Compute | f, (h,)= n
. _ B . ,

Cq ()= |1 (x)) - b, (x ()] &X) Vi (4.60)

Array Dy, (2) = (fg, (0 (2)),.... £ (he(2)T € N (4.61)

where f =SorC and g=(g,,....¢g)

Optional H(Df (z))=e of_ (h(z)2f (h(z) Vj=zi 4.62)
(Harden) g i g 1 g}

Notice that the calculation in (4.61) results in a possibilistic label
vector for z using either the Sugeno or Choquet fuzzy integral, so D,

is, in our terminology, a possibilistic classifier that depends on
either the Sugeno or Choquet fuzzy integral. And when the option to
harden is used, the resultant classifier at (4.62) is crisp. As with the
k-nn rules, other authors sometimes call (4.61) a fuzzy classifier, but
we feel that our terminology is technically correct.

Example 4.11 Tahani and Keller (1990) describe a fuzzy integral-
based classifier that they developed for automatic target recognition
{ATR). The classifier was developed and tested using forward looking
infrared (FLIR) images containing two tanks and an armored
personnel carrier (APC), Three sequences of 100 frames each were
used for training. In each sequence the vehicles appeared at a

262 FUZZY PATTERN RECOGNITION

different aspect angle to the sensor (0°, 459, 909). In the fourth
sequence the APC "circled" one of the tanks, moving in and out of a
ravine and finally coming toward the sensor. This sequence was
used to perform the comparison tests. The images were preprocessed
to extract "object of interest" windows.

Classification level integration using S with A-fuzzy measures

was performed on four statistical features calculated from the
windows, that is, the sources {xl X) Xy x4} represent the {"mean",

“variance"”, "skewness", "kurtosis"} of image neighborhoods. To get
the partial evaluation, h (x), (for k= tanks, armored personnel

carriers = APCs), for each feature, the FCM algorithm with ¢ = 2 was
used on the training data. Normalized inverse distances to the
terminal cluster centers produced memberships for the test objects.

The fuzzy densities - the degree of importance of each feature - were
assigned by how well each feature separated the two classes (tank
and APC) on the training data. These are shown, along with A
values, in Table 4.28.

Table 4.28 Computed Densities and A values

g g g g A
0.23 0.19 0.22 0.760
0.24 0.18 0.23 0.764

Table 4.29 compares the output results for three classifiers; the
Sugeno fuzzy integral design Dy ; the standard Bayes classifier D, ;
g

and D ., a classifier that uses Dempster-Shafer theory for
integration of information (Wootton et al., 1988).

Table 4.29 Classification results for three classifiers

Fuzzy Bayes Dempster-
Integral DSg Classifier D Shafer D
Tank APC Tank APC Tank APC
Tank | 175 1 176 0 176 0
APC 17 49 22 44 22 44
92.6% right 90.9% right 86.4% right

Each 2x2 block of cells in Table 4.29 is the confusion matrix
obtained by the classifier when applied to the test data (the fourth
image sequence), hardened in the usual way. In this test at least, the
classifier designed with fuzzy integrals did slightly better than the
two probabilistic designs. In Tahani and Keller (1990) and Keller et
al. (1994a) it was demonstrated, on the above data, that the fuzzy

CLASSIFIER DESIGN 263

integral had the ability to fuse the outputs of three classifiers: a
Bayes recognizer, a nearest prototype design based on exemplars
from fuzzy c-means clustering, and a feature-level fuzzy integral.
The densities were chosen heuristically based on individual
classifier performance on a training set. The integration process
was able to "correct" mistakes made by one of the classifiers, while
maintaining the correct classifications for those objects where
there was no confusion in the algorithmic outputs. In Keller et al.
(1994a), the value of the fuzzy integral to fuse outputs of several
neural network classifiers was nicely demonstrated on a very
difficult handwritten character recognition problem. We will return
to the issue of classifier fusion, or multistage classifiers, in Section
4.9.

The behavior of the fuzzy integral in a real problem is heavily
dependent on the densities, or more generally, on the individual
fuzzy measures. Therefore, estimation of the densities or the
measures is very important. In some applications of the fuzzy
integral the densities can be supplied subjectively by an expert. This
subjective assignment approach may be the only method to assess
the worth of non-numeric sources of information, such as context or
“intelligence" reports. In most pattern recognition problems, it is
preferable to estimate the densities directly from training data.

Given a set of n information sources, we either need to specify 2"
values directly (one for each subset), or for "nice" classes of
measures, such as Sugeno A-measures or possibility measures, we
need only to generate n fuzzy densities. In some instances the
measure can represent subjective information only. Hence,
heuristic methods have been used to specify either the full measure
or the densities. They can be directly produced by human experts, or
can be inferred from training data in numerous ways. No general
theory applies here. For example, Keller et al. (1986) and Qiu and
Keller (1987) used the relative amount of overlap between the
histograms of a feature for the various classes (on training data) to
generate densities. Chiang and Gader (1997) used the percentage of
cases for which input feature values contributed towards correct
decisions on training data for each hypothesis.

In many applications, the number of knowledge sources is
considerably less than the number of hypotheses, or classes. For
example, in handwritten word recognition (Gader et al., 1995c,
Gader et al., 1996a) the number of classes (i.e., words) is "essentially
infinite", and so, for any test image, the potential classes must be
dynamically assigned.

R A R R R L A A

Example 4.12 This example, taken from Gader et al. {1996a) and

264 FUZZY PATTERN RECOGNITION

Gader and Mohamed (1996) shows the use of the fuzzy integral as a
match function in a dynamic programming-based word recognition
application. The details can be found in Gader et al. (1996a) and its
references. Here, we only wish to demonstrate how the fuzzy integral
can improve word recognition, a domain where the class labels
change dynamically with each object (image). Let I be a word image
andletL={W,W,.., Wq} be a set of possible words or strings for the

particular image. The top of Figure 4.22 shows an image of the actual
word "Richmond". The set L represents the dictionary or lexicon of
all possible words. One version of the word recognition problem is to
find the word in L that matches I better than all other words in L. In
the baseline dynamic programming algorithm (see Gader et al.,
1996a), a match between a string W € L and I is computed by
maximizing the average match between segmentations of I and the
individual characters of the word W. In the fuzzy integral algorithm,
it is used to compute the match score.

Let W = c¢,cy - ¢, Where c; is the ith character in W. The basic idea
is as follows: We assign a density to each character class represented
in the string W, c¢; = gl, using some method. Given these densities, we
can generate a A-fuzzy measure g. Thus, each string has a measure
associated with it. Assume we have a segmentation of the word
image I into n segments. Basic character recognition algorithms
(neural networks, usually) provide confidence values that the ith
segment represents the ith character in the string. Denote these
confidence values by h(x;),h(x,),---h{x,). The baseline system
computed the match between the segmentation and the string by
averaging these confidence values. Alternatively, they integrated
these confidence values with respect to the measure g to arrive at a
different match score.

Figure 4.22 illustrates the basic process. The word image is broken
into small pieces (no bigger than one character) called primitives.
Then the primitives are joined together to get the "best" match to
each word in the lexicon using dynamic programming. The match of
the image of the actual word "Richmond" to the strings "Richmond"
and "Edmund" are shown near the bottom of the figure. For the two
segmentations, the character confidence values are shown below
each segment. The average of the character confidence scores (on a
scale from O to 1, but note that the displayed values in the figure are
multiplied by 100) in the correct match is 0.57, whereas for the
incorrect match it is 0.58. For each segmentation, a Choquet
integral was computed using all densities equal to1/(1. 4n)where n is
the string length. The parameter 1.4 was found through analysis of a
set of training data. In this case, the Choquet integral assigned a
score of 0.54 to the correct match and a score of 0.52 to the incorrect
match.

CLASSIFIER DESIGN 265

Input
Image

Image Segmentation

123455 e 7D8ugﬁ10
Primitive
11“ 12ﬂ 13u 14Iﬂ 15 162 17 185 108 5o B2 Segments

|\ 25

%)

g

=

2

Il

p= Best

20 Match

£ to

5 "Richmond"

d

& R=53 i=27 c¢=52 h=61 m=70 0=43 n=61 d=88

<

&

g

>~

(o)
Best
Match

to
"Edmund”
E=12 m-85 u=25 n=61 d=88

Figure 4.22 Dynamic programming approach to word recognition :
(numbers below each letter are scaled by 100 for display)

All testing was performed on images of handwritten words taken
from the standard SUNY CDROM data set described in Hull(1994)
Specifically, they used the 317 word "bd city name" test data set, and
presented results for the lexicon set with average length 100.

The segmentation algorithm (Gader et al. 1995) was initially
developed on National Institute of Standards and Technology (NIST)
character data. Later, the algorithm was adapted to images of
handwritten words obtained from the United States Postal Service
through the Environmental Research Institute of Michigan (ERIM)

266 FUZZY PATTERN RECOGNITION

using a data set referred to as the bha data (Gader et al., 1995, Gillies
et al., 1993). The character recognition and compatibility neural
networks were trained on characters and pairs of characters
extracted from the bha data.

Table 4.30 shows the increase in recognition rates obtained by

setting all densities equal to the same value, gl = L where s is a

s n
parameter and n is the length of the string W. This method reduces to
the baseline system (averaging) for s = 1 but produced better results
than the existing system for larger values of s.

Table 4.30 Recognition Rates obtain from initial experimentation

Baseline System Equal densities (s=1.4)
83.9% 86.1%

One interesting property of the fuzzy integral is that it seems to be
less susceptible to single outliers in the partial evaluation functions
than many other methods. To illustrate, consider the match of the
image of the word "plain" to the strings "Erin" and "Plain" as
summarized below. In the match of plain to "Erin", the match of a
wrong group of primitives within the image to "i" is very high (bigger
than any other character match). This big value dominates the
averaging method, causing the wrong classification, but is
compensated for by the Choquet integral.

MATCH OF Plain TO STRING Erin

Character confidence function h: 0.06 0.35 0.84 0.23

Old Match Score 0.554

New Integral Match Score 0.309

MATCH OF Plain TO STRING Plain

Character confidence function h: 0.29 0.300.21 0.67 0.36
Old Match Score 0.542

New Integral Match Score 0.337

When desired outputs of the integrals are available for each class for
a large enough training set, Grabisch has shown that the entire
measure for each class can be learned via an optimization problem
(Grabisch et al., 1995, Grabisch and Nicolas, 1994} using quadratic
programming. This methodology is quite useful but requires a least
squares objective function in order to derive a quadratic program. If
the number of information sources is large, this optimization may
be computationally prohibitive, and in noisy applications, least
squares is known to be non-robust. However, Chen et al. (1997) used
the quadratic programming methodology to define optimal

CLASSIFIER DESIGN 267

measures for computing word recognition confidence from
character confidence values in handwritten word recognition with
excellent results.

The process of determining the densities for fuzzy integrals can also
be thought of as a random search activity when training data is
available. Theoretically, an exhaustive search will always find the
best density set. But when the number of classifiers is large, this
approach is impractical. Yan and Keller(1996) suggested a modified
random search and a form of simulated annealing, both motivated
by heuristics, to find densities for possibility integrals used in
image segmentation.

Genetic algorithms provide an efficient alternative to exhaustive
search. They have been utilized by some researchers to obtain
various parameters of neural-fuzzy pattern recognition systems,
including density values for fuzzy measures (Wang et al., 1997, 1998,
Pham and Yan, 1997). Densities corresponding to multiple
classifiers are coded as chromosomes in the genetic algorithm, and
the classification rate is used as the objective function to be
maximized. They combine "survival of the fittest" of strings and
special ways of information exchange between generations of
strings to form a search algorithm that is neither gradient search
nor a simple random walk. In a genetic algorithm, each possible
solution is coded as a binary string and a set of candidate solutions
called a population is maintained. A genetic algorithm uses the
three operators: reproduction, crossover, and mutation, operating
in cycles (generations), returning the string with best fitness. One
advantage of this type of search algorithm is that the densities for
all classes are updated at each step, allowing for better comparison
of fuzzy integrals values. See Geyer-Schulz (1998) for a complete
treatment of crisp and fuzzy genetic algorithms.

Keller and Osborn (1996) described a novel fuzzy density training
algorithm (for Sugeno fuzzy measures) which was similar to
training algorithms employed in neural network research. It was
based on a "reward/punishment” scheme to adjust the fuzzy
densities for each class. Initially the densities for each class start
out at the same value, for example, 1/n. For a given labeled object
instance, the integrals are calculated for each classification
hypothesis. If the largest integral value does not correspond to the
correct classification, training must be done. The offending fuzzy
integrals are punished by decreasing the densities that directly
contributed to their integral values while the correct class has its
contributing densities increased. This tended to raise the integral
value of the correct class integral and lower the value of those that
were misclassifying the input. This process is continued until all
objects in a training set were correctly classified. This approach was
used to train fuzzy integral classifiers in a target recognition
application (Keller and Osborn, 1991).

268 FUZZY PATTERN RECOGNITION

In the methods discussed above, you need to compute membership
values (confidences) in different classes from observed feature data.
Several methods can be used for this purpose (Section 4.7.1). You are
probably getting tired of hearing this, but for any fuzzy classifier to
work, fuzzy sets must be generated. This is equivalent to estimating
conditional probability density functions and prior probabilities in
statistical classifier design.

There are several extensions of the given fuzzy integral pattern
recognition algorithm both in terms of the class of fuzzy measures
utilized and in the formulation of the equation to generate the
values (i.e., generalizing equation (4.49). The reader is referred to
Keller et al. (1994a) for a discussion and real examples of these
extensions (as well as a good bibliography of fuzzy integral
approaches to pattern recognition).

4.6 Fuzzy Rule-Based Classifiers

Fuzzy rule-based systems have gained a wide degree of acceptance in
control, where output signals are almost always continuous. In
pattern recognition, rule-based systems are less evident, since crisp
classifiers are discretely valued. One advantage of using a fuzzy rule-
based classifier, however, is that the labels can be soft during the
operation of the rule-base, and hardened as the last step of
classification.

There are many, many ways that rules can be extracted from data
(Weiss and Kulikowski, 1991, Lin and Lee, 1996, Jang et al., 1997,
Nguyen and Sugeno, 1998). We will discuss rule extraction methods
based on decision trees, clustering and heuristics in this section,
and on neural networks in Section 4.7. Our intention is to begin in a
gentle, non-traditional way, with some simple examples based on
crisp decision trees. We hope this will pave your way towards
understanding some useful connections between three apparently
disparate fields of classifier design : neural network classifiers,
machine learning (classification trees), and (fuzzy) rule-based
systems.

Like neural networks and fuzzy systems, decision trees can be used
for approximation and classification. Since this is a book on
pattern recognition, our interest is in the use of trees as classifiers,
which in our context are sometimes called classification trees.
Many writers and readers are used to the more general term decision
tree, but we will use these two terms interchangeably unless there is
a need to be more specific.

CLASSIFIER DESIGN 269

A. Crisp decision trees

Decision trees (DTs) are a simple and intuitively natural way to
introduce the idea of rule-based network approaches to classifier
design. Let D .. be a decision tree classifier, z be a point to be
labeled, and let D(z) represent any of the classifiers we have studied
so far ("single stage" classifiers). Advocates of decision trees list the
following as advantages of the decision tree approach:

h. D, approximates global, complex decision regions by
constructing the union of simpler local ones.

;. Calculation of D(z) involves all ¢ classes, whereas DDT(z) is

often obtained using a subset of the c classes, so D may be
faster than D.

). Calculation of D(z) uses all p input features for all decisions
regardless of their actual values, whereas the features used in
computing D .(z) may be used in various combinations -
different nodes in decision trees may use different feature

subsets to get good discrimination between the classes that
arrive at particular nodes.

Proponents of decision trees also concede some disadvantages:

&. Overlapping data classes (for example, from mixture
distributions) can cause the tree to have many leaves (and, as
we shall see, this means many rules), thus increasing
memory requirements. And when the decision tree is soft
(fuzzy, probabilistic or possibilistic), this can lead to large
evaluation time during operation.

4. Decision trees typically overfit the training data, so a good
pruning algorithm is needed to make the tree generalize well.

§). Classic decision trees have a parallel axis bias (this can be
overcome by "oblique code 1", Murthy et al, 1994).

¥. Decision trees grow larger with more training data, but their
accuracy on test data rarely shows a concomitant increase.

. Decision trees generally don't afford incremental learning
(but ID5 is incremental, Utgoff, 1989).

We can summarize these two lists succinctly: as with all other
classifier designs, you take the good with the bad. As usual, the real
question is how to find a good classification tree? Unlike previous

270 FUZZY PATTERN RECOGNITION

classifiers we have studied, D, involves more than just choosing a
family of classifier functions and training D by some method for
parametric estimation. Finding an (error rate) optimal D, is not

so easy. The design process, on the other hand, is fairly
standardized: build it, prune it, and test it. First we develop some
terminology, then we discuss strategies for building a crisp decision
tree, and finally, we review most of the work that has been done
towards fuzzifying crisp structures.

A treeT = (V, E) is a directed graph (or digraph) which has a root node
v, ev with the property that there is a unique path p(vl, v) from v,
to every other node veV, and no path from v, to itself. In this
section we denote nodes of T as V={v}, v standing for vertex. v, is the

only node without a parent. Terminal vertices, the only nodes
without children, are called leaves. Non-terminal nodes are also
called internal nodes, denoted as V; and we denote the leaves by V.
Thus, V=V uV;,andV, NV, =0. T is binary when each non-
terminal node veV, has two exit edges (or equivalently, two

children, usually called the left and right children of v). Thus,
internal nodes can have one or more children but only one parent -
figure that out!.

Learning the structure of a decision tree, or equivalently, the rules it
represents, is called rule induction {(from our viewpoint, this means

training DDT). A classification tree D .covers the given cases

(inputs) in crisply labeled input-output (I0) data set X if and only if
the rules it corresponds to are consistent in the pattern recognition
sense, i.e., the resubstitution error rate EDDT (X|X)=0. Any finite

data set can be covered by at most n consistent crisp rules {i.e., by a
classification tree with n pure leaves). In general, the number of

leaves required to consistently cover c classes is IVLIZC.The

smallest tree that covers the training data is desirable, but often
does not provide good generalization.

Figure 4.23 shows a crisp decision tree classifier D, whose job is to
decide which of three crisp labels, chicken (e,), crab (e,) or fish (e,),
a particular object should be given.

CLASSIFIER DESIGN 271

Figure 4.23 A decision tree that covers three classes

We can't just drop a fish into the computer and ask for an answer
{OK, some computers are pretty fishy, as are many of our comments).
As usual, we have two choices for representation of objects:
numerical features (either -continuously valued features such as
weight, length; or discretely valued features such as number of fins,
etc.); or categorical attributes (color, skin texture, etc.). In Figure
4.23 the only numerical feature needed to make correct
classifications is the integer n , the number of legs: N cken = 20 Dy

= 8 (we don't count the claws of the crab as legs - they are hands), n_

= 0. When the computer considers a question such as " # legs?”, it
must make a computation or comparison to answer the question.
This happens at all the internal nodes, and at none of the leaves.

The set of leaves T, ={v ,,v,,,V, .} in Figure 4.23 provide a crisp 3-

partition of the data, with label vectors as shown to the left of each
leaf.

Classification is accomplished just as you see it: each internal node
in the tree poses one question (here the root is the only internal
node), and, based on the response, the object traverses T from root to
some leaf. When a leaf consists of objects from just one crisp class,
we say it is pure; and when all the leaves are pure, we say T is a pure
classification tree. Following tradition, the leaf nodes are indicated
by rectangles (well, ours are almost rectangles - apropos don't you
think?), while the internal nodes are shown as ellipses. Also notice
that the root node v, processes examples of all three classes - this is

why they are shown "in" the node in Figure 4.23, but they don't reside
there - they are just passing through. In this example, there are 3

272 FUZZY PATTERN RECOGNITION

classes and 3 terminal nodes, but usually, each class will have
several leaves that bear the same crisp label.

Up to this point object and relational data have been continuously
or discretely real valued, and in all cases the measurements
(numerical features) can be ordered (this property results in the
alternate name ordinal data for these two kinds of data). Decision
trees can also deal with categorical (nominal) data - i.e., data whose
features or attributes take values that have no ordering. Many sets
of objects can be described nicely by categorical data.

Categorical attributes (nominal variables) are in some sense similar
to the semantics of fuzzy descriptions in rule-based systems, where
linguistic variables can take linguistic values. Categorical variables
are not associated with membership functions, while linguistic
variables take values that are in turn represented by fuzzy sets, that
is, by (typically continuous) membership functions. In the domain
of fuzzy systems models, we call words such as scaly, feathery, hard
linguistic values, say {e‘}, of a linguistic variable < = skin texture.

Linguistic variables in the fuzzy sets context are somewhat more
general than categorical variables. First, the membership function
that represents a linguistic value serves to modify the extent to
which a particular observation should be considered to exhibit the
linguistic attribute. Second, most linguistic values (e.g., low,
medium, high) of linguistic variables (e.g. speed) have an unspecified
but semantically clear ordering, as, for example, low is less than
medium which is less than high. We will write vectors that have q

linguistic variables for entries as 4 = (,4’1,...,.4’q)T € 4. The number

of possible values that can be taken by a categorical or linguistic
variable is called the granularity of the variable. For example, when
texture is smooth, scaly, feathery, hard or leathery, its granularity
is 5, whether each of these words is represented by a crisp or soft
membership function.

The three objects in Figure 4.23 could be equally well described with
a nominal variable such as skin texture as they are by counting the
number of legs: the skin of chickens is feathery, of crabs is hard, and
of fish is scaly, smooth or leathery. The tree built using the
numerical feature "number of legs" and one built using the
unordered categorical attribute "skin texture" will be identical in
this simple example. The question shown at the root in Figure 4.23
becomes "is skin scaly, hard or feathery? The three crisp labels,

chicken = feathery = (el), crab = hard = (ez) or fish = scaly = (e3) still
apply, and the tree covers the three given cases, now described by
values of a categorical variable.

CLASSIFIER DESIGN 273

B. Rules from crisp decision trees

The simple example in Figure 4.23 introduces the idea of using a DT
for classification. What is ostensibly different with this approach
from those previously discussed is the representation of the
classifier function. If we designate the set of objects as X, the crisp
decision tree classifier D :X —» N, . in Figure 4.23 can be

represented by three crisp rules :

If (n;, =8) Then Dp(n;)=e, ; (4.63b)
If (n, =0) Then Dpp(n;)=e; . (4.63¢)

Unlike our previous classifiers, there is no functionally compact
way to represent D .. Moreover, rule-based systems like (4.63) will

almost always be embodied as computer programs. This is our first
example of a "learning” model that leads to a computational
representation of D. To emphasize the structure of classification
trees as rule-based functions, we will denote the set of rules in a rule-

base as R ={R,,...,R}, and the output of R for input x e RPas the
vector R(x). This emphasizes that the rules are just a computational
representation of a transformation, R:RP > R9,

Why use rules at all? The classifiers discussed so far make decisions
based on mathematical models that have little or no "physical"
meaning to most users. Generally, decisions rendered by a computer
are based on reasoning that is not readily apparent (even to the
designer of the system!). This can lead to a lack of confidence by
humans in decisions made by the computer. Arguably, one of the
primary advantages of rule-based classifiers is their ability to
provide humans with understandable explanations of label
assignments. Certainly system (4.63) satisfies this criterion : each
rule is easily understood by us.

Dnp(ng)

| 4

e P N.

Lwi_,_____;__} ny, legs
0 2 8

Figure 4.24 Geometric representation of (4.63)

274 FUZZY PATTERN RECOGNITION

Another nice aspect of rule-based classifiers is that they have a
simple geometric interpretation. System {4.63) is illustrated in
Figure 4.24, which depicts the functional action of each rule in
terms of its numerical input (nL) and output e, represented here

simply as integer i. The 3 discrete points in the plane represent these
three rules completely.

The system in Figure 4.23 based on the numerical input "number of
legs" has no rule for inputs that are not 0, 2 or 8. That is, it has no
generalization capability at all. For example, some crabs come out
of the water with only 7 legs, and the tree in Figure 4.23 will fail to
classify crabs with this misfortune. Moreover, if a human was
submitted to the tree in Figure 4.23, she or he would be classified as a
chicken. The alternative tree based on skin texture would perform
equally badly: turtles (hard skin) would be classified as crabs, and
humans, perhaps, as fish. This is a problem that is particularly
acute for crisp decision tree classifiers - it is not hard to train them
to have zero resubstitution error rates, but they often generalize
badly.

We can ameliorate this problem in the numerical case by erecting
crisp membership functions along the horizontal axes that capture
the training inputs in continuous intervals. The domains shown in
Figure 4.25 are fish = [0, 1), chickens = [1,3] and crabs = [7,9]; the ends
of the intervals are called cutpoints. Geometrically this creates
three crisp rule patches, as shown in Figure 4.25. (Actually they are
not patches, since they have no vertical extent, the outputs being
singletons; we show them with finite heights in Figure 4.25 so you
can see them.)

Dpr(ng)
A
fish
€; —o=7a
crabs
€,
chickens
P 1, legs
==
7 9

Figure 4.25 Crisp rule patches associated with (4.63)

The usual way to generalize a tree for continuous variables is to
simply place a cutpoint at the midpoint of each pair of adjacent,

CLASSIFIER DESIGN 275

distinct values taken by any continuous attribute in the training
data. The updated version of Quinlan's classic tree-building
algorithm (ID3, Quinlan, 1983) for continuously valued inputs
called C4.5 (Quinlan, 1993) uses the feature values in the data as
cutpoints. We have done it a little differently in Figure 4.25 so you
can see the general idea, because several fuzzy generalizations of ID3
depart from the midpoint strategy used by C4.5. In any case, we refer
to extensions of this kind that imbed the n discrete, observed values
of feature i, i = 1,...,p, in some real interval (often the interval

[m;, M;] shown in equation (4.20)) as cutpoint quantization.

Now any input between 1 and 3, for example, would evoke the
response “label 1" = (most like a) chicken, and 7-legged crabs will be
classified correctly. This may seem nonsensical for discrete inputs,
but it makes this important point: when we cover the training data
with crisp rule patches, the patches allow us to have outputs for non-
training inputs - i.e., the patches provide generalization capability
to D When the input variables are continuous, this makes a lot of

Sense.

Suppose we add humans (crisp label = e,)} to the three classes in

Figure 4.23. Since humans have 2 legs, the rules in (4.63) no longer
cover the four classes - we need another feature. Let x = number of

legs, y = number of hands for the object represented by x =(x,y)7,

and count the claws of crabs as hands. Thus (;) = ((2))@)(8)(%)

are, respectively, the discrete-valued, numerical feature vectors for
all representatives of the four classes chickens, crabs, fish and
humans. One decision tree that covers these four classes is depicted
in Figure 4.26.

During training, we try to pick questions at the internal nodes in
Figure 4.26 so that they act like a set of sieves, separating more and
more training cases as we move down through the tree, until all the
examples in each terminal node are in a single class. Here, as in
Figure 4.23, the number of leaves equals the number of classes, but
again, this is coincidental (in fact, unusual). Unlike our previous
classifiers, the DT in Figure 4.26 uses the input features
hierarchically {(one at a time), rather than jointly. This is not a
general property of all decision trees. All of the internal nodes in
some decision tree classifiers process the entire input vector.

276 FUZZY PATTERN RECOGNITION

Figure 4.26 A binary decision tree that covers four classes

Crisp rules corresponding to the tree in Figure 4.26 are:

If (x=2andy #2) Then DBDT(x) =e, ; (4.64a)
If (x=2andy=2) Then D, (X)=e, (4.64b)
If (x#2andy=2) Then DBDT(x) =e, : (4.64¢)
If (x#2andy#2) Then Dy (x)= e, (4.64d)

Figure 4.27 shows a different solution to the problem in Figure 4.26.
Which tree, Figure 4.26 or Figure 4.27, is "best"? Both represent zero
error rate solutions, but their topology is slightly different. Thus,
the tree in Figure 4.26 has three internal nodes, while there are but
two in the tree in Figure 4.27. Figures 4.26 and 4.27 illustrate that
even in the simplest cases there is usually more than one covering
decision tree, and data of any appreciable size will often have many.
In machine learning, the node splitting principle chosen for
building the tree produces a covering tree that is optimal with
respect to the training criterion; and then most of the effort is placed
on pruning the tree so that it generalizes well.

CLASSIFIER DESIGN 277

Figure 4.27 An alternate solution to the tree in Figure 4.26

When a crisp decision tree uses only rules in disjunctive normal
form and the variables are continuously valued, Dy is a piecewise
linear classifier whose decision boundaries are hyperplanes that
are parallel to the coordinate axes (hence the parallel axis bias in
classical decision tree learning). In the special case in Figure 4.24,
the three rules are points on vertical hyperplanes passing through O,
2 and 8, because values on the horizontal axis are discrete.

If the constraint at each internal node is an inequality on a
continuously valued feature, then a set of covering rules represents
an 10 relationship corresponding to capturing the training data in
crisp rule patches or hyperboxes with sides parallel to the
coordinate axes. This situation is depicted in Figure 4.28, which
shows crisp rule patches capturing training data for two linearly
separable classes (e L= ducks and e,= llamas).

278 FUZZY PATTERN RECOGNITION

(o

. llamas
—_—

> X
i

a b ¢ d
Figure 4.28 Geometry of rules on continuous numerical domains

The geometric interpretation of crisp rule patches is strictly correct
for numerical inputs. For categorical inputs, we can imagine
clusters in the input space corresponding to each categorical value
(ducks are feathery, llamas are furry (fuzzy?), but there is no way to
construct a graphical representation. The covering rules for the data
in Figure 4.28 are

If (a<x<bande<y<{f) Then DDT(J:)=e1 , and (4.65a)
If csx<dandg<y<h) Then D_.(x)=e, . {4.65b)

Although Murty's (1994) oblique code 1 can sometimes capture a lot
of training data with a few crisp rules, this is generally not the case
unless the data are linearly separable. On the other hand, n distinct
inputs can always be covered with n crisp rules by making the
hyperboxes (or parallelepipeds) small enough.

C. Crisp decision tree design

Methods for decision tree design can be put into four main
categories: (i} bottom-up approaches, some of which are very similar
to unsupervised hierarchical clustering as discussed in Chapter 3;
(ii) top-down methods; (iii) growing and pruning approaches; and (iv)
hybrid methods. Top down approaches with subsequent pruning
comprise the large majority of currently popular induction
methods. All of the papers we discuss that develop fuzzy decision
trees for classification fall into this group. Top down approaches
involve node splitting rules, stopping criteria, and leaf labeling.
Splitting rules are based on node splitting functions and
termination criteria with constraints.

CLASSIFIER DESIGN 279

We want a decision tree that minimizes the generalization error

EDDT (X,.[X,,). Most machine learning algorithms find a tree that is

consistent, E;, (X, |X,)= 0, and then prune it. Typical tree design
DT

starts with a crisp partition of the training data, and uses the labels,

in conjunction with some node splitting criterion function 1, to

determine a tree structure that is optimal with respect to 1. In the
training process X is repartitioned into subsets of cases. In

machine learning this is called partitioning the training examples
(the prefix "re" is dropped). Once the tree is built, we abandon 1, and
use the structure it provides to define decision functions {¢1} at the

internal nodes {vi}. In the trees shown so far, we have indicated the

decision functions at the nodes after the tree is built - not the node
splitting functions used to build the tree.

Deciding how to split the cases at an internal node v, is guided by a

node splitting or impurity function 1, at v, . Impurity functions are

often functions of relative frequencies of crisply labeled cases
"arriving at, or in" the node to be split. Using relative frequencies
amounts to deriving a numerical feature from the labels of the
training data to cluster the cases, and it can be done for both
numerical and categorical data. The basic objective is for the cases
that are sent to each child of v, to be "purer” (more well separated)

than the cases that were sent to v, A function uN o [0, o) is called
an impurity function when

t(ej)=0,j=1,...,c , and (4.66a)

1 / ¢) = maximum . (4.66Db)

Recall that N, = {el, ...,e_} are the vertices of Nfc, and that 1/¢ is its

centroid (refer to Figure 1.2). Equation (4.66a) requires impurity
functions to vanish at nodes where all the cases are in one class.
Equation (4.66b) requires impurity functions to maximize at the
centroid of N_.ie., at nodes where the cases are equally distributed

among the c classes. In short, impurity functions vanish at pure
nodes, and maximize at the most impure nodes.

Let p=(p,.....p,)" €N;, where p,=n /n, i= 1,..., ¢ for n crisply

labeled data X = LCJXi , {Xil =n, # 0. The two most common impurity
i=1

functions [Breim;m et al., 1984) are (Shannon's) entropy and the
Gini diversity index of the vector p = (p;,...,p.)":

280 FUZZY PATTERN RECOGNITION

C

tent{(P) = -2 p; log, py , and (4.67a)

oim(P)=1- iépiz = ipi - ipiz = EC: pi(l1-p;) . (4.67b)

The last form of (4.67b) is the way the Gini index appears when it is
called Vadja's quadratic entropy (Vadja, 1970). The Gini index can
also be viewed as an approximation to Shannon's entropy in (4.67a)
because (—log2 p) can be approximated by (1-p) for small p. Safavian

and Landgrebe (1991) list many other optimality criteria for tree
structure design, including minimum expected path length,
minimum number of nodes, minimax path length, etc. For example,
Sethi and Sarvarayudu (1982) base their impurity function on
average mutual information gain.

Once an impurity function is chosen, it is used to measure the
impurity of internal nodes before and after splitting them into
children. Candidate splits are postulated, and the decrease in
impurity due to the split is calculated. The attribute selected for the
next split is the one that maximizes the decrease in impurity at that
node. Maximizing the change in entropy essentially minimizes the
expected number of tests needed to classify an object. The overall

impurity I{T) of any tree T with M leaves is defined as
M
I(T) = kz p,,) , (4.68)
=1

where p,;, is the vector of relative case frequencies in leaf V- When
the leaves are all pure, each leaf has a crisp label vector attached to
it, py =€, for some j, the impurity of the tree is O, and so the

training error of the tree is also 0.

The two most widely used algorithms for building crisp decision
trees are Quinlan's (1983, 1986) ID3 (interactive dichotomizer)
method and its extension to C4.5; and CART, the classification and
regression tree approach described in Breiman et al. (1984). ID3 was
originally designed to deal only with pretty small sets of categorical
data. The machine learning community has essentially abandoned
ID3 for Quinlan's (1993) much improved C4.5, which takes care of
this deficiency, and which is much more widely used than CART. In
statistical circles, however, CART is favored because of the
"regression trees" it can build.

CART and ID3 are fairly similar: both models try to represent a
crisp partition of the training data in a decision tree structure; both
are top-down, node splitting approaches, and both attempt to
minimize tree size while simultaneously optimizing some

CLASSIFIER DESIGN 281

performance measure. The main differences between C4.5 and CART
are that C4.5 uses entropy while CART uses the Gini index for node
splitting, and CART is pruned by exhaustive search of all subtrees
(Breiman et al., 1984), while C4.5 uses a more efficient pessimistic
pruning strategy, especially for small data sets (Quinlan, 1993).

Since all of the fuzzy models we discuss in the sequel refer to ID3, we
summarize it in Table 4.31, even though it has been supplanted by
C4.5 in the machine learning community. The input data to ID3 are
a set of n categorical data vectors, {{ }< <. For example, the

attribute list or linguistic variables for the data given might be
(color, texture and size). Color might be divided into (red, green,
blue), texture into (smooth, rough), and size into (small, medium,

large). Each such datum is described by a 3-tuple such as ¢, = (red,

smooth, small), so ¢ = 3. Our specification of ID3 treats the root node
as a leaf in the first pass through the WHILE-DO loop.

Table 4.31 The ID3 algorithm (Quinlan, 1983)

Crisply labeled category data X, ={¢,¢,,....¢ } c &

C
In Xy = 1L_)1Xm, n, =X landp, =n,/nvi

vie<X, iV, =0;

While I(T) > O; % create child nodes ; p i = relative
class frequencies of cases at node j
Pick a leaf node Vi at which Lot (ka) >0
For all attributes {4} not in path p{v,, v{;)

Do For all attribute values {4} of 4, compute

w, = relative # of cases at child node for eij

Al (4.69)

entjuc = Yent Pric) % W o Py) -
Choose the split(s) that maximize(s) (4.69)
Update leaf node set V.

End While
A fully expanded crisp classification tree T with
| V,| internal nodes; M =|V| | leaves, and overall

Out

M
impurity I(T) = kgl L (P)=0.

Somewhat analogous to HCM, which favors clusters with many
points (see Figure 2.3a), ID3 is biased towards attributes with many
values, but this can be partially compensated for by altering the basic
formula in (4.69) - see Quinlan (1993) for the details. Since many

282 FUZZY PATTERN RECOGNITION

applications depend on continuously valued numerical data, ID3 has
experienced many generalizations since Quinlan's original
formulation (Fayyad and Irani, 1992, Cios and Liu, 1992,
Seidlemann, 1993, Quinlan, 1993). Most of these updates take the
form of discretizing the input range of each numerical variable into a
number of subintervals or cutpoints. To appreciate ID3, we (like so
many before us), repeat Quinlan's most well known example of the
original algorithm.

Example 4.13 This example, adapted from Quinlan (1983}, illustrates
his original ID3 algorithm for growing a classification tree.
Everybody repeats this example, so we have changed the objects from
"a" and "o" to "r" and "e" just to be different. The entropy impurity
function is used to determine a crisp classification tree that is
optimal in two ways: its nodes maximize the information gain at
each split of cases in the training data, and it is a consistent tree (the
resubstitution error rate is zero). The training data are listed in Table
4.32. There are 8 objects, indexed for brevity by the integers 1 to 8,
and these 8 training data are labeled as belonging in one of ¢ = 2 crisp

classes named "r" and "e". We let R denote the crisp cluster of 5 "r's and
E denote the crisp cluster of three "e"s in X,

Table 4.32 Training data for Quinlan's ID3 example

label r r r r r ‘ e e e

object 1 2 3 4 5 6 7 8

height| tall short tall short tall tall tall short
hair | dark dark blond blond dark | blond red blond
eyes | blue blue brown brown brown| blue blue blue

Each object is represented by three attributes that are particular
values of three categorical variables: 4 = height, <, = hair color, and

<, = eye color. Categorical values taken by the categorical variables
are {e1 L= tall, ¢, = short} for height, {62 L= dark, by = blond, 623 = red} for
hair color, and {13 L= blue, by = brown} for eye color. Visual inspection

of the attributes of objects in R and E does not lead to an obvious
decision tree that covers the training data.

Since each object is characterized by three attributes, and the number
of possible attribute values are 2, 3 and 2, this categorical feature
space will support at most 2-3-2 =12 crisp rules, all of which have
the general form, for a particular input z submitted to the (as yet to be
determined) rule-base

If (,4’1 (z)= tlj) and (.4’2(2) = 621) and (43(z)= [3]) then Dpr(z)="r"or"e".
1 2 3

CLASSIFIER DESIGN 283

Figure 4. 29 illustrates the initial configuration of the training cases
at the root node. Think of the "r"s as rabbits and the "e"s as elephants.

Root node v,

Figure 4.29 Training data set X prior to splitting the root node
The relative frequencies of cases in R and E are 5/8 and 3/8,

respectively, yielding I(T)= —(g log, g) - (% log, %) =0.954 as the

initial impurity of the system {in bits). Since there are three
attributes, there are three possibilities for splitting the cases at v,

and ID3 defines the optimal split as the one which maximizes the

gain of information (or gives the largest entropy decrease); the
possible splits are shown graphically in Figure 4.30.

Figure 4.30 Possible case splits at the root node

284 FUZZY PATTERN RECOGNITION

Table 4.33 shows the proportions of cases that occur for each cluster

in Figure 4.30 for each of the possible splits.

Table 4.33 Relative frequencies of clusters for each
of the three splits of cases at the root node

<, = height <, = hair £, = eyes
tall = ¢, dark = ¢ blue =¢,
plg,)=5/8 ple,,) =3/8 pl¢,,)=5/8
p(rf¢,)=3/5 plrle,)) =1 plr]¢;,) =2/5
plela,)=2/5 plel6,)=0 ple|¢;,) = 3/5
short= ¢, red = by brown= -
pl4,)=3/8 pley,)=1/8 ple,,)=3/8
p(r(elz) =2/3 I"()=0 plr] 532) =1
p(e| ‘12) = 1/3 p(el ‘22) =1 p(e| 532) =0
blond =¢,,
bleyy) = 4/8
p(rl 23 - 1/2

plel4,5) =12

Next the entropy of each split cluster is computed. For example, the
entropies of the tall and short clusters for the height split are

2
v (tal) =1 (¢,) = -(g log, g) - (g log, %) ~0.971;
2. 2 (1, 1
(short} ent(12) (5‘ 10g2 5) - (g 10g2 E’) =0.918.

Now we use the prior probabilities of the tall and short clusters to
compute the overall entropy of the height split as

5 3
Vent (41) = PG ey ()4 Pllia)ty (4,) = 20.971) + (0.918) = 0.951.

In a similar manner we find the overall entropies for the other two
splits as Lem(hair) =tent[_4’2) =0.5 and Lent(eyes) = ‘ent(“'a) =0.607.
Finally, each of these three entropies is subtracted from the initial
system entropy to get the overall entropy decrease for that split:

CLASSIFIER DESIGN 285

Av (height) =I(T) -1 (£)=0.954 -0.951 = 0.003
Atent(hair) =I(T)-1 (.4’2) =0.954 -0.500=0.454
A (eyes) =IT) -1, ,(<£,) =0.954 - 0.607 = 0.347

ent

ent

ent

Since the split of the root node by the attribute "hair” results in the
largest decrease in system entropy, this is the first split made by ID3
for this data set. This split gives the root node 3 children. The
children of v are the three nodes shown in the middle of Figure 4.31:

two of them are "pure" - they contain samples from only one class -
and will thus be leaves in the final tree. The only node left to split is
the 'blond" cluster, which contains 2 cases each from the labeled data.
This node offers two possible splits, one on hair and one on eyes.
Repeating the procedure just completed for this split, you will find
that the preferred split is on eyes, and for this simple example, the
final tree has been reached. Figure 4.31 shows the final tree.

Figure 4.31 Crisp ID3 classification tree for data in Table 4.32

Since the leaves of the tree in Figure 4.31 are all pure, this is a tree
with zero resubstitution errors, and is thus optimal with respect to

286 FUZZY PATTERN RECOGNITION

the training data, as it correctly classifies all of them. However, this
tree may or may not respond well to inputs that don't have the four
combinations of attributes that are missing in the training data. In
fact, without some sort of extension, the rules R from this tree won't
even process the four missing cases.

There are four pure leaves in this tree, so the rule-base uses M=4 crisp
rules to cover the c=2 classes labeled e and e, in Figure 4.31. Notice

that values of the height attribute £, are not used at all. The four

rules, written out with words, in order, from left to right by the
ordering of the leaves in Figure 4.31 are:

R : If (hair= blond) and (eyes = brown) then z = rabbit ; (4.70a)
R : If (hair = blond) and (eyes = blue) then z = elephant; ({4.70b)

"

2
R3 If (hair = red) then z = elephant; {4.70c)
R4 : If (hair = dark) then z =rabbit. (4.70d)

Thus, it takes two elementary rules to cover each class. Another point
to notice about Figure 4.31 is that the three levels in this tree
correspond quite nicely to the levels in dendograms that represent
top down hierarchical clustering procedures. Compare Figures 3.4
and 4.31 to see this, but flip Figure 3.4 "upside down", since it was
built with a bottom up procedure. At the first level of T in Figure 4.31
all 8 data are in ¢ = 1 crisp cluster; at level 2, there are ¢ = 3 crisp
clusters, two of which are pure; and at level 3, there are ¢ = 4 crisp pure
clusters. So, it's no surprise that hierarchical clustering has played a
role in several tree growing methods - indeed, ID3 is top down
hierarchical clustering for categorical data; but unlike the
algorithms in Chapter 3, ID3 is supervised - it gets to use the crisp
labels to construct pure clusters for classifier design.

There are many methods for termination of node splitting before
reaching a fully expanded tree, and just as many methods for pruning
fully expanded trees (Safavian and Landgrebe, 1991; Weiss and

Kulikowski, 1991). These two aspects of the erection of D, have not

received much attention from fuzzy classifiers. We are content here to
note that termination of node splitting affects the performance of
D, just as surely as termination of, say, any prototype generation
algorithm, affects the quality of a 1-np classifier that uses the
prototypes. Expansion can be terminated before completion, or fully
expanded trees can be pruned back to subtrees. In either instance, the
tree that remains will in all likelihood be impure. This is done in
hopes that the {(guaranteed) increase in training error due to
abandoning a pure tree will be rewarded by a concomitant decrease in
testing error (i.e., better generalization).

4

CLASSIFIER DESIGN 287

When leaf v, in the final tree contains cases of more than one type,
the relative percentages of each label, P € N, ., can be regarded as

the consequent output for inputs that travel the path p(v oV), i.e.,

Li

D (2)= P, € N,.. For example, if the node labeled "eyes" in Figure

4.31 is, after pruning that tree, a leaf in a subtree of T, since it
contains 2 cases each of classes 1 and 2, Peyes = (0.5,0.5)T € N, is the

probabilistic label vector attached to this node. We still get exact,
unique matches to training data on the left sides of the crisp rules
(the firing strength is still 1 along the unique path p(v , v)), but the

classifier output is now soft at impure leaves. A strategy such as
hardening by equation (1.15) can be used to convert soft output labels

to crisp ones. By our convention D, is now a soft (decision tree)
classifier, but hardly anyone would call the tree that produces such

decisions a soft decision tree. This terminology is reserved for the
more general situation discussed in Subsection F.

If each of the objects in Figure 4.31 was represented by a numerical
feature vector, then each of the four leaves would have a (sample

mean) point prototype v, associated with the data in leaf v ; (don't

confuse the vector Vu e RP with the vertex vy eVL), and the

classifier tree in Figure 4.31 would be similar to a 1-nmp classifier as
discussed in Section 4.2.

While it is nice to exhibit the rules with their semantic meanings
(after all, this is one of the attractive features of rule-based
classification - easy to understand reasons for the labels assigned -
you've never seen a blond elephant with blue eyes? Too bad!), we need
to become comfortable with the symbolic notation for rule-base <.
Here is system (4.70) in terms of linguistic variables, linguistic
values, and the classifier function it defines:

R : If = 522) and (,43 = 632) = Dpp(z)=€; ; (4.71a)
R,: If «, = 622) and (13 = ‘31) = Dpr(z) =e, ; (4.71b)
R, : Ifld,=¢)= Dpr(z)=e, ; 4.71c)
R :1f(4,=¢)= Dy(z)=e . (4.71d)

This form for R is a 'step towards the fairly compact general
formulation of fuzzy rule-based systems given in the next subsection.
We need to add a few things here and there (most importantly,
membership functions for the linguistic values {eij}), but (4.71)

contains most of the elements we need.

Once Dp; is trained (and in practice, almost always pruned), it is
ready to classify test data. One or more components (numerical

288 FUZZY PATTERN RECOGNITION

feature values or categorical attribute values) of an unlabeled input
datum z are assessed by a crisp decision function at each internal
node as z traverses through the internal nodes in T, until it arrives at
a leaf. For crisp decision trees with M pure leaves, each leaf is

associated with exactly one of the c labels e e N he? and, as in (4.71), a

crisp decision can be made without further consideration. In this
case the path, call it p(vl, VLi) from the root v) to leaf A corresponds to

crisp rule R in R, and when z traverses p(vl, vLi), we say that rule R

“fires" with firing strength =1, meaning that this is the unique rule
whose precedent arguments exactly matched the components of the
input datum. The fact that the consequent of R in this case is a single

label is due to the purity of the leaf v, . Even when the leaves are not

pure (and in C4.5, this is the usual case after pruning), classical
decision trees identify each leaf with the crisp class having the
majority of cases at the leaf.

D. Fuzzy system models and function approximation

This subsection contains a short description of the two main types
of fuzzy rule-based systems: the Mamdani-Assilian (1975) model
and the Takagi-Sugeno (1985) model. We abbreviate these as MA and
TS hereafter, without reference to the original papers, and when we
say fuzzy system, we mean fuzzy rule-based system.

LetX ={x;,...,x,} c R? and Y ={y,,...,y,} cRI. We suppose an
unknown function 8:%RP > RY for which y, =S(x,), k=1,...,n, so
Y =8[X]. We call X and Y input-output (IO0) data, and let
XY = {(xk,yk)T = (Kpjere oo Xpier Yiio o Vi) - K= 1,...,n} c RP* be the
concatenation of each input and output vector in X and Y. Finding a

good estimate § of § using XY is variously called interpolation,
collocation, function approximation, or most commonly,
supervised learning. In pattern recognition we are interested in

approximating classifier functions D:RP - N, < RC. We will use S

to emphasize the role of MA or TS systems as approximators to
vector fields in a more general setting. When p=1, 8 is called single
input, and when p >1, it is multiple input. When g=1, S is called
single output, and when q >1, it is multiple output. We abbreviate
these four cases in the usual way: multiple-input multiple-output is
MIMO, and similarly for MISO, SIMO and SISO.

There is some confusion in the literature about the difference in
meaning between the terms interpolation and extrapolation. In
numerical analysis interpolation and collocation are synonyms
that mean "through the training data"”, while extrapolation means
values taken at " any points not in the training data". However, some
writers use interpolation to mean values taken "at points not in the

CLASSIFIER DESIGN 289

training data that lie 'in-between' points in the training data"; for
these authors, extrapolation means values taken on "points not in
the training data, and 'beyond it". This is fine for real valued
functions, where interpolation would mean in the interval bounded
by the minimum and maximum points in the training data, and
extrapolation means outside this interval. When the data are p-
dimensional however, defining the notions of "inside" and "outside"
or "within" and "beyond" (the convex hull of the training data, for
example?) become problematical. In this book approximating
functions always extrapolate, and may or may not interpolate.
Since other writers use these terms in different ways, just be careful
to check the writer's definition of how the term is used in a
particular book or paper.

There are two basic approaches to approximation. The classical
approach assumes a functional form for $ that has a vector 8 of

unknown parameters, indicated as $(x;0). Then we use XY with a
principle of inference (and possibly, an algorithm to optimize the

model) to estimate some optimal parameters 8 of S(x;8). This gives

us S(x;0), an approximation to S that is optimal in the sense of the
model used to obtain it. Examples in this category include
regression analysis, collocating polynomials, and least squares
estimation with, for example, radial basis functions.

The second approach to approximation by supervised learning is to
find a computational transformation (a computer program) that
represents S. The computer program also depends on parameters 8
that must be acquired using XY, and there is no harm in again

writing S$(x;8), now meaning a computer representation of S, so that

$(x;0) is again an approximation to 8 that is optimal in the sense of
the model used to obtain it. This group of techniques is sometimes
subdivided into “"parametric estimation” and "linguistically
descriptive" methods. Neural-like networks, decision trees, and
rule-based systems are examples of computational transformations
that are used to represent S. (Indeed, in many instances these three
model styles can be transformed into each other.) If the learning
involves more than just a few numerical parameters - e.g., if the
basic structure of the network, number of rules, and so on - are also
learned, this field is sometimes regarded as (part of) model or system
identification. System identification covers a lot of ground; we will
discuss some aspects of it only in the context of decision trees, rule-
based systems and neural networks.

We divide approximation into three major steps: (i) structure
definition, {ii) parameter estimation and (iii) system validation.
Structure definition specifies the general architecture of S. For
example, if we choose a regression model, structure definition
includes decisions about whether to use linear or non-linear

290 FUZZY PATTERN RECOGNITION

regression, and the exact form of the objective function to be used. If
the model is a decision tree, structure refers to the number of levels,
nodes per level, number of leaves, edge weights, and so on. For
neural models we choose the type of network architecture, number
of layers, number of nodes, integrator and transfer functions for the
nodes, etc. For fuzzy models, structure definition involves
specification of items such as the number of linguistic values for
each linguistic variable, forms for the antecedents and consequents
of rules, operators for the reasoning system, etc. Parameter
estimation in these three cases means, for example, finding the
regression coefficients or decision function parameters or network
weights or parameters of the membership functions of different
rules or nodes in the tree. Optimization and validation test the
system against performance requirements. This last step can
include fine tuning of either the initial structure or estimated
parameters.

Once the structure of S(x;8) is defined, we use XY to estimate 8.
Finding a good 8 is the "learning” done by the model; using Y (as
target outputs for S(x:0)) provides the "supervision". Finally, system
validation tests S(x;8) against performance requirements.

Roughly speaking, approximations are good in the traditional sense
when they can be evaluated on (or extrapolate, or generalize to)
inputs other than points in X with some degree of confidence. In
pattern recognition, good is almost always defined as low apparent
error rates on test data; in other functional approximation contexts
(e.g., control), good usually means an acceptable mean squared error

Nte ~ 12
on test data, Eygp(Xi| X) = kZI "yk - 8(xy; B)ll / Nye.

Conceptually, fuzzy models approximate S with the set of rules
R={R,,...,R,}. These rules are if-then rules whose outputs are
combined by some form of approximate reasoning to produce an
output for each input to the rule-base. Each rule R has a premise
(antecedent or left hand side, LHS) with premise parameters, and a
consequent {right hand side, RHS) with consequent parameters.
These parameters, which may include M, the number of rules in K,
are the items we seek to estimate or need to define. Since the overall
action of R as a function is to approximate S, we may write the
input-output relationship represented by R as R(x:;0) = S(x;0) to
indicate this explicitly; and when 8 is a classifier function, we may
write R(x;8) = D(x;8). The basic MA and TS models are summarized
in Figure 4.32.

CLASSIFIER DESIGN 291

() ® ©
Input Fuzzify LHS
x e RP {m{{jziﬁ - [0,1]} T:[0, 1I° = [0,1]
mil' a mir
X P D o4
L7 gy (%) = A(ml(x)
mi cen l’rli

k1 kr

Xy '%M D, &4 oy (X) = N(mM(x))
i i
mpl-..mpr

o DO D, o2,

® Output R(x)e R4

TS Model MA Model
zl(x) = lI’(oci(x),mo‘);i =1,....M
{ui(x);ISiSM}

MO+ MO g

\
¥ mam| | XXX D, 04,

S s =" ———| 1% mog-mog
2@ | {1 XX D, o 4

P
=

Sya (%) = 0(ee(x), Z(x), L, D,)

Figure 4.32 Architecture of the MA and TS Models

In step @, either model takes xeRP as an input vector. Step @
begins with the identification of the numerical range of each input
variable. For k =1 to p, a numerical domain D, is associated with a

linguistic variable ,dk that provides a semantic description of (rk)
subdomains of D,. The number r, is the granularity of 4, . The

maximum number of distinct LHSs that can be formed as rule

antecedents from the r,'sis Mmax R TEE PRIRLIS S When M= Mmax,

we call ® a maximal rule-base. Generally r can be a function of k, but
we will usually use the simpler case r, =1 fork=1, ..., p.

292 FUZZY PATTERN RECOGNITION

The j-th subdomain of < _represents an attribute value or linguistic
value, say ekj, which is represented by a premise membership
function (PMF) my;:D, + [0,1]. The membership function my, in
Figure 4.32 is indexed on i to associate it with rule R. We will drop

the superscript unless it is explicitly needed.

In Figure 4.32 the membership functions all have symmetric
triangular graphs, but this need not be - and very often is not - the
case. Assume that each input variable has the same granularity r.

The PMF set for the i-th rule, {ij:ISer}, that represents the
linguistic termset {ekal < j <1} associated with variable k, 1 < k < p,

has many names in the literature: some writers call these functions
cognitive landmarks; others call them a membership termset, but
we prefer the more explicit name premise membership functions,
which seems to be an accurate description of what they are. We

assume that the union of positive supports of the {m{{jzl <j<r}
covers D, . When each of the p input domains is covered by a set of r

unimodal, identically shaped, equally spaced PMFs that have the
additional property that at each input value the sum of
memberships is one, the system is called a regular fuzzy system, and

the rP rules in K are called a complete rule-base. Step @ is often
referred to as fuzzification of the input domains.

Many writers call the positive supports of the
{m{{jzl <k <p;l1<j<r;1<i< M} a fuzzy partition of the "input space"

D1><---><Dp c RP. This can be very confusing, as this terminology

clashes directly with our earlier and quite different use of the same
term in Section 2.1 concerning clustering, which produces a fuzzy

partition Ue M, of a finite data set. We will use fuzzy partition as
it is defined in equation (2.2).

Step ® comprises the action of the LHS of the rule-base, which is
composed of the antecedent or premise parts of M rules ® = {Ri}. The

premise parts of the rules operate on x and take the general form:

R%‘HS: o;(x) = Tm!(x)) = T(m}k1 (xl),...,m;kp (xp)) , 1 <i<M. (4.72a)

mi(x) e RP

In (4.72a) oci(x) is the firing strength (confidence level, degree of
satisfaction) of rule i and T is any T-norm (intersection = N in

Figure 4.32 or AND) operator on T:[0,1]1x[0,1]+ [0,1]. T norms can
be extended by associativity to p arguments, so the calculation in

CLASSIFIER DESIGN 293

(4.72a) is well defined, and because T is valued in [0,1], O < ai(x) <1.

Our notation is a little sloppy because m'(x) is not the value of a
fixed vector field m! on x. Instead, the membership functions that
yield the p values of m'(x) for a particular x depend on different
membership functions among the {mkj} as x runs through its
domain. We use a similarly careless notation for consequent
membership functions (CMFs) on the output or RHS of MA models,

viz., mo'(x) e RY, "0" meaning output.

The action of T on m!(x) is to <AND> its p arguments; this is one
aspect of approximate reasoning in the fuzzy system. The most
common choices for T are the minimum or T3 norm, and the product
or T, norm that we met in Chapter 3, and will meet in Chang and
Pavlidis (1977} in their seminal paper on fuzzy decision trees. For
these choices (4.72a) is, more explicitly,

RIS, ai(x)=T3(m‘(x))=m§kl(x1)A...Am;kp(xp) , 1<1<M; (4.72b)

RMIS: oy (%) = T, (m'(x)) = myy, (x,) ..o mp (%) 1SISM. (4.720)

If, say, the j-th component in rule R is zero, mj ;(x;,)=0, then

o, (x) = T(m'(x)) =0 in (4.72b) or (4.72c). More generally, the same
thing is true in (4.72a) using any T-norm, because T(a, 0) = O for any
ain [0, 1]. We say that R fires (or is active, or is satisfied to the extent

of the value) whenever o, (x)>0. A given input vector x in R? will

probably never fire all M rules - instead, most of the o,(x)'s will be
zero. If care is taken during fuzzification, it will never happen that
all of the firing strengths are zero for any input x. This is called
completeness of the rule-base R, a property that depends on the rules
as well as the membership functions being used. Crisp decision tree
rule sets are never complete because in a crisp decision tree which
only interpolates its training data, when a non-training input is
processed, there is no path for it to follow from the root to any node -
that is, the firing strengths of all M crisp rules are zero.

Many (probably most} discussions about LHSs as in (4.72a) use a
somewhat different terminology than ours. When A kais a fuzzy set

such as "high", "tall", "long", etc. the premise clause it refers to is

often stated as "if x| is A iy ", Our preference is to use m 3 whenever

we can, because the function - and only the function - is the fuzzy set.
We will often state the LHS of rule i succinctly as " If oci(x)",

294 FUZZY PATTERN RECOGNITION

understanding this to mean that the full structure of (4.72a) is used.
This emphasizes the mathematical action of (4.72a), whereas its
semantic interpretation allows users to provide a linguistic
prescription for each rule.

Figure 4.33 illustrates the idea of T-norm aggregation for rule R.

Shown there are two identical sets of 3 premise membership
functions that represent two linguistic variables, £ , = temperature,

and £, = Speed. The linguistic values for temperature are ¢ | = Low, ¢,
= Med(ium), and €= High; the linguistic values for Speed are ¢y =
Slow, byo= Med(ium), and lys™ Fast; mij is the membership function for
eij, i=1,2andj=12,3.

11 12
Low Med High

A
Temperaturg
My My,
1 Slow Fast
m,,(y)=b A
d
0 4 >
y Speed

Figure 4.33 How inputs to the LHS of Rl are coupled by a T-norm

Let x = (X,y)T denote an input vector for the p = 2 dimensional
numerical domain associated with (£ » .42), and suppose that the

antecedents of rule R in R match this input pair as highlighted in

Figure 4.33. There are three other possible matches in Figure 4.33
for the same X, because there are two active PMFs for each variable.
This means that three other rules besides Ri will fire if these rules

are in R. The linguistic terms and membership function values that
would be produced by these three rules are (Low, Medium) = (c, b),
{(Med, Fast) = (a,d) and (Low, Fast) = (c,d).

CLASSIFIER DESIGN 295

Here is how the LHS of R reads in words for the highlighted
situation in Figure 4.33: "If (¢, = Medium) and (¢,, = Medium)"; here is

how your computer reads the same thing: "If (mlz(x)) and (m22(y))".

But you need to tell the computer what "and" means. So, choose a T-
norm to represent intersection. This joins the two atomic clauses in
the premise. If we use ’1‘3 = minimum, the linguistic statement "If (e'l_1

= Medium) and {¢, , = Medium)" is translated, for the highlighted case
shown in Figure 4.33, into the firing strength
ai(x) = T3(m12(x), m22(y)) =aAab=a. If you choose the product for

"and", o,(x) = Ty(m;5(x),mys(y)) =a-b=ab.

Step @ in Figure 4.32 produces the output vector $(x). For the TS

model, the functions {u:R? > R9:1 <1 <M} comprise the RHS of the
rule-base. Each u is a vector field whose components are scalar

fields of some specified form (e.g., constant, linear, affine,
quadratic, polynomial, Gaussian, exponential, etc.). It is common -
but not necessary - to specify that all the ui's have the same

functional form.

When the u's are all polynomials of the same order (i.e., all the

components of the output functions are, respectively, constant,
affine, quadratic, etc.}, we refer to the TS model as a O-th, 1-st, 2-nd,
... etc., order TS model. Within this class - as is the case in many
other branches of applied mathematics - the first order (affine)
models are by far the most popular and heavily used. For example,
rule extraction by clustering in XY makes sense for exactly this case
when the clustering model can produce flat (affine subspace)
prototypes (lines, planes, etc.), because these prototypes match the
shape of the graphs of the affine output functions being estimated as
the RHS's of a 1-st order TS model.

The output of the TS model is a convex combination of its M output
functions and firing strengths,

M
gloci(X) -u,(x)

x) (4.73a)

’I‘S(

M
Zaj(x)
1

j=

There is an important O-th order variation of the MISO TS model
that replaces ui(x) in (4.73) with a fixed number. When the number

u,(x)=h, is the center of gravity (of the independent variable of

consequent membership function mo) of a single Mamdani style
CMPF, this is called the method of height defuzzification in the MA
model, and (4.73a)} takes the simpler form

296 FUZZY PATTERN RECOGNITION

M=

‘h
] (x)-h,

ai
S (%) = =1 (4.73b)

Yo j(x)
J=1

When the output function of R is a crisp singleton as in (4.73b), it

easier to find the parameters of the ensuing model, but the price of
simplicity is that it weakens the approximation capabilities of the
model. See Sugeno and Yasukawa (1993) for a nice method of
training the O-th order TS model. An even simpler case arises when
the LHS membership functions are regular (for each of the p input
variables, all PMFs are symmetric, triangular membership
functions which cross each other at 0.5), for in this case the sum of
firing strengths in the denominator will always be 1.

R, LHS : If (¢,=Med) and (¢,,= Med)

Med Med
b
< >
X Yy
Temparature .U. Speed

R, RHS: =u/(x)=k,

Temperature x

Figure 4.34 How the left and right sides of R are coupled in the O-th

order TS model for the highlighted input case shown in Figure 4.33
using the minimum and product for the T-norm

CLASSIFIER DESIGN 297

Figure 4.34 illustrates how the clauses in the left side of rule R in

Figure 4.33 are coupled through Takagi-Sugeno implication for the
O-th order model, where the i-th output function is a constant

surface, ui(x) = ki. Let xr(x) denote the denominator of (4.73),
M

Kr(X) = 3 o(x). The value of kx;(x) depends on your choice for the T-
i=1

norm; here we consider T = To=nro0r T=T, =e. When Ri fires, the
effect of using the T, norm to compute the firing strength is to lower
the corresponding surface u,(x)=Kk; (remember that a and b in
Figure 4.33 are < 1, a =a A b, and note that a/x (x) <1 because a is
one term of the denominator x (x)) to the new, smaller constant
ak,/x, (x) ; and for the T, = product T-norm, the surface may move

even further down (or up, depending on the relationship between
a/x (x)andab/x, (X)), to abk, /x, (x).

If R is maximal (i.e., contains 9 rules here) and each input value is
evaluated by two membership functions, there are 3 other pictures
like Figure 4.34 for the other three rules that would fire for this x,
that is, for the three pairs of membership values from the currently
active PMFs shown in Figure 4.33. Suppose that the other three rules
that fire are Rr, R and R. Applying equation (4.73) with the

minimum and product T-norms results in the outputs

M
by ai(x) - Uy (x)

Se () = 11 _ aky+dk; +ck +dk,| . and
s %aj(x) a+d+c+d |
2 o, (®) v, (%) apk +adk, +cbk, +cdk,|
S (X) — i r S t
S Z o (x) ab+ad+cb+cd bee

JlJ

As the input x to Figures 4.33 and 4.34 changes, there is no change in
the values of the constants {k}, but a, b, ¢ and d may change for

different inputs that fire the same rules; the four k's and a, b, c and d

may all change when different rules in Rfire. You would be correct to
imagine that the upper surface in Figure 4.34 is fixed (once k1 is
chosen), and that for M rules, there will be (at most) M such constant
surfaces at the heights {k}. As the input changes, the rules fired

select which subset (of four or less) of these surfaces to use, the firing
strengths decrease the heights of the surfaces chosen above the

298 FUZZY PATTERN RECOGNITION

horizontal (input) plane, and (4.73) combines the current set of
heights to get the resultant output. This is illustrated in Figure 4.35,
where the four rules Ri, Rr, RS and Rt are the ones selected as matches

on the LHS (that is, the ones that are fired). We emphasize that this
figure illustrates the action of the TS rule for just one input - it does
not illustrate how the output of the TS system "looks" over all of X.

R
k;
k)
1
k
M
0
1
k
t Za,(x) k,
j “T
r
0 —>
v v
o, (x) k, Sm(x)
KT

Figure 4.35 An output for the 0-th order TS model

It gets pretty hard to draw figures like 4.35 for more complicated
output functions, but the principle is identical. If the output
functions in a TS system were all quadratics in two variables, for
example, the i-th of the M surfaces would be the graph of the

function ui(x) =xTA X+ (bi, x> +Kk, . For a given input, the fired rules
would again select subsets of these surfaces, and as in Figure 4.35,
the selected ones would be scaled down by their corresponding firing

strengths, and then their values at this point in %% added in
accordance with equation (4.73) to get the TS output. In the most
complicated TS model, each of the M surfaces could be a different

CLASSIFIER DESIGN 299

type; one might be constant, one a quadratic, another a Gaussian,
and so on. As you can see, the approximation we are building with
fuzzy systems can have pretty complex components - and the 0-th
order TS model is the easiest case to understand!

Step back from Figures 4.33 and 4.34 and ask - what things do we
need to learn from training data to make this easiest of all TS
systems work? On the LHS, we need 6 PMFs. For this example there
are 4 trapezoidal fuzzy numbers, but they are special trapezoids -
each one needs 2 parameters for its "shoulder”, so there are 8
parameters needed for the 4 trapezoids. There are 2 triangular fuzzy
numbers (each needs 3 parameters). So we must estimate or (at least
adjust for optimal performance) 14 parameters for the premise
membership functions. Each consequent ki is also needed. Since

there can be at most r> = 9 rules for this system, we need 9
parameters for the CMFs, so there are 14+9 = 23 parameters
associated with the membership functions. And we have already
decided that both LHS granularities are r = 3, that we will use the
types of membership and output functions shown, and that we have
chosen some T-norm. All of these choices face the system designer
for the O-th order TS model. And it is the simplest form of fuzzy
system we discuss - now you can see why it is so popular! When we
design fuzzy decision tree classifiers (which are often equivalent to
such a system), many of these decisions are eliminated from the
user's view. We will return to the geometry underlying this model
when we get to subsection F.

Step @ in the MA model is considerably more complicated than for
the TS model. The LHS works just as we have illustrated in Figures
4.32 and 4.33 - it is identical to the LHS of the TS rule-base. But the
RHS of the MA model is very different. Roughly speaking, the
sequence of operations on the RHS is (i) fuzzification; (ii)
inferencing; (iii) aggregation; and (iv) defuzzification. We briefly
discuss each of these steps.

As shown in Figure 4.32, each output variable Z, k =1,..., q, is
fuzzified by assigning it a linguistic variable <o , a linguistic
termset {eokj} and corresponding set of consequent membership
functions {moﬁk} of, say, granularity s,i=1,....M,k=1toq,j=1tos.
These CMFs reside at the RHS of every rule. When an input is
submitted to this system, the LHS of the MA model produces a
positive firing strength oci(x) for each rule fired. Now the role of the

firing strength is somewhat different, for we use it to enter the CMF
set on the RHS of the rule-base. This is illustrated in Figure 4.36,
which depicts defuzzification by the center of gravity (COG) method.

300 FUZZY PATTERN RECOGNITION

R, : If (¢,,= Med) and (¢, Med) Then &, = Low

Med Med
X y

R, :1f (¢ = Low) and (¢, =Med) Then 6,= High
Low Med

N
r
- Engine wear z(x)

Figure 4.36 One of the million ways to defuzzify MA rules :
area COG defuzzification

Rules R and R, fired for the input x shown in Figure 4.33, are shown

in the top portlon of Figure 4.36. The case illustrated uses the
minimum for the T-norm, so rule i has firing strength a and rule s
has firing strength c. These firing strengths are carried to the RHS of
the MA rules, where the single output variable is the linguistic
variable £ ="engine wear". The domain of < has been partitioned

(in the fuzzy systems sense) into 4 linguistic values: ¢, = Very Low
(VL)", ¢ , = "Low (1)", ¢ . = "High (H)", and ¢ , = "Very High (VH)", with

CLASSIFIER DESIGN 301

corresponding consequent membership functions mo ,» Mo, mo,,

mo,, spread across the expected numerical output range, whose
variable name is z in Figure 4.36. For the two rules fired the
memberships we will look up correspond to the linguistic values
that appear on the RHS of the rules. Suppose the rules are;:

R: If (él 5= Med) and (£2 5, = Med) Then 4 (=Engine wear) = Low
R : If (¢, = Low) and (¢, = Med) Then 4 (=Engine wear) = High

Then we pick out the CMFs corresponding to these two output
linguistic values, and operate on them at their respective levels of

firing strength, i.e., at the values z(a (x)) =a and z(o_(x)) = c. We say

operate on them because what happens next depends on the
inferencing operator you choose. In Figure 4.32, the output of rule i

is denoted as z'(x) = V(o (x), mo'), where the symbol ¥ stands for
the operator used to produce the output, which is "some function of"
the arguments shown, which are the firing strength o, (x) from the

LHS of rule i, and the q membership functions that fuzzify the RHS
of rule i.

There are two methods for combining MA rules. Rule-based
inferencing uses all M rules without segregation by linguistic values
(unfired rules will make no contribution to the output, however).
Each rule is represented by a relation, and the union of all the rules
gives a composite relation for the entire rule-base. Then inferencing
produces a single output fuzzy set which is defuzzified by one of
many methods such as the COG. This scheme is somewhat analogous
to TS inferencing in that both use the entire rule-base. Composition-
based inferencing is more complicated. In this scheme each fired
rule produces a clipped (modulated) version of the associated CMF.
The modulated CMFs belonging to each {fired) linguistic output are
then aggregated with a union operator, again resulting in one output
membership function which is defuzzified by any of the various
defuzzification schemes.

More specifically, the M firing strengths ot.(x)=(oc1(x],...,ocM(x))T,
a,(x) €[0,1] for all i, and the M consequent membership function

values Z(x) = (z!(x),...,2M(x))7T, zi(x) e R for all i, are defuzzified
with DF, typically a center of gravity (COG) type calculation such as

shown in Figure 4.36. In Figure 4.36 the selected membership
functions are clipped, and their areas A/ and A, are found. These

areas can be treated separately, summed, unioned, intersected, etc.;
and, they need not be trapezoidal - some writers make them
triangular, etc. In Figure 4.36 we illustrate the union method, where

the area centroid (h VLH] of the union of AL and AH is found, and

LH’

302 FUZZY PATTERN RECOGNITION

the horizontal coordinate h . is taken as the MA output SMA(x) for
input x. An important special case of Figure 4.36 occurs when the
MA system has singleton CMFs. If centroid defuzzification is used in
this case, the MA system is equivalent to a TS system with constant
RHS output functions - that is, a O-th order TS system.

This brief description of the MA model will almost surely leave you
gasping - how can it, how does it work? Our brief treatment of fuzzy
systems hardly does this topic justice, but other volumes in this
Kluwer handbook series have extensive discussions of both models
(Nguyen and Kreinovich, 1998, Tanaka and Sugeno, 1998, Yager and
Filev, 1998). Additional references on this topic that we have found
helpful include Driankov et al. (1993) and Klir and Yuan (1995). For
us it suffices, at least initially, to write the output of the MA model

as R, , (x) = O(x(x), Z(x),, D,), where operator © depends on choices
made by the system designer. We do have examples of the MA scheme

to present, and when we discuss them we will try to explain each one
explicitly, case by case (or, at least, reference by reference !).

When either type of fuzzy system is used to approximate a classifier
function, its outputs will be label vectors. Hardening non-crisp label
vectors as in (1.15) may be done after defuzzification when the

output of R is a soft label vector, i.e., when R represents a soft
classifier function, and a crisp classification is required.
Summarizing, we now have a formal model of both the LHS and RHS
of each rule in R, which takes the general form

TS: ui(x)

MA: ©((x), Z(x), v, D) 1<isM . 4.74)

Ri: ai(x)=:>{

We cannot write the rule-based system in (4.70) or (4.71) using the
formalism of (4.74) because the linguistic terms used there are not
related to measurable numerical variables (and so, fuzzification of
the input domains is not possible), but decision trees that handle
numerical variables will fit nicely into this framework. For
example, the simple set of rules in (4.63) can be made much more
mysterious looking by defining a set of 3 crisp premise membership

functions over, say, the extended input domain [0,) as follows:

1, n =2
mchicken(nL) =1my,(ny) = 0: otherwise 5
1, n =
m (0)=m,n)= {O; otLherwise ;

1, n, =0

My (0) =my5(ng) = {0 otherwise

CLASSIFIER DESIGN 303

With these PMFs, the crisp rule-based classifier at (4.63) becomes

If (m“(nL)) Then Dp.(n,)=e, ; (4.63a)
If (mm(nL)) Then Dm(nL)=e2 : (4.63b")
If (mls(nL]) Then DDT(nL)=e3 . (4.63c")

This isn't a very exciting system, but it's simple, and displays the
relationship between the rules and the notation we will use for more
complicated models. We will return to several aspects of the use of
the rule-based system in (4.74) for approximation of functions in
subsection F.

E. The Chang - Pavlidis fuzzy decision tree

Fuzzification of decision trees follows two paths; softening the
training process (how to build the tree), and softening the decision
functions at internal nodes (how to use the tree). Chang (1976) was
apparently the first person to write about fuzzy decision trees. Chang
and Pavlidis (1977) is the seminal archival paper on fuzzy decision
trees, and it was one unknowing precursor of the now widely known
fuzzy systems approach discussed in subsection 4.6.D. The origin of
probabilistic decision trees is much older; a specific reference for this
depends on what you regard as a probabilistic decision tree. Suffice it
to say that Duda and Hart (1973) mention this topic in connection
with sequential decision theory in statistics, which dates to the early
part of the 20th century.

We begin the exposition of fuzzy decision trees (FDT) by returning to

the case of the fully expanded crisp decision tree. When [VLl =M, each
of the M 2 ¢ paths from the root to a pure leaf corresponds to a crisp
rule in R. Two aspects of this need discussion: representation of the
choice of path by node decision functions; and aggregation of the edge
weights along the path to compute the firing strength of an activated
rule.

Figure 4.37 depicts an input z traversing the path p(v Ve Vg ooV vLi)

.
from root v to leaf Vi which bears crisp label €, with the result that

crisp rule R fires with firing strength=1, labeling input z as class j,
Dpr(2) = e,. We have appended 1's to each edge along this path, which

can be interpreted as weights assigned to the chosen edges by
functions residing in the internal nodes that select the correct edge
for this z. The firing strength value of 1 for rule R can be calculated as

either the minimum or product of the 1's along the path. The
untraveled paths have O's on their edges for this z, so the firing
strengths along these M-1 paths will be zero when intersection is
done with any T-norm.

304 FUZZY PATTERN RECOGNITION

Figure 4.37 Firing strength in a crisp decision tree

In Figure 4.37 internal node \A has 3 children, internal node v 6 has 5
children, etc. Let T have n nodes, M < n-1 leaves, and thus, n-M
internal nodes. Without loss of generality, suppose that internal node
\A has p children. Chang and Pavlidis (1977) let X represent the

domain of node inputs (and are not explicit as to the data type, which
seems implicitly to be numerical feature vectors), and call any

function ¢, = (d)kl,...,(I)kp):X = [0,1]P a fuzzy decision function for v,

The p values {¢,(x):i=1,...,p} produced by this function can be
thought of as edge weights or path indicator values associated with v,

for this x.

Chang and Pavlidis use this idea as a basis for defining fuzzy decision
trees as decision trees with fuzzy decision functions at each internal
node. They did not exclude the zero vector from the range of internal
node functions, but we think they meant to, for otherwise the
possibility of x being trapped at an internal node exists if no exit edge
has a positive weight. In any case, we call ¢,_:X~[0,1]°P -{0}=N pe
(see equation (1.1)) a soft node decision function at internal node
v, € V. We use the notation of Chapter 1 here because it is correct
and convenient, but ¢, is not a classifier function in the sense used
in this book. The job ¢, has, in crisp decision trees, is to identify the
outgoing edge from v,_that an input should take as it makes its way

towards a leaf - in other words, ¢, is a crisp membership function

CLASSIFIER DESIGN 305

that represents the output of the internal computation or comparison
made by the crisp decision function at or in this node.

If the range of ¢y is N for k = 1,..., n-M, the fuzzy decision tree

reduces to a crisp decision tree, so crisp decision trees do have
decision functions at their internal nodes, but they are usually
represented differently, as for example, in the stipulation of a
hyperplane condition. To illustrate, Figure 4.38 shows an expanded
view of the situation at node v, of Figure 4.37. The node function

¢: X > Ny5, so it produces, for any input in its domain, a crisp label
vector ¢(x)eN, . In Figure 4.38, #¢(x) =(0,0,1,0,0)".

d6a(x)=0

A/ ¢63f1;!_) =1 \

Figure 4.38 A node decision function in a crisp decision tree

Don't confuse internal node decision functions such as ¢, with
internal node splitting functions such as Ly in ID3: decision

functions make decisions (assign edge weights) at internal nodes
during classifier operation, while splitting functions make decisions
about how to split internal nodes during tree construction.

Returning to Figure 4.37, we can now write the crisp rule for the path
shown there as

IF ¢13(Z) = 1 and ¢36(23) =]. and“' ¢65(26) = 1 arld ¢S,L, (zs) = 1
THEN Dprlz)=e¢; , (4.75)
where arguments of the different node functions are subscripted to
indicate that they may not all be the same. Recognizing that "and"

can replaced by any intersection operator (T- norm), equation (4.75)
can be written more compactly as

T(913(2), 936(23). -, 0g5(26), 05 1, (Z5)) = Dpr(z) = €. {4.75)

306 FUZZY PATTERN RECOGNITION

Equation (4.75) represents the action taken when the input vector
matches the premise of rule R -in other words, it is rule R, which is

seen by noting the subscript L on the last argument of T in (4.75). Now
define

ai(z) = T(¢13(Z), ¢36 (23)s R ¢6s (26)1 q)s,Li (zs)) s 1<isM. (4-76)

Because of the boundary property T(a, 1) = 1 < a=1 of any T-norm,
T(0,3(2), 035(23), -+, dgs(Zg), bs.1, (2) =1 ¢ul2,)=1V+ In view of
this, we see that oci(z) =1 when, and only when, all of the arguments
of T in (4.76) are 1. That is, rule Ri fires if and only a,(z)=1.
Conversely, if any of the arguments of the T-norm are 0, then
ai(z) =0 and rule i will not fire - that is, the path p[vl,...vL) from the

1
root to leaf i will not be used in a crisp decision tree unless the firing
strength of its rule is 1. As an historical aside, the term firing
strength was not well established, and Chang and Pavlidis called

a,(2) the fuzzy decision value of the path p(v;,vy) from the root to
leaf i in the tree, We call a,(2) the firing strength of R for input z.

z

¢11(Z
& OO
S5° 8o

(o, (2). e) (o, (2), e) (ay(2)e,)

Figure 4.39 The fuzzy decision tree of Chang and Pavlidis (1977)

Now suppose, as Chang and Pavlidis do, that a fully expanded tree has
been developed, and that the internal node decision functions are
valued in N o What path does z take in this case? Conceptually z can

traverse allp n-M paths, and can arrive at all M leaves in the tree.
When this happens, we may imagine that all M of the rules fire, each
producing a firing strength O <a,(z) <1. Chang and Pavlidis discuss
two cases. They call the decision tree that uses the T3-norrn (the

CLASSIFIER DESIGN 307

minimum) to produce firing strengths a fuzzy decision tree, and when
the edge weights along a path are multiplied together (so the T-norm
is the product or Tz—norm), they call the tree a probabilistic model.

Figure 4.39 summarizes the structure we henceforth call the Chang-
Pavlidis (CP) fuzzy decision tree.

Each leaf of the decision tree in the lower part of Figure 4.39 has two
pieces of information attached to it: o (z), the firing strength or

decision value along the path from v to vy in the chosen T-norm,

and e, , one of the ¢ crisp label vectors for the classes in the training
1

data. Chang and Pavlidis did not aggregate firing strengths across the

M leaves, nor did they collect leaves with like labels and aggregate

these, etc. Instead, they defined the output of the tree in Figure 4.39 as

the crisp label associated with the largest firing strength,

DS (2) =e; © oy (z) = max{o,(z)} . (4.77)
Jk <

1<i<M

This is a crisp classifier even though the tree that defines it is a soft

decision tree. DS} simply assigns z to the class that has the highest

firing strength in K. There are some obvious generalizations of this
structure. For example, the tree in Figure 4.39 is pure, but it is well
known that pruning decision trees improves them. Some of the
leaves in subtrees obtained this way will not be pure, and the crisp
label vectors for these leaves will be replaced by soft label vectors.
Each of these could of course be hardened in the usual way, and then
(4.77) would still apply. A more interesting possibility is to aggregate
the evidence residing in the firing strengths of all the rules with a T-
conorm or some other form of aggregation such as a weighted mean.

Chang and Pavlidis spend the bulk of their paper on theoretical
results about algorithms to search a given fuzzy decision tree for the
path that leads to the solution shown in (4.77) without enumerating
all the paths (remember, this was 1977 - computers were still tiny in
power - but huge in physical size!). They defined top down search of a
fuzzy decision tree as a search from the root to a leaf that always
makes the greedy choice - that is, takes the highest value available -
at each edge in the path. They give the simple example shown in
Figure 4.40 to illustrate the failure of top down search to find the
solution of (4.77). Taking the greedy path from the root accumulates
the decision values 0.6 and 0.5, leading to leaf 2 with decision value
0.30 in the T, norm, which is not the solution of (4.77). Using the T,

norm, the greedy path leads to one of two equally correct solutions.

308 FUZZY PATTERN RECOGNITION

T, =+ 0.18 0.30 0.45 0.05
T,=A 0.30 0.50 0.50 0.10

Figure 4.40 Top down search failure (Chang and Pavlidis, 1977)

Top down search of a tree for c classes is almost always O(c), and as
in Figure 4.40, can lead to the wrong leaf. There is also a guaranteed
O(c) bottom up search. Chang and Pavlidis, wanting a faster method,
discovered a branch and bound backtracking (BBB) algorithm that
finds the path of maximal firing strength in Of(c) time, worst case,
and in O(log,c) time in the best case. You may think these
complexities trivial in 1999 and beyond, and for many problems
(Iris, for example, with ¢=3 classes) perhaps they are. On the other
hand, Wang and Suen (1987) process labeled character recognition
data with ¢ = 3200 character classes, so evaluation time can become
important. Moreover, the number of leaves can be far greater than
the number of terminals (Wang and Suen, 1984), as we demonstrate
in Example 4.14, so this is a good result.

A fairly clever and interesting secondary result in Chang and
Pavlidis is that any linear classifier defined by a set of hyperplanes

in %2 for a c-class problem can be approximated arbitrarily well by
a CP fuzzy decision tree with trivial comparisons alone f(i.e.,
comparisons such as z < k1)' They do not give any methods for

Jfinding or pruning trees, nor are they very specific about internal
node decision functions. They do, however, compare their method
with both crisp and probabilistic (i.e., using the product of the edge
weights instead of the minimum to get firing strengths) classifier
trees on the problem of discriminating between handwritten
numerals "5" and "9", and their fuzzy decision tree does a little better
than the other two.

F. Fuzzy relatives of ID3
Most of the recent papers on fuzzy decision trees are related to either

ID3 or some other induction algorithm (how to get trees) ; or they
generalize the CP tree (how to define soft decision functions and

CLASSIFIER DESIGN 309

approximate reasoning along paths in trees). Some of the fuzzy
generalizations of ID3 discussed below replace the impurity

function 1, with a measure of fuzziness to assess potential splits at

internal nodes, while others continue to use 1 for node splitting,

but apply it to fuzzy quantities instead of probabilities due to
relative frequencies.

Wang and Suen {1983, 1987) proposed a set of modifications to the
basic CP decision tree, and Suen and Wang (1984) introduced a new
crisp hierarchical clustering algorithm called ISOETRP (roughly,
ISODATA driven by an entropy objective function) that essentially
competes with ID3 as a crisp decision tree building algorithm. These
three papers together provide a way to construct decision trees,
make them fuzzy, prune them, and infer decisions in a slightly
different way than by equation (4.77). The clustering algorithm is
interesting and has some nice wrinkles, so we provide a brief
discussion of it first.

The basic premise in Suen and Wang (1984) is that node splitting can
be viewed as top down crisp hierarchical clustering. They argue that
the clustering objectives of the SAHN type algorithms that were
discussed in Chapter 3 are not relevant to good node splits from the
standpoint of decision tree design. Their method acknowledges the

importance of Quinlan's (1983) use of Lot for node splitting, and

their objective function ("GAIN") for node splitting uses 1 as a

building block. The overall node splitting function in ISOETRP is a
ratio of a function of node entropy to a measure of cluster overlap
for potential splits (clusters) of the cases at the node at hand, and

this function plays the role of & |, (S;p,) in ID3 equation (4.69).

The basic idea is to create an initial set of clusters at a node. Then
their "GAIN" function uses the labels of these cases to measure the
entropy reduction due to this split, normalized by a measure of
cluster overlap. Following this, the clusters are adjusted using a
number of ISODATA-like operations - INITIALIZE, DIVIDE, LUMP,
CREATE, DROP, DISTRIBUTE, RETRIEVE, UPDATE - that alter (sets
of) clusters in the node with the aim of improving the split from the
decision tree point of view. The adjustment of clusters by
application of the ISOETRP operations is done interactively by an
operator viewing dynamically updated overlap tables for the splits
being adjusted. The end result is a crisp clustering of the cases in the
node that determines the number of children nodes as well as the
children in them. The issue of cluster validity is solved here by the
operator, who simply picks the best looking result by viewing the
visually displayed overlap tables.

Suen and Wang compare ISOETRP as a clustering algorithm to both
HCM and ISODATA on some fairly small 4D data sets derived from

310 FUZZY PATTERN RECOGNITION

noisy handwritten Chinese characters. In a refreshingly candid
summary, they concede that HCM and ISODATA are both faster, and
both do better at minimizing J) than ISOETRP. But, they argue that

this is to be expected, since ISOETRP has a different objective - viz.,
the construction of a good classifier tree. They also reported trying
various hierarchical algorithms such as single linkage to crisply
partition the cases passing through the nodes, and state that this
approach met with little success.

The papers by Wang and Suen (1983, 1984, 1987) begin with the
assumption that a crisp classifier tree for continuously valued
numerical feature data has been built by whatever means (they use
ISOETRP of course, but C4.5 or CART would do). Then they introduce
internal node decision functions that attempt to approximate
Bayesian decision functions for the clustered regions in each
internal node. The diagonal norm is used to create statistically
meaningful elliptical regions in the feature space to measure
distances between the input datum and within node cluster centers.

Specifically, after training each internal node contains one or more
crisp subsets of labeled samples. Suppose c classes are represented at

internal node k. Compute the subsample means {v, ,...,v,_}, where
Vk , 18 the mean of cases (vectors) labeled class i in node k. For an

input z, Wang and Suen compute the ¢ diagonal norm distances (see
(1.8)), {Ski = Hz -V, 1”D—1 } and then order them in ascending rank,
' "k

5(k,1) < 6(k,2) <..< S(k’c). Then Wang and Suen define the node decision

function as

min<1,
K

max<0,| 0.5 —(————(k’” “"”J ;i>1

K

82 -82
2 "% | 5y

(4.78)

where x is a user-defined parameter. These are the fuzzy decision
functions Wang and Suen use in (4.76), and like Chang and Pavlidis,
they may obtain a firing strength (again called a fuzzy decision
value) for every path in the tree. At this point, however, Wang and
Suen depart from the strategy shown at (4.77). Instead, they regard
the firing strengths as heuristic evaluations that can aid in finding,
but possibly not point to, the final label assigned to z.

Choosing a threshold 1, they accumulate all the leaves, say LT, with
firing strengths greater than 1 by conducting a depth first search

CLASSIFIER DESIGN 311

which abandons paths in subtrees rooted at internal nodes if the
fuzzy decision value along that edge is less than t. Then a global
training algorithm prunes the tree by creating a set of "extended"
leaves by considering, for each leaf in L, only its immediately

"adjacent" terminals (see Wang and Suen, 1987, for specification of
the adjacency criterion). At the end of pruning, the extended leaves
all have firing strengths above the threshold, and each is equipped
with a probabilistic measure of similarity between z and the mean

vector ¥, of the samples in it (assumed pure) that gauges the
relevance of each leaf to a given input.

In the recognition mode, top down search (which might miss the
solution of (4.77)) finds the maximal firing strength for input z. If
the probabilistic similarity of z to the leaf found is greater than a
second threshold vy, the crisp label of that leaf is assigned to z.
Otherwise, they commission a heuristic search in the extended

leaves to find a terminal that does satisfy «,(z) 2 v, and if one can be

found, they use the crisp label residing there. Such a terminal might
satisfy (4.77), or it might not, but Wang and Suen argue that the label

of any leaf such that oci(z) 2 v is a good decision because it is (i)

related to the Bayes classifier through (4.78), and (ii) the tree has
been pruned with the fuzzy decision values.

Wang and Suen (1987) give results of applying their fuzzy decision
tree classifier to three sets of noisy Chinese characters having c = 64,
450 or 3,200 classes, 15 samples per class. They derive 64 features
for each datum, and trained the trees for each case using 2/3 of the
data for training, and the remaining 1/3 for testing. In the
experiment with 3,200 classes, the average level of terminals was
5,415. By their analysis, the tree building phase, using the
interactive clustering algorithm ISOETRP, is O(clogzc). They

estimate that the pruning phase they call global training takes
about 1/10 of this time. Time consuming, but in their view, worth it.
Their best result on the 3200 class problem is an error rate of 0.07%
- that is, they miss 10 or 11 characters in 16,000 test cases.

Maher and St. Clair (1992) inject fuzzy sets into the ID3 framework,
and then generalize the inference procedure of Chang and Pavlidis
in equation (4.76). They assume continuously valued real inputs,
fuzzify each input datum in both the training and test sets, and use
this alteration of the data to create interval valued decision
functions. Their algorithm, called UR-ID3, thus builds a new type of
fuzzy decision tree, since it creates a support interval for each
possible classification of any test sample.

UR-ID3 first constructs a fully expanded crisp ID3 tree which
contains crisp decision functions at its internal nodes. This
construction is based on real-valued data, but quantization of each

312 FUZZY PATTERN RECOGNITION

input datum using cutpoints (like C4.5) is not done. Thus, the ID3
tree will not be able to classify any non-training input. To
accommodate generalization, each point in the training data is then
spread across each of its feature values by determining a support
interval for the similarity of its value to each of the other n -1

feature values of the same coordinate in the data. Support intervals
are computed with possibility theory using triangular membership
functions centered at each feature value pair.

The result of softening the numerical features is to replace each edge
weight in the ID3 tree, which is either O or 1, with an interval of the

form [ns,,ps,]c[0,1], ns, . ps, being, respectively, the necessary
and possible supports of a feature at node k for class i. In other

words, the node decision function ok:Xl-—>[O,1]p—{0}=Npc is

replaced by an interval-valued function, X 2(0,1IP), where

2(10,11P) is the set of all p-tuples of subintervals of [0,1]. Thus, edge
weights in the Chang-Pavlidis model are replaced by intervals.

When an input datum traverses the tree to its leaves, the result will
be a "firing strength interval”, which is constructed by taking
intersections of path intervals. The interval arithmetic operations
used are

[a,.b,1Ala,.b,1=[a,a,,b,b,] , and (4.79a)

[al,bI] v[az,bzl =[a, +a, - a1a2,b1 +b, —b1b2] . (4.79b)
The application of (4.79a) along a path results in an interval, say
[a]*(2),aP®(2)] at leaf v . Since each leaf is pure, it contains, say, n
crisply labeled samples from one of the c classes in the training
data. The relative frequency of samples in leaf v, is used to
normalize the firing strength interval by multiplying each endpoint
of the interval with the fraction n,/n, so leaf v, is now associated
with the interval

ns ps
I = K nio‘;l (Z)J’(nia; (z)]] . (4.80)

Maher and St. Clair then collect all the leaves in the tree that have
crisp label e, j=1,..., ¢, and aggregate the support intervals for label j

into one overall support interval Ij* for the terminal block

associated with class j. This is done by applying (4.79b) to all the
intervals of form (4.80) that support each class. Figure 4.41
pictorially illustrates the soft decision tree of Maher and St. Clair.

CLASSIFIER DESIGN 313

[*,*] [*,*1 [*,*]
~

[%,%] [*,*]
Y

(Allx*lb AfE*D) TN

v v \%
D (s () ()
eC eC

L weviaeom LT =Vl

Terminal block 1 for e Terminal block ¢ for e

Figure 4.41 The soft decision tree of Maher and St. Clair (1992)

At the end of the training step, each of the c classes is represented by
one support interval of the form I7* = v{A{l*,*]}}, j = 1,...,c, as shown

in Figure 4.41. Now the tree is ready for operation. Input datum z
passes through the tree, and arrives at its bottom supported by

(possibly) ¢ different firing strength intervals {I;"}. Of the many

possible ways to extract a final label, Maher and St. Clair opt for the
most conservative choice, by assigning z the label of the terminal
block associated with the support interval having the largest
necessity value for its left endpoint. Three sets of data are used by
Maher and St. Clair (1992) to illustrate UR-ID3. Here is an
adaptation of their presentation of classifier design with the Iris (?)
data.

Example 4.14 Maher and St. Clair (1992) compare four classifier
designs using 75% of the Iris data for training and the other 25% for
testing. They repeated this for three different sets of randomly
drawn test and training data. UR-ID3 was compared to the standard
ID3 tree, a 1-nn variation of ID3 due to St. Clair et al. (1992), and a
standard feed-forward back-propagation (FFBP, Section 4.7) neural
network. The 1-nn variant of ID3 differed from ID3 only during
testing; in this phase of operation, if a path in the ID3 tree did not

314 FUZZY PATTERN RECOGNITION

exist, then the "nearest neighbor” path in the tree was taken. Table
4.34 repeats the test results of their experiments as percent correct
on the test sets.

Table 4.34 Percent correct classification on 3 Iris test sets of
25 points each with four classifiers (Maher and St. Clair, 1992)

| ID3 ID3-nn UR-ID3 FFBP

Iris 1 75.7 89.2 94.6 91.9
Iris 2 71.1 92.1 94.7 94.7
Iris 3 78.9 94.7 94.7 92.1
Ave. 75.2 92.0 94.7 92.9

The average number of internal nodes for ID3 was 5, and the average
number of leaves (or crisp rules developed on 112 labeled data) was
45. Since UR-ID3 and ID3-nn use the same trees, these statistics are
valid for all three decision tree designs. This agrees with the general
belief that if nothing else, decision trees get big - fast.

The last row of Table 4.34 indicates that, for these trials, the fuzzy
interval-based decision tree classifier was much better than IDS3,
and it was slightly better than the crisp ID3-nn approximation.
According to these statistics UR-ID3 was also slightly better than
the FFBP classifier network they used in this comparison.

We add three remarks about these results. First, the values displayed
in Maher and St. Clair for illustration of interval building with an
input datum from Iris lead us to believe that they actually processed
an integer valued data set that might be Iris with every value
multiplied by 10 (see "will the real Iris data please stand up"” in the
preface). Second, it is pretty easy to train a feedforward network to
be consistently achieve 100% success with various data selection
schemes when applied to (the) Iris (we use). We illustrate this in
Example 4.21.

Finally, crisp decision trees built with C4.5 on Iris are slightly
better than any of the decision trees illustrated in Table 4.34. For
example, Hall et al. (1998) report that release 8 of C4.5 run with the
default parameters builds crisp decision trees on Iris that achieve an
average error rate of 4.7% - that is, 95.3% correct classification -
when trained and tested by 10-fold cross validation. This scheme
uses 90% percent of the Iris (?) data for training (135 samples) and
the remaining 10% (15 samples) for testing in each of 10 cycles,
rotating through the entire data set so that the union of the 10 test
sets is Iris, and their pairwise intersections are empty. This is a
somewhat more pessimistic error rate estimate than the 75/25 split
used by Maher and St. Clair because individual tests are closer to the
leave one out method, and averaging the error rate over 10 trials
produces a better estimate. The average tree size over 10 runs in Hall
et al. (1998) was 5.3 nodes (leaves and internal nodes). Thus, the C4.5

CLASSIFIER DESIGN 315

crisp tree size is an order of magnitude smaller than the trees built
by Maher and St. Clair's fuzzy decision tree methods.

m s - M

Umano et al. {1994) present a fuzzy extension of ID3 that can deal
with both real and categorically-valued attributes. Their scheme,
like that of Maher and St. Clair, uses the basic ID3 algorithm to
build a tree, and then they extend its crisp decision functions at
internal nodes so that each training datum is captured by a larger
domain. Rather than cover each point with a possibly different
interval, they impose a set of discrete, user-defined premise
membership functions on each input variable.

Umano et al. assume that the input data have c classes, but that each
class is fuzzy. This is represented by attaching what is in essence a

user-defined possibilistic c-partition U(X)eMpmof X={x,....x_}

to the input. Umano et al. use the fuzzy cardinalities of X computed
on the entries of U(X) to replace the relative frequencies used in ID3,
and the ID3 node splitting function is converted into one that
attempts to maximize information gain based on probabilities of
membership values. These authors present an example that is very
much like Example 4.13. To impart the flavor of their method
without filling several pages with fairly routine details, we abstract
it here as our Example 4.15.

Example 4.15 Umano et al. (1994) illustrate their fuzzy ID3 method
on the following set of data (we have reordered it for clarity),

160 175 180 180 170 160 175 165
X = 60 || 604 70 | 8 || 75 | 75 || 60 || 60 .
blond / | red) | blond) | black] | black j { black) | red } | blond

Point | @ @ ® 4) ® 0 5]
Class l 1 1 1 2 2 2 2 2

Memb. 1.0 0.7 0.5 0.8 0.2 1.0 0.3 1.0

The first two components of each data vector are the p = 2 numerical
features height and weight of 8 objects (presumably humans), while
the third component is the variable "hair color”, with q = 3 values:
blond, black and red. Directly beneath the data are the crisp class
labels attached to the 8 points by the authors, and directly below the
crisp labels is another value associated with these 8 data, which is a
subjectively defined set of fuzzy memberships. The authors are not
clear about the source or meaning of these memberships, so we
interpret them as a measure of confidence in the crisp label
assigned, and represent them as a possibilistic 2-partition of X,

316 FUZZY PATTERN RECOGNITION

By our interpretation, the first datum definitely belongs to class 1
and not at all to class 2, the second belongs to class 1 to the extent 0.7
and not at all to class 2, and so on. Umano et al. don't describe the
fuzzification of the input data quite this way. They simply identify
the first 3 points as "being in" class 1, and the last 5 points as having
a class 2 label. In their paper the non-zero values we show in the
matrix U are simply called membership grades given to the 8
examples. This is an example where each datum comes with a crisp
label, and other information is used to augment the original label
structure of the problem. In effect, each point in the training data
has both a crisp and possibilistic label.

Compare the first and last vectors in X to see that the two classes are
pretty mixed, since datum 1 is, by its memberships in U, definitely
in class 1, while datum 8 is definitely in class 2, but the only
difference between these two objects is in the first feature, 5 (cms ?)
in height. This is even more pronounced in points 2 and 7, which
have identical representations but, according to U, object 2 prefers
class 1, while object 7 has a small amount of membership in only
class 2.

The authors then define three sets of discrete premise membership
functions over the three input variables. As a first example of the
notation we use for fuzzy systems, we list each of these PMFs as a set
of ordered pairs in the general form (., mij(xi)):

PMFs {m lj(Xl)} for height:

¢, = low m = {(160, 1), (165, 0.8), (170, 0.5), (175, 0.2}}
€, = middle m, = {(165, 0.5), (170, 1.0), (175, 0.5)}
= high m = {(165, 0.2), (170, 0.5), (175, 0.8), (180, 1.0}

PMFs {m 2j(xz)} for weight:

¢ = light m, = {60, 1), (65, 0.8), (70, 0.5), (75, 0.2)}
by = middle m,, = {65, 0.5), (70, 1.0), (75, 0.5)}
by = heavy; m, = {65, 0.2), (70, 0.5), (75, 0.8), (80, 1.0)}

PMFs {mBj(XB)} for hair color

by = light m, = {(blond, 1.0}, (red, 0.3)}

boy = dark m,, = {(red, 0.6), (black, 1.0)}

CLASSIFIER DESIGN 317

Notice that our parameter r, the granularity of the sets of PMFs in

Figure 4.32, is variable here: r = r,=3, r,=2. Also notice that while

the PMFs shown in Figure 4.32 are continuous, these authors use
discrete PMFs (but they do not limit their version of fuzzy ID3 to
this). Subsequent calculations using Umano et al.'s node splitting
functions and several additional heuristics lead to the fuzzy
decision tree shown in Figure 4.42, which is our adaptation of

Umano et al.'s Figure 1.

Light Dark
-
_(0.16
s = (o. 84)
middle heavy

low middle high

i« v
(w-(85) (=-(3%9)

Figure 4.42 Umano et al.'s fuzzy decision tree for the data set X

This tree has 3 internal nodes and the training data are used to
produce fuzzy label vectors at the 6 leaves; u,_e N, is attached to

leaf v, _for k =1 to 6. Compare this to the CP tree in Figure 4.37,

where each leaf contains a path firing strength and crisp label.
Umano's tree is equivalent to the rule-base R = {Rl""RG} whose i-th
rule, 1 £i <6, has the form

o (x) = DgT(x) =u, ; (4.81)

In (4.81) the LHS has 3 premise clauses, but some of the rules have
less than three. When an input datum is submitted to this tree, its
values may partially match all 6 of the fuzzy rules (that is, may
arrive at all 6 leaves in the tree in Figure 4.42). The firing strength
along each path is computed with the left side of (4.81) using the
product for the T-norm, T =T, . Each edge in the Umano et al. tree has

318 FUZZY PATTERN RECOGNITION

a fuzzy label vector attached to it (this is not shown in Figure 4.42),
which stands in sharp contrast to the edge weights in the CP tree
(numbers in [0, 1]}, and edge intervals in UR-ID3. Umano et. al also
apply the product to each component of the fuzzy label vectors along
the edges. And finally, aggregation of the evidence developed at each
leaf for the input datum is done with addition, which can lead to
certainty values greater than 1. Umano et al. say that when this
happens, just normalize them. They call the overall inferencing
method (x x +). The output of Umano et al.' s fuzzy decision tree is a
fuzzy label vector for each input, so this design is a fuzzy classifier

in the sense used by us - that is, R(z) =D} (z) = u e Ny, . If desired,
this output can be hardened in the usual way.

Finally, Umano et al. give a numerical example using n = 220
samples of transformer data which have two labeled classes of
causes of failure, which are themselves subdivided into 4 and 17
subclasses. Half of the data were used to train the fuzzy decision tree,
and the other half were used to test it. They give some error rate
statistics for their tests, but since this method is not compared to
any other method, it's hard to guess what the statistics tell us about
the method. But we like this as an example of generalization of both
the fuzzy CP tree, as well as crisp ID3.

R

Figure 4.43 Zeidler et al.'s fuzzy decision tree for
Umano's et al.'s data set X in Example 4.15

Zeidler et al. (1996) discuss an interesting modification of the fuzzy
ID3 approach of Umano et al. (1994) that seems to extend its utility
in that some of the subjectivity in Umano et al.'s design is removed.

CLASSIFIER DESIGN 319

These authors give an algorithm for automatic generation of
continuous premise membership functions that span each
numerical input variable (recall that the user simply defined
discrete premise membership functions in Umano et al.). The PMFs
are all trapezoidal, and are adjusted dynamically during the
construction of the tree. Zeidler et al. process the data shown as X in
Example 4.15 with their algorithm, and obtain the decision tree
shown in Figure 4.43, which is our adaptation of their Figure 3.

Compare Figures 4.42 and 4.43 - there are some striking differences.
Umano et al.’s tree is rooted on the linguistic variable "hair color"
and has 6 leaves, all associated with rather fuzzy labels. Zeidler et
al.'s tree doesn't even use hair color, is rooted on the numerical
variable "weight", has only 5 terminals, and 4 of the 5 terminals are
associated with crisp labels - that is, they are pure leaves. The two
objects labeled 2 and 7 in the original data end up in the only leaf
that doesn't have a crisp label. Recall that these two objects had
identical features, but different class labels. We think that Zeidler et
al.'s approach produces a clearer picture of the structure of the data
than Umano et al.'s. Unfortunately, Zeidler et al. did not try this
method on any real data set, so it is even more difficult to make any
assessment of its relative utility than the classifier tree of Umano et
al. These authors do give a very clear example of processing an
unlabeled input vector z with their tree:

62 62
0.68
R(z)=R|162 |=D%;| 162 |= € Ng..
0.32
red red

The last method we discuss in this subsection is due to Janikow
(1996a, 1998). Janikow fuzzifies both the construction and
inferencing procedures for decision trees. His model has many of the
same elements as the fuzzy systems shown in Figure 4.32, although
he prefers to regard the fuzzy rules aspect of his decision trees as an
artifact, rather than the reason for the trees. Janikow gives a nice,
clear discussion of most of the previous work on fuzzy decision
trees, and their relationship to fuzzy systems. He uses the
methodology of ID3 as a template for his fuzzy tree building
algorithm, which, in his words, "is the same as that of ID3. The only
difference is based on the fact that a training example can be found
in a node to any degree."

Janikow's (1998) fuzzy ID3 is not a complicated algorithm, and
while he illustrates it only with numerical data, it is equally
applicable to nominal data. The node splitting function is formally
an entropy function, but the arguments of 1_, depend explicitly on
the PMFs of the linguistic variables chosen to fuzzify the input
domains. The central idea is that memberships {mij(xk)} of the

320 FUZZY PATTERN RECOGNITION

attribute values that occur along paths from the root to the current
node play an active role in the determination of which cases arrive
at a node, and how much each should be weighed in the split. Values
of {T({mij(xk)}} accumulate as incremental firing strengths along

each path, using a T-norm of choice, and these contribute to the
overall case count at the current node. At termination the leaves of
the tree may not all be pure, and further, the same case may occur
with partial membership in more than one leaf. These terminal
memberships are possibilities (they don't have to sum to 1).

Janikow (1998) points out that once the tree is built, there are any
number of possible choices for inferencing with it, some of which
are interpolative { if the data are numerical); and some of which are
not (necessary if the data are nominal). When operating as a
classifier, all the leaves with paths of positive firing strength can be
found, and these consequents can be aggregated using a T-conorm
and then defuzzified, or simply combined using a weighted mean.
Janikow discusses four methods of inferencing based on the
weighted fuzzy mean or simplified max-gravity method (Mizumoto,
1988). Two of them use information about the most common label in
terminal blocks, and the other two try to account for within-leaf
label inconsistencies. Janikow also discusses four reasoning
procedures based on finding a dominant leaf with the center of, sum
of and maximum gravities defuzzification strategies. Then he gives
the numerical example repeated here as our Example 4.16.

Example 4.16 Janikow (1998) illustrates his fuzzy ID3 method on
the following set of data, which is strikingly similar to the one used

in Example 4.15 (and not just because, like Quinlan and Umano et
al.,n=8).

Point | ® @ ® ® (5] 6] 0 (8]
Class 1 1 1 1 2 2 2 2
Weight | 1 1 1 1 1 1 1 1

Figure 4.44 is a scatterplot of X c %2. The point z shown in Figure
4.44 is not one of the training data - it's a test input that we will
classify with the fuzzy decision tree after it has been built. Janikow
imagines that the classes represented in the data are related to
decisions a lender must make about borrowers : class 1 = not
creditworthy, and class 2 = creditworthy. In our standard notation
these two classes would be represented by the crisp label vectors

e =(1,0)T and e, =(0,1)7.

CLASSIFIER DESIGN 321

Employment
PN

/| High

Medium

3 .
@ &%&,

Low

. - » Income
Low Medium High 1

Figure 4.44 Janikow's data and premise membership functions

Since this is a ¢ = 2 class problem, Janikow arranges his decision
system outputs so that they are numbers in {0, 1] instead of label
vectors, so we write this classifier function as D} :%? - [0,1].
Janikow uses the labels O = not creditworthy and 1 = creditworthy

for the two classes, and regards fuzzy outputs of his system as
numbers between 0 and 1 (instead of fuzzy label vectors in Nm)‘ Since

there are only two classes, hardening a fuzzy output corresponds to
using 0.5 as a threshold on the output of the system. For example,
0.47 is hardened to yield O = class 1 (non-creditworthy), and 0.64 is
converted to the class label 1 = class 2 (creditworthy).

The simplest way to classify anyone on this basis would be to plot
their coordinates and see which side of the hyperplane through the
corners (0,1) and (1,0) the datum fell on: above would presumably
correspond to an acceptable risk, and below, to a person not to be
trusted to repay a loan. The data shown are not linearly separable by
this hyperplane, which would commit three training errors. There
are separating hyperplanes, however, such as H(w, o) shown in
Figure 4.44, which will produce no errors on resubstitution.
Consequently, from the point of view of classifier design, one of the
things we will want to know is whether a decision tree approach
offers more than this simple solution, which can be found by eye.

Examination of Figure 4.44 tells us - without computation - that
horizontal splits (along the employment axis} will be more effective
at the root of any tree covering these 8 cases than vertical splits

322 FUZZY PATTERN RECOGNITION

along the income axis. Cases 1-3 and 6-8 can be isolated from 4 and 5
with just two cutpoints along the employment axis, and the eight
training data can be easily covered with 4 crisp rule patches that
yield no training errors. But we know that such a classifier will not
generalize well.

Janikow defines termsets of three linguistic values, {low, medium,
high}, for each of the linguistic variables income and employment.
Figure 4.45 shows the general form of these functions for the first
linguistic variable (income), which are limited in Janikow (1998) to
trapezoidal fuzzy numbers. The same functions are used for the
variable employment.

Medium High
m,)&m)&13 AN

Figure 4.45 Janikow's premise membership functions

» Income

Janikow leads the reader through sample calculations for all the
functions used during node splitting in his fuzzy ID3 tree building
algorithm, and arrives at the final tree shown in Figure 4.46.

(employment

Figure 4.46 Complete decision tree for Janikow's data

CLASSIFIER DESIGN 323

As expected from the geometry of the features for the training cases
seen in Figure 4.44, the terminal tree is rooted in employment, with
cases 1-3 and 6-8 immediately splitting from the root to terminal
nodes v and vy _. The second linguistic variable is used to split the

remaining cases, and although there are {(presumably) only 2 cases
left, notice that Janikow's method also pushes case 2 into a second

terminal leaf, v, . Case 4 acquires its own terminal leaf v, and
3

also moves into v, , which it shares with case 5. Also shown in
4

Figure 4.46 are the firing strengths along the paths from the root to

the leaves. This tree corresponds to a 5 rule fuzzy system, but note

that rule 4 has two possible consequents, since the cases are mixed.

And conversely, object 2, which has a crisp case 1 label, arrives at

vy, with a firing strength of 0.5, and at v, with a firing strength of

0.33. In other words, rules 1 and 2 in the fuzzy system represented by
this tree both support a match to training data point 2, but with
different levels of confidence, whereas rule 4 supports a match to
several outcomes, the strength depending on the matched label.
Similarly, object 4 is also labeled class 1, with equal firing
strengths of 0.5 in 2 different leaves.

Janikow's avowed purpose is to focus on decision trees, not fuzzy
rules, so he spends little time distinguishing MA and TS type rules
that might be equivalent to this tree. Janikow does talk about using
the firing strengths that arrive at terminal nodes in conjunction
with defuzzification to make subsequent classifications. So, we
assume that each of the possible consequents (class 1 = too risky,
class 2 = creditworthy) has a fuzzy set associated with it.

Janikow shows how the classifier represented by the tree in Figure
4.46 operates using the center of gravity method of inferencing on
six new test data. Since the input space is [0,1] x[0,1], the rule-base
will always have an output in [0,1] with the defuzzification being

used, we expect that D%T(O) =0, D‘I;T(l) =1. And indeed, Janikow

shows how the input vector y = (0,0)" causes the response

a(y)=(1,0,0,0,0)T, whereee(y) is the (ordered) set of firing strengths
of the paths leading to the 5 terminal nodes in Figure 4.46. Only rule
1 is fired for this input, and this input will be unequivocally labeled
class 1 (too risky). This certainly agrees with the location of this
datum in the feature space. In words : "IF employment is low and
income is low THEN no credit”. What would our simple hyperplane
H(w,0) shown in Figure 4.44 do for this input? The same.

The test input z = (0.32,0.70)" plotted on Figure 4.44 results in the set

of firing strengths e(z) =(0,0,0.3,0.67,0. 40)T. Now three of the five
rules have positive support, and it is necessary to combine them

324 FUZZY PATTERN RECOGNITION

with some form of disjunctive aggregation. Janikow, using the
center of gravity defuzzification, arrives at an overall value of 0.71

for this input, that is, D%T(z) =0.71. Recall that hardening here

corresponds to rounding off, so 0.71 corresponds to the label 1 =
creditworthy, that is, H(DJm(z)) =e, =1, so we will happily allow z
to go into debt. Our hyperplane H(w, o) would too.

Janikow (1998) goes on to process three input data with missing
values, the inputs (unk, 0.75), (0.5, unk), and (unk, unk]}, where unk =
"unknown". The test data used do not illustrate the efficacy of this
tree as a classifier, however, since none of them has a crisp label.
Now the hyperplane fails, but Janikow's tree produces the outputs
0.63, 0.59 and 0.51, respectively for these three points - that is, upon
hardening (rounding off to 1 = class 2}, all three of these inputs
represent people that will be granted credit.

The last input point is particularly interesting; the defuzzified
output value is not exactly 0.50, even though the input datum (unk,
unk) would suggest a coin flip to make the ruling in this case, since
nothing is known about the input and the sample priors are both
0.5. Janikow says the value 0.51 occurs because the case counts in
the leaves is different from those in the root. Thus, the root starts
with 4 examples of each class, but the leaves contain 3.13 in-leaf
cases for class 1, and 3.20 cases for class 2 (these counts are the sums
of the firing strengths in the leaves), so the training method imparts
a slight bias towards class 2. Tuning the CMFs and PMFs might be
used to balance the in-leaf counts so that they matched the root
priors to solve this problem, but Janikow does not mention doing
this in his 1998 paper. See Janikow (1996b) for a discussion of
optimizing the initial tree found by this method. As an aside, we
remark that this seems to be the model used by many (at least
American) bankers, who cheerfully let anyone who wants to go into
debt, with consequences following the truth of their situation - only
later.

The last thing we mention is that Janikow (1998) does a creditable
job of comparing the utility of his method to another scheme for the
function approximation problem we introduced in subsection 4.6.D.
Janikow builds a fuzzy ID3 tree using the same data that was used by
Suh and Kim (1994) in connection with approximation of the

Mexican hat function. Let x = (,y)T, and consider the function

40 sin(nyx2 +y? / 35) ‘%0

hmex(x) = \/X2 +y2 / 35 ,
407 ;x=0

(4.82)

CLASSIFIER DESIGN 325

Suh and Kim sampled hmex over the domain [-120, 120]x[-120, 120]
13 times in each direction to obtain the training data X They
then used the 169 IO triples {(x r m ()} to bu11d a fuzzy
membership function neural network to approx1mate h_ . In brief,

Suh and Kim manually generated 13 sets of fuzzy rules (one for each
set of data along a line of constant y value on the sampling grid),
partitioned each of the two input variables with 13 triangular
premise membership functions and 7 consequent membership
functions, trained the 13 networks, and then combined their outputs

to produce approximations R(x;8) ~ h . (x), where (] represents the
parameters of the networks acquired during training.

Janikow (1998) trains ID3 based trees on the same data, and shows
the output of two trees on the training data and at test points in
between them. The approximating rules (as represented by the fuzzy
decision trees) differed only in the method of inferencing. Visual
comparison of the surfaces recovered by Janikow's fuzzy decision
trees and the neural network approximations appear to favor the
neural network approach. Janikow (1998) seems to concede this by
referring us to his (1996b) paper on optimizing the membership
functions as a means of improving the approximation. In favor of
his method - and we tend to agree with him - are the facts that his
trees were not tailored to this particular problem, and the fuzzy ID3
rules were not generated manually.

We have one more fuzzy decision tree methodology to discuss (Chi
and Yan, 1996, Chi et al., 1996), but we defer discussion of these
papers to the section on classifier fusion, because these authors
combine their version of fuzzy classifier trees with other techniques
such as nearest prototype and Markov chain classifiers to
(hopefully) improve the overall performance of either individual
classifier.

G. Rule-based approximation based on clustering

Since a fuzzy decision tree is equivalent to a set of fuzzy rules,
building a fuzzy decision tree amounts to extracting a set of fuzzy
rules from numerical or linguistic data. Tree induction (and
consequently, the rules a tree represents) from numerical data using
algorithms such as ID3, C4.5 or CART does not depend primarily on
structure in the data; rather, it depends most heavily on the relative
frequency information that resides in the crisp labels of the data.

In this section we develop an alternate approach to rule extraction
from numerical data that does just the opposite; it tries to focus on
geometric properties of the data as captured by clustering
algorithms. In a few cases we find the method of this section used
directly for classifier design, but most of the important work in this

326 FUZZY PATTERN RECOGNITION

area is aimed at approximating functions used in prediction and
control. In any case rule extraction by clustering is a nice
application of the material in Chapter 2 on clustering, now used as a
tool in a very different context than its original domain. We begin
with a discussion of the feasibility of approximating functions with
fuzzy systems.

The Mexican hat example presented by Janikow (1998) that we
discussed in subsection 4.6.F was our first example of using fuzzy
rules to approximate functions. While Janikow's example shows the
feasibility of using a fuzzy decision tree (and therefore, a fuzzy
system) for function approximation, there can be problems with
this approach. For example, computational complexity can be very
high, and further, Janikow's results - the first we have seen for
approximation by fuzzy decision trees - are visually inferior to
those obtained by Suh and Kim (1994). The first question that comes
to mind is - why should we expect a fuzzy rule-based system to do
well at all? A theoretical answer to our question comes from the
field called universal approximation (UA) theory.

We won't spend much time on this topic, because we do not explicitly
rely on the results of UA theorems to design and construct a good
classifier. But like many before us, we take some psychological
reassurance from such theories, and as an old friend of ours once
told us, "nothing is so practical as a good theory.” Universal

approximators are sets of functions {R(x;8):X c RP > RY;08 € Q},

where Q is a parameter space for 8, that provide arbitrarily good
approximations to every element in other sets of functions, say 3=

{f: X < RP > R9}. The measure of goodness is a norm on RY,
typically X is compact, and every function in 3 is continuous. The
approximation to f is uniform by such families; i.e., once ¢ is given,

for any fe8, you can find a set of parameters 8 for which

”f (x) -—R(x;é)" < ¢ for every x € X. For example, Fourier series are a

set of universal approximators for square integrable functions on
[0,27].

There are any number of theorems guaranteeing that various MA
and TS rule-based systems are universal approximators. The
conditions on X and f vary, and there are usually other special
conditions or constraints on the result that depend on the particular
system you have in hand. This answers one question we raised in
Example 4.17; in principle, a fuzzy system designed with any
method - clustering included - may provide a good approximation to
well enough behaved functions. Unfortunately, none of these UA
theorems is constructive - that is, none of them tell us how to find
the approximating system. That's why their value to the designers of
a working pattern recognition system not high.

CLASSIFIER DESIGN 327

There are also many UA theorems for neural networks. Figure 4.47
depicts a 21 point 10 data set that Narazaki and Ralescu (1993)
obtained by uniformly sampling the function

S(x)=0.2+0.8(x+0.7sin(x)),0<x<1 (4.83)

over the base points X, ={0.00,0.05,...,1.00}, which comprise a set
of input training data, with corresponding output training data
Y,, ={S(0.00), S(0.05), ..., S(1.00)}.

(0 Training Data X, Y ZD

S_(x) o
o0
0.9 r °
° °
°
0.7 } *
° ° °

05 o °

L o

®

0.3} o

[

0.2 0.4 0.6 0.8

Figure 4.47 Data set X2 1Y21 is 21 samples from (4.83)

Narazaki and Ralescu used X, Y,, to illustrate the approximation

capabilities of five different feed-forward neural network
architectures. Approximation of S by the five schemes they describe

100101 el 0
101)k§1lyk s(x,;8)| = 7.42%
on 101 test inputs uniformly distributed over [0,1]. The
approximation capabilities of NNs are well known, so this is not
surprising. Notice that these test data include the 21 training inputs,
so this error is a little optimistic; nonetheless, this is a nice result.
We will use these data to illustrate several rule extraction methods
in Example 4.17.

yielded an average EMSE(X101|X21)=(

To appreciate the relationship between smoothness and
approximation, recall that the 10 data available for identifying S

328 FUZZY PATTERN RECOGNITION

are XY = {(xk,yk)T: k= 1,...,n} c ®P*4, Roughly speaking, XY is the
"diagonal" of the Cartesian product XxY. The discrete set XY is also
assumed to be a subset of the graph GS of S, which is in turn a subset

of RP x R9. Figure 4.48 shows these relationships.

R4

00O
0.0

000 © O

3 RP

Figure4.48’l‘hesetsX.Y,XY,XxYandGs

Rule extraction can be done by clustering in X, Y or XY, resulting in

c-partitions UX,UY,or UXY, respectively. The superscript shows
which of the three data sets is the basis of clustering. We assume that
the clustering method also produces either point prototypes

vX = {vf},VY ={ h } or V¥ = {(v vY)T} or non-point prototypes

X - {bf{}), BY = {bf} or = {(bix,bf)T}. Many of the rule
extraction methods depend on projections of these prototypes from
XY to X and/or Y, and they also rely (almost always implicitly) on
the smoothness of S.

When S is very smooth, as the sine curve in Figure 4.47 is, we will be
able to find nice approximations to it with fairly course, low order
fuzzy systems - in particular, with first order TS systems. When 8 is
"bumpy” but still smooth (the graph of § in Figure 4.48 is like this at
one spot), we will need a higher order approximation, more rules,
finer premise membership function structure, and so on, to get
decent approximations to the IO data.

Since we use rule-based systems in classifier design, it's nice to
know these UA theorems exist. That's really all we need to say about

CLASSIFIER DESIGN 329

this aspect of approximation to classifier functions by fuzzy
systems, except for this very important point. Crisp classifier

functions D:RP > N, = cannot be continuous, because their range is

discrete, so UA theorems in this special case lose some of their
appeal. However, be careful to distinguish what function you are
approximating when you worry about this statement. In equation

(4.2) we. show the crisp classifier function DV'E,S[z)zei, which
cannot be a continuous function of 2z, but the function
f(x) = (x, w)+ o that defines H(w,0) is certainly smooth, and can be
used to implement Dy . ., so the situation for classifier design is not

as bad as it might seem. When classifier functions are soft, UA
theorems directly underlie our attempts to approximate them with
rule-based systems.

If you want more information on universal approximation, start
with Kreinovich et al. (1998). Just to give you a taste of what you will
find there, we report some statistics about this paper: (i) UA
theorems due to no less than 13 different named authors for the
three year period 1990-1992; (ii} 220 references, clustered usefully
into categories (numbers in () are number of references) such as:
basic results (37), TS model (8), fuzzy rule patches (8), "complicated"”
implications (3), hierarchical systems (9), distributed systems (4),
discrete systems (9), stability (9), neural networks (23), fuzzy neural
networks (4), and our favorite, "how to choose the best variant of
fuzzy rule-based modeling methodology {(21). We are not making fun
of these papers - we love them. (Our only complaint is that there
aren't any references in the category "how to design a good rule-
based classifier".)

Kreinovich et al. (1998} emphasize that there are at least three
performance criteria besides the observed mean squared error
(MSE) on test data that a good UA should possess; stability,
computational simplicity, and smoothness. These authors present a
really nice discussion that compares fuzzy systems to neural
networks using each of these criteria. For us, perhaps the most
important aspect of their discussion on this topic is that fuzzy
systems are inherently less smooth than neural networks because
the T-norms and T-conorms used during reasoning are - with rare
exceptions - not smooth themselves. Arguably, this means that
classifier functions represented by fuzzy systems will be, on average,
less smooth than those built with neural networks. We think that
the architecture and membership functions on the LHS of fuzzy
systems are also very important when considering the overall
smoothness of these two kinds of systems. In any case, this is a good
thing to keep in mind when you set out to design that perfect
classifier.

330 FUZZY PATTERN RECOGNITION

When XY appears to have no clusters, can we expect rules extracted

by clustering to afford good approximations? Look again at X, Y,,

in Figure 4.47 - how many clusters do you see? Most observers would
say either "none" (no substructure), or "one" (all of the data, viewed
as a single curvilinear arc), so your initial reaction might be "No
way [can you get rules with clustering]”. How well would single input,
single output rules for a simple MA model that are extracted by

clustering in X, Y, represent this system? Pretty well. Our next

example also shows that the lack of smoothness in fuzzy systems
approximations can sometimes be offset by replacing the usual
PMFs such as triangular and trapezoidal fuzzy numbers with non-
standard PMFs such as polynomials.

e
o

Example 4.17 Referring back to Figure 4.47, recall the data set X, Y,
of Narazaki and Ralescu. Figure 4.49 shows these data, along with ¢

= 5 point prototypes {ix =v } in %2 that lie on 5 prototypical line

217 21
fuzzy c-elliptotypes (FCE) algorithm (see equation (2.32)),
implemented in the ACE interface (Runkler and Bezdek, 1998c). The
lines have infinite extent, but the PMFs extracted from the data only
provide each of them with support over a subinterval of [0, 1].

segments {Li : x=v, +1d } extracted by clustering X, Y,, with the

x)

B

=1
2

i
»n

s

Figure 4.49 TS approximation of S in (4.83) using FCE-AO
in the ACE interface with trapezoidal and triangular PMF's

CLASSIFIER DESIGN 331

The approximating fuzzy system is a first order TS system whose i-
th output function is a line (written here in point slope form),

u;(x) = s;(x — x;} + y;. Clustering with FCE provides estimates for the
parameters of each u,(x) as v, =(x,,y,), s; = b, /b, where bY and
bY are the components of bfiY in the x and y directions. To

understand exactly how FCE produces these estimates, we repeat
equation (2.32)

D2 =oD? +(1-o)D® : O0<ac<l . {2.32, repeated)
10,ik L Lo
lines points

We did not provide a geometric interpretation for this measure of
distance in Chapter 2, but think it useful here. Figure 4. 50 shows the

geometry of the distance D, used by the FCE objective function.

X XY
k N b

B = the i-th “elliptotype”

Figure 4.50 Geometric interpretation of FCE distance (2.32)

The distances s and t and the location of the "foot" of the line with
length D, in Figure 4.50 are controlled by o. When o= 1, s = 0 and

FCE becomes FCL with pure line prototypes. When o = 0, t = 0 and
FCE becomes FCM with pure point prototypes. For 0 < a < 1, the
prototypes are not geometric entities with recognizable names (and
in particular, they are not ellipses, as we pointed out in Chapter 2).
But for any o > O, the lines component of FCE as shown in Figure
4.50 can be used to find linear prototypes. That's how Runkler and
Bezdek (1998c) used FCE in the current application, and more
importantly, that's how you can get lines from any clustering
algorithm that associates a covariance matrix with each cluster.

332 FUZZY PATTERN RECOGNITION

Parameters for FCE in this example are m = 2, a = 0.001, and the
Euclidean norm was used in the objective function. This choice for o
focuses most of the objective function's attention, when computing

u_, on the distance D = "x -v H This choice makes FCE seek
ik Lo_‘k k i

almost "all points”, which forces the cluster centers into the data.
The direction vector bi) for the i-th line is the principal eigenvector

of C, the i-th fuzzy covariance matrix in FCE (see Figure 4.50 and

equation (2.27)). Rule i in the system under construction takes the
simple form (don't confuse o in (2.32) with firing strength o (x) in Ri)

IF oci(x) THEN wu;(x)=s;(x-x;)+y;;1=1,2,3,4,5.

The premise membership functions {mi(x) } in Figure 4.49 are built

by projecting the 2D point prototypes v*2¥21 from FCE onto the x
axis. This is shown in full notation in Figure 4.49 for only the

projection vi{ﬂyﬂ - vfﬂ. Then triangular membership functions

X X X . ; :
2+V3»Vy and trapezoidal membership

functions are shouldered at vf,vé‘. The domains of positive support
are chosen so that each PMF is zero at the same x at which the next

PMF (to the right) is 1; because of this construction, the sum of PMF
values at any input is 1.

are centered about v

In this SISO system each xe [O,vf("’l]u[v;(“,l] fires just one rule

with firing strength 1. Each x e [vf(21 ,v;(ﬂ] will yield two values, say

mj(x) and m, (x) from adjacent PMFs, and we know that

j+1
mj(x)+ mj+1(x) =1. Equation (4.73) produces the output, which for

this simple system becomes, forj =1, 2, 3, 4,

S (x)= [m (x)-(s,(x = x))+y)+[m,(x)-(s,,(x-x)+y)

TS m (x)+m,,, (x)

=[m(x)-(s;(x-x))+y N+[m, ,(x)-(s,,(x =%,)+y,,).

The approximation function STS(X] produced by these 5 rules is

plotted on Figure 4.49. Notice especially that this function is NOT
smooth at the local maximum and local minimum of the underlying
function S at (4.83) - it has cusps, so this TS model is not so smooth.

Runkler and Bezdek (1998c¢) give a second method for approximating
S based on finding piecewise polynomials for the premise
membership functions, and the result is a much smoother fit, both
to the training data, and to test sets not in the training data. Table

CLASSIFIER DESIGN 333

4.35 reports the training and testing errors obtained with both

schemes. The test data X 01Y 0, Were generated by evaluating S(xk) at

101 input base points x, =x, , +0.0; k=1,...,100:x, =0. We omit
the Y factors of the data sets in Table 4.35 for brevity.

Table 4.35 Training and testing errors (in percent) for
approximations to S(x) extracted from X . 1meith FCE clustering

Triangular PMFs Polynomial PMFs
rules EI(XZI lX21) EI(X101 |X21) E1(X21 |X21) E1(X101 |X21)
2 36.30 37.60 28.40 28.70
4 15.30 15.50 11.90 11.40
5 6.40 6.03 5.01 4.98
11 4.64 4.03 3.85 3.50

The measures of test and training errors for these results were mean
absolute relative errors (converted to % for the Table 4.35 values by
multiplication by 100},

3 [stx,) - Spslxy)|

El(Xtel Xu) — XX o S(Xk) : and (4.84a)
Z}JS[XR) - S’I’S(Xk)l
E; (X |Xy) = Xy € trzl.s(xk] . (4.84b)

Several observations about these results are in order. First, training
and testing errors drop as the number of rules increases (i.e., as ¢, the
number of clusters found in X21Y21 increases). Also notice that the

improvement afforded by polynomial PMFs is highest when c is
lowest. As the number of triangular PMFs increases, the
conventional TS system becomes relatively better, but is never as
good as the polynomial based system. Both of these trends will
generally occur, and are due to the fineness of the fuzzy rule patches
used by the approximating system.

Second, the generalization error is about half of that reported in
Narazaki and Ralescu (1995) using various neural network
approximations. This does NOT tell us that either TS model is better
than the neural network models in any sense - it tells us that
approximations of the same order of magnitude are easily obtained
using both approaches. Finally, the use of polynomial membership
functions in the antecedents of the rules smoothes out the
approximation considerably.

334 FUZZY PATTERN RECOGNITION

1.0

Figure 4.51 TS approximation of S in (4.83) using FCE-AO in
the ACE interface with piecewise polynomial PMFs

The solid curve in Figure 4.51 is the graph of the function S that
generates the training and test data, and the dashed curve is a pretty
smooth approximation to it by the TS model with polynomial
premise membership functions. Several of the PMFs, which are now
piecewise polynomials, have cusps, but the cusps at the local
minimum and maximum of the approximating function S, in

Figure 4.49 have been eliminated.

Runkler and Bezdek (1998c) also present a second approach to the
approximation problem in this example that is based on clustering
with an algorithm built by selecting hyperconic membership
functions and prototypes from the ACE toolbars (Section 2.6} that
are not AO matched (that is, are not necessary conditions for
minimization of an objective function by alternating optimization).
Results from this second method are slightly better than those
shown in Table 4.35, but the algorithm used was not discussed in
Chapters 2 or 4.

‘ A

How do we fix the size of the rule-base when we cluster to extract
rules (cluster validity, hiding again)? In view of Table 4.35 in
Example 4.17, tendency assessment and cluster validity seem
relatively unimportant for rule extraction by clustering, because
good approximations to S8 do not rely primarily on cluster
substructure in the pattern recognition sense for their success. For
reasonable functions, simply increasing c¢ will almost always
improve the approximation accuracy, as the clustering model
responds with finer substructure (more rules). This is analogous to
choosing smaller and smaller stepsizes for functional

CLASSIFIER DESIGN 335

approximation as is done in classical numerical analysis. Many
authors, however, do use validity functionals ¥ when clustering for
rules, and in this application ¥V becomes essentially a pruning
mechanism for the underlying fuzzy decision tree that maps to the
fuzzy system. This trend probably began with Sugeno and Yasukawa
(1993), who introduced Vey expressly for this purpose. Other validity

functionals that have been used this way include V B and VG G (Pal et

al., 1997b). Babuska and Kaymak (1995) use the compatible cluster
merging (CCM) algorithm (Section 5.6.A) to find the number of
linear clusters automatically.

Example 4.17 shows that extracting various parameters of a fuzzy
system with clustering works. It is easy to find other examples in the
literature of data that do not possess visual cluster structure but
which, when clustered for rules, produce fuzzy systems that afford
excellent approximations to the generating function. For example,
Kim et al. (1997) discuss approximation of the MISO function

1 1

2
S(X,k)=(l+-—2+',—ﬁ) N 1SX,).(<5 , (485)
X X

with rules extracted by clustering samples from (4.85). Sugeno and
Yasukawa (1993) used samples from this function to illustrate
function approximation for the 0-th order TS model. Sugeno and
Yasukawa report a resubstitution MSE of 0.079 on 50 triples of 10
training data using 6 0-th order fuzzy rules.

Kim et al. use the same 10 data with fuzzy c-regression models
(FCRM) clustering as discussed in Section 2.4 to extract 3 fuzzy rules
for a first order TS system. The i-th rule,i=1, 2, 3 is

R:IF [mj(x) Amy(X)] THEN u(x)=a,+bx+cx, (4.86)

2
Aty sst i
where the PMFs are Gaussian, m}(z) =€ ((Z gl 61) . Parameters of the

LHS PMFs {A; = (u;,cﬁ)} and RHS output functions {p, =(a,,b,,c,)}

are estimated by clustering in XY with FCRM. Specifically, FCRM
fuzzy partition U yields initial estimates of the Gaussian PMFs as

o L ~i12
2 Uy Xy 2 uyxyy —i)
<1 _ k=l) =i k=1
> Uy 2 uy
k=1 k=1

Initial parameters for the RHS output functions are obtained
directly from FCRM as linear regression functions (that is, local

336 FUZZY PATTERN RECOGNITION

linear models of the 10 data). The final step in Kim et al.'s approach
is to fine tune both sets of parameters {(i;,ﬁ J} using gradient

descent. They report that the final set of three fuzzy rules produces a
resubstitution MSE of 0.0551 - an improvement over the error
reported by Sugeno and Yasukawa (1993).

The models used by Runkler and Bezdek (1998¢) and Kim et al. (1997)
have two important things in common, and one important
difference. The big difference between these two approaches lies in
the use of the clustering outputs. Both methods use the 10 data XY to

find estimates for (U*,BXY), and in both cases the {bX¥} are linear
prototypes. However, Runkler and Bezdek essentially ignore the
fuzzy partition UXY e M en> and use only the prototypes {b;"(Y } during
construction of the rules. Kim et al., on the other hand, chose to use

everything the clustering algorithm provides them, viz., (U*Y,B¥XY).
There is no reason to prefer one scheme to the other, and more
generally, Pal et al. (1997b) survey many other schemes besides
these two that use the information extracted from XY by @ in other
ways. We are not willing to say that there is a "best way" to use the
information you can get from clustering XY to extract rules; we
think the choice is dictated by a number of factors, one of the most
important of which, and the one you have the least control of, is the
data itself. However, the similarities between Runkler and Bezdek
(1998¢) and Kim et al. (1997) do give us one clue.

In both Runkler and Bezdek (1998c} and Kim et al. (1997) the
underlying fuzzy system is a first order TS model, and the clustering
algorithms used can both generate linear prototypes. Thus, @
produces direct estimates of the TS output functions for this case.
Functional approximation with linear models is hardly new. After
all, the geometric meaning of the derivative of any real function at a
point is that its value gives us the slope of the line tangent to the
graph of the function at this point, and the tangent line provides the
best local linear approximation to the curve. OQur supposition is that
clustering algorithms most effectively extract TS rules when their
prototypes match TS output functions. If this is correct, then the

best choice for € if you are building a first order TS system would
seem to be any clustering algorithm that is capable of generating
lines in the product space. This includes, for example, the GK, GMD,
FCL, FCE, RFCM, and FCQ@S algorithms discussed in Chapter 2, and
any other € that involves hyperellipsoidal clusters with covariance
matrices (such as the model of Nakamori and Ryoke, 1994), whose
principal eigenvectors can be used to supply lines through the
corresponding cluster centers.

Extending this idea, if you wanted local quadratic approximations,
then a second order TS model would be appropriate, and you would

CLASSIFIER DESIGN 337

have a somewhat more limited set of natural choices for the

clustering algorithm @, which in this case would have to be able to
generate quadratic prototypes. Thus, you might try RFCM or FQRS.
We will discuss several other ways to build fuzzy systems for
function approximation with clustering, but the fact that some
clustering non-point prototype algorithms can produce direct
estimates of first and second order polynomials, coupled with the
fact that first and second order TS models have exactly these
functional forms on the RHS of the rule-base, suggest to us that this
is probably the best combination of fuzzy systems and clustering for
function approximation.

Having some examples of function approximation by rules extracted
with clustering under our belts, we ask some general questions about
the use of clustering in this domain. What tasks in the design of a
rule-based fuzzy system can be relegated to clustering? Where should
we cluster, X, Y, XY, or all of these? What clustering algorithm
should we use? How do we use the clustering outputs in c-partitions
UX,UY,or UXY; point prototypes V¥, VY, or V¥¥ ; and non-point
prototypes BX, BY, or BXY to create pieces of a fuzzy system? What
might go wrong when clustering is used for rule extraction? We
address these questions, but like many topics in this book,
functional approximation by clustering is an area of right-now
research, so don't expect definitive off-the-shelf answers. Instead,
look for the general ideas, and think of ways to improve them.

What tasks in the design of a rule-based fuzzy system can be
relegated to clustering? Table 4.36 shows nine tasks involved in the
establishment of K that seem most amenable to clustering.

Table 4.36 What humans (¥€$?) and clustering (W)
can do for the MA and TS fuzzy systems

Left Side of the Rule Base

Q 1 Select input variables x P X
[1 | 2 Fori=1top:choose or find:

< 2a numerical range D, for x

Q 2b linguistic variable £

Q | 2c the # r of linguistic values for £,

€ | W 2d linguistic values {¢} for £,

Q| W 2e PMFs {mﬂ},l <j<r

L $) W 3 Select the number of rules, ¢

< W 4 Define the structure of each rule

Q 5 Select T-norm T = N

338 FUZZY PATTERN RECOGNITION

Table 4.36 (con't.) What humans (¥0?) and clustering ()
can do for the MA and TS fuzzy systems

Right Side of the Rule Base
6 Select output variables z o %
7TS | Select forms of u, 1<i<c
w 8TS | Determine parameters of the (ui}

7MA | For k = 1 to q: choose or find:
7MAa numerical range Do, for z

k
7MAb linguistic variable o
7MAc # s of linguistic values for 4o
7TMAd linguistic values {éoki} for 2o,

W | 7MAe CMFs {mo, },1<j<s

8MA | Select T-conorm U

9MA | Select defuzzification operator Dy
W 10 | Couple LHS-RHS (choose =»)

A wlalola)a olal bl
%

Steps 1, 2a, 2b, 2d, 5, 6, 7TS, 7MAa, 7MAb, 7MAd, 8MA and 9MA in
Table 1 are always done by the modeler, perhaps with the help of an
expert. For example, although each cluster may correspond to a
linguistic value in the LHS or RHS of a rule-base, linguistic values
are words such as "high", "fast", "light" that must be chosen by
humans, but the PMFs and CMFs that correspond to each of these
words can be chosen by humans, or discovered by clustering. The
first column of the table shows you that humans can (and often) do
all of the remaining tasks too. The hypothesis for this subsection is
that clustering may be able to do some of them more reliably, and
perhaps more efficiently. We will discuss some clustering methods
that have been used to replace intuition and/or trial and error in
one or more of steps 2c, 2e, 3, 4, 7MAc, 7MAe, 8TS and 10 in Table
4.36.

Where should we cluster: X, Y, XY, or all of these? This interesting
question has no easy answer, since it's easy to give examples where
each domain is needed, and other examples where each domain
fails. Figure 4.52 illustrates a situation where c=4in XY, c=3inY
because Y, and Y , will be mixed into one cluster, and ¢ = 2 in X

because of the mixing of X, with X, and X, with X . (We have "lifted"

the projections of X Y_onto RP and XY, onto R? so you can see

them.) If you had a reliable cluster validity function or other means
for discovering the "right" number of clusters, you would not obtain
consistent results when comparing the rules suggested by clustering
in these three domains.

CLASSIFIER DESIGN 339

A

Y,
»
X,Y
; 4+ 4
Y, oY, L
o U
24 [J
] ¢
. []
M []
reeserasnesnen o anediElie) gap
Xl () X2 X3 (v X4

Figure 4.52 Different numbers of clusters in all three domains

Figure 4.52 illustrates an important point that often causes
confusion when clustering is used to build fuzzy systems. The tacit
assumption in the pattern recognition use of clustering (chapter 2) is
that some unlabeled data set has "clusters”, and all we want to do is
find them. The data in Figure 4.52 do have visually apparent
clusters in each of X, Y and XY. The problem here, however, is that
the clusters don't seem to properly reflect the additional
information we have in this application - viz., that the labels tell us
there is a functional relationship between the input and output pairs
in the training data. There may be rules that cover the data in Figure
4.52, but our point in this figure is that discovering the rules by
clustering might be difficult, if not impossible in this situation.

We have already discussed the principle of matching prototype
shapes to TS output functions. Another point about Figure 4.52
concerns the shapes of the clusters in the data. We know from
Chapter 2 that one of the principal desires for clustering algorithms
when used in the context of pattern recognition is that the model
underlying them match the geometric shapes of the clusters. In
Chapter 2 we discussed models that attempt to match ellipsoidal

340 FUZZY PATTERN RECOGNITION

shapes - volumetric or cloud clusters. Most cloud seeking models are
point prototype models that looked for central tendencies in X, and
represent structure with point prototypes. Shell clusters, on the
other hand, are best matched by non-point prototype models. You
see the shapes of the clusters in XY in Figure 4.52. A single clustering
model would have a hard time matching the variety of shapes in the
clusters you see in Figure 4.52. Moreover, in this illustration it
looks like the clusters in X and Y are linear, but this is an artifact of

the drawing - X and Y are sets in %P and %%, and they can also have a
variety of shapes, perhaps all different. And finally, for p, g > 3, you
have very little information about cluster shapes in any of the three
domains. Nonetheless, to the extent possible, the choice of € should
also be dictated by any knowledge you can glean about cluster
shapes.

Figure 4.53 illustrates a case where there appear to be c = 2 clusters
in XY, and c = 4 clusters in both X and Y.

R4

A

. ®

* ®

* []

»* []
Y ®

» ®

* ®
Y2 : . L4 ®

: °

F ®

bt)

L4

A A W AR M ol w ey RP
Xl XZ XS X4

Figure 4.53 Different numbers of clusters in the product and factors

Trying to extract rules for function approximation from the data
shown in Figures 4.52 or 4.53 by clustering may lead to very
confusing results. When we want to build a classifier with rules, the
training outputs are usually crisp label vectors, and this presents a
somewhat different situation. Figure 4.54 illustrates a case where
there are ¢ = 2 crisply labeled classes in the training data. In the
upper view in Figure 4.54, the input data X lie along the horizontal

CLASSIFIER DESIGN 341

axis, and the output data (crisp labels or label vectors) lie along the
vertical axis.

® Class 1
O Class 2

Figure 4.54 An XOR:-like data set for classifier design

We can arrange the scales of the data so that therearec=1, 2, 3, ..., 12
clusters in X. For example, with p = 1 we might have

X1 ={1,2,3,4,5,6,7,8,9, 10, 11, 12} rc=1
X2 ={1, 2, 3, 4, 101, 102, 103, 104, 105, 106, 107, 108} ic=
X3={1, 2, 3, 4, 101, 102, 103, 104, 201, 201, 203, 204} je=
X4={1, 2, 3, 101, 102, 103, 201, 201, 203, 301, 302, 303} 1=
L1 o N etCuvierianinnnnnns etc

Now suppose we append the label O to the class 1 feature vectors and
the label 1 to the class 2 feature vectors - that is, the target output set

is Y = {0, 1}. In the product space R®P*!, shown in the lower view of
Figure 4.54, the IO data XY will have the general form

x=(x1,...,xp,0)T for class 1, and x=(x1,...,xp,1)T for class 2. There

are either ¢ = 1 or ¢ = 2 clusters in Y: your assessment will depend on
the relationship of Y to X. For example, if the input data were

X={11,11.1, 11.11, ..., 11.1111111111} , 1c=1
a scatterplot of XY at equal resolution along each axis would suggest

that there was ¢ = 1 cluster in X, 2in Y, and 2 in XY. On the other
hand, for the input data

X ={1, 102, 103, 104, 201, 202, 203, 204, 301, 302, 303, 304}, jc=4

342 FUZZY PATTERN RECOGNITION

a scatterplot would suggest 4 clusters in X, 1 in Y, and most likely 3
in XY. The point here is that IO data for classifier design is
somewhat different than for functional approximation, because the
outputs are not continuously valued, nor do they necessarily satisfy
any "smoothness" criterion as they might in the functional
approximation problem.

Figures 4.52-4.54 illustrate the difficulty of proposing a guideline
about where to cluster that reliably covers all possible cases. In a
recent survey by Pal et al. (1997b) of 14 papers on rule extraction by
clustering, the authors of the papers studied used either MA and TS
models (or both), or some hybrid of one of them. Of the 14 authors,
11 advocated clustering in XY, 3 clustered in X, and 2 clustered in Y.
One set of authors (Delgado et al., 1997) clustered in all three spaces,
and one set (Nakimori and Ryoke, 1994} clustered in part of XY.

Another important consideration when choosing the proper
domain for clustering is the relationship of p to q. In every example
we know of where functions are approximated by fuzzy systems that
are derived by clustering, the input and output domains have
roughly the same (order of magnitude of) dimensions. We know of at
least one industrial application at Siemens in Germany where p is
about 220 and q = 1 (this application is proprietary, so we can't give
you a reference). What if, for example, p = 200, q = 1? Do you think
this would have any effect on the efficacy of clustering to extract
rules? Most clustering algorithms eventually rest their cases on
distance calculations. For example, if you cluster in XY with any of
the c-means models in this situation, you will need to make

calculations that entail distances like "(xk,yk)—viﬂz. Using the

Euclidean norm, for instance with p = 200, q = 1, we can write this
distance in component form as

2 200 9 2
"(xk,yk) - v1|| = 2l — V)P [+~ Vaep,)) (4.88)
j=1 —_—
output
input

If the scales of values in the input and output features are about the
same, the input feature values will certainly dominate the distance,
essentially masking the contribution of the output values to the

location of cluster centers in the product space %2°!. The same
remark applies to the opposite scenario, when p = 1, q = 200. Clusters
discovered in XY's with such imbalance may be a poor choice for
representing IO relationships. We are not aware of any studies that
investigate this problem in relation to rule extraction by clustering,
and what to do about it, but we think it is a problem that deserves
careful attention if and when the dimensions p and q differ by more
than a handful of integers. To shoot from the hip (risking a total
miss, of course), we suggest trying joint statistical normalization, so

CLASSIFIER DESIGN 343

that each feature in XY has sample mean O and sample variance 1
when p and q differ by more than a half dozen or so integers. This
will at least partially offset the effect of inequitable domination of
the joint distances by one set of variables or the other when making
calculations like those in {4.88) during clustering in XY.

Chiu (1997) unequivocally states that when the rules are for
approximation of functions with continuous outputs, clustering
should always be in XY, and when the function being approximated
is a classifier function (as would be the case in Figure 4.54),
clustering should be in each of the crisply labeled subsets of X alone.
Since each of the ¢ subsets of X can be separately clustered into say, ¢

rules, R will be subdivided into ¢ subsets of rules (one set for each
class in XY) using this scheme. We tend to agree with Chiu's advice
about where to cluster when the labels are crisp, because this
strategy is in line with our general belief that the RHS of the TS
model should be chosen to reflect the geometry of the function being
approximated. Here, the function is not continuous (many inputs

from RPmay cause the same response in Npc < %°). However, if the

training data have soft labels they cannot be subdivided and
clustered separately, and we are back to the question of where best to
cluster, X, Y or XY.

Suppose X=X ,u-UX cRP has c crisply labeled classes with

|Xil =n, fori =1 to c. Chiu applies the SCM clustering algorithm to
each X separately, obtaining, say, c clusters for X,i=1,..,c. Each of
the clusters thus contributes c rules to the rule-base, and the total

number of rules is M= ZC Since there are c subsets of rules
i=1

corresponding to the c subsets in X, we add an index to the rules that
indicates which class they pertain to: let R, o, and u, denote the j-th

rule, its firing strength and its output functlon for the i-th class,
respectively, j=1,...,c; i=1,...,c. Chiu uses a variation of the zero-th

order TS model for which the ij-th rule has the general form
Rij: ocij(x)=>uij(x)=i,i=1,...,c;j=1,..., o . {(4.89)
Chiu uses the T, norm (product) to compute the LHS firing strengths

in (4.89), and departs from the standard TS model by abandoning
the general TS output formula in equation (4.73). Instead, Chiu

computes the output of R(X) for a given input x e RP as
R =i& ocij(x) = max {a, (x)}

1<k<e
I<s<c,

Chiu (X)

344 FUZZY PATTERN RECOGNITION

Although many writers have used other methods to design fuzzy
rule-based classifiers, only a few have used clustering towards this
end. Here we abstract an example presented by Chiu (1997) on- yipes!
- the Iris (but which one ?) data.

Example 4.18 Chiu (1997) advocates the use of clustering to extract
rules for classifier design based on his subtractive clustering
method (SCM), which is related to the mountain clustering method
of Yager and Filev (1994a, b). Since this is an example of classifier
design, the crisp labels of Iris play an active role in the development
of the fuzzy rules.

First, like many before him, Chiu drops the first two features in Iris,
so the data set for which results are discussed is really the 2D data
set X = Iris3 4 (Figure 4.12). This simplification not only makes the

classifier work better, but more importantly, means that we are
looking for a 2 input, single output system. Chiu says he normalizes
the input data, but does not give the method of normalization.
However, the domains of the extracted rules suggest that he
multiplied Iris,, by 10. The output training data consist of the

integers 1, 2 and 3, corresponding, respectively, to the crisp labels of
the three classes in Iris. Consequently, the model being developed is
a O-th order TS model - that is, a TS system with crisp singleton
output functions, ui(x) =i, i=1, 2, 3. Remember that here ui(x) is

simply a label to identify a class; the rule-base ® does not attempt to
approximate the numerical values 1, 2 or 3.

Chiu subdivides Iris3 , into its three 50 sample components, and

separates each subset into 40 training data and 10 test data (the
method of subdivision is not specified). Recall that the MCM and

n
(viX)= Ye

k=1
a constant r =+/4/a that he calls the SCM cluster radius for all
prototypes. In the example being discussed r = 0.5 (so o = 16).

—aS(vj X)

SCM objective function is J . Chiu defines

MCM,1

Chiu clusters the 40 points in each subtraining set, and finds that ¢ =
1 cluster (i.e., one SCM prototype per class) is sufficient to produce a
training error of 3/120 = 2.5% on the training data, and 0/30 = 0%
apparent error on the 30 test data. This is a somewhat curious
reversal of the usual case, where the resubstitution error is lower
than the test error. But that's pattern recognition - it all depends on
the points you happen to use for training and testing! Each of the
three rules found by this process started with a set of two PMFs,
which were "two-sided" Gaussians, and the PMFs were optimized by
the gradient descent method given in Chiu (1995).

CLASSIFIER DESIGN 345

Figure 4.55 is our adaptation of Chiu's (1997) Figure 9.5, which
shows the three rules extracted by this process in a pleasant
graphical style. Chiu does not identify linguistic values for the two
sets of three premise membership functions shown vertically in
Figure 4.55, so we have assigned them the values "Low", "Medium"
and "High" simply to make this example more uniform with
previous illustrations. Chiu does not give functional forms for the
PMFs either, and although the two sets are not visually identical,
they are certainly very similar.

IF AND THEN
petal length x 518 petal width x , s class is
R 1 Low 1
69 1 25
1
R, Med Med 2
0
10 69 1 25
1 v
R3 % 3
0 |
10 69 1

Figure 4.55 SCM rules for classifying Iris34 (Chiu, 1997)

According to Chiu, Figure 4.55 shows the linguistic aspect of rule-
based classification to good effect. For example, he asserts that the
first rule essentially states that flowers with small petals {small
petal length and petal width) are Iris Sestosa; that medium size
petals are class 2 (Iris Versicolor), and the Iris Virginica (class 3)
have relatively large petals. Although it might take you a while -
say, 10 minutes - this conclusion can be reached by simply looking
at the values of features three and four of Iris (try it - look at the
third and fourth columns of Iris in Appendix 2, or at the scatterplot
in Figure 4.12). This is not to take away from Chiu's example, for if

346 FUZZY PATTERN RECOGNITION

the data had, say, 100 variables, an exercise like this would be an
exercise in sheer folly.

Now we return to the remaining questions on our checklist about
using clustering to extract fuzzy rules. The main questions

outstanding are: what clustering algorithm € should we use? ; and
how do we use the clustering outputs in c-partitions U¥,uY,or u¥¥;
point prototypes VX, VY, or V¥¥ ; and non-point prototypes BX,
BY, or BXY to create pieces of a fuzzy system? We have already
provided one answer for these questions - viz., match the prototypes

B to TS output functions, and the answers to them are almost
inseparable, so we tackle them together here in a little more detail.

The most important distinction (after the types of functions being
approximated) between various approaches to rule extraction by
clustering seems to be whether the clustering algorithm generates

point prototypes or non-point prototypes. When € produces point
prototypes, they are usually used to locate central tendencies in the
input and output domains, and the memberships from U are used to
(somehow)} produce at least initial estimates of the PMFs and CMFs
(or output functions in the TS model) which are "centered" about the
prototypes. This case is best understood by first studying the
situation for crisp partitions of the data.

Let UX & {X,,...,X_ } be any crisp c-partition of X. When Y=8(X),
under the assumption that § is a 1-1 function, each cluster X, ¢ X is
carried to a crisp subset Y, = 8[X,]c Y, and the labels of points in Yi

C
are inherited from those in X.. Moreover, Y=UY; and Y, nY; =&
i=1

for i # j. Consequently {Y,} is a crisp c-partition of Y with the same
partition matrix as X, UX = UY. We say that UY is S-induced on Y by
the pair (8, U¥X), and indicate this by writing U*sUY. (S, U¥) also
induces (the same) crisp c-partition {XY }& UX on XY, viz.,

UXSUXY. Similarly, if we start with a crisp partition UY of Y, the
pair (S, UY) induces the same crisp partition on X and XY (but if the
relationship of IO pairs is not 1-1, the same xe X or y € Y may end
up with more than one label vector). And if the beginning partition

is of XY, it induces, using the forward and inverse algebras of sets,
the same partitions on X and Y. Thus, our assumption that 8§ is 1-1

and that y=8(x) for every (x,y)eXY insures a unique
correspondence between crisp partitions and sample means of the

sets X, Y and XY, namely, (X,UX,VX) o (Y,UY,VY) o (XY, UK, VXY)
with UXSUYsUXY,

CLASSIFIER DESIGN 347

Many authors correctly call (U*,V¥) and (UY,VY) "projections" by

S of (UXY,VXY), These operations and this terminology carry over to
fuzzy, probabilistic and possibilistic partitions created by

clustering in X, Y or XY. Thus, the projection of a fuzzy UXY e M__to

fen

X and Y, for example, simply means (X,U%X) o (Y,UY) & (XY, UXY)

with U*SUYSUXY. On the other hand, we are aware of papers that use
the values in one or more of these three partitions in a functional (as
opposed to partitional) role, and in some cases the authors again
refer - incorrectly - to the use of an induced U as projection. So, be
careful about this term.

The situation illustrated in Figure 4.52 - where $ is not a 1-1

function - makes it clear that UXY, for example, may partition XY in
a "nice" way, but this does not imply that the S-induced partitions

UY and UX are equally "nice" partitions of Y and X. Thus, in Figure
4.52 a natural partition of XY into 4 clusters would induce quite
unnatural partitions on X and Y in the input and output domains.
This comment applies as well to partitions induced on the other sets
starting from Y or X, and it bears importantly on the question of
which of the three sets, X, Y or XY, is the appropriate domain for
clustering in the context of rule extraction.

From the approximation point of view, $§ should be at least
continuous, and if it is a 1-1 function it will be invertible. Figure
4.56 shows the (ideal) relationship between the input and output
data that seems to underlie many methods based on point prototype
clustering algorithms. The assumption of continuity (which cannot
be verified for computational representations of 8 anyway, but
which is important to recognize from the analytical point of view) is
the key one. Continuous functions bind neighborhoods in the three
domains together (but continuity alone is not enough to guarantee
that disjoint sets are carried to disjoint sets); and contained in these
neighborhoods, we hope, will be the crisp clusters in X, Y and XY
found by @, and the sample means of the crisp clusters give us their
central tendencies. The likelihood that our hope will be fulfilled
depends on many factors, the principal one of which is that the data
actually come from a smooth process.

Consider the sample means {Vf‘}(i{?f } of the clusters in a pair of

crisp partitions of X and Y where U*SUY. If § were linear we would
have ¥ = S("?f() for each i. This is far too strong for our purposes,

but if § is continuous, every neighborhood of ¥¥ will map to a
neighborhood of ¥ as shown in Figure 4.56.

348 FUZZY PATTERN RECOGNITION

Output

Figure 4.56 Relationships between neighborhoods, crisp clusters
and sample means in X, Y and XY data when S is continuous

Continuity means that for any €>0 there is a 8(¢)>0 so that
”xk —Vf(” <de) = "yk -v) "< €. Consequently, it is reasonable to

assume that when ”xk -vr " is small, "yk ~-v) " will be too (this is an

assumption because 8(¢) could be very large for a very small €). This
assumption enables us to (conceptually) translate the i-th cluster
into an i-th fuzzy rule :

MA models : If x is close to Vix then y is close to 'v'iY ; (4.90a)
TS models : If x is close to ‘_Iix then y =u, (x) . (4.90Db)
Point prototypes are almost always used for O-th order TS models.

Usually the antecedent part (LHS) of either form in (4.90) is written
as a conjunction of p atomic clauses,

If(x, is closeto Vﬁ and---xp is close to _/ff,) . (4.90c)

CLASSIFIER DESIGN 349

As soon as we make the term "close to" precise, equation (4.90)
extracts rules from crisp clusters in X, Y or XY using their sample
means. For convenience we refer to this method as crisp rule
extraction (CRE). One role played by the crisp membership functions
in CRE is to identify the points from which {VIX} S {Vf} PN {\—rf(y } are

built. Once this is done, the PMFs {mij} (and for the MA model, the

CMFs {moij}) can be erected in RP and RY in several ways.

Crisp membership functions defined by the rows of any crisp
partition are supported by discrete sets of points, and the
membership values (there are ¢ of them over each support point, but
c-1 of them have the value 0) are 0's and spikes of height 1. This is

illustrated in Figure 4.57 for ¢ = 2 and p = q =1, where X=X, uX,,
Y=Y,uY, and XY =X Y, uX,Y, all share the identical crisp 2-
partition

x=y=rxy _ 1 1 100 -0

U<sU*sU =0 0 01 1 - 1 . (4.91)
cluster 1 cluster 2
(ducks) (llamas)

m, =ch(U7))
- Y 2 (2
1’1’102 = Ch(U(Z]))

mo, = ch(UY)) m, = ch(UX

Figure 4.57 CRE for the MA model from 2 crisp clusters and sample
means (not shown : zero values of U1 and nyz)

A common way to make crisp membership functions from these
rows is to take the convex hull of the data corresponding to each row

in the projected crisp partitions U¥ and UY as the numerical
domain of input and output membership functions. For example,

the convex hull of the first row of U yields the domain for the crisp

350 FUZZY PATTERN RECOGNITION

PMF m, =ch(U},) shown in Figure 4.57, etc. Graphs of the PMFs

{m} and CMFs {mo} for linguistic termsets of granularity r = s = 2
are the rectangular functions defined over domains {Dj} and {Doj},

which are the convex hulls of XY, i=12.

We have displaced the CMFs and PMFs in Figure 4.57 so you can see
them as the two rows of the matrix in (4.91), and thus can extend
your imagination to a similar figure for any value of c. In reality, all
¢ membership functions will be distributed along a single axis, that

is, the ¢ rows of UX and UY will result in ¢ crisp membership
functions in the input and output domains along each input and
output variable axis. Figure 4.57 depicts the ideal case, where the
clusters are well separated so their projections don't overlap. Often,
however, the cluster substructure is mixed (overlapping), and then
the nice clean picture shown in Figure 4.57 can deteriorate into a
real mess.

There can only be 2 rules for Figure 4.57 and because m; "nm, =&, a
given input fires just one of them. Since the membership functions
are crisp, any T norm in the antecedents of the rules will return the
number 1 as the firing strength for any input. For the MA model

shown in Figure 4.57, y = Sy4(x) depends on the choice of DF. If we
use the center of gravity approach, and let COG ;» COG, denote the y
coordinate of the COG of the rectangular functions mo , and mo,,

respectively, we get : IF x e Dj THEN y =8§,,, (x) = COGj,j =12,

Thus, the implemented MA approximation for 8 would be a
function, but not 1-1, and would not generalize well at all. In the TS
model, the result of firing rule i, i=1, 2 is simply y = S1g(x) = u,(x).
This is a pretty uninspired use of the clustering outputs: we can do
much better.

Understanding Figure 4.57 leads to an appreciation of how the rows
of projected non-crisp partitions can be used in various ways to
soften crisp rule extraction. Please compare Figure 4.57 to Figure
4.28 to see the relationship between the crisp rules extracted by
clustering and crisp rules that you might get from a decision tree
approach. Figure 4.28 shows you the same crisp rule patches that
you see in the product domain in Figure 4.57. The crisp rule patches
extend beyond the training data so that the rule-base can produce
outputs for non-training inputs. This immediately shows us why
rule extraction based on (4.89) with crisp clustering algorithms is
not very robust - the rules suffer from exactly the same problem as
crisp decision trees. Thus, we follow path similar the one taken by
Chang and Pavlidis {1977). Here, the failure of crisp patches leads us
to the use of fuzzy or possibilistic clustering algorithms for rule
extraction in function approximation.

CLASSIFIER DESIGN 351

There are many soft rule extraction (SRE) methods based on
clustering (e.g., Sugeno and Yasukawa, 1993, Yoshinari et al., 1993,
Sin and deFigueiredo, 1993, Yager and Filev, 1994b, Nakamori and
Ryoke, 1994, Chiu, 1994,1995, Babuska and Kaymak, 1995, Cheng et
al., 1995, Runkler & Palm, 1996, Delgado et al., 1997, Kim et al.,
1997, Runkler and Bezdek, 1998c, 1999). The number of ways
authors have used the information produced by clustering for SRE
defies an intelligent (computational, artificial or biological
intelligence!) classification of methodologies. We are content here to
illustrate several approaches of SRE for function approximation,
and refer you to the literature for detailed discussions.

If you apply any soft clustering algorithm to (say) XY that results in

a pair (UXY, vXY), the point prototypes can be projected onto X and Y
exactly as in Figure 4.57. Now, instead of 0-1 rows in the matrix in
(4.91), you will have (say) a fuzzy partition of the ducks and llamas,

.9 0.8 -+ 0.7 0.2 0.1
1

0.4
0.2 - 0.3 0.8 0.9 - 0.6 (4.92)

soft boundary between ducks and llamas

X X
Vi Vo >X

S]Ijlll Jtn

1

Figure 4.58 The basis of MA point prototype soft rule extraction

352 FUZZY PATTERN RECOGNITION

At this juncture different authors strike out in many directions. The

most straightforward extension of CRE is to project the rows of UXY
onto X and Y, leading to the situation illustrated in Figure 4.58 for
an SISO system. In Figure 4.58 we show only the projection of the
first row of U onto X and the second row of U onto Y. Both values
from each column in U can be projected into both spaces. You can
visualize the "missing" values in Figure 4.58 by recalling that each
column sum in U is 1, so the difference between the value shown and
the dashed line marked "1" represents the value not shown for each
column. Alternatively, if you imagine rotating, say, the vertical
memberships 90 degrees to the right and aligning their "0" axis with
the "1" axis of the horizontal memberships, each membership line
will have two components that sum to 1.

We will not repeat Figure 4.58 for the non-point prototype case, since
the only difference between a figure for this case and Figure 4.58
would be the depiction of non-point prototypes (lines, planes,
quadratics, etc.) in the product space containing XY. Figure 4.49
shows non-point prototypes this way, but does not depict the values
of U like Figure 4.58 does only because Runkler and Bezdek (1998c,
1999) did not use U in the work discussed in Example 4.17.

The problem you now face is what to do with the projected (point or
non-point) prototypes and discrete sets of memberships lying along
the range of each variable in the input and output domains. In
Example 4.17 Runkler and Bezdek (1998c) simply ignored U, and
placed premise membership functions with user-selected shapes
that satisfied a regularity constraint by the positions of the
projected point prototypes (because they used a TS model, CMFs were
not needed). No attempt was made to subsequently optimize the
PMF's.

Yager and Filev (1994b) use their MCM algorithm to procure c
prototypes VXY e ®P4 for the MA model, MISO case. For an MISO
system with input x e ®R? and output y e X, VXY is converted into
the fuzzy rule: If "x is CLOSE to vi" then "y is CLOSE to v}".
Now defining the fuzzy sets m, = CLOSE to v{ and mo, =

CLOSE to v{, we get the rules : If m,(x) then mo,(y);i=1,...,c.

Each antecedent clause is translated into p atomic clauses :

X, is my; k=1,...,p. Gaussian-like membership functions are
_ _uv¥)\2 2

used for the PMFs and CMFs : mij(Xk]=exp ((xk vy) /2"*1) and

— _yY)2 2
(ty=v})* /20) o, is the spread of the j-th antecedent of

j

mo, (y) =exp
the i-th rule and o is the spread of all of the consequents.

CLASSIFIER DESIGN 353

Yager and Filev (1994b) used the height method of defuzzification for
the MA model (equivalently, the TS model with zero-th order
functions for the consequents). Initial estimates of the parameters

oy are taken as 1/2B, where B is one of the MCM parameters in

X

Table 4.16. All parameters of the system (v 9 ,v}',cij) are then further

tuned with gradient descent to minimize the total squared error

i”yk—S(xk)“z. Although MCM determines the number of
k=1

prototypes (and hence rules) automatically, control of ¢ is implicit
in the parameters of the MCM potential function and the threshold
value used to stop the process. Thus, an inappropriate choice of these
parameters may over-determine or under-determine the number of
rules. U is not used, of course, because MCM does not produce one.
The approach in Chiu (1994) is very similar, differing principally in
the use of SCM instead of MCM.

Some authors abandon the PMF structure of the LHS of K shown in
Figure 4.32 altogether, opting instead for a much simpler scheme in

which the firing strength o (x) of R in (4.72) is replaced by some

presumably reasonable function of x. Specifically, a simplified
form of (4.72a) is used:

R;: \ui(x) ; 1<i<ce (=M) . (4.93)

In (4.93) the functions {y,} are usually interpreted as membership

functions for clusters in the input space %", and indeed, are often
found or defined this way. The fuzzy system defined using (4.93)
instead of {4.72) is not the LHS of a proper MA or TS model, so we
call the resultant fuzzy system a hybrid MA or hybrid TS system,
respectively, according as the RHS of R is configured in an MA or TS
fashion.

Abandoning the PMF structure disables linguistic interpretation of
the rules, effectively skipping much of the bother and
computational complexity (and arguably, some of the utility) of
finding linguistic termsets and using approximate reasoning to find

oci(x). To see how authors use this idea, it is convenient to have a

slightly different notation for the function in (2.7a) defined by the
first order necessary condition required of U for local extrema of the

FCM objective function. For any x, V, € RP, x = vl,i =1,...,c,V= {vi},

any inner product induced A-norm |x|; = xAx, and m > 1 we let

354 FUZZY PATTERN RECOGNITION

-1

" m-1

C
v, (x)=FCM,(x,V)=| 3| ——& 1<i<c (4.94a)
i Je-v]
A

Another popular choice for vy, in (4.93) is an exponential function in
p variables centered at v,

1 2
y(x)=EXP (x,v.)=e E(HX v’"") ,1<i<c . (4.94Db)
i i

Values of (4.94a) and (4.94b) lie in (O, 1), and both are maximum
when x = v, (for this to be true for (4.94a) it is necessary to define
FCM, (%, Vizlex= vi]. The shapes of these two functions as
continuous variables of x for fixed V can be very different because
FCM, depends on the location of all ¢ prototypes, whereas EXPi is
always radially symmetric in x about v Moreover, (4.94a) is not

generally unimodal, whereas (4.94b) has but one maximum. This
important consideration has been largely ignored in rule extraction
by clustering (see Runkler and Bezdek (1999) for an extended
discussion of this topic).

Sin and deFigueiredo (1993) consider only hybrid SISO TS models.
They use FCM to cluster in XY, and the XB index Vip at (2.102) to

select an optimal number of clusters. With A the identity in (4.94a)
rule i is : IF FCM,(z,(x), VX¥) THEN u,(x), where z (x) depends on
both the input x and the output u,(x). The CMFs {u,(x}} are then
estimated by minimizing E, = k}i‘,l uf(ui(xk) -yk)zfor i=1, 2,..,c
Please be careful about our confusing use of u here; u,is the ik-th
entry of U, while u,(x) is the output function for the i-th rule in R.

The role of UX is limited to using its i-th row as weights of E. Sin

and deFigueiredo suggest that the output functions might be
represented, for example, by training c¢ feed-forward neural
networks with XY. The only example they give, however, uses the
psuedoinverse method to find the least squared error solution for
the coefficients of a first order RHS.

For generalization, given xe RP, let zi(x)=() The firing

x
u, (x)
strength of rule i is computed as ozi(x)=FCMi(zi(x),VXY); then
S s (x) is computed with equation (4.73) as usual. Notice that each

CLASSIFIER DESIGN 355

rule uses a different z (x) to get its firing strength, and that this
number depends on both the input to and output of rule R.

In one of the most widely ranging papers we know of for SRE,
Delgado et al. (1997) offer 6 methods they call ESTI, ..., ESTS, for
constructing both proper and hybrid MISO TS models for function
approximation. We briefly review this paper to exemplify just how
rich the variety of methods you can choose from really is. Several
methods of cluster validity are alluded to, but only the Fukuyama-
Sugeno (1989) index is explicitly discussed. EST1-EST3 are 0-th
order hybrid models that do not decompose the input space, instead
relying on (4.93) for direct estimation of firing strengths.

For EST1 and EST2, FCM is used to cluster XY, and then only V* and
VY are used. Rule i for EST1 is, using the Euclidean norm in (4.94a) :
IF FCMi(x,VX) THEN u,(x) = vf. For generalization, given xe RP,
compute a (x) = FCM,(x,V*) and u,(x)=v), 1 <i<c; then S ((x)is
computed with equation (4.73}. This scheme makes no use of the

fuzzy partition U, EST2 is EST1 with (4.94a) replaced by (4.94b)
and A = Ci, the fuzzy covariance matrix for cluster i (from, for

example, the GK algorithm).

EST3 applies FCM to XY, uses the terminal fuzzy partition U* to
initialize UX" and then runs FCM on X alone (at the same value of c).
Then the 10 data and equation (4.94a) with the Euclidean norm are
used with both V¥ and VX (here VX is obtained by running FCM on
X - it is not the projection of VX¥ onto X) to define constants for the

output functions of a zero-th order TS model. Specifically, for 1 <i <
C’

i [FCMi(xk, vX). FCMl ((xk’ yk)' ny)]m y,
uE = = (4.95)
) [FCM, (=, V¥) - FOM, ((x,.. v,). V¥¥)]

In (4.95) m is the same weighting exponent that is used for FCM
clustering. Again with the Euclidean norm, rule i for EST3 is : IF

oci(x) = FCMi(x, vX*) THEN ui(x] at (4.95). For generalization, given
x € RP, compute o, (x) = FCM, (x, vX) and u, (x) = vf (by (4.95)), 1 <i
<c¢; 8.4(x)is computed with equation (4.73).

Method EST4 in Delgado et al. (1997) uses an approach to design a 0-
th order hybrid TS model that is quite unlike any of the methods
reviewed so far. In this scheme X and Y are clustered separately into,

356 FUZZY PATTERN RECOGNITION

say ¢, and c, clusters, where c and ¢, are not necessarily equal, but

are chosen by one of a number of different validation strategies
which are enumerated in Delgado et al. only through references.

Under this plan the rule-base can have c, - ¢ rules, and each rule is
assigned a weight w that is called the certainty of the rule that
relates cluster i in X to cluster j in Y. Also mentioned are one set of
input membership functions {m (x)} defined on RPand a set of

constant output functions, VY, that are found by clustering in Y.
Delgado et al. do not specify what clustering model is used to find
these parameters.

If FCM is the clustering model that produces V¥ and V¥in X and Y,
respectively, and w,(x) is computed with (4.94a) or (4.94b), rule i
takes the general form : if o, (x) = FCMi(x,VX) then u j(x) = v}{ with
certainty W Delgado et al. suggest several ways to compute the {w1j }
from XY and the {y,(x)}. Finally, a T norm is selected to integrate
the information in the weights and input memberships, resulting in
the following generalization of (4.73): given xeRP, compute
o (x) = FCM, (x, v¥*) and u,(x) = vf, 1 £i<c; then EST4 is computed
as

EST4(x) = (4.96)

Several examples given in Delgado et al. (1997) suggest that EST1-
EST3 are somewhat better than EST4, and not enough details are
given about EST4 to understand exactly how things are done.
Nonetheless, this exhibits several very different approaches to the
use of clusters in X and Y to secure rules to approximate S.

EST 6 clusters in XY to establish a hybrid 1-st order MISO TS model.

FCM is used to produce U™ and V¥, which are then used to initialize
the GK clustering algorithm (recall that this is one of the clustering
models capable of producing "linear" prototypes from the principal
eigenvectors of fuzzy covariance matrices, Section 2.3.A). Outputs of
the GK algorithm are then used to initialize the LHSs of the system.
Equation {4.94a) is correct in functional form for the GK model, but
instead of a fixed A-norm, AO of the GK functional produces

estimates of ¢ matrices {A}. Delgado et al. use these in (4.94a) with V*
from GK to define rule i for EST6 as follows: If oci(x) =FCM A (x,Vv¥)

i

CLASSIFIER DESIGN 357

Then u.(x)=a,, + E a

i i0 K1
of the consequent functions are then estimated using recursive least
squares, and Delgado et al. state that the GK partition UX¥ is used
during this procedure, but they do not state how. Finally, these
authors also state that they used a genetic algorithm to optimize this
system with respect to the MSE error it commits on XY, but no
details of the GA or how it was used were given.

4 Xy The coefficients {a, :1<i<c;0<k <p}

We have now seen several ways that the values {uik} in fuzzy

partitions U found by clustering in X, Y, or XY are used functionally
in conjunction with point prototypes. Another approach taken by
some authors returns us to Figure 4.58, where the values {uik} are

shown as sets of discrete points projected from U*Y onto the input
and output domains of the fuzzy system. Again, a variety of
approaches for using these memberships have been reported in the
literature. Figure 4.59 shows a set of projected memberships (like
the ones in Figure 4.58) in either an input or output domain of a
fuzzy system, and a few of the many ways we might construct
membership functions from them.

1-- -~ -=- e Ut
]
° [+]
° ° o o °
0 _____________________________________
memberships linear interpolation
0 o
o o
o ©
~ Cauchy = B-splines

Figure 4.59 Using projected memberships from U to build PMFs

More generally, each row of U, corresponds to (n values of) a

membership function for the i-th cluster. It is possible that
"projection” assigns more than one membership value to a feature
value. When this happens some type of aggregation operation
(usually the maximum) must be used to resolve the conflict and
assign a unique membership value to the feature value. When there

are p features, the i-th row of UXY will be "projected” onto all p of
them for each k = 1 to n, but the shapes of the p membership

358 FUZZY PATTERN RECOGNITION

functions resulting from this operation may be very different
because the distributions of values in each feature vary.

Sugeno and Yasukawa (1993) discussed several ways to build
membership functions from the values {uik}, including piecewise

linear interpolation and convex completion as shown in Figure
4.59. If the functions used to fit the projected memberships (such as
the ones produced by convex completion) are not smooth, when they
are combined with a non smooth T-norm or T-conorm such as the
minimum or maximum, the approximation to $§ can be pretty
bumpy.

The bottom tier of Figure 4.59 depicts three methods that are smooth

approximations to projected memberships in U*', We can simply
erect triangular (or trapezoidal) membership functions (e.g., Sugeno
and Yasukawa, 1993, Genther and Glesner, 1994, Klawonn and

Kruse, 1997), perhaps centered at the projections of V¥, we can use
predefined shapes such as Cauchy or Gaussian functions, again

centered at the projections of v (e.g., Chung and Lee, 1997, Runkler
and Bezdek, 1999); or we can use a numerical technique such as B-
splines or least squares to fit, say a radial basis or cubic function to
the memberships (Halgamuge et al., 1995). See Runkler and Bezdek
(1998c} for a catalog of other functions that can be used, as well as a
unified interface (the ACE membership function toolbar} from
which they can be built.

In any case, once we have the membership functions, they can be
taken either as the final PMFs (and/or CMFs in an MA model), or as
initial estimates that will be subsequently tuned using a technique
such as gradient descent (Yager and Filev, 1994b, Chiu, 1994), or
genetic algorithms (Delgado et al., 1997). With a little thought, you

can invent a new way to use this information too. The point is, (U,

B*Y) carries a lot of information that can be used, but may not be
trusted with absolute confidence. Why not? That's the last question
on our list, and the easiest one to answer.

Finally, what might go wrong when clustering is used for rule
extraction? Chapters 2 and 3 contain only a fraction of the
clustering algorithms you can use to extract rules from data for
fuzzy systems. But even this fraction is fraught with peril for the
unexperienced user in both pattern recognition, where you really
just want the clusters, and here, where you are using clustering as a
tool for building fuzzy systems. The biggest danger all of us face in
either application? Clustering algorithms WILL produce clusters
(i.e., partitions) - that's their job - whether the data possess any or
not. Perhaps approximation of functions by fuzzy systems is an
even bigger danger. We'll leave you hanging on this unsettling note,
and return to this thought in Section 4.11. Here's a hint to whet your

CLASSIFIER DESIGN 359

appetite : our coverage of this topic amounts to surveying just a few
trees in the jungle of function approximation.

H. Heuristic rule extraction

Structural parameters of rule-based classifiers are not always
estimated with training data using decision trees, clustering or
whatever else happens to be on your mind at design time. Often the
rules are simply defined by the modeler, and the 10 data are used for
testing and refinement of the subjective design, and possibly for
parametric estimation, optimization and validation. While this
may sound unscientific, the two examples in this subsection show
that the "trial and error" method of rule-base development is alive
and well, is sound, and can lead to very effective rules for
classification. This section contains two examples of classification
performed with fuzzy rule-bases that are developed this way, and
which, for lack of a better word, we will call heuristic designs. Both
examples use the MA formulation of rule definition and inference
structure.

Our first example involves a straightforward classification problem
- recognizing two similar chromosomes from features extracted
from their images (Keller et al., 1995a, b). The rule-based system
discussed in Example 4.20 "locates" a portion of an image of a
handwritten address that contains the street number, and is based
on the work of Gader et al. {1995a). This is not a traditional use for a
classifier, and it shows quite nicely the power and flexibility of
fuzzy rule-bases for classification. As you will see, this system uses
MA rules.

Example 4.19 Human genetic investigations have provided some of
the most dramatic progress in medicine in recent times. One of the
standard tools used is karyotyping, a process of visualization and
interpretation of chromosomes. This labor-intensive process can
yield a large amount of information about a human subject and
suspected or potential disease processes. To decrease the labor
involved, efforts have been made to automate the process of
karyotyping. These efforts have achieved only limited success to
date. Successful automation of the karyotyping procedure would
have far reaching economic implications. Cost reduction would be
significant because of the large number of specimens analyzed each
year around the world.

Many pattern recognition approaches have been used to classify
isolated chromosomes using features which are either directly or
indirectly related to the banding patterns that result when
chromosomes from cells in metaphase (the stage before cell
division) are stained (Errington and Graham, 1993, Graham and

360 FUZZY PATTERN RECOGNITION

Piper, 1994, Stanley et al., 1995, 1998). The banding patterns are, in
principle, unique to each of the 24 classes of chromosomes in a
human cell (homologue pairs of chromosomes numbered 1-22, and
either a homologue pair of X chromosomes for a female, or X and Y
chromosomes for a male).

Figure 4.60 shows idealized representations (ideograms) and
particular examples for two similar chromosome classes
{chromosomes within the same "Denver Group", Errington and
Graham, 1993). It is difficult to directly match the real
chromosomes to the ideograms. The "banding level" is connected to
the resolution of the bands in a complete cell image (a metaphase
spread). The "400-band level” in Figure 4.60 means that there should
be roughly 400 dark bands visible in all 46 chromosomes in the
metaphase spread. The "narrow” point of the chromosome is called
the centromere, which divides the chromosome into two arms: the
P-arm (or short arm) and the Q-arm (or long arm).

156 - 400 Band Level

-13.2

-12
A

-11.2

13.3-
13.1-

P-

11.2-
Centrorﬂére-

12.1-
13-

-12.2
=21

18 - 400 Band Level

P-
i1. 2-

Centromere -
11.2-

Figure 4.60 Ideograms and examples for chromosomes 16 and 18

Features such as centromeric index (the ratio of the length of the
short arm to that of the entire chromosome), relative length, and
banding pattern information, including bandwidth, numbers of
bands, band spacing, and band intensity can be used with human

CLASSIFIER DESIGN 361

knowledge to create a rule-based classifier for recognition of these
two chromosomes (Keller et al., 1995a, 1995b).

To distinguish chromosome 16 from chromosome 18, rules were
developed to generate class confidences directly from Centromeric
Index (CI} and Relative Length (RL). Table 4.37 contains the rules
used to determine the class 16 confidence from these measurements
(class 18 rules are similar).

Table 4.37 Fuzzy rules for class 16 confidence
based on Centromeric Index and Relative Length

Cl—

JRL| VL L M H VH
VL VL VL L M H
L VL VL L M H
M VL L L H H
H VL L M H VH
VH M M H VH VH

Keller et al. used five linguistic values for all their rules: Very Low
(VL), Low (L), Medium (M), High (H}, and Very High (VH). Since
relative length is less reliable than the centromeric index, its
variation has less effect on the consequent than changes in CI. An
example of the rules used is:

IF Centromeric Index is High
AND Relative Length is Very High
THEN Chromosome 16 Confidence is Very High

The rules and membership function definitions for the premises
and consequents were entered into the CubiCalc RTC fuzzy logic
development environment (CubiCalc, 1990). The fuzzy sets described
in the rules were heuristically generated by examining the values of
the variables on a small training set of 400 band level chromosomes
taken from images acquired at Ellis Fischel Cancer Center,
University of Missouri-Columbia. For the two chromosome classes
50 rules were generated based on the CI and RL features.

A set of rules involving CI and RL would be sufficient to separate
some chromosome classes. However, chromosomes 16 and 18 have
similar relative lengths and centromeric indices. So, additional
feature information (found in the banding pattern) is needed. The
banding pattern is characterized by the number of bands in each
arm, relative bandwidths, and relative distances of bands from the
centromere. However, it is difficult to correctly segment the bands in
real chromosome images, so indirect measurements are often used.
Chromosome "blobs" are found in metaphase spreads (not an easy
task in itself: Stanley et al., 1995, 1998). The medial axis, or
skeleton of each (hopefully) single chromosome is generated by

362 FUZZY PATTERN RECOGNITION

standard image processing techniques such as thinning (Gonzalez
and Woods, 1992). The length of the chromosome is then the
Euclidean or pixel length of the skeleton. For each point of the
skeleton, both the average intensity along each line perpendicular
to the skeleton and within the blob (the density profile) and the
second moment of those densities along the perpendicular (the
shape profile} are calculated (Piper and Granum, 1989).

Shape Profile
Chromosome 16 Profile

20 400 Band Level
[]
16 .
[1 | | | 1l \
Centromere a X -
12 + " \.] I,\II\./ \ .’..l\ ™
l/ ,'/ "o -I
8 /
T | 3
a2
l.
4L (N |
<—~—P-arm—><~——g-arm_)‘
e I A e e B B I L £
1 10 20 30
Shape Profile
A Chromosome 18 Profile
400 Band Level
16 +—
]
/\ [| -
[] /\
12 + Centromere] S u
| | H \
/\ / / 0\
|] u |] N\
]
8 - -/ . !_-.-lf *u

i ./\" \
o

=

P-arm—-i!;(Q-arm ,‘
O T T T 1T T 17 1T T 1 T 1 T T [">Pixel
1 10 20 30

Figure 4.61 Shape profiles for chromosomes 16 and 18

CLASSIFIER DESIGN 363

Figure 4.61 shows shape profiles for typical examples of
chromosomes 16 and 18 as measured at pixel locations along the
axis of generated skeletons. The shape profile contains direct
information about the banding patterns.

To extract band-related information, "standard" weighting
functions were correlated with the shape profile of each arm of the
chromosome under investigation. The weighting functions were
designed to match the banding pattern exhibited by the chromosome
arm for the specific class. This approach was used because it
eliminated the need to segment the bands directly, which could lead
to considerable false information by disobeying the principle of
least commitment. These features are similar to the "wdd" features
employed by Piper and Granum (1989) but they carry more direct
evidence about particular class banding patterns (see Keller et al.,
1995a for more details on the functions used).

Table 4.38 shows the eight rules generated for one of the three
banding pattern correlation values for the p-arm. Keller et al. used
similar rules for three band correlation functions, giving a total of
24 rules for class confidence based on shape profile information.
The rules and membership functions were heuristically generated.
Hence, K had M = 74 rules for this 2 class problem.

Table 4.38 Class confidence based on the p-arm
banding pattern of data file (wd16tbp)

wd16tbp 16 Confidence 18 Confidence
VL VH VL
L H M
M M H
H L VH

In a preliminary test, features were extracted from 23 400-band-
level chromosome # 16 images and 30 400-band-level chromosome
18 images in the database. The inference done in Cubicalc was
based on the MA model and employed the minimum operator to
compute firing strengths, summation as the rule aggregation
method, and center of gravity (COG) for defuzzification. By using
maximum class confidence as the crisp decision rule, Keller et al.
obtained 100% correct classification for # 16 and 87% correct
classification for # 18 (resubstitution). By thresholding the
difference between chromosome 16 confidence and chromosome 18
confidence, and rejecting chromosomes whose confidence difference
was too small, they report 100% (resubstitution) reliability on this
small set with a 23% rejection rate. Finally, the confidence values
can be used in subsequent processing.

364 FUZZY PATTERN RECOGNITION

Our second example comes from the field of handwritten address
recognition (Gader et al., 1995a). Recognition of handwriting is
important for automating document processing functions such as
mail sorting and check reading. As we have seen and will see again
(Wang and Suen, 1983, 1984, 1987, Chi and Yan, 1995, 1996, Chi et
al., 1995, 1996), fuzzy set theory can be an appropriate framework to
address several problems in handwriting recognition. Handwritten
character and word classes are not crisp sets. Inherent ambiguity
exists at several levels, requiring that multiple sources of
information be utilized to correctly interpret handwriting.
Furthermore, document analysis systems consist of multiple stages
of processing: image processing to separate handwriting from
background, segmentation to isolate individual regions such as
lines, words, and characters, feature extraction to characterize
pattern classes, and finally, classification. Each stage of processing
contains uncertainty since the algorithms do not always yield the
correct result. Therefore, there are two sources of ambiguity in
handwriting recognition: the data are inherently ambiguous and the
algorithms are imperfect.

Example 4.20 The ambiguity between numerals and alphabetic
characters in handwriting is a problem, as shown in Figure 4.62,
which contains, for example, an "F" as the first letter of the word
"Franklin" that looks like the numeral "7"; and an "I" as the first
letter of the word "Ingraham" that can be mistaken for the number
"2"; and several number "7" ' s that are very similar to the "F".

TN Sty
95 Faadellon

Figure 4.62 Examples of confusing street numbers and letters

Developing an effective interpretation system of handwritten
addresses for automation of mail delivery is a challenging task. The
numeric fields in an address, i. e., the street numbers and ZIP code,
play a crucial role in reducing the complexity of the address
interpretation task. If these numeric fields are correctly detected
and identified, the number of possible addresses is significantly
reduced. Correct location and interpretation of the street number
field reduces the number of possible street names. Thus, we must
locate the street number without any knowledge of the street name.
This is not a "standard" classification problem, since the goal is to

CLASSIFIER DESIGN 365

find the location where the street number ends (if there is a street
number in the image). There is the equally important task of
recognizing the digits, which in this example was performed by feed-
forward neural networks (Section 4.7).

Potential address images were input to the system as described in
Gader et al. (1995a). Image processing was used to segment subimages
of lines from handwritten addresses into sequences of primitives.
Six neural networks were used in the confidence assignment: two for
numerals (0-9), and four for alphabetic characters.

Two types of feature vectors were used as inputs to the neural
networks, the transition feature vector and the bar feature vector.
The bar-features are completely described in (Gillies et al., 1992,
Gader et al., 1992, Gader et al., 1995a), while the transition features
are described in (Gillies et al., 1992, Gader et al., 1997a, b). The
neural networks were trained using backpropagation, and used
class-coded outputs. They also contain a class named "garbage" to
account for segments which did not represent any character image,
such as multiple characters or pieces of characters.

Transition features are the locations and numbers of transitions
from white pixels to black pixels along horizontal and vertical
lines. Transition calculations are performed from right to left, left
to right, top to bottom and bottom to top. This information is
encoded as a feature vector with 100 elements. Three neural
networks for the confidence measurements used transition feature
vectors, one each for upper and lower case alphabetic characters,
and one for digit recognition.

The bar features encode directional information from the
foreground and the background. First, up to 8 feature images are
generated, each corresponding to one of the directions east,
northeast, north and northwest, in either the foreground or the
background. Each feature image has an integer value at each
location that represents the length of the longest bar which can fit at
that point in that direction. For each of the 8 feature images, 15
different subimage zones are created. The values in these zones are
summed and normalized between O and 1. The result is a feature
vector of size 120. Three neural networks for the confidence
measurements used bar feature vectors, one each for upper and lower
case alphabetic characters, and one for digit recognition.

Primitives often contain only parts of characters. To obtain
confidence measurements on characters, subimages of pairs and
triples of the primitives were also used to obtain character
confidence assignments using the neural networks. Hence, there
were six character confidence readings and measurements at the end
of each primitive, each corresponding to a single primitive, a pair or
a triplet of primitives, in either upper or lower case characters. The

366 FUZZY PATTERN RECOGNITION

maximum of these 6 confidence measurements was used as the
character confidence feature for the fuzzy rule-based system.

A fuzzy logic system with 48 rules that aggregated results of image
processing and character recognition modules to assign confidences
concerning the locations of street numbers in address blocks was
developed in Gader et al. (1995a). The neural networks described
above were used to assign alphanumeric character class confidences
to combinations of primitives. Each consecutive combination of
primitives starting with the leftmost primitive was assigned a
confidence value by the fuzzy rule-base indicating the possibility
that the combination represented a complete numeric field, i.e., the
potential location marker for the numeric portion of the street
address. One example of a rule in this system is:

IF the next primitive is too complex to be recognized as
digits,

AND the numeric field confidence of the current primitive
is large,

AND the gap size between the current and the next
primitive is medium;

THEN the street number confidence should be positive
large.

Linguistic values of each linguistic variable were represented by
standard trapezoidal membership functions. For example, the
membership functions for the linguistic values small, medium,
large, and huge are shown in Figure 4.63 for the linguistic variable
gap (size). Notice that Large and Huge are both 1 for x close to 1.

m () X)
A Small Medium Large Huge
0 > x=gap
0.00 0.25 0.45 0.75 1.00

Figure 4.63 Membership functions for the linguistic variable "gap"

Gader et al. followed the usual pattern for the development of
heuristic rule-based systems: an iterative cycle of rule definition,

CLASSIFIER DESIGN 367

testing, and rule refinement. The rules in the fuzzy rule-base were
initially written based on pictures of address blocks (SUNY, 1989).
The system was then trained with 71 image blocks using the same
MA model that was described in Example 4.19, implemented in
Cubicalc. The system was trained on the 71 images, each of which
was crisply labeled as having or not having a numeric address field,
and if present, its location. The training process was iterated until
the results were satisfactory. Following each training cycle, the
system was adjusted based on an analysis of the results, paying
particular attention to the error cases.

After training, 78 new image blocks were used as a test set. A few
adjustments were made based on these results. For example,
additional rules (such as rules to handle "P.O. Box") were added to the
rule-base, and a few rules were changed. The union of the training
and test sets was then used as a reference training set, and a blind
(validation) test was conducted on 155 additional image blocks.
During the blind test, the output confidence value was thresholded.
Those locations at which the overall system confidence was above a
user specified threshold were labeled as locations of street numbers
by the system.

Table 4.39 Success and location error rates for
the training and validation sets

Success rate | Location rate
train validate train validate
91% 86% 91% 87%

Table 4.39 shows the results of the final training run and the blind
test of 155 images, 79 of which contain street numbers. The success
rate is the percentage of answers that are correct; either an image
block contained a street number and it was correctly located or it did
not contain a street number and the system indicated no street
number. The location rate is the percentage of street numbers that
were correctly located.

The performance of this system illustrates the capacity of an MA
fuzzy rule-based system for locating street number fields. A wide
variety of multi-layer feedforward networks for locating the street
numbers were also trained using backpropagation and tested using
the same training, test and validation data sets. The numeric input
variables used by the fuzzy logic system were also used for the neural
networks. The networks performed reasonably well - but not as well
as the fuzzy logic system. The best success rate on the test data
obtained by any neural network was 79%. The fuzzy rule-base
achieved a testing success rate of 86%, which is significantly better
than that achieved by any of the neural networks ®.

368 FUZZY PATTERN RECOGNITION

Gader et al. (1995a) conjectured that the reason the fuzzy logic
system outperformed the optimized neural network was that the
granularity of knowledge required to locate street numbers is
"coarser” than that required to perform tasks such as character
recognition. Tasks that require knowledge about the world that is
not statistically represented in the data are difficult or impossible
for neural networks to learn, but this type of knowledge can be
encoded with rules.

St &

1. Generation of fuzzy labels for training data

Several of the methods discussed so far require soft labels for the
training data in order to build the decision or classifier function.
This includes the soft k-nn rules, the fuzzy integral, fuzzy decision
trees, soft rule - based classifiers, and fuzzy aggregation networks
(Section 4.7). This was done as early as 1985, when Keller and Hunt
(1985) softened the training of the classical linear perceptron. The
assignment of soft labels to training data is an important step in the
overall process of classifier design. In this subsection we discuss
some methods of assigning fuzzy labels to data in order to generate
fuzzy classifier functions.

Most of chapters 2 and 3 deal with generating soft labels for objects
represented by feature vectors or relational data. Since clustering is
unsupervised in general, it may not be the best choice for labeling
training data in this context, since the best clusters are those which
minimize some clustering criterion, and the algorithmic clusters
found may not reflect the actual "ground truth" available in the
physical labels in the training data (but see House et al., 1999 for an
example that this is not always the case). Clustering algorithms
sometimes create membership values for training points that have
crisp label i which are larger for some class j#i. This happens, for
example, in the context of 1-np design, if a training point from class
i is closer to the class j prototype than to that of class i.

To insure that soft training labels maintain the "truth" about the
training data (i.e., are consistent with the physical labels supplied
with the data), some form of supervision is required. One way to
accomplish this in the clustering framework is to cluster the data
one class at a time, as, for example, Chiu (1997) recommends when
you want to build a fuzzy rule-based classifier using labeled data
with clustering. In order to get meaningful "typicality"
memberships, you should consider using a possibilistic model such
as PCM to acquire the soft labels, since label vectors from any fuzzy
clustering algorithm contain values that represent degrees of
sharing between classes. PCM produces an inverse distance-type
membership for each training point from its class prototype. After
finding and correctly labeling class prototypes by any means,

CLASSIFIER DESIGN 369

inverse distance membership functions can be generated for the
training data.

Variations of the k-nn technique have been used to obtain fuzzy
labels. Just taking the fraction of the number of class i vectors in the
k nearest neighbors to a training point as its membership in class i
suffers from the same problem as fuzzy clustering. There is no way
to guarantee that the "true" class of a training point will maintain
the largest membership. For example, consider the "F" in the word
"Franklin” in Figure 4.62. It is possible that for a given training set,
in feature space all of the neighbors of the feature vector from that
"F" would be vectors from the character "7", because this "F" really
looks like a "7". Hence, simple fractions would give this feature
vector zero membership in the class "F", even though it actually was
an "F" written by some person. This is one dilemma you have when
dealing with real data: even though an object may actually be
member of class i, its feature vector often mingles with those of
other classes. Example: build a classifier that identifies men and
women based on the 2D input feature vector height and weight. No
classifier we are aware of would, based on this pair of
measurements, correctly label Heidi Gillingham, who at one time
was a center for the Vanderbilt women's basketball team, height = 6
feet, 11.5 inches. If you were to create a soft label vector for Heidi, its
maximum value would almost certainly interchange the correct
label with the wrong one.

One clever but simple method to acknowledge this uncertainty in the
training data was developed by Gader et al. (1995c), and could be
called a possibilistic k-nn labeling procedure. For a training vector
from class i, their approach was to use the fraction of the k nearest
neighbors to be the memberships for all classes j # i, and to preserve
unit (or at least very high) membership in the true class i. This way,
the "F" may have high memberships in multiple classes, reflecting
the ambiguity of its feature vector. As an example, the "F" in Figure
4.64 received high membership in its class, but also reasonably high
values for "I", "L", "S" and "T". In Gader et al. (1995b), these
possibilistic training labels were used as desired outputs for a
multilayer perceptron. What was discovered was that in terms of
pure character recognition, crisp labels worked better, but when the
results of the character recognizer were submitted to a word
recognition system (Gader et al., 1995b), word recognition rates
increased significantly when using the possibilistic labels. By
acknowledging the ambiguity of handwritten characters, the total
system could keep multiple hypotheses alive and hence, piece the
words together more effectively. This adheres to the principle of
least commitment.

370 FUZZY PATTERN RECOGNITION

febedefghillJklnnoparstouuvenws

S

Figure 4.64 A handwritten training "F" and its possibilistic
memberships in the character classes

If enough training data are available (as in some image processing
applications), normalized histograms of the feature data can be used
to estimate class memberships. While this approach is most often
used to calculate class confidence with respect to one feature, it can
easily be extended by constructing histograms of each of the various
features, and the individual feature memberships can be aggregated
to get combined memberships both for the training and test data.

Generating soft labels for crisply labeled training data is tricky, and
it is very problem dependent. If the goal of a classifier is character
recognition, then the evidence in Gader et al. (1992, 1995b) suggests
that crisp training labels are better, However, as the goal (and the
processing) became more complex, e.g., word recognition, fuzzy,
probabilistic or possibilistic labels may provide more realistic
information and better final results. You should use the simplest
tool to solve your problem. As system complexity grows, tools such
as employing soft labels for the training data become more
attractive. In fact, uncertainty is always fruitful - as long as you try
to understand it too.

4.7 Neural-like architectures for classification

Much has been written in the last twenty years or so about "neural
networks", a term we abbreviate by "NN" - recall that we use (nn) for
nearest neighbors. Network architectures such as the MA and TS
fuzzy systems and fuzzy decision trees do not draw their original
inspiration from a desire to mimic biological NNs (BNNs) - although
they do have desirable properties such as parallelism which can of
course be associated with the BNN. However, several of the models
discussed in this section are in some rudimentary sense (neural-
like) network structures that do attempt to imitate BNNs. Other
volumes in this handbook contain good descriptions of many

CLASSIFIER DESIGN 371

neural-like network structures, especially for control (Nguyen and
Sugeno, 1998). Our presentation is limited to those fuzzy set-related
NN models that seem particularly useful for pattern recognition.

Most authors distinguish between BNNs and computational NNs by
calling computational structures aimed at imitating BNNs
Artificial NNs (ANNs). A few authors have made a further
distinction between ANNs and computational NNs (CNNs). Fine
distinctions about the meaning of various terms used in this field (if
they have useful meanings at all!) simply distract readers from the
main point, which is the interface between NN models and fuzzy
logic as used for numerical pattern recognition. Readers interested
in this aspect of NNs, including discussions about "computational
intelligence" and "soft computing” are encouraged to consult, e.g.,
Bezdek (1992, 1998), Marks (1993}, or Zurada et al. (1994). We will use
NN for computational approaches that mimic the BNN, and leave it
at that.

There are two distinct areas of integration between fuzzy pattern
recognition and NNs. First, we may use the conventional NN for a
variety of computational tasks within the larger framework of a
pre-existing fuzzy model. In this category, for example, are attempts
to build [membership] function representations with NNs;
implementation of fuzzy logic operations such as union (max-nets),
intersection (min-nets), and even fuzzy logic inference. There is also
a great amount of current effort being expended in using NNs to
derive optimal rule sets for fuzzy controllers (another approach to
rule extraction) - that is, to automate the process of membership
function extraction and tuning of term sets that are used in both
fuzzy pattern recognition and control.

On the other hand, many writers are investigating ways and means
of building "fuzzy NNs", by incorporating the notion of fuzziness
onto or into a NN framework (as opposed to using the NN within a
fuzzy framework). For example, the target outputs of the NN during
classifier training can be fuzzy label vectors (points in the interior
of the triangle N, shown in Figure 1.2). In this case, the NN itself is

implicitly functioning as a fuzzy classifier, and is conceptually
identical to any other fuzzy classifier function D imaged in N, .

Operationally, of course, the mathematical function D is implicitly
represented by an explicit computer program or piece of hardware
that implements the NN.

Another way to incorporate fuzziness into a standard NN is by
altering the integrator/transfer functions at each node so that they
perform fuzzy aggregation (union, weighted mean, or intersection)
on the numerical information arriving at each node. Yet another
way to introduce fuzziness into the NN framework is through the
input data X to the NN, which may be "fuzzified" in one of several
ways.

372 FUZZY PATTERN RECOGNITION

A. Biological and mathematical neuron models

The BNN is one of the systems that enables organisms (in particular,
humans) to perform biological pattern recognition. Figure 4.65
depicts the simplest ideas we have about the atomic unit - a neuron -
of a BNN. Each neuron has an axon (pulse transmitter), soma (pulse
emitter), dendrites (pulse receptors), and is connected to other
neurons by synapses (connectors). In Figure 4.65 a packet of data
{electro-chemical pulse xk) has been emitted by the soma, and is

traveling along the axon.

dendrites

Figure 4.65 A rudimentary biological neuron

Figure 4.66 depicts part of a BNN. The term network derives from the
interconnections (which may not be entirely physical) between
neurons. At a point of data transfer, a synapse (the connection
neighborhood) transmits data packet x from a dendrite of the

emitting neuron to a receptor of the receiving neuron. It is believed
that each transfer encounters variable resistance (modeled in Figure
4.66 by a synaptic weight vector w) to the conduction of energy.

Information (electrical, chemical, biological in form) is generated,
flows, is assimilated, and somehow used to solve problems in the
BNN. Our assumption is that each neuron does something like
(numerical)computing - this gives rise to the hope that
computational "neurons" and networks of them can be used to
imitate this structure and its performance.

The synaptic weights at a node in the BNN are believed to vary over
time, and it is assumed that this is one of the major mechanisms by
which the brain "adapts" to changes in its environment (i.e., to
changes in its input data and/or output requirements). Another
means for achieving adaptation to system tasks is thought to be
through the activation and deactivation of (sets of) nodes in the
network, again "on the fly". That the brain can and does adapt in
real time is inarguable - it is the mechanisms for doing so that are
not well understood.

CLASSIFIER DESIGN 373

synaptic
contact
Wi

Figure 4.66 Part of a biological neural network

Hardware implementations of computational NNs have become
common (e.g., Serrano-Gotarredona et al., 1998). Many companies
now market "NNs on a chip”, including products advertised as "fuzzy
NN chips", etc. If you are interested in this aspect of NNs see issue
4(4) of the 1996 IEEE Transactions on Fuzzy Systems. It is not our
purpose to pursue this topic, so we are content to show Figure 4.67,
which illustrates the components of a typical electro-mechanical
{or possibly optical) version of Figure 4.66, that is, a layout of
{hardware and/or software) components in an architecture that
ostensibly mirrors the biological version of one neuron.

Components of the input and weight vectors x ; and w j of Figure

4.66 are shown as real numbers in Figure 4.67; as usual, we assume

that xj,wje%p. The analog of the soma is called a node of the

network, x, is the input to the node, and w f is the weight vector for
(or at, or in) the node. Some writers prefer to regard the scalars
{Wijti= 1,...,p} as weights on the edges entering the node, while
others regard w jasa weight vector attached to the node. We use one

or the other of these interpretations at various times. The node in
Figure 4.67 is called Nj - the jth node in the network.

374 FUZZY PATTERN RECOGNITION

soma
synapse (processor)

(resistor)

axon W dendrite
(signal in) b (wire)

pj

Xpj

Figure 4.67 An electrical circuit that models the standard neuron

Figure 4.68 illustrates what usually happens at each node in the NN.
Two functions are active. First an integrator function

f:RP x RY > R combines a node weight vector w € RY with the
input vector xe RP’; often, but not always, w = w, the weight vector

shown in Figure 4.67. Notice that the dimensions of x and w are,
respectively, p’ and q’. Usually p’=q’, but these dimensions can
and do change from layer to layer, so we leave the notation flexible.
We use primes here to indicate that this neuron can be anywhere in

the network (the input vector to the network will always be in RP,
and the output vector from the network will be in ®R“.

(" node f integrator | transfer)
weights | function | function
Node e ppt . |) Node
2P x —» y=fxw) > 2=Fy)— Pz

Figure 4.68 A mathematical neuron

The traditional, historically first, and still most popular choice for
f is the Euclidean inner product (McCulloch and Pitts, 1943); when

o=weRP, y=y(x)={(x,w)=(x,w)+a. Recalling equation (4.3)

and Figure 4.4, we see that this choice sets up a hyperplane H in ®?
at each computing node where it is used, and we call f a linear
integrator function. Justification for this terminology lies in the

fact that every affine function on R can be written as a linear
function on RP*! by defining the p+1 tuples x’=(x1,...,xp,1)T and

CLASSIFIER DESIGN 375

’

w = (w ,...,wp,oc)T, for which (x’,w’)=(x,w)+ . The parameters

1
w’'=(w,o) of H are (part of) the weights that are sought during
training for each node of the network that uses linear integrator
functions. In the neural networks literature o is often called the
offset or bias of such a node, and the node itself may be called a first
order neuron. It will be convenient to have a special notation for
this oft-used integrator function; we call it f ,, the subscript referring

to the hyperplane that it defines.

"Higher order" neurons arise when the inner product is replaced by a
more complicated function. For example, a second order neuron is
realized by replacing f(x,w) = (X, w)+ o with a quadratic form in x,
f(x,w,W)=xTWx + xTw + ., where Wis a pxp matrix of additional
weights that are associated with f. In this case the weights of the
integrator function f are the triple of parameters w = (W, w, o). The
form of f is limited only by your imagination. You will encounter
many substitutes for these simple functions in the literature of
"fuzzy NNs".

The action of fis followed locally in each computing node by
applying a transfer (or activation) function F to the value of the
integrator function on its inputs. F is used to decide if the node
should "fire" (produce an output), and if so, how much "charge", and
of what sign, should be broadcast as output in response to the input
x. The most typical choice for F is the unipolar logistic (sigmoidal,
squashing) function,

1

F (y)= Fpe =) , (4.97)

where Ain R and Bin R are real constants that adjust the shape of
F. Specifically, A controls the steepness or slope of F, and f controls
the crossover point along the y axis at which inflection occurs, viz.,
F, (y)=0.5 &y =B. Without loss of generality we discuss F, for § =
0, since this parameter simply shifts F, to the left or right of the
origin. F| is called a unipolar activation function because its range
is (0, 1). Figure 4.69 depicts F| for three choices of the steepness
parameter A with B = O for y in [-5, 5].

376 FUZZY PATTERN RECOGNITION

1.0

B R,
!
l
i
|
|
|
!
T R
o
t

1
9)1
o
o

Figure 4.69 Effect of steepness parameter . on F

At A= 0 the graph of F, is the horizontal line y = 0.5. As A increases,
the shape of F, becomes more and more like the step function which
jumps from O to 1 (which are the asymptotes of F as y »>te) as)
approaches . The linear transformation

2

of (4.97) is called the bipolar form of the logistic function because its
range is (-1, 1), with limits +1 as A approaches <, the sign depending
ony. That is, the limit of F| , with = O is just the sign function,

. 1; >0
im{F, ()} = senly) = { R 0} . (4.99)
A—>oo

Another function that can be used as a transfer function which has
the same basic properties as F .. is the hyperbolic tangent,

F(y) = A tanh(By). There are many other transfer functions in the
fuzzy NN literature; we will meet some of them later in this chapter.

Now combining the action of the integrator and transfer functions,
consider the composition of f followed by F. We call this the node

Sfunction ® =F of, whose job is to convert vector inputs to a single
node into real outputs, z = ®(x) = F o f(x) = F(y). When the integrator
function is f,; and the transfer function is F| (unipolar) we write

LN =FLofH, and we call it the standard or McPitts (after
McCulloch and Pitts, 1943) neuron.

We have already met the idea of node functions, which in section 4.6
were associated with the nodes of a decision tree classifier. It is
entirely proper to regard those node functions in the same light as
the ones currently under discussion. Both types make decisions
about what values "travel" along paths in the network. One of the

CLASSIFIER DESIGN 377

main differences in the two network structures is that in decision
trees there is but one input edge per node, and usually many output
edges with different values; whereas most neuron models have nodes
with many inputs, and only one distinct output (that may go many
places, but has the same value on each outgoing edge). In Section 4.11
we will discuss the equivalence between some special classes of
decision trees and certain types of neural networks.

Decomposition of @ into its two components enables us to analyze
the mathematics of one node more carefully, and is very helpful in
understanding the relationship of NN methods to other classifier
designs. Imagine that you can rotate a hyperplane H so that it stands
vertically, parallel to the vertical z-axis, and you are standing at
infinity, looking down along H towards the origin of the horizontal
axis. Figure 4.70 shows an "end-on" view of what you would see if you
could position yourself at the "edge" of the hyperplane H in Figure
4.4 that is created by fH. Then superimpose the action of transfer

function F with A=1and B = 0 on [-5, 5]) onto your field of view.

z
A
H <« 1

5%
4
?

z=F (y) ¢
14
[
ﬁl/
6
2
[H]
a >y
by =1 (x)

Figure 4.70 Geometric interpretation of node function ¢, =F, of

In this different view of the geometric meaning of the linear
integrator function f, you would see the half spaces H™ and H* to

the left and right of H. The logistic function provides a non-linear
response to node inputs that fall on either side of H. Since F, takes
values in the open interval (0, 1), you might be tempted to interpret

them as memberships, and in the proper linguistic framework, this
could certainly be a membership function for some linguistic value.

378 FUZZY PATTERN RECOGNITION

But, under these circumstances, would you call this a "fuzzy
neuron"? We think not. We will encounter instances of fuzzy models
that discuss node computations in terms of ®rather than Fof, and
we will look carefully for the added value provided by fuzzification
of the node function, or of its constituents, the integrator and
transfer functions.

B. Neural network models

The definition of the computational NN given in DARPA (1988, p.
60) is: "a neural network is a system composed of many simple
processing elements operating in parallel whose function is
determined by network structure, connection strengths, and the
processing performed at computing elements or nodes". The network
structure (or topology) refers to the way the nodes are connected to

each other; the connection strengths are the weight vectors {w }; and

node processing refers to local computations done by @ at any node
in the network.

Figure 4.71 shows a general NN architecture, with no particular
assumptions made about the node functions that are used. The
network topology in Figure 4.71 has feed-forward, feed-backward
and cyclic connections between and among its nodes. Most NN
models used in pattern recognition are feed-forward only, a
simplification that seems necessary for both computational and
analytical tractability.

Nycq) c
X c RP NN:RP > R » ucke

(Hidden

Layer 1
Xl ul
U,
Xk
ui
X
P u

Figure 4.71 A computational neural network

CLASSIFIER DESIGN 379

See Table 1 in Hecht-Nielsen (1988) for an early list of the thirteen
(supposedly, in 1988} most common NNs as well as a tabulation of
neurocomputers for each model built as of that date. The most
complete current listing of NN architectures and software is perhaps
the Handbook of Neural Computation (Fiesler and Beale, 1997). A
good recent list of hardware implementations of NN architectures is
given in Chapter 27 of Chen (1996).

Most NNs have layers. In Figure 4.71 there is an input layer, whose
nodes {NE: j=1,...,p} almost always "perform" no computations. The
purpose of the input layer is to indicate how the data enters the

network in p parallel input streams, and to show how the input
features are distributed to the first hidden layer, whose nodes are

indicated by the notation {N;: j=1...,k;}. Hidden from what you

may ask? Hidden from the input and output layers, so we are told.
Integer kl is the number of nodes in the first hidden layer. The qth

hidden layer has kq nodes {N;.l: j=1, ...,kq}, etc., and the nodes of the

output layer are {N}’: j=1,...,c}. Thus, superscripts indicate the
layer, and subscripts indicate the node number within each layer.

The output layer usually has computations at each node. When we
discuss a general NN, we may omit the superscripts and speak about

node N; for simplicity. We call the hidden and output layers in a NN

the computing layers of the NN. The architecture in Figure 4.71 is
symbolically denoted by the sequence of numbers representing the

number of nodes in each layer as p:k;:---:Kkq:c.

If the last functions applied to values flowing through the output
layer in Figure 4.71 are of the form (4.97), the output of the NN is a
possibilistic label vector, u =(u1,...,uc)T eNpc (see equation (1.1)).
This hardly justifies calling such a network a possibilistic NN, so

don't be tempted to interpret it that way unless there is enough
semantic justification to entitle the network to this descriptor.

It is convenient to have a notation for the set of all parameters of a
NN that must be "learned” (acquired during training). For example,

if a node has linear integrator and logistic functions, <I>LH = FL of H
then the ith node weight vector has the form w = (7&1, Bl, w, oci). When

the total number of nodes in the network is N, we call W = { © P wN)
the network weight vector. For example, if there are 8 input nodes, 2
hidden layers with 3 and 5 nodes, respectively, followed by an output
layer with 4 nodes, i.e., an 8:3:5:4 architecture, then there are
(8+3)-3+(3+3):-5+(5+3)-4= 95 parameters to learn assuming
feed forward connections only.

380 FUZZY PATTERN RECOGNITION

The cardinality, |W| of W, which is the number of parameters to
estimate, is important, because it influences the size of minimally
acceptable training sets. Theoretical guidance for network size (as
measured by [W|) for a given set of IO data is limited to cases where
very idealized assumptions are made about the training data. For
example, Baum and Haussler (1989) give the bound

32w] (32-M J
ot —log | ————— |<n,_ =X ,where (4.100)
[ED (XteIXtr) ¢ ED(Xtelxtr) N | trl

M is the total number of hidden nodes in a single layer and
ED(X te|X tr) is the desired fraction of errors that you will tolerate on

the test set. They assert that a single layer neural network with
bipolar output nodes will "almost certainly” generalize [to

ED(Xte[Xtr) on similar input data] if the fraction of errors
committed on the training data is less than half of the desired test
error, En(Xulxu) SEp(X,|X,)/2, and (4.100) is satisfied. Haykin
(1994) calls (4.100) a distribution-free worst-case bound on the size

of the training data. Ignoring the logarithmic term and the
multiplier 32 in (4.100) gives the simpler first order estimate,

(W]

— 1 <n , (4.101)
X IX tr
ED(tel tr)

which Haykin (1994) asserts is a good rule of thumb in practice.
Equations (4.100) and (4.101) bound the size of the network in terms
of the number of samples, but not the number of total values
(number of features times number of samples), in Xtr. Another rule of

thumb that involves p, the number of features per sample, is
10-|W|<n_-p. For example, [W|<150-4 /10 =60 for resubstitution
training (i.e., n_=ns= 150) of the Iris data, which limits the network

weight vector to a total of 60 parameters. None of these bounds
account for the variability that real data possess, and there are as
many of them as you have time to read about, but you should always
be cognizant of the "power" of your training data - its size certainly
limits the total number of parameters you should estimate with it,
be the design a NN or some other type of classifier.

Just above the diagram in Figure 4.71 you see NN:RP 1> R¢. This
emphasizes that mathematically the NN is just a vector field. We use
the notation NN when the role of the NN as a function is being
emphasized; of course, NN is a computational transformation
realized only by computer implementation. And we use (unbold) NN
when talking about a NN generally, or in the engineering design

CLASSIFIER DESIGN 381

sense, as an input - output system. In this regard NN is exactly like
the classifiers based on decision trees and fuzzy systems discussed
in section 4.6. Here, NN will be a feature selector, clustering
algorithm or classifier function depending on the discussion at

hand. When it is a classifier, we use our standard notation Dy

One touted advantage of neural networks is that their parameters
can be "learned" from labeled training data. But this is true of every
classifier - that's what supervised learning means. The real power of
NNs lies in the way they build up functional approximations to 10
mappings that underlie the training data. Kreinovich et al. (1998)
provide a very nice discussion of this aspect of NNs in the context of
universal approximation theory. Parametric learning by a NN is
based on an update function or strategy that converts the current set

of weights W, at the t-th training cycle or iteration into a new or
updated set W,;. The action of the update or learning rule can be

written symbolically as W,,, = UW,). Updating is done during
training whenever the NN system output(s) do not correspond well
enough to the desired labeled outputs. For pattern recognition, this
usually means that the NN is operating as a classifier.

Input Layer Hidden Layer(s) Output
Layer

W W G Y MG MG WG R T T

1]
y
¥

o

LWL AL WAL WAL G M AR MR WAL WA R K M W W

Figure 4.72 The FF network with node functions ¢ =Fof

There are many principles that guide the choice of a learning
strategy. Different learning rules are chosen to match a specific
network architecture; most update rules attempt to optimize some
function of the observed error(s) between the desired and observed
outputs of the network. By far the most popular and pervasive NN to

382 FUZZY PATTERN RECOGNITION

date is the feed forward (FF) network, (Zurada, 1992, Haykin, 1994).
Figure 4.72 shows a typical representation for a FF network. The
main difference between this structure and the one shown in Figure
4.71 is in the topology of the interconnections between the nodes. In
a FF network there are no self loops or feedback connections; data at
each stage of the network in Figure 4.72 can only flow forward (to
the next layer} from left to right. The standard algorithm for
updating in the FF case is the back-propagation technique invented
by Werbos (1974). Given the central importance of back-propagation
in the training of FF networks, these networks are referred to as
feed-forward back-propagation (FFBP) networks. They are usually
called multi-layer perceptrons (MLP). Many authors, including us,
reserve the term MLP for the special case of the FFBP network in

which every node function is @, =F of .

In the BP method, the error function for a given 10 pair
(x € RP,y € RY) is the sum of squared errors between the desired and

2
target outputs, E(x,Wt) = “NN(x, Wt) - y” . E is regarded as a function

of the current network weight vector, and differentiation of this
function of W, leads to necessary conditions for adjustments of the
weights by gradient descent. The input is fed forward, and the error
it causes produces updates to the current weights that are then
propagated backwards through the network layer by layer - hence,
FFBP. We will not repeat the formulae for this well known procedure
here. If a specific need arises in connection with fuzzification of
some part of the FFBP design, we will discuss what seems most
appropriate at that juncture.

It is impossible for us to estimate how many fuzzy variants of the
FFBP structure shown in Figure 4.72 have been discussed in the
literature of so-called "fuzzy-neuro {aka neuro-fuzzy)" systems in the
last decade. Suffice it to say that there are least a half dozen
textbooks whose titles suggest that they deal exclusively with this:
for example, Neural Fuzzy Systems (Lin and Lee, 1996),Neuro-Fuzzy
and Soft Computing (Jang et al., 1997) and Neuro-Fuzzy Controllers
(Godjevac, 1997). In order to appreciate some of the extensions of the
NN to be developed subsequently, we present in Example 4.21 the
results of using the standard FFBP network to design a crisp
classifier with the Iris data.

7 g
Example 4.21 The Iris data is labeled, and can be used to estimate the
parameters of a FF network in many ways. Here we show the results
of training the same MLP network with three different training and
testing strategies. Specifically, we train the network shown in
Figure 4.72 with node functions &, =F of using back-

propagation with these three protocols:

CLASSIFIER DESIGN 383

A, Xtr = X = Iris, leading to the resubstitution error estimate

Ep (XIX).

B.X = the union of the first 25 points from each of the three labeled
classes; Xte = the union of the remaining 25 points from each class,

leading to the estimate E; (X, |X,). Cross validation was not done
NN
for this example.

C. Finally, we illustrate the leave one out procedure by building, for
k =1,...150, the classifiers {Dy .} by constructing the training and

testsets X | =X - {x, } and X,_, ={x,}. From these we can compute

te k

150
an average error rate, EBNN (X,)X,)= kél EDNN.k (X Xip)/ 150.

The MLP we used for all three experiments was a simple one: it had
two hidden layers with 6 nodes each and an output layer with ¢ = 3
nodes. Since the Iris data is 4 dimensional, this gives a 4:6:6:3
configuration. The 15 computing nodes all use the linear integrator
function fH and the logistic function F, . For simplicity we fixed A = 1

and B = O for the logistic functions at all 15 nodes. Consequently, the
only parameters that must be estimated are the weight vectors {wi}

and bias constants {o.} of the 15 hyperplanes at the computing
nodes. That is, the cardinality of the weight vector for this structure
is [W|=(4+1)-6+(6+1)-6+(6+1)-3=93 parameters. Do we have
enough data to expect good generalization with this structure? Since

{4.100) and {4.101) are for single (hidden) layer networks, they don't
apply to our topology. The only guideline we have is the rule of

thumb 10-[W|<n,_ -p. Solving this inequality for n,_with the values

p =4 and [W|=93 gives n,_>10-93/4 =232.5. Since n = 150 for

Iris, no scheme for training and testing this network can satisfy this
rule of thumb. Let's see how good the rule is.

Each of the networks for experiments A and B was initialized
randomly. Training was terminated when the MSE on the training
data was less than 0.01 for 10 consecutive passes (epochs) through it,
or at the maximum specified limit of 200,000 epochs. For
experiment C, the network was initialized randomly at k = 1, 51 and
101, i.e., at the start of each new class, and the weights from the
training runs at these three k's were retained and used to initialize
the remaining 49 training sessions for points in that class. Without
this "jump start" for better initialization, some of the experiment C
runs ran to the iteration limit of 200,000 passes without satisfying
the (successive iterates) termination criterion. In other words,

384 FUZZY PATTERN RECOGNITION

carrying the final weights from the previous run forward to
initialize the next training session in the leave one out tests helped
network training a lot.

All networks used learning rate and momentum factors of 0.5. The
learning rate refers here to a multiplier in the update rule for the
weights, and has exactly the same meaning as the term did in earlier
sections. We have not discussed momentum, since there has been
little work that we know of on "fuzzy momentum". Momentum is a
term that is added to the update rule for the network weights, and it
is often able to accelerate back-propagation learning towards
termination. See Section 4.5 in Zurada (1993) for an excellent
discussion of this topic.

Experiments A and B aren't very exciting, and are easy to report.
Training method A with n = 150 led to a MLP classifier with a

resubstitution error rate of zero, and training method B with n = 75

terminated at a network with 1 testing error. Thus given all
(experiment A) or half (experiment B) of the Iris data for training, it
is not hard to find a network for which

EDNN (X|X)=0; EDNN (X, |1X,)=1. Don't forget that the resubstitution

estimate is usually optimistically biased as you evaluate this result.

Experiment C is more interesting, for here we use n_= 149 of the 150

points in Iris for training (which is almost the same training data as
resubstitution uses), and test the resultant classifier on the point
held out (which is not resubstitution). In our set of 150 trials using

this scheme, the classifier built with Xtr,k =X —{xk} and tested on

X ex =1x%,} gave the wrong classification for k = 2, 42 (called class

2|were class 1}, 57 (called class 1|was class 2) and 71 (called
class3|was class 1). Thus, for this network configuration,

Ep, (x)|X-{x,}) =4/150 = 2.66%.

How did our rule of thumb about the number of parameters versus
the size of the training data do? Well, this rule of thumb is not tied to
a specific error rate like (4.100) is, so we cannot say that it failed
(except in case A - no one would argue that a perfect score is
undesirable). On the other hand, the worst case, experiment C,
produced an average error rate of 2.66% with less training data than
the rule of thumb recommends. So? Take rules of thumb for what
they are - general guidelines or heuristics that work sometimes, for
some algorithms, and some data sets.

The errors committed in experiment C are particularly interesting
in that class 1 (Sestosa) is usually the subspecies that is handled
perfectly by classifiers, but here, the leave one out networks
committed two errors on class one test points, while class 3

CLASSIFIER DESIGN 385

(Virginica) here showed no errors. This suggests that the decision
functions built by the network are more complex than the simpler
ones we have studied so far. The leave one out error rate is really a
little misleading because it is not for just one classifier;
nonetheless, it is often taken as a "representative" best (and most
pessimistic) estimate of the error rate that can be expected using a
similar design on the same type of data. We also remind you that
these results depend on the initialization used, and for a different
set of starting points, something entirely different could happen.

Recalling Table 4.9, we know that the experiment C error rate
(2.66%) can be achieved with ¢ = 7 LVQ prototypes. However, the
error rate shown in Table 4.9 is the resubstitution error rate on all
150 points, and experiment A in this example shows that the FFBP
NN easily achieves 0% errors in the resubstitution case. Since the
leave one out error rate is the most pessimistic one we can compute,
and here we have 2.66% for it, we are tempted to conclude that a
simple MLP of the type represented by the 152 classifiers designed in
this example is, for this data set at least, more likely to produce
lower generalization errors than the nearest multiple prototype
classifiers in Section 4.3.

Finally, we comment on the training time it took for each of the 150
leave one out classifiers designed in experiment C. In 57 of the 150
designs, termination was achieved in less than 1000 passes through
the training data, which took about 5 seconds on a SUN
workstation. This was the case for all 50 points in class 3. At the
other end of the scale, the 32nd point in class 1 took more than
46,000 passes through the 149 training data to satisfy the
termination criterion. This sounds like a lot, but this run only used
about 4 minutes of CPU time. Moreover, once trained, NN classifiers
are fast, and (for small data sets anyway) we think some type of
network design should always be tried when you start building
classifiers with labeled data.

To show the versatility of the FFBP network, we give another
example of its use for an entirely different pattern recognition
problem - feature extraction. This idea had its origins in the work of
Cottrell et al. (1989). Many papers have been written that use the
basic idea illustrated in Example 4.22.

4 g
Example 4.22 We seek a 2-dimensional data set extracted from the
Iris data by a FF design. Figure 4.73 shows the architecture of the
network to be used. There are 4 input nodes, one hidden layer with 2
computing nodes that use @, =F, of , and the output layer has 4
nodes, thus making a 4:2:4 configuration. The wrinkle here is that
the target outputs for this application are the input vectors. That is,

386 FUZZY PATTERN RECOGNITION

we want the NN to function like the identity map, so
NN(x,) ~ x, Vk. The idea that underlies this design is that if NN
does function as the identity, then the data flowing through every
layer of the network will, by and large, possess the same
"information" as the inputs themselves. And in particular, the
vectors y, = (ylk,ym()T vk that are copied from the output of the

hidden layer should be a good pair of extracted features in this
loosely defined sense.

Figure 4.73 A MLP approach to feature extraction from the Iris data

As shown in Figure 4.73, the basic structure of the six computing
nodes is that each used a linear integrator and logistic transfer
function. We use bipolar logistic transfer functions in this example
to demonstrate that the only difference between these and their
unipolar relatives is a matter of scaling. Since the range of the Iris
data is [0.1, 7.9], each logistic function was scaled by 10, enabling the
output of each node to range over the interval [-10, 10]. Thus, the

specific form of each node function is 10®, , ..

As in Example 4.21, the parameters of all 6 bipolar logistic
functions were fixed at A =1, B = 0, so the parameters acquired during
learning in this example are again the weight vectors {wi} and bias

constants {(xi} of the 6 hyperplanes at the computing nodes. Now

there are only |[W|=(4+1)-2+(2+1)-4 =22 network parameters, so
n,_ >10-22/4 =55. Our rule of thumb says we can use Iris, or any

subset of it with at least 55 samples, for training. Moreover, this
network satisfies the requirements laid out for equations (4.100}

and (4.101). With M = 2 and |[W|=22, we can either pick n_ and

CLASSIFIER DESIGN 387

compute E (X, [X,), or fix E (X, |X,) at some desired level, and
solve {(4.100} for n . Suppose we insist that the generalization error

in (4.100) be less than 10%, ED(Xtelxtr) = 0.1. Then with (4.100) we
compute

(704
.1

log [82 = 45,489 >> 150,
el .1

so by {4.100) it will impossible to attain a 10% test error. Indeed,
using (4.100) with 100% test errors leads to

(@) 1oge[§15‘i) = 3,078 > 150.

These results suggest that we can't hope for the success we reported in
Example 4.21 for this problem. But to be fair to the error bounds, we
point out that the bound in (4.100) also assumes that during training
we can obtain a resubstitution rate on the training data that is no
more than half of the testing rate, and we did not conduct this
experiment.

All 150 points in Iris were fed sequentially through this network
during training to acquire the network weight vector. Training was
terminated when the overall sum of squared errors between the
inputs and outputs of the network was less than 17
misclassifications of the hardened outputs. At termination, the
resubstitution MSE was 16.971. By (4.100), this means the best
generalization error we could expect is about 34%. Putting 0.34 into
the denominator of (4.100) gives n = 10,845. Hmmmmm...........

Returning to the problem at hand, after termination, each point in X
= Iris is fed through the network one more time, generating

Y = {yl,... , y150} c N2, a labeled set of 2D vectors that can be used to

represent the 4D Iris data. Figure 4.74 is a scatter plot of the 150
points in Y found by this technique. Each Y, automatically acquires

the same label as x _in the original data set, so the class labels of the

50 points in each of the three clusters can be illustrated by different
symbols.

The vertical lines y, = 2andy , = -1.03 represent a linear classifier

that separates the extracted data into three groups. It is easy to see
that the 4 "x's" to the left of the vertical line y, = -1.03 are the only

resubstitution errors committed by this classifier. Thus, the two
dimensional data set Y extracted by the FFBP network provides a
substantial improvement over the resubstitution error rate that can

388 FUZZY PATTERN RECOGNITION

be achieved by a set of hyperplanes in the original four dimensional
data set X. In fact, Figure 4.74 shows that only one feature, y,» is

needed to achieve this error rate.

¥,
e A Class 1 = Sestosa
¥ Class 2 = Versicolor
" gom u B Class 3 = Virginica
6 ——
Wy n
ol 1ol
n | | B X X
n
e L X
.. X X§<X
X
K X
. = X X 5—
XX X x
| X
|
. xK% £
A
x X XX o
% A LA
. X 5
4 — A A
X A
x Y
X AA
.
3 A
AA
A
_yl
I 4 | A
< l 1
-2 -1.03 0 2

Figure 4.74 A NN approach to feature extraction from the Iris data

Before you get really excited about the NN method, we want to show
you the result of feature extraction on Iris using the standard linear
transformation known as principal components analysis (PCA). We
aren't going to discuss this topic; instead you are referred to the

CLASSIFIER DESIGN 389

wonderfully readable treatment of PCA in Johnson and Wichern
(1992). Figure 4.75 shows the projection of Iris onto its first two
principal components. Comparing this view to Figure 4.74 shows
that PCA and the NN in this example extract very similar features.
We are again able to construct a pair of hyperplanes in Figure 4.75,
by eye, that commit either 3 or 4 resubstitution errors - depending

on how good your eye is - on the extracted data (if you make the
calculations, it turns out to be 4 errors).

yPC,22

A

A Class 1 = Sestosa
¥ Class 2 = Versicolor
A B Class 3 = Virginica

b

» P

AAAA

l>P ’p

>
>

>
>
>
> x?y b >>,,
>

Y pci2

——P

Figure 4.75 Feature extraction from Iris with principal components

390 FUZZY PATTERN RECOGNITION

And finally, let's have a closer look at Iris,, the data scatterplotted

in Figure 4.12. Figure 4.76 is another plot of the same data, now
shown with the extra information that accrues from having crisp
class labels. This also depicts a feature extraction method - the
special case called orthogonal projection illustrated in Figure 2.22.
And again, it's easy to construct a piecewise linear classifier with
the pair of hyperplanes in Figure 4.76 that commits only 3 or 4
resubstitution errors.

Xy

1 -

A Class 1 = Sestosa

]
% Class 2 = Versicolor -
B Class 3 = Virginica L
-
2 -
X
X
X X X k-4
1_
-
A
A AAA A
AA A A
A AAA AAA A
A AA X3
I 1 1 - 1 1)
1 2 3 4 5 6

Figure 4.76 Feature extraction from Iris
by orthogonal projection (selection) to get Iris34

Given Figure 4.76, you must be wondering - why bother with these
complicated classifier designs when I can just project the data into

CLASSIFIER DESIGN 391

%2 and eyeball a pretty good linear classifier onto its scatterplot?
Well, if you can do it this way, you should do it this way - as Einstein
once said "simple is best - but only simple enough to work". But the
reason it works here is because Iris is nice to us. For one thing, p = 4,
so there aren't a lot of pairs of features to look at. But suppose you
have p = 100 features. Then there will be 4,950 pairs of features to
scatterplot, so selection by visual inspection becomes pretty tough.
We think you should always try simple tricks like this, but don't
count on them too much. After all, you don't expect the hare to void
turd the size of elephant dung.

The MLP can also be used to select (instead of extract, as in Example
4.22) a good subset of features. For example, Pal and Chintalpudi
(1997) made a simple modification of the conventional MLP for
feature selection. Each input layer node becomes a computing node
by associating it with a multiplier which lies between 0 and 1. If the
multiplier is zero then that feature does not pass into the network,
while if the multiplier is 1 then the associated feature passes into
the network unattenuated. For intermediate values of the
multiplier, the feature is partially attenuated. Pal and Chintalpudi
realized the multiplier using a multiplier function with a tunable
parameter.

Using our terminology, let f(x) = x be the identity function, let
G,:% - [0,1] be a monotonic, non-decreasing real-valued function

parametrized in the real number A (e.g., the unipolar sigmoid), and
define F(y)=y-G,(y). Thus the effect of ®(x)=F-f(x)=y G, (y) is

to multiply x by a multiplier function g with a tunable parameter A,
where Gk(y) is in [0,1]. If gx(y) of an input node is 1, then the

corresponding feature is important and passed unattenuated into
the net; if Gx(y)= 0, then that feature is irrelevant or harmful and is

not allowed to enter the network. The Type I fuzzy neuron depicted
in the lower half of Figure 4.77 is very similar to the input node
structure proposed by Pal and Chintlapudi, but the Pal and
Chintlapudi neuron does not necessarily produce outputs that lie in
the interval [0, 1}.

In Pal and Chintlapudi the non-input layers are exactly like those
in the conventional MLP. The multiplier parameters 7»1 i=1,..,p, are

learned along with the connection weights using the usual back-
propagation algorithm. The training starts with all multiplier
functions set to almost zero, i.e. with almost 100% attenuation.
Thus, at the beginning of training, practically none of the features
are allowed to pass into the network. As the network trains, it
selectively allows only some important features to be active by
adjusting their multiplier values as dictated by the gradient descent.

392 FUZZY PATTERN RECOGNITION

The training can be stopped when the network has classified
satisfactorily i.e., when the training error rate has gone down to a
tolerable value. Features with high values of the attenuation factor
(i.e., small multipliers) may be eliminated from the feature space.

Ghosh et al. (1993) discuss the conversion of a multilayer perceptron
to an unsupervised network by the introduction of concepts from
fuzzy theory. This fuzzy neural network can extract objects in a
noisy environment in a completely unsupervised manner by
minimizing a measure of fuzziness computed on the output of the
network.

Yan (1993) presents a scheme for extracting multiple prototypes
from crisply labeled training data, X,, ={x;,...,x,} < RP, using a 3
layer perceptron that is very similar in spirit to the method
presented in Example 4.22. Yan's objective is to reduce the size of X,
through the transformation V_ = X o = (X,), exactly as depicted in
Figure 4.2. Yan uses a p+2 : ¢: ¢ multilayered perceptron as the
function Q. We remind you that in the setting of multiple prototypes
in Definition 4.2, ¢ is the number of classes in X ¢ < c. Yan's desire
is find a set of multiple prototypes, called V_in Definition 4.2, for
which ¢ << n, and for which the resubstitution error of the 1-nmp
classifier D, . ;inequation (4.7) is zero (we have also called this
cUer
consistency). While consistency is a stated objective in Yan (1993},
no guarantee is claimed; the method is consistent for one of the

numerical examples given, and may be for the second one too, but
this is not stated.

Did you notice that Yan's MLP structure was p+2 : ¢; ¢? In this
interesting paper Yan increases the dimension of the input space by

2, adding the number |x, ||2 /2 as the p+1- st coordinate of each x,,
and the constant 1 as its p+2-nd coordinate. Yan argues that the

number “xk"2 /2 is chosen so that this MLP - without sigmoids in the

computing nodes and before training - can be regarded as an
approximation to the 1-nn rule in equation (4.38).

The ¢ output nodes are completely fixed, using a linear integrator
function that has user-defined weight vectors depending on just two
parameters of opposite signs. The activation function in each output
node is the unipolar sigmoid F, in (4.97) with A = 1, B = 0. Thus, there

is no adjustment in the output layer during training.

The desired prototypes in Yan’s scheme are the weight vectors (in
%P} of the hidden layer nodes, each of which uses the standard node

CLASSIFIER DESIGN 393

function &y with fixed sigmoidal parameters as in the output
layer. Backpropagation training adjusts the initial prototypes
(which are specified in the paper by a third user-defined parameter),
and at the end of training, the n points in X that have ¢ classes are

replaced by the c point-prototypes in the vector V_ At this state Yan
has the basic equipment needed to build the 1-nmp classifier

Dvc,Eé,a' needing only to pick a distance measure {Euclidean in the

paper). Yan calls the prototypes obtained by this MLP "optimized
prototypes”.

Two numerical examples are given in Yan (1993), both for 2D data.
The first example is an "XOR-like" data set of 162 points in the plane
that form (roughly) four clusters in the shape of an "X", but the

clusters have only ¢ =2 crisp labels. These 162 labeled data points
are replaced by ¢ = 4 2D "optimized prototypes” with the result that,
when used in the 1-nmp rule in (4.7), they give zero resubstitution
error. The second example uses 500 labeled (image) data that are
distorted digits for training, and another 500 data for testing. Yan
states that the 1-nn rule achieves 99% accuracy using all 500
training data to label the test data, and that 10 optimized prototypes
obtained with his method achieve a testing success of 99.4%,
slightly better than the full 1-nn rule, using only 2% (10/500) as
many points. We will return to this interesting method in Section
4.8.

The objective of Section 4.7.B has been to introduce the terminology
associated with the most popular NN models. The remainder of this
chapter is devoted to specific ways that one or more components of a
NN model can be altered to accommodate and manipulate fuzziness.
Any and all of the modifications we describe can justifiably be
called fuzzy neural networles. As we mentioned earlier, this has been
done in so many ways that it is impossible for us to lead you through
the forest; the best we can hope for is to give you a glimpse at some of
the trees.

C. Fuzzy Neurons

Example 4.21 (and a metric ton of papers over the last 15 years)
demonstrate how good plain old FFBP and especially MLP nets can
be in pattern recognition, and in particular, for classifier design.
Fuzzy sets were created to deal with linguistic information and
provide an interface between linguistic and numeric descriptions.
So, we hope you see in what follows that two advantages can be
realized by networks that have Type I fuzzy neurons as defined in
equation (4.102). The most important contribution of adding
fuzziness to a NN structure is that, after training, the nodes of a
fuzzy neural network can admit a linguistic interpretation, i.e.,
some insight can be gained into how the features combine to make a

394 FUZZY PATTERN RECOGNITION

class decision. The opaqueness of FF nets has always been an issue;
it's hard to trust a "black box". The second advantage is that for
many types of data, we have found that networks of fuzzy neurons
train in many fewer epochs (although the calculations done during
training may increase}.

Keller and Hunt (1985) first introduced fuzzy sets into the training of
a single perceptron (don't we just love to cite ourselves?). We have not
discussed the perceptron, nor do we intend to, for it is arguably the
most well known linear classifier that had its roots in a desire to
mimic the BNN. But for the record, it's a linear classifier that was
originally designed for ¢ = 2 class problems, and the perceptron
learning rule is an iterative procedure that finds estimates of the
parameters of the sought after separating hyperplane. When the
training data have two linearly separable classes, the perceptron
convergence theorem guarantees us that the iterative learning
procedure converges to a separating hyperplane in finitely many
steps (Duda and Hart, 1973).

Keller and Hunt's fuzzification of the perceptron training rule
generally resulted in faster convergence, also guaranteed a
separating hyperplane if one existed, and produced good results
when the data were not linearly separable - a big problem with the
classical perceptron training algorithm (Rosenblatt, 1957).
Fuzzification of the training rule was extended to MLP nets by Pal
and Mitra (1992). These connections to NN training, along with the
use of neural networks to perform operations like fuzzy inference
will not be pursued here. The reader is referred to Lin and Lee (1996)
for development of these and other relationships between fuzzy sets
and neural networks.

There are many ways to integrate fuzzy sets into a neuron model.
Most of these methods involve changing the integrator and
activation functions of the standard McPitts neuron. Some involve
changing the input data and/or the weight values from real numbers
to fuzzy sets. There are even multiple taxonomies developed to
describe the various possible modifications. Lee and Lee (1970, 1975)
were the first to postulate and describe fuzzy neurons and they
analyzed fuzzy neural networks based on their fuzzy neurons from
the standpoint of fuzzy automata theory. See (Lin and Lee, 1996,
Jang et al., 1997, Godjevac, 1997, Pedrycz et al., 1998) for extensive
details about many forms of fuzzy neurons. Gupta and Rao (1994)
discuss various principles of fuzzifying neurons and neural
networks; and Buckley and Hayashi (1994) provide a nice summary
of fuzzy neural nets that process fuzzy signals and/or have fuzzy
weights.

We begin with the basic mathematical neuron model in Figure 4.68.
Most of the fuzzy variants of this node change the form of one or
more of the input vector x, the weight vector w, or the

CLASSIFIER DESIGN 395

integrator/activation functions f/F. The fuzzy neuron which seems
to be encountered most often in pattern recognition is called the

Type I neuron. Each input x; is still a real number, but the weight w,
is "thought of" as a fuzzy set whose membership function is m,. The
integrator/activation function pair ® =Fof is replaced by some

fuzzy aggregation function. That is, the output of a Type I fuzzy
neuron is given by

<DTI(x,mTI) = ml(xl) ® mz(x2)®---®mp(xp) , 4.102)

where the vector m, =(m1,'~,mp)T of input edge membership

functions effectively become the "weights" for the node. The symbol
® in (4.102) is used to represent a fuzzy set connective operator:
union (OR neuron), intersection (AND neuron), generalized mean, or
hybrid. If ® is a T-norm, then the Type I fuzzy neuron simply
computes the LHS activation or firing strength of a fuzzy rule o,(x)
exactly as in equation {4.72). Figure 4.77 shows you the conceptual
difference between the McPitts and Type I fuzzy neurons.

()
w — P, (0) = :

LH 1+ e—M(w,x)+a—B)

1 McPitts Neuron
X
2
\ Wz\
/

m, m, (x,) Type I Fuzzy Neuron

3
~ mp(xp)’) ®(x,m)= m,(x,)8®m (x)

Figure 4.77 Standard and Type I fuzzy neurons

We have added graphs of specific membership functions on the input
edges to the Type I fuzzy neuron for illustration, but these functions

396 FUZZY PATTERN RECOGNITION

can be any membership functions. In view of Figure 4.77 you see why
we say that the weights are "thought of" as fuzzy sets. They are not
weights at all in the normal neural networks sense, but are used to
convert real inputs into membership values that lie in [0, 1]. Thus,

the use of m; = (ml,---,mp)T serves to normalize the input features.

These functions allow you to choose membership function shapes
that weight different features and feature values differently, and by
this device you can build a lot of factual as well as heuristic
knowledge about the process generating the data into the model.

From the pattern recognition standpoint the input edge membership
functions also serve as a mechanism to convert raw input features
into degrees of satisfaction of a class hypothesis. Yamakawa et al.'s
(1992) fuzzy neuron, on the other hand, has a fixed membership
function and also a tunable real weight for every input link to a
neuromn.

You can see from Figure 4.77 how a layer of AND neurons can be used
to emulate the LHS of a fuzzy rule base. If the AND layer is followed
by other layers of specialized neurons, like OR neurons and
"weighted averaging” neurons, then you can view the action of a
fuzzy rule base as a special case of fuzzy neural networks. The so-
called adaptive-network-based fuzzy inference system (ANFIS, Jang
et al., 1997) is one such realization, although there are many in the
literature. Our purpose here is not to study all the interconnections
between fuzzy sets and neural-like structures and get thereby be
caught in the jungle of function approximation (see the excellent
article by Dubois et al., 1998, reproduced in part in section 4.10). We
are interested in the value-added to the pattern recognition problem
when standard neurons are replaced by fuzzy neurons. What could
that possibly be?

Using a parametrized operator (such as Yager unions and
intersections, weighted generalized means, etc.), a fuzzy neuron can
be defined which affords the opportunity to be trained (i.e., it's
parameter(s) can be learned). A back-propagation algorithm can be
devised since partial derivatives of these families of operators can
be computed. Krishnapuram and Lee (1988, 1989, 1992a) used these
basic operators in a network that has Type [fuzzy neurons to do
multicriteria decision making. One basic problem is that the
category of neuron must be determined (does the data represent
conjunction, disjunction, or compensatory criteria?). This makes
the training algorithm cumbersome. In what follows, we develop the
use of hybrid fuzzy connectives, first for a single Type I fuzzy
neuron, and then in the next section, for networks of such neurons.

Fuzzy set theoretic connectives, i.e., unions, intersections,
generalized means, and hybrid operators, are useful for aggregating
memberships functions. The resulting membership depends on the
type of aggregation operator used, and this type is dictated by the

CLASSIFIER DESIGN 397

"attitude” that we expect the aggregation connective to have. These
operators are very useful in decision analysis and decision making.
You are referred to (Dubois and Prade, 1985, Mizumoto, 1989, Klir
and Yuan, 1995, Dyckhoff and Pedrycz, 1984) for a more complete
description of fuzzy set connectives, which is what a Type I fuzzy
neuron computes.

First, we need to develop some aggregation operators that can be
used for unions and intersections. The most well known and oldest
of these is the generalized (or weighted) mean of order q (which was
called a g-norm in older mathematics books such as Beckenbach
and Bellman, 1961). This function combines a set of p positive

inputs, say x = (xl,...,xp)T;xi >0Vi, with a set of p convex weights,

say w = (Wl,...,WP)T, as follows:

p 1/q
ZWxX?j ,q#0 , (4.1033)
i=1

Mq(w, x) =(

where the weights w = (w W,)T satisfy the constraints

1

P
wi>OVi; Tw, =1 . (4.103b)
i=1
Mq can be interpreted as a node function, say ®,, =F, /q ° f o where
q

the integrator and transfer functions are defined as
P

fq(x, w)= Y wx{ and Fl/q(y) =y!/4, The parameter q may or may
1=1

not be part of the unknowns that must be estimated when using
(4.103b) as a fuzzy neuron. When q is unknown, it corresponds in
some very loose sense to the offset parameter o of the linear
integrator function used by the McPitts neuron.

The generalized means of orders -1, 1 and 2 are, respectively, the
harmonic, arithmetic and RMS means of x. The weights {wl} may be

(usually are) chosen to be equal to (1/p), and then M_(1/p,x) < |x]_,

the Minkowski g-norm in equation (1.11). Here are the most
important properties of Mq (Beckenbach and Bellman, 1961):

M, (w,x) = c1{:}13%1){1\/1(1(w, x)] = fjl x™, g0 : (4.103¢)
M_(w,x)= li_f_‘rn{Mq(w, x)} = %{Xi} ; (4.103d)

qree 1<i<p

398 FUZZY PATTERN RECOGNITION

M__(w,x)= lim {Mq(w, x)} = min{xi} ;and (4.103¢)
q—y—oe 1<i<p
M__(w,x)< Mq(w, x)<M_(w,x) VqeR . (4.103f)

M, is called the geometric mean. If we relax the positivity constraint
on the {x}, and require only that these numbers be non-negative, we
must restrict q to be positive, or define Mq(w, x)tobe O forall q < 0.

When the {x;} are all positive, Mq(w,x], is a non-decreasing
function of q, and when they are all distinct, Mq(w,x) is strictly
increasing,

p<q:>Mp(w,x)<Mq(w,x), x,>0Vi . (4.103g)

For the special case when X, € (0,1] for all i, equations (4.103e) and
{(4.1083f) show that for all real q, Mq (w,x) is pinched in-between the
(largest) T-norm and smallest T-conorm of x:

n‘s<——T3(x)<Mq(w,x)<SS(x) - U's, xie(O,I]Vi. {4.103h)

Because of (4.103h), all of the Mq(w, X)'s can be interpreted either as

intersections or unions. Here, the weight W, associated with x can be
thought of as the relative importance of X, In the context of

aggregation of fuzzy evidence, when we use the mean of order q, we
attempt to choose q to suit the required (or desired) degree of
optimism or pessimism we have about the values concerned. For

example, Mq(w, x) can be used to approximate behaviors such as "at

least" and "at most" (Krishnapuram and Lee, 1988). When used in
fuzzy aggregation networks (which will be discussed in Section
4.7.D) the generalized mean is useful for determining redundant
features.

In the hybrid connective, high input values are allowed to
compensate for low ones. For example, the additive and
multiplicative y-operators are defined pointwise with respect to a
common argument, respectively, for fuzzy sets whose membership
functions are m, and m, as weighted arithmetic and geometric

means of any fuzzy set union and intersection:

mA@YmB=(1—y)~(mAmmB)+y»(rnAumB) s and (4.1044)

m, ®y my = (m, n mB)“'“” (m, v mB)"f . (4.104b)

CLASSIFIER DESIGN 399

Both of these operators can act as a pure intersections or unions at
the extremes of the parameter y: y = O gives the intersection, while v
= 1 gives the union in both connectives. But these families of
connectives also allow the intersection and union to compensate for
each other when O <y < 1. Thus y can be regarded as the parameter
that controls the degree of compensation afforded by its connective.
Any union and intersection operator can be used in equations
(4.104); see Dubois and Prade (1985) or Klir and Yuan (1995) for more
extensive discussions on this point.

For pattern recognition applications, the aggregation operators in
(4.103) and (4.104) are often used as integrator functions in Type I
fuzzy neurons. The definitions given below are for individual
membership values of the inputs, which can also be interpreted as
degrees of satisfaction of some criteria for class labeling.

Zimmermann and Zysno (1983) introduced an exponentially
weighted multiplicative hybrid operator that they called the
multiplicative y-model. To write the formula in the style of a Type I

neuron we add the exponential weight vector, w = (wl---wp)T to
equation (4.102),

o, (x,m,w) = (ITm,(x,)")" (1= [[(1-m,(x,)™)V, with (4.105)
i=1 i=1

Mo

w, =pand0<y<l1 . (4.106)

—
1l

1

Here w, is the weight associated with input x; and is related to the
importance of x;. The degree of compensation between the union and

intersection parts of the operator is controlled by y e [0,1] . The parts
of this connective are not strictly unions and intersections (the
exponential weights prevent them from being commutative).
However, the factors in (4.105) function in much the same way. The
summation in (4.106) insures that the "union" part is always larger
than the "intersection" part. Krishnapuram and Lee (1988, 1989,
1992a, 1992b) studied some properties of Type I neurons that used
the generalized mean, the y-model, and Yager's (1980) union and
intersection operators. These authors developed back-propagation
training algorithms for FFBP networks that used all these neurons.

The additive y-model neuron is defined as:

@ (2 mpy, W)= (=) (T m, ()™ + -0 - 10 - m, (x,)™) (4.107)

While this y-model incorporates weights that can be estimated with
training methods, increased flexibility can be obtained by replacing

400 FUZZY PATTERN RECOGNITION

the fixed multiplicative union and intersection parts with a
parametrized family of union and intersection operators, for
example, Yager operators (Yager, 1980). These union and
intersection connectives can be inserted directly in equation (4.107).
However, in order to match more closely the way in which a
traditional neural network handles inputs and weights, we can also
incorporate exponential weights into the new operators. Using
(4.104a), the output value of the Type I fuzzy neuron takes the form

O, (x,m ,w)=(1-7)y,+7Y, , where (4.108a)
1
y, = 1-(1A{§(1—m1(x1)wx)ﬁ}ﬂ, B el0,) ,and (4.108b)
i=1
1
P w \B B :
Y, =1A[1§1(m1(x1)) } , Bel0,) ,with (4.108¢)

Since the weights {wi} are tunable, such neurons may be realized

using the fuzzy neurons of Yamakawa et al. (1992) with a different
aggregation function than they used. The fuzzy neuron of Yamakawa
et al. has a membership function and a real weight associated with
each input connection. Strictly speaking, neurons with hybrid
operators or the fuzzy neurons of Yamakawa et al. are not of Type I.

The additive hybrid operator at (4.108) is constructed from a Yager
union and intersection (1980) of the exponentially weighted inputs.

P

In this case, the constraint ¥ w, =p (which ensures that the union
i=1

part is always greater than the intersection part in the

multiplicative y-model of (4.105)) is no longer needed. All that is

required is that each weight is greater than or equal to zero (Keller et

al., 1994b). The mi(xi) e [0,1] are the inputs or criteria to be
aggregated, w, represents the weight associated with the input m(x,)

and is related to the importance of that input, and v € [0,1] controls
the degree of compensation between the union and intersection
parts of the operator.

Additive hybrid Type ! fuzzy neurons are studied in Keller and Chen
(1992a, b) and Keller et al. {1994b), and training algorithms similar
to those for multiplicative hybrids are developed in these papers. We
will not include the details of the training algorithms since they are
essentially back-propagation, except with more complicated partial
derivatives. To reduce the complexity of the derivatives, Keller and
Yang (1995) modified the Yager operators to include multiplicative
instead of exponential weights. As will be seen in the example that

CLASSIFIER DESIGN 401

ends this section and the examples in the next section {as well as
those in Chapter 5), the actual form of the Type I fuzzy neuron does
not have a particularly strong affect on the overall quality of
approximation provided by the associated fuzzy neural network.
The speed of training and semantic interpretation of the nodes and
weights are where the advantage of this type of fuzzification of NNs
really lies.

Hayashi et al. (1991) develop training algorithms for similar hybrid
operators (non weighted inputs, with other choices for the union and
intersection parts), for use in an information retrieval scheme. This
is similar to the use of additive hybrid operators in Keller et al.,
(1994b), which concerns itself with general decision making.

Example 4.23 This example considers the training of a single
neuron to approximate the 10 relationship of an empirical data set
which is conjunctive in nature. The operator and data were studied
in (Thole and Zimmermann, 1979). The first two columns of Table

4.40 show the input data, n = 20 vectors x =(x,,x,)" e %2, while
column 3 displays the desired output d(x). We call this IO data X zrop'

Table 4.40 XZZTOP and outputs of single neuron approximations

X1 X9 d® | o, @, @, ch_m2 ol o
0.00 099 0.01} 0.02 0.19 0.05 0.00 0.31 0.30
0.91 0.42 0.52| 0.59 0.50 0.56 0.57 055 0.57
0.22 0.15 0.17| 0.10 0.09 0.07 0.18 0.09 0.07
0.55 0.80 067| 061 0bB3 065 066 057 057
0.02 045 0.01| 0.06 0.09 0.03 0.04 0.11 0.09
0.50 044 049 038 032 045 047 030 0.29
0.69 040 0b4| 046 039 051 0.51 040 040
0.85 1.00 100, 091 087 08 092 082 0.85
0.42 062 046| 043 036 049 0.51 0.36 0.36
0.32 0.21 0.14| 0.17 0.14 0.19 025 0.13 0.11
0.48 031 040| 0.30 025 0.35 0.38 023 0.21
1.00 0.00 0.00! 0.03 0.19 005 000 035 0.35
0.63 034 044) 039 032 043 044 032 0.31
0.28 045 024| 026 0.22 0.31 035 020 0.18
0.13 0.51 0.10| 0.17 0.16 0.19 0.21 0.16 0.14
0.33 024 030| 0.18 0.16 0.21 0.28 0.14 0.12
0.97 026 033| 048 040 041 040 049 0.50
0.48 0.01 0.02] 0.05 0.10 0.03 0.02 0.12 0.10
0.55 096 0.71| 069 060 066 070 065 0.67
0.13 098 0.19| 0.31 028 0.26 0.23 039 0.38

MSE 0.006 0.014 0.004 0.003 0.025 0.025
Epochs 42 73 15 29 1000 5000

402 FUZZY PATTERN RECOGNITION

Three Type I fuzzy neurons, o, (4.105), o, (4.107), o, (4.108), the

generalized mean neuron ?, (4.103a), and one standard neuron,
q

® ., were trained via back-propagation to approximate this data -

that is, weights were sought during training that minimized

2
MSE,, (X,;70,) = :zol (@.(x,.*)-d(x,)) /20.

For the generalized mean ®,, , the initial weights and exponent

q
were w = w, = 0.5, q = 1, and as shown in Table 4.40, the final value

of q after learning is g= -1.02. The exponential weights started at 1.0
and the initial value of y was 0.5. The standard McPitts neuron was

trained for 1000 (@}) and 5000 (®;,) epochs. All training runs were

terminated when the maximum change in any parameter was less
than 0.0001.

The outputs upon resubstitution are shown in Table 4.40. The mean
squared errors for all six neurons are similar. The fuzzy neurons (we
include the generalized mean as a fuzzy neuron, and notice that it
enjoyed the smallest MSE of the lot) enjoy a slight advantage in
terms of smaller training errors over either of the McPitts neuron.
We think the real payoff, however, is that the number of epochs
needed to reach the error rates shown was much less for the fuzzy
neurons than the standard ones. Interestingly, the MSE of the
standard neuron stabilized at 0.0248 (rounded to 0.025 in the table)

in about 3500 epochs - that is, the MSE for tbiH did not decrease in
the last 1500 passes through XZZTOP. Of course, it is possible that if

training were extended, or if a smaller learning rate, or a different
initialization were used, this level might have decreased.

Table 4.41 Final parameters of the fuzzy Type I neurons

Neuron Y (or q) w, W,
D, 0.46 1.04 0.96
D, 0.19 1.04 0.96
o, 0.05 0.65 0.62

D, -1.02 0.49 0.51
q

Table 4.41 displays the final values of the parameters of the Type I
fuzzy neurons. Both @, and @, ended with a y near zero, indicating

that the overall aggregation was intersection-like. The negative
value for q in the generalized mean indicates that it acts here as an
intersection-like operator (tending slightly towards the min = T,

norm and just a little to the "left" of the harmonic mean, which is

CLASSIFIER DESIGN 403

realized at q = -1). It is interesting that &, remained almost

completely compensatory (y = 0.46). Our ability to interpret the
nature of the neuron (e.g., intersection-like) is sometimes offered as
an additional advantage of using fuzzy neurons. It's hard to draw
much stronger conclusions from this simple example, but it gives
you an idea of one way that fuzziness can be injected into the atomic
unit of a neural network.

D. Fuzzy aggregation networks

L

When the Type 1 fuzzy neurons from Section 4.7.C are put into a
network structure, the resultant configuration has been called a
fuzzy aggregation network, or FAN (Krishnapuram and Lee, 1988,
1989, 1992a, 1992b, Keller et al., 1994b, Keller and Chen, 1992a).
These networks have the advantage that, after training, the nodes
can be interpreted as "mini-rules”, i.e., there is a higher degree of
transparency in what the network learned than is available in
traditional neural networks. There are many variations of the
material presented in this section - too many to cover in any logical
fashion. What we hope to do instead is show, by example, how you
might develop a fuzzy network approach that is tailored to the
application you are interested in.

With this approach, the decision process can be viewed as a
hierarchical network, where each node in the network "aggregates"”
the degree of satisfaction of a particular criterion from the observed
evidence. The inputs to each node are the degrees of satisfaction of
each of the sub-criteria, and the output is the aggregated degree of
satisfaction of the criterion. Such networks can be utilized to
address the object classification problem, and as we shall see in
Chapter 5, they are quite effective for image segmentation, which is
also just a pattern recognition problem "in the small".

The classification problem using the fuzzy aggregation net
framework reduces to : (i) determining the structure of the
aggregation network to be used; (ii) determining the nature of the
connectives at each node of the network; and (iii) computing the
input supports (degrees of satisfaction of criteria) based on observed
features (This should "ring-a-bell"! It's a critical step). The structure
of the aggregation network depends on the problem at hand.
Krishnapuram and Lee (1988, 1989, 1992a, 1992b), and Keller et al.
(1994Db) developed learning procedures based on back-propagation,
so that both the type of connective at each node, as well as the
parameters associated with the connective, can be learned from
training data. Besides general pattern recognition and decision
making problems, these fuzzy aggregation networks have also been

404 FUZZY PATTERN RECOGNITION

used in network structures for fuzzy logic inference (Keller et al.,
1992, 1994c).

Example 4.24 In this example from Krishnapuram and Lee {(1992a,
b), we consider the problem of recognizing two classes based on four
features. The features for each class were generated using a
multivariate Gaussian probability density distribution. The mean
and variance of the first two features in both classes were the same.
The third and fourth features had different means and variances in
each class. A total of 121 sets of features were generated for each
class. Out of these 242 vectors, approximately 90% were used for
training and 10% were used for testing, repeating this process 10
times (10-fold cross validation).

From the training data, the mean and variance of each feature in
each class were calculated. This gives 8 means and 8 variances. The
membership value (or the degree of satisfaction of the criterion) of
each feature in the two classes was calculated assuming a Gaussian
membership function. Specifically, the membership value m;; of x;

(the ith feature) in class j was given by

- -u)?/(2.6.)2
m, (x,) = exp /29 , (4.109)

where py; and oy are the sample mean and the standard deviation of

the ith feature in the jth class. This gives two membership values for
each feature (one for each class) or a total of 8 membership values
per data vector. These are the input membership functions on each
edge of the input side of the two fuzzy Type I output nodes used in this
example.

Krishnapuram and Lee (1992a) used a single hidden layer
aggregation network with 8 nodes (h1l, h2, ..., h8) and 2 fuzzy Type I
output nodes (0l and 02) for this classification problem. This
network is shown in Figure 4.78(a) with inputs at the bottom of the
sketch. Notice that this is not a fully connected network - feature
value x | Is distributed only to h1 and h2, X, to h3 and h4, etc. Here

nodes h1l and h2 in the hidden layer tell us to what extent feature 1
supports class 1 and class 2, etc. In the training phase, the desired
value of the output nodes o1 and 02 were chosen to be equal to 1 and 0
respectively, if the data point came from class 1, and they were
chosen to be equal to O and 1 respectively, if the data point came
from class 2.

CLASSIFIER DESIGN 405

class 1 class 2

{(a) the original network (b) redundancies removed

Figure 4.78 Fuzzy aggregation network for a two class problem

A modified gradient descent algorithm (Krishnapuram and Lee,
1992a, 1992b) was used (to account for the constraints on the
weights) with the multiplicative y-model as the aggregation operator
for training the parameters yand $ associated with o1 and 02. As the
training proceeded, the weight values associated with all
connections emanating from the first four nodes of the hidden layer
gradually decreased toward zero. Four other weights also dropped
towards zero, producing the much simpler network shown in Figure
4.78(b). The final parameter values were: for node ol, v = 0.922, w, =

4.66, W, = 3.34; for node 02, y= 0.923, w, = 4.64, w, = 3.36. This

indicates that these features were redundant. Krishnapuram and Lee
state that this suggests that the weights associated with x , and x,

should be reduced relative to other weights in the network.
Constraints on the weights such as the ones in (4.103b) or (4.1086) are
crucial if this is to be achieved.

The overall rate of correct classification for ten-fold cross
validation was 92%, the same performance attained by an optimal
Bayes classifier trained with the standard mixture model equations
(which in this case are decoupled and can be computed non-
iteratively because the data have crisp training labels). Thus, this
aggregation scheme performs as well as a Bayesian classifier on
data that match the assumptions for an optimal Bayesian design.

Aggregation networks using ®,, as the node function in Type I fuzzy

neurons have been successfully applied to a variety of problems
(both two-layer and multi-layer) including the determination of

406 FUZZY PATTERN RECOGNITION

creditworthiness, and recognition of tanks, armored personnel
carriers and false alarms with excellent results (Krishnapuram and
Lee, 1989, 1992a, 1992b).

One important aspect of the training procedure for aggregation
networks is that the resulting networks can be interpreted
linguistically, since the final parameters allow us to loosely
characterize each node as a conjunction, disjunction or mean of the
values being aggregated. Based on the parameter values, it is even
possible to say something about the strength of the operation, i.e.,
that the node is a strong or weak conjunction of evidence. For
example, the generalized mean behaves like an intersection {union)

operator for negative (positive) values of q. Similarly, ®,, and @,

behave like intersection (union) operators for values of v close to O
(1). Interpretation of these operators can provide insight into the
nature of the decision process, and into the nature of the training
data itself. This could be used to advantage, for example, if the
designer had the information necessary to heuristically tune the
performance of the network. We will see "mini rules" such as these
used for image segmentation in Example 5.10 in Chapter 5.

Another important aspect of these networks is that they can be used
to identify redundant features. Krishnapuram and Lee (1989, 1992a,
1992b) define three kinds of redundant features: (i) uninformative,
(ii) unreliable, and (iii) superfluous. Uninformative features are
those whose values are approximately the same in all feature
vectors. Unreliable features are those whose means and variances
are roughly the same in all classes. And finally, superfluous features
are those that are highly correlated. Features that have the first two
of these three characteristics are not very useful for classifier
design. Features with the third characteristic can increase the
reliability of a classifier, since they all provide similar
information. Krishnapuram and Lee (1989, 1992a, 1992b) use
numerical experiments to support their assertion that aggregation

networks using node functions based on either ®,, or @, can

eliminate uninformative and unreliable features, as indicated by
the training weights for such features tending towards 0. Example
4.24 shows an instance where unreliable features (1 and 2) are
eliminated this way.

Because the weights for Yager-type nodes (®,) are exponents of

feature values which lie in the interval [0,1], and because ¥y
determines the "mixing" of union and intersection components for
the desired node, it is possible to detect features which do not
contribute to the decision using @, as well. The farther away from
1.0 a weight becomes during training, the less impact that feature
has in the combination of values made at the node. When vy is greater
than 0.5, the node leans more towards a union, and so, large

CLASSIFIER DESIGN 407

exponents tend to signify unimportant features, while for more
intersection-like nodes (y < 0.5), a small exponent keeps a feature
from contributing to the node output (Keller and Chen, 1992b). This
allows features in the training data to be investigated as to their
potential for contributing to the final aggregation.

We end this section with an example of a two level network showing
how fuzzy aggregation networks can be used to solve recognition (or
decision) problems in high level computer vision. In one sense, this
use is similar to employing neural networks to model fuzzy rules, a
technique investigated by several authors (Wang and Mendel, 1992,
for example). We include this example in Chapter 4 because the
discovered "rules” are object recognition decisions - that is, the
network is performing classification, and hence, is a classifier.

Example 4.25 This example combines some results discussed in
(Krishnapuram and Lee, 1992a) and Keller et al. (1994b}. We will
show how the multiplicative and additive hybrid operators can be
used in a two layer network to simulate a classification problem in
computer vision. The goal is to recognize a stool from an arbitrary
viewpoint. The stool is assumed to have four cylindrical legs and a
top that can be square or circular. However, depending on the
viewpoint, the top may be perceived as a parallelogram or an ellipse.
The strategy here is that a strong fuzzy classification should result if
either group of features (legs or top) is present. The two layer
network shown in Figure 4.79 was used by both (Krishnapuram and
Lee, 1992a) and Keller et al. (1994b).

stool

A

legl leg2 leg3 legd topl top2
Figure 4.79 Aggregation network or "stool recognition" problem
In the first layer, the simulated evidence associated with the four
legs is combined to make a hypothesis at op-2, and the simulated

evidence supporting the shape of the top is combined at op-3. In the
second layer, the hypothesis concerning the existence of the stool is

408 FUZZY PATTERN RECOGNITION

made at op-1 by aggregating the evidence coming from op-2 and op-3.
Different aggregation operators such as @, , ®, and @, were used

for op-1, op=2 and op-3 ("op" stands for operator in this example).
The training data set was constructed synthetically using the
following decision strategy.

IF all four legs exist in the current view
ORIF there is one of the two possible types of tops
THEN accept the hypothesis that the object is a stool.

Because of the way the desired outputs were assigned in the synthetic
data, it is expected that after training, the connectives for op-1, op-2,
and op-3 will be disjunctive, conjunctive, and disjunctive,
respectively. If we use @, , ®, or ®, for the three nodes, the three y

values at the nodes Vetoor ylegs and ytop should be large, small, and

large, respectively. A subset of the synthetic input data, vectors
x e RO, together with their desired output values d(x), is shown in
Table 4.42. Only a subset of the 48 input/output tuples are shown.
The entire data set, which satisfies the above stipulations, consists
of n = 48 10 pairs which are all symmetric combinations of those
listed in Table 4.42.

Table 4.42 Sample inputs and desired output d(x)

legl leg2 leg3 leg4 topl top2 d(x)
m, (x,) mz(xz) m3(x3) m4(x4) ms(xs) mg(x,)
0.10 0.10 0.10 0.10 0.10 0.10 0.01
0.10 0.10 0.10 0.10 0.10 0.90 0.90
0.10 0.10 0.10 0.90 0.10 0.10 0.05
0.10 0.10 0.10 0.90 0.10 0.90 0.93
0.10 0.10 0.90 0.90 0.10 0.10 0.10
0.10 0.10 0.90 0.90 0.10 0.90 0.95
0.10 0.90 0.90 0.90 0.10 0.10 0.20
0.10 0.90 0.90 0.90 0.10 0.90 0.98
0.90 0.90 0.90 0.90 0.10 0.10 0.98
0.90 0.90 0.90 0.90 0.10 0.90 0.99

The results of training (i.e., resubstitution errors incurred after
training) are displayed in Table 4.43. In this example, the
parameters were initialized as follows: y was set to 0.5, all of the w's
to 1.0 and B (for the Yager connectives) to 2.0. All training runs were

terminated when the maximum change in any parameter was less
than 0.0001.

CLASSIFIER DESIGN 409

Table 4.43 Desired output and resuits using 5 networks

d(x) D, @, D, NN5 NN20
0.01 0.18 0.19 0.04 0.004 0.02
0.90 0.90 0.90 0.90 0.90 0.94
0.05 0.18 0.19 0.08 0.03 0.05
0.93 0.93 0.90 0.96 0.93 0.92
0.10 0.19 0.20 0.08 0.07 0.07
0.95 0.90 0.90 0.96 0.96 0.95
0.20 0.26 0.25 0.20 0.27 0.23
0.98 0.91 0.91 0.96 0.97 0.98
0.98 0.74 0.71 0.96 0.79 0.93
0.99 0.97 0.97 0.96 0.99 1.00
Epochs 385 5000 1248 5000 20000
MSE 0.0059 0.0068 0.0004 0.0016 0.0003

For comparison, we trained a standard FFBP network with
configuration 6:3:1 where the parameters of the logistic functions
were fixed at A =1, B = O, so the parameters acquired during learning
in this example are the weight vectors {wi} and bias constants {oci}.

We trained this network to 5000 and 20000 iterations through the
training data. The outputs of these two networks are in Table 4.43 in
columns labeled "NN5" and "NN20", respectively. The final
parameters for the fuzzy aggregation networks were as follows (the
weights {w} are numbered from left to right):

Network of @, neurons

op-1: Yoq = 1.0; W= 1.03; wg=0.97

OpP-2! Yegs = 0.06; w = 1.00; w = 1.00; w = 1.00;. w = 1.00
0p-3: Yp= 1.0; w_= 1.00; w = 1.00

Network of & A heurons
op-1: Y00 = 0.99; W= 0.985; w = 1.015

OP-2: Yews =0.00; w =0.999;w =0.999; w =1.059; w =0.944
legs 1 9 3 4
0p-3: Yiop = 0.99; w_= 1.000; w = 1.000

Network of fDY neurons

op-1: Yyoq =0.96; P=0.41 W= 1.172; W= 1.227
OP-2! Yigs = 0.03; P=1.94 w = 0.98; w = 0.98; w, = 0.99; w = 0.97
0p-3: Yyp =0.92; B=224 w_= 1.639; W= 1.639

410 FUZZY PATTERN RECOGNITION

As can be seen, for all three fuzzy models, op-1 and op-3 turned out to
be primarily union connectives, while op-2 leaned toward
intersection. The results in all cases matched the desired values
pretty well, especially considering the small amount of training
data.

Furukawa and Yamakawa (1998) recently proposed a 4 layer feed-
forward fuzzy NN which can extract local features (structural
information) directly from inputs such as handwritten characters
and employ them for recognition. The interesting aspect of this
method is that each layer uses a different type of fuzzy neuron and
each performs a different task. The first layer gets the local features
from the input image. The second layer filters off dispensable
features and integrates the local features obtained by the first layer
into more global features. The third layer compresses the size of the
map of local features. The fourth layer is self-organized by learning
and gives similarities of the input image to all of the learned images
in the output layer.

E. Rule extraction with fuzzy aggregation networks

There are many methods to generate fuzzy (and crisp) rules
automatically from training data through the use of fuzzy network
structures (Wang and Mendel, 1992, Berenji and Khedhar, 1993, Lin
and Lee, 1996; Jang et al., 1997, Lin and Cunningham, 1995). We
discuss a method developed by Krishnapuram and Rhee (1993a)
which uses the FAN from section 4.7.D to induce a set of fuzzy rules
which are used for classification (see Example 5.10). This technique
is fairly general, and can be applied to any classification problem.

Krishnapuram and Rhee (1993a) describe an automatic rule
generation procedure which they used for supervised image
segmentation (i.e., pixel classification). The procedure consists of
the following three stages: estimation of the class membership
functions {mi,}, where mi,(xi) represents the membership value of

feature i for each class j; estimation of the membership functions
{m ;f(} of the linguistic labels to be used in rule base R to describe each

feature i; and generation of the rules in R that best describe the
training data.

Suppose there are p features and c classes. In the first stage,
Krishnapuram and Rhee use the smoothed histogram of each feature
in each class to generate the membership functions (mi‘, i=1,..., p;

j
j=1,....c}. The smoothed histograms {mij} play the role of the

Gaussian membership functions used in Example 4.24 (see (4.109)).
Krishnapuram and Rhee use a network similar to the one in Figure
4.78 to eliminate uninformative and unreliable features. The

CLASSIFIER DESIGN 411

generalized mean was used as the node function in the output nodes.
At the end of this stage the remaining features are used in the rule
generation process.

The first step in the second stage is to generate the membership
functions {mﬁ} for the various linguistic values (such as low,

medium and high) that each non-redundant feature can take. This is
done by first computing a smoothed histogram of a given feature.
Unlike the computation of my, data from all classes are used for this
purpose. This process generates p smoothed histograms. Each of
these histograms is then approximated in terms of a weighted sum
of Gaussians. Krishnapuram and Rhee (1993a) use a polynomial fit
to the histogram to determine the number of peaks in the histogram;
this information is used to establish the number of Gaussian
functions needed, as well as their initial means and covariance
matrices. Then, a gradient descent procedure that minimizes the
error between the smoothed histogram and the weighted sum of
Gaussians is used to fine tune estimates for the means and variances
of the Gaussians.

Each Gaussian function that appears in the weighted sum
approximation of the feature i histogram is treated as the
membership function of a linguistic label associated with feature i.
The membership values for an observed feature value in each of the
labels can be calculated using these membership functions. The
final step is to obtain a compact set of rules with conjunctive and
disjunctive antecedent clauses. To achieve this, Krishnapuram and
Rhee use a three-layer fuzzy aggregation network. They initially
start with an approximate structure for the aggregation network
which is then pruned after training.

Figure 4.80 shows the structure of the approximation network for
generating rules (jump ahead to Example 5.10 if you want to see this
approach used in an actual problem). In the approximation
network, the bottom layer consists of p groups of nodes, with the i-th
group consisting of r nodes, where r is the number of linguistic
values (granularity) defined on the i-th feature. We denote the

linguistic values associated with feature i by ¢ ...¢ . Node k of
i

group i (which is associated with eik) in the bottom layer uses the

membership function m& of the linguistic label (which is a

Gaussian function determined in the previous stage) as the
activation function.

The hidden layer consists of p groups of ¢ nodes each. The jth node in
group i in the bottom layer is connected to the kth node in the
corresponding group in the hidden layer if a small a-cut (e.g., 0.05) of

mg has a non-empty intersection with the support of m, . The

412 FUZZY PATTERN RECOGNITION

rationale behind this connection is that if the support of the
membership function of a linguistic label has no intersection with
m,, then it cannot appear in the antecedent clause of a rule that

describes class i (remember that m, is the smoothed histogram of

feature i values from class k). This connection process is repeated
for all the groups in the bottom layer.

Class 1 Class j Class M

Top
Layer
Rules

Hidden
Layer
PMF

Clauses

Bottom
Layer
Ling.

Values

Input
Feature 1 Feature i Feature p Layer

Figure 4.80 An approximation network for generating rules

The kth node of all groups in the hidden layer is connected to the kth
node of the top layer for k = 1,...,c. All hidden and top-layer nodes
use a suitable fuzzy aggregation operator such as the generalized
mean or the y-model as the activation function. The i-th feature (x1)

is fed to the i-th group of bottom-layer nodes as input. This
completes the construction of the initial fuzzy aggregation network
for this method.

The target values (crisp class labels) in the training data are chosen
to be 1 for the class from which the training data was extracted, and
0 for the remaining classes. The aggregation operators (such as the
generalized mean) used in the hidden and top layers have weights
associated with each of their inputs. Each node in the hidden layer
represents a combination of atomic premise clauses (e.g., feature i is
low and feature j is high). However, the nature of the combination
depends on the aggregation operator (e.g., generalized mean) chosen,
and is not necessarily as in (4.72a).

As the network is trained, the weights corresponding to redundant
antecedent clauses in the hidden layer become insignificant. This

CLASSIFIER DESIGN 413

happens because typically there is a constraint on the weights. Each
node in the top layer in Figure 4.80 represents a combination of
rules for a class. The weights for redundant rules also become
insignificant during training. The network is then pruned by
removing all connections with very low weights (e.g., < 0.0001); the
thresholds chosen in the top layer are usually data dependent.

The resulting network is interpreted as a set of fuzzy decision rules.
The nodes in the hidden and top layers can represent either
conjunctive, disjunctive or compensatory nodes, depending on the
final values of the parameters of the aggregation function. Also, the
connection weights determine the relative importance of the
antecedent clauses in a rule. Since all the rules are determined
simultaneously, an optimal set of rules is obtained, as opposed to
individually optimal rules that would result from a serial process.
In the notation of Section 4.6.D, the final network represents the
rule base K. Another attractive feature of this method is that it
automatically identifies redundant features in the first stage. For
example, this method eliminates the first two features of Iris (Rhee,
1993, Krishnapuram and Rhee, 1993a), leaving the third and fourth
features (scatterplotted in Figure 4.12) to support the classifier. The
rules discovered for Iris look like this:

Rl : IF feature 3 is low OR feature 4 is low
THEN class = Sestosa

R2 : IF feature 3 is med OR feature 4 is med
THEN class = Versicolor

RS: IF feature 3 is high OR feature 4 is high
THEN class = Virginica

The structure just described, like ANFIS (Jang et al., 1997) and many
others, is applicable for many types of data and problems - both in
classifier design and elsewhere. Example 5.10 in chapter 5
illustrates this approach to learn a small set of fuzzy rules for an
image segmentation problem.

4.8 Adaptive resonance models

Competitive learning models (besides the ones already discussed in
Section 4.3) have been studied by many researchers (Grossberg,
1976a, 1976b, Rumelhart and McClelland, 1982, Carpenter and
Grossberg, 1987a, Rumelhart and Zipser, 1985). This section is about
Carpenter and Grossberg's adaptive resonance theory (ART) and
some fuzzy relatives of it.

The original model was called ART1 by Grossberg (1976a, b). There
are some interesting parallels between the evolution of crisp

414 FUZZY PATTERN RECOGNITION

decision trees and ART1. Like Quinlan's ID3 (Section 4.6), ART1 was
developed in a somewhat broader context than clustering or
classifier design; Quinlan was interested in rule extraction for
semantic explanations of rule-based decisions, while Grossberg
wanted to mimic rudimentary connections believed to operate in
our bijological neural networks. When people began to use these two
crisp models strictly for pattern recognition purposes, both were
found deficient because both were created for a special type of data
(ID3 for any discretely valued inputs, and ART1 for binary inputs,
which are also discretely valued, with only two values) that are
relatively rare in everyday pattern recognition. So, both developers
generalized their original designs to accommodate continuously
valued features : Quinlan's 1983 ID3 was imbedded in his 1993 C4.5;
while Grossberg's 1976 ART1 was generalized to ART2 in Carpenter
and Grossberg (1987h).

ART1 and many of its unsupervised relatives are nothing more than
sequential point prototype generators, so a logical place for this
subsection from the pattern recognition point of view would be
somewhere in Section 4.3. On the other hand, unlike some of the CL
models discussed in that section, many investigators besides
Grossberg have invested substantial effort in connecting ART to
(presumed) elements of the biological neural network, so we decided
to defer this section until after our brief discussion about the BNN in
case this aspect of ART interests you. Our aim here is to make sure
that you understand the basic structure of ART1 from the pattern
recognition viewpoint. Following Moore (1988), we separate the
algorithmic component of ART1 from its architectural design, and
present only the algorithmic aspects of ART1, Grossberg's (1976a, b)
original model.

A, The ART1 algorithm

Recall from Section 4.3.A that any c¢ point prototypes
V={v,,...,v.} ©RP can be substituted into (2.6a), and the result is
the crisp partition U,,(V), the nearest prototype partition of X. As
pointed out in Section 4.3.A, subsequently applying (2.6b) to the
rows of U(V) results in the sample means, V=V, so it is not
incorrect to regard the prototypes V= V as a representation of
Unp(V). Much of the ART literature uses this alternate way to

describe crisp clusters in terms of their nearest prototypes, so we
will follow this convention in this section.

Most competitive learning models suffer from a problem we can
loosely call "unstable learning”. Grossberg (1976b) proved a theorem
about the competitive learning model described in Grossberg (1976a)
which essentially states that if not too many input vectors are
presented to the algorithm relative to the number of categories, or if

CLASSIFIER DESIGN 415

the inputs do not form too many clusters, then the prototype that
represents each class eventually stabilizes. This competitive
learning model was also analyzed by Rumelhart and Zipser (1985),
whose simulations confirmed Grossberg's theorem. However, non-
frivolous counterexamples demonstrate that such competitive
learning models cannot learn temporally stable prototypes in
response to arbitrary inputs (Grossberg, 1987). For these
counterexamples, system response to the same input data on
successive presentations can be different due to prototype updates
that take place in response to intervening data (Shih et al., 1992,
Baraldi and Alpaydn, 1998). Consequently, the response to a given
input pattern might never stabilize. Carpenter and Grossberg
(1987a, 1988b) demonstrated several environments in which
periodic presentation of just four inputs can cause instability.

Moore (1988) characterizes the stability of CL models in terms of two
properties she calls stable) and stable,. Specifically, a CL model is
stable , in case no prototype returns to a previous position during
training; and it is stable, when only finitely many prototypes are
created during learning. The assumption for these two definitions is
that there is an infinite supply of data. Stable , is a property
possessed by individual prototypes, while stable, is a property of the
entire prototype set V.

Stability is one of two problems that Grossberg's ART1 was designed
to address. The second problem was called plasticity by Grossberg.
Plasticity refers to the ability of a CL model to learn new inputs after
it has stabilized on previous training data. To understand both the
problem and Grossberg's method of fixing it with ART1, suppose that
a CL learning model has been running for a while, and its prototypes
are fairly stable. Most of the CL models we have discussed so far
(Section 4.3) use an update equation with the general form of
equation {4.11), rewritten here to save you the trouble of looking it

up:

v =vt_1+ocik,t(xk—vi’),i=1,..., ¢ t=1,....,T . (4.11)

it i, t-1

The plasticity problem is related to the learning rate distribution in
(4.11) - that is, the numbers {ay ;}. In almost every case we know of,
the standard method of achieving stability under (4.11) is to begin
with values for the {oy .} close to, but less than, 1; and then to

decrease the {oy } towards zero as time (iteration number t)

increases. The plasticity problem arises because smaller learning
rates may disable the model's ability to respond appropriately to

new inputs that have not been seen by the algorithm until the {oy, .}
are small. To understand this, we assume that v 4 is any prototype

416 FUZZY PATTERN RECOGNITION

that will be updated with (4.11) for the current input x, and rewrite
(4.11) in a more suggestive form:

AV = (Vo — Vo) =X -V 14) . (4.11)

W
repulsion

Figure 4.81 The update geometry of CL models that use (4.11)

Figure 4.81 illustrates the update geometry of (4.11'), and hence, of
all the algorithms in Section 4.3 that use (4.11) to update prototypes.
The vector Av takes its general direction from the difference vector
(x - v,q); its magnitude depends on the value of «; and the sign of o
determines whether the update moves v, towards x (attraction, the
region "above" vector vy} or away from x (repulsion, the region
"below" the vector v).

When o = 1, Voew

unchanged; and most importantly for plasticity, when « is positive
but close to 0, Av will be very small. Under these circumstances
algorithms that use (4.11) to update their prototypes don't have

much choice - they become stable as oy, ; — O because Av is so small

that they can take only tiny steps. If the learning rates actually get
to zero, the updates stop, and the prototypes are completely stable.

Now suppose that oy =0, and that a new input arrives in the
system that has not participated in the update scheme. The impact
of this point on the locations of the {v;} may be insignificant, even
though the new input itself is importantly related to the structure of

= X; when a =0, v, =V, i.e., the prototype is

CLASSIFIER DESIGN 417

the overall input data. This is the plasticity problem, and it tugs CL
models in the opposite direction from stability.

ART1 is motivated by this so-called stability-plasticity dilemma of
competitive learning (Carpenter and Grossberg, 1987a). Apparently,
the best situation would be if the CL system could switch between the
plastic and stable states and vice-versa as the need arose. Such
characteristics can be built into a network by adding a feedback
mechanism between the competitive layer and the input layer. This
philosophy has resulted into two well known prototype generation
architectures, ART1 (permits only binary inputs) and ART2 (suitable
for analog / gray level inputs). In ART-type networks outputs of the
processing elements reverberate back and forth between layers,
resulting in a stable oscillation when proper prototypes develop - a
kind of resonance - hence the name ART. Study of the structure that
achieves this takes us into the architectural details of ART
networks, which is not covered in this book., We will follow Moore
(1988} by presenting a simple description of ART1 in the language of
Section 4.3.

ART1 assumes that inputs are binary valued p-vectors, that is, input
data have the form x = (xl,...,xp)T e {0,1}P. While the general case is
to assume an infinite input stream, we will always deal with finite
data sets X ={x,...,x,} = {0,1}*, |X|=n. ARTI1 uses two similarity
measures between the binary input vectors and the prototypes it
constructs. Let X be the current input vector, x, €{0,1}P, and let {vi}

be a set of ¢ binary-valued prototypes (we shall see later that ART1
guarantees this). Define

<xk,vi) .
81(xy,v;)=>——, i=1,...,c;B>0 , and (4.110a)
V)= ’
sz(xk,vi)=<—zf5—’ziz, i=1...c . (4.110b)
||xk"1

The closest prototype to X, maximizes s , and for small values of j,
(4.110a) is an estimate of the ratio of overlap between x_and v,

(recall that these are binary-valued vectors, so the dot product
simply computes the number of matches between X and v,) and the

magnitude of the prototype. Using a small value of B helps with the
"all zero prototypes”" problem. This measure is sometimes called a
search parameter in the ART1 literature.

418 FUZZY PATTERN RECOGNITION

Similarity measure s, is used to evaluate the extent to which x_and
v, are matched: this number will range between 0 and 1, being O if
there are no matches, and 1 if x_<v, where ordering of vectors is in
the usual component by component sense. In other words, (4.110b)
computes the fraction of matches between the input and the
prototype. This measure is compared to a threshold p called the
vigilance parameter. We will describe the role each of these
measures plays in determining (nearest prototype) cluster shapes

after we discuss the operation of the ART1 algorithm, which is
summarized in Table 4.44.

Table 4.44 The ART1 algorithm

A. Training phase : find V without U_ —l

Store | Unlabeled binary-valued data X < {0,1}*,|X|=n
- maximum number of iterations: T

Pick @ search parameter f: 0 <p<<1

@ vigilance parameter p: O <p <1

V«({x}
Fort=11t0T
Fork=1ton
Iterate I‘{E,)(P_EXT
s (X, vy) = max{s, (x, v} (4.111a)
v, eV’
V< V-{v}
IF(V' =@ and s,(x,,v) <p) (4.111b)
Then Ve« Vuix,}
IF s,(x,,v)2p (4.111c¢)

Thenv,; « v; A x, (bitwise AND) (4.111d)
UNTIL (V' = ©)
Next k
Next t
B. Prototype relabeling of V with U, using, e.g., (4.13)

C. Optional (crisp) clusters if U,.is unknown, with, e.g., (2.6a) :

. ={1; |2, - v <[z v 1ise e }Vik
ik 0: ’

otherwise. Resolve ties arbitrarily

The prototypes built by ART1 are accumulated in Table 4.44 using
our standard notation - V is the set of prototypes at any point during
training. Table 4.44 has the same general organization as Table 4.4 -
it is set up so that if you have labels for the training data, these can
be ignored in step A, and then used in step B to create labeled

CLASSIFIER DESIGN 419

prototypes. Thus, ART1 can be used to design prototype classifiers
just as we did with other CL models in Section 4.3. The usual
specification of ART1 (e.g., Moore, 1988) does not give a termination
criterion. Carpenter and Grossberg {1988b) show that ART1
terminates after a finite number of iterations (remember, an iterate
is one pass through all of X, sometimes called one epoch) in the sense
that no new clusters will be formed, and the prototypes of existing
clusters will stop changing - a point at which ART1 is said to be
stabilized. We have added an iterate limit T in Table 4.44 as a matter
of practicality, since the finite number of passes needed to achieve
stability for a particular data set is not known, and might be very
large.

Many ART papers call s L a search criteria because it controls search

through the current prototypes, beginning with the closest (winner).
Equation {4.111a) shows that ART1, like LVQ and SHCM, begins as a
winner take all CL model - it selects v - the closest prototype to input

X - for possible updating. If there are no prototypes, the input is

declared a new prototype (and hence, ART1 creates a new cluster), If
there are prototypes, and the winner fails to achieve resonance, the
"second best" (next closest prototype to the input) is tested by
(4.111a); and so on, until one of the existing prototypes gets updated
or, failing this, a new prototype is created. Consequently, the
"winner" in ART1 - that is, the prototype that gets updated - is the
one that exhibits maximum response among the subset of
prototypes that satisfy the vigilance test. Thus, ART1 is a CL model
which only updates one prototype per input, but not necessarily the
"winning" one in our previous sense of the word winner as used, e.g.,
in connection with Kohonen's LVQ. Dynamic creation of new
prototypes by ART1 seemingly frees it from the problem of how
many to look for, but like the mountain and subtractive clustering
methods of Section 4.3, the terminal value of ¢, the number of
prototypes chosen by the model, depends implicitly on the choice of
the ART1 parameters 3 and p.

At the beginning of ART1 there are no prototypes, so without loss, we
initialize the prototype set by V « {x }. Whenever ART1 creates a
new prototype, it is one of the input vectors - in other words, the first

instance of each prototype in V is a binary valued vector, v € {0,1}".
Consider the prototype update equation v; « v, Ax, in (4.111d).
Both arguments of the bitwise AND are binary vectors, so the new
updated prototype will again be binary. Moreover, taking the bit-
pair minimum in each of the p coordinates of the two vectors means
that whenever a 1 is removed during this operation, it cannot be
restored by a later update of the same prototype.

While the updated prototype vector v, in Figure 4.81 for
algorithms such as LVQ and SHCM can move in any direction in %P,

420 FUZZY PATTERN RECOGNITION

the updated ART1 prototype vector v, < v; Ax, can only gravitate
towards the origin, and can only move parallel to the axes of the
lattice {0,1}°. A side effect of this asymmetric updating strategy is
that ART1 is biased towards creating a lot of prototypes if the input
data are strings with a lot of O's. ART1 imposes this constraint on
the directions that prototype updates can take in an attempt to
control the stability (motion) of the prototypes during learning.
This stands in sharp contrast to the method used, for example, in
LVQ, where stability is achieved by scheduling the learning rates so

that {oy }— 0. See Baraldi and Alpaydn (1998) for a discussion
related to conditions on the {a, } under which ART1 may converge.

If ART1 is terminated before stabilization, the crisp partition U(V)
associated with V is not guaranteed to be U, (V) unless optional
phase C in Table 4.44 is used - that is, a last pass through X after
termination of ART1 is needed to construct U,,(V) with equation
(2.6a). However, if ART1 is stabilized at termination, a theorem due
to Carpenter and Grossberg (1988b) guarantees that U(V) = U_,(V),

without using step C in Table 4.44. Carpenter and Grossberg call this
situation "direct access by perfectly learned patterns”. To be sure you

have U_,(V), just use step C, which always guarantee it. We
summarize some other properties of ART1 derived by Carpenter and
Grossberg (1988b) that are also paraphrased in Moore (1988) :

ew The vigilance parameter essentially controls the diameter of the
clusters. Consequently, increasing p usually results in more
clusters (higher c) with decreased cardinalities. Carpenter and
Grossberg call this the self-scaling property (the word "self" may
be a little misleading, since you pick p) ;

® Distinct clusters have distinct prototypes ;

« ART]1 clusters are stable1 ;

A For X c {0,V zpry| £ 2P, 50 ART1 is stable, on finite or infinite
input sets. (However, ART1 is not stable, for X cR®P, but
remember that ART1 was not designed for vectors in RPY:

¥ After stabilization, v, cx, V x,_e class i. Here v, c X, means
that x_has a 1 wherever v, does. Moreover, each x_belongs to the

jth crisp (nearest prototype) cluster if and only if v, is the largest
subset of x,_among the c prototypes.

CLASSIFIER DESIGN 421

ART1 is not particularly attractive as either a prototype generator
and/or crisp clustering algorithm because of its limited
applicability (binary valued data). Moore (1988) asserts that it might
be useful for binary character recognition, but that it may not be
suitable for signal processing problems where the O's possess as
much information as the 1's. Nonetheless, ART1 is significant for
three reasons: first, the issue of plasticity versus stability is both
interesting and important, and ART1 was the first model to clearly
identify this problem and propose a solution to it; second, relatives
and generalizations of ART1 can handle continuously valued data,
and these extensions are as good as any other model you might
choose to try - but as usual, the proof will always be in the pudding;
and lastly, the attempt to connect this model to elements of the
biological neural network has a certain charm, even though, in our
opinion, the actual connection between any computational NN and
the BNN will never be known.

The ARTI1 architecture is equipped to deal with only binary input
vectors; ART2 can handle both analog and binary data. All of the
basic building blocks of ART1 are used in ART2. The main difference
between the two schemes is in the architecture of the input layer L,,
which is split into a number of sub-layers containing both feedback
and feed forward connections. The processing in both the input
layer L , and output layer L, of ART2 is similar to that in ART1. For

further details, see Carpenter and Grossberg, (1987b). There is yet
another version of ART called ART3 (Carpenter and Grossberg, 1990)
for parallel search of learned patterns.

B. Fuzzy relatives of ART

The ART1 model can handle only binary inputs. The usual
interpretation of a binary feature value in ART1 is that 1 indicates
the presence of some quality, and O indicates its absence. In real life
many descriptive features are fuzzy, or partially present to some
degree. This is, of course, the raison d'étre for fuzzy sets in the first
place. The most prominent generalization of ART1 to continuously
valued data is based on this observation (Carpenter et al., 1991a). To
get an ART model for continuously valued data, Carpenter et al.
proposed a generalization of the ART model they called fuzzy ART

(FART) which assumes input data in [0,1]°, and uses the fuzzy set
aggregator we call the T, norm for the computation of activities and

the adaptation of weights. We briefly discuss the changes needed to
convert the ART1 algorithm in Table 4.44 into the FART algorithm.

FART begins with the output nodes (which are in what is often called
layer 2, denoted here as Lz’ with nodes {sz}) initialized at the value 1;

T
ie., vy=(vip.,vy) =(L..,1)T =1,j = 1,...,c. For this initialization,
each category is initially uncommitted, and when an output node

422 FUZZY PATTERN RECOGNITION

wins, it becomes committed. The similarity measure s, at (4.110a)
used by ART1 to control the search process when input x
presented to the FART algorithm is given by

le

"A(xk !)"1

1,...c;B>0 , (4.112)
B+"V1||1

S1,raRT (Xk, Vi) =

where B > O is a constant. The AND operation in (4.112) is defined
component wise using T,, i.e., Ax, V) =(x, AV X /\vp). The
winner node J is selected, as in ART1 step (4.111a), by maximizing
the modified search criterion,

S parr Xy Vy) = maéc{sl,Fm(xk.vj)} . 4.113)
v,e ’

If there is more than one winning node, Carpenter et al. (1992)
suggest using the winner with the smallest index. The output is
subsequently computed by

X, if L, ; isinactive
—{ k 2J 4.114)

Alxy,vy), if Ly, is chosen

The vigilance test in Table 4.44, equation (4.111b), is made in FART
using a generalization of the matching criterion s, at (4.110b),

So parr (X1 Vi) = i, v, ”1 i=1,...c . (4.115)

s

Using (4.114) and (4.115), when the Jth category is chosen (again, it
may or may not actually be the winner), resonance occurs if

ISl =tz v, 2 pl=il, : (4.116)
When this happens, the update equation in (4.111d) is replaced by

vV — a(A(Zy, V) + (1 - a)vy , (4.117)
where o €[0,1] is the learning rate, oy ; = o, for all i, k and t. Other

aspects of the algorithmic operation of FART are very similar to our
specification of ART1 in Table 4.44.

Carpenter et al. (1991a) assert that when the data are "noisy", it is
better to begin with o =1 when J is an uncommitted node, and then
switch to o <1 after the node is committed. Thus v, = x; if x_is the

CLASSIFIER DESIGN 423

first input at which L, ; becomes a winner. Carpenter et al. (1991a)
call this strategy fast commitment and slow recoding.

In a large set of data with many distinct values, the possibility of
ending up with a large number of prototypes is high. FART tries to
control the proliferation of categories by normalizing the input
data. The simplest choice is to convert each incoming vector to a
unit vector using the standard procedure, X, « X, /[|x|. Another
type of normalization discussed by Carpenter et al. can be achieved
by complement coding. Let the complement of the input vector x be
x® where x{ =1-a,, i=1,..., p. The complement coded input c(x) is
defined as ¢(x) = (x,x°) = (al,...,ap,af,...,af,)T. Note that for any x,

le(x)], = p, and hence complement coding imposes an automatic

normalization to the fixed length of p (see the denominator of
(4.111b) to understand the motivation for this). A neural realization
of FART is discussed in Carpenter et al. (1991b).

So far we have discussed ART models only in the context of
prototype generation associated with either nearest prototype crisp
clusters, or possibly, as a basis for the design of nearest prototype
classifiers (as in Section 4.2). A class of neural architectures for
incremental supervised learning that results in a crisp classifier is
known as the adaptive resonance theoretic MAP (ARTMAP,
Carpenter et al., 1991c). An ARTMAP system has two ART1 modules,
ART, and ART,, that can create stable categories in response to an
arbitrary sequence of input presentations.

ARTMAP is trained in the usual way using (Xtr, Utr) for design, and
(Xte, Ute) to test the classifier. The subnet ART, receives an input

datum x, e X, , while the ART,, subnet uses the corresponding crisp

output label uy € U, € My,. ART, and ART, are connected by an
associative learning network and an internal controller to ensure
autonomous operation in (near) real time. The learning rule
attempts to simultaneously minimize predictive error while
maximizing predictive generalization. The learning scheme

increases the vigilance parameter of ART, by the minimal amount
needed to correct a resubstitution error at ART,. A prediction
failure at ART), increases the vigilance parameter of ART, by the

minimum amount necessary to initiate hypothesis testing by ART,.
This process is known as match-tracking.

Carpenter et al. (1992} also generalized ARTMAP for "fuzzy inputs" -

that is, input vectors in the hypercube [0,1]°. Fuzzy ARTMAP
(FARTMAP) replaces the ART1 modules ART, and ART, of ARTMAP
by fuzzy ART or FART modules. These two FART modules are

http://com.plem.ent

424 FUZZY PATTERN RECOGNITION

connected by a module called the map-field, F2°, The map-field has
the same number of nodes as the L, layer of ART,, which are

connected to the L, layer of ART,. For ARTMAP, inputs to both

ART, and ART, are presented in the complement code form. Let x be
an input vector and u be its corresponding crisp output label vector;

then ART, is given the input e¢(x)=(x,x°)" and ART, receives

c(u) = (u,u®)T as its input. The map-field F?° is activated whenever
one of the ART, and ART),, categories is active. If both of them are

active, then F# becomes active only when ART, predicts the same
category as that of ART, via connection weights between F* and

ART,. The output vector of F? is 0 when the category found by

ART, is disconfirmed by ART, and in that case ART, searches for a
better category. Readers interested in this scheme are referred to
Carpenter et al. (1992) for a detailed discussion of FARTMAP.

Baraldi and Parmiggiani (1995) proposed a crisp variant of ART1
called simplified ART (SART). SART is a self-organizing feed-
forward network that uses a soft competitive learning scheme to
update the prototype vectors associated with the output (L, layer)
nodes. The Fuzzy SART (FSART) model, also proposed by Baraldi
and Parmiggiani (1997b}, integrates the SART architecture with a
soft learning strategy employing a fuzzy membership function.
Similar to SART, FSART is also a self-organizing feed-forward
network. While processing, FSART adds a new node to the output
layer whenever the system fails to categorize a data point, and
removes previously allocated nodes whenever they are no longer
able to win the competition for any input vector. One advantage of
FSART is that it does not require any preprocessing such as
normalization or complement coding, and it is quite stable with
respect to small changes in the input parameters and the order of
data feed. But FSART is computationally expensive compared to
ART1 because it needs to determine the "neighborhood-ranking"
(Baraldi and Parmiggiani, 1995) whenever it considers a new input.

Blonda et al. (1998) discuss an application of a fuzzy hybrid neural
network called the fully self-organized simplified adaptive
resonance theory (FOSART) model of Baraldi and Parmiggiani
(1997a). The FOSART model is a member of the family of neural
networks called radial basis function (RBF) networks, and we want
to include an example from Blonda et al. in this section because it
provides us with a very different type of fuzzy NN structure that also
ties together several models discussed in previous sections. Towards
this end, we take a short excursion into the world of RBF networks.

CLASSIFIER DESIGN 425

C. Radial basis function networks

Haykin (1994) provides a nice discussion of RBF networks, so we
will not spend a lot of time reviewing them, but Example 4.26 will
make more sense to you if we spend just a few pages discussing RBF
networks, which are very interesting in their own right. The most
important difference between an MLP and an RBF network is that
the computing nodes in the first (and only) hidden layer of a typical
RBF network use radial basis functions as node functions, instead of
the more familiar linear integrators followed by sigmoids as used,
for example, in all computing layers of MLPs (Section 4.7).
Apparently Broomehead and Lowe (1988) were the first authors to
employ RBFs instead of "standard" node functions in a feed forward
network architecture.

When X = {xl,...,xn} < RP is a set of n distinct points, the functions

RBF=RBF((p,||*[|)={(p(“x—xiu)} are called a set of radial basis

functions. In the older literature of classifier design, families such
as these were often the kernel functions for classifiers such as
Parzen's window (Duda and Hart, 1973). Since any norm can be used
for RBF, there are infinitely many sets of RBFs for each choice of ¢

(sometimes called the generating function of RBF, which at this

point is an arbitrary mapping from %' to %). The points in X are
called the centers of the basis functions. RBF functions are linearly
independent as long as the points in X are distinct.

The function (p(||x—xi||) is radial because the norm is radially
symmetric about x; and RBF is a "basis" only in some ill-defined

sense - viz., that some linear combination of the functions in RBF
will approximate IO data XY arbitrarily well. In the language of
Section 4.6.D, certain families of RBFs are universal approximators
(Park and Sandberg, 1991, 1993), so if the "power" of a network is
measured by its UA ability, RBFs are equally "as powerful” as MLP
networks, and MA and TS fuzzy systems as well.

As mentioned at the beginning of Section 4.6.D, radial basis
functions are one of the leading choices for families that are used for
"conventional" function approximation (Powell, 1990). Once a norm
and generating function ¢ are chosen, the general form of an
approximating RBF family is

S(x:8) = élwkcp("x—xkll) = (w.9(x)) , (4.118)

426 FUZZY PATTERN RECOGNITION

where the unknown parameters or weights which must be estimated
with IO training data XY are 8 =w = (w,...,w,)T € ®", and we define

9(x)= ((p("x -y}, 0| - xn||))T.

Chen et al. (1991) assert that the shape of ¢ for RBF is not as crucial
to good approximations of $ as the choice of centers. A more
realistic view is that the quality of the approximation in (4.118)
depends jointly on four things: ¢, the norm, the centers, and the
data used to build the approximation. Chen et al. (1991) identify four

families of suitable generating functions: (p(t):tzlogt;

1
+=)

olt) = (B2 + t2)+2 ,and o(t)=e VB~ Thus, the most familiar, but

certainly not the "best" or only choice for the i-th function of an RBF

2
{t
set is a multiple of the univariate Gaussian density (p(tl) =e (i/ B) ,

2
where t = "x - xiwz_l for p-dimension inputs, with each of the n data

points used as the mean, p = x, for all i as in (2.18), for example. It is
fairly common to assume a circular covariance structure for each

function, Z, = 621. Under these circumstances we have the Gaussian
radial basis functions

Ljeex,
-—x=
GRBF= {g(Jx-x,)=¢ 2 :i=l...n _ (4.119)

Substituting (4.119) into (4.118) gives

-
S(x:8)= Y wye , (4.120)
k=1

which provides approximations to $§ by linear combinations of p-
variate Gaussian functions centered at the data with spreads (or

widths) {o?}. If the {02} are unknown, they become part of the
parameter vector 8 that must be estimated.

When n is large (as it will be in almost all interesting real data sets),
the approximation in (4.118) gets pretty unwieldy, so we abandon X
as the set of centers of the RBFs, and use our old friends

V =(vy,...,Vq) € RP, a set of q prototypes in RP instead of the n data

points, as centers of a set of q functions that are sometimes called
generalized radial basis functions (Haykin, 1994). Using V instead of
X in (4.118) gives the approximation

CLASSIFIER DESIGN 427

S(x:0) = i%lwi(p("x —v,) = (w.9(x) . (4.121)

If ¢ and the norm in (4.121) have been chosen, the parameters that
need to be estimated are now the weight vector w, the q prototypes
{vi}, and any other parameters needed by the node function ¢ (such

as the width parameter if the RBFs are Gaussian). We can easily cast

the approximation problem (finding 8 in (4.121)) in a network
architecture. Define the integrator and activation functions at node
i,i=1,...,q, in the hidden layer as

fi(x)=|x-v, ; (4.122a)
z; = ,(x) = F,(f,(x)) = ¢(|x - v,]) . (4.122D)

In the notation of Section 4.7, the node functions for the q hidden
layer nodes are then {¢; =¢of;;i=1,...,q}, the hidden layer node
weight vectors (assuming that the parameters of the functions
specified by ¢ do not need to be estimated) are the q prototypes V, and

the output of the hidden layer is the vector z=(zl,...,zq)T. For

convenience, let w; = (wn,...,wqi,oci)T be the weight vector for the
output node o, and denote the vector obtained by adding a 1 as z's

last (new) coordinate by 2z’, z’'= (zl,...,zq,l)T. Now define the
integrator and activation functions at ¢ output nodes (o, i = 1,...c),
which comprise the output layer, as

fo(2) =(w,z)+ o, =(w],z") ; (4.123a)

F () =(w2")=1_(2) : (4.123b)

Equation (4.123a) shows that the i-th output node uses a standard
linear integrator function with weight vector w{ to be estimated,
and uses the identity map for activation. In other words, the output
layer comprises a set of ¢ nodes that use node functions that in the
early literature were called continuous perceptrons (without
sigmoidal activation functions, Zurada, 1992). In our reserved
terminology for MLPs, the node functions are specifically
@, =F, of;, so we hesitate to call this output layer a single layer
perceptron (SLP), but, following Haykin (1994), we cautiously do so
here. The output layer has q inputs coming from the hidden layer
and c outputs. Combining the equations in (4.122) and (4.123) in a
network architecture gives the structure shown in Figure 4.82.

428 FUZZY PATTERN RECOGNITION

Input Layer Hidden Layer Output Layer
(RBFs) (SLP)

RO W W

.
F
[¢]

S T M W W R

Figure 4.82 A typical radial basis function network

We have shown the hidden layer (or kernel nodes) in Figure 4.82
with q nodes, so the layering architecture of the RBF network in
Figure 4.82 is compactly described as p:q:c. Like the feed forward
network in Figure 4.71, the network in Figure 4.82 is a vector field,

RBF: RP 5 R°, i.e., the network in Figure 4.82 realizes the

approximation $(x:0)=RBF(x:W), where 8 =W is the network
weight vector. If all of the parameters in the hidden layer are

assumed known, then W= (wi,...,w;); if there are unknown
parameters associated with the hidden layer nodes (e.g., the spatial

locations and shape parameters of the RBF centers), then W includes
these parameters as well. Notice that the p:q:c multiple output RBF

network can be separated into ¢ single output networks of size p:q:1.

The i-th output node of the RBF network produces the real number
u, =(w{,z’);i=1,...,c. When the target output vectors in Y are crisp
label vectors, the usual method of converting the network output
vector u = RBF(x) to a crisp label is to first normalize the outputs of
the SLP so that each value lies in the closed interval [0, 1] or the open
interval (0,1). One convenient way to do this is to replace the identity
in (4.123b) by, for example, a unipolar sigmoid function, so that the
output layer becomes a single layer perceptron in the sense of

section 4.7 with node functions o .= F. of - This converts the

output of RBF to a possibilistic label vector which can, if desired
{and must, if training error rates are to be computed), be hardened

CLASSIFIER DESIGN 429

with the function H in (1.15). Hardening is not necessary when using
the MSE between the computed and target outputs as a measure of
generalization quality of the network in question.

Comparing Figures 4.72 and 4.82, we see that the RBF and MLP
networks are similar in that both are feed forward structures, but
they also have some differences. The main distinctions are that the
RBF network usually has only one hidden layer, whereas the MLP
very often has two or more; the node functions in the hidden layers
are very different; and while the output layer in the MLP usually has
nonlinear node functions, the output layer in the RBF network
usually has linear node functions as shown in Figure 4.82. There are
other differences between the two architectures; we leave discussion
of these to Haykin (1994).

There are several training strategies for an RBF network. The
simplest way to proceed is to assume the number q of fixed RBFs in
the hidden layer, centered at q points selected randomly from the
data. The fixed RBFs are often chosen as a special case of the
Gaussian functions in (4.119) which have fixed and equal standard
deviations that are proportional to the maximum distance between
the chosen centers, so that (4.119) becomes

GRBF = {0, (x) = Lok £/ 83‘“”‘);i =1...q} : (4.124)

where Smax = ax{"vi -V, “} This fixes the width of each function in
J

m
—
iz

(4.124) at 6 =9, / vJ2-q. With this approach, the only parameters

that need to be learned by training are the c weight vectors of the
hyperplanes used for the output node functions, and this can be done
(for ¢ = 1 at least) with a technique such as the psuedoinverse
(Broomheade and Lowe, 1988).

A second method for training RBF networks, called hybrid learning,
is a two stage process. This method begins by temporarily regarding
the RBF network in Figure 4.82 as two "separate" networks that are
trained independently, and then "put together" for testing and
operation. If you imagine temporarily breaking all the edges in
Figure 4.82 between the hidden and output layers, the network on
the left ("left half-net") will be a p:q layer network with p input and q
RBF "output" nodes; while the network on the right ("right-half-net")
will be a q:c single layer perceptron whose inputs are the left half
outputs.

How will we train the left half-net? Moody and Darken (1989) first
suggested that any unsupervised method could be used to get the RBF
centers. Methods for doing this fall into the two groups depicted in
our Figures 4.1 and 4.2: (i} selection to find q centers among the n

430 FUZZY PATTERN RECOGNITION

training data ; or (ii) extraction, using, for example, any point
prototype clustering algorithm (Chapter 2), or any other point
prototype generator (Chapter 4) to find centers for the g RBF node
functions. If clustering is used, you will need to settle the issue of
how many centers (g} to look for (cluster validity, again). Since we
are dealing with labeled IO data, the number of classes (c) is given,
but this will be the number of output nodes in the right half-net. We
have dealt extensively with this issue in previous sections: suffice it
to say that if you choose to train the left half-net with unsupervised
learning, the target output set Y is simply ignored during training.
Once the centers are obtained, Moody and Darken then used "nearest
neighbor heuristics” (which are not the k-nn rules discussed in
Section 4.4) to find the width of each (Gaussian) RBF.

Once the left half net of size p:q is trained, we know the exact
structure of the input and output layers in the right haif-net because
this network is a q:c single layer perceptron, which may be trained
in the usual way (for example, with the least mean squared or LMS
algorithm, Widrow and Stearns, 1985). This results in estimates for
the q weight vectors {wj} of the hyperplanes residing in the output

nodes of the right half net. During training, outputs of the left half-
net on X become inputs for training the right half-net against the

desired target outputs Y .

When this "two-part” hybrid approach to training the network in
Figure 4.82 is completed, the left and right half-nets are "pasted
together" (or, if you prefer, operated in cascade). Now the p:q:c RBF
network can be tested with XteYte (recall our notation XY for 10 data

in Section 4.6), and then operated as a network classifier or function
approximator in the usual way. The two stage hybrid approach to
training an RBF network might be superior to the fixed, selected
centers training method, but we say might because, as we have
emphasized many times, the success of clustering algorithms at
discovering good point prototypes for clusters in X depends on
whether the data possess clusters that match the clustering model
chosen to search for them. And, as always, the ubiquitous cluster
validity problem is there to haunt you.

In the third training method, the entire network weight vector W,
which includes the free parameters in both the hidden layer and
output layers, is learned. This is sometimes done by standard back
propagation training based on gradient descent conditions (Poggio
and Girosi, 1990). Chen et al. (1991) discuss a supervised learning
scheme which incrementally selects a number of centers in the data
for RBFs using a method based on orthogonal least squares (OLS).
Key features of the OLS method are that it adds centers chosen from
X one at a time, always maximizing the increment to the explained
variance between the desired and observed outputs, and it is
relatively stable in the sense that it can be done without ill-

CLASSIFIER DESIGN 431

conditioning problems when using the orthogonal projection
theorem. This is much like using principle components analysis for
feature extraction, where each additional component used in the
linear combination accounts for a successively smaller amount of
the remaining total variance in the input data.

The basic model in Blonda et al. (1998} is the RBF network of Figure
4.82, and their training method is the two part, hybrid approach
that we couched in terms of "left half' and "right half' nets. These
authors compare three classifier designs that differ principally in
the method used to train the left half-net. Specifically, they describe
two fuzzy schemes and a non-fuzzy approach that uses Kohonen's
unsupervised self-organizing feature map { SOFM, subsection 4.3.D).
The right half-net in all three classifiers is the single layer

perceptron with node functions @, =F, of as in Section 4.7 (i.e.,

hyperplanes followed by the unipolar sigmoid), trained with the
standard LMS method.

The first of the three classifiers discussed by Blonda et al. (1998) uses
the fully self-organized simplified adaptive resonance theory
(FOSART) model (Baraldi and Parmiggiani, 1997a) to build the left
half-net. This procedure is basically a heuristic point prototype
generating algorithm that combines certain aspects of ARTI,
competitive learning, and fuzzy c-means clustering to determine the
number of nodes ¢ and the positions of the q RBF centers (prototypes
V). The hidden layer (the output layer in the left half-net) consists of
a variable number of RBF nodes, which are analogous to the L, layer

in ART1. Unlike ART1, however, FOSART nodes can be created or
deleted during training. Initialization of the FOSART centers in
training the left half-net is also a little different than ARTI1;
FOSART starts with two nodes, v, and Vo taken as the first pair of

distinct inputs submitted to the network.

Each FOSART hidden layer node uses a fixed width Gaussian radial
basis function as in (4.124), but with a different fixed width than the

value determined by 8§ {"vi—vJ”} in that equation. In

= max

S

i#j

Blonda et al., the spread of the RBF functions is fixed at
6 =1/x, x €[0,1]. ¥ is a user defined parameter that is functionally
equivalent to the (normalized) vigilance parameter p in ART1 and
FART, since it controls the proliferation of nodes in the output layer
of the left half-net built by the FOSART algorithm. While the nodes
in the standard RBF network (Figure 4.82) are not viewed as
"competitive" in the sense of the competitive learning models
discussed in Section 4.3, the hidden layer nodes in FOSART are
made competitive in Baraldi and Parmiggiani (1997a) in a way that
is somewhat similar to the competition in the ART1 L, layer.

432 FUZZY PATTERN RECOGNITION

More specifically, let X be the current input vector at iterate t, and

suppose that the FOSART hidden layer currently possesses s nodes
(and hence, s prototypes). We are using t here to index passes (epochs)
through X, but FOSART also keeps track of the "age" of each node
created in the output layer (of the left half-net). Let 7, denote the age
of the i-th node, i=1,...s. (we will explain shortly how this set of
parameters is manipulated.) We indicate this extra "time" variable
with an additional subscript, so v, . is the prototype for node i

which has age 7, at iterate t. FOSART first computes the values

KX, -V

| w2
k e, t-1
0, (x)=¢ (§

/Zj;i=1,...,s . (4.125)

The largest value in (4.125) is used to identify the winner node, say
¢w.t(xy) for the winning node v, .., for this input. The smallest
distance in the exponent of (4.125) gives the largest value of the RBF,
and conversely, so this terminology makes sense. The value just
below the winner value in (4.125) identifies the prototype that is
called the second place node (second best neuron), since it comes in
second in the competition for X

FOSART compares ¢,, (Xx) to the "vigilance" parameter, and if
dwt(Xx)2p=1/x, resonance occurs. When this happens, some of

the nodes in the RBF layer will be updated. When ¢, ;(x,)<p=1/x,
FOSART creates a new node V=X with an RBF centered at Voo

When resonance occurs so that learning rates are needed, these are
computed by substituting the function Dy, =1-¢,.(x;) into
equation (2.7a), the necessary condition for memberships in fuzzy c-
means, with m = 3. So that you don't have to thumb back to Chapter
2, the explicit construction is

1 s 1
A |, i=1,..., . 4.126
Hik.t [l—q)i,t(xk)]/jgl[l—¢j,t(xk)] ! S ()

Since values computed with (4.125) lie in (0,1} the value in (4.126)
always exists. The winning node in the output layer of ART1 has
lateral connections to all the other nodes in its layer. In FOSART,
only some of the nodes in the RBF layer are updated. Blonda et al.
call the non-winner nodes that get updated "synaptically linked" to
the winning node. (This feature is borrowed from the SOFM,
subsection 4.3.D, hence the "SO" part of FOSART.) In other words,

FOSART maintains an update neighborhood N(v, ., ;) in SOFM style
for each node in the RBF layer, but unlike SOFM, it is not the inverse

CLASSIFIER DESIGN 433

image N’l(dm,t) of a topologically connected display space. The

topological connectivity of the prototypes is maintained in FOSART
by a distance rule which can form topology preserving maps
(Martinetz et al., 1994).

Update neighborhoods of the RBF nodes expand and contract during
training as nodes and node links are created and deleted using the
following heuristics. Given a winner and second place nodes for any

input, a synaptic link between these two nodes is created (N(Vy 0]
grows) if the distance between their prototypes is "fairly similar" to

the set of existing distances between pairs of linked centers that
already exist for both nodes.

More specifically, the links from any RBF node to other nodes in its
current update neighborhood satisfy a link constraint. Let

{Vj,:j,t} = N(vml,t); FOSART requires the ratio of the maximum to
the minimum pairwise distances of the prototypes in neighborhood
N(v; -, 1) to satisfy max{

sl o
s#q s$#q

The threshold % is chosen by the user, and FOSART currently

employs the value y = 1.6. Now suppose kum t and Var,t to be

the current first and second place winners. If nodes w and w2 are not
already linked, a link is established between them if the ratio of

v v -V
q.tq,t 8,7t

-V
4.7, .t 8,7, ,t

, to the minimum of the

their internode distance, Ilkum e vwzﬂwz,t

two sets of distances for pairs of nodes in N(v) and

wlt .
N(¥y9,244.¢) 18 less than or equal to x = 1.6. If the link from w1 to w2

is inserted, new sets of distances are computed over both
neighborhoods, and any links in either one that no longer satisfy
the link constraint are deleted. Moreover, links that have not been

used for an entire pass through X, . are now deleted (i.e., N(v,,)
shrinks).

At resonance, learning rates are computed for all s nodes in the
output layer as follows:

Twl 3

oy, =1 (ujk,t).(ujk,t) T A NV) (4.127)

0 ; otherwise

434 FUZZY PATTERN RECOGNITION

As we have said, 1is a user specified constant that controls the time
available for learning. In Blonda et al. (1998) 1, €[0,~) is a real

number which begins at 0 and simply accumulates the sum of the
learning rates applied to the i-th RBF node. Thus, after computing

(4.127), the ages of the s nodes are reset using 1, « 1; + o, ., - Baraldi
and Parmiggiani (1997a) call the winner node w1 stable (and updates

of this node stop) when t_, 231, for at this point the exponent of
the second factor for the winning node in (4.127) is = 3. After
computing (4.127), the nodes in the RBF layer are updated with

equation (4.11),
Vit = Vig et 0 (X = Vi 1), 73<3-15i= 1.8 (4.128)

Notice that a condition for updating is that the node has not reached
its stabilization age. If a current node in the RBF layer is never a
winner (in the ART sense) for an entire epoch but others are, and it
has not already "stabilized" (so that updates on it have stopped), the
node is then deleted from the network. Updating stops when either
(i} all of the nodes have stabilized (none are updated for an entire

epoch); or (i) when |V, -V |<¢ in some convenient matrix norm.
At this point FOSART has created a set of ¢ RBF nodes and provided

estimates for the centers of the RBF node functions in the output
layer of the left half-net.

After the output layer of the left half-net is determined by FOSART,
the right half-net is trained. Blonda et al. (1998) do not specify how
the weights of the output layer are initialized, what the parameters
of the unipolar sigmoids are, nor how training is terminated. The
two independently trained half-nets are then coupled, and the
resultant p:q:c RBF network, structured as in Figure 4.82 (except for
the sigmoids in the ¢ output nodes) is called the FOSART-SLP
classifier. With this as background, we present an example
abstracted from several papers about FOSART.

W"@%&\@%@@g@ i

Example 4.26 Blonda et al. (1998) consider classifier design in the
context of lesion detection in MR images taken from a patient
diagnosed with multiple sclerosis (MS). An interesting ancillary
aspect of this work is the comparison of results using standard MR
images with a new type of MR imagery called magnetization-
prepared rapid gradient echo (MP-RAGE), which can produce
thinner slices than standard MR devices. Figure 4.83(a) shows one
slice from the T1 MP-RAGE sequence for the patient with MS.
Unlike brain tumors, which produce very visible lesions (see Figures
4.16 and 4.19), multiple sclerosis produces small heterogeneous
lesions that are in some sense similar to microcalcifications in
digital mammograms - small, well distributed, and hard to see. Can
you find them in Figure 4.83(a}?

CLASSIFIER DESIGN 435

Figure 4.83 (a) Raw MP-RAGE image data, and (b) training data
selected from (a) by a neuroradiologist, with (c) color key for view (b).

Figure 4.83(b) shows the training data extracted from the MR slice
corresponding to Figure 4.83(a) by an expert neuroradiologist. The
labeled data consist of a total of 8627 pixels. The number of pixels in
each of six tissue classes are reported in Table 1 of Blonda et al.
(1998), repeated here as our Table 4.45. Half of the pixels in each of
the ¢ = 6 classes were randomly selected for training, and the
remaining 50% were reserved for testing the three classifiers
discussed by the authors.

Standard 3D spin echo MR images such as those shown in Figures
4.16(a) and Figures 4.19 (a)-(c) result in pixel vectors which have the
form discussed in Example 4.5, viz., x = (’I‘lij, ’I‘Zij, Py). The MP-RAGE
data, which is derived from an extension of the turboflash
technique (Brandt-Zawadzki et al., 1992), is a function of the T1
gradient spin echo sequence. MP-RAGE also produces three
dimensional data which has been successfully used in brain image
analysis (Blonda et al., 1996a). The data used for the images in this
example are 3D pixel vectors made by replacing the T1-spin echo
intensity with the T1 MP-RAGE intensity in the 3D spin echo data.
This gives us pixel vectors X, = (Tl-RAGEU, TZU, Py), leading to the

data set X ={x,, x},,..., X ..., X} in %®3. The images used by Blonda
et al. (1998) had spatial dimensions m = n = 256,

436 FUZZY PATTERN RECOGNITION

Table 4.45 Pixels in tissue classes selected by a neuroradiologist
(after Blonda et al., 1998, Tables 2-4)

Tissue Abbr. # of pixels
white matter (WM) 1675
gray matter GM) 1294
cerebro-spinal fluid (CSF) 1251
pathology (PT) 479
background (BK) 848
other (OT) 3080

The color key in view (c} of Figure 4.83 would enable you to see a total
of 10 isolated regions in view (b) that are labeled pathology (PT) - if
you could see view (b) in color. Reproduced in shades of gray,
however, it is pretty hard to see the regions labeled PT, so we have
superposed an arrow in the center right of view (b) pointing to 2 of
the 10 pathology regions (which are enclosed by one circle), and
circled the rest of them without arrows in little ellipses so you can
find them. There are 6 circled regions: 4 of them contain 2 pathology
regions each, and the other two contain just one.

The first classifier discussed in Blonda et al. (1998) is the RBF
network discussed prior to this example, with the left half-net
trained by FOSART, and the right half-net trained by the standard
LMS rule. Protocols for the runs made will be given shortly.

The second classifier discussed in Blonda et al. {1998) is based on the
same two layer p:q:c RBF structure that FOSART finds. In the second
design the number of hidden layer nodes is fixed at the FOSART
determined value of q, and the centers of the fixed width Gaussians
specified in (4.125) are found by applying a modified version of the
batch FLVQ algorithm (subsection 4.3.H) to the training data.
Baraldi et al. (1998) recommend 3 heuristic modifications of
descending FLVQ based on conclusions they drew from 10 numerical
experiments. The recommended modifications to the algorithm of
Table 4.12 are that: m_ = 1.05 (instead of 1.1); that termination

criterion £ = O (that is, the recommendation is to abandon the
computation of E in Table 4.12, and always run descending FLVQ to

the final value m:= 1.05); and finally, that a value for Am =(m,; - m,)

always be chosen in the range [0.01, 0.05], regardless of the values
selected for m, and T. The classifier discussed in Blonda et al. (1998)

that is illustrated in this example used all of these modifications to
descending FLVQ while determining the prototypes for the RBFs in
the hidden layer of the FLVQ based classifier. The structure of and
weights for the output layer were determined in exactly the same
fashion as for the FOSART-SLP design. This second classifier will
be called the FLVQ-SLP network.

CLASSIFIER DESIGN 437

Finally, a third two stage p:q:c RBF design that was structurally
identical to the FOSART-SLP and FLVQ-SLP networks was built by
Blonda et al. using Kohonen's self organizing feature map (SOFM)
approach to find the centers of the RBFs in the output layer of the
left half-net. In the experiments below the initial learning rates

were o, , =0.5V1i; and these rates, applied uniformly across the
nodes being updated, decreased monotonically with the formula
Oty ¢ = Oy o(1-(t/T)). The value of T was the total number of training

data times the number of epochs run. For example, the first run used
47 epochs on 8,627/2 training data, so T=202,734.

The update neighborhoods for the four unsupervised SOFM runs
shown in Table 4.46 were linear arrays in this example, and the
initial sizes (radii) of the update neighborhoods for the four runs
discussed in Table 4.46 were 10, 6, 6 and 5, respectively. For

example, if the neighborhood size is 5 and v,,, is the current
winner, the prototypes that get updated are the 11 consecutively
indexed centers {vg,,...,Vg:}. The radius of the neighborhood in
SOFM display space was also decreased monotonically with the

equation [r; =ry(1- (t/T))]. The SLP layer was built and trained as

the other two classifiers were. Initialization and termination
conditions for the SOFM prototypes and SLP weight vectors are not
specified in Blonda et al. (1998).

Now we are finally ready to discuss the results shown in Blonda et
al. (1998). Four training runs with Xtr were made with FOSART-SLP

using four different values for the "vigilance" parameter, 1/p = x =
0.044, 0.010, 0.120 and 0.147. The total number of RBF hidden layer
nodes at termination in each of these four runs was then fixed as the
number of RBF nodes in the other two networks (that is, all three
classifiers had the same architecture in each run, initially
determined by the FOSART-SLP runs). The number of hidden RBF
nodes for the 4 FOSART runs was ¢q = 22, 109, 160 and 254. In other
words, all three classifiers had 3:22:6 configurations for run 1, etc.

The number of passes through the training data to termination for
the FOSART runs was also forced on the other two classifiers. The
FOSART runs terminated in 47, 14, 12 and 15 passes, respectively, so
the other two classifiers were designed using prototypes (that were
possibly still being updated) at the same number of passes. Table
4.46 combines the information reported in Tables 2, 3 and 4 in
Blonda et al. Protocols for the FOSART-SLP runs were 7 = 100, € = 1;
and for FLVQ-SLP, m, = 2 and m = 1.05. Table 4.46 shows the MSE

achieved on the training and test sets, as well as the percent correct
classification for both training and testing in each of the four runs.
In terms of the MSE criterion FLVQ does consistently better (is
lower) than SOFM, and is lower than FOSART in 5 of the 8 cases

438 FUZZY PATTERN RECOGNITION

shown. In terms of error rates (here shown as percent correct),
FOSART is a few percent lower than both of the other designs in all 4
resubstitution cases, and is lower than both of the other classifiers
in all of the test error cases except for SOFM, run 2, where it is a
little higher than SOFM.

Table 4.46 Training and test results for the image in Figure 4.83(a)
(after Blonda et al., 1998, Table 1)

Run | resubstitution MSE (Xﬂ) test MSE (Xte)
FOSART FLVQ SOFM | FOSART FLVQ SOFM
1 183.4 153.8 183.6 190.1 155.1 178.8
2 57.1 59.2 73.8 67.9 63.9 75.0
3 41.8 49.1 64.3 52.9 52.4 65.8
4 28.3 31.2 43.9 39.8 36.4 47.8
resubstitution : % correct test error : % correct
FOSART FLVQ SOFM | FOSART FLVQ SOFM
1 68.4 73.0 72.5 67.0 71.8 70.4
2 75.2 76.9 77.1 74.7 76.2 72.5
3 75.7 78.2 78.3 74.9 77.2 77.6
4 71.1 79.3 78.7 76.3 78.3 78.5

What can be concluded from these experiments? None of the values
in Table 4.46 suggest a real advantage to any of the three designs.
Rather, and very similarly to Table 4.14, where four algorithms,
including LVQ and descending FLVQ@Q also produced very similar
results on Iris, we view the three classifiers in this example as being
very similar. With a little tuning here and there, it is quite likely
that any of the three designs could realize the "best" outputs.

Figure 4.84 shows the final segmentations of the original image
made by the three classifiers in run 1, with the same tissue color key
as used in Figure 4.83(b) appended to each. These segmentations were
made by running the classifiers on the entire 65,536 3D pixel vector
image data. Each classifier has ¢ = 6 perceptron nodes with node
functions ¢y =Fy o fy at its outputs, so the overall structure of the
trained networks is as possibilistic classifiers that produce a label
vector ue Np,g for each pixel. The labels are then hardened with
(1.15) and each pixel was colored using the color assigned to the
corresponding tissue class during the initial labeling of the training
data (i.e., the colors shown in Figure 4.83(b)).

CLASSIFIER DESIGN 439

(b) FLVQ-SLP

Figure 4.84 Segmentations of Figure 4.83(a), Blonda et al. (1998)

440 FUZZY PATTERN RECOGNITION

(c) SOFM-SLP

Figure 4.84 (con't.) Segmentations of Figure 4.83(a)

Visual comparison of these three images to the ground truth - the
labeled image in Figure 4.83(b} - is pretty difficult in shades of gray,
and is further complicated by the fact that all 65,536 pixels are
colored in Figure 4.84, but only a small fraction of them (8,627) are
visible in Figure 4.83(b). If you could see the color images, the
FOSART segmentation would look a little better than the other two
on some of the lesions in the lower half of the image. It's a little hard
to understand why this is true, since FLVQ and SOFM both enjoyed
lower MSEs and higher percent correct classification than FOSART
for run 1. Perhaps a more informative display would be the
difference images on just the ground truth pixels in X » which would

show the effectiveness of the three classifiers at labeling MS lesion
pixels in the test set.

Blonda et al. (1998) assert that the performance of FOSART recorded
in Table 4.46 shows that it is stable to small changes in the
parameter x. They also state that the 3D data used, with the T1 MP-
RAGE intensities, produced somewhat better results than the
standard 3D spin echo MR data. No evaluation of the medical
significance of the images in Figure 4.84 is reported by Blonda et al.

The ART1/FART architecture seems to have minimal influence on
the design of FOSART, although several of the basic concepts (node

CLASSIFIER DESIGN 441

creation, vigilance) of ART1 are certainly evident in FOSART. Our
overall assessment of the classifiers in Example 4.26? In the first
place, we think that the method of comparison was at best, a little
unfair, and at worst, crippling to the FLVQ and SOFM methods. The
architecture discovered by FOSART was forced on the other two
networks {and hence, not necessarily optimal for their performance
criteria).

Comparing the three classifiers built by prototypes obtained from
the same number of training epochs - again picked by FOSART - also
seems unfair to the FLVQ-SLP and SOFM-SLP designs. After all, the
rate of convergence of different algorithms that are looking for a
solution to a common problem is often different, but, mindful of the
tortoise and the hare, it is certainly possible that slower algorithms
can produce better solutions in every sense except the time
parameter used to stop them. FOSART was allowed to terminate,
while the other two designs were simply sampled at the same time
before they terminated in their own right. This seems to prejudice
the examples given in favor of FOSART. We appreciate the authors’
honest attempt to compare apples to apples, but in this case, some
apples seem more equal than others.

Given these disclaimers, it surprises us that FLVQ and SOFM
performed better than FOSART under these circumstances. It might
be the case that on a level playing field, the FLVQ and SOFM based
designs would enjoy an even clearer advantage than is evident in
this example. Finally, you have to wonder how a standard RBF
network (sans fuzziness) or the crisp MLP with one or two layers
would compare to the results in Example 4.26, or for that matter,
how well segmentations with a non-neural model, several of which
have already been discussed (and see Chapter 5 for more), would
compare with the outputs shown in Figure 4.84.

Nonetheless, we like the basic ideas in this example, because the FF
networks discussed in Blonda et al. (1998) have a very different
flavor than the ones discussed in Section 4.7. Dynamic
reconfiguration of the RBF layer during left half-net training seems
like a good and clever idea; the authors assert that this has the effect
of countering the tendency of ART-like models to overfit the data,
and this strategy eliminates dead nodes. The manipulation of the
update neighborhood in FOSART (the RBF layer in the left half-net)
is also very different from ART1/FART and indeed, SOFM as well.
This aspect of the FOSART scheme may provide it with some nice (as
yet unproved) local properties akin to topological connectedness of
the update neighborhoods. On the other hand, FOSART is a little
like the color resulting from mixing 4 or 5 different paints - it might
be splendid, or it might black everything out. So, when you try a
hybrid scheme like this, add a little bit at a time, stir well, and test
often.

442 FUZZY PATTERN RECOGNITION

Radial basis function networks (crisp or otherwise) provide a
fundamentally different approach to classifier design than the MLP
model discussed in Section 4.7. However, there is a connection

2
between RBF networks and FAN models. Choose ¢ i(x) = e—("xhv‘"“) in

(4.122b), where A is a positive-definite diagonal matrix. Then ¢,(x)
can be written as a product of p 1D Gaussian functions, which can be
interpreted as the membership functions for the linguistic values
appearing in the bottom layer of a FAN (refer to Figure 4.80).
Consequently, the outputs of the hidden layer units in Figure 4.82
can be interpreted as the conjunctive combination of membership
values. The output layer nodes in an RBF network have linear
activation functions which can be realized as generalized means.
Thus, RBF networks are roughly equivalent to FANs that have
conjunctive nodes in the hidden layer and generalized mean nodes

at the output layer. Estimating the parameters of ¢,(x) for an RBF

network is roughly equivalent to estimating the parameters of the
membership functions in a FAN.

RBF networks are usually easier to train than back-propagation
designs, are related to several well known conventional methods -
e.g., Parzen windows, and provide approximations that are much
more local than FFBP designs (Lippman, 1989). We think that RBF
networks are important enough to deserve a whole chapter - but in
another book ®. We will discuss a few other fuzzy NNs in Section
4.11.

4.9 Fusion techniques

Real applications, such as assisted medical diagnosis, handwritten
word recognition, automatic target recognition, buried land mine
detection, etc., are, unfortunately, not like the Iris data. By this we
mean that it is rarely the case that successful systems can be
designed using only a few features and almost any classifier, as is
the case with the Iris data.

More often, many sources of information are needed to provide
partial (soft) classifications, followed by an aggregation function of
some type. This strategy has become widely accepted, and is known
by many names, including data fusion, information fusion,
multistage classifier design or classifier fusion, sensor fusion, and
so on. However, the key ingredients in most of these approaches are
shared by them all: multiple sources of information provide partial
classifications; the classifications are then somehow joined
together to give a final (hopefully better) decision than any
component classifier could. If you think of features as the sources of
information, then many of the classifiers we have discussed in this
chapter can be regarded as fusion devices.

CLASSIFIER DESIGN 443

We will only scratch the surface of this extremely important topic in
the hope that you will use our discussion as an entry point into the
literature. Hall (1992) discusses a variety of mathematical
techniques that can be useful in the context of sensor fusion.
Dasarathy (1994b) focuses on decision fusion and contains over 700
references on this topic, going back to 1981. We will use the terms
information fusion and sensor fusion interchangeably, even though
there are clearly distinctions between them.

There are several ways to develop a taxonomy of the levels at which
information fusion activities can take place. One such hierarchy
includes data level, feature level, and decision level fusion (Sims
and Dasarathy, 1992, Dasarathy, 1994b). If the data are temporal in
nature, such as a sequence of images over time, we should add
temporal information fusion to this list.

A. Data level fusion

Data level fusion involves combining sensor outputs directly. A
primary example of data level fusion is the combination of precisely
registered images from multiple sensors or wavelengths, such as
color images, multispectral images, or images acquired using
multiple infrared bands. This type of fusion is quite useful only if
precisely registered information is available. Figure 4.85 shows an
example of data level sensor fusion for two registered images from
different sensors that contain information about buried land
mines. Using the DARPA Backgrounds data, which is based on
ground penetrating radar (GPR), and a forward looking infrared
(FLIR) image acquired by Geo-Centers, Inc., suitable image
processing techniques can provide complementary evidence of the
presence or absence of the mine-like objects. There are three objects
of interest in the illuminated scene, two near the top of the frame,
and one at the bottom. The GPR image (top left panel in Figure 4.85)
had strong returns for the two objects at the top of the image. Since
the bottom object is not in the data, subsequent processing of this
image alone (shown immediately to the right of the GPR image, with
the targets indicated by small white arrows and "T"s), misses the
third object, and produces a detected false alarm. However, by
combining the registered FLIR and GPR image data before
processing, and using morphological operations on the combined
data, the three objects were detected and the false alarm eliminated,
as shown (very faintly) in the bottom right view of Figure 4.85.

Figure 4.85 is a very simple example that demonstrates the concept
of complementary sensor fusion at the data (or image) level. It's
possible that in processing the one FLIR frame in the bottow left
view, all three objects could be found without false alarms, but it is
just as likely that O, 1, or 2 might have been detected. This is one
frame (out of thousands) - and is one of the few we could find that
showed objects in both the GPR and FLIR images. Hence, Figure 4.85

444 FUZZY PATTERN RECOGNITION

is really only a conceptual diagram that attempts to answer the
question- "what is data level fusion?".

raw GPR image processed GPR image
without data fusion

o
o

0

raw FLIR image output from processing
fused (FLIR+GPR) images

Figure 4.85 Data fusion aids object detection

A main difficulty in fusing image data this way is that the images
must be accurately registered in order to perform pixel by pixel data
fusion. Due to differences in range and resolution of various
sensors, direct data level fusion such as this is usually effective only
in carefully controlled situations.

While the potential payoffs of sensor fusion are high, there are
many difficulties. Image data are often unregistered and non-
collocated. Passive imaging sensors can be registered but they often
have different resolutions, causing different intensity distributions
which can make registration and matching a difficult problem. The

CLASSIFIER DESIGN 445

variation in object signatures from different sensing modalities
also make it difficult for an algorithm to reliably match potential
objects of interest in different image types.

Another problem in sensor fusion is that information may be
missing in one sensing modality but available in another. This
statement can be true in a partial sense. An object may be partially
occluded in one sensing modality but not occluded in another. There
may be high contrast between two regions in one modality but not in
another, etc. These attributes (occlusion, contrast) are not binary -
they are true to some degree. The fusion algorithm must use
whatever partial information is available.

Measurements on sensor outputs always contain uncertainty. This
uncertainty is caused by inherent physical limitations (resolution,
etc.), from the partial information problem, and from imperfections
in the algorithms themselves. A practical and effective fusion
algorithm must make full use of the available information without
being overwhelmed by imprecise and conflicting measurements.
The use of fuzzy set theoretic models within the information fusion
domain explicitly recognizes this uncertainty and provides
mechanisms which often successfully manage the uncertainty and
thereby arrive at more realistic answers than crisp, precise models.

Another type of fusion that can be regarded as either data level or
sensor level fusion is discussed in a pair of papers by Hathaway et al.
(1996) and Pedrycz et al. (1998), who present three models for fusing
heterogeneous fuzzy data (HFD). The objective of this type of fusion
is to convert fuzzy numbers into numerical data vectors (feature

vectors in R?). Using our standard notation, we let n column vectors
inadatasetX={x,x,..x}c RP be arrayed as a pxn object data

matrix, which we denote as X ¢ RP" by letting column k of X be the

column vector X, K:[x1 x, xn]. Here dimension p is the

number of generalized coordinates in the chosen representation of
the heterogeneous fuzzy data; p will vary as the parametrization of X
does.

To understand what type of data this is, Consider the speed s of a
vehicle. The features used for describing and classifying vehicle
speed (of, e.g., trucks on a highway) can have various
representations. If measured precisely at some time instant, speed s
is a real number, say s = 100. Figure 4.86(a) shows the membership

function, m,;(s)=1« s=100; otherwise, m,(s)=0 for this case.
This piece of data could be collected by one observation of a radar
gun.

446 FUZZY PATTERN RECOGNITION

m, (s) my(s) m3(s)

, - A e
A) I |)

°K A A A

90 100 110 90 100 110 100 110
(a) numerical (b) interval {c) linguistic

Figure 4.86 Membership functions of crisp and fuzzy data

Next, suppose that two radar guns held by observers at different
locations both measure s at the same instant. One sensor might
suggest that s = 90, while the second measurement might be s = 110.
Uncalibrated instruments could lead to this situation. In this case,
several representations of the collected data offer themselves. One
way to represent these temporally collocated data points is by the
single interval [90, 110], as shown by the membership function mz(s)

in Figure 4.86(b), m,(s)=190<s<110; otherwise, m,(s)=0
Another plausible representation is to center a small interval of
radius € about each observation, leading to the pair of real intervals

[90-¢, 90+¢] and [110-¢, 110+¢]. Both representations make the same
point - that data can come to us in the form of real intervals,

Finally, it may happen that vehicle speed is evaluated non-
numerically by a human observer, who might state simply that "s is
very high". In this case the observation can be naturally modeled by
a real fuzzy set. The membership function m3(s) shown in Figure 1(c)

is one (of infinitely many) possible representation of the linguistic
term “very high", m,(s)= max{0,1-0.1100-s|} ,seR. Taken

together, the three forms of data shown in Figure 4.86 are called
heterogeneous fuzzy data (HFD), and our objective is to find a
transformation of these three types of fuzzy numbers so that each of

the input data wind up in the numerical feature space R”.

Let R be the real numbers, I{N) =1 be all closed real intervals such
as [a, b], and F(R) = ¥ be the real fuzzy subsets of R. Every element
of ¥ is a membership function m: R — [0,1]. Next, let

FP = Fx Fx-XF . (4.129)
-
p times
An element of ¥ is a function that represents a real number, real

interval or fuzzy set of real numbers; an element of 7P is a p- tuple of
them. For example, the vector x = (1.32, |sin(x) |, [-3, 4.5], 2.77, x2 for

CLASSIFIER DESIGN 447

xin [-1,1]) is in }5 . The most general form of HFD is a collection of n
vectors X = {xl,x2,~--,xn} c #°. Hathaway et al. (1996) discuss

several parametric representations of this data as a set of
generalized coordinates in some real, finite-dimensional vector
space.

Because real numbers and intervals can be represented by crisp
membership functions, each vector in X can be regarded as a p-tuple
of real membership functions. This is the case that is discussed in
Pedrycz et al. (1998). We will briefly discuss the simpler case set out
in Hathaway et al. (1996), of parametric HFD models by considering
here only the more restricted case obtained by constraining the
membership functions for each coordinate of x to be symmetric

trapezoidal fuzzy numbers.

Our notation for any representation of a symmetric trapezoidal
fuzzy number is ma(x; a,a, a3) = ma(x; a), where a = (al, a,, aS) is the

vector of parameters that specifies m in the chosen representation.
We will regard m_as the standard representation of a symmetric

trapezoidal fuzzy number, and will refer to a, as the center, a, as the
inner radius, and ag as the outer radius of the graph specified by
ma(x; a). Using this standard representation, we let

#sT(a) ={m,: R~ [0,1a e R%a,,a, 20} : (4.130)

J5TP(a) = 757(a) x 75T (a)x---x 75T (a) c FP is obtained by replacing ¥
pti?nes
in (4.129) with #%s7(a). There are four kinds of symmetric

trapezoidal fuzzy numbers in 757(a), viz., real numbers, intervals,
and symmetric triangular and trapezoidal fuzzy numbers.

Every coordinate of a vector x in #%57P(a) has a unique
representation as an element of %£97(a) for an appropriate choice of

a. When every element in a data set X is in #57P(a), we call it
parametric HFD, because each generalized coordinate of every x _in

X has a unique representation as an element of #57(a) for some
choice of a. We abstract a simple example from Hathaway et al.
(1996) that shows how their parametric HFD model can be used for
data fusion, which in turn enables us to do clustering and classifier
design with this type of mixed data.

- g

Example 4.27 Table 4.47 lists, without parentheses or comma

delimiters, a set of n = 9 data points in %572(a). The superscript of
#572(a) indicates that each data point comprises a pair of

448 FUZZY PATTERN RECOGNITION

generalized coordinates; a for i = 1, 2. For example, interpret row
one in this table as the generalized coordinates of the vector
x, =(1.1,0.0,0.0,1.5,0.0,0.0)T e ®®. The first triple of coordinates
specifies the symmetric trapezoidal fuzzy number ma(x; 1.1, 0.0, 0.0),

the real number 1.1, and the second triple specifies the symmetric
trapezoidal fuzzy number ma(x; 1.5, 0.0, 0.0}, which is the real

number 1.5. The pair of generalized coordinates for x, in F5T %(a)
specifies a real interval and a real number, and so on.

Table 4.47 A 9 -point parametric HFD set in F5T(a)

First Variable : a Second Variable : a,
x |11 0.0 0.0 1.5 0.0 0.0
x, 1.5 1.0 0.0 2.1 0.0 0.0
x, 0.2 0.1 0.2 1.7 0.3 0.2
x, 3.1 0.3 0.0 4.1 0.5 0.0
X 2.7 0.0 0.1 3.0 0.0 0.2
x, 35 0.2 0.0 4.7 0.1 0.0
x, 4.5 0.0 0.0 0.6 0.0 0.0
x, 47 0.0 0.0 0.3 0.0 0.0
x 4.6 0.0 0.0 0.6 0.0 0.0

For the representation of X in 7s572(a), p = 6 because each input
variable requires 3 numbers for specification as a symmetric
trapezoidal fuzzy number. By this device the original set of 18 (2 for
each of the 9 input data) membership functions are converted into a

set of 9 vectors in R®, and this is how the data are fused; all of the
HFD inputs are transformed into vectors in 6-dimensional
Euclidean space. The nine 6D vectors in Table 4.47 are the fused data

- that is, the transformation of the inputs to R® accomplishes the
fusion. Now we may process the columns of Table 4.47 with any
pattern recognition algorithm that uses object data.

Figure 4.87 is a sketch that illustrates the 18 membership functions
in #s7(a) that are specified by the HFD set in Table 4.47. The frames
in Figure 4.87 are not to scale.Each sketch in Figure 4.87 is 1 unit
tall. The horizontal scales vary from one to two units wide so you
can only see the approximate relationships of the various data to
each other. Moreover, the parameters of the functions are given in a
different way than in (4.130) so that the sketches fit in the figure.

449
T
|
]
1
4

1.5
2.1

CLASSIFIER DESIGN

Second Variable

- o om o
--——e----
o .- -

r
1
i
1

2.5

]

1.1

First Variable
1.5

m-———— ——— === fm - f———
1]] 1 ' 1 1 1 [1

1]] t] ' 1 ' s '

N 1 1 1 1 [’ ' 1)]

N © ' ' ' 1 ' 1 ']

[]] 1] ' ' ' '

o .4 ' .2. 1 .8 [' ' [

o [' 0 1 N s [1 '

~ 11— 1 1O ™~) X ’ !

. - -l - -l —— nsmeme—)

— < 1 o < ' 10 [[

1 1 ' 1 1] [1

] X 1]] 1 ' [1

' 1 ¥] ') 1]

1 1 1 ' [[}] ! ')

1 | 1 [] 1 ' [' [

1 ']] 1 1 [[' 1

[v 1 v 1 1 1 [' 1

| I [DR [t [M | [SR 1

R] L) m—-—— - - ————— o
[1] 1] [] 1 1) 1 '
1 [RTo) 1 1] [1 1 [] []
[1 1] [1 1 1] [l 1
t 1 t [[1 1 1 1 1 1
1 1 y < ' 10 ' VN 1 ' 1 '
]] v) LN '] 1 '
[} .3 ' N ® []] 1)
[— ' &~ [BTe]] "0]]

-1 e == -l 2 —— ‘m——

N 1 N M [1< t 1

[1 1 [1 ['

[1))]] 1]

1 1] 1 '] 1 [

])] 1] 1 '] 1 [

' 1 ' 1 1 1 ' [1 1

' ' 1 ' 1] [' 1 1

) '] 1 r] 1 1) '

| R | [I [IR | e d [Y

0.3
l--—-—----l
0.6

===~
1
i
)

LR EEEREEEY]
]
]
1
&

4.7
4.6

[e

r
i
1
!

Figure 4.87 Graphical representation of the HFD in Table 4.47

450 FUZZY PATTERN RECOGNITION

Figure 4.87 illustrates how the parametric HFD model fuses data of
the three types discussed in the speed example into a uniform
numerical framework. Data points 1,7,8, and 9 are pairs of real
numbers; they would be collected by point-valued sensors. x, shows

a real interval as its first coordinate, and a real number as its
second entry; this would result from an instance of the (sensor 2,
sensor 1) pair for object 2. x, and x, could be the result of

observations by sensor type 3 on both variables. And so on.

It now makes sense to ask about clusters in HFD. The idea itself is
easy to grasp, and the computational means for doing cluster

analyses in HFD are available in the setting of #57P(a). We can
apply any object data clustering algorithm to the generalized
coordinates of X obtained by this representation, and it will produce
clusters. Hathaway et al. applied the fuzzy c-means clustering
algorithm (Subsection 2.2.A} to the data in Table 4.47 with m=2, ¢=3,
€=0.0001 and the Euclidean norm for the objective function. The

termination criterion was E; =[U, -U_|_ se.

The initialization they used is indicated with subscript 0 in the
upper half of Table 4.48, and it grouped points {1,4,7}, {2,5,8} and
{3.6,9} into c=3 crisp clusters. The lower half of Table 4.48 contains
the final prototypes, indicated by subscript f, which were obtained
in 14 iterations of FCM.

Table 4.48 Initial and final FCM prototypes for X in Table 4.47

First Variable : a Second Variable : a .
Vio 290 .10 0.00 207 0.17 0.00

297 033 0.03 1.80 000 0.07
2,77 0.10 0.07 233 0.13 0.07

\'2
2,0
v3,0

A 094 031 007 176 0.10 0.07

v, 459 000 000 051 0.00 0.00

2f
v, 317 021 002 4.11 025 0.04

Table 4.49 shows the initial (crisp) and final fuzzy partitions of the 9
HFD data points. Hardening Uf in Table 4.49 with (2.10) leads to the

crisp 3-partition (shown by the shaded and bold cells) X = {xl, X, X}

U {x4, X, xG} V] {x7, X, xg}.

5 8

CLASSIFIER DESIGN

451

Table 4.49 Initial and final FCM 3-partitions for X in Table 4.47

x % X X % X x X 9
row 1, UO 1 0 0 1 0 0 1 0
row 2, Uo 0 1 0 0 1 0 0 1
row 3, Uo 0 0 1 0] 0 1 0 0
row 1, Uf

row 2, Uf
row 3, Uf

002 010 004 0.99' _95'

0.00 000 0.00

Since each point in Table 4.47 and Figure 4.87 has two components,
it is possible to construct a 3D view of each row in the data that
shows the 2D membership function for each object. Figure 4.88 is a
3D plot of the data and final prototypes in which the data have been
lightened, and the three prototypes darkened so that you can see

them.

Figure 4.88 The terminal FCM prototypes for ¢ = 3 are used
to classify HF data point z

The second prototype (cluster center) corresponds to the point v .

(4.59, 0.51). (Actually, this is true only after the computational
results are rounded to two decimal places. To four decimal places,

prototype Vos

= (4.5868, 0.0013, 0.0004, 0.5137, 0.0001, 0.0008)", so

v, fdoes not, strictly speaking, correspond to a vector in %2.) The

452 FUZZY PATTERN RECOGNITION

first and third cluster centers have all non-zero coordinates, and
thus define trapezoidal pyramids in 7T (a).

Hathaway et al. also showed that the prototypes obtained in this
example can be used as a basis for 1-np classifier design. By way of
illustration, suppose that the 9 point HFD data are regarded as
"training data", and the output of training is the set of HFD
prototypes for ¢ = 3 shown in Figure 4.88. Suppose that z is the

triangular membership function in 7572(a) specified by the
generalized coordinates z = (z;, 0, 0.25, 1.0, 0, 0)" as illustrated in
Figure 4.88. As plotted, z appears visually equidistant from the

prototypes for classes 1 and 2. The HFD model enables us to make
this a well-defined concept.

An easy calculation of the Euclidean distance from z to each of the 3

prototypes in the representation space 757%(a)c R® yields the
results in Table 4.50. If the first coordinate of z is 2.65, the nearest
prototype is v, yleldlng the class 1 label. If the first coordinate for z
is 2.70 (as shown in the third column of Table 4.50), the label
assigned by the nearest prototype classifier would be class 2.

Table 4.50 Mlustration of a nearest prototype classifier for HF data :
tabulated are Euclidean distances 82(2, v,)

k | z=265 z=270
1 1.93 1.98
2 2.00 1.96
3 3.17 3.16

This shows how a classifier can be designed using fused data that
will look for the closest match to an unlabeled observation among a

library of generalized prototypes. The representation space #577(a)
provides the essential ingredient - viz., a unified framework for
pattern recognition using models that are already available and
well understood. All of the usual problems associated with
clustering, cluster validity and nearest prototype classifiers - for

example, what distance measure (in ®P) and how many prototypes
per class to use - become sensible questions to ask and try to answer.

CLASSIFIER DESIGN 453

B. Feature level fusion

Feature level fusion is much more general and directly takes
advantage of the ability of different sensors to measure
complementary information. This level of fusion involves
combining multi-dimensional, quantitative feature vectors derived
from sensor measurements, possibly together with qualitative
information. For example, one sensor may give shape information
while a different sensor may provide depth. This level of fusion has
many similarities to complex pattern classification problems
(Wootton et al., 1988, Keller and Hobson, 1989, Keller and Osborn,
1991, Keller et al., 1991).

Figure 4.89 Feature level fusion to reduce false alarms

As an example consider the Geo-Centers GPR system, which
produces a volume of data as the sensors are moved downtrack. The
coordinates are downtrack, cross track and time (which roughly
correlates to depth). In Figure 4.89, two views of the Geo-Centers GPR

454 FUZZY PATTERN RECOGNITION

data are displayed: panel (b) is a surface plot where the energy below
the surface is “summed up” into a downtrack-crosstrack plane; and
panel (c) is a depth plot representing the radar returns in time and
downtrack given a fixed crosstrack value. The objects are at
locations denoted by very faint "tick marks" in panels (a)-(c} of
Figure 4.89. Panel (a) of Figure 4.89 is a thresholded version of the
image in panel (b). All of the objects are accounted for, but many
false alarms are also evident in panel (a). While the raw data is the
same, different features emerge by processing it in different ways. In
looking at the depth plots, Frigui et al. (1998a) and Gader et al.
(1998b) noticed that the high energy locations in the panel (b)
surface plot corresponded (roughly) to rising and falling edges in the
panel (c) depth plot at locations related to the size of the objects.
Panel (d) of Figure 4.89 represents two thresholded outputs of
gradient masks operating on the image in panel (c). Darker values
represent strong rising edges, while the lighter color corresponds to
falling edges in panel (d). Note that there are still false alarms in
panel (d). Hence, by combining these sets of features, we might expect
to enhance detection capabilities while eliminating false alarms.

Keller and Gader (1997) proposed one method of combining
information on energy (panel (a)) with the information on rising
and falling edges (panel (d)) using a fuzzy rule:

IF there is significant energy in the GPR surface plot.
AND there are rising and falling edges in the GPR depth plot
AND the edges are close

THEN confidence in mine is high

View (e) in Figure 4.89 shows an implementation of the above rule.
This particular implementation lost two of the desired detections,
but significantly reduced the number of false alarms from the
standard approach (panel (a)). Don't read too much into Figure 4.89;
it is just an example to illustrate the concept of feature level fusion.

C. Classifier fusion

Decision level fusion generally involves combining information
from algorithms that have partially or fully processed individual
sensor measurements (or features derived from them), and perhaps,
other qualitative information that may reside in rules such as the
land mine rule just given. The division between feature level fusion
and decision level fusion is not crisp, but decision level fusion is
generally considered to be at a higher level, such as combining the
outputs of several classifiers. (Tahani and Keller, 1990, Gader et al.,
1995a, Gader and Mohamed, 1995, Cho, 1995, Kuncheva et al. 1998).
This fusion level is the primary emphasis of this section.

The basic assumption that drives decision level fusion schemes is
that classifier algorithms are imperfect. Thus, a good strategy for

CLASSIFIER DESIGN 455

enhancing the performance of classification systems is to construct
multiple independent systems and then combine the results,
hopefully achieving higher reliability and robustness through
redundancy. The hope is that each individual system makes
independent errors which can be overcome using advanced fusion
schemes.

Figure 4.90 illustrates a general architecture for classifier fusion. In

this Figure D is any classifier function, D:R? — Npc. The value u =
D(z) is the label vector for z in RP. D is a crisp classifier if D[R] is
always a crisp (binary valued) label vector; otherwise, the classifier

is fuzzy, possibilistic or probabilistic, which, as we have done
earlier, we lump together by the term soft classifiers.

u
(-]
(-]
(-]

S

~_ Fusion
’;:'glasgiyﬁ,er
;fD%= F({Di}_),i

AN
AN
\
N\
1
2

N

u
(B on@ - e,
u

Figure 4.90 Classifier fusion models

L

&

On the left in Figure 4.90 we show a bank of L first level classifiers -
it would not be wrong to conceptualize these as the input layer of a
network, and this often helps in visualizing the fusion operation.
Each D could be a soft classifier of a different type; for example, D)
might be a nearest prototype classifier, D g @ multilayered
perceptron, D, a fuzzy decision tree, and so on. Most of the time, the
L classifiers {D,} use the same training data to acquire their
parameters independently, but for classifier fusion this is not
necessary. Exceptions to this include the bagging (Breiman, 1996)

and boosting (Drucker et al., 1993) approaches for creating
ensembles of neural networks.

The fusion classifier D = F(D,...,D;), where F is a specified "fusion
operator" that integrates the outputs of the bank of classifiers in the

456 FUZZY PATTERN RECOGNITION

first level, generally maps soft labels to soft labels, l.:):Npc =N .. As
with other classifiers, we often use the hardening function
H: Npc = N, in equation (1.15) to get a final crisp output from D as

shown in Figure 4.90. For classifier fusion to improve recognition
rates over individual classifier outputs, different classifiers must
make different mistakes. A fusion method should emphasize the
strengths of individual classifiers and subsets of classifiers, avoid
weaknesses, and use dynamically available knowledge about the
inputs, the outputs, the classes, and the classifiers.

There are three styles of classifier fusion. The simplest type is when

Dis a fixed operator without any unspecified parameters that
cannot be trained and which is simply chosen by the user - e.g., the

minimum, maximum, weighted mean, etc.; in this case we call D a
non-trainable fusion operator. A more aggressive approach to

fusion allows D to be trained simultaneously but independently
from each of the L D 's using the same training data; then we call Da

separately trained fusion operator. Examples of this type of
operator include fuzzy integrals (Tahani and Keller, 1990, Keller et
al., 1994a, Gader et al., 1996b, Wang et al., 1998), OWA operators
(Cho, 1995}, decision templates (Kuncheva et al., 1998, 1999), and
many others that we will meet later in this section.

Lastly, if D is trained simultaneously and in conjunction with the L
D 's using common training data, we call D a co-trained fusion

operator. There aren't too many examples of this third type of
fusion. Jacobs et al. (1991) discuss a mixture of "experts" that use a

gating network for D that is trained together with the first level
classifiers. However, this model selects (as opposed to combines)
classifier outputs, so is not exactly what we call a co-trained fusion
model.

As an introduction to time-based fusion, Sato et al. (1997) discuss a
temporal version of FCM called TFCM (Section 2.6) that integrates T
time slices of data sets having fixed spatial sizes in a weighted
objective function across time. The output of TFCM is a single fuzzy
partition matrix U for the entire set of time slices coupled to T sets of
prototype vectors {Vl, V,IJ, one set for each slice. When the frame

rate of temporal sequences is high, TFCM may be useful for "short
bursts” within the overall sequence of temporal data, because
changes in the scene will be very slight. In this situation the number
of objects (that is, ¢, the number of clusters in U) should not vary, but
the centers of gravity (that is, the prototypes V, we use to track the

objects) will, if the objects and/or sensor platform have changing
positions in time.

CLASSIFIER DESIGN 457

There are at least as many methods for classifier fusion as there are

for designing classifiers, since the decision fusion mechanism D in
Figure 4.90 is a classifier. Voting strategies (Mazurov et al., 1987),
like majority choice or best "M of N" approaches, and order
statistics, like the maximum or median, are obvious simple non
trainable methods to fuse multiple classifier outputs.

Kittler (1998) discusses the problem of classifier fusion from a
statistical decision theoretic standpoint for two scenarios: fusion of
opinions based on identical representations, and opinions based on
distinct representations. Standard methods for combining distinct
opinions, such as the product rule, sum rule, min rule, max rule
majority voting, and weighted averaging are shown to be special
cases of compound classification, where all representations are used
jointly under suitable Bayesian hypotheses. Kittler (1998) also
contains many other statistical based fusion references.

Figure 4.90 looks like (and is, if we regard the L classifier outputs as
inputs to a single node) a standard FF neural network, and as such,
can be trained on the output of the L classifiers and thus act as a soft
fusion technique. We will discuss this method in some detail later in
this section, but refer you to Rowley et al. (1998) for a typical
example of using a NN as the fusion device.

Additionally, there are methods to choose the best classifier for a
particular sample (among say, an ensemble of neural networks, or
from different types of techniques) based on some measure of
"goodness" or "consistency" of the multiple outputs (Leon et al., 1996,
Woods et al., 1997). This is somewhat different in nature from the
situation depicted in Figure 4.90. The classifiers aren't combined
directly in this method; they are used to determine if classification
should be done at all. Refusing to decide (at least until more evidence
is forthcoming) can improve overall classification accuracy and is
consistent with the principle of least commitment.

Pick your favorite classifier, and you can turn it into a fusion
machine. We are being somewhat casual here, because the fact is that
fusing the results of classifiers/sensors/information sources is not
well understood. There is little theory of sensor fusion. Hence, the
"proof is in the pudding” right now, i.e., different approaches can
produce very different results on different data (that's a lot of
differences - just don't treat them with diffidence). What we will do
now is give a few examples of fuzzy set based classifier fusion
approaches that have been shown to work in certain domains.

The fuzzy integral (Section 4.5) is a very flexible approach for
classifier fusion. Tahani and Keller (1990) were the first to utilize
the Sugeno fuzzy integral to combine the results of multiple
classifiers. In that paper they established a framework for fuzzy
integral fusion in an automatic target recognition application that

458 FUZZY PATTERN RECOGNITION

used three first level classifiers: a Bayes decision theory classifier, a
feature based Sugeno fuzzy integral, and a soft prototype classifier
based on FCM. The fuzzy integral was able to compensate for two
extremely confident (but erroneous) classifications by one of these
three classifiers. Subsequently, several authors have used both the
Sugeno and Chogquet fuzzy integrals to combine multiple
information sources (Keller et al., 1994a, Gader et al., 1995a, Gader
and Mohamed, 1995, Cho and Kim, 1995, Grabisch et al., 1995).

. s e @

Example 4.28 In (Hocaoglu et al. 1997, Keller et al., 1998), a system
based on fuzzy set theoretic algorithms to perform automatic target
recognition from Laser Radar (LADAR) imagery was described.
Figure 4.91 shows the framework of this approach for an automatic
target recognition (ATR) system.

(LADAR Range Image)

(pEvun). (Lopark) ~(crar)
Fusion : Choquet
Fuzzy Integral
Cl‘hreshold and DetecD

First Stage Bt ¢

Detector Scoring (Feature Extraction

C Neural Network)

(Threshold and Detecb
System

Scoring N¢

Figure 4.91 A fuzzy logic ATR system

The details of the LADAR pixel target detection filters, called
LODARK, DEVLIN and CFAR in Figure 4.91, are in (Hocaoglu et al.
1997, Keller et al. 1998). Briefly: LODARK stands for LOw and DARK -
LADAR range image targets have more "action" in the low part of the

CLASSIFIER DESIGN 459

scanning window and correspond to darker pixels than the
background. DEVLIN stands for DEViation from LINear - the
background in range images tends to look like a plane (not airplane
of course), hence targets (and other objects) cause a deviation from
that flat or linear plane. CFAR stands for constant false alarm rate
and is usually a size-contrast filter, although this implementation
used robust estimators in the size contrast filter (Frigui et al.,
1998b).

What is important here is that all three classifiers produced a target
confidence at each pixel in the LADAR scene. The Choquet fuzzy
integral was used to combine the results of the three classifiers. For
one group of experiments, the set of LADAR images was divided into
a training set (52 images with 89 targets} and a test set (45 images
with 86 targets). See Figures 4.20 and 4.21 for a typical image in this
data set. Each pixel level detector was run on the training images
and for each threshold value, the probability of detection vs. the
number of false alarms was computed (the graph of these points is
called a receiver operating characteristic (ROC) curve. From the ROC
curves on the training data, a threshold was picked for each
detector. Each detector was then run with its threshold on the test
set and scored. A Sugeno fuzzy measure (see equation (4.47)) was
generated from densities calculated as the relative number of
detections by each classifier on the training set. In this case, the
resultant measure was a probability measure (since the densities
summed to one).

The three detector confidences for each pixel in the training images
were fused with the Choquet integral, and once again the probability
of detection vs. the number of false alarms for all thresholds was
computed. An "optimal" threshold was selected (manually) from the
training results of the fusion. The results of the three individual and
the fused detectors are shown in Table 4.51. On the training data, the
Choquet integral combination was able to slightly increase the
detection rate while reducing the number of false alarms. Many of
the false alarms were generated on just a few "poor” images, and no
effort was made to incorporate temporal aspects of the image
sequences into the processing.

Table 4.51 Target detection outputs for individual and fused

detectors on training data
False
Detector # Hits Alarms Density
CFAR 75 (84.3%) 200 0.32
DEVLIN | 80 (89.9%) 227 0.34
LODARK | 81 (91.0%) 319 0.34
FUSED 83 (93.3%) 191 -na-

460 FUZZY PATTERN RECOGNITION

The test images were then submitted to the final configuration. The
Choquet fusion scheme for the detectors (using the threshold
selected from the training ROC curve) found 81 of the 86 targets in
the test images, with 183 false alarms. The second stage detector in
Figure 4.91 was added to further reduce the number of false alarms.

In Example 4.28 there were training images, but no "desired outputs"
at the pixel level. Hence, the densities for the fuzzy integral were
calculated from global statistics. Recently, the Choquet integral has
become the fuzzy integral-of-choice for classifier fusion activities
where desired outcomes are available. This is because the entire
measure can be learned as the optimal solution to a quadratic
programming problem (Grabisch and Nicolas, 1994).

Even restricted classes of measures give rise to a wide variety of
combination schemes, As noted in Section 4.5, all linear
combinations of order statistics (LOS) operators (or OWA fuzzy
operators in some circles) are special cases of the Choquet fuzzy
integral. Tumer and Ghosh (1998) show that a LOS combination of
multiple neural networks provides excellent fusion of classifiers in
the presence of outliers, or when there is a high variance of
individual classifier performance. They performed an analysis of
decision boundaries and ran experiments on 6 standard data sets
from the University of California (Irvine) repository to support
their views. This study lends support to the Choquet fuzzy integral
combination as a very competitive fusion method.

An application where classifier fusion has received considerable
attention is handwriting recognition. This is because there are an
abundant number of classifier schemes for character and word
recognition, along with a huge amount of labeled training and
testing data. Classifier fusion methods in this domain include
intersection of decision regions, voting, prediction by top choice
combinations, Dempster-Shafer theory of evidence, fuzzy integrals,
neural networks and rule-based approaches (Ho et al., 1994; Huang &
Suen, 1995; Keller et al., 1994a, Suen et al., 1992, Xu et al., 1992, Chi
and Yan, 1996, Chi et al., 1996b).

Handwritten word recognition is problematic because of the large
variations in the shape of characters, the illegibility and ambiguity
present in many handwritten characters, and the overlapping and
interconnecting of neighboring characters. In most applications the
size of the lexicons (dictionaries) is large and the contents of the
lexicons (the classes) are changing. The problem is more complex
than traditional pattern recognition problems because the number
of classes is relatively large - easily on the order of thousands, and
moreover, changes from word image to another. This precludes the
use of some decision combination methods that depend on knowing
the number of classes and the identity of each class in advance.

CLASSIFIER DESIGN 461

One widely used fusion method in handwritten word recognition is
the Borda count, which is simple to implement and requires no
training. All classifiers rank all of the alternatives (classes), and
the Borda count is simply the sum of the ranks for each class. In this
method, however, all classifiers are treated equally, which may not
be preferable when certain classifiers are more likely to be correct
than others. Ultimately, more sophisticated techniques are
necessary for fusion in this domain because different word
recognizers do not contribute equally and do not place equivalent
restrictions on the recognition results. For example, a weighted
Borda count was shown to achieve better performance than the
unweighted Borda count in (Ho et al., 1994). The next example, taken
from (Gader et al.,, 1996b) demonstrates the ability of the fuzzy
integral to effectively combine classifier outputs for handwritten
word recognition.

R R

Example 4.29 In a test of classifier fusion for word recognition,
Gader et al. (1996b) considered three advanced recognition
algorithms: a dynamic programming algorithm that is applied to
segmented characters, which we call the segmentation-based
method (SBM, see example 4.12), a hidden Markov model (HMM)
approach, and a fuzzy version of the hidden Markov model (FHMM)
method (Mohamed and Gader, 1994, Mohamed and Gader, 1995). The
decision fusion strategies all use the ranks of the strings provided by
each word recognizer. The HMM and FHMM schemes do not produce
output confidence values that can be compared to each other, or to
those produced by the SBM. Only the relative ranks of the HMM and
FHMM for various words in the lexicon are comparable. The SBM
approach used two MLP neural networks (one each for upper and
lower case letters) to generate character confidences for unions of
primitive segments. The neural networks were trained with
handwritten characters that were assigned possibilistic training
labels (Gader et al., 1995), which produced better results in word
recognition than those from neural networks trained with crisp
character labels. The use of ranks provides a measurement which is
comparable across recognizers. Gader et al. used only the top n (n= 5,
here) strings in the lexicon for each recognizer. For a given word
image and lexicon, each classifier produced an ordering of the
lexicon. The kth string in each ordering of the lexicon is assigned
the rank confidence 1 - (k/n). If k > n, the rank confidence is defined
to be 0.

Recall that the Borda count associated with a string in- a lexicon is
defined as the sum of the ranks, while the weighted Borda count is
the weighted sum of the ranks. The weights can be fixed for every
classifier, or they can be a function of the match confidence (degree
of match) between the image and the lexicon string. Data dependent

462 FUZZY PATTERN RECOGNITION

or data independent approaches can also be used to generate the
density values for the fuzzy integrals.

The fuzzy integrals used the rank confidences for the values of the
function h(x). The density values were generated using two methods.
In the first method, Gader et al. assigned each classifier a fixed
density value which was used for every string in every lexicon; this
value is considered to reflect the worth of each classifier. An
example of the non-data dependent method for combining word
classifiers are shown in Tables 4.52{a) and 4.52(b). This example is
difficult - can you figure out what the correct word should be from
this pair of tables? Did you guess the word "island" - before you read
the caption of Table 4.52(a)? This is the correct word.

Table 4.52 (a) Three classifier rankings
for an image of the word "island"

Rank | HMM FHMM SBM
1.0 "grant” "stpaul” "island"
0.8 "{sland” "grant” "grant”
0.6 "granada"” "island" "salem"”
0.4 "burwell” "oneill" "nehawka"
0.2 "nehawka" "o'neill" "roseland”

The three classifiers were run on an image of the word "island” from
the SUNY (1989) postal database, and the five rows of Table 4.52(a)
correspond to the top five words as ranked by each of the three
classifiers. Note that the word "island" appears in the top three
choices of each classifier, but is the top choice of only one of them.
Actually, the word "grant" seems to be a better guess from the
information in Table 4.52(a). Table 4.52(b) shows the results of fixed
weight fusion for the top five classes (words) appearing in Table
4.52(a). The Borda count uses no weight factors. For the other three
schemes (weighted Borda count, Sugeno integral and Choquet
integral) the weights/densities were chosen as 0.65 for SBM, 0.25 for
HMM and 0.05 for FHMM. As seen in Table 4.52(b), the weighted
Borda count and the Choquet integral pick the correct class for this
example.

Table 4.52 (b) Results of classifier fusion
on the results in Table 4.52(a)

Weighted
Borda Borda Sugeno Choquet
String Count Count Integral Integral

"grant” 2.60 0.81 0.8 0.85
"island" 2.40 0.88 0.8 0.92
"nehawka"| 0.60 0.31 0.4 0.32
"salem" 0.60 0.39 0.6 0.26

"granada” 0.60 0.15 0.25 0.15

CLASSIFIER DESIGN 463

The second method discussed in Gader et al. (1996b) used data
dependent densities. The confidence value produced by the SBM was
used to define a density value for it in the fusion scheme. The density
values for the HMM and the FHMM were then determined by a
heuristic formula involving the SBM confidence and the agreement
between the classifiers concerning the rank of each string. More
precisely, let:

Cs = confidence value from the segmentation-based classifier
g% = density of the segmentation-based classifier

rg= rank of the string by the SBM

gt = density of the HMM classifier

ry = rank of the string by the HMM

gF = density of the FHMM classifier

rp= rank of the string by the FHMM

If a string is in the top n choices of the segmentation-based system,
then define

g% = max(e, a- Cg) ; 4.131a)
g =p-4J1-Cg) - (1~|ry - 1s)) ;and (4.131b)
g" =7-41~Cg)-(~|rg ~rg)) . (4.131¢)

Otherwise, define

g% = max(e, o Cg) (4.132a)
g =B J1-Cg) (1 -|ryy —rg)) (4.132D)
g" =7 \1-Cg)-(1~|rp -1y (4.1320)

Here ¢, B, and y are parameters that can be optimized and € > 0 is
very small. The expression max(e,o-Cg) was used to keep the
densities for the SBM non-negative in the case that an appropriate
segmentation cannot be found. The same method can be used to
define weights for the weighted Borda count.

For example, the data-dependent Choquet combination method
would assign confidence values shown in Table 4.53 for the strings
"island" and "grant” from Table 4.52(a). The values of the parameters
used for the computations shown in Table 4.53 were o= 0.9, B = 0.1,
and y= 0.4.

464 FUZZY PATTERN RECOGNITION

Table 4.53 Example of data-dependent Choquet integral fusion

String C] H F Choquet
S g g g Integral
"island"|{ 0.75 0.68 0.02 0.04 0.92
"grant" | 0.46 0.42 0.27 0.08 0.86

The experiments were performed on handwritten words from the
SUNY CDROM database. The "BD city" words were used (Hull, 1994).
The FHMM and HMM were trained using the standard training set
from that database. The SBM method was trained using a different
set of data. In the SBM experiment, 126 words from the training set
were used to "train" densities and weights. All of the 317 BD city
names from the test set were used for testing. Sets of lexicons that
had an average length 100 were used for both training and testing.
The results of the three individual classifiers are shown in Table
4.54.

Table 4.54 Recognition results for individual classifiers

Classifier | Training Testing
HMM 74.6% 71.6%
FHMM 74.6% 73.2%
SBM 82.5% 83.9%

The "training" method for the weighted Borda count and the fixed
density fuzzy integral approaches was a "modified" exhaustive
search. Weights/densities were varied from 0.05 to 0.95 by
increments of 0.05. The training method that was used for the data-
dependent densities was a similarly modified exhaustive search on
o, B, and y. In each case, "optimal" values for the parameters were
found on the training set and then used on the test set. The top choice
results for the Gader et al. (1996b) experiments are shown in Table
4.55.

Table 4.55 Training and test results for fused classifiers

Optimal Testing
Combination Approach Training

Data-Dependent Choquet 89.7% 88.0%
Data-Dependent Sugeno 89.7% 86.4%
Data-Dependent Weighted Borda 88.9% 85.5%
Fixed Choquet 88.1% 82.0%
Fixed Sugeno 88.1% 85.2%
Fixed Weighted Borda 88.1% 86.4%
Borda 84.1% 83.3%

Gader et al. (1996Db) attempted to train several standard MLP neural
networks to fuse classifiers from the same data that was used by the
fuzzy integral. Each feature vector contained ten inputs: the

CLASSIFIER DESIGN 465

segmentation confidence (Cg), the word ranks for the three
classifiers (rg,ry,rp), the data dependent densities for the three

classifiers (g%,g",gf), and the fuzzy measures of the three 2-
element subsets of classifiers. Recall that for a fuzzy measure
defined over the set of three information sources (in this case, the
three classifiers), there are eight subsets to consider. Leaving off the
measure of the empty set, which is 0, and that of the whole set, which
is 1, the fuzzy measure is completely specified by the measures of the
three singleton sets (these are the densities above), and the measures
of the three subsets containing two of the three sources. Hence, the
neural networks had as input the segmentation confidence, the
classifier outputs, and the fuzzy measure. The target was set to 0.9 if
the string represented the correct choice for the current word image,
and 0.1 if it was incorrect. Many architectures were investigated.
Table 4.56 shows the best results obtained.

Table 4.56 Training and test results : neural nets with crisp outputs

Training Testing
Architecture | # Iterations Results Results
10:5:1 1000 84.1% 80.4%
10:5:1 3000 84.9% 82.3%
10:5:1 6000 84.9% 81.4%
10:5:1 21000 86.5% 79.5%
10:10:1 2000 83.3% 81.4%
10:10:1 4000 83.3% 81.4%
10:10:1 10000 86.5% 81.7%
10:10:1 15000 88.1% 80.8%
10:10:5:1 5000 84.9% 82.0%
10:10:5:1 9000 86.5% 81.4%

It is clear from Table 4.56 that the neural network architectures did
not match the performance of the fuzzy integral for fusing the three
classifiers on this data set. Gader et al. conjecture that this may be
true in handwritten word recognition because we are not learning a
nonlinear function in the same sense that standard pattern
recognizers do - i.e., we are not hacking through Dubois and Prade's
"jungle of function approximation”. Since strings need to be ranked,
there are a very large number of possible classes and hence, we
cannot use the standard class coding approach. This makes the task
for a neural network extremely difficult.

Siy and Chen (1974) wrote one of the first papers about the
application of fuzzy models to handwritten character recognition.
Like Chang and Pavlidis (1977), this paper contained precursors of
some elements of many papers to follow, including those of Chi et al.
(1996b) and Chi and Yan (1996). Although the language of syntactic
pattern recognition is not used in Siy and Chen, some of the

466 FUZZY PATTERN RECOGNITION

material on this topic that we will present in Section 4.10 is closely
related to ideas in this paper, so we take a little stroll down Siy and
Chen lane, as it were, to check out the scenery.

Siy and Chen argued that all handwritten characters were distorted
versions of printed characters, and that all alphanumeric
characters comprised essentially three basic "strokes": the line, a
portion of a circle, or a whole circle. They suggested the set of 15
"features" shown in Figure 4.92, made from one of the three basic
strokes, as a basis for decomposition and subsequently, recognition,
of the various characters in any alphabet. In Section 4.10 we will
call these 15 arcs the primitives of a grammar for syntactic
approaches to handwriting analysis. Shown directly beneath the
symbolic name of each primitive is a 2-digit number that will be
used to encode the prototypical description of each character.

- N

7\

H line V line P line N line

C OUNSc

C curve D curve A\ curve A curve S curve Z curve

OO OO0

Circle L Circle R Clrcle A Circle B Circle O

11 12 14 15
1 2 Numeric code : 0102060000
I_ Node pairs : 1213340000
3) Class label 5
4 Final code : 0102060000121334005

- v

Figure 4.92 The 15 branch features (primitives) of Siy and Chen

A character is represented by three strings of numbers; the first
string is made by concatenating digit pairs (e.g., O1=H line, 02 =V
line, etc.} in ascending order; the second string encodes the node
pairs needed to specify the stroke sequence, ordered to connect the
digit strings in the first pair; and the third string is a class label

CLASSIFIER DESIGN 467

(this is how training and test data are labeled). A functional
representation of the digit "5", using (-) to indicate concatenation, is
5=H(1,2) - V(1,3)-D(3,4), which indicates three things: the sequence
of strokes and type of strokes (H and then V and then D), and the sets
of node pairs ((1,2) and then (1,3) and then (3,4)). Using this scheme,
for example, the numeral "5" will be encoded as shown in the lowest
panel of Figure 4.92.

Siy and Chen skeletonize the binary character images by a thinning
algorithm (see examples 5.6 and 5.14, and also, e.g., Gonzalez and
Woods, 1992). Next, a set of nodes in the skeleton is found. Nodes can
be tips, corners, and junctions (strokes with 1, 2 or more than 2
edges incident to them, respectively). See Figure 5.17 for an
illustration of a corner and a junction (called a triple point in Figure
5.17 because there are 3 edges incident to the node).

A branch b is an arc (element of the skeleton) connecting a pair of
adjacent nodes. Branches are classified by two attributes; their
straightness and orientation. To illustrate, suppose a branch b is
extracted. At this point b might be a line, or it might be a curve.
Consequently, Siy and Chen determine the best fit (minimum least
squared error) line to the points along the skeleton b. Once this is
done, b is classified by computing its "straightness”, which is
defined as its membership in the fuzzy set "nearly lines", defined as

1-(8/S,) :S<S
mL(S)={0 58 ;s;s: : (4.133)

where S is the fitting error of the best fit line and S_is a threshold on
the fitting error. If S = 0, my (S) = 1. Thus, when the fitting error is

zero, b is a line, and otherwise, b departs from linearity to some
extent. Branch b is classified as a curve if 0<mg (b)<0.5; and
otherwise, b is declared a line.

To handle the orientation of b, Siy and Chen define membership
functions for each of the four line segments (H, V, P and N) in Figure
4.92. For example, the membership function for the horizontal H

line in Figure 4.92 is my(6) = 1 - min{min{[6],[180 - 6|,[360 - 6|} /45, 1},

where 6 =tan~!(m) is the angle of inclination in degrees of the best
fit line (whose slope is m) to the branch b under consideration. If the
branch b passes the straightness test in (4.133) so it is declared a
line, b is then assigned a crisp membership in the set whose branch
membership function maximizes this subgroup of 4 membership
functions. In our notation, each branch that is declared linear is

associated with a possibilistic label vector u(b) € N,, whose entries

are computed with the four "line type" membership functions, and
then branch b is assigned to a crisp line type by hardening the

468 FUZZY PATTERN RECOGNITION

possibilistic label, b € line typei <> H(u(b)) = e,, where i takes values
1 to 4, as say, the line type runs through H, V. P and N,

Siy and Chen define 6 membership functions that are similar to the
ones used for orientation of lines for non-linear cases. If a branch b
is declared a curve by equation (4.133), these membership functions
are used to label b as one of the remaining 11 non-linear feature
types. Eventually, every branch in a character skeleton is crisply
labeled as one of the 15 primitives in Figure 4.92.

Aiming towards a 1-np classifier that has the flavor of equation
{(4.2), Siy and Chen assign a crisp class label to each character in the
training data, and then run it through the above decomposition,
finally obtaining a 3 string prototype for each training character.
Since each training data produces a prototype, the prototypes will be
correctly labeled automatically. Moreover, as there will be many
variations of the same symbol, there may be several distinct
prototypes for a single character. The measure of "nearest" that was
chosen instead of the metric o in (4.2) was exact string matching, bit
by bit, against the strings derived to represent an input datum. Siy
and Chen use the relative frequencies of occurrence of each
prototype to make the search for a matching prototype during
testing and operation of the character recognizer a little more
efficient. Remember, this was 1974, and matching n _prototypes to a

long string for a lot of test samples could be computationally
arduous.

As described, the 1-np classifier implemented by Siy and Chen has a
"reject” option - that is, the system has three output categories
during testing: correct if one prototype exactly matches the input
and the labels agree; incorrect, if one prototype exactly matches the
input and the labels disagree; and no decision when no prototype
matches the input. The training data discussed by Siy and Chen
consisted of 50 samples for each of the 10 integers O, 1, ..., 9, so their
system produced n_ = 500 prototypes for the 10 characters. Then the

system was tested on a set of 500 unseen samples called the
"Honeywell 500" data by Siy and Chen. On this test data, their
simple 1-np classifier obtained a success rate of 98.4% correct - that
is, 8 of the 500 test characters were labeled incorrectly - three 9's,
two O's and one each of the numbers 3, 4 and 5. As we pointed out at
the beginning of Section 4.3, nearest prototype classifiers are
simple, effective and cool. Granted that the data set used by Siy and
Chen is small, this example still seems to bear out our assertion. Siy
and Chen (1974) does not exemplify a fusion technique: we discussed
this paper here to prepare for the next group of papers, which
consider the same topic, and that do use classifier fusion. Now we
spin forward to 1996, and see how much better we can do with all the
latest neural gadgets and fusion techniques at our disposal.

CLASSIFIER DESIGN 469

Earlier in this section we mentioned that standard FF neural
networks can be used for classifier/sensor fusion. Next we discuss a
set of four papers by Chi and Yan (1995, 1996) and Chi et al. (1995,
1996b) that all use multilayered perceptrons (MLPs) as a principle
component of classifier design. The two 1995 papers discuss single
classifiers, while the two 1996 papers have two classifiers in the
first level, and an MLP is used as the fusion classifier at the second
level. One of the primary applications that we have been using to
illustrate fusion so far - handwritten digit recognition - is the focus
of all four papers, and all four use the same data set. After we discuss
the four papers, we will combine their results in a single example -
Example 4.30.

All four papers base their examples and discussion on the same
database, identified as the United States National Institute of
Standards and Technology (NIST) special database number 3, which
consists of handwritten segmented characters. And all four papers
use the same data sets X and X for training and testing of the

classifiers developed in them The cardinalities of X and X, are

equal both being 10,426 crisply labeled samples of the 10 dlgltS O 1,
, 9. The features that are derived from the NIST database differ in

the four papers: the 1995 papers are based on feature vectors in %%,

while the two 1996 papers use feature vectors in %%, We will not
report many details of the feature extraction and classifier design
methods for each of these papers, but we do want to convey the basic
flavor in each of them.

Chi et al. (1995) and Chi and Yan (1995) use functions of the pixel
counts from 8 x 8 subwindows in the 64 x 64 image of each digit in the
database to obtain 64 input features as the basis for the design of a
fuzzy rule based classifier. The fuzzy rules in both 1995 papers are
found by first running a self-organizing feature map (SOFM, see
Section 4.3.D) on X . to generate prototypes from the training data;

in both papers, the SOFM display space is a square 2D grid of
various sizes. Then, the SOFM prototypes are used to generate
triangular premise membership functions (PMFs) using a variant of
a membership function generation method due to Dickerson and
Kosko (1993). Finally, fuzzy rules of the Takagi-Sugeno (TS) type are
extracted from the training data using a well known method due to
Wang and Mendel (1992). Both 1995 papers use product aggregation
(T = product) as in (4.72c) for aggregation of the LHS of each rule to

get its firing strength.

The major difference between the two 1995 papers is the inferencing
method used during defuzzification when an input is submitted to
the TS rule base. It is easier to describe the inferencing procedure
used in both papers by abandoning the formalism of label vectors,
so we will cast these classifiers in the notation of 4.6.D, i.e., using

470 FUZZY PATTERN RECOGNITION

STS instead our standard notation D, to denote classifier outputs,

and instead of crisp label vectors for the output functions, we use the
digits 0, 1, ..., 9, which correspond to crisp labels for each sample in
the training and test data.

Unlike Chiu (1994), Chi et al. (1995) do use the standard TS
defuzzification formula shown in (4.73). Since there are M rules,
with M >> ¢ = 10 classes, many rules will have the same crisp label -
one of the 10 digits from O to 9 - as their right hand sides. Since (4.73)
always makes a convex combination of the output functions by
combining them with the associated firing strengths, the result of
using this formula in the present instance is to produce a number in
the closed interval [0, 9] for each input datum. With the notation just
established, (4.73) takes the form

M
> oy(2)j;
—uel0,9], j;€{0,L..9}Vi . (4.134)

The real number in [0,9] is now converted into one of the 10 crisp
labels, and the TS system becomes a crisp classifier by computing

SEY(2)=| S%¥(2)+0.5] , (4.135)

where | * | again denotes the floor of its argument.

In Chi and Yan (1995), the same basic classifiers use sets of 64 input
features as given in Chi et al. (1995), but the method of inference in
the fuzzy rule base is changed. Chi and Yan (1995) use a 3 layer feed
forward network. The first layer generates the fuzzy membership
function values. The number of nodes in the hidden layer is equal to
the number of rules, and the output of the kth hidden node is equal
to the firing strength of the kth rule. The output layer has 10 nodes,
one for each of the 10 digits O, 1, ..., 9. The ith output node combines
the output of the hidden layer nodes as follows:

<wi,ocl(z]>

ul(z)=F | ™™ ,i=0,1,...,9) (4.136)

where FL is the logistic function at (4.97) with A = 1 and § = 0. Unlike

(4.135), this network produces S$(2z) =(u,(2z)....,uy(2)", a vector
output. Chi and Yan learn the weights {wij: i=0,1,...,9j=1,2,...,M}

CLASSIFIER DESIGN 471

by the usual back propagation method, so this is essentially a single
layer perceptron whose inputs are normalized firing strengths. Once
the weight vectors are found, (4.136) is used to classify test inputs.
Chi and Yan call this an optimized fuzzy rules (OFR) classifier; they

do not specify how S%(z) is hardened to produce crisp labels, so we
presume they use the same strategy as in (4.135).

In the 1996 papers the fuzzy rule base is obtained by a completely
new method, and, as we have mentioned, the features also change.
Both 1996 papers base their features on Siy and Chen's (1974) shape
features that are shown in Figure 4.92. Chi et al. {1995) modify this
set of features just a bit in that they use the 4 lines and 6 arcs that are
shown in the upper and middle panels of Figure 4.92, but the 5
circles in Figure 4.92 are replaced by 2 shapes. The eleventh shape
used in these two 1996 papers is circle O as shown in Figure 4.92, but
the four circles L, R, A and B in Figure 4.92 are replaced in these two
papers by a twelfth primitive that is simply called "curve", which is

shaped like this: C5 The same membership function, equation

{4.1833), that Siy and Chen proposed in 1974 is used in both of these
papers to assess the extent to which a given segment is linear.

Working on the presumption that a given numeral can be well
characterized by its 6 longest segments, Chi et al. (1996b) extract a
total of 36 numerical features for each datum from its 6 longest
segments, and convert the training and test data in the NIST
database into these feature vectors; Chi and Yan (1996) use these
same 36 features, which are obtained as follows. The four basic
features are computed: type of segment (this is a symbolic feature
which is one of the 12 shape descriptors), normalized segment
length, and normalized coordinates of the center of gravity of the
segment relative to the center of gravity of the thinned skeleton of
the digit. For up to 6 segments per skeleton, this makes 24 features.
Added to this are 12 more features: number of segments in this digit,
numbers of end points in each of four quadrants whose axes lie at
the center of gravity of the thinned skeleton of the digit, normalized
total length, the center of gravity of the thinned skeleton of the digit,
numbers of lines, circles and curves, and aspect ratio of the image.
Notice that this list of 36 features has one symbolic feature, 8
integer-valued features, and 27 continuously valued features. A
typical crisp ID3 decision tree rule extracted from the training data
using these features looks like this:

IF the type for longest segment is circle

AND the type for second longest segment is C curve
AND normalized y coord. of skeleton centroid is > 0.586
THEN digit = 6

Chi and Yan (1996) discuss a method