

FUNDAMENTALS OF

Grid Computing
Theory, Algorithms and Technologies

CHAPMAN & HALL/CRC
Numerical Analysis and Scientific Computing

Aims and scope:
Scientific computing and numerical analysis provide invaluable tools for the sciences and engineering.
This series aims to capture new developments and summarize state-of-the-art methods over the whole
spectrum of these fields. It will include a broad range of textbooks, monographs, and handbooks.
Volumes in theory, including discretisation techniques, numerical algorithms, multiscale techniques,
parallel and distributed algorithms, as well as applications of these methods in multi-disciplinary fields,
are welcome. The inclusion of concrete real-world examples is highly encouraged. This series is meant
to appeal to students and researchers in mathematics, engineering, and computational science.

Editors

Choi-Hong Lai
School of Computing and
Mathematical Sciences

University of Greenwich

Frédéric Magoulès
Applied Mathematics and

Systems Laboratory
Ecole Centrale Paris

Editorial Advisory Board

Mark Ainsworth
Mathematics Department

Strathclyde University

Todd Arbogast
Institute for Computational
Engineering and Sciences

The University of Texas at Austin

Craig C. Douglas
Computer Science Department

University of Kentucky

Ivan Graham
Department of Mathematical Sciences

University of Bath

Peter Jimack
School of Computing
University of Leeds

Takashi Kako
Department of Computer Science

The University of Electro-Communications

Peter Monk
Department of Mathematical Sciences

University of Delaware

Francois-Xavier Roux
ONERA

Arthur E.P. Veldman
Institute of Mathematics and Computing Science

University of Groningen

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
4th, Floor, Albert House
1-4 Singer Street
London EC2A 4BQ
UK

Published Titles

Classical and Modern Numerical Analysis: Theory, Methods and Practice
Azmy S. Ackleh, Edward James Allen, Ralph Baker Kearfott,
 and Padmanabhan Seshaiyer

A Concise Introduction to Image Processing using C++
Meiqing Wang and Choi-Hong Lai

Decomposition Methods for Differential Equations:
 Theory and Applications
Juergen Geiser

Grid Resource Management: Toward Virtual and Services Compliant Grid
Computing
Frédéric Magoulès, Thi-Mai-Huong Nguyen, and Lei Yu

Fundamentals of Grid Computing: Theory, Algorithms and Technologies
Frédéric Magoulès

Introduction to Grid Computing
Frédéric Magoulès, Jie Pan, Kiat-An Tan, and Abhinit Kumar

Mathematical Objects in C++: Computational Tools in a Unified Object-
Oriented Approach
Yair Shapira

Numerical Linear Approximation in C
Nabih N. Abdelmalek and William A. Malek

Numerical Techniques for Direct and Large-Eddy Simulations
Xi Jiang and Choi-Hong Lai

Parallel Algorithms
Henri Casanova, Arnaud Legrand, and Yves Robert

Parallel Iterative Algorithms: From Sequential to Grid Computing
Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphael Couturier

FUNDAMENTALS OF

Grid Computing
Theory, Algorithms and Technologies

Edited by

Frédéric Magoulès

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-0367-7 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Magoulès, F. (Frédéric)
Fundamentals of grid computing : theory, algorithms and technologies / Frédéric

Magoulès.
p. cm. -- (Chapman & Hall/CRC numerical analysis and scientific computing)

Includes bibliographical references and index.
ISBN 978-1-4398-0367-7 (hardcover : alk. paper)
1. Computational grids (Computer systems) I. Title. II. Series.

QA76.9.C58M339 2009
004’.36--dc22 2009038022

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

List of figures xiii

List of tables xvii

Foreword xix

Preface xxi

Warranty xxiii

1 Grid computing overview 1
Frédéric Magoulès, Thi-Mai-Huong Nguyen, and Lei Yu
1.1 Introduction . 1
1.2 Definitions . 2
1.3 Classifying grid systems . 3
1.4 Grid applications . 4
1.5 Grid architecture . 5
1.6 Grid computing projects . 6

1.6.1 Grid middleware (core services) 6
1.6.2 Grid resource brokers and schedulers 11
1.6.3 Grid systems . 14
1.6.4 Grid programming environments 16
1.6.5 Grid portals . 18

1.7 Grid evolution . 22
1.8 Concluding remarks . 23
1.9 References . 24

2 Synchronization protocols for sharing resources in grid envi-
ronments 29
Julien Sopena, Luciana Arantes, Fabrice Legond-Aubry, and Pierre Sens
2.1 Introduction . 29
2.2 Token-based mutual exclusion algorithms 31

2.2.1 Martin’s algorithm . 31
2.2.2 Naimi-Tréhel’s algorithm 33
2.2.3 Suzuki-Kasami’s algorithm 34

2.3 Mutual exclusion algorithms for large configurations 36
2.3.1 Priority-based approach 36

vii

viii

2.3.2 Composition-based approach 37
2.4 Composition approach to mutual exclusion algorithms 39

2.4.1 Coordinator processes 41
2.5 Composition properties and its natural effects 43

2.5.1 Filtering and aggregation 43
2.5.2 Preemption and structural effects 45
2.5.3 Natural effects of composition 46

2.6 Performance evaluation . 47
2.6.1 Experiment parameters 47
2.6.2 Performance results: composition study 49
2.6.3 The impact of the grid architecture 56

2.7 Concluding remarks . 62
2.8 References . 63

3 Data replication in grid environments 67
Thi-Mai-Huong Nguyen and Frédéric Magoulès
3.1 Introduction . 67
3.2 Data replication . 68

3.2.1 Replication in databases 69
3.2.2 Replication in peer-to-peer systems 70
3.2.3 Replication in web environments 71
3.2.4 Replication in data grids 72

3.3 System architecture . 76
3.4 Selective-rank model for a replication system 78

3.4.1 Model assumptions . 79
3.4.2 Estimating the availability of files 80
3.4.3 Problem definition . 80

3.5 Selective-rank replication algorithm 82
3.5.1 Popularity of files . 82
3.5.2 Correlation of files . 82
3.5.3 MaxDAR optimizer algorithm 83

3.6 Evaluation . 85
3.6.1 Grid configuration . 87
3.6.2 Experimental results 87

3.7 Concluding remarks . 94
3.8 References . 95

4 Data management in grids 101
Jean-Marc Pierson
4.1 Introduction . 101
4.2 From data sources to databases . . . to data sources 103
4.3 Positioning the data management in grids within distributed

systems . 104
4.4 Links with the other services of the middleware 106
4.5 Problems and some solutions 107

ix

4.5.1 Data identification, indexing, metadata 107
4.5.2 Data access, interoperability, query processing, transac-

tions . 109
4.5.3 Transport . 111
4.5.4 Placement, replication, caching 112
4.5.5 Security: transport, authentication, access control, en-

cryption . 113
4.5.6 Consistency . 115

4.6 Toward pervasive, autonomic and on-demand data manage-
ment . 116

4.7 Concluding remarks . 117
4.8 References . 118

5 Future of grids resources management 125
Fei Teng and Frédéric Magoulès
5.1 Introduction . 125
5.2 Several computing paradigms 126

5.2.1 Utility computing . 126
5.2.2 Grid computing . 127
5.2.3 Autonomic computing 127
5.2.4 Cloud computing . 128

5.3 Definition of cloud computing 129
5.3.1 One definition . 129
5.3.2 Architecture . 130

5.4 Cloud services . 130
5.4.1 Three-level services . 130
5.4.2 Service characters . 132

5.5 Cloud resource management 134
5.5.1 Comparison with grid systems 134
5.5.2 Resource model . 135
5.5.3 Economy-oriented model 136

5.6 Future direction of resource scheduling 137
5.6.1 Scalable and dynamic 138
5.6.2 Secure and trustable 138
5.6.3 Virtual machines-based 138

5.7 Concluding remarks . 139
5.8 References . 140

6 Fault-tolerance and availability awareness in computational
grids 143
Xavier Besseron, Mohamed-Slim Bouguerra, Thierry Gautier, Erik Saule,

and Denis Trystram
6.1 Introduction . 143
6.2 Background and definitions 146

6.2.1 Grid architecture and execution model 147

x

6.2.2 Faults models . 148
6.2.3 Consistent system states 148

6.3 Multi-objective scheduling for safety 149
6.3.1 Generalities . 149
6.3.2 No duplication . 150
6.3.3 Using duplication . 152

6.4 Stable memory-based protocols 153
6.4.1 Log-based rollback recovery 153
6.4.2 Checkpoint-based rollback recovery 155

6.5 Stochastic checkpoint model analysis issues 156
6.5.1 Completion time without fault tolerance 157
6.5.2 Impact of checkpointing on the completion time . . . 159

6.6 Implementations . 163
6.6.1 Single process snapshot 164
6.6.2 Fault-tolerance protocol implementations 164
6.6.3 Implementation comparison 166

6.7 Concluding remarks . 168
6.8 References . 170

7 Fault tolerance for distributed scheduling in grids 177
Lei Yu and Frédéric Magoulès
7.1 Introduction . 177
7.2 Fault tolerance in distributed systems 179
7.3 Distributed scheduling model 180

7.3.1 MMS fault tolerance 180
7.3.2 LMS/SMS fault tolerance 181
7.3.3 CR fault tolerance . 182

7.4 Fault detection and repairing in the tree structure 183
7.4.1 Notations . 183
7.4.2 Algorithms description 183
7.4.3 Messages treatment analysis 188

7.5 Distributed scheduling algorithm 189
7.5.1 Distributed dynamic scheduling algorithm with fault

tolerance (DDFT) . 189
7.5.2 Algorithm fault tolerance issues 190

7.6 SimGrid and simulation design 191
7.7 Evaluation . 192

7.7.1 Simulation setup . 193
7.7.2 Comparison with centralized scheduling 193
7.7.3 Fault tolerance experiments 197
7.7.4 Workload analysis . 197

7.8 Related work . 199
7.9 Concluding remarks . 200
7.10 References . 201

xi

8 Broadcasting for grids 207
Christophe Cérin, Luiz-Angelo Steffenel, and Hazem Fkaier
8.1 Introduction . 207
8.2 Broadcastings . 208
8.3 Heuristics for broadcasting 211

8.3.1 Basic approaches for broadcasting in homogeneous en-
vironments . 212

8.3.2 Advanced approaches for heterogeneous clusters . . . 213
8.3.3 Grid aware heuristics 214
8.3.4 New approach for broadcasting in clusters and hyper

clusters . 215
8.4 Related work and related methods 220

8.4.1 Broadcasting and dynamic programming 220
8.4.2 Multi-criteria approach 223
8.4.3 Broadcast for clusters 228
8.4.4 Broadcast and heterogeneous systems 230

8.5 Concluding remarks . 230
8.6 References . 232

9 Load balancing algorithms for dynamic networks 235
Jacques M. Bahi, Raphaël Couturier, and Abderrahmane Sider
9.1 Introduction . 235
9.2 A taxonomy for load balancing 237
9.3 Distributed load balancing algorithms for static networks . . 240

9.3.1 Network model and performance measures 240
9.3.2 Diffusion . 242
9.3.3 Dimension exchange 246
9.3.4 GDE . 248
9.3.5 Second order algorithms 250

9.4 Distributed load balancing algorithms for dynamic networks 250
9.4.1 Adaption to dynamic networks 251
9.4.2 Generalized adaptive exchange (GAE) 251
9.4.3 Illustrating the generalized adaptive exchange most to

least loaded policy on a dynamic network 255
9.5 Implementation . 257

9.5.1 On synchronous and asynchronous approaches 257
9.5.2 How to define the load for some applications 259
9.5.3 Implementation of static algorithms 259
9.5.4 Implementation of dynamic algorithms 260

9.6 A practical example: the advection diffusion application . . . 261
9.6.1 Load balancing and the application 264
9.6.2 Load balancing in a dynamic network 266

9.7 Concluding remarks . 268
9.8 References . 269

xii

A Implementation of the replication strategies in OptorSim 273
Thi-Mai-Huong Nguyen and Frédéric Magoulès
A.1 Introduction . 273
A.2 Download . 274
A.3 Implementation . 274

A.3.1 OptorSim implementation 274
A.3.2 MaxDAR implementation 275

A.4 How to execute the simulation 276

B Implementation of the simulator for the distributed schedul-
ing model 279
Lei Yu and Frédéric Magoulès
B.1 Introduction . 279
B.2 Download . 279
B.3 Implementation . 280

B.3.1 Data structures . 280
B.3.2 Functions . 280

B.4 How to execute the simulation 282

Glossary 283

Author Index 297

List of Figures

1.1 The layered grid architecture and the Internet protocol archi-
tecture. 7

1.2 Condor in conjunction with Globus technologies. 12
1.3 CoG mapping. 18
1.4 P-GRADE portal system functions. 19

2.1 Execution example of Martin’s algorithm. 32
2.2 Execution example of Naimi-Tréhel’s algorithm. 33
2.3 Execution example of Suzuki-Kasami’s algorithm. 35
2.4 Mutual exclusion automatas. 41
2.5 Example of execution. 44
2.6 Composition evaluation. 50
2.7 Obtaining time standard deviation. 54
2.8 Intra algorithm. 55
2.9 Impact of the number of clusters. 58
2.10 Mean deviation between the composition approach and the

original algorithm. 59
2.11 Probability of using the WAN for different grid topologies. . . 61

3.1 Focus of replication in each environment. 68
3.2 System architecture of the data grid. 78
3.3 Grid topology in the simulation. 86
3.4 Job execution time of three optimizers for various scheduling

strategies and access patterns. 88
3.5 Job execution time for different replication schemes with se-

quential access and queue access cost scheduling. 89
3.6 The effect of access patterns and scheduling strategies on over-

all file availability of the system Poverall. 90
3.7 Poverall with sequential access pattern, Queue Access Cost

scheduling when varying file size. 91
3.8 Replication number and job execution time when varying the

number of submitted jobs. 93

5.1 Google search trends for the last 5 years. 129
5.2 Cloud protocol architecture. 131
5.3 Three-level services. 133
5.4 Resource model in clouds. 135

xiii

xiv

5.5 Economy-oriented model. 137

6.1 Grid system model: each individual node of a cluster is able to
access to a network attached storage (NAS). 147

6.2 Three processes exchange messages. Two global states are con-
sidered: at the left the global state C1 is consistent; at the right
the global state C2 is an inconsistent global state because mes-
sage m3 is received on process P2 but not sent on process P1. 149

6.3 Execution scheme without failures. 158
6.4 General execution scheme under failures and without fault-

tolerance. 158
6.5 General scheme of an execution under failures with checkpoint

mechanism. 160

7.1 The distributed scheduling structure. 181
7.2 The message transfer model. 183
7.3 The automaton description of messages treatment. 188
7.4 The simulation application structure. 192
7.5 The simulation environment. 193
7.6 The average completion time for centralized and distributed

scheduling with two clients. 195
7.7 The average completion time for centralized and distributed

scheduling with thirty clients. 196
7.8 SMS failure experiment. 198
7.9 LMS failure experiment. 198

8.1 A graph with 5 vertices (left) and its minimum spanning tree
(right). 209

8.2 Broadcasting time versus clusters number with Grid’5000 set-
tings. 218

8.3 Broadcasting time versus clusters number with other setting. 219
8.4 Broadcasting time costs. 220
8.5 The most loaded cluster vs. the remaining sub-tree. 224
8.6 The broadcast tree looks to the most loaded cluster. 225
8.7 The broadcast tree looks to the remaining sub-tree. 226

9.1 Load balancing algorithm classes according to locality of deci-
sions/migrations and the time they are performed. 238

9.2 Dynamic LB algorithm classes according to locality of deci-
sions/migrations and the number of participating nodes. . . . 239

9.3 The hypercube network of dimension 1, 2 and 3. 243
9.4 An arbitrary network of size 4. 245
9.5 DE on the hypercube . 248
9.6 An edge-coloring of the arbitrary network of Figure 9.4. . . . 249

xv

9.7 GAE running with M2LL on an arbitrary dynamic network of
4 nodes. 255

9.8 A generic architecture for distributed computations with load
balancing on Grids. 258

9.9 Illustration of a modification of the topology of communications
due to a load migration. 258

9.10 Space discretization of the mesh. 263
9.11 Partitioning of y and mapping of its elements on different pro-

cessors. 264

A.1 Class diagram of implemented replica optimizers. 275
A.2 Sequence diagram of a CE’s file request. 276

List of Tables

2.1 Grid’5000 RTT latencies (average ms). 48
2.2 Average token obtaining time per composition. 52
2.3 Average number of inter cluster messages per composition. . 53

3.1 Parameters and their meanings. 79
3.2 Parameter settings for the simulation. 86

6.1 Summary of main fault tolerance protocol implementations. . 167

7.1 The application estimated execution time and average comple-
tion time with two clients. 194

7.2 The application estimated execution time and average comple-
tion time with thirty clients. 196

7.3 Statistics of submitted jobs of application 4 in each SMS. . . 198

8.1 Grid’5000 settings (1/2). 217
8.2 Grid’5000 settings (2/2). 218

9.1 Diffusion matrices for the network of Figure 9.4. 245
9.2 Diffusion matrices of the colored graph 9.6. 249
9.3 Execution times (s) for the advection-diffusion problem accord-

ing to the size of the problem with different LB frequencies in
a static chain network. 266

9.4 Execution times (s) of the advection-diffusion problem accord-
ing to different sizes in an asynchronous implementation. . . . 267

9.5 Execution times of the advection-diffusion problem according
to different sizes in an asynchronous implementation on a dy-
namic network. 267

A.1 Scheduling algorithm and replication strategies implemented in
OptorSim. 274

xvii

Foreword

It is really a pleasure for me to write the foreword for this book, Fundamentals
of Grid Computing: Theory, Algorithms and Technologies.

Grid computing is now becoming a very powerful and innovative tool al-
lowing tens of thousands of researchers around the world to perform break-
throughs in their research projects. The most striking example can be seen
from the most ambitious research project in the world, the Large Hadron
Collider (LHC) giant accelerator at the European center for particle physics
(CERN) in Geneva, which is relying completely on grid technology to store,
process and analyze its huge volumes of distributed data. Just ten years ago,
the LHC computing model was still based on shipping cassettes from one cen-
ter to another through trucks and planes! This shows the fantastic progress
made by grid technology during that time scale, and the maturity reached
by these techniques is quite well-reflected in Frédéric Magoulès’s book, which
describes in a very clear way the state of the art grid middleware.

This very fast evolution became possible because of a fortunate quadruple
coincidence in the early 2000s: the dramatic increase of high speed network
links at affordable costs, the existence of a strong scientific community having
a desperate need for solving what then seemed an insurmountable challenge
in terms of computing g-cycles and data storage, the widespread diffusion of
cheap Linux-based clusters and the availability of the grid toolkit, Globus.
This fortunate situation led to the development of very ambitious grid pro-
duction projects both in Europe and in the United States.

The European project enabling grids for e-science (EGEE) has now be-
come a real production infrastructure running 24 hours a day and several
million jobs per month thanks to its 250 nodes totaling 100,000 processors
and 50 petabytes of storage. More importantly, more than a dozen scientific
disciplines are using it for their advanced research work, ranging from parti-
cle physics, astronomy, life science, earth science, human sciences, medicine,
chemistry, and finance to even art. A recent survey performed at the French
national scale among more than 3,000 researchers from all scientific fields
showed that the grids are, for the years to come, an essential tool in great
complement to supercomputers.

This book shows, in some sense, the way to the future, where next gener-
ation middleware such as those described here will replace in the production

xix

xx

infrastructure the more rudimentary ones in use today. Therefore, I am sure
that the readers will greatly benefit from this insightful journey in the heart
of the grids, a key technology in a very large number of scientific endeavors.

Guy Wormser
CNRS Institut des Grilles, France

Preface

The term “the grid” has emerged in the mid 1990s to denote a proposed
distributed computing infrastructure which focuses on large-scale resource
sharing, innovative applications, and high performance orientation. The grid
concept is motivated by a real and specific problem: the coordinated resource
sharing and problem solving of dynamic, multi-institutional, virtual organiza-
tions. The sharing is not primarily a file exchange but rather a direct access
to computing resources, software, storage devices and other resources, with
a necessary, highly controlled sharing rule which defines clearly and carefully
what is shared, who is allowed to share and the conditions under which shar-
ing occurs. Over the years, a combination of technology trends and research
progress has resulted in an increased focus on grid technology for industry,
commerce and business areas. Nowadays, grid technology has evolved toward
open grid services architecture, in which a grid provides an extensible set of
services.

This edited book follows the two previous authored books on grid computing
published by Chapman & Hall/CRC Press in this series entitled: Introduction
to Grid Computing by Frédéric Magoulès, Jie Pan, Kiat-An Tan, Abhinit
Kumar (2009), and Grid Resource Management by Frédéric Magoulès, Thi-
Mai-Huong Nguyen, Lei Yu (2008).

The main topics considered in the present book include: sharing resources,
data replication, data management, fault tolerance, scheduling, broadcasting
and load balancing algorithms. The nine chapters of this book are followed by
two appendices introducing two types of software written in Java program-
ming language. The first software deals with the implementation of some
replications strategies for data replication in the grid. The second software
deals with the implementation of a simulator for distributed scheduling in grid
environments. These “easy-to-learn, easy-to-use” open source software allow
the reader to get familiar with the grid technology covered in the previous
chapters.

The various technology presented in this book demonstrates the wide as-
pects of interest in grid computing, and the many possibilities and venues that
exist in the research in this area. We are sure that this interest is only going
to further evolve, and that many exciting developments are still awaiting us.

Frédéric Magoulès
Ecole Centrale Paris, France

xxi

Warranty

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty of fitness is implied. The information is provided on
an as-is basis. The authors, editor and publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the
code published in it.

Chapter 1

Grid computing overview

Frédéric Magoulès
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

Thi-Mai-Huong Nguyen
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

Lei Yu
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

1.1 Introduction . 1
1.2 Definitions . 2
1.3 Classifying grid systems . 3
1.4 Grid applications . 4
1.5 Grid architecture . 5
1.6 Grid computing projects . 6
1.7 Grid evolution . 22
1.8 Concluding remarks . 23
1.9 References . 24

1.1 Introduction

The term “the grid” has emerged in the mid 1990s to denote a proposed dis-
tributed computing infrastructure which focuses on large-scale resource shar-
ing, innovative applications, and high-performance orientation [Foster et al.,
2001]. The grid concept is motivated by a real and specific problem – the coor-
dinated resource sharing and problem solving of dynamic, multi-institutional
virtual organizations. The sharing is not primarily a file exchange but rather
a direct access to computing resources, software, storage devices, and other
resources, with a necessary, highly controlled sharing rule which defines clearly
and carefully just what is shared, who is allowed to share, and the conditions
under which sharing occurs. A set of individuals and/or institutions defined
by such sharing rules forms what we call a virtual organization (VO).

Now, a combination of technology trends and research progress results in
an increased focus on grid technology in industry and commercial domain.

1

2 Fundamentals of Grid Computing

Grid technology is evolving toward an open grid services architecture (OGSA)
in which a grid provides an extensible set of services that virtual organiza-
tions can aggregate in various ways. Building on concepts and technologies
from both the grid and web services communities, OGSA defines a series of
standards and specifications which supports the creation of grid service with
location transparency and underlying native platform facilities [Foster et al.,
2002b].

1.2 Definitions

Grids have moved from the obscurely academic to the highly popular. The
growing need of the grid in commercial and scientific domain requests a clear
definition of the word grid. The earliest definition of a grid emerged in 1969
by Len Kleinrock:

“We will probably see the spread of ‘computer utilities,’ which,
like present electric and telephone utilities, will service individual
homes and offices across the country.”

Ian Foster suggests a grid checklist in his paper [Foster, 2002] to identify a
real grid system. The suggestion can be concluded into three points:

• A grid integrates and coordinates resources and users that live within
different control domains. Current internet technologies address com-
munication and information exchange among computers but do not pro-
vide integrated approaches to the coordinated use of resources at mul-
tiple sites for computation. Moreover, current distributed computing
technologies such as CORBA, DCE, and Enterprise Java do not ac-
commodate the range of resource types or do not provide the flexibility
and control on sharing relationships needed to establish VOs. Fronting
the problems above, grid technologies integrate different administrative
units of the same company or different companies and address the issues
of security, policy, payment, membership, and so forth.

• A grid is built from multi-purpose protocols and interfaces that address
such fundamental issues as authentication, authorization, resource dis-
covery, and resource access. In a large-scale grid environment, each
resource is integrated from multiple institutions, each with their own
policies and mechanisms. Thus it is important that these protocols and
interfaces should be standard and open. Otherwise, we are dealing with
an application specific system.

• A grid allows its constituent resources to be used in a coordinated fash-
ion to deliver various qualities of service, relating for example to response

Grid computing overview 3

time, throughput, availability, and security, and/or co-allocation of mul-
tiple resource types to meet complex user demands, so that the utility
of the combined system is significantly greater than that of the sum of
its parts.

Here the difference between two concepts “a grid” and “the grid” is also im-
portant to be distinguished. The grid vision requires protocols (interfaces and
policies) that are not only open and general-purpose but also standard. This
is these standards that allow us to establish resource-sharing arrangements
dynamically with any interested party and thus to create a compatible and
interoperable distributed systems.

According to the discussion above, we mix the definition in the book [Foster
and Kesselman, 1998] with the VO concept, and denote:

“A computational grid is a hardware and software infrastructure
that provides dependable, consistent, pervasive, and inexpensive
access to coordinated and shared resources in dynamic, multi-
institutional virtual organizations. The sharing is not primarily
file exchange but rather direct access to computers, software, data,
and other resources. The sharing rule is clearly and carefully de-
fined, enabling a necessary and high control of resources.”

1.3 Classifying grid systems

Typically, grid computing systems are classified into computational and
data grids. In the computational grid, the focus lies on optimizing execution
time of applications that requires a great number of computing processing
cycles. On the other hand, the data grid provides the solutions for large scale
data management problems. In [Krauter et al., 2002], a similar taxonomy for
grid systems is presented, which proposes a third category, the service grid.

Computational grid refers to systems that harness machines of an adminis-
trative domain in a “cycle-stealing” mode to have higher computational
capacity than the capacity of any constituent machine in the system.

Data grid denotes systems that provide a hardware and software infrastruc-
ture for synthesizing new information from data repositories that are
distributed in a wide area network.

Service grid refers to systems that provide services that are not provided
by any single local machine. This category is further divided as on de-
mand (aggregate resources to provide new services), collaborative (con-

4 Fundamentals of Grid Computing

nect users and applications via a virtual workspace), and multimedia
(infrastructure for real-time multimedia applications).

1.4 Grid applications

A grid is considered to be an infrastructure that bonds and unifies globally
remote and diverse resources in order to provide computing support for a
wide range of applications. The different types of computing offered by grids
can be categorized according to the main challenges that they present from
the grid architecture point of view. The types of computing are concluded as
follows [Bote-Lorenzo et al., 2003 , Foster and Kesselman, 1999]:

Distributed supercomputing: This type of computing allows applica-
tions to use grids to aggregate computational resources in order to re-
duce the completion time of a job or to tackle problems that cannot be
solved on a single system. The technical challenges include the need to
coschedule scarce and expensive resources, the scalability of protocols
and algorithms to tens or hundreds of thousands of nodes, the design
for latency-tolerant algorithms, achieving and maintaining high perfor-
mance computing across heterogeneous systems.

High-throughput computing: In high-throughput computing, the grid
is used to schedule large numbers of loosely coupled or independent
tasks, with the goal of putting unused processor cycles often from idle
workstations to work. Chip design and parameter studies are normally
applications of this type of computing.

On-demand computing: On-demand applications use grid capabilities to
couple remote resources into local applications in order to fulfill short-
term requirements. These resources cannot be cost-effective or conve-
niently located and it may be computation, software, data repositories,
specialized sensors, and so on. The challenging issues in on-demand
applications derive primarily from the dynamic nature of resource re-
quirements and the potentially large populations of users and resources.
These issues include resource location, scheduling, code management,
configuration, fault tolerance, security, and payment mechanisms.

Data-intensive computing: Data-intensive applications analyze and treat
information and data which are maintained in geographically distributed
repositories, digital libraries and databases, and aggregated by grid ca-
pabilities. Modern meteorological forecasting systems which make ex-
tensive use of data assimilation to incorporate remote satellite observa-
tions and high-energy physics are typical applications of data-intensive

Grid computing overview 5

computing. The challenge in data-intensive applications is the schedul-
ing and configuration of complex, high-volume data flows through mul-
tiple levels of hierarchy.

Collaborative computing: In collaborative computing, applications are
concerned primarily with enabling and enhancing human-to-human in-
teractions. Such applications often provide a virtual shared space and
are concerned with enabling the shared use of computational resources
such as data archives and simulations. Challenging issues of collabora-
tive applications from a grid architecture perspective are the realtime
requirements imposed by human perceptual capabilities and the rich
variety of interactions that can take place.

1.5 Grid architecture

A grid has a layered, extensible, and open architecture (Figure 1.1) which
facilitates the identification for general classes of components. Components
within each layer share common characteristics but can be built on capabilities
and behaviors provided by any lower layer [Foster et al., 2001].

Fabric layer: The grid fabric layer provides interfaces to local control of re-
sources which may be logical entities, computer clusters, or distributed
computer pools. Fabric components make resources virtual by imple-
menting the local, resource-specific operations that occur on specific
resources (whether physical or logical). There is thus a interdependence
between the functions of resource implemented at the fabric level and
the shared operations supported. The principal resources which the fab-
ric layer supports and operations of these resources are shown as follows:
(1) Computational resources: Operations are required for starting pro-
grams and for monitoring and controlling the execution of the resulting
processes. Management mechanisms are needed to control the resources
and inquiry functions are required for determining hardware and soft-
ware characteristics as well as relevant state information such as current
load and queue state in the case of scheduler-managed resources. (2)
Storage resources: Putting and getting files operations and management
mechanisms are required. Inquiry functions are needed for determining
hardware and software characteristics as well as relevant load informa-
tion such as available space and bandwidth utilization. (3) Network
resources: Management mechanisms and inquiry functions should be
provided to control network transfers and to determine network char-
acteristics and load. (4) Code repositories: Management mechanisms

6 Fundamentals of Grid Computing

for managing versioned source and object code are needed. (5) Cata-
logs: Catalog query and update operations must be implemented, for
example: a relational database.

Connectivity layer: The core communication and authentication proto-
cols required for grid-specific network transactions are defined at the
connectivity layer which enables the exchange of data between fabric
layer resources. The identity of users and resources is verified by au-
thentication protocols which have the following characteristics: single
sign on, delegation, integration with various local security solutions,
and user-based trust relationships.

Resource layer: The resource layer defines protocols (APIs and SDKs) for
the secure negotiation, initiation, monitoring, control, accounting, and
payment of sharing operations on individual resources. There are two
primary classes of resource layer protocols: Information protocols and
management protocols. Information protocol are used to obtain infor-
mation about the structure and state of a resource and management
protocols are used to negotiate access to a shared resource. Resource
layer protocols are concerned entirely with individual resources and is-
sues of global state and atomic actions across distributed collections will
be discussed in the collective layer.

Collective layer: The collective layer contains protocols and services (APIs
and SDKs) that are not associated with any specific resource but rather
are global in nature and capture interactions across collections of re-
sources. A wide variety of sharing behaviors and operations is imple-
mented, such as directory services, monitoring and diagnostics services,
data replication services, etc.

Applications layer: The applications layer comprises the user applications
that operate within a VO environment.

1.6 Grid computing projects

There are many international grid projects, which are classified into several
groups according to their positioning and functionality in a grid community.

1.6.1 Grid middleware (core services)

1.6.1.1 Globus

The Globus project which provides a open source Globus Toolkit is a fun-
damental enabling technology for the “grid,” letting people share computing

Grid computing overview 7

Application Layer

Collective Layer

Resource Layer

Connectivity Layer

Fabric Layer

Application

Transport

Internet

Link

Grid Protocol Architecture Network Architecture

FIGURE 1.1: The layered grid architecture and the Internet protocol archi-
tecture.

power, databases, and other resources across multiple independent admin-
istrative domains without sacrificing local autonomy. The toolkit includes
software services and libraries for resource monitoring, discovery, and man-
agement, plus security and file management.

The Globus Toolkit (GT) has been developed since the late 1990s and
provides basic services and capabilities that are required to construct a com-
putational grid. The toolkit consists of a set of modules. Each module defines
an interface which can be invoked by higher-level services and provides an
implementation which uses appropriate low-level operations to achieve user
requested services [Foster and Kesselman, 1997].

The recent web services-based GT4 release provides significant improve-
ments over previous releases in terms of robustness, performance, usability,
documentation, standards compliance, and functionality [Foster, 2006]. The
components of GT4 can be categorized into three groups:

• A set of services implementations: Most of these services are Java web
services and they address execution management, data access and move-
ment, replica management, monitoring discovery, credential manage-
ment, and instrument management.

• Three containers: These containers can be used to host user-developed
services written in Java, Python, and C. As services hosting environ-

8 Fundamentals of Grid Computing

ments, these containers provide implementations of security, manage-
ment, discovery, state management and other mechanisms which are
required by building services.

• A set of client libraries: These libraries allow client programs in Java,
C, and Python to invoke operations in both GT4 and user-developed
services.

1.6.1.2 gLite

gLite is a grid middleware that has been developed by the EGEE (Enabling
Grids for E-SciencE) project, and is widely deployed among almost 50 Eu-
ropean and other countries. The gLite grid services follow a service oriented
architecture which facilitates the interactions between applications encapsu-
lated by grid services, and which is compliant with upcoming grid standards,
for instance the web service resource framework (WSRF) from OASIS and
the open grid service architecture (OGSA) from the global grid forum. The
gLite has a modular architecture, allowing users to deploy different services
according to their needs, rather than being forced to use the whole system.
This is intended to allow each user to tailor the system to their individual
situation [Nakada et al., 2007].

gLite system consists of several modules which are presented as follows:

• Workload management system (WMS): WMS is a scheduling module
for gLite. It receives job submission requests from users and allocates
resources to jobs based on the resource information. WMS uses ClassAd
[Raman et al., 1998] to make matchmaking and it can adopt different
scheduling policies. For a submission request, if resources that match
the job requirements are not immediately available, the request is kept
in the task queue (TQ). Nonmatching requests will be retried either
periodically or as soon as notifications of available resources appear.

• Berkeley directory information index (BDII): BDII is the information
service module for gLite, which provides information access interface
based on light-weight directory access protocol (LDAP).

• Computing element (CE): This is the job manager module for gLite.
CE supports its own job description language (JDL) format, different
from the JDSL standard.

1.6.1.3 Legion

Legion, an object-based metasystems software project at the University of
Virginia, is designed for a system of millions of hosts and trillions of objects
tied together with high-speed links. As a grid infrastructure, Legion presents
users a view of a grid as a single virtual machine. This view reduces the
complexities a user encounters before running applications or collaborating

Grid computing overview 9

on a grid. The design principles of object-basedness and integration have
enabled Legion to be extended and configured in a number of ways, while
ensuring that the cognitive burden on the grid community is small. Groups of
users can construct shared virtual work spaces, collaborate their researches,
and exchange information in a grid community [Natrajan et al., 2001].

Legion has many features which traditional operating systems have pro-
vided, such as a single namespace, a file system, security, process creation
and management, interprocess communication, input-output, resource man-
agement and accounting. In addition, features which are required in a grid
system are also provided by Legion, such as complexity management, wide-
area access, heterogeneity management, multi-language support, and legacy
application support. The main features of Legion are described as follows:

• Object-basedness: Object-based design offers three advantages. First, it
leads to a modular design which facilitates the complexity management
of components. Second, it enables extending functionality by design-
ing specialized versions of basic objects. Third, it enables selecting an
intuitive boundary around an object for enforcing security. Although
object-basedness is an essential feature in the design of Legion, grid
users do not have to conform to object-based or object-oriented design.
Legacy applications can be easily integrated by using the provided C++,
C, Java, and Fortran interfaces without requiring any change to source
or object code.

• Naming transparency: Every Legion object is assigned an identity
(LOID). The LOID of an object is a sequence of bits that identifies
the object uniquely in a given grid (and also across different grids) and
it can be used to query all the information about this object, such as
about its physical location, its current status, the permissions on it,
associated metadata and the kind of service it provides (its interface).
Once an object’s interface is known, it can be requested to perform a
desired service.

• Security: The authentication and access control lists (ACLs) for autho-
rization in Legion is based on a public key infrastructure (PKI). Legion
requires no central certificate authority to determine the public key of
a named object because the object’s LOID contains its public key.

• Integration: Legion provides a global, distributed file system for every
grid it manages. This file system can contain any Legion object, such as
other file systems, files, machines, users, console objects, and applica-
tions. Therefore this distributed file system enables richer collaboration
than the internet or the web. Moreover, Legion provides a suite of high
performance computing tools for running legacy applications, MPI ap-
plications, and PVM applications.

10 Fundamentals of Grid Computing

1.6.1.4 UNICORE

In 1997, the development of the uniform interface to computing resources
(UNICORE) system was initiated to enable German supercomputer centers
to provide their users with a seamless, secure, and intuitive access to their
heterogeneous computing resources [Streit et al., 2005]. At the beginning
UNICORE was developed as a prototype software in two projects funded by
the German research ministry (BMBF). Over the following years, UNICORE
evolved to a full-grown and well-tested grid middleware system, which today
is used in daily production at many supercomputing centers worldwide.

UNICORE meets the open grid services architecture (OGSA) concept and
all its components are implemented in Java. UNICORE has a layered grid
architecture which consists of user, server, and target system tier.

• User tier provides a graphical user interface to exploit the entire set
of services offered by the underlying servers. The client communicates
with the server tier by sending and receiving abstract job objects (AJO)
and file data via the UNICORE protocol layer (UPL) which is placed
on top of the SSL protocol. AJOs are sent to the UNICORE gateway in
form of serialized and signed Java objects and it contains platform and
site independent descriptions of computational and data related tasks,
resource information, and workflow specifications along with user and
security information.

• Server tier controls the access to a UNICORE site and provides the
virtualization of the underlying resources by mapping the abstract job
on a specific target system. Each participating organization (e.g., a
supercomputing center) to the grid is identified into a Usite with a
symbolic name. A Usite consists of Vsites which represent resources in
a Usite and support resources with different system architectures (e.g.,
a single supercomputer or a Linux cluster with resource management
system).

• Target system tier implements the interface to the underlying computing
resource with its resource management system. It is a stateless daemon
running on the target system and interfacing with the local resource
manager (e.g., PBS [PBS, 2006] or GRAM [Foster, 2006]).

During the development of the UNICORE technology, lots of European and
international projects have decided to base their grid software implementa-
tions on UNICORE or to extend the growing set of core UNICORE functions
in their projects as new features specific. Now the UNICORE software is avail-
able as open source which encourages the growing of developers community
of core UNICORE and makes future development efforts open to the public.

Grid computing overview 11

1.6.2 Grid resource brokers and schedulers

During the second generation, we saw the tremendous growth of grid re-
source brokers and scheduler systems. The primary objective of these systems
is to couple commodity machines in order to achieve the equivalent power of
supercomputers with a significantly less expensive cost. A wide variety of
powerful grid resource brokers and scheduler systems, such as Condor, PBS,
Maui scheduler, LSF, and SGE spread throughout academia and business.

1.6.2.1 Condor

The Condor project [Condor, 2009] developed at the University of
Wisconsin-Madison introduces the Condor high throughput computing sys-
tem, which is often referred to simply as Condor and Condor-G.

• The Condor high throughput computing system [Tannenbaum et al.,
2001] is a specialized workload management system for executing com-
puter intensive jobs on a variety of platform environments (i.e., Unix and
Windows). Condor provides a job management mechanism, scheduling
policy, priority scheme, resource monitoring, and resource management.
The key feature of Condor is the ability to scavenge and manage wasted
CPU power from idle desktop workstations across an entire organiza-
tion. Workstations are dynamically placed in a resource pool whenever
they become idle and removed from the resource pool when they get
busy. Condor is responsible for allocating a machine from the resource
pool for the execution of jobs and monitoring the activity on all the
participating computing resources.

• Condor-G [Frey et al., 2002] is the technological combination of the
Globus and the Condor projects, which aims to enable the utilization of
large collections of resources spanning across multiple domains. Globus
contribution composes of the use of protocols for secure inter-domain
communications and standardized access to a variety of remote batch
systems. Condor contributes with the user concerns of job submission,
job allocation, error recovery, and creation of a user-friendly environ-
ment. Condor technology provides solutions for both the frontend and
backend of a middleware as shown in the Figure 1.2. Condor-G offers
an interface for job reliable submission and management for the whole
system. The Condor high throughput computing system can be used as
the fabric management service for one or more sites. The Globus toolkit
can be used as the bridge interfacing between them.

1.6.2.2 Portable batch system

The portable batch system (PBS) project [PBS, 2006] is a flexible batch
queuing and workload management system originally developed by Veridian

12 Fundamentals of Grid Computing

Processing, Communication, ...

Application

Condor (Condor−G)

Globus toolkit

Fabric

Grid

User

Condor

FIGURE 1.2: Condor in conjunction with Globus technologies in grid mid-
dleware, which lies between the user’s environment and the actual fabric (re-
sources) [Thain et al., 2005].

Systems for NASA. The primary purpose of PBS is to provide controls for
initiating and scheduling the execution of batch jobs. PBS operates on a
variety of networked, multi-platform UNIX environments, from heterogeneous
clusters of workstations to massively parallel systems. PBS supports both
interactive and batch mode, and provides a friendly graphical interface for
job submission, tracking, and administrative purposes.

PBS is designed based on client-server model. The main components are
pbs server server process, which manages high-level batch object such as
queues and jobs and pbs mom server process, which is responsible for job
execution. The pbs server receives submitted jobs from users in the form of
a script and schedules the job for later execution by a pbs mom process.

PBS consists of several built-in schedulers, each of which can be customized
for specific requirements. The default scheduler in PBS maximizes the CPU
utilization by applying the first in first out (FIFO) method. It loops through
the queued job list and starts any job that fits in the available resources.
However, this effectively prevents large jobs from ever starting since the re-
quired resources are unlikely to ever be available. To allow large jobs to
start, this scheduler implements a “starving jobs” mechanism, which defines
circumstances under which starving jobs can be launched (e.g., first in the
job queue, waiting time is longer than some predefined time). However, this
method may not work under certain circumstances (e.g., the scheduler would
halt starting of new jobs until starving jobs can be started). In this context,
Maui scheduler has been adopted as plug-in scheduler for PBS system.

1.6.2.3 Maui scheduler

The Maui scheduler [Bode et al., 2000] developed principally by David Jack-
son for the Maui High Performance Computer Center is an advanced batch job
scheduler with a large feature set, well suited for high performance comput-
ing (HPC) platforms. The key to the Maui scheduling design is its wall-time

Grid computing overview 13

based reservation system, which allows sites to control exactly when, how,
and by whom resources are used. The jobs are queued and managed based
upon its priority, which is specified from several configurable parameters.

Maui uses a two-phase scheduling algorithm. During the first phase, the
scheduler starts jobs with highest priority and then makes a reservation in the
future for the next high priority job. In the second phase, Maui scheduler uses
the backfill mechanism to ensure that large jobs (i.e., starving jobs) will be
executed at a certain moment. It attempts to find lower priority jobs that will
fit into time gaps in the reservation system. This gives large jobs a guaranteed
start time, while providing a quick turn around for small jobs. In this way, the
resource utilization is optimized and job response time is minimized. Maui
uses the fair-share technique when making scheduling decisions based on job
history.

1.6.2.4 Load sharing facility

Load sharing facility (LSF) [Platform, 2009] is a commercial resource man-
ager for cluster from Platform Computing Corporation. It is currently the
most widely used commercial job management system. LSF design focuses
on the management of a broad range of job types such as batch, parallel, dis-
tributed, and interactive. The key features of LSF include system supports for
automatic and manual checkpoints, migrations, automatic job dependencies,
and job re-schedulings.

LSF supports numerous scheduling algorithms, such as first come first
served, fair-share, backfill. It can also interface with external schedulers (e.g.,
Maui), which complement features of the resource manager and enable so-
phisticated scheduling.

1.6.2.5 Sun grid engine

Sun grid engine (SGE) [Sun, 2009b] is a popular job management system
supported by Sun Microsystems. It supports distributed resource manage-
ment and software/hardware optimization in heterogeneous networked envi-
ronments.

A user submits a job to the SGE, together with the requirement profile,
user identification, and a priority number for the job. The requirement profile
contains attributes associated with the job, such as memory requirements,
operating system required, available software licenses, etc. Then, jobs are
kept waiting in a holding area until resources become available for execution.
Based on the requirement profile, SGE assigns the job to an appropriate
queue associated with a server node on which the job will be executed. SGE
maintains load balancing by starting new jobs on the least loaded queue to
spread workload among available servers.

14 Fundamentals of Grid Computing

1.6.3 Grid systems

1.6.3.1 GridLab

In 2000, the Applications Research Group (APPS-RG) of the GGF estab-
lished a pan-European testbed, based on the Globus Toolkit, for prototyp-
ing and experimenting with various application scenarios. Based on these
testbed experiences, the European Commission launched an application ori-
ented project, called GridLab [Allen et al., 2003]. The primary goal of Grid-
Lab is to provide a simple and robust environment which enables users and
application developers to produce applications that can exploit the full power
and possibilities of the grid.

GridLab has a layered architecture which consists of application, GAT, and
service layer. In application layer, the applications can access all capability
providers they need via the grid application toolkit (GAT) API. The GAT
which is the main deliverable of the GridLab project achieves the interaction
with all external capability providers in the behavior of user applications.
Hence, GAT provides application programmers with a single interface to a grid
environment. In service layer of GridLab, services are designed to complement
and complete the existing grid infrastructure, and to provide functionality
needed by the GridLab applications. The main services which have been
implemented in this layer are: GRMS, GAS, data movement service, and
third party services.

GridLab aims to provide an environment that allows application developers
to use the grid without having to understand, or even being aware of the un-
derlying technologies. Lots of application frameworks (e.g., Cactus [Goodale
et al., 2003] and Triana [Churches et al., 2005]) are built upon GridLab and
help prototype the GAT interface.

1.6.3.2 Distributed interactive engineering toolbox

Distributed Interactive Engineering Toolbox (DIET) is a hierarchical set of
components used for the development of applications based on computational
servers on the grid. It consists of a set of elements that can be used together
to build applications using the GridRPC paradigm [Amar et al., 2006].

The DIET has a hierarchical architecture providing flexibility and can be
adapted to various environments including heterogeneous network hierarchies.
In DIET, there are three main components: master agent (MA), local agent
(LA), and server daemon (SeD). (1) Master agent is the entry point of DIET
system. Clients submit requests for a specific computational service to the
MA. The MA then forwards the request in the DIET hierarchy until the re-
quest reaches the SeDs. LA aims at transmitting requests and information
between MAs and servers. (2) Local agent maintains the information about
the list of requests and, for each of its subtrees, the number of servers that can
solve a given problem. (3) Server daemon provides the interface to computa-
tional servers and can offer any number of application specific computational

Grid computing overview 15

services. The information stored on a SeD is the list of the data available on
a server, the list of problems that can be solved on it, and every information
concerning its load (CPU capacity, available memory, etc.).

The management of the platform is handled by several tools like GoDIET
for the automatic deployment of the different components, LogService for
monitoring, and VizDIET for the visualization of the behavior of DIET’s
internals. DIET provides a special feature for scheduling through its plug-
in schedulers. The DIET user is provided with the possibility of defining
requirements for scheduling of tasks by configuring the appropriate scheduler.

1.6.3.3 XtremWeb

XtremWeb is a global computing system which achieves the secure and fault
tolerant peer to peer computing by remote procedures call (RPC) technology
[Cappello et al., 2005]. XtremWeb allows clients to submit task requests to
the system which will execute them on workers. In order to decouple clients
from workers and to coordinate task executions on workers, the coordinator
is added between client and worker nodes. The details of these three services
are shown as follows:

• Coordinator: The coordinator in XtremWeb is composed of three ser-
vices: the repository, the scheduler, and the result server. The coor-
dinator accepts task requests coming from clients, assigns the tasks to
the workers according to a scheduling policy, supervises task execution
on workers, detects works crash, reschedules crashed tasks on any other
available worker, and delivers task results to client upon request.

• Worker: The worker architecture includes four components: the task
pool, the execution thread, the communication manager and the activity
monitor. The activity monitor detects the host information (e.g., per-
centage of CPU idle, mouse and keyboard activity) to control whether
computations can be started on the hosting machine. The task pool is a
queue structure of tasks, maintained by scheduling strategy. The com-
munication manager ensures communications with other entities and
achieves files downloading and results uploading. The execution thread
extracts task from the task pool, starts computation, and waits for the
task to complete.

• Client: The client in XtremWeb is implemented as a library plus a
daemon process. The library provides an interface which can be used
to achieve the interaction between the application and the coordinator.
The daemon process makes recovery points regularly which insure the
machine recovery and jobs rescheduling on another machine.

XtremWeb aims to turn a large scale distributed system into a parallel com-
puter with classical users, administration, and programming interface using
fully decentralized mechanism to implement the system functionality.

16 Fundamentals of Grid Computing

1.6.4 Grid programming environments

1.6.4.1 Cactus code

Cactus is a framework for building a variety of computing applications in
science and engineering, including astrophysics, relativity and chemical en-
gineering [Goodale et al., 2003]. Cactus which started in 1997 is an open
source problem solving environment designed for scientists and engineers. Its
modular structure easily enables parallel computation across different archi-
tectures and collaborative code development between different groups. Cactus
originated in the academic research community, where it was developed and
used over many years by a large international collaboration of physicists and
computational scientists.

Cactus consists of a central core (or “flesh”) and application modules (or
“thorns”). A thorn is the basic working module within Cactus. All user-
supplied code goes into thorns, which are independent of each other and pro-
vide a range of computational capabilities, such as parallel I/O, data distri-
bution, or checkpointing. The flesh is independent of all thorns and provides
the main program, which parses the parameters and activates the appropriate
thorns, passing control to thorns as required. The flesh connects to thorns
through an extensible interface.

As a portable system, Cactus runs on many architectures. Applications,
developed on standard workstations or laptops, can be seamlessly run on
clusters or supercomputers. Cactus provides easy access to many cutting
edge software technologies being developed in the academic research commu-
nity, including the Globus Metacomputing Toolkit, HDF5 parallel file I/O,
the PETSc scientific library, adaptive mesh refinement, web interfaces, and
advanced visualization tools.

1.6.4.2 GrADS

The goal of the grid application development software (GrADS) project is
to simplify distributed heterogeneous applications development and to make
it easier for ordinary scientific users to develop, execute, and tune applications
on the grid [Berman et al., 2001].

There are two sub-systems in a GrADS environment: GrADS program
preparation system and GrADS execution environment.

• GrADS program preparation system: In order to simplify development
of grid-enabled applications, the preparation system provides a method-
ology in which most users will compose applications in a high-level,
domain-specific language built upon pre-existing component libraries.
This approach hides grid-level details and lets the user express a com-
putation in terms that make sense to an expert in the application do-
main. Two components are implemented to support this methodology:
a domain-specific language called telescoping language, and a tool for
load-time tailoring which is called the dynamic optimizer. The SaNS

Grid computing overview 17

libraries which automatically select and integrate the most effective li-
brary components for a given problem, data set, and collection of re-
sources are developed to improve the ability of computational scientists
to solve challenging problems efficiently.

• GrADSoft execution environment: The GrADSoft execution environ-
ment provides new mechanism to discover and communicate informa-
tion about the environment to program components, to transfer program
requirements to the environment and program components in ways of
which admit to effective control, and to monitor and control adaptively
an executing program.

The GrADS project has established an effort to pioneer technologies that
will be needed for ordinary scientific users to develop applications for the
grid. These technologies include a new program preparation framework and
an execution environment that employs continuous monitoring to ensure that
reasonable progress is being made toward completion of a computation.

1.6.4.3 CoG kits

There are two important concepts in the distributed computing world which
have evolved in parallel: “commodity” and “grid” computing [von Laszewski
et al., 2000]. The commodity computing concerns a broad spectrum of dis-
tributed computing technologies (i.e., web protocols, Java, JINI, CORBA,
DCOM, etc.) which has emerged with revolutionary effects on how we access
and process information. Nevertheless, grid computing focus on the coor-
dinated use of distributed high-end resources for scientific problem solving,
specially in the high-performance computing community. In order to enable
developers of grid applications to exploit commodity technologies and to ex-
port grid technologies to commodity computing, the combination of the worlds
of commodity and grid computing creates thus the CoG kits which is a set
of general components that map grid functionality into specific commodity
environments or frameworks.

The mapping of grid and commodity technologies is not simply an interface
definition problem. The expression of grid concepts and services in a partic-
ular commodity framework is the important issue which must be solved. The
Figure 1.3 illustrates the mapping schema. The requirements of the science
portals and other applications have motivated the CoG kit developers to ex-
plore mappings to several languages. Perl and Python are explored to support
web-based programming based on CGI scripts; in order to support graphical
user interface development and the ability to run many grid services through
Java-enabled web browsers, CoG kits provide Java mapping. The Common
object request broker architecture (CORBA) and the distributed component
object model (DCOM) are considered to address the issue of accessing grid
services through high-level distributed computing frameworks.

18 Fundamentals of Grid Computing

CoG kits

Common Grid fabric and services

Frameworks Environments Languages

Portal and User Applications

Java Python Perl Jini Corba DCOM

FIGURE 1.3: The schema illustrating the mapping of grid functionality and
specific commodity environments with CoG kits.

The Java commodity grid toolkit (CoG kit) is the first attempt of CoG
project. In Java CoG kit, a rich set of classes that provide the Java pro-
grammer with access to basic grid services, enhanced services suitable for the
definition of desktop problem solving environments, and a range of GUI ele-
ments have been defined. It has proved possible to recast major Grid services
in Java terms without compromising on functionality.

1.6.5 Grid portals

One of the areas of grid application that are focused on at this time is the
development of gateways and grid portals, which is a web-based single point
of entry to a grid and its implemented services. With the widespread develop-
ment of the Internet, scientists expect to expose their data and applications
through portals. The grid portals provide user-friendly web page interfaces fa-
cilitating grid applications users to perform operations on the grid and access
grid resources specific to a particular domain of interest.

Currently, there are various technologies and toolkit that can be used for
grid portal development. According to [Yang et al., 2006], grid portals can
be classified into nonportlet-based and portlet-based.

• Nonportlet-based portal is a grid portal that is designed based on typical
three-layers architecture. The first layer is the user layer, which aims to
provide the user-friendly interface for user. User layer is responsible for

Grid computing overview 19

displaying the portal content; it can be web browser, or other desktop
tools. The second layer is the grid service layer, including authentica-
tion service, job management service, information service, file service,
security service. The authentication service allows portal to authenti-
cate users. Once authenticated, users can use other services to access
resources of the system (e.g., job management service for submitting
jobs on a remote machine, information service for monitoring jobs sub-
mitted, and viewing results). The second layer receives HTTP requests
from the first layer and interacts with the third layer for performing the
grid operations on relevant grid resource and retrieving the executed
result from grid resources. The third layer is a backend resource layer,
which consists of computation, data and application resources.

• Portlet-based portal includes a collection of portlets. A portlet is a web
component that generates fragments – pieces of markup (e.g., HTML,
XML) adhering to certain specifications (e.g., JSR-168 [Sun, 2009a],
WSRP [OASIS, 2009]). Portlets improve the modular flexibility of
developing grid portals as they are pluggable and can be aggregated to
form a complete web page depending on user needs.

1.6.5.1 P-GRADE portal

P-GRADE grid portal [Kacsuk et al., 2006] is the first grid portal that tries
to solve the interoperability problem at the workflow level with great success.
It is a workflow-oriented grid portal with the main goal to support all stages
of grid workflow development and execution processes.

The P-GRADE portal provides the following functions (see Figure 1.4):
communicating with the portal server, users can achieve the functions of
defining grid environments, managing grid certificates, controlling the exe-
cution of workflow applications, and visualizing the progress of workflows;
workflow editor can perform the creation and modification of workflow appli-
cations [Kertesz et al., 2006].

User

Workflow

Editor

Certificate servers

Portal server

Remote Grid resources

FIGURE 1.4: P-GRADE portal system functions.

20 Fundamentals of Grid Computing

During the workflow editing the user has the possibility to select a grid
resource for each job, or let a broker choose one. Currently there are two
brokers used by the portal: the LCG-2 broker and GTbroker. The GTbroker
interact with the Globus resources to perform job submission. The static and
dynamic information of grid resources are collected by GTbroker to achieve
scheduling activities. The LCG-2 broking solution is used to reach LCG-2
based grids. The mission of the LHC computing project (LCG) is to build
and maintain a data storage and analysis infrastructure for the entire high
energy physics community that will use the LHC. The Large Hadron Collider
(LHC), built at CERN near Geneva, is the largest scientific instrument on the
planet and it begins operations in 2007. With exploiting the broking functions
of GTbroker and LCG-2 broker, users can develop and execute multi-grid
workflows in a convenient environment.

The integration of P-GRADE into GEMLCA shows the use of portal in
a grid environment [Kacsuk et al., 2006]. Grid execution management for
legacy code applications (GEMLCA) represents a general architecture for de-
ploying legacy applications as grid services without re-engineering the code
or even requiring access to the source files. GEMLCA adds an additional
layer to wrap the legacy application on top of a service-oriented grid middle-
ware, like Globus Toolkit version 4 (GT4). GEMLCA communicates with the
client through SOAP-XML messages, gets input parameter values, submits
the legacy executable to a local job manager like Condor or portable batch
system (PBS), and returns the results to the client in SOAP-XML format.
GEMLCA provides the capability to convert legacy codes into grid services.
However, an end-user without specialist computing skills still requires a user-
friendly web interface (portal) to access the GEMLCA functionalities. In
order to solve this problem, GEMLCA is integrated with the P-GRADE grid
portal. Following this integration, legacy code services can be included in end-
user workflows, running on different GEMLCA grid resources. The workflow
manager of the portal contacts the selected GEMLCA resource and passes the
actual parameter values of the legacy code to it. Then the GEMLCA resource
executes the legacy code with these actual parameter values and delivers the
results back to the portal.

1.6.5.2 GridSphere

GridSphere [GridSphere, 2009] is a typical portlet-based portal. The Grid-
Sphere portal framework is developed as a key part of the European project
GridLab [GridLab, 2009]. It provides an open-source portlet based web por-
tal and enables developers to quickly develop and package third-party portlet
web applications that can be run and administered within the GridSphere
portlet container. Two key features of GridSphere framework are: (i) allow-
ing administrators and individual users to dynamically configure the content
based on their requirements, and (ii) supporting grid-specific portlets and
APIs for grid-enabled portal development. However, the main disadvantage

Grid computing overview 21

of the current version of GridSphere (i.e., GridSphere 2.1) is that it does not
support WSRP specification.

1.6.5.3 Other portal systems

The Pegasus [Singh et al., 2005] portal provides an HTTP(S)-based inter-
face that can be accessed using a standard web browser. The portal architec-
ture is composed of three layers. The top layer consists of the user machines
and web browsers. The second layer consists of the web application server
hosting the portal. The server is multithreaded and can handle multiple user
requests at the same time. The third layer consists of the grid components
and services used by the portal.

In order to use the Pegasus grid portal the user needs to have a valid grid
credential in a MyProxy server. The portal does not provide access to a
predetermined set of resources. Instead, the user can specify the resources
to be used. From the web browser, the users specify the parameters of the
application and Pegasus does the mapping of tasks in the workflow to resources
specified in the resource configuration. The submitted workflow may take a
long time to complete. The user may logout from the portal and login later to
check its status. The portal allows also users to view the status of the workflow
(submitted, active, done, failed), the number of tasks already completed, the
tasks currently executing, and other information.

The Pegasus grid portal is very useful in scenarios where a virtual orga-
nization (VO) wants to provide easy to use application submission interface
to its members. It is able to map abstract workflow onto physical resources;
thus users are shielded from the complexity of installing and using the various
components in order to access the Grid resources.

GridFlow [Cao et al., 2003] is a grid workflow management system de-
veloped at the University of Warwick. Rather than focusing on workflow
specification and the communication protocol, GridFlow is more concerned
about service-level scheduling and workflow management. The GridFlow por-
tal performs two level functions: global grid workflow management and local
grid sub-workflow scheduling. The execution and monitoring functionalities
are provided at the global grid level, which work on top of an existing agent-
based grid resource management system. At each local grid, sub-workflow
scheduling and conflict management are processed on top of an existing per-
formance prediction based task scheduling system. A fuzzy timing technique is
applied to address new challenges of workflow management in a cross-domain
and highly dynamic grid environment.

22 Fundamentals of Grid Computing

1.7 Grid evolution

As soon as computers are interconnected and communicate, the research in
designing, building, and deploying distributed computer systems was begun
to explore. An increasing number of research groups have been working in
the field of wide-area distributed computing. Middleware, libraries and tools
have been implemented to coordinate geographically distributed resources for
the execution of a range of parallel and distributed applications. With the
technologies innovation, the distributed computing has been known sequen-
tially by several names, such as metacomputing, scalable computing, global
computing, Internet computing, and more recently grid computing.

According to the paper [de Roure et al., 2003], the grid computing can be
identified by three stages of grid evolution:

The first generation: The first generation of grid is known as metacom-
puting which emerged in mid 1990s. The objective of these early
metacomputing projects was to provide computational resources to a
range of high performance applications. Two representative projects
are FAFNER [de Roure et al., 2003] and I-WAY [Foster et al., 1997
]. FAFNER is a ubiquitous system that worked on any platform with
a web server. Typically the applications in FAFNER can be separated
into independent sections, which are executed in parallel in each com-
puting resource without the need of a fast interconnect. Its clients are
low end computers and it depends on a lot of human intervention to dis-
tribute and collect computing results. I-WAY is designed to cope with
a range of diverse high performance applications that typically needed
a fast interconnect and powerful resources at multiple supercomputing
centers. The experiences and software developed as part of the I-WAY
project have been fed into the Globus project.

The second generation: In the second generation, the core software for the
grid has evolved from providing dedicated services for large and compu-
tationally intensive high performance computing, to the more generic
and open deployment of middleware. Based on this core software,
a range of accompanying tools and utilities are developed, providing
higher-level services to both users and applications, and spanning re-
source schedulers and brokers as well as domain specific users interfaces
and portals. These projects and utilities that emerged in the second
generation have been discussed in Section 1.6. Peer-to-peer techniques
have also emerged during this period.

Service-oriented computing (the third generation): New grid applica-
tions need to be able to reuse existing components and information re-
sources, and to assemble these components in a flexible manner. It

Grid computing overview 23

was apparent that the service-oriented architecture provided the flex-
ibility required for the third generation grid. The open grid services
architecture (OGSA) framework is the convergence of web services and
grid computing, and it supports the creation, maintenance, and applica-
tion of ensembles of services maintained by virtual organizations (VOs).
The services here are more standard, easily interactive, and metadata-
enabled; thus they are more adopted in the e-science infrastructure.

The evolution of the grid is a continuous process. The technologies of semantic
web and workflow which we will discuss in the next chapters have been more
integrated into the grid and grid services. Perhaps, a semantic grid with
workflow creation and scheduling capacities will be the next generation of
grid.

1.8 Concluding remarks

In this chapter, the concept of grid is first introduced. With about a decade
of development, lots of grid infrastructures and utilities have emerged and the
manner and domain of a grid is now employed have varied vastly, spanning
from high-throughput computing to on-demand computing, from scientific
research to e-business. The grid evolves continuously and the third generation
of grid, the service oriented computing, has emerged. The technologies of
semantic web and workflow have been used in the grid and the integration and
convergence of technologies make the grid to provide more flexible, automatic
and complex grid services to fulfill industrial and commercial needs.

24 Fundamentals of Grid Computing

1.9 References

[Allen et al., 2003] Allen, G., Goodale, T., Radke, T., Russell, M., Seidel,
E., Davis, K., Dolkas, K. N., Doulamis, N. D., Kielmann, T., Merzky,
A., Nabrzyski, J., Pukacki, J., Shalf, J., and Taylor, I. (2003). Enabling
applications on the grid: a Gridlab overview. International Journal of High
Performance Computing Applications, 17:449–466.

[Amar et al., 2006] Amar, A., Bolze, R., Bouteiller, A., Chouhan, P. K., Chis,
A., Caniou, Y., Caron, E., Dail, H., Depardon, B., Desprez, F., Gay, J.-S.,
Mahec, G. L., and Su, A. (2006). DIET: new developments and recent
results. In Proceedings of CoreGRID Workshop on Grid Middleware (in
conjunction with EuroPar2006), Dresden, Germany.

[Berman et al., 2001] Berman, F., Chien, A., Cooper, K., Dongarra, J., Fos-
ter, I., Gannon, D., Johnsson, L., Kennedy, K., Kesselman, C., Mellor-
Crummey, J., Reed, D., Torczon, L., and Wolski, R. (2001). The GrADS
project: software support for high-level grid application development. Inter-
national Journal of High Performance Computing Applications, 15(4):327–
344.

[Bode et al., 2000] Bode, B., Halstead, D. M., Kendall, R., Lei, Z., and Jack-
son, D. (2000). The portable batch scheduler and the Maui scheduler on
Linux clusters. In Proceedings of the 4th Conference on Linux Showcase
(ALS’00), pages 27–27, Berkeley, CA, USA. USENIX Association.

[Bote-Lorenzo et al., 2003] Bote-Lorenzo, M. L., Dimitriadis, Y. A., and
Gómez-Sánchez, E. (2003). Grid characteristics and uses: a grid defini-
tion. In Proceedings of the 1st European Across Grids Conference, Lec-
ture Notes in Computer Sciences, pages 291–298, Santiago de Compostela,
Spain. Springer-Verlag.

[Cao et al., 2003] Cao, J., Jarvis, S. A., Saini, S., and Nudd, G. R. (2003).
GridFlow: workflow management for grid computing. In Proceedings of
the 3rd International Symposium on Cluster Computing and the Grid (CC-
GRID’03), page 198. IEEE Computer Society.

[Cappello et al., 2005] Cappello, F., Djilali, S., Fedak, G., Herault, T., Mag-
niette, F., Néri, V., and Lodygensky, O. (2005). Computing on large-scale
distributed systems: XtremWeb architecture, programming models, secu-
rity, tests and convergence with grid. Future Generation Computer Systems,
21(3):417–437.

[Churches et al., 2005] Churches, D., Gombas, G., Harrison, A., Maassen,
J., Robinson, C., Shields, M., Taylor, I., and Wang, I. (2005). Program-

Grid computing overview 25

ming scientific and distributed workflow with Triana services. Concurrency:
Practice and Experience.

[Condor, 2009] Condor (2009). Documentation. Available online at: http:

//www.cs.wisc.edu/condor (accessed May 1, 2009).

[de Roure et al., 2003] de Roure, D., Baker, M. A., Jennings, N. R., and
R.Shadbolt, N. (2003). Grid computing: making the global infrastructure
a reality, chapter The evolution of the grid, pages 65–100. John Wiley &
Sons Ltd., New York.

[Foster, 2002] Foster, I. (2002). What is the grid? A three point checklist.
GRIDtoday, 1(6). Available online at: http://www.gridtoday.com/02/0722/

100136.html (accessed May 1, 2009).

[Foster, 2006] Foster, I. (2006). Globus toolkit version 4: software for service-
oriented systems. Journal Comput. Sci. Technol., 21(4):513–520.

[Foster et al., 1997] Foster, I., Geisler, J., Nickless, W., Smith, W., and
Tuecke, S. (1997). Software infrastructure for the I-WAY high performance
distributed computing experiment. In Proceedings of the 5th IEEE Sympo-
sium on High Performance Distributed Computing, pages 562–571.

[Foster and Kesselman, 1997] Foster, I. and Kesselman, C. (1997). Globus: a
metacomputing infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing, 11(2):115–128.

[Foster and Kesselman, 1998] Foster, I. and Kesselman, C. (1998). The grid:
blueprint for a new computing infrastructure. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA. Available online at: http://portal.acm.org/

citation.cfm?id=289914 (accessed May 1, 2009).

[Foster and Kesselman, 1999] Foster, I. and Kesselman, C. (1999). The grid:
blueprint for a new computing infrastructure, chapter Computational grids,
pages 15–51. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Foster et al., 2002] Foster, I., Kesselman, C., Nick, J. M., and Tuecke,
S. (2002). Grid services for distributed system integration. Computer,
35(6):37–46.

[Foster et al., 2001] Foster, I., Kesselman, C., and Tuecke, S. (2001). The
anatomy of the grid: enabling scalable virtual organizations. International
Journal of High Performance Computing Applications, 15(3):200–222.

[Frey et al., 2002] Frey, J., Tannenbaum, T., Livny, M., Foster, I., and
Tuecke, S. (2002). Condor-G: a computation management agent for multi-
institutional grids. Cluster Computing, 5(3):237–246.

26 Fundamentals of Grid Computing

[Goodale et al., 2003] Goodale, T., Allen, G., Lanfermann, G., Massó, J.,
Radke, T., Seidel, E., and Shalf, J. (2003). The Cactus framework and
toolkit: design and applications. In Proceedings of the 5th International
Conference of Vector and Parallel Processing (VECPAR’2002), Lecture
Notes in Computer Sciences. Springer-Verlag.

[GridLab, 2009] GridLab (2009). Documentation. Available online at: http:

//www.gridlab.org (accessed May 1, 2009).

[GridSphere, 2009] GridSphere (2009). Documentation. Available online at:
http://www.gridsphere.org (accessed May 1, 2009).

[Kacsuk et al., 2006] Kacsuk, P., Kiss, T., and Sipos, G. (2006). Solving
the grid interoperability problem by P-GRADE portal at workflow level.
In Proceedings of the 15th International Symposium on High Performance
Distributed Computing (HPDC-15). IEEE Computer Society.

[Kertesz et al., 2006] Kertesz, A., Farkas, Z., Kacsuk, P., and Kiss, T. (2006).
Multiple broker support by grid portals. In Proceedings of the CoreGRID
Workshop on Grid Middleware.

[Krauter et al., 2002] Krauter, K., Buyya, R., and Maheswaran, M. (2002). A
taxonomy and survey of grid resource management systems for distributed
computing. International Journal of Software Practice and Experience,
32(2):135–164.

[Nakada et al., 2007] Nakada, H., Sato, H., Saga, K., Hatanaka, M., Saeki, Y.,
and Matsuoka, S. (2007). Job invocation interoperability between NAREGI
middleware beta and gLite. In Proceedings of HPC Asia 2007, pages 151–
158.

[Natrajan et al., 2001] Natrajan, A., Humphrey, M., and Grimshaw, A.
(2001). Grids: harnessing geographically-separated resources in a multi-
organisational context. In Proceedings of the 15th Annual International
Symposium on High Performance Computing Systems and Applications.

[OASIS, 2009] OASIS (2009). WSRP: web services for remote portlets.
Available online at: http://www.oasisopen.org/committees/tc_home.php?

wg_abbrev=wsrp (accessed May 1, 2009).

[PBS, 2006] PBS (2006). Portable batch system (PBS). Available online at:
http://www.openpbs.org/ (accessed May 1, 2009).

[Platform, 2009] Platform (2009). Lsf. Available online at: http://www.

platform.com/Products/Platform.LSF.Family/ (accessed May 1, 2009).

[Raman et al., 1998] Raman, R., Livny, M., and Solomon, M. (1998). Match-
making: distributed resource management for high throughput computing.
In Proceedings of the 7th HPDC.

Grid computing overview 27

[Singh et al., 2005] Singh, G., Deelman, E., Mehta, G., Vahi, K., Su, M.,
Berriman, B., Good, J., Jacob, J., Katz, D., Lazzarini, A., Blackburn, K.,
and Koranda, S. (2005). The Pegasus portal: web based grid computing. In
Proceedings of the 20th Annual ACM Symposium on Applied Computing.

[Streit et al., 2005] Streit, A., Erwin, D., Lippert, T., Mallmann, D., Men-
day, R., Rambadt, M., Riedel, M., Romberg, M., Schuller, B., and Wieder,
P. (2005). UNICORE: from project results to production grids. In Grid
computing: the new frontier of high performance computing, volume 14 of
Advances in Parallel Computing, pages 357–376, Amsterdam, The Nether-
lands. Elsevier Science Publishers B.V.

[Sun, 2009a] Sun (2009a). Introduction to JSR-168. Available on-
line at: http://developers.sun.com/prodtech/portalserver/reference/

techart/jsr168/ (accessed May 1, 2009).

[Sun, 2009b] Sun (2009b). Sun grid engine. Available online at: http://

gridengine.sunsource.net (accessed May 1, 2009).

[Tannenbaum et al., 2001] Tannenbaum, T., Wright, D., Miller, K., and
Livny, M. (2001). Condor: a distributed job scheduler. In Sterling, T.,
editor, Beowulf Cluster Computing with Linux. MIT Press.

[Thain et al., 2005] Thain, D., Tannenbaum, T., and Livny, M. (2005). Dis-
tributed computing in practice: the Condor experience. Concurrency:
Practice and Experience, 17(2–4):323–356.

[von Laszewski et al., 2000] von Laszewski, G., Foster, I., and Gawor, J.
(2000). CoG kits: a bridge between commodity distributed computing and
high-performance grids. In Proceedings of the ACM 2000 Conference on
Java Grande (JAVA’00), pages 97–106, New York, NY, USA. ACM Press.

[Yang et al., 2006] Yang, X., Dove, M. T., Hayes, M., Calleja, M., He, L.,
and Murray-Rust, P. (2006). Survey of major tools and technologies for
grid-enabled portal development. In Proceedings of the UK e-Science All
Hands Meeting 2006, Nottingham, UK.

Chapter 2

Synchronization protocols for
sharing resources in grid
environments

Julien Sopena

LIP6/INRIA Regal Team, Université Pierre et Marie Curie, 104 avenue du
Président Kennedy, 75016 Paris, France

Luciana Arantes
LIP6/INRIA Regal Team, Université Pierre et Marie Curie, 104 avenue du
Président Kennedy, 75016 Paris, France

Fabrice Legond-Aubry

LIP6/INRIA Regal Team, Université Pierre et Marie Curie, 104 avenue du
Président Kennedy, 75016 Paris, France

Pierre Sens
LIP6/INRIA Regal Team, Université Pierre et Marie Curie, 104 avenue du
Président Kennedy, 75016 Paris, France

2.1 Introduction . 29
2.2 Token-based mutual exclusion algorithms . 31
2.3 Mutual exclusion algorithms for large configurations 36
2.4 Composition approach to mutual exclusion algorithms 39
2.5 Composition properties and its natural effects . 43
2.6 Performance evaluation . 47
2.7 Concluding remarks . 62
2.8 References . 63

2.1 Introduction

Grids are extremely interesting for executing distributed and/or parallel
applications that require a lot of computational power, data storage or access
to resources that are not available locally. Since these applications share grid
resources, the latter should be accessed by the application processes in an
exclusive way, i.e., exactly one process can access the shared resource at any
given time (safety property) and all access requests are eventually satisfied

29

30 Fundamentals of Grid Computing

(liveness property). A process’s segment of code that accesses a shared re-
source is called a critical section (CS). Therefore, a synchronization protocol
that provides mutual exclusion is extremely important for such applications.
However, a Grid platform is usually composed of a large number of clusters. As
such clusters are usually spread out over different sites, cities or even countries,
communication in a Grid environment is intrinsically heterogeneous. Nodes
within one cluster are linked by local networks (LAN) whereas clusters are
connected by wide area network (WAN) links. Grids present thus a hierarchy
of communication delays where the cost of sending a message between nodes
of different clusters is much higher than sending the same message between
nodes within the same cluster. Hence, a synchronization protocol that offers
mutual exclusion must be tailored to the latency hierarchy of the Grid for
performance reason since the performance of the mutual exclusion protocol
can have a major impact on the overall performance of applications.

Distributed mutual exclusion algorithms can be divided into two families:
permission-based (e.g., Lamport [Lamport, 1978], Ricart-Agrawala [Ricart
and Agrawala, 1981], Maekawa [Maekawa, 1985]) and token-based (Suzuki-
Kazami [Suzuki and Kasami, 1985], Raymond [Raymond, 1989], Naimi-
Tréhel [Naimi and Tréhel, 1996], Martin [Martin, 1985]). The algorithms of
the first family are based on the principle that a node enters a critical section
only after having received permission from all the other nodes (or a majority
of them [Maekawa, 1985]). In the second group of algorithms, a system-wide
unique token is shared among all nodes, and its possession gives a node the
exclusive right to execute a critical section. Token-based algorithms present
different solutions for the transmission and control of critical section requests
of processes. Each solution is usually expressed by a logical topology that
defines the paths followed by critical section request messages which might be
completely different from the physical network topology.

With regard to the number of nodes, token-based mutual exclusion al-
gorithms present an average message traffic which is lower than that of
permission-based ones. Thus, they are more suitable for controlling con-
current access to shared resources of Grids whose number of nodes is often
very large. However, existing token-based algorithms still have intrinsic limits
and do not take into account the above-mentioned hierarchy of communica-
tion latencies. Our proposal is a generic composition approach which enables
the combination of any two token-based mutual exclusion algorithms: one at
intra-cluster level and a second one at inter-cluster. Hence, by using our com-
position mechanism, synchronization protocols that ensure mutual exclusion
for Grid application can be easily deployed by just “plugging in” token-based
algorithms on each levels of the hierarchy. The choice of such algorithms thus
takes into account communication latency heterogeneity of Grids. Further-
more, the extensive performance evaluation tests that we have conducted on

Synchronization protocols for sharing resources in grid environments 31

Grid’5000 1 show that the good choice for an inter-cluster mutual exclusion
algorithm depends on the application behavior, i.e., the frequency with which
the application processes request for the shared resource. In other words, the
parallelism degree of the application has an impact on the choice of inter-
cluster algorithms. Therefore, relying on both the application behavior and
our performance study results, effective synchronization protocols that pro-
vide token-based mutual exclusion tailored to a specific Grid application can
be built on top of our compositional approach.

2.2 Token-based mutual exclusion algorithms

Several token-based mutual exclusion algorithms have been proposed in
the literature. This section presents three of them, Martin’s [Martin, 1985],
Naimi-Tréhel’s [Naimi and Tréhel, 1996], and Suzuki-Kasami’s [Suzuki
and Kasami, 1985], since we used them in our performance experiments,
described in Section 2.6.

Martin’s, Naimi-Tréhel’s, and Suzuki-Kasami’s algorithms are respec-
tively based on a ring, a tree, and a complete logical connection graph for for-
warding critical section requests. As they present distinct solutions for both
transmitting requests and controlling the algorithm’s liveness, they present
different message complexity with regard to the number of nodes.

2.2.1 Martin’s algorithm

Martin’s algorithm considers that nodes are organized in a logical ring.
Requests for the token move along one direction while the token move on the
opposite direction, as shown in Figures 2.1(b) and 2.1(c).

When node i, which does not hold the token, wants to enter the critical
section (CS) it asks for the token by sending a request message to its successor
j in the ring. If j does not keep the token it forwards the request to its
successor. The request will travel along the ring till it reaches the site k
which keeps the token. Upon receiving the request, if k is not in CS itself, it
forwards the token to its predecessor. Each node between k and i will do the
same. Therefore, the token will eventually reach i, which can then enter the
CS. Notice that before the token reaches i, nodes between i and k might have
requested the token too. Thus, when k forwards the token on behalf of i all

1Grid’5000 is an initiative from the French Ministry of Research through the ACI GRID
incentive action, INRIA, CNRS and RENATER and other contributing partners (see
https://www.grid5000.fr).

32 Fundamentals of Grid Computing

pending requests of nodes between k and i will be satisfied when they receive
the token.

Notice that for optimization reasons, upon receiving a request from its pre-
decessor, a node that is also requesting the token does not need to forward the
request of the predecessor. It just keeps the information that after satisfying
its own request, it must send the token to its predecessor.

messages
token
requesting node

(a) Notations

A

B

CD

E
TOKEN

(b) Token circulation

A

B

CD

E
REQUEST

(c) Request circulation

A

B

CD

E

(d) C sends a request

A

B

CD

E

(e) E sends a request

A

B

CD

E

(f) A releases the token

FIGURE 2.1: Execution example of Martin’s algorithm.

Figures 2.1(d), 2.1(e) and 2.1(f) show the execution of Martin’s algorithm
for 5 nodes (A, B, C, D, and E). Initially A keeps the token. Since node C
wants to enter the critical section, it sends a request to its neighbor B (Figure
2.1(d)). Upon receiving C’s request, B registers that there is a pending request
and forwards it to A. In Figure 2.1(e), E also decides to ask for the token by
sending a request to D. Similarly to B, D registers the request and sends it to
C, which has already a registered pending request. Thus, C will not forward
the request to B.

When A releases the critical section (Figure 2.1(f)), it sends the token to B
which forwards it to C, which has asked for it. Afterwards, when C releases
the critical section, it will forward the token to D which then will send it to
E that enters the critical section too.

Synchronization protocols for sharing resources in grid environments 33

2.2.2 Naimi-Tréhel’s algorithm

Naimi-Tréhel algorithm [Naimi and Tréhel, 1996] maintains a logical dy-
namic tree structure, named the LAST tree, such that the root of the tree
is always the last node that will receive the token among current requesting
nodes. A second structure, named the NEXT queue, is a distributed queue
that controls the nodes which are waiting for the token. Each node just holds
information about its LAST and NEXT nodes.

Initially, the root of the LAST tree is the token holder and the LAST of all
other nodes points to the root. A token request travels along a path of LASTs
to the root. When receiving this request, each node along this path sets its
LAST pointer to the current requester, i.e., the tree is modified dynamically.
When a request arrives at the root, the latter updates its NEXT to point
to the requester. When a site releases the CS, the token is sent to the site
indicated by its NEXT pointer.

NO_REQ

REQ

TOKEN

last

next

(a) Notations

A

B

C

D

(b) Initial state

A

B

C

D

(c) B sends a request

A

B

C

D

(d) C sends a request

A

B

C

D

(e) A releases the token

A

B

C

D

(f) B releases the token

FIGURE 2.2: Execution example of Naimi-Tréhel’s algorithm.

Figure 2.2 shows an example of a Naimi-Tréhel execution with 4 nodes.
Initially, site A is the root and holds the token (Figure 2.2(b)) and the LAST
of all other nodes point to A. In Figure 2.2(c), node B asks for the token
by sending a request to its LAST (LASTB = A). B becomes the new root
(LASTB = NIL). Upon receiving B’s request, A updates its NEXT and
LAST variables to point to B. In Figure 2.2(d), C asks A for the token. The
request is forwarded to B which updates its NEXT to C (NEXTB = C).
Both A and B update their LAST to C, since the latter is the last requester
of the token (C becomes the new root of the LAST tree). When A releases
the critical section, the token will be sent to B as NEXTA = B, as shown in

34 Fundamentals of Grid Computing

Figure 2.2(e). Similarly, when finishing executing the critical section, B sends
the token to its NEXT which is C (Figure 2.2(f)).

2.2.3 Suzuki-Kasami’s algorithm

In Suzuki-Kazami’s algorithm, when a node i, which does not hold the
token, attempts to enter the critical section, it diffuses a request message to
the other N − 1 nodes. Such a message contains the identifier i of the node
and a sequence number x which indicates the xth critical section invocation of
i. As in the previous token-based algorithms, when node i receives the token,
it enters the critical section.

Each node i keeps an array RNi of size N where it stores the largest token
invocation (sequence number) of each node of which it is aware. Whenever i
receives a request from j, it updates RNi[j] with the sequence number of the
request.

The token message includes a queue Q of nodes whose requests are pending
and an array LR of size N which keeps the sequence number of the most recent
satisfied request from each node. When node i exits the critical section, it
updates LR[i] with its current RNi[i] in order to inform that its last request
has been satisfied. Then, it appends to Q all nodes not yet in Q for which it
knows that their requests have not been satisfied yet. If Q is not empty, the
first node j is removed from Q and the token is sent to j.

Figure 2.3 shows an execution of the algorithm. We consider that node A
has already executed 6 critical sections (LR[A] = 6) and it is currently in its
7th critical section (RNA[A] = 7) as shown in Figure 2.3(b). Suppose then
that node C decides to ask for the critical section (Figure 2.3(c)). To this
end, C increases the entry of its RN that corresponds to itself (RNC [C] = 9)
and broadcasts its request with such a value for the token to the other nodes.
Upon reception of the request, node i updates its RNi[C]. Let also suppose
that node D, Figure 2.3(d), requests the token which corresponds to its third
request RND[D] = 3.

Upon releasing the critical section, node A registers it in LR vector
(LR[A] = 7). It then compares its RNA vector with LR and it includes
in Q all the nodes whose entries in RN are greater than LR which are not
already in Q, i.e., the pending requests. In this case, nodes C and D are in-
cluded in Q (Figure 2.3(e)). Node A then removes the first node in Q, which
is node C, and sends the token to it. In its turn, when node C finishes exe-
cuting the CS, it compares the two vectors. There is still a difference which
concerns node D, but which is already in Q. Thus, it removes D from Q and
sends the token to it (Figure 2.3(f)).

Synchronization protocols for sharing resources in grid environments 35

messages
token
requesting node

(a) Notations

A B

CD

RN=[7,3,8,2]

LR=[6,3,8,2]

Q={A}

RN=[7,3,8,2]

RN=[7,3,8,2]RN=[7,3,8,2]

(b) Initial state

A B

CD

RN=[7,3,9,2]

LR=[6,3,8,2]

Q={A}

RN=[7,3,9,2]

RN=[7,3,9,2]RN=[7,3,9,2]

(c) C sends a request

A B

CD

RN=[7,3,9,3]

LR=[6,3,8,2]

Q={A}

RN=[7,3,9,3]

RN=[7,3,9,3]RN=[7,3,9,3]

(d) D sends a request

A B

CD

RN=[7,3,9,3] RN=[7,3,9,3]

RN=[7,3,9,3]

LR=[7,3,8,2]

Q={C,D}

RN=[7,3,9,3]

(e) A releases the token

A B

CD

RN=[7,3,9,3] RN=[7,3,9,3]

RN=[7,3,9,3]RN=[7,3,9,3]

LR=[7,3,9,2]

Q={D}

(f) C releases the token

FIGURE 2.3: Execution example of Suzuki-Kasami’s algorithm.

36 Fundamentals of Grid Computing

2.3 Mutual exclusion algorithms for large configurations

Several works found in the literature have proposed to adapt or compose
existing mutual exclusion algorithms. By exploiting the logical or physical
topological architectures of clusters (groups), they aim at reducing the number
of messages or the waiting time delay to enter the CS. Basically, they adopt
one of the two following approaches: in the first one [Bertier et al., 2006
], [Mueller, 1998], the order of the pending requests of the waiting queue is
changed in order to satisfy requests with higher priority first. Thus, priority
of requests can dynamically change based on their locality which result in
satisfying requests from the same cluster before those from distant ones. In
the second approach, authors compose mutual exclusion algorithms and map
them to the hierarchy of the architecture (physical or logical): one at the intra-
cluster or intra-group level and a second one at the inter-cluster or inter-group
level.

2.3.1 Priority-based approach

Bertier et al. [Bertier et al., 2004] adapt Naimi-Tréhel’s algorithm by chang-
ing the order of the pending requests of the NEXT queue in order to satisfy
intra-cluster requests before inter-cluster ones. Local cluster preemptions of
the token take place since higher priority is given to requests of local clus-
ter nodes. A threshold for the maximum number of per cluster preemption
which characterizes the degree of locality of the cluster is defined for avoiding
starvation. While the number of local requests is below such a threshold,
the NEXT queue is modified in order to satisfy local requests first. Naimi-
Tréhel’s algorithm was modified such that a request for entering a critical
section (CS) follows the LAST tree until it reaches the last node of the clus-
ter which has currently requested the critical section, denoted the local root.
Hence, if the NEXT of the local root exists, it points to a site of a remote
cluster. In this case, if the local root receives a request from a node of its
own cluster, and the number of preemptions is below the threshold, a local
preemption of the token is performed and the local root’s NEXT is set to the
local requester. The requesting node becomes the new local root. In [Loallemi
et al., 2006], Moallemi et al. propose to apply Bertier et al. approach to the
fault tolerant Naimi-Tréhel [Sopena et al., 2005] in order to provide a fault
tolerant hierarchical token-based mutual exclusion algorithm. They consider
that at least one node of the cluster where the token is present does not crash.
Broadcast was added between clusters for token and requests transmissions.
No performance evaluation experiments were conducted.

In Mueller [Mueller, 1998], the author presents an extension to Naimi-
Tréhel’s algorithm where he adds the concept of priority in it. Local queues are
introduced in each node. They form a virtual global queue ordered by priority

Synchronization protocols for sharing resources in grid environments 37

and FIFO order is used when priorities are equal. A request is associated with
a priority and the algorithm first satisfies the requests with higher priority.
The basic idea is to accumulate priority information on intermediate nodes
during request forwards. Thus, the NEXT queue is replaced by a set of
local queues. When a node issues a request with same priority, this request
propagates along the LAST tree until it reaches a node whose pending request
is equal or greater than the former. The request is then locally queued at this
node. When a node grants the token to another one it appends its local queue
at the token. The receiving node then merges its token with the received one.
In the author’s approach, clustering is not considered. However, if priorities
were assigned to requests based on their cluster locality, requests of the same
cluster could be satisfied in sequence, preempting those of other clusters.

We should point out that the approach of changing the priority of pending
requests could be applied to any other token-based algorithm. However, if
such an approach allows to reduce the delay for a process to obtain the critical
section, it does not reduce the complexity in terms of number of messages,
which can become a drawback for large scale Grid systems.

2.3.2 Composition-based approach

Several authors [Chang et al., 1990a], [Housni and Tréhel, 2001], [Bertier
et al., 2006], [Erciyes, 2004], [Madhuram and Kumar, 1994], [Omara and
Nabil, 2002] propose to compose mutual exclusion algorithms: one at inter
cluster/group level and a second at intra cluster/group level in order to mini-
mize both message traffic and the time delay to enter the CS. In the majority
of these works, the algorithm between clusters (groups) is different from the
algorithm inside a group.

Chang et al. [Chang et al., 1990a] present in their article a hybrid ap-
proach which applies diffusion-based algorithms at both levels: Singhal’s al-
gorithm [Singhal, 1992] locally and Maekawa’s algorithm [Maekawa, 1985]
between groups. The former uses a dynamic information structure while the
latter is based on a voting approach. The authors argue that since no algo-
rithm can minimize both message traffic and time delay at the same time,
such a combination is ideal since message complexity of Maekawa algorithm
is low and Singhal’s algortihm presents shorter delay time in successive execu-
tions of CS when compared to the former. Simulation studies show that when
compared to flat Maekawa’s algorithm, the proposed hybrid algorithm signifi-
cantly reduces message traffic and time delay, specially if the system presents
cluster locality of requests. Similarly, Omara et al.’s solution [Omara and
Nabil, 2002] is a hybrid of Maekawa’s algorithm at inter cluster level and
Singhal’s modified algorithm, which provides more fairness than the latter, at
intra cluster level.

In Housni et al. [Housni and Tréhel, 2001], sites with the same priority are
gathered within the same group. The algorithm between groups is different
from the algorithm inside a group. They consider that routers ensure the in-

38 Fundamentals of Grid Computing

terface between the algorithms of the two levels. Raymond’s tree-based token
algorithm [Raymond, 1989] is used inside a group, while Ricart-Agrawala [Ri-
cart and Agrawala, 1981] diffusion-based algorithm is used between groups.
If a router receives a permission from all the other routers, it generates the
token in its group and gives it to the root node of its group. When all the
pending requests of the group are satisfied, the token is restored to the router
and destroyed. Routers can have different priorities. Hence, nodes of a given
group, whose router has generated the token, can be preempted if its router
receives a request from another one with higher priority. The former then
interrupts the root of its group for requesting it the token. As soon as it gets
it, the router sends its permission to the priority router.

Erciyes [Erciyes, 2004] proposes an architecture that consists of a logical
ring of clusters, i.e., each node on the ring represents a cluster of nodes. Each
of this node is a coordinator node, which performs the required critical section
requests and releases on behalf of the nodes of the cluster it represents. How-
ever, inside the cluster, a central-based mutual exclusion algorithm is used,
i.e., a node requests to its coordinator to enter the CS and will enter it upon
reception of a reply message from the coordinator. When exiting the CS, the
node sends a release message to the coordinator. The author proposes two al-
gorithms for the inter-cluster level: the permission-based Ricart-Agrawala [Ri-
cart and Agrawala, 1981] algorithm and Lan’s token-based algorithm [Lann,
1978]. However, in both cases, messages are exchanged based on the inter
cluster logical ring structure. Theoretical studies of the composed algorithms
compared to their flat original algorithms show: (1) a gain of an order of mag-
nitude of improvement in terms of message complexity but at the expense of
larger obtaining time; (2) a reduced number of messages to enter a CS when
the number of clusters increases. However, with a large number of clusters
and number of messages (low level parallel application) coordinators become
a bottleneck and token obtaining time increases.

Similarly to Erciyes [Erciyes, 2004], Madhuram et al. present in [Madhuram
and Kumar, 1994] a two level algorithm where the centralized-based mutual
exclusion algorithm is used at intra cluster level. However, coordinators at
inter cluster level are not organized in a logical ring, but every coordinator
can communicate with the other. The authors argue that the centralized
algorithm is a good choice because of its low message complexity: 3 messages
per CS invocation. All message requests are timestamped. The coordinator
queues up the requests it receives from processes of its cluster in a queue in
timestamped order (InternalQ). A second queue is used to store requests from
the other coordinators (GlobalQ). A coordinator acts on behalf of all sites of
its group. Upon receiving a request, the coordinator will broadcast a request
provided it did not already do it (i.e., the request is registered in the GlobalQ).
Using the InternalQ, the authors also propose a local preemption mechanism
in order to satisfy local requests (imposing an upper limit to avoid starvation)
before giving permission to a remote coordinator. They argue that in case
of high load (low parallel application) such preemption mechanism increases

Synchronization protocols for sharing resources in grid environments 39

performance of the application. The hierarchical algorithm presented in the
paper adapts Ricart-Agrawala at inter-cluster level, but the authors advocate
that any timestamp-based algorithms could also be used as well.

In [Bertier et al., 2006], Bertier et al. propose a composition approach
which consists of Naimi-Tréhel algorithm at both level. The authors consider
that messages exchanged by nodes of different clusters always pass along spe-
cial nodes, called proxys, that behave like routers. There is one proxy per
cluster. Therefore, every message that is sent from a node to a remote node
is routed to the proxy of the cluster’s sender which forwards the message to
receiver’s proxy node. The latter then sends the message to the receiver node.
The sender’s and receiver’s proxies can then gather information about token
transfers and requests at cluster level, taking decisions based on such informa-
tion. Therefore, some inter-cluster messages can be managed at the proxies’
level, without being necessary to be redirected to the other nodes inside clus-
ters. Furthermore, by changing the NEXT queue, intra-cluster CS requests
are satisfied before remote ones. To avoid starvation, a threshold value limits
the maximum number of CS that can be successively executed by nodes of
the same cluster. Experiments were performed on a dedicated cluster where
a Grid environment with multilevel network latencies was emulated by injec-
tion of network delays. The authors show that due to the proxy and cluster
locality exploitation, both the time delay to obtain the token and the number
of inter-cluster messages were reduced on their approach when compared to
flat Naimi-Tréhel’s algorithm, specially for low parallel applications.

All the above mentioned works hierarchically compose mutual exclusion al-
gorithms but the choice for the composed algorithms can not change. One
could argue that one of these fixed compositions could be more suitable for
some type of application. However, no comparative evaluation performance
study exists in the literature for such a conclusion. Another point is that
the concept of group that the majority of these works exploit is logical, i.e.,
groups are not necessarily mapped to the physical topology and do not con-
sider latency heterogeneity. Hence, whenever some performance results are
presented in their respective articles, the experiments were conducted on top
of simulators or emulated platform and not on top of a Grid.

2.4 Composition approach to mutual exclusion algo-
rithms

Many of the composed algorithms presented in the previous section do not
consider differences in communication latency as the main reason for grouping
machines. Hence, the majority of them do not take into account the physical
topology of the Grid and latency heterogeneity.

40 Fundamentals of Grid Computing

We have proposed a more generic approach which allows the choice of the
good combination of algorithms according to the application’s behavior by
comparing different mutual exclusion algorithm compositions on top of Grid.

Similarly to a classical mutual exclusion algorithm, a mutual exclu-
sion synchronization protocol on top of Grid should offer two operations:
CS Request(), which allows a process to request exclusive access to a shared
resource, and CS Release() called by the same process when it wants to re-
lease the resource. However, in order to be effective, such a synchronization
protocol must tolerate heterogeneous network latencies. Our approach does it
by using a hierarchy of mutual exclusion algorithms: a per cluster token-based
mutual exclusion algorithm that controls critical section requests for processes
within the same cluster and a second algorithm that controls inter-cluster re-
quests for the token. The former is called the intra algorithm while the latter
is called the inter algorithm and their executions are clearly separated. Fur-
thermore, an intra algorithm instance of a cluster runs independently from a
second intra algorithm instance. Thus, a process obtains access to the shared
resource and later releases it by calling the above two operations which belong
to the intra algorithm instance of its cluster. Another important advantage
of our approach is that the chosen algorithms of both layers do not need
to be modified. Hence, it is very simple to offer different implementations
of a mutual exclusion service by just assembling multiple mutual exclusion
algorithms.

Without loss of generality, we will consider that just one parallel or dis-
tributed application runs on top of the Grid at a given time. This application
is composed of a set of processes and there is one process per node/machine
denoted an application process.

When an application process wants to access the shared resource, it calls
the operation CS Request() of the intra algorithm. Upon getting the intra
token, the process executes the critical section. After executing it, the pro-
cess calls the operation CS Release() of the same intra algorithm to release
it. However, since one intra algorithm instance runs on each cluster, several
processes could simultaneously access the critical section which would violate
the safety property. In order to overcome this problem, we have introduced
a special node within each cluster, called the coordinator, which ensures the
safety property at a Grid wide level. The inter algorithm runs on top of the
coordinators and allows a coordinator to request access to the shared resource
on behalf of an application node within its respective cluster. Coordinators
are in fact hybrid processes which participate in both the inter algorithm with
the other coordinators and the intra algorithm with their cluster’s application
processes. Nevertheless, even if the intra algorithm sees a coordinator as an
application process, the coordinator neither takes part in the application’s
execution nor requests access to the shared resource for itself.

The coordinator also uses the CS Request() and the CS Release() operations
offered by the inter algorithm. However, a coordinator being in critical section
for the inter algorithm instance means that one of the application processes of

Synchronization protocols for sharing resources in grid environments 41

its cluster can access the resource. It is considered to be in the critical section
by the other coordinators.

Each intra algorithm instance controls an intra token while the inter algo-
rithm instances control an inter token. For every shared resource, there is
one intra token per cluster but a single inter token for the whole system of
which only the coordinators are aware. Therefore, holding the intra token of
its cluster is sufficient and necessary for an application process to enter the
CS since the local intra algorithm instance ensures that no other local ap-
plication node of the cluster has the intra token. Moreover, considering the
hierarchical composition of algorithms, our solution must also guarantee that
no other application process of the other clusters is also in the critical section
by holding the intra token of their own algorithm. In other words, at any
time only one cluster has the right of allowing one of its application processes
to execute the CS. This can be ensured by the possession of the inter token
by just one of the coordinators.

NO_REQ REQ

C.S.

(a) Classical mutual exclusion

IN

Inter :
NO_REQ Intra : CS

OUT

Inter : REQ Intra : CS

WAIT_FOR_IN

Inter : CS
Intra :

NO_REQ

IN

Inter : CS Intra : REQ

WAIT_FOR_OUT

(b) Coordinator

FIGURE 2.4: Mutual exclusion automatas.

2.4.1 Coordinator processes

The guiding principle of our approach is represented by the automata of
Figure 2.4.(b), which describes the behavior of a coordinator process. In a clas-
sical mutual exclusion algorithm, a process can be in one of the three following
states: requesting the critical section (REQ), not requesting it (NO REQ), or
in the critical section (CS), as shown in Figure 2.4.(a). A coordinator process
can also find itself in one of these three states, likewise the classical mutual
exclusion, but with regard to both algorithms. Therefore, in the automata
of Figure 2.4.(b), Intra and Inter refer to the coordinator state related to the
intra algorithm instance and inter algorithm instance respectively. Moreover,
a coordinator has additional states with respect to the global state of the com-
position, which can be one of the following: OUT , IN , WAIT FOR OUT ,

42 Fundamentals of Grid Computing

WAIT FOR IN .

If the coordinator is in the OUT state, no local application process of its
cluster has requested the CS. Thus, it holds the intra token (Intra = CS) but
it does not hold the inter token (Inter = NO REQ). When an application
process wants to enter the critical section, it sends a request to the processes
of its cluster by calling the CS Request() operation of the intra algorithm.
The coordinator of the cluster, which is the current holder of the intra token,
will also receive such a request. Upon receiving it, the coordinator holder
changes its global state to WAIT FOR IN . However, a coordinator can only
grant the intra token to a requesting application process of its cluster if it
holds the inter token too. To this end, it calls the CS Request() operation
of the inter algorithm in order to request the inter token. Therefore, when
the coordinator finds itself in the WAIT FOR IN global state, there are one
or more pending intra algorithm requests, and the coordinator still holds the
local intra token (Intra = CS) but it is waiting for the inter token delivery
(Inter = REQ).

The coordinator state changes to the IN global state when it receives the
inter token. It then grants the intra token to the requesting application pro-
cess by calling the CS Release() operation of the intra algorithm. Thus, the
coordinator holds the inter token (Inter = CS) but has given the intra al-
gorithm token (Intra = NO REQ) to one of the application processes of its
cluster.

A coordinator which holds the inter token must also treat inter token re-
quests received from the other coordinators. However, it can only grant the
inter token if it also holds its local intra token. Holding this token ensures
that there is no application process within its cluster in the critical section.
When another coordinator requests the inter token, but the current holder of
it does not keep both tokens, the latter sends a request to its intra algorithm
asking for the intra token. Its global state triggers to WAIT FOR OUT co-
ordinator, i.e., the coordinator still holds the inter token (Inter = CS) but it
is waiting for the intra token (Intra = REQ) in order to be able to satisfy the
inter algorithm pending requests. Upon obtaining the intra token, the coor-
dinator can grant the inter token to the requesting coordinator by calling the
CS Release() operation of the inter algorithm. It returns to the OUT state
where it holds the intra token (Intra = CS) but not the inter token (Inter =
NO REQ).

It is worth remarking that only one coordinator can be either in the IN or
in the WAIT FOR OUT global state at any given time. All the other nodes
are either in the OUT or in the WAIT FOR IN global state.

Synchronization protocols for sharing resources in grid environments 43

2.5 Composition properties and its natural effects

In order to show how much our composition approach reduces both the
number of messages exchanged between application processes and the delay
for a process to get access to the critical section, we are going to discuss an ex-
ample of an application execution that uses our mutual exclusion composition
protocol. Figure 2.5 shows such an example. It consists of a Grid composed
of four three-node clusters. Each cluster i has two application nodes Ai and
Bi and one coordinator node Ci. For the sake of simplicity, we consider that
a token-based mutual exclusion algorithm that broadcast requests, such as
Suzuki-Kasami algorithm [Suzuki and Kasami, 1985] (see Section 2.2), runs
on both the intra and inter levels of the composition. All the effects described
below then correspond to the gain in terms of number of messages and/or ac-
cess waiting time of the composition protocol when compared to the original
broadcast request mutual exclusion algorithm, i.e., if the latter, called the flat
algorithm, was executed by all processes without a composition approach.

As we can observe in Figure 2.5(a), at the beginning of the execution, node
A1 keeps the intra token of cluster 1 and the coordinator C1 keeps the inter
token. Intra tokens of clusters 2, 3, and 4 are respectively held by coordinators
C2, C3, and C4.

2.5.1 Filtering and aggregation

Suppose that node B3 wants to execute the critical section. It then broad-
casts its request at intra level to all the nodes of its own cluster including the
local coordinator C3 (Figure 2.5(b)). Upon receiving the request, C3 changes
its state to WAIT FOR IN , forwards the request to all other coordinators
and waits for the inter token. Only the coordinator C1 will forward the request
to the application nodes of its cluster by calling the CS Request () operation
of its intra algorithm. The other coordinators C2 and C4 will do nothing since
they are in the OUT state and none of the application nodes of their clusters
are in the critical section. The request was not broadcast in these two clusters
and thus the number of intra cluster sent messages is reduced when compared
to the flat algorithm. We denote such intra cluster message reduction the
natural filtering effect of the composition.

A second effect of the composition is the natural aggregation of the
intra requests. Before node B3 gets the intra token, suppose that node B2

calls the CS Request() operation (Figure 2.5(c)). Hence, a request message is
broadcast to all nodes of its cluster. When the coordinator C2 receives the
request, it forwards it to the other nodes of its cluster. However, since the
coordinator C1 is already in the WAIT FOR OUT state due to B3 request,
it will not broadcast the request inside its cluster. Moreover, the request will
not be broadcast inside those clusters where there is no node executing the

44 Fundamentals of Grid Computing

Inter algorithm

Intra algo. 1

In
tra

al
go

.
2

Intra algo. 3

In
tra

al
go

.
4 C1

B1A1

C2

B2

A2

C3

B3 A3

C4

B4

A4

C1

C2

C3

C4

A1

C1

C2C

C3

(a) Initial state: A1 is in CS

C1

B1A1

C2

B2

A2

C3

B3 A3

C4

B4

A4

C1

C2

C3

C4

A1

C1

C2C

C3

B3

C3

C1

(b) Natural filtering of the requests

C1

B1A1

C2

B2

A2

C3

B3 A3

C4

B4

A4

C1

C2

C3

C4

A1

C1

C2C

C3

B3

C3

C1

B2

C

(c) intra requests natural aggregation

C1

B1A1

C2

B2

A2

C3

B3 A3

C4

B4

A4

C1

C2

C3

C4

A1

C1

C2C

C3

B3

C3

C1

B2

C

A3

(d) inter requests natural aggregation

C1

B1A1

C2

B2

A2

C3

B3 A3

C4

B4

A4

C1

C2

C3

C4C

C3

C1C1

B2

C

(e) Natural preemption

C1

B1A1

C2

B2

A2

C3

B3 A3

C4

B4

A4

C1

C2

C3

C4 C2C

C1C1

C3

A3

(f) Granting the token in the order of re-
quests

FIGURE 2.5: Example of execution.

Synchronization protocols for sharing resources in grid environments 45

critical, i.e., clusters C3 and C4.
Finally, suppose that a second application node of cluster 3, A3, also de-

cides to ask for the critical section. We observe in Figure 2.5(d) that the
request is not broadcast at the inter level of the composition. This happens
because the coordinator C3 is in the WAIT FOR IN state which means that
it has already sent a previous inter request which has not been satisfied yet.
Therefore, the composition approach naturally aggregates requests inside the
same cluster which reduces the number of inter cluster messages. This effect
is named the natural aggregation of the inter requests.

2.5.2 Preemption and structural effects

If we consider the previous execution, there are three concurrent pending
requests which were respectively issued by B3, B2, and A3. In the original flat
algorithm, the requests would be satisfied in the order, i.e., first B3’s request,
then B2’s request, and finally A3’s request. However, such an order forces the
token to cross clusters (Figure 2.5(f)): from cluster 1 to cluster 3 when A1

grants the token to B3, from cluster 3 to cluster 2 when B3 grants the token
to B2, and back to cluster 3 when B2 grants the token to A3. The round
trip time for the token’s travel between cluster 2 and 3 considerably increases
the time for a process to get access to the critical section. Contrarily to the
delay of a token request which can be overlapped by the duration of a critical
section execution, no process can execute a critical section during the token
transfer. Hence, reducing the delay of a token transfer has a direct impact on
the overall performance of the algorithm since the time during which a node
waits for the token will decrease as well.

Our composition protocol behaves differently (see Figure 2.5(e)). The hi-
erarchy of algorithms naturally reorder the requests, giving priority to lo-
cal requests over remote ones. When node A1 ends its critical section, it
calls CS Release() and grants the intra token to C1 which in its turn sends
the inter token to C3 by calling the CS Release() of the inter algorithm.
The coordinator C3 then grants the intra token of cluster 3 to node B3

(by calling CS Release() of the intra algorithm) and changes its state from
WAIT FOR IN to IN . At the same time, thanks to the coordinator C2, C3

knows that there is a pending request from B2, as explained above. Therefore,
by calling the CS Request() operation of the intra algorithm, C3 broadcasts a
request to all nodes of its cluster 3 in order to get the intra token. C3 then
changes its states to WAIT FOR OUT state.

Notice that when node B3 ends its critical section, there are two pending
requests: one from A3 and another from C3. By keeping the order of reception
of requests, B3 grants the intra token to A3 since it received A3’s requests
before C3’s request. This means that without changing the original intra
algorithm, the request of A3 will be satisfied before the request of B2 thus
avoiding the aforementioned round trip travel time of the inter token between
clusters 2 and 3. At the end of the critical section, A3 grants the intra token to

46 Fundamentals of Grid Computing

C3, since requests are satisfied in order. Having the intra token, C3 grants the
inter token to C2 by calling the CS Release() operation of the inter algorithm.
Then, the nodes of cluster 2 can execute their critical section, i.e., B2 in this
example.

The reordering of the critical section accesses is due to the composition
approach which prioritizes all the local requests of a cluster as soon as the
latter gets the inter token. This mechanism optimizes the requests scheduling
and can be seen as a “natural” scheduler because local requests preempt
the critical section accesses over remote application node requests. Based on
system taxonomy, we will refer to it as the ‘‘natural” preemption effect of the
composition.

2.5.3 Natural effects of composition

Based on the previous example, we have discussed the effects induced by
the mutual exclusion synchronization composition protocol. These effects are
not due to the mechanisms added to coordinate at the different levels but
they are a consequence of both the inherent hierarchical topology of the Grid
and the use of coordinator processes. For these very reasons, we qualify them
as “natural effects.” These effects either reduce the number of sent messages
or the time for a process to get to the CS.

Some of the above explained effects significantly reduce the mean number
of sent messages which are required to get the critical section:

• Natural filter effect: requests are broadcast only in the last cluster
which has executed the CS.

• Natural aggregation of inter requests: there is at most one broad-
cast in the inter algorithm for multiple concurrent requests issued from
application nodes of the same cluster.

• Natural aggregation of the intra requests: inside the last cluster
which has executed the CS, there is at most one broadcast of the intra
algorithm of this cluster for all the requests forwarded by the other
clusters.

The other effects directly reduce the mean CS access delay:

• Natural preemption: all pending requests of a cluster will be satisfied
before the coordinator takes back the intra token and releases the inter
token.

• Structural effect: In the flat algorithms, the delay for an application
process to obtain the CS is proportional to the number of nodes of the
whole system. On the other hand, the hierarchical structure of the Grid
naturally reduces the number of application nodes in each instance of
the algorithms. Therefore, the mentioned delay is reduced.

Synchronization protocols for sharing resources in grid environments 47

In conclusion, all theses effects improve the performances of the application
over the flat algorithms. However, the overload of the composition should
be taken into account, i.e., coordinators add a latency time and processor
consumption to the system. The next section compares and shows the real
gain of the hierarchical compositions over flat algorithms.

2.6 Performance evaluation

This section presents some performance evaluation results conducted on the
French large-scale Grid’5000 [Cappello et al., 2006]. Some preliminary results
have been presented in [Sopena et al., 2007] and [Sopena et al., 2008a].

Grid’5000 is a large-scale grid experimental testbed. It comprises 17 clusters
located in 9 different cities all over France. Whichever the cluster, every node
has a Bi-Opteron CPU and 2GB of RAM. Clusters are connected by dedicated
10Gb/s bandwidth links.

Our experiments used 9 of the 17 clusters, each one with 20 nodes, located in
a different city. Figure 2.1 presents the average latency between the clusters.

Our performance tests aim at comparing the efficiency of some mutual
exclusion algorithm compositions considering applications with different de-
grees of parallelism. The basic algorithms that we have chosen are Mar-
tin’s [Martin, 1985], Naimi-Tréhel’s [Naimi and Tréhel, 1996], and Suzuki-
Kasami’s [Suzuki and Kasami, 1985] presented in Section 2.2.

2.6.1 Experiment parameters

The mutual exclusion algorithms as well as the coordinator are written in
C using UDP sockets. An application process that runs on a single node
executes 100 critical sections. Each of them lasts 10ms, which is the same
order of magnitude as a data packet hop time between two clusters. Every
experiment was executed 10 times and the presented results represent the
average value.

An application behavior is characterized by:

- α: time taken by a node to execute the critical section;

- β: mean time interval between the release of the CS by a process and
its next request.

- ρ: the ratio β/α, which expresses the frequency with which the critical
section is requested.

We have developed several applications having low, intermediate, and high
degrees of parallelism.

48
Fu

nd
am

en
ta

ls
of

G
ri

d
C
om

pu
ti
ng

��������from
to Orsay Grenoble Lyon Rennes Lille Nancy Toulouse Sophia Bordeaux

Orsay 0.034 15.039 9.128 8.881 4.489 95.282 15.556 20.239 7.900
Grenoble 14.976 0.066 3.293 15.269 12.954 13.246 10.582 9.904 16.288

Lyon 9.136 3.309 0.026 12.672 10.377 10.634 7.956 7.289 10.078
Rennes 8.913 15.258 12.617 0.059 11.269 11.654 19.911 19.224 8.114
Lille 10.000 10.001 10.001 10.001 0.001 10.001 20.000 20.001 10.001

Nancy 5.657 13.279 10.623 11.679 9.228 0.032 98.398 17.215 12.827
Toulouse 15.547 10.586 7.934 19.888 19.102 17.886 0.043 14.540 3.131
Sophia 20.332 9.889 7.254 19.215 16.811 17.238 14.529 0.051 10.629

Bordeaux 7.925 16.338 10.043 8.129 10.845 12.795 3.150 10.640 0.045

Table 2.1: Grid’5000 RTT latencies (average ms).

Synchronization protocols for sharing resources in grid environments 49

Considering N as the total number of application processes (180 in our
experiment), the three degrees of parallelism can be expressed respectively
by:

- Low Parallelism: ρ ≤ N : An application where the majority of ap-
plication processes request the critical section. Thus, almost all coordi-
nators wait for the inter token in the inter algorithm. In other words,
almost all clusters have one or more application processes in the request-
ing state.

- Intermediate parallelism: N < ρ ≤ 3N : A parallel application where
some sites compete to get the CS. Only some coordinators are in the
requesting state with respect to the inter algorithm on the whole Grid,
i.e., just some clusters have one or more application that request the CS.

- High Parallelism: 3N ≤ ρ: A highly parallel application where con-
current requests to the CS are rare. The whole number of requesting
application processes is small and usually distributed over the Grid.
Hence, only one or a few clusters have one or more application processes
in the requesting state with regard to the inter algorithm.

The performance of a mutual exclusion algorithm is usually measured by the
number of messages exchanged per critical section and the delay for getting
access to the shared resource, i.e., the time interval between the moment a
node requests the CS and the moment it gets it. The latter, which we called
the obtaining time in this paper, comprises the delay for transmitting a token
request Treq plus the delay for granting the token Ttoken. However, if the time
for waiting for the current pending requests TpendCS is higher than Treq, the
obtaining time is equal to TpendCS plus Ttoken. Thus, the three metrics that
we considered are: the obtaining time, i.e., the number of sent messages,
and the standard deviation of the obtaining time.

For the sake of simplicity, we call the Naimi-Tréhel and Suzuki-Kasami
algorithms respectively Naimi’s and Suszuki’s and for all figures of this section
we have adopted the notation “Intra algorithm-Inter Algorithm” to denote a
two level algorithm composition. For instance, “Naimi-Martin” denotes a
composition where Naimi-Tréhel’s algorithm is used as the intra algorithm of
every cluster and Martin’s algorithm as the inter algorithm.

2.6.2 Performance results: composition study

In this section we present evaluation performance results by composing the
three algorithms described in Section 2.2 with different application behaviors.

The abscissae of the curves always represent the ρ parameter (degree of
parallelism). Hence, when analyzing the curves the reader must keep in mind
that when ρ increases, the number of processes that concurrently request the
critical section decreases. As we observed that the inter algorithm has a much

50 Fundamentals of Grid Computing

stronger influence in the overall performance than the intra algorithm, the
experiments of Sections 2.6.2.1 and 2.6.2.2 have been performed by fixing the
latter to Naimi’s algorithm. Therefore, the variation of application processes
obtaining time and number of inter cluster sent messages is only due to the
inter algorithm. The latter comprises the number of messages for delivering
inter token requests plus the number of messages for granting the inter token.
The impact of the intra algorithm choice on the overall performance of our
composition approach as well as the advantages of choosing Naimi’s for the
intra algorithm are explained in Section 2.6.2.4.

2.6.2.1 Obtaining time of application processes

We consider the following notations:

- T : average message delay for transmitting a message between two coor-
dinators;

- Treq: average message delay for transmitting an inter token request
message from a coordinator to the coordinator that will grant it the
token.

- Ttoken: average message delay for granting the token between the current
coordinator token holder and the requesting coordinator;

- TpendCS: average delay for satisfying all the current pending inter token
requests before satisfying the studied inter token request.

 0.01

 0.1

 1

 10

N/2 N 2N 3N 4N 5N

O
bt

ai
ni

ng
 ti

m
e

(s
ec

on
ds

)

Rho

Naimi
NaimiMartin
NaimiNaimi

NaimiSuzuki

(a) Obtaining time average

 1000

 10000

 100000

 1e+06

N/2 N 2N 3N 4N 5N

N
um

be
r

of
 IN

T
E

R
 m

es
sa

ge
s

Rho

Naimi
NaimiMartin
NaimiNaimi

NaimiSuzuki

(b) Total sent inter-messages

FIGURE 2.6: Composition evaluation.

In terms of obtaining time, a first remark is that for all curves the obtaining
latency decreases with the decreasing of concurrency, i.e., the reduction of

Synchronization protocols for sharing resources in grid environments 51

the waiting queue size. The clustering of intra token requests has also an
advantageous impact on the obtaining time when compared to the original
algorithm, as we can observe in Figure 2.6.(a). Such a benefit depends on ρ.

In highly parallel applications where there is almost no concurrency among
accesses to the shared resource (ρ ≥ 3N), the obtaining time of a coordina-
tor comprises the request message delay Treq plus the token message delay
Ttoken. However, in applications with high concurrency for accessing a shared
resource, as in low parallel applications (ρ ≤ N), a coordinator must wait for
all the other pending CS requests to be satisfied before getting the token. This
delay, which we called TpendCS, is usually higher than the one for sending the
request Treq and completely overlaps Treq. Therefore, the obtaining time of
a coordinator consists of TpendCS plus the token message delay Ttoken. This
explains why the obtaining time tends to be higher when ρ ≤ N , since in this
case there are always many application processes in the requesting state, and
quite short when ρ ≥ 3N , since the number of waiting coordinators for the
token is small. Such a behavior can be observed in Figure 2.6.(a).

Low parallel application: We did not observe any significant difference
with respect to the average obtaining time of all three algorithms of Figure
2.6.(a) for ρ ≤ N . As explained above, in this case, the obtaining time of
a coordinator is equal to TpendCS plus Ttoken. TpendCS is the same for all
three inter algorithms while Ttoken is reduced to T in the case of Naimi’s (a
send to the next node) and Suzuki’s (a send to the first node of Q) algo-
rithms. In Martin’s algorithm, the current token holder grants the token to
its predecessor in the ring. However, as this node has a very high probability
of having requested the token too, the token granting delay also takes one
message (T token = T), as in the other two algorithms.

As concurrency among accesses to the shared resource is quite high in low
parallel applications, the obtaining time does not vary much. Such a behav-
ior will be explained in Section 2.6.2.3, where the standard deviation of the
obtaining time is discussed.

Intermediate parallel application: A first remark is that Naimi-Naimi’s
obtaining time is comparable to Naimi-Suzuki’s (see Figure 2.6.(a) for N <
ρ ≤ 3N) whereas Naimi-Martin’s is slightly higher. This is explained by the
fact that when using Martin’s as the inter algorithm, there are some coor-
dinators waiting for the inter token which implies that their Treq can still
be covered up by their TpendCS. Thus, similarly to low parallel applications,
the main factor for the obtaining time is Ttoken. Suzuki’s and Naimi’s inter
algorithm invariably need only one message, whose delay is T while Martin’s
needs more than one message in average. For Martin’s, the smaller is the
number of pending requests, the lower is the probability that a second coor-
dinator has also requested the token and the higher is the probability that

52 Fundamentals of Grid Computing

Ttoken increases. Therefore, Martin’s algorithm is not suitable as the inter
algorithm for this type of application.

Highly parallel application: In the case of applications with high degree
of parallelism, CS requests from application processes are quite sparse. As
explained above, in such applications, the obtaining time of a coordinator
comprises the requesting message delay Treq plus the inter token message
delay Ttoken. As the application does not present much concurrency, Ttoken

is equal to T to both Naimi’s and Suzuki’s algorithms while for Martin’s it is
equal to N/2 ∗ T .

In terms of Treq, the most effective inter algorithm is Suzuki’s, since a CS
requesting is performed by a single message sent in parallel to each coordi-
nator, taking just T . As Naimi’s uses a tree to route requests, the average
delay for a request travel is log(N) ∗ T between coordinator nodes. The less
suitable algorithm is Martin’s. Since the number of requesting coordinator
tends to zero, a CS request tends to travel along the ring an average of N/2
successive hops, which implies a Treq of N/2 ∗ T . Hence, the impact of Treq

in the obtaining time of the three algorithms explains why Suzuki’s presents
the lowest obtaining time and Martin’s the highest one as observed in Figure
2.6.(a) for ρ ≥ 3N ,

We can summarize our study about the obtaining time by the Table 2.2.

��������������Composition
Parallelism

Low Intermediate High

Naimi-Suzuki TpendCS + T TpendCS + T T + T

Naimi-Martin TpendCS + T TpendCS + K ∗ T N ∗ T

Naimi-Naimi TpendCS + T TpendCS + T log(N) ∗ T + T

Table 2.2: Average token obtaining time per composition.

2.6.2.2 Number of inter-cluster sent messages

In Figure 2.6.(b), we can see that, independently of ρ, the original Naimi-
Tréhel always presents the same number of inter cluster sent messages
(O(log(N))). This constant behavior can be explained since the routing of
both a CS request and a token granting message from a node does not de-
pend on its location. A message is arbitrarily routed through nodes which are
within the same cluster or belong to different clusters. On the other hand,
when a compositional approach is used, inter cluster messages are managed
by coordinators which gather token request messages from application pro-
cesses into just one inter token request. Hence, the number of inter cluster
sent messages decreases when compared to the original algorithm, as we can

Synchronization protocols for sharing resources in grid environments 53

observe in the same figure for all three algorithm compositions. Nevertheless,
when applying our composition approach, the number of inter cluster sent
messages is not constant but increases with ρ.

When ρ is small, there is a lot of concurrent CS requests from application
processes of the same cluster which result in a single inter token request by
the coordinator of the cluster in question. In this particular case, we should
emphasize the advantage of using the Naimi-Naimi’s algorithm composition
compared to the original one. But when concurrency for the CS decreases,
the gathering of intra CS requests by a coordinator decreases as well which
implies results in more inter cluster requests.

In the case of Suzuki’s and Naimi’s inter algorithms, the number of sent
messages per inter token request of a coordinator consists of one message
for the grant of the inter token and respectively N messages and O(log(N))
messages for inter token request. Hence, in terms of number of inter cluster
sent messages, Naimi’s is more efficient than Suzuki’s, which can be observed
in the curves Naimi-Naimi and Naimi-Suzuki of Figure 2.6.(b). However, in
the case of Martin’s algorithm, that number depends on ρ. For low parallel
applications (ρ ≤ N), the probability of having all coordinators requesting
the inter token at a given time is high. Therefore, the grant of the inter token
takes just one message as well as a coordinator request since a second coordi-
nator which is in a requesting state does not forward a request, as explained
in 2.2.1. When the parallelism of the application increases, the number of
inter-cluster sent messages per inter token request increases as well. This
growth can be explained since the probability that some coordinator requests
the inter token decreases. Thus, the number of hops of a request message
increases proportionally, which generates more messages. In a highly paral-
lel application, a token request in Martin’s generates N/2 messages and the
grant of the token generates N/2 messages. By comparing Naimi-Martin and
Naimi-Naimi curves of Figure 2.6.(b), we can observe that for highly parallel
applications (ρ ≥ 3N), the number of inter cluster messages sent by Martin’s
is slightly higher than Naimi’s.

The number of inter cluster messages can be summarized by the Table 2.3.

��������������Composition
Parallelism

Low Intermediate High

Naimi-Suzuki N + 1 N + 1 N + 1

Naimi-Martin 2 2 < K < N (N/2) + (N/2)

Naimi-Naimi log(N) + 1 log(N) + 1 log(N) + 1

Table 2.3: Average number of inter cluster messages per composition.

54 Fundamentals of Grid Computing

2.6.2.3 Standard deviation

 0.01

 0.1

 1

N/2 N 2N 3N 4N 5N

S
ta

nd
ar

d
de

vi
at

io
n

ob
ta

in
in

g
tim

e

Rho

Naimi
NaimiMartin
NaimiNaimi

NaimiSuzuki

(a) standard deviation (σ)

 0.01

 0.1

 1

N/2 N 2N 3N 4N 5N

R
el

at
iv

e
st

an
da

rd
 d

ev
ia

tio
n

Rho

Naimi
NaimiMartin
NaimiNaimi

NaimiSuzuki

(b) relative standard deviation (σ/x̄)

FIGURE 2.7: Obtaining time standard deviation.

In order to analyze more precisely the variation of the obtaining time, its
standard deviation σ has been measured, as shown in Figure 2.7.(a). A first
remark when observing this figure is that σ is in fact quite significant for all
ρ values compared to the average CS time. This is due to the communication
heterogeneity of the Grid platform: inter cluster latencies are much higher
than intra cluster ones and the former are not uniform with regard to two
different clusters, as described in Figure 2.1.

To measure the importance of σ and to evaluate the side effects of the
average obtaining time variations, we choose to study the relative deviation
time σr = (σ/x̄), which is the ratio of the standard deviation σ to the average
obtaining time x̄ – see Figure 2.7.(b). The original Naimi’s algorithm relative
deviation σr is always smaller than that of any composition of algorithms.
This happens because in the case of Naimi’s, the path covered by the token is
independent of the actual token position. However, in our approach, a request
can have one of the following two delays: a very short one when the token is
already in the cluster of the requesting node, and a long one when the token
is not in the same cluster.

All curves of the Figure 2.7.(b) have the same form: a significant growth
for the lower values of ρ and then a stabilizing phase. This growth of σr can
be explained by two phenomena: the overlapping of the requesting trip time
(Treq) by the process time of the requesting queue and the sequential ordering
due to the extreme number of requests (for ρ = N/2).

With respect to the difference between the compositions curves, we can note
that they are equivalent for lower values of ρ. For the intermediate parallel
degree (N < ρ ≤ 3N), Naimi-Martin’s has the worst absolute standard devia-

Synchronization protocols for sharing resources in grid environments 55

tion due to its logical ring structure while Naimi-Suzuki’s and Naimi-Naimi’s
present a better absolute standard deviation. However, Naimi-Suzuki exhibits
a better relative standard deviation. For ρ > 3N , Naimi-Suzuki has the small-
est σ as shown in Figure 2.7.(a).

2.6.2.4 Intra algorithm choice

We have carried out several experiments aiming at choosing the best intra
algorithm with respect to the behavior of the applications. In order not to
load Figure 2.8, we just show the curves when the inter algorithm is fixed to
Naimi’s. Experiments with the other two algorithms have presented the same
behavior.

 0.01

 0.1

 1

 10

N/2 N 2N 3N 4N 5N

O
bt

ai
ni

ng
 ti

m
e

(s
ec

on
ds

)

Rho

MartinNaimi
NaimiNaimi

SuzukiNaimi

(a) Obtaining time average

 0.01

 0.1

 1

N/2 N 2N 3N 4N 5N

R
el

at
iv

e
st

an
da

rd
 d

ev
ia

tio
n

Rho

MartinNaimi
NaimiNaimi

SuzukiNaimi

(b) Obtaining time standard deviation

FIGURE 2.8: Intra algorithm.

In terms of the number of intra cluster messages, all algorithms have an
acceptable local overhead. One could argue that since Suzuki’s algorithm
sends a much higher number of request messages per critical section than the
other two algorithms, it might be not chosen as the intra algorithm. However,
as nodes within a cluster are linked by a LAN, a multicast primitive could be
used to diffuse the request which will significantly reduce the number of sent
messages.

Concerning the obtaining time (Figure 2.8.(a)), all algorithms present al-
most the same curve, independently of ρ with a slight advantage for Suzuki-
Naimi. Still, the latter has a weaker regularity (Figure 2.8.(b)) than Naimi-
Naimi. This difference is due to the lack of fairness of Suzuki’s algorithm
when appending nodes to the token queue Q since it does not consider the
arrival time of the requests.

Therefore, the regularity and performance of Naimi’s algorithm justify
choosing it as the intra algorithm in the experiments of the previous sections.

56 Fundamentals of Grid Computing

2.6.3 The impact of the grid architecture

The current performance evaluation aims at studying and comparing the
influence of the Grid architecture in both the original Naimi-Tréhel mutual
exclusion algorithm (flat algorithm) and in our composition approach using
Naimi-Tréhel at both levels (hierarchical algorithm). To this end, the number
of nodes of the Grid was set to 120 but the number of clusters varied: 2, 3,
4, 6, 8, 12, 20, 30, 40, 60, and 120. The experiments were conducted on a
dedicated cluster of twenty-four Bi-Xeon 2.8 Ghz with 2GB of RAM machines
where a Grid environment with 120 virtual nodes was emulated. There is one
process per virtual node. For those configurations where the number of virtual
clusters is greater than the number of available machines, nodes of the same
virtual cluster run on the same machine. This approach prevents side effects
of intra cluster communication.

Network latencies between clusters were emulated by using the flexible tool
DUMMYNET [Rizzo, 1997] which allows injection of network delay, band-
width limitation, and packet loss. Hence, for emulating several virtual clus-
ters, every message exchanged between two virtual clusters goes through a
dedicated machine, a P4 3Ghz machine, which runs a FreeBSD DUMMYNET.
Intra cluster communication latency is 0.5ms while inter cluster latency is
20ms. Machines are connected by a 140 Gbits/s Ethernet switch.

In order to evaluate the flat algorithm as well as the hierarchical one, two
metrics have been considered: (1) the number of inter-cluster messages and
(2) the obtaining time.

Considering N = 120, for each experiment, we have measured the obtaining
time (Figures 2.9(a), 2.9(b), and 2.9(c)) and the number of inter cluster mes-
sages (Figures 2.9(d), 2.9(e), and 2.9(f)) for both algorithms when the number
of cluster ranges from 2 to 120. Figures 2.9(a) and 2.9(d) correspond to a low
parallel degree application (ρ = N/2); Figures 2.9(b) and 2.9(e) correspond
to an intermediate parallel degree application (ρ = 2N); Figures 2.9(c) and
2.9(f) correspond to a high parallel degree application (ρ = 5N).

2.6.3.1 Flat algorithm

We start by studying the impact of the number of clusters of the Grid
on both the obtaining time and the number of inter cluster messages in the
original flat Naimi-Tréhel algorithm. We can observe in Figure 2.9 that the
curves related to this algorithm have a quite similar form. Independently of ρ,
all curves present a hyperbolic form: a significant growth when the number of
clusters varies from 2 to 12. This growth is then strongly reduced, becoming
almost null, when the number of clusters is greater than 40.

In order to explain the form of such curves, we propose to theoretically
study the frequency with which a flat mutual exclusion algorithm sends an
inter cluster message, i.e., the probability P that the destination node of a
message does not belong to the same cluster of the message’s sender. To
this end, we consider a Grid architecture composed of N nodes uniformly

Synchronization protocols for sharing resources in grid environments 57

distributed over c clusters. Without loss of generality, we also suppose that
a node can send a message to itself. This assumption models two successive
accesses to the critical section by the same node. Then, we get the following
probability P :

P =
N − N

c

N
= 1 − 1

c
.

This equation is totally in accordance with the form of the curves of Figures
2.9 for the flat algorithm. It also shows that such a probability does not
depend on the number of nodes N whenever they are uniformly distributed
over the Grid, i.e., it depends only on c. A last important conclusion from
this equation is that the clustering effect due to the communication latency
heterogeneity of a Grid has a negligible impact on the order of CS accesses.
In other words, such a heterogeneity does not change the order of priority of
the requests in such a way that request from closer nodes would be satisfied
before distant ones.

In the above equation, any node can be chosen among N with the same
probability, independently of the Grid topology. Furthermore, if theoretical
curves were drawn from the equation, they would be similar to the ones of
Figure 2.9. Thus, we can deduce that the assumption of equiprobability is
reasonable and that the algorithm does not naturally adapt itself to the Grid
topology.

Let’s come back to the curves in order to study the impact of the number
of clusters with respect to the application behavior. The results of Figures
2.9(a), 2.9(b), and 2.9(c) show that the degree of parallelism of an application
has an impact on the obtaining time. Furthermore, the curves of Figures
2.9(d), 2.9(e), and 2.9(f) show that the parallelism degree of an application
has no influence on the number of inter cluster messages even if we observe a
small reduction of this number for low parallel applications.

2.6.3.2 Hierarchical algorithm

We are now going to study the impact of the Grid architecture on our hier-
archical approach. The number of clusters has an influence on the obtaining
time as well as in the number of inter clusters which increase with the num-
ber of clusters. However, if we exclude the configuration with one node per
cluster where there is in fact no hierarchy of communication at all, our ap-
proach always presents a smaller obtaining time and number of inter cluster
messages when compared to the flat algorithm. Notice that the benefit of
using our composition approach is considerable even for a Grid composed of
60 two-node clusters.

Since the topology of the Grid has not the same impact on our composi-
tion approach as on the flat algorithm, it would be interesting to study the
mean deviation between the hierarchical curves and the flat ones for both the
obtaining time and the number of inter cluster messages. Thus, based on the
curves of Figure 2.9, Figure 2.10 shows such mean deviations.

58 Fundamentals of Grid Computing

ρ = N/2 ρ = 2N ρ = 5N

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 20 40 60 80 100 120

O
bt

ai
ni

ng
 ti

m
e

(s
ec

on
ds

)

Number of clusters

Naimi
Naimi−Naimi

(a) Average Obtaining time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2 20 40 60 80 100 120

O
bt

ai
ni

ng
 ti

m
e

(s
ec

on
ds

)

Number of clusters

Naimi
Naimi−Naimi

(b) Average Obtaining time

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2 20 40 60 80 100 120

O
bt

ai
ni

ng
 ti

m
e

(s
ec

on
ds

)

Number of clusters

Naimi
Naimi−Naimi

(c) Average Obtaining time

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 2 20 40 60 80 100 120

N
um

be
r

of
 IN

T
E

R
 m

es
sa

ge
s

Number of clusters

Naimi
Naimi−Naimi

(d) Number of inter messages

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 2 20 40 60 80 100 120

N
um

be
r

of
 IN

T
E

R
 m

es
sa

ge
s

Number of clusters

Naimi
Naimi−Naimi

(e) Number of inter messages

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 2 20 40 60 80 100 120

N
um

be
r

of
 IN

T
E

R
 m

es
sa

ge
s

Number of clusters

Naimi
Naimi−Naimi

(f) Number of inter messages

FIGURE 2.9: Impact of the number of clusters.

In Figure 2.10, we can observe that the gain of our composition approach
increases when the number of clusters ranges from 2 to 12. This is in ac-
cordance with the curves of Figures 2.9 where the obtaining time as well the
number of inter cluster messages increase sharply for the original algorithm
but smoothly for our composition approach. Such a different behavior ex-
plains why the maximum mean deviation between the two curves is reached
with 12 clusters. Beyond this threshold value, the clustering effect neither has
an influence on the obtaining time nor on the number of inter cluster messages
since in our hierarchical approach the curves progressively increase while in
the curves of the flat algorithm remain linear. Thus, the respective mean de-
viations inversely decrease until they become null for the configuration where
each node represents a cluster (120 clusters).

We would like to theoretically evaluate the above threshold in a Grid com-
posed of N nodes uniformly divided into c clusters. Hence, similarly to Section
2.6.3.1, we need to find the probability P that a node sends an inter cluster
message in our own hierarchical approach on top of such a Grid. Without loss
of generality, we consider the case where the cluster locality is maximum, i.e.,
every time a coordinator of a cluster gets the inter token, all the N/c nodes
of this cluster execute a critical section which corresponds to a low parallel
application. Thus, the probability P is equal to the probability of executing
the last of the N/c critical section executions:

P =
1
N
c

=
c

N

Synchronization protocols for sharing resources in grid environments 59

ρ = N/2 ρ = 2N ρ = 5N

 0

 0.5

 1

 1.5

 2

 2.5

 2 20 40 60 80 100 120

O
bt

ai
ni

ng
 ti

m
e

(s
ec

on
ds

)

Number of clusters

Mean deviation

(a) Average obtaining time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 20 40 60 80 100 120

O
bt

ai
ni

ng
 ti

m
e

(s
ec

on
ds

)

Number of clusters

Mean deviation

(b) Average obtaining time

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 2 20 40 60 80 100 120

O
bt

ai
ni

ng
 ti

m
e

(s
ec

on
ds

)

Number of clusters

Mean deviation

(c) Average obtaining time

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 2 20 40 60 80 100 120

N
um

be
r

of
 IN

T
E

R
 m

es
sa

ge
s

Number of clusters

Mean deviation

(d) Number of inter messages

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 20 40 60 80 100 120

N
um

be
r

of
 IN

T
E

R
 m

es
sa

ge
s

Number of clusters

Mean deviation

(e) Number of inter messages

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 2 20 40 60 80 100 120

N
um

be
r

of
 IN

T
E

R
 m

es
sa

ge
s

Number of clusters

Mean deviation

(f) Number of inter messages

FIGURE 2.10: Mean deviation between the composition approach and the
original algorithm.

Therefore, the mean deviation E(c) between our composition approach and
the flat algorithm in function of the number of clusters c is equal to:

E(c) = 1 − 1
c
− c

N

and according to the derivative of E, the mentioned threshold, cthreshold, is
equal to:

E′(c) =
1
c2

− 1
N

= 0 ⇒ cthreshold =
√

N

Such an equation shows that the maximum benefit when using our com-
position approach is reached for a Grid architecture composed of

√
N nodes.

This result can be verified by the curves of Figure 2.10 since
√

120 = 10.95.
Consequently, for ρ = N/2 and ρ = 2N , the maximum mean deviation is
reached between 8 and 12 clusters. It is also worth noting that for low paral-
lel applications (ρ = 5N), the Grid architecture corresponding to the highest
benefit is equal to 6 clusters.

Finally, contrarily to the flat algorithm, the parallelism degree of an appli-
cation has an influence on our hierarchical approach. Indeed, we can observe
in the curves of Figure 2.9 that it becomes less effective with higher parallel
applications when the number of clusters increases, i.e., it does not present a
linear behavior anymore as it does with low parallel applications.

60 Fundamentals of Grid Computing

2.6.3.3 Heterogeneous grid architecture

In the previous section we have presented performance results related to
homogenous Grid architectures, i.e., topologies where the clusters have the
same number of nodes. However, in the case of heterogenous architecture,
it is very difficult to conduct the same performance experiments due to the
great number of possible topologies. Thus, we are going to present in this
section just a theoretical study. To this end, we consider a Grid composed
of n nodes and c clusters such that cluster i contains mi nodes (1 ≤ i ≤ c).
Notice that the probability that two nodes of different clusters communicate
does not depend on the number of clusters c anymore, but it is a function
of the distribution of the nodes among the c clusters. We denote M such a
distribution and we denote Mc the set of such distributions. Thus, we have:

P(M) =
c∑

i=1

(mi

n

)(n − mi

n

)

=
1
n2

c∑

i=1

(min) − 1
n2

c∑

i=1

m2
i

= 1 −
∑c

i=1 m2
i

(
∑c

i=1 mi)2

The probability that a message travels along the WAN (inter-cluster network)
is thus proportional to the ratio of the sum of squares to the square of the
sum. Such a probability can then be raised by the Cauchy-Schwarz inequality
([Schwarz, 1888]):

Cauchy-Schwarz inequality ⇒
(

c∑

i=1

mi × 1

)2

≤
(

c∑

i=1

m2
i

)(
c∑

i=1

12

)

⇒
(

c∑

i=1

mi

)2

≤ c

c∑

i=1

m2
i

⇒ 1
c
≤

∑c
i=1 m2

i

(
∑c

i=1 mi)2

⇒ ∀c, ∀M ∈ Mc, P(M) ≤ 1 − 1
c

Hence, the probability of sending a message over the WAN for the set of
configurations Mc which contains c clusters can also be raised by the constant
1 − 1/c. Such a value holds when a homogenous configuration Hc ∈ Mc is
considered (see Section 2.6.3.1). We have thus the following threshold:

∀c, ∀M ∈ Mc, P(M) ≤ P (Hc)

Synchronization protocols for sharing resources in grid environments 61

We are going now to study how the probability P(M) varies according to
different heterogeneous Grid topologies for a given number of clusters. The
goal of this study is to analyze how fast the cost of using a Grid converges to
its maximum (homogenous clustering architecture).

n − mp(c − 1)

mp

mp

mp

c − 1 clusters

(a) c − 1 small clusters of mp nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 20 40 60 80 100 120

P
ro

ba
bi

lit
é

d’
ut

ili
se

r
le

 W
A

N

Nombre de clusters

Homogène
Des petits de 1
Des petits de 2
Des petits de 4

(b) Impact of smallest clusters

n−c
k + 1

n−c
k + 1

1

1

1

k clusters c − k clusters

(c) k big clusters and c − k isolated
nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 20 40 60 80 100 120

P
ro

ba
bi

lit
é

d’
ut

ili
se

r
le

 W
A

N

Nombre de clusters

Homogène
1 Gros
2 Gros
4 Gros

(d) Impact of biggest clusters

FIGURE 2.11: Probability of using the WAN for different grid topologies.

Firstly, we consider a Grid composed of a single big cluster of size mb, and
c − 1 small ones of size is ms. (Figure 2.11(a)). Since the number of nodes
does not change, the size mb of the big cluster depends on c and ms, i.e., it is
equal to the number of machines that have been not distributed among the
c−1 small clusters: mb = n−ms(c−1). Figure 2.11(b) shows the probability
of sending a message over the WAN for four configuration: ms = 1, ms = 2,
ms = 4, and ms = n/c (homogenous configuration). The curves represent
the impact of the minimum size of the clusters on the performance of the
algorithms. We could note that when there are n − 1 clusters composed of
one node, the probability of using the WAN increases almost linear when the
number of clusters increases as well. On the other hand, if the size of the

62 Fundamentals of Grid Computing

small clusters slightly increases, such a probability increases very fast.
We are going to now study the probability of sending a message over the

WAN on a topology composed of k big clusters of the same size mb. The other
ones are small clusters of size ms composed of just one node, i.e., ms = 1
(Figure 2.11(c)). It is worth remarking that the size mb of the k big clusters
reduces when k increases: mb = (n − c)/k + 1. Figure 2.11(d) shows the
probability of sending a message over the WAN for four configurations: k = 1,
k = 2, k = 4, and k = c (homogenous configuration). Similarly to the previous
results, the curves prove that by increasing the number of clusters, the same
results obtained for homogeneous configurations hold very fast. For instance,
having four big clusters (k = 4) among 20 clusters, the probability of sending
a message over the WAN is 80%.

Based on both theoretical studies, we can conclude that if we exclude the
case of a Grid composed of a single big cluster and n − 1 small clusters of
one node, the probability of sending a message over the WAN on a heteroge-
neous Grid topology tends to be the same as the one on a homogeneous Grid
topology.

2.7 Concluding remarks

We have proposed a new approach for composing mutual exclusion algo-
rithms in order to offer mutual exclusion service for Grid environments where
application processes are spread over several clusters interconnected by long
distance links. Such a composition is totally transparent to the application
and any classical token-based algorithm can be chosen as both inter and intra
algorithms. Our two-level approach is scalable and can be easily extended to
multiple levels of algorithm hierarchy which render it extremely suitable for
large-scale systems.

Performance evaluation results from experiments conducted on both the
real Frenchwide Grid’5000 and an emulation platform show that the degree
of parallelism of an application has an impact on the choice of the inter
algorithm. Such a choice depends on the logical topology that the algorithm
takes into account for forwarding the token request. To this end, Martin’s,
Naimi-Tréhel’s, and Suzuki-Kasami’s algorithms which respectively consider a
ring, a tree, and a complete graph topology were used as the inter algorithm
in our tests. When the system is stressed (the rate of CS request is high
and there are requests in all clusters), a ring topology is the most effective;
when the CS rate is lower (i.e., the application exhibits a higher degree of
parallelism) both the tree and the complete graph configurations are more
efficient since they reduce the number of hops of CS request messages. Such
results prove that our approach provides a framework for easily choosing the
best two algorithms combination for composing mutual exclusion services.

Synchronization protocols for sharing resources in grid environments 63

2.8 References

[Baarir et al., 2008] Baarir, S., Sopena, J., and Legond, F. (2008). On the
formal verification of a generic hierarchical mutual exclusion algorithm. In
Proceedings of the 28th International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE’08), Lecture Notes in Com-
puter Sciences, Tokyo, Japan. Springer-Verlag.

[Bertier et al., 2004] Bertier, M., Arantes, L., and Sens, P. (2004). Hierar-
chical token-based mutual exclusion algorithms. In Proceedings of the 4th
IEEE/ACM International Symposium on Cluster Computing and the Grid.
IEEE Computer Society.

[Bertier et al., 2006] Bertier, M., Arantes, L., and Sens, P. (2006). Dis-
tributed mutual exclusion algorithms for grid applications: a hierarchical
approach. Journal of Parallel and Distributed Computing, 66:128–144.

[Cappello et al., 2006] Cappello, F., Desprez, F., Dayde, M., Jeannot, E.,
Jegou, Y., Lanteri, S., Melab, N., Namyst, R., Primet, P. V.-B., Richard,
O., Caron, E., Leduc, J., and Mornet, G. (2006). Grid5000: a nation
wide experimental grid testbed. International Journal on High Performance
Computing Applications, 20(4):481–494.

[Chang et al., 1990a] Chang, I., Singhal, M., and Liu, M. (1990a). A hybrid
approach to mutual exclusion for distributed system. In Proceedings of the
IEEE International Computer Software and Applications Conference, pages
289–294. IEEE Computer Society.

[Chang et al., 1990b] Chang, I., Singhal, M., and Liu, M. (1990b). An im-
proved o(log(n)) mutual exclusion algorithm. In Proceedings of the 1990
International Conference on Parallel Processing, pages 295–302.

[Erciyes, 2004] Erciyes, K. (2004). Distributed mutual exclusion algorithms
on a ring of clusters. In Proceedings of the International Conference on
Computational Science and its Applications, volume 3045 of Lecture Notes
in Computer Sciences, pages 518–527.

[Housni, 2002] Housni, A. (2002). Introduction de la priorité dans les algo-
rithmes d’exclusion mutuelle répartis. PhD thesis, Université de Franche-
Comté.

[Housni and Tréhel, 2001] Housni, A. and Tréhel, M. (2001). Distributed mu-
tual exclusion by groups based on token and permission. In International
Conference on Computational Science and its Applications, pages 26–29.

[Lamport, 1978] Lamport, L. (1978). Time, clocks, and the ordering of events
in a distributed system. Communications of ACM, 21(7):558–565.

64 Fundamentals of Grid Computing

[Lann, 1978] Lann, G. L. (1978). Algorithms for distributed data-sharing
systems which use tickets. In Proceedings of the 3rd Berkeley Workshop on
Distributed Data Management and Computer Networks, pages 259–272.

[Loallemi et al., 2006] Loallemi, M., Mansouri, Y., Rasoulifard, A., and
Naghibzadeh, M. (2006). Fault-tolerant hierarchical token-based mutual
exclusion algorithm. In Proceedings of the International Symposium in
Communications and Information Technologies, pages 171–176.

[Madhuram and Kumar, 1994] Madhuram and Kumar (1994). A hybrid ap-
proach for mutual exclusion in distributed computing systems. In Proceed-
ings of the IEEE Symposium on Parallel and Distributed Processing. IEEE
Computer Society.

[Maekawa, 1985] Maekawa, M. (1985). A square root n algorithm for mu-
tual exclusion in decentralized systems. ACM Transactions on Computer
Systems, 3(2):145–159.

[Martin, 1985] Martin, A. J. (1985). Distributed mutual exclusion on a ring
of processes. Science of Computer Programming, 5(3):265–276.

[Mueller, 1998] Mueller, F. (1998). Prioritized token-based mutual exclusion
for distributed systems. In Proceedings of the International Parallel Pro-
cessing Symposium, pages 791–795.

[Naimi and Tréhel, 1996] Naimi, M. and Tréhel, M. (1996). A log(n) dis-
tributed mutual exclusion algorithm based on the path reversal. Journal of
Parallel and Distributed Computing, 34:1–13.

[Omara and Nabil, 2002] Omara, F. and Nabil, M. (2002). A new hybrid
algorithm for the mutual exclusion problem in the distributed systems.
International Journal of Intelligent Computing and Information Sciences,
2(2):94–105.

[Raymond, 1989] Raymond, K. (1989). A tree-based algorithm for distributed
mutual exclusion. ACM Transactions on Computer Systems, 7(1):61–77.

[Ricart and Agrawala, 1983] Ricart, G. and Agrawala, A. (1983). Author re-
sponse to ‘on mutual exclusion in computer networks’ by Carvalho and
Roucairol. In Communications of ACM, volume 26/2, pages 147–148.

[Ricart and Agrawala, 1981] Ricart, G. and Agrawala, A. K. (1981). An opti-
mal algorithm for mutual exclusion in computer networks. Communications
of ACM, 24(1):9–17.

[Rizzo, 1997] Rizzo, L. (1997). Dummynet: a simple approach to the eval-
uation of network protocols. ACM Computer Communication Review,
27(1):31–41.

Synchronization protocols for sharing resources in grid environments 65

[Schwarz, 1888] Schwarz, H. A. (1888). Ueber ein flachen kleinsten flachen-
inhalts betreffendes problem der variationsrechnung. Acta Societatis scien-
tiarum Fennicae, XV:318.

[Singhal, 1992] Singhal, M. (1992). A dynamic information structure for mu-
tual exclusion algorithm for distributed systems. IEEE Transactions on
Parallel and Distributed Systems, 3(1):121–125.

[Sopena et al., 2005] Sopena, J., Arantes, L., Bertier, M., and Sens, P. (2005).
A fault-tolerant token-based mutual exclusion algorithm using a dynamic
tree. In Proceedings of the Euro-Par 2005 Conference on Processing, volume
3648/2005, pages 654–663, Heidelberg, Deutschland. Springer-Verlag.

[Sopena et al., 2008a] Sopena, J., Arantes, L., Legond, F., and Sens, P.
(2008a). The impact of clustering on token-based mutual exclusion al-
gorithms. In Proceedings of the Euro-Par 2008 Conference on Processing,
volume 3648/2005, Heidelberg, Deutschland. Springer-Verlag.

[Sopena et al., 2009a] Sopena, J., Arantes, L., Legond, F., and Sens, P.
(2009a). Building effective mutual exclusion services for grids. Journal
of Supercomputing.

[Sopena et al., 2006a] Sopena, J., Arantes, L., and Sens, P. (2006a). Perfor-
mance evaluation of a fair fault-tolerant mutual exclusion algorithm. In
Proceedings of the 25th IEEE Symposium on Reliable Distributed Systems
(SRDS 2006), pages 225–234, Los Alamitos, CA, USA. IEEE Computer
Society.

[Sopena et al., 2006b] Sopena, J., Arantes, L., and Sens, P. (2006b). Un al-
gorithme équitable d’exclusion mutuelle tolérant les fautes. In Actes de
la 5ème Conférence Française sur les Systèmes d’Exploitation (CFSE’06),
pages 97–107, Perpignan, France.

[Sopena et al., 2009b] Sopena, J., Baarir, S., and Legond, F. (2009b).
Vérification formelle d’un algorithme générique et hiérarchique d’exclusion
mutuelle. Technique et Science Informatique, 28.

[Sopena et al., 2007] Sopena, J., Legond, F., Arantes, L., and Sens, P. (2007).
A composition approach to mutual exclusion algorithms for grid applica-
tions. In Proceedings of the 36th International Conference on Parallel Pro-
cessing (ICPP07), pages 65–75. IEEE Computer Society.

[Sopena et al., 2008b] Sopena, J., Legond, F., Arantes, L., and Sens, P.
(2008b). Composition d’algorithmes d’exclusion mutuelle pour les grilles
de calcul. In Actes de la 6ème Conférence Française sur les Systèmes
d’Exploitation (CFSE’08), Fribourg, Suisse.

66 Fundamentals of Grid Computing

[Suzuki and Kasami, 1985] Suzuki, I. and Kasami, T. (1985). A distributed
mutual exclusion algorithm. ACM Transactions on Computer Systems,
3(4):344–349.

Chapter 3

Data replication in grid
environments

Thi-Mai-Huong Nguyen
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

Frédéric Magoulès
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

3.1 Introduction . 67
3.2 Data replication . 68
3.3 System architecture . 76
3.4 Selective-rank model for a replication system . 78
3.5 Selective-rank replication algorithm . 82
3.6 Evaluation . 85
3.7 Concluding remarks . 94
3.8 References . 95

3.1 Introduction

Replication is a common technique to improve the performance of data ac-
cess in distributed systems. In the data grid environment, replication strate-
gies are crucial for reducing data access latency, increasing data locality and
availability, and hence improving overall performance in job execution.

In this chapter, we address the replication problem in data grids with
the consideration of limited replica storage. We survey existing replication
management solutions for data grids and distributed environments including
databases, peer-to-peer systems, and web environments. We then discuss the
system architecture for the proposed replication strategy called maximize data
availability with selective rank (MaxDAR). In our approach, replication de-
cisions are driven by the optimization of the overall level of data availability
of the system according to a selective-rank in minimizing the replica’s stor-
age costs. Simulation results demonstrate that MaxDAR achieves a better
performance in job execution and storage consumption compared with other
strategies implemented in OptorSim.

67

68 Fundamentals of Grid Computing

3.2 Data replication

Replication is a well-known technique to improve reliability, load balancing,
and performance of the system. In the context of distributed systems, the
probability of network failures or data unavailability is higher than in a central
system with a single storage resource. In general, data replication can be used
to improve system performance by increasing availability of data and fault
tolerance. An ideal replication solution should achieve three goals, though:
fault tolerance (i.e., data availability), performance (i.e., data locality), and
consistency. The goal of replication in each type of environment is slightly
different as illustrated in Figure 3.1.

Database

Consistency

Performance

Data Grid

Web environments

P2P

Fault tolerance

FIGURE 3.1: Focus of replication in each environment.

In this section, some existing approaches to replication management for data
grids and distributed environments including databases, peer-to-peer systems,
and web environments are shortly discussed. We do not go into detail but want
to give an overview of important work in the research community.

Data replication in grid environments 69

3.2.1 Replication in databases

Although replication is not a central emphasis of the database community,
interest in dynamic data replications in distributed database management
systems continues to grow due to the need to improve scalability, data avail-
ability, and fault tolerance. There are many similarities in the replication
techniques developed from both the database community and the distributed
system community. In [Wiesmann et al., 2000a], a model allowing us to com-
pare and distinguish replication solutions developed for these two perspectives
is provided. A key difference of replication solutions in these communities is
the nature of replication protocols used [Wiesmann et al., 2000a], [Wies-
mann et al., 2000b]. Since the probability of failures in distributed systems
is usually higher than database systems, e.g., various hardware and software
resources involved might crash, replication in distributed community puts em-
phasis on fault tolerant systems, i.e., keeping the systems running in case of
these failures or data unavailability. On the contrary, the main focus of repli-
cation in database systems is to maintain consistency of replicated data and
ensure data safety for better application performance. Replication techniques
for database systems depend on the update frequency and user access/update
patterns on data stored in these databases. If there are more updates in the
database, keeping the replicas consistent with each other becomes more costly.
In this case, a replication strategy that strictly controls the number of newly
created replicas is preferable. Otherwise, wide replication is more profitable
as access to data held locally is faster than remote access through wide area
network.

The most simple replication protocol in database systems is read-one-write-
all (ROWA) protocol, which provides an optimistic degree of data consistency.
In ROWA protocol, when a replica is modified all other replicas need to be
synchronized and are written at the same time. Since all replicas are supposed
to be consistent to each other, a read operation can be satisfied from differ-
ent replicas. It can select a replica closest to the site of request, and hence
benefits from reduced access latency. However, an update operation may neg-
atively affect the performance of the system as locks on replicas have to be
agreed among all replicas. In the presence of update performance primary-
copy (i.e., master-slave) and multi-master (i.e., update anywhere) are two
main replication approaches used in database systems. In the primary-copy
approach, the update operation is only permitted on the primary copy of
data. Content updates are then propagated to all secondary copies. Depend-
ing on the degree of consistency required, different replication protocols can
be used, such as quorum-based protocol [Bernstein et al., 1987] and epidemic
mechanism [Demers et al., 1987]. Centralized updates at primary copy may
become a single point of failure as failures at the master site block update
operations. In multi-master approach, many primary copies of the same data
item are distributed to multiple sites. The fact that update operations can be
concurrently performed to all these copies avoids bottlenecks and single point

70 Fundamentals of Grid Computing

of failures of primary-copy approach. However, the reconciliation algorithm
for ensuring data consistency in multi-master approach is costly due to the
potential conflicting updates on primary copies [Martins et al., 2006].

3.2.2 Replication in peer-to-peer systems

Peer-to-peer (P2P) systems are distributed systems that operate without
centralized global control in the form of a global registry, global services, global
resource management, a global schema, or data repository. In a P2P network,
each peer (i.e., participant node) takes both the role of client and server. As a
client, it can consume resources offered from other peers and also as a server,
it can provide its services for others. P2P systems rely on replication of data
on more than one node to achieve a load balance, high data availability and
good query latencies, i.e., the number of contacted peers for each data request
is reduced. A thorough study and survey of data replication in P2P systems
is presented in [Martins et al., 2006]. Replication techniques in P2P systems
can be classified into three main categories: passive replication, cache-based
replication, and active replication [Androutsellis-Theotokis and Spinellis, 2004
].

• Passive replication: When a search is successful, the replication oc-
curs naturally and the requested object is stored at the node which
requested it. This is referred to as passive replication. Example of P2P
systems that apply passive replication are Napster [Fanning, 2001] and
the Gnutella network [Gnutella, 2009].

• Cached-based replication: In this form of replication, the requested ob-
ject is replicated to every node along the path of the query which re-
quests it. In that way, copies of the data item are cached on all in-
termediated nodes, improving its availability response latency of future
requests. This technique is taken by many systems, such as OceanStore
[Kubiatowicz et al., 2000] and Freenet [Clarke et al., 2002].

• Active replication: A peer actively attempts to replicate a data item at
other nodes participating in the network. More copies of a data item
in the network will generally improve lookup performance, bandwidth,
and aggregate network load. Replica management techniques proposed
usually differ on the number of replicas (e.g., uniform or proportional)
and location of replicas. For example, introspective replica manage-
ment techniques employed by OceanStore are based on top of extensive
caching, whereby traffic is observed and replicas of data items are cre-
ated to accommodate demand and maintain sufficiently high levels of
data redundancy [Rhea et al., 2001].

Data replication in grid environments 71

3.2.3 Replication in web environments

As the Internet has become an indispensable means for content sharing and
distribution, the issues of scalability and performance become increasingly
important. Caching and replication, being two major techniques used in web
environments that address these issues, are becoming a focus of attention in
both industrial and academic research communities. Both techniques deal
with two important issues: data placement and replacement. Data placement
concentrates on selecting location to place a new data, while data replacement
decides which data should be removed to make place for a new data. However,
caching is performed on the client side in order to improve the access latency
and reduce network and server loads, e.g., browser cache, proxy cache, server
main memory cache. In contrast, replication is an optimization process at
the server side in order to place data close to the request, e.g., web site
mirroring. In [Barish and Obraczka, 2000], [Loukopoulos et al., 2002], the
authors present an overview of recent research in caching and replication on
the Internet.

Different caching techniques have been studied in [Barish and Obraczka,
2000] to improve cache hit ratio and reduce web traffic. While useful and
necessary, caching still has some limitations compared to replication. Firstly,
many data items are not cacheable but replicable due to their size, whereas
data size is a major concern in data grids. Secondly, replication is typically
under full control of the service provider, which implies that issues like copy-
right enforcement, data consistency are much easier to control. Consequently,
web cached data may become inconsistent and stale, thereby leading to data
integrity problems. Thirdly, servers are free to use replication protocols that
would be more efficient for moving replicas between servers or maintaining
their consistency, while caches depend heavily on standards.

With the continuous increase of web hosts at large scale, manual placement
of a large amount of replicas becomes unfeasible. This has motivated the
development of dynamic replication strategies in web environments. The main
challenges which have been identified for the implementation of a replicated
service on the Internet [Loukopoulos et al., 2002] are: (i) how to assign
requests to servers according to some performance criteria; (ii) number and
placement of the replica; and (iii) maintaining content consistency in presence
of update requests.

Most replication techniques used in web environments follow a primary-copy
approach and focus on maintaining consistency of secondary copies. Typically,
content updates are propagated from the primary copy to other existing repli-
cas in an asynchronous fashion using different replication protocols, such as
quorum-based protocol [Bernstein et al., 1987] and epidemic mechanism [De-
mers et al., 1987] depending on the needs of the application. In [Pierre et al.,
2002], the authors propose optimistic replication techniques, which make use
of weak consistency algorithms. Allowing inconsistent access to data is a pop-
ular solution to the scalability problem, which comes from the fact that a

72 Fundamentals of Grid Computing

large amount of replicas are required to be globally synchronized. The incon-
sistency level is determined based on access/update patterns, as well as the
consistency requirements of the application.

One form of replication on the Internet is through content delivery networks
(CDNs), such as Akamai [Akamai, 2009] and Digital Island [Digital island,
2009]. A CDN is a set of geographically distributed servers that offer the
facilities for hosting web content in order to reduce the load on the origin
servers as well as the network traffic. The basic idea used by Akamai, a
popular CDN consisting of 16,000 servers across the globe, is to cache the
embedded documents that are most used and serve them from the closest
CDN server. A content provider can sign up for the service and have its
content placed on the content servers. The content is replicated either on-
demand when users request it, or it can be replicated beforehand, by pushing
the content on the content servers [Kangasharju et al., 2002].

3.2.4 Replication in data grids

Modern supercomputer systems connected through high bandwidth net-
works have spurred a new class of data-intensive applications. In recent years
the data requirements of both scientific and business applications have been
dramatically increasing in both volume and scale. The amount of data gener-
ated by data-intensive applications continues to grow each year, and the aggre-
gated data volume will reach the exabyte (1 million terabytes) scale by around
2015 [Particle physics data grid, 2009]. Several good examples can be listed
such as high energy physics (HEP) experiments [Compact muon solenoid, 2009
], and CERN’s Large Hadron Collider (LHC) experiments [Large hadron col-
lider, 2009], which processed and produced hundred of terabytes of data. In
such applications, data files required might be located in different geograph-
ical distributed systems, implying that availability and consistency of data
has to be maintained under wide-area environments where network latencies
are generally long [Dullmann et al., 2001]. Therefore, there is a great need
for an integrated architecture which facilitate the storage, processing, and
management of data of both large scale and volume.

Data grid is becoming a promising infrastructure for data storage and exe-
cution of data intensive applications, which connects a collection of hundreds
of geographically distributed computers and storage resources located in dif-
ferent parts of the world to facilitate sharing of data and resources [Lame-
hamedi et al., 2003]. Some examples of data grid are the European DataGrid
project [European datagrid, 2009], physics data grids [Particle physics data
grid, 2009 , GriPhyN, 2009], the LHC computing grid (LCG) project [Large
hadron collider, 2006] for handling the massive amount of data produced from
the LHC experiments at CERN, and the biomedical informatics research net-
work (BIRN) [Biomedical informatics research network (BIRN), 2005].

Traditionally, grid resources (e.g., computational power, data storage, net-
work bandwidth) are allocated to the jobs by the workload scheduler according

Data replication in grid environments 73

to the job requirements, the system load, and specified policies. In a data grid
environment, an efficient scheduler must also take into account the location
of data required by the jobs, which has, in fact, a significant influence on
system performance. The reason for this is that the jobs may take a long
time to finish because of a long delay in the fetching of required data files
on a high latency storage or just hang due to data unavailability. Data repli-
cation, which involves the creation of identical copies of data files and their
distribution over various sites, is an important technique to avoid such sit-
uations. Appropriate placement of data files at different sites in the system
not only reduces the data access time of the jobs, bandwidth consumption,
and consequently improves the job turnaround time [Stockinger et al., 2002
], [Ranganathan and Foster, 2001], but also increase data availability in many
applications [Hoschek et al., 2000], [Ranganathan et al., 2002], [Lei et al.,
2008]. Recently there has been a considerable interest in the area of dynamic
replication in data grid environments.

Many research works have been carried out to provide basic functionali-
ties of replica management in data grid implementations [Chervenak et al.,
2002], [Chervenak et al., 2005], [Gridpp, 2009]. These existing components
and services can serve as the basis of the replication services or management
framework for grid environments at a higher level to provide an automated
replica placement support and a full replica management functionality for
achieving better access performance, availability, and security of data. In this
section, we overview the existing works in data replication and placement in
data grids.

In data-intensive applications where data are usually generated from an
instrument at one site and are transferred to other storage sites in data grids
through the data replication mechanisms, the data consistency is not a big
concern as there are no updates. However, as the application domain of data
grid continues to expand, the replication strategies need to address the envi-
ronments where update requests are frequent. Hence, the replication strate-
gies can be distinguished based on whether they are used for read-only or
update requests.

Replication strategies for read-only requests In the context of repli-
cation strategies for read-only data environments, replication algorithms can
be classified into three main categories.

• Based on replica location: In this model, a replica selection is decided
based on a data grid structure and replica location. In [Ranganathan
and Foster, 2001], the authors identify five replica strategies (best client,
cascading replication, caching, caching plus cascading replica and fast
spread) with three different kinds of access patterns (random access,
small degree of temporal locality, and small degree of geographical and
temporal locality) for a hierarchical data grid. The simulation results

74 Fundamentals of Grid Computing

show that significant savings in latency and bandwidth can be obtained
if the access patterns contain a small degree of geographical locality.

In [Lin et al., 2006], the authors describe a hierarchical tree structure for
data grid, where data access requests are generated from the leaf nodes
to upper nodes within a range limit. The goal of the replica place-
ment algorithm proposed is to improve the load balancing among the
replica servers. The optimal locations for placing the replicas, which are
bounded by the minimum number corresponding to the server’s work-
load capacity, are selected based on the usage frequency of users towards
a particular data.

In [Park et al., 2003], the authors propose a dynamic replication strat-
egy, called BHR, to reduce data access time by avoiding network con-
gestions in a data grid network. The basic idea of BHR is to take the
benefits from a “network-level locality,” which represents that required
file is located in the site which has broad bandwidth to the site of job
execution.

• Based on cost estimation: In the cost estimation model, a replication
decision is taken by evaluating the data access gains and the cost of
placing a replica of file f at the new location n, which is calculated as:

cost(f, i, j) = ftransfer(bandwidthi,j , sizef) + fstorage(f, n) (3.1)

In [Lamehamedi et al., 2003], the authors propose a cost model based on
runtime bandwidth, replica size, accumulated read/write statistics. The
model evaluates the data access gains by creating a replica compared
with the costs of creation and maintenance for the replica. A hybrid
of tree and ring topologies of nodes was proposed to overlay replicas on
the data grid and minimize inter-replica communication cost.

In [Ranganathan et al., 2002], the benefit of creating a new replica is
evaluated based on the storage and transfer cost as in equation (3.1).
An approach is proposed to create replicas automatically in a decentral-
ized fashion to maintain desired data availability without consuming an
undue amount of storage and bandwidth of the system.

• Based on economy policies: Several works [Carman et al., 2002], [Bell
et al., 2003] have been proposed based on economy-based policies for
replication decisions. The basic idea behind economy-based replication
is to apply the economic concepts of market behavior, where data files
represent the goods. In this model, the investment, i.e., replication de-
cision, is determined by the difference in cost between the price paid to
buy a data file and the expected price, i.e., revenue, if the file is sold in

Data replication in grid environments 75

the future. In [Carman et al., 2002], a function that calculates the rev-
enue obtained over a future time period by selling a file F corresponding
to the identifier f is defined as:

V (f, k, n) =
k+n∑

i=k

pi δ(f, fi) δ(s, si) (3.2)

The function V (f, k, n) computes the revenue for the file F correspond-
ing to the identifier f starting from time tk in the future and taking
into account the next n file requests. pi represents the price paid for
the file, which can be calculated based on the equation (3.1). s is the
local storage element. δ that represents the incomes of file F returns
the value 1 if the arguments are equal and the value 0 if they differ. A
replication decision is taken only when the replica with an associated
file purchase cost is proved to be potentially beneficial for the system in
long term.

A predicting function E[V (f, k, n), r] is defined in [Bell et al., 2002],
[Bell et al., 2003], [Capozza et al., 2002] to estimate V (f, k, n) that
returns the number of times the file f will be requested in the next period
of time considered, based on the latest r file requests. Simulation results
realized in OptorSim [Cameron et al., 2004b] present some specific
realistic cases where the economic model shows tremendous performance
improvements over traditional methods.

In [Lei et al., 2008], the authors propose two new metrics, namely
system file missing rate and system bytes missing rate, to evaluate the
reliability of the system. An on-line optimizer algorithm (MinDmr) is
proposed to maximize the data availability based on these two metrics
and the predicting function E[V (f, k, n), r] from [Bell et al., 2003].

Replication models for update-requests In an environment where each
replica gets updated frequently, it is desirable to minimize the divergence
between the source data and its replicas by a synchronization process. There
are two main approaches for a synchronization process to maintain the data
consistency: (i) synchronous replication and (ii) asynchronous replication.
Synchronous strategy is also known as eager replication, while asynchronous
is often referred to as lazy replication.

• Synchronous: Ideally, replicas need to be kept consistent with the source
data at all times. In synchronous replication, updates to any replica
should be immediately propagated to all other replicas within the same
(distributed) transaction. Synchronous replication enforces mutual con-
sistency of replicas. Although synchronous replication provides strong
consistency and a high degree of fault-tolerance, it cannot scale up to

76 Fundamentals of Grid Computing

large distributed environments like grid environments due to the com-
plexity and cost of the distributed transactions. Synchronous replica-
tion strategies, which relies on ROWA or read-one-write-all-available
(ROWAA) protocol [Bernstein et al., 1987], are more suitable for
database systems. A better solution for data grids that scales up is
asynchronous replication.

• Asynchronous: In grid environments, data collections can be very large
or frequently updated and network or computational resources may be
limited; propagating the updates to all replicas may be infeasible. In
certain situations where exact data consistency is infeasible, propagat-
ing data updates to a large number of replicas every time a data item
replica is modified greatly affects the performance of the entire system.
Asynchronous replication is more suitable for this environment where
replicas can be updated in different transactions at different sites in
an asynchronous fashion. While synchronous replication updates every
replica before committing the original update transaction, asynchronous
replication commits the original update transaction before updating is
completed. According to where the original update transaction is com-
pleted, asynchronous replication strategies can follow a primary-copy
(i.e., master-slave) or multi-master (i.e., update everywhere) approach.
In a primary-copy approach, all the update transactions are forced to
be executed and committed on the site holding the primary copy and
the site then propagates the updates in various methods. In a multi-
master approach, the update transactions are executed and committed
on a group of primary copies and then propagated to other replicas.
However, conflicting updates at different sites can introduce replica di-
vergence in this approach. Manual or automatic reconciliation processes
are used to avoid such situations.

3.3 System architecture

A replication algorithm determines how many replicas are needed, when to
create new replicas and where the new replicas, should be placed. To make
these decisions, the algorithm needs to choose among alternative plans, the
best one based on system parameters. There is no replication strategy that
is optimal for all evaluation metrics. In most cases, we have to sacrifice some
evaluation metrics in order to make one or other better.

In the early days of distributed systems when network bandwidths were low,
decreasing the data access latency and the network bandwidth assumption
were the main motivation. As bandwidths increased and communication costs

Data replication in grid environments 77

have become relatively cheaper, fault tolerance and availability of data even
if one site becomes unavailable have become the new focus.

In this research chapter, we address the replication problem in data grids
to improve data availability, data access latency, and bandwidth consumption
of the system. We propose a selective-rank replication strategy with the con-
sideration of limited replica storage. In our approach, the focus is to increase
the overall level data availability of the system according to a selective-rank,
which indicates the importance degree of the file. In fact, the rank of a file
can be determined by different metrics, e.g., the degree of popularity of a
file depending on specific contexts and circumstances. We propose two newly
defined metrics: file popularity and file correlation.

Based on these metrics, we propose a novel algorithm, maximize data avail-
ability with selective rank (MaxDAR), that maximizes the overall level data
availability of the system while minimizing replica storage cost. Due to stor-
age constraint, some replicas will be deleted when new ones are created at
different locations. As a result, MaxDAR evaluates the benefits and losses
in overall system level availability before adding any new replica to decide
whether it is worth to delete existing files. The replication decisions are made
based on several factors, such as file rank according to the popularity or cor-
relation of files, number of replicas, replica size, and file availability benefits.
Based on MaxDAR, we introduce three optimizers that distinguish from each
other in the selective-rank used. To validate our algorithm, we use the Op-
torSim simulator [Cameron et al., 2004c , Bell et al., 2002]. Experimental
results show our replication optimizers reduce the network traffic greatly and
improves the job execution performance effectively.

In data grid, data are regarded as the center of grid architecture because
data-intensive applications in the data grid need access to distributed large
data sets. We adopt the same view of a data grid structure as that proposed
by the European DataGrid project [European datagrid, 2009]. Figure 3.2
depicts the typical system architecture of the data grid.

The data grid consists of a set of sites, and each site has several computing
elements (CE), i.e., clusters of machines, which offer computational resources
for the jobs. Some sites may have associated storage elements (SE), which pro-
vides storage for the replicas. Some isolated SEs might exist in the system in
order to improve remote data access performance with each one constructing
an independent site by itself.

Jobs are distributed to CEs by the resource broker based on specific schedul-
ing strategies. The required input data must be locally available in the as-
sociated SEs before the job begins to execute. In many situations, it may
happen that a job running on a CE needs to access data from a remote SE. In
the data grid environment there could be replicas of the same file at different
sites, each with a different file access cost. In this case, the replica manager
containing a replica optimizer is responsible for choosing the best replica in
the system and transferring it to the CE performing the job.

The data files are usually replicated at different SEs in the system for effi-

78 Fundamentals of Grid Computing

Resource Broker

Grid site etis dirGetis dirG

Grid site

Replica
Optimizer

Data Transfer
and Replication

Storage
Element

Computing
Element

Data Grid
Distribution

Job

Global queue

Jobs

Grid site

FIGURE 3.2: System architecture of the data grid.

cient access and reducing transmission cost and link latency [Cameron et al.,
2004c], [Cameron et al., 2004a] in order to minimize the average job execu-
tion time in data grid. The replication operation is independently determined
by each site. For every data access request of the job locally running at the
site, the replica optimizer determines whether the data should be replicated
to local storage and which replicas should be removed if there is not enough
space.

3.4 Selective-rank model for a replication system

In a typical data grid, replica optimization is important as efficient job
scheduling in the process of maximizing overall job throughput [Cameron
et al., 2004c]. Generally, grid users are concerned with the execution time of
their submitted jobs and the correctness of the results. Concretely, they are
interested in minimizing the total execution time of their jobs and increasing
the reliability of execution results. Replicating data files at different sites to
achieve data availability as high as possible is an important mechanism for
reducing data access time and hence the total job execution time. Therefore,

Data replication in grid environments 79

we focus on how to replicate a set of files so as to optimize file availability.
We introduce in this section notations and terminologies to formulate the

replication problem. We firstly describe assumptions and system metrics that
we use to construct our model. Table 3.1 summarizes the symbols used in
our model. Secondly, we introduce how to estimate the availability of files.
Finally, we formulate the replication problem based on two main factors, i.e.,
file availability and its selective-rank.

Parameter Meaning

M total number of SEs in the system
N total number of files in the system
αi availability of SE i

ρi availability of a replica of file i
Pi availability of file i

P (Ji) availability of file for job i

Poverall overall level data availability of the system
si size of SE i
Ri replica set of file i

nri number of replicas of file i, nri = |Ri|
R = [ri,j] matrix of replica placement
Vi popularity of file i

C(fi, Sk) correlation of file i on site k
D(fi, Sk) average distance of the file i on the site k to all

replicas of other files in the same file set
sci storage cost of file i

Table 3.1: Parameters and their meanings.

3.4.1 Model assumptions

In our model, we assume: (1) a replication system with a fixed population of
S sites connected by a communication network, the number of sites M = |S|;
(2) a set of N files in the whole system; (3) each SE i is described by two
parameters: storage capacity si and online availability αi, where i ∈ [1, M].

Storage capacity: each SE i is supposed to offer a certain limited amount
of storage space for replication purposes, denoted by si.

Online availability: the online availability αi ∈ [0, 1] represents the ex-
pected probability of time that the SE i is online. When a SE is available,
all the replicas it stores are assumed to be available and accessible to

80 Fundamentals of Grid Computing

other sites in the system.

αi =
MTBFi

MTBFi + MTFi

Here, MTBFi represents “mean time between failure” and the MTFi

represents “mean time of failure” of the SE i.

3.4.2 Estimating the availability of files

As the replicas stored on an available site are themselves supposed to be
available and accessible to other sites in the system, the availability ρi ∈ [0, 1]
of replica of file i on site j is equal to the availability αj of site j. As a result, a
file is available when at least one of its replica or itself is online. Therefore, we
can estimate the availability of file i, Pi, according to binomial distribution1

with the assumption that each replica of file i gives an availability ρi, as:

Pi(h, nr, {ρi}) =
nr∑

h=1

(
nr

h

)
ρh (1 − ρ)nr−h (3.3)

where nr represents the number of replicas of file i in the system and ρ refers
to the average availability of probability set {ρi}.

ρ =
1
nr

nr∑

i=1

ρi (3.4)

Suppose that a job i requires access to a file set Fi; the availability of files
P (Ji) required for the execution of job i can be computed as:

P (Ji) =
k∏

j=1

Pj , ∀k ∈ [1, N] (3.5)

where k = |Fi|. This approximation in fact estimates the probability required
for all k files being available at the moment the job is executed.

3.4.3 Problem definition

The best system data availability results from maximizing equation (3.3)
and (3.5). For this purpose, we define the replication matrix R = [ri,j]MxN ,

1The binomial distribution returns the probability p(k, n, q) to obtain k successes perform-
ing n independent trials of a certain test when the probability of success of each single trial
is q. The binomial distribution is given by the formula:

p(k, n, q) =
(n

k

)
qk (1 − q)n−k , 0 ≤ k ≤ n

Data replication in grid environments 81

where ri,j indicates whether a replica of file j is assigned to site i.

ri,j =

{
1, if site i stores a replica of file j;
0, otherwise;

where i ∈ [1, M] and j ∈ [1, N]. Let rj refer to the jth column of the replica
placement matrix R, which denotes the subset of sites where the file j is
replicated. Let nr denote the number of replicas of file j stored in the system:

nrj =
M∑

i=1

ri,j , ∀j (3.6)

Obviously, the total size of all the replicas stored at site i should not exceed
its storage capacity si:

N∑

j=1

ri,j size(j) ≤ si, ∀i ∈ [1, M] (3.7)

where size(j) is the size of replica j, supposing that a file is associated with
a specific rank q, which indicates its importance degree. Applying equation
(3.3) and taking into consideration the file rank, we define the overall file
availability of the system as follows:

Poverall(R) =

N∑
j=1

qj Pj(h, nrj , {ρj})

N∑
j=1

qj

(3.8)

where Pj(h, nrj , {ρj}) is the availability of file j, nrj denotes the number of
replicas of file j and can be calculated by equation (3.6), {ρj} denotes the
availability of sites on which a replica of file j is replicated (i.e., ri,j = 1).

Given the above equation, we can formulate the data replication problem as
to find the assignment of ri,j values in the R matrix that maximize the avail-
ability of files in the system. Our objective then in the design of a replication
algorithm is to optimize (i.e., maximize) the overall system level availability
Poverall in equation (3.8), subject to the storage constraint in equation (3.7).
With such a replication algorithm, highly ranked files will receive higher avail-
ability. The optimal assignment of the replicas to the appropriate sites is a
typical “Knapsack Problem” in consideration that each file replica has a stor-
age cost.

82 Fundamentals of Grid Computing

3.5 Selective-rank replication algorithm

The replication algorithm decides which file should be replicated, when to
create new replicas and where the new replicas should be placed. To make
these decisions, the algorithm needs to choose among alternative plans the
best one based on system parameters. In a large-scale and dynamic grid en-
vironment, the replication algorithm must also consider changes coming from
the underlying environment, e.g., network bandwidth or system workload.

In this research chapter, we propose a selective-rank replication algorithm,
which takes into consideration the changes of grid environment, and it auto-
matically creates new replicas for a data file according to its selective-rank
while removing old replicas when necessary to improve the performance.

Our algorithm aims to increase the system level data availability according
to equation (3.8), based on the selective-rank, which indicates the importance
of the file. In fact, the rank of a file can be determined by different metrics
depending on specific contexts and circumstances. We propose two newly
defined metrics: file popularity and file correlation, which can be applied in
the equation (3.8) to enhance the overall data availability.

3.5.1 Popularity of files

In data grid, the popularity of file could be thought of as the number of
times files are requested in the future by grid jobs. In order to reduce the
access time and due to storage constraint, it is more beneficial to replicate
frequently accessed files, i.e., “hot” files, than less used ones, i.e., “cold” files.
Based on the file access history stored at each site, the number of times it will
be accessed in the future could be predicted.

In this chapter, we use the predicting functions given in [Bell et al., 2002
], [Bell et al., 2003], [Capozza et al., 2002] to evaluate the popularity of file
i, Vi, which are:

• Binomial prediction: Vi is predicted based on file access history using a
binomial distribution.

• Zipf prediction: Vi is predicted based on file access history using a Zipf
distribution.2

3.5.2 Correlation of files

The concept of the correlated degree of files derives from the fact that in
data grid some files have a high probability to be used with a specific set

2A Zipf-like distribution is defined as Pn ∝ n−α, where Pn is the frequency of occurrence
of the nth ranked item and α ≤ 1 (a pure Zipf distribution would have α = 1).

Data replication in grid environments 83

of files. For example, data files containing protein structure information are
usually used in biology experiments together with other files in the same
discipline rather than be used in high energy physics experiments.

The basic idea behind introducing this concept is that the highly correlated
files, i.e., the files which are most likely to be requested by the same job will be
gathered into a region made up of relatively close sites, so that jobs executed
in that region can take advantage of the reduced cost to transfer required data
files to the executing site. The data access latency for the job processing and,
hence, the job execution performance will be improved.

Suppose each site keeps a list of file sets requested by different jobs. For
example: F(f1, f2, f3, f4),F(f5, f6),F(f7, f8, f9). We define that data files
which are “correlated” to each other are the ones belonging to the same file
set required by a job. The file correlation C(fi, Sk) reflects the correlation
degree of the file i on the site k with other files in the same file set. A file i is
supposed to be close to other files in the same file set when it is located at a
site k that offers higher C(fi, Sk), which can be calculated as:

C(fi, Sk) =
size(i)

D(fi, Sk)
(3.9)

where D(fi, Sk) evaluates the average distance of the file i on the site k to all
replicas of other files in the same file set and is computed as:

D(fi, Sk) =
1
|F|

∑

fi,fj∈F

1
ci,j |Rj |

∑

v∈Rj v �∃Sk

size(v)
bandwidth(Sv, Sk)

(3.10)

where Rj is the replica set of fj , which belongs to the same file set F of fi.
Sv is the site containing the replica v of fj . In this estimation, all replica
located on the site Sk are excluded. In the above equation, ci,j is given by
min{c(fi, fj), c(fj , fi)} where c(fi, fj) ∈ [0, 1] denotes the probability of two
files fi and fj occurring in the same file set (i.e., requested by the same job)
and can be computed as:

c(fi, fj) =
count(fi, fj)

t(fi)
(3.11)

where count(fi, fj) denotes the number of distinct files set that both fi and
fj belong to, and t(fi) represents the total number of files set that fi belongs
to.

3.5.3 MaxDAR optimizer algorithm

We propose an original algorithm called MaxDAR (maximize data avail-
ability with selective rank) optimizer algorithm as shown in Algorithm 3.5.1.
The main task of the MaxDAR optimizer is to determine whether or not a
new replica is created based on the benefits received in the overall data avail-
ability of the system. The goal of MaxDAR is to increase the availability

84 Fundamentals of Grid Computing

of the most highly ranked files in order to avoid situations in which storage
resources are wasted by unimportant files. In this way, the highly ranked,
or important files have a high possibility to have greater storage resources
delivered to them – hence achieve a higher availability according to their re-
quirements. This strategy makes sense especially in the context of limited
storage resources.

Due to storage constraints there must be an efficient mechanism to delete
the existing files from the sites for replacement. The replacement strategy
in [Ranganathan and Foster, 2001] proposes to delete the most unpopular
files (i.e., LFU), once the storage space of the site is exhausted. The other
popular strategy for replica replacement is to delete the least recently used
files [Bell et al., 2003] (i.e., LRU).

In our algorithm, existing files are deleted to gain space for the new replica
in case there is not enough free space. The candidate files to be replaced will
be selected based on their storage cost. We introduce the storage cost of file
i as:

sci =
nri size(i)

Pi qi
(3.12)

where nri denotes the number of replicas and size(i) represents the size, Pi

reflects the availability, qi denotes the rank of the file i.
As shown in Algorithm 3.5.1, if the required file does not locally exist in

the SE, it will be fetched from other sites (line 1-3). Then, if the free storage
space is large enough to store the requested file, the replication of the file
will always take place (line 4-5). Otherwise, a set of candidate files C to be
deleted for the new replica will be selected according to their storage cost
(line 7-12). Since the goal of MaxDAR is to maximize the system level data
availability according to a selective-rank, the replication benefits are required
to be greater than the replacement loss (line 13-18) for the replication to take
place. The replacement loss is evaluated by the sum of the availability loss
of the selected candidate files according to a selective-rank (line 13). The
Pi and Pnew

i is the availability of file i before and after the replication and
is calculated by equation (3.3). It should be noted that the algorithm will
ignore the master files, i.e., primary copies of the data file, and pinned files,
i.e., files that are being accessed by jobs, in the selection of candidate files for
the replacement.

Based on MaxDAR algorithm, we propose three variant optimizers:

• MaxDAR-Pb: Files are ranked according to their popularity. The pre-
dicting function for the number of file access in the future is calculated
by a binomial distribution, qi = Vi. This optimizer focuses on replicat-
ing the frequently accessed files.

• MaxDAR-Pz: Files are ranked according to their popularity. The pre-
dicting function for the number of file access in the future is calculated
by a Zipf distribution, qi = Vi. This optimizer focuses on replicating
the frequently accessed files.

Data replication in grid environments 85

Algorithm 3.5.1 MaxDAR (Maximize Data Availability with selective
Rank)
1: if needed file fi 	 ∃ in the site then
2: Get fi from other sites
3: end if
4: if free space in SE > size(i) then
5: Store fi in this SE
6: else
7: Sort files in the SE in the descending order of storage cost (equation

(3.12))
8: C ← {}
9: while

∑
fk∈C size(k) < size(i) do

10: Pop the first file fcandidate off the sorted list
11: C = C ∪ {fcandidate}
12: end while
13: loss =

∑
fk∈C

Pk qk

14: benefit = Pnew
i qi

15: if benefit > loss then
16: Delete all the file in C
17: Store fi

18: end if
19: end if

• MaxDAR-C: Files are ranked according to their correlation with other
files located near the site where the replication is considered, qi =
C(fi, Sk). The replication decision of file i on the site k is evaluated
by the value of C(fi, Sk) (equation (3.9)). As indicated in Section 3.5.2,
this optimizer aims to replicate in priority the files that are likely to be
requested in the same job so that when the job is executed nearby, the
cost for file access will be reduced. The running times and hence the
costs of running jobs are also reduced.

In the next section, we present the performance evaluation of our proposed
MaxDAR optimizers with simulation experiments using the grid simulation
tool OptorSim [Cameron et al., 2004b].

3.6 Evaluation

We evaluated our proposed MaxDAR optimizers using the OptorSim v2.0.1,
which was developed by the European DataGrid project [European datagrid,

86 Fundamentals of Grid Computing

USA3

USA2

USA1

Italy

SwitzerlandFrance

155M
622M

UK
155M

10G2.5G

622M

2.5G

10G

622M

622M

2.5G
2.5G

1G

1G

10G

155M
155M

45M
Perugia (50G)

100M

100M

45M

Firenze (50G)

100M

155M100M
45M

622M

622M

retuoRES htiw ECES

FNAL (100G)

Caltech (50G)

UFL (50G)

Lyon (50G)

Torino (50G)
Bologna (50G)Pisa (50G)

Roma (50G)

Catania (50G)

Padova (50G)

Bari (50G)

RAL (50G)IC (50G)
Bristol (50G)

Wisconsin (50G)

UCSD (50G)

Russia

Moscow (50G)

155M

CERN (1000G)

FIGURE 3.3: Grid topology in the simulation.

2009] for evaluating both the file access optimization and data replication
strategies. OptorSim simulates the architecture shown in Figure 3.2, which
consists of several components: computing elements (CEs), storage element
(SEs), resource broker, and replica optimizer. Simulated jobs are distributed
to the optimal CEs across the grid according to scheduling algorithm used by
the resource broker. As the CE requests the file set for each job, the replica
optimizer decides whether or not to replicate each file according to the benefit
gains from the replication.

We have implemented three MaxDAR optimizers as three new replica opti-
mizers in OptorSim. We first discuss the simulation’s configuration, followed
by the results.

Parameter Meaning Value

M number of sites 20
N number of files 97
sizei, i ∈ [1, N] size of files 1G-5G
si, i ∈ [1, M] SE capacity 50G-1000G
αi, i ∈ [1, M] SE availability 0.8-1.0
|Fi| number of files accessed by a job i 3 - 59
- number of jobs 200-1000
- network bandwidth 45M-10G/s

Table 3.2: Parameter settings for the simulation.

Data replication in grid environments 87

3.6.1 Grid configuration

The grid topology used in the simulation is adopted from CMS testbed
[GriPhyN, 2009], [Holtman, 2001], which has the resources and network
bandwidths between the sites as shown in Figure 3.3. It consists of 8 routers
and 20 grid sites in Europe and USA [Cameron et al., 2004c]. We utilize the
default settings of the OptorSim and modified the topology to meet our needs.
At the beginning of the simulation, all the master files are placed at the CERN
site. Initially, there are 97 files in the grid and the storage capacity of SEs
ranges from 50 GB to 1000 GB. CERN was allocated huge SEs of 1000 GB
capacity and no CEs. Every other site excluding FNAL, which was allocated
100 GB, was given 50 GB of storage and a CE with one worker node.

We are interested in how the replication algorithm performs under different
parameters, such as the total number of jobs to be executed, the file size, and
the data availability at each SE. These parameters are summarized in Table
3.2. It should be noted that our simulation does not take into account the
job execution, i.e., the processing of the files by the CEs, but only the file
transmission time required by the job.

3.6.2 Experimental results

In this section we present the simulation results. The objective of these
simulation experiments is to evaluate the efficiency of file distribution in the
context of limited storage and the effect of our replication algorithm on the
job execution time and the overall data availability of the system. In the
experiments, we compute:

• Job execution time: This is defined as the total time to execute all the
jobs, divided by the number of jobs completed.

• Overall file availability of the system Poverall: This is used to evaluate
the quality of data replication at the overall data availability goal based
on their selective-ranks, calculated by equation (3.8).

The experiments are performed on a laptop IBM 2.8 G CPU and 1 G RAM.
For each simulation setup, we perform it several times and take the average
results. For all the experiments except those in Section 3.6.2.3, we simulate
1,000 submitted jobs.

3.6.2.1 Effects of access pattern and scheduling strategies

We first evaluate the performance of three replica optimizers, i.e., MaxDAR-
Pb, MaxDAR-Pz, and MaxDAR-C, based on the MaxDAR algorithm in terms
of the job execution time. We recall that in MaxDAR-Pb and MaxDAR-Pz
optimizer, the predicting functions of OptorSim, whose in-depth discussion is
given in [Bell et al., 2002], [Bell et al., 2003], [Capozza et al., 2002], are
utilized for the estimation of file popularity.

88 Fundamentals of Grid Computing

30

25

20

15

10

5

1

ZipfWalkGaussWalkUniRandomSequential

Jo
b

ex
ec

ut
io

n
tim

e
(s

)

Access pattern

x 103

Random
Queue Length

Access Cost
Queue Access Cost

(a) MaxDAR-Pb

40

35

30

25

20

15

10

5

1

ZipfWalkGaussWalkUniRandomSequential

Jo
b

ex
ec

ut
io

n
tim

e
(s

)

Access pattern

x 103

Random
Queue Length

Access Cost
Queue Access Cost

(b) MaxDAR-Pz

30

25

20

15

10

5

1

ZipfWalkGaussWalkUniRandomSequential

Jo
b

ex
ec

ut
io

n
tim

e
(s

)

Access pattern

x 103

Random
Queue Length

Access Cost
Queue Access Cost

(c) MaxDAR-C

FIGURE 3.4: Job execution time of three optimizers for various scheduling
strategies and access patterns.

Data replication in grid environments 89

12

11

10

9

8

7

6

5

4

3

2

1

MaxDAR-CMaxDAR-PzMaxDAR-PbE-ZipfE-BinoLFULRU

Jo
b

ex
ec

ut
io

n
tim

e
(s

)

Replica schemes

x 103

9.43

8.70 8.87

7.72

8.34

7.24 7.42

Queue Access Cost Scheduling

Sequential Access

FIGURE 3.5: Job execution time for different replication schemes with se-
quential access and queue access cost scheduling.

Figure 3.4 shows the results of the job execution time for three optimizers.
In this experiment, we study the impacts of the scheduling strategies used by
the resource broker and the data access pattern on the performance of three
optimizers. We consider four scheduling strategies: random, queue length, ac-
cess cost, and queue access cost, together with five access patterns: sequential,
random, random walk unitary, random walk gaussian, and random walk Zipf.
The random scheduler randomly chooses a CE on the grid for a job execution.
The queue length scheduler chooses a CE with the shortest job queue for a
job execution. The access cost scheduler distributes the submitted jobs to a
CE with the lowest data access cost. Lastly, the queue access cost scheduler
chooses a CE with the smallest combination of access cost and queuing cost
for a job execution.

In general, the three optimizers show very similar performance for each
scheduling strategy and access pattern. For each optimizer, the job execution
time for random walk unitary and random walk Zipf is approximately half
that of other access patterns.

The scheduling strategies random and queue length have the longest job
execution time as they do not consider the data location in the job distribution
process. We achieved the lowest job execution time when the scheduling
strategy queue access cost was utilized. In particular, the MaxDAR-C has
the best performance as this scheduling strategy tends to schedule jobs close
to the location of the data, while MaxDAR-C replicated the correlated files
which were close to each other.

Figure 3.5 shows the comparison of job execution time between our three
optimizers and other replication schemes in OptorSim. This experiment was

90 Fundamentals of Grid Computing

100

99.9

99.8

99.7

99.6

99.5

99.4

99.3

99.2

99.1

MaxDAR-CMaxDAR-PzMaxDAR-PbE-ZipfE-Bino

P
ov

er
al

l

Replica scheme

Random
Queue Length

Access Cost
Queue Access Cost

(a) Sequential Access

100

99.9

99.8

99.7

99.6

99.5

99.4

99.3

99.2

99.1

MaxDAR-CMaxDAR-PzMaxDAR-PbE-ZipfE-Bino

P
ov

er
al

l

Replica scheme

Sequential
Random

RandomWalkGaussian
RandomZipf

(b) Queue Access Cost

FIGURE 3.6: The effect of access patterns and scheduling strategies on overall
file availability of the system Poverall.

Data replication in grid environments 91

performed with the sequential access pattern and queue access cost scheduling.
Overall, the MaxDAR optimizers have a lower job execution time compared to
the LRU, LFU, E-Bino, and E-Zipf replication schemes. Both MaxDAR-Pb
and MaxDAR-Pz perform better than E-Bino and E-Zipf respectively. LRU,
LFU, and E-Bino have a longer job execution time than all of the MaxDAR
optimizers. Although E-Zipf has a shorter execution time than MaxDAR-Pb
optimizer, it still has a longer execution time comparing to MaxDAR-Pz.

In the next experiment, we study the MaxDAR optimizers in terms of
overall level data availability Poverall of the system. Figure 3.6 shows the
comparison of Poverall between five replication schemes for different schedul-
ing strategies and access patterns. For this experiment, we assume the data
availability at each SE is 80%. Figure 3.6(a) and Figure 3.6(b) show the
impacts of scheduling strategies and access patterns respectively on Poverall.

It can be observed from Figure 3.6(a) and Figure 3.6(b) that MaxDAR op-
timizers achieve better performance than E-Bino and E-Zipf for all scheduling
strategies and access patterns. This is predictable because MaxDAR optimiz-
ers focus on improving the overall data availability of the system. In the two
economical models, the data replication takes place only if this is considered
beneficial for the SE in terms of data access cost without considering the data
availability gain. As the Zipf based predicting function is not accurate for
the sequential access, the replication optimizers based on Zipf distribution,
i.e., E-Zipf and MaxDAR-Pz, achieve lower Poverall for this access pattern as
shown in Figure 3.6(a).

100

99

98

97

96

95

94

93

92

5G4G3G2G1G0

P
ov

er
al

l

File size

E-Binomial
E-Zipf

MaxDAR-Pb
MaxDAR-Pz
MaxDAR-C

FIGURE 3.7: Poverall with sequential access pattern, Queue Access Cost
scheduling when varying file size.

92 Fundamentals of Grid Computing

Contrary to E-Bino, which has better Poverall in sequential access pattern
using queue access cost scheduling, E-Zipf achieves better Poverall in random
access patterns as illustrated in Figure 3.6(b).

3.6.2.2 Performance with different file size

In the next experiment, we are interested in the file size effect on Poverall.
The parameter to be varied was the size of file; the number of submitted jobs
is still 1,000. The following size values: 1 G, 2 G, 3 G, 4 G, and 5 G with the
sequential access pattern and queue access cost scheduling are utilized. We
note that all files still have the same size.

As shown in Figure 3.7, the larger the file size, the smaller the Poverall.
This is predictable because with a limited storage constraint increasing the
file size leads to decreasing the number of copies of each file, which in turn
decreases the Poverall. We can see that MaxDAR-C performs best with all file
size; MaxDAR-Pb and MaxDAR-Pz perform better than E-Bino and E-Zipf
respectively. As expected, Zipf-based optimizers have the worst performance
because the Zipf-based predicting functions give an inaccurate prediction of
the file value for sequential access pattern.

3.6.2.3 Performance with a different job load

We now examine the scalability of our MaxDAR optimizers by varying the
number of submitted jobs. The number of created replicas and job execution
time for five optimizers is shown in Figure 3.8(a) and Figure 3.8(b).

As shown in Figure 3.8(a), MaxDAR optimizers make efficient use of the
storage resources and network bandwidth with lower number of created repli-
cas. The reason is that E-Bino and E-Zipf try to replicate the most popular
files to local storage, which leads to a linear increase in the number of created
replicas for the number of executed jobs. On the contrary, MaxDAR optimiz-
ers replicate files by considering the overall data availability benefit gain. As
the number of sites is fixed, the overall data availability will have an upper
boundary; therefore increasing the number of submitted jobs does not affect
the number of created replicas.

As illustrated in Figure 3.8(b), all five optimizers produce a similar job
execution time. However, as the number of jobs submitted is increased, the
performance of the MaxDAR optimizers is improved. Their job execution
time gets slightly faster than E-Bino and E-Zipf.

Data replication in grid environments 93

 0

 200

 400

 600

 800

 1000

 1200

1000800600400200

R
ep

lic
a

nu
m

be
r

Number of jobs

E-Binomial
E-Zipf

MaxDAR-Pb
MaxDAR-Pz
MaxDAR-C

(a) Replica number

10

9

8

7

6

5

4

3

2

1

0
1000800600400200

Jo
b

ex
ec

ut
io

n
tim

e
(s

)

Number of jobs

x 103

E-Binomial
E-Zipf

MaxDAR-Pb
MaxDAR-Pz
MaxDAR-C

(b) Job execution time

FIGURE 3.8: Replication number and job execution time when varying the
number of submitted jobs.

94 Fundamentals of Grid Computing

3.7 Concluding remarks

In this chapter, we address the issue of providing an efficient data access
in data grid environment. We assume that data files are not of equal im-
portance and they can be classified according to their degree of importance,
called selective-rank. We formulate the replication problem as an optimiza-
tion problem where the aim is to maximize the overall data availability of the
system according to a selective-rank with storage constraints. The proposed
replication algorithm maximize data availability with selective rank (Max-
DAR) focuses on improving data availability with differentiated replication.
The storage cost is utilized for the replica replacement strategy. Based on the
MaxDAR algorithm, three variant optimizers have been developed.

The performance of the MaxDAR optimizers is evaluated by simulations in
OptorSim. Our simulation results show that the MaxDAR optimizers achieved
better performance than other replica schemes of OptorSim whilst also assur-
ing the good overall data availability of systems.

Data replication in grid environments 95

3.8 References

[Akamai, 2009] Akamai (2009). Documentation. Available online at: http:

//www.akamai.com (accessed May 1, 2009).

[Androutsellis-Theotokis and Spinellis, 2004] Androutsellis-Theotokis, S. and
Spinellis, D. (2004). A survey of peer-to-peer content distribution technolo-
gies. ACM Computing Survey, 36(4):335–371.

[Barish and Obraczka, 2000] Barish, G. and Obraczka, K. (2000). World wide
web caching: trends and techniques. IEEE Communications Magazine,
pages 178–185.

[Bell et al., 2002] Bell, W. H., Cameron, D. G., Capozza, L., Millar, A. P.,
Stockinger, K., and Zini, F. (2002). Simulation of dynamic grid replication
strategies in OptorSim. In Proceedings of the 3rd International Workshop
on Grid Computing (GRID’02), pages 46–57, London, UK. Springer-Verlag.

[Bell et al., 2003] Bell, W. H., Cameron, D. G., Carvajal-Schiaffino, R., Mil-
lar, A. P., Stockinger, K., and Zini, F. (2003). Evaluation of an economy-
based file replication strategy for a data grid. In Proceedings of the 3rd In-
ternational Symposium on Cluster Computing and the Grid (CCGRID’03),
page 661, Washington, DC, USA. IEEE Computer Society.

[Bernstein et al., 1987] Bernstein, P. A., Hadzilacos, V., and Goodman, N.
(1987). Concurrency control and recovery in database systems. Addison-
Wesley.

[Biomedical informatics research network (BIRN), 2005] Biomedical infor-
matics research network (BIRN) (2005). Documentation. Available online
at: http://www.nbirn.net/ (accessed May 1, 2009).

[Cameron et al., 2004a] Cameron, D., Casey, J., Guy, L., Kunszt, P.,
Lemaitre, S., Mccance, G., Stockinger, H., Stockinger, K., Andronico, G.,
Bell, W., Ben-Akiva, I., Bosio, D., Chytracek, R., Domenici, A., Donno,
F., Hoschek, W., Laure, E., Lucio, L., Millar, P., Salconi, L., Segal, B.,
and Silander, M. (2004a). Replica management in the European data grid
project. Journal of Grid Computing, 2(4):341–351.

[Cameron et al., 2004b] Cameron, D., Millar, A. P., and Nicholson, C.
(2004b). OptorSim: a simulation tool for scheduling and replica optimi-
sation in data grids. In Proceedings of Computing in High Energy Physics
(CHEP 2004), Interlaken, Switzerland.

[Cameron et al., 2004c] Cameron, D., Millar, A. P., Nicholson, C., Carvajal-
Schiaffino, R., Stockinger, K., and Zini, F. (2004c). Analysis of scheduling

96 Fundamentals of Grid Computing

and replica optimisation strategies for data grids using OptorSim. Journal
of Grid Computing, 2(1):57–69.

[Capozza et al., 2002] Capozza, L., Stockinger, K., and Zini, F. (2002).
Preliminary evaluation of revenue prediction functions for economically-
effective file replication. Technical Report DataGrid-02-TED-020724,
CERN, Geneva, Switzerland.

[Carman et al., 2002] Carman, M., Zini, F., Serafini, L., and Stockinger, K.
(2002). Towards an economy-based optimisation of file access and replica-
tion on a data grid. In Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID’02), page 340,
Washington, DC, USA. IEEE Computer Society.

[Chervenak et al., 2005] Chervenak, A., Schuler, R., Kesselman, C., Koranda,
S., and Moe, B. (2005). Wide area data replication for scientific collab-
orations. In Proceedings of the 6th IEEE/ACM International Workshop
on Grid Computing (GRID’05), pages 1–8, Washington, DC, USA. IEEE
Computer Society.

[Chervenak et al., 2002] Chervenak, A. L., Deelman, E., Foster, I. T., Guy,
L., Hoschek, W., Iamnitchi, A., Kesselman, C., Kunszt, P. Z., Ripeanu, M.,
Schwartzkopf, R., Stockinger, H., Stockinger, K., and Tierney, B. (2002).
Giggle: a framework for constructing scalable replica location services. In
Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages
1–17, Baltimore, Maryland, USA.

[Clarke et al., 2002] Clarke, I., Miller, S. G., Hong, T. W., Sandberg, O., and
Wiley, B. (2002). Protecting free expression online with Freenet. IEEE
Internet Computing, 6(1):40–49.

[Compact muon solenoid, 2009] Compact muon solenoid (2009). Project doc-
umentation. Available online at: http://cmsinfo.cern.ch/ (accessed May
1, 2009).

[Demers et al., 1987] Demers, A., Greene, D., Hauser, C., Irish, W., Larson,
J., Shenker, S., Sturgis, H., Swinehart, D., and Terry, D. (1987). Epi-
demic algorithms for replicated database maintenance. In Proceedings of
the 6th annual ACM Symposium on Principles of Distributed Computing
(PODC’87), pages 1–12, New York, NY, USA. ACM Press.

[Digital island, 2009] Digital island (2009). Project documentation. Available
online at: http://www.digisle.com (accessed May 1, 2009).

[Dullmann et al., 2001] Dullmann, D., Hoschek, W., Jaen-Martinez, J., Se-
gal, B., Stockinger, H., Stockinger, K., and Samar, A. (2001). Models for
replica synchronisation and consistency in a data grid. High Performance
on Distributed Computing, 0:67.

Data replication in grid environments 97

[European datagrid, 2009] European datagrid (2009). Project documenta-
tion. Available online at: http://www.edg.org (accessed May 1, 2009).

[Fanning, 2001] Fanning, S. (2001). Napster. Available online at: http://

www.napster.com (accessed May 1, 2009).

[Gnutella, 2009] Gnutella (2009). Documentation. Available online at: http:

//www.gnutella.com (accessed May 1, 2009).

[Gridpp, 2009] Gridpp (2009). edg-replica-manager 1.0. Available online
at: http://www.gridpp.ac.uk/wiki/EDG_Replica_Manager (accessed May 1,
2009).

[GriPhyN, 2009] GriPhyN (2009). Grid physics network website project doc-
umentation. Available online at: http://www.griphyn.org/ (accessed May
1, 2009).

[Holtman, 2001] Holtman, K. (2001). The compact muon solenoid (CMS)
experiment note: data grid system overview and requirements. Technical
Report 2001/037, CERN, Geneva, Switzerland.

[Hoschek et al., 2000] Hoschek, W., Jean-Martinez, J., Samar, A., Stockinger,
H., and Stockinger, K. (2000). Data management in an international data
grid project. In Proceedings of the 1st IEEE/ACM International Workshop
on Grid Computing (Grid’00), volume 1971, pages 77–90, Bangalore, India.
Springer-Verlag.

[Kangasharju et al., 2002] Kangasharju, J., Roberts, J. W., and Ross, K. W.
(2002). Object replication strategies in content distribution networks. Com-
puter Communications, 25(4):367–383.

[Kubiatowicz et al., 2000] Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P.,
Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells,
C., and Zhao, B. (2000). OceanStore: an architecture for global-scale
persistent storage. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IX), pages 190–201, New York, NY, USA. ACM Press.

[Lamehamedi et al., 2003] Lamehamedi, H., Shentu, Z., Szymanski, B., and
Deelman, E. (2003). Simulation of dynamic data replication strategies in
data grids. In Proceedings of the 17th International Symposium on Parallel
and Distributed Processing (IPDPS’03), page 100, Washington, DC, USA.
IEEE Computer Society.

[Large hadron collider, 2006] Large hadron collider (2006). Computing grid
project. Available online at: http://lcg.web.cern.ch/LCG (accessed May 1,
2009).

98 Fundamentals of Grid Computing

[Large hadron collider, 2009] Large hadron collider (2009). Documentation.
Available online at: http://lhc.web.cern.ch/lhc/ (accessed May 1, 2009).

[Lei et al., 2008] Lei, M., Vrbsky, S. V., and Hong, X. (2008). An on-line
replication strategy to increase availability in data grids. Future Generation
Computer Systems, 24(2):85–98.

[Lin et al., 2006] Lin, Y.-F., Liu, P., and Wu, J.-J. (2006). Optimal placement
of replicas in data grid environments with locality assurance. In Proceedings
of the 12th International Conference on Parallel and Distributed Systems
(ICPADS’06), pages 465–474, Washington, DC, USA. IEEE Computer So-
ciety.

[Loukopoulos et al., 2002] Loukopoulos, T., Ahmad, I., and Papadias, D.
(2002). An overview of data replication on the internet. In Proceedings
of the International Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN’02), pages 31–37, Washington, DC, USA. IEEE Com-
puter Society.

[Martins et al., 2006] Martins, V., Pacitti, E., and Valduriez, P. (2006). Sur-
vey of data replication in P2P systems. Technical report, INRIA.

[Park et al., 2003] Park, S.-M., Kim, J.-H., Ko, Y.-B., and Yoon, W.-S.
(2003). Dynamic data grid replication strategy based on internet hierarchy.
In Proceedings of the 2nd International Workshop on Grid and Cooperative
Computing (GCC’2003), pages 838–846, Shanghai, China. Springer-Verlag.

[Particle physics data grid, 2009] Particle physics data grid (2009). Docu-
mentation. Available online at: http://www.ppdg.net/ (accessed May 1,
2009).

[Pierre et al., 2002] Pierre, G., van Steen, M., and Tanenbaum, A. S. (2002).
Dynamically selecting optimal distribution strategies for web documents.
IEEE Transactions on Computers, 51(6):637–651.

[Ranganathan and Foster, 2001] Ranganathan, K. and Foster, I. (2001).
Identifying dynamic replication strategies for a high-performance data grid.
In Proceedings of the 2nd International Workshop on Grid Computing
(GRID’01), pages 75–86, London, UK. Springer-Verlag.

[Ranganathan et al., 2002] Ranganathan, K., Iamnitchi, A., and Foster, I.
(2002). Improving data availability through dynamic model-driven repli-
cation in large peer-to-peer communities. In Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGRID ’02), page 376, Washington, DC, USA. IEEE Computer Society.

[Rhea et al., 2001] Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weath-
erspoon, H., and Kubiatowicz, J. (2001). Maintenance-free global data
storage. IEEE Internet Computing, 5(5):40–49.

Data replication in grid environments 99

[Stockinger et al., 2002] Stockinger, H., Samar, A., Holtman, K., Allcock, B.,
Foster, I., and Tierney, B. (2002). File and object replication in data grids.
Cluster Computing, 5(3):305–314.

[Wiesmann et al., 2000a] Wiesmann, M., Pedone, F., Schiper, A., Kemme,
B., and Alonso, G. (2000a). Understanding replication in databases and dis-
tributed systems. In Proceedings of 20th International Conference on Dis-
tributed Computing Systems (ICDCS’2000), Taipei, Taiwan, R.O.C. IEEE
Computer Society.

[Wiesmann et al., 2000b] Wiesmann, M., Schiper, A., Pedone, F., Kemme,
B., and Alonso, G. (2000b). Database replication techniques: a three pa-
rameter classification. In Proceedings of the 19th IEEE Symposium on Re-
liable Distributed Systems (SRDS’00), page 206, Washington, DC, USA.
IEEE Computer Society.

Chapter 4

Data management in grids

Jean-Marc Pierson
IRIT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex
9, France

4.1 Introduction . 101
4.2 From data sources to databases . . . to data sources . 103
4.3 Positioning the data management in grids within distributed systems . 104
4.4 Links with the other services of the middleware . 106
4.5 Problems and some solutions . 107
4.6 Toward pervasive, autonomic and on-demand data management 116
4.7 Concluding remarks . 117

Acknowledgment . 117
4.8 References . 118

4.1 Introduction

As it was sketched in previous chapters, Grids have been so far very suc-
cessful to handle at large scale a lot of computing intensive applications in do-
mains like high energy physics, weather forecast, genetics, Most of these
applications deal with data, either as inputs, outputs or both of their process-
ing. Some of them are dealing with gigabytes, terabytes or even petabytes.
In 2006, the digital data production of the humanity reached 161 exabytes.
Grids do not deal yet with these numbers, but are each day getting closer.
For instance, the Large Hadron Collider at CERN 1 produces 15 petabytes of
data each year starting in 2008.

This chapter will introduce Data Management in Grids, and not Grid Data
Management. In our understanding the difference is in the integration of
the data management in Grids. Studying Grid Data Management would
mean describing a running middleware stack, expressing the links between
the available services, performances and constraints. We rather plan to raise
in this chapter some problems of the data management in Grids, explaining
our point using several models and technical implementations in different
Grids. In our understanding an absolute and universal Grid does not make

1lcg.web.cern.ch/LCG.

101

102 Fundamentals of Grid Computing

sense. We will keep the data management as the first concern, while Grids will
be the context of the study. Heterogeneity at the software and middleware
levels make it impossible to provide an unique answer to the problem of data
management in Grids.

As expressed by R. Moore at the Open Grid Forum 22 in February 2008,
Data Management in Grids covers a large set of different aspects and interests.
In Data Grids, the objective is to share scientific data, to organize data as
collections so that they can be easily managed as a set. Digital libraries
are interested in publishing data to the general public: They must support
browsing and discovery. Some data must be stored in persistent archives,
which must take into account the authenticity and integrity of the data and the
technology evolution so that data can still be readable in centuries. They must
mitigate data loss by means for instance of data replication and federation of
catalogs. Real time sensor systems produce data on the fly. The problem is
then to federate sensor data and to integrate these data across sensor streams.
These examples show the difficulty to design a generic infrastructure that
covers all the requirements at once.

Transparency is one of the pillars of the Grid. Data management in Grids
is no exception: Whatever is the hardware, software, middleware and network
environment, data must be accessible in a seamless way. Naming constraints,
physical locations, physical hardware components, access methods and poten-
tial processing units must not interfere with the provision and management
of data.

The scalability issue is of prime importance. The scalability issue has to
be handled in terms of the size of data pieces, of number of resources (data
pieces, storage nodes) and in terms of number of clients. While Grids can
aggregate small scale resources and data, it can also grow up dramatically:
As for an example, the EGEE 2 infrastructure gathers 72000 CPUs and a total
storage capacity of 20 Petabytes in disk, not counting the tapes in Massive
Mass Storage. Data transfer is estimated at 2.3 PBytes per month with an
average throughput of 860 Mb/s. The number of registered users in EGEE
III is 13800.

Commonly used data in Grids are of many different modalities, depending
on the application area and the processing services. It spans from text to
video, from raw data to annotated rich data, from structured to fully struc-
tured data. For instance, in the high energy physics case, most of the files
manipulated are filled with numbers while medical images are more common
in the life science cases.

Another point of heterogeneity concerns the data sources or sinks that are
used. They can be either raw files, on the fly data, data stored in semi-
structured files (like XML), in files systems or in Data Bases Management
Systems. Sometimes, one application will use many different modalities, com-

2www.eu-egee.org.

Data management in grids 103

ing from many different data sources. For instance, the medical grids often
deal with MRI or PET images, raw files coming from biogenetic, structured
tables in patient databases and raw text files from doctor prescription, exper-
tise and analysis of the situation of the patient. All the available data usually
lead from data to information to knowledge.

The heterogeneity appears also at the level of the security administration
of the data. The needs are various and depends again on the application
area. Security is not much a concern when raw data are considered. But
semantically rich data (like medical data from a patient) or enriched data
coming from a computerized processing (for instance results of a fluid dynamic
algorithm on a plane structure or drug discovery) deserve more attention.
Confidentiality and integrity of data must sometimes be ensured at a high
level, without compromising their performance or their usability.

Grids suffer from a potential high dynamic of the resources (storage, net-
work, cpus) and users. It is mandatory that the access to data is not con-
strained by this dynamic. Thus data management must take into account the
dynamic in order to guarantee fault tolerance and best performances.

Finally, the coordination of resources available on the Grids must also ben-
efit to and from data management. Indeed, the data management must be
tightly coupled with the coordination of the resources. For instance, gather-
ing separated storage disks into a virtual storage space increases the storage
capacity of individual entities of the Grid when the coordination and cooper-
ation of these entities in a seamless way is achieved.

The rest of the chapter is organized as follows: In Section 4.3 we will sit-
uate data management in Grids in the distributed systems microcosm. In
Section 4.4 we will explain links between data management in Grids and the
other services one can typically find in Grids. Section 4.5 gives details in the
problems related to data management in Grids and gives some hints for solu-
tions. But let us first examine quickly why data are considered coming from
data sources.

4.2 From data sources to databases . . . to data sources

It can appear peculiar to speak about databases and data sources. Never-
theless, we believe that this discussion has its place in this chapter. Indeed,
a question that should be mentioned is why do we need new tools to access
data, while databases have been designed since several decades ago to handle
especially this problem.

In former times, before databases were invented, data were stored in flat
files, and manual tools and scripts were implemented to handle the access,
replication, security related to these data. Then came the time for databases,

104 Fundamentals of Grid Computing

that provided a level of abstraction above the raw data, with the main benefits
of performances and organization optimizations. Data are structured, access
to these data are controlled by ad-hoc procedures in data bases management
systems, which are in charge of handling efficiently and securely the data
pieces. Moreover while data sources contain generally raw data, databases
preserve raw data together with data coming from additional process, annota-
tions, etc. For performance improvements, parallel and distributed databases
have been designed [Bertino and Özsu, 1994], [Ozsu and Valduriez, 1999].
Still, data are coming from data sources (human, computer process or sensing
devices) and stored in databases. Access is done via the databases interfaces.
So why does the community in Grids speak about data sources again?

To our understanding, the problem comes from some of the constraints ex-
pressed before. Indeed these constraints of the Grids environments make it
difficult to design a database management systems at a Grid scale, as you will
see in the following the discussion, mainly for respecting the ACID (atom-
icity, consistency, isolation and durability) properties on the transactions in
databases. Databases were not designed to handle at high throughput the
amount of data found in Grids, especially when taking into account the se-
curity and multi-organization aspects of the access patterns. Moreover tech-
niques from parallel databases to optimize joins in placing or moving data
were less efficient at large scale when the network latency and bandwidth for
instance were degraded. Also, it must be agreed that complicated access pat-
terns are of less concern for the majority of the users of the Grids. These want
to aggregate mainly computing and networking capacities, at the drawback of
managing less efficiently the data. Hence for a long time, data concerns have
been put behind the main track: In fact from 1996 to 2001, nearly no signifi-
cant work has been done on the data management in Grids [Stockinger et al.,
2001], [Chervenak et al., 2001], [Hoschek et al., 2000] at a level comparable
to what was done in parallel computing some years before.

As we will see in Section 4.6, some initiatives try to push towards grid level
databases, increasing autonomy and self management services, so that we can
imagine again to forget about data sources.

4.3 Positioning the data management in grids within dis-
tributed systems

Data management in grids shares a number of aspects with some other
systems dealing with data in distributed systems. In this section we will
delineate data management in Grids by briefly comparing with Distributed
Databases, Peer 2 Peer systems and Content Delivery Networks.

In distributed databases management systems (DDBMS) [Ozsu and Val-

Data management in grids 105

duriez, 1999], storage devices are present on a set of nodes (potentially at the
same site or at remote locations). The database is distributed into separate
partitions, each one potentially replicated. The system makes sure that the
distribution is transparent to the users and that the integrity of the transac-
tions on the databases is ensured. Links between data pieces are explicit in
the database schemas. This latter represents a big difference with the data
management in grids where data pieces are generally more independent. A
second difference concerns the security issues: Typically users in a DDBMS
are handled by one organization or links between organizations have been set
up once. The authorization checks take thus generally less time than in grids
where ad hoc security services have to be contacted. A third difference is the
network latency that can be high on grids, leading to poor performances for
handling transactions. Even if this problem also appears in DDBMS in its
principle, it is mainly considered that sufficient network connections exist and
transactions can thus be held.

Peer 2 Peer systems (P2P) are widely developed and their main concerns
have for a long time been to handle data sharing and access [Gribble et al.,
2001]. Peers join and leave the infrastructure at any time, which is a key
feature of P2P systems. Data management in P2P is thus mainly concerned
about the search, the transport and availability of data. The completely de-
centralized approach of P2P systems is the core of the system: no global
registry, no global resource management or data repository is existing. When
peers cooperate for handling requests on data, they need to coordinate their
representation of the data since a global schema can not be assumed. P2P
systems can be seen as grids without central administration; but such a de-
centralized grid is far from being a reality mainly for global resources opti-
mization and security concerns. Security and dependability of data in P2P
systems are more problematic than in grids due to the higher dynamic of
available resources and lack of central authority.

Content Delivery Networks (CDN) [Buyya et al., 2008] aim at providing
an efficient access infrastructure for data pieces. They are mainly deployed
on stable commercial infrastructure for multimedia data. They are develop-
ing techniques for the transport and the caching of data. Their main idea
is to optimize the access of a subset of the whole data sets, predicting the
ones that will be mostly accessed and organizing the replication and move-
ment of data based on this fundamental. Quality of Services and realtime
concerns are pinned by the multimedia nature of the data. Global indexes are
generally maintained. Security has not been studied a lot in these dedicated
environments. Data management in grids shares the main concerns of the
CDN which, to some extent, can be seen as a subset of the data management
part of the grids. Data management in grids is more complicated than the
CDN. Indeed while the CDN is deployed on a stable infrastructure, the grids
are more dynamic and the reliability of storage parties is limited. It can be
noted that some CDN networks are deployed over P2P networks.

Finally a Grid storage can be seen hierarchically. There exists a local

106 Fundamentals of Grid Computing

level, where the data are actually stored, either a file system running NFS,
a database or a Storage Area Network (SAN). Second there is a global level
where the data are transparently accessed, through primitives at the Grid
middleware level. Several possibilities exist to create this high level trans-
parent access (see Section 4.5): The main point is that there exist these two
different access levels. Moreover, links between the different pieces of data are
loose, and a global structure (or schema) is usually not existing. Finally, users
accessing data come from different institutions and the transparent sharing of
data in terms of security is a key feature in grids.

4.4 Links with the other services of the middleware

The Data Management in Grids has to be delineated in terms of function-
alities. We will sketch some of these in the next section. It will by no means
cover all the problems: For instance, the replica management procedures need
some information about the possible sites where data can be stored.

Therefore, managing data in Grids relies on existing other pieces of a mid-
dleware that will provide some continuously updated input to the different
services related to Data Management. The integration with other existing
tools is of premier importance. These should be able to store and access their
own functional data in a win-win schema.

Obvious services that interact with Data Management are those related with
information and instrumentation of the state of the resources in a Grid. Moni-
toring and knowledge about the participating nodes, the available bandwidth,
the latency, the available disk space (using grid level information systems [Cza-
jkowski et al., 2001] or simple tools like the Network Weather Service [Wolski
et al., 1999] or Network Distance Service [Gossa et al., 2007]) are neces-
sary. Interaction with security services, from transport (SSL/TLS based),
authentication (Globus Security Infrastructure [Foster and Kesselman, 2004]
or simple LDAP), to authorization [Pearlman et al., 2003], [Seitz et al., 2005
], [Alfieri et al., 2005]) are mandatory to secure the access to data, as we will
detail later in Section 4.5.5.

Conversely, some services use data management procedures to perform their
role: For instance the resource allocation manager (Globus Resource Alloca-
tion Manager [Foster and Kesselman, 2004], or OAR [Capit et al., 2005])
needs to retrieve information about the system state and may interact directly
with the data managers.

These were only small and limited examples. Enumerating such links would
be endless.

In brief, all the services of a running middleware benefit from and benefit
to the services related to data management. This must therefore be carefully

Data management in grids 107

handled, with well defined and exposed interfaces and API.

4.5 Problems and some solutions

4.5.1 Data identification, indexing, metadata

The first problem that arises is a way to identify the data that will be
managed and used in a Grid.3 Typically a task on a Grid will need some
input data and/or produce some output data. These data have to be stored,
accessed, eventually moved from one site to another. There is thus a need to
name the data, both individually and in group.

A task may request accesses to data stored at a distant site. Hence the
naming must be global at the scale of a Grid in order to avoid mixing up
different pieces of data. It must be coordinated so that different pieces of
data get different global names. The naming should hide the different local
naming conventions and organizations of the data storage: For instance, the
underlying storage system may organize its storage hierarchically (trees for
instance) or flat. The name of the data should not include information about
their structures. Finally the naming must not be attached to a particular site
as the data may move or may be replicated during their lifetime.

Using URN (Universal Resource Name, RFC 2141) to name the resources in
Grids (and the data) is a solution more and more adopted in Grid middleware.
Note that in the early EU DataGrid project [Stockinger et al., 2003], the
Logical File Name (LFN) was adopted for similar aims. The URN fulfills the
requirements of independence in the location of data and the organization of
the actual storage. A possible way to construct a URN is by using a UUID
(Universally Unique ID, RFC 4122).

The link between logical names and actual data (or resource in general) has
to be ensured by an accessible service, an online database or ad hoc proce-
dures. The Open Grid Forum proposes for instance the Resource Namespace
Service for this mapping.

A name is useful mainly if one wants to retrieve some data. Two approaches
can be envisioned:

• placement as a matter of the content: In this approach that is favored
in some P2P networks, the data retrieval is only done thanks to the
placement of the data itself: The identifiers of the data give a route in
an overlay network to the data. For instance the Freenet P2P network

3The problem of identifying and naming is not related only to data but to resources in
general: In fact, we will concentrate the view on data but most of the material is also valid
for other kind of resources in Grids.

108 Fundamentals of Grid Computing

is using this technique, whereas the main grid middlewares do not use
it.

• indexing the data in a registry: In this approach, some indexing and
cataloging must be provided in order to help the actual access to the
data. The difficulty is to address this registration in a distributed en-
vironment, managing some possible replication of data. Also to take
into account is the fault tolerance of the service providing the registry
so that the access to the data is not lost when one part of the catalog is
missing. Redundancy and replication of the indexing services help for
the fault tolerance and for balancing the load between several servers.
Different methods exist in grid middleware for handling these catalogs,
from centralized to distributed approaches. In the former, one catalog is
maintained containing information about available data. In the latter,
the catalog is either replicated at several sites or split between different
servers, each one getting a part of a global catalog.

But a name is often not enough. Additional information is attached to the
original data in many cases. This information is called the metadata of the
data. We have to separate between two kinds of metadata: content metadata
and management metadata.

• content metadata: These metadata are directly related to the content
of the data. For instance a medical image may have the date of ac-
quisition, the name of the doctor, the type of imager producing the
data. Annotations made by data users during the data lifetime are also
somehow attached to the data, like for instance a practitioner putting
a comment on the observation of a medical scanner image. These addi-
tional information add semantic rich value to the raw data and are at
least as valuable than the data themselves. Cataloging must take these
into account as well since metadata provide an efficient way to search
among the avalanche of data.

• management metadata: These metadata are linked with the data and
used for the management of the data in the distributed systems. They
include for instance the number and locations of potential replicas of the
data (see 4.5.4), the usage of the data during their lifetime (for audit-
ing, accounting, billing, traceability support). These metadata are used
internally by the data management systems, by the other middleware
services and by system administrators.

Representations of the metadata in the catalogs are typically put into
database systems and/or expressed in XML (files or databases) or registries
like LDAP (Lightweight Directory Access Protocol) directory trees. When
used in Grids, the LDAP directories hold all the information for the manage-
ment of the elements of the Grids (number of nodes, types of nodes, users,
monitoring, . . .) additionally to the data metadata.

Data management in grids 109

When dealing with thousands of files, it is cumbersome (or impossible) to
handle individually names and metadata. When sensors in a High Particle
Physics experiment produce raw files continuously, it is convenient to asso-
ciate all of them with that experiment and thus to group the produced data
under a same collection. A collection allows a set of data to share common
characteristics helping the search for particular results. Also on a data man-
agement point of view, a collection can then be handled like one set: If a
part of the collection is moved (for instance a user makes a request for it) or
removed (for instance if the data proved to be damaged), it is likely that the
rest of the collection will have the same future allowing to anticipate on (and
to optimize) the data management.

Metadata, semantics, grouping are means to undergo the way from raw data
storage to information retrieval. Users want to access data with high level
queries: Raw data is most of the time useless. For further reading, a good
example of an efficient tool for indexing and retrieving in data collections is
the MCAT catalog of the SRB (Storage Resource Broker) project [University
of North Carolina, 2009].

The next section addresses the link between knowing where are the data
and how to effectively access these data.

4.5.2 Data access, interoperability, query processing, trans-
actions

As explained earlier, data sources in Grids are distributed among several
sites and heterogeneous in several aspects. This heterogeneity appears in:

• storage systems: Each site of a Grid would hold its own storage system:
The underlying storage systems can be any means to store data on
permanent devices. The most encountered storage systems are raw file
systems, most of the time based on some Unix-like file system (AFS,
EFS). Another observed option in the High Performance Storage System
[Teaff et al., 1995] which gives optimized access to files mainly in cluster
when the file size is large. Databases are also seen in Grids, from open
source implementation like MySQL or PostGres to commercial products
like DB2 or Oracle-11G, the latter being advertised as a grid database,
and mainly offers transparent access to different storage sites.

• data organization: Data access is also depending on the organization of
the data, in terms of schemas, internal structure. Files structured or
semi-structured will provide for instance means to extract more easily
metadata facilitating their management.

• technologies: The tools to access the data depend on the storage system
type and organization of the data. Local or Global API (Posix-like),
specific protocols (like RFIO commands for HPSS), remote procedure

110 Fundamentals of Grid Computing

calls (RPC), HTTP, web/grid services are all complementary means to
actually get data pieces.

To handle this heterogeneity and distribution, a key concept in Grid com-
puting is transparency. The idea is to provide a unique way to access the
data, regardless of the actual storage systems, data organization or under-
lying access technologies. Data virtualization allows to access data virtually
through a specific interface, mapped then to the actual data access patterns.
This requires obviously appropriate naming and indexing of the data pieces
(see previous section).

Most of the implementations rely on a limited set of operations representing
the standard/common operations for all kinds of storage, that can be mapped
onto these.

Concerning file access, the idea is to develop Posix-like functions (open,
close, read, write, seek, stat,. . .) over any actual storage system to hide their
heterogeneity. Grid wide access operations can be performed over distributed
resources, with tools like object-based file system (XtreemFS [Hupfeld et al.,
2008], VisageFS [Thizbolt et al., 2007], GridFS [Bhardwaj and Sinha, 2005
] or even NFSv4), but due to consistency checks for ACID properties and
latency delays, these solutions give low performances with scenarios when
deployed at large scale on a grid.

Other problems include versioning and synchronization of replicas other
than distributed environment. Replication will be detailed in Section 4.5.4.

In some cases, the data pieces can be split between different grid sites (like
in XtreemFS), each of them holding a part of the data pieces. While being
very efficient for increasing performances (for instance using parallel transfers,
see Section 4.5.3), it creates more complexity for checksum computations,
auditing, pinning and backups.

As we already mentioned in a previous section, some operations are held on
a set of data pieces rather than on single data pieces. Bulk operations that are
found (like in SRB) deal with registration, loading, deletion. The Hierarchical
Data Format (HDFv5) gives a standard characterization of groups of files in
a container.

The Data Access and Integration (OGSA-DAI) initiative [Antonioletti
et al., 2005] in the OGSA architecture aims at providing an uniform access
and integration to several kind of data sources, from relational databases, web
databases, XML or even semantic enriched RDF files. The idea is to provide
some mediator/wrapper between the actual data sources and the grid (thus
the clients) that hides the heterogeneity of the access methods. Then the
access itself is done via API calls, SQL queries or web browser (like OGSA-
WebDB [Pahlevi and Kojima, 2004]). At the moment OGSA-DAI supports
MySQL, IBM DB2, Microsoft SQL Server, Oracle, PostgreSQL and the eXist
XML database.

Query processing is the process to actually access the pieces of data. As
data are distributed, possibly replicated, there is the need to have some specific

Data management in grids 111

ways to perform the query processing. Intra-query parallelism in distributed
query processing (DQP) deals with the access to the data when the data
related to a single query are distributed among several sources. Inter-query
parallelism appears when concurrent accesses to the same query service are
provided. In order to provide an efficient query processing engine, both sides
must be investigated and the query scheduler optimizes the query planning
thanks to environment information. For instance, critical operations like table
joins in databases must be done in the right order and on the right data
sources or replicas. This optimization problem is not due to the distributed
nature of the grid and appears also in traditional databases, but the problem
is additionally stressed with the dynamic of the system and potential high
latency of the network. The mainframe is to search for the potential data
in the system, move the data to a processing engine and then perform an
operation, with potential optimization in the order of the operation or the
selected available operation service [Lynden et al., 2009]. Solutions based on
mobile agents [Morvan and Hameurlain, 2009] aim at moving the query to
the data rather than moving the data to the query engine.

Transactions are another important part in traditional databases. The idea
is to group a set of operations on the data sources in an atomic operation:
If one of the operation fails, the whole transaction is cancelled. In Grids,
mainly two problems cause these transactions operations to be difficult: per-
formance and checkpointing. In order to cancel a transaction not being able
to finish, there is the need to make some checkpointing of the data sources
before individual operations so that they can be restored in case of failure.
Without a global coordinator of the transaction process, with network high
latency and several thousands of clients, it becomes difficult to ensure the
correctness or the freshness of the data, thus leading to inconsistency in the
data. This problem is increased when data are replicated, since in that case
all replicas must be in the same state at the end of the transaction. Works
like GridTP [Qi et al., 2004], Turker [Türker et al., 2005], HVEM transac-
tion [Jung and Yeom, 2008] show that some partial solutions exist, relaxing
some constraints on consistency or using some existing hierarchical structure
in the data set. See [Wang et al., 2008] for an historic survey of transaction
management from flat to grid transactions.

Access is not enough: One should not forget how to transfer, how to con-
trol (security), how to process: GridFS for instance combines the benefits
of different approaches (Remote File Access, File Staging) and offers special
functionalities for Grid Computing (estimated transfer cost and file copy to
local system).

4.5.3 Transport

While data transport is not directly related to data management itself, it is
nevertheless useful to spend some time to describe briefly its links with data
management. Besides the classical data access through sockets, RPC or RMI

112 Fundamentals of Grid Computing

calls, web services invocation, FTP procedures, grids have seen the emerging
of dedicated services to transport data between sites in the grid or to the
final clients. The idea behind these services is to provide some additional
possibilities in terms of performance or security thanks to the grid structure
and middleware.

As an example, parallel streams can be used for transferring efficiently one
piece of data. Indeed, as data are replicated in the system, it is obvious
that opening different data streams between machines will decrease the trans-
fer time. Experiences show that even when the data piece is on one single
node, the time to deliver is shortened with parallel streams. Another exam-
ple concerns the compression and the encryption of data during the transfer.
GridFTP [Allcock et al., 2005] (at operating systems low level) or the Globus
Reliable File Transfer service and gLite File Transfer Service (at higher ab-
straction level of service oriented grid architecture) [Globus, 2009b], [EGEE,
2009] are typical existing efficient possibilities of transferring data in the
Grids. In RLS, the reliability of the transfer is resistant to failures of the
network or sites. If one site can not complete a transfer, a replica is selected
and the transfer continues.

4.5.4 Placement, replication, caching

The placement of data is a decision that impacts the performances of the
Grids, both in terms of access time and robustness. In the DataGrid and now
EGEE project like in many others, the solution was to adopt a hierarchical
data structure. Subsets of data are copied at several levels of a data tree. The
nodes of this tree are distributed to physical distant location: For instance
in the LHC experiments of the DataGrid, CERN is the production center of
the data. It is Tear 0. It is connected through high speed networks to several
sites acting as Tier 1, having less capacities, where data are stored. These are
recursively connected to Tier 2 with smaller bandwidth and data capacities.

It is common knowledge that replication of data increases performances,
placing some data pieces closer to their future usage, decreasing the client
waiting time and balancing the load between several potential servers. It
also increases the reliability of the system, the data being more likely to be
accessible even in case of system failures.

Failures that can show up are very diverse and account for several ways to
replicate the data, which are easily possible in a heterogeneous grid. Media
failure (disk failure, tape failure) can be overcome by replicating on multiple
media. Avoiding problems with vendor specific system error, data should be
replicated on different vendor products. To handle problems with the site
connections, replication on a second site is necessary, while avoiding natural
disasters requires the data to be replicated in a distant site. Finally, replicat-
ing data in deep archives (with more robustness and security) decreases the
risks due to malicious users or noncareful administrators.

Works on replica management are numerous. They investigate several sides

Data management in grids 113

of the problem: from replica placement, migration, deletion, access to perfor-
mances in terms of access time and disk capacity used. They try to balance the
criteria of number of replicas, dynamic locations of replicas, local and global
system performance Examples include the LCG Replica Catalog [gLite,
2009], the Globus Replica Location Service RLS and Data Replication Ser-
vice [Globus, 2009a]. They allow registration and discovery of replicas using
replica catalogs, mapping a logical identifier to actual physical locations of
replicas. Choosing the best replica is a tedious task, based on acquired knowl-
edge about the status of the infrastructure and needs of the users: Among
others, the Network Distance Service [Gossa et al., 2007] helps to insert sev-
eral contradictory parameters for data placement, data replication (number
of replicas) or replicas selection. Being able to optimize the number of replica
and their placement is a key issue, notably for keeping consistency manage-
able. Since several copies of the same data piece exist in the system, there
is a need for consistency between these copies. This applies also with the
metadata attached to the data. This aspect will be covered in Section 4.5.6.

Differences between replication and caching are subject to discussion. While
replication is often made explicitly by a user or a service, caching operates
the data pieces transparently for the system in order mainly to increase the
performance of the access. Data in caches are stored temporarily and no
guarantee on the presence of data pieces on some sites is given: The system
can decide to delete arbitrarily the data to let space for another piece of data.
Few works are interested in caching in Grids, since most claim that caching is
just a specialized way for replicating. Nevertheless, the coordination of caches
in a Grid like in [Cardenas et al., 2007] gives much benefit to all the sites of
the grid especially where a community of users share interests and thus data
pieces. It increases the caching capacities and allows for more advanced data
management like for instance performance enhancement and data splitting
between caches.

4.5.5 Security: transport, authentication, access control, en-
cryption

Data security has to be ensured at different places in the architecture. The
first thing is to ensure the security of the sites where the data are stored,
then to ensure that the communication of the data is secure. In Grids, no
specific work has been done concerning the secure transport of the data. The
applications rely on well known protocols like SSL/TLS.

To secure sites, there is basically three complementary mechanisms: Au-
thentication, authorization and encryption. The security problem is particu-
larly difficult in Grids because of the lack of a global and centralized authority.
Indeed, local administrators in autonomous sites of different organizations do
not want to let the access decisions outside their control.

Authentication is the process of identifying securely the services and users
that want to access the sites. It is not related to data management but is

114 Fundamentals of Grid Computing

a necessary brick of a grid middleware where the data management services
have to interact with distant sites on behalf of the users. To avoid the need
for the user to authenticate manually on the different sites, single-sign-on
procedures have been developed. They are mainly based on certification and
delegation of authority, for instance by the use of proxy certificate like in the
Globus Security Infrastructure GSI [Foster and Kesselman, 2004]. Shibbo-
leth [Shibboleth, 2009] allows for the cooperation of identity servers and for
identity federation. Traditionally the authentication of the users connecting
to a service is done at the service site. In Shibboleth it is the user organi-
zation that verifies its presence in its database and transmits to the service
the required attributes. GridShib [Scavo and Welch, 2007] is a grid version
integrated in Globus.

Authorization allows for verifying the permissions to access specific re-
sources (for instance data) when being authenticated on a site. Several access
control mechanisms have been developed for Grids. The Community Au-
thorization Service (CAS) [Pearlman et al., 2003] has been proposed in the
Globus middleware to control the access to resources in a Virtual Organi-
zation (VO) in grids. Attribute certificates carry the users’ membership in
terms of VO. The organizations’ members of a VO delegate the access control
of some of their resources to the CAS servers. The CAS servers verify the
certificate memberships and the resources authorities. Interconnecting VOs
(by collaborative CASs) allows for statically mapping the different profiles
implemented in each VO.

In VOMS (Virtual Organization Membership Service) [Alfieri et al., 2005]
the authorization rules for accessing the resources stay at the resources sites:
Thus the owner of the resource is responsible for its access control and not
the VO administrator (opposite of CAS).

Permis (PErmission and Role Management Infrastructure Standards)
[Chadwick et al., 2008] uses the Role Based Access Control (RBAC) to is-
sue attribute certificate based on the role in an organization rather than to
individuals. It integrates the delegation of authority where the SOA (Source
of Authority) of the resource expresses the trusted entities allowed to issue
attribute certificates.

In Sygn [Seitz et al., 2005], all permissions to access resources are encoded
in attribute certificates that are stored with their owner. Sygn does not involve
any communication when granting the access to the resources. At any time,
resources administrators (or entities being delegated the permission) can issue
and give new authorization certificates.

These approaches differ mainly at the granularity level of the access control,
the location of the decision point of access control (centralized, replicated,
distributed) and the responsibility of the resource administrator. They all
use attribute certificates (X509 or ad-hoc).

Due to the lack of central authority, the access policies are normally not
expressed in the same language. This heterogeneity has to be handled, for
instance by the means of a standardized language to express the policies like

Data management in grids 115

XACML (eXtensible Access Control Markup Language). Nevertheless, there
is the need to work at a semantic level to potentially map the different policies.

The data access needs to be traceable. Indeed in many applications it is
useful or mandatory to know the previous read-write access to the data.

Encryption secures the content of the data. It is recognized that access
control does not protect against all the security threats. For instance a disk
containing data might be directly accessed without using any middleware at
maintenance sessions or when the site containing the data leaves the grid.
Traditional encryption mechanisms can be used like RSA or DES, but then
the secure management of encryption keys becomes difficult. Where should
these be kept in order to allow access to authorized users or services while not
suffering from single point of failures? Some works [Seitz et al., 2003] tend
to distribute some part of decryption keys among a set of servers in order to
decrease the risks related to an attacked key servers’ repository.

Metadata are often attached to data. The security handling of both must
be consistent, and this is also the case when data are replicated.

4.5.6 Consistency

The consistency problem appears when data are replicated and accessed
within write patterns. Most of the huge amounts of data produced in pro-
duction grids are mainly read-only. For instance data produced by the LHC
experiments result from the collision of particles and thus are not subject from
changes. From these data, additional data can be produced or computed, but
usually their number is far smaller. As a result, data consistency did not gain
much attraction in the past in the grid community.

The part where consistency made sense is the management of metadata.
Some metadata are fixed like the acquisition date or the description of the
experiment that produced the data in terms of instruments for instance. Some
metadata may evolve with time, such as annotations made by experts after
analysis of the data. Security permissions must also be considered as metadata
and consistency should hold: When the permissions to access a data piece is
modified, this modification has to be forwarded.

Since the support for consistency has long been mainly ignored in grid mid-
dleware, the consistency of the data was managed by the users themselves:
These were replacing the modified data (or metadata) manually. This proce-
dure is highly inefficient:

• The users can make some errors in the process, forgetting some replicas
for instance;

• When several users wants to update data at the same time, they have
to cooperate, leading to difficult user oriented coordination procedure.

• It is not robust when some sites are temporarily unavailable: These
sites miss the updates of data leading to inconsistencies in the system.

116 Fundamentals of Grid Computing

Quorum mechanisms depending on the application requirements could
be used to ensure that an operation is performed when at least a given
number of replicas are available. Synchronization is then performed as
soon as the replicas become again available.

Few works can be cited for the consistency management in grids and they
clearly depend on the applications’ requirements. [Pucciani, 2008] presents
a comprehensive introduction, related works and innovative solutions. So-
lutions mostly rely on the concept of master replicas (up-to-date data are
found at a master replica), and different mechanisms to take the modifica-
tion of the master replicas (possibly several) into account [Sun and Xu, 2004
], [Chang and Chang, 2006]: Lazy updates are done only when a slave replica
(nonmaster replicas are slaves) is accessed; Push methods allow for a more
aggressive way of updating data, at the initiative of the master replicas. Other
methods [Chen et al., 2007] for databases are based on the possibilities of un-
derlying replication strategies and consistency management in the databases,
using the possibility to replay a set of operations in databases (with import
and export logs).

4.6 Toward pervasive, autonomic and on-demand data
management

Future works in data management in Grids include the integration of new
concepts linked with the mobility, pervasiveness, context of the users and re-
sources. Taking advantage of light devices, interconnected in an ad hoc way
and participating with more stable resources to a grid is the key idea of the
Pervasive Grid concept. The Pervasive Grid [Parashar and Pierson, 2009]
encompasses many new challenges due mainly to the uncertainty of the infor-
mation and resources on the next generation of grids. Early works on data
management in these pervasive grids [Pierson, 2008] show the common ap-
proaches and differences between classical data management in grids and the
data management in pervasive grids. The need for enhanced fault tolerance
and recovery mechanisms, together with the inclusion of self characteristics
(self-healing, self-management, self-recovery . . .) will lead to the development
of a new class of grid computing, closer to autonomic computing [IBM, 2009
]. Independent collaborative services (embedded in Service Oriented Archi-
tecture) will be developed and interconnected. Dynamic reconfiguration of
components according to the evolution of context (like moving, replicating,
splitting) will be more and more present in future developments.

Existing research directions exist for integrating data resources and compu-
tation resources. Indeed data are normally not used directly, but are processed
before being delivered to users. Moving the data to the computation nodes

Data management in grids 117

can be inefficient compared to moving the processing to the data (like the mo-
bile agent approach for Distributed Query Processing). OGSA-DAI opened
the path for this integration (by defining operations during the execution of
some requests). Subsequent works on data- and work-flow in grids [Glatard
et al., 2005] paved the way for more efficiency and optimization. The idea
is to allocate computation resources taking into account the placement of the
data manipulated by the processes.

Another direction for data management in grids will be developed with the
concept of Cloud Computing. Cloud computing accounts for integrating on-
demand resources (Amazon for instance), up to deploying specific middleware
(like Grid’5000 [Cappello et al., 2005]) on-the-fly for customers. Today such
infrastructures are mainly based on dedicated clusters, but soon Grid Cloud
Computing will become a reality. Data management in such environments
will be based on works in grid computing, adding more efforts on quality of
services and accounting for enabling comprehensive business models.

4.7 Concluding remarks

This chapter gave an overview of the different techniques related to data
management in today’s computing grids. It tried to sketch the fundamen-
tal differences with the data management in other distributed systems or to
delineate the links with distributed databases and all the corresponding back-
ground. Exploring several problems and partly some solutions, we proposed a
comprehensive view of the data management techniques for classical problems:
Identification, Replication, Access, Query, Security, Consistency.

Finally, we gave briefly some future directions of the data management in
grids towards autonomic and on-demand computing.

Acknowledgment

The author would like to thank his esteemed colleagues Lionel Brunie,
Georges Da Costa, Abdelkader Hameurlain and Harald Kosch, and all those
who, especially during the Data Management in Grids workshops [Pierson,
2005], [Pierson and Brunie, 2007], [Pierson and Kosch, 2008], raised some
interesting and debated discussions in the last years.

118 Fundamentals of Grid Computing

4.8 References

[Alfieri et al., 2005] Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L.,
Frohner, A., Lorentey, K., and Spataro, F. (2005). From gridmap-file to
VOMS: managing authorization in a grid environment. Future Generation
Computer Systems, 21(4):549–558.

[Allcock et al., 2005] Allcock, W., Bresnahan, J., Kettimuthu, R., and Link,
M. (2005). The globus striped GridFTP framework and server. In Pro-
ceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC’05),
page 54, Washington, DC, USA. IEEE Computer Society.

[Antonioletti et al., 2005] Antonioletti, M., Atkinson, M. P., Baxter, R. M.,
Borley, A., Hong, N. P. C., Collins, B., Hardman, N., Hume, A. C., Knox,
A., Jackson, M., Krause, A., Laws, S., Magowan, J., Paton, N. W., Pear-
son, D., Sugden, T., Watson, P., and Westhead, M. (2005). The design
and implementation of grid database services in OGSA-DAI. Concurrency:
Practice and Experience, 17(2–4):357–376.

[Bertino and Özsu, 1994] Bertino, E. and Özsu, M. T. (1994). Guest editors’
introduction. Distributed and Parallel Databases, 2(1):5–6.

[Bhardwaj and Sinha, 2005] Bhardwaj, D. and Sinha, M. (2005). GridFS:
ensuring high-speed data transfer using massively parallel I/O. In Bhalla,
S., editor, Proceedings of the 4th International Workshop on Databases
in Networked Information Systems (DNIS 2005), volume 3433 of Lec-
ture Notes in Computer Sciences, pages 280–287. Springer-Verlag. Avail-
able online at: http://springerlink.metapress.com/openurl.asp?genre=

article{\&}issn=0302-9743{\&}volume=3433{\&}spage=280 (accessed May 1,
2009).

[Buyya et al., 2008] Buyya, R., Pathan, M., and Vakali, A., editors (2008).
Content delivery networks. Springer-Verlag.

[Capit et al., 2005] Capit, N., Costa, G. D., Georgiou, Y., Huard, G., Martin,
C., Mounié, G., Neyron, P., and Richard, O. (2005). A batch scheduler with
high level components. In Proceedings of the 5th International Symposium
on Cluster Computing and the Grid (CCGrid 2005), pages 776–783. IEEE
Computer Society.

[Cappello et al., 2005] Cappello, F., Caron, E., Daydé, M. J., Desprez, F.,
Jégou, Y., Primet, P. V.-B., Jeannot, E., Lanteri, S., Leduc, J., Melab, N.,
Mornet, G., Namyst, R., Quétier, B., and Richard, O. (2005). Grid’5000: a
large scale and highly reconfigurable grid experimental testbed. In Proceed-
ings of the 6th IEEE/ACM International Conference on Grid Computing

Data management in grids 119

(GRID’2005), pages 99–106, Seattle, Washington, USA. IEEE Computer
Society.

[Cardenas et al., 2007] Cardenas, Y., Pierson, J.-M., and Brunie, L. (2007).
Management of a cooperative cache in grids with grid cache services. Con-
currency: Practice and Experience, 19(16):2141–2155.

[Chadwick et al., 2008] Chadwick, D. W., Zhao, G., Otenko, S., Laborde,
R., Su, L., and Nguyen, T.-A. (2008). PERMIS: a modular authorization
infrastructure. Concurrency: Practice and Experience, 20(11):1341–1357.

[Chang and Chang, 2006] Chang, R.-S. and Chang, J.-S. (2006). Adaptable
replica consistency service for data grids. In Proceedings of the 3rd Interna-
tional Conference on Information Technology (ITNG’06), pages 646–651,
Washington, DC, USA. IEEE Computer Society.

[Chen et al., 2007] Chen, Y., Berry, D., and Dantressangle, P. (2007).
Transaction-based grid database replication. In UK e-Science Al one Hands
Meeting 2007, Nottingham, UK.

[Chervenak et al., 2001] Chervenak, A., Foster, I., Kesselman, C., Salisbury,
C., and Tuecke, S. (2001). The data grid: towards an architecture for the
distributed management and analysis of large scientific datasets. Journal
of Network and Computer Applications, 23:187–200.

[Czajkowski et al., 2001] Czajkowski, K., Kesselman, C., Fitzgerald, S., and
Foster, I. T. (2001). Grid information services for distributed resource shar-
ing. In Proceedings of the 10th International Symposium on High Perfor-
mance Distributed Computing (HPDC’2001), pages 181–194, San Francisco,
USA. IEEE Computer Society. Available online at: http://csdl.computer.

org/comp/proceedings/hpdc/2001/1296/00/12960181abs.htm (accessed May
1, 2009).

[EGEE, 2009] EGEE (2009). File transfer service. Available online at: http:

//egee-jra1-dm.web.cern.ch/egee-jra1-dm/FTS/ (accessed May 1, 2009).

[Foster and Kesselman, 2004] Foster, I. and Kesselman, C., editors (2004).
The grid: blueprint for a new computing infrastructure. Morgan Kaufmann,
2nd edition.

[Foster et al., 2001] Foster, I., Kesselman, C., and Tuecke, S. (2001). The
anatomy of the grid: enabling scalable virtual organizations. International
Journal High Performance Supercomputer Applications, 15(3):200–222.

[Glatard et al., 2005] Glatard, T., Montagnat, J., and Pennec, X. (2005).
Grid-enabled workflows for data intensive medical applications. In Pro-
ceedings of the 18th International Symposium on Computer-Based Medical
Systems (ISCBMS), pages 537–542. IEEE Computer Society.

120 Fundamentals of Grid Computing

[gLite, 2009] gLite (2009). Documentation. Available online at: http:

//glite.web.cern.ch/glite/ (accessed May 1, 2009).

[Globus, 2009a] Globus (2009a). Documentation. Available online at: http:

//www.globus.org (accessed May 1, 2009).

[Globus, 2009b] Globus (2009b). Reliable file transfer. Available online
at: http://www.globus.org/toolkit/docs/4.0/data/rft/ (accessed May 1,
2009).

[Gossa et al., 2007] Gossa, J., Pierson, J.-M., and Brunie, L. (2007). Adapt-
able distance-based decision-making support in dynamic cross-grid environ-
ment. In Kermarrec, A.-M., Bougé, L., and Priol, T., editors, Proceedings of
the 13th International EuroPar Conference (EuroPar’2007), volume 4641
of Lecture Notes in Computer Sciences, pages 437–446. Springer-Verlag.

[Gribble et al., 2001] Gribble, S. D., Halevy, A. Y., Ives, Z. G., Rodrig, M.,
and Suciu, D. (2001). What can database do for peer-to-peer ? In WebDB,
pages 31–36.

[Hoschek et al., 2000] Hoschek, W., Jaén-Mart́ınez, F. J., Samar, A.,
Stockinger, H., and Stockinger, K. (2000). Data management in an interna-
tional data grid project. In GRID, pages 77–90. Available online at: http://

link.springer.de/link/service/series/0558/bibs/1971/19710077.htm (ac-
cessed May 1, 2009).

[Hupfeld et al., 2008] Hupfeld, F., Cortes, T., Kolbeck, B., Stender, J.,
Focht, E., Hess, M., Malo, J., Marti, J., and Cesario, E. (2008).
The XtreemFS architecture: a case for object-based file systems
in grids. Concurrency: Practice and Experience, 20(17):2049–2060.
Available online at: http://dblp.uni-trier.de/db/journals/concurrency/

concurrency20.html#HupfeldCKSFHMMC08 (accessed May 1, 2009).

[IBM, 2009] IBM (2009). Autonomic computing: IBM’s perspective on the
state of information technology. Available online at: http://researchweb.

watson.ibm.com/autonomic/ (accessed May 1, 2009).

[Jung and Yeom, 2008] Jung, I. Y. and Yeom, H. Y. (2008). An efficient and
transparent transaction management based on the data workflow of HVEM
data grid. In Proceedings of the 6th International Workshop on Challenges
of Large Applications in Distributed Environments (CLADE ’08), pages
35–44, New York, NY, USA. ACM Press.

[Lynden et al., 2009] Lynden, S., Mukherjee, A., Hume, A. C., Fernandes,
A. A. A., Paton, N. W., Sakellariou, R., and Watson, P. (2009). The de-
sign and implementation of OGSA-DQP: a service-based distributed query
processor. Future Generation Computer Systems, 25(3):224–236.

Data management in grids 121

[Morvan and Hameurlain, 2009] Morvan, F. and Hameurlain, A. (2009). Dy-
namic query optimization: towards decentralized methods. International
Journal of Intelligent Information and Database Systems. Available online
at: http://www.inderscience.com (accessed May 1, 2009).

[Ozsu and Valduriez, 1999] Ozsu, T. M. and Valduriez, P. (1999). Princi-
ples of distributed database systems. PrenticeHall, Englewood Cliffs, NJ,
USA, 2nd edition. Available online at: http://www.amazon.ca/exec/obidos/

redirect?tag=citeulike09-20\&path=ASIN/0136597076 (accessed May 1,
2009).

[Pahlevi and Kojima, 2004] Pahlevi, S. and Kojima, I. (2004). OGSA-
WebDB: an OGSA-based system for bringing web databases into the grid.
Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC 2004), 2:105–109.

[Parashar and Pierson, 2009] Parashar, M. and Pierson, J.-M. (2009). Per-
vasive grids: challenges and opportunities. In Handbook of Research on
Scalable Computing Technologies. IGI Global.

[Pearlman et al., 2003] Pearlman, L., Kesselman, C., Welch, V., Foster, I.,
and Tuecke, S. (2003). The community authorization service: status and
future. In Proceedings of Computing in High Energy Physics (CHEP ’03).

[Pierson, 2005] Pierson, J.-M., editor (2005). Proceedings of the 1st Workshop
on VLDB Data Management (VLDB DMG’2005), volume 3836 of Lecture
Notes in Computer Sciences. Springer-Verlag.

[Pierson, 2008] Pierson, J.-M. (2008). Data management concerns in a per-
vasive grid. In Proceedings of the International Conference on Vector
and Parallel Processing (VECPAR), number 5336 in Lecture Notes in
Computer Sciences, pages 506–520. Springer-Verlag. Available online at:
http://www.springerlink.com (accessed May 1, 2009).

[Pierson and Brunie, 2007] Pierson, J.-M. and Brunie, L., editors (2007). Pro-
ceedings of the Workshop on VLDB Data Management in Grids (VLDB
DMG’2006), volume 19.

[Pierson and Kosch, 2008] Pierson, J.-M. and Kosch, H., editors (2008). Pro-
ceedings of the Workshop on VLDB Data Management in Grids Workshop
(VLDB DMG 2007), volume 20.

[Pucciani, 2008] Pucciani, G. (2008). The replica consistency problem in data
grids. PhD thesis, University of Pisa, Pisa, Italy.

[Qi et al., 2004] Qi, Z., You, J., Jin, Y., and Tang, F. (2004). GridTP ser-
vices for grid transaction processing. In Li, M., Sun, X.-H., Deng, Q.,
and Ni, J., editors, Proceedings of the Second International Workshop

122 Fundamentals of Grid Computing

on Grid and Cooperative Computing (GCC 2003), volume 3033 of Lec-
ture Notes in Computer Sciences, pages 891–894. Springer-Verlag. Avail-
able online at: http://springerlink.metapress.com/openurl.asp?genre=

article{\&}issn=0302-9743{\&}volume=3033{\&}spage=891 (accessed May 1,
2009).

[Scavo and Welch, 2007] Scavo, T. and Welch, V. (2007). A grid authoriza-
tion model for science gateways. In Proceedings of the Workshop on Grid
Computing Environments (GCE).

[Seitz et al., 2003] Seitz, L., Pierson, J.-M., and Brunie, L. (2003). Key
management for encrypted data storage in distributed systems. In Pro-
ceedings of the 2nd International IEEE Security in Storage Workshop
(SISW 2003), pages 20–30. IEEE Computer Society. Available on-
line at: http://csdl.computer.org/comp/proceedings/sisw/2003/2059/00/

20590020abs.htm (accessed May 1, 2009).

[Seitz et al., 2005] Seitz, L., Pierson, J.-M., and Brunie, L. (2005). Sygn:
a certificate based access control in grid environments. Technical Report
2005-07, LIRIS.

[Shibboleth, 2009] Shibboleth (2009). Internet2. Available online at: http:

//shibboleth.internet2.edu/ (accessed May 1, 2009).

[Stockinger et al., 2003] Stockinger, H., Donno, F., Laure, E., Muzaffar, S.,
Kunszt, P., and Millar, P. (2003). Grid data management in action: ex-
perience in running and supporting. In Proceedings of the EU DataGrid
Project on Computing in High Energy Physics (CHEP 2003), pages 24–28.

[Stockinger et al., 2001] Stockinger, H., Rana, O. F., Moore, R., and Merzky,
A. (2001). Data management for grid environments. In Hertzberger, L. O.,
Hoekstra, A. G., and Williams, R., editors, Proceedings of the 9th In-
ternational Conference on High-Performance Computing and Networking
(HPCN 2001), volume 2110 of Lecture Notes in Computer Sciences, pages
151–160. Springer-Verlag. Available online at: http://link.springer.de/

link/service/series/0558/bibs/2110/21100151.htm (accessed May 1, 2009).

[Sun and Xu, 2004] Sun, Y. and Xu, Z. (2004). Grid replication coherence
protocol. Proceedings of the International Parallel and Distributed Process-
ing Symposium, 14:232.

[Teaff et al., 1995] Teaff, D., Watson, D., and Coyne, B. (1995). The architec-
ture of the high performance storage system. In Proceedings of the Goddard
Conference on Mass Storage and Technologies, pages 28–30.

[Thizbolt et al., 2007] Thizbolt, F., Ortiz, A., and M’zoughi, A. (2007). Vis-
ageFS: dynamic storage features for wide-area workflows. In Zheng, S.,

Data management in grids 123

editor, Proceedings of the International Conference on Parallel and Dis-
tributed Computing Systems (PDCS), pages 61–66. ACTA Press. Available
online at: http://www.actapress.com (accessed May 1, 2009).

[Türker et al., 2005] Türker, C., Haller, K., Schuler, C., and Schek, H.-J.
(2005). How can we support grid transactions ? Towards peer-to-peer
transaction processing. In CIDR, pages 174–185. Available online at: http:

//www.cidrdb.org/cidr2005/papers/P15.pdf (accessed May 1, 2009).

[University of North Carolina, 2009] University of North Carolina (2009).
Storage resource broker. Available online at: http://www.sdsc.edu/srb (ac-
cessed May 1, 2009).

[Wang et al., 2008] Wang, T., Vonk, J., Kratz, B., and Grefen, P. (2008). A
survey on the history of transaction management: from flat to grid trans-
actions. Distributed Parallel Databases, 23(3):235–270.

[Wolski et al., 1999] Wolski, R., Spring, N. T., and Hayes, J. (1999). The
network weather service: a distributed resource performance forecasting
service for metacomputing. Future Generation Computer Systems, 15(5–
6):757–768.

Chapter 5

Future of grids resources
management

Fei Teng
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

Frédéric Magoulès
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

5.1 Introduction . 125
5.2 Several computing paradigms . 126
5.3 Definition of cloud computing . 129
5.4 Cloud services . 130
5.5 Cloud resource management . 134
5.6 Future direction of resource scheduling . 137
5.7 Concluding remarks . 139
5.8 References . 140

5.1 Introduction

As network speeds grow, it is possible to construct large-scale high-
performance distributed computing environments to allow users to submit
jobs from anywhere in the world. These jobs can then be run on any available
computing resource. As a consequence these resources should be assigned
effectively to provide reliable and fast distributed services and to reduce the
turn-around time of user jobs and the scheduling scheme should be heavily
considered. There are numbers of heterogeneous or homogeneous clusters
which can provide the job queuing mechanism, scheduling policy and local
resource management, including utility computing, cluster computing, grid
computing and so on. Among them, grid system is the most popular one and
highly discussed, developed by the researchers and information technologies
(IT) developers during the past decade. Recently a new term, “cloud com-
puting,” has emerged, which infers that computing is not operated on local
computers, but on centralized facilities by third-party computing and storage
utilities. Literally, clouds and other computing paradigm share the similar

125

126 Fundamentals of Grid Computing

vision and object. They all aim to implement parallel computations that
execute on many resources. However, clouds are more made available in a
pay-as-you-go manner to the public or internal data center of business [Arm-
brust et al., 2009], [Buyya et al., 2000a], [Buyya et al., 2000b], [Buyya et al.,
2001]. The cloud computing new characteristics differ from grid computing
in the implementation details, which requires researchers and engineers to
reconsider the resource scheduling strategies.

This chapter clarifies the differences of origin, aim and technology among
several current computing paradigms including utility computing, grid com-
puting, autonomic computing and cloud computing, focusing on their internal
relationship, which implies the trend of development in the near future. The
definition and architecture are then presented, which gives insights into the
essential characters of cloud computing. Then, the most important issues
are presented, i.e., service provision, introducing three different level services
architecture and describing the attributes of cloud services. Upon them, re-
source management system appears to be the central component of cloud
computing. How to build models which can exactly represents the clouds’
current trends, such as resource-distributed and economic attributes, attracts
our attention. After comparing cloud and grid system, we propose two new
models for clouds: a resource-oriented model and an economy-oriented model.
Finally, we try to predict some issues of resource scheduling where more efforts
can be devoted in the near future.

5.2 Several computing paradigms

5.2.1 Utility computing

Utility computing was initialized in the 1960s, when John McCarthy coined
the computer utility as:

“If computers of the kind I have advocated become the computers
of the future, then computing may someday be organized as a
public utility just as the telephone system is a public utility . . . The
computer utility could become the basis of a new and important
industry.”

Generally, utility computing considers the computing and storage resources as
a metered service, like water, electricity, gas and telephone utility [Yeo et al.,
2006], [Paleologo, 2004], [Rappa, 2004]. The customers can use the utility
services immediately whenever and wherever they need without paying for
the initial cost of the devices. Utility computing is similar to virtualization
so that the amount of storage or computing power available is considerably
larger than that of a single time-sharing computer. The back-end servers

Future of grids resources management 127

such as computer cluster and supercomputer are used to realize the virtual-
ization [Broberg et al., 2008]. From the late 90s, utility computing turns
re-surfaced. HP launched the utility data center to provide the IP billing-on-
tap services [HP, 2004]. PolyServe Inc. offers a clustered file system based on
commodity server and storage hardware that creates highly available utility
computing environments for mission-critical applications and workload opti-
mized solutions specifically tuned for bulk storage, high-performance comput-
ing, vertical industries such as financial services, seismic analysis and content
serving. Thanks to these utilities, including database and file service, cus-
tomers can independently add servers or storage as needed.

5.2.2 Grid computing

Grid computing emerged in the mid 90s. Ian Foster et al. integrated
distributed computing, object-oriented programming and web services to coin
the grid computing infrastructure [Foster and Kesselman, 2004], [Foster et al.,
2002]. From then on, a lot of researchers gave the notion of grid computing
in various ways. Here, we choose the definition of R. Buyya presented at the
2002 grid planet conference:

“A grid is a type of parallel and distributed system that enables the
sharing, selection, and aggregation of geographically distributed
‘autonomous’ resources dynamically at runtime depending on their
availability, capability, performance, cost, and users’ quality-of-
service requirements.”

This definition means that a grid is actually a cluster of networked, loosely
coupled computers which works as a super and virtual mainframe to perform
thousands of tasks. It also can divide the huge application job to several
sub-jobs and make each run on large-scale machines. Generally speaking,
grid computing goes through three different generations [Magoulès et al.,
2008]. The first generation was marked by an early metacomputing envi-
ronment, such as Fafner and I-Way. The second generation was represented
by the development of core grid technologies, grid resource management—e.g.,
Globus, Legion—resource brokers and schedulers—e.g., Ccondor, PBS—and
grid portals—e.g., Grid Sphere. The third generation saw the convergence
between grid computing and web services technologies—e.g., WSRF, OGSI.
It moved to a more service oriented approach that exposes the grid protocols
using web service standards [Foster et al., 2001], [Shiers, 2009].

5.2.3 Autonomic computing

Autonomic computing was first proposed by IBM in 2001 with the following
definition:

“Autonomic computing performs tasks that IT professionals
choose to delegate to the technology according to policies, see

128 Fundamentals of Grid Computing

[Liu et al., 2005]. Adaptable policy–rather than hard-coded
procedure–determines the types of decisions and actions that au-
tonomic capabilities perform.”

Concerning the sharp increasing number of devices, the heterogeneous, dis-
tributed computing systems are more and more difficult to anticipate, to de-
sign and to maintain the complexity of interactions. The complexity of man-
agement turns out to be a limiting factor of future development. Autonomic
computing focuses on the self-management ability of the computer system. It
will overcome the rapidly growing complexity of computing systems manage-
ment and reduce the barrier that complexity poses to further growth.

In the area of multi-agent systems, several self-regulating frameworks are
proposed, but most of these architectures are centralized which mainly re-
duce management costs and seldom consider enabling complex software sys-
tems and providing innovative services [Jin and Liu, 2004]. IBM defined the
self-managing system, which can automatically process including configura-
tion of the components (self-configuration), automatic monitoring and control
of the resources (self-healing), monitoring and optimizing the resources (self-
optimization) and proactive identification and protection from arbitrary at-
tacks (self-protection), only with the input information of policies defined by
humans. In other words, the autonomic system uses high-level rules to check
and optimize its status and automatically adapt itself to changing conditions.

5.2.4 Cloud computing

The cloud computing emerges as a new computing paradigm to provide
reliable, customized and quality of service guaranteed dynamic computing
environments for end-users [Weiss, 2007]. It is often confused with several
computing paradigms such as grid computing, utility computing and auto-
nomic computing. According to the above description, we can draw the re-
lationship among them. Utility computing cares that the packing computing
resources can be used as a metered service on the basis of the user’s need. It is
independent of the organization of the resources, both in the centralized and
distributed system [Buyya et al., 2002]. But now, the companies prefer to
bundle the resources of members to provide utility computing. Grid comput-
ing is conceptually similar to the canonical definition of cloud computing, but
it doesn’t manage the economic entities as well as it is less scalable than cloud
computing. Because of this massive scale, cloud computing must pay high at-
tention on the interconnectivity management. In summary, cloud computing
depends on grids, has autonomic characteristics and utilities bills which can
be seen as a natural next step from the grid-utility model.

The computing paradigm varies with times. As shown in Figure 5.1, utility
computing was discussed frequently between 2004 and 2005. As a popular
term, grid computing is losing its appeal now. The term cloud emerged in
2007, and came to be the hot topic both in the research and industry domain.

Future of grids resources management 129

From the day it was born, cloud computing overpassed grid computing and
became more and more popular. Heaps of industry projects have been started
including Amazon elastic compute cloud, IBM’s blue cloud, and Microsoft’s
Windows Azure. At the same time, HP, Intel Corporation and Yahoo! Inc.
recently announced the creation of a global, multi-data center devoted to open
source cloud computing test bed for industry, research and education.

FIGURE 5.1: Google search trends for the last 5 years.

In order to analyze the reasons why cloud computing attracts so many
researchers, we will firstly clarify the definition of cloud computing in the
following section.

5.3 Definition of cloud computing

5.3.1 One definition

Since 2007, the term, “cloud” has become one of the buzz words in IT
industry, while lots of researchers continue to define the cloud computing from
different application aspects. Until now, there is no fixed consensus definition
on it, and here we choose the definition of I. Foster [Foster et al., 2008]:

130 Fundamentals of Grid Computing

“A large-scale of e-distributed computing paradigm that is driven
by economies of scale, in which a pool of abstracted virtualized,
dynamically-scalable, managed computing power, storage, plat-
forms, and services are delivered on demand to external customers
over the Internet.”

From the above definition, we can conclude the specific characters of cloud
from grid computing. The resources in the grid system are located in the
multiple administration domains, while the ownership in the cloud system is
single. From interconnection aspect, the networks of the grids are always with
high latency and low bandwidth. On the opposite, the clouds tend to be more
dedicated to high-end with low latency and high bandwidth. What’s more,
the schedulers of grid systems focus on enhancing the performance of a specific
application to meet its end-users’ quality of service requirements. However,
the scheduling scheme for clouds combine enhancing the performance of overall
system and specific user. At the same time cloud computing strongly supports
virtualization, dynamically compose services with web service interfaces, and
so on.

5.3.2 Architecture

Clouds are usually referred to as a large pool of computing and/or stor-
age resources, which can be accessed via standard protocols via an abstract
interface. There is four-layer architecture for cloud computing as shown in
Figure 5.2. The fabric layer contains the raw hardware level resources, such
as computing resources, storage resources and network resources. The unified
resource layer contains resources that have been virtualized so that they can
be exposed to upper layer and end users as integrated resources. The plat-
form layer adds on a collection of specialized tools, middleware and services
on top of the unified resources to provide a development and/or deployment
platform. The application layer contains the applications that would run in
the clouds [Foster et al., 2008].

5.4 Cloud services

5.4.1 Three-level services

Generally, cloud computing can provide three-level services where the cus-
tomers can choose one or more special service as they wish. For their special
use, the customers can rent hardware, software or data as a service. There-
after an integrated computing platform as a service is available. At the highest
level, infrastructure used as a service is provided.

Future of grids resources management 131

FIGURE 5.2: Cloud protocol architecture.

• Hardware as a service (HaaS) / Software as a service (SaaS) / Data as
a service (DaaS):

- Hardware as a service (HaaS) is a pay-as-you-go model for accessing a
provider’s IT hardware, or even an entire data center. Some companies
sell use of their hardware over the Internet on a per-use basis [Wang
et al., 2008]. The user sends data and a program to process that data,
while the vendor’s computer does the processing and returns the result.
The HaaS is flexible, scalable and manageable to meet the user’s needs.
An example is the IBM blue cloud project [IBM, 2007]. IBM delivers
hardware infrastructure, database management, monitoring, security,
availability and contingencies to be consumed by clients and partners
directly.

- Software as a service (SaaS) is hosting software or application as a
service and provided to customers across the Internet. This mode elim-
inates the need to install and run the application on the customer’s
local computers [Church et al., 2008]. SaaS therefore alleviates the
customer’s burden of software maintenance, and reduces the expense
of software purchases by on-demand pricing. An example of the SaaS
is Microsoft’s software plus service, which combines local software and
Internet services interacting with one another [Microsoft Corp., 2008].

- Data as a service (DaaS) is related to the fact that users can access
remote data in various formats and from multiple sources. And then
they operate them just like on a local disk. Typical example is Amazon
simple storage service which provides a simple web services interface that
can be used to store and retrieve, declared by Amazon, any amount of
data, at any time, from anywhere on the web [Amazon Inc., 2008].

132 Fundamentals of Grid Computing

• Platform as a service (PaaS): Based on the support of the HaaS, SaaS
and DaaS, the cloud computing in addition can deliver the platform
as a Service for users. Platform as a service (PaaS) offers a high-level
integrated environment to build, test and deploy custom applications.
Generally, developers need to accept some restrictions on the type of
software they can write in exchange for built-in application scalability.
Google’s App Engine enables users to build web applications on the
same scalable systems that power Google applications [Google, 2008].

• IaaS: Infrastructure as a service (IaaS) provisions hardware, software
and equipments to deliver software application environments with a re-
source usage-based pricing model. Infrastructure can scale up and down
dynamically based on application resource needs. Amazon proposed
elastic cloud computing service [Amazon Inc., 2009] which uses the
Eucalyptus’s open source cloud as the interface [Eucalyptus, 2009] to
allow people to set up a cloud infrastructure at premise and experiment
prior to buying commercial services.

Figure 5.3 shows the relationship between these services. Clouds provide
services at three different levels. According to users’ special demands, they
can not only subscribe to their favorite computing services with requirements
of hardware configuration, software installation and data access, but also be
supplied with the higher level environment, integrated platform or open in-
frastructures.

5.4.2 Service characters

The services could be classified into several categories, as below:

• Dynamic provision: The provision of services is on-demand, which
means that the users request the service by themselves near real-time
without users having peak loads. Performance is monitored. Loosely-
coupled architectures are constructed using web services as the system
interface. At the same time, users can re-provision technological infras-
tructure resources rapidly and inexpensively.

• Economic pricing: As a kind of consumed utility, the capital expendi-
ture is greatly reduced and converted to operational expenditure. The
infrastructure is typically provided by a third-party and does not need
to be purchased for one-time or infrequent intensive computing tasks,
so the users have easier entry to the computing world. Pricing on a util-
ity computing basis is fine-grained with usage-based options and no IT
skills are required for implementation. Cloud providers should mask this
pricing granularity with long-term, fixed price agreements considering
the customer’s convenience.

Future of grids resources management 133

FIGURE 5.3: Three-level services.

134 Fundamentals of Grid Computing

• Security guarantee: Security typically improves due to centralization
of data, increased security-focused resources, etc., but raises concerns
about loss of control over certain sensitive data. Security is often as
good as or better than traditional systems, in part because providers
are able to devote resources to solve security issues that many customers
cannot afford. Providers typically log accesses, but accessing the audit
logs themselves might be difficult or impossible.

• Scalable location: In cloud computing, the users don’t know the exact
position where the services and devices are offered. The independent
attribute makes users access systems using a web browser regardless of
their location or what device they are using. The third-party infrastruc-
ture is accessed via the Internet; the users can connect from anywhere.

• Efficient utilization: The services in clouds can be compared as a large
resource pool shared by users. The users not only can get lower costs
because of the centralization of infrastructure, but also achieve higher
peak-load capacity avoiding engineering for highest possible load-levels.
What’s more, through using the redundant sites, it’s easy for business
continuity and disaster recovery.

• User/system interfaces: Browsers are used as user interface which have
the attributes such as intuitive, easy-to-use, standards-based, service-
independent and multi-platform supported [Gens, 2008]. System inter-
face adopts web services APIs, which provide a standards-based frame-
work for accessing and integrating with and among cloud services. Cloud
services provide well-defined, programmed access for users, partners and
others who want to leverage the cloud service within a broader solution
context. Thus, the application software that provides web-based GUIs,
web services APIs, multi-tenant architecture and a rich variety of con-
figuration options should be well developed in the future.

5.5 Cloud resource management

5.5.1 Comparison with grid systems

This section aims to compare the difference of resource management be-
tween grids and clouds. The first one is the business model for cloud system
regards to the consumption! Like electricity, water or gas, the customer pays
to the resource owner according to the amount consumed. On the contrary,
grids have the project-oriented business model. The proposal represents the
users who have a certain number of service units they can spend.

Future of grids resources management 135

On the perspective of the computing model, the grids always use a local
resource manager to manage the computing resources for a grid site, while the
users submit jobs to request some resources for some time [Yu and Magoulès,
2009]. On the contrary, clouds share all the resources by all the users at the
same time; that is to say, some low-latency applications can easily operate on
clouds, which is not the case on grids.

Finally, the combination of the computing and data resource management
is important. It is more efficient to schedule computational tasks close to the
data, and to understand the costs of moving the work as opposed to moving
the data [Chervenak et al., 2000]. Data-aware schedulers and dispersing data
close to processors is critical in achieving good scalability and performance.

5.5.2 Resource model

The resource model is related to the question: “How to describe and manage
resources in the system?” In the original resource model, the operation and
data usually have two kinds of relations. One approach is related to data that
comprise a resource and which are described in a specific description language
along with some integrity constraints. One other approach treats operation on
the resources as a part of the resource model. However in the cloud computing,
because of the high virtualization of the resource and interacting operation
of data, the operation and data must be considered as a whole part. Thus, a
new resource model is proposed as represented in Figure 5.4.

FIGURE 5.4: Resource model in clouds.

136 Fundamentals of Grid Computing

All the clouds users share resources to support the interactive applications.
These applications are limited in grids because of the expensive scheduling
decisions, data moving and potentially long queue times [Foster et al., 2008
]. That is to say, computing will be centralized, when storage, operation and
other kinds of resources are provisioned by clouds.

At the same time, local computing coexists with the cloud computing, and
can be communicated and converted to each other if necessary. There are
three reasons why we can’t ignore the local operation. The first one is the
Internet limitation. Even network technology is extremely developed today;
some users can’t access to the Internet anytime, or even won’t suffer on the
line all the time. So we must consider this situation in which the users prefer
to finish their work when clouds are down. The second is related to the
security consideration for some users, especially commercial enterprises, who
don’t want to run their security, critical tasks on the common clouds and send
their sensitive data to the cloud storage. The third is related to some large-
size companies well equipped with software and hardware, able to handle their
data internally, which will be more effective than computing on clouds.

Virtual data in the center storage can be requested without regard to data
location which considers data transparent to the users. The center data can
either be computed in the clouds, or transferred to the special request. How-
ever, frequently staging data in and out to distant computers will slow down
the computing speed. Besides, the speed difference of I/O and local disc to
network storage can affect application performance. So we apply the local
data which is most closed to the computing jobs as the solution to overcome
the transmission problem. In summary, the resource model combines the data
control and computing operation to minimize the amount of data movement
and improve the end-application ability.

5.5.3 Economy-oriented model

Compared with other computing paradigm, cloud computing is more com-
mercial and promises to deliver services on subscription-basis in a pay-as-you-
go model. The traditional resource management always focuses on maximizing
the throughput and minimizing the mean waiting time, but seldom includes
important factors in the market such as the fair access to the resources [Yeo
and Buyya, 2006], [Calheiros et al., 2009]. So we must orient economic mod-
els to enable on-demand trading of services and support customers buying
the computing service like other utilities. The economy-oriented computing
model is shown in Figure 5.5.

At the provider end, the lowest level implies numerous physical machines
including all kinds of servers. The second layer contains virtual machines
which utilize the physical machines to meet the customer’s service request
dramatically. Each virtual machine is isolated from each other on the same
physical machine. Cloud services are abstracted as the actual applications
operate on the highest level of the provider.

Future of grids resources management 137

FIGURE 5.5: Economy-oriented model.

At the user-end, enterprise or individual users submit their service request
and quality of service parameters from anywhere. It only waits for the re-
ply of process from cloud provider, rather than directly deals with multiple
heterogeneous providers.

Between provider and user, a broker bridges the two entities. The broker
is equipped with a negotiation module that is informed by the current condi-
tions of resource and current demands of user, so that it can help the users
find a resource which meet its quality of service, and choose the user whose
application can provide it maximum utility. So the broker will gain by the
price difference between the user and provider. Furthermore, the broker will
aggregate more jobs such as reserving resource slots, scheduling services and
performing admission control to avoid overload.

5.6 Future direction of resource scheduling

Cloud computing is a long-held dream of computing as a utility, which has
recently emerged as a commercial reality. Its system is larger, more heteroge-
neous and more dynamic than the original grids. Going along with the growth
of cloud computing, there exist many obstacles which challenge the researchers
and IT engineers to overcome them. Of course, each obstacle stands for an
opportunity. Next, we will discuss the difficulties and trends for the resource
scheduling.

138 Fundamentals of Grid Computing

5.6.1 Scalable and dynamic

Recently, grid or cloud systems contain more and more computing resources,
storage services and application users and other distributed components which
generate a massive scale environment in which the components can join or
leave anytime as they wish. Besides, the condition of resources is temporal
and the system can grow or shrink based on demand and operating environ-
ment. So both centralized and decentralized models for resource management
should be enhanced at the same time. There is a need to develop scalable
methods for resource discovery and scheduling that can adapt to changing
resource and network conditions. On the other hand, past scheduling and re-
source allocation schemes are based on static approaches. Existing scheduling
heuristics make the scheduling plan for the entire workflow in advance, and
then the tasks are executed according to that. Considering the resource avail-
ability change and network condition variation, the methods that can perform
as tasks arrive according to the current condition should be considered and
developed.

5.6.2 Secure and trustable

Although grids and clouds share lots of technologies and philosophy, the
biggest difference is a shift, from an infrastructure that delivers storage and
computing resources to the one economy-based aiming to deliver more abstract
services. Cloud computing is used in-house or open to the public. So it has
high requirements in data integrity, recovery, privacy, regulatory compliance
and auditing. Although virtual organizations could address some problems,
for example, critical resource, personal and logistical issues, some individual
customers or large enterprises still wouldn’t like to run mission-critical appli-
cations on the cloud and send sensitive data to the cloud for processing and
storage.

The infrastructure is autonomous, which means that every service domain
makes its resource allocation decision independently and each one holds dif-
ferent aim and utility functions. In the current computing paradigm, trust-
worthiness and reliability of resources are seldom considered in the scheduling
schemes. However, they are fundamental to ensure guaranteed service de-
livery. So we should pay more attention to scalable trust, reputation and
security protocols in the resource scheduling algorithm.

5.6.3 Virtual machines-based

An obvious evolution from grid to cloud computing is virtualization which
enables the applications to be isolated from the physical hardware. For ex-
ample, a physical machine can be used as a set of multiple logical virtual
machines, while the tasks can be run on any virtual machines. So on the
same physical machine, we can host multiple operating system environments

Future of grids resources management 139

separately and configure virtual machines to utilize different partitions of re-
sources. Virtual machines-based technology gives challenges like the intel-
ligent allocation of physical resources for managing competing resource de-
mands of the users. Besides, the virtual machines and operating systems do
not provide a programmer-visible way to ensure all the application threads
to be run at the same time. Therefore, the future scheduling algorithm is
expected to address how to assign virtual machines to meet the changing
demand of resources by users as opposed to limited resources on a physical
machine.

5.7 Concluding remarks

In this chapter, we provided a short overview of current computing
paradigms, identifying each strength and weakness. Then, we evaluated the
key components of the cloud system to give readers a better understanding
about the dozens of different definitions of cloud computing. Services and
resources in cloud system have then been discussed. According to the new
requirements of cloud computing, layer-structured models are defined, which
can address the limitation of the existing models. However, all these ideal
models need further evaluation in our next step. In terms of the dynamic,
secure and VM-based features, which will bring challenges and opportunities
in clouds resource management domain, we discussed each of them in detail
and aim to make a contribution on the resource scheduling topic in the future.

140 Fundamentals of Grid Computing

5.8 References

[Amazon Inc., 2008] Amazon Inc. (2008). Amazon simple storage service.
Available online at http://aws.amazon.com/s3 (accessed May 1, 2009).

[Amazon Inc., 2009] Amazon Inc. (2009). Amazon elastic compute cloud.
Available online at: http://aws.amazon.com/ec2 (accessed May 1, 2009).

[Armbrust et al., 2009] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., and Stoica, I. (2009).
Above the clouds: A Berkeley view of cloud computing. Technical report,
University of California, Berkeley.

[Broberg et al., 2008] Broberg, J., Venugopal, S., and Buyya, R. (2008).
Market-oriented grids and utility computing: The state-of-the-art and fu-
ture directions. Journal of Grid Computing, 6:255–276.

[Buyya et al., 2000a] Buyya, R., Abramson, D., and Giddy, J. (2000a). An
economy driven resource management architecture for global computational
power grids. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2000), Las
Vegas, NV, USA.

[Buyya et al., 2002] Buyya, R., Abramson, D., Giddy, J., and Stockinger,
H. (2002). Economic models for resource management and scheduling in
grid computing. Concurrency and computation: practice and experience,
14:1507–1542.

[Buyya et al., 2000b] Buyya, R., Giddy, J., and Abramson, D. (2000b). An
evaluation of economy-based resource trading and scheduling on computa-
tional power grids for parameter sweep applications. Kluwer International
Series in Engineering and Computer Science.

[Buyya et al., 2001] Buyya, R., Stockinger, H., Giddy, J., and Abrams, D.
(2001). Economic models for management of resources in grid computing.
Technical report, Arxiv preprint cs/0106020.

[Calheiros et al., 2009] Calheiros, R., Ranjan, R., de Rose, C., Buyya, R.,
Trezentos, P., Yodaiken, V., Cabecinhas, F., and Lopes, N. (2009).
Cloudsim: a novel framework for modeling and simulation of cloud com-
puting infrastructures and services. Technical report, Arxiv preprint
arXiv:0903.2525.

[Chervenak et al., 2000] Chervenak, A., Foster, I., Kesselman, C., Salisbury,
C., and Tuecke, S. (2000). The data grid: Towards an architecture for the
distributed management and analysis of large scientific datasets. Journal
of Network and Computer Applications, 23:187–200.

Future of grids resources management 141

[Church et al., 2008] Church, K., Hamilton, J., and Greenberg, A. (2008).
On delivering embarassingly distributed cloud services. ACM SIGCOMM
Computer Communication Review.

[Eucalyptus, 2009] Eucalyptus (2009). Eucalyptus project. Available online
at: http://open.eucalyptus.com/wiki/EucalyptusOverview (accessed May
1, 2009).

[Foster and Kesselman, 2004] Foster, I. and Kesselman, C. (2004). The grid:
blueprint for a new computing infrastructure. Morgan Kaufmann.

[Foster et al., 2002] Foster, I., Kesselman, C., Nick, J., and Tuecke, S. (2002).
The physiology of the grid: an open grid services architecture for distributed
systems integration. In Proceedings of the Open Grid Service Infrastructure
WG, Global Grid Forum, USA.

[Foster et al., 2001] Foster, I., Kesselman, C., and Tuecke, S. (2001). The
anatomy of the grid: enabling scalable virtual organizations. International
Journal of High Performance Computing Applications, 15:200–222.

[Foster et al., 2008] Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud
computing and grid computing 360-degree compared. In GCE’08: Proceed-
ings of the Grid Computing Environments Workshop, pages 1–10.

[Gens, 2008] Gens, F. (2008). Defining “cloud services” and “cloud comput-
ing”. Available online at: http://blogs.idc.com/ie/?p=190 (accessed May
1, 2009).

[Google, 2008] Google (2008). Google app engine. Available online at: http:

//code.google.com/appengine/ (accessed May 1, 2009).

[HP, 2004] HP (2004). Hp utility data center. Available online at: http:

//www.hp.com/#Product (accessed May 1, 2009).

[IBM, 2007] IBM (2007). Ibm blue cloud project. Available online at: http://

www.ibm.com/developerworks/linux/library/l-cloud-computing/ (accessed
May 1, 2009).

[Jin and Liu, 2004] Jin, X. and Liu, J. (2004). From individual based modeling
to autonomy oriented computation. Lecture Notes in Computer Science.

[Liu et al., 2005] Liu, J., Jin, X., and Tsui, K. (2005). Autonomy oriented
computing: from problem solving to complex systems modeling. Kluwer
Academic Publishers.

[Magoulès et al., 2008] Magoulès, F., Nguyen, M., and Yu, L. (2008). Grid
resource management: Towards virtual and services compliant grid com-
puting. Chapman & Hall, CRC Press, Boca Raton, FL, USA.

142 Fundamentals of Grid Computing

[Microsoft Corp., 2008] Microsoft Corp. (2008). Microsoft software plus ser-
vice. Available online at: http://www.microsoft.com/serviceproviders/

saas/default.mspx (accessed May 1, 2009).

[Paleologo, 2004] Paleologo, G. (2004). Price-at-risk: A methodology for pric-
ing utility computing services. IBM Systems Journal, 43:20–31.

[Rappa, 2004] Rappa, M. (2004). The utility business model and the future
of computing services. IBM Systems Journal, 43:32–42.

[Shiers, 2009] Shiers, J. (2009). Grid today, clouds on the horizon. Computer
Physics Communications, 180:559–563.

[Wang et al., 2008] Wang, L., Laszewski, G. V., Kunze, M., and Tao, J.
(2008). Cloud computing: A perspective study. In Proceedings of the 2008
Microsoft eScience Workshop.

[Weiss, 2007] Weiss, A. (2007). Computing in the clouds. ACM, 11(4):16–25.

[Yeo and Buyya, 2006] Yeo, C. and Buyya, R. (2006). A taxonomy of market-
based resource management systems for utility-driven cluster computing.
Software: Practice and Experience, 36:1381–1419.

[Yeo et al., 2006] Yeo, C., de Assuncao, M., Yu, J., Sulistio, A., Venugopal,
S., Placek, M., and Buyya, R. (2006). Utility computing and global grids.
Technical report, Arxiv preprint cs/0605056.

[Yu and Magoulès, 2009] Yu, L. and Magoulès, F. (2009). Service scheduling
and rescheduling in an applications integration framework. Advances in
Engineering Software, 40:941–946.

Chapter 6

Fault-tolerance and availability
awareness in computational grids

Xavier Besseron
INPG, 51 avenue Jean Kuntzmann, 38330 Montbonnot Saint Martin, 38041
Grenoble, Cedex 9 France

Mohamed-Slim Bouguerra
INRIA, 51 avenue Jean Kuntzmann, 38330 Montbonnot Saint Martin, 38041
Grenoble, Cedex 9 France

Thierry Gautier
INRIA, 51 avenue Jean Kuntzmann, 38330 Montbonnot Saint Martin, 38041
Grenoble, Cedex 9 France

Erik Saule
BioMedical Informatics, Ohio State University, 3190 Graves Hall, 333W 10th
Avenue, Columbus OH 43210, USA

Denis Trystram
INPG, 51 avenue Jean Kuntzmann, 38330 Montbonnot Saint Martin, 38041
Grenoble, Cedex 9 France

6.1 Introduction . 143
6.2 Background and definitions . 146
6.3 Multi-objective scheduling for safety . 149
6.4 Stable memory-based protocols . 153
6.5 Stochastic checkpoint model analysis issues . 156
6.6 Implementations . 163
6.7 Concluding remarks . 168
6.8 References . 170

6.1 Introduction

Machines we are using everyday are not perfect; they are often subject to
dysfunctions. Such dysfunctions can have different sources such as processor’s
wear-out, mechanics part breaks in a hard drive, defective blocks in memory,

143

144 Fundamentals of Grid Computing

cosmic rays altering the value of a bit in memory, etc. The purpose of this
chapter is to investigate efficient solutions for guarantying the reliable execu-
tion of applications in computational grid platforms. We will put a special
emphasis on the checkpointing techniques.

Since the last decade, computing systems turn to large scale platforms com-
posed of thousands of processors. The characteristics of such new computing
platforms evolved to more heterogeneity on both computing units and com-
munication devices, to more unbalance between computing speeds and com-
munication bandwidth, to hierarchical and versatile execution conditions. In
short, they evolved to more complexity. At the same time, the applications
followed this evolution, especially in the field of simulation of actual phenom-
ena in Physics or Biology. The magnitude order of the running time of parallel
applications is larger and larger, and they include more features that lead to
more complex codes, for simulating phenomena always closer to reality. The
consequence of this inescapable race toward complexity is that most actual
parallel applications run on very large systems for long durations: It is not
rare that they run several days or weeks.

As long as the execution of an application remains short and on few re-
sources, the execution platform could be considered as static. Today, with
the large scale computing platforms and the large actual applications, this
assumption is no longer reasonable; dysfunctions can not be ignored or ne-
glected. From official sources in IBM, when the BlueGene/L system with
65,536 nodes was designed, it was originally targeted to have one failure every
ten days [Adiga, 2002]. Some time later, it was expected to have a mean
time between failures less than 20 hours [Oliner et al., 2004] and more than
ten failures a day occur in practice [Liang et al., 2006]. Nowadays, in similar
large systems, one processor fails every hour. Thus, the developers or users
of large applications expect several processors to fail during the execution
of their applications. It is necessary to study, develop and analyze efficient
strategies for providing a safe and reliable completion of large applications.

Fault-tolerant systems have been extensively studied in various domains. It
has been historically studied in telecommunication or power networks and in
critical embedded systems. In both cases, the goal is to provide a high avail-
ability of the service provided by the systems and is often achieved through
redundancy by using multiple power providers, by ensuring that independent
network paths exist or by checking computation with independent machines.

The basic concepts in safety [Avizienis et al., 2004] are the fault, the error
and the failure. Let us introduce briefly these concepts. A fault is a dysfunc-
tion in a hardware or software component that leads to an error. A failure
occurs when a system does not behave as it was expected. Failures are gener-
ated by errors, but the reader should be aware that an error does not always

Fault-tolerance and availability awareness in computational grids 145

lead to a failure.1 Usually, the failure of a component is the fault of a larger
system. This cycle is standard in safety and a system that behaves correctly
in presence of a processor failure is said to be fault-tolerant and the targeted
property is to be failure-free.

To protect a system from failures, several approaches were proposed.
Against byzantine faults, most of the techniques proposed are ad hoc. In
the data or storage field, the code theory provides algorithms able to recover
an error. With algorithm-based fault tolerance (ABFT), the fault tolerance
scheme is tailored to the algorithm to be performed [Huang and Abraham,
1984]. This approach, under some assumptions, allows to correct errors due
to faults in computations.

Faults that slow down an execution can be handled in several ways. It is
for instance possible to handle them using the scheduling theory with un-
certainty or with data perturbation. Robustness and sensibility analysis of
scheduling algorithms can then provide reasonable solutions [Mahjoub et al.,
2009]. There exist also some models where each task has a probability of
being correctly executed. If a task fails, it must be executed again. In those
models, it is frequent that several concurrent copies of a single task are al-
lowed [Crutchfield et al., 2008].

Another way to deal with faults is to duplicate a given set of components.
Several different ways of duplicating are used in function of whether each copy
of each component is executed or not which are respectively called active and
passive replication. In passive replication schemes, a classical technique is the
primary-backup approach in which a copy of each component is provided but
runs only if a failure has been detected. Active replication schemes schedule
and execute several copies of each component. A failure detection mechanism
is then used to choose which copies should be trusted [Assayad et al., 2004].

For the case we are interested in, a classical and efficient technique is to use
rollback-recovery [Elnozahy et al., 2002]. The idea is to periodically make a
snapshot of the distributed system and save it into a stable storage, i.e., which
is supposed to be failure-free such as an external network attached storage sys-
tem). When a failure is detected, the computation stops and restarts from
the last checkpoint. Implementing this technique can be a difficult process
since it involves complex algorithms that ensure that the stored global state
is consistent [Chandy and Lamport, 1985].

The previous introduction stated the general context of failures in new
computing platforms. The rest of the chapter is organized as follows. Sec-
tion 6.2 starts with a discussion on the numerous aspects of faults, leading

1For instance, the result of a computation can be wrong. It can return a value of 2 instead
of 1. But if the only interesting point is if the value is positive or negative, the error is
invisible and does not generate a failure.

146 Fundamentals of Grid Computing

to different concepts. Then, we present the underlying model of computa-
tional grid and the main existing models of faults. The section ends by the
definition of consistent states which is the basic notion in all fault tolerant
mechanisms. Section 6.3 is devoted to the use of multi-objective scheduling as
a way for optimizing the resources while guarantying a good reliability. The
most popular approaches are analyzed (the main distinction is to allow or not
the duplication of tasks for both permanent and transient faults). However,
such approaches remain too dependent of the specificities of the underlying
architectures; thus, usually, more generic mechanisms are preferred. Section
6.4 describes the protocols based on stable memory (i.e., log-based protocols
and checkpointing). Such protocols can be modeled for obtaining expressions
of the completion times (or expected completion times). We first present a
survey of the most important models for the execution of an application in
a parallel environment stressed by permanent failures without fault-tolerance
mechanisms. Then, we show how to include the cost of stochastic checkpoints
into the expression. Thus, using an adequate probability law of the arrival of
faults, we obtain analytic expressions. These formulae allow to determine the
optimal period between checkpoints and other related problems. Finally, we
discuss more practical issues for implementing fault-tolerant protocols in ac-
tual parallel environments in Section 6.6. We propose a synthetic comparison
of the main current implementations. We conclude this chapter by opening
some challenging problems that should allow in the future to have more secure
execution of parallel applications.

6.2 Background and definitions

In this section, a basic set of definitions is presented that will be used
throughout the entire chapter. These definitions [Avizienis et al., 2004] give
a characterization of the various concepts that come into play when addressing
the dependability of grid systems. The basic qualitative definition of depend-
ability is: “The ability to avoid service failures that are more frequent and
more severe than it is acceptable to the users” [Avizienis et al., 2004]. More
precisely, the dependability represents a set of attributes namely: Availability,
Reliability, Robustness, Safety, Integrity and Maintainability. An exhaustive
study of all dependability aspects of the system is therefore far beyond the
scope of this chapter. This chapter focuses more on the availability which is
the time proportion a system is in a functioning condition. More precisely,
it is the probability that the system is in the correct state at a given time.
We also focus on the reliability which represents the probability of failure in
a given interval of time. Finally, the robustness corresponds to the ability of
the system to behave as expected in the presence of failures. Thus, we will

Fault-tolerance and availability awareness in computational grids 147

emphasize on the automatic or semi-automatic approaches to maximize these
different attributes using fault tolerance techniques which are transparent to
the application.

6.2.1 Grid architecture and execution model

The grid model abstracts the grid architecture, and then it allows to design
and verify protocols. The grid system model (Figure 6.1) is a set of clusters
which are interconnected through a wide area network (WAN). They are com-
posed of individual computers interconnected together by a local area network
(LAN). The clusters may have a network attached storage (NAS) connected
to its LAN.

FIGURE 6.1: Grid system model: each individual node of a cluster is able to
access to a network attached storage (NAS).

The distributed execution model consists in a set of processes that communi-
cate only through messages (message passing model). The processes cooperate
to solve a problem in a distributed fashion. They may interact with the outer
world by sending or receiving messages. Some assumptions are required by
the rollback-recovery protocols about the communication sub-system: most of
the protocols assume that the delivery of messages is reliable and according
to the FIFO order; some of them may accept message loss, duplication, or
reorder.

148 Fundamentals of Grid Computing

6.2.2 Faults models

The failure is due to an error of the system which is a consequence of a
fault. Different kinds of faults are usually distinguished in function of their
origin and their temporal duration [Avizienis et al., 2004]. They could be
intentional or not, software or hardware, modify the processing time of an
operation, provide a wrong result or return no result at all. In this chapter,
we are interested in accidental faults that do not modify the processing times
of the computations and that provide no result in case of faults.

Faults can also be distinguished by the times during which they occur. A
fault is said to be a permanent fault if the affected component will never
behave correctly after the fault occurs or is said to be a transient fault if the
fault is only active for a finite time interval. The length of the time interval
of transient faults can be either deterministic or stochastic. It is frequent to
consider transient faults of infinitely short durations.

Another important property of faults is the time when a given fault occurs.
Despite existing cases where the fault arrivals are deterministic, it is more
common to consider stochastic fault arrivals.2 The concept of mean time
between failures (often abbreviated MTBF) appears. When the faults are
independent from each other or when the probability of failure is constant,
it is usual to consider that the faults arrive according to a Poisson’s process.
In other cases, the more general Weibull law can be used. A description of
several fault distribution models and a discussion on when to use them is the
subject of a chapter in [Barlow and Proschan, 1996].

6.2.3 Consistent system states

Rollback-recovery protocols aim at restarting the execution after a failure
from a global consistent state of the system.

The global state of a distributed application is composed of the states of
all the individual processes and the states of the communication sub-system.
State of each process could be easily captured.3 However, the state of the
communication subsystem is not accessible directly. It can be captured indi-
rectly by flushing the communication channel or by logging the messages at
emission or reception.

A consistent system state is a possible state of the system in a failure-
free execution [Chandy and Lamport, 1985]. Applying the definition to the
message passing model, a consistent system state means that “if a process
state reflects a message receipt, then the state of the corresponding sender
reflects sending that message” [Chandy and Lamport, 1985], [Elnozahy et al.,
2002]. Let us consider for instance the global state C2 of Figure 6.2. The

2A way to deal with deterministic faults is to use the scheduling theory in a model with
machine availability.
3Multi-threaded processes may require more work.

Fault-tolerance and availability awareness in computational grids 149

process P1 sends a message m3 to process P2. The global state C2 is composed
of the state of P1 before sending and the state of P2 after reception: it is
inconsistent.

FIGURE 6.2: Three processes exchange messages. Two global states are
considered: at the left the global state C1 is consistent; at the right the global
state C2 is an inconsistent global state because message m3 is received on
process P2 but not sent on process P1.

6.3 Multi-objective scheduling for safety

6.3.1 Generalities

One common way to optimize the behavior of a parallel system is to optimize
the resources by the use of the scheduling theory [Leung, 2004]. Basically, an
application is represented as a set of tasks with constraints like precedences or
communications. These tasks need to be distributed among a set of processors.
There exist a lot of models for addressing the problem variants like processors
with different speeds, specific routing topologies, etc. Some extra features
can also be included into scheduling problems, like optimization of energy
consumption or reliability.

Once the underlying model has been established, we can focus on the op-
timization of some performance indices on a target application, such as the

150 Fundamentals of Grid Computing

makespan (defined as the maximum completion time of the application), or
the flow time (the turnaround time in systems where data arrive infinitely).
Within a scheduling formalism, it is possible to address the problem of safety
as another objective, for instance, maximizing the reliability of the whole sys-
tem. Some other works address the problem of optimizing of the number of
tolerated faults. This issue will not be covered in this chapter but such kind
of work can be found in [Benoit et al., 2008].

Optimizing only the reliability of a system does not really make sense since it
will cost some processing time that will reduce the system performance. Then,
the interesting problem is to optimize both the performance and the reliability
of the system. In multi-objective optimization, the problem is to achieve a
good trade-off between both objectives. This trade-off problem is solved by a
decision maker and not by an automatic system. However, computers can be
used to obtain an interesting set of solutions among which the decision maker
will be able to choose the best one depending on his-her use. Here, interesting
solutions belong to the Pareto set.4 Details about multi-objective scheduling
can be found in [Hoogeveen, 2004].

There are two common ways for determining the Pareto optimal solutions
of a bi-objective optimization problem. The first one is to optimize a weighted
sum of both objectives (or any other adequate combination). By changing the
weight of both objectives, it should be possible to find the solutions that are
on the convex hull of the Pareto set. The other way is to introduce a threshold
on one objective that should not be exceeded, and then find the solution that
is optimal for the second objective with standard single objective methods.
The first method is generally easier from an algorithm perspective, but it will
miss all the solutions that are not on the convex hull of the Pareto set. The
second technique will provide all the Pareto optimal solutions but at the price
of much more difficult optimization problems.

There are more pertinent models that can be detailed in this chapter. In
the following sections, we focus on two scheduling models for safety in compu-
tational grids. Their applicability will be discussed. The problems they rise
will be detailed as well as how to solve them. How to optimize safety as well
as performance will be sketched. Since duplication leads to harder models,
we will start by studying problems without duplication.

6.3.2 No duplication

We will present and discuss two problems depending on the type of faults.
The first problem that we consider is to schedule an application with inde-
pendent permanent faults distributed according to a Poisson’s process.

4The Pareto set is the set of Pareto optimal solutions. Informally, a solution is Pareto
optimal if no other solution is better on both objectives simultaneously.

Fault-tolerance and availability awareness in computational grids 151

Permanent faults is a common fault model in grid computing. Indeed, when
a machine crashes, a technician will have to repair it. This manual interven-
tion is usually longer than the computation itself. Faults distributed according
to Poisson’s process is a common assumption. It is like considering that the
failure rate is constant over time. This assumption is not always realistic since
usually the machines have an important failure rate when they are started for
the first time (due to unstable hardware or configuration issues). Then, the
failure rate will increase with hardware wear. However, if the computation
is short compared to the grid lifespan, we can assume that the variability of
the failure rate can be neglected. The last assumption is that faults are inde-
pendent. This assumption is not realistic since several causes of fault are due
to the environment such as network failure, power outage, air conditioning
dysfunction, etc. However, this assumption is critical for computing the relia-
bility of a system. The only way to prevent the effects of global dysfunctions
is to backup the computations (for instance, using checkpointing).

The success probability of the application (i.e., the reliability) is the prob-
ability that all processors are still active when they complete their last task.
This is a direct consequence of the permanent fault model. The optimization
of both makespan and reliability of a parallel application on an heterogeneous
platform (heterogeneous in computing power as well as in failure rate) has
been considered [Dongarra et al., 2007], [Jeannot et al., 2008]. To optimize
it, the concept of failure rate per operation is introduced. Optimizing the
reliability is done by scheduling tasks on the most reliable (per operation)
processor whereas optimizing the makespan is achieved by using the most
powerful machines. The problem of scheduling independent task has been
solved in [Jeannot et al., 2008] using an approximation algorithm that sets
a threshold on the makespan. The idea is to consider the processors ordered
by decreasing reliability and filling them up to the threshold. For the prob-
lem of scheduling an arbitrary application, [Dongarra et al., 2007] proposes
a non-guaranteed heuristic using the same kind of techniques.

The second model that can be considered deals with independent transient
faults distributed according to a Poisson’s process. The idea behind transient
fault is that the machine recovers. This model can not be directly applied to
grid computing. It models the situation where another machine can be used
to replace the one that crashed. Such a situation can happen in grids that
are under-loaded or in computing systems where an operator guarantees the
availability of the machine. Computing a reliability of a system in this model
is somehow easier than before. It corresponds basically to the probability
that each task is executed correctly. However, the network introduces some
difficulties while computing the reliability. The problem is usually handled
using heuristics with no approximation guaranty (greedy algorithms) that
optimize a linear combination of both objectives [Dogan and Özguner, 2002].

152 Fundamentals of Grid Computing

6.3.3 Using duplication

Duplication makes things much more difficult to tackle but it also allows to
improve drastically the reliability. The main existing model with duplication
is based on an estimation of the reliability. Intuitively, without duplication,
computing the reliability is done using very simple statistical events such as
the processor is still active at the end of the schedule (for the permanent
fault model), or during the lifespan of a task, the processor is active (for the
transient fault model). With duplication, there is in general no simple events
that allow to describe the success of an application execution. Like before, let
us discuss the two main existing models.

Let us first consider the model of transient faults. One way for computing
the reliability would be to consider all the possible combinations of fault oc-
currences and determine whether the schedule is still valid or not. This would
consume a lot of computing power and, thus, it is not reasonable. A less
time consuming way for computing the reliability is to consider that faults
on tasks are statistically independent.5 This assumption deduces that when
a fault occurs, the impacted processor should recover before the next task
begins. Then, it is possible to construct a causality dependence graph of an
application. Each node of the graph represents the execution of one task on
one processor and two additional nodes that represent the beginning and the
end of the application are included. Directed edges represent the causality
dependencies. If there is a path of tasks that are executed without fault
from the beginning to the end, then the application is failure free. Such a
graph is called a Reliability Block Diagram (RBD) [Lloyd and Lipow, 1962
], [Siewiorek and Swarz, 1998].

Computing the reliability of the application can be done by computing the
reliability of the RBD. Unfortunately, estimating the reliability of a RBD is,
in general, an NP-Complete problem. However, if the RBD has some specific
given structure, then the reliability can be computed in polynomial time.
The main class of RBD with this property is the series-parallel graphs. The
problem is then to construct a schedule so that the RBD is series-parallel. To
reach this goal, it is necessary to add additional constraints to the scheduling
problem.

A common property that meets this requirement is that when a task begins,
all the copies of its predecessors have been taken into account. This breaks the
hard part of combinatorics of the reliability estimation by making the RBD a
series-parallel graph (in fact, a series of parallel macro blocks). This technique
has been used twice depending on the communication pattern [Assayad et al.,
2004 , Girault et al., 2009]. The structure of the reliability function usually
makes approximation algorithm impossible to construct. However, efficient
approximation algorithms were derived for some specific cases of independent
tasks or for a chain of tasks in [Saule and Trystram, 2009].

5This assumption is different from the statistical independence of faults.

Fault-tolerance and availability awareness in computational grids 153

In a model with permanent faults, duplication is complex due to the strong
statistical dependency of the faults on the tasks. It is likely that when a
permanent fault appears, we would like to use a dynamic scheduling scheme
that uses machines that are still functioning correctly. Obtaining strong re-
sults from the reliability point of view would broaden our comprehension of
the problem. Otherwise, it is likely that efficient non guaranteed heuristics
(within the theory of multi-objective scheduling) can be developed. Solutions
based on work-stealing and checkpointing seem to be better suited to achieve
efficient parallel executions even when the system is subject to faults.

To summarize, multi-objective scheduling can be applied to safety in order
to help a decision maker to solve the trade-off between efficiency and relia-
bility. This approach is general and needs to be adapted to different models.
Unfortunately, not a single model is unanimously accepted since each com-
puting system requires its own specific fault model. Each resulting problem is
almost unique; tackling each of them would be a titanic work. Instead, theo-
retical approaches focus on general but reasonable assumptions that highlight
the core properties practical heuristics should focus on.

6.4 Stable memory-based protocols

The most basic form of fault tolerance for parallel applications consists
in rollback recovery using a stable memory. In order to ensure application
reliability and to prevent computation loss, these protocols store the required
information on the stable memory. In case of failure, this information allows
recovering a coherent global state of the application at rollback. Rollback
recovery techniques have received a great deal of attention from the research
community.

In this section we focus on the presentation of the two categories of fault
tolerance protocols based on a stable memory, which differ in the kind of in-
formation they store. The log-based protocols save non-deterministic events
delivered to the processes, while the checkpoint-based protocols store the pro-
cess states.

6.4.1 Log-based rollback recovery

Log-based protocols are based on the PieceWise Deterministic (PWD) as-
sumption [Strom and Yemini, 1985]. PWD means that a process execution
can be modeled as a sequence of state intervals; and that the execution during
a state interval is deterministic. However, each state interval is initiated by a
non-deterministic event.

Log-based protocols capture and log the non-deterministic events that ini-

154 Fundamentals of Grid Computing

tiated all state intervals. Then, when a process crashes, it can be recovered
by (1) restoring it to the initial state and (2) replaying the logged events in
the same order they appeared in the execution before the crash. To avoid
a rollback to the initial state of a process and to limit the amount of non-
deterministic events that need to be replayed, each process periodically saves
its local state. Log-based mechanisms in which the only non-deterministic
events in a system are the reception of messages are usually referred to as
message logging.

Notice that logging protocols require a garbage collector to reclaim old logs
that will never be used. The algorithm is more or less complex depending on
the category of protocols. Thus logging protocols have interest to periodically
save each process state in order to suppress old logs and speed-up recovery
after a failure.

A disadvantage of log-based protocols for applications with extensive inter-
process communication is the potential for large overhead with respect to
space and time, due to the logging of messages. The most important advan-
tage of log-based protocols is that they are well suited for a system that inter-
acts with the outer world; these interactions are viewed as non-deterministic
events.

Message logging protocols have to ensure that, once a crashed process has
recovered, its state is consistent with the states of the other processes. This
consistency property can be expressed as avoiding orphan processes. An or-
phan process is a process q that has received and delivered to an application
a message from a crashed process p that has not logged the message as sent
to q. Such a message is called an orphan message.

Logging protocols [Alvisi and Marzullo, 1998], [Elnozahy et al., 2002] can
be classified as pessimistic, optimistic or causal depending on the way they
prevent orphan processes.

6.4.1.1 Pessimistic logging

The principle of pessimistic logging protocols is to log any non-deterministic
event on the stable omission before it affects the computation [Alvisi and
Marzullo, 1998]. This prevents orphan processes and, then, reconstructing
the state of a crashed process is straightforward as it only requires to replay
these events.

Nevertheless, pessimistic protocols potentially block a process for each mes-
sage it receives, even if no process ever crashes.

6.4.1.2 Optimistic logging

Other approaches that reduce the overhead of logging messages are the
optimistic logging protocols. These protocols make the optimistic assumption
that logging will be completed before a failure occurs [Strom and Yemini,
1985]. They kept a message log in a volatile log avoiding to wait as for
pessimistic protocols. The volatile log is periodically flushed to the stable

Fault-tolerance and availability awareness in computational grids 155

memory. Thus optimistic protocol does not enforce consistency of the process
states during the execution if a failure occurs before the volatile message log
is flushed. During recovery, a consistent state is computed by finding the last
oldest state that eliminates all orphan messages.

6.4.1.3 Causal logging

Causal logging protocols [Elnozahy, 1993], [Alvisi and Marzullo, 1998] have
the failure-free performance of optimistic logging while retaining most of the
advantages of pessimistic logging. Each event can be logged asynchronously
as in the optimistic protocol; and causal protocols still guaranty to recover
from the last saved state.

For this purpose, they ensure that any non-deterministic event that causally
precedes the state of a process is either stored in the stable memory or it is
available locally for that process. The causality information is piggybacked
with each message.

6.4.2 Checkpoint-based rollback recovery

Rather than logging events, checkpointing relies on periodically saving the
state of the computation in stable storage [Chandy and Lamport, 1985]. If
a fault occurs, the computation is restarted from one of the previously saved
states. Thus, checkpointing-based methods differ in the way the processes are
coordinated and in the derivation of a consistent global state. The consistent
global state can be achieved either at the time of checkpointing or at the time
of rollback recovery. The two approaches are called respectively coordinated
and uncoordinated checkpointing.

6.4.2.1 Coordinated checkpointing

Coordinated checkpointing requires that all the processes coordinate the
construction of a consistent global state before they write the individual check-
points in a stable storage. The disadvantage is the latency and overhead as-
sociated with coordination. Its advantage is the simplified recovery without
rollback propagation and minimal storage overhead, since each process only
needs to keep the last checkpoint of the global “recovery line.”

Coordinated checkpointing may be blocking [Tamir and Séquin, 1984] if
the computation is stopped during the checkpoint phase or non-blocking such
as the original Chandy Lamport protocol [Chandy and Lamport, 1985].

Blocking coordinated checkpointing is attractive because it simplifies the
implementation. Even if blocking coordinated checkpointing protocol requires
a global synchronization, the overhead of the protocol is mostly due to transfer
data to the stable memory: in a short period of time, all processes checkpoint
their states in the stable memory. In nowadays clusters, the size of the ap-
plication state to checkpoint is very important due to the huge number of
processors.

156 Fundamentals of Grid Computing

6.4.2.2 Uncoordinated checkpointing

With uncoordinated checkpointing protocols, each process independently
saves its state and a consistent global state is achieved in the recovery phase
[Elnozahy et al., 2002]. The advantage of this method is that each process
can make a checkpoint when its state is small. However, there are two main
disadvantages. First, there is a possibility of rollback propagation that cas-
cades back to the beginning of the computation which is called the domino
effect [Randell, 1975]. Second, each process may be required to store multiple
checkpoints due to the cascading effect which makes the storage requirement
much higher.

6.4.2.3 Communication-induced checkpointing

A compromise between coordinated and uncoordinated checkpointing is
communication-induced checkpointing. To avoid the domino effect that can
result from independent checkpoints of different processes, a consistent global
state is achieved by forcing each process to take additional checkpoints based
on some information piggybacked on the application messages [Baldoni, 1997
]. The main disadvantage with this approach is that it results in the creation,
and thus storage, of a large number of unused checkpoints, i.e., checkpoints
that will never be used in the construction of a consistent global state.

All these fault tolerance protocols were implemented and experimented in-
side many middlewares, with MPI and other programming models. Existing
implementations and comparisons are given in Section 6.6.

6.5 Stochastic checkpoint model analysis issues

Coordinated checkpointing is one of the most popular methods to improve
the robustness of a computing system stressed by different kinds of faults and
failures. Thus, a huge number of checkpoint/restart models appeared over the
past decades to improve the performance of such a system and a lot of works
in this field are still ongoing. In this section we survey the most important
stochastic checkpointing models. We present the principle of algorithms and
we discuss the main associated results.

We describe different models for the execution of an application without
fault tolerance mechanisms in an environment stressed by permanent failures.
These models use various hypotheses leading to analytical expressions like the
expected completion time or like the variation of the completion time for the
application. Then, we survey the most popular checkpoint/restart models and
we show how fault tolerance techniques may improve the system performance.

Fault-tolerance and availability awareness in computational grids 157

6.5.1 Completion time without fault tolerance

In order to show how fault tolerance techniques improve the system robust-
ness, we present some stochastic models that provide an analytical analysis of
system performance. Such models provide the distribution of the completion
time which leads to compute many important criteria (the expected comple-
tion time and the variation of the completion time) [Chimento and Trivedi,
1993], [Leung and Choo, 1984]. More precisely, such models are also useful
for real-time systems where user requirements include deadlines on the com-
pletion time. In such a context, the computation of the expected completion
time provides only limited information. Thus, we need to provide the dis-
tribution of the completion time since the expected completion time can not
give the probability of tasks to miss the deadline.

To analyze these models, we consider the following notations and assump-
tions. The system is considered as a collection of CPUs connected by a net-
work where user submits an initial amount of work denoted by ω. Under
the failure-free assumption, the system takes T units of time to execute this
amount of work. A classical execution is represented in Figure 6.3. Adding
permanent failures assumption, after a period of time denoted by Xi the
system goes down due to an unavailability state with a certain hazard rate
denoted by Hx(t). Then, Ri units of time are spent in debugging or repairing
mode, before the system is available again. It is usual to suppose that this
time is random and follows a hazard rate Hr(t). In this analysis, fault detec-
tions are supposed to be without latency. If this is not the case, then it may
still be possible to account for the failures detection delay by suitably increas-
ing the availability time or the repair time distribution. To model both the
time between failures X and the time needed to repair R, it is supposed that
both of them are random variables that follow a distribution function denoted
by Fx(t) and Fr(t) and a density function denoted by fx(t) and fr(t). There-
fore, the usual relation between the hazard rate function and the distribution
function is:

Fx(t) = 1 − e
∫ t
0 Hx(x)dx and Fr(t) = 1 − e

∫ t
0 Hr(x)dx.

Under those different assumptions and abstractions, the global application
execution scheme can be represented by a function giving the amount of work
that still has to be done at each time. Such a function is represented in Figure
6.4. Then, the total elapsed time V until the completion of the application
can be computed as follows:

V = X1 + R1 + X2 + R2 + · · · + Xn−1 + Rn−1 + T. (6.1)

Let us now consider particular distributions. For instance, suppose that
the failure process is modeled by a Weibull law which is one of the most used
laws to model failures [Schroeder and Gibson, 2006]. The density function of

158 Fundamentals of Grid Computing

V

work

T

ω

time

FIGURE 6.3: Execution scheme without failures.

V

work

TX1 R1 X2

ω

Xn−1Rn−1

time

Repair Failure

FIGURE 6.4: General execution scheme under failures and without fault-
tolerance.

Fault-tolerance and availability awareness in computational grids 159

this law has two parameters λ, β and it is given by the following expression:

fx(t) = λβ(λt)β−1e(−λt)β

.

• Let us first suppose that β = 1, i.e., the Weibull is reduced to an expo-
nential law. Then, the expected completion time E(V) and the variance of
the completion time Var(V) have the following expressions:

E(V) = (eλT − 1)(μr + 1/λ). (6.2)

Var(V) = (eλT − 1)[μ2
r(1 + δr) + (eλT + 1)(μr + 1/λ)2]−

2(μr + 1/λ)[μr(eλT − 1) + TeλT)] (6.3)

where μr = E(R1), δr =
√

Var(R1)/μr is the coefficient of variation of the
restart time (the detailed analysis can be found in [Leung and Choo, 1984]).

• Secondly, let us suppose that β > 1 or β < 1, quadrature is generally
required to compute the expected completion time or the variation of the
completion time.

E(V) = T +
1

1 − F (T)
[
∫ T

0

gfx(g)dg + Fx(T)μr] (6.4)

Since the integral is always bounded by the first moment of time between
failures X denoted by μx and the expected completion time must be at least
T, we have:

T ≤ E(V) ≤ T + (μr + μx)/(1 − Fx(T)). (6.5)

Equation (6.2) states that the completion time of the application increases
exponentially when ω grows. This confirms that fault tolerance techniques are
required to improve the system performances. More generally, we conclude
from Expression (6.5) that if most of the mass of f concentrates in the interval
[0, T] then Fx(T) → 1,

∫ T

0
gfx(g)dg → μx and the completion time tends to be

much longer than the completion time with the failures-free assumption. On
the other hand, if most of the mass of fx concentrates in the interval [T, +∞)
then Fx(T) → 0,

∫ T

0 xfx(x)dx → 0 and the completion time tends to be equal
to T . Thus, fault tolerance techniques should be investigated in this context.
Let us now introduce how the checkpoint/restart mechanism can improve the
system performance.

6.5.2 Impact of checkpointing on the completion time

To deal with failures and to improve the system performance, many fault
tolerance techniques have been proposed during the last decades. Based
on simulation results, Elnozahy et al. [Elnozahy and Plank, 2004] showed
that the coordinated checkpoint approach is the most effective fault tolerance

160 Fundamentals of Grid Computing

mechanism in large parallel platforms. Let us recall briefly that the aim of
such models is to optimize the trade-off between the amount of work lost when
a failure occurs and the performance lost due to the checkpoint overhead with
respect to some given metric. The most studied metric in computing systems
is the completion time of an application. The fault-tolerance techniques are
considered as a defensive mechanism added to the application to reduce the
failures consequences (the amount of lost work due to failures in the case of
checkpointing mechanisms). Unfortunately, these defensive mechanisms in-
troduce also overheads that decrease the performance of the whole system.
For instance, checkpointing on a BlueGene machine is reported to take an
hour [Liang et al., 2006]. Hence, using these mechanisms without optimiza-
tion techniques can decrease seriously the system performance. Since the
70s, several works model the application and checkpointing mechanisms and
apply adapted analytical methods to optimize the system performance with
respect to many criteria. All these models [Young, 1974], [Daly, 2006], [Ziv
and Bruck, 1997], [Chandy and Ramamoorthy, 1972], [Toueg and Babaoglu,
1983] differ in some critical assumptions of the computing system.

Failure

work

Checkpoint

V

Repair

ω

c1

time

X2 R2R1X1

t1

t2

FIGURE 6.5: General scheme of an execution under failures with checkpoint
mechanism.

The two following sections present an analysis of the checkpointing mecha-
nism under two simple but reasonable hypothesis. The previous assumptions
are still valid. In addition, we assume that the initial amount of work ω
considered as a big task is preemptive (this is a mandatory assumption to
implement checkpointing). The execution of this task will be divided into k

consecutive intervals of length tj such that
∑k

j=1 tj = T . A checkpoint occurs

Fault-tolerance and availability awareness in computational grids 161

between each interval and cost cj units of time as it is depicted in Figure
6.5. The difference between both analyses is related to the cost function of a
checkpoint. In the first case, it is supposed to be constant whereas it becomes
variable in the second one.

6.5.2.1 Constant checkpoint cost

Young proposes in [Young, 1974] a checkpoint/restart model where fail-
ures follow a probabilistic law, but the checkpoint cost and the restart cost
are constant. It also assumes that checkpoints can be placed at any moment
of the application. Moreover, checkpointing and restart phases are assumed
to be fault-free. Under those assumptions, Young provides a first order ap-
proximation of the optimal time between two successive checkpoints using the
following arguments. Let O be the overhead due to the work during failures
and the checkpoint cost, τ be the period between checkpoints such as τ = ω

k
and λ be the rate of the Poisson process which represents failures arrivals.
Thus, O is given by the following expression:

O = 1/λ +
c

1 − eλ(c+τ)
(6.6)

Therefore, the optimal period between checkpoints τ is the root of the deriva-
tive function of Expression (6.6) which is equal to

√
2c/λ, considering a first

approximation for the exponential term and assuming that the checkpoint
cost is much shorter than the failures rate c << 1/λ.

Daly extends in [Daly, 2006] the model introduced by Young by proposing a
higher order solution for the optimal interval of time between checkpoints con-
sidering that failures may happen during the checkpoint phase and the restart
phase. In fact, he proposes another interval between checkpoints equivalent to
Young’s optimal interval length if the checkpoint cost less than 2/λ; elsewhere
the optimal interval length will be equal to the 1/λ. Therefore, Daly’s model
is more precise than Young’s model when the checkpoint cost is close to the
mean time between failure (1/λ).

τ =

{√
2c
λ [1 + 1/3

√
2c
λ + 1/9(2c

λ)] − c if c ≤ 2/λ

1/λ if c > 2/λ
(6.7)

Considering both models shows that the average completion time will grow
linearly when the initial amount of work grows. In fact, it is clear that the
expression of the overhead due to failures and checkpoint according to Young’s
model [Young, 1974] does not depend on the initial amount of work which
implies that the expected completion time will grow linearly. Also in [Daly,
2006] based on simulation the author reaches the same conclusion. Hence,
checkpointing improves the system performance.

162 Fundamentals of Grid Computing

6.5.2.2 Variable checkpoint cost

The second variant of checkpoint/restart model are the models that con-
sider a variable checkpoint cost. Several works claim that the checkpoint cost
should not be considered as constant [Ziv and Bruck, 1997], [Chandy and
Ramamoorthy, 1972], [Toueg and Babaoglu, 1983]. In fact, a popular tech-
nique to reduce the amount of data to save in the stable storage is to use an
incremental method which only saves the memory which changed from the
previous checkpoint. Using such a technique, considering a checkpoint cost is
no longer a reasonable assumption.

The first work was proposed by Chandy et al. in 1972. Based on graph
theory, it finds the optimal placement of the checkpoints [Chandy and Ra-
mamoorthy, 1972]. The proposed technique relies on the existence of a prior-
information about the checkpoint cost. Moreover, it also assumes that failures
follow a Poisson’s process.

Toueg et al. tackle the same problem under the following assumptions:
the application can be only preempted at n specific times ti for 1 < i < n
and the failures follow a Poisson’s process [Toueg and Babaoglu, 1983]. The
cost of a checkpoint is then ci. Under this model, they propose an O(n2)
algorithm based on a dynamic programming that leads to an optimal expected
completion time. The algorithm assumes that there are only n finite places
to schedule the checkpoint. The recurrence objective function is based on
Equation (6.8) that gives the expected completion time E(V) if a checkpoint
is placed at the index i.

E(V) =
eλ(t1+t2+···+ti) − 1

λ
+ ci +

eλ(ti+1+···+tn) − 1
λ

(6.8)

To find the optimal placement of different checkpoints, the algorithm iterates
on the index i leading to the optimal sequence of checkpoints in n2 iterations
at most.

Another important contribution is proposed by Zvi et al. in [Ziv and Bruck,
1997] using the following assumptions: failures arrive following a Poisson’s
process and the application can be preempted at any time t to take a check-
point. They assume that the system is modeled by a Markov chain composed
of two different states s1 and s2 and of transition function φ (that is to say, φ1

is the probability of going from state s1 to state s2 and φ2 is the probability of
going from state s2 to state s1). When the system is in state s1 (resp. s2), the
checkpoint cost is c1 (resp. s2). They propose an algorithm to decide when
a checkpoint should be taken. The algorithm has two parameters t1 and t2
such that t1 ≤ t2 and is now stated:

Fault-tolerance and availability awareness in computational grids 163

repeat
Wait t1 units of time.
if the state is s1 then

Take a checkpoint. The overhead is c1.
else if the state is s2 then

Wait up to t2 for the system to change to state s1.
if the system changes to state s1 then

Take a checkpoint. The overhead is c1.
else

Take a checkpoint. The overhead is c2.
end if

end if
until all work is done

The average overhead ratio of this algorithm denoted by O is given by the
following expression:

O =
eλt1 + λp2

λ−φ2
(eλt2 − eλt1+φ2(t2−t1)) − 1

λ(t1 + p2eφ2(t2−t1)−1
φ2

)
+

(1 − p2)c1 + p2c2

t1 + p2eφ2(t2−t1)−1
φ2

− 1 (6.9)

where p2 is the probability that the state at a checkpoint is s2. The final
step is to find the couple (t1, t2) that minimizes the average overhead. The
proposed solution is to use a numerical method.

Let us summarize the results of this section. Under a basic stochastic model,
the completion time of an application grows exponentially if no fault-tolerance
techniques are used. Moreover, using some stochastic checkpoint/restart mod-
els, it is possible to improve the performance of orders of magnitude. However,
these models are quite optimistic and many hypotheses do not hold in actual
computing systems. In the next section we focus on the implementation issues
of some fault tolerance mechanisms.

6.6 Implementations

A complete fault tolerant middleware is a complex system that consists in
many interconnected components. This section presents first some implemen-
tations of single process checkpoints, and then an overview of implemented
distributed fault tolerance protocols. Finally, we give a synthetic comparison
of the main current implementations.

164 Fundamentals of Grid Computing

6.6.1 Single process snapshot

The problem of the single process checkpoint can be addressed following
three approaches depending at which level this checkpoint is performed.

In the first approach, a process is saved as a memory dump. It can
be done at the kernel-level with Berkeley Lab’s Linux Checkpoint/Restart
(BLCR) [Duell et al., 2002] or at the user-level with a library like Con-
dor [Litzkow et al., 1997] or Libckpt [Plank et al., 1995]. Among these
solutions, BLCR is the only one that supports multi-threaded applications.
This method is widely employed since it is transparent for the application
developer. But many drawbacks affect this kind of snapshot: it requires a ho-
mogeneous resource (same operating system and same CPU) when restarting.
Furthermore, the process address space contains data that are not strictly
required for restarting, so the checkpoint size is larger than necessary.

In order to abstract the process state, the second approach considers that
it is the user responsibility to write functions for saving and restarting a pro-
cess. This method is effective because the developer can choose exactly which
data to checkpoint, but it requires a significant effort from the application
developer.

The third approach proceeds at middleware level. It combines advantages
from the two above approaches, but it requires the application to be written
with a middleware that uses an abstract representation of the application, like
objects (Charm++ [Zheng et al., 2004], [Chakravorty and Kalé, 2004]), task
lists (Satin [Wrzesinska et al., 2006]) or data flow graphs (Kaapi [Besseron
and Gautier, 2008], [Jafar et al., 2009]). Using the application abstract
representation, the middleware can checkpoint on its own tasks and data used
by the application. This approach is fully transparent for the application
developer; the process can be restarted on a heterogeneous resource (since
the abstract representation is architecture-independent) and the snapshot is
smaller than in the memory space’s case.

6.6.2 Fault-tolerance protocol implementations

The purpose of fault tolerance middlewares is to provide an easy way to
make an application fault tolerant. Some approaches can be semi-automatic
or fully automatic depending on the amount of work for the developer to
adapt his-her application for fault tolerance.

Among the semi-automatic category, we find FT-MPI [Fagg et al., 2001]
and LA-MPI [Aulwes et al., 2004] that tolerate communication failures. In
case of failure, the error is reported at the application level to be treated and to
react to the failure. Semi-automatic middlewares can offer good performances
because they allow specializing fault tolerance for a given application but they
lack transparency for the developer.

There are more fully automatic fault tolerance middlewares. FT/MPI
[Batchu et al., 2001] and P2P-MPI [Rattanapoka, 2008] provide fault tol-

Fault-tolerance and availability awareness in computational grids 165

erance based on redundancy. Processes are replicated and, thus, failure of a
node with a replicated process will not affect the computation. These meth-
ods prevent service interruption but they target on platforms with a large
number of nodes because they consume a lot of resources

CoCheck [Stellner, 1996] is one of the first solutions to add fault tol-
erance to MPI in 1996. It uses a blocking coordinated checkpoint/restart
protocol to create a consistent global state of the application and Condor
to checkpoint each process locally. Coordinated checkpoint/restart is the
widely used fault tolerance protocol. It has been implemented and opti-
mized in different variants for MPI in Starfish MPI [Agbaria and Friedman,
2003], LAM/MPI [Sankaran et al., 2005], MPICH-Cl [Bouteiller et al.,
2003b], MPICH-VCl [Lemarinier et al., 2004], MPICH-Pcl [Coti et al.,
2006], Open MPI [Hursey et al., 2007] and in other programming mod-
els in Charm++ [Zheng et al., 2004] and in Kaapi with CCK [Besseron and
Gautier, 2008]

An uncoordinated checkpoint/restart protocol is also implemented in
Starfish MPI [Agbaria and Friedman, 2003]. It does not suffer from the
domino effect since it uses atomic group communications that ensure reliable
ordered message delivery. But uncoordinated checkpoint/restart protocols are
mostly used with message logging protocols.

Communication induced checkpointing protocols have been experimented
with Egida [Alvisi et al., 1999]; and a specialized version for work stealing
is implemented in Kaapi with the TIC (Thief Induced Checkpointing) [Jafar
et al., 2009].

Message logging protocols have also been widely studied. Egida [Rao
et al., 2000] offers its own language to express the different message log-
ging protocols: pessimistic, optimistic and causal. Some implementation of
pessimistic message logging protocols is proposed in MPI-FT [Louca et al.,
2000], MPICH-V1 [Bosilca et al., 2002], MPICH-V2 [Bouteiller et al., 2003a
] and Charm++ [Chakravorty and Kalé, 2004]. Causal message logging
protocols have been experimented through Manetho [Elnozahy, 1993] and
MPICH-VCausal [Lemarinier et al., 2004].

The Charm++ middleware offers automatic load balancing at run-time.
Thanks to this feature, Charm++ requires no spare processors as the failed
processes states will be restored on non-failed processes and load balanced.
Adaptive MPI (AMPI) is an MPI implementation on top of Charm++, so it
automatically benefits from load balancing and the fault tolerance properties
of Charm++.

A Kaapi application is described as a data flow graph which is distributed
among the processors using a work stealing scheduler. Fault tolerance proto-
cols implemented in Kaapi, TIC (Thief Induced Checkpointing) [Jafar et al.,
2009] and CCK (Coordinated Checkpointing in Kaapi) [Besseron and Gau-
tier, 2008] are specialized versions of classical protocols for the data flow
graph model. This allows many optimizations like recovering without a spare
processor or determining finely lost computations in case of failure.

166 Fundamentals of Grid Computing

Finally, Satin [Wrzesinska et al., 2006] is a middleware that offers fault tol-
erance services through an original approach that is not based on the classical
methods like checkpoint or message logging, but it is specialized for the work
stealing scheduling [Wrzesinska et al., 2006]. In case of failure, the results
from orphan jobs (i.e., jobs stolen from a failed processor) are stored in a
global table. The jobs stolen by a failed processor are rescheduled and they
can use results from the global table instead of recomputing them.

This large variety of implemented protocols is rarely compared to each
other. Exceptions are inside some middlewares that implement different vari-
ants like Egida [Rao et al., 2000] and MPICH-V [Bouteiller et al., 2006
], [Lemarinier et al., 2004], [Bouteiller et al., 2003b], [Coti et al., 2006].

Open MPI is an implementation that supports the entire MPI-2 standard.
Its fault tolerance architecture was designed to be flexible and modular in or-
der to encourage the experimentation of alternative techniques. Its purpose is
to provide an unified approach for MPI. It is split in five components [Hursey
et al., 2007]. Snapshot Coordinator is responsible for launching, monitor-
ing and the aggregation of checkpoint requests. File Management manages
checkpoint related files and directories. Distributed Checkpoint/Restart Coor-
dination Protocol is the coordination protocol that guarantees the distributed
state’s consistency. Currently, only a coordinated checkpoint/restart pro-
tocol similar to the one used in LAM/MPI is implemented. Local Check-
point/Restart System is responsible for checkpointing or restoring the local
process’s state. At this time, it supports an application level snapshot using
callbacks offered by the API and a memory space based snapshot using the
Berkeley Lab’s Linux Checkpoint/Restart library. MPI Library Notification
Mechanisms notifies and coordinates the subsystems of the MPI implementa-
tion for checkpoint/restart events.

6.6.3 Implementation comparison

This section details some recent fault tolerant middlewares. They were
chosen because they are widely used or because they propose an original
approach of the fault tolerance problem. They should provide a representative
overview of the current solutions for automatic fault tolerance. They are
all compared in the Table 6.1 using the following criteria. Single process
snapshot states the methods used to take a process snapshot as described
in Section 6.6.1; this influences directly the portability and the size of the
checkpointed state. Protocol corresponds to the fault tolerance protocol used;
they are detailed in Section 6.4. Storage component refers to the physical
component that is used for storing checkpointed states or logged messages.
Reliable components states which components are supposed to be reliable in
that implementation. Spare processor indicates if a spare processor is required
for restarting the application. Restarting without spare processors requires a
load balancing system that prevents performance falls. Recovery defines how
many processes rollback to a previous state: Global for all, Local for only the

Fault-tolerance
and

availability
aw

areness
in

com
putational

grids
167

Middleware Single process snapshot Protocol Storage component Reliable components Spare processor Recovery

CoCheck
(1996)

Memory space
(Condor)

Blocking coordinated
checkpointing

Checkpoint server Stable memory Required Global

MPICH-Cl
(2003)

Memory space
(Condor)

Non-blocking coordinated
checkpointing

Checkpoint server
Checkpoint Servers +
1 Dispatcher +
1 Checkpoint Scheduler

Required Global

MPICH-Vcl
(2003)

Memory space (Condor,
libckpt or BLCR)

Non-blocking coordinated
checkpointing

Local node +
Checkpoint server

Checkpoint Servers +
1 Dispatcher +
1 Checkpoint Scheduler

Required Global

FTC-Charm++
(2004)

Middleware based Blocking coordinated
checkpointing

Local node +
Buddy processor

- Not required Global

MPICH-Pcl
(2006)

Memory space (Condor,
libckpt or BLCR)

Blocking coordinated
checkpointing

Local node +
Checkpoint server

Checkpoint Servers +
1 mpiexec process

Required Global

Open MPI
(2007)

Memory space (BLCR)
or application level

Blocking coordinated
checkpointing

Checkpoint server Checkpoint servers Required Global

Kaapi-CCK
(2008)

Middleware based Blocking coordinated
checkpointing

Checkpoint server
Checkpoint servers +
1 Master node

Not required Partial

Kaapi-TIC
(2005)

Middleware based Communication induced
checkpointing

Checkpoint server
Checkpoint servers +
1 Master node

Not required Local

MPICH-V1
(2002)

Memory space
(Condor)

Pessimistic message log-
ging

Checkpoint server
+ Channel Memory

Checkpoint Servers +
Channel Memories +
1 Dispatcher

Required Local

MPICH-V2
(2003)

Memory space
(Condor)

Sender-based pessimistic
message logging

Checkpoint server
+ Event Logger

Checkpoint Servers +
Event loggers +
1 Dispatcher +
1 Checkpoint Scheduler

Required Local

MPICH-VCausal
(2004)

Memory space
(Condor)

Sender-based causal mes-
sage logging

Checkpoint server
+ Event Logger

Checkpoint Servers +
Event loggers +
1 Dispatcher +
1 Checkpoint Scheduler

Required Local

FTL-Charm++
(2004)

Middleware based Sender-based pessimistic
message logging

Local node +
Buddy processor

- Required Local

Satin
(2006)

- Ad hoc protocol using a
global table

- - Not required -

T
able

6.1:
Sum

m
ary

of
m

ain
fault

tolerance
protocolim

plem
entations.

168 Fundamentals of Grid Computing

failed processes, and Partial for intermediate solutions.

6.7 Concluding remarks

The goal of this chapter was to present the most important models and
protocols for designing efficient mechanisms that improve fault-tolerance in
computational grids.

We started by describing an approach that looked at the problem as a
multi-objective problem. The idea is to optimize the resource utilization by
way of a classical scheduling problem and add a reliability function as an
extra objective. Optimizing both objectives together corresponds to deter-
mine a good trade-off between performance and reliability. Then, the system
administrator acts as a decision maker and chooses one trade-off among a
set of “good” trade-offs. We discussed a couple of variants for solving these
bi-objective problems depending on whether task duplication is allowed, and
whether faults are permanent. Duplication may improve drastically the reli-
ability; however, it leads to hard intractable problems.

Another approach is to add periodically a checkpoint and store the inter-
mediate states on an external and safe memory, in order to be able to recover
when a failure occurs and restart the computations from the last checkpoint.
We described in details the main existing checkpoint protocols and the main
available implementations. We also provided a survey of the large number of
stochastic checkpoint models. The goal of all these models is to optimize a
trade-off between the amount of work lost when a failure happens and the
overhead due to checkpointing. Most models express these trade-offs as a cost
function which reflects the mean completion time of the applications. This
way, it is relatively easy to address a large variety of problems.

The purpose of this chapter was not to present hard technical problems in
detail; however, we hope that it allows to provide a deep vision of problems
and techniques for dealing with faults in computational grids, especially those
relying on checkpoints. Several challenging open research directions can be
stressed: first, it is interesting to refine more the theoretical stochastic models
for taking into account more features. Of course, the more sophisticated the
model, the harder the resolution, in particular, only numerical resolutions
could be applied. The second direction would be to use such models for
solving variants of the problem, like for computing the optimal interval length
between two consecutive checkpoints (it may depend on the structure of the
application), or computing the minimum number of checkpoint servers for
saving the intermediate states. Third, a more difficult point would be to
improve the time for checkpointing, for instance in considering decentralized
strategies. This becomes crucial with the growth of the number of processors

Fault-tolerance and availability awareness in computational grids 169

in computational grids. Another way is to investigate the smart encoding of
the data to checkpoint. Finally, in a more algorithmic setting, it is worthwhile
to study how to design algorithms that are intrinsically self-tolerant.

170 Fundamentals of Grid Computing

6.8 References

[Adiga, 2002] Adiga, N. (2002). An overview of the BlueGene/L supercom-
puter. In Proceedings of Supercomputing, pages 1–22.

[Agbaria and Friedman, 2003] Agbaria, A. and Friedman, R. (2003). Starfish:
fault-tolerant dynamic MPI programs on clusters of workstations. Cluster
Computing, 6(3):227–236.

[Alvisi and Marzullo, 1998] Alvisi, L. and Marzullo, K. (1998). Message log-
ging: pessimistic, optimistic, causal, and optimal. IEEE Transactions on
Software Engineering, 24(2):149–159.

[Alvisi et al., 1999] Alvisi, L., Rao, S., Husain, S., Mel, A., and Elnozahy, E.
(1999). An analysis of communication-induced checkpointing. International
Symposium On Fault-Tolerant Computing, pages 242–249.

[Assayad et al., 2004] Assayad, I., Girault, A., and Kalla, H. (2004). A bi-
criteria scheduling heuristic for distributed embedded systems under relia-
bility and real-time constraints. In Proceedings of DSN, pages 347–356.

[Aulwes et al., 2004] Aulwes, R., Daniel, D., Desai, N., Graham, R., Risinger,
L., Taylor, M., Woodall, T., and Sukalski, M. (2004). Architecture of LA-
MPI: a network-fault-tolerant MPI. In Proceedings of Parallel and Dis-
tributed Processing, page 15b. IEEE Computer Society.

[Avizienis et al., 2004] Avizienis, A., Laprie, J., Randell, B., and Landwehr,
C. (2004). Basic concepts and taxonomy of dependable and secure comput-
ing. IEEE Transactions on Dependable and Secure Computing, 1(1):11–33.

[Baldoni, 1997] Baldoni, R. (1997). A communication-induced checkpointing
protocol that ensures rollback-dependency trackability. In Proceedings of
FTCS, page 68. IEEE Computer Society.

[Barlow and Proschan, 1996] Barlow, R. E. and Proschan, F. (1996). Mathe-
matical theory of reliability. SIAM, classics edition.

[Batchu et al., 2001] Batchu, R., Skjellum, A., Cui, Z., Beddhu, M., Nee-
lamegam, J., Dandass, Y., and Apte, M. (2001). MPI/FT: architecture and
taxonomies for fault-tolerant, message-passing middleware for performance-
portable parallel computing. In Proceedings of Cluster Computing and the
Grid, page 26. IEEE Computer Society.

[Benoit et al., 2008] Benoit, A., Hakem, M., and Robert, Y. (2008). Fault
tolerance scheduling of precedence task graphs on heterogeneous platforms.
In Proceedings of IEEE International Parallel and Distributed Processing
Symposium, pages 1–8.

Fault-tolerance and availability awareness in computational grids 171

[Besseron and Gautier, 2008] Besseron, X. and Gautier, T. (2008). Optimised
recovery with a coordinated checkpoint/rollback protocol for domain de-
composition applications. In Proceedings of MCO, pages 497–506.

[Bosilca et al., 2002] Bosilca, G., Bouteiller, A., Cappello, F., Djilali, S.,
Fedak, G., Germain, C., Hérault, T., Lemarinier, P., Lodygensky, O., Mag-
niette, F., Néri, V., and Selikhov, A. (2002). MPICH-V: toward a scalable
fault tolerant MPI for volatile nodes. In Proceedings of SuperComputing,
page 29. IEEE Computer Society.

[Bouteiller et al., 2003a] Bouteiller, A., Cappello, F., Hérault, T., Krawezik,
G., Lemarinier, P., and F.Magniette (2003a). MPICH-V2: a fault tolerant
MPI for volatile nodes based on pessimistic sender based message logging.
In Proceedings of SuperComputing, page 25. IEEE Computer Society.

[Bouteiller et al., 2006] Bouteiller, A., Hérault, T., Krawezik, G., Lemarinier,
P., and Cappello, F. (2006). MPICH-V project: a multiprotocol automatic
fault tolerant MPI. The International Journal of High Performance Com-
puting Applications, 20:319–333.

[Bouteiller et al., 2003b] Bouteiller, A., Lemarinier, P., Krawezik, G., and
Cappello, F. (2003b). Coordinated checkpoint versus message log for fault
tolerant MPI. In Proceedings of Cluster Computing, page 242. IEEE Com-
puter Society.

[Chakravorty and Kalé, 2004] Chakravorty, S. and Kalé, L. (2004). A fault
tolerant protocol for massively parallel systems. Proceeedings of Parallel
and Distributed Processing, 12:212a.

[Chandy and Lamport, 1985] Chandy, K. and Lamport, L. (1985). Dis-
tributed snapshots: determining global states of distributed systems. ACM
Transactions on Computer Systems, 3(1):63–75.

[Chandy and Ramamoorthy, 1972] Chandy, K. and Ramamoorthy, C. (1972).
Rollback and recovery strategies for computer programs. IEEE Transac-
tions on Computers, 21(6):546–556.

[Chimento and Trivedi, 1993] Chimento, P. and Trivedi, K. (1993). The com-
pletion time of programs on processors subject to failure and repair. IEEE
Transactions on Computers, 42(10):1184–1194.

[Coti et al., 2006] Coti, C., Hérault, T., Lemarinier, P., Pilard, L., Rezmerita,
A., Rodriguez, E., and Cappello, F. (2006). Blocking versus non-blocking
coordinated checkpointing for large-scale fault tolerant MPI. In Proceedings
of SuperComputing, page 18. IEEE Computer Society.

[Crutchfield et al., 2008] Crutchfield, C. Y., Dzunic, Z., Fineman, J. T.,
Karger, D. R., and Scott, J. H. (2008). Improved approximations for mul-
tiprocessor scheduling under uncertainty. In Proceedings of SPAA, pages
246–255.

172 Fundamentals of Grid Computing

[Daly, 2006] Daly, J. (2006). A higher order estimate of the optimum check-
point interval for restart dumps. Future Generation Computer Systems,
22(3):303–312.

[Dogan and Özguner, 2002] Dogan, A. and Özguner, F. (2002). Matching and
scheduling algorithms for minimizing execution time and failure probability
of applications in heterogeneous computing. IEEE Transactions on Parallel
and Distributed Systems, 13(3):308–324.

[Dongarra et al., 2007] Dongarra, J., Jeannot, E., Saule, E., and Shi, Z.
(2007). Bi-objective scheduling algorithms for optimizing makespan and
reliability on heterogeneous systems. In Proceedings of SPAA, pages 280–
288.

[Duell et al., 2002] Duell, J., Hargrove, P., and Roman, E. (2002). The design
and implementation of Berkeley lab’s Linux checkpoint/restart. Technical
report, Lawrence Berkeley National Laboratory. Available online at: http:

//repositories.cdlib.org/lbnl/LBNL-54941 (accessed May 1, 2009).

[Elnozahy, 1993] Elnozahy, E. (1993). Manetho: fault tolerance in distributed
systems using rollback-recovery and process replication. PhD thesis, Rice
University, Houston, TX, USA.

[Elnozahy et al., 2002] Elnozahy, E., Alvisi, L., Wang, Y.-M., and Johnson,
D. (2002). A survey of rollback-recovery protocols in message-passing sys-
tems. ACM Comput. Surv., 34(3):375–408.

[Elnozahy and Plank, 2004] Elnozahy, E. and Plank, J. (2004). Checkpoint-
ing for peta-scale systems: a look into the future of practical rollback-
recovery. IEEE Transactions on Dependable and Secure Computing,
1(2):97–108.

[Fagg et al., 2001] Fagg, G., Bukovsky, A., and Dongarra, J. (2001). HAR-
NESS and fault tolerant MPI. Parallel Computing, 27(11):1479–1495.

[Girault et al., 2009] Girault, A., Saule, E., and Trystram, D. (2009). Relia-
bility versus performance for critical applications. Journal of Parallel and
Distributed Computing, 69(3):326–336.

[Hoogeveen, 2004] Hoogeveen, H. (2004). Multicriteria scheduling. European
Journal of Operational Research, 167(3):592–623.

[Huang and Abraham, 1984] Huang, K. and Abraham, J. (1984). Algorithm-
based fault tolerance for matrix operations. IEEE Transactions on Com-
puters, 33(6):518–528.

[Hursey et al., 2007] Hursey, J., Squyres, J., Mattox, T., and Lumsdaine, A.
(2007). The design and implementation of checkpoint/restart process fault
tolerance for Open MPI. In Proceedings of IEEE International Parallel and
Distributed Processing Symposium. IEEE Computer Society.

Fault-tolerance and availability awareness in computational grids 173

[Jafar et al., 2009] Jafar, S., Krings, A., and Gautier, T. (2009). Flexible
rollback recovery in dynamic heterogeneous grid computing. IEEE Trans-
actions on Dependable and Secure Computing, 6(1):32–44.

[Jeannot et al., 2008] Jeannot, E., Saule, E., and Trystram, D. (2008). Bi-
objective approximation scheme for makespan and reliability optimization
on uniform parallel machines. In Proceedings of the Euro-Par Conference,
pages 877–886.

[Leighton and Ma, 1999] Leighton, F. and Ma, Y. (1999). Tight bounds on
the size of fault-tolerant merging and sorting networks with destructive
faults. SIAM Journal of Computing, 29(1):258–273.

[Lemarinier et al., 2004] Lemarinier, P., Bouteiller, A., Hérault, T.,
Krawezik, G., and Cappello, F. (2004). Improved message logging versus
improved coordinated checkpointing for fault tolerant MPI. In Proceedings
of CLUSTER, pages 115–124. IEEE Computer Society.

[Leung and Choo, 1984] Leung, C. and Choo, Q. (1984). On the execution of
large batch programs in unreliable computing systems. IEEE Transactions
on Software Engineering, 10(4):444–450.

[Leung, 2004] Leung, J. (2004). Handbook of scheduling: algorithms, models,
and performance analysis. Chapman & Hall/CRC Press, Boca Raton, FL,
USA.

[Liang et al., 2006] Liang, Y., Zhang, Y., Sivasubramaniam, A., Jette, M.,
and Sahoo, R. (2006). BlueGene/L failure analysis and prediction models.
In Proceedings of DSN, pages 425–434. IEEE Computer Society.

[Litzkow et al., 1997] Litzkow, M., Tannenbaum, T., Basney, J., and Livny,
M. (1997). Checkpoint and migration of Unix processes in the Condor
distributed processing system. Technical report, University of Wisconsin-
Madison, Madison, WI, USA.

[Lloyd and Lipow, 1962] Lloyd, D. and Lipow, M. (1962). Reliability: man-
agement, methods, and mathematics, chapter 9. PrenticeHall, Englewood
Cliffs, NJ, USA.

[Louca et al., 2000] Louca, S., Neophytou, N., Lachanas, A., and Evripidou,
P. (2000). MPI-FT: portable fault tolerance scheme for MPI. Parallel
Processing Letters, 10(4):371–382.

[Mahjoub et al., 2009] Mahjoub, A., Pecero, J., and Trystram, D. (2009).
Scheduling with uncertainties on new computing platforms. Computational
Optimization and Applications.

174 Fundamentals of Grid Computing

[Oliner et al., 2004] Oliner, A., Sahoo, R., Moreira, J., Gupta, M., and Siva-
subramaniam, A. (2004). Fault-aware job scheduling for BlueGene/L sys-
tems. In Proceedings of IEEE International Parallel and Distributed Pro-
cessing Symposium, page 64. IEEE Computer Society.

[Plank et al., 1995] Plank, J., Beck, M., Kingsley, G., and Li, K. (1995).
Libckpt: transparent checkpointing under Unix. In Usenix Winter Tech-
nical Conference, pages 213–223. Available online at: http://www.cs.utk.

edu/~plank/plank/papers/papers.html (accessed May 1, 2009).

[Randell, 1975] Randell, B. (1975). System structure for software fault toler-
ance. In Proceedings of Reliable Software, pages 437–449.

[Rao et al., 2000] Rao, S., Alvisi, L., and Vin, H. (2000). The cost of recovery
in message logging protocols. IEEE Transactions on Knowledge and Data
Engineering, 12(2):160–173.

[Rattanapoka, 2008] Rattanapoka, C. (2008). P2P-MPI: a fault-tolerant mes-
sage passing interface implementation for grids. PhD thesis, Université
Louis Pasteur, Strasbourg.

[Sankaran et al., 2005] Sankaran, S., Squyres, J., Barrett, B., Lumsdaine, A.,
Duell, J., Hargrove, P., and Roman, E. (2005). The LAM/MPI check-
point/restart framework: system-initiated checkpointing. International
Journal of High Performance Computing Applications, 19(4):479–493.

[Saule and Trystram, 2009] Saule, E. and Trystram, D. (2009). Analyzing
scheduling with transient failures. IPL, 109(11):539–542.

[Schroeder and Gibson, 2006] Schroeder, B. and Gibson, G. (2006). A large-
scale study of failures in high-performance computing systems. In Proceed-
ings of DSN, pages 249–258.

[Siewiorek and Swarz, 1998] Siewiorek, D. and Swarz, R. (1998). Reliable
computer systems, design and evaluation. A.K. Peters, 3rd edition.

[Stellner, 1996] Stellner, G. (1996). CoCheck: checkpointing and process mi-
gration for MPI. In Proceedings of the International Symposium on Parallel
Processing, page 526. IEEE Computer Society.

[Strom and Yemini, 1985] Strom, R. and Yemini, S. (1985). Optimistic re-
covery in distributed systems. ACM Transaction on Computer Systems,
3(3):204–226.

[Tamir and Séquin, 1984] Tamir, Y. and Séquin, C. (1984). Error recovery in
multicomputers using global checkpoints. In Proceedings of the 1984 In-
ternational Conference On Parallel Processing, pages 32–41. Available on-
line at: http://www.cs.ucla.edu/~tamir/papers/icpp84.pdf (accessed May
1, 2009).

Fault-tolerance and availability awareness in computational grids 175

[Toueg and Babaoglu, 1983] Toueg, S. and Babaoglu, O. (1983). On the opti-
mum checkpoint selection problem. SIAM Journal on Computing, 13:630–
649.

[Wrzesinska et al., 2006] Wrzesinska, G., Van, R. N., Maassen, J., Kielmann,
T., and Bal, H. (2006). Fault-tolerant scheduling of fine-grained tasks in
grid environments. International Journal of High Performance Computing
Applications, 20(1):103–114.

[Young, 1974] Young, J. (1974). A first order approximation to the optimum
checkpoint interval. Communications of ACM, 17(9):530–531.

[Zheng et al., 2004] Zheng, G., Shi, L., and Kalé, L. (2004). FTC-Charm++:
an in-memory checkpoint-based fault tolerant runtime for Charm++ and
MPI. In Proceedings of Cluster Computing, pages 93–103. IEEE Computer
Society.

[Ziv and Bruck, 1997] Ziv, A. and Bruck, J. (1997). An on-line algorithm for
checkpoint placement. IEEE Transactions on Computers, 46(9):976–985.

Chapter 7

Fault tolerance for distributed
scheduling in grids

Lei Yu
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

Frédéric Magoulès
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

7.1 Introduction . 177
7.2 Fault tolerance in distributed systems . 179
7.3 Distributed scheduling model . 180
7.4 Fault detection and repairing in the tree structure . 183
7.5 Distributed scheduling algorithm . 189
7.6 SimGrid and simulation design . 191
7.7 Evaluation . 192
7.8 Related work . 199
7.9 Concluding remarks . 200
7.10 References . 201

7.1 Introduction

Along with the deployment of more and more heterogeneous clusters, grid
computing has become an increasingly popular solution for leveraging exist-
ing IT infrastructure to optimize computing resources and manage data and
computing workloads. Lots of grid projects have been launched to build a
national problem-solving system on the grid, such as GrADS [Berman et al.,
2001] and DIET [Caron and Desprez, 2006]. These projects aim to con-
nect the nation’s computers, databases and instruments in a seamless grid,
supporting emerging computation-rich application concepts such as remote
computing, distributed supercomputing, tele-immersion, smart instruments
and data mining. In these large scale systems, the scheduling and fault toler-
ance are obviously key technical obstacles to be overcome. According to the
presentation of Hamscher and his colleagues [Hamscher et al., 2000], the meta-
scheduling architecture can be included into three principal schemas: central-
ized scheduling, hierarchical scheduling and distributed scheduling. The main

177

178 Fundamentals of Grid Computing

advantage for hierarchical and distributed scheduling is the fact that different
policies can be used for local and global job scheduling, the communication
bottleneck of centralized scheduling is prevented and the system is more scal-
able. But in the hierarchical and distributed structure, each resource has its
own administrative domain. These resources are geographically distributed
and are gathered using a WAN or even Internet. Those characteristics lead
these scheduling structures to be more error prone than other computing
environments. A fault tolerant mechanism should be proposed to detect au-
tomatically the failure of components and to ensure that the failure will not
affect the whole grid system.

At present, computational grids and grid services have become an impor-
tant asset in large-scale scientific and engineering research. Many scientific
communities are feeling a growing need to integrate their legacy applications
into grid environments. By wrapping command-line applications into grid ser-
vices and scheduling these grid services for end-users, a framework has been
implemented in [Yu and Magoulès, 2007] to enable the dynamic deployment,
the discovering and the submission of scientific applications in a grid environ-
ment. In order to integrate and schedule large-scale distributed applications,
a scheduling structure which is not centralized is more appreciated. Thus
a fault tolerant scheduling algorithm must be realized in the framework to
increase the system stability as we have mentioned before.

Thus the target system can be considered as a tree structure of schedulers
which are organized in a hierarchical manner. The problem which must be
resolved in this chapter is concluded as follows:

• A distributed scheduling algorithm to achieve the effective and fault tol-
erant resource discovery even if one of the schedulers in the tree structure
fails or the transferred messages are lost.

• A mechanism to detect the failure of schedulers in the hierarchical struc-
ture and reconstruct automatically the tree structure of schedulers to
enable the sub-tree and components of the failed scheduler.

The rest of this chapter is as follows. Fault tolerance theory and tech-
nology are presented in Section 7.2. Then the distributed scheduling model
architecture is described and the fault tolerance issues for each component are
discussed in Section 7.3. The detail of fault detection and repairing is pre-
sented in Section 7.4. In Section 7.5 the fault tolerant distributed scheduling
algorithm (DDFT) is described. SimGrid and our simulation application are
presented in Section 7.6, and several simulations are conducted to evaluate
the performance of the proposed model in Section 7.7. The related work is
discussed in Section 7.8. Finally we conclude with a brief discussion of the
future research.

Fault tolerance for distributed scheduling in grids 179

7.2 Fault tolerance in distributed systems

Before the presentation of our fault tolerant model, theories of fault toler-
ance are introduced to facilitate the understanding of terms used later in the
chapter.

Fault tolerance is an ability of a system to respond gracefully to an un-
expected hardware or software failure. A distributed system has the partial
failure property. Because of the dispersion of processing resources in the dis-
tributed system, no matter what kind of failure occurs, it usually affects only
a part of the entire system. Thus the fault tolerance in a distributed system
is considered as the possibility that the tasks of failing processes can be taken
over by the remaining components, leading to a graceful degradation rather
than an overall malfunctioning.

Two principal technologies can be used to achieve the fault tolerance of
systems: stable memory and replication processes. In stable memory, recovery
points are regularly saved by processes. When a process fails, it is recovered
from the last recovery point. However for replication processes, a replication
of process or a backup server is implemented to increase the reliability of a
distributed system.

In a distributed system, fault tolerance becomes considerably more difficult
for distributed applications, made up of several processes that communicate by
passing messages between themselves. Because of the partial failure property
of a distributed system, it would be a great challenge that the global state
of a distributed application is kept consistent when one process fails. An
application is in a globally consistent state if whenever the receipt operation
of a message has been recorded in the state of some process, then the send
operation of that message must have been recorded also [Dialani et al., 2002
]. Precisely, for the stable memory technology, the recovery point of each
process should be consistent. Three strategies can be used to save recovery
points in order to keep the consistency of a global state.

• The process saves recovery points in an asynchronous way, without the
dependence of the other processes. In the case of failure, we need a set
of recovery points which represent a coherent global state of a system
to restart the computing.

• The recording of the recovery points is preset in order to represent cor-
respondingly a coherent global state. There should be many messages
exchanged between processes.

• Dynamic coordination between the actions of recording of recovery
points.

In the case of replication processes, the problem is to keep the consistency
among replications of process or back servers. Formally three strategies ensure

180 Fundamentals of Grid Computing

that the state of each backup is identical: passive replication, active replication
and semi-active replication. Passive replication distinguishes two behaviors
from replications: the primary copy and backups. The primary copy is the
only one to carry out all the treatments. The backups supervise passively the
primary copy. In the case of failure of the primary copy, a backup becomes the
new primary copy. Active replication treats equally each backup of process.
All the backups receive the same sequence, and all the backups process the
request independently. After the treatment of the request, the backups send
the result to the client autonomously. Then the client can select a response
as the result. Semi-active replication is located between the active replication
and the passive replication. All the backups receive the same sequence, and
all the backups process the request independently. But after the treatment of
the request, the primary copy is the only one to be sent as the result.

7.3 Distributed scheduling model

The distributed scheduling model proposed has a tree structure. The root
of the tree is master meta-scheduler (MMS) which provides a portal to interact
with clients. The leaves of the tree are computing resources (CR) which en-
capsulate scientific applications and execute users jobs. The CRs are grouped
into sites. For each site, a site meta-scheduler (SMS) is deployed to make the
local resource mapping for user jobs. Local meta-scheduler (LMS) is the node
between the root and SMSs. It is needed for a large-scale scheduling system
and can be optional according to the system structure and scale. Each tree
in the structure represents a virtual organization (VO) in the grid. According
to the definition in the paper [Foster et al., 2001], VO is a set of individuals
and/or institutions defined by sharing rules in order to share their informa-
tion and direct access to computers, software, data and other resources. These
sharing rules define clearly and carefully just what is shared, who is allowed
to share, and the conditions under which sharing occurs. The model struc-
ture is shown in Figure 7.1 and the fault tolerance of each component in this
structure is discussed as follows.

7.3.1 MMS fault tolerance

MMS is the key component in the model. It is the only entrance for clients
to practice the grid and it provides a friendly graphic user interface (GUI)
portal to facilitate application request, job submission and job monitoring.
Therefore the execution of MMS must be ensured by fault tolerant technolo-
gies. According to the introduction of Section 7.2, the passive replication
should be an appropriate solution. Each MMS has a backup server which

Fault tolerance for distributed scheduling in grids 181

CR CRCR CR CR CR CR CR CR CR CR CR CR CR CR CR

VO1 VO2
Portal

MMS

Portal

MMS

LMS LMS

SMS SMS SMS SMS SMSSMS

FIGURE 7.1: The distributed scheduling structure.

supervises passively the MMS. In the case of failure of MMS, the backup be-
comes the new MMS. Thus recovery points must be saved regularly by MMS
and the execution state should be recovered by the new MMS when the MMS
fails.

The problem that must be resolved here is the communication between the
new MMS and LMSs/SMSs. When a MMS breaks down, how can LMSs/SMSs
find out the new MMS? One solution should be the configuration file. Each
child of MMS has a configuration file which can be used to set backup server
information, e.g., IP address. When its child can not receive response of MMS
anymore in a predefined delay, it can try to connect the backup server.

7.3.2 LMS/SMS fault tolerance

SMS manages the CRs in a site and makes scheduling decisions in a site
level. Located in the middle of MMS and SMS, LMS takes concurrently
the responsibility of transferring messages between MMS and SMSs. The
quantity of LMS and SMS is larger than MMS, and the deployment of LMS
and SMS should be more flexible and portable in order to make the VO
system more scalable. Thus the solution of replication is not suitable for the
case of LMS/SMS. A series of algorithms are proposed to detect automatically
the failure of LMSs or SMSs, to achieve the reconstruction of the connection
between child nodes of crashed LMS/SMS and MMS (LMS) in the case of
malfunction of a LMS/SMS and to realize the restart and recovery of the
crashed LMS/SMS.

The principle of these algorithms is message exchanges in the tree structure.
Through these messages, each component of our model can acquire knowledge

182 Fundamentals of Grid Computing

of system topologies and can detect the malfunction of the component from
which it receives messages. If a component doesn’t receive messages from its
parent node in a predefined delay, it considers that its parent node may be
malfunctioned. Then the component sends messages to its parent to verify
the failure. If it confirms that its parent is malfunctioned, the component
tries to reconstruct the connection with other components which situate at
the level of its parent or the higher level, e.g., its grandparent, because it has
the knowledge of whole system topologies.

7.3.3 CR fault tolerance

Normally, a CR is a cluster of computers which has a head node to manage
and schedule jobs onto each node. Thus the failure of CR can be concluded
into two types of failure: the head node failure and the slave nodes failure. The
head node failure is considered as a single point of failure (SPoF) which causes
the cluster to go down completely. Being inspired by the solution [Limaye
et al., 2005b], we propose a solution to resolve the problem of head node
failure. A service (monitoring service) which is similar with the HA-OSCAR
monitoring service [Limaye et al., 2005b] is deployed in site scheduler (SMS).
This service attempts to restart the critical services in the head node if these
services have failed. In the worst case where the monitoring service can not
restart the failed service after several attempts, this CR is unavailable and all
the jobs running in this CR should be rescheduled by site scheduler. The site
scheduler first tries the other CRs in the site to restart these jobs. For the
jobs which can not be restarted in the site, they will be sent to MMS by the
site scheduler. MMS maintains a rescheduling job queue, and regularly maps
jobs in this queue to available CRs.

The problem of the slave node failure strongly depends on the local resource
manager system (e.g., Condor [Thain et al., 2005], PBS [Bayucan et al., 1999
]) of each site. An important scheme to achieve fault tolerance, for running
jobs in cluster systems, is checkpoint/restart technique. Checkpointing is a
procedure of storing process state to a file, which is later used to reconstruct
the process. Several researchers [Limaye et al., 2005a], [Limaye et al., 2005c
], [Gracjan et al., 2006] aim to add fault tolerant mechanisms in a cluster
and restart a job of failed nodes from the last checkpoint in another slave
node using its checkpoint file. Therefore with such mechanisms, jobs will be
automatically completed in another node even if its original execution node
fails.

Fault tolerance for distributed scheduling in grids 183

7.4 Fault detection and repairing in the tree structure

7.4.1 Notations

In order to clearly explain the mechanism of fault tolerance, several mes-
sages which are exchanged between components are defined. Local status
publication (LSP) is made by a node in the tree (LMS, SMS or CR) and
contains topology information of the sub-tree of this node. This message is
sent by a node to its parent node when this node wants to participate in
the VO or when its local topology is changed. Finally, the LSP message is
collected by the MMS in a VO with the aggregation of the message between
LMSs/MSMs. Having the whole topology knowledge of VO, the MMS then
makes the message complete topology publication (CTP) which contains the
topology information of the VO and sends regularly CTP to its child nodes
in the manner of a heartbeat. Another very important message is “is-alive”
which is used by a component to verify the malfunction of its parent node.
The transfer direction and path of messages are shown in the Figure 7.2.

LSP8

LSP7

CTP

LSP6

SMS1

LSP5

CR1 CR2 CR3 CR4

MMS

LMS1

SMS3

 : Transmission of LSP

 : Transmission of CTP

 : Transmission of is−alive

SMS2

LSP1 LSP2
LSP3 LSP4

FIGURE 7.2: The message transfer model.

7.4.2 Algorithms description

7.4.2.1 Message treatment algorithms

The fault tolerance in the distributed scheduling model is achieved by ex-
changing messages between components. Therefore, the treatment of mes-

184 Fundamentals of Grid Computing

sages in each node is the first problem that must be resolved. For the MMS,
there are four types of messages which need to be treated: a node wants to be
its child node, one of its child nodes updates the local topology and sends it a
message LSP, the creation and delivery of message CTP and the response to
message “is-alive.” As shown in Algorithm 7.4.1, if MMS receives a message
LSP, it first decides where the message comes from. If this message comes
from its child, it means that its child updates the local topology. MMS then
updates its CTP and sends the new CTP to all its child nodes. Otherwise, it is
another node which wants to take part in the VO. In this case, MMS responds
“OK” to the sender and adds the sender in the set of its child nodes. If a com-
ponent wants to verify its status with message “is-alive,” MMS must respond
“OK” to confirm its functionality. Finally, MMS must deliver the message
CTP regularly to all its child nodes. The advantages to deliver message CTP
frequently can be explained as follows:

• Notification of whole system topology. Thus all the components in the
system have the knowledge of system topology and the knowledge can
be used to reconstruct the connection when a failure occurs.

• Consistency of CTP in each component. CTP is sent by local network
or Internet which have possibilities to lose transferred messages. In the
same time, the topology of sub-tree may also be changed. The frequent
delivery of message CTP can assure the consistency of CTP even if
some of messages CTP transferred over the network are lost or the local
topology is changed.

• Fault tolerance. The interval of delivering message CTP is predefined.
Thus if a component can not receive the message CTP from its parent
node, it may consider that its parent node is malfunctioned.

For the case of LMS/SMS, Algorithm 7.4.2, the treatment of messages LSP
and message “is-alive” is similar as in the case of MMS. LMS/SMS distin-
guishes the sender of message LSP: from its child or not. Then LMS/SMS
must send the new LSP to its parent every time it updates its local LSP. CTP
is received regularly from its parent node and it then updates its local version
of CTP. Then the node delivers the received CTP to all its child nodes.

7.4.2.2 Algorithm for the failure detection and the connection re-
construction

The failure detection, Algorithm 7.4.3, can be achieved by the node’s chil-
dren. A delay is predefined and normally the node can receive the message
CTP from its parent in the predefined delay. If a node does not receive a
message CTP from its parent after this delay, it may think that its parent
has malfunctioned. Thus a message “is-alive” is sent to its parent to verify
the functionality of its parent node. If the node can not receive any responses
from its parent, it makes the decision that its parent has failed. Therefore, it

Fault tolerance for distributed scheduling in grids 185

Algorithm 7.4.1 Messages treatment in the MMS
var Sp : set of children
MMS : receive a message
if a message < LSP, p > was received from p then {*treatment of message
LSP*}

if p /∈ Sp then {*LSP does not come from its child, another site which
requires to take part*}

5: send a message <OK, MMS> to p
Sp ⇐ Sp ∪ {p}

end if
modify CTP
send a message < CTP, g > to ∀p ∈ Sp

10: end if
if a message < is-alive, p > was received from p then {*treatment of
message is-alive*}

send a message <OK, MMS> to p
end if

MA : send regularly CTP to ∀p ∈ Sp

requests another node to be its parent according to the knowledge of whole
system topology and the predefined configuration, e.g., its grandparent. If the
requested node responds “OK,” the component replaces its parent with the
requested node and the connection is reconstructed. Finally, the component
receives regularly messages CTP from its new parent.

7.4.2.3 Recovery algorithm for the malfunctioned component

The malfunctioned node can be restarted soon. Thus the algorithm 7.4.4
is needed to recover the node from the failure. For the recovered node, two
problems must be taken into account: how to find out and connect its former
children and how to connect its former parent node. In order to resolve
these problems, two messages are defined: recover sons publication (RSP)
and request to leave (RL). Having saved recovery points regularly, the node
has the knowledge of its former children and parent when it is recovered. Thus
RSP is used by the recovered node to notify its former children that it has
been recovered. Therefore the children which received the message RSP send
the message RL to their current parent to request the departure. If their
current parent responds “OK,” they may send their local LSP to their former
parent. After having recovered its former children, the recovered node then
sends its new LSP to its former parent. If its former parent agrees, the new
connection is reconstructed and the recovery is finished.

186 Fundamentals of Grid Computing

Algorithm 7.4.2 Messages treatment in the LMS/SMS
var Sp : set of children
var g : the process of node
node receives a message:
{*begin the treatment of messages*}
if a message < CTP, parent > was received then {*treatment of message
CTP*}

5: renew local CTP
send a message < CTP, g > to ∀p ∈ Sp

end if
if a message < LSP, p > was received then {*treatment of message
LSP*}

if p /∈ Sp then {*LSP does not come from its child, another site which
requires to take part*}

10: send a message < OK, g > to p
Sp ⇐ Sp ∪ {p}

end if
modify local LSP
send a message < LSP, g > to its parent

15: end if
if a message < is-alive, p > was received then {*treatment of message
is-alive*}

send a message < OK, g > to p
end if

Algorithm 7.4.3 Algorithm for detecting the failure and reconstructing the
connection

var g : the process of node
if during Δt1 second, it does not receive message CTP then {*treatment
of problem of failure*}

send < is-alive, g > to its parent several times
if during Δt2 second, it does not receive message OK from its parent
then {*the parent is broken down, tries to connect anther node p*}

send < LSP, g > to p
if a message < OK, p > was received from p then

parent = p
end if

end if
end if

Fault tolerance for distributed scheduling in grids 187

Algorithm 7.4.4 Algorithm of recovery
process p is restarted :
product a set of children Sp according to checkpoint
send message < RSP, p > to ∀p ∈ Sp
waits Δt1

5: create LSP according to the children responses
repeat

send a message < LSP, p > to its former parent
waits Δt2

until a message < OK, former parent > was received
10: parent = former parent

for all components g who receive a message < RSP, p > :
send a message < RL, g > to its parent
waits Δt3
if a message < OK, parent > was received from its parent then

15: send a message < LSP, g > to p
parent = p

end if

for all components f who receive a message < RL, g > :
send a message < OK, f > to g

20: remove g from the set of children

188 Fundamentals of Grid Computing

7.4.3 Messages treatment analysis

The procedure of messages treatment in a node LMS or SMS, Algorithm
7.4.2, can be modeled by finite automata as illustrated in Figure 7.3. An
automaton is defined by a quadruplet A =< S, S0, E, R > where: S is the
set of states, S0 is the initiate state, E is the set of events and R is the set
of transitions. Therefore, for the automaton illustrated in the Figure 7.3, we
can define: S = {S1, S2, · · · , S12}, S0 = S1, E = {E1, E2, · · · , E12} and
R � S × E × S.

In the automaton, all the states can be reached and there is not a state
which has not a successor. The messages are transferred in the asynchronous
manner; there is not a deadlock in the treatment and finally each treatment
returns to the node’s original state.

S3

S1

S2

E1

E2

E1: receive CTP; E2: send CTP; E3: sending completed; E4: receive LSP from sons;

S5: treatment LSP from the others; S6: update LSP; S7: sending LSP; S8: find failure

E3

S4

S6

S7

S10

S9

S5

S1: Initiate state; S2: treatment of CTP ; S3: sending CTP; S4: treatment LSP comes from sons;

S8

E3

S9: waiting father’s response; S10: father’s failure treatment.

E4
E5

E6

E6

E7

E8

E5: receive LSP from the others; E6: update local topology; E7: send LSP; E8: father’s failure detecte

E9

E10
E11

E12

E9: send "is−alive"; E10: response "OK"; E11: no response; E12: finish the treatment.

FIGURE 7.3: The automaton description of messages treatment.

Fault tolerance for distributed scheduling in grids 189

7.5 Distributed scheduling algorithm

In Section 7.4, we have proposed a mechanism and a series of algorithms to
achieve automatically the failed component detection and repairing. But the
fault is only detected and repaired in a predefined delay; the scheduling algo-
rithm must be robust enough to ensure the job submission to be effectuated
correctly.

7.5.1 Distributed dynamic scheduling algorithm with fault
tolerance (DDFT)

With the resource service deployed in CR, applications can be deployed and
site scheduler (SMS) can submit jobs via its resource factory and submission
interface.

Unlike the centralized scheme, the scheduling works are distributed into
each SMS in this proposed model. At the beginning, the job request is sub-
mitted to the MMS by a client. Then, MMS delivers this request to all the
site schedulers (SMS) through the tree structure. In each site, a resource is
assigned to the job according to the local scheduling algorithm and strategy.
Finally, the information of selected resource in each site is transferred to the
MMS which makes a scheduling decision among the received information of
resources according to its local scheduling strategy.

The DDFT scheduling algorithm which is realized in the model is described
in Algorithm 7.5.1. When MMS receives a job request from a user, it sends
this request to all its children. This request is transferred in the tree structure
and finally it reaches each SMS. According to its local scheduling algorithm,
a SMS makes a scheduling decision for the job, adds the job into its local job
queue and returns the information of selected resource to its parent. When
the parent (LMS or MMS) has collected all the responses of its children or
it has waited a Δt duration, it selects the best resource for the job using the
received responses. This treatment is repeated until MMS makes a scheduling
decision for the job.

The procedure of submission is similar. The MMS sends a message “SUB-
MIT” associated with the information of selected resource to all its children.
Then this message is transferred in the tree structure until it reaches each
SMS. If the site has the selected resource, the job then is submitted to the
resource by the SMS. Otherwise, the SMSs which do not have the selected
resource delete the job from its local job queue.

When a job is completed, the SMS of the site where the job is executed
sends a message “RESULT” to MMS. Then MMS sends the result to user
and delivers a message “FINISHED” to all its children. This message will be
transferred in the tree and the SMS which has the completed job removes the
job from its local job queue when it receives the message “FINISHED.”

190 Fundamentals of Grid Computing

Algorithm 7.5.1 DDFT scheduling algorithm
MMS receives a user job request (j)
MMS sends SCHEDULINGj to all the sites
SMS receives SCHEDULINGj and inserts j into the local job queue
SMS makes local scheduling decision (Si) and sends to its parent

5: MMS receives Si and maps j to the best resource (rj)
MMS sends submission request (SUBMITj) for j to its children
SMS receives SUBMITj

if rj ∈ the site (i) then
submit j to rj

10: send message SUBMITTEDj to MMS
else

remove j from local job queue
end if
j is finished and SMS sends message RESULTj to MMS

15: MMS receives RESULTj and sends it to user
MMS sends message FINISHEDj to all the sites
SMS receives FINISHEDj

if j ∈ the local job queue then
remove j from job queue

20: end if

7.5.2 Algorithm fault tolerance issues

Two monitors are deployed to enhance the fault tolerance in our scheduling
algorithm. In the MMS side, all the jobs which have been requested are
maintained in a job queue and their status are monitored regularly. When
MMS detects that a job has been scheduled or submitted a long time ago and
MMS has not received the confirmed message for the job, MMS will reschedule
or resubmit the job. Similarly, for a SMS, when it detects that a job in its
local job queue has been completed a long time ago and it has not received
the confirmed message from the MMS, it then re-sends the result to MMS.
Therefore these two monitors can ensure that a job is successfully submitted
and the result of job is finally sent to the client.

A use case is used to explain clearly the two monitors. In the Figure 7.2,
we suppose that the SMS2 fails when the MMS submits the job j to the
resource CR2. The message “SUBMIT” is sent to SMS1 and LMS1, then
LMS1 sends this message to SMS2 and SMS3. SMS2 will not receive and
submit j to CR2, because it has failed. Thus, j will not be executed and the
message “SUBMITTED” will not be sent by SMS2. But with the monitor,
MMS should find that j has been submitted and it has not been confirmed
to be submitted by the resource in a predefined delay. Therefore the monitor
re-sends the message “SUBMIT” to all the children of MMS for j. During
this delay of re-sending a message, CR2 and CR3 should find the fault of its

Fault tolerance for distributed scheduling in grids 191

parent, because of the fault detecting mechanism, Section 7.4. We suppose
that the new parent of CR2 and CR3 now is SMS3. Thus when MMS re-sends
the message “SUBMIT” for j, SMS3 will receive and find that it has the job’s
requested resource. Then SMS3 submits j to the resource CR2.

We can suppose another possibility in this use case. CR2 completes a job
j and sends the result to MMS when SMS2 fails. MMS can not receive the
result because of the failure of SMS2. Then CR2 and CR3 detect the fault
of their parent and find their new parent SMS3. The jobs which have been
submitted to CR2 and CR3 are inserted into the local job queue of SMS3.
Thus the monitor of SMS3 finds j has been completed a long time ago when
it verifies job status. Therefore the monitor re-sends the result of j to its
parent and the result reaches lastly MMS through LMS1. Then MMS sends
the result to client and delivers a message “FINISHED” to all its children.
When SMS3 receives the message “FINISHED” of j, it removes j from its
local job queue.

7.6 SimGrid and simulation design

Our model describes a large-scale distributed scheduling system which is
difficult to be tested and analyzed on real platforms. Consequently, one must
resort to simulations, which enable reproducible results and also make it pos-
sible to explore wide ranges of platform and application scenarios.

The SimGrid project was initiated in 1999 to allow the study of scheduling
algorithms for heterogeneous platforms. The SimGrid v3 which was released in
2005 adds many new features with respect to the previous versions. The sim-
ulation engine was completely rewritten, leading to better modularity, speed
and scalability. Four user interfaces were supported to allow the use of the
software in different contexts: SimDag, MSG, GRAS and SMPI [Casanova
et al., 2008]. MSG is the user interface for researchers and is initially de-
signed for studying scheduling algorithms. Thus the MSG interface is suitable
for the simulation of our model.

Our simulation application is developed on SimGrid MSG interface and has
a modular structure. The creation of platform and deployment of applications
are separated from the programming of each module. In SimGrid, the descrip-
tion of platform and applications deployment is maintained separately in two
files: platform.xml and deployment.xml. At the beginning of simulation, a
platform constructor and an application deployer will use these two files to
initiate the simulation environment. Thus the development of simulation sys-
tem is decoupled from the real simulation environment, making the simulation
system more independent and more suitable for multi-platform simulation.

Each module simulates the functionality of a component in our model. By

192 Fundamentals of Grid Computing

exchanging messages, the modules can communicate with each other and can
realize the job scheduling and fault detection. The structure of a simulation
application is shown in Figure 7.4. According to the system configure files,
SimGrid initiates the instances of components, e.g., LMS and SMS, and starts
the simulation. The instances communicate with each other and create the
tree of schedulers. The clients send requests of applications to MMS, and
the requests will be transferred in the tree structure according to our DDFT
algorithm. When a application is completed, the result is finally sent to the
associated client.

MMS.c

LMS.c

SMS.c

CR.c

Client.c

platform.xml

deployment.xml

Instance Queue

Instance Queue

Instance Queue

Instance Queue

MMS Instance

Configuration Files

SimGrid Environment

FIGURE 7.4: The simulation application structure.

7.7 Evaluation

In order to evaluate the performance of the proposed scheduling algorithm
and fault tolerant mechanism, we have developed a simulation application
based on SimGrid. With this simulation application, experiments are realized
in several aspects.

Fault tolerance for distributed scheduling in grids 193

7.7.1 Simulation setup

The simulation setup is shown in Figure 7.5. In the tree structure, we have
one MMS, two LMSs and four SMSs and each scheduler is deployed in a server
with 310 Mflop/s of CPU power. The bandwidth of connection between each
scheduler is 10 Mbps. Moreover, each CR is a host which delivers 580 Mflops
of CPU power and it can be considered as the head node of a cluster. The
quantity of CPU in each cluster is marked below CR and the bandwidth of
connection between CR and SMS is 100 Mbps. The client machine delivers 220
Mflops CPU power and connects MMS via Internet with 780 Kbs bandwidth.

Each application is assigned a number, e.g., 0, 1, 2, and they are deployed
in CRs randomly. For example, in the site of SMS1, the first CR from the
left is a cluster that has 6 CPUs and it supports the applications 0, 2 and 4.
In the simulation, both MMS and SMS implement the minimum completion
time (MCT) heuristic [Siegel and Ali, 2000] to make scheduling decisions.

1, 2, 40, 1, 7
8

0, 4, 5 2, 4 0, 2, 3 3, 4, 6 0, 1, 2
3, 4, 5
6, 7, 8

2, 4 1, 2, 3
4, 5, 6
7

2, 4, 6 5, 6, 7
8

MMS

LMS1 LMS2

SMS2 SMS3 SMS4SMS1

0, 2, 4

CPU:6 CPU:4 CPU:8 CPU:6 CPU:4 CPU:4 CPU:6 CPU:2 CPU:4 CPU:6 CPU:8CPU:10

CR

Client

FIGURE 7.5: The simulation environment.

7.7.2 Comparison with centralized scheduling

The distributed scheduling structure can achieve a large-scale grid system.
But comparing with centralized scheduling, this scheduling schema uses more

194 Fundamentals of Grid Computing

message exchanges for a job submission and thus the job mapping in this
schema should be less effective. In this experiment, a centralized scheduling
schema is also simulated. A scheduler manages all the twelve CRs and submits
directly jobs to these CRs.

Two clients are deployed and each submits 500 jobs to MMS with 2 seconds
interval. Nine types of applications (0–9) are deployed and the client selects
randomly the application type to submit. For each job, the client calculates its
completion time which equals the result of subtracting its submitted time from
its finished time. The submitted time is the time when the job is submitted
by a client and the job’s finished time is the time when the job is completed
by a computing resource (CR). Then, for each type of application, the client
calculates its average completion time. For the centralized scheduling schema,
we launch the same experiment.

The result is shown in the Table 7.1 and Figure 7.6. From these results, we
can conclude that the centralized scheduling and distributed scheduling give
a similar average completion time, approximately 10% difference. But the
difference between the average completion time and the estimated execution
time varies vastly according to the application type. For example, the average
completion time of the application 4 for the two scheduling schema (91.254651
and 94.80425) approaches closely the application’s execution time (86.2069).
However, for the application 8, the average completion time doubles its execu-
tion time. It is because the average completion time depends strongly on the
application’s deployment. There are nine CRs which support the application
4 and the application 8 is only deployed in three CRs. Thus, jobs which want
to execute application 8 must wait a long time in a job queue to be executed.

Application EET (s)∗ ACT (s)∗ ACT (s)∗

type Centralized scheduling Distributed scheduling
0 8.620689655 8.955351 9.4926875
1 1.724137931 2.1749745 2.123462
2 17.24137931 23.3168755 22.074354
3 68.965517241 140.380316 169.3790235
4 86.206896552 91.254651 94.80425
5 172.413793103 515.6953335 556.0106805
6 120.689655172 208.4824085 225.087204
7 10.344827586 10.749057 10.751203
8 862.068965517 1743.946354 1951.589965

EET : Estimated Execution Time, ACT : Average Completion Time

Table 7.1: The application estimated execution time and average completion
time with two clients.

Fault tolerance for distributed scheduling in grids 195

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

-1 0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 c
om

pl
et

io
n

tim
e

(S
ec

on
d)

Jobs Type

Estimated job execution time
Job submission with centralized scheduling
Job submission with distributed scheduling

FIGURE 7.6: The average completion time for centralized and distributed
scheduling with two clients.

For the centralized scheduling schema, another problem is the communica-
tion bottlenecks. When lots of clients send requests to the central scheduler
in the same time, the scheduler will maintain the communication with each
client and make a scheduling decision for each task in a very short duration
that causes a heavy load in the host of scheduler and thus reduces the perfor-
mance of the scheduling system. Our model has also the only entry (MMS)
for clients; therefore it may have the communication bottleneck problem. But
considering the tree structure of schedulers which can participate in the global
scheduling work and make partial scheduling decisions, our model should be
more effective in the case of multi-client’s requests. Here a multi-client’s re-
quest is defined as: each client in a multiple client’s set sends a request to a
scheduler in the same time.

In order to evaluate the performance of our model in the multi-client’s re-
quests case, another simulation is effectuated. In this simulation, 30 clients
are deployed and each submits 20 jobs to MMS with 2 seconds interval. The
client can randomly select an application type from the nine types of applica-
tion (0–9) for the submission. Each client calculates the average completion
time for every type of job when all its tasks have been completed. Then
we calculate the average completion time for every type of job when all the
clients have completed. For the centralized scheduling schema, we run the
same experiment. The simulation results are shown in Table 7.2 and Figure
7.7.

According to the simulation results, we can conclude that the average com-

196 Fundamentals of Grid Computing

Application EET (s)∗ ACT (s)∗ ACT (s)∗

type Centralized scheduling Distributed scheduling
0 8.620689655 103.026531464 113.417606037
1 1.724137931 154.080089103 136.260599517
2 17.24137931 215.398029143 279.702666792
3 68.965517241 455.880322519 542.100991966
4 86.206896552 291.06166364 327.650004069
5 172.413793103 886.336876692 844.413221207
6 120.689655172 610.171255138 421.416273593
7 10.344827586 448.915829429 84.547881214
8 862.068965517 2154.134783423 1606.397786708

EET : Estimated Execution Time, ACT : Average Completion Time

Table 7.2: The application estimated execution time and average completion
time with thirty clients.

 0

 500

 1000

 1500

 2000

 2500

-1 0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 c
om

pl
et

io
n

tim
e

(S
ec

on
d)

Jobs Type

Job submission with centralized scheduling
Job submission with distributed scheduling

FIGURE 7.7: The average completion time for centralized and distributed
scheduling with thirty clients.

Fault tolerance for distributed scheduling in grids 197

pletion time for each type of job in this simulation is much longer than the
simulation of two clients, because of the simultaneous application requests. As
we have supposed, the distributed scheduling gives a more effective scheduling
performance and the average completion time of most types of job is shorter
than the time of central scheduling.

7.7.3 Fault tolerance experiments

In the model considered, the scheduling algorithm is fault tolerant and the
failure can be detected and repaired automatically. Thus the performance of
this algorithm and detection mechanism must be tested.

A client submits 100 jobs which execute application 5 with 2 seconds in-
terval. Two experiments are effectuated: SMS4 failure after 70 seconds and
LMS2 failure after 70 seconds. The last failure occurs after 100 seconds and
then the failed component is recovered. In order to make a comparison, the
client submits 100 jobs again without scheduler failure. The result is shown
in Figure 7.8 and in Figure 7.9.

From these two figures, we can find that all the submitted jobs are com-
pleted though there is a failure of scheduler. In the case of SMS4 failure, all
its CRs will detect the failure and connect to SMS3 to reconstruct the connec-
tion after near 30 seconds. During this treatment, more jobs are submitted
to SMS2 although there are not more free CPU to execute the jobs and these
jobs make a peak in the curve. In the case of LMS2 failure, SMS3 and SMS4
will detect their father’s failure and connect to MMS after near 30 seconds.
But in this period, both SMS3 and SMS4 are not available temporarily. Thus
there are more jobs submitted to SMS2 than the case of SMS4 failure and in
the curve of Figure 7.9, there are more jobs in the peak. For the recovery, the
CRs or SMSs reconnect to their old father by manner of exchange messages
and there is no more influence to jobs submitted in each CR.

7.7.4 Workload analysis

Load balancing is an important problem which is considered by most
scheduling systems. Therefore, the performance of load balancing for our
model is evaluated in this experiment. A client submits 500 jobs of applica-
tion 4 to MMS with 2 seconds interval. The result in Table 7.3 illustrates that
all the CRs which are deployed by application 4 have submitted jobs and the
number of effectuated jobs in each CPU is similar. The completed jobs per
CPU in the site of SMS2 are the biggest because they have the least number
of CRs than the other three sites. Thus it takes less time to communicate
with its sons and its responses are quicker.

198 Fundamentals of Grid Computing

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 10 20 30 40 50 60 70 80 90 100

C
om

pl
et

io
n

tim
e(

S
ec

on
d)

Job Number

100 jobs with fault of SMS4
100 jobs without scheduler fault

FIGURE 7.8: SMS failure experiment.

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 10 20 30 40 50 60 70 80 90 100

C
om

pl
et

io
n

tim
e(

S
ec

on
d)

Job Number

100 jobs with fault of LMS2
100 jobs without scheduler fault

FIGURE 7.9: LMS failure experiment.

Number of CPU number for N/C
completed jobs (N) application 4 (C)

SMS1 143 14 10.21
SMS2 107 10 10.7
SMS3 154 18 8.56
SMS4 96 10 9.6
Total 500 52 9.62

Table 7.3: Statistics of submitted jobs of application 4 in each SMS.

Fault tolerance for distributed scheduling in grids 199

7.8 Related work

In a general distributed system, scheduling algorithms can be classified into
two types: static and dynamic. For static algorithms, the complete set of
tasks to be scheduled is known a priori, the scheduling is done prior to the
execution of any of the tasks and more time is available to make the scheduling
decision. Nevertheless, dynamic methods perform the scheduling as tasks
arrive. Dynamic scheduling is more appropriate than static scheduling in a
grid environment because of the dynamic availability and load variability of
computing resources [Siegel and Ali, 2000].

The dynamic scheduling algorithms can be grouped into two categories: on-
line mode and batch-mode heuristics. In the batch mode, tasks are collected
into a set that is prepared for scheduling at a predefined time interval. In
contrast to the batch mode, the on-line mode maps a task onto a machine
as soon as it arrives at the scheduler. The most adopted heuristics of on-
line modes are minimum completion time (MCT), minimum execution time
(MET) and KPB (k-percent best). According to the paper [Siegel and Ali,
2000], the KPB provides the minimum makespan, closely followed by the
MCT. Moreover, sufferage heuristics are heuristics which give the smallest
makespan in the batch mode heuristic.

In a cluster, single point of failure (SPoF) causes the cluster to go down
completely. The paper [Limaye et al., 2005b] has proposed the HA-OSCAR
solution for this type of failure. In this solution, a standby server which
is a clone of a head node is deployed. A HA-OSCAR monitoring service
is started in both the head node and its standby. This monitoring service
monitors the status of critical services in the head node (e.g., resource service,
Globus container, gridFTP in our model) and tries to restore these services
when they are not working. If the monitoring service can not restart the
failed service successfully after several attempts, the standby acquires the
head node’s public and private IP and thus becomes the head node. A smart
failover/fail-back mechanism is implemented to periodically save job states in
the job queue and synchronize those states to the standby server. When the
standby server is called to action, it will then start jobs from its last saved
job state. The HA-OSCAR solution solves well the cluster’s head node failure
problem, but it is a more expensive solution. For each head node of cluster, a
standby server must be deployed to provide the uninterrupted serviceability.

200 Fundamentals of Grid Computing

7.9 Concluding remarks

This chapter presents a scalable and fault tolerant distributed scheduling
model for application integration in a grid environment. In the proposed
model, the fault tolerance issues are considered in two aspects: the scheduling
algorithm level and the failure detection mechanism. The DDFT algorithm is
a robust scheduling algorithm to ensure jobs submission and mapping even if
there is a failure of scheduler or connection. Moreover a series of algorithms
are proposed to detect the failed scheduler or connection and reconstruct
automatically the scheduling structure. Thus the two aspects enhance the
fault tolerance in the model and make a robust distributed scheduling system.
The simulation evaluates that the scheduling performance of DDFT algorithm
is near the results of centralized scheduling system and the detection and
repairing of failure can be effectuated automatically and effectively.

The model does not take into account the bandwidth influence for the
scheduling and fault tolerance. Since computing resources in the grid are nor-
mally connected by wide area network links (WAN), the bandwidth limitation
is an issue that must be considered when running data-intensive applications
on such environments. DDFT must be modified to take into account the
connection parameter for mapping a job into a resource.

Fault tolerance for distributed scheduling in grids 201

7.10 References

[Bayucan et al., 1999] Bayucan, A., Henderson, R., Lesiak, C., Mann, B.,
Proett, T., and Tweten, D. (1999). Portable batch system: external refer-
ence specification. Technical report, MRJ Technology Solutions.

[Berman et al., 2001] Berman, F., Chien, A., Cooper, K., Dongarra, J., Fos-
ter, I., Gannon, D., Johnsson, L., Kennedy, K., Kesselman, C., Mellor-
Crumme, J., Reed, D., Torczon, L., and Wolski, R. (2001). The GrADS
project: software support for high-level grid application development. Inter-
national Journal of High Performance Computing Applications, 15(4):327–
344.

[Bramley et al., 2000] Bramley, R., Chiu, K., Diwan, S., Gannon, D., Govin-
daraju, M., Mukhi, N., Temko, B., and Yechuri, M. (2000). A component
based services architecture for building distributed applications. In Pro-
ceedings of HPDC, page 51.

[Brown, 2005] Brown, M. C. (2005). Build grid applications based on SOA.
Technical report, MCslp.

[Buyya et al., 2002] Buyya, R., Abramson, D., and Giddy, J. (2002). A
computational economy for grid computing and its implementation in the
Nimrod-G resource broker. Future Generation Computer Systems, 18:1061–
1074.

[Caron and Desprez, 2006] Caron, E. and Desprez, F. (2006). DIET: a scal-
able toolbox to build network enabled servers on the grid. International
Journal of High Performance Computing Applications, 20(3):335–352.

[Casanova et al., 2008] Casanova, H., Legrand, A., and Quinson, M. (2008).
SimGrid: a generic framework for large-scale distributed experimentations.
In Proceedings of the 10th IEEE International Conference on Computer
Modelling and Simulation (UKSIM/EUROSIM’08). IEEE Computer Soci-
ety.

[Christensen et al., 2001] Christensen, E., Curbera, F., Meredith, G., and
Weerawarana, S. (2001). Available online at: http://www.w3.org/TR/wsdl

(accessed May 1, 2009).

[Condor, 2009a] Condor (2009a). Condor-G. Available online at: http://www.
cs.wisc.edu/condor/manual/v6.4/5_3Condor_G.html (accessed May 1, 2009).

[Condor, 2009b] Condor (2009b). User’s manual. Available online at: http://
www.cs.wisc.edu/condor/manual/v6.8/2_4Road_map_Running.html (accessed
May 1, 2009).

202 Fundamentals of Grid Computing

[Dialani et al., 2002] Dialani, V., Miles, S., Moreau, L., Roure, D. D., and
Luck, M. (2002). Transparent fault tolerance for web services based archi-
tectures. In Proceedings of the 8th International Euro-Par Conference on
Parallel Processing (Euro-Par’02), pages 889–898, London, UK. Springer-
Verlag.

[EGEE, 2005] EGEE (2005). Egee middleware architecture and planning (re-
lease 2). Technical report, DJRA1.4, EGEE.

[EGEE, 2009] EGEE (2009). gLite-ligthweight middleware for grid comput-
ing. Available online at: http://glite.web.cern.ch/glite/ (accessed May
1, 2009).

[Fallside, 2001] Fallside, D. (2001). Available online at: http://www.w3.org/

TR/xmlschema-0 (accessed May 1, 2009).

[Foster, 2005] Foster, I. (2005). Globus toolkit version 4: software for service-
oriented systems. In Proceedings of the International Conference on Net-
work and Parallel Computing (IFIP), volume 3779 of Lecture Notes in Com-
puter Sciences, pages 2–13. Springer-Verlag.

[Foster et al., 2005] Foster, I., Czajkowski, K., Ferguson, D., Frey, J., Gra-
ham, S., Maguire, T., Snelling, D., and Tuecke, S. (2005). Modeling and
managing state in distributed systems: the role of OGSI and WSRF. In
Proceedings of the IEEE Conference, volume 3, pages 604–612. IEEE Com-
puter Society.

[Foster et al., 2002a] Foster, I., Kesselman, C., Nick, J., and Tuecke, S.
(2002a). Grid services for distributed system integration. IEEE Computer
Society, 35:37–46.

[Foster et al., 2002b] Foster, I., Kesselman, C., Nick, J., and Tuecke, S.
(2002b). The physiology of the grid: an open grid services architecture
for distributed systems integration. In Open Grid Service Infrastructure
WG, Global Grid Forum. Available online at: citeseer.ist.psu.edu/

foster02physiology.html (accessed May 1, 2009).

[Foster et al., 2002c] Foster, I., Kesselman, C., Nick, J. M., and Tuecke,
S. (2002c). Grid services for distributed system integration. Computer,
35(6):37–46.

[Foster et al., 2001] Foster, I., Kesselman, C., and Tuecke, S. (2001). The
anatomy of the grid: enabling scalable virtual organizations. International
Journal of High Performance Computing Applications, 15(3):200–222.

[Frey et al., 2002] Frey, J., Tannenbaum, T., Livny, M., Foster, I., and
Tuecke, S. (2002). Condor-G: a computation management agent for multi-
institutional grids. Cluster Computing, 5(3):237–246.

Fault tolerance for distributed scheduling in grids 203

[Gannon et al., 2003] Gannon, D., Ananthakrishnan, R., Krishnan, S.,
Govindaraju, M., Ramakrishnan, L., and Slominski, A. (2003). Grid web
services and application factories. Computing.

[Globus, 2009a] Globus (2009a). globusrun-WS: official job submission client
for WS-GRAM. Available online at: http://www.globus.org/toolkit/docs/

4.0/execution/wsgram/rn01re01.html (accessed May 1, 2009).

[Globus, 2009b] Globus (2009b). GT4.0. Available online at: http://www.

globus.org (accessed May 1, 2009).

[Globus, 2009c] Globus (2009c). GT4.0 WS-GRAM: job description schema
documentation. Available online at: http://www.globus.org/toolkit/docs/

4.0/execution/wsgram/schemas/gram_job_description.html (accessed May
1, 2009).

[Globus, 2009d] Globus (2009d). Submitting a job in Java using WS-GRAM.
Available online at: http://www.globus.org/toolkit/docs/4.0/execution/

wsgram/WS_GRAM_Java_Scenarios.html (accessed May 1, 2009).

[Gracjan et al., 2006] Gracjan, J., Radoslaw, J., Rafal, M., and Jozsef,
K. (2006). Grid checkpointing architecture: a revised proposal.
Technical Report TR-0036, Institute on Grid Information, Resource
and Workflow Monitoring Systems, CoreGRID - Network of Excel-
lence. Available online at: http://www.coregrid.net/mambo/images/

stories/TechnicalReports/tr-0036.pdf (accessed May 1, 2009).

[GridLab, 2004] GridLab (2004). Grid application toolkit. Available online
at: http://www.gridlab.org/WorkPackages/wp-1 (accessed May 1, 2009).

[Gridlab, 2005] Gridlab (2005). Products and technologies. Available online
at: http://www.gridlab.org/about.html (accessed May 1, 2009).

[Hamscher et al., 2000] Hamscher, V., Schwiegelshohn, U., Streit, A., and
Yahyapour, R. (2000). Evaluation of job-scheduling strategies for grid com-
puting. In Proceedings of the 1st IEEE/ACM International Workshop on
Grid Computing (GRID’2000), Lecture Notes in Computer Sciences, Berlin,
Heidelberg. Springer-Verlag.

[Huang et al., 2003] Huang, Y., Taylor, I., Walker, D., and Davies, R. (2003).
Wrapping legacy codes for grid-based applications. In Proceedings of the
International Parallel and Distributed Processing Symposium.

[Huedo et al., 2007] Huedo, E., Montero, R. S., and Llorente, I. M. (2007). A
modular meta-scheduling architecture for interfacing with pre-WS and WS-
grid resource management services. Future Generation Computer Systems,
23:252–261.

204 Fundamentals of Grid Computing

[Imamagic et al., 2006] Imamagic, E., Radic, B., and Dobrenic, D. (2006). An
approach to grid scheduling by using Condor-G matchmaking mechanism.
In Information Technology Interfaces, pages 625–632.

[Kacsuk et al., 2004] Kacsuk, P., Goyeneche, A., Delaitre, T., Kiss, T.,
Farkas, Z., and Boczko, T. (2004). High-level grid application environ-
ment to use legacy codes as OGSA grid services. In Proceedings of the
5th IEEE/ACM International Workshop on Grid Computing (GRID’04),
pages 428–435, Washington, DC, USA. IEEE Computer Society.

[Kandaswamy et al., 2005] Kandaswamy, G., Fang, L., Huang, Y., Shirasuna,
S., and Gannon, D. (2005). A generic framework for building services and
scientific workflows for the grid. In Proceedings of the 2005 ACM/IEEE
Conference on SuperComputing. IEEE Computer Society.

[Krishnan et al., 2001] Krishnan, S., Bramley, R., Govindaraju, M., Indurkar,
R., Slominski, A., Gannon, D., Alameda, J., and Alkaire, D. (2001). The
XCAT science portal. In Proceedings of SC2001, pages 49–49, New York,
NY, USA. ACM Press.

[Kuebler and Eibach, 2002] Kuebler, D. and Eibach, W. (2002). Adapting
legacy applications as web services. IBM DeveloperWorks. Available online
at: http://www-128.ibm.com/developerworks/library/ws-legacy/ (accessed
May 1, 2009).

[Letondal, 2004] Letondal, C. (2004). PISE: a tool to generate web interfaces
for molecular biology programs. Available online at: http://www.pasteur.

fr/recherche/unites/sis/Pise (accessed May 1, 2009).

[Limaye et al., 2005a] Limaye, K., Leangsuksun, B., Greenwood, Z., Scott,
S., Engelmann, C., Libby, R., and Chanchio, K. (2005a). Job-site level
fault tolerance for cluster and grid environments. In Proceedings of the
IEEE International Cluster Computing, pages 1–9, Burlington, MA. IEEE
Computer Society.

[Limaye et al., 2005b] Limaye, K., Leangsuksun, B., Munganuru, V. K.,
Greenwood, Z., Scott, S. L., Libby, R., and Chanchio, K. (2005b). Grid-
aware HA-OSCAR. In Proceedings of the 19th International Symposium on
High Performance Computing Systems and Applications (HPCS’05), pages
333–339, Washington, DC, USA. IEEE Computer Society.

[Limaye et al., 2005c] Limaye, K., Leangsuksun, C., and Tikotekar, A.
(2005c). Fault tolerance-enabled HPC scheduling with HA-OSCAR frame-
work. In Proceedings of High Availability and Performance Workshop
(HAPCW’2005), Santa Fe, NM, USA.

[Lodygensky et al., 2003] Lodygensky, O., Fedak, G., Cappello, F., Neri, V.,
Livny, M., and Thain, D. (2003). XtremWeb & Condor : sharing re-
sources between internet connected Condor pool. In Proceedings of the

Fault tolerance for distributed scheduling in grids 205

3rd IEEE/ACM International Symposium on the Cluster Computing and
the Grid (CCGrid 2003), pages 382–389. IEEE Computer Society.

[Mausolf, 2005] Mausolf, J. (2005). Grid in action: monitor and discover grid
services in an SOA/web services environment. Available online at: http://

www-128.ibm.com/developerworks/grid/library/gr-gt4mds/index.html (ac-
cessed May 1, 2009).

[Platform, 2003] Platform (2003). Open source metascheduling for virtual
organizations with the community scheduler framework (CSF). Technical
report, Platform Computing.

[Qi et al., 2006] Qi, L., Jin, H., Foster, I., and Gawor, J. (2006). HAND:
highly available dynamic deployment infrastructure for globus toolkit 4.

[Schopf et al., 2005] Schopf, J. M., D’Arcy, M., Miller, N., Pearlman, L., Fos-
ter, I., and Kesselman, C. (2005). Monitoring and discovery in a web
services framework: functionality and performance of the globus toolkit’s
mds4. Technical report, Preprint ANL/MCS-P1248-0405, Argonne Na-
tional Laboratory, Argonne, IL.

[Seidel et al., 2002] Seidel, E., Allen, G., Merzky, A., and Nabrzyski, J.
(2002). GridLab: a grid application toolkit and testbed. Future Gener-
ation Computer Systems, 18(8):1143–1153.

[Siegel and Ali, 2000] Siegel, H. J. and Ali, S. (2000). Techniques for mapping
tasks to machines in heterogeneous computing systems. Journal of Systems
Architecture, 46:627–639.

[Silva, 2006] Silva, V. (2006). Quick start to a GT4 remote execution
client. Available online at: http://www-128.ibm.com/developerworks/grid/

library/gr-wsgram/ (accessed May 1, 2009).

[Sotomayor, 2009] Sotomayor, B. (2009). The globus toolkit 4 programmer’s
tutorial.

[Sundaram, 2005a] Sundaram, B. (2005a). Introducing GT4 security. Avail-
able online at: http://www-128.ibm.com/developerworks/grid/library/

gr-gsi4intro/ (accessed May 1, 2009).

[Sundaram, 2005b] Sundaram, B. (2005b). WS-notification and the globus
toolkit 4 WS-Java core. Available online at: http://www-128.ibm.com/

developerworks/grid/library/gr-wsngt4/ (accessed May 1, 2009).

[Thain et al., 2005] Thain, D., Tannenbaum, T., and Livny, M. (2005). Dis-
tributed computing in practice: the Condor experience. Concurrency:
Practice and Experience, 17(2–4):323–356.

206 Fundamentals of Grid Computing

[Tonellotto et al., 2005] Tonellotto, N., Wieder, P., and Yahyapour, R.
(2005). A proposal for a generic grid scheduling architecture. In Pro-
ceedings of the Integrated Research in Grid Computing Workshop, pages
20–28, Pisa, Italy.

[W3C, 1999] W3C (1999). XML path language (XPath) version 1.0. Available
online at: http://www.w3.org/TR/xpath (accessed May 1, 2009).

[W3C, 2009] W3C (2009). Web services description language (WSDL) 1.1.
Available online at: http://www.w3.org/TR/wsdl (accessed May 1, 2009).

[Yu and Magoulès, 2007] Yu, L. and Magoulès, F. (2007). A framework for
dynamic deployment of scientific applications based on wsrf. In Advances
in Grid and Pervasive Computing, Paris, France. Springer-Verlag.

Chapter 8

Broadcasting for grids

Christophe Cérin
LIPN, Université de Paris Nord, 99 avenue J.B. Clément, 93430 Villetaneuse,
France

Luiz-Angelo Steffenel
CReSTIC, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims
Cedex 2, France

Hazem Fkaier
Unité de recherche UTIC / ESSTT, 5 avenue Taha Hussein, B.P. 56, Bab
Mnara, Tunis, Tunisia & LIPN, Université de Paris-Nord, 99 avenue J.B
Clément, 93430 Villetaneuse, France

8.1 Introduction . 207
8.2 Broadcastings . 208

8.3 Heuristics for broadcasting . 211

8.4 Related work and related methods . 220
8.5 Concluding remarks . 230

Acknowledgment . 231

8.6 References . 232

8.1 Introduction

It is well known that communication affects significantly the performance
of applications deployed on large scale architectures. Large scale platforms
are characterized by a collection of a great number of computing resources
that are geographically distributed over some sites and connected with a wide
heterogeneous dedicated network. Since data sizes in Grid applications may
be large as well as the number of nodes, the collective communication inherent
to the applications is a critical bottleneck.

In this chapter we consider institutional grids. We mean clusters of clus-
ters in geographically different places but running in the same VLAN. The
underlying use case is familiar for the scientist who develops parallel codes,
say with the MPI language. After the development step, he reserves nodes in

207

208 Fundamentals of Grid Computing

the grids, as many as he wants and maybe with the Kadeploy1 tool, and he
does not take care about the node’s location. His MPI application contains
collective communication primitives and he also does not want to tailor his
application to get performance according to the node’s choice. As pointed out
in an article about profiling parallel programs [Rabenseifner, 1999], Raben-
seifner justifies his work on the AllReduce primitive because 8.54% of the total
execution time in applications is due to collective operations and among this
8.54% of execution time 37% is for the MPI_Allreduce. Rabenseifner does not
provide information about the MPI_Bcast (one to all) but draws charts about
the send, isend, ireceive, reduce primitives.

In this context we introduce broadcasting algorithms for the grids corre-
sponding to the MPI_Bcast operation. In the long term, we are focusing on
efficient parallel programming libraries for the grid able to run efficiently on
heterogeneous platforms. For this problem, we need to investigate the issues
of communication cost between clusters and inside a cluster and of course
how to schedule communication. Since one of our goals is to implement algo-
rithms and to validate them with experiments, we introduce in this chapter
some experimental results.

We do not consider here broadcasting securely. We mean that we do not
consider any fault-tolerant broadcasting schema nor inter-communicator col-
lective operations, that is to say operations that send data from one member
of one group to all members of the other group. Such refinement of the prob-
lem allows optimizations in the message order but it is quite difficult to solve
without a strong background. Here we consider only one group. Please refer
to [Jelena et al., 2005] for an implicit work on performance analysis of MPI
collective operations.

The organization of the chapter is the following. In Section 8.2, we recall
some definition and theoretical results. In Section 8.3 we introduce techniques
based on heuristics. In Section 8.4 we introduce related methods such as
dynamic programming approach and a multi-criteria approach. Section 8.5
concludes the chapter.

8.2 Broadcastings

From a theoretical point of view, the problem of broadcasting may find its
root in the construction of partial minimum spanning trees which is a problem
in graph theory. A graph depicts the underlying infrastructure: nodes in
the graph represent the machines and edges represent the cost of sending a
message, say between two machines.

1See https://gforge.inria.fr/projects/kadeploy/.

Broadcasting for grids 209

A graph often contains redundancy in that there can be multiple paths
between two vertices. This redundancy may be desirable, for example to offer
alternative routes in the case of breakdown or overloading of an edge (road,
connection, phone line) in a network. However, we often require the cheapest
sub-network that connects the vertices of a given graph. This must in fact be
an unrooted tree, because there is only one path between any two vertices in
a tree; if there is a cycle then at least one edge can be removed. The total
cost or weight of a tree is the sum of the weights of the edges in the tree. We
assume that the weight of every edge is greater than zero. Given a connected,
undirected graph G =< V, E >, the minimum spanning tree problem is to
find a tree T =< V, E′ > such that E′ ⊆ E and the cost of T is minimal.

FIGURE 8.1: A graph with 5 vertices (left) and its minimum spanning tree
(right).

Figure 8.1 is an example of a graph and its minimum spanning tree. Now,
for broadcasting a message from vertices 0 to all the others, we can send from
vertices 0 to vertices 4, then from vertices 4 to vertices 3, then vertices 4 can
redistribute to vertices 1 and finally vertices 3 sends the message to vertices 2.
Computing a solution of this problem can be done with Prim’s or Kruskal’s
Algorithms at a cost time of O(|V |2) and O(|V | log |V |)) respectively.

Notice that in the previous example, in order to optimize the total execution
time we allow vertices 4 to redistribute the message after a first send. In a
2-port model, we guess that we can send simultaneously on the 2 ports, that
is to say to vertices 3 and 1 at the same time. The total execution time is the
length of the critical path in the tree.

The correct formulation of the problem is related to the minimum broadcast
time2 where the problem is stated as follows:

INSTANCE: Graph G = (V, E) and a source node v0 ∈ V .

2See: http://www.nada.kth.se/\~{}viggo/wwwcompendium/node127.html\#5671.

210 Fundamentals of Grid Computing

SOLUTION: A broadcasting scheme. At time 0 only v0 contains the mes-
sage that is to be broadcast to every vertex. At each time step any vertex
that has received the message is allowed to communicate the message
to at most one of its neighbors.

MEASURE: The broadcast time, i.e., the time when all vertices have re-
ceived the message.

This has been termed the minimum broadcast time problem under the tele-
phone model and is known to be NP-complete. The minimum broadcast time
in a graph has a solution that is approximable within O(log2 |V |/ log log |V |)
[Ravi, 1994]. Instead of implementing the result, we go along heuristics. We
have no idea, to our knowledge, if the theoretical result has been implemented
for large scale grid systems.

We shall also emphasize here that optimal broadcast tree is fundamentally
different from minimal spanning tree (MST). In the optimal broadcast tree
the issue is to minimize the time to reach the last node which is to say to
minimize the longest path in the tree. While in the MST, the issue is to
minimize the whole weight of the tree. These two constructions may lead to
very different trees.

In this chapter, we study first heuristics for the minimum broadcasting tree
and we evaluate them through simulations according to parameters extracted
from the Grid’50003 testbed. Grid’5000 is a Grid testbed composed of 5000
processors distributed over some clusters in 9 sites in France. The inter-cluster
connection is insured by RENATER Education and Research Network. All
clusters are connected to Renater with a 10Gb/s link.

The fact that all clusters are linked through an homogeneous network with
the same high bandwidth (the network links are all optic fiber based) means
that we can suppose that sending a message of given size would take the
same lap of time for any couple sender-receiver independently of geographic
distances.

According to our hypothesis about the architecture, we have some supple-
mentary difficulties with implementations since the network is heterogeneous
and, in our case, structured in two levels: inter-cluster level and intra-cluster
level. Contentions may occur and special techniques have been elaborated
in [Steffenel, 2006] for this case. Many heuristics have been imagined to ap-
proximate the best way to broadcast a message in a cluster and in a cluster of
clusters [Barnett et al., 1996], [Matsuda et al., 2004], [Matsuda et al., 2006
], [Bhat et al., 2003], [Barchet-Steffenel and Mounie, 2006], [Steffenel and
Mounié, 2008]. We propose in this chapter to review them and to combine
them in order to exhibit a new one that behaves as well as the better known
heuristics.

3See https://www.grid5000.org.

Broadcasting for grids 211

Second, in current cluster of clusters architecture, the number of clusters
is reduced. Grid’5000 for instance is composed of 9 sites. Hence examining
all possible broadcast tree is not a so hard computational task. Dynamic
programming may be used in this case. We follow the approach introduced in
[Park et al., 1996] for one homogeneous cluster. We propose a generalization
of this approach to the case of cluster of clusters.

Third we will summarize other work in the direction of mastering commu-
nication for collective operations.

8.3 Heuristics for broadcasting

One of the earliest papers, to our knowledge, dealing with communication in
a wide sense and in a grid is the paper of Ian Foster [Foster and Karonis, 1998].
In this paper authors investigated the need for a communication library in the
frame of parallel programming on a distributed multi-site architecture where
heterogeneity of network is an intrinsic property. They proposed a version of
MPICH dedicated to grids and they called it MPICH-G. This version is built
upon MPICH and Globus.

Other studies have been elaborated. Most of them consider the MPI com-
munication library or one of its variants such as MPICH-G2, PACX-MPI,
GridMPI. To deal specifically with broadcasting, we need to refer to the al-
gorithm of Van de Geijn [Barnett et al., 1996] which consists in a recursive
scatter (a special broadcast) phase that puts a fragment of the message to
distribute on each node; then a phase of recursive all-gather (a concatenation
of messages that are stored on each node) occurs to each message fragment.
For the sake of completeness, the algorithm consists of one-to-many messages
(authors call them scatter) and steps of many-to-many messages (authors call
them gather).

We can also cite the works achieved in “The Grid Technology Research
Center, AIST” by M. Matsuda et al. In [Matsuda et al., 2006 , Matsuda et al.,
2004], Matsuda et al. studied collective operations on multi-site architectures
with MPI library. The paper [Tatsuhiro et al., 2004] of Satochi et al. considers
especially the broadcast operation in the case where nodes have 2 lane network
interface controllers. The main contribution of the paper is the way of splitting
the message to broadcast: it is broken into two pieces and then they are
broadcasted independently following two binary trees; then, nodes of the two
trees exchange the two parts of the message.

Let us review now more in detail some of the known algorithms for both
homogeneous and heterogeneous environments.

212 Fundamentals of Grid Computing

8.3.1 Basic approaches for broadcasting in homogeneous en-
vironments

We review hereby, some well-known algorithms for broadcasting a message
in one cluster. In the remainder, we assume that we can reach any node in
an equal time. Then, there is no need to choose a specific node since network
is homogeneous and all nodes are symmetric.

Linear broadcast: It is the simplest basic algorithm. It consists in putting
all nodes in a queue where the node that will initiate the broadcast is the
head. The broadcast algorithm begins when the head sends the message to
its following in the queue, then progressively the message is sent from one to
his following until it reaches the tail node. We can also proceed with one level
(flat) tree where the root is the node detaining initially the message and all
the other nodes are leaves. Then the root sends sequentially the message to
the leaves. The broadcast time in both case is proportional to the processor’s
number.

Binary tree algorithm: We can improve the above algorithm by proceed-
ing with a binary tree. The node detaining the message to be broadcasted
(let’s call it P0) sends it to two other nodes (we call them P1 and P2). In the
second step, P0 stays idle, and only P1 and P2 send each to two other nodes
(P3. . . P6). In the next step P1 and P2 stay idle, and P3. . . P6 send each to
two other nodes, and so on. According to the network model based on (l, b,
M) parameters to estimate the cost of broadcasting, where l is the network
latency, b is network bandwidth and M is message size, we derive easily the
broadcast cost is 2(l + M/b) log p, since the height of a binary tree of p nodes
is log p and each node makes two sends.

Binomial tree algorithm: We can yet improve the above algorithm by
letting all processors having the message at a given time participate in the
following broadcast steps. Then we do not need any more than one node send
the message two times per step. The algorithm proceeds as follows: in the
first step, P0 sends to P1. In the next step, both P0 and P1 send to two other
nodes (P2 and P3). Then all processors detaining the message send it to four
other processors and so on.

The cost of broadcasting according to such tree is (l + M/b)logp, since the
number of nodes detaining the message doubles at each step.

Following another approach, the Van de Geijn algorithm [Barnett et al.,
1996] proposes to act in two steps: a recursive scatter in a binomial tree
fashion, then collecting pieces using recursive doubling until the whole mes-
sage becomes available on all nodes. The complexity of this algorithm is
proportional to the size of the message (O(M)) since the message is split into
two pieces independently following two binary trees. We do not detail this
algorithm because we do not use it in the remainder of the chapter.

Broadcasting for grids 213

8.3.2 Advanced approaches for heterogeneous clusters

We assume now that the network is heterogeneous in one cluster. Then, we
shall wonder at each time which is the next destination of the message and
which node detaining the message is to be chosen to achieve the remaining
sending steps. We imagine that nodes are separated into two sets. The set A
is the set of node already having the message at a given time. Set A is also
called the set of candidate nodes to achieve the next send operation. The set B
is the set of nodes that have not yet received the message. Set B is also called
the set of candidate nodes to receive the message in the next communication
step.

Initially, set A contains only the node that will initiate the broadcast op-
eration. Many heuristics [Bhat et al., 2003], [Barchet-Steffenel and Mounie,
2006], [Steffenel and Mounié, 2008] have been elaborated to achieve the whole
broadcast operation in optimal time. It is obvious that optimality is achieved
not only by using all communication potential, but also by suitably fastest
communication links. It is also known that identifying the best broadcasting
tree is an NP-complete problem.

We introduce now some known heuristics that try to approximate the op-
timal broadcast tree. Note that optimal broadcast tree is not the minimal
covering tree because the latter minimizes the cost of edges but does not take
in account the maximization of communication potentials (nodes communi-
cate in parallel).

Early Completion Edge First - ECEF: According to the ECEF heuristic
(Bhat et al. [Bhat et al., 2003]) we choose a couple of nodes, Pi in set A and
Pj in set B. In the next step, the message is sent from Pi to Pj . The couple
(Pi, Pj) is chosen in such a way that Pj becomes ready to send the message
as early as possible. This time is computed by:

RTi + gij(m) + Lij

where RTi is the ready time of Pi, gij(m) is the latency gap between Pi and
Pjand Lij is the communication cost between Pi and Pj . Note that this
heuristic aims at increasing the number of nodes in set A as fast as possible.

Early Completion Edge First with look-ahead - ECEF-LA: It is
clear that the ECEF heuristic allows increasing the number of nodes in set
A which is yet a good fact. But it also important to well choose the next
destination to be itself a good sender in the remaining steps.

As an enhancement of the latter heuristic, Bhat et al. [Bhat et al., 2003
] propose to estimate the efficiency of each node throughout a function that
takes into consideration the speed of forwarding the message to another node
of set B. For instance the following function can be considered:

Fj = min(gjk(m) + Lik)

214 Fundamentals of Grid Computing

for Pk in set B. Then we select in set B the node Pj that minimizes

RTi + gij(m) + Lij + Fj .

From a complexity point of view, ECEF has a running time of O(N2 log N),
whereas, due to the look-ahead function, ECEF-LA has a running time of
O(N4).

8.3.3 Grid aware heuristics

We suppose, now, that we have a cluster of clusters environment. We
suppose also that we have a coordinator (proxy) on each cluster. All com-
munication between clusters are insured by these coordinators. Subsequently,
global communications are ordered in two levels: inter-cluster communication
and intra-cluster communication. Hence, if we have a message to broadcast
through a grid architecture, then it is broadcasted between coordinators, and
then each coordinator broadcasts the message locally. In the works elabo-
rated by Steffenel [Steffenel and Mounié, 2008], authors simulate the local
communication load by only one virtual node that is connected to a specific
coordinator. Then the local communication load is depicted by

Lkk′ + gkk′ =
{

Tk if k
′
is associated to node k

∞ if k
′
is not associated to node k

(8.1)

where Pk is a coordinator and Pk′ is a virtual node simulating a cluster.
Under this framework, Steffenel proposed three heuristics to broadcast a

message in a grid environment. The main question we are facing is: which
is the next coordinator (cluster) to contact while keeping in mind the global
communication load (between clusters) and local communication load of each
coordinator. Let us review the heuristics.

ECEF-LAt : The first heuristic proposed in this context is the one that
increases the number of nodes in set A in least time. Then, we choose at each
time the coordinator that takes the least time to join set A as in ECEF-LA
heuristic. It also adopts the look-ahead option. The efficiency function Fj is
set to:

Fj = min(gij(m) + Ljk + Tk) for k ∈ set B.

ECEF-LAT : The previous heuristic encourages the coordinator with the
lowest load at each step, which may imply delays on the most loaded co-
ordinators and subsequently it may increase the broadcast completion time.
The opposed heuristic is to choose at each time the coordinator that have the
greatest load, i.e., the one that maximizes Fj . Hence, Fj is set to:

Fj = max(gij(m) + Ljk + Tk) for k ∈ set B.

Broadcasting for grids 215

BottomUp: It is clear that the last heuristic can not be optimal because
we choose at each step the least powerful coordinator; so the number of nodes
in set A increases very slowly. The last proposed heuristic in [Steffenel and
Mounié, 2008] combines ECEF-LAt and ECEF-LAT. We need to begin by
contacting the most loaded coordinator. We also need to contact it through
the ‘shortest path.’ Then BottomUp heuristic uses a min-max approach to
find the ‘shortest path’ to contact the most loaded coordinator. Hence it
selects the coordinator verifying:

maxPj∈B(minPi∈A(gij(m) + Lij + Tj))

8.3.4 New approach for broadcasting in clusters and hyper
clusters

According to previous heuristics, to reduce global broadcast time, three
factors impact performance. First, we need to align set A with clusters, in
the quickest way possible. Having more potential senders gives more of a
chance to perform the next communication in a better way, since we have
more choices to consider.

The second factor is to give an advantage to communication-efficient cluster
when choosing a receiver. As we explained before, it is important to commu-
nicate with the cluster that can forward the message, in the next steps, within
a short time. This means that we want to augment set A with good senders.

The third factor is to begin by contacting the most loaded clusters, so that
we insure the maximum of overlap between intra and inter-cluster broadcast.
This strategy is the key of success of BottomUp and ECEF-LAT heuristics
since, according to measured parameters, local broadcast needs more time
than inter-cluster communication.

The problem of building the optimal broadcast tree is not a multi-criteria
problem, since we have only one objective function which is the minimization
of the global broadcasting time. However, we believe that it is possible to
transform each factor to an independent criteria that we have to ‘optimize.’
Then we can try to solve the whole problem as a multi-criteria problem.

New heuristic

The previous heuristics try to optimize one of these ‘criteria’ or to combine
two or all of them at each iteration. And the better we consider these factors,
the better the result is.

Each heuristic has a function to minimize. This function contains param-
eters linked to one or two of aforementioned factors. Hence all factors are
merged in only one formula to minimize at each iteration.

Merging all factors in one may give us a compromised solution. But com-
promise is not always a good solution. To explain this idea let us imagine the

216 Fundamentals of Grid Computing

situation where we have, at a given iteration, a ‘very’ loaded cluster. Then
we should contact it in priority otherwise it will delay the ending time.

If we combine all factors and look for a compromise, then previous heuristics
may lead us to choose another cluster, not the most loaded, and subsequently
we do not achieve the best performance.

The same reasoning can be applied if we have a very good forwarder cluster
or a very fast-to-communicate cluster at a given iteration. The conclusion of
this example is to say that considering a single factor at a time can also be
very efficient and even more efficient than combining much factors in one.

Following this idea we developed a new heuristic that considers each factor
in a separated way. We proceed as follows:

We consider our two sets A and B. At each iteration we choose one sender
from set A and one receiver from set B. Then at each iteration we shall
decide which factor we need to satisfy: either (1) to choose the fastest-to-
communicate cluster from set B, or (2) best forwarder cluster from set B or
(3) the most loaded cluster form set B.

Condition (1) implies to minimize RTi + gij(m) + Lij which is to say to
apply one iteration of ECEF heuristic.

Condition (2) implies to minimize RTi + gij(m) + Lij + Fj which is to say
to apply one iteration of ECEF-LA heuristic.

And condition (3) implies to choose the most loaded cluster in set B and
then to find the best sender in set A which is to say to apply one iteration of
BottomUp heuristic, i.e., we apply maxPj∈B(minPi∈A(gij(m) + Lij + Tj)).

The question now is “How to choose the factor to satisfy?”
To answer this question, let us see what would happen if we do not satisfy

a factor, i.e., we do not choose the best cluster according to this factor:

a- Either the chosen cluster (the optimal cluster according to another factor)
behaves well with the considered factor then the considered factor is
not strongly violated. Then we estimate that both clusters behave in
relatively similar way according to that factor.

b- Or the chosen cluster behaves badly with the designated factor and then
it violates the designated factor. Then we estimate that the clusters are
relatively different for that factor.

At the end, it is important to choose the cluster that satisfies one factor
and behaves well with the others or at least does not violate them strongly.

We propose to compute the set of values associated to each factor as follows:
For factor (1), we compute set E1= minPi∈A(RTi+gij(m)+Lij) /Pj ∈ B. For
factor (2), we compute set E2= minPi∈A(RTi + gij(m) + Lij + Fj) / Pj ∈ B.
For factor (3), we compute set E3= minPi∈A(RTi + gij(m) + Lij + Tj) /
Pj ∈ B.

Having dispersed value in a given set means that clusters are very different
according to the associated factor; then the factor may be strongly violated if
we do not satisfy it. Whereas, if a set contains close values, then it means that

Broadcasting for grids 217

clusters behave in a quite similar way. Subsequently, choosing one cluster or
an other will not be decisive.

Finally we choose to satisfy the factor which has the associated set with the
most dispersed values, i.e., we compute the mean deviation of each set values
and we choose to satisfy the factor having the greatest mean deviation.

Simulation

In our simulations, we rely on works done by Steffenel [Steffenel and Mounié,
2008] for the different parameters measured on a real grid environment. He
measured values of different communications parameters (L, g, T) over the
French grid infrastructure named Grid’5000.4 He found out a lowest value
and highest value for each parameter. In his simulation, he set randomly the
values of L, g, T in the corresponding interval and then he applied the different
heuristics. In our simulation we do the same. The values that we introduced
now are the mean of 100 iterations.

Parameter Min value Max value
L 1 15
g 100 600
T 200 3000

Table 8.1: Grid’5000 settings (1/2).

In the first simulation, we set L, g and T in intervals measured over
Grid’5000; see Table 8.1. As seen in Figure 8.2, all heuristics give almost
the same completion time. Then we can not evaluate the efficiency or com-
pare them. The second remark we shall note is that our new heuristic (noted
MostCrit) gives exactly the same values as BottomUp which is the best heuris-
tic at present time. We can conclude that both heuristics behave exactly in
the same way and it can be obtained only if our new heuristic chooses to
apply BottomUp at each iteration. By observing parameters values we can
expect this fact since the interval of Tj is much larger than intervals of Lij

and gij . This means that values of Tj will be more sparse than values of Lij

and gij and consequently values in E3 will be more sparse than those in E1
and those in E2. And finally factor(3) (choosing the most loaded cluster) will
be retained.

To evaluate the efficiency of our new heuristics, we proposed to achieve
simulations with other settings. We changed the ratio of L and g (parameters

4For details, refer to https://www.grid5000.fr.

218 Fundamentals of Grid Computing

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

5 10 15 20 25 30 35 40 45 50 55

Number of clusters

ECEF
ECEFLA

ECEFLAT
ECEFLAt

Bup
MostCrit

FIGURE 8.2: Broadcasting time versus clusters number with Grid’5000 set-
tings.

linked to inter-cluster broadcast) and T (parameter associated to the local
broadcast).

In the second simulation, top part of Figure 8.3, we multiplied L and g
by 5 and divided T by 5; see top part of Table 8.2. In the third simulation,
bottom part of Figure 8.3, we multiplied L and g by 10 and divided T by 10;
see bottom part of Table 8.2.

Top part of Figure 8.3 Bottom part of Figure 8.3
Parameter Min value Max value Min value Max value

L 5 75 10 150
g 500 3000 1000 6000
T 40 600 20 300

Table 8.2: Grid’5000 settings (2/2).

Simulation represented in Figure 8.2 shows that BottomUp keeps giving
good performances as well as our new heuristic ‘MostCrit’ even though they
do not give exactly the same values. Other heuristics behave worse.

The final conclusion of our simulations is that BottomUp and MostCrit
heuristics give evenly good results independently of the ratio of inter-cluster

Broadcasting for grids 219

 5000

 6000

 7000

 8000

 9000

 10000

 11000

5 10 15 20 25 30 35 40 45 50 55

Number of clusters

ECEF
ECEFLA

ECEFLAT
ECEFLAt

Bup
MostCrit

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

5 10 15 20 25 30 35 40 45 50 55

Number of clusters

ECEF
ECEFLA

ECEFLAT
ECEFLAt

Bup
MostCrit

FIGURE 8.3: Broadcasting time versus clusters number with other setting.

220 Fundamentals of Grid Computing

communication performances over intra-cluster communication performances.
This point has never been observed before to our knowledge.

8.4 Related work and related methods

8.4.1 Broadcasting and dynamic programming

In this section we give an exact solution for the problem of broadcasting
one message in a cluster of clusters under some assumptions that we introduce
now. The starting point is the work done by Lionel Ni in [Park et al., 1996]
and it is related to dynamic programming for solving the equations defining
the problem. Our target architecture is still a cluster of clusters whereas L.
Ni work considers only a single cluster.

Point to point communication

In this paragraph, we recall the analysis of broadcasting as introduced
in [Park et al., 1996]. First, the authors consider tsend which corresponds
to the sending software latency. It includes the overhead of ‘packetization,’
checksum computing and possibly memory copying. Then they consider trecv

which corresponds to the receiving software latency. Its definition is similar
to tsend. At last, the authors also consider tnet which is the time needed
by a message to cross the network. It includes network parameters such as
switching mechanism.

FIGURE 8.4: Broadcasting time costs.

Broadcasting for grids 221

Finally, Park et al. consider two other parameters. tend is the interval be-
tween the sender starts sending a message until the receiver finishes receiving.
Let thold be the minimum time interval between two consecutive send opera-
tions. The value of thold is dependent on how blocking send is implemented:
it may be greater than tend as thold may include the overhead of the acknowl-
edgement from the receiver. An example is given in Figure 8.4 and this graph
is taken from [Park et al., 1996].

In our approach, we consider that the broadcast operation is based on
MPI’s broadcast function which is a blocking operation. According to MPI’s
specification, the blocking operation is considered complete when the sending
buffer can be reused.

Optimal broadcast tree for a single cluster

Authors in [Park et al., 1996] have proposed a construction of an optimal
broadcast tree based on parameters introduced in the previous paragraph.
They propose to proceed as follows.

Let us have a set of k nodes (P0, P1,. . . ,Pk−1), where P0 is the root node. In
the first step P0 sends to Pj . After thold, P0 will be ready to send to an other
destination while Pj will be ready to send only after tend. Then the whole
set is separated in two subsets rooted at P0 and Pj where the cardinality
of each subset depends on ready time of each corresponding root (t0 + thold,
t0 + tend). And then recursively, each subset is divided in two other subsets
in which cardinality depends on ready time of its root. Finally, we define t[i]
(for each 1 ≤ i ≤ k) as the minimum latency required to broadcast a message
among i nodes Pa, Pa+1,. . . , Pa+1 (for an a, 0 ≤ a ≤ k − 1) with node Pa as
the root node.

Therefore we have:

t[i] = max{thold + t[j], tend + t[i − j]}

To ensure the optimality, we must choose the node Pa+j such that the broad-
cast latency is minimal. Thus, according to [Park et al., 1996], we have the
following recurrence t[i]:

t[i] =

{
0 if i=1

min
1≤i≤i−1

{max(thold + t[j], tend + t[i − j])} if i > 1

The optimal broadcast tree of a k-node tree is t[k] and this can be computed
in O(k2) time by using dynamic programming when we explore all possible
values of j (the value of the splitter of whole set in two subsets). By estab-
lishing a recurrence on splitter’s values, Ni et al. could reduce the complexity
of the construction of optimal broadcast tree to O(k).

We shall note that in [Park et al., 1996] all nodes are supposed to be equal.
Hence, t[i] denotes the broadcast time in any set of i nodes. The splitter j is

222 Fundamentals of Grid Computing

chosen only by balancing numbers in the resulting sets. No discussion is done
about ‘personal’ communication performances.

In the introduction part, we have presented some broadcast trees that are
currently implemented in libraries. The performance of a broadcast tree is de-
pendent on the number of steps required by the algorithm which is a function
of k, the number of participants. The binomial tree requires �log2 k� steps.
However, in practice, the performance of each broadcast tree is dependent on
the software latency of the underlying network. In the reminder, we develop
an optimal broadcast tree by considering the two important network param-
eters thold and tend. Our approach is similar to the Ni et al. approach [Park
et al., 1996]. We extend it in order to take into account a cluster of clusters.

Optimal broadcast tree for a cluster of clusters

As mentioned before for the Grid’5000 testbed, we can suppose that the
inter-cluster network is homogeneous and then we can apply the Ni et al.
method to build the optimal broadcast tree. In this section we suppose that
tnet is neglected and tend lies especially on tsend and trecv. Subsequently, the
Ni et al. approach can be valid in this case. In the real case of Grid’5000, the
number of clusters is reduced (9 sites each composed of 200-400 cards), and
then the problem can be solved with a dynamic programming approach.

Assume that we have to broadcast a message over the Grid’5000 architec-
ture. The reasoning presented in [Park et al., 1996] stays valid. The broadcast
is performed by using proxy on each cluster. Once the message is sent from
the root node to the first destination, the whole set of proxies is divided in
two subsets as explained before.

To the previous construction we add a local broadcast. Once a proxy re-
ceives the message, it has to initiate the broadcast in its local cluster and
achieve broadcast in the subset of proxies attributed to it. When it performs
the first communication in its subset, the latter is divided in two subsets (as
proposed in the work of Ni et al.).

Each proxy is supposed to be equipped with two network cards. The first
one is used as an interface with inter-cluster network (RENATER) while the
second one is used to initiate the internal broadcast. Hence we can neglect
the interference between the inter- and intra-cluster broadcast.

Analytically speaking, when a coordinator receives the message to broadcast
then we can estimate the time left to end broadcasting by the maximum of
one of these times:

1. the time to broadcast inside its own cluster, noted in the first part of
this paper by T [k] (capitalized T);

2. the time to achieve inter-cluster broadcast. The considered coordinator
has a subtree of i coordinators rooted at it to broadcast in. According
to Ni et al. approach, the time to broadcast in the subtree is recursively
divided in two subtrees containing i and i−j coordinators where j is the

Broadcasting for grids 223

appropriate splitter chosen according to thold and tend of the considered
coordinator.

We also note that the notation t[i] is no more valid in our case since broad-
cast time depends on each coordinator local load. In the remaining we use
T[S] where S is a particular set of nodes.

At the beginning, the root, we call it R1, initiates the broadcast in its
local cluster and sends the message to a given coordinator. The whole tree
of coordinators is distributed in two subtrees. Let S be the initial set of
coordinator. S is distributed in S1 and S2. S1 is structured as a tree rooted
at R1 and S2 is structured as a tree rooted at a given node noted R2.

Finally, the broadcast latency can be depicted through the following for-
mula:

t[S] = max{T [R1], thold + t[S1], tend + t[S2], }
The broadcast latency is given by the maximum of the local broadcast time,

and the broadcast time of S1 and S2. The construction of S1 and S2 is done
so that we minimize the global broadcast time. And finally

t[S] =
{

T [R1] if S = ∅
min{max(T [R1], thold + t[S1], tend + T [R2], tend + t[S2])} if S 	= ∅

If the set of nodes is empty, then the completion time is given by T [R1],
the time to achieve local multicast. Otherwise, the set is divided in two. The
completion time is given by the maximum of completion time of broadcasting
in each subset, and the completion of the local broadcast of both roots. We
add parameters thold and tend to take into account the communication between
R1 and R2. R2 is chosen at each step so that it minimizes the completion
time of the remaining steps.

8.4.2 Multi-criteria approach

Introduction

We are now considering the issue of building the optimal broadcast tree from
another point of view. Indeed, it is also possible to transform this problem
into a bi-criteria problem in the following way.

Let us remember that each cluster contains a number of nodes. We assume
that we can build a tree of local broadcast inside each cluster. So, we can
determine the time Ti to complete the local broadcast in cluster i. We need
now to build the global broadcast tree for all the grid, according to all criteria.

When we reach the first node of a given cluster at time t, it will immediately
initiate a local broadcast that takes Ti. We may assume that the (global)
broadcast across the grid will not end before t + Ti (i.e., when the most
loaded cluster would complete its local broadcast), so since the t time, we
have a period of Ti to complete the broadcast in the remaining broadcast
sub-tree (i.e., rest of the grid). In others words, we shall say that:

224 Fundamentals of Grid Computing

FIGURE 8.5: The most loaded cluster vs. the remaining sub-tree.

• All solutions that would end broadcasting in the remaining sub-tree
before t + Ti are equivalent, since the time of completion of the global
broadcast will always be the same: t + Ti;

• Henceforth, we will always consider in priority the most expensive node
in terms of local broadcast: the one that has the greatest value of the
Ti term because this node will provide the greatest delay to complete
the broadcast in the remaining broadcast sub-tree and therefore the
best estimate of the completion time. Let Tmax be the time needed
to broadcast in the cluster Pmax, the most expensive in terms of local
broadcast time. Our completion time is bounded by ‘the shortest path
to reach to Pmax ’+Tmax: that is a lower bound and we can never do
better.

The term ‘the shortest path to reach Pmax’ means for us the sequence to
reach Pmax as early as possible, either by contacting it directly or by inter-
spersing other nodes to contact it.

So the completion time is Cmax = ‘the path to Pmax’ +Tmax+ ’some delay
to finish broadcasting in the remaining of broadcast sub-tree.’ See Figure 8.5
for an example.

We will discuss now the (path to Pmax) and the (some delay). The term
Tmax is constant and inevitable because we assumed that the local broadcast
is made in an optimal manner. Let us consider two cases:

• (a) If we reduce (the path to Pmax), i.e., we contact it as soon as possible,
we may increase the final delay. Therefore the broadcast tree will look
to the remaining broadcasting sub-tree, as shown in Figure 8.6.

Broadcasting for grids 225

• (b) If we delay the contact of the most loaded cluster, i.e., we may reduce
the height of the remaining sub-tree; subsequently the considered delay
may be reduced (or even avoided). But, on the other hand, we may
lengthen the path to reach Pmax. The broadcast tree will look to the
branch that leads to the most loaded node as shown in Figure 8.7.

FIGURE 8.6: The broadcast tree looks to the most loaded cluster.

Contribution

According to the discussion given above, the optimal broadcasting time is
obtained when the broadcast tree is balanced as much as possible, i.e., we
have to reduce the time to reach the most expensive nodes in terms of local
broadcast and to reduce the supplementary delay too. These two conditions
are complementary and can not be achieved simultaneously.

The optimal solution is obtained when we find the best compromise between
these two criteria.

We are therefore faced with two objectives:

1. Reducing the path to Pmax (case (a) is its optimal solution);

2. Reducing the time between the time when we finish the local broadcast
in Pmax and the end of the global broadcast (case (b) is its optimal
solution).

226 Fundamentals of Grid Computing

FIGURE 8.7: The broadcast tree looks to the remaining sub-tree.

In a multi-objective optimization [Ehrgott, 2000], [Ehrgott and
Gandibleux, 2002] problem we distinguish three kinds of solutions:

i. the solutions that optimize, first, a single criterion (e.g., case (a) and
(b)) and then the other criteria.

ii. the solutions that are a compromise for all criteria, in a certain way,
and that dominate the other solutions. Let S be a solution from this
set, then there is no other solution that improves one (or more) criterion
without degrading one (or more) other criterion. S is said to be a non-
dominated solution or a ‘pareto-optimal solution;’

iii. solutions that are dominated. These solutions have no interest since
there are other solutions that can improve at least one criteria while
respecting its performance for the other criteria.

Remarks

1. The solutions defined in class i. are also pareto-optimal;

2. The pareto-optimal class is the most interesting one. It contains all
‘optimal ’ solutions of a multi-criteria problem. One may list all these
solutions and choose the good compromise according to one’s will.

Let us come back to our broadcast problem. We have, now, only to explore
pareto-optimal solutions between the two solutions (a) and (b). So, we pro-
pose the following algorithm for constructing the optimal broadcast tree. The
algorithm consists in constructing a balanced tree in an incremental way.

Broadcasting for grids 227

The broadcast tree is initialized by the root (i.e., the origin node of the
broadcasting). The set of clusters is sorted in the descending order of Ti.
Clusters are re-numbered in this way. The most loaded cluster is numbered
1,. . . . The least loaded cluster is numbered N . Clusters are considered in the
order from 1 to N . We also need a structure to save branches added to the
tree in the order of their insertions.

As the approach is recursive, we consider only the insertion of a single node
to the broadcast tree.

The algorithm is as follows:

1. From all the clusters not yet inserted, consider the most loaded cluster.
Assume that it is the i cluster. Let Tf be the broadcast time given by
the tree before the insertion of the current cluster;

2. Build the path that leads from the broadcast tree to this cluster as early as
possible. Note: contact the cluster i as early as possible may be needed
for the insertion of other less loaded clusters.

3. Determine the time to achieve the local broadcast in the i cluster. Let T ′
f

this time. Two cases must be studied:

• if Tf ≥ T ′
f then accept the insertion; save inserted branch and

proceed to the next cluster in the list.

• if Tf < T ′
f then: (1) note that we reached the inserted cluster i in

a time T ′
f . (2) We have now to re-balance the tree. Let j be the

cluster that gave the time Tf . Remove all branches that lead to
the i cluster (the one that gives the time Tf), the branch that lead
to the cluster j (the one that gives the T ′

f time) and all branches
inserted in steps in between. (3) re-insert the cluster j passing the
second shortest path and continue insertions. (4) When you come
to the first cluster of rank ≥ i, check that you have not exceeded
T ′

f ; otherwise return to the initial solution.

4. Stop when the cluster’s list becomes empty.

The algorithm tries to satisfy the (a) criterion at the beginning, i.e., mini-
mize the path to the most loaded cluster. But as soon as the criterion (b) is
violated (there is a delay, i.e., Tf < T ′

f) then the algorithm returns on its steps
to better balance the broadcast tree while verifying that the more balanced
tree does not need more time than the less balanced tree. Thus we have the
guarantee that the broadcast time remains as close as possible to the lower
bound that we have set at the beginning which is: the shortest path to reach
Pmax + Tmax.

228 Fundamentals of Grid Computing

8.4.3 Broadcast for clusters

Before the advent of grid, the Network of workstation (NOW) architecture
was in vogue in the 90s. NOW is a cost-effective alternative to massively
parallel supercomputers based on commercially available off-the-shelf proces-
sors to form a cluster. However, a cluster may consist of different types of
processors and this heterogeneity within a cluster complicates the design of
efficient collective communication protocols.

In [Liu and Sheng, 2000], Pangfeng Liu and Tzu-Hao Sheng show that
a simple heuristic called fastest-node-first (FNF) is very effective in reduc-
ing broadcast time for heterogeneous cluster systems. Despite the fact that
FNF heuristic fails to give the optimal broadcast time for a general heteroge-
neous network of workstation, they prove that FNF always gives the optimal
broadcast time in several special cases of clusters. Based on these special case
results, authors show that FNF is an approximation algorithm that guaran-
tees a competitive ratio of 2. From these theoretical results they also derive
techniques to speed up the branch-and-bound search for the optimal broadcast
schedule in heterogeneous NOW.

The model used in [Liu and Sheng, 2000] depicts a heterogeneous cluster
as a collection of processors P0, · · · , Pn−1, each capable of point to point
communication with any other processor in the cluster. Since authors are
interested in the communication capability of the cluster only, each processor
is characterized by its speed of sending messages. A non-negative transmission
time of a processor represents the time it needs to send a unit of message to any
other processor so that the time required to transmit a message is determined
by the sender.

The communication model requires that the sender and the receiver proces-
sors can not engage in multiple message transmissions simultaneously. Any
sender must complete its data transmission to a receiver before sending the
next message. Authors assume a one-port model to depict a motherboard
with a single network interface for instance. Similarly the model prohibits the
simultaneous receiving of multiple messages by any processor.

Let us return to the FNF heuristic. In each iteration the algorithm chooses
a sender from the set of processors that have received the broadcast message
(denoted by A) and a receiver from the set that have not received the message
yet (denoted by B). The algorithm picks the sender s from A so that s will
finish this transmission as early as possible, and chooses the receiver r as the
processor that has the minimum transmission time in B. Then r is moved
from B to A and the algorithm iterates until all the processors are visited
once.

Despite its simplicity, FNF does not guarantee optimal broadcast time and
an example is given in the aforementioned paper. However, authors demon-
strate that FNF is optimal in some special cases of heterogeneous clusters.
When there are only two types of processors, authors show that FNF is opti-
mal.

Broadcasting for grids 229

Banikazemi’s paper [Mohammad and Dhabaleswar, 1998] is the original
paper that has introduced the FNF heuristic and P. Liu uses two theorems in
the paper to prove the optimality of FNF in special cases of the heterogeneous
system. In [Mohammad and Dhabaleswar, 1998], authors show first that
the algorithms such as the Binomial-tree based algorithms which were used
for implementing collective operations were not efficient. They propose two
new approaches (Speed-Partitioned Ordered Chain (SPOC) and Fastest-Node
First (FNF)) to implement collective communication operations with reduced
latency.

Authors also investigate methods for deriving optimal trees for broadcast
and multicast operations. However, generating such trees is found to be com-
putationally intensive. It is shown that the FNF approach, in spite of its
simplicity, can deliver performance within 1% of the performance of the opti-
mal trees. Finally in the paper, these new approaches are compared with the
approach used in the MPICH implementation on experimental as well as on
simulated testbeds.

The central theorems of [Mohammad and Dhabaleswar, 1998], [Liu and
Sheng, 2000] are the following:

THEOREM 8.1
There exists an optimal broadcast tree T in which all processors send messages
without delay. That is, for all processor p in T , starting from its ready time,
p repeatedly sends a message with a period of its transmission time until the
broadcast ends.

THEOREM 8.2
There exists an optimal broadcast tree T in which every processor has a

transmission time no less than the transmission time of its parent.

Note that from the definition of optimality in Theorem 8.2, the author
considers the optimal broadcast schedule from all possible sources and not
from a dedicated source. With Theorem 8.1, we can simply discard those
trees that will delay messages, and still find the optimal schedule.

The construction of an optimal brodcast tree is based on a recursive defi-
nition of the ready time for a processor to transmit a message. Let r(si) be
the ready time for processor si. In [Liu and Sheng, 2000], authors use the
following inductive relation:

{
r(s0) = 0
r(si) = min{t |

∑i−1
j=0}NSS(sj , t) ≥ i}, 1 ≤ i ≤ n − 1 (8.2)

where NSS(p, t) is the minimum non-negative integer k such that r(p) + k ∗
t(p) ≥ t, for t ≥ r(p). t(p) is the transmission time of a processor p and S the
set of processors.

230 Fundamentals of Grid Computing

8.4.4 Broadcast and heterogeneous systems

In [Legrand et al., 2005] and also in a technical paper5 from INRIA,
Legrand, Beaumont, Marchal and Robert consider the communication in-
volved by the execution of a complex application deployed on a heterogeneous
grid system. Heterogeneous systems are modeled by a graph where resources
have different communication and computation speeds. Achieving the best
throughput may require that the target system is used in totality.

Authors show that neither spanning trees nor DAGs are as powerful as
general graphs. They focus on series of broadcasts, meaning that the same
source processor sends a series of atomic one-t-all broadcasts. The processing
of these broadcasts can be pipelined and the objective function is to optimize
the throughput of the steady-state operation, i.e., the average amount of data
broadcasted per time unit.

Authors start with a working example and focus on DAGs for describing
the network topology. The series of broadcast on a DAG problem is modeled
with a linear program and they show that the linear program provides the
optimal solution: the value returned by the program is the maximum number
of broadcasts that can be initiated per time unit.

Then authors in [Legrand et al., 2005] examine the series of broadcasts
on a general system; they mean a system modeled by graphs with cycles.
Again they use a linear program and its solution provides a lower bound for
the period length needed to broadcast one unit time message. Nevertheless,
it is not clear that this bound can be achieved because of the assumption
stating that all the messages transiting on a given edge are all subsets of the
largest set. Finally, to bypass the difficulty authors use a weighted version
of Edmond’s branching theorem (see [Schrijver, 2003] vol B, chapter 53) by
which they produce the desired number of trees.

8.5 Concluding remarks

In this chapter, we investigated several approaches to achieve a broadcast-
ing operation for a cluster of clusters. The first approach is by approximating
the optimal broadcast tree with a new heuristic giving results as good as the
best existing heuristic. Known heuristics combine different factors to mini-
mize completion time. Our heuristic does not combine factors but decides at
each iteration which elementary factor to satisfy. In the second approach, we
defined an exact method to build the broadcast tree. We gave a generalization
based on a dynamic-programming method to cluster of clusters. In fact, real

5See http://www.inria.fr/rrrt/rr-4871.html.

Broadcasting for grids 231

cluster of clusters architecture contains only a few number of clusters. Hence
examining all possible broadcasting trees can be achieved in a reasonable time.

We have also pointed out methods based on dynamic programming or based
on a multi-criteria approach. In any case, we are studying practical approaches
in the sense that we tried to implement them in order to validate them ex-
perimentally, as much as possible. We all know that we may encounter a big
gap between a nice theoretical result and its implementation that sometimes
requires inefficient codes.

In the future, we suggest to the community to fully implement such heuris-
tics inside MPI in order to check whether our predictions are verified on real
large scale applications and systems. The challenge is twofold. First of all,
to accomplish an experiment is arduous on any large scale system; for in-
stance it is hard to measure the communication time because if you run your
experiment on dedicated reserved nodes, the bandwidth is in general shared
with others’ experiments. In fact, you need to reserve nodes, to deploy your
code / kernel and to configure your environment. However, on Grid’5000 we
have facilities to accomplish the tasks in a semi-automatic way. Second, we
would like to offer a system able to broadcast information according to any
message size. So, the challenge is to broadcast on the fly or according to a
more ‘online’ policy.

Last but not least, an orthogonal path is also possible to implement efficient
broadcast operations. All routers are now capable of multi-casting which is a
synonym for broadcasting. It is quite easy to implement a daemon listening or
broadcasting on a dedicated multicast port as it is explained in [Makofske and
Almeroth, 2002 , Wittmann, 2000]. The first challenge would be to simulate a
MPI_Bcast operation using the multicast infrastructure in a VLAN or at a more
general level for the network infrastructure. If the first experiments are good,
it will be interesting to re-implement MPI collective operation starting with
the multicast operation as the basic building block instead of the send/receive
operations.

Acknowledgment

Experiments presented in this chapter were carried out using Grid’5000 ex-
perimental testbed, an initiative from the French Ministry of Research through
the ACI GRID incentive action, INRIA, CNRS and RENATER and other con-
tributing partners (see https://www.grid5000.fr). We also thank deeply the
Regional Council of Ile-de-France for its support through the SETCI mobility
program (see http://www.iledefrance.fr).

232 Fundamentals of Grid Computing

8.6 References

[Barchet-Steffenel and Mounie, 2006] Barchet-Steffenel, L. and Mounie, G.
(2006). Scheduling heuristics for efficient broadcast operations on grid envi-
ronments. In Proceedings of the 2006 International Parallel and Distributed
Processing Symposium (IPDPS’06).

[Barnett et al., 1996] Barnett, M., Payne, D. G., van de Geijn, R. A., and
Watts, J. (1996). Broadcasting on meshes with wormhole routing. Journal
Parallel Distributed Computing, 35(2):111–122.

[Bhat et al., 2003] Bhat, P. B., Raghavendra, C. S., and Prasanna, V. K.
(2003). Efficient collective communication in distributed heterogeneous sys-
tems. Journal of Parallel Distributed Computing, 63(3):251–263.

[Ehrgott, 2000] Ehrgott, M. (2000). Multicriteria optimization. Lecture Notes
in Economics and Mathematical Systems. Springer-Verlag.

[Ehrgott and Gandibleux, 2002] Ehrgott, M. and Gandibleux, X. (2002).
Multiple criteria optimization: state of the art annotated bibliographic sur-
veys. Kluwer Academic, Dordrecht.

[Foster and Karonis, 1998] Foster, I. and Karonis, N. (1998). A grid-enabled
MPI: message passing in heterogeneous distributed computing systems. In
Proceedings of SuperComputing. ACM Press.

[Jelena et al., 2005] Jelena, P.-G., Thara, A., George, B., Fagg, G. E., Edgar,
G., and Dongarra, J. J. (2005). Performance analysis of MPI collective
operations. In Proceedings of the 19th International Parallel and Distributed
Processing Symposium (IPDPS’05), page 272.1, Washington, DC, USA.
IEEE Computer Society.

[Legrand et al., 2005] Legrand, A., Marchal, L., and Robert, Y. (2005). Op-
timizing the steady-state throughput of scatter and reduce operations
on heterogeneous platforms. Journal of Parallel Distributed Computing,
65(12):1497–1514.

[Liu and Sheng, 2000] Liu, P. and Sheng, T.-H. (2000). Broadcast schedul-
ing optimization for heterogeneous cluster systems. In Proceedings of the
12th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA’00), pages 129–136, New York, NY, USA. ACM Press.

[Makofske and Almeroth, 2002] Makofske, D. B. and Almeroth, K. C. (2002).
Multicast sockets: practical guide for programmers. Morgan Kaufmann.

Broadcasting for grids 233

[Matsuda et al., 2006] Matsuda, M., Kudoh, T., Kodama, Y., Takano, R.,
and Ishikawa, Y. (2006). Efficient MPI collective operations for clusters in
long-and-fast networks. In Cluster. IEEE Computer Society.

[Matsuda et al., 2004] Matsuda, M., Kudoh, T., Tazuka, H., and Ishikawa, Y.
(2004). The design and implementation of an asynchronous communication
mechanism for the MPI communication model. In Cluster, pages 13–22.
IEEE Computer Society.

[Mohammad and Dhabaleswar, 1998] Mohammad, B. and Dhabaleswar, K.
(1998). Efficient collective communication on heterogeneous networks of
workstations. In Proceedings of the International Conference on Parallel
Processing, pages 460–467. IEEE Society Press.

[Park et al., 1996] Park, J.-Y. L., Choi, H.-A., Nupairoj, N., and Ni, L. M.
(1996). Construction of optimal multicast trees based on the parameterized
communication model. In ICPP, volume 1, pages 180–187, Los Alamitos,
CA, USA. IEEE Computer Society.

[Rabenseifner, 1999] Rabenseifner, R. (1999). Automatic profiling of MPI
applications with hardware performance counters. In PVM/MPI, pages 35–
42. Available online at: citeseer.ist.psu.edu/rabenseifner99automatic.

html (accessed May 1, 2009).

[Ravi, 1994] Ravi, R. (1994). Rapid rumor ramification: approximating the
minimum broadcast time. In Proceedings of the Symposium on Founda-
tions of Computer Science, pages 202–213, Los Alamitos, CA, USA. IEEE
Computer Society.

[Schrijver, 2003] Schrijver, A. (2003). Combinatorial optimization: polyhe-
dra and efficiency, volume 24 of Algorithms and Combinatorics. Springer-
Verlag.

[Steffenel, 2006] Steffenel, L. A. (2006). Modeling network contention ef-
fects on all-to-all operations. In Proceedings of the Conference on Cluster
Computing (CLUSTER 2006), Barcelona, Spain. IEEE Computer Society.
Available online at: http://hal.archives-ouvertes.fr/hal-00089242 (ac-
cessed May 1, 2009).

[Steffenel and Mounié, 2008] Steffenel, L. A. and Mounié, G. (2008). A frame-
work for adaptive collective communications for heterogeneous hierarchical
computing systems. Journal of Computer and System Sciences, 74(6):1082–
1093.

[Tatsuhiro et al., 2004] Tatsuhiro, C., Toshio, E., and Satochi, M. (2004).
High-performance MPI. In Proceedings of the 2004 International Par-
allel and Distributed Processing Symposium (IPDPS’04). Available on-
line at: http://csdl.computer.org/comp/proceedings/ipdps/2004/2132/02/

213220104babs.htm (accessed May 1, 2009).

234 Fundamentals of Grid Computing

[Wittmann, 2000] Wittmann, R. (2000). Multicast communication: protocols,
programming, and applications. Morgan Kaufmann.

Chapter 9

Load balancing algorithms for
dynamic networks

Jacques M. Bahi
LIFC, Université de Franche Comté, IUT Belfort, 2 rue Engel Gros, 90016
Belfort, France

Raphaël Couturier
LIFC, Université de Franche Comté, IUT Belfort, 2 rue Engel Gros, 90016
Belfort, France

Abderrahmane Sider

Computer Science Department, University of Bejaia, Bejaia, Algeria

9.1 Introduction . 235
9.2 A taxonomy for load balancing . 237
9.3 Distributed load balancing algorithms for static networks 240
9.4 Distributed load balancing algorithms for dynamic networks 250
9.5 Implementation . 257
9.6 A practical example: the advection diffusion application 261
9.7 Concluding remarks . 268
9.8 References . 269

9.1 Introduction

Distributed computing is the art of using several computing elements (CEs)
to solve a given problem. The elements may be parallel shared memory multi-
processor machines, desktop machines, laptops or any electronic devices that
can process a set of control and arithmetic instructions.

The aim of distributing a computation is in general to achieve better exe-
cution time, but can also be motivated by solving a greater instance of some
problems or solving several instances of the same problem each with differ-
ent data. For other problems, sequential algorithms can even lead to non-
reasonable time to be run for certain sizes of the problem so it can be con-
sidered untractable. That is why those problems cannot be run with classical
microprocessors. Nowadays, achieving parallelism through work distribution
happens to be necessary in many scientific fields ranging from simulating fluid

235

236 Fundamentals of Grid Computing

molecular dynamics and particle mechanics [Boillat, 1990] to solving large
optimization and scientific problems [Bahi et al., 2006b].

Let us focus first on the CEs capabilities. The computation power property
is defined by the number of instructions that the CPU elements can execute
during a time unit. But the whole computation power of a CE is usually
not available for a target application because of operating system processes
and user programs running at the same time on it. So the theoretical con-
stant computing power is shared between the target computations and other
processes on each CE. As a result, a computation should be able to adapt
to the current available computing power of each involved CE. That is why
the computation needs to take into account the environment in which it is
executed.

In addition, because CEs may have heterogeneous computing power and
because it may be difficult for some problems to decompose the work in bal-
anced parts, some CEs may finish their work faster than others. Consequently
they remain idle while waiting for the other processors to finish so they can all
decide what the next steps of the computation will be. In order to alleviate
idling on the one hand and to efficiently use CEs on the other hand, it may be
necessary to assign work to CEs proportionally to their available computation
power.

The process of deciding when to do it and how to do it is called a load
balancing algorithm. Notice that we omit a rather particular case where the
aim is only to keep CEs from remaining idle which is termed load sharing.
We can see indeed that the former implies the latter but the opposite is not
true.

The computing elements usually also communicate data to synchronize their
actions and to manage the consistency of the solution being computed. The
messages are exchanged between computing elements guided by the compu-
tation logic. The messages form a network whose nodes and links are re-
spectively the CEs (or some entities running on them) and communication
channels. Besides, channels may be fixed according either to an arbitrary
pattern or a logical one. An arbitrary pattern is one that is constrained by
the wire or whatever physical platform is used for communication. A logical
pattern is rather constrained by the problem/solution entities that actually
run in the distributed application. The communication pattern can support
or not link failures and message loss. In the first case we say that the com-
munication network is static while in the second we say it is dynamic.

In a static network, the communication network is considered to be static,
i.e., no communication channel/link can be broken and no CE can crash or
come down and join the computation again. The work on the presented
algorithms corresponds to the era of the so called cluster computing which
experienced a great spread due to the existence of adequate programming
and running libraries like MPI [Gropp et al., 1994] and PVM [Geist et al.,
1994]. The computations are often run on high speed local area networks.
These two points outline the static network nature of the communication

Load balancing algorithms for dynamic networks 237

behavior since in general no process/machine can quit and join a computation
in PVM or MPI and the network is considered to have predictable behavior
during the computation and if it crashes the whole computation is considered
crashed. This contrasts with the Internet Computing era in which we are
living and which only began some years ago. That explains the move toward
load balancing algorithms that support link/node failures.

9.2 A taxonomy for load balancing

Figure 9.1 shows what type of load balancing algorithms can be made ac-
cording to locality of decisions/migrations and the time they are performed.
We can see that these criteria define four types of load balancing. When the
decision of how much work is given to each node is made before execution
the algorithm is said to be static. If this decision is made at runtime then
the algorithm is dynamic.1 The first column of Figure 9.1 features two static
algorithm types one of which is centralized (Global Static Load Balancing,
GSLB for short) whereas the other is distributed (Distributed Static Load
Balancing, DSLB for short). GSLB algorithms are more common and they
have some similarities with scheduling and mapping algorithms. In the second
column of Figure 9.1, two other algorithm types are defined: Global dynamic
load balancing (GDLB) and Distributed dynamic load balancing (DDLB).
These algorithm types are run during execution and allow us to adapt load
distribution as the computations proceed.

In the following, we restrict to the dynamic type algorithms which balance
load during runtime. The processor which decides which load movements
should take place in order to balance the load can be unique or not. If it is
unique then the load balancing is said to be centralized or global (GSLB and
GDLB classes); otherwise it is distributed or local (DSLB and DDLB classes).
LeMair et al. [Willebeek-LeMair and Reeves, 1990] summarized the differ-
ent techniques that were used in cluster computing oriented environments at
the end of the 80s. Another important characteristic of GDLB is that load
migration can take place between not necessarily neighboring CEs. Global
load balancing algorithms obviously suffer from a bottleneck located at the
coordinating processor and from other issues such as network latency because
the load is not necessarily exchanged between neighboring nodes. Distributed
(DDLB class) algorithms are more robust with respect to the first issue and
suffer less from network latency because load information and load itself are

1Notice that the total amount of load in the system/ditributed computation can be constant
or varying with time, i.e., load is consumed/created at runtime. The first case is also termed
as “static load” balancing and the second is “dynamic load” balancing but the confusion is
usually fixed rapidly as we do here.

238 Fundamentals of Grid Computing

FIGURE 9.1: Load balancing algorithm classes according to locality of deci-
sions/migrations and the time they are performed.

exchanged only locally which means that no routing is needed. We shall
restrict to this robust class of algorithms in the following sections.

Another important criterion, within the distributed dynamic algorithms
class, is the number of participating nodes that can be less or equal to the to-
tal number of entities or processors involved in the computation. In the latter
case, the algorithm is said to be synchronous (SGDLB and SDDLB classes
of Figure 9.2); otherwise it is asynchronous (AGDLB and ADDLB classes of
Figure 9.2). In the synchronous case, all processors stop computations, per-
form a load balancing step which involves load migration and finally resume
computations. The diffusion algorithm, the Dimension Exchange (DE), the
Generalized Dimension Exchange (GDE), the second order diffusion all origi-
nally run synchronously even if asynchronous implementations have been later
investigated. See [Xu et al., 1995] for a comparison between synchronous and
asynchronous implementations of Diffusion and GDE.

In the asynchronous scenario, only a subset of the processors does load
balancing at a load balancing step. This usually happens when a processor
detects that it is underloaded or overloaded2 with respect to its neighbors or
to some fixed threshold values. SID and RID by LeMair et al. [Willebeek-
LeMair and Reeves, 1993], DASUD by Cortes et al. [Cortes et al., 1999] are
purely asynchronous algorithms, i.e., not adaptations of synchronous versions.

2The first scenario is termed as receiver initiated load balancing (RID shortly) and the
second case as sender initiated (SID shortly).

Load balancing algorithms for dynamic networks 239

FIGURE 9.2: Dynamic LB algorithm classes according to locality of deci-
sions/migrations and the number of participating nodes.

The Gradient Model by Lin et al. [Lin and Keller, 1987], one of the earlier
known algorithms, is a good example of noniterative algorithms of this class.

In SDDLB algorithms, synchronous load balancing iterations are run al-
ternatively with computation phases. During each iteration, load balancing
algorithms let some nodes know the available computing power and must tell
them which node has to exchange loads with which other nodes and to what
amount. These decisions follow some logic that differs from one algorithm to
another. The logic may be for example that of the Liquid Model [Henrich,
2004] or some other natural phenomenon. An intensively studied model is
that of the physical diffusion model that describes how heat spreads through
a liquid. What is interesting is that it can be modeled and studied accord-
ing to the very developed theory of linear algebra because it is iterative3 in
nature. Notice that not every iterative load balancing algorithm can be mod-
eled by a mathematical iterative algorithm hence the important literature on
diffusion on static/dynamic homo-/heterogenous networks. A derived form of
diffusion called dimension exchange has also received a lot of attention due
to its closeness to diffusion and to its ability to be implemented on running
platforms that do not enable a CE to concurrently communicate with all of
its neighbors.4

3In the mathematical acceptation.
4In computer systems, this may apply to ones that do not support multiprocessing or
multithreading.

240 Fundamentals of Grid Computing

This chapter relates to “static load” synchronous distributed dynamic load
balancing algorithms namely the SDDLB class of Figure 9.2. But these algo-
rithms can easily be adapted for a “dynamic load” context. We first present
their theoretical aspects for static networks in Section 9.3 and then for dy-
namic networks in Section 9.4. Afterward, Section 9.5 explains practical as-
pects of integrating a load balancing algorithm into any distributed algorithm.
Finally, Section 9.6 shows how load balancing is integrated into a real world
scientific application and the obtained gain in static and dynamic network
contexts. This chapter ends with a conclusion and some perspectives.

9.3 Distributed load balancing algorithms for static net-
works

In this section, popular load balancing algorithms for static networks are
considered. We focus in particular on two iterative algorithms that have
been adapted for dynamic networks namely diffusion and dimension exchange
and on their different developments. They participated in improving their
performances and in making them able to be run on other static networks than
the one they were originally designed for, i.e., the n-dimensional hypercube.
But before investigating Diffusion and Dimension Exchange, their variance
and their adaptation to dynamic networks, on the one hand, we need first
to present the notations used hereafter. On the other hand, because a load
balancing algorithm should be assessed like any other distributed algorithm,
we should present the measures that permit to judge the effectiveness of any
load balancing algorithm. These two points are the focus of the next section.

9.3.1 Network model and performance measures

A distributed-memory parallel system of n processors linked with an inter-
connection network is modelled by a graph G = (V, E) where vertices V and
edges of E represent the processors and links between them, respectively. Note
that in a dynamic context, E is constituted only by links that are alive. A link
is alive when it can deliver messages in both directions [Aiello et al., 1993]. A
link that is not alive is said to be broken. Let Et

B be the set of broken edges in
the graph G at time (iteration) t and N t

i = {j ∈ V : (i, j) ∈ E ∧ (i, j) /∈ Et
B}

the set of neighbor nodes of processor i at time t. The workload of node i is
represented by a nonnegative integer scalar value wi. At time t the system’s
load distribution is represented by the vector W t = {wt

1, w
t
2, w

t
3, . . . , w

t
n}.

The target of the load balancing process is to make this load distribution
system converge towards the uniform load distribution represented by vector
W = {w, w, w, . . . , w} where w is the load that every node should have re-

Load balancing algorithms for dynamic networks 241

ceived if a global knowledge of the overall system’s load were known. If the
system is built by assembling homogeneous processor powers and link band-
widths then w =

∑n
i=1 wi/n. In the other case, suppose each processors’ power

is represented by value si. Then node i should be allocated a workload which
is proportional to its power: that is wi =

∑n
i=1 wi∑n
i=1 si

si.

Performance metrics

Three fundamental properties are usually considered when assessing the
performance of a load balancing algorithm: its termination, its efficiency and
its stability [Xu and Lau, 1992]. The notion of termination relates to the
ability of the algorithm to lead any initial load distribution to the average
load one. This is done mainly by means of formal proofs. The efficiency
is a subsidiary result of the termination proof because it shows the execu-
tion time a given algorithm spends to reach a load balanced state. If the
algorithm is iterative then the rate of convergence is more suitable to assess
efficiency. Thirdly, the quality of the obtained global balance is an impor-
tant criterion because the load is often not so evenly distributed and there
still subsists an unbalance between indirectly linked nodes. Similarly to ef-
ficiency, if the algorithm is iterative (not direct) than the stability5 of the
algorithm reflects its quality. In practice, this is modeled by some norm of
the vector W̄ − W t and is also called the global imbalance. The norm may
be the Euclidean max norm noted l1 = maxi{| w̄ − wi |} or the quadratic
one l2 = (

∑
i (w̄i − wi)2)1/2 which will be referred to in this chapter.6 One

important remark should be made here about the cost of load balancing. In
static networks, as clarified by Elssser et al. [Elsasser et al., 2002], iterative
algorithms of diffusion compute the minimum flux over the network edges.
But according to experiments shown in [Sider and Couturier, 2009], this is
unfortunately not true in dynamic networks. Indeed, in dynamic networks,
the load is eventually balanced by the process but this one does not act ac-
cording to the heuristic of “minimum flux over network edges” like in static
networks. Consequently, the amount of work loads moved over the network
edges is an important criterion for a load balancing algorithm especially in
dynamic networks since it measures transmission costs and it possibly acts on
the efficiency of the algorithm in synchronous implementations.

5Rate of convergence and stability are the two important properties of any iterative algo-
rithm, in the mathematical acceptation.
6It is well known that the max norm, the infinite norm and the Euclidian norm are math-
ematically equivalent in R.

242 Fundamentals of Grid Computing

9.3.2 Diffusion

The diffusion algorithm also known as a First Order Scheme means that
the decisions of the load balancing algorithm at time-step t only use load in-
formation of the previous time-step t − 1 and was devised by the pioneering
Cybenko in [Cybenko, 1989]. The author supposed a static network com-
munication pattern having a hypercube shape. The hypercube is a particular
graph that has many interesting properties. First a hypercube of size n nodes
is said to have D = ln2 n dimensions. It follows that each of the n nodes
has a degree equal to the hypercube dimension D. Neighbor identifiers of a
node having identity i are particular in that each one differs only in one bit
from that of i. In practice a hypercube of dimension D is built using two
hypercubes of dimension D − 1 and by adding a link from each node of the
first hypercube to the node having the same identifier in the other hypercube.
Finally, both identifiers are modified by adding one prefix bit and giving it
the value 0 for the node of the first hypercube and the value 1 for the node
of the other hypercube.

Figure 9.3 shows three examples of hypercubes of dimension one, two and
three. The reader should notice how we apply the process that we have
described to build the hypercube of dimension two by using two hypercubes
of dimension one. We can also check the properties of the hypercubes and in
particular the equality of the degree and the diameter.

By the diffusion iterative scheme of Cybenko, on the hypercube static struc-
ture, a node i exchanges a portion noted α of its load difference | wt

j − wt
i |

with its neighbor j where α = 1
Δ+1 ; Δ being the maximum degree of G. For

example, in the hypercube of dimension 3 (cf. Figure 9.3(c)), α = 1
3+1 = 1

4 .
Later, FOS had been optimally tuned for some general static structures called
k-ary n-cubes by Xu et al. [Xu and Lau, 1994]. The tuning of FOS is achieved
by looking for a diffusion parameter noted αopt that is neither necessarily con-
stant nor equal to 1

Δ+1 . Moreover, authors gave general formulae to compute
it for chain, ring and mesh structures. Boillat’s independently devised FOS
version [Boillat, 1990] is another approach for choosing the diffusion param-
eter which becomes dependent in the degrees of two considered processors;
i.e., αi,j = 1

max(di,dj)+1 where di and dj represent degrees of nodes i and j

respectively.7 Anyway, by the FOS diffusion algorithm, the load evolution
of processor i at time t is done according to formula 9.1 where αi,j is fixed
according to one way from the three above-cited ones.

wt
i = wt−1

i +
∑

j∈Ni

αi,j(wt−1
j − wt−1

i) (9.1)

7The Boillat diffusion scheme can be seen as a generalization of diffusion to arbitrary
networks.

Load balancing algorithms for dynamic networks 243

(a) One dimension (b) Two dimensions

(c) Three dimensions

FIGURE 9.3: The hypercube network of dimension 1, 2 and 3.

244 Fundamentals of Grid Computing

By grouping the terms wt−1
i we obtain the following equation

wt
i = (1 −

∑

j∈Ni

αi,j)wt−1
i +

∑

j∈Ni

αi,jw
t−1
j (9.2)

which makes it obvious that the equation 9.1 is linear. The system load
evolution between iterations t−1 and t can thus be expressed by equation 9.3

W t = MW t−1 (9.3)

where W t is the system load vector of size n and M is called the diffusion
matrix which is defined by its entries mij such that

mij =
{

αij if i 	= j,
1 −

∑
j∈Ni

αij if i = j.

The diffusion matrix M is symmetric and doubly stochastic, i.e.,
∑

i mij =
1. Cybenko proved that this scheme converges to the uniform load distribution
W . Where the Cybenko and Boillat’s schemes offer straight ways to fix αij

which may be the easiest to implement, Xu devised another determination
way for αij and thus for M . In order to find the unique value of α that
maximizes the rate of convergence of algorithm 9.3, the eigenvalues of the
diffusion matrix should be computed. The second largest of them noted γ
plays the most important role in the rate of convergence since this is equal
to − log γ. To make the convergence rate the fastest, γ should be minimized.
This method is not direct and needs to be conducted for every topology.
Nevertheless, several studies on some classical topologies have been carried,
thus:

α = 1
2 for a chain

α = 1
2n for a mesh k1 × k2 × . . . kn

α = 1
2n+1−cos(2π

k)
for a torus k1 × k2 × . . . kn where k = max ki

α = 1
n+1 for an hypercube of dimension n

(9.4)

Let us illustrate with more details the functioning of FOS. According to the
methods we have just presented the diffusion matrix M may be determined
in function of the degree of each node, in function of the degree of the graph
or for an optimal convergence rate. For the hypercube of dimension 3 of
Figure 9.3(c), a regular graph (same degree for all nodes), we can see that the
the three methods coincide for the choice of α and thus the same diffusion
matrices are found. Consider now the arbitrary network of Figure 9.4.

Table 9.1 shows the obtained diffusion matrices with Boillat’s method (a)
and with Cybenko’s method (b).

For Xu’s method, positive entries of both matrices should be replaced with
α except diagonal entries for which we have 1 − xα where x is the number
of nonzero entries of the considered row. The matrix M is usually written

Load balancing algorithms for dynamic networks 245

FIGURE 9.4: An arbitrary network of size 4.

(a) With the Boillat’s method.⎡

⎢⎢⎢⎢⎣

5/12 1/3 1/4 0
1/3 5/12 1/4 0
1/4 1/4 1/4 1/4
0 0 1/4 3/4

⎤

⎥⎥⎥⎥⎦

(b) With Cybenko’s
method.⎡

⎢⎢⎢⎢⎣

1/2 1/4 1/4 0
1/4 1/2 1/4 0
1/4 1/4 1/4 1/4
0 0 1/4 3/4

⎤

⎥⎥⎥⎥⎦

(c) With Xu’s method.⎡

⎢⎢⎢⎢⎣

1 − 2α α α 0
α 1 − 2α α 0
α α 1 − 3α α

0 0 α 1 − α

⎤

⎥⎥⎥⎥⎦

Table 9.1: Diffusion matrices for the network of Figure 9.4.

246 Fundamentals of Grid Computing

in function of the Laplacian L of the considered graph in order to take into
account the graph shape, on the one hand, and to facilitate the task of com-
puting αopt, on the other hand. Indeed, M = I − αL where L = AAT is the
Laplacian, A is the incidence matrix of the graph, AT its transpose and I
the identity matrix of size n. The convergence rate of diffusion is a function
of γ, the second largest eigenvalue in absolute values of the diffusion matrix
eigenvalues: γ = max |μ2|, |μn| (1 = μ1 > μ2 > . . . > μn > −1). The rate
of convergence is precisely equal to − log γ with 0 < γ < 1 and consequently
log γ < 0 and − log γ > 0. The convergence rate is maximum when γ is
minimum. Because of the relation between M and L, we have μn = 1 − αλ2

and μ2 = 1 − αλn where λ2 and λn are respectively the second smallest and
second largest of the Laplacian eigenvalues (0 = λ1 < λ2 < . . . < λn). γ is
minimum when αopt = 2

λ2+λn
[Xu and Lau, 1996].

So far we have not dealt with communication links bandwidths that may be
heterogenous, i.e., not equal, yet. The diffusion algorithm has been adapted to
this context (with homogenous computing powers) by Diekmann in [Diekmann
et al., 1999]. Finally, diffusion in heterogenous CEs and communication links
was studied by Elsasser et al. [Elsasser et al., 2002] and independently by
Rotaru et al. [Rotaru and Nageli, 2004] who put the latest developments of
diffusion on static networks.

9.3.3 Dimension exchange

Another approach for direct neighbor load balancing is to let a processor
exchange some load with only one of its neighbors at each load balancing
step. Cybenko in [Cybenko, 1989] presented the DE (Dimension Exchange)
algorithm on the structure of a hypercube interconnecting network. Under
this scheme, a processor with id i will exchange some load with some other
node j (and vice versa) on a dimension of the hypercube noted d and computed
according to formula d = (t mod D) + 1 where t and D are respectively the
current iteration number of the load balancing algorithm and the number of
dimensions of the hypercube; hence the name of the algorithm. Indeed each
dimension of the hypercube is a set of edges (whose extremities are pairs of
CEs) so that each one can be noted Ed. Formula 9.5 shows how the load of
processor i evolves between iteration t − 1 and t.

wt
i = wt−1

i +
1
2
(wt−1

j − wt−1
i) if (i,j)∈ Ed and d = (t mod D) + 1 (9.5)

By doing the same work of grouping wt−1
i terms we also finish with the linear

equation

W t = MdW
t−1 (9.6)

Load balancing algorithms for dynamic networks 247

where W t is the system load vector of size n and Md is called the diffusion
matrix of dimension d which is defined by its entries mij such that

mij =

⎧
⎨

⎩

1
2 if i 	= j and (i, j) ∈ Ed,
1
2 if i = j and (i, j) ∈ Ed,
0 elsewhere.

Let us illustrate the functioning of DE with an hypercube of dimension 3.
Figure 9.5 shows what are the links on which load exchange takes place at
iterations 0, 1 and 2. For example, at iteration t = 0 CE with id O (000 in the
figure) computes d = 0 mod 3 + 1 = 1 and CE with id 1 (001) finds equally
d = 1 which means that their ids differ only in bit number one from the left.
So node 0 and 1 can compute the id of their partner in the load exchange by
simply inverting the dth bit of their ids. The same reasoning is applied by
other nodes at iteration 0 to find the id of their pair (so at iteration 0 nodes
along a vertical link can exchange some of their loads). At iteration t = 1
however, node O finds d = 2 which means that its pair id is different by the
second bit from the left of its own id thus calculating 010 = 2 so the edge
(0,2) will serve for load exchange. By this same reasoning we will have load
exchange on edges (1,3), (4,6) and (5,7) (so at iteration 1, nodes along an
in-depth link can exchange some of their loads). At iteration 2, nodes along
an horizontal link can exchange some of their loads. We can notice that after
three iterations load is exchanged on all dimensions, as illustrated in Figure
9.5. Cybenko [Cybenko, 1989] stated that the DE algorithm will converge
after exactly t = D iterations for an hypercube of dimension D whatever the
initial load distribution is.

Later on, Hosseini et al. [Hosseini et al., 1990] generalized DE for arbitrary
interconnection networks by simulating the D dimensions with the maximum
number of K colors necessary for coloring the edges of the graph representing
the network topology. It is well known that their minimum number is bounded
with the maximum degree of the graph Δ: Δ ≤ K ≤ (Δ + 1) [Fiorini and
Wilson, 1978]. Load exchange takes place between two nodes i and j iff i
and j are the extremities of some edge e ∈ E having color k = t mod K + 1.
However, with DE and its generalized Hosseini version, the portion of load
difference that is effectively exchanged is λ = 1

2 and for this reason this scheme
is called ADE (Averaging Dimension Exchange). If we note by Ek the edge
set of color k, then for a CE i, the load evolves according to formula

wt
i = wt−1

i +
1
2
(wt−1

j − wt−1
i) if (i,j)∈ Ek and k = (t mod K) + 1. (9.7)

Again the system load evolves according to the linear equation

W t = MkW t−1 (9.8)

where W t is the system load vector of size n and Mk is called the diffusion

248 Fundamentals of Grid Computing

(a) Iteration t=0 (b) Iteration t=1

(c) Iteration t=2

FIGURE 9.5: DE running on an hypercube of dimension 3. At each iteration,
CEs use a new dimension for load balancing.

matrix of color k which is defined by its entries mij such that:

mij =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 if i 	= j and (i, j) ∈ Ek,
1
2 if i = j and (i, j) ∈ Ek,
1 if i = j and (i, j) /∈ Ek,
0 elswhere.

Notice that with ADE some diagonal entries of Mk are set to 1 simply because
a node has not all the K colors on its incident edges. Notice also that unlike
DE, that converges after exactly D iterations on the hypercube, ADE also
converges on arbitrary networks but usually after more than K iterations.

To illustrate ADE on arbitrary networks, we come back to Figure 9.4. Be-
fore running ADE, we must color the graph. In this case we need at most
3 colors. Figure 9.6 shows one possible edge-coloring of the arbitrary net-
work of Figure 9.4. The colors are 1, 2 and 3 so we have three edge sets
E1 = {(1, 2), (3, 4)}, E2 = {(1, 3)} and E3 = {(2, 3)} and three diffusion
matrices M1, M2 and M3 that are shown in Table 9.2.

9.3.4 GDE

With GDE (Generalized Dimension Exchange) [Xu and Lau, 1992] or ODE
(Optimally tuned DE), Xu et al. proved that setting λ = 1

2 would lead to the
maximum convergence rate only on the hypercube. As for ADE for arbitrary

Load balancing algorithms for dynamic networks 249

FIGURE 9.6: An edge-coloring of the arbitrary network of Figure 9.4.

M1=

⎡

⎢⎢⎣

.5 .5 0 0

.5 .5 0 0
0 0 .5 .5
0 0 .5 .5

⎤

⎥⎥⎦ M2=

⎡

⎢⎢⎣

.5 0 .5 0
0 1 0 0
.5 0 .5 0
0 0 0 1

⎤

⎥⎥⎦ M3=

⎡

⎢⎢⎣

1 0 0 0
0 .5 .5 0
0 .5 .5 0
0 0 0 1

⎤

⎥⎥⎦

Table 9.2: Diffusion matrices of the colored graph 9.6.

networks, GDE needs an edge-coloring. They go on and give an alternative
way to fix the optimal value λopt for the k-ary n-cube structures like the
chain, the ring, the mesh and the torus. Formula 9.9 expresses how node i
load evolves at each timestep t

wt
i = wt−1

i + λopt(wt−1
j − wt−1

i) (9.9)

where

λopt = 1
2 for an hypercube,

λopt = 2−
√

2(1−cos(2π
n))

1+cos(2π
n)

⎧
⎪⎨

⎪⎩

for a 2n1 × 2n2 torus where n = maxn1, n2,
for a ring of size 2n,
for a mesh n1 × n2 where n = maxn1, n2,
for a chain of size n.

(9.10)
The difference with ADE is that entries of any Mk that correspond to an
edge of color k now will have a unique λopt as value. The diagonal entry of
each row is then computed so that we express that the load is conserved by
the load balancing algorithm. The application of k successive load balancing
steps results in the system load evolving to

W (t+k) = Mk−1 × Mk−2 × · · · × M0W
(t) = M(λ)W (t),

where M(λ) is called the GDE matrix. M(λ) corresponds to the diffusion
matrix M of the diffusion algorithm. The load distribution converges at a
rate of − log γ, hence the optimal value of λ, λopt for a graph with Laplacian
L is λopt = 2

λ2+λn
where λ2 and λn are respectively the second smallest and

second largest eigenvalues of L (see [Xu and Lau, 1996] for details).

250 Fundamentals of Grid Computing

With DE for the hypercube a given processor makes load balance operations
successively with all of its neighbors. The order is fixed according to the
dimension. But with ADE or GDE for arbitrary networks, the order is fixed
according to color index k.

9.3.5 Second order algorithms

A second order diffusion scheme (SOS hereafter) is simply a diffusion load
balancing algorithm that uses load information of timestep t − 1 and that
of timestep t − 2 to make a decision on the amount of load to exchange at
timestep t. Diekmann et al. [Diekmann et al., 1999] introduced the second
order diffusion. The scheme relies on a ponderation parameter β. At timestep
t, the load of node i exchanging load with neighbor j evolves as described in
equation 9.11.

w1
i = w0

i + αij(w0
j − w0

i) if t = 1

wt
i = (β − 1)(wt−2

j − wt−2
i) + βαij(wt−1

j − wt−1
i) if t ≥ 2. (9.11)

The SOS diffusion algorithm converges if and only if β ∈]0, 2[by a result from
Varga [Varga, 1962]. Additionally, care should be taken in setting the β value
because the load balancing iterative algorithm has the additional constraint
that the variables wt

i must remain nonnegative (see [Vernier, 2004] page 64
for details).

Another second order diffusion scheme called the Chebyshev scheme has
been introduced by Gosh et al. in [Ghosh et al., 1996]. It has the property
that β depends in timestep t and is computed according to equation 9.12
where μ2 is the second largest eigenvalue of the diffusion matrix M . As for
SOS, care should be taken when setting βt (ibid.).

β1 = 1 if t = 1

β2 =
2

2 − μ2
2

if t = 2

βt =
4

4 − μ2
2

if t ≥ 3 (9.12)

9.4 Distributed load balancing algorithms for dynamic
networks

As we previously mentioned, a dynamic network is a model for a commu-
nication network where some links may be down and be recovered or some
messages lost but the nodes are not allowed to crash or to come down and re-
cover. FOS and GDE have received a lot of attention for their simplicity and

Load balancing algorithms for dynamic networks 251

solid theoretical bases in static networks and so just naturally for dynamic
ones.

9.4.1 Adaption to dynamic networks

The adaptation to dynamic networks of diffusion and dimension exchange
is based on the hypothesis that the nodes cannot crash and recover but the
links can. So, this is the model for a grid computing infrastructure where
some communication channels can become unavailable for physical or logical
crash. A logical link failure is for instance a network contention that leads to
not delivering application messages carried out by the TCP (Transfer Control
Protocol) transport protocol.

Bahi et al. [Bahi et al., 2003b] adapted DE for the hypercube with broken
edges. The adaptation is done by giving the necessary and sufficient conditions
that make an algorithm “good” for a dynamic network. For instance with DE,
the algorithm proceeds by dimensions such as in static networks but if an edge
is broken then it is simply not used. Later on, the general scheme for adapting
GDE for dynamic networks of any initial shape was sketched by Bahi et al.
in [Bahi et al., 2005] and named GAE (Generalized Adaptive Exchange). We
will come back to it in the next section more in depth. Diffusion algorithms
have also been studied in this new network model. We will just cite important
literature about diffusion on dynamic networks by Bahi et al. [Bahi et al., 2005
] and Elsasser et al. [Elsasser et al., 2004]. Finally, Relaxed FOS algorithm
(called RFOS) [Bahi et al., 2003a] for dynamic networks has proven to be
faster than FOS. DE, GAE, FOS and RFOS on dynamic networks rely on
a simple yet very realistic hypothesis that no part of the network remains
disconnected during the application of the load balancing algorithm.

The analytical proof for load balancing termination on dynamic networks
relies on the definition of the communication graph for load balancing at time
t noted Gt. This graph contains all the edges that are used for load balancing
at time t. The superposed communication graph for load balancing between
times t and t + n, noted Gt,t+n, is then defined by the superposition of the
communication graph from time t to time t + n. The necessary and sufficient
condition for a load balancing algorithm to reach the load balance state on
dynamic networks is as follows: If for every t it exists an instant t + n such
that the superposed communication graph Gt,t+n is connected, then the load
balancing algorithm converges (please refer to [Bahi et al., 2003a] for the
proof; Vernier [Vernier, 2004] also gives a detailed proof in French).

9.4.2 Generalized adaptive exchange (GAE)

The GAE (Generalized Adaptive Exchange) [Bahi et al., 2005] is the adap-
tation of GDE for dynamic networks in which broken edges are considered.
There are many differences between GDE and GAE. First, GDE is based on
an edge-coloring while GAE is not. For a given node, at time t, a node does

252 Fundamentals of Grid Computing

not balance its load on an edge with color k but it balances its load with
any neighbor provided that this neighbor is not balancing its load with an-
other node at the same time. This modification is essential in the context of
a dynamic network. As an example, suppose that using GDE a processor i
must balance its load with its neighbor j on the edge of color k. If the edge
is broken then i will not be able to balance its load with j. But with GAE,
node i can balance its load with another node, say h, provided that the link
(i, h) is not broken and h is not balancing its load with one of its neighbors.
With GAE, load evolution of CE i evolves according to equation 9.13.

wt
i = wt−1

i + λ(wt−1
j − wt−1

i) if i communicates with a
neighbor j at time t

= wt
i if i does not communicate with (9.13)
any neighbor at time t

Authors showed that this can be done according to different policies, all of
which are only a particular case of FOS on dynamic networks and hence
the convergence of GAE is guaranteed under the same assumptions. The
outcome of these policies is a set of neighboring nodes pairs. The next few
sections explain briefly the different policies and more extensively the one that
is named most to least loaded.

9.4.2.1 Basic strategies

GAE can be performed according to three different policies named arbitrary,
random and most to least loaded (M2LL). The outcome of each of these
policies is a set of pairs (two neighbor nodes) that should exchange load.
The arbitrary policy consists in letting each CE choose a pair on the basis
of its highest/lowest identifier or by a round robin order (the edge-coloring
is simply a particular implementation of it). By the random policy, however,
the process of choosing a pair is probabilistic because a node randomly selects
one of its neighbors. This policy is similar to Random Polling which has been
broadly investigated by Sanders [Sanders, 1994] but only in static networks.

Finally, the most to least loaded policy (M2LL) consists in choosing as pairs
the two nodes of each neighborhood domain that have the greatest imbalance.
By tackling these imbalances precisely, the global imbalance is reduced in its
most important terms which in turn leads very fast to the balance state.

9.4.2.2 Most to least loaded policy (M2LL)

The outcome of M2LL is a finite set of pairs such that each one represents
two processors which have the greatest unbalance of their neighborhood. By
making these two nodes exchange some load, the objective is to tackle all
such unbalances and thus to reach a balanced state as quickly as a pair can
be formed. The GAE algorithm together with the M2LL policy can be seen
as a per-iteration implementation of GDE. In fact, M2LL creates, when it is

Load balancing algorithms for dynamic networks 253

invoked (generally before applying GAE), a virtual ad hoc coloring in which
nodes of each dimension are chosen in such a way, that the load they will ex-
change will lead to a fast convergence to the uniform load distribution. Fixed
pairs are different from one iteration to another according to load differences
between nodes and available alive links.

M2LL distributed algorithm (illustrated in algorithm 9.4.1) uses many con-
cepts and proceeds by stages. A short explanation will be given here; for a
full description please see [Bahi et al., 2006a]. The concepts are the decision
of a processor, the load order, the interest for load balancing, the best inter-
est, the most interesting processor, the degree of freedom of an interesting
processor and the preference of a processor. Each M2LL iteration has exactly
four stages. The first stage is simply load information exchange with avail-
able neighbors on living links. The second stage is named interest exchange
during which the best interest of each processor is exchanged within its neigh-
borhood Ni

t at timestep t . After that stage, each processor determines the
set of its best interesting processors Bi

t. The best interesting processor is
searched by the preference function which acts on Bi

t or on the set of less
loaded interesting processors Li

t ⊆ Bi
t if node i has the so-called “problem of

centered load.” This search and exchange constitute the third stage. Finally,
the best interesting processor identifier is exchanged between nodes of each
Bi, the pair processor is eventually found by each participating node and the
new status of each processor is exchanged within Ni

t. The notion of deci-
sion in conjunction with the existence of a pair is equivalent to the relation
“node i communicates with node j” that is used in the definition of the GAE
algorithm [Bahi et al., 2005].

In the first stage (lines 4-5), each processor exchanges load information
locally on alive links then keeps iterating (lines 10-27) within M2LL until it
finds a pair or knows that all its neighbors took their decision. During one
M2LL sub-iteration, a processor exchanges two kinds of messages: interest
exchange and decision messages. On line 13, the outcome of the preference
function is sent to adjacent nodes that are “not decided yet.” Finding the
most interesting processor allows each node to eventually find a pair. The
necessary condition is stated in line 16. In the last stage (lines 21-22), each
processor indicates to its neighbors, participating in the current M2LL sub-
iteration whether it has found a pair by a decision message. If so, its neighbors
that have not succeeded in taking their decision after the current sub-iteration,
remove it from their respective load orders.

Experimental results showed clearly that although GAE with M2LL policy
suffers from migration communication cost that should be reduced, it is still
faster than RFOS in dynamic networks and achieves a good quality of balance
comparable with that of DE or GDE on static networks.

254 Fundamentals of Grid Computing

Algorithm 9.4.1 Generalized Adaptative Exchange (GAE) with the M2LL
policy
1: decidedt

i(i) = false;
2: Pairt

i = UNKNOWN ; {GAE start}
3: for all j ∈ N t

i do
4: send(wt

i , j);
5: receive(wt

j);
6: end for{exchange load information with all living links}
7: bool localBalancet

i = ∀j ∈ N t
i : |wt

j − wt
i | ≤ 1;

8: if (localBalancet
i = false) then

9: {M2LL start}
10: while ¬ decidedt

i(i) do
11: Find the processor MostInterestingt

i ;{with the preference function}
12: for all j ∈ N t

i such that ¬ decidedt
i(j) do

13: send(MostInterestingt
i , j);

14: receive(MostInterestingt
j);

15: end for
16: Pairt

i = j ⇔ ∃j ∈ N t
i : ¬ decidedt

i(j) ∧ MostInterestingt
i =

j ∧ MostInterestingt
j = i {Find pairt

i}
17: if (Pairt

i 	= UNKNOWN) then
18: decidedt

i(i) = true;
19: end if
20: for all j ∈ N t

i such that ¬ decidedt
i(j) do

21: send(decidedt
i(i), j);

22: decidedt
i(j)=receive(decidedt

j(j));
23: end for
24: if (Pairt

i = UNKNOWN) then
25: decidedt

i(i) = ∃j ∈ N t
i : ¬ decidedt

i(j);
26: end if
27: end while
28: {M2LL end}
29: if (decidedt

i(i) = true) then
30: if (Pairt

i = j 	= UNKNOWN) then
31: wt+1

i = wt
i + λ(wt

j − wt
i);

32: else
33: wt+1

i = wt
i ;

34: end if
35: end if{GAE end}
36: migrate-load();
37: end if

Load balancing algorithms for dynamic networks 255

9.4.3 Illustrating the generalized adaptive exchange most to
least loaded policy on a dynamic network

In order to show more clearly how the GAE M2LL algorithm balances the
load in a dynamic network, let us proceed with an example. Figure 9.7 shows
in 9.7(a) the initial static network, nodes ids are noted outside and their load
is inside. We will follow the synchronous execution of GAE using a standard
exchange value λ = 1

2 even if an optimal value will be faster as was reported
in [Sider and Couturier, 2009].

(a) It t=0 (b) GAE it t=1 and M2LL it
t=1

(c) GAE It t=2 start (d) GAE it t=2 and M2LL it
t=1

(e) GAE It t=3 start (f) GAE it t=3 and M2LL it
t=1

FIGURE 9.7: GAE running with M2LL on an arbitrary dynamic network of
4 nodes.

At the beginning of every GAE iteration, the broken edges are supposed to
be known. For example in 9.7(b) the edge (2, 3) is broken. On every edge,
we can see the interest of each node extremity for the other node extremity.
The interest is a measure of the difference in load between two processors i, j

256 Fundamentals of Grid Computing

and is equal to |wj − wi|. For instance in Figure 9.7(b), the interest of node
3 for node 4 is 30 load units. Likewise Interest1(3) = 10, Interest3(1) = 10
and Interest1(2) = Interest2(1) = 30. The inbalance of a neighborhood is
captured by the best interest for load balancing which is simply the maximum
interest for a node. For example, for node 1 in Figure 9.7(b), BestInterest1 =
max{10, 30} = 30, for node 3 BestInterest3 = max{10, 30} = 30, likewise
BestInterest2 = max{30} = 30 and BestInterest2 = max{30} = 40.

At this stage every node knows the greatest imbalance in its neighborhood
and its imbalance with each of its neighbors so we can say that it is interested
in definitive by its neighbors that have the greatest imbalance; they form the
set of its interesting processors. For example, node 1 is interested by node 2
(the + sign in the figure) but not by node 3 (the - sign). Therefore B1 = 2
and B2 = 1. Similarly, B3 = 4 and B4 = 3. Only some steps are now nec-
essary to each node to find its pair. The pair of each node is searched for
in the set of its interesting processors. Before deciding on a pair, a single
step called the finding of the most interesting processor is performed. By this
operation, each node i selects one processor from Bi as a candidate pair. If
Bi is a singleton then things are rather simple; the only interesting proces-
sor is the most interesting processor for i8. This happens to be the case for
our nodes in this example so MostInteresting1 = 2, MostInteresting2 = 1,
MostInteresting3 = 4 and MostInteresting4 = 3. After this selection is
made, its result is exchanged between all nodes of the union of Bis. Now,
M2LL is about to reach its first iteration. Node 1 pair is 2 and (3, 4) is the
other pair. M2LL finishes and GAE can proceed. Load exchange results in
a new load distribution depicted in Figure 9.7(c). Notice that the global in-
balance that was 1

4 .
√

(10 − 20)2 + (40 − 20)2 + (0 − 20)2 + (30 − 20)2 ≈ 7.9
is reduced to 2.5 at the beginning of the second GAE iteration.

Indeed Figure 9.7(c) also shows that the network topology has changed at
the start of the GAE iteration 2. The link (2, 3) is now alive while (1, 3)
is broken. By following the same steps as we do for GAE iteration 1, nodes
search anew for pairs in M2LL iterations and again only one is needed in order
for all nodes to find a pair or to know that all their neighbors have taken their
decision (to find a pair or not to find a pair because all neighbors have pairs).
Figure 9.7(f) shows a particular load situation. Processor 3 has a problem of
centered load. Therefore he has to choose its most interesting processor in Li

which is the set of its underloaded interesting processors. At the end of M2LL
iteration 1, the pair (3,4) is formed and processor 3 informs CE 2 that it has
found a pair. In M2LL iteration 2, processor 2 finds that all its neighbors are
either on broken edges or have already (in previous M2LL iterations) found a
pair. It considers all of them as they have taken their decision. In its turn, it
can take its own decision : it will not have a pair for this GAE iteration. So

8If Bi is not a singleton then the preference function is used to select one by a sophisticated
mechanism.

Load balancing algorithms for dynamic networks 257

the distributed M2LL algorithm terminates after 2 iterations in this case. We
step over particular details of M2LL distributed algorithm like the use of the
degree of freedom of an interesting processor. The interested reader is invited
to refer to [Bahi et al., 2006a] for more details.

9.5 Implementation

The task of implementing a load balancing scheme and integrating it into a
distributed computation is not a trivial one. Fortunately, numerous libraries
and tools have been developped to simplify this task.

Figure 9.8 shows a generic model for distributed computations integrating
a load balancing algorithm and running on a Grid platform. This picture is
important in order to be aware of all the practical possibilities under hand.
Third party libraries for monitoring system performance such as SIGAR or
simple system unix API “pstat” (SYSTAT for linux) functions, in addition
to the grid middleware interface (DIET for example implements Chandra
and Toueg and Aguilera failure detector), can be of great help for efficient
implementations.

In this section, we will focus on precise aspects of implementing load bal-
ancing algorithms and their integration. After some considerations about
synchronous and asynchronous implementations, we will discuss in particular
diffusion and generalized dimension exchange implementations on static net-
works and corresponding algorithms for dynamic networks, RFOS and GAE.

Nevertheless, before implementing a load balancing algorithm in an appli-
cation, it is mandatory to measure the impact that the load migration will
have over data. In fact, it may be the case that load balancing alters the
topology of the communication. In the following we give a simple example.
Consider the following computation with a 3x3 block matrix where every node
sends/receives data to/from the nodes upward, downward, to the left and to
the right. So node 5 needs to communicate with nodes 2, 8, 4 and 6 (as il-
lustrated in Figure 9.9(a)). If node 5 sends a part of its load to processor 6,
then node 6 needs to communicate with nodes 2 and 8 (as shown in Figure
9.9(b)).

9.5.1 On synchronous and asynchronous approaches

When dealing with synchronous load balancing we should decide on the load
balancing frequency which defines how often the load balancing algorithm
should be run during the computation. This frequency has to be carefully
chosen because of the LB algorithm overhead and to other considerations.
Indeed, on the one hand, the overhead should be minimized and, on the other

258 Fundamentals of Grid Computing

FIGURE 9.8: A generic architecture for distributed computations with load
balancing on Grids.

7 8 9

654

1 2 3

Communication between 2 processors

(a) Scheme of communications before
load balancing

7 8 9

64

1 2 3

Communication between 2 processors

5

(b) Scheme of communications after
load balancing

FIGURE 9.9: Illustration of a modification of the topology of communications
due to a load migration.

Load balancing algorithms for dynamic networks 259

hand, the load balance state should be reached so that we earn the fruit of
integrating the LB algorithm which resumes definitely at minimizing the total
execution time. In addition, the available power computation may vary due
to other computations/background process in the system. So load balancing
should take into account this variability as frequently as possible which results
in an argument for a high frequency. In conclusion an aggressive approach
may affect negatively the computation while a lazy policy will not balance the
computation and will waste a potential improvement.

In the asynchronous approach, low and high thresholds should be defined.
They will help a CE to detect whether it is underloaded or overloaded. Sim-
ilarly to the exchange parameter value of GDE in arbitrary networks syn-
chronous implementations, setting the thresholds’ values remains a significant
aspect that will decide in fine on the gain in performance of asynchronous im-
plementations. Once again, the test and run approach is the only possible way
to carefully set the thresholds.

Finally, both in synchronous and asynchronous approaches, a migration
function/component is to be implemented. This forms an interface between
the LB function/componenent and the computation function/component. Its
role is to actually send or receive data and to update local information in
relation to the computation so that the computations can safely go on.

9.5.2 How to define the load for some applications

A precise measure of the available power of each CE participating in the
computation is a good starting point for a successful implementation. Some
existing libraries or an ad hoc measure (such as the CPU usage or the CPU
queue length) available in many operating systems catalogs and accessible to
any process through system API calls can do the job. Then the load should
be defined. Usually, this is done according to the computation model. For
example in the data parallel model, the number of data that are processed
by a CE constitutes its load. In the task model however, it is the number of
tasks that are executed by a CE that defines its load.

9.5.3 Implementation of static algorithms

The network topology has to be defined for each node of the computation.
Readers should be reminded that a node can be a machine or a process.
The topology is defined by letting each node know its direct neighbors in the
computation. For instance, in data parallel applications, the topology is often
a result of the data decomposition and mapping phases of the parallelization
procedure.

Once the topology is known, the degree of each node is considered to be
known and consequently Boillat’s diffusion load balancing can be directly im-
plemented. If the Xu’s optimized diffusion is to be implemented then optimal
diffusion parameters should be computed. This is especially possible when

260 Fundamentals of Grid Computing

the topology is of the k-ary n-cube class for which Xu et al. found optimal
diffusion parameter values.

For the GDE algorithm, however, an edge coloring should be carried out.
Network topologies of simple shape like the chain, the ring, the 2D mesh, the
torus, the 3D cube and the hypercube are very suitable for ad hoc a priori
edge coloring. For example, in a chain or ring of size n, two colors are needed.
Supposing that each CE has an integer identifier id, each processor can assign
colors to its incident edges based on its identifier. More precisely, a CE with
even id has color 0 with its right most edge and color 1 with its left edge.
And vice versa for CEs with odd id. Similar simple strategies can be defined
for the 2D meshes and tori which are colored with four colors. In addition
to edge coloring, the optimal exchange parameter value should be computed
in the network topologies of the k-ary n-cube class. If the network topology
is arbitrary then an edge coloring algorithm should be implemented and run
as an initial step before the load balancing algorithm can act. Additionally,
no optimal exchange parameter formulae exists for arbitrary networks so the
ADE scheme is the simplest approach for setting it. Notice that it may be
improved by a test approach and fixed definitely.

Finally, any load balancing algorithm and especially a totally distributed
one should be able to detect the balance state. This feature defines its termi-
nation detection property. Termination can be implemented in a centralized
way or a distributed one. The centralized approach is very simple to imple-
ment but carries all the disadvantages of centralized distributed algorithms.
Hence a distributed approach is desirable. In GDE (FOS) in particular, a
CE usually compares its load with that of its neighbor(s). With GDE, if the
difference is less or equal than one then load balance state with that neighbor
is detected. With FOS, however, the balance is detected if the difference (the
deficiency or overload) is less or equal to the degree of the considered node.
Note that this feature is totally distributed.

9.5.4 Implementation of dynamic algorithms

In dynamic networks, some links can come down and recover. So from the
point of view of running processes an additional burden should be tackled.
The developer should take care of letting processes know what alive links or
similarly broken links are. In practice, simple ad hoc dedicated mechanisms or
universal libraries that implement sophisticated ones such as failure detectors
can be of great help. A dedicated technique can be for example implemented
as follows: outgoing messages are sent by a hub function/component that can
monitor the delivery of each message to each neighbor. Messages that are
not acknowledged or timing out connections can be used as an indicator that
the link is broken. This information is then forwarded to the load balancing
algorithm that supports link failures. In synchronous implementations, this
should take place before each load balancing step.

In the following section, we report an experiment that Vernier achieved out

Load balancing algorithms for dynamic networks 261

with us during his PhD.

9.6 A practical example: the advection diffusion appli-
cation

The advection diffusion application solves a kinetic chemicals problem that
is described by means of a partial differential equation (PDE). The evolution
in space of the concentrations of two chemical species c1 and c2 during their
reaction is modeled by a PDE which has to be solved in order to trace them.
We consider a two dimensional space. A cartesian discretization of this space
is made to create a mesh. The PDE is then solved at each point of this mesh
in order to find the concentrations of the chemical species. The differential
system that permits to find the concentration is given by equation 9.14 where
i is used to distinguish the two chemical species

∂ci

∂t
= Kh

∂2ci

∂x2
+ V

∂ci

∂x
+

∂

∂z
Kv(z)

∂ci

∂z
+ Ri(c1, c2, t), (9.14)

and the terms Ri(c1, c2, t) are given by

R1(c1, c2, t) = −q1c
1c3 − q2c

1c2 + 2q3(t)c3 + q4(t)c2

R2(c1, c2, t) = q1c
1c3 − q2c

1c2 − q4(t)c2

When solving the problem the following values are used for the parameters
and the constants.

Kh = 4.0 × 10−6,
V = 10−3,
Kv(z) = 10−8exp(z/5),
q1 = 1.63 × 10−16,
q2 = 4.66 × 10−16,
c3 = 3.7 × 1016,

and the qj(t) are defined by:

qj(t) = exp[−aj/sin(ωt)] for sin(ωt) > 0
qj(t) = 0 for sin(ωt) � 0

where j = 3, 4, ω = π/43200, a3 = 22.62, a4 = 7.601. The time interval of
the integration is [0, 7200s]. The initial Neumann conditions are imposed and
are:

c1(x, z, 0) = 106α(x)β(z),
c2(x, z, 0) = 1012α(x)β(z)

with
α(x) = 1 − (0.1x − 1)2 + (0.1x − 1)4/2,
β(z) = 1 − (0.1z − 1)2 + (0.1z − 4)4/2

262 Fundamentals of Grid Computing

The space discretization allows to transform the PDE system into an ODE
system of the type

dy(t)
dt

= f(y(t), t) (9.15)

that models the equation 9.14. The problem thus turns out to that of solving
the ODE given by equation 9.15. By using the implicit Euler method to
discretize the equation 9.15, we obtain equation 9.16.

y(t + h) − y(t)
h

= f(y(t + h), t + h) (9.16)

When the function f is not linear, we cannot find the solution of this formula.
That is why the fixed point iterative Newton method is used to find the
quantities y(t + h). This achieves our brief explanation of the mathematical
solution. For a detailed explanation please refer to [Vernier, 2004].

For this problem, the discretization mesh is stored in a vector y. The vector
y is defined as :

y = (c1
11, c

2
11, . . . , c

1
Mx1, c

2
Mx1, c

1
12, c

2
12, . . . , c

1
1Mz , c

2
1Mz , . . . , c

1
MxMz , c

2
MxMz),

where Mx and Mz are respectively the number of elements on the axes x and
z of the two dimensions. Thus, a concentration ci

jk, the concentration of the
chemical species i at the coordinates jk, is located in the vector y at position
(j − 1 + (k − 1) ∗ Mx) ∗ 2 + i.

The yj functions (with j ∈ {1, . . . , 2∗Mx∗Mz}) allowing to determine the
evolution at each point of each chemical species are consequently also seen as
spatial components in the following.

In order to make this model clear, let us take the example of Figure 9.10
where we discretize the considered space in 2 elements on the x axis (Mx = 2)
and in 2 elements on the z axis (Mz = 2). The resulting vector is then
constituted of 8 elements (concentrations) noted Ci jk (where i represents
the considered species and jk the coordinates of the element).

Once the vector y is built, the process of solving the ODE system is sim-
ply the implementation of the different steps presented above. The algorithm
runs in several major time steps, and each one of these steps is staged in
three steps: the first one consists in discretizing the ODE with an implicit
method of Euler’s method, the second one consists in obtaining a linear sys-
tem with Newton’s method and finally the last one aims at solving the re-
sulting linear system. In order to solve the linear system, we use GMRES
method (Generalized Minimum RESidual) which is available as part of the
sparseLib+ + [Dongarra et al., 1994] matrix calculus library. The constants
of the problem (the time step, the resolution interval, . . .) are given above;
we also set a threshold ε under which we consider that the linear system has
converged. The reader should notice that the solving of our problem is doubly
iterative: The first iteration is for the Newton’s method and the second for
solving the resulting linear system.

Load balancing algorithms for dynamic networks 263

Resulting

Vector

y

x

x

z

zz

Space Discretization of species 1

Space Discretization of species 2

C1_11 C1_21

C1_12 C1_22

C2_11 C2_21

C2_12 C2_22

C1_11

C2_11

C1_21

C2_21

C1_12

C2_12

C1_22

C2_22

FIGURE 9.10: Space discretization of the mesh.

264 Fundamentals of Grid Computing

The distributed solution of this problem needs data partitioning (i.e., de-
composition) and mapping. Several methods are possible, the classical ones
being a decomposition according to the axes. In our case, we choose to parti-
tion according the z axis, because this axis is the simplest with respect to data
decomposition and gives us an important advantage for load balancing. Other
classical methods consist in decomposing according to the x axis or according
to both axis. Figure 9.11 shows how the y vector is partitioned and how its
entries are mapped on two 02 CEs. The decomposition that we have chosen
implies a communication topology having a chain shape: a processor/machine
has always two neighbors, one to the left and the other to the right except for
the ones furthest to the left or to the right. So the load balancing is performed
on one dimension and is easy to implement. Should the data decomposition
have been done according to both axis, the implementation would have been
clearly not trivial because the communication topology might have changed.

P0 P1

x

z

P0

P1

In the y vector

In the mesh

Space partitionning along the z axis

FIGURE 9.11: Partitioning of y and mapping of its elements on different
processors.

9.6.1 Load balancing and the application

When integrating a load balancing algorithm to a distributed application,
the first thing to do is to define what the load of each CE is. In our case, we
chose to define it by the number of elements of the y vector that are computed

Load balancing algorithms for dynamic networks 265

by a CE. Secondly, the available computation power must be appropriately
measured. We choose to compute the average execution time of Newton itera-
tions at the beginning of each major time step.9 This choice has the advantage
of estimating the computation power of the CE available for our application
taking naturally into account the nominal computation power of each CE, its
memory availability and latency and of background process/external applica-
tions. The load migration process will transfer y elements between processors
so that the global execution time over the integration interval is minimum.
The amount of transfers in turn is determined by the load balancing ex-
change/diffusion parameter. We recall that the load balancing runs in a chain
communication model, i.e., a CE hands off load units for his left and to his
right neighbor (by alternating between them with GDE and by considering
them both with FOS).

Because we wanted to solve the advection diffusion problem for various
discretization steps (by using different values for Mx), we have discarded
the methods that need a dynamic looking up step for an optimal relax-
ation/diffusion parameter (RFOS and SOS). Our choice has been the opti-
mally tuned diffusion algorithm with α = 0.5 which is equivalent with ADE
on the chain. For this static network context experiment, as we pointed it out,
a load balancing frequency should be defined. We chose as we have pointed
to compare a load balancing step every major step against a load balancing
step every 3 major steps. The distributed application has then been run on a
cluster computing environment featuring several workstations with different
nominal computing powers (2.4GHz, 2.6Ghz and 1.7GHz) and communicating
over a 100 MB/s Ethernet network. The computers were almost dedicated
to the computation; only a few not heavy background processes were running
with our computation. First, the results of runs on 4 workstations with differ-
ent powers using different values of Mx featuring the gain of load balancing
are depicted in Table 9.3.

Many observations can be made for these results. We will cite some of them
here. The first is that the obtained gain is important especially for large sized
problems. Secondly, the lazy load balancing frequency makes generally less
gain when compared to the rather aggressive frequency. But only generally;
when the problem size grows, it tends to have the same gain (cf. the last
column). This can be easily explained by the problem size/frequency ratio
that enables the LB to be effective. The LB algorithm needs to run a given
number of iterations to balance the load. If this number is not reached because
the problem size is small (the problem is solved before the LB algorithm can
do its job) or the frequency is small than the gain is modest. Otherwise, the
LB algorithm proves its usefulness.

9Consequently we also decide when to take into account the variability of the available
computation power.

266 Fundamentals of Grid Computing

Mesh size : x x z 100 200 300 400 500 600 700
Without LB 11.4 75.3 266 628 1391 2656 4541
With LB (1) 11 72.7 253 603 1243 2285 3774
Gain with LB (1)(%) 3 3 5 4 10 14 17
With LB 1/3 (2) 10.8 72.8 255 608 1261 2326 3766
Gain with LB(2)(%) 3 3 5 3 9 12 17

Table 9.3: Execution times (s) for the advection-diffusion problem according
to the size of the problem with different LB frequencies in a static chain
network.

9.6.2 Load balancing in a dynamic network

For a dynamic network context, a lot of changes were introduced to the
application, among which the most important is desynchronizing the appli-
cation (making it asynchronous) if the application has good properties en-
suring asynchronous convergence, see [Bertsekas and Tsitsiklis, 1989]. From
the programming point of view, this begins by making the communications
non-blocking. Indeed, in a dynamic network, if a message is lost then the
computations should proceed (a particular CE should not block waiting for
a message otherwise it might block indefinitely or at least for a long time).
In the particular case of scientific iterative computations, this corresponds to
enabling the processors to run different iterations of an iterative algorithm. If
a message is received during the computations then its content is integrated
on the fly to the current iteration, otherwise older values of data 10 are used
instead. In our case, the Newton iterations are run asynchronously but dis-
cretized time steps remain synchronous. Notice that a special a priori study
must be carried out on the suitability of the asynchronism for the target ap-
plication – this has been obviously made for the advection-diffusion problem.
The suitability is governed by very strict yet realistic conditions that must
be met by the application. Finally, the convergence detection of the LB al-
gorithm has been modified to meet the asynchronism of the application. The
new algorithm avoids local optima of convergence11 too.

In a first step, we kept our definitions of the available computation power
of a CE but preliminary results showed that the LB algorithm results in poor
performance. By analyzing the problem, we pointed out that our definition of
the available computation power has to be adapted. We changed it accordingly
so that it now reflects the necessary time for a CE to converge definitely in its
Newton iterations. Notice also that we use a synchronous LB implementation
so there is no need for thresholds to be defined and tuned. The LB iterations

10For which the not arriving message should have brought new values.
11A CE believes the uniform load distribution is reached but it’s only temporary.

Load balancing algorithms for dynamic networks 267

take place at each major time step.

Results for this asynchronous context are shown in Table 9.4. This shows
again the usefulness of load balancing for asynchronous implementations even
when no broken edges happen. The gain varies from 10% to more than 25%
even if some disturbances can be noticed for meshes greater than 400x400 for
reasons that would be too long to explain here.

Problem size : x x z 100 200 300 400 500 600 700
Without LB 22.8 117 396 936 1757 3283 5066
With LB 20 94 307 692 1418 2930 4525
Gain with LB (%) 12 20 22 26 19 11 11

Table 9.4: Execution times (s) of the advection-diffusion problem according
to different sizes in an asynchronous implementation.

In the last steps of our work, we introduced some tricks to simulate the
temporary link failures. Our asynchronous Advection-diffusion application
supports message loss but not definite link failures. But the load balancing
algorithm is run synchronously so it does not support message loss but does
support link failures. In order to adapt to both we created message delays in
the communication layer. This causes some messages to be undelivered which
is supported by the asynchronous advection-diffusion and the load balancing
algorithm considers links which have delays as broken so it does not send
messages to them. In practice, we delayed the messages every two (2) major
timesteps. The available computation power is again measured by the time
necessary for the Newton iterations to definitely converge.

Problem size : x x z 100 200 300 400 500 600 700
Without LB 45.2 727 1777 2487 4090 7203 9630
With LB 43.9 719 1413 2148 3605 6314 8210
Gain with LB (%) 3 1 20 14 12 12 14

Table 9.5: Execution times of the advection-diffusion problem according to
different sizes in an asynchronous implementation on a dynamic network.

We can notice little impact of link failures on the gain obtained by load
balancing. If we compare the results for static networks from Table 9.3 to the
results of Table 9.5 we can see that the load balancing gain is almost quasi
equivalent. But the execution times are very different, this is the raw impact

268 Fundamentals of Grid Computing

of link failures on the computations.

9.7 Concluding remarks

In this chapter, the latest state of the art load balancing algorithms for
static and dynamic networks have been reviewed and discussed. Load balanc-
ing has been devised as a technique to turn the heterogeneity of computing
elements into an advantage by allowing their efficient use. Originally, LB
algorithms run on cluster computing environments which evolved since then
to Grid Computing environments. Nowadays, grid computing technologies
continue their spread in two directions. In the vertical plane, Grid oriented
developing tools and running environments are made accessible and afford-
able. In the horizontal one, new applications are developed. Current Grid
architectures are generally formed by connecting distant clusters by point to
point communication links over public networks like the Internet. Computing
nodes are generally considered to be highly available but not the links. This
context shows the background picture that motivated the design of new load
balancing algorithms that support link failures in what is commonly known
as dynamic networks.

Nowadays, due to the high cost associated with Grid architecture and the
huge popularity of peer-to-peer file sharing systems, a new approach to run-
ning computations in a potentially infinite number of machines is receiving
more and more attention. Besides, the attraction of peer-to-peer computing
raises the same issues of developing tools and running environments. Amongst
important missions to carry is new load balancing algorithms that support
both link and node failures. An important step into this direction has been
already taken with load balancing algorithms that support a variable number
of nodes, see [Bahi et al., 2007]. We look forward to implementing and test-
ing these algorithms in computing environments that support node failures
like the JACE (Java Asynchronous Computing Environment) environment.
JACE is a java library that permits easy programming of grid aware scientific
distributed software. It supports (non-) blocking communications and sophis-
ticated distributed convergence detection, i.e., important things to make a
distributed application support dynamic networks.

Load balancing algorithms for dynamic networks 269

9.8 References

[Aiello et al., 1993] Aiello, W., Awerbuch, B., Zkfaggs, B., and Rao, S. (1993).
Approximate load balancing on dynamic and asynchronous networks. In
Proceedings of the 25th Annual ACM Symposium on Theory of Computing,
pages 632–641.

[Bahi et al., 2006a] Bahi, J., Couturier, R., and Sider, A. (2006a). Design
and analysis of the M2LL policy distributed algorithm for load balancing
in dynamic networks. In Proceedings of the 2006 International Parallel and
Distributed Processing Symposium (IPDPS 2006), volume 4331 of Lecture
Notes in Computer Sciences, pages 195–204, Heidelberg. Springer-Verlag.

[Bahi et al., 2003a] Bahi, J., Couturier, R., and Vernier, F. (2003a). Accel-
erated diffusion algorithms on general dynamic networks. In Proceedings
of 5th International Conference (PPAM), volume 3019 of Lecture Notes in
Computer Sciences, pages 77–82, Czestochowa, Poland. Springer-Verlag.

[Bahi et al., 2003b] Bahi, J., Couturier, R., and Vernier, F. (2003b). Bro-
ken edges and dimension exchange algorithm on hypercube topology. In
Proceedings of the 11th Euromicro Conference on Parallel, Distributed and
Network-Based Processing (Euro-PDP’03).

[Bahi et al., 2005] Bahi, J., Couturier, R., and Vernier, F. (2005). Syn-
chronous distributed load balancing on dynamic networks. Journal of Par-
allel and Distributed Computing, 65:1397–1405.

[Bahi et al., 2007] Bahi, J., Couturier, R., and Vernier, F. (2007). Syn-
chronous distributed load balancing on totally dynamic networks. In Pro-
ceedings of the 2007 International Parallel and Distributed Processing Sym-
posium (IPDPS 2007), pages 1–8. IEEE International.

[Bahi et al., 2006b] Bahi, J., Couturier, R., and Vuillemin, P. (2006b). Solv-
ing nonlinear wave equations in the grid computing environment: an ex-
perimental study. Journal of Computational Acoustics, 14(1):113–130.

[Bahi and Gaber, 2001] Bahi, J. and Gaber, J. (2001). Load balancing on
networks with dynamically changing topology. In Proceedings of the 7th
International Europar Conference on Parallel Processing, pages 175–182,
Manchester. Lecture Notes in Computer Sciences.

[Bertsekas and Tsitsiklis, 1989] Bertsekas, D. and Tsitsiklis, J. (1989). Par-
allel and distributed computation: numerical methods. PrenticeHall, Engle-
wood Cliffs, NJ, USA.

[Boillat, 1990] Boillat, J. (1990). Load balancing and Poisson equation in a
graph. Concurrency: Practice and Experience, 2(4):289–313.

270 Fundamentals of Grid Computing

[Cortes et al., 1999] Cortes, A., Ripoll, A., Senar, M., and Luque, E. (1999).
Performance comparison of dynamic load-balancing strategies for dis-
tributed systems. In Proceedings of the 32th Hawaii International Con-
ference on System Sciences, volume 8, pages 8041–8051. IEEE Computer
Society.

[Cybenko, 1989] Cybenko, G. (1989). Dynamic load balancing for distributed
memory multiprocessors. Journal of Parallel and Distributed Computing,
7(2):279–301.

[Diekmann et al., 1999] Diekmann, R., Frommer, A., and Monien, B. (1999).
Efficient schemes for nearest neighbor load balancing. Parallel Computing,
25(7):789–812.

[Dongarra et al., 1994] Dongarra, J., Lumsdaine, A., Pozo, R., and Reming-
ton, K. (1994). A sparse matrix library in C++ for high performance archi-
tectures. In Proceedings of the 2nd Object Oriented Numerics Conference,
pages 214–218.

[Elsasser et al., 2002] Elsasser, R., Monien, B., and Preis, R. (2002). Dif-
fusion schemes for load balancing on heterogeneous networks. Theory of
Computing Systems, 35:305–320.

[Elsasser et al., 2004] Elsasser, R., Monien, B., and Schamberger, S. (2004).
Load balancing in dynamic networks. In Proceedings of the 7th International
Parallel and Distributed Processing Symposium (I-SPAN’04), pages 193–
200. IEEE Computer Society.

[Fiorini and Wilson, 1978] Fiorini, S. and Wilson, R. (1978). Edge-coloring
of graphs. In Beineke, L. and Wilson, R., editors, Selected topics in graph
theory, New York, USA. Academic Press.

[Geist et al., 1994] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek,
R., and Sunderam, V. (1994). PVM: a users’ guide and tutorial for net-
worked parallel computing. MIT Press.

[Ghosh et al., 1996] Ghosh, B., Muthukrishnan, S., and Schultz, M. (1996).
First and second order diffusive methods for rapid, coarse, distributed load
balancing. In Proceedings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 72–81, Padua, Italy. Sigact/Sigarch.

[Gropp et al., 1994] Gropp, W., Lusk, E., and Skjellum, A. (1994). Using
MPI: portable parallel programming with the message passing interface.
MIT Press.

[Henrich, 2004] Henrich, D. (2004). Local load balancing according to a sim-
ple liquid model. Technical report, Institute for Real-Time Computer Sys-
tems and Robotics, University of Karlsruhe, D-76128 Karlsruhe, Germany.

Load balancing algorithms for dynamic networks 271

[Hosseini et al., 1990] Hosseini, S., Litow, B., Malkawi, M., McPherson, J.,
and Vairavan, K. (1990). Analysis of a graph coloring based distributed
load balancing algorithm. Journal of Parallel and Distributed Computing,
10(2):160–166.

[Kumar et al., 1991] Kumar, V., Ananth, G., and Rao, V. (1991). Scalable
load balancing techniques for parallel computers. Technical report, Depart-
ment of Computer Science, University of Minnesota, USA.

[Lin and Keller, 1987] Lin, F. and Keller, R. (1987). The gradient model load
balancing method. IEEE Transactions on Software Engineering, 13(1):32–
38.

[Rotaru and Nageli, 2004] Rotaru, T. and Nageli, H. (2004). Dynamic load
balancing by diffusion in heterogeneous systems. Journal of Parallel and
Distributed Computing, 64:481–497.

[Sanders, 1994] Sanders, P. (1994). Analysis of random polling dynamic load
balancing. Technical report, Lehrstuhl Informatik Ingenieure und Natur-
wissenschaftler. University of Karlsruhe, D–76128 Karlsruhe, Germany.

[Sider and Couturier, 2009] Sider, A. and Couturier, R. (2009). Fast load
balancing with the most to least loaded policy in dynamic networks. Journal
of SuperComputing. (in press).

[Varga, 1962] Varga, R. (1962). Matrix iterative analysis. Automatic Com-
putations. PrenticeHall, Englewood Cliffs, NJ, USA.

[Vernier, 2004] Vernier, F. (2004). Algorithmique itérative pour l’équilibrage
de charge dans les réseaux dynamiques. PhD thesis, Université de Franche-
Comté, France.

[Willebeek-LeMair and Reeves, 1990] Willebeek-LeMair, M. and Reeves, A.
(1990). Local versus global strategies for dynamic load balancing. In Pro-
ceedings of the International Conference on Parallel Processing, pages 569–
570.

[Willebeek-LeMair and Reeves, 1993] Willebeek-LeMair, M. and Reeves, A.
(1993). Strategies for dynamic load balancing on highly parallel computers.
IEEE Transactions on Parallel and Distributed Systems, 4–9:979–993.

[Xu and Lau, 1992] Xu, C. and Lau, F. (1992). Analysis of the generalized
dimension exchange method for dynamic load balancing. Journal of Parallel
and Distributed Computing, 16(4):385–393.

[Xu and Lau, 1994] Xu, C. and Lau, F. (1994). Optimal parameters for load
balancing with the diffusion method in mesh networks. Parallel Processing
Letters, 4(2):139–147.

272 Fundamentals of Grid Computing

[Xu and Lau, 1996] Xu, C. and Lau, F. (1996). Load balancing in parallel
computers: theory and practice. Kluwer Academic Publishers, Boston, MA,
USA.

[Xu et al., 1995] Xu, C., Monien, B., Lüling, R., and Lau, F. (1995). Nearest
neighbor algorithms for load balancing in parallel computers. Concurrency:
Practice and Experience, 7:707–736.

Appendix A

Implementation of the replication
strategies in OptorSim

Thi-Mai-Huong Nguyen
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

Frédéric Magoulès
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

A.1 Introduction . 273

A.2 Download . 274

A.3 Implementation . 274

A.4 How to execute the simulation . 276

A.1 Introduction

Three replication strategies proposed in the Chapter 3, i.e., MaxDAR-Pb,
MaxDAR-Pz and MaxDAR-C, based on the MaxDAR algorithm were im-
plemented using the grid simulator OptorSim v2.0.1. In this appendix, we
present the implementation of the replication strategies in OptorSim and give
a brief example on how the simulation is executed to evaluate them.

The grid simulator OptorSim is written in the Java programming language
and originally developed as part of the European DataGrid (EDG) project.
The OptorSim provides APIs for simulation of any grid topology and job
execution by means of a few configuration files. Several job scheduling and file
replication algorithms are implemented in OptorSim as replica optimizers and
more can easily be added. We have implemented three MaxDAR optimizers
as three new replica optimizers in OptorSim. The detailed architecture of
OptorSim was introduced in Section 3.3.

273

274 Fundamentals of Grid Computing

A.2 Download

Please see the section “Downloads” on http://sourceforge.net/projects/

optorsim for source download or contact directly the authors.

A.3 Implementation

A.3.1 OptorSim implementation

There are two different types of optimization which may be investigated
using OptorSim: the scheduling algorithms used by the resource broker to
allocate jobs, and the replication algorithms used by the replica manager at
each site to decide when to replicate a file, which file to replicate and which
to delete. The overall aim is to reduce the time it takes jobs to run, and also
to make the best use of grid resources. In the short term, an individual user
wants their job to finish as quickly as possible, but in the long term the goal
is to have the data distributed in such a way as to improve job times for all
users, thus giving the greatest throughput of jobs. The scheduling algorithm
and replication strategies currently implemented are listed in Table A.1.

Scheduling Replication
Random - schedule to random site No replication
Access Cost - site where time to access
all files required by job is shortest

Least Recently Used (LRU) - always replicate,
delete least recently used file

Queue Size - site where job queue is
shortest

Least Frequently Used (LFU) - always repli-
cate, delete least frequently used file

Queue Access Cost - site where access
cost for all jobs in queue is shortest

Economic model (Binomial) - replicate if eco-
nomically advantageous, using binomial pre-
diction function for file values

Economic model (Zipf) - replicate if econom-
ically advantageous, using Zipf-based predic-
tion function

Table A.1: Scheduling algorithm and replication strategies implemented in
OptorSim.

Each scheduling and replication algorithm is implemented as a separate re-
source broker or replica optimizer class respectively and the appropriate class
is instantiated at runtime, making the code highly extensible. In OptorSim,
each computing element is represented by a thread, with another thread act-

Implementation of the replication strategies in OptorSim 275

ing as the resource broker. The resource broker sends jobs to the computing
elements according to the specified scheduling algorithm and the computing
elements process the jobs by accessing the required files, running one job at
a time until they have finished all their jobs.

A.3.2 MaxDAR implementation

Figure A.1 shows the class diagram of implemented replica optimizers in-
cluding MaxDAR replication strategies which are proposed in this appendix.

#chooseFileToDelete:DataFile
+getBestFile:DataFile

ReplicatingOptimiser

SkelOptor

+getBestFile:DataFile
+getAccessCost:float

SimpleOptimiser

+getBestFile:DataFile
+getAccessCost:float

Optimisable
interface

#chooseFileToDelete:DataFile

LfuOptimiser

+getBestFile:DataFile
#chooseFileToDelete:DataFile

LruOptimiser

+getBestFile:DataFile

#chooseFileToDelete:DataFile
+getBestFile:DataFile

EcoZipfModelOptimiser

#chooseFileToDelete:DataFile

EcoBinModelOptimiser

+getBestFile:DataFile

+getBestFile:DataFile

EconomicModelOptimiser

+worthReplicating:boolean
+getBestFile:DataFile
+worthReplicating:boolean

MaxDAR_Optimiser

MaxDARC_Optimiser

#chooseFileToDelete:DataFile
+getBestFile:DataFile

#chooseFileToDelete:DataFile

MaxDARPb_Optimiser

+getBestFile:DataFile
#chooseFileToDelete:DataFile

+getBestFile:DataFile

MaxDARPz_Optimiser

FIGURE A.1: Class diagram of implemented replica optimizers.

Figure A.2 illustrates the sequence diagram of a computing element’s file
request. When a file is needed, the computing element calls the getBestFile()
method of the replica optimizer being used. The replication algorithm is then

276 Fundamentals of Grid Computing

used to search for the “best” replica to use, and the file is either replicated
to the local site or read remotely. In case there is not enough free space,
the replica optimizer determines whether the data should be replicated to
local storage and which replicas should be removed by calling the choose-
FilesToDelete() method. This method invokes the filesToDelete() method of
MaxDAR optimizer which in turn evaluates the benefits and storage cost of
the chosen files to be deleted by calling the getProfit() and getStorageCost()
methods. These two methods use the evaluateRank() method which returns
the rank of the file according to its popularity or correlation with other files.
The replica optimizer removes the chosen files for the new replica if the repli-
cation benefit is greater than the replacement loss.

ComputingElement

computingElement
maxdarOptimiser
MaxDARPb_Optimiser
MaxDARPz_Optimiser
MaxDARC_Optimiser

replicaOptimiser

Optimisable

rankBasedSE
RankBasedStorageElement

MaxDARPb_StorageElement
MaxDARPz_StorageElement
MaxDARC_StorageElement

maxdarSE

getBestFile() returns the
location of the file to read,
possibly after replication
has occurred.

(DataFile,StorageElement)

1: getBestFile(String,float):DataFile

4: evaluateRank(DataFile)

5: deleteFilesForNewReplica

6: readAndProcessFile

+getProfit(DataFile)
+getStorageCost(DataFile)

3: filesToDelete(DataFile)

2: chooseFilesToDelete

FIGURE A.2: Sequence diagram of a CE’s file request.

A.4 How to execute the simulation

OptorSim can be run from the command line to provide a number of statis-
tics:

• Total and individual job times

• CE usage

• Number of replications, local and remote file accesses

Implementation of the replication strategies in OptorSim 277

• SE usage

The appropriate statistics are output on the level of the grid, individ-
ual sites and site components. In order to run the simulation, the class
org.edg.data.replication.optorsim.OptorSimMain needs to be launched us-
ing the configuration file included in the conf directory. The output of the
simulation performed in this chapter is placed in the samples/data directory.

Appendix B

Implementation of the simulator for
the distributed scheduling model

Lei Yu
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

Frédéric Magoulès
Applied Mathematics and Systems Laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92295 Châtenay-Malabry, France

B.1 Introduction . 279
B.2 Download . 279
B.3 Implementation . 280

B.4 How to execute the simulation . 282

B.1 Introduction

The simulator is programmed in C and it is composed of three parts of
functional files. The first is masterslaver1.c which creates the simulation
environment and all the needed hosts. The sched_struct.c and gestemessage.

c provides the basic functions of the simulation. Last, the ma.c, la.c, sla.c,
sed.c, calculer.c and client.c simulate the functionality and algorithm of
each type of server in the distributed scheduling system.

B.2 Download

Please see the section “Downloads” on http://sourceforge.net/projects/

simulator for source download or contact directly the authors.

279

280 Fundamentals of Grid Computing

B.3 Implementation

B.3.1 Data structures

In order to facilitate the programming, several data structures are defined:

• channel_t: The names of the channels used in the simulation.

• s_PSL(*): The structure type of LSP that can be used to construct the
tree structure of scheduling system. When a child of the failed scheduler
detects the failure of its father, the child creates the tree structure of
system, and uses this tree structure to find out its new father.

• s_PSL_seri(*): The serialized LSP. It is transferred as a message be-
tween schedulers.

• s_PTC_seri(*): The serialized CTP which is created by ma using the
received s_PSL_seri_t from its children, and is transferred regularly to
all its children.

• s_Job_status(*): The structure to maintain job state information.

• s_message(*): It is the structure that is used to create messages needed
to be transferred.

B.3.2 Functions

B.3.2.1 Messages operations

• s_message_tcreate_message(*,*,*,*,*,*,*,*): Create the s_message

structure and return a s_message_t.

• s_message_tcopy_message(*): Create a copy of message.

• voiddestroy_message(*): Destroy message structure and free the allo-
cated memory to the operating system.

• intprocess_send_task(*,*): Define the sending message operations and
is used by MSG_process_create to create a process to send a message

• s_message_tget_message(*,*): Get message from a channel. The mas-
sage can be got in the manner synchronous or asynchronous.

Implementation of the simulator for the distributed scheduling model 281

B.3.2.2 Simulator defined structures operations

• s_PSL_seri_tPSL_seri_data_create(*): Create a s_PSL_seri structure.

• s_PSL_seri_tPSL_seri_data_copy(*): Create a copy of s_PSL_seri struc-
ture.

• voidPSL_seri_data_destroy(*): Destroy a s_PSL_seri structure.

• s_PTC_seri_tPTC_seri_data_create(void): Create a s_PTC_seri struc-
ture.

• s_PTC_seri_tPTC_seri_data_copy(*): Create a copy of s_PTC_seri struc-
ture.

• voidPTC_seri_data_destroy(*): Destroy a s_PTC_seri structure.

• s_PSL_tPSL_data_create(*): Create a s_PSL structure.

• s_Job_status_tJob_data_create(*,*,*): Create a s_Job_status struc-
ture.

• s_Job_status_tJob_data_copy(*): Create a copy of s_Job_status struc-
ture.

• s_PTC_seri_tPTCseri_create_from_topologie_locale(*): Create a s_

PTC_seri structure and initiate the structure according to all its chil-
dren’s s_PSL_seri.

• s_PSL_seri_tPSLseri_create_from_topologie_locale(*,*): Create a s_

PSL_seri structure and initiate the structure according to all its chil-
dren’s s_PSL_seri.

B.3.2.3 Tree structure operations

• s_PSL_ttopologie_create_from_PTCseri(*): Create the tree structure of
system and return a s_PSL_t as the root of the tree.

• s_PSL_tfind_me(*,*): Find the host itself in the tree structure.

• m_host_tget_host_from_ID(*,): Find the host in the tree structure ac-
cording its ID.

• voiddestroy_tree(*): Destroy the tree structure and free the allocated
memory to the operating system.

282 Fundamentals of Grid Computing

B.3.2.4 Applications deployment operations

• int*create_application_list_from_PSLseri(*,*): Create the deployed
applications list from the s_PSL structure.

• int*get_application_array(*,*,*): Get the deployed applications list
in a host.

• intis_application_found(*,*,*): Find whether an application is in the
applications list.

B.3.2.5 Miscellaneous operations

• voidadd_son(*,*): Insert a child’s s_PSL into its children’s list.

• intdel_son(*,*): Delete a s_PSL from its children’s list.

• voidjob_info_print(*): Print job information according to the job’s
complete sequence.

• voidjob_average_print(*): Print average information of jobs according
to the job’s type.

B.4 How to execute the simulation

The simulator is developed in language C based on the top of the toolkit
SimGrid. The installation and execution of this simulator must be effec-
tuated after the installation and configuration of SimGrid. This simulator
implemented the simulation of a distributed dynamic scheduling algorithm
with fault tolerance (DDFT); the users can modify the source to achieve their
own scheduling algorithm.

In the directory source, a make file is created. The users must first set the
INCLUDES and DEFS variables to the path of installed SimGrid toolkit in the
makefile. Then the users can use the command make to compile the source and
create the execution file, lance, of the simulator. After having created the file
lance, the command ./lanceplatform.xmldeployment.xml is used to start the
simulation. In the directory sample, a platform.xml file and a deployment.xml

file have been saved as the samples of this simulation. At the end of simulation,
the experimental results will be shown in a table format.

Glossary

A

Abstract job object (AJO) is a Java object that allows users to define jobs
independent from the system. The jobs created by the clients
are encapsulated as AJO.

Aggregate directory is a collective repository for the resources present in
the grid. GRIS and GIIS are examples of aggregate directories
in MDS.

Aggregator services are the services built on top of the aggregator frame-
work that use aggregator sources to collect data. They can be
queried to find information about resources in the grid using
XPath queries.

Aggregator sources are Java classes that are part of the aggregator frame-
work of MDS. They implement an interface to collect XML for-
matted data from registered information providers (IPs).

AHEFT is a heterogeneous earliest finish time-based adaptive reschedul-
ing strategy for grid workflows. It reschedules the jobs in the
workflow by monitoring the performance of the jobs in the work-
flow and by discovering newly available resources in the grid.

Authentication is the process by which an entity establishes its identity to
the other entities in the network.

Authorization is the verification of the privileges assigned to an entity to
access the resources and services provided by other entities in
the grid.

B

Backfill algorithm is a scheduling algorithm that tries to find a job that
can be started with the current available resources if the job at

283

284 Fundamentals of Grid Computing

the head of the queue cannot be started due to lack of resource
availability. This should not delay the scheduled start of the job
at the head of the queue.

Berkeley database information index (BDII) is an LDAP server that gath-
ers information from individual GIIS. It contains a grid-level view
of all the resources available in the grid.

C

Certificate revocation list (CRL) is a list of the serial numbers of the X.509
digital certificates that cannot be trusted because their validity
has ended or because of some fraud.

Certifying authority (CA) is a trusted third party in the PKI that issues
digital certificates to individuals and organizations.

Chain of trust is the process of trust establishment between an entity and
a CA. This is done by verifying the correctness of the public
key of the CA by tracing it upwards to another CA in the PKI
hierarchy trusted by the entity.

Communication overhead is the additional processing time spent by the
system for control checking and error checking. For parallel com-
putation, data exchange between the independent nodes consti-
tutes the communication overhead.

Computing element (CE) is a grid resource that carries out the execution
of a job.

Condor pool is a collection of agents, resources, and matchmakers.

Confidentiality refers to the hiding of sensitive information from the entities
that do not have the rights to access them. It can be done either
at the message level or at the transport level.

Credential delegation is the process of delegating one’s complete or partial
privileges to another entity in the grid. This allows the entity
to access the resources on the behalf of the entity delegating the
credential. Proxy certificates are used for credential delegation.

D

Data replication service (DRS) is a service to provide a pull-based replica-
tion capability for grid files. It is a high-level data management
service built on top of two GT data management components:

Glossary 285

the Reliable File Transfer (RFT) Service and the Replica Loca-
tion Service (RLS).

Directed acyclic graph (DAG) is a graphical representation of dependen-
cies among tasks in a grid workflow. The nodes of a DAG repre-
sent the tasks and the directed edges represent the data depen-
dencies.

Directed acyclic graph manager (DAGMan) is a meta-scheduler for the
execution of programs (computations) in Condor.

Directory information tree (DIT) is a tree-based structure to organize
names of entities in MDS in a hierarchical fashion.

Distributed fault-tolerant scheduling (DFTS) is a fault-tolerance mecha-
nism for grids based on job replication.

E

Expected completion time is the wall-clock time at which a machine com-
pletes the execution of a task.

Expected execution time (EET) is the estimated time for the execution of
a task on a machine when the machine has no job to execute.

Expected time to compute (ETC) matrix contains the expected execution
time of tasks on all the machines in the grid. It is used by the
scheduler to make mapping decisions.

Extensible markup language (XML) is a markup language whose purpose
is to facilitate sharing of data across different interfaces using a
common format.

External data representation (XDR) is a standard for the description and
encoding of data. It is used to transfer data between different
computer architectures.

F

Fast greedy is a mapping heuristic that assigns tasks to machines in an
arbitrary order having the minimum completion time for that
task. It is also known as MCT heuristic.

File transfer service (FTS) is a grid component that facilitates the transfer
of data between different storage elements in the grid.

286 Fundamentals of Grid Computing

G

Genetic algorithm heuristic is a mapping heuristic that uses a genetic algo-
rithm to find the best schedule for a metatask.

Globus access to secondary storage (GASS) allows access to data stored
in a remote filesystem. Its client libraries allow applications to
access remote files and its server component allows any computer
to act as a limited file server.

Globus gridmap file contains a list of global names of users who are autho-
rized to access a service on that node. All authorized users are
mapped to a local user.

Globus resource allocation manager (GRAM) processes the requests for
resources for remote application execution, allocates the required
resources and manages the active jobs. It also returns updated
information regarding the capabilities and availability of the
computing resources to the Metacomputing Directory Service
(MDS).

Grid fabric is a layer containing the grid resources such as computional
power, data storage, sensors and network resources.

Grid index information service (GIIS) is a higher-level aggregate directory
that collects information about grid resources from GRIS and
lower-level GIIS. It contains the grid-level view of the resources.

Grid information protocol (GRIP) is a protocol for the discovery of new
grid resources and enquiry of known grid resources. MDS uses
LDAP for GRIP.

Grid monitoring architecture (GMA) is a consumer-producer based archi-
tecture for information and monitoring services in grids. It con-
tains a registry for storing information about consumers and pro-
ducers. It forms the basis of R-GMA.

Grid portal is an interface to a grid system. Users interact with the portal
using an intuitive interface through which they can view files,
submit and monitor jobs and view accounting information.

Grid registration protocol (GRRP) is used by various components of MDS
such as IPs and GRIS to inform other components about its
existence.

Grid resource information service (GRIS) is a lower-level aggregate direc-
tory that collects information about grid resources from the in-
formation providers.

Glossary 287

Grid resources are the components of a grid that are used in the processing
of a job, e.g., computing element, storage element, etc.

Grid security infrastructure file transfer protocol (GSIFTP) is a file trans-
fer protocol built on top of the grid security infrastructure. It
allows secure data transfer between grid components.

Grid security infrastructure (GSI) is a part of the Globus Toolkit and de-
fines the necessary standards for the implementation of secu-
rity in grids. It consists of X.509 digital certificates, SAML and
Globus gridmap file, X.509 proxy certificates and message pro-
tection using TLS or WS-security and WS-secure conversation.

Grid service is a stateful web service to make it suitable for grid applications.

Grid service handle (GSH) is used to distinguish different grid service in-
stances of the same service created by the factory.

Grid service reference (GSR) contains grid service instance-specific infor-
mation such as protocol binding, method definition and network
address.

Grid workflow is the automation of a collection of services (or tasks) by
coordination through control and data dependencies to generate
a new service.

Grid workflow management system (GWFMS) is software used for mod-
eling tasks and their dependencies in a workflow and managing
the execution of workflow and their interaction with other grid
resources.

GridFtp is a protocol defined by global grid forum-based on FTP. It pro-
vides secure, robust, fast and efficient transfer of bulk data in
the grid environment. The Globus Toolkit provides the most
commonly used implementation of the protocol.

GridRPC is a programming model based on client-server remote procedure
call (RPC).

H

Heterogeneous computing (HC) refers to a system in which diverse re-
sources are combined together to increase the combined per-
formance and cost-effectiveness of these resources. Grid is an
example of an HC system.

288 Fundamentals of Grid Computing

High-level Petri-net (HLPN) provides an extension to the classical Petri-
nets by adding support to model data, time and hierarchy. It
allows computation of output tokens of a transition based on
multiple input tokens contrary to classical Petri-nets, which allow
only one type of token.

High performance storage system (HPSS) is software that manages peta-
bytes of data on disks and robotic tape libraries.

I

Information provider (IP) is a service that interfaces a data collection ser-
vice and provides information about the available resources to
the aggregate directories.

Information service is one of the main components of the grid. It provides
static and dynamic information about the grid resources.

Information supermarket is a component in the workload manager that
stores information about all active resources in the grid, which
are used by the matchmaker for the decision-making process.

Interlogger helps to propagate the logging or book-keeping information from
a grid component to the central book-keeping server.

J

Job is a computational task that is executed on the grid. The infor-
mation pertaining to a job is specified by the user using a job
description language.

Job description language (JDL) is a computer language used for describing
a job based on information specified by the user.

Job handler is a component in the workload manager that carries out the
packaging, submission, cancelation and monitoring of a job.

Job replication is a fault-tolerance strategy in which more than one copy
of the same job are assigned to a different set of resources. The
different instances may either run the same copy of the job or a
copy using a different algorithm for the same job.

Job submission description language (JSDL) is a language to describe the
requirements of a job for submission to grid resources. The job
requirement is specified using XML.

Glossary 289

L

LDAP is a protocol for querying and modifying directory services
running over TCP/IP. LDAP support is implemented in web
browsers and e-mail programs, which can query an LDAP-
compliant directory. LDAP is a sibling protocol to HTTP and
FTP and uses the ldap:// prefix in its URL.

Level-based scheduling algorithm is a scheduling algorithm, which parti-
tions the DAG into levels of independent nodes and then uses
heuristics like min-min, max-min and sufferage to map these
nodes to processors.

List scheduling algorithm is a scheduling algorithm, which assigns priorities
to nodes in a DAG and considers the nodes with higher priority
for scheduling before the lower priority nodes.

Local files catalog (LFC) is a grid component that stores the mapping be-
tween different identifiers of a file or a resource.

LSF is software for managing and accelerating batch workload pro-
cessing for computationally intensive and data-intensive applica-
tions.

M

Machine availability time (MAT) is the earliest time when a machine has
completed the execution of all the previously assigned tasks and
is ready to serve the next request.

Makespan is defined as the maximum time taken for the completion of all
the tasks in the metatask or for the execution of the complete
grid workflow.

Mapper is the component of a grid scheduler, which runs the mapping
algorithm.

Mapping is the overall process of matching and scheduling.

Masterworker is a model for the execution of parallel applications in which
a node (controlling master) sends pieces of work to other nodes
(workers). The worker node performs the computation and sends
the result back to the master node. A piece of work is assigned
to the first worker node that becomes available next.

Matching is the process of identifying suitable machines for a task.

290 Fundamentals of Grid Computing

Matchmaker is a component that performs the matching of a job to grid
resources based on the user information on the job and the avail-
able information on grid resources.

Max-min is a mapping heuristic that finds the minimum expected com-
pletion time for each task in a metatask and then assigns the
task having the maximum expected completion time to the cor-
responding machine.

MCT see fast greedy.

Message passing interface (MPI) is a library of subroutines for handling
communication and synchronization of programs running on par-
allel platforms.

MET see user-directed assignment.

Metacomputing uses many networked computers together as a single com-
putational unit to provide massive processing power.

Metatask is a collection of independent tasks mapped to a collection of
resources during a mapping event.

Middleware is a collection of software and packages used for the implemen-
tation of a grid.

Min-min is a mapping heuristic that finds the minimum expected comple-
tion time for each task in a metatask and then assigns the task
having the least expected completion time to the corresponding
machine.

Mixed-machine system is a class of HC system, which consists of heteroge-
neous machines connected by high-speed networks.

Monitoring and discovery services (MDS) is a component of the Globus
Toolkit, which provides resource monitoring and discovery ser-
vices within the grid environment.

MyProxy is an open-source software used for managing user X.509 certifi-
cates. It can be used to store and retrieve user credentials over
the network in a secure way.

N

Namespace is a naming context in which each name should be unique.

Glossary 291

Network job supervisor (NJS) is one of the Unicore components. It trans-
lates the jobs represented as AJO into target system-specific
batch jobs. It also passes sub-AJOs to peer systems, synchronizes
the execution of dependent jobs and manages the data transfer
between different systems.

Node is a portion of the grid where a job can be executed indepen-
dently on the grid. The parallel structure of the grid comes from
running in parallel jobs on different nodes simultaneously.

O

Open grid services architecture (OGSA) defines a web services-based frame-
work for the implementation of grid.

Open grid services infrastructure (OGSI) is a formal and technical specifi-
cation of the implementation of grid services as defined by the
OGSA framework.

Opportunistic load balancing (OLB) is a mapping heuristic that assigns
tasks to the next available machine.

P

Parallel virtual machine (PVM) is a software package that permits a
heterogeneous collection of Unix and/or Windows computers
hooked together by a network to be used as a single large parallel
computer.

Parameter sweep application is an application that executes multiple in-
stances of a program using different sets of parameters and then
collects the results from all the instances. Such applications fre-
quently occur in scientific and engineering problems.

Petri-net is a modeling language that graphically represents the state of
workflow in grids or distributed systems using the concept of
tokens. It consists of places, transitions and directed arcs con-
necting the places to the transitions.

Pluggable authentication module (PAM) is a mechanism to integrate low-
level authentication schemes with a high-level API so that the
application may be written independent of the underlying au-
thentication scheme. For example a MyProxy server can be con-
figured to use an external authentication like an LDAP server.

292 Fundamentals of Grid Computing

Portable batch system (PBS) is a batch job and computer system resource
management package. It accepts batch jobs (shell scripts with
control attributes) and stores the job until it is run. It runs the
job and delivers the output back to the user.

Portlet is a pluggable user interface component that is managed and
displayed in a web portal.

Principal is the entity whose identity is being verified.

Proxy certificate is a part of the GSI, which is used by an entity to delegate
its complete or partial privileges to another entity. It is also
used for single sign-on. It has the same format as an X.509
digital certificate.

Public key infrastructure (PKI) is a method of secure communication be-
tween two entities in the Internet using the public/private key
pair. It consists of a trusted third party called the Certifying
Authority (CA).

R

Relational grid monitoring architecture (R-GMA) is an information and
monitoring system for grids developed by the European Data-
Grid project. It is based on GMA and derives its flexibility from
the relational model.

Reliable file transfer (RFT) is a web service that provides interface for con-
trolling and monitoring third party file transfers using GridFTP.
The client controlling the transfer is hosted inside a grid service
so that it can be managed using the soft state model and queried
using the ServiceData interface available to all grid services.

Remote procedure call (RPC) is a protocol that allows a program running
on one host to invoke a procedure on a different host in the
network.

Replica location service (RLS) is a service that allows the registration and
location of replicas in Globus. It maps the logical file name to a
physical file name.

Rescheduling is the process of assigning a job to a new machine, either to
improve its performance or for the purpose of fault tolerance.

Glossary 293

S

Scheduling is the process of ordering the execution of a collection of tasks
on a pool of resources.

Secure socket layer (SSL) is a protocol for secure communication over the
Internet. SSL uses a public/private key pair for the encryption
and decryption of the data. The public key is known to everyone
and the private or secret key is known only to the recipient of
the encrypted message.

Security assertion markup language (SAML) is an XML-based standard
protocol that supports the exchange of identity information un-
der different environments. Identity information is exchanged as
assertions between the provider and consumer of assertions.

Service level agreement (SLA) defines the minimum quality of sevice,
availability and other service-related attributes expected by the
user from the service provider and the charges levied on them.

Simple object access protocol (SOAP) is an XML-based communication
protocol, which can be used by two parties communicating over
the Internet.

Single program multiple data (SPMD) is a style of parallel programming
where all the processors use the same program but process dif-
ferent data.

Single sign-on is the process of authenticating once to obtain proxy creden-
tials, which can be used to access grid resources without needing
further authentication for a certain period.

Storage element (SE) is a grid resource that stores the information re-
quired or generated by the computing element.

Strike price is the predetermined price of the underlying stock at expiry
date. This price is predetermined at time 0, which is the time
when the option is bought.

Sufferage heuristic is a mapping heuristic that maps tasks in the decreasing
order of sufferage value.

Sufferage value is the difference between best and second-best minimum
completion time for a task.

Switching algorithm is a mapping heuristic that tries to strike a balance
between MCT and MET heuristics by switching between the
heuristics based on the load of the system.

294 Fundamentals of Grid Computing

T

Task farming is a type of parallel application, where many independent
jobs are executed on machines around the world. Only a small
amount of data needs to be retrieved from each of these jobs.

Task-level fault tolerance achieves fault tolerance by either rescheduling
the job or by using a job replication strategy without affecting
the workflow.

Task queue is a component of the workload manager that holds various jobs
for the eventual allocation by the matchmaker. Authentication
of the user information in the job is also done in the task queue.

Testbed is an experimental platform including dedicated hardware, soft-
ware resources and scientific instruments. It is used to test and
analyze the tools and products. It usually supports real-time
deployment and interaction.

Ticket granting ticket (TGT) is issued by the AS to a client. The TGS ver-
ifies the validity of the TGT before issuing actual communication
ticket to the client.

Trust is a relationship between two entities that forms the basis for the
subsequent authentication and authorization between the two
entities.

Trusted third party (TTP) is an entity that provides for the authentication
of two parties, both of which trust the third party. CA is an
example of a TTP.

U

Universal description, discovery and integration (UDDI) is an XML-based
registry used for finding a web service on the Internet.

User-directed assignment is a mapping heuristic that assigns tasks in an
arbitrary order to the machine having the minimum execution
time for that task.

V

Verifier is the entity that verifies the identity of the principal.

Virtual organization (VO) is a dynamic collection of multiple organizations
that provides coordinated resource sharing. A grid usually con-
sists of multiple virtual organizations.

Glossary 295

W

Web service definition language (WSDL) is an XML document used to de-
scribe a web service interface.

Web service (WS) is a software system designed to support interoperable
machine-to-machine interaction over a network.

Workflow-level fault tolerance allows changes to the workflow structure to
achieve fault tolerance. These include user-defined exceptions
and task crash failures that cannot be handled by the task-level
failure handling techniques.

Workload manager (WM) is an interface in gLite that deals with the al-
location, collection and cancellation of a job. It also provides
information about the job status and the grid resources.

WS-federation is a specification for standardizing how organizations share
user identities in a heterogeneous authentication and authoriza-
tion system.

WS-policy is a specification for the service requestor and service provider to
enumerate their capabilities, needs and preferences in the form
of policies.

WS-privacy is a proposed web service specification. It will use a combina-
tion of WS-security, WS-policy and WS-trust for communicating
privacy policies among organizations.

WS-resource framework (WSRF) is a generic and open framework for
modeling and accessing stateful resources using web services. It
contains a set of six web services specifications that define what
is termed as the WS-resource approach to model and manage
stateful resources in a web service context.

WS-secure conversation is a web service extension built on top of WS-
security and WS-trust. It provides a security context for the
protection of more than one related message.

WS-security is the standard to provide security features such as integrity,
privacy, confidentiality and single message authentication to
SOAP messages.

WS-trust is an extension to the WS-security specification. It defines ad-
ditional constructs and primitives for the request and issue of
security tokens. It also provides ways to establish trust relation-
ships with parties in different trust domains.

296 Fundamentals of Grid Computing

X

X.509 digital certificate is a standard for digital certificates described by
the RFC 2459. It consists of the public key of the certificate
owner and is signed by the certifying authority.

XML digital signature is a way of digitally signing the SOAP messages to
ensure their integrity.

XML encryption is a standard that provides end-to-end security for appli-
cations requiring secure XML data exchange. A SOAP message
body is encrypted using block encryption algorithms like AES-
256.

XSufferage heuristic is a modification of sufferage heuristics that takes into
account the location of data, while making the scheduling de-
cision. Instead of grid-level MCT, XSufferage heuristics use
cluster-level MCT to find the sufferage value.

Author Index

A
Arantes, Luciana. .28

B
Bahi, Jacques M. 235
Besseron, Xavier . 143
Bouguerra, Mohamed-Slim . 143

C
Cérin, Christophe . 207
Couturier, Raphaël . 235

F
Fei, Teng . 124
Fkaier, Hazem . 207

G
Gautier, Thierry . 143

L
Legond-Aubry, Fabrice . 28

M
Magoulès, Frédéric . 1, 67, 124, 176, 273, 278

N
Nguyen, Thi-Mai-Huong . 1, 67, 273

P
Pierson, Jean-Marc . 100

S
Saule, Erik . 143
Sens, Pierre . 28
Sider, Abderrahmane . 235

297

298 Fundamentals of Grid Computing

Sopena, Julien . 28
Steffenel, Luiz-Angelo . 207

T
Trystram, Denis . 143

Y
Yu, Lei . 1, 176, 278

	Title
	Copyright
	Contents
	List of Figures
	List of Tables
	Foreword
	Preface
	Chapter 1: Grid computing overview
	Chapter 2: Synchronization protocols for sharing resources in grid environments
	Chapter 3: Data replication in grid environments
	Chapter 4: Data management in grids
	Chapter 5: Future of grids resources management
	Chapter 6: Fault-tolerance and availability awareness in computational grids
	Chapter 7: Fault tolerance for distributed scheduling in grids
	Chapter 8: Broadcasting for grids
	Chapter 9: Load balancing algorithms for dynamic networks
	Appendix A: Implementation of the replication strategies in OptorSim
	Appendix B: Implementation of the simulator for the distributed scheduling model
	Glossary
	Author Index

