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Preface

In the fields of image processing and pattern recognition, a great number of differ-
ent techniques have been investigated, developed, and implemented in the last few
decades. Starting from statistical models to neural network algorithms, researchers
from all over the world have made a good number of contributions to the development
of improved methodologies for solving difficult problems in these fields.

Sine L. A. Zadeh introduced the fuzzy set theory in 1965, the fuzzy system ap-
proach has been an increasing interest of many scientists and engineers for opening up
a new area of research and problem solving. Many books on fuzzy systems have since
been published. However, most of them are devoted to the theoretical developments
and their applications in control systems. In the last few years, we have also seen the
booming of applications of fuzzy algorithms in image processing and pattern recog-
nition. The interest in using fuzzy algorithms comes from the facts that: (1) fuzzy
rules are found to be naturally effective for any human-like cognition systems such
as image understanding and pattern recognition, and (2) the theory of fuzzy sets
provides a good platform for dealing with noisy, and imprecise information which is
often encountered in our daily life.

This book does not focus on the theoretical research of fuzzy algorithms, but it
rather provides a comprehensive discussion on several issues of application-oriented
methodologies using fuzzy algorithms for image processing and pattern recognition.
These include the segmentation of a variety of images and characterization of tissues
in magnetic resonance (MR) images, parameter identification for mining deposits,
and printing and handwritten character recognition.

This book is mainly aimed at three groups of readers, (1) those who are famil-
iar with fuzzy algorithms and want to identify the useful applications of fuzzy logic,
(2) those who have been articulating in the fields of image processing and pattern
recognition for some years and want to find some new and interesting topics to work
on, and (3) those who want to know more about both fuzzy algorithms and their prac-
tical applications. As an application-oriented book, university students, researchers,
and engineers would find the book useful in many practical aspects. In addition, this
book can serve as supplementary reading material for university courses in areas of
image processing, pattern recognition, artificial intelligence, and fuzzy systems.

This book is divided into seven chapters. Following an introductory chapter is the
generation of membership functions from training examples. Then each of the remain-
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ing chapters is devoted to a specific fuzzy algorithm or a class of fuzzy algorithms,
and their applications in image processing and pattern recognition.

In Chapter 1 we introduce the basic concepts and ideas of fuzzy set theory,
including probability and fuzziness, basic properties, some operations on fuzzy sets,
and fuzzy relations. The chapter ends with a brief discussion on fuzzy models for
image processing and pattern recognition.

In Chapter 2 three clustering-based techniques {c-means, adaptive vector quan-
tization, and the self-organizing map) for membership function generation will be
presented. Two techniques for tuning membership functions using the gradient de-
scent algorithm and a neural network approach are also discussed.

In Chapter 3 we discuss Huang and Wang’s fuzzy thresholding algorithm follow-
ing the introduction of the threshold selection method based on statistical decision
theory and non-fuzzy thresholding algorithms. A unified description of all fuzzy or
non-fuzzy thresholding methods is then given and the extension of the methods to
multilevel thresholding is proposed. Finally, the applications of these thresholding
methods to real images are provided.

In Chapter 4 we describe and compare the hard and fuzzy c-means algorithms,
which can be used for clustering when the number of clusters is known. We then
describe three cluster validity measures which can be used to analyze the quality of
fuzzy clustering procedures. The chapter ends with a section on applying the fuzzy
clustering algorithms to several real world image processing and pattern recognition
problems.

In Chapter 5 we first describe how to use membership functions to measure sim-
ilarities between line segments. A basic algorithm for line pattern matching based on
spatial relations of the lines in a prototype and the input pattern is discussed. We
then propose more sophisticated algorithms to deal with noisy patterns and geomet-
rically distorted patterns. To demonstrate the usefulness of the proposed line pattern
matching algorithms, applications to Chinese character recognition and point pattern
matching are illustrated.

In Chapter 6 we present. three fuzzy rule generation techniques hased on learning
from examples: Wang and Mendel’s method, ID3 decision rules, and Krishnapuram’s
neural network approach. We then describe the minimization of fuzzy rules based on
Karnaugh maps proposed by Hung and Fernandez and discuss various defuzzification
methods for fuzzy rule-based recognition systems. The chapter ends with a section
on applications of fuzzy rule recognition systems for segmentation of geographic map
images and recognition of printed upper-case English letters and handwritten digits.

In Chapter 7 we introduce several multi-classifier combination techniques for
improving classification performance including voting schemes, a maximum posteriori
probability based method, a multilayer perceptron approach, and a fuzzy integral
model. The chapter ends with a section on applying these combination classifiers to
handwritten numeral character recognition.
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Chapter 1

Introduction

1.1 Basic Concepts of Fuzzy Sets

1.1.1 Probability and Fuzziness

The notion of probability has apparently had a pervasive influence upon the compu-
tational frameworks in science and engineering. In the terminology of set theory and
the mathematical theory of probability, an event E € o-field is defined as a subset
of the sampie space ¢ which is a collection of all possibilities or sample points in a
probabilistic problem. A probability measure P over a measurable space (2,0) is a
real function which assigns a normed measure to an event E, denoted as P(E), such
that

P(E)yz0,VEco
and
P =1

If { A,} is any collection of disjoint events, then its probability measure is additive,
that is

P(UZ4) =Y P(A)

i=1

From the above definition, an event E in terms of probability theory is always
referred to as a subset of a particular sample space {}. Therefore it consists of one or
more sample points, and the realization of these sample points indicates its occurrence,
However, many real-world events that we encounter daily are perceived to be vague
or ill-defined rather than being a probabilistic problem. For example, when solving
a real-life problem, one agrees that the rule of “either ... or” should be replaced by
that of “both ... and ”. In image processing, the grey level of an image element is
defined as both black and white to a certain degree of the two attributes respectively,
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where the fullness of being black or white is only a special case. This natural concept
of vagueness was not formalized in the scientific community until the work by Zadeh
in 1965 [1]. The concept of fuzzy sets is considered being a generalization of the
notion of ordinary sets. The underlying logic of the fuzzy-set theory is that it allows
an event to belong to more than one sample space where sharp boundaries between
spaces are hardly found. As another example, when we are asked whether it wiil
rain tomorrow, we would normally give an answer to the likelihood of raining with a
degree of confidence unless we are totally sure about the occurrence of the event. This
is a case where we can express our prediction using the numerical scale of probability.
If we say that the chance of rain tomorrow is 40%, then there is an implication that
the chance of no rain is 60%. However, in daily living it is unusual for us to give a
crisp estimate for such an event. We rather include some linguistic expressions such
as “It is very likely” to rain, and “the chance of rain is about 40%”, etc. It can be
perceived that the terms in italics are involved in the fuzziness of our probabilistic
problem as our estimates of rain are not totally dependent upon the deterministic
and/or probabilistic factors but also our subjective feeling about the phenomena.

Again, as in the area of image analysis, it is more natural to treai transient regions
between two areas in an image as fuzzy domains in which the degree of fairness
and the pixels having almost the same color and the graduel change in color are in
fact the expressions of fuzziness. For pattern recognition techniques which may be
best defined as the “methods that search for structures in data” [2], scientists are
interested in the distribution of data. These data may represent the structures of
certain patterns needed to be identified. Conventional patterns of data are classified
into three categories: regular, random, and clustered. There are, of course, hybrid
types of these main patterns. But in circumstances where the amount of data points
is not sufficient to support a probability model, then this kind of pattern yields itself
to a fuzzy one.

In summary, fuzzy-set algorithms outperform other conventional methods when
they are appropriately applied to solve the problems of fuzzy uncertainty. Some main
useful features of the fuzzy-set methodologies can be outlined as follows:

1. Fuzzy logic provides a systematic basis for quantifying uncertainty due to vague-
ness and incompleteness of information.

2. Classes with unsharp boundaries can be easily modeled using fuzzy sets.

3. Fuzzy reasoning is a formalism that allows the use of expert knowledge, and is
able to process this expertise in a structured and consistent way.

4. There is no broad assumption of compiete independence of the evidence to
be combined using fuzzy logic, as required for other subjective probabilistic
approaches.

5. When the information is inadequate to support a random definition, the use of
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probabilistic methods may be difficult. In such cases, the methods of fuzzy sets
are promising.

1.1.2 Fuzzy Sets

The theory of fuzzy sets was first introduced by Zadeh [1]. The concept of fuzzy sets
emerged when it was realized that it may not be possible to model ill-defined systems
with precise mathematical assumptions of the classical methods, such as probability
theory. Although it is only about three decades since the present concept of fuzzy
sets emerged, it dates back to the work of a Polish mathematician, Lukasiewiecz, on
multi-valued logic. However, multi-valued logic has not been used significantly in
logical systems because of its restricted framework. Gaines and Kohout [3] pointed
out that although fuzzy set theory is distinctive from probability theory, there are
still certain relationships between the two theories in formal and practical aspects.
One of the most upsetting concepts which was raised by the philosophy of fuzzy logic
is that the Law of Excluded Middle, which was defined by Aristotle, is no longer
completely true. The Law of the Excluded Middle states “X must be either Z or not
Z”. In other words, a person is either tall or not tall. However, in terms of fuzzy
logic, a person can be both tall and not tall in which the difference is the degrees of
certainty assigned to the fuzzy sets of “tall” and its complement “not tall”. Thus,
the intersection of a fuzzy set and its complement is not always an empty set, and
contradictory objects can be members of the same fuzzy set.

Figures 1.1 and 1.2 show the different concepts of describing “true” and “false”
by crisp sets and fuzzy sets respectively. What really matters for a fuzzy set is the
degree of truth assigned for each of its members. This perception of vagueness turns
out to be natural and more appealing to our daily concepts. Fuzzy set theory is not
a theory that permits vagueness in our computations, but it is rather a methodology
to show how to tackle uncertainty, and to handle imprecise information in a complex
situation.

Let X be a collection of objects or a universe of discourse, then a fuzzy set A in
X is a set of ordered pairs

A= {uale)/2) (1.1)

where pt4(x) is the characteristic function {or the membership function) of z in A. The
slash “/” is used simply as a separator between the real value = and its membership
grade p4(x), and p4(x) may take any real values in the interval [0,1], pa : X — [0,1].
If A contains only ¢ and 1, then A is non-fuzzy and its membership function
becomes identical with the characteristic function of a crisp set.
If the membership function of A is discrete, then A is written as

A= #1/-"-':1 +N2/$2+---+f-‘n/mn =2Pi/$i (1'2)
=1
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Figure 1.1

Crisp sets of TRUE and FALSE.
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Figure 1.2  Fuzzy sets of TRUE and FALSE.
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where “4+” and the “3_" stand for the union.
When the membership function is a continuum, the fuzzy set A is written as

A= [ (o) (1.3)

where the integral denotes the union of the fuzzy singletons pa(z)/z.

1.1.3 Properties of Fuzzy Sets

o Normality: A fuzzy set is said to be normal if the greatest value of its member-
ship function is unity:
Ve p(z)=1 (1.4)

where V, stands for the supremum of u(z) (the least upper bound).
QOtherwise the fuzzy set is subnormal.
Figures 1.3(a) and 1.3(b) show normal and subnormal fuzzy sets.

e Convezity; A fuzzy set A is convex if and only if the sets A, defined as

Ax = {z/pa(z) 2 o} (1.5)

are convex for all & € [0,1] . Figures 1.4(a) and 1.4(b) show the convex and
non-convex fuzzy sets respectively. A, is the level-cut set whose membership
function is equal or greater than o.

» Crossover pownt: A crossover point of a fuzzy set A is an element whose mem-
bership grade in A is equal to 0.5.

o Fuzzy singleton: A fuzzy singleton is a fuzzy set which only has a membership
grade for a single value. Let A be a fuzzy singleton of a universe of discourse
X,z € X, then A is written as

A=pfz. (1.6)

With the above definition, a fuzzy set can be considered as the union of fuzzy
singletons.
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Membership grade

(a)

—

Membership grade

(&)

Figure 1.3 (a) A normal fuzzy set; (b) a subnormal fuzzy set.
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Membership grade

(a)

Membership grade

(b

Figure 1.4 (a) A convex fuzzy set; (b) a non-convex fuzzy set.
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1.1.4 Operations on Fuzzy Sets

The operations on fuzzy sels presented in this section are based on the works of
Zadeh and they should not be considered as a complete coilection. The intention
is to provide adequately the mathematical aspects of fuzzy set theory in relation to
discussions and developments in the following chapters. The original information of
fuzzy set theory can be found from the excellent collection of Zadeh's papers edited
by Yager et af [¢]. Other excellent books on fuzzy sets include [5], [6], [7].

o Fuzzy intersection: Figure 1.5 shows the intersection of two fuzzy sets A and B.
The fuzzy intersection is interpreted as “A AND B”, which takes the minimum
value of the two membership grades.

Alz =3 pa(z) A pp(z (1.7)
where A denotes the minimum operator.

o Fuzzy unjon: Figure 1.6 shows the union of two fuzzy sets A and B. The fuzzy
union is interpreted as “A OR B”, which takes the maximum value of the two
membership grades.

A(z)U B(z) =} pa(z) V up(2) (1.8)
where V denotes the maximum operator.

o Fuzzy complemeni: The complement of a fuzzy set A, which is understood as
“NOT (A)”, is defined by (see Fig. 1.7)

A=Y 1- (o) (1.9
where A stands for the complement of A.

s Conver combination; The convex combination is an operator which combines
different fuzzy sets into a single fuzzy set using the weights assigned to each fuzzy
set. The total membership function gr(z) as a result of the convex combination
of the membership functions gta,,..., £, is defined by

pr(z) = wi(z)ua, (x) + wa(z)pa, (z) + ... + wa(z)ua, () (1.10)
where w, ws, ..., t, are the weights for the fuzzy sets Ay, As, ..., A,, respectively
such that:

wi(z)+wa(z) +... Fwalz)=1 (1.11)

with the understanding that the “+” sign in Eqs. (1.10) and (1.11) denotes an
arithmetic addition.
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Membership grade

Figure 1.5 Intersection of fuzzy sets A and B (shaded area).

Membership grade

Figure 1.6  Union of fuzzy sets A and B (shaded area)
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Figure 1.7 Fuzzy set A and its complement.

o Fuzzy concentration: The concentration of a fuzzy set produces a reduction by
squaring the membership function of that fuzzy set. If a fuzzy set A is written
as

A={pfz1+p2/z2+ ... + pa/2a}

then the fuzzy concentrator applied to a fuzzy set A is defined:

CON(A) = A = (/1 + dfoz + o+ 12} (112)
where CON(A) denotes the concentrator applied to A.

o Fuzzy dilation: The fuzzy dilation is an operator which increases the degree of
belief in each object of a fuzzy set by taking the square root of the membership
function. Clearly, the operation of dilation has an opposite effect to that of
concentration defined in Eq. (1.12):

DIL(A) = A" = {u®% /2y + %% /20 + . + 2%/ 2.} (1.13)
where DIL(A) denotes the dilator applied to the fuzzy set A.

o Fuzzy plus and fuzzy minus: The operations of plus and minus applied to a
fuzzy set give an intermediate effect of concentration and dilation respectively.
I A is a fuzzy set, then plus and minus may be defined for example as
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Plus(A) = A*® (1.14)

Minus(A) = A°™ (1.15)

e Fuzzy intensification: Intensification is an operator which increases the mem-
bership function of a fuzzy set above the crossover point (at & = 0.5), and
decreases that of a fuzzy set below the crossover point.

If A is a fuzzy set, z € A, then the intensification applied to A is defined as

nInNT(a)(z) 2 palz), palz) 20 (1.16)
sinray(z) < palz), pa(z) <0.

A typical expression for the application of the intensifying operator is the S-
function proposed by Zadeh [8] defined as

0 if <0

2e? if 0<z<05
S@)=11-201-op if 05<2<1 (1.17)

0 f z>1.

o Bounded sum: The bounded sum of two fuzzy sets A and B in the universes X
and Y with the membership functions g a(z) and pg(y) respectively, is defined
by

A® B = pags = LA (palz) + 18(y)) (1.18)
where the sign “+” is the arithmetic operator.

¢ Bounded product: The bounded product of two fuzzy sets A and B as described
in the bounded sum is defined by

A® B = pags =0V (pa(z) + paly) - 1). (1.19)

1.2 Fuzzy Relations

Fuzzy relations have been extensively investigated in literature due to their inher-
ently important applications. The use of fuzzy relations provides a natural way to
infer a conclusion from a human expression which includes vagueness. In terms of
mathematical formality, a fuzzy relation can be defined as follows:
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A fuzzy relation R of a fuzzy set A to a fuzzy set B is a fuzzy subset of the Cartesian
product X x Y which is the collection of ordered pairs (z,y), z € X, y € ¥. The
following expression is a fuzzy binary relation where R is characterized by the bivariate
membership function p(z,y) of the associated pair (z,y):

R [ ua(e,)/(ey) (1.20)

where the symbol [> stands for “defined as”.

For an n-ary fuzzy relation , R is written as:

R pr(z1, 22,y Za) (21, T2y o Bn), € X;, 1= Ln. (1.21)
X1xXz%..%xXn

The composition of the two binary fuzzy relations B;(X,Y) and Ry(Y, Z) yields
another fuzzy relation Rs(X, Z) which is defined by

Ri(X,Z) = Ri(X,Y) o R(Y, 2)
[, v R (@) A pry(9,2)) (2,2) (1.22)

where “o” denotes the operation of fuzzy composition.

Based on the concept of fuzzy relation, some rules for fuzzy inference are also
proposed by Zadeh [9], [L0]. These are known as:

¢ FEntailment rule. The entailment principle allows us to infer from a fuzzy propo-
sition “X is A” to a less specific proposition “X is B”. The entailment rule is
expressed in a canonical form by

Xis A
ACB— paz) < ppla),ze X (1.23)
(therefore) X is B.

It should be noted that the straight line is used to separate the premises from
the conclusion.

o Conjunctive rule. If the fuzzy premises are expressed in the form “X is Ay, X
is A3, ..., X is Ap."”, then the conclusion induced by the conjunctive rule is the
intersection of all fuzzy premises - all premises are connected by the operator

AND (A).
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Xis A
Xis A;

X is An (1.24)
(therefore) X is A; U AU ... U Ay = pta,ussu..ua. () =
Ha () A pag(z) A A prag (2)

o Projection rule. The projection of the binary relation R of X and Y on the
domain of X is defined as

(X,Y)is R
(therefore) X is XR

(1.25)

where XR is the projection of R on X, and the membership function is given by

,UXR(II) = V,,mz(w,y), TE X! ye Y

o Compositional rule. The compositional rule of inference can be applied to infer
a new fuzzy subset B'(Y) by A(X) o Raxp(X,Y) in which the membership
function of B’ is constructed by the max-min product of the row vector of
ga(x) and the relation matrix of gaxs(z,y), for z € X, and y € ¥, that is,

Ais X

BisY

gf,‘Y));? R {1.26)
is

(therefore) B'is A'o R.

o Generalized modus ponens. The term modus ponens means “method of affirm-
ing” since the conclusion is an affirmation. The conclusion which is inferred by
the generalized modus ponens is defined by

(Major premise:) If X is B then Y is C
(Minor premise:) Xis A (1.27)
(Conclusion:) Yis A o(B&C)

where B is the negation of B.

It is noted that the generalized modus ponens does not necessarily require the
antecedent “X is B” in the major premise to be identical with the minor premise
“X 1s A®. This property of free identity is not valid for the classical modus
ponens in the binary logical argument.
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1.3 Fuzzy Models for Image Processing and Pat-
tern Recognition

The theory of fuzzy sets has immediately found its potential application to the fields
of pattern recognition and image processing. Recently a monograph of collected pub-
lished papers on fuzzy models for pattern recognition has been published by Bezdek
and Pal [2] to present several significant contributions starting from concepts to ap-
plications of fuzzy models for the solutions of reai-life problems.

There are several fuzzy-set models for solving problems in pattern recognition and
image processing. Some popular models are: the use of fuzzy membership function,
fuzzy clustering, fuzzy-rule based systems, fuzzy entropy (measure of fuzziness), fuzzy
measure and fuzzy integral. These mathematical tools for fuzzy-set modeling shall
be briefly discussed as follows.

1. Fuzzy membership functions: The membership function is the underlying
power of every fuzzy model as it is capable of modeling the gradual transition
from a less distinct region to another in a subtle way. This fundamental frame-
work has been applied to measure the fuzziness inherently existing in the recog-
nition of handwritten numeral characters such as the definition of “straighiness”
and “orientation” for feature classification. The direct use of fuzzy membership
functions is also found effective for image enhancement where different types of
membership functions are used to reduce the amount of iterations carried out
by a relaxation technique and provide a better way to handle the uncertainty
of the image histogram (Chapter 3).

2. Fuzzy clustering: Clustering method has been a dominant solution method
for pattern classification problems. However, in nature there exist only a few
cases where the differences between the patterns are clear-cut. Therefore, the
implementation of fuzzy-set mathemnatics in conventional clustering algorithms
is naturally essential. Many problems invelving classification in image analysis
and computer vision have been effectively solved using fuzzy clustering tech-
niques {Chapter 4).

3. Fuzzy pattern matching: Many pattern recognition problems can be sim-
plified as a point or line pattern matching task. Fuzzy algorithms, which can
deal with ambiguous or fuzzy features of noisy point or line patterns, have been
found to be particularly useful in line pattern matching. Many algorithms, in-
cluding various fuzzy relaxation based techniques [11], {12], have been developed
and applied to a number of pattern recognition applications (Chapter 5).

4. Fuzzy rule-based systems: The rule-based system is one of the most ac-
tive research areas in artificial intelligence. It is actually a dominated platform
for various expert systems. We believe that we human beings take a similar
approach to perceive the world around us in a very robust way. In the real
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world, almost everything is uncertain, therefore, a fuzzy rule-based system is
expected to achieve a better performance than a crisp rule-based system in
dealing with ambiguous, uncertain and fuzzy data. Fuzzy rule systems have
found applications in many fields including control, decision making, and pat-
tern recognition [2], [13], (14}, [15]. A fuzzy rule base consists of a set of fuzzy
IF-THEN rules which together with an inference engine, a fuzzifier, and a de-
fuzzifier form a fuzzy rule-based system. The role of a fuzzifier 1s to map crisp
points in the input space to fuzzy subsets by applying membership functions
to inputs. System performance is very much dependent of chosen membership
functions, in particular, for the systems dedicated for image processing and
pattern recognition. In Chapter 2, we shall discuss how to generate a set of
membership functions which can reflect the actual data distribution by using
the training data. Also discussed in this chapter are two approaches to tune the
membership functions for an improved system performance. Fuzzy rules can
either be extracted from expert knowledge or learned from numerical data. In
Chapter 6, three techniques to produce fuzzy rules from the training data are
presented. As the minimization of a fuzzy rule set 1s the constant motivation
technically and economically, we devote a section in this chapter to deal with
this problem. Also discussed in Chapter 6 are various defuzzification meth-
ods for fuzzy pattern recognition models and optimized defuzzification by using
feedforward neural networks.

5. Fuzzy entropy: The concept of fuzzy entropy or measure of fuzziness was
first introduced by De Luca and Termini [16]. The entropy of a fuzzy set is
a functional to measure the degree of fuzziness of a fuzzy set, which is based
on Shannon’s function. This fuzzy-entropy model has been applied to provide
a quantitative measure of ambiguity to the problems of grey-tone image en-
hancement [17). The measure of fuzziness based on metric distance was also
found useful in medical diagnosis [18], [19] as the symptoms of several diseases
expressed by patients overlapped each other.

6. Fuzzy measure and fuzzy integral: Based on the notion of fuzzy set the-
ory, fuzzy measure and fuzzy integral were introduced by Sugeno [20]. Fuzzy
measure provides a non-additive measure of multi-attributes, and fuzzy integral
is a kind of information-aggregation operator, which integrates an information
function over the fuzzy measures of all the subsets of the attributes in a non-
linear procedure. The application of fuzzy measure and fuzzy integral to image
processing and computer vision have been investigated actively in recent years.
Some of these investigations include the use of fuzzy integral for multi-classifier
[21] (Chapter 7), image segmentation and image understanding as reported in
[22], and character recognition (Chapter 7). The potential of this fuzzy model
to pattern recognition and image processing problems is certain.
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Membership Functions

2.1 Introduction

Choosing membership functions, the first and an essential step for fuzzy logic applica-
tions, is more important for a fuzzy pattern recognition model than for a fuzzy control
system. This is because the former is an open loop system, unlike a closed loop sys-
tem for the latter, and the membership functions have a much greater impact on the
system performance. Besides the heuristic selection of membership functions, as is
usually done in developing a fuzzy control system, many other techniques have been
proposed to produce membership functions which reflect the actual data distribution
by using unsupervised or supervised learning algorithms. Learning membership func-
tions are not only important but also feasible for image pattern recognition because
of a large number of training patterns available.

Whether a statistical approach or a fuzzy system should be used to solve a problem
with uncertain and/or noisy data has been debated for a quite long period. According
to the original intention in introducing fuzzy systems, membership functions should
be something subjective which clearly differs from objective probabilities. However,
a set of subjective membership functions either are too difficult to choose due to the
lack of understanding of the human approach on the problem or cannot produce a
satisfactory result. Therefore, many researchers have proposed the combined statisti-
cal method and fuzzy system for probiem solving. Using membership functions which
are generated from training data by one of various clustering techniques is one way
to achieve this combination.

A clustering algorithm can be applied to estimate the actual data distribution and
the resuiting clusters can be used to produce the membership functions which will
interpret the data better. Dickerson and Kosko have proposed a learning technique for
constructing membership functions by the adaptive vector quantization (AVQ) [23].
Besides the AV(} learning technique, we have worked on using c-means clustering
and the self-organizing map for producing membership functions which reflect the
actual data distribution in the input space [24], [25], [26], [27]. To improve fuzzy
system performance, the chosen or generated membership functions can be further

17
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tuned by using the gradient descent algorithm [28]. Neural networks, as an effective
optimization approach, can also be used for tuning membership functions [29].

Following this instruction, we first show some commonly adopted membership
functions and give a few definitions on membership functions in Section 2.2. Then in
Section 2.3, three clustering techniques: c-means, adaptive vector quantization, and
the seif-organizing map for producing membership functions are discussed. A merging
scheme which combines neighboring fuzzy sets is also proposed in this section. Tuning
of membership functions by using the gradient descent algorithm and a neural network
is described in Section 2.4.

2.2 Heuristic Selections

The choice of membership functions is usnally problem dependent. This is often
determined heuristically and subjectively [2], [28]. Triangular, trapezoidal, and bell-
shaped functions are three commonly used membership functions (see Fig. 2.1), which
are denoted as A(z; ¢, b, ¢), II(z; e, b, ¢, d), and w{z; b, ¢), respectively. They are defined
as

z < a,
—a)f(b—a) a<z L)

—z)f(e—8) b<z<e, (2.1)

0
A(z;a,b,c) = E:
0

r>c
0 z < a,
(z~a)f(b—a) a<z<h,
M{z;ae,bec,d)=¢ 1 b<r <Ly, (2.2)
(d—z)/(d—¢c) e<z<d,
0 r>d
and
. _J S(z;e—be—b{2,e) r<e,
w(m,b,c)—{ 1-S(z;c,c+b/2,c+b) z>¢ (2:3)
where Zadeh’s S-function is defined as
0 z < a,
2(z=2)? a<zr<h,
S(Eiabie) = { ey §<nsn (24)
1 z>c

In addition to choosing a membership function shape, we have to construct a set
of membership functions for all the fuzzy subsets (linguistic terms) for each input and
each output. Let us first define some properties of membership functions: peak point,
the symmetric or asymmetric membership function, left and right width, crosspoints,
and the crosspoint level, which will be referred to in the later discussions.
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Figure 2.1 (a) A triangular membership function; (b) a trapezoidal membership
function; (c) an S-shape membership function; and (d) a beil-shaped membership
function.
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. 2

left width right width
Tleft *peak Fright

Figure 2.2 The peak point, the left and right width of an asymmetric triangular
membership function.

Peak Point

Assuming that g4 X — [0,1], the peak point is defined as the value Zpeak from
the domain X which makes “A(J’peak) = 1. Figure 2.2 illustrates the peak point of
a triangular membership function. The peak value is an interval for a trapezoidal-
shaped membership function.

Left and Right Width

The left width (w;) is the length of the interval from the peak point to the nearest
point in the left z).¢ which has pa(z]es) = 0, that is,

W= Tpeak — Tleft- (2.5)

Similarly, the right width (w,) is the length of the interval from the peak point to the
nearest point in the right Zright which has J“A(‘rright) =0, that is,

Wr = Tright ~ Fpeak- (2.6)
If wy = w, then the membership function is symmetric. Otherwise it is asymmetric.

Figure 2.2 illustrates the above notions for an asymmetric triangular membership
function.
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Zcross X

Figure 2.3  The crosspoint and the crosspoint level of triangular membership
functions.

Crosspoints and Crosspoint Level

Figure 2.3 shows two membership functions representing two different linguistic terms,
Aand Bof X. A crosspoint is the value z¢ross in X where p14(2cross) = pa(zcross) > 0
A crosspoint level can then be defined as the membership grade of zcrgss in either
fuzzy subset A or fuzzy subset B (they have the same value by the definition of the
crosspoint). Note that two neighboring membership functions may have more than
one crosspoint. For the example shown in Fig. 2.3, the crosspoint level is 0.67.

In a fuzzy control application, a set of membership functions are normally chosen
based on the following principles:

e The same shape of symmetric membership function is usually applied to all
fuzzy subsets of an input or an output.

# These membership functions are evenly distributed in the value range of each
input or each output. They usually have a crosspoint level of 0.5.

# Different inputs and outputs can have the same or different shapes of member-
ship functions, and the same or different numbers of linguistic terms.

The value for each variable is usually normalized to the range [-1, 1] or [0, 1].
Figure 2.4 shows the evenly-distributed triangular (a) and trapezoidal (b} member-
ship functions with five linguistic labels, L (low), SL {somehow low), M (medium),
SH (somehow high), and H (high).
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Figure 2.4  Evenly distributed triangular (a) and trapezoidal (b) membership
functions with five linguistic labels.
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Figure 2.5 The resulting clusters of applying two different similarity measures,
(a) the angle difference, and (b) Euclidean distance (£, Py, and P; are prototypes).

2.3 Clustering Approaches

Heuristically chosen membership functions do not reflect the actual data distribution
in the input and the output spaces. They may not be suitable for fuzzy pattern
recognition. To build membership functions from the data available, we can use a
clustering technique to partition the data, and then produce membership functions
from the resuiting clusters.

“Clustering” is a process to obtain a partition P of a set E of N objects X;
(t = 1,2,...,N), by the use of a resemblance or disemblance measure, such as a
distance measure d. A partition P is a set of disjoint subsets of £ and an element
P, of P is calied a cluster and the centers of the clusters are calied centroids or
prototypes.

Based on different similarity measures, different clusters are obtained. Figure 2.5
illustrates the clustering results of 2-D inputs when (a) the angle difference defined
as

XX
cos(X,, X;) = DEAmEAE (2.7)

and (b) Euclidean distance defined as

d(Xi, X;) = \/Tplwir — z36)? (2.8)

are used for the similarity measure, respectively.

Many techniques have been developed for clustering data. In the following sec-
tions, we will introduce three of these techniques, c-means clustering, adaptive vector
quantization (AVQ), and the self-organizing map (SOM).
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2.3.1 C-means Clustering Approach

C-means clustering is a simple unsupervised learning method which can be used for
data grouping or classification when the number of clusters is known. It consists of
the following steps:

1. Choose the number of clusters, k.

2. Set initial centers of clusters, €,,¢3, ..., to the arbitrarily selected k vectors
from the training set.

3. Classify each vector X; = [zn, Z12, ..., Zin)7 (n is the dimension of input vectors)
into the closest center ¢; by Euclidean distance measure:

Il % = €: = min || x; —c; | . (2.9)

4. Recompute the estimates for the cluster centers ¢;. Let ¢ = [ei, Gig,y ooy €07,
¢im i1s computed by

z

X
Xy, € cluster ¢ “hm

N;

(2.10)

Cim =

where N; is the number of vectors in the ith cluster.

5. If none of the cluster centers (¢;, ¢ = 1,..., k) changes in Step 4, stop; otherwise
go to step 3.

Note that we do not make use of class labels so the c-means clustering is an unsu-
pervised learning algorithm. Variances (vi,i = 1,2,...,k) can be computed for all
clusters resulting from the c-means clustering. Let v; = [v;1, %z, ..., Din] T » then

J z x;, € cluster ¢ (@hm = Cim)?
Vi = N, .

We can make use of the c-means cluster centers and variances, which reflect the
actual data distribution in the input space, to generate membership functions for
each input. The idea is to approximate each cluster as a hyper-eilipsoid with its
center being the cluster center and the lengths of axes decided by the corresponding
variance of the cluster. The projection of a hyper-ellipsoid onto each axis will pro-
ducing a symmetric triangular membership function with the peak point being the
corresponding component of the cluster center. Figure 2.6 demonstrates membership
function generation for a problem of two inputs and seven clusters. As shown in the
figure, Cluster 1 was approximated by an ellipsoid with lengths of two axes being ry;
and ryz, respectively. For a general problem with n inputs, we have n axes of lengths:
Ti1,Ti2y oey Tin TOT cluster i. We define r;, as

(2.11)



2.3. Clustering Approaches 25

X1

Figure 2.6
variances.

00

Deriving membership functions from the c-means cluster centers and
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Tim = 200 (2.12)

where 1 < a < 4 ig a factor which decides the degree of overlapping among neighboring
clusters which actually reflects the fuzziness of the data. Each ellipsoid is projected
onto each input axis (m = 1,2,...,n) generating a triangular membership function
with the peak in the center of each cluster, A(zm; tim — Tim/2, Cim, Cim + Tim [2). Note
that this triangular membership function is actually a special case of trapezoidal
functions: M(zm;cim = Tim/2, Cim. Cim, Cim + Tim/2). We can also see from Fig. 2.6
that some neighboring clusters are so close to each other so that their projections on
one axis (could be on two axes) have a high degree of overlapping (a high crosspoint
level in the corresponding membership functions), for example, clusters 1 and 2 on
axis X1, and ciusters 5 and 6 on axis X2. In Section 2.3.4, we shall discuss a
merging scheme to combine those neighboring membership functions with a very high
crosspoint level. Membership functions learned from the c-means clustering algorithm
have been applied to geographical map image segmentation which will be reported in
Section 6.7.1.

2.3.2 Learning with Adaptive Vector Quantization

The c-means clustering algorithm produces the grouping of input patterns and cor-
responding cluster centers. However, instead of learning, the variances of clusters
have to be computed after the clustering process. In this section, we will discuss
a clustering method which can learn cluster covariance matrixes as well as cluster
centers.

Dickerson and Kosko proposed a technique to learn fuzzy functions by using adap-
tive vector quantization (AVQ) [23]. In their approach, the unsupervised AVQ com-
petitive learning was used to estimate the local centroids and covariance matrixes of
clusters in the input-output space. The covariance matrix of each quantization vector
defines an ellipsoid with its center being the cluster centroid. Fuzzy patches or rules
were learned from the resulting ellipsoids.

In our application, we used the AVQ algorithm to learn the membership func-
tions of input variables. The AVQ is a neural system shown in Fig. 2.7 which uses
unsupervised competitive learning. The AVQ system learns the synaptic connection
matrix M = [m;, mg,...,my] (p is the number of output neurons) between the input
neurcns in layer Fx and the output neurons in layer Fy which will be the first-order
estimation of the unknown probability density function of the data. The following
stochastic difference equation is used to estimate m; = [myy, myg, ..., my,]T (n is the
number of inputs):

) _ | mu(k) + ge[xe — mu(k)]  if the sth neuron wins,
mi(k +1) = { m;(k) if the ith neuron loses (2.13)

where #;, is a learning coefficient given by
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Figure 2.7 The AVQ architecture.

k
me=01(1—

The synaptic vectors converge to the pattern centroids. On the other hand, the local
covariance matrix (V) that give a second-order estimate are learned by

). (2.14)

{ Vi(k) + Bl (3 — mi(k))(xe — mi(k))T — Vi(k)]
Vilk+1) = if the ith neuron wins, (2.15)
Vi(k) if the th neuron loses

where f; is again a learning coefficient which is similar to n;. Both learning coefficients
are decreasing functions of time.
The competitive AVQ algorithm consists of the following steps [23]:

1. Set initial m;(0) ( = 1,...,p) to arbitrary p input vectors (m;(0) can be set to
the cluster centers obtained from the c-means clustering in order to speed up
the convergence).

2. For a sample Xy, find the closest or “winning” synaptic vector m;(k) based on
the Euclidean distance measure:

| 26 = mi(k) 1= min | x4 — my(k) | (2.16)
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3. Update the winning synaptic vector m;() according to Eq. (2.13) and its local
covariance matrix estimate V;(k) according to Eq. (2.15).

The data are statistically normalized so that all inputs have equal weight in the
distance measure.
The covariance ellipsoid is the locus of all xs that satisfy

e = (x—m)TVii{x —my). (2.17)

The eigenvalues of V' are Xi,...,Ain. The unit eigenvectors define the direction
cosines for each axis of the ellipse. If the jth eigenvector is e;; = [e;, €552, -, e;jn]T,
then the direction cosine of eigenvector j to axis [ is cosv5 (1 < 5,! < n) which is
given by

cos Yt = eijf|le!. (2.18)
The Euclidean half-lengths of the axes are equal to c/+/ X1, ¢/v/ Az, ..., ¢/v/Ain. There-

fore, the projection of the ith hyper-eliipsoid onto the Ith axis is the interval 8;; which
is given by (see Fig. 2.8 for a 2-D case)

&g = [my—e(|cosviul/y/ A + ... + | cos Yimt| /4 Ain)s

ma + of | cos Yiuil/y/ A + e + | €08 Yimi /1 Ain)]
(2.19)

where 1 < ¢ < 4. The generated membership functions are symmetric and peaked at
the pattern centroids. As it occured in the membership functions generated from the
c-means clusters, some neighboring membership functions with a high degree of over-
lapping can be merged with little effect on the system performance. The membership
functions learned by the AVQ algorithm have also been applied to geographical map
image segmentation {25].

2.3.3 Self-organizing Map Approach

Kohonen self-organizing map (SOM) uses unsupervised learning algorithm to modify
the weight vectors (W, ¢ = 1,2,...,m, and m is the total number of nodes in the
map) of a network to model the features found in the training data {30] (see Fig. 2.9).
A topographic map is automatically organized by a cyclic process of comparing input
patterns to weight vectors for each node. The weight vector to which inputs match
is selectively optimized to represent an average of the training data. As a result,
all the training data are represented by the weight vectors of the map which can be
considered as the prototypes or centroids of the input patterns.

Staring with a randomly organized set of nodes, and proceeding to the creation of
a feature map representing the prototypes of the input data, The training procedure
is as follows:
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Figure 2.8 Schematic demonstration of projection of an ellipsoid on axes X; and
Xz (L, and Ly are Euclidean half-lengths with L; = c/\/x and L, = c/\/E; b1r =
611 = L] cos 01) + Lo| cos @3] and &35 = 8 = Ly|cos(x /2 — 8;)| + La| cos(r/2 — 63)]).
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Figure 2.9  One-layer two-dimensional Kohonen self-organizing map structure
{m: the total number of nodes in the map; (z,%2,...,2,): the inputs; and W; =
[wi1, Wizy ..oy win]T: the weight vector for node i).
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1. Initialize the weights wy; (1 < <m,1 < j < n) to small random values, where
n is the number of inputs. Set the initial radius of the neighborhood around
node i as N;(0).

2. Present the inputs z,(t}, z5(2), ..., T«(£), where z;{#}) is the jth input at time 2.
3. Calculate the distance d; between the inputs and node i by

n

d = 3 (z5(t) — wis(t)). (2:20)

i=1
4. Determine i, which minimizes d;.

5. Update the weights for node £, and its neighbors in N, (2). The new weights
for i in N; (t) are

wi(t + 1) = wi(2) + alt)(z;(t) — wy(t)) (2.21)
where a(t) is the learning rate. Both a(t) and N;,(t) decrease as t increases,

6. If the process reaches the maximum number of iterations, stop; otherwise, go
to Step 2.

The self-organizing algorithm has a characteristics of preserving the topology in
the sense that the nodes located physically next to each other will respond to classes
of input vectors that are likewise next to each other. It is an advantage to use a 2-D
map in which we can easily visualize the relationship among nodes. However, the 1-D
or higher dimensional maps are also used for certain applications. Shown in Fig. 2.10
is a 15 x 15 self-organizing map obtained from a set of 10,426 handwritten digit
samples. As we can see from the map, those handwritten digits which are similar in
appearance are close to one another. For example, some of prototypes of “7” are very
similar to those of “9” or “1” in appearance and this is truly indicated in the map.
The same is observed for some prototypes of “2” and “3”. This topology-preserving
property of the self-organizing map is in much demanded for generating more robust
membership functions, in particular, when the membership function merging will be
performed. We shall discussion an approach for the membership function merging in
Section 2.3.4.

We use the SOM prototypes and variances to determine the membership functions
for each input. Each prototype generates a triangular membership function for each
input variable with the peak of the function located at each component of the proto-
type. Widths of fuzzy subsets are determined by the corresponding variances. Sup-
pose that m prototypes are W; (i = 1,2,...,m) with the corresponding variances V;
(i = 1,2,...,/m). Assume that W; = [, Wiz, ..., w;s]” and V; = [vi1, vz, .., vin] . The
centers of the triangular membership functions on the jth axis are wy;, wo;, ..o, Wij.
The corresponding regions are set to
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[w1; — avyj, wr; + avyyl,
[wa; = @vs;,wa; + avyj],
ey

[Winj — BUmy, Wi + aVmj].

Parameter a (1 < & < 4) is a scaling factor which reflects the fuzziness of the data. A
larger a is used for more uncertain data. The membership functions generated from
the SOM maps have found applications in handwritten digit recognition [26], {27].

2.3.4 Merging Neighboring Membership Functions

Suppose that input k has l; linguistic labels. The maximum number of fuzzy rules
that can be learned is [Jj_; /. In pattern recognition application, we can easily
get a large number of training examples so that the total of ([Ti_; /) fuzzy rules
could possibly be produced. By reducing the number of linguistic labels for each
input, we can reduce the number of produced fuzzy rules. One way to do this is to
combine two neighboring membership functions with a great degree of overlapping
{a very high crosspoint level). If two neighboring membership functions (considered
as trapezoidal membership functions for a general case) are II(z;; ai_1, bi—1, 61, di-1)
and II(z;; a;, b;, ¢;, d;), they will be merged if the following condition is satisfied:

bitei bt
- < 2.22
> > <y (2.22)

where I7 is a pre-specified threshold. The new membership function after the combi-
nation is II(z}; e, b, Cix, i), with the following parameters:

¢, = min(a;,a—1),
b,' = min(b.-, b"‘l ),
¢ = max(q,cia),
din = max(di,d;—y)- (2.23)

As a result of the merging process, some membership functions have trapezoidal
shapes instead of triangular ones (see Fig. 2.11).

Figure 2.6 shows that Clusters 3 and 4 are so close that they can be combined
into one cluster. Accordingly, membership functions on two axes derived from these
two clusters are also merged. However, for the case of Clusters 1 and 2, and the case
of Clusters 5 and 6, they are merged only on one axis (the horizontal axis and the
vertical axis respectively). In most merging cases for high-dimensional input vectors,
the membership functions of at least one input are separated and, therefore, the
discrimination ability for two clusters is not affected by this merging. Although using
a smaller number of clusters can also reduce the number of fuzzy rules, it loses the
discrimination ability for the two sub-clusters.
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Before Combination

T
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After Combination

Figure 2.11  Schematic demonstration of merging neighboring membership func-
tions.
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The membership functions generated by the clustering technique and the merging
scheme discussed above have the following characteristics:

s A set of mixed triangular and trapezoidal membership functions are generated
for each input.

s The membership functions can be symmetric or asymmetric.
» Different inputs usually have different numbers of linguistic terms.

¢ The crosspoint levels (zcross) can be any values in the range of [0, 1].

2.4 Tuning of Membership Functions

As discussed in the previous sections, membership functions can be chosen heuristi-
cally or generated by using one of the clustering techniques. The heuristically chosen
or generated membership functions can be tuned to improve their performance by
using a set of training data. The tuning of membership functions becomes more im-
portant if the merging procedure has been taken to reduce the number of fuzzy subsets
or a minimization technique has been used to reduce the number of fuzzy rules. Two
techniques, known as the gradient descent algorithm and a neural network approach
for tuning membership functions are discussed in the following sections.

2.4.1 Gradient Descent Algorithm

Driankov et @l presented a membership function tuning approach based on the gra-
dient descent algorithm [28]. In this section, we present a modified version of the
approach for classification problems. Assume that a set of symmetric triangular
membership functions are used. As discussed in Section 2.2, a triangular membership
function A(z; @, b, ¢) (symmetric or asymmetric) can be determined by three parame-
ters a, b, and c. However, only two parameters, the peak point a;; and the width b
have to be used to represent a symmetric triangular membership function as shown
in Fig. 2.12. The symmetric triangular membership function is thus given by

1-215";’—?2! if @i — b5if2 < z; L aji + biif2,

. (2.24)
0 otherwise.

mi(z;) = {
Defuzzification is a process of producing non-fuzzy output(s) from a subset of
fired fuzzy rules . A non-fuzzy output is a function of the firing degrees and the fuzzy
outputs of fired fuzzy rules regardless of what defuzzification method is used. The
firing degree of a fuzzy rule is itself a function of membership function parameters
and inputs. For triangular membership functions, the non-fuzzy output O is partly
decided by a.;s and b;;s. When the centroid defuzzification method is adopted, O is
given by
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mji 5
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0 a'ji —= I
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Figure 2.12 A symmetric triangular membership function.

K Do
0= 2.25
Eﬁl D, ( )
where K is the number of rules, 0" is the fuzzy output of rule i. For the L-class
classification problem, O* takes values of 0, 1, ..., (L — 1). D' measures how an input
vector matches the antecedent conditions (IF-part) of the ith rule.
Di = H m;,-(a:;) (226)
i=1

where n is the number of inputs and my; is the membership grade of input ! in the
fuzzy subset that the ith rule takes. Obviously,

mu(x) = flan, b, z1). (2.27)

I a set of training data that describes the desirable output, 09, for inputs, z,,
Zyye-ry Ty, 15 available, then the fuzzy rule-based system can be optimized by mini-
mizing the error between the output given by the defuzzification based on Eq. (2.25)
and the desired output given by the training data. We can define an error function,
E, as

E=go—mf (2.28)

where (1/2) is introduced for the simplicity in the foliowing discussion.
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The steepest descent algorithm, which is the simplest method for solving the
optimization problem, can be adopted to minimize the error function. The steepest
descent algorithm states that from any point the objective function (the error function
in this case) decreases most rapidly in the direction of the negative gradient vector
of its parameters at that point. For the error function E{Z) with a parameter set of
Z = (z1, 22, ..., Zp), the negative gradient vector is

_9E _9E OE
On 0z " 8z,)

I 2:(t) is the value of the ith parameter at iteration ¢, the modification of z; is given
by

OE(Z)
] Bz
where 7 is the constant (learning rate) which decides how much the parameters are
modified at each iteration. The error function will eventually converge to a minimum
value after a number of iterations.

For membership function tuning, the variables to be modified in the error function
are the membership function parameters aj; and &;, 1. e.,

z(t+ 1) = 5(t) — i=12,..,p (2.29)

Z= (Gu,...,ﬂ.nK, bu,...,bn[{). (2.30)

The maximum number of parameters to be optimized is (n x K). It could be a large

number if many fuzzy rules are available for a many-input problem. In practice, it

is quite often that different rules share certain fuzzy subsets (linguistic terms) for

certain inputs, so the actual number of parameters to be modified is smaller.
Substituting Eqs. (2.26) and 2.25 into Eq. (2.28), we have

£ = L Ca i ma(=))0" ooy (2.31)

2 T (T mu(ar)
The steepest descent algorithm gives the following iteration equations for the param-
eters aj; and by

E .
aj(t+ 1) = ay(t) —-na%, i=l.,ni=1,.,K, {2.32)
1
aE . .
bj,‘(t + 1) = bj.‘(t) - ﬂbw, = 1, ey My L FR 1,..., K. (233)
1l

Calculating the partial derivative of (;f‘i) yields the following equation,

2P

bjimji(z;)

ai(t+1) = au(t)—n.

K [O(t)— O¥[0F —O(t)]segn[z; —az(t)]. (2.34)
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where “sgn” is the sign operator which is defined as

-1 ifz <0,

sgn(z) = { 1  otherwise. (2:35)
Let 5, = 24, and ¢;(t) = mﬁ’ then we have
et + 1) = au(t) — n.eii(D)[0(t) — 0%)[0° — O(t)]sgnlz; — asi(?)]- (2.36)
Similarly, we have
bii(t + 1) = bji(t) = mes(t)[Ot) — O%[0° — O()][L — myil=;)]. (2.37)

The Tuning Procedure

If a set of training data (X, = [Zy1y-.., Tra)T» OF, 7 = 1,2, ..., N) have been collected,
we can use the optimization procedure described below to tune triangular membership
functions:

L. Sett= L,p=1, E%Id =0, and E%GW =,

2. Calculate the matching degree of an input-output pair for each rule, D* using
Eq. (2.26), and the actual output O using Eq. (2.25).

3. Update parameters a; and b;; using Fqs. (2.36) and (2.37).
4. Caiculate the error E = 1(0 — 0%)? in order to obtain EQ1d — EQMd 1 E.
5 If p< N,set p+— p+1 and go to Step 2. Otherwise, go to Step 6,

6. If |[EReW — E%ld| is smaller than a pre-specified small value, stop. Otherwise,
set p=1, EPEW = E%ld, and E'gld =0, and go to Step 2.

Note that different types of membership functions and different defuzzification
methods require different modification formulae. However, the principle is the same.

2.4.2 Neural Network Approach

The tuning of membership functions is an optimization process. Recently neural
networks have been applied for various optimization problems. Figure 2.13 shows
a four-layer feedforward neural network which can be used to tune the membership
functions and to optimize the defuzzification parameters at the same time [29].
Suppose that we have two inputs z; and z;. The neural network will classify
the input patterns into two classes ) and ;. In the neural network shown in
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Fig. 2.13, Layer 1 is the input layer. Each node in Layer 2 is associated with a
parameterized membership function. In most occasions, a bell-shaped membership
function as described in [29] is used.

1
14 (=22 )"
where z; is the ith input variable, A is the linguistic label associated with this node
function, and {a;, b, ¢} are a set of parameters for the bell-shaped membership
function (see Fig. 2.14). Note that 2a; is always the width between two half-height
(0.5 membership grade) points no matter what b; and ¢; are.

Assume that there are three linguistic labels, § (Small), M (Medium), and L
{Large), for each input as shown in Fig. 2.13. Layer 2 consists of six nodes with
each associated with a bell-shaped membership function. Each node in Layer 3 is
associated with a rule. There are nine (3?) rules available, so there are nine nodes
in Layer 3. Fach node in Layer 3 generates a signal corresponding to the matching
degree of a rule. Nine rules are listed below:

palz) = (2.38)

Ri: IF z,is SAND z3is S, THEN the pattern belongs to class w(R,).
Ry IF z; is S AND 25 is M, THEN the pattern belongs to class w(R;).
Ry IFz,is SAND zzis L, THEN the pattern belongs to class w(Rs).
Ry I1F x1is M AND 2,18 S, THEN the pattern belongs to class w(Ry).
Rs: IF z; is M AND 2, is M, THEN the pattern belongs to class w(Rj).
Rg: IFz;is M AND 2, s L, THEN the pattern belongs to class w( ).
Ry IFz,;is LAND 2058, THEN the pattern belongs to class w(Ry).
Rs: IF z1is L AND z3is M, THEN the pattern belongs to class w(Rg).
Ryt IF 2, is L AND 2315 L,  THEN the pattern belongs to class w(Rsg).

where w(R:) = (CL A —~Co) V (Cy A CY).

If the multiplication operation is used to compute the matching degree, the output
of the ith node in Layer 3, I)', is given by Eq. (2.26). In this example,

my(21) = maa(@1) = maa(z) = ps(z1),

mual(21) = mas(z) = mas(z1) = puamlz),

m17(x1) my ($1) = mw(l‘l) = #-L(J«'l)s
2)

ma(22) = mag(£2) = mar(z2) = ps(=2),
mn(l'z) mas ( ) = mﬁs(w ﬂM(ivz),
mzs( ) ( 2) = ng(mz) = #L(:L'z)

Note that although the same linguistic terms are used for both inputs z; and z; in
this example, the associated membership functions usually take different parameters,
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We take the linear combination of the matching degrees of the rules and apply a
sigmoidal function for each node at Layer 4 to calculate the class membership. The
jth output of Layer 4 {also the output of the neural network) is

9
O; = fQ_wiD), j=1,2 (2.39)
=1
where wj; is a measure of the contribution of the ith rule to class j. They are
defuzzification parameters and can be optimized at the same time of the tuning
process. The sigmoidal transfer function f{z) is defined as

1
)= TrogCar

Now let us consider a general case. Suppose that there are K rules, » inputs, and
L classes. The membership function of the jth input for the ith rule is mj which is
defined as

(2.40)

1
mi(25) = T Emmna, =y (2.41)
The output of the ith node of Layer 3, I¥, is given by
D' =[] ms(z))- (2.42)
i=1

Let z; = X, w; D, and finally, the output of the /th node of Layer 4, Oy, is given by

K
O = flz) = f wi DY). (2.43)

The error function is again defined as
1 ¢ dy2
E-= 5 S(0-0)) (2.44)
=1

where Of is the desired output for the /th output node and E is a function of mem-
bership function parameters aj;, by, and ¢; (7 = 1,2,...,n and i = 1,2,..., K), and
defuzzification parameters wy; (I =1,2,..,L).

Based on the steepest descent algorithm, these parameters can be modified by

oF
asi(t + 1) = a;(t) — Tear (2.45)
aE
bieft + 1) = by(t) — L (2.46)
it +1) = e5lt) — m?ﬁ (2.47)

’
aCJ"
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OE
T dwy
where ., M, %, and 7, are the learning rates which control the magnitudes for the
modification of these parameters at each iteration.

By calculating these partial derivatives, we have

arE

w;,-(t + 1) = w;,-(t) - (2448)

a—wh- = - orD (2.49)
where 6, = f'(2)(0% — Or). For a sigmoidal transfer function,
F@) = f(m)[l — f(=)] = Ou(1 - O). (2.50)
Similarly, we have
OE 2
=D 2.51
6«.1_,‘ aj; D (z51)
where
L
§ri = [L —mjd(z;)) Y Borwsi, (2.52)
I=1
and
OF Ty — Cjig .
= = b B LY P 2.
365 In[{ p” V06D, (2.53)
OF ;
oE _ _ D', 2.54
BCj.’ b Cj."s D ( )
The parameters are then modified by
wi(t+1) = wu(t)+ gudal’, (2.55)
hji
a_,-,-(t +1) = aj;(t) + 7),2 J((t)) 6,..D' (256)
aji
Let 5, = 29,, then
as(t +1) = au(t) +7, "Eg bt s (2.57)

Similarly,
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b+ 1) = b = minl(L Ay, (2.5
ci(t+1) = Cjo'(t)-l"?;ij_’;gzmﬁﬂl)‘- (2.59)

where 7, = 27,.

The tuning procedure similar to that for the gradient descent algorithm presented
in Section 2.4.1 can be appiied to tune a set of membership functions and to learn
the optimized defuzzification parameters at the same time based on the modification
formulae developed above.

2.5 Concluding Remarks

In this chapter, membership functions for a pattern recognition model have been
discussed. In particular, three clustering techniques have been presented to generate
the membership functions which can reflect the actual data distribution and therefore
are more suitable for fuzzy pattern recognition applications. Among three clustering
techniques discussed in the foregoing sections, the ¢-means algorithm is the simplest.
However, the adaptive vector quantization {AVQ) algorithm provides a sophisticated
estimation of the covariance matrix of a cluster by the learning process, but it does
not guarantee that the learned covariance matrixes are positive-definite. If not, the
method fails to generate useful membership functions. On the other hand, the self-
organizing map {SOM), which takes into account the neighboring nodes in updating
the connection weights, seems to be able to produce a more reliable solution than the
other two techniques. The membership functions generated by these three techniques
have been tested in various image and pattern recognition applications with good
results. Experimental results on the generated membership functions for map image
segmentation and handwritten digit recognition will be discussed in Chapter 6.

The heuristically chosen or generated membership functions from three clustering
techniques can be tuned by using the gradient descent algorithm or a neural network
approach for improved performance. The neural network method is actually based
on the gradient descent algorithm. However, it provides us with a more sophisti-
cated defuzzification by adopting a nonlinear transfer function in each of the output
nodes. Moreover, the neural network approach combines tuning and optimization of
defuzzification parameters together and therefore it is a more attractive technigue.



Chapter 3

Optimal Image Thresholding

3.1 Introduction

In many image analysis applications, one usually needs to separate the foreground
and background of an image to obtain useful information. For example, to apalyze a
document image, we need to extract characters and lines from the paper background.
This is called image binarization and it can be carried out as a classification procedure
to assign each pixel in the image to two classes, foreground (character and line pixels)
and background.

Many pattern classification techniques can be used to separate the foreground
and background of an image. The standard procedure is to extract a set of features
at each pixel and then pass these features to a classifier to make a decision. Several
supervised and unsupervised learning techniques described in Chapters 4 and 6 can be
employed for this purpose. Using these methods, one can obtain a good performance
by carefully selecting a set of robust input features and designing a reliable classifier.
However, building a pixel classifier that can deal with many input features usually
requires a large number of training samples and the resulting classification procedures
are usually time consuming. In many practical applications, the amount of data to
be processed can be very much larger. For example, in documnent image processing,
one may need to process thousands of pages of text, thus a fast method is needed
to extract characters from the paper background. The commonly used method is
thresholding, that is, assigning a pixel to one class if its gray level is less than a
specified threshold and otherwise assigning it to the other class [31], [32)].

Thresholding is a simple pattern classification procedure in which there is only
one input feature involved, the pixel intensity value. The key issue here is to choose
an optimal threshold value so that the number of misclassified image pixels is kept
as low as possible. Theoretically, we can determine the optimal threshold value
according to the Bayes rule if we know the pixel value distributions of foreground
and background classes [33], [34]. However, what we have in practice is a mixture
of the two distributions, or the pixel value histogram of an image, but not the two
separate distributions, s0 we may have to make some assumptions about the forms of

45
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the two distributions to simplify the problem. Under these assumptions, we can then
determine the optimal threshold according to the statistical decision theory. Even so,
threshold selection can still be complicated mathematically since it may involve the
solution of nonlinear equations. Therefore, some further simplification or assumptions
may be needed to find the optimal threshold.

Fuzzy system models can be used effectively to select the optimal threshold for an
image. This is done by minimizing some measures of fuzziness. Several fuzzy quan-
tities, such as fuzzy entropy, index of fuzziness and index of nonfuzziness (crispness)
[35] can be used to describe the ambiguity in gray level of an ill-defined image for
segmentation. To take fuzzy image geometry into account, Pal and Rosenfeld have
developed the fuzzy compactness measure [35] and Pal and Ghosh have developed
the index of area coverage [36] for image enhancement and thresholding. To find
the optimal threshold based on the fuzzy compactness measure or the index of area
coverage, the membership value of each pixel for all possible threshold values must
be evaluated and be used to compute corresponding fuzzy quantity, thus these two
methods require a long computing time.

Recently Huang and Wang have developed an image segmentation technique based
on fuzzy entropy measure [37]. In their method, the image pixel membership functions
are dependent of the threshold value and they reflect the distributions of pixel values
in two classes, thus this method minimizes the classification error. We shall compare
Huang and Wang’s fuzzy thresholding algorithm with two of the best known threshold
selection techniques, Otsu’s method developed based on discriminant analysis [38] and
Kittler and Illingworth’s minimum error thresholding method [39]. Although these
three methods have been developed based on different approaches, we shall prove that
they can be derived under the same mathematical formulation and that the difference
between the three methods is the choice of different weight functions for computing
a criterion function.

In Section 3.2, we solve the threshold selection problem based on statistical de-
cision theory. We assume that foreground and background pixels in an image follow
two different probability distributions and our task is to fit the image histogram to
the probability models. An iterative threshold selection method is described based
on nonlinear optimization. In Section 3.3, we review Otsu’s and Kittler and Tlling-
worth’s thresholding methods. In Section 3.4, Huang and Wang’s fuzzy thresholding
algorithm is described. In Section 3.5, we provide a unified description of all three
methods. In Section 3.6, we describe the extension of the methods to multilevel
thresholding. In Section 3.7, we apply the thresholding methods to real images. Qur
experimental results show that Huang and Wang’s fuzzy thresholding method per-
forms more reliably for different types of images when the contents of background
and foreground in an image are well defined.
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3.2 Threshold Selection Based on Statistical De-
cision Theory

Threshold selection can be formulated as a decision making problem. In this section,
we first describe the optimal statistical decision rule for a two class problem, and
apply this rule to Gaussian probability distributions. Then we solve the problem
of threshold selection using the image pixel value histogram based on the results of
statistical analysis.

3.2.1 Statistical Decision Rule

For simplicity, we consider a two class classification problem here. This corresponds
to the most frequent requirement in image thresholding, to separate an image into two
classes, foreground and background. Generalization of the formulation to multiclass
problems is discussed in Section 3.6.

We make use of the following notations:

e P, = Pr{C\} = a priori probability of class ! denoted as Ci;
¢ P = Pr{(Cy} = a priori probability of class 2 denoted as Cq;
e the pixel intensity value is in the range [0, L — 1];

p1(2) = Pr{z|C;} = probability density function of gray level z in class I;

p2(2z) = Pr{z|C:} = probability density function of gray level z in class 2; and

the probability density function of all pixel gray levels in the image, correspond-
ing to the normalized pixel intensity histogram, is

p(2) = Pipi(2) + Papa(2) (3.1)

To make a classification of gray level z, we can simply evaluate the posterior proba-
bility of the two classes Pr{C}|z} and Pr{C:|z} and assign the gray level to the class
with the larger posterior probability [34]. The Bayes decision rule for this two class
problem is:
C
Pipiz) 2 Paal) (3.2)
Ca
This equation means that a pixel having intensity z should be assigned to class 1 if

the “>" condition is satisfied and to class 2 if the “<” condition is satisfied. If the
two sides are equal, the assignment is arbitrary.
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Let Ry and R; denote the decision regions of () and (; respectively, which means
that Eq. (3.2) is satisfied for the “>" sign in region Ry and for the “<” sign in region
R,, then the probability of error (the probability of a misclassification) is

E(Ri,Ry)= 3 Pim(2) + 3 Papal2) (3.3)

+€R: 2R

It can be proven that the probability of error is minimum when the decision rule in
Eq. (3.2) is applied [34). Thus, the decision rule is optimal. The optimal decision
boundary can be determined from the following equation

Pipi(z) = Papa(2) (3.4)

In Eq. (3.3), the first summation gives the probability of error due to misclassifi-
cation of class 1 samples to class 2, and the second summation the probability of error
due to misclassification of class 2 samples to class 1. This is illustrated in Fig. 3.1.
Obviously, the classification cannot be error free unless the two probability density
functions do not overlap. In some applications, one can reduce this kind of overlap
to reduce the recognition error by using more input features. In the thresholding
problem, however, we only have one feature available, the pixel intensity, so the only
option here is to choose an optimal threshold according to Eq. (3.2) to minimize the
classification error.

For the case in Fig. 3.1, both R; and R; are continuous regions separated by a
single threshold T. The thresholded image g(z, y) of the input image f(z,y) is defined
as

_J1if fley)<T
9("””-"’)‘{0 ;f f(2,§)>T

All image pixels in g(x,y) are labeled 0 or 1, corresponding to background and fore-
ground respectively, assuming that the background is brighter than the foreground,
such as in text document images. Note that the use of 0 and 1 here is purely arbitrary.
One can use any other two different values to represent two classes. For example, 0
and 255 can be used to represent character and background pixels respectively for
the display of the thresholded image on an 8-bit gray scale unit.

Two threshold values are needed for the case shown in Fig. 3.2. Since Ppp,(z)
decreases slowly and Pip,{z) decreases rapidly as z decreases to zero, Pyp,(z) is
ultimately larger than Pypi(z) for small z values. In this case, R; contains a single
region [T} + 1, T3] and R; contains two separate regions [0, T3] and [T> +1,L — 1]. The
thresholded image g(z,y) of the input image f(z,y) is now defined as

(3.5)

0 if f(z,y)<Th or fz,y)> T
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Figure 3.1 A two class decision problem. In this example, B, = [0,7] and
R; = [T +1,L — 1]. The overlapping area corresponds to the probability of error.
The error can be reduced by increasing the difference between the means of the two
classes and decreasing the variance of each class.

?(z)

Pipi(z)  Papa(2)

—

\ ,,,

Figure 3.2
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A two class problem that requires two thresholds.
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3.2.2 Gaussian Distributions

If the two probability densities are Gaussian, then it is possibie to obtain an analytical
solution to Eq. (3.2). Let

= exp |- m‘)z] (3.7)

2
204

and

(o) = Zpenp |- C 5L (2.9

Without loss of generality, we assume that
0<mi<my<E-1 (3.9)

Substituting these equations into Eq. (3.2), we obtain

4 L ex —-(Z —m)* >1 1 ex _(z i) (3.10)
f { V2ra, P 202 C< V2noy P 2032 FZ. '
2

This equation can be simplified if we apply the logarithmic operation, In(}, on both
sides since the In() is a continuous and monotonically increasing function. The sim-
plified result is

Ci
A4+ B:+C 20 (3.11)

Cs

where
A = gt-a (3.12)
B = 2(mqol —myol) (3.13)
C = oimj—osm} - 20l0} ln(az—P') (3.14)
a B

The threshold value T' can be determined by solving the following equation:
AT*+ BT +C =0 (3.15)

This equation corresponds to Eq. (3.4) and gives the optimal decision boundary. In
general, there are two threshold values:
-B-+/B*—4AC

T, = SAC (3.16)
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pz) Pipi(2)

Pypo(z)
Q m/\ z

L-1

Figure 3.3 A two class problem for which Eq. (3.15) does not have a real valued
solution and the optimal threshold cannot be determined based on the Bayes decision
rule.

and
_ ~B+4+B*—4AC
B 2AC

Depending on the values of Ty and Tj, the decision regions R; and R; can be
determined as follows.

Case 1: B* —4AC < 0. In this case, Eq. {3.15) does not have a real valued solution.
This can happen if P; is very small so that that C is a very large positive number.
This is illustrated in Fig. 3.3. In this case, the number of pixels in class 2 is less than
the number of pixels in class 1 for any intensity values, thus there is no way to extract
the pixels in class 2 based on intensity information alone.

Case 2: Ty € [0,L — 1], and T3 ¢ [0, L — 1]. In this case, only T is a useful solution
and the decision regions are:

Rl = [U,T]], Rg = [T1 + 1, L-— 1] (318)

T; {3.17)

In this equation, we arbitrarily assign pixels having gray level 1; to class L.

Case 8: Ty ¢ [0, L — 1], and T € [0, L — 1]. In this case, oniy T3 is a useful solution
and the decision regions are:

R] = [D,Tgl, Rz = [Tz + ].,L - ].] (319)

Case 4: 11 € [0,L — 1], and T3 € {0,L — 1]. In this case, both T} and are useful
solutions and the decision regions are:

R1 = [T] + I,Tg], Ry = [0, T1] U [Tz + ]., L - 1] if T] < (320)
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and
Ry = {0,T1 — 1] V] [Tg +1,L—- 1], Ry = [T1 + ].,Tg] if Ty >my (321)

Note that in this case one of the threshold values corresponding to the cross points
of two Gaussian curves must be located between m; and m;. Figure 3.2 shows an
example of the decision regions in Eq. (3.20). If we exchange the variance values of
the two densities in Fig. 3.2, we shall have the decision regions in a form shown in
Eq. (3.21).

Case 5: Ty = Ty € [0,L - 1]. This happens when the two Gaussian probability
densities have the same variance, that is, 6y = 03 = 7, or A = 0. In this case, the
optimal threshold is

C _mi+my i Jic3

T:—_ =
B 2 ml—mzln(Pl

) (3.22)

Furthermore, if the two a prior: probabilities are the same, that is, P, = P, then

(3.23)

Image thresholding is ill-defined and cannot be carried out in case 1 without
additional information as explained earlier. Although cases 2 and 3 are well defined
theoretically, only the threshold that is between m; and mg is of practical interest
in most real applications. For example, to deal with document images, we usually
assumne that background pixels are brighter than character pixels.

3.3 Non-fuzzy Thresholding Algorithms
3.3.1 Model Fitting Method

In Section 3.2, we have shown that it is possible to determine the optimal threshold
value analytically if the the two class probability density functions are Gaussian with
known parameters. In practical applications, however, the parameters in Eq. (3.10)
are usually not known, so the formulae for calculation of optimal thresholds cannot be
used directly. The only information we have is the mixture distribution, corresponding
to p(z) in Eq. (3.1), which can be obtained from the image pixel intensity histogram.
To make use of the result in Section 3.2, we need to estimate the parameters of
Gaussian distributions from the histogram data.

Let A(z} be the normalized histogram function which represents the percentage of
pixels having gray level z over the total number of pixels of the image. We can fit the
Gaussian models in Egs. (3.7) and (3.8) to the histogram function A(z). That is, we
can find a set of parameters so that the model probability density function p(z) is as
close to the actual probability density function %(z) as possible. This can be carried
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out using a least squares errors (LSE) procedure. The mean square error between the
two functions is

E(Pljml*)mhalsaﬁ E I P(Z h(Z I (324)
2—0

where p(z) is given in Eq. (3.1). We need to determine parameters Py,m;, my, 01,
and ¢, so that the error function F is minimized.

Equation (3.24) is non-linear and does not have a known analytical solution. It can
only be solved by numerical optimization, for example, using an iterative procedure
based on the gradient information. For convenience, we represent the parameters
using the following vector notation

" P1
Vg my
v=|v3 (=] ms (3.25)
Uq a1
Vs gz

The derivative of E with respect to v is

JdE[dP ap(z)/0P

8E BE/Bml L-1 (z)/ﬂml
v BE[3my | =Y [p(z) ~ k(2)] | Bp(z)/8ma (3.26)

3E/30'1 z=0 ( )/30'1

aE[dey Op{z}/ oy

where
oole) _ 1 [ L [ G=mp]_ [ (z—m)?

ap «/27{‘ p[ 207 ] 7 e"p[ 37 ]} (3.27)
%P—’S;) = \/%Pl(z —my)o 3 exp Ii—(—z%{:-?—l)—] (3.28)
?’E;) = --1\/2=1r(1 — P)(z — my)a; exp [—%} {3.29)

z z —my)?
Bg—il) = \/12_P1cr1 [a, (z—my)? = 1] exp [ %] {3.30)
ng) = ——-\/12_;(1 - P)o;? [az'g(z —my)? — 1] exp [—%} (3.31)

Assuming that the value of v after iteration ¢ is v{*), we can improve the value in
successive iterations based on the commonly used delta rule

JE

(141} o . (0)
v = i) g
@ v

(3.32)



54 Chapter 3. Optimal Image Thresholding

where o is a constant. In this equation, the value of v is moved along the opposite
gradient direction to reduce the error function. The constant « should be sufficiently
small to prevent overshooting.

Equation (3.32) represents a simplest method to solve a non-linear optimization
problem. More sophisticated methods, such as the conjugate gradient algorithm [40]
which also makes use of the gradient information, can be used for more efficient and
robust computation.

Note that since the problem is nonlinear, the final solution strongly depends on
the initial guess of the parameters v(®), To set the initial values, we can make use
of a non-iterative threshold selection method, such as one of the methods described
in the following sections, and then calculate class a prior: probabilities, means and
variances. Assume that the threshold determined from a non-iterative method is T,
then the initial parameter values can be computed as follows:

T
o = }: h(z) (3.33)
©
my = zh(z 3.34)
1 Pm) Z_% (
© 1 L-1
my = —— zh(2) (3.35)
: 1 - Pl(O) z-;l-l
©oh2 _ L0 2h 31.36
(e17)" = P(o) E(Z 1) h(2) (3.36)
z2=0
1

—
.
=

-~
[ ]

I

Z (z — mi")h(z) (3.37)

1-F 1-P® 2=T41

Once the parameters are obtained, we can then calculate the optimal threshold value
according to the formulae described in Section 3.2.

3.3.2 Otsu’s Thresholding Method

Otsu has developed a thresholding method based on discriminant analysis which
maximizes some measures of class separability [38]. One of the measures is

Py(T)Po(T) [ma(T) — mo( T

Pi(T)a(T) + Po(T)o¥(T) (3.38)

Jor, (T) =

where

T
P(T) = Pr{Ci} = h(z) (3.39)
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Pz(T) = PI'{C:} = Lz—:l h(?.') =1- Pl (3.40)
, z=T+1 1 ,

ml(T) = ZOZPI'{Zlcl} =Flz_;2h(2) (341)
L=1 L-1

my(T) = 3 zPr{szz}zl% Y zh(z) (3.42)
z2=T41 2 =T+
T T

oHT) = QP—WWWHMGLrLEh—meMa (3.43)

L-1

T = S° [o = ma(T) Pr{eICa} = i T [z — ma(T)h(z) (3.44)

z=T+1 z—T-I-]

In the above equations, ¢, and C; are dependent of T and contain pixels with gray
values in [0, 7] and [T + 1, L — 1] respectively.

To maximize the criterion function in Eq. (3.38), the means of the two classes
should be as well separated as possible and the variances in both classes should be
as small as possible. This is similar to the Fisher criterion for pattern classification
[34].

The optimal threshold value T3 can be determined by searching for the value in
the range [0, L — 1] so that Jor(T') is the maximum. That is,

Tor = arg max | Jor,(T) (3.45)

Ostu has pointed out that the criterion function Joz(T) is equivalent to the fol-
lowing two alternative functions {38]

2

Jon(T) = PAT)oAT) 1 FaT)okT) (3.46)
and
Joryr) = BN (D)~ mel D) (3.47)
where i
ot = z_(:][z — m(T))*h(z) (3.48)
where

m= LE_:] zh(z) = Pomy(T) 4+ Pamy(T) (3.49)
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3.3.3 Minimum Error Thresholding Method

Kittler and Illingworth have used the following criterion function to select the optimal
threshold for a given histogram function h(z) [39]

T L-1
Jd(T) = zh Yeki(z,TY = 3 h{z)eliy(z, T) + ; h(z)e (2, T)  (3.50)
z=0 z=T+1

where cf,\ }(z, T) and c&?}(z, T') can be considered as being two cost functions for pixels

in two classes and
Nz T) if 2 <T

CI\'I(ZvT) = (351
{ cﬁ(z,T) if 2>T )

We shall show in Section 3.5 that the function in Eq. (3.50) can also be used
to formulate both Otsu’s thresholding method described in Section 3.3.2 and the
fuzzy thresholding method to be discussed in Section 3.4. Thus, Eq. (3.50) can
be considered as being a general criterion function for deriving a class of optimal
thresholding selection algorithms. In fact, we can view cx;(z,T) as a cost for pixels
with gray level z and Jxr(T') as the average cost for all pixels in the image to binarize
the image at threshold T'.

In Kittler and lllingworth’s minimurn error thresholding method, the cost func-
tion cxs(z,T) is derived based on the Bayes rule. Suppose that pixels in the two
classes separated by threshold T have probability density functions p;(z|Cy,T’) and
p2(2|C2, T) respectively. The class conditional probability of a gray level z being
assigned to a class correctly is [39]

Pr{Ci|2 T} = ((T;)pl(z|Cl,T) it z<T

Py(T)
h(z)

Pr{z,T} =
Pr{Ci|z, T} =

(3.52)

T if z>T

Assuming that py(z|C1, T) and pz(2|Cy, T) are Gaussian with parameters shown
in Egs. (3.7) to (3.8), we have

A [_(_z_—mlﬂ] ifz<T

h(z) 204(T)?
PraT) =1, o ol (3.53)
h(z) exp [—W] if 2z>T

Ignoring k(=) since it is independent of the class and threshold value and taking the
logarithm of the function, we obtain the following functions which can be used as the
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cost functions in Eq. (3.50}

_ [e=m(D)
T e(T
12lnoy(T) =2 P (T) if 2 < T
CKI(Z, T) = T 2 (3.54)
iz, = B
+2Inoy(TY 20 Py(T) if 2> T

Combining Eqg. (3.50) to Eq. (3.54), we obtain

(2, T)

Jir(T) =1+ 2[A(T)Iney(T)+ Po(T)Inoz(T)) (3.55)
~ 2P (T)n P (T) + Po(T) In (1) (3.56)

The optimal threshold is
Tie = arg o JBaxX_ Jrr(T) (3.57)

3.4 Fuzzy Thresholding Algorithm

Fuzzy logic is a powerful tool to solve many image processing problems because of
its ability to deal with ambiguous data. Selection of a threshold to binarize an
image is usually not straight forward because of ambiguity or fuzziness caused by
the overlapping of the two class probability densities. Several fuzzy model based
methods have been developed in the past to overcome the difficulties. For example,
an optimal threshold value can be determined based on Pal and Rosenfeld’s fuzzy
compactness measure and Pal and Ghosh’s index of area coverage measure [35], [36).
In these two methods, for each possible threshold value in the range [0, L — 1], the
membership value of every pixel is needed to compute the compactness or index of
area coverage measure. When the image is large in size, these methods can require
a long computing time to search for the optimal threshold value. Huang and Wang
have recently developed a fuzzy thresholding algorithm which makes use of the image
pixel value histogram but does not need deal with each individual pixel [37]. This
method can be very efficiently implemented. In this section, we describe Huang and
Wang’s method and in Section 3.5, we show that this method can be formulated with
criterion function similar to those used in Otsu’s and the minimum error thresholding
methods.

3.4.1 Fuzzy Membership Functions

We consider an irmage as an atray of fuzzy singletons corresponding to image pixels,
each having a membership value associated with a certain property of the pixel [41],
[35). Under this assumption, an image / can be represented as

I={{(f(=y), pr(f{z, y)}}} (3.58)
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For image thresholding, the membership function u(f(x,y)) can be defined in terms
of the grade of pixel (x,y) belonging to one of the two classes, background and

foreground.
In Huang and Wang's method, the membership function is defined as
1
if fz,y)<T
L+ |f(z, ) ~ ma(T)/ D
pi(f(z,y)) = . (3.59)

T fzg) —ma@D T flzy)>T

where m, and m, are the averages of the gray levels of the pixels in two classes
respectively and are given by

T T
m(T) = Eozh(z)/ Zo h(z) (3.60)
and
L-1 L-1
mo(T)= Y. zh(z)/ > h(2) (3.61)
z=T+1 z=T+1

and D is a constant chosen in such a way that

0.5 < pr(f(z,y)) <1 (3.62)

The reason for restricting the membership values in the range {0.5,1.0] is to make use
of the entropy measure described in Section 3.4.2. Huang and Wang choose

D = zmax — zmin (3.63)

where z,,:, and zmax are minimum and maximum gray levels of the image respec-
tively. Note that z;, and zmax may not necessary be 0 and I — 1 respectively. For
the choice of L) in Eq. (3.63), the condition in Eq. (3.62) is satisfied.

The shape of the membership function is shown in Fig. 3.4 for my = 80, m, = 170,
D =256 and T = 120. In each of the two classes, the membership value is the largest
(equal to 1) at the class average gray level (m; or m;) and reduces when the difference
between the pixel gray level and its class average gray level increases. This means
that pixels with gray levels close to their corresponding class average gray levels have
less fuzziness or ambiguity and thus can be classified with a larger confidence than
pixels with gray levels far from their class average gray levels.

3.4.2 Threshold Selection Based on Fuzzy Measure
Huang and Wang have made use of the entropy measure as the criterion function for
selection of the optimal image threshold [37). It is defined as

1 M-1N-1

NS & L Selur(f(z ) (3.64)

=0 y=0

Jaw(T) = E(I) = —




3.4. Fuzzy Thresholding Algorithm 59

11 T T T ¥ T

07 | .

06 i R, .

0.5 ] ] { { ]

0 50 100 150 200 250
z

Figure 3.4 Membership function in Eq. (3.59) for m; = 80, my = 170, D = 256
and T = 120.

where
Se(p) = —plnp—(1 -l —p) (0<p<1) {3.65)

is the Shannon’s entropy function shown in Fig. 3.5. This function is used here as a
cost function. Since the cost should decrease as the membership value increases (as
the fuzziness becomes smaller), we can only make use of the Shannon function for the
interval 0.5 < g < 1. This is why we need to impose the condition in Eq. (3.62). If
we group all pixels having the same gray levels in Eq. (3.64), then the equation can
be simplified using the histogram information h(z}) as follows

L-1
Taw(T) = B(1) = ~ = 3 h)S.(ur(2)) (3.66)

z=0

The optimal threshold is chosen to minimize Jyw (7)), that is,

Tiw = arg o<¥1<i£1_] Juw (T) (3.67)

The entropy measure has the following properties [37]:

(1) Jew(T) = E{I) is large if many pixels have membership values close to 0.5 or
their gray levels are far from their class average gray levels. It has the maximum
value 1 if all membership values equal to 0.5.

{0
(2) Juw(T) = E(I) is small if many pixels have membership values close to &5 or
their gray levels are close to their class average gray levels. It has the minimum
value 0 if all membership values are equal to 1.
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Figure 3.5 Shannon’s entropy function.

(3) E(I) < E(I') i I is crisper (less fuzzy) than [’ In this case, I have pixel gray
levels distributed more compactly around the two class average gray levels than
I

From the above properties, we can see that the optimal threshold obtained based
on the entropy criterion corresponds to an assignment of the image pixels to two
classes in a way such that the gray levels of the pixels in the two classes are as close
to their class average gray levels as possible. This makes the two class means as well
separated as possible and the two class variances as small as possible. Therefore, this
criterion is consistent with Otsu’s method [38] and the Fisher criterion [34]. A further
comparison of three non-iterative thresholding methods are described in Section 3.5.

3.4.3 Fast Computation

The class average gray levels can be computed efficiently using a recursive method
[37]. We can make use of the following functions

T L1
S(T) = Lh(x), S(T)= T hz) (3.68)

z=0 =T+H1
E-1
W(T) = Y. z=0"zh(z), W(T)= ; zh(z) (3.69)
2=T+1

The algorithm has the following steps:

(1) Determine zp,i; and zmax, the minimum and the maximum gray levels in the
image.
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(2) Set S(L—1) =0 and W(0) = 0.
(3) Set T = zip, + 1, Jiw = 1 (the maximum possible value), and Tgy = T

{4) Compute

S(T) = S(T-1)+KkT), 5T)=S(L-1)~3(T) (3.70)
W(T) = S(T-1)+ThT), W(T)=W(L~1)-W(T) (3.1)
mi(T) = W(T)/S(T), myT)=W(T)/T) (3.72)

{5) Compute ps(z) for 0 < z <L —1 and Jyw(T).
(8) If Jiw > Jaw(T), then set Jiw = Jew(T) and Thw = T.
(7) Set T=T+1. UT < zmax, go to step (4).

When the algorithm terminates, Ty, contains the optimal threshold value.

3.5 Unified Formulation of Three Thresholding
Algorithms

3.5.1 Analytical Formulation

In this section, we show that all three non-iterative thresholding algorithms, Otsu’s
method, Kitller and Illingworth’s minimum error based method, and Huang and
Wang's fuzzy model based method, can be formulated using the following unified
equation:

L-1 T -1
J(T) = E h(2)e(2,T) = Zoh(z)cl(z,T) + Z h(z)ex(z, T) (3.73)

z=0 =T+1

where (z,T) can be considered as the cost to pixels with gray level z when the
threshold is set at value 7. The cost function is split into two parts, e1(z, T) and
¢2(z,T), which provide different weights for pixels in two classes.

For Otsu’s method, we make use of the following criterion function

Pi(T)o}(T) + Py(T)o¥(T)

Jor(T) = p

(3.74)

This is simply the inverse of Jo7,(T'). Now the optimal threshold is the gray level at
which the criterion function Jor(T') is minimum, similar to the other two criterion
functions. That is,

Tog = arg  min  Jor(T) (3.75)
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Based on the definitions of Pi{T), P2(T),01(T),0:(T) and o in Eqs. (3.39) to (3.44)
and (3.48) to (3.49), we can rewrite the modified criterion function as
2 L- _ 2

z=0 z=T+1

(3.76)

Thus, the cost functions are
2
e,y = Emm O e, g
cor(z, T} = ? (3.77)

— my(T)?
.:‘O”;-(z,:r)=[—Z-%(—l if 2> T

The minimum error thresholding method was developed based on the criterion
function shown in Eq. (3.50) and the cost functions are given in Eq. (3.54).

For Huang and Wang’s fuzzy thresholding method, substituting Eqs. (3.59) and
{3.65) into Eq. (3.66), we get

Juw(T) = ﬁgh(z){ln [1+2—n51(T)]+ z—m(T) an—ml(T)}

D+ 2z—m(T) D
1 &1 z—my(T)
+H§z=;}-l h{z) {ln [1 + 5 ]
z —mo(T) z—ma(T)
D+ z—ma(T) ln D } (3.78)

Thus, the cost functions are

cgw = ini2- {ln [ S T)]
z —my(T) z-mqy(T)| ,
D-’rz— ](T)l Dl } if z<T
eaw(z,T) = ! T (3.79)
(2, T) = E{l [ mz( )]
2 —ma(T) z—m (T)
D+z—-mg(T)l 01 } if 2>7T

3.5.2 Analysis of Cost Functions

From Eqs. (3.77), (3.54) and (3.79), we can see now that the difference between the
three non-iterative methods is the choice of the cost functions. Otsu’s method makes
use of two quadratic functions as cost functions, whose centers are at the class average
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gray levels., Despite the difference in center positions, the parabola corresponding to
each cost function has the same overall shape for different T values. The minimum
error thresholding method also makes use of two quadratic functions as cost functions
and their centers are also located at the class average gray levels. In this case, however,
the parameters of the functions are dependent of T'. During a search for the optimal
threshold value, as T varies from 2., to zmax, the cost functions also change. Huang
and Wang’s fuzzy thresholding method is similar to Otsu’s method in the sense that
two cost functions also have fixed parameters (independent of T). The difference
between the two methods is that different forms of cost functions are used.

The difference between the cost functions used in the three non-iterative methods
can be further analyzed with numerical simulation. For the histogram shown in
Fig. 3.6, the cost functions for three T values, 100, 170 and 210, are shown in Figs. 3.7
to 9. We can see that the cost functions are minimum at class average gray level
values. As z moves away from its corresponding class average gray level, the cost
function increases. All cost functions used in the three methods share these common
characteristics.

For each T value, the cost function used in Otsu’s method consists of two parabolic
segments. The parabolas have the same shape, but the segments are taken in different
intervals. The minimum values of the cost function in two regions separated by
threshold T, corresponding to the bottom points of the parabolas, are always zero,
which occurs at the class average gray levels.

For each T, the cost function used in the minimum error thresholding method
also consists of two parabolic segments. However, for different T values, the parabo-
las have different shapes. As T increases, the variance of class 1 increases and the
corresponding parabola becomes wider. At the same time, the variance of class 2
decreases and the corresponding parabola becomes narrower. For different T' values,
the minimum values of the cost function in two regions, corresponding to the bottom
points of the parabolas, are also different due to the log terms in Eq. (3.54).

For each T value, the cost function used in Huang and Wang's fuzzy thresholding
method consists of two wedge-shaped segments. The corresponding curves have the
same characteristics as the parabolas in Otsu’s method.

In Huang and Wang's fuzzy thresholding method, the cost function increases more
rapidly as the gray level moves away from the class average gray level in each region,
so the criterion function may be more discriminative against gray levels distant from
their class means. Although it is still an open problem how to design an optimal cost
function, our experimental results in Section 3.7 do show that Huang and Wang’s
method has an overall better performance than other methods.

3.6 Multilevel Thresholding

In Sections 3.2 to 3.5, we have only considered two-class classification problems.
That is, a pixel is assigned to either foreground or background. In many applications,
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Figure 3.6 A histogram for analyzing the difference between the cost functions used
in three non-iterative methods. The histogram (dotted line) contains two Gaussian
probability densities (solid lines).
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Figure 3.7 The cost function used in Otsu’s method for the histogram shown in
Fig. 3.6 for three T values.
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Figure 3.8 The cost function used in the minimum error thresholding method for
the histogram shown in Fig. 3.6 for three T values.
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Figure 3.9 The cost function used in Huang and Wang’s fuzzy thresholding method
for the histogram shown in Fig. 3.6 for three T values.
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multilevel thresholding may be needed to segment an image into more than two classes
[39]. Assume that there are K classes, Cy,Cy, -, Ck, in the image and that our task
is to determine K optimal decision regions, B, H,,---, Ry, to segment the image.
All algorithms described in Sections 3.2 to 3.5 can be generalized to deal with the
multilevel thresholding problem.

3.6.1 Generalization of Model Fitting Method

To extend the model fitting method to multilevel thresholding, we assume that the
histogram of the image is generated by the following model:

% (z —my)?
z)—kZ::lpk(z) Z\/é?ak [ 57 ] (3.80)

The mean square error criterion function is now
1 L-1
B(P, - Py, mi, oo yox) = 3 3 1p(2) — o P (381)

and the parameter vector is
v=I[P - Phoymy - mg oy - og]" (3.82)

where superscript T means the matrix transpose operation. Note that there are only
K — 1 independent class a priori probabilities since

P+P 4.+ Pr=1 (3.83)
Thus, Eq. (3.1) can be rewritten as

(z —mz)?

re) Z \/2_7wk [ 20} ]

1—(P1+P2+“'+PK—1) (z —mg)?
- .84
+ oI P 20} (3.84)
By changingltok (k=1,2,--- , K—1),2to K and |- Py to 1 - Py~ P~ - - — P-_,,

we can make use of Eqs. (3.27) to (3.31) to calculate the derivatives of E with respect
to the variables. The delta rule in Eq. (3.32) can still be used to find the optimal
solution of v by minimizing F. Again using one of the non-iterative methods to be
described below, we can choose a set of initial threshold values and estimate the initial
parameter values for use in Eq. (3.32) as

T
PO = ; h(z) (3.85)
=Lk
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1 T
m? = —5m 3 h(2) (3.86)
Pk z=0
o _ L ¢ {oh2p
(o) = 70 > (2= m ) h(z) (3.87)
k =z=0

In theory, we should assign a pixel with gray level z to class class(z) such that
class(z) = arg nax. Bipi(2) {3.88)

In practice, however, this can lead to very complicated decision regions. To simplify
the problem, we assume that the threshold between two neighboring classes is only
related to the probability density functions of the two classes and that the threshold
is located between the means of the two classes. Under these assumptions, we only
need to select K — 1 thresholds T3, T, - -+, Tk -y which satisfy the following condition

mch<mshs - -mrpaSTha Sme (3.89)

The decision rule can now be simplified as

C, if z<my
class(z) = ¢ ar1g Jax Pepe(z) if my €z <mg {3.90)
Cr if z2>mg

where 7 (7 =1,2,---, K — 1) is chosen such that

m; Sz(mﬂ_l

Threshold value Ty (k =1,2,--, K — 1) can be determined from the roots of the
following quadratic equation:

AT+ BT +Cr =0 {3.91)
where
Ay = o2, —a? (3.92)
By = 2(mu_10f — myoi_,) (3.93)
Ch = ol ,mi—otm?_ —20 o2 In(Zelhoty (3.94)

Op—1.Px
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3.6.2 Generalization of Non-iterative Methods

Our task is to select K optimal threshold values Ty, 7%, - -, Tir—1 which satisly the
following condition

"< Tg LR - T]"_] (395)
For convenience to describe class parameters, we add two fixed thresholds below:
To=-1, Tg=L-1 {3.96)

We make use of the following parameters estimated from the histogram data to char-
acterize the pixel value distribution in class k (k=1,---, K).
Class a prior: probabilities:

T
Pk(le"'-,TK—‘l) = Z h(Z) (3.97)

z=Tr—1

Note that there are only K — 1 independent class a priori probabilities since

K
ZPk(ThT%"'aTK—]):l (398)
k=1
Class means:
ey 1 Te—1 h
mu(Ta, - Tiot) = P T Tcy) z=§_, zh(z) {3.99)
Class variances:
X Ty, - Tro1) = L Ti_:l [z~ my(Ty, - Tr_1)]*h(2) (3.100)
BAD P, Ty Tia) 25, T
Total mean:
-1 K
m= Y zh(z) = 3 Pu(T0, Ty, -, T )mi(T, - T ) (3.101)
z=0 k=1
Total variance: -
ot = 3" (z — m)*h(z) {3.102)
z=0

We can determine the optimal thresholds using the following criterion functions:
K-1 Tx—1

Y Y kST, Tro) (3.103)
k=1 2=Tk_y
K-1 Tp—-1 %)
Jer(Tyy o Tea) = 3 22 Ma)e(Ty- -, Tra) (3.104)
k=1 2=Ty_,
K-1 Txy—1 .
Taw(Ty,-- Tx-1) = 3 2 h(@eile(T, - Tror)  (3.109)

k=1 z=T_,

Jor(Ty, -, Tr_1)

il
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where in the interval T,y < z < T} (0 < k < K — 1) the cost functions are

[z — mu(Thy -+, Treoy)]

(2, Ty, Thoy) = p (3.106)
2
B o Ty Tiny) = LT Thon)]
C.RI(Z’ 1y 1Tf\-]) Jﬁ(Tl,"‘,T‘l\'_l)
2o o1y, Treoa)
20 Py(Ty, -, Tx-1) (3.107)
cg%V(Z,Tl,"',TK-l) = -lniz-{ln [1+ z_mk(le”.’TK_l)
z—m(Th, -, Tr_1)
D+ z-mp(Th, -, Tio)
In 2= m’“(T‘B e T""‘)} (3.108)

3.7 Applications

In this section, we apply the optimal threshold selection methods described earlier
to real images (see Fig. 3.10 to Fig. 3.17) for background and foreground separation.
These images were scanned into the computer as 8-bit gray scale pictures from printed
material using a 300 dpi Microtek scanner. For each image, we compute five thresholds
based on Otsu’s method, model fitting method 1, Kittler and Ilingworth’s minimum
error method, model fitting method 2, and Huang and Wang’s fuzzy thresholding
method. In model fitting methods 1 and 2, we make use of the threshold values
obtained from Otsu’s method and Kittler and Illingworth’s method respectively and
then estimate the initial parameters according to Eqs. (3.33) to (3.37) and compute
the optimal threshold values according to Eqs. (3.27) to {3.32).

3.7.1 Segmentation of Document Images

Figures 3.10 to 3.13 show four test images “poster 17, “poster 2”, “label” and “face”
and their gray level histograms. Qur task here is to extract characters and line draw-
ings from the background. The threshold values determined using the five methods
are shown in Table 3.1 and the thresholded images are shown in Figs. 3.18 to 3.21.
The two model fitting methods make use of the same algorithm to solve the non-
linear optimization problem, but start with different initial solutions. Theoretically,
the model fitting algorithm should produce the optimal result if the class probability
densities are Gaussian. In practice, however, because the probability densities may
not be exactly Gaussian for a real image and because the problem is nonlinear, the
final results are strongly dependent of the initial estimate of the Gaussian parameters.
The thresholding results obtained with model fitting method 1 are close to those ob-
tained with Otsu’s method and results obtained with model fitting method 2 are close
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Table 3.1 Optimal threshold values determined by five thresholding methods for
four document images.

Thresholding Method

Image | Otsu| Model | KIMin| Model | HW
Fitting 1 | Error | Fitting 2 | Fuzzy
Poster 1| 95 85 52 47 56
Poster 2 | 117 114 95 95 108
Label 195 199 186 191 202
Face 114 106 73 68 85

to those obtained with the minimum error method. For “poster 17, the thresholded
image obtained with model fitting method 1 does show some improvement over that
obtained with Otsu’s method.

“Poster 1” and “poster 2” have textured background and “label” has a poor
printing quality, so the thresholding problem is difficult for these images. For these
images, Huang and Wang’s fuzzy thresholding method has an overall better perfor-
mance than other methods. For “poster 1” and “poster 27, Otsu’s method and model
fitting method 1 are unable to suppress background noise since the threshold values
are too high. For “poster 1”7 the fuzzy algorithm, the minimum error method and
model fitting method 2 work well and produce comparable results. For “poster 27,
the minimum error method and model fitting method 2 work best for removing the
background pixel, but they produce some broken characters near the right edge of the
image since the thresholds are too low. For this image, the fuzzy algorithm produces
some isolated noisy points in the background but does not produce broken characters.
The background noise can be easily removed using a spatial filter. For the “label” im-
age, the fuzzy method seems to work best as it gives less numbers of broken character
strokes. The “face” image also contains a textured background, but all background
pixel are much brighter than the foreground pixels. So all five methods work well for
this image and the thresholded images have only minor differences.

3.7.2 Segmentation of Building Images

We consider the two images shown in Figs. 3.14 and 3.15. The threshold values
determined from the five methods are shown in Table 3.2 and the thresholded images
are shown in Figs. 3.22 and 3.23. For the “tower” image, Otsu’s method, model fitting
method 1 and Huang and Wang’s fuzzy method produce roughly the same result. For
this image, threshold values given by the minimum error method and model fitting
method 2 are too low, so the right half of the tower in the thresholded images is not
well extracted from the background. For the “temple” image, Otsu’s method, model
fitting method 1 and Huang and Wang's fuzzy method also produce similar results.
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Table 3.2  Optimal threshold values determined by five thresholding methods for
two building images.

Thresholding Method

Image | Otsu | Model [ KIMin| Model | HW
Fitting 1 | Error | Fitting 2 | Fuzzy
Tower | 127 130 93 98 129

Temple | 108 107 60 59 93

Table 3.3 Optimal threshold values determined by five thresholding methods for
two actor face images.

Thresholding Method

Image | Otsu| Model | KIMin | Model | HW
Fitting 1 | Error | Fitting 2 | Fuzzy
Actor 1 | 113 96 61 53 67
Actor 2| 111 105 65 60 65

For this image, the fuzzy method performs slightly better for the roof area. Again,
threshold values given by the minimum error method and model fitting method 2 are
too low.

3.7.3 Segmentation of Human Images

Our experiments were performed on the “actor 17 and “actor 2" images shown in
Figs. 3.16 and 3.17. The threshold values determined from the five methods are
shown in Table 3.3 and the thresholded images are shown in Figs. 3.24 to 3.25. For
the two images, the minimum error method, model fitting threshold method 2, and
Huang and Wang’s fuzzy method produce similar results. Otsu’s method and model
fitting method 1 produce higher threshold values and are able to extract more facial
features than other methods.

We must point out here that for the two human images the purpose of thresholding
is not as clear as for the document and building images. The human images contain
more smooth areas and fine facial features, so their foreground and background are
not well defined. One usually needs to use edge detectors and other techniques to
extract facial features.
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Figure 3.10 Test image “poster 1” and its gray level histogram.
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Figure 3.11 Test image “poster 27 and its gray level histogram.
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Figure 3.12 Test image “label” and its gray level histogram.
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Figure 3.13 Test image “face” and its gray level histogram.
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Figure 3.14 Test image “tower” and its gray level histogram.
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Figure 3.15 Test image “temple” and its gray level histogram.



3.7. Applications 75

1200 T T T T
1000 - h
800 |- -1
600 [ -
400 -
200 -

O 1 1 1 ]

0 50 100 150 200 250
z

&

Figure 3.16  Test image “actor 1” and its gray level histogram.
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Figure 3.17 Test image “actor 2” and its gray level histogram.
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Figure 3.18 Thresholding results of “poster 1” image using Otsu’s method (top
left), model fitting method 1 (top right), minimum error method (middle left), model
fitting method 2 (middle right), and Huang and Wang’s fuzzy method (bottom left).
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Figure 3.19 Thresholding results of
“poster 2” image using Otsu’s method
{(top left), model fitting method 1 (top
right), minimum error method (middle
left), model fitting method 2 (middle
right), and Huang and Wang's fuzzy
method (bottom left).
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Figure 3.20 Thresholding results of “label” image using Otsu’s method (top left),
model fitting method 1 (top right), minimum error method (middle left), model fitting
method 2 (middle right), and Huang and Wang’s fuzzy method (bottom left).
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Figure 3.21  Thresholding results of
“face” image using Otsu’s method (top
left), model fitting method 1 (top right),
minimum error method (middle left),
model fitting method 2 (middle right),
and Huang and Wang's fuzzy method
(bottom left).
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.j Figure 3.22  Thresholding results of
“tower” image using Otsu’s method (top
left), model fitting method 1 (top right),

% minimum error method (middle left),

model fitting method 2 (middle right),

and Huang and Wang’s fuzzy method

(bottom left).
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Figure 3.23  Thresholding results of
“temple” image using Otsu’s method
(top left), model fitting method 1 (top
right), minimum error method (middle
left), model fitting method 2 (middle
right), and Huang and Wang's fuzzy
method (bottom left).



82

Chapter 3. Optimal Image Thresholding

Figure 3.24  Thresholding results of
*agtor 1”7 image using Otsu’s method
{top left), model fitting method 1 (top
right), minimum error method (middle
left), model fitting method 2 (middle
right), and Huang and Wang's fuzzy
method {bottom left).
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Figure 3.25 Thresholding results of
“actor 2" image using Otsu’s method
(top left), model fitting method 1 (top
right), minimum error method (middle
left), model fitting method 2 (middle
right), and Huang and Wang's fuzzy
method (bottom left).
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3.8 Concluding Remarks

Based on the experimental results described in Sections 3.7.1 to 3.7.3, we can make
the foliowing comparison among the thresholding methods:

(1) The model fitting algorithm is strongly dependent of the initial parameters be-
cause of the nonlinear nature of the procedure. The segmentation results are
usually close to those obtained with the initial parameters. More complicated
algorithms, such as simulated annealing and genetic algorithms, can be used for
the optimization procedure to avoid the local optimal solutions, but substan-
tially more computing time may be required.

(2) Al three non-iterative methods work well if the background and foreground of
an image have well separated gray level ranges.

{(8) For images with textured background and poor printing qualities we have tested,
Huang and Wang’s fuzzy algorithm has an overall consistently better perfor-
mance than the other two non-iterative algorithms.

Image thresholding is a special and the simplest case of image segmentation. It isa
classification procedure which makes use of only one feature, the image pixel intensity.
This method cannot be used directly for color images since the pixel value histogram is
multi-dimensional. In general, more image features and more sophisticated supervised
and unsupervised learning methods [42], [43], [44], such as the techniques discussed
in Chapters 4 and 6, should be used to solve a segmentation problem.



Chapter 4

Fuzzy Clustering

4.1 Introduction

In general there are two classes of pattern recognition techniques: supervised methods
and unsupervised methods. In a supervised method, we are given a set of training
samples in different classes:

Samples in class 1: x{V, x{", - -, x

Samples in class 2: x{* x{?,. -, x@)

Samples in class ¢ xic),x(;), e x89

where xg] represents sample k in class i. For these training data, we need to find a

mapping function $(x {i)) or to build a classifier, which can be a set of fuzzy rules,
a neural network, a decision tree, or simply a set of mathematical equations, so that

(xk ) =1 Once the mapping function is determined, it can be used to classify an
unseen sample X. The class lahel of x is simply ®(x).

In an unsupervised method, we do not have training samples, and in some cases,
we even do not know the exact number of classes. In this case, we are given a set of
unlabeled data:

K1y Xgym 0y Xy

Our task is to divide these data into several groups according to a similarity measure
or inherent structure of the data. Such grouping can be done using a clustering
procedure. In a hard clustering procedure, a sample is either assigned to or not
assigned to a group, so a clear partition is made. In a fuzzy clustering procedure, a
sample is assigned a membership function for each of the groups, so a fuzzy partition
is made. The membership values play an important role in the clustering process and
they make the classification procedure more flexible and robust to deal with noisy
and uncertain data.

In this chapter, we consider unsupervised pattern recognition techniques. In Sec-
tions 4.2 and 4.3, we describe the hard and fuzzy ¢-means algorithms, which can be

85
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used for clustering when the number of clusters is known. In Section 4.4, we compare
the hard and fuzzy clustering algorithms and show that the fuzzy algorithm is more
flexible for solving a document segmentation problem. In Section 4.5, we describe
three cluster validity measures which can be used to analyze the quality of fuzzy clus-
tering procedures. In Section 4.6, we apply the fuzzy clustering algorithms to several
real world image processing and pattern recognition problems.

4.2 C-means Algorithm

We have briefly discussed the c-means clustering algorithm in Section 2.3.1 where the
algorithm was used to cluster data to obtain the cluster centers and corresponding
variances for generating membership functions. In this section, we bring up this
algorithm as an iterative optimization procedure to be used for classification. We will
discuss the algorithm in the manner that it can be easily compared with the fuzzy
c-means algorithm which will be discussed in the next section.
Let
X = {x1,%2," ", Xn} (4.1)

be a set of samples to be divided (clustered) into ¢ classes. A clustering process
can be considered as an iterative optimization procedure. Suppose that we already
have partitioned the samples into ¢ classes, which can be done initialiy by random
assignment. Our task is to adjust the partition so that some kind of similarity measure
is optimized. In the (hard) ¢-means algorithms, the similarity measure is calculated
in terms of the Euclidean distance between each sample and the center of the class
to which the sample belongs. The criterion function used for the clustering process
is [34]
JV)=3 Y -l (4.2)
k=1 Xk €C,
where v; is the sample mean or the center of samples of clusterz, and V = {vy, -+, v }.
To improve the similarity of the samples in each cluster, we can minimize this
criterion function so that all samples are more compactly distributed around their
cluster centers. Setting the derivative of J(V') with respect to v; to zero, we obtain

0JV) _$~ 5 (v =0

Bv; k=1 x,€C,

Thus, the optimal location of cluster center v; is

Vi= — X (43)

where n; is the number of samples in class ¢ and C; contains all samples in class 1.
Now, based on the information of initial clusters and their center positions, we can
regroup the samples so that the criterion function is minimized. In Eq. (4.2), each
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sample x; appears only once, that is, it is associated with only one cluster center.
Obviously, the criterion function is minimized if each sample is associated with its
closest cluster center. So we reassign x; to class i so that (x: —v;)? is minimum when
j=1.

Once the samples are regrouped, the cluster centers need to be recomputed to
minimize J(V). For the new cluster centers, we can again regroup the samples to
reduce J(V). The process can be repeated until J cannot be reduced any further.

In summary, the c-means clustering procedure consists of the following steps:

1. Determine the number of clusters e,

2. Partition the input samples into ¢ clusters based on an approximation. If no
rule of approximation exists, the samples can be partitioned randomly.

3. Compute the cluster centers.
4. Assign each input sample to the class of the closet cluster center.

5. Repeat steps 3 and 4 until no change in J can be made.

4.3 Fuzzy C-means Algorithm

In the hard clustering process, each data sampie is assigned to only one cluster and all
clusters are regarded as disjoint gatherings of the data set. In practice, however, there
are many cases in which the clusters are not completely disjointed and data could be
classified as belonging to one cluster almost as well as to another. Such a sitnation
cannot be catered for by a crisp classification process. Therefore, the separation of
the clusters becomes a fuzzy notion, and the representations of reai data structures
can then be more accurately handled by fuzzy clustering methods. In these cases, it
is necessary to describe the data structure in terms of fuzzy clusters.

The fuzzy c-means (FCM) algorithm is the best known and the most widely used
fuzzy clustering technique. This algorithm is developed based on iterative minimiza-
tion of the following criterion function [2], [5], [45]

J(U, V) = EZu:’ﬂxk —V,‘!z (44)
=1 k=1
where

® X1, -, X, are n data sample vectors;

e V = {vq,--+,v.} are cluster centers;
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o U/ = [uy] is a ¢ X n matrix, where u;; is the 1th membership value of the kth
input sample x;, and the membership values satisfy the following conditions

0<up <1 i=1,2-,¢ k=12,,n (4.5)

Zu;k=1 k=1,2,---,n (46)

=1

0< Y up<n i=12--,¢ (4.7)
k=1

e m € [1,00) is an exponent weight factor.

The objective function is the sum of the squared Euclidean distances between each
input sample and its corresponding cluster center, with the distances weighted by the
fuzzy memberships.

The algorithm is iterative and makes use of the following equations:

1 it .
vi = oY ulza i=12--c (4.8)
Zu}'}:k:]
k=1
1 1/{m-1)
= L"*“""P] = 1,2,-,6 k=1,2 4
Ui = - 1 1j{m=1) t=1,2y++,6 =L&,n (9)
Sl

For calculation of a cluster center, all input samples are considered and the contri-
butions of the samples are weighted by the membership values. For each sample, its
membership value in each class depends on its distance to the corresponding cluster
center. The weight factor m reduces the influence of small membership values. The
larger the value of m, the smaller the influence of samples with small membership
values.

The FCM clustering procedure consists of the following steps:

1. Initialize I/'® randomly or based on an approximation; initialize V® and cal-
culate U®. Set the iteration counter a = 1. Select the number of class centers
¢ and choose the exponent weight m.

2. Compute the cluster centers. Given U, calculate V(*) according to Eq. (4.8).
3. Update the membership values. Given V¢, calculate U1®) according to Eq. (4.9).

4. Stop the iteration if
max | ufy) —uff ™V < e (4.10)

else let &« = o+ 1 and go to Step 2, where ¢ is the pre-specified small number
representing the smallest acceptable change in U.
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4.4 Comparison between Hard and Fuzzy Clus-
tering Algorithms

The hard c-means clustering algorithms can be considered as a special case of the
fuzzy c-means clustering algorithms. In Eq. (4.4), if uy is 1 for only one class and zero
for all other classes, then the criterion function J(U, V) used in the FCM clustering
algorithm is the same as the criterion function J{V) used in the hard c-means cluster
algorithm. The use of membership values provides more flexibility and makes the
clustering results more useful in practical applications. We show below an example
of document image segmentation to compare the two clustering algorithms.

We consider a document image shown in Fig. 4.1 and our task here is to segment
the image, that is, to separate the background and foreground of the image. This
image is difficuit to deal with since it has a non-uniform background. Although there
is a valley in the gray level histogram of the image, which indicates that there are
two groups {clusters) of pixels in the image, the valley is not deep, that is, two groups
overlap each other in terms of gray level values. As a result, the segmentation is
very sensitive to the threshold value if a thresholding method is used to segment the
image. Several image thresholding methods are described in Chapter 3. The best
thresholding result of the image is shown in Fig. 4.2. This image is considered and
all results obtained using different thresholding methods are shown in Chapter 3.

The thresholding method has some limitations since it can deal with only one
feature of the image, the pixel gray level. To take the image geometric properties into
account, we can make use of some spatial features. To do this, however, we need to
solve a problem of classification in a multi-dimensional feature space and the simple
threshold method can no longer be used. The clustering methods described in this
section can be used to solve this problem. In our experiment, we made use of seven
features at each pixel, which include the pixel gray level, mean and standard deviation
of pixel gray levels in a neighborhood of 5 by 5 pixels around each pixel, and edge
intensities along the horizontal, the vertical and two diagonal directions. Using the
c-means algorithm, we obtained the segmentation result shown in Fig. 4.3. In general,
the c-means algorithm performs better than the simple thresholding method as the
segmentation result is less sensitive to background variations. However, the characters
extracted using the c-means algorithm appear to be blurred. We show below that the
blurring problem can be solved if we use the FCM clustering algorithm.

Now we consider the FCM clustering method to segment the image. At each pixel,
we have two membership values, one representing the degree of certainty of a pixel
belonging to background and the other representing the degree of certainty of a pixel
belonging to foreground. Since the sum of two membership values must be equal to
one, they are not independent of each other. In general, for a ¢ class problem, only
¢ ~ 1 membership values for each input sample are independent. For the document
image, we make use of the background membership values, which are displayed as an
image in Fig. 4.4 after scaling. The gray level histogram of the membership image
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A document image and its gray level histogram.
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Figure 4.2  Segmentation result ob-
tained using the c-means algorithm.
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is also shown in Fig. 4.4. It is interesting to see that this histogram is similar to
that in Fig. 4.1 except that its valley is much deeper and wider. Thus, we segment
the image reliably now using a thresholding method. With a threshold of 91, we
obtained the segmentation result shown in Fig. 4.5. Compared with the image in
Fig. 4.3 obtained using the hard c-means algorithm, the segmented image in Fig. 4.5
is slightly better as it does not have isolated noisy pixels in the background. However,
with the membership values as a gray scale image, we have more flexibilities. When
lowering the threshold to 42, we obtained the segmented image shown in Fig. 4.6.
Now this image is no longer blurred. In general, we can change the threshold value to
change the width of character strokes in the segmented image. This can be important
for some optical character recognition (OCR) systems as the recognition result may
depend on the width of character strokes.

4.5 Cluster Validity

In practical applications, we need a cluster validity method to measure the quality
of the clustering result. The quality of a clustering process depends on many factors,
such as the method of initialization, the choice of the number of classes ¢, and the
clustering method. As shown in Section 4.4, the FCM clustering algorithm is more
flexible than the hard ¢-means algorithm, so we consider the cluster validity probiem
for the FCM algorithm only in this section. The method of initialization requires
a good estimate of the clusters and is application dependent, so the cluster validity
problem is reduced to the choice of an optimal number of classes c.

Several cluster validity measures have been developed in the past (2] [45], [46]- In
this section, we describe three of these measures: partition coefficient [45], partition
entropy [45] and compactness and separation validity function [47].

The partition coeflicient is defined as [45]

%Ei ()’ (4.11)

=1 k=1

Suppose that £, represents the clustering result, then the optimal choice of ¢ is given
by
mcax{lr%)a,xF(U,c)} c=2,---,n—1 (4.12)

The partition coefficient measures the closeness of all input samples to their corre-
sponding cluster centers. If each sample is closely associated with only one cluster,
that is, if for each k, u;;, is large for only one 7 value, then the uncertainty of the data
is small, which corresponds to a large F(U/, ¢) value.

The partition entropy is defined as [45]

H(U —= Z Z ik log(ptix ) {4.13)

l—l k=1
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Figure 4.4
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The optimal choice of ¢ is given by
mcin{lrgliinH(U,c)} c=2,---,n—1 (4.14)

Whean all gi’s have values close to 0.5, which represeuts a high degree of fuzziness
of the clusters, H(U, ¢) is large and thus indicates a poor clustering result. On the
other hand, if all g;’s have values close to 0 or 1, H(U,¢) is small and indicates a
good clustering result.

The compactness and separation validity function is defined as:

1 3 T 4 2
~2_ 2 ik | X — il

S(U,¢) = —=Lk=t (4.13)

min | v; — v; |*
i

The optimal choice of ¢ is given by
mcin{I%inS(U,c)} c=2--,n—1 (4.16)

S(U, c) is the ratio between the average distance of input samples to their correspond-
ing cluster centers and the minimum distance between cluster centers. A good cluster
procedure should make all input samples as close to their cluster centers as possible
and all cluster centers separated as far as possible.

As shown in [47] and in an experiment presented in the next section, the compact-
ness and separation validity function seems to work better for image segmentation
problems.

4.6 Applications

4.6.1 Characterization of Tissues in MR Images

Characterization of brain tissues in magnetic resonance (MR) images is useful for
some medical diagnosis procedures. The task here is to classify image pixels into
several meaningful categories. This can be carried out using the FCM clustering
technique.

We consider two MR images shown on the left in Figs. 4.7 and 4.8. For each
image pixel, we extract seven features, which include pixel intensity, local mean and
variance computed in a neighborhood of 5 by & pixels, and edge values given by
the Sobel operators along four different directions. For each image, we chose the
number of classes ¢ = 4, corresponding to the background of the image, and three
types of brain tissues, white matter, gray matter and cerebrospinal fluid (CSF). The
segmented images are shown on the right in Figs. 4.7 and 4.8 respectively. In Fig. 4.7,
three kinds of brain tissues are well separated. In Fig. 4.8, the tumor area has been
isolated from the surrounding tissues in the image.
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Figure 4.7 An MR image of brain tissues (left) and its segmentation result (right).

Figure 4.8 A brain MR image (left) and (left) and its segmentation result (right).
The tumor area in the image has been isolated from the surrounding tissues.
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4.6.2 Segmentation of Natural Color Images

We consider a color image which contains three types of fruit, banana, orange and
kiwi. The intensity and the r, g, b components of the image are shown in Fig. 4.9.
The intensity image is defined as the average of three component images. The three
pieces of fruit and the background (at the bottom of the image between the kiwi and
orange) have four different colors, yellow, orange, green and purple respectively. On
the skin of the orange, and at the center and along the radial directions of both the
orange and the kiwi, there are some white areas. Altogether, there are roughly five
classes of image pixels, white, yellow, orange, green and purple.

Our aim here is to extract the five classes in the image. We apply the FCM
clustering algorithrn to the image to carry out this task. We make use of three features
corresponding to r, g, b, values of the image pixels. For ¢ = 5, the segmentation result
is shown in Fig. 4.10. We can see that all five classes have been well extracted from
the image.

In this image segmentation problem, we know that the optimal number of classes
¢ = 5 Now we would like to test the performance of the cluster validity measures
described in Section 4.5. In our experiment we changed ¢ from 2 to 8 and obtained
the values of cluster validity measures shown in Table 4.1.

Table 4.1 Fuzzy measures for the color image clustering problem.

F(U,¢) | HU,c) | S{u,c)
0.724391 | 0.426785 | 0.218259
0.680535 | 0.569435 | 0.209790
0.604033 | 0.748381 | 0.255265
0.625072 | 0.768383 | 0.137158
0.612068 | 0.826982 § 0.109354
0.573524 | 0.919343 | 0.209247
0.553558 | 0.989649 | 0.220133

e IENE =] b DD NS B U] e

The compactness and separation validity function works better than the other two
methods for this image. It produces the optimal number of classes ¢ = 6, which is
close to ¢ = 5 as we have explained before. In fact, in the segmented image for ¢ = 6
in Fig. 4.11, the shadow of the kiwi on the orange is classified as another class, which
is & quite reasonable result.

In the validity measures described in Section 4.5, only the membership values of
the input samples are used. In practical applications, we can use additional criteria
to check the optimal number of classes obtained from the validity measures. For
example, in image segmentation, we can check the uniformity of the segmented areas
to take into account the spatial information in addition to the membership values.
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Figure 4.9 The intensity (top left) and r (top right), g (bottom left), b (bottom
right) components of a color image.
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Figure 4.10  Five classes of pixels obtained using the FCM clustering algorithm
with ¢ = 5. These five clusters correspond to the green area of the kiwi, the purple
area of background, the orange area of the orange, the white area in the kiwi and the
orange and the yellow area of the banana.
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(g)

Figure 4.11 Results of segmentation of the color image in Fig. 4.9 using the FCM
clustering algorithms with (a) c =2, (b)c=3,(c)c =4, (d)c=5,(e)c =6, (f) c
=7, and (g) ¢ = 8. The classes in each image are shown with different gray levels.
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4.6.3 Fuzzy Parameter Identification

Estimation of resources is essential for the purpose of economic planning in the min-
ing industry. In practice, the true value of an ore-body is never known until the
mining process has been carried out. This uncertainty has appealed for a need to
develop resource-estimation methodologies by which financiers and managers can be
assisted to evaluate their mining project with a minimum risk of incorrect prediction.
There are various methods developed for this purpose, such as geometrical methods,
distance-weighting methods, and geostatistical methods. Each of these has its own
advantages and disadvantages [48], [49], [50]. An attempt is made in this chapter
to introduce an approach for ore-grade estimation based on an unconventional con-
cept of uncertainty known as fuzziness. The concept of imprecision due to fuzziness
has been recognized and applied in various aspects of geology such as stratigraphy
(51), “fuzzy” kriging [52], evaluation of the provenance of glacial till {53], and “fuzzy”
variograms [54], [53].

We present, herein 2 new approach to dealing with fuzzy parameter estimation with
special reference to the problems of predicting ore-grades within a2 mining deposit.
Based on a collection of cluster-centers obtained from the fuzzy c-means algorithm,
a fuzzy inference system is established to estimate grades located at these cluster
centers. These cluster center-grade pairs act as the control information in the fuzzy
space-grade system to infer unknown grades on the basis of fuzzy interpolation, fuzzy
extrapolation, and fuzzy control. In the following sections, we introduce the concepts
of fuzzy search domain, fuzzy rule base, and the criteria for fuzzy interpolation and
fuzzy extrapolation for the proposed fuzzy grade estimator.

Determination of Fuzzy Search Domain

Based on the establishment of the cluster centers and the concepts of fuzzy sets, a
fuzzy search domain §); for calculating a grade within a fuzzy c-partition focused at
v; can be determined by the search-distance radius r(€2;), which is defined to be the
closest distance from v; to the nearest neighboring cluster center. The radius r(£};)
or r; is expressed as

r; = min{d(v, vi)). (4.17)

Figure 4.12(a) illustrates the determination of fuzzy search domains.

Fuzzy Interpolation and Fuzzy Extrapolation

Since the fuzzy search domains can be determined, a point p is defined to belong to
{2, if the distance between p and v; is not greater than r; , that is

p el ifd(pv) <r;
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Figure 4.12 (a) Determination of a fuzzy search domain; (b) fuzzy interpolation
(F.1.) and fuzzy extrapolation (F.E.).
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Now the membership functions of p with respect to the cluster set V can be
interpolated and/or extrapolated by the fuzzy-rule base (to be defined later) if it
satisfies the following criteria:

al(vs) if p € §); (fuzzy interpolation)
pp(v;) i p e, pé 8 and d(p,v) = dp,v;)
(fuzzy extrapolation)
0 otherwise.

(V)= (4.18)

In the case if p lies outside all the fuzzy domains, the computation for g,(V) # 0
is allowed if d(p, V) < & which 1s a given tolerant factor. Figure 4.12(b) shows the
concepts of the proposed fuzzy interpolation and fuzzy extrapolation.

Grade Estimation of Cluster Centers

After the fuzzy domains, fuzzy interpolation and fuzzy extrapolation have been de-
fined, the next step is to determine the grades of the cluster centers which will be
subsequently used to compute the grade of any point in the fuzzy domains. In or-
der to proceed with this process, it is necessary to set up a fuzzy control model, to
construct the membership function p,(V), and to select a defuzzification method.

The structure of the knowledge base of a linguistic fuzzy model consists of a
collection of a number of rules expressed in the form

IFAis X; THENBis Y; (i =1,--+,m)

where X; and Y; are the fuzzy subsets of the input and output spaces and expressed
in linguistic forms.

Based on the above expression, the relationship between the grades of the data
points and the grades located at the cluster-centers can be modeled in & fuzzy lin-
guistic form as follows:

IF P is close to V THEN g(V) is close to g(P)

where P = {py,ps,...,pn} is the set of the data points, V is the set of the cluster
centers, g(V) and g(P) are the sets of grades of V and P respectively, and “close” is a
fuzzy set expressing the fuzzy relationship between the pairs (P,V) and (g(V), g(P)).

The membership function for the fuzzy term close can be assumed [56] to be a
Gaussian-type function and is defined as:

up(V) = exp [—0.5 (E_;_K)"’] (4.19)

where & is a constant which aflects the shape of the Gaussian-type membership func-
tion,
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For the data-point set P and the cluster-center set V as defined previously, the
grade of a cluster center v;, g(v;), can be obtained using a defuzzification scheme as
follows:

o) = St (510
‘ 25=1 Ha, ()

The cluster-centers and their grades are now viewed as the coupled control points
which are used to estimate the unknown grades as will be discussed below.

(4.20)

Fuzzy-control Grade at a Point

The grade at a particular location within its associated fuzzy search domains €
(i = 1,.--,k) is estimated by means of the defuzzification method as described in
Eq. (4.20) with the associated control pairs. Tt is determined as

alp;) = Tt i, (v:)g(vi)
! Ef:l Hp, (vi)

where g(p;) is the estimated grade at a point in €, and g, (v;) is the membership
function of p in the domain of v;, and is defined by

(4.21)

iy, (v) = exp [—0.5 (&;—”)2] . (4.22)

The following derivation is presented to explain why g(v;) is placed in Eq. (4.21).

Let g(v;) be denoted as g¢*, which is set to be a control grade value within its
domain Y, and gee(v;) > 0 , k=n+1, be a membership grade of the unknown grade
g at a point to be inferred. py;(v;), poe(v:), g(p;) and g(pi) are now shortly denoted
as py, fk, g; and gi respectively. Thus, the new sum of the membership grades
becomes

e (§0) e

m=1 J=1

Based on Eq. (4.20) of the defuzzification scheme and keeping g* unchanged (control
point), gk can be locally estimated as

o= (0" Thas ) — (Thes 15 95) _
73

Substituting g* defined by Eq. (4.20) in the above equation, it gives:

- Th1#i 9 Tmmibm Tl B3 G
B Xioy B ik
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Table 4.2 Samples taken from a simulated iron ore deposit.

| Easting | Northing | % Fe | Easting | Northing | % Fe |

10 40 35.5 15 135 28.6
59 145 29.4 125 20 41.5
175 50 36.8 260 115 33.2
235 15 33.7 365 60 34.3
285 110 35.3 345 115 31.0
20 105 32.5 25 155 29.6
50 40 30.6 155 15 40.4
145 125 301 220 90 28.5
205 0 40.1 265 65 24.4
390 65 31.6 325 105 39.5
310 150 34.8

or
E?:l Hj 95 Ev’-‘n:l B — E?:l 1 E?:l Hig;

B Lho M

Finally, by some arrangements, g is found to be

g =

*

ga k n g
ge="= 2w =) =) =¢"
B \m=1 =1 L

H

Estimation of an Iron Ore Grade

To illustrate the application of the proposed fuzzy algorithm to the problem of param-
eter identification in natural resources, Fig. 4.13(a) shows the example of an iron-ore
deposit where the data set as shown in Table 4.2 is partially taken from [57]

Now we consider the point at the East-North (E-N) coordinates (143,125) with
the iron grade of 30.1% as an unknown grade, and we want to estimate its grade.
Figures 4.13(b) and 4.13(c) show the partitions of the clusters with three and four
centers respectively, where the symbol “+” indicates the position of each cluster
center. For the case of three cluster centers, the E-N coordinates of these centers
obtained by the fuzzy c-means clustering method are: (29.47, 109.72), (322.61, 100.45)
and (186.01, 30.23). For the case of four cluster centers, the coordinates of these are:
(354.67, 86.55), (28.00, 114.51), (265.43, 99.31), and (166.02, 23.27). Table 1.3 shows
the estimated % Fe using the fuzzy algorithm (the value of ¢ in Eq. (4.22) is taken
to be 100), and the conventional inverse square distance method which is given by

g= Z wi g (4.23)

i=1
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Figure 4.13 (a) An iron ore deposit; (b) partition with 3 clusters; and (c) partition
with 4 clusters.
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Table 4.3 Point estimates of iron grade.

Technique Estimated %Fe | %Error |
Fuzzy c-means (3 centers) 32.53 8.7
Fuzzy c-means (4 centers) 33.89 12.59
Inverse square distance 33.27 10.53

where g is the estimated grade, g; is the grade of sample ¢, and w; the weight assigned
to sample i, and w; is obtained by

fi
i=1 fi ( )
where f; = 1/(d;)*, and d; is the distance from sample i to the point of unknown

grade.

The result obtained from the inverse square distance method is 33.27% with an
error of 10.53%, whereas the results obtained from the proposed approach with three
and four cluster centers are 32.53% and 33.89% with errors of 8.7% and 12.59%
respectively. These results are also tabulated in Table 4.3. By observation, it is
obvious that the case of three cluster centers is betier than that of four cluster centers.
The extra partition of the data set at the north-east location did not effectively
contribute to the estimation as it is far away from the unknown parameter. For this
problem, kriging is not applied here due to the insufficient amount of data for the
construction of a semi-variogram.

4.7 Concluding Remarks

In this chapter, we have described the hard and fuzzy c-means clustering algorithms
for unsupervised patiern classification. In both algorithms, the distance of an input
sample to the center of the cluster which the input sample belongs to is used as a
criterion to measure the cluster compactness. In the hard c-means algorithm, an
input sample belongs to one cluster only, while in the fuzzy c-means algorithm the
degree for which an input sample belongs to a cluster is represented by 2 membership
value. We have made a comparison between the hard and fuzzy c-means algorithms
for a document image segmentation problem and our experimental result shows that
the fuzzy c-mean algorithm is more flexible and can produce a better segmentation
result.

We have also described several cluster validity measures, including partition co-
efficient, partition entropy, and compactness and separation validity function. Qur
experiments show that the compactness and separation validity function gives the
most accurate result for a color image segmentation problem.
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A new approach to estimating fuzzy parameters with a particular application to
the ore-grade problems has been discussed in this chapter. A fuzzy inference system
and a fuzzy clustering algorithm have been applied as the underlying principles for
this proposed approach. Starting with given data points, the fuzzy clustering method
provides a collection of cluster centers, and unknown parameters can be estimated by
a fuzzy model in a naturally consistent way. For the present application, the cluster
centers and their estimated parameters are viewed as the control points in the fuzzy
space-grade relationship, where the boundaries are not sharply defined, and are then
used to infer a mean grade value at a particular locatton.

The inverse distance estimation has been found to be more sensible than the
weighted mean [57]. However, the inverse distance weights are arbitrary as they
solely depend on the distance between the samples and the unknown parameter,
and will give less reliable results when the orientation or pattern of the samples are
clustered. The point kriging estimator provides an optimal set of weights based on the
optimality principle of a Lagrange multiplier, and the kriged weights change according
to the geometrical arrangement of the samples. However, kriging methods may not
give optimal solutions unless a semi-variogram which expresses the degree of spatial
continuity of a regionalized variable is well defined. When the sampling points are
inadequate for establishing a semi-variogram, kriging estimators are no longer reliable
[54], [35])- For such a case of ill-defined problems, the use of the proposed method
is more reasonable in both philosophical and practical aspects through the concept
of the characteristic function of a fuzzy set, the optimal partition of sampling poeints
using the fuzzy c-means clustering, and the natural and systematic framework of a
fuzzy inference model.



Chapter 5

Line Pattern Matching

5.1 Introduction

Many pattern recognition problems can be simplified as a point or line pattern match-
ing task [11], [12], [58], [59], [60]. For example, a Chinese character is composed of
a number of strokes, each of which can be considered as a line segment, thus an in-
put character can be recognized by matching its strokes against those of character
prototypes [58], [59]. In this chapter, we consider fuzzy algorithms for maitching line
patterns. A point pattern can be converted to a line pattern by connecting the points
with line segments, so line matching algorithms can be applied to point matching
after a proper point to line transformation [11].

The matching problem we need to solve here can be stated as follows. We are
given a set of pattern prototypes

P = {p0, 50,y (5.1)

where Np is the number of prototypes, and each prototype p'® consists of M, Line
segments

P(k) = {lg.k)’ !gk)a s zf\:l} = {(Sgk}’ e(lk))a (sgk)a e’(zk))e R} (55\2 B 85\2)} (52)
where (&} (k) (%)
1# < (5, &) (5.3)

represents the starting and ending locations respectively of line § in protolype &. An
input pattern ¢ consisting of N line segments is denoted as

g={li,la, -, .} = {(s1,e1). (82,€2), - -, (5w, e)} (54)

where

li=(s;,¢)) (5.5)
represents the starting and ending locations respectively of line 7 in the input pattern.
There are two classes of matching problems:

109
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(1) Np = 1, that is, there is only one prototype. In this case, we need to match
two patterns p and ¢. The numbers of lines in the two patterns may not be
equal, that is, one pattern may be a subset of the other. The task here is to
determine the location of the sub-pattern in a larger pattern or o determine
the correspondence relationship between the lines in the two patterns.

(2) Np > 1. In this case, we need to find the prototype which is closest to the
input pattern. We may also need to determine the correspondence relationship
between the lines in the input pattern and the closest prototype.

For both problems, we can consider a prototype and the input pattern as two sets.
In noise free cases, our task is to find a corresponding line in the larger set for each
line in the smaller set. A straight forward method to solve this problem is o consider
all possible correspondence relationships between the lines in the two sets. That is,
we can try matching between any line in the smaller set and any line in the larger
set. Suppose that the numbers of lines in the smaller and larger sets are N, and N,
respectively and that one line on a set can only be matched to one line in the other
set, then the matching procedure is equivalent to re-indexing of the lines in the larger
set so that its first NV, lines after re-indexing correspond to the lines in the smaller
set. The total number of ways to re-index the larger set for this purpose is

Na(Ny = 1)(Ng = 2)- -+ (Na = Ny +1) > V! (5.6)

This means that it requires at least V! evaluations to match a prototype and the
input pattern. This is clearly unacceptable in practical applications.

As an example, we consider on-line recognition of character “king” shown in
Fig. 5.1. The normal stroke order to write this character is shown in Fig. 5.1(a). How-
ever, one can produce the same character using the stroke order shown in Fig, 5.1(b)
although children are taught not to write the character this way. For this character,
there are 4! = 24 different stroke order sequences. As the number of strokes increase,
the number of possible stroke sequences increases rapidly. For example, character
“queen” in Iig. 5.2(a) has 10 strokes. Now there are 10! = 3,628, 800 different stroke
order sequences. It is obviously not feasible to implement a brute-force maiching
procedure that takes all stroke orders into account for all characters in a real system.
Thus, most on-line handwritten Chinese character recognition systems often impose
some constraints on the order of presentation of stroke lines in a character. An input
pattern may be rejected without recognition or may be recognized incorrectly if one
draws a stroke too early or too late. In some systems, the direction of writing may
also be important. Normally, one draws a horizontal line from left to right and a
vertical line from top to bottom when writing a Chinese character. If these rules are
violated, a character may also be recognized incorrectly.

Line pattern matching can become more complicated if the input data contain
noise or are distorted. In this case, there may be extra line segments or missing ones
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(a) {b)
Figure 5.1 Chinese character “king”. Children are taught to write this character
according to the standard stroke order shown in (a), but one can write the same

character according to the stroke order shown in (b). Altogether, the same character
can be written in 41 = 24 ways.

1 1
] e
2 ﬂal 2 /]4
b — 2—
7 7
0___t—m" 10___t—"

(a) (b)

Figure 5.2  Chinese character “queen”. The standard stroke order is shown in
(2) and an alternative order is shown in (b). Altogether, the same character can be
written in 10! = 3,628, 800 ways.
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in the input pattern and the location and length of a line in the pattern may be
different from those of the prototype. We need to take these problems into account
to build a robust matching system.

Fuzzy algorithms can be used effectively for line pattern matching since they can
deal with many ambiguous or fuzzy features of noisy line patterns. Cheng, Hsu and
Chen have proposed a fuzzy method for handwritten Chinese character recognition
[59]. Ogawa has published fuzzy relaxation based techniques for point pattern match-
ing and partial shape matching [11], {12]. Algorithms described in this chapter are
developed based on those originally proposed by Cheng, Hsu and Chen and by Ogawa.
In Section 5.2, we describe how to use membership functions to measure similarities
between line segments. In Section 5.3, we describe a basic algorithm for line pattern
matching based on spatial relations of the hines in a prototype and the input pattern.
In Sections 5.4 and 5.5, we consider more sophisticated algorithms to deal with noisy
patterns and geometrically distorted patterns. Finally in Section 5.6, we show ap-
plications of line pattern matching algorithms to Chinese character recognition and
point pattern matching.

5.2 Similarity Measures between Line Segments

The key problem in matching two line patterns is that for each line in one pattern
we need to find the closest line in the other pattern. To carry out this task, we need
to define how to measure the similarity between a pair of lines in two patterns. We
consider three fuzzy sets, line location, line orientation, and directional relationship
between lines and make use of the corresponding three membership functions for line
similarity measurement.

5.2.1 Location Similarity

We can treat the mid-point of a line as its location. The distance between the locations
of line 1 in prototype k and line j in the input pattern is shown in Fig. 5.3. and can
be calculated as

4o 5o

(k) _ _
¢ 5D 3D

e B

(5.7)

where D{*) and D are two normalization factors. In our experiments, we chose them
to be the maximum width or maximum height, whichever is larger, of the prototype
and the input pattern respectively. Assuming

(k) _ P @ T
e =| "% 5.8
; [yif’] [yf:)] y] s [y] (5.8)
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-

Figure 5.3 Distance between line ¢ in prototype & and line j in the input pattern
defined as the distance between the mid-points of the two lines.

we have

2 2
P | N ) N F7 <R PR (5.9)
g 9 Dts) D Dk} D '

We can adjust the coordinate system so that

in (o0, <9} = min {59, 3} = min o 2} = min g 3} =0 (5.0

and
D(k) = mf).x {$£f)7 mg:_c), ygf)7 ygc)}’ D= m?x{msju Tejy Ysja yej} (511)

The location similarity between the two lines can be measured using the following

membership function \ \
ui = coss (e dl¥) (5.12)

where ng and ¢z are constants. In our experiments, we chose n,= 3 and ¢y = 7/2.
For these parameters, the membership function is shown in Fig. 5.4. The minimum
value of d;” is 0 and the maximum value is 1, corresponding to membership values
of 1 and 0 respectively. In general, two lines have a large membership value if they
are close to each other and a small membership value if they are far away from each
other.

a;
k)
3

5.2.2 Orientation Similarity

The difference between the orientations of a pair of lines plays an important role in
matching the two lines. We define the membership function to measure the orientation
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08 [ -

0.6 b
cos (wd( )/2)

04 -

02 .

0 6.2 0.4 6.6 0.8 1

Figure 5.4 The membership function defined in Eq. (5.12) with ny, = 3 and
ez, = m /2. This function is used for measuring the location similarity between line ¢
in prototype k and line § in the input pattern.

similarity between line ¢ in prototype k and line j in the input pattern in terms of
the angle, ch , between the two lines as follows:

n &
w3k = Jeos™ (cob)| (5.13)
where np and cp are two constants, and
G(k) ’arg(s(k) (")) — arg(s; — ej)l (5.14)

where arg means the argument or phase of a vector. In our experiments, we chose
no=3,and co =1.

In Fig. 5.5(a), the angle is measured anti-clockwise from line 7 in prototype k to
line § in the input pattern. The membership value does not change if the angle is
measured anti-clockwise from line § in the input pattern to line i in prototype k {see
Fig. 5.5(b)). In general,

0<o¥ < (5.15)
so the membership value is in the range of [0,1]. Two lines have a large membership
value if they have similar orientations and a small membership value if they have
different orientations.

5.2.3 Relation Similarity

In many cases, it may be difficult to recognize a pattern by dealing with its com-
ponents independently. The problem can be made easier by analyzing the relations
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o A o ‘D ot
[ R i

(a) (b)

Figure 5.5 The angle between line 7 in prototype & and line j in the input pattern.
This angle can be measured in two ways shown in (a) and (b) respectively. Both
measures give the same value of the membership function defined in Eq. (5.14).

between the components. For line matching, we consider the directional relation be-
tween a pair of lines in a prototype and compare this relation with that in the input
pattern. This means that we measure the similarity between a line in a prototype and
a line in the input pattern based on evidence provided by other lines related to the
two lines. For lines z and u in prototype k, we define the relation angle o’ between
the lines as the orientation of the line connecting the mid-points of the two lines (see
Fig. 5.6(a)). For lines j and v in the input pattern, we define the relation angle «;,
between the two lines in the similar way (see Fig. 5.6(b)). The two relation angles
are given by

o = arg (sf-") +el® s _ eg‘k)) (5.16)

and
o, = arg (SJ' +e; -5, — eu) (517)

In general,
0< oy, aju <2n (5-18)
We also have

o™ Zar — o® (5.19)

and
ay; =21 — aj (5.20)

This means that the starting line and ending line must be clearly defined to measure
the relation angle between them (see Fig. 5.6). A relation angle shows a basic spatial
relation between two lines. For example, if afj) = 7 /2, then we can say that line i is
above line u or line u is below line ¢ in prototype k.
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o
)

o
()
o

P
u

Figure 5.6 (a) The relation angle between lines ¢ and u in prototype k, (b) the
relation angle between lines j and v in the input pattern, (c) the relation angle
between lines u and : in prototype k, and (d) the relation angle between lines v and j
in the input pattern. Note that the starting line and the ending line must be clearly
defined to measure a relation angle, that is, aﬂ? # ag? and @j, # ;. In fact,

QE:) + ag? = 2r and oy, + oy = 2,
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| |-

Figure 5.7 Two Chinese characters, both meaning “long”. The two patterns should
be recognized as the same character although the line in the upper right corner is
much longer in one pattern than in the other pattern. In many cases, the length of
a line in a Chinese character may vary widely without changing the meaning of the
character.

We define the membership function for the relation similarity between lines : and
# in prototype ¥ and lines 7 and v in the input patiern as

= s fon (o — )| 21
where np and ¢g are two constants. In our experiments, we chose ng = 3 and
er = 0.5. The membership value is large if the relation angle between lines : and u
in prototype k is close to that between lines ;7 and v in the input pattern and the
membership value is small if the angles have a large difference.

The relation similarity can be considered as a second order measure while location
and orientation similarities are first order measures. When they are combined, lines
in two patterns can be matched based on not only the properties of individual lines
but also relations among these lines.

We do not define a fuzzy set for line lengths since their values for a given pat-
tern can vary widely and cannot be represented accurately, such as in the case of
handwritten characters shown in Fig. 5.7. However, in some other cases, the relative
lengths of lines in a pattern can be important. For example, in Fig. 5.8, the character
changes its meaning when the lower horizontal line becomes shorter than the upper
one. This kind of problems can only be dealt with in practical applications based on
special classification rules.

5.3 Basic Matching Algorithm

5.3.1 Entropy Measure

Our task here is to compare each prototype with the input pattern so that the
correspondence refations between the lines in a prototype and the input pattern are
identified and the best matching prototype is determined. We make use of three
similarity measures described in the preceding section to match a patr of lines. To
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Figure 5.8 Three Chinese characters. The first two mean “soil” and the last one
means “person”. The absolute lengths of the horizontal lines are not important, but
the relative lengths are important. In the second character, both horizontal lines are
shorter than those in the first character, but the upper line is still shorter than the
lower one, so the second character has the same meaning as the first one. However,
in the third character, the upper horizontal line is longer than the lower one and it
now represents a character with different meaning compared with the first and second
characters.

0.7 7 T T T e T T

05 N
04} '.' -'.- -

03p R

01 —'" —

0 i — i I L — L ] |

0 61 02 03 04 05 06 07 08 09 1
[

Figure 5.9 Eatropy function Hy(g) = —ulnp — (1 — g)In(1 — k) and its modified
version H(p). Hi(p) is monotonic decreasing only in the interval 0.5 < p < 1. If we
replace g with 0.5+ 0.5x in H;(g), then the new function H{g) = —(0.5+ p) In(0.5+
0.5u) — (0.5 — 0.5) In(0.5 — 0.54) is monotonic decreasing in the interval 0 < p <1,
which 1s the same as the range where the membership values are distributed.



5.3. Basic Matching Algorithm 119

consider the matching cost for the entire pattern, we need to combine the similarity
measures for all line pairs. This can be done using the Shannon’s entropy function

Hy(p) = —php— (1 —pg)in(l - p) (5.22)

This function is shown in Fig. 5.9. Since we need the matching cost to decrease as
the similarity measure increases, we make use of only the second half of the entropy
function, which is a monotonic decreasing function for 0.5 < p < 1. Replacing g with
0.5 + 0.54 in Eq. (5.22), we obtain

H(p) = —(0.54 0.54) In(0.5 + 0.5p) — (0.5 — 0.5¢) In(0.5 — 0.54) (5.23)

Now H(u) is a monotonic decreasing function for 0 < g < 1 (see Fig. 5.9), which can
now be used as a cost function if we treat i as the membership value of a similarity
measure.

5.3.2 Matching Costs

We define the cost for matching line ¢ in prototype k and line j in the input pattern
in terms of location similarity as

C8 = —(0.5+ .55 In(0.5 4 0.508%) — (0.5 — 0.5u() In(0.5 — 0.54%))  (5.24)

Similarly we define the cost for matching line 7 in prototype k and line § in the input
pattern in terms of orientation similarity as

CH) = —(0.5+0.545%) In(0.5 + 0.548) ) — (0.5 — 0.565%) (0.5 — 0.545),) (5.25)

It is more complicated to define the cost in terms of relation similarity. For line
i in prototype k and line j in the input pattern, we consider line u in the prototype
and line v in the input pattern, where

w=1,2,i—li+1,--, My (5.26)

and
v=1,2--,j—1,j+1,---,N (5.27)

Equations (5.26) and (5.27) mean that all lines in the prototype and the input pattern
except line 7 in the prototype and line j in the input pattern are considered. For the
prototype, we can determine the relation similarity of line ¢ with every other line
corresponding to each u value. Similarly, for the input pattern, we can determine the
relation similarity of line § with every other line corresponding to each j value. If line
i in prototype k& matches line j in the input pattern, then for each u value we can
find a v value so thai the relation between lines ¢ and u in the prototype Is similar to
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the relation between lines j and v in the input pattern. Now we define the cost for
matching these relations as

C’Y}(?’:L)u = (0 5+ 0. 5“Rm_w) ln(0'5 + 05”5;::)1;111)
=(0.5 — 0.5a%%;,) In(0.5 — 0.54%), ) (5.28)

For each u value, we can find a v value so that CR,“.W is a minimum. The cost for
matching line ¢ in prototype k and line j in the input pattern in terms of relation
similarity can now be defined as

1

® = w (c® 4 o® 9
C Q(Mk - 1) 1<u<%g,u#i ISng]{'I,lu#J ( our T Rﬂ.lJt!) (5 9)

The cost for matching line 1 in prototype k and line § in the input pattern can be
defined as the weighted summation of the three components corresponding to three

similarity measures; . . . i
C,(J ) — GLCLJ + GoCé,l + GRC};& (5.30)

where ap, ap and ag are weighting constants. We choose ¢, = ap = ag = 1 in our
experiments. In general, these constants can be adjusted according to training data
to achieve the best matching accuracy. Finally, the cost for matching prototype k
and the input pattern is
R E mmc(;) (5.31)
k =1 =1
That is, for each line in a prototype, we find the best matching line in the input
paitern and then obtain the cost of matching the prototype and the input pattern
by averaging the costs associated with all lines in the prototype. The input pattern
can then be assigned to the class of the prototype for which the matching cost is
minimum, that is,
class(q) = class(p®*") (5.32)

where class(+) means the class label of a pattern and
M
k= arg 1}1_1"{1 o® (5.33)
An input pattern can be classified based on C'*¥). To determine the correspondence
relations between the lines in the best ma.tchmg prototype p*") and the input pattern

¢q, we can make use of the cost function C' . The line in the input pattern that best
matches line 7 in the prototype is

) N ok
J: = argmin Cy (5.34)
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5.3.3 Examples

We consider prototype patterns in Figs. 5.10{a) and 5.10(b) and input patterns in
Fig. 5.11(a) to 11(d). The matching cost C'*) is shown in Table 5.1, where k = 1
corresponds to the prototype in Fig. 5.10(a) and k£ = 2 to the prototype in Fig. 5.10(b).
The pattern matching costs are:

Prototype \ Input  Fig. 5.11(a) Fig. 5.11(¢) Fig. 5.11(c) Fig. 5.11(d)

Fig.5.10(a) (k=1)  0.129 0.591 0.129 0.591
Fig. 5.10(8) (k=2)  0.671 0.159 0.671 0.159

The matching algorithm has worked reliably for these patterns. It shows the
following properties:

o Patterns in the same class are matched with low cost.
¢ Patterns in different classes are matched with high cost.

¢ Paiterns in the same class are matched correctly despite changes in line labels
or the stroke order.

Cg‘) is shown in Tables 5.1 to 5.6 for different combinations of prototypes and
input patterns. For each line in a prototype, we can determine the best matching line
in the input pattern by searching for the minimum match cost along each row in the
matching cost matrix. In these tables, the best matching lines are shown under the j;
columns and the corresponding line matching costs are shown under the C',-(J-':) columns.
To evaluate the reliability of line matching, we define the relative line matching cost
for line ¢ in prototype k and the best matching line in the input pattern, line j;, as

(k) (k)
) _ i - Css (5.35)
* max OP— min ¢ max ¢ -
155<M, T gy Y 1558M, Y e

The last columns of Tables 5.1 to 5.6 show this relative line matching cost for our

examples. Lg-? varies in a wider range than C,-(;f), that is, it is smaller than Cgf) when

the matching cost is small and larger than C,—(Jf) when the matching cost is large.

From Tables 5.1 to 5.6, we can see that the relative line matching cost for every
line is small when a prototype and the input pattern belong to the same class, no
matter how the lines in the input pattern are labeled. However, when a prototype
and the input pattern belong to different classes, the relative matching cost for most
lines is large. For example, if we set a threshold 7" = 0.30 for L,(;c'), then all lines in
Tables 5.1 and 5.4 to 5.6, but only one line in Tables 5.2 or 5.3, can be considered
matched reliably.



122 Chapter 5. Line Pattern Matching

1\
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™~ 7
3" ~
( (b)

Figure 5.10 Examples of Chinese characters. These two line patterns are used as
prototypes in the experiment.

o
—

e

\
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/
(=) (b)

e

"-..____‘-9

N

>
e

(c) (d)
Figure 5.11 Chinese characters used as input samples in the experiment. Char-
acters in (2) and (c) are the same, but the stroke orders or the line labels in two
characters are different. Similarly characters in (b) and (d) are the same and their
line labels are different.
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Table 5.1 Line matching cost matrix C‘(; ) for the prototype in Fig. 5.10(a) and
the input character in Fig, 5.11(a).

i [CP [P PP [P P 15 [cB 1l
1(013(046|1.55 (15416913611 |0.13]0.09
21059 0.07]1.061.72|1.69|1.1712 |0.07}0.04
3(169(1.1210.17 11,21 (13816413 |0.17}0.11
41142 (1.7311.30 (0.11 | 1.01 |1.82] 4 |0.11}0.06
511.59(1.50]1.02 086|021 |1.07]5]0.211}0.15
61129124169 (151 |0.79|0.08]6 | 0.08 | 0.05

Table 5.2 Line matching cost matrix C‘-(;) for the prototype in Fig. 5.10(a) and
the input character in Fig. 5.11(b).

i [cP [P 1P [cR [P [ e[l [ | g i | cf | LE)
1] 0.5 | 1.03 | 1.11 | 1.49 | 1.21 [ 1.43 [ 1.59 | 1.33 | 1.69 | 1 | 0.51 | 0.43
510.92 [0.96 | 1.40 | 1.71 | 117 | 1.30 | 1.44 [ 1.07 | 1.54 [ 1 [0.92 | LI
3| 1.75 [ 1.08 | 1.13 | 1.61 | 0.81 | 1.03 | 1.11 | 1.40 | 0.45 | 9 | 0.45 | 0.35
4| 1.27 114 [ 047 | 0.45 | 0.80 | 0.77 [ 1.61 | 2.2 | 1.15 | 4 | 045 | 025
5 | 1.41 [ 1.05 | 1.08 | 0.52 | 1.03 | 0.48 [ 1.16 | 1.90 | 1.34 | 6 | 048 | 0.33
6 | 1.7 | 1.89 | 1.70 | 1.36 | 1.47 | 1.26 [ 1.28 | 1.18 | 1.61 | 8 | 118 | 168

Table 5.3 Line matching cost matrix C}J-z) for the prototype in Fig. 5.10(b) and
the input character in Fig. 5.11(a).

Tl [P [ c el [ 5 [ ol [ 10

! H iy ity
11048]085]1.80]1.19]1.53|1.13 |1 [0.48 U.éﬁ
211.07]0.93(058]1.24 |1.27|1.93|3 | 0.58|0.43
3139|151 135|035 1.18|1.65] 4 [0.35| 0.27
41164 (1.76|1.49|0.56 | 0.55|1.43 |5 [0.55 | 0.46
511.40(1.2710.96 089 [1.25]1.65]4 |0.89]1.18
61159 (1.45]10.92|1.15(0.60}1.36|5 [0.60]0.61
711571147 |1.07{1.88(0.91]1.09]5|091]0.95
8(1.22]0.96|1.30}212(1.56|0.82|6 | 0821063
9(1.79]1.55|0.85|1.25(1.14]1.37]3|0.85]090
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Table 5.4 Line matching cost matrix Cf‘(f ) for the prototype in Fig. 5.10(b) and
the input character in Fig. 5.11(b).

ijo e e | o | el [ of [ ok [ o [ [ cf | Ly
1{0.39 | 1.33 [ 0.78 [ 0.96 | 1.08 | 1.20 | 1.59 | 1.40 | 1.82 | 1 | 0.39 | 0.28
2 [ 1.05 | 0.10 | 0.91 | 1.12 | 0.90 | 0.78 | 1.39 | 1.83 | 1.07 | 2 [ 0.10 | 0.06
3114 | 1.29 | 0.17 | 0.58 | 6.45 | 0.85 | 1.78 | 2.03 | 1.15 | 3 [ 0.17 | 0.00
4127 [ 112 0.90 [ 0.15 | 1.18 | 0.67 | 1.41 | 2.03 | 1.50 | 4 [ 0.15 | 0.08
5 [1.24 [ 1.02 | 0.51 | 1.01 | 0.08 | 0.55 | 138 | 1.78 | 0.75 | 5 [ 0.08 | 0.05
$1.33 | 0.82 | 0.95 | 0.56 | 0.62 | 0.07 | 0.92 | 1.69 | 0.91 | 6 [ 0.07 | 0.05
7127 | 117 | 1.74 | 1.30 | 1.25 | 0.82 | 0.08 | 1.05 | 0.71 | 7 | 0.08 | 0.05
8 | 142 | 1.57 | 1.03 | 1.88 | 1.46 | 1.37 [ 0.75 | 0.17 | 0.93 | 8 | 0.17 | 0.09
9 170 | 198 | 1.02 | 1.36 | 6.52 | 6.70 | 0.81 | 1.38 | 0.21 | 9 | 0.21 | 0.14

Table 5.5 Line matching cost mairix C',-(J-l) for the prototype in Fig. 5.10(a) and
the input character in Fig. 5.11(c).

0 K S e e Sl el s < Y el
T]1.54 | 1.69 | 1.36 | 1.55 | 0.46 | 0.13 | 6 [ 0.13 | 0.09
2 | 1.72 | 1.69 | 1.17 | 1.06 | 0.07 | 0.59 | 5 | 0.07 | 0.04
3121 | 1.38 | 1.64 [ 0.17 | 1.12 | 1.69 | 4 | 0.17 | 0.11
47001 [ 1.01 [1.82 | 1.30 | 1.73 | 142 | 1| 0.11 | 0.06
51086 | 091 | 1.07 | 1.02 | 1.50 | 1.59 | 2 | 0.21] 0.15
6 [ 1.51 | 0.79 | 0.08 | 1.69 | 1.24 | 1.29 | 3 | 0.08 | 0.05

Table 5.6 Line matching cost matrix C,(_? Y for the prototype in Fig. 5.10(b) and
the input character in Fig. 5.11(d).

[P [P TR (e [P [P [P [ [P 1
1103910781096 1.33|1.82|1.08(120|1.59 (1401 (0.39(0.28
2110510911112 0.10}107]{090(0.78|1.39(1.83|4 |0.10( 0.06
31114017 ]|0581.29|1.15|045(0.85|1.78 (2032 |0.17 | 0.09
4112710900151 1.1211.59(1.18 067141 (2033 |{0.150.08
51124 (051 (1011102 (075|008 |055]1.38|1.78]6]0.08]0.05
611.33(098 (056 (0.82(091}106210.07]092]|1.69| 710.07]0.05
T11.2711.74 | 1.30 | .17 (071 | 1.25 | 0.82 [ 0.08 { 1.05 | 8 | 0.08 | 0.05
811421193 (188 |157{093{146(1.37]10.75(0.1719 | 0.17 ] 0.09
9(1.7011.0211.36|1.28]10.21 (052 |0.7010.81(1.38|5]0.21]0.14
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5.4 Dealing with Noisy Patterns
From the examples in Section 5.3, we know that Lg’) provides useful information
not only for the line matching relations, but also the overall similarity between a
prototype and the input pattern. If all lines in a prototype are matched with all lines
in the input pattern with low Lu , then we can safely say that the input pattern
belongs to the class of the prototype. On the other hand, if only a very small number
of linesin a ]irototype are matched with a small number of lines in the input pattern
with low LS’ , then we can safely say that the input pattern does not belong to the
class of the prototype. In practical applications, however, a pattern may have missing
or extra lines because of noise corruption, so we do not expect that every line in a
prototype to be matched with a line in the input pattern with a low cost even if the
two patterns belong to the same class. That is, we will have cases in which a small
number of lines in a prototype are not maiched well with the input pattern. We show
below that we ca.n identify the noisy lines or missing lines in the input pattern based
on analysis of L . We deal with prototypes in Figs. 5.10(a) and 5.10(b) and noisy
characters in Flgs 5.12(&) to 5.12(d) to explain the techniques.

First, we need to determine the best matching prototype. This can be carried out
with the basic matching algorithm described in the preceding section. For the two
prototypes, the pattern matching costs are:

Prototype \ Input  Fig. 5.12(a) Fig. 5.12(h) Fig. 5.12(¢) Fig. 5.12(d)

Fig.5.10(a) (k=1)  0.122 0.122 0.267 0.260
Fig. 5.10(8) (k=2)  0.543 0.516 0.674 0.546

Obviously, all input patterns belong to the class of the first prototype.
In the following subsections, we consider the first prototype only and describe the
procedures for dealing with noisy and missing lines in an input pattern.

5.4.1 Detecting and Removing Extra Lines

Consider the input pattern in Fig. 5.12(a). Tt has an extra horizontal line in the
middle of the character. When the line pattern in Fig. 5.10(a) is used as a prototype,
the best matching line labels and the relative line matching costs are:

i1 2 3 4 5 6
# 1 2 3 4 5 6

L 008 005 016 005 0.08 0.06

We can see that lines 1 to § in the prototype are matched with lines 1 to 6 in the input
pattern with low cost. Line 7, the noisy line, in the Input pattern is not matched with
any line in the prototype, so we can now safely say that the input pattern belongs to
the class of the prototype if line 7 is ignored. This result can be verified by matching
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(a)

(c)
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(d)

Figure 5.12 Characters containing extra or missing strokes. Information provided
by the relative line matching costs can be used to deal with these noisy patterns.
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the two patterns again with the prototype in Fig. 5.10(a) treated as the input pattern
and the input pattern in Fig. 5.12(a) as a prototype. That is, we exchange the roles
of the two patterns. Now the best matching line labels and the relative line matching

costs are:
1 1 2 3 4 5 6 7

i 1 2 3 4 5 6 5
L 011 007 019 0.14 011 0.07 0.70

L3 Y

We can see that both line 5 and line 7 in the prototype (the original input pattern)
match line 5 in the input patiern (the original prototype) with relative line matching
costs equal to 0.11 and 0.70 respectively. Since line 5 in the prototype matches line 5
in the input pattern with a much lower cost than line 7 in the prototype, line 7 in the
prototype must be an extra line which does not match any line in the input pattern.
So, in both matching procedures we can identify the noisy line in the original input
pattern.

Now we consider the input pattern in Fig. 5.12(b) which contains two noisy lines.
When the line pattern in Fig. 5.10(a) is used as a prototype, the best matching line
labels and the relative line matching costs are:

i 1 2 3 4 5 6
i 1 2 3 4 5 6
L) 008 005 0.16 0.05 0.08 0.06

When the input pattern is treated as a prototype and the ine pattern in Fig. 5.10(a) is
used as the input pattern, the best matching line labels and the relative line matching

costs are:
: 1 2 3 4 5 6 7 8

i 1 2 3 4 5 6 5 8
L¥ 012 008 020 0.15 0.15 0.08 0.78 0.85

i
From either of the matching procedure, we can determine that lines 7 and 8 in the
original input pattern are noisy lines.

5.4.2 Detecting and Recovering Missing Lines

Consider the character in Fig. 5.12(c), which has a line missing. When this character
is used as the input pattern and the line pattern in Fig. 5.10(a) is used as a prototype,
the best matching line labels and the relative line matching costs are:

i 1 2 3 4 5 6
s 1 1 2 3 4 5
L 012 052 014 0.17 018 0.07
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Note that Lg-:) is higher than that in Table 5.1 since there is a line missing in the input
pattern so that the relation similarity between the prototype and the input pattern
is reduced, However, for most lines the relative line matching cost is still fairly low.
For both i = 1 and i = 2, we have j; = 1. This means that two lines in the prototype
match one hne in the input pattern To resolve the conflict, we check the values of

g‘) Since LlJl is smaller than LG, line I and not line 2 in the prototype matches
line 1 in the input pattern. This also means line 2 in the prototype does not have a
partner or the corresponding line is missing in the input pattern. This result can also
be verified by a second matching procedure. When the input pattern is treated as a
prototype and the line pattern in Fig. 5.10(a) is used as the input pattern, the best
matching line labels and the relative line matching costs are:

i 1 2 3 4 5
i 1 3 4 5 6
L 009 012 020 0.15 0.06

th

We can see that line 2 in the input pattern (the original prototype) is not in the list
and thus its partner in the prototype (the original input pattern) is missing. So from
either of the maiching procedures, we can detect and recover the missing line.

Now we consider the character in Fig. 5.12(d). It has a missing line and an
extra line. When this character is used as the input pattern and the line pattern in
Fig. 5.10(a) is used as a prototype, the best matching line labels and the relative line
matching costs are:

i 1 2 3 4 5 &
i 1 1 2 3 4 5

¥ 012 057 0.18 0.16 0.10 0.08

e

Similar to the character in Fig. 5.12(c), line 1 in the input pattern should match line
1 and not line Z in the prototype, based on the corresponding values of L,(f‘). Thus,
line 2 in the prototype does not have a partner and its corresponding line is missing
in the input pattern. Line 6 does not match any line in the prototype, so it is an
extra line. When the input pattern is treated as a prototype and the line pattern
in Fig. 5.10(a) is used as the input pattern, the best matching line labels and the
relative line matching costs are:

1 1 2 3 4 5 6
Ji 1 3 4 5 6 5

LY 012 019 017 0.3 0.08 0.82
Line 2 in the input pattern (the original prototype) is missing in the above list, so the

corresponding line in the prototype (the original input pattern) is missing. Line 5 in
the input pattern matches lines 4 and 6 in the prototype with relative line matching
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costs 0.13 and 0.82 respectively. Since Lg;l is large, line 6 in the prototype does not
have a partner in the input pattern and this line in the prototype (the original input
pattern) should be considered as an extra line.

5.4.3 Summary of Matching Algorithms

In summary, we can use the following rules to detect missing and extra lines in an
input pattern, based on the information of relative line matching costs between a
prototype and the input pattern:

(1) Select the best matching prototype and calculate the relative line matching cost
for each line in the prototype.

(2) Choose a threshold T for the relative line matching costs and count the number
of lines in the prototype with relative line matching costs below threshold T.

We call this number Mr.

(3) Choose & threshold Tpy. If My < Ty, reject the pattern without further pro-
cessing, otherwise go to the next step. Steps 2 and 3 ensure that the input
pattern indeed belongs to the class of the best matching prototype. If there are
not enough lines in the input pattern which can match the prototype with low
cost, the input pattern cannot be considered as being in the same class as the
prototype and is simply rejected.

{(4) For all 1 values (line labels of the prototype), check j; and Lg-? values, If j; is
the same for several i values, delete all 5; entries except the one with the lowest

L,(;-? value.

{(5) Check each j; entry. If it is empty (its value is deleted in step 4), then line 2 in
the prototype does not have a partner and its corresponding line is missing in
the input pattern.

(6) Check the label of each line in the input pattern. If it does not appear in any
of the j; entries, then the line is an extra line, that is, it should not exist when
the input pattern is considered as being in the same class of the prototype.

5.5 Dealing with Rotated Patterns
5.5.1 Basic Algorithm

Consider rotated characters in Fig. 5.13. A brute-force approach to matching
rotated patterns is to treat the rotation angle as a variable and match the prototypes
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Figure 5.13 A Chinese character and its rotated versions: (a) the original charac-
ter, (b) the character is rotated by —60°, (c) the character is rotated by —120%, (d)
the character is rotated by —180°, () the character is rotated by —240°, and (f) the

character is rotated by —300°.
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with all possible rotated versions of the input pattern. We define a new matching
cost function

Cg’) — E mm };’3 (5.36)

where 7 is the angle of rotation of the input pattern and
CH) = aLClk; + a0C%:; + arClik; (5.37)
where three matching cost components Cﬁ?ﬂ, C (’3,1, C' ; are calculated between

prototype k and the input pattern rotated through an angle . The corresponding
algorithm has the following steps:

(1) Choose Af, the increment between two rotation angles.
(2) Set g=0.

(3) Rotate the input pattern through the angle 3.

(4) Calculate C(k) for all & values,

(5) Set 3=+ A5,
(6) If B < 360°, go to step (3).
(7) For all 3 values and k values, determine the minimum Cg’).

For the rotated pattern in Fig. 5.13(b) and two prototypes in Figs. 5.10{a) and 5.10{b),
the matching cost functions are ca,lcula,ted for §=10°19 29 -.-, 359" and are shown
in Fig. 5.14. We can see that C' is minimum for k¥ = 1 a,nd B = 60°. This means
that the original pattern was rotated by —60° compared with the orientation of the
best matching prototype.

5.5.2 Fast Algorithm

The basic algorithm for matching rotated patterns is time consuming. In steps (3)
and (4), we have to rotate the input pattern for every 8 value, normalize the pattern,
compute the membership functions, and calculate the matching cost. There is not
simple relation between the location similarities measured between a prototype and
the original and the rotated input patterns. However, the orientation of a line and the
relation angle between two lines in the input pattern are simply increased or decrea.sed
by B when the entire pattern is rotated by an angle 8. Thus, we can calculate C{)‘Ou

and Cﬁ ri; pased on information of the original input pattern without actually rotating
it. Now we define a new cost function

o L % min C'%) (5.38)
s M, o =1 Bii ’
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0 1 1 1 1 i 1 1
0 50 100 150 200 250 300 350
Rotation Angle

Figure 5.14 Pattern matching cost functions, C,((?]) (solid line) and 01(32} {dotted
line), for the rotated pattern in Fig. 5.13(b) and two prototypes in Figs. 5.10(a) and
5.10(b) respectively.

where

O = aoCYi; + arClik; (5.39)
Since C"gc) does not contain the term Cé?'-j that requires additional computations, it
can be calculated easily for different § values by simply changing the Bff ) and a,(-:}v
values.

For rotated patterns in Fig. 5.13, the cost functions C’g") (k = 1,2) are calculated
for # = 0° 1% 29 ... 359° and are shown in Fig. 5.15. The cost functions are
minimum for k& = 1 and & equal to 0°, 60°, 120°, 180°, 240%, and 300° respectively,
corresponding to the rotation angles of the original input pattern.

After we find the value of # for which C’g’) is minimum, we ¢an correct the rota-
tion of the input pattern and deal with the rotated pattern based on the algorithms
described in Sections 5.3 and 5.4. In fact, we can even obtain correct classification
based on C’g‘). However, it is not as reliable as C'%) since it does not contain the
position information. To ensure the matching reliability, we can find several k and 8
values for which C"g’) is locally minimum, rotate the pattern for all the # values and
then calculate C*) for all the § values to classify the original pattern.
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Figure 5.15 C"g) for characters in Fig. 5.13: (a) the original character, (b) the
character is rotated by —60°, (c) the character is rotated by —120°, (d) the character
is rotated by —180°, (e) the character is rotated by —240°% and (f) the character is
rotated by —300°,
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Figure 5.16 Character Prototypes.

5.6 Applications

5.6.1 On-line Handwritten Chinese Character Recognition

In the preceding sections, the line pattern matching algorithms are described for
matching two Chinese characters. In this subsection, we show our experimental results
on a relatively large character database. We used 8§ Chinese characters shown in
Fig. 5.16 as prototypes. Note that only one prototype per class is used, so the
matching procedure is computationally efficient. We collected 128 samples for testing,
with 16 characters in each class. Some testing samples are shown in Fig. 5.17. The
characters were written on a tablet with an electronic pen. For each character, we only
recorded the positions of two end points of each stroke. That is, the order of drawing
the strokes and the direction of drawing a stroke were not used for matching. Using
the 8 prototypes, all 128 testing characters are recognized correctly, In theory, the
matching algorithms can also be used for off-line character recognition if the character
strokes can be thinned and extracted so that a character can be represented as a line
pattern.

5.6.2 Point Pattern Matching

A point pattern can be converted to a line pattern by joining selected or all possible
pairs of points in the pattern [11]. Figure 5.18 shows three point patterns and their
corresponding line patterns. We have joined all pairs of points in each of the three
patterns. Note that in Fig. 5.18(b), along the diagonal direction there are three
lines, one from the upper right point to the lower left point which overlaps with two
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Figure 5.17 Examples of testing samples.

lines from the center point to the upper right and the lower left points respectively.
Similarly, three lines along the cross diagonal direction also overlap together. In
practical applications, if there are a large number of points in the pattern, we can
make use of only a small number of representative lines for matching [11].

We consider the patterns in Figs. 5.18(a) and 5.18(b) as prototypes, and that
in Fig. 5.18(c) as a testing sample which is a distorted version of the pattern in
Fig. 5.18(b). In each pattern there are 10 lines for 5 points. The line matching
costs are shown in Tables 5.7 and 5.8. Clearly the test pattern is classified correctly
although it is distorted.

5.7 Concluding Remarks

Efficient line matching procedures are useful for solving many pattern recognition
problems. In this chapter, we have presented a fuzzy logic based method for line
matching. In this method, we make use of membership functions to describe position,
orientation and relation similarities between different line segments. The position
and orientation similarities can be considered as first order measures and the relation
similarities can be considered as second order ones, Combining these similarities,
we can match a line in the input sample with a line in a prototype if the two lines
have similar locations and orientations and similar relations with other lines in the
patterns.

Our method can be modified to deal with noisy and rotated patterns. For noisy
patterns, we can identify missing and extra line segments by analyzing the matching
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N\

(a)

(b)

(c)

Figure 5.18 Point patterns and their corresponding line patterns. (a) and (b) are
two prototype patterns and (c) is a test pattern.
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Table 5.7 Line matching cost matrix C,(Jl ) for the prototype in Fig. 5.18(a) and
the input character in Fig. 5.18(c).

O | ei | o5’ [ | ef | o’ o | e’ | ok | Ch [4: | ¢ | L)
T [0.76 [ 0.94 [ 1.40 | 0.75 | 0.64 | 1.69 | 0.63 | 1.60 | 0.93 | 1.87 | 7 | 0.63 | 0.51
3 | 1.31 [ 1.61 | 0.69 [ 0.94 | 1.48 [ 0.88 | 1.00 | 2.04 | 1.00 | 1.00 | 3 | 0.69 | 051
3 [1.39 | 0.55 | 1.00 [ 0.50 | 0.36 | 1.32 [ 0.61 | 158 | 0.62 | 1.51 | 5 | 0.36 | 0.29
4 | 165 1.22 | 048 ]0.99 | 1.09 | 0.4 | 1,05 1.72 | 1.48 | 0.80 | 6 | 0.48 | 0.39
5 | 0.69 | 1.48 | 1.00 | 1.26 | 0.84 | 1.47 [ 0.81 | 112 | 1.37 | 1.56 | 1 | 0.69 | 0.79
6 | 175 | 0,38 | 1.02 | 0.83 | 1.02 | 1.25 | 1.56 | 1.53 | 0.66 | 1.26 | 2 [ 0.38 [ 027
7 | 1.84 | 1.23 [ 0.50 | 1.03 | 1,01 | 1.30 | 156 | 1.30 | 1.06 | 0.54 | 3 | 0.50 | 0.38
8 | 1.48 | 142 | 1.03 | 1.71 | 0.60 | 1.23 [ 0.90 | 0.87 | 0.82 [ 0.93 | 5 | 0.60 | 0.54
9 [1.95 | 130105 [ 1.76 [ 0.99 | 0.50 | 1.02 | 1.43 | 1.18 | 0.91 | 6 | 0.50 [ 0.3
10 | 1.33 | 157 | 1.42 | 1.83 | 119 | 1.62 | 1.57 | 0.12 | 1.05 | 1.16 ] 8 | 0.12 | 0.07

Table 5.8 Line matching cost matrix C}J_z) for the prototype in Fig. 5.18(b) and
the input character in Fig. 5.18(c).

i_|oh ey | el ey |65 og | o | C | O | Cha | 5 | CF) | LY
T [0.08 156 | 1.46 | 1.19 | 1.24 [1.61 | 0.78 | 1.32 | 1.62 | 1.93 | 1 | 0.08 | 0.04
2 [ 1.58 | 0.05 | 1.21 [ 0.76 | 0.87 | 1.29 | 1.33 | 1.63 | 0.72 | 1.53 | 2 | 0.05 | 0.03
3 | 1.65 | 1.23 | 0.06 | 0.79 | 0.79 | 0.89 | 1.19 | 1.64 | 1.31 | 0.53 | 3 | 0.06 { 0.04
4 [1.15 [ 0.92 | 0.65 [0.09 | 1.10 ] 1.33 | 1.21 | 1.67 | 1.45 | 1.14 | 4 | 0.09 | 0.05
5 | 1.34 [1.140.73 | 1.35 | 0.16 | 1.16 | 050 | 1.25 | 0.71 | 1.21 | 5 | 0.18 | 0.1
6 [1.87 [1.23 | 1.00 [ 1.47 | 117 [0.18 [ 1.08 | 1.67 | 1.41 | 1.07 | 6 | 0.18 [ 0.11
7 [ 1.06 [ 145 | 1.17 | 1.44 [ 0.74 [0.97 | 0.22 | 1.64 | 122 | 1.62 | 7 [0.22 | 015
8 | 131 [1.56 | 1.40 | 1.83 | 1.17 | 1.59 | 1.55 | 0.03 | 1.04 | 1.14 | § | 0.03 | 0.02
9 | 154 [0.82 | 1.07 | 1.45 | 0.40 [ 1.58 | 1.05 | 0.9 | 0.08 | 1.39 | 9 | 0.08 [ 0.06
10 | 1.99 | 1.55 | 0.44 | 1.25 | 1.30 | 0.69 | 1.54 | 1.24 | 1.48 | 0.06 | 10 | 0.06 | 0.0
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costs of individual lines. For rotated patterns, we can carry out a rough matching
first based orientation and relation similarities which can be computed very efliciently.
From the rough matching result, we can select several! best matching prototypes for
finer matching to obtain the final recognition result.



Chapter 6

Fuzzy Rule-based Systems

6.1 Introduction

It is believed that human recognition practice may adopt a set of linguistic rules.
The rule-based symbolic processing could be the best platform to explain human
intelligence in learning, object recognition, natural language understanding, and a
variety of other activities. These rules can be extracted from expert knowledge or
learned from examples. A linguistic rule can be described in the form

TF (a set of conditions are satisfied),
THEN (a set of consequences can be inferred).

Since the antecedents and the consequents of an IF-THEN rule are usually associated
with fuzzy concepts (linguistic terms), they are often in the form of fuzzy rules. For
a classification related problem, there is one consequence (a class label) inferred from
a fuzzy rule in most situations.

In daily life, quite often we use some sort of fuzzy rules to interpret what we
perceive to understand the world around us. For example, to describe the flower in a
photo of a university campus shown in Fig. 6.1, we probably apply a rule like:

IF a region is rather colorful AND very attractive AND highly pat-
terned AND the region is somewhat close to the regions of other
plants,

THEN it is a flower.

Attributes such as “rather colorful”, “very attractive”, and “highly patterned” defy
precise definition, and they are best modeled by fuzzy sets. Similarly, spatial rela-
tionships such as “close to” are difficult to model using the traditional all-or-nothing
techniques. It is believed that the applications of fuzzy set algorithms to high level
vision will produce more realistic solutions.

In a fuzzy rule system for segmenting a map image shown in Fig. 6.2 into fore-

139
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Figure 6.1 A photo of a university campus (originally in color).

ground (characters and lines) and background, a typical rule may look like:

IF a pixel has a high grey level AND a small varience in a window
around the pixel AND low local contrast,
THEN it belongs to background.

The atiributes high grey level, small variance and low local contrast are also better
modeled by fuzzy sets.

Membership functions discussed in Chapter 2 are the basis for developing a fuzzy
rule-based recognition system. In this chapter, generation and minimization of fuzzy
rules, and various defuzzification methods will be discussed. Wang and Mendel have
proposed a straightforward algorithm for learning fuzzy rules from numeral data,
which will be discussed in Section 6.2. In Section 6.4, we shall present a technique to
derive fuzzy rules from the decision trees generated by Quinlan’s ID3 algorithm [61].
Generating fuzzy rules from training a neural network has been presented by many
researchers [62], [63], [64], [65], [66], [67], [68], [69], [70]. Section 6.4 covers one
such approach proposed by Krishnapuram et al {T1], [72]). Section 6.5 deals with
the minimization of fuzzy rules. In particular, a technique based on Karnaugh maps
proposed by Hung and Fernandez [73] will be discussed. Section 6.6 covers various
techniques for the defuzzification of a fuzzy rule-based recognition system. In par-
ticular, a two-layer perceptron based technique to achieve the optimal defuzzification
will be discussed. Section 6.7 reports three real-world applications of fuzzy rule recog-
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Figure 6.2 A map image.

nition systems, map image segmentation, recognition of printed upper-case English
characters, and handwritten digit recognition.

6.2 Learning from Examples

Many methods have been proposed to generate fuzzy rules by learning from numerical
data. A method proposed by Wang and Mendel [74] is the most straightforward.
Suppose a set of desired input-output data pairs (the training data) are available:

(9,300, o, 709 . o

where :vg'.) and xgi) are inputs, and o) is the output for the ith data pair. The simple
two-input one-output case is chosen for simplicity in the discussion. The method
can be easily extended to multi-input and multi-output cases. The task here is to
generate a set of fuzzy rules from the training data of (6.1), and use these fuzzy rules
to determine a mapping ¢ = f(z1,%2). The method is originally proposed for deriving
fuzzy rules for function approximation. We have extended it for solving the problems
of classification and recognition [24], [26], [75]. The method consists of the following
five steps:
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Step 1: Fuzzify the Input Space

Find the domain intervals of z; and z,, [:cg‘),xgh)] and [:cg‘),wgh)] and partition each
input domain interval into N; regions (¢ = 1,2). The regions are labeled as

R, (the lowest), Ry, ..., Ry; (the highest).

A membership function is adopted for each fuzzy region. These membership functions
can take the commonly used triangular and trapezoidal shapes or be generated by
using the techniques as described in Chapter 2. For a classification problem, a hard
partition instead of a fuzzy one is adopted for the output. In the case of L-class
problem, the outputs are {Cy, Cy, ..., C1r}, which is a crisp set.

Step 2: Generate Fuzzy Rules from Given Data Pairs

1. Determine the membership grades of given xgi) and x(;) in different input fuzzy
subsets (linguistic labels). For example, in Fig. 6.3, :1:9) has a grade of 0.75 in
R;, 0.25 in R3, and zero in all other regions. Similarly, :c(;) in Fig. 6.3 has a
grade of 1 in R3 and zero in all other regions.

2. Assign given inputs to the regions with the maximum membership grade. In
our example, m§ )is considered being R;, and a:g‘") is considered being Rj.

3. Produce a rule from each input-output data pair, for example,

(0200 =
acgl)(O.TS in Ry (max)), z"(0.6 in Rs (max)); o(1.0 in C; (max)) =
Rule 1: IF z; 1s Ry AND x4 is Ry, THEN o is Cy.

(287, 2{; o) =
x?)(O.S? in By (max)),xg”(l.l] in Ry (max)); o?(1.0 in C; (max)) =
Rule 2: IF %, is R4 AND %, is K3, THEN o0 is C].

Step 3: Assign a Degree to Each Rule

As mentioned above, each data pair generates one rule. Usually there are a large
number of data pairs available, so it is very likely that some conflicting rules are
ptoduced. The conflicting rules have the same 1F part but different THEN parts. One
way to solve this problem is to assign a soundness degree to each rule generated and
accept only the rule with the greatest soundness degree from a group of conflicting
rules. Suppose that the ith rule is “IF x, is B;; and z; is R, THEN ¢ is C;” and the
soundness degree of the rule is denoted by D{Rule;). Two strategies can be followed
to assign a soundness degree to a rule.
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Figure 6.3  Fuzzy partitions and the rule bank for a two-input two-category clas-

sification problem.



144 Chapter 6. Fuzzy Rule-based Systems

Strategy 1: The degree is determined by the membership grades of inputs and
output(s):

D(Rule;) = pir, (21) R, (22)806., (0)- (6.2)

As the crisp sets are adopted for the output space, we always have pc, (o) = L
Therefore,

D(Rule;) = pr,, (21) R (T2)- (6.3)
For example, Rule 1 has the degree
D(Rule:) = pp,(21)pn,(2:)
= 0.75x 0.6 =045 (6.4)

If we have a prior: knowledge about the data pairs, we can assngn a de§ree of belief
to the usefulness of each data pair. Suppose that the data pair ((:t:1 L2t 61 has a
degree mil), then we have

D(Rule;) = pr,(1)ptR,(z2)m ™. (6.5)

This strategy will be used if there are only a small number of training samples
available.

Strategy 2: The degree is determined by the ratio of the number of data pairs which
support the rule (NR, e ) 2nd the total number of patterns which have the same IF

part (le.).

D(Rule;) = —Rale, (6.6)
M,
This strategy works better when a large number of training samples are available. Ac-
tually, by using this frequency based degree, we incorporate the statistical information
into fuzzy systems resulting in more reliable decision making.

Step 4: Create a Combined Rule Bank

The form of the rule bank is shown in Fig. 6.3. The boxes of the bank are filled
with fuzzy rules from either those generated from numerical data or linguistic rules
extracted based on expert knowledge (a linguistic rule also has a degree of soundness
which is assigned by an expert). Rules 1 and 2 shown in the example can be filled in
the bank at boxes ( Rz, Rs) and (R, R3) with output labels C; and €, respectively.
If a linguistic rule is an “and” rule, it fills only one box of the rule bank; but if a
linguistic rule is an “or” rule, it fills all the boxes in the rows or columns corresponding
to the regions of the IF part.
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Step 5: Determine the Mapping by Using a Defuzzification Method

A defuzzification method is adopted to determine the mapping between inputs and
the output because of two reasons:

1. Not all regions would be filled by fuzzy rules. A defuzzification scheme has
to be used to determine the output of the input non-fuzzy regions based on
neighboring rules; and

2. Using a single rule may not be reliable in decision making.

Note that various minimization techniques can be applied to reduce the number of
fuzzy rules so that the system complexity is reduced. The optimized defuzzification
should be used to keep the classification performance from degradation due to the
minimization of fuzzy rules.

6.3 Decision Tree Approach

As a machine learning technique, the decision tree approach, has been widely used in
pattern recognition because of its ease of implementation and its comprehensibility.

6.3.1 Decision Trees and Rules

This section introduces an algorithm to generate decision trees by learning from train-
ing data. The following discussion is mainly based on the work by Quinlan [61].

Assume each training pattern contains a set of input features (F,, : = 1,2,...,n)
and an associated classification (Cy). Figure 6.4 shows a decision tree produced for
a four-input problem (six decision rules). Each node represents a feature F; while
each branch, fi;, represents the jth region of values of feature F,. For a feature with
discrete values, f;; stands for the jth value of feature F;. For a feature with continuous
values, fi; stands for one of four regions of values: F; < f;, Fi < fi;, F; > f;, and
F; > fi;. A leaf node, L;, contains a classification C(L;). There are all together
8ix rules represented by the decision tree shown in Fig. 6.4. One of these rules (the
highlighted path) is:

IF Fi(f11) is true AND Fa(fo;) 1s true AND Fy(fay) is true,
THEN the class is C(Lg).

Fi(fij) is defined as

(true) if F; is in the region f;; of feature F;,

(false) otherwise. (6.7)

Filfiy) = { (1,
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Figure 6.4 A decision tree.

Let M be an L-class problem which contains m; objects from class C; (¢ =
1,..,L). In the learning procedure, the decision tree generation technique adopts
an information-based method that depends on the following two assumptions [61]:

1. Any correct decision tree for M will classify objects in the same proportion as
their representation in M. An arbitrary object will be determined to belong to
class C; with probability (=f—).

f=1 ™

2. When a decision tree is used to classify an object, it returns a class. A decision
can thus be regarded as a source of a message ‘Cy’, ‘Cy’, ..., or ‘Cy’, with the
expected information needed to generated this message given by

I(M) = Z( ")logz(

S ) (6.8)

Ez-

If feature F; with values {fu, fiz,..., fiu} Is used for the root of the decision tree,
it will partition M into {My, Miz,..., M;,} where M;; contains m;; objects in M
that have value f;; of Fi. The expected information required for the subtree for M;;
is I(M;;). The expected information required for the tree with F; as root is then
obtained as the weighted average,
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E(F) = — (M 6.9
)= 3 e ) (69)
where the weight for the jth branch is the proportion of the objects in M that belong
to M;;. The information gained by branching on F; is therefore,

gain(F) = I(M) — E(F). (6.10)

A good rule of thumb would be to choose that feature to branch on which gains
the most information. Since I{M) is constant for all features, maximizing the gain
is equivalent to minimizing E( ;)- The technique, therefore, examines all candidate
features and choose F;, to minimize E(F;), forms the tree, and then uses the same
process recursively to form decision trees for the residual subsets Mi.;, Mi.g, ..., Mis,.

Now let us look at an example in which decisions have to be made whether a pair of
contact lenses are used and if so which type of contact lenses is adopted based on four
features: patient’s age, spectacle prescription, astigmatic, and tear production rate.
The three outcomes are: the patient should be fitted with (1) hard contact lenses,
(2) soft contact lenses, or (3) none contact lenses. The database is from a highly
simplified problem donated by Benoit Julien and is available at the time of writing,
in the Machine Learning Databases at the internet site “ics.uci.edu”. Table 6.1 lists
the training set.

We consider the Age feature with a set of values A = {young, pre-presbyopic,
presbyopic}. Eight of the 24 objects in M have the value of young, that is, my; = 8.
Among them, two each are from classes hard and soft, and four from class none, so

2 2 2 2 4 4
I(M]_]) = —g lOg2 é — gIng —8' - §10g2 g = 1.500 (6.11)

and similarly, I{(My3) = 1.298 and I{My3) = 1.812. Then we have

3 .
E(F)=Y" Esm‘-" I(My,) = 57 X 1.500+ % x 1.298 + i x 1.812 = 1.537 (6.12)
i=1 =1 M

Similar analysis gives E(F,) = 1.287, E(F3) = 0.950 and E(Fy) = 0.777. Because
of Fy = min; E(F;), Fy (tear-production rate} will be chosen as the feature for the
root of the decision tree. It has two branches: reduced and normal. For the branch of
reduced, all patterns have the class of nore s0 a leaf is obtained. On the other hand,
sub-branches are required for the branch of normal. This process continues until all
branches contain patterns from the same class or the features have been used up.
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Table 6.1

Training samples for generating decision rules for deciding whether a
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pair of contact lenses should be used (TRR: tear-production rate).

No Features Class
Age Spectacle Astigmatic TRR
1 young myope no reduced none
2 young myope no normal  soft
3 young myope yes reduced none
4 young myope yes normal hard
5 young hypermetrope no reduced none
6 young hypermetrope no normal  soft
7 young hypermetrope yes reduced none
8 young hypermetrope yes normal  hard
9 pre-presbyopic myope no reduced none
10 pre-presbyopic myope no normal  soft
11 pre-presbyopic myope yes reduced none
12 pre-presbyopic myope yes normal hard
13 pre-presbyopic hypermetrope no reduced none
14 pre-presbyopic hypermetrope no normal  soft
15 pre-presbyopic hypermetrope yes reduced none
16 pre-presbyopic hypermetrope yes normal none
17 presbyopic myope no reduced none
18 presbyopic myope no normal none
19 presbyopic myope yes reduced none
20 presbyopic myope yes normal hard
21  presbyopic hypermetrope no reduced none
22 presbyopic hypermetrope no normal  soft
23 presbyopic hypermetrope yes reduced none
24 presbyopic hypermetrope yes normal none
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The generated decision tree is:

tear-production-rate = reduced: none
tear-production-rate = normal:

astigmatic = no: soft
astigmatic = yes:

spectacle = myope: hard

spectacle = hypermetrope:

age = young: hard
age = pre-presbyopic: none
ape = presbyopic: none

149

There are altogether six rules which can extracted from the decision tree. They are:

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 5:

Rule 6:

IF

IF

IF

IF

IF

IF

tear-production raie is reduced,

tear-production rate is normal
AND astigmatic is no,

tear-production rate is normal
AND astigmatic is yes AND spec-
tacle is myope,

tear-production rate is normal
AND astigmatic is yes AND spec-
tacle is hypermetrope AND age is
young,

tear-production rate is normal
AND astigmatic is yes AND spec-
tacle is Aypermetrope AND age is
pre-presbyopic,

tear-production rate is normal
AND astigmatic is yes AND spec-
tacle is hypermetrope AND age is
presbyopic,

THEN

THEN

THEN

THEN

THEN

THEN

the prescription
is none contact
lenses.

the prescription
is seft contact
lenses.

the prescription
is hard contact
lenses.

the prescription
is hard contact
lenses.

the prescription
is mone contact
lenses,

the prescription
18 none contact
lenses.




150 Chapter 6. Fuzzy Rule-based Systems

The decision tree classifies 23 patterns correctly and one incorrectly. Pattern 18
should have the output of nene but the decision tree gives the output of soft.

Compared with fuzzy rules generated by learning from examples discussed in
Section 6.2, the rules produced by the decision tree approach are more meaningful
and flexible in the sense that various rule sizes are adopted.

A rule extracted from the decision tree approach for numeral classification (mixed
discrete, symbolic and continuous features) looks like (the reader is referred to Sec-
tion 6.7.3 for more detailed discussion):

IF the type for the longest segment is circle AND the type for
second longest segment is C curve AND the normalized y co-
ordinate of the image center > 0.586,

THEN it is digit 6.

6.3.2 Simplified Decision Trees

Quinlan proposed a two-stage simplification scheme when an ID3 tree is converted
to a set of production rules [76]. Obviously, the path from the root to each leaf of 2
decision tree corresponds to a production rule:

TF Fiy(fis, ) 1s true AND Fi (f,;) Is true AND .. AND Fi (fi.;.) is true,
THEN the class 1s Cj.

The first stage examines each production rule and generalizes it by dropping
conditions from its IF part based on a significance level test. Al each time, the
condition which has the least relevance to classification is discarded if it fails the
significant level test. The process is repeated until no more conditions can be dropped.
After the first stage process, some leaves produce identical rules while other leaves
generate vacuous rules with all conditions dropped. The number of rules is generally
smaller than the number of leaves.

The second stage evaluates how well the rules will function as a set. For each rule
in turn, we now determine how the remaining rules classify the training set if this rule
is deleted. Those rules whose omission would not increase the misclassification rate
or would even reduce it are least useful. These rules are discarded and the process is
repeated. After the second stage process, the number of rules decreases further.

6.3.3 Fuzzified Decision Rules

Decision rules work well when the input data are accurate. However, their perfor-
mance degrades when input data are uncertain or noisy. In these cases, fuzzy trees
or rules can be used to improve the classification performance [77], [78].
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Figure 6.5 (a) Feature regions and (b) their membership functions.

For a decision rule, antecedent conditions are either TRUE (1) or FALSE (0), and
only one rule is chosen to perform classification. To fuzzify these rules, we have to
choose or derive membership functions from the training date and use the membership
grades instead of a binary value, 0 or 1 to measure the matching degree. Defuzzifi-
cation is then used to integrate these fuzzy rules (assume that all rules contribute to
the classification).

For a feature with L discrete values (symbols), an L x L fuzzy grade matrix M
has to be constructed. On the other hand, membership functions have to be used
for a feature with continuous values. As mentioned in Section 6.3.1, there are four
basic types of value regions used for a feature with continuous values in decision rules.
They are F; > fi;, Fi 2 fij, Fi < fij, and F; £ fi; (see Fig. 6.5(a)). The third case in
Fig. 6.5 is actually the combination of cases 1 and 2. For F; > f;; and F; > f;;, we
define the membership function as

0.0 if F,’ S (1 - a)f,-j.
m(F) = B0 G (1 - a)f;; < F < £y, (6.13)
1.0 if .F: - f;j

where a is an extension factor. For F; < f;; and F; < f;;, we have
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1.0 if F; < fi,
m(F) = { Bh i £ < < (1+a)fy, (6.14)
0.0 if Fi > (1 +a)fi.

The resulting membership functions are shown in Fig. 6.5(b). By using the mem-
bership values instead of binaries 0 and 1, the decision rules become a set of fuzzy
rules which can be more tolerant to noise and other distortions and thus have higher
classification power. A defuzzification method to be discussed later can be applied to
perform the classification using these soft decision rules.

6.4 Fuzzy Aggregation Network Approach

The ability of neural networks to generalize a problem from existing training data
by using a learning algorithm is the most valuable property. Recently, there has
been comsiderable interest in combining fuzzy logic and neural network techniques.
There are typically four ways to use neural networks in developing a fuzzy system:
(1) using neural networks to learn or tune membership functions as discussed in
Section 2.4.2; (2) using neural networks to determine the rules themselves, such as
extracting rules from a trained feedforward neural network [79]; (3) developing special
node combination schemes based on fuzzy set connectives; and (4) utilizing neural
networks to perform a fuzzy logic inference directly.

Several different aggregation operators can be used to integrate membership val-
ues. Based on their aggregation behavior, these connectives can be grouped into three
classes: union connectives, intersection connectives, and compensative connectives.

The generalized mean operator given below can achieve different connectives by
varying the value of parameter p [71):

n 1/p
g(z1, gy ey To P, w1, W3, .., Wy,) = (Zw;xf) . (6.15)

=1
The ;s are the relative importance factors for different inputs where
wy + we + . +w, =1, (6.16)

The generalized mean has several attractive properties. For example, the mean
value always increases with an increase in p. Thus, by varying the value of p between
—oo and 400, we can obtain all types of aggregation. In the extreme cases, this
operator can be used as intersection (min) or union (mazr). Also, it can be shown
that p = —1 gives the harmonic mean and p = 1 gives the arithmetic mean.

After suitable membership functions are chosen or derived from the data, a three
layer fuzzy aggregation network, which was proposed by Krishnapuram ef af [72], can
be used to produce a compact set of rules with conjunctive and disjunctive antecedent
clauses. In this network, the input layer consists of K (the number of inputs) groups
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of nodes with the kth group consisting of L; nodes (equal to the number of linguistic
terms for the kth input). The ¢th node in the kth group corresponds to the ith
linguistic label in the domain of x; and uses A;; (the membership function of the
ith linguistic label of input k) as the activation function. The hidden layer has K
groups of L nodes (L is the number of outputs which is equal to the number of
classes). The ith node in group & in the input layer is connected to the jth node
in the corresponding group in the hidden layer if Ay, has a non-empty intersection
with m}(zs) (the membership functions of the jih class over input k). In practice,
a threshold is used to decide whether it is & non-empty intersection. The jth node
of each group in the hidden layer is connected to the jth node of the output layer
for § = 1,..., L. Each node in the hiddenr and output layers uses a fuzzy aggregation
function (such as the generalized mean) as the activation function. Figure 6.6 shows
an artificial classification problem with two inputs and two classes (“black square”
and “black circle”). Figure 6.7 shows an aggregation network for solving this problem.,
Each input has three linguistic labels denoted by L, M and H and adopts a set of evenly
distributed triangular membership functions. Because there is no overlap between the
membership function for the linguistic label “L” and the class 1 membership function
over the input X5, there is no connection between the input layer node “L” of input
X, to node 5 in the hidden layer. The initial (approximate) network includes all solid
and dash connections. After the training, the dash connections are removed because
of small weights.

If we interpret a node with the p value of greater than 0 as a union aggregation
operator and a node with the p value of smaller than 0 as an intersection aggregation
operator, the following rules could possibly be produced after those connections with
small weights have been cut off:

Rule 1: IF Input X, is (L OR M) AND Input X, is H,
THEN the class is Black Square.

Rule 2: 1F Input X, is # OR Input X, is (L oR M),
THEN the class is Black Cirele.

6.5 Minimization of Fuzzy Rules

For pattern recognition problems, a large number of training patterns are often avail-
able. Therefore, a large number of fuzzy rules are usually produced when the scheme
of learning rules from examples is used. However, we often need to reduce the number
of fuzzy rules to make a recognition systemn more practical and to speed up the pro-
cessing. There are several different methods propoesed in literature to minimize fuzzy
rules. These techniques can be put into two categories: minimization before produc-
ing rules and minimization after producing rules. Reducing the number of training
patterns by using a data clustering technique, reducing the number of features by
using a feature selection technique, and reducing the feature fuzzy partitions by gen-
erating the membership functions based on the actual data distribution, are some
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Figure 6.6 Data distribution and corresponding class/input membership functions
for a synthesized two-input and two-class (black square and black circle) problem.
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Class 1 (black square) Class 2 (black circle)

Input X, Input X,

Figure 6.7 Approximate network structure for generating rules and the reduced
network after training (dotted line connections will be removed).
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methods that can be used to reduce the number of fuzzy rules to be produced. On
the oiher hand, three methods of rule pruning, rule elimination and rule combination
can be used to minimize fuzzy rules produced. In one technique, we can eliminate
those rules which are supported by a small number of training patterns or which have
a low confidential degree. Karnaugh maps, which provide systematic methods for
simplifying switching functions in the logic design of digital systems, can also be used
to minimize fuzzy rules.

6.5.1 Minimization Based on Data Clustering

There are many techniques available for data clustering. c-means, fuzzy c-means,
Kohonen self-organizing maps, and adaptive vector quantization (AVQ) are some
of these techniques. We have already discussed in Chapter 2 how to use clustering
algorithms to generate the membership functions that reflect the actual data distribu-
tion. By using labeled cluster centers instead of all training examples, we can easily
reduce the number of fuzzy rules substantially. However, the system performance
usually degrades due to the reduced number of fuzzy rules. Therefore, an optimized
defuzzification procedure has to be adopted to maintain the system performance.

6.5.2 Minimization Based on Karnaugh Maps

Hung and Fernandez proposed an approach based on Karnaugh Maps for the mini-
mization of fuzzy rules [73]. Before we can make use of the algebraic simplification
of switching functions, we need to transform the linguistic descriptors of fuzzy rules
into algebraic expressions. Fuzzy rules have fuzzy propositions for their premises and
conclusions. Therefore, we have to first convert the linguistic values of fuzzy subsets
into binary representation and then display them on a Karnaugh Map. Similar to
switching functions, a set of fuzzy rules can also be represented as a minterm expres-
sion {standard sum of products), a maxterm expression (standard product of sums),
or as an algebraic form. Using the postulates and theorems of Boolean algebra, the
minimum sum-of-products or minimum preduct-of-sums rules can be derived from
the originally complicated expressions. To make use of a Karnaugh map for fuzzy
rule simplification, we need to represent a set of fuzzy rules as a minterm expression.

The procedures for reducing the number of rules using the Karnaugh map are:

1. The linguistic values (fuzzy subsets) of input and output variables are regarded
as crisp values (0 or 1) without considering the overlap between fuzzy subsets,

2. Discretize the input and output variables into n-bit integers, which have 2%
possible values (each linguistic value can be represented as one binary value).
Note that some binary values might not be used.
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3. We can then minimize the multi-variable functions using the Karnaugh map.
For example, the minimum sum-of-products expressions can be derived by using
the formula:

XY+ XY+ . + XY, = X, (6.17)

where X is one of linguistic values of variable X. Y1,Y;,..., ¥, are all n linguistic
values that ¥ variable takes. We will show the simplification process based on
Karnaugh maps later with two examples.

4. An optimization scheme is usually taken to keep the system performance from
degrading due to the reduced number of fuzzy rules.

Now let us see how we can minimize a set of fuzzy rules based on Karnaugh maps
for two cases, completely-specified rules and incompletely-specified rules.

(a) Completely-specified Rules:

Suppose that we have two input variables (r; and z2) and one output variable
(y). Each of them has four linguistic labels, and for z;, z; and y, the labels are
{A1, Ag, Az, Ay}, {B1, By, Bs, B}, and {C}, (3, C3, Cy}, respectively. The rules
are listed below:

IF 2y is A; AND x5 is By, THEN y is (.
IF &, is Ay AND x4 is B3, THEN y is Cs.
IF z) is A3 AND zz is By, THEN y is Cj.
IF 2y is A3 AND z3 is By, THEN y is (3.
IF zy is A3 AND x5 is B, THEN y is (5.
IF 7y is A3 AND z is By, THEN y is Cj.
IF 2y is Ay AND z3 is By, THEN y is (.

After discretizing the input and output variables, we can construct a Karnaugh
map shown in Fig. 6.8 to represent these rules. The corresponding minterm expression
is given below:

Y= A183+ AaBy+ A3B1 + AsBy + A3 By + AsBy + A4Bs. (6.18)

From the map, we can see that all mintermsin column A3 has the same output 10 (C3),
50 we can use Eq. (6.17) to simplify them. As a result, (438, + A3B; + A3 B3 + A3 B,)
is reduced to A:. Hence we have

¥y= A[.B;; + A2B3 + Ag + AqB;;. (619)

A set of seven fuzzy rules is now reduced to the following four rules:
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I
Ay As Az Ay
00 01 10 11

B; 00 10
By 01 10
I
By 10 01 01 10 01
By 11 10

Figure 6.8 The Karnaugh map representation for a set of completely-specified
rules.

IF 1, is A} AND x, is B3, THEN y 15 C5.
IF z1 is Ay AND x4 is Bs, THEN y 1s (5,
IF x; 1s A3, THEN y is Ch;

IF z; 1s Ay, AND z, is By, THEN y is (5.

{b) Incompletely-specified Rules:

In this case, a set of rules available are the same as the previous example except that
the following rule is excluded:

IF z; is A3 AND x; is B3, THEN y is (5.

In the Karnaugh map shown in Fig. 6.9, we use ‘zz’ to represent this rule as a “don’t
care” case.
Similarly, we have a minterm expression given by

¥y= AlBe, + A‘ZB3 + A3B[ + AaBz + A3B:3(.T$E) + A3B4 + A4B3. (620)

By examining the map, we find that if we consider A; B3 having an output of Cj,
all minterms in column Aj have the same output C3 and they can be reduced to Aj.
Also if we consider A3B; having an output of Cy, all minterms in row B; have the
same output C3 and they can be reduced to B;. Because A3B; is a don’t care case,
we can use it twice to simplify both column A; and row B;. As a result, we have
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x
A Az As Ay
00 01 10 11

B, 00 10
B, 01 10
To
B; 10 01 01 Tz 01
By 11 10

Figure 6.9 The Karnaugh map representation for a set of incompletely-specified
rules.

¥y = A3 + B3. (621)

A set of six rules is now reduced to the following two rules:

IF 7y is A3, THEN y is Cj.
IF %z is B,, THEN y is Cy.

The above examples have demonstrated the minimization of two simple problems.
However, the technique can be easily extended to more complicated problems.

6.6 Defuzzification and Optimization

Figure 6.10 shows the simplified block diagram of a fuzzy classification system [56].
Suppose we have a set of alternatives C = {C, (%, ..., Car} (classes). A fuzzy subset
F over C indicating the degree to which each alternative satisfies our decision criteria
and goals. The defuzzification problem defines the strategy of using the fuzzy subsets
F to guide us in the selection of one representative element (class) of the set C.
Several defuzzification methods, including maximum matching, maximum accu-
mulated matching, the centroid defuzzification, and a two-layer neural network ap-
proach to achieve the optimized defuzzification, are discussed in the following sections.
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input Fuzzy F Defuzzification C; (class)
rle-base method

Figure 6.10 The simplified block diagram of a fuzzy rule-based classification sys-
tem.
6.6.1 Maximum Matching

Suppose that there are K fuzzy rules and among them, K; rules (j = 1,2,...,L and
L is the number of classes) produce class C;. Let D:, be the measurement of how
the pth pattern matches the antecedent conditions (IF-part) of the ith rule, which is
given by the product of membership grades of the pattern in the regions which the
ith rule occupies (matching degree), that is,

. 7
D% =[] ma (6.22)
=1

where n is the number of inputs and my; is the membership grade of feature ! in
the fuzzy regions that the ith rule occupies. Let D7*(C;) be the maximum matching
degree of the rules (rules j;,[ =1,2,..., K,) generating class ('}, that is,

K, .
Dy (Cy) = max Dy, (6.23)

then the system will output class C;, provided that
DMC;) = max D3(C;). (6.24)

If there are two or more classes which achieve the maximum matching degree, we will
select the class which has the largest number of fired fuzzy rules (a fired rule has a
matching degree of greater than zero).

6.6.2 Maximum Accumulated Matching

For each unlabeled pattern, we accumulate the matching degrees of rules which output
the same class. The accumulated matching degree for Class j, D5(C)), is defined as

K, )
Dy(C;) = Y. Di. (6.25)
=1

The final decision is to assign the pattern to the class which has the maximum accu-
mulated matching degree. If
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D(C;.) = max Dy (C;) (6.26)

then the system will output class j..

6.6.3 Centroid Defuzzification

The centroid defuzzification formula to determine the output (0,) for each input
pattern is

I'i D: O:
0, = EZ': z b7 (6.27)
l--l

where K is the number of rules, (' is the class generated by rule ¢ (O takes values
of 0, 1, ..., L — 1 where L is the number of classes) and D; was defined in Eq. (6.22).
The values of O, are integers in the range [0, L — 1].

The following formula is used to determine the class (C,):

¢, = (int)(0, + 0.5) (6.28)

where “int” means taking the nearest smaller integer value.

The centroid defuzzification is commonly used in fuzzy logic control applications
and function approximations. It also works well with a two-category classification
problem [24]. However, for a classification problem with more than two categories, a
large number of fuzzy rules are needed to achieve a satisfactory performance by using
this defuzzification scheme [26).

6.6.4 Two-layer Perceptron Approach

Defuzzification parameters can be optimized by training a feedforward neural net-
work [27], [78]. In this scheme, we consider each rule making a contribution to each
output class to a certain degree. We define

K
Py = Z; w;i D] (6.29)
where wj; a weight which indicates the contribution of rule i to class j and P;,
represents a degree that a pattern belongs to class j. The winning class is j. which
maximizes Pj,. Note that D is defined in Eq. (6.22).
We can use a two-layer perceptron to determine wj;’s (see Fig. 6.11). The outputs
of ihe network are P;,’s and the number of output nodes is equal to the number of
the classes (L). In the network version, we have

Pip = f(net;,) = Z wi D (6.30)
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Qutputs

Fy Fy F3 Fy Fy L R O Y Fs
Inputs

Figure 6.11 The two-layer perceptron for optimizing defuzzification parameters
of a handwritten digit recognizer (only part of connections are drawn for clarity).

The inputs are D} (¢ = 1,2,..., K) and the number of input nodes is equal to the
number of fuzzy rules.

A two-layer perceptron is trained using all training patterns to optimize the con-
nection weights by minimizing the error function:

NIL

N
E=Z_:EF=Z§Z(P.:‘P_Z}P)2=

=1 “ j=0

N L
3 3Py — Typ)? (6.31)

p=1;=0

| =

where NV is the number of training patterns. Ty, (0 or 1) and P, (0.0 to 1.0) are the
desired output and the actual output for pattern p, respectively.
Based on the gradient descent algorithm under the batch mode, w;; is modified

by

X, BE,
Awj; = —q Ld 6.32
i=n3 o (6:32)
where 7 is the learning rate and (%) is given by
OF : ;
E=f (net;p)(Pip — ij)Dp- (6.33)

Bwj,-
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Substituting Eq. (6.33) into Eq. (6.32), we have

N
Awg; =n Y f(netp)(Tjp — Pip) D} (6.34)

-
p=1

If the sigmoidal transfer function is used in the output layer, then we have

F (metyp) = f(netyp)(1— f(net;)) = Pip(1 = Pyy), (6.35)
and

wji(t + 1) = w;i(t) + Aws(t) = wis(t) + 9 f: Pip(1 = Pp)(Typ — Pip)D;.  (6.36)

The initial weights w;;’s are set to

{ 1 if rule ¢ produces class j,
Wi =

0 otherwise. (6.37)

6.7 Applications

Three applications of fuzzy rules are discussed in the following sections. In Sec-
tion 6.7.1, fuzzy rules learned from training patterns are used to segment geographic
map images using the centroid defuzzification scheme [24]. In Section 6.7.2, we discuss
printed upper-case English letter recognition using fuzzy rules and the accumulated
matching defuzzification. In Section 6.7.3, handwritten numeral recognition using
fuzzy rules produced from a decision tree based technique and the optimized defuzzi-
fication based on a two-layer perceptron will be discussed [78].

6.7.1 Segmentation of Map Images

The task is to segment grey scale geographic map images into foreground (characters,
roads, streets, boundaries, etc) and background parts. Segmentation was done pixel
by pixel using a fuzzy rule-based classification technique.

Features

The map images were scanned into the computer and digitized in R, G and B format
with 256 intensity levels for each component. A 256-level grey scale image was then
obtained by the following simple transformation:

16.j) = R(i,j)+G(;,J')+B(i,i). (6.38)
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As a result, the darkest pixel has grey level 0 and the brightest pixel has grey level
255.

Three features were extracted for map segmentation. The first feature is termed
difference intensity (D), which is the difference between a pixel intensity and its
local everage intensity (AI) as measured over a 7 x 7 region. This feature is defined
as

where AI(Z,j) is defined as

;,5—3 E;:g‘-a I(P, Q)
49
This feature is a measure of relative brightness of a pixel to its neighboring pixels. A
foreground pixel is usually darker than the neighbors, so it has a negative value.
The sccond feature is the local standard deviation (SD) as measured over a 7 x 7
region. This feature is defined as

Al 5) = (6.40)

i+3 j+3 -
SD(i,7) = \J Ly=i-a Zq=3—3”4(§’ 9) LA(p,q)]’_ (6.41)

This feature is a measure of homogeneity of a region of which the pixel is in the center.
A background pixel usually has a smaller S value than a foreground pixel but in an
area where the map color is changed from one to another, both a background pixel
and a foreground pixel have the similar SD values.

The third feature (J) is a measure of the local contrast of a darker pixel against
its background. This feature is defined as

max{0, B(i, j) — I(i, j)|sgn[C(:, )]
LA(, 5)

where sgn(] is the sign operator which was defined in Eq. 2.35. C(4,) measures the

difference of a pixel intensity and the average intensity of eight neighboring pixels

shown in Fig. 6,12 and is defined as

J(i,j) = (6.42)

Clhj) = glIG=30)+1G=2,0)+ 16+ 20)+ I +3,3) +
16y =) 4 1, = 2) + 16,5 +2) 4 16, +3)] -
1(i.5). (6.43)

Note that C(i, j) is different from DI(3,j) defined in Eq. (6.40) in that C(, ) uses
only 8 out of 49 pixels in the 7 x 7 region to calculate the average intensity and that
I(1,7) is the second operand in the subtraction.

B(i, j) is a measure of the average intensity of relative brighter pixels (C'(p, ¢) < 0)
in the 9 x 9 region and is computed by
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Figure 6.12 Eight neighboring pixels for calculating C(3, 5).

Bijd=x L 1) (6.44)
P i-4<p<iti
j—4<g<j+4
Clpg) <0

where N, 1s the number of relative brighter pixels.

A foreground pixel usually has a positive value of J and most background pixels
have negative, zero and small positive values. A window having larger size yields a
better detection of thicker line patterns while it makes the system difficult to separate
very close lines (often resulting in blurred characters). We used a 9 x 9 region to
compute feature J (computing B(7, j)) and a 7x 7 region to compute LA and §D. Two
different window sizes were used here to reduce the line width problem as discussed
above,

Membership Functions

Membership functions were derived from 40 c-means clusters with an extension factor
a = 3.0 and a merging threshold Iy = 0.08 (see Fig. 6.13).

Fuzzy Rules

Fuzzy Rules were produced using the technique of learning from examples. We as-
signed each c-means cluster a label which the majority of feature vectors in that
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The membership functions derived from the c-means clusters in our
experiments (dash lines were drawn for the membership function on every other neigh-
boring region for clarity). Top: feature DI with seven linguistic labels; center: feature
5D with eight linguistic labels; bottom: feature J with four linguistic labels.
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cluster belong to. Forty labeled c-means cluster centers were then used to produce
34 fuzzy rules (see Fig. 6.14), The number of fuzzy rules produced was smaller than
the number of clusters due to the fuzzy subsets merging as discussed in Section 2.3.4.

Examples of these fuzzy rules are:

Rule 1:
Rule 2:

Defuzzification

IF DI is By AND 5D is Rg AND J is R,, THEN it is a foreground pixel.
IF DI is R; AND SD is Ry AND J is Ry, THEN it is a background pixel.

The centroid defuzzification formula as defined in Section 6.6.3 was used to determine
the output for each input pattern (pixel). The output O, is within [0, 1]. If O, < 0.5,
the image pixel is classified as a background pixel, otherwise as a foreground pixel.
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Table 6.2 A summary of the experiments on fuzzy rule-based map image seg-
mentation (UDTF: the uniformly distributed triangular functions; and KMCV: the
membership functions derived from the ¢-means centers and variances).

Exp. | Membership | # Linguistic # Training # Fuzzy
functions labels examples rules
FR1 UDTF 4,54 80,989 training vectors 38
FR2 UDTF 5,6,5 80,989 training vectors 57
FR3 UDTF 7,84 80,989 training vectors 82
FR4 KMCV 784 40 c-means centers 34
Experiments

The system was tested on an image database of 22 grey scale geographic maps. A
computer program has been developed for selecting the training pixels by drawing
short lines using the computer mouse on a map image displayed on the computer
screen. For each map image, we picked up several thousand background and fore-
ground pixels as training examples (about 2% of total pixels for a typical 450 x 450
image). Altogether we had 80,989 pixels (42049 background pixels and 38,940 char-
acter or line pixels) from these images as training examples. Three features DI, SD
and J were then extracted for each of these pixels.

Experimental results on the database of 22 map images showed that the technique
achieved good and reliable results. Compared with fuzzy rules based on the uniformly
distributed triangular membership functions (see Fig. 2.4) with fuzzy rules learned
from all the training examples, our technique has the following two advantages: (1)
better performance obtained using a similar number of rules; and (2) fewer rules
required to achieve similar performance. Figures 6.15 shows an original map image
with a size of 562 x 447, the segmented image using an adaptive thresholding method,
three segmented images using fuzzy rules based on uniformly distributed triangular
membership functions (Experiments FR1, FR2 and FR3 summarized in Table 6.2
with 38, 57 and 82 rules, respectively), and the segmented image using the technique
based on fuzzy rules derived from the c-means clusters (Experiment FR4 with 34
rules summarized in Table 6.2).

In adaptive thresholding, the image was divided into small blocks with a size
of 28 % 28. A threshold was determined from the histogram of each block. The
threshold values were then interpolated to classify each pixel in the image. We can
see that the segmentation quality from a fuzzy rule-based technique is better than
that obtained by using the adaptive thresholding method. In the segmented image
using the adaptive thresholding method, a large number of characters were blurred
and boundaries between regions were not correctly detected (resulting in many darker
areas). The segmentation quality from fuzzy rules based on the c-means clusters is
also similar to that by using more fuzzy rules (34 rules compared with 82) based on
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Figure 6.15  Top-left: a grey scale map image; top-right: the segmented map
image using the adaptive thresholding method; center-left: the segmented map image
using 38 fuzzy rules (Exp. FR1); center-right: the segmented map image using 57
fuzzy rules (Exp. FR2); bottom-left: the segmented map image using 82 fuzzy rules
(Exp. FR3); bottom-right: the segmented map image using 34 fuzzy rules derived
from the c-means clusters (Exp. FR4).
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Figure 6.16  Example 1: two original grey scale map images and their corre-
sponding segmented images by using 34 fuzzy rules derived from the c-means clusters

(Exp. FR4).
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sponding segmented images by using 34 fuzzy rules derived from the c-means clusters

(Exp. FR4).
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sponding segmented images by using 34 fuzzy rules derived from the c-means clusters

(Exp. FR4).
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the uniformly distributed triangular membership functions with fuzzy rules learned
from all 80,989 training examples. Figure 6.15 shows that the segmented image
using 38 fuzzy rules with standard triangular membership functions is too bright
and that some parts of characters are missed. The segmented image using 57 fuzzy
rules with standard triangular membership functions is too dark, and again some
parts of characters are missed. Figures 6.16 to 6.19 show eight map images and
their corresponding segmented images using the fuzzy rules derived from the c-means
clusters. We can see that the technique achieved a satisfactory performance on these
map images.

6.7.2 Printed Upper-case English Letter Recognition

The task is to recognize 26 printed letters of different fonts with or without noise.

Database

We have 512 clean samples for each of the 26 letters and altogether there are 13,312
samples in the data set. We printed the letters with 64 fonts of size point 9 and
scanned each character 8 times. Two versions of noisy data sets, test set 2 (Test 2)
and test set 3 (Test 3) were then obtained by rotation and adding noise. Figures 6.20
and 6.21 show some of the letters in the clean data set and the noisy letters in test
set 3, respectively.

Feature Extraction and Selection

We start with using 113 features as reported in [80]. They include 36 features from
four of the 3 x 3 scaled images obtained from line convolutions between the positive
part of the external contour of the image and each of four orientations (horizontal,
vertical, and two diagonal directions), and 36 features from four of the 3 x 3 scaled
images obtained from line convolutions between the negative part of the external
contour and each of the four orientations. Based on the orientation in which the line
convolution is performed, an external contour is divided into the positive and negative
parts as shown in Fig. 6.22. The feature set also includes 32 features representing
convex and concave curvatures in the 4 x 4 image. The last nine features represent
the number of holes in each of the small blocks in the 3 x 3 image.

Using the feature selection technique based on a feature entropy measurement
with one-dimensional clustering [81), 30 features were selected for the experiment,

Membership Functions

Membership functions were produced from the centers and variances of 26 c-means
clusters. We set a = 4.0 and I = 0.1 in the experiment. The numbers of linguistic
labels for 30 features are listed in Table 6.3.
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Figure 6.22 The positive (thicker lines) and negative (thinner lines) parts of the
external contour of a character image when the line convolution with each of four

orientations (horizontal, vertical, and two diagonal directions) is performed.

Table 6.3 The numbers of linguistic labels for 30 features used for printed upper-

case English letter recognition.

X1 Xz X3 X4 X5 XG XT XB XQ XIU

7 5 7 6 ] 6 7 6 6 6

Xll XI‘Z X13 X14 X15 XIG XIT X18 XIB X’JO

7 7 6 7 5 6 8 8 5 7

X21 XZ‘Z X23 X’M XZS X26 X27 -X28 -X29 X30

6 7 7 6 5 6 7 6 7 7
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Fuzzy Rules

Using the supervised c-means clustering algorithm (class by class), we obtained 520
clusters (20 clusters for each letter) for 6,656 clean samples. These clusters were used
as examples to produce 520 fuzzy rules by learning from examples.

Defuzzification

The maximum accumulated matching defuzzification was used. For each unlabeled
letter, we accumulated the matching degrees of rules with the same class. The final
deciston was to assign the pattern to the class which had the maximum accumulated
matching degree.

Experiments

We randomly split 13,312 clean letter patterns into two data sets with 6,656 patterns
in each set. One set was used as training set and the other as test set 1 (Test 1). A
system of 520 fuzzy rules achieved 98.8% correct classification on the training set, and
98.5%, 93.0% and 90.8% on Test 1, Test 2 and Test 3, respectively. Note that only
clean letter patierns were used for learning the fuzzy rules here. The performance
can be improved by using either more features or more training samples.

6.7.3 Handwritten Numeral Recognition

The task is to recognize handwritten digits 0 to 9 using fuzzy rules.

Database

Handwritten numerals we used for experiments were extracted from a database pro-
duced by the US National Institute of Standards and Technology (NIST Special
Database 3 of handwritten segmented characters). We used 10,426 numerals from
a set of images (from f0000 to £0499) for training and another 10,426 numerals from
a different set of images (from {0500 to f0999) for testing. The training and test
characters were written by different people.

Features
A set of 36 structural features from the skeleton images were used.
(a) Preprocessing:

A grey scale character image was first binarized and then thinned using the thin-
ning algorithm as deseribed in [33] (see Fig. 6.23). A set of junction points and tips
(end points) were found and segments between these points were traced. Junction
points within four pixels are merged. On curved (but non-circular) segments, corner
points were identified from the rate of the direction change.
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Figure 6.23 An example of thinning and segment representation.

(b) Labeling:

We used the fuzzy labeling method proposed by Siy and Chen [82] for our skeleton
based handwriiten numeral recognition.

A node set in the skeleton image is defined as a collection of the #ips (points that
have one neighbor), corners (points that have two neighbors and where an abrupt
change of line direction occurs), and junctions (points that have more than two neigh-
bors).

A branch is a segment connecting a pair of adjacent nodes. A circle is a special
branch, connected to a single node. We categorized each segment as one of 12 types,
H line, Vline, P line, N line, C curve, D curve, A curve, V curve, § curve, Z curve,
curve and circle (see Fig. 6.24). Type curve was reserved for a curve segment which
could not be assigned to any of the other six curve types.

The measure of straightness of a branch is determined by fitting it to a straight
line using the least squares error method. The straightness of a non-circular branch
is defined as

0 if S > S (6.45)
where St is a threshold for the fitting error. A branch is classified as a curve, if
0 < fsr < 0.5, or a straight line, if 0.5 < for < 1.

According to its angle with the horizontal direction, a straight line segment is
classified as H line, V line, P line or N line. A curved segment is classified as one of
the six curve types based on its shape information. If a curved segment cannot be
assigned to any of these types, it is considered to be type curve.

1-5/8¢ if 5§ < 87,
fso =
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A curve V curve S curve Z curve curve circle

Figure 6.24 Twelve types of line segments.

(€) Feature Extraction:

Preliminary examination of the NIST Special Database 3 {83) showed that less

than 0.5% of numeral characters had more than six segments, so no more than the
six longest segments (in the order of decreasing lengths) were considered for each
numeral skeleton image. Four attributes (features) were used to describe a segment.
They include:

1. The type of a segment;

2. The normalized length of the i-th segment, I*. Suppose that the width and

the height of the image (in pixels) are w and A, respectively, the number of
segments is N (could be greater than six), and the number of pixels in the i-th
segment is N,;. We have

Npe=1
Ii= 3" step(p,p+1) (6.46)

=1

where step(p,p + 1) is defined as

step(p, q) = { b ia€ Nilp) (6.47)

V2 if ¢ € Ns(p) A ~(gq € Nu(p))

where p is a character pixel on the skeleton, and N,(p) and Ns(p) are the 4-
neighbors and the 8-neighbors of p, respectively.

The normalized I;, denoted by I?, is defined as
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I
. E— 48
Ty (6.48)
3. z and y7 are the normalized horizontal and vertical coordinates, respectively,
of the relative center of the i-th segment to the center of the skeleton image,
(2g,yg). Firstly, the center of the é-th segment, (zq,ya), is calculated by

Te ™ step(p, p + 1)Z2teets

Npa—1 t 1 yptupia
Yoi = 2p=1 § ep(pl’p + ) 2 i (6-50)

Secondly, the center of the skeleton image, (zg, y,), is given by

i bz
Ty = _E:1~l_" (6.51)
Tty Ly
3y = =2 (6.52)
Finally, z7. and y7; are defined as
2 = m“; %, (6.53)
vy =2 (6.54)

The meost important feature for numeral recognition using the syntactic approach
is the {ype. Length is also useful in discriminating between numerals which have one
or more segments of similar type, such as digits “2” and “3” (both have D curves).
Center information was used to approximate the position of a segment.

Besides the four features of all six segments, which make 24 features, the number
of segments which a digit has (set the maximum value to six) is used as a feature
because some digits tend to have more segments than the others. Also used are
features including the numbers of end points in each of the four domains I, II, III,
and IV, the normalized total length, the center coordinates of the skeleton digit image,
the numbers of straight lines, curves and circles, and the aspect ratio of the image.
All together 36 features are used in this study. For a non-existing segment j (7 > N;
and Ny < 6), we set the type to “none”, I} =10, 2 = —z,/w, and y7 = —y,/h.
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Table 6.4 Membership grades for the number of segments.

number | 1 2 3 4 5 6

1 1.0 [0.25] 0.1 | 0.0 | 0.0 | 0.0
025] 1.0 j0.25] 0.1 | 0.0 | 0.0
0.1 [025] 1.0 [0.25] 0.1 | 0.0
00 |01 10251 1.0 |]0.25 (| 1
000001 ]025) 1.0 {025
0.0 |00} 00 ] 01 ]025]( 1.0

L= 4] I ) ]

Membership Functions

Fuzzy grade matrices were constructed for symbolic or discrete-valued features. They
can be determined heuristically. In our experiments, we constructed the grade ma-
trices heuristically for the features “number” and the features “type”.

Table 6.4 shows the fuzzy grade matrix used for the number of segments. Note
that we only made use of the six longest segments so that the values of the feature are
in the range from 1 to 6. The columns represent the actual number of the segments
in a skeletal numeral image, and the rows indicate the number of segments required
by the antecedent conditions. The fuzziness in the number of the segments was
introduced, because: (1) we deleted segments shorter than 10 pixels although they
may be useful for classification to a certain degree; and (2) there was a threshold used
in finding the corners of a long curved segment and as a result, a false corner could be
introduced or a genuine corner could be missed out. As can be seen from Table 6.4,
the values of 0.25 was assigned to the nearest neighbor(s) and 0.1 to the second
nearest neighbor(s) of an element. Similarly, fuzzy grade matrices were generated for
the other discrete-valued features.

Table 6.5 shows a fuzzy grade matrix for the type of a segment. There are 12 types
used for our skeleton based handwritten numeral recognition. The column represents
the actual type of a segment of a2 numeral (note that some fuzzy measure was already
introduced in preprocessing) and the row is the type which the antecedent conditions
require. The fuzziness for the segment types is introduced, because: (1) fuzziness was
used in assigning a type to a segment; (2) there are similarities between some types;
and (3) human recognition is very robust in dealing with segment types.

For features with continuous values, the membership functions as defined in
Eqs. (6.13) and (6.14) were used, in which a was set to 0.5.

Fuzzy Rules

Fuzzy rules were produced using the technique based on a decision tree learning
algorithm. A set of 151 fuzzy rules were produced from 10,426 training samples,
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Table 6.5 Membership grades for segment types: HL (H line), VL (V line), PL (P
line), NL (N line), CC (C curve}, DC (D curve), AC (A curve), VC (V curve), 5C (S
curve}, ZC (Z curve), CU (curve), and CI (circle).

type | HL | VL | PL | NL [CU | CC [ DC | AC [ VC | SC | ZC | I
HL | 1.0 | 0.0 |0.25 | 025 0.25] 0.1 | 0.1 [0.25]0.25] 0.1 | 0.1 | 0.0
VL | 0.0 | 1.0 | 0.25 | 0.25 | 0.25 | 0.95 | 025 ] 0.1 | 61 | 0.1 | 0.1 | 0.0
PL 025|025 1.0 | 0.0 [0.25]0.25]02510251025] 0.1 ] 0.1 ] 0.0
NL |025(025( 00 | 1.0 (0.25(/025]10.25(0.25]025| 0.1 | 0.1 | 0.0
CU | 01|01 01|01 1.0]05]05]05(05]05]05]01
CC | 0.0 |025]0.25]025] 0.5 ] 1.0 | 0.0 |0.25|0.25 | 0.25 ] 0.25 | 0.95
DC | 0.0 |025]025|025] 05 ] 0.0 | 1.0 | 0.25[0.25]0.95 | 0.25 | 0.25
AC |0.25| 0.0 025|025 0.5 |025]025] 1.0 | 0.0 | 0.25 | 025 | 025
VC {025{ 0,0 1{025(025]05 |025[025( 0.0 [ 1.0 10.25]0.25]0.25
SC101 |01 |01 |01]025]025[025(025[0.25] 1.0 ] 05 0.1
ZClol1lo1]01]01]025(025(025{025]0251 05 (1.0 0.1
CI 0.0 {00 (00| 00|01 [025]025]/025]0251 0.1 ] 01| 1.0

Defuzzification

A two-layer perceptron was trained to perform the optimized defuzzification. The
perceptron has 152 input nodes, each for a rule plus a blas node, and 10 output
nodes.

Experiments

The NIST Special Database 3 was used for our experiments. We extracted 10,426
samples for training and another 10,426 samples from different forms for testing.

Table 6.6 lists the correct classification rates obtained from the decision trees
and rules, and fuzzified decision rules. A classifier using a decision tree with 2,163
rules achieved 98.8% correct classification on the training set and 91.4% on the test
set., After pruning to 828 rules, the classifier had a slightly higher rate on the test
set (91.9%) with a cost of training accuracy down from 98.8% to 97.1%. Using the
simplified decision rules (151 rules), we achieved 94.6% and 90.7% for the correct
classification rates on the training set and the test set, respectively. It is seen that
the performance degrades due to the simplification in extracting the rules from the
decision tree. However, after the membership grades were introduced into the rules
and the optimized defuzzification applied, the fuzzified decision rules achieved 97.7%
and 95.0% for the correct classification rates on the training set and the test set,
respectively. This is a significant improvement over the decision trees and the simph-
fied decision rules. Figure 6.25 shows the examples of handwritten digits which are
correctly classified by the fuzzified decision rules.
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Figure 6.25 Examples of handwritten digits which are correctly classified by
fuzzified decision rules.
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Figure 6.26 Rule weights (wj,1 < i < 151 for 151 fuzzy rules,1 < j <
10 for ten classes) before (top) and after optimization (bottom).
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Table 6.6 Classification performance for different techniques used.

Performance (%)
Techniques On training sei | On test set
Decision tree (before pruning,
size of the tree: 2,163) 98.8 91.4
Decision tree (after pruning,
size of the tree; 828) 97.1 91.9
Simplified decision rules
{151 rules) 94.6 90.7
Fuzzified decision rules
(151 rules) 97.7 95.0

Figure 6.26 shows the weight patterns before and after optimized defuzzification.
We can view a positive weight as an excitatory signal and a negative weight as an
inhibitory signal. Now a rule does not response to only one class since it has positive
weights to some classes and negative weights to other classes. Also a class receives
contributions from all rules which can be either excitative or inhibitive.

6.8 Concluding Remarks

We discussed in this chapter three techniques for producing fuzzy rules from numerical
data, Wang and Mendel’s learning from examples, the decision tree based approach,
and the neural network approach proposed by Krishnapuram et al.

Generating fuzzy rules using the approach of learning from examples is the most
straightforward. It does not require intensive computation because it only performs
a simple one-pass operation on the training data. However, the system performance
is very much dependent of the partition of the input and output domain intervals
and the chosen membership functions. Therefore, it is strongly suggested that one of
clustering techniques as discussed in Section 2.3 is used to generate a set of member-
ship functions which actually reflects the real data distribution. This is particularly
important for pattern recognition and image processing where an open loop system
is usually adopted. Another problem with this approach is that we tend to have a
large number of fuzzy rules when a great number of training samples are available.
The problem can be partially solved by either using a clustering procedure to obtain
the centers of clusters which are then used to produce a smaller set of fuzzy rules
(see Section 6.5.1) or utilizing a fuzzy rule minimization technique as one discussed
in Section 6.5.2 to reduce the number of produced fuzzy rules.

Fuzzy rules derived from decision trees are flexible in the sense that different rules
tends to use different features and have different lengths. Therefore, these rules are
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more similar to those extracted from expert knowledge. In this approach, selection
of membership functions is simple and a compact set of fuzzy rules can be easily
obtained by using a well-defined procedure for simplifying the decision rules. Another
advantage of the approach is that the ID3 learning algorithm can deal with mixed
types of inputs, symbolic, discrete-valued, and continuous-valued, which is important
for high level image processing and pattern recognition. Compared with Wang and
Mendel’s approach of learning from examples, the approach based on decision trees
takes longer learning time.

Neural networks have found many applications in various optimization problems.
A neural network approach seems to be a natural way to produce an optimized set
of fuzzy rules. However, the progress in this direction has been less promising so
far. Fuzzy aggregation networks which can be used to produce fuzzy rules has the
difficulty in the learning convergence because of the exponent parameters (p and 1/p)
used in each node which are very sensitive to small perturbations. Therefore, only a
small network can be trained successfully. As a result, only a very small number of
rules can be produced, which is not suitable for a practical application.

In this chapter, we have also discussed a few defuzzification schemes for fuzzy
rule-based pattern recognition, including maximum matching, maximum accumulated
matching, centroid defuzzification, and the two-layer perceptron approach. Among
them, the two-layer perceptron is the most promising approach because it incorporates
the parameter optimization into the defuzzification process.

To design a fuzzy rule-based recognition system, the following steps have to be

taken:

1. A training set has to be constructed.

2. A suitable set of membership functions have to be chosen or to be generated
from the training data.

3. A learning technique has to be used to produce a set of fuzzy rules from the
training data or the cluster centers obtained from a clustering algorithm.

4. A defuzzification scheme has to be adopted to perform the classification and
recognition.

Unfortunately, all of the aforementioned tasks are still more or less problem depen-
dent. Furthermore, the classifier performance strongly depends on the classification
power of the extracted features. Three applications described in Section 6.7 provide
us a general guide for designing a fuzzy rule-based recognition system.



Chapter 7

Combined Classifiers

7.1 Introduction

By using different feature sets and different classification techniques, classification
systemns have different performance. Most classifiers have particular strengths and
weaknesses in that they can reliably distinguish between some patterns, but may
confuse others. There are several ways to reduce this confusion by using extra features,
tuning classifier parameters, and combining complementary classifiers.

Suppose that there are K individual classifiers (f, & = 1,2, ..., K). For an unla-
beled input pattern x each f; will assign x a label wy, € AU{¢} where A = {1,2,..., L}
(L is the number of classes) representing a pattern class and ¢ denoting the rejection.
No matter what classifier structure it has and what theory and methodology it is
based on, f is regarded as a function which receives an input x then outputs a class
label wy, and probably the degrees to which the pattern belong to different classes. A
combined classifier is to make use of all the results from K classifiers, fi(x), to make
a final classification. Therefore, building a combined classifier is equivalent to build
a function F(x) = w, w € AU {¢}, based on fi(x), £ =1,2,..., K, such that a better
classification performance would be obtained.

Xu et ol [84] distinguished three classifier types according to the amount of infor-
mation returned. Class 1 classifiers return only the selected class or rejection. Class 2
classifiers return a ranked list of classes, and Class 3 classifiers return a measurement
associated with each class. Combination techniques including voting [85], [86], max-
imizing posterior probabilities [84], and Dempster-Shafer evidence theory [87], [88]
have been proposed to combine Class 1 classifiers. Borda counts and logistic regression
have been used to combine Class 2 classifiers. Results from both Class 2 and 3 classi-
fiers can be combined using rule-based, weighted-sum, associative switch [89], trained
perceptron, and fuzzy integral techniques [90], [91], [92]. A hierarchical decision mak-
ing based on various recognition experiences can always be used to combine different
classifiers [26], [93]. In this chapter, we will discuss several techniques which combine
complementary classifiers to improve the classification performance. An application
of these combination classifiers on handwritten numeral character recognition will be

189
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reported following the general discussion on the combination techniques.

In the discussion of the following sections, we will use the correct classification
rate (78], rejection rate (r,), and substitution rate (r,) to measure the classification
performance of a classifier. Assume that n, patterns are rejected from a total of n
patterns to be classified and among those classified patterns, n, patterns are correctly
classified. We can define r,, r., and r, as

n,
rr = ?1 (7‘1)
ne
e = n-—-n,’ (7'2)
n—n, — N
TS e (7.3)
= 1-r. (7.4)

To get a better idea about the classification and misclassification of each individual
class, the confusion matrix is often adopted. A generalized confusion matrix, P, is

defined as

i1 Mz ... ME Ri(L41)
Mgy Mgz .- ToL M2(L41)

P=(ng)=| =~ ' ‘ (7.5)
. NL2 .. RLL TL(L41)

where L is the number of classes, ny; (3,5 = 1,2, ..., L} denotes the number of patterns
from class ¢ being classified to digit 7, and nyrey) (2 = 1,2,..,, L) is the number of
patterns from class ¢ being rejected. Obviously, we have

L
n, = Eni(L+1)1 (7~6)
i=1

L
n, = En,-,—, (77)

i=1

L L+1

no= 23 m (7.8)

i=1 j=1

7.2 Voting Schemes

There are various voting schemes which can pick up a label w from the labels produced
by K classifiers {wy,ws, ..., wk}-
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Unanimous Voting

Accept a classification only if all classifiers produce the same label (not rejection).

_Ju s = mwg #

w= { ¢ otherwise. (7.9)
This combination scheme usually produces a very low substitution rate but with the
cost of a high rejection rate.

Majority Voting

If more classifiers label a sample to one class than to any others, then the sample is
assigned to that class. Otherwise, it is rejected. Let (1. be a subset consisting of all

wk#qﬁ.

Yo { wy if wy € U and Yooy, # wi such that r(wy) > r(wy, ), (7.10)

¢ otherwise

where r{w; ) denotes the number of the classifiers which take the value wy in .. Note
that the scheme defired in Eq. (7.10) is not the only one for majority voting. There
are many variations depending on the problem, the theory and methodology used in
each classifier, and the number of classtfiers.

Compared with the unanimous voting scheme, this combination method produces
a rather low rejection rate but a higher substitution rate.

In general, both voting methods cannot perform a classification without rejection
even each individual classifier can do it. Both voting methods can be adopted to
combine all types of classifiers.

7.3 Maximum Posteriori Probability

Assume that nfj denotes the number of class { patterns which are classified to class
7 by classifier k (k = 1,2,..., K). Let pi(¢|j) denote the probability that a pattern,
which classifier k assigns to class j, actually belongs to class ;. We have
plili) = =i (r.11)
E[:] n’ff

We define the overall probability that a sample belongs to class : (1 = 1,2, ..., L) as

K
p(i) = Y pe(ilix) (7.12)

k=1
where i is the label which classifier k outputs. The output of the combined clagsifier
is i, which maximizes p(¢), that is,
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pli.) = miap(i). (7.13)

If individual classifiers can perform the classification without rejection, this com-
bination method will guarantee to perform a classification without rejection. The
method can be used to combine all types of classifiers.

7.4 Multilayer Perceptron Approach

A Class 3 classifier can provide not only the classification labels but also the measures
of likelihood. Usually, the winner-take-all strategy is used for a Class 3 classifier to
perform the classification. Let of be the ith output of classifier f. If a_:f > of for
1=1,2,...,L and [ # j, where L is the number of classes, then the output of classifier
fk is W,

A multilayer neural network can be used to combine several Class 3 classifiers to
improve the classification performance, in particular, to resolve the conflict among
the classifiers (see Fig. 7.1). The number of inputs to the network will be K x L
(K is the number of classifiers) and the number of the outputs will be L. The
training patterns are (y, o), where o = [0¢,0%,...,08] are the desired outputs and
y = [0}, 0, ..., 0f, ..,0F]7, where of is the ith output of classifier k (i = 1,2, ..., L,
and k& = 1,2,..., K). If the pattern is from class j, then the desired output is

Od - 1 if l = j,
! 0 otherwise.

The multilayer neural network is trained by using a backpropagation algoerithm
with the mean square error function defined as

(7.14)

L
E,= % > [o4ve) = 0i(vs)]” (7.15)

where 0;(y,) is the actual output for node j of the output layer. We can consider the
training of the combination network as a second-order learning following the first-
order learning of each individual classifier. The combination classifier can usually
achieve a better classification performance. By setting different thresholds in the test
mode, we can obtain various correct classification rates over different rejection rates.
For an application where the misclassification is vital like a medical system, we can
set a threshold in such a way that 100% correct classification can be achieved with
the cost of a quite high rejection rate.

7.5 Fuzzy Measures and Fuzzy Integrals

Randomness and fuzziness are two diflerent types of uncertainties. The theory of
probability deals with the first type and the theory of fuzzy sets deals with the
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Multilayer perceptron
neural network

Figure 7.1 A combination classifier using a multilayer perceptron.
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second. Stemming from the concept of fuzzy-set theory [1], fuzzy measure and fuzzy
integral were proposed by Sugeno [20]. In the same way that probability measure
is used as a scale for randomness, fuzzy measure is used as a scale to express the
grade of fuzziness. Based on the properties of fuzzy measure, fuzzy integral is an
aggregation operator on multi-attribute fuzzy information. Fuzzy integral can be
viewed as a [uzzy expectation when compared with statistical expectation, and as
a nonlinear integral in comparison with Lebesque integral. The properties of fuzzy
measure and the operations on Sugeno and Choquet fuzzy integrals shall be briefly
described below.

7.5.1 Fuzzy Measures

Let X be a non-empty set, and B be a Borel field of X. A set function g:  — [0,1]
defined on B is a fuzzy measure if it satisfies the following three axioms:;

1. Boundary conditions: g(#) =0, g(X) = 1.
2. Monotonicity: g(A) < g(B)if AC B,and A,B € B.
3. Continuity: limg(4;) = g(im 4;) if A; € B and A; is monotone increasing.

A gy-fuzzy measure is also proposed by Sugeno [20] which satisfies another con-
dition known as the A-rule (A > —1):

9(AU B) = g(A) + ¢(B) + X g(A)g(B) (7.16)
where A, BC X,and ANB =10
Let X = {#1,x2,-.., 2o} be a finite set, and g; = g({z:}), ¢ = 1, ..., n, be the values
over the set of singletons of X (g is now called a fuzzy density function of the gy
measures), then g (A4) can be expressed by [92]

n-1 n

SNa+Ad 3> gugnt .+ X 0gg.

i=1 91=1 dp=i)+1

%I:H(l+)\gi)—l],.\%0 (7.17)

T,EA

g:(4)

il

Recall that g(X) = 1 and if the fuzzy densities g; are known, then the g)-measures
can be identified by solving the following equation for A:

n

A1 =T[0+ Ag) (7.18)

t=l
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7.5.2 Fuzzy Integrals

Let (X, B, g) be a fuzzy measure space and f : X — [0, 1] be a measurable function.
We also define X = {z1,23,...,Zs}; and 0 < flz1) < f(zz)... < f(z.) < 1, {if not, the
elements of X are rearranged to hold this relation), and A; = {z;, ;11,...,Z4}. Then,
the Sugeno integral over A C X of the function f with respect to a fuzzy measure g
is defined by:

[ fog=Viilf(z) Ag(a] (7.19)

where A denotes “minimum”, and V stands for “supremum”.
The Choquet integral, which is another form of fuzzy integrals, of f with respect
to g is defined by:

[, 1 d8= 2@ = S04 (7.20)
in which f(zo) = 0.

There are a number of interpretations on the meaning of fuzzy integrals. A fuzzy
integral can be understood as a fuzzy expectation [20], the maximal grade of agree-
ment between two opposite tendencies {94], or the maximal grade of agreement be-
tween the objective evidence and the expectation [92]. Tn this paper, a fuzzy integral
is considered as a maximum degree of belief (for a class or an object) obtained from
the fusion of several objective evidences where the importance of multiple attributes
are subject to fuzzy measures.

7.5.3 A Fuzzy Integral Model for Classifier Fusion

The algorithm for the fusion of the results from multiple classifiers is described as
below.

1. Forming the confusion mairiz: Let the confusion matrix P be the results of
correctly classified and misclassified patterns obtained from the training set
(see Section 7.1). It is established for each classifier and expressed in the form:

PF= (nfj) (7.21)
where k is one of the K-classifiers (k = 1,2,..., K), and P* is an L x L matrix (L
is the number of classes). Note that we only examine the non-rejection classifier
here. Fori = j, n"-‘]- indicates the number of patterns from class ¢ being correctly
classified by the k-classifier; whereas i # j, nf-‘,- indicates the number of patterns
from class ¢ being misclassified as class 7.

2. Computing the initial fuzzy densitiess The initial fuzzy density used here is in
fact calculated as a discrete probability, and interpreted as the degree in which



196

Chapter 7. Combined Classifiers

a classifier identifies a certain class correctly. This initial fuzzy density can be
defined as

nk

i (7.22)

k
g = ST,k

in which 0 < g*¥ < 1 is the fuzzy density of the class i with respect to the
k-classifier.

. Computing the correction factors: It is always observed that each classifier 1s

more robust than the others in classifying the patterns from some classes, but
also more error-prone in the classification of the patterns from other classes than
the other classifiers. Therefore, it is necessary to take into account the effect of
the relation between the frequencies of correct and incorrect classifications. This
can be done by introducing two sets of correction factors which then be used
to adjust the initial fuzzy density as defined by Eq. (7.18). The first correction
set can be expressed by the following equation

. lk s for i=]
6i.f = et _kn"J' fOT‘ 3?{-'] (723)

L

where 6" is the correction factor for the fuzzy denmty g¥, which counts for the
pa,tterns from class ¢ being misclassified as class j.

The second correction set is

1 for n'-‘- < n‘--
!
b=y o nhzn (7.24)
32
0.0001 for nk ;=0

where nq, ! # k, is the number of class ¢ being misclassified as class j by the

I-classifier.

. Finding classes having highest score from all classifiers:

= {(Vi)as} (7.25)

where N is the vector of the classes V; having highest score given by the k-th
classifier.
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5. Updating the initial fuzzy densities:

The initial fuzzy densities are updated using the correction factors in Egs. {7.23)
and (7.25) by the following equation:

gk =gF x (6{; X+ x 8E)¥ x (-y:; X e x k), (7.26)

where g7* is the updated fuzzy density, the subscripts j and k are the indices
given by (V.)ma. as defined in Eq. (7.25) by the other classifiers, w; and w;
are the exponential weights assigned to the first and the second sets of the
correction factors as defined by Eqs. (7.23) and (7.24) respectively.

6. Computing fuzzy measures and fuzzy integrals: Having determined the fuzzy
densities g**, the gi- fuzzy measures for each class from different classifiers can
be obtained using Eq. (7.16). Then the fuzzy integral can be computed accord-
ingly using Eqgs. (7.19) or (7.20) where the function f is the fuzzy membership
function mapped from the actual output of the test set. This membership
function is an S-function which is defined by Zadeh [1] as

_| ¥ for 02505
S(m)_{1_2($_1)2 for 05<z<1 (7.27)

where z € [0,1] is the output from the test set by the classifier.

7. Decision making of the final class: The final output class from the combination
classifier is made by selecting the class with the highest integrated value.

7.6 Applications

In this application, different methods are used to combine three classifiers using dif-
ferent methodologies and different feature sets for handwritten numeral recognition.
The same training and test sets as reported in Section 6.7.3 are used. There are
10,426 digit patterns in the training set and 10,426 digit patterns written by different
people in the test set. Classifier 1 is based on the skeleton representation of characters
and the ID3-derived fuzzy rules (see Fig. 7.2) which was reported in Section 6.7.3.
The classification performance of Classifier 1 on the training and test sets are shown
in Tables 7.1 and 7.2, respectively. Note that we adopted a table which is similar
to the confusion matrix except that the rejection rates are not shown and instead
the column of “rate” is added which shows the correct classification rates for each
individual class and the overall performance as well. Different thresholds set in the
test mode resulted in the substitution/rejection performance of Classifier 1 which
are displayed in Fig. 7.7. The second classifier we used is Yan’s optimized nearest
neighbor classifier [95] which makes use of image intensities only and will be briefly
discussed in Section 7.6.1. Classifier 3 makes use of Markov chains which are obtained
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thinning feature extraction classification
binarized skeleton set of
. . class
image image features

Figure 7.2  Block diagram of the skeleton based character recognition system.

Table 7.1 Classification performance of the ID3-derived fuzzy rule-based classifier
on the training set.

oo

digit
0 1

rate (%)
97.96
99.40
96.38
96.90
98.23
97.82
98.54
1 98.62
96.21
978 | 96.83
overall 97.72
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from contour images of characters. In this technique, a numeral contour is traversed
in a well-defined order and the Markov chain is used to perform sequential analysis
and to match with the models. The Markov chain-based technique for handwritten
character recognition is discussed in Section 7.6.2.

7.6.1 Optimized Nearest Neighbor Classifier

The nearest neighbor rule has been studied in pattern recognition for many years. For
a basic nearest neighbor classifier (NNC), all training samples are used as prototypes
and an input sample is assigned to the class of the closest prototype. Although the
classification rule is conceptually very simple, it has a robust performance, Theoreti-
cally, its asymptotic classification error is bounded above by twice the Bayes error [96].
However, the NNC has not been used widely in the past because a large memory stor-
age space and long computing time are needed for its implementation if the number
of training samples is large. Many techniques have been developed in the past to
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Table 7.2  Classification performance of the ID3-derived fuzzy rule-based classifier
on the test set,

digit 0 1 2 3 4 5 6 7 8 9 |rate (%)
0 1041 0 3 3 1 8 11 2 13 2 96.03
1 0 1138 0O 0 0 2 5 2 2 0 99.04
2 1 5 945 30 15 13 7 16 3 0 91.30
3 2 3 26 99% 5 2 2 7 0 5 93.00
4 0 6 2 2 992 7 0 5 8 12 95.94
5 1 7 6 9 6 857 14 1 5 5 94.07
6 16 12 14 0 2 7 986 1 11 0 93.99
7 0 2 12 8 6 1 0 1046 O 2 97.12
8 8 1 2 4 10 6 6 1 960 22 94,12
9 6 0 1 5 14 9 0 11 12 938 94.18
overall 94.95

overcorne the computational complexity problem of the NNC by deleting noisy pro-
totypes or combining similar ones, but as a result of these operations, the recognition
performance is usually degraded even for a small reduction of prototypes [96).

Recently Yan has developed a method for building a computationally efficient
NNC with high classification power [95], [97]. In this method, a clustering technique
combines training samples to produce a small number of prototypes. The prototype
feature values are mapped to the weights of a multi-layer perceptron neural network
which is then trained using all available training data. The weights of the trained
perceptron are mapped back to a set of new and optimized prototypes. After learning,
the optimized prototypes have the same classification performance as the multi-layer
neural network used for training. The new nearest neighbor classifier can be efficiently
implemented since the number of optimized prototypes is small and the classification
procedure can be sped up using various ranking strategies [95], [97].

Yan’s optimized nearest neighbor classifier makes use of 64 intensities as inputs.
Each digit character is first rescaled and centered onto 64 x 64 grids. The number
of character pixels in each 8 x 8 local window are counted and the 8 x § gray scale
images are obtained. The resulting 64 intensities in the image are in the range of [0,
64] and are used as features. Figure 7.3 shows an example of the 64 x 64 binary image
and 8 x 8 gray scale handwritten numeral image for the digit 2.

Tables 7.3 and 7.4 show the classification performance of Yan’s optimized nearest
neighbor classifier on the training and test sets, respectively.
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Figure 7.3  Left: an example of the 64 x 64 binary image of the handwritten
numeral 2; top-right: one of zoom-in 8 x 8 blocks with binary codes; bottom-right:
the 8 x 8 gray scale values of the handwritten numeral 2 on the left.

Table 7.3 Classification performance of the optimized nearest neighbor classifier
on the training set.

digit 0 1 2 3 4 5 6 7 8 9 | rate (%)
0 1076 0 0 0 0 2 2 0 1 0 99.54
1 0 1159 5 3 0 0 1 1 3 1 98.81
2 1 1 1001 3 0 1 2 3 10 0 97.95
3 2 0 7 1034 o0 8 1 1 6 5 97.18
4 0 0 1 0 1000 0O 1 2 i 13 98.23
5 1 0 3 12 1 897 0 0 3 0 97.82
6 6 1 0 0 2 2 1011 0 2 1 98.63
7 0 3 0 0 4 0 0 1068 2 10 98.25
8 2 4 1 4 3 b 2 0 1006 2 97.76
9 0 1 0 0 3 0 0 3 1 1002 7 99.21
overall 98.35
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Table 7.4  Classification performance of the optimized nearest neighbor classifier
on the test set.

digit 0 1 2 3 4 5 6 7 8 9 | rate (%)
0 1076 0 1 1 0 4 1 0 1 0 99.26
1 0 1147 0 0 0 0 0 0 2 0 99.83
2 ] 0 1021 2 0 1 2 2 2 0 98.65
3 0 0 6 1035 0 14 0 1 14 1 96.64
4 0 0 0 0 1023 1 3 0 1 6 98.94
5 1 0 0 8 1 386 5 0 10 0 97.26
6 2 1 0 0 0 2 1042 1 1 0 99.33
7 0 0 2 0 6 0 0 1056 1 12 98.05
8 g8 8 1 21 3 15 2 2 956 4 93.73
9 3 0 3 8 10 4 0 8 9 951 95.48
overall 97.77
boundary detection Markov chain description  matching
binarized contour Markov
N N class
image image chain

Figure 7.4 Block digram of the contour based character recognition system.

7.6.2 Markov Chain-based Classifier
Mathematical Description

Figure 7.4 shows the block diagram of the contour based character recognition system.
The Markov chain digit recognition system is based on a discrete time, discrete state
Markov system. At time ¢, the system occupies state S*, one of n, possible states. In
the designed Markov system, state transition probabilities depend only on the current
state, i.e.:

P(8Y) = P(8'S*Y). (7.28)

At each time step, another discrete quantity is measured, which is called the “observ-
able” 0. The probability distribution for the n, observable values depends on the
current state of the system:
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P(OY) = P(O%]5Y). (7.29)

Thus a sample image may be described by a Markov chain, which is an ordered list
of observations

C =[5°,0%,...,[S, 0%, (S, 0], [N, 0M). (7.30)

Each of the ten digits is described by a Markov model A, with n, states and n,
observable feature values. Each model is defined by three probability distributions:

1. the probability that the system will initially be in state s,

7= P(8° =), 1<i<n, (7.31)

2. the probability that, given a system in state ¢, the observed value will be &,

by = P{O' = k|5 =1), l<i<n, l<k<n, (7.32)

3. the probability that a system in state ¢ will be in state j at the next observation,

a;; = P(S' = jIS*! =), 1<ij<n, (7.33)

Given a particular Markov chain, the probability that it was produced by the
system with Markov model X is

N
P(CI/\) = 1['501)50'00[]:[ aS‘—',S‘bS',O']- (7.34)
t=1
The recognition strategy is that when a test digit is presented to the system, its
Markov chain is derived, and the probability that the chain was produced by each of
the ten models calculated. The sample is assigned to the class of the model with the
highest probability value.

Feature Selection and Chain Generation

This section describes the definition of states and observables used in the system, and
generation of the Markov chain of a sample image.

Assuming the character image is a square of side 64 pixels, it is split into 16
regions regarded as separate states. Each state is a square of side 16 pixels, located
as shown in Fig. 7.5 on the left. The direction from one contour point to the next
is treated as the observable, and assigned a discrete value according to the sectors in
Fig. 7.5 on the right.

The Markov chain for an image, which is a sequence of state and observable values,
is generated by the following steps:
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Figure 7.5 A sample digit, showing the external contour traced by arrows, and
the 16 sections (states) into which the image was separated. At the right is a compass
flower, showing the values assigned to the arrow directions (observable values).
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1. Scale the image to fit onto a 64 by 64 region without distortion.

2. Trace the contour of the figure by traversing it in a counter-clockwise manner,
starting at the lower left corner.

3. Generate the contour chain by selecting every fifth contour pixel.
4. Generate the state sequence from the locations of each contour chain point.

5. Generate the observable sequence from the direction from one contour chain
point to the next.

Model Parameters

Ten Markov models, one for each digit, were generated by deriving probability dis-
tributions 7, b;x and ¢;; from the same training sample of 10,426 images as those
used for the fuzzy 1D3 classification. For each training sample, the Markov chain
was generated, and the incidence of each combination of observable value and state
transition recorded. These incidences were totalized over all samples in each class, to
produce probability distributions for the classes.

The ten model system ignores some potential problems with the Markov chain
method, including digits which may be written in two completely different ways (for
example “4”), digits which are not bound by a single external contour, and the
substantial variation occurring if a break occurs in the written stroke (as in the
“8” of Fig. 6.23).

Classification of a test sample involves assigning it to the class of the model which
is most likely to generate the Markov chain of the sample. If two models produce
very similar values of probability, the classification may be regarded as uncertain, so
the ratio R of the highest probability to the next highest probability could be used
to reject such samples. If the ratio is below some threshold, the sample would be
rejected.

We used ten models, one for each digit, created by determining the probability
distributions for initial state, state transition and observable value from the 10,426
image training set. The classifier correctly recognized 94.8 % of training set images
(see Table 7.5), and 94.2 % of the test set (see Table 7.6) A series of threshold tests
resulted in the substitution/rejection performance displayed in Fig. 7.7; rejection
occurred if the ratio between the top two probabilities was less than a threshold.

These results indicate that the Markov chain method is not suitable for indepen-
dent use, but it may be combined with other classifiers for improved performance.

7.6.3 Combined Classifiers

Using different feature sets such as intensities and those based on skeleton and con-
tour images, and different classification methodology such as fuzzy rules, optimized
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Table 7.5 Classification performance of the Markov chain-based classifier on the
training set.

digit 0 1 2 3 4 5 6 7 8 9 | rate (%)
0 1047 5 2 1 1 0 8 3 14 0 96.85
1 2 1150 1 0 2 0 9 2 5 2 93.04
2 3 3 954 18 10 5 1 17 10 1 93.35
3 5 0 20 1008 O 11 0 9 6 5 94.74
4 0 3 4 0 978 1 7 0 12 13 96.07
5 1 0 4 6 0 881 3 7 7 3 96.07
6 6 10 1 0 5 2 988 2 11 0 96.39
7 4 7 9 2 7 4 0 1018 5 31 93.65
8 39 8 9 3 12 14 11 3 909 21 88.34
9 3 1 4 0 16 6 ] 10 18 952 | 94.26
overall 94.81

Table 7.6  Classification performance of the Markov chain-based classifier on the
test set.

digit 0 1 2 3 4 5 6 7 8 9 | rate (%)
0 1042 8 4 4 0 5 5 1 15 0 96.13
1 1 1133 0 0 1 0 3 1 9 1 98.61
2 3 3 969 17 9 2 3 20 7 2 93.62
3 ] 0 16 1014 0 20 2 B 5 6 94.68
4 1 3 4 0 989 4 8 1 12 12 95.65
5 2 1 4 18 0 843 17 1 19 6 92.54
6 4 22 2 1 7 3 998 4 8 0 95.14
7 1 6 19 5 3 1 0 1e 3 23 94.34
8 27 16 11 8 T 12 9 2 913 15 89.51
9 8 0 2 6 23 6 0 16 23 902 90.56
overall 94.18
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Table 7.7 Classification performance of the unanimous voting combination classi-
fier on the test set (10.26% of rejection rate).

digit 1] 1 2 3 4 5 6 7 8 9 | rate (%)

0 1005 1] 0 0 0 1 0 0 0 0 99.90
1 0 1123 0 0 0 0 0 0 0 0 100.00
2 0 0 900 0 0 0 0 0 0 0 100.00
3 0 0 0 94 0 0 0 0 0 0 100.00
4 0 0 0 0 951 O 0 0 0 0 100.00
5 0 0 0 1 0 794 1 0 0 0 99.75
6 0 1 0 0 0 0 945 1 0 0 99.79
7 0 0 1 0 2 0 ¢ 997 0 0 99.70
8 0 0 0 1 0 0 0 0 836 0 99.88
9 0 0 0 0 1 0 0 1 0 850 | 99.77

overall 99.83

prototypes, and Markov chains, the three classifiers aforementioned are complemen-
tary to one another to some extent. A better performance would be expected if we
combine them using the combination techniques as discussed in this chapter.

Unanimous Voting

If all of the three classifiers produce the same class, we accept the classification.
Otherwise, the input pattern is rejected. The combination classifier achieves 99.88%
correct classification on the test set (only 13 out of 9,356 patterns were misclassified)
after 10.26% of test patterns (1,070 patterns) have been rejected. The resulting
confusion matrix is shown in Table 7.7.

Majority Voting

For this three-classifier combination case, the combined classifier perform the classifi-
cation if two or three classifiers produce the same class. Otherwise, the input pattern
is rejected. The combination classifier achieves 98.86% correct classification on the
test set after 1.23% of test patterns have been rejected. Shown in Table 7.8 is the
confusion matrix obtained by this combination classifier.

Maximum Posteriori Probability

In this application, pe(i]j) (k = 1,2,3 and 4,j = 0,1,...,9) are obtained from the
resulting confusion matrices of individual classifiers on the training set {see Tables 7.1,
7.3, and 7.5). The combination classifier achieves a correct classification rate of
98.38% without rejection on the test set. Table 7.9 shows the confusion matrix of
this combination classifier.
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Table 7.8 Classification performance of the majority voting combination classifier
on the test set (1.23% of rejection rate).

digit 0 1 2 3 4 5 6 7 8 9 |rate (%)
0 1072 0 1 0 0 1 0 0 1 0 99.72
1 0 1146 0 0 0 0 0 0 1 0 99.91
2 0 0 1002 3 1 1 0 4 1 0 99.01
3 0 0 6 1039 0O 5 0 2 3 1 98.39
4 0 0 ] 0 1020 0 2 0 0 3 99,51
5 1 0 0 6 1 88 3 ] 3 0 98.45
6 0 4 0 0 0 1 1034 1 1 0 99.33
7 0 0 9 0 3 0 0 1049 1 3 98.50
8 3 2 0 2 2 4 0 1 978 5 93.09
9 3 0 0 6 3 0 0 7 6 953 | 97.44
overall 93.86

Table 7.9 Classification performance of the maximum posteriori probability com-
bination classifier on the test set.

digit 0 1 2 3 4 5 6 7 8 9 | rate (%)
0 1080 0 1 0 0 1 0 0 2 0 99.63
1 0 1148 0 0 0 0 0 0 1 0 99.91
2 2 2 1017 5 1 2 1 4 1 0 98.26
3 0 1 10 1048 0 3 0 2 4 1 97.85
4 0 0 0 0 1024 1 3 1 2 3 99.03
5 1 4 0 6 1 889 7 0 3 0 97.59
6 2 4 0 0 0 1 1038 1 3 0 98.95
7 0 0 9 0 5 0 0 1059 1 3 98.33
8 3 4 0 3 2 4 1 3 994 6 97.45
9 3 0 1 8 5 2 0 7 10 960 96.39
overall 98.38
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Table 7.10 Classification performance of the multilayer perceptron combination
classifier on the test set.

digit 0 1 2 3 4 5 6 7 8 9 | rate (%)
0 1079 0 1 1 0 1 1 0 1 0 99.54
1 0 1147 0 0 0 0 0 0 2 0 99.83
2 2 1 1022 3 0 0 3 1 3 0 98.74
3 0 3 8 1051 0 3 0 0 4 2 98.13
4 0 0 0 0 1019 1 1 4 4 5 98.55
5 1 0 0 6 1 894 2 0 6 1 98.13
6 3 4 1 2 1 2 1035 1 0 0 98.67
7 0 0 5 3 2 0 0 1064 1 2 98.79
8 3 0 1 4 0 2 0 0 1007 3 98.73
9 4 0 0 11 1 1 0 8 9 962 96.59
overall 98.70

Trained Multilayer Perceptron

We use a 31-10-10 perceptron shown in Fig. 7.6 to combine the three classifiers.
Thirty inputs are all in the range [0.0, 1.0], which consist of the ten normalized
outputs of the defuzzified ID3-derived fuzzy rules, the ten normalized reciprocals of
Fuclidean distance measures from the optimized nearest neighbor classifier, and the
ten normalized logarithms of the outputs of the Markov chain method. The extra
input node is used for bias term to the hidden nodes. The perceptron was trained
by using the backpropagation algorithm with the same training data we used to
produce the fuzzy rules and the optimized defuzzification parameters, to generate the
optimized prototypes, and to construct the Markov Chain models. In the training, a
tolerance of 0.3 is adopted for the output while in the test, winner-take-all strategy
is used to determine the output. The substitution/rejection performance of this
combination classifier shown in Fig. 7.7 is obtained by setting different thresholds
in the test mode. The combination classifier achieves a correct classification rate of
98.7% without rejection on the test set. The resulting confusion matrix is shown in
Table 7.10. As can be seen from the experimental results, the multilayer perceptron
combination classifier performs better than each individual classifier.

Fuzzy Integral Approach

The fuzzy-integral fusion classifier is applied to combine the results obtained from
three classifiers: the 1D3-derived fuzzy rules, the Markov chain, and the optimized
nearest neighbor.

After the classifying process, each classifier generates a numerical weight in the
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Table 7.11  Classification performance of the fuzzy integral combination classifier
on the test set.

digit 0 1 2 3 4 5 6 7 3 9 | rate (%)
0 1081 0 1 1] 0 2 0 0 0 0 99.82
1 0 1149 0 0 0 0 0 0 0 0 100.00
2 6 0 1024 0 0 0 1 2 2 0 99.13
3 0 ] 6 1046 O 11 0 2 5 1 97.67
4 0 0 0 0 1025 1 1 0 1 6 99.13
5 0 0 0 4 2 897 5 0 3 0 98.46
6 6 1 0 0 0 2 1039 1 0 0 99.05
7 0 0 2 0 6 0 0 1058 1 10 98.24
8 8 3 0 1 4 12 0 2 986 4 96.67
9 ] 0 1 6 6 2 0 5 7 964 | 96.79
overall 98.49

range of 0 to 1 to each class where 0 indicates an absolute certainty that the sample
does not belong to that class, and 1 indicates an absolute certainty that the sample
belongs to that class. The local and global performance rates obtained by the three
classifiers using the training data set and the test set are as shown in Tables 7.1 to
7.6. The fuzzy-integral fusion classifier as described in Section 7.5 was then applied to
combine the three results by making use of these numerical weighis and the confusion
matrixes. This fuzzy fusion method improves on the results obtained by the three
separate classifiers. Table 7.11 shows the combined result on the test set by the fuzzy
integral approach. Using w; = 0.9, and w; = 0.05 as the exponential weights for
the two sets of correction factors, the overall performance rate is increased to 98.76%
for the fuzzy-integral combination of the training sets, and to 98.49% for the test set
in comparison with 97.77% as the maximum rate obtained by the optimized nearest
neighbor classifier.

Performance of Various Combination Methods

In summary, Table 7.12 lists the correct classification rates of individual classifiers
and Table 7.13 shows the classification performance of various combination classifiers
on the training and test sets. As we can see from the tables, all combination classifiers
have better performance than any individual classifier used alone. If a false classifi-
cation is vital as in medical applications, unanimous voting could be a good choice.
Examining into the substitution/rejection relationship for different combination clas-
sifiers shown in Fig. 7.7, we found that both the multilayer perceptron and the fuzzy
integral model have a better overall performance than each individual classifier. We
can also see that the fuzzy integral approach can achieve as good performance as the
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Table 7.12 Classification performance of individual classifiers (the numbers in the
brackets are the rejection rates).

Performance (%)
Techniques On training set | On test set
ID3-derived fuzzy rules 97.72 (0.0) 94.95 (0.0)
Optimized nearest neighbor classifier | 98.35 (0.0) 97.77 (0.0)
Markov chain-based classifier 94.81 (0.0) 94.18 (0.0}

Table 7.13  Classification performance of combined classifiers of using different
techniques (the numbers in the brackets are the rejection rates).

Performance (%)
Techniques On training set | On test set
Unanimous voting 99.97 (7.59) 99.88 (10.26)
Majority voting 99.35 (0.67) 98.86 (1.23)
Maximum posteriori probability | 99.04 {0.0) 98.38 (0.0)
Multi-layer perceptron 99.83 (0.0) 98.60 (0.0)
Fuzzy integral 98.76 (0.0) 98.49 (0.0)

multilayer perceptron method.

7.7 Concluding Remarks

In this chapter, various techniques including unanimous and majority voting, max-
imizing posterior probability, trained multilayer perceptron, and fuzzy integral have
been proposed for combining two or more independent classifiers in order to achieve a
better classification performance. Experimental results on handwritten digit recogni-
tion using the combination of the three classifiers, ID3-derived fuzzy rules-based clas-
sifier, Markov chain-based classifier, and Yan’s optimized nearest neighbor classifier,
show that all of the proposed combination techniques can improve the classification
performance to some extent. Among them, the multilayer perceptron combination
classifier and the fuzzy integral combination classifier achieved the best results.
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