
Alfredo Ferro
Fabrizio Luccio
Peter Widmayer (Eds.)

 123

LN
CS

 8
49

6

7th International Conference, FUN 2014
Lipari Island, Sicily, Italy, July 1–3, 2014
Proceedings

Fun with
Algorithms



Lecture Notes in Computer Science 8496
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Alfredo Ferro Fabrizio Luccio
Peter Widmayer (Eds.)

Fun with
Algorithms
7th International Conference, FUN 2014
Lipari Island, Sicily, Italy, July 1-3, 2014
Proceedings

13



Volume Editors

Alfredo Ferro
Università degli Studi di Catania
Dipartimento di Matematica e Informatica,
Viale A. Doria 6, 95125 Catania, Italy
E-mail: ferro@dmi.unict.it

Fabrizio Luccio
Università di Pisa, Dipartimento di Informatica
Largo B. Pontecorvo 3, 56127 Pisa, Italy
E-mail: luccio@di.unipi.it

Peter Widmayer
ETH Zürich, Institute of Theoretical Computer Science
Universitätsstrasse 6, 8092 Zürich, Switzerland
E-mail: widmayer@inf.ethz.ch

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-07889-2 e-ISBN 978-3-319-07890-8
DOI 10.1007/978-3-319-07890-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014940050

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

FUN with Algorithms is dedicated to the use, design, and analysis of algorithms
and data structures, focusing on results that provide amusing, witty but nonethe-
less original and scientifically profound contributions to the area. Donald Knuth’s
famous quote captures this spirit nicely: .... pleasure has probably been the
main goal all along. But I hesitate to admit it, because computer scientists want
to maintain their image as hard-working individuals who deserve high salaries.
Sooner or later society will realise that certain kinds of hard work are in fact
admirable even though they are more fun than just about anything else.” The
previous FUNs were held in Elba Island, Italy; in Castiglioncello, Tuscany, Italy;
in Ischia Island, Italy; and in San Servolo Island, Venice, Italy. Special issues
of Theoretical Computer Science, Discrete Applied Mathematics, and Theory of
Computing Systems were dedicated to them.

This volume contains the papers presented at the 7th International Con-
ference on Fun with Algorithms 2014 that was held during July 1–3, 2014, on
Lipari Island, Italy. The call for papers attracted 49 submissions from all over the
world, addressing a wide variety of topics, including algorithmic questions rooted
in biology, cryptography, game theory, graphs, the Internet, robotics and mobil-
ity, combinatorics, geometry, stringology, as well as space-conscious, randomized,
parallel, distributed algorithms, and their visualization. Each submission was re-
viewed by three Program Committee members. After a careful reviewing process
and a thorough discussion, the committee decided to accept 29 papers. In addi-
tion, the program featured two invited talks by Paolo Boldi and Erik Demaine.
Extended versions of selected papers will appear in a special issue of the journal
Theoretical Computer Science.

We thank all authors who submitted their work to FUN 2014, all Program
Committee members for their expert assessments and the ensuing discussions,
all external reviewers for their kind help, and Alfredo Ferro, Rosalba Giugno,
Alfredo Pulvirenti as well as Giuseppe Prencipe for the organization of the con-
ference and everything around it.

We used EasyChair (http://www.easychair.org/) throughout the entire
preparation of the conference, for handling submissions, reviews, the selection of
papers, and the production of this volume. It greatly facilitated the whole pro-
cess. We want to warmly thank the people who designed it and those who main-
tain it. Warm thanks also go to Alfred Hofmann and Ingrid Haas at



VI Preface

Springer with whom collaborating was a pleasure. We gratefully acknowledge
financial support by the Department of Computer Science of ETH Zurich, and
the patronage of the European Association for Theoretical Computer Science
(EATCS).

April 2014 Alfredo Ferro
Fabrizio Luccio
Peter Widmayer



Organization

Program Committee

Jérémie Chalopin LIF, CNRS, Aix Marseille
Université, France

Pierluigi Crescenzi Florence University, Italy
Shantanu Das Aix-Marseille Université, France
Josep Diaz UPC Barcelona, Spain
Yann Disser TU Berlin, Germany
Paolo Ferragina University of Pisa, Italy
Fedor Fomin University of Bergen, Norway
Pierre Fraigniaud Université Paris Diderot, France
Leszek Gasieniec University of Liverpool, UK
Fabrizio Grandoni IDSIA, University of Lugano, Switzerland
Evangelos Kranakis Carleton University, Canada
Danny Krizanc Wesleyan University, USA
Flaminia Luccio Ca’ Foscari University of Venice, Italy
Matus Mihalak ETH Zurich, Switzerland
Linda Pagli University of Pisa, Italy
David Peleg The Weizmann Institute, Israel
Paolo Penna Università di Salerno, Italy
Giuseppe Persiano Università di Salerno, Italy
Giuseppe Prencipe University of Pisa, Italy
Jose Rolim University of Geneva, Switzerland
Piotr Sankowski University of Warsaw, Poland
Ryuhei Uehara Japan Advanced Institute of Science

and Technology
Jorge Urrutia Universidad Nacional Autónoma de México
Peter Widmayer ETH Zurich, Switzerland
Christos Zaroliagis Computer Technology Institute, University

of Patras, Greece

Additional Reviewers

Bernasconi, Anna
Bonnet, Edouard
Borassi, Michele
Cicalese, Ferdinando
Couëtoux, Basile
De Prisco, Roberto
Di Luna, Giuseppe Antonio

Donati, Beatrice
Drange, Paal Groenaas
Ferraioli, Diodato
Focardi, Riccardo
Fotakis, Dimitris
Gallopoulos, Efstratios
Giotis, Ioannis



VIII Organization

Kontogiannis, Spyros
Labourel, Arnaud
Luccio, Fabrizio
Mamageishvili, Akaki
Marino, Andrea
Naves, Guyslain
Pallottino, Lucia
Pisanti, Nadia

Poupet, Victor
Rossi, Gianluca
Ruj, Sushmita
Sacomoto, Gustavo
Serna, Maria
Squarcina, Marco
Uznanski, Przemyslaw
Venturini, Rossano



Table of Contents

Algorithmic Gems in the Data Miner’s Cave . . . . . . . . . . . . . . . . . . . . . . . . . 1
Paolo Boldi

Fun with Fonts: Algorithmic Typography . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Erik D. Demaine and Martin L. Demaine

Happy Edges: Threshold-Coloring of Regular Lattices . . . . . . . . . . . . . . . . . 28
Muhammad Jawaherul Alam, Stephen G. Kobourov,
Sergey Pupyrev, and Jackson Toeniskoetter

Classic Nintendo Games Are (Computationally) Hard . . . . . . . . . . . . . . . . 40
Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta

On the Solvability of the Six Degrees of Kevin Bacon Game - A Faster
Graph Diameter and Radius Computation Method . . . . . . . . . . . . . . . . . . . 52

Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter Kosters,
Andrea Marino, and Frank Takes

No Easy Puzzles: A Hardness Result for Jigsaw Puzzles . . . . . . . . . . . . . . . 64
Michael Brand

Normal, Abby Normal, Prefix Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Péter Burcsi, Gabriele Fici, Zsuzsanna Lipták, Frank Ruskey, and
Joe Sawada

Nonconvex Cases for Carpenter’s Rulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Ke Chen and Adrian Dumitrescu

How to Go Viral: Cheaply and Quickly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Ferdinando Cicalese, Gennaro Cordasco, Luisa Gargano,
Martin Milanič, Joseph G. Peters, and Ugo Vaccaro

Synchronized Dancing of Oblivious Chameleons . . . . . . . . . . . . . . . . . . . . . . 113
Shantanu Das, Paola Flocchini, Giuseppe Prencipe, and
Nicola Santoro

Another Look at the Shoelace TSP: The Case of Very Old Shoes . . . . . . . 125
Vladimir G. Deineko and Gerhard J. Woeginger

Playing Dominoes Is Hard, Except by Yourself . . . . . . . . . . . . . . . . . . . . . . . 137
Erik D. Demaine, Fermi Ma, and Erik Waingarten



X Table of Contents

UNO Gets Easier for a Single Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Palash Dey, Prachi Goyal, and Neeldhara Misra

Secure Auctions without Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Jannik Dreier, Hugo Jonker, and Pascal Lafourcade

Towards an Algorithmic Guide to Spiral Galaxies . . . . . . . . . . . . . . . . . . . . 171
Guillaume Fertin, Shahrad Jamshidi, and Christian Komusiewicz

Competitive Analysis of the Windfall Game . . . . . . . . . . . . . . . . . . . . . . . . . 185
Rudolf Fleischer and Tao Zhang

Excuse Me! or The Courteous Theatregoers’ Problem
(Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Konstantinos Georgiou, Evangelos Kranakis, and Danny Krizanc

Zombie Swarms: An Investigation on the Behaviour of Your Undead
Relatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Vincenzo Gervasi, Giuseppe Prencipe, and Valerio Volpi

Approximability of Latin Square Completion-Type Puzzles . . . . . . . . . . . . 218
Kazuya Haraguchi and Hirotaka Ono

Sankaku-Tori: An Old Western-Japanese Game Played
on a Point Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Takashi Horiyama, Masashi Kiyomi, Yoshio Okamoto,
Ryuhei Uehara, Takeaki Uno, Yushi Uno, and Yukiko Yamauchi

Quell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Minghui Jiang, Pedro J. Tejada, and Haitao Wang

How Even Tiny Influence Can Have a Big Impact! . . . . . . . . . . . . . . . . . . . 252
Barbara Keller, David Peleg, and Roger Wattenhofer

Optimizing Airspace Closure with Respect to Politicians’ Egos . . . . . . . . . 264
Irina Kostitsyna, Maarten Löffler, and Valentin Polishchuk

Being Negative Makes Life NP-hard (for Product Sellers) . . . . . . . . . . . . . 277
Sven O. Krumke, Florian D. Schwahn, and Clemens Thielen

Clearing Connections by Few Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Christos Levcopoulos, Andrzej Lingas, Bengt J. Nilsson, and
Pawe�l Żyliński

Counting Houses of Pareto Optimal Matchings in the House Allocation
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Andrei Asinowski, Balázs Keszegh, and Tillmann Miltzow

Practical Card-Based Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Takaaki Mizuki and Hiroki Shizuya



Table of Contents XI

The Harassed Waitress Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Harrah Essed and Wei Therese

Lemmings Is PSPACE-Complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Giovanni Viglietta

Finding Centers and Medians of a Tree by Distance Queries . . . . . . . . . . . 352
Bang Ye Wu

Swapping Labeled Tokens on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito,
Jun Kawahara, Masashi Kiyomi, Yoshio Okamoto, Toshiki Saitoh,
Akira Suzuki, Kei Uchizawa, and Takeaki Uno

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377



Algorithmic Gems in the Data Miner’s Cave

Paolo Boldi

Dipartimento di Informatica
Università degli Studi di Milano

via Comelico 39/41, 20135 Milano, Italy

Abstract. When I was younger and spent most of my time playing
in the field of (more) theoretical computer science, I used to think of
data mining as an uninteresting kind of game: I thought that area was
a wild jungle of ad hoc techniques with no flesh to seek my teeth into.
The truth is, I immediately become kind-of skeptical when I see a lot of
money flying around: my communist nature pops out and I start seeing
flaws everywhere.

I was an idealist, back then, which is good. But in that specific case,
I was simply wrong. You may say that I am trying to convince myself
just because my soul has been sold already (and they didn’t even give
me the thirty pieces of silver they promised, btw). Nonetheless, I will try
to offer you evidences that there are some gems, out there in the data
miner’s cave, that you yourself may appreciate.

Who knows? Maybe you will decide to sell your soul to the devil too,
after all.

1 Welcome to the Dungeon

Data mining is the activity of drawing out patterns and trends from data; this
evocative expression started being used in the 1990s, but the idea itself is much
older and does not necessarily involve computers. As suggested by many, one
early example of successful data mining is related to the 1854 outbreak of cholera
in London. At that time it was widely (and wrongly) believed that cholera was a
“miasmal disease” that was transmitted by some sort of lethal vapor; the actual
cause of the disease, a bacterium usually found in poisoned waters, would have
been discovered later by Filippo Pacini and Robert Koch1. John Snow was a
private physician working in London who was deeply convinced that the killing
agent entered the body via ingestion, due to contaminated food or water. In late
August 1854, when the outbreak started in Soho, one of the poorest neighbor-
hoods of the city, Snow began his investigation to obtain evidences of what was
the real cause behind the disease.

Through an accurate and deep investigation that put together ideas from
different disciplines, and by means of an extensive analysis of the factual data
1 Filippo Pacini in fact published his results right in 1854, but his discoveries were

largely ignored until thirty years later, when Robert Koch independently published
his works on the Vibrio cholerae (now officially called Vibrio cholerae Pacini 1854 ).

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 1–15, 2014.
c© Springer International Publishing Switzerland 2014



2 P. Boldi

he collected, he was able to find the source of the epidemic in a specific infected
water pump, located in Broad Street. His reasoning was so convincing that he
was able to persuade the local authorities to shut down the pump, hence causing
the outbreak to end and saving thousands of lives. John Snow is now remembered
as a pioneering epidemiologist, but we should also take his investigation as an
early example of data mining. (I strongly suggest those of you who like this story
to read the wonderful The ghost map by Steven Johnson [1], that albeit being
an essay is as entertaining as a fiction novel).

In the 160 years that have passed since John Snow’s intuitions, data mining
have come to infect almost every area of our lives. From retail sales to marketing,
from genetics to medical and biomedical applications, from insurance companies
to search engines, there is virtually no space left in our world that is not heavily
scrutinized by data miners who extract patterns, customs, anomalies, forecast
future trends, behaviours, and predict the success or failures of a new business
or project.

While the activity of data miners is certainly lucrative, it is at the same time
made more and more difficult by an emerging matter of size. If big data are all
around, it is precisely here were data are bigger, more noisy, and less clearly
structured. The data miner’s cave overflows, and not even the most apparently
trivial of all data-mining actions can be taken lightheartedly.

If this fact is somehow hindering miners’ activity, it makes the same activity
more interesting for those people (like me) who are less fascinated in the actual
mining and more captivated by the tools and methods the miners use to have
their work done. This is what I call data-mining algorithmics, which may take
different names depending on the kind of data that are concretely being pro-
cessed (web algorithmics, social-network algorithmics, etc.). In many cases, the
algorithmic problems I am referring to are not specific to data mining: they may
be entirely new or they may even have been considered before, in other areas and
for other applications. Data mining is just a reason that makes those methods
more appealing, interesting or urgent.

In this brief paper, I want to provide some examples of this kind of techniques:
the overall aim is to convince a skeptical hardcore theoretician of algorithms that
data mining can be a fruitful area, and that it can be a fertile playground to find
stimuli and ideas. I will provide virtually no details, but rather try to give a gen-
eral idea of the kind of taste these techniques have. The readers who are already
convinced may hopefully find my selection still interesting, although I will follow
no special criterion other than personal taste, experience and involvement. So
welcome to the miner’s dungeon, and let’s get started.

2 Please, Crawl as you Enter the Cave

One of the first activities a data miner must unavoidably face is harvesting, that
is, collecting the dataset(s) on which the mining activity will take place. The
real implications and difficulties of this phase depend strongly on the data that
are being considered and on the specific situation at hand. A classical example



Algorithmic Gems in the Data Miner’s Cave 3

that I know pretty well is the collection of web pages: in this case, you want to
fetch and store a number of documents found in a specific portion of the web
(e.g., the .it or .com domain). The tool that accomplishes this task is usually
called a (web) crawler (or spider), and a crawler in fact stands behind every
commercial search engine.

I have a personal story on this subject that is worth being told. It was 1999
and I was at that time a (younger) researcher working mainly on theoretical stuff
(distributed computability, type-2 Turing machines and other similarly esoteric
topics). Together with my all-time comrades Massimo Santini and Sebastiano Vi-
gna, I was visiting Bruno Codenotti, a friend of ours working at the CNR in
Pisa. He is a quite well-known mathematician and computer scientist, also mainly
versed in theory, but in those days he had just fallen in love for a new thing he had
read: the PageRank paper [2] that discussed the ranking technique behind Google.
Google was, back then, a quite new thing itself and we were all becoming big fans
of this new search engine (although some of us were still preferring AltaVista).

PageRank, in itself, is just a technique that assigns a score to every node of a
directed graph that (supposedly) measures its importance (or “centrality”) in the
network; if the graph is a web graph (whose nodes correspond to web pages and
whose arcs represent hyperlinks), you can use PageRank to sort web documents
according to their popularity. The success of Google in those early years of its
existence is enough to understand how well the technique works.

So our friend soon infected us with his enthusiasm, and we wanted to start
having fun with it. But we didn’t have any real web graph to play with, and a
quick (Google) search was enough to understand that nobody was at that time
providing data samples of that kind. Alexa Internet, inc., could have given us some
data, but we didn’t have enough money nor patience.

But, after all, how difficult could it be to download a few thousand pages from
the web and build a graph ourselves? We were all skilled programmers, and we
had enough computers and bandwidth to do the job! It was almost lunchtime and
we were starving. So we told ourselves, “let’s go have lunch in the canteen, then
in the afternoon we will write the program, fetch some pages, build the graph and
run PageRank on it”.

In fact, we abided by the plan, but it took slightly more than one afternoon.
To be honest, we are not yet completely done with it, and 15 years have gone by.
(Fifteen years! Time flies when you’re having fun. . . )

I myself contributed to write two crawlers: UbiCrawler (formerly called “Trova-
tore”) [3] was the results of those first efforts; BUbiNG [4] is UbiCrawler’s heir,
re-written ten years later, taking inspiration from the more advanced techniques
introduced in the field [5]. BUbiNG is, at the best of our knowledge, the most
efficient public-domain crawler for mid-sized dataset collections available today.

Every real-world crawler is, by its very nature, parallel and distributed: a num-
ber of agents (typically, each running on a different machine) crawl the web at the
same time, each agent usually visiting a different set of URLs [6]. For reasons of
politeness (i.e., to avoid that many machines bang the same website at the same
time), usually URLs belonging to the same host (say http://foo.bar/xxx/yyy

http://foo.bar/xxx/yyy


4 P. Boldi

and http://foo.bar/www) are crawled by the same agent. The coordination
between agents can happen in many different ways:

– the set H of hosts to be crawled is divided statically (e.g., using some hash
function) between the n agents; this requires no coordination at all (except
to communicate around the URLs that are found during the process to the
agent they belong to);

– there is a central coordinator that receives the URLs as they are found and
dynamically assigns them to the available agents.

Dynamic assignment yields a single point of failure but it easily accomodates for
changes in the set of agents (you can, at every moment, add or delete an agent
from the set without altering the crawling activity); on the other hand, static
assignment is extremely rigid and requires that the set of agents remain fixed
during the whole crawl.

The latter problem is determined by the fact that, normally, if you have a
hash function2 hn : H → [n] and you want to “turn” it into a new one hn+1 :
H → [n + 1] (which is what happens, say, if a new agent is added), the two
functions typically do not have anything in common. This means that adding a
new agent “scrambles” all the responsibilities, which imposes the need of a big
exchange of information between all pairs of agents.

In an ideal world, you would like the new agent to steal part of the current job
of the existing n agents, without otherwise impacting on the current assignment:
in other words, you would like to have the property that

hn+1(x) < n =⇒ hn+1(x) = hn(x).

This means that, except for the assignments to the new agent (agent number
n), everything else remains unchanged!

A technique to build a family of hash functions satisfying this property is
called consistent hashing [7], and it was originally devised for distributed web
caching. The simplest, yet (or therefore?) quite fascinating way to build consis-
tent hash functions is the following. Suppose you map every “candidate agent”
to a set of r random points on a circle: you do so by choosing r functions
γ1, . . . , γr : N → [0, 1] (because the names of our agents are natural numbers,
and the unit interval can be folded to represent a circle); those functions are easy
to devise (e.g., take your favorite 128-bit hash functions and look at the result as
a fractionary number). The points γ1(i), . . . , γr(i) are called3 the replicas of the
(candidate) agent i. Furthermore, choose an analogous function ψ : H → [0, 1]
mapping hosts to the circle as well.

Then hn : H → [n] is defined as follows: hn(x) is the agent j ∈ [n] having a
replica as close as possible to ψ(x). An example is drawn in Figure 1: here we
have three agents (0 represented by a circle, 1 by a square and 2 by a triangle)
and five replicas per agent (that is, r = 5). The host x we have to assign is
2 We use [n] for {0, 1, . . . , n− 1}.
3 For the sake of simplicity, we assume that there are no collisions among replicas, i.e.,

that γi(j) = γi′(j
′) implies i = i′ and j = j′.

http://foo.bar/www


Algorithmic Gems in the Data Miner’s Cave 5

Fig. 1. Consistent hashing

mapped by ψ(−) to the point represented by the star: the closest replica is a
triangle, so the host x will be assigned to agent 2. Note that if we remove 2 from
the system, some hosts will have to be reassigned (for example, the one shown
in the figure will be assigned to 1 instead, because the second-closest replica is
a square); nonetheless, those points that are closer to a circle or to a square do
not need any reassignment. Having many replicas per agent is needed to ensure
that the assignment is well balanced with high probability.

UbiCrawler was the first crawler to adopt consistent hashing to assign URLs
to agents: this idea (also used in BUbiNG) guarantees, under some additional
hypothesis, a controlled amount of fault tolerance and the possibility of extend-
ing the number of crawling agents while the crawl is running—both features are
highly desirable in all the cases in which mid- or even large-sized crawling ex-
periments are performed with old, cheap, unstable hardware (this is one of the
reasons why we decided to subtitle our paper on BUbiNG, our second-generation
crawler, “Massive crawling for the masses”).

3 Data Miners Eat Perfect Hash

I mentioned above that my data-mining era started with PageRank, and I should
say that most (albeit not all) of my works in the field can be broadly categorized
in the vaste territory (not at all a wasteland!) of network analysis. This is a
relatively small but important corner in the data miner’s cave where basically
the analysis is performed only on graph-like data. The graph can have different
meanings depending on the application: the friendship graph of a social network
like Facebook, the hyperlink graph of a portion of the web, the communication
graph derived from a bunch of e-mail messages. . . Different graphs (sometimes
directed, sometimes not) that capture various meaningful relations and that are
worth being studied, analyzed, mined in some way.



6 P. Boldi

When I say graph, here, I mean an (abstract) obect whose n nodes are iden-
tified with the elements of [n]: node names (whatever they are) are not usually
part of the analysis, and appear only before (when the construction of the graph
takes place) and possibly after the mining activity. This is crucial, in many cases,
because the graph may be sufficiently small to be stored in the core memory
whereas node names are most usually not4.

Now, let us limit ourselves to the case of web graphs: we have just finished
running our crawl, downloading millions of pages in a time span of some days;
the pages are stored on some hard drive in the form of their HTML source. But
how do we get from this (usually immense) textual form to an abstract graph?
Let us say that we have somewhere the set S of the n URLs that we crawled: we
somehow build a one-to-one map f : S → [n] and then with a single pass over
the dataset we can output the arcs of the graph. The problem is building f in
such a way that we can compute it efficiently and that it can be stored in a small
amount of memory (the set S is usually way too big to be stored in memory, and
anyway looking up for a specific element of S would require too much time).

General functions. Let me propose the same problem in a more general form
(experience tells us that generalization often allows one to find better solutions,
because it allows us to consider the problem at hand in a more abstract [hence
simpler] way). We have some (possibly infinite) universe Ω with a specific subset
of keys S ⊆ Ω of size |S| = n, and we want to represent a prescribed function
f : S → [2r] mapping each element of S to a value (represented, without loss
of generality, by a string of r bits). Note that by “representing” here we mean
that we want to build a data structure that is able to evaluate f(s) for every
given s ∈ S; the evaluation must be performed efficiently (in time O(1) w.r.t. n)
and the footprint of the data structure should be O(n). Note that we do not
impose stringent constraints on construction time/space although we want it to
be feasible and scalable. Moreover, we do not prescribe any special constraint
on how the data structure will react or output if it is given an element outside
of S as input.

Majewski, Wormald, Havas and Czech [8] proposed a very general technique
that solves the problem completely and in a very satisfactory way. Their con-
struction is so magical that deserves being explained in some detail. Let k > 1
and m ≥ n be two integers (to be fixed later). First take k hash functions on
m values h0, . . . , hk−1 : Ω → [m]; use these functions to build a k-hypergraph5

with m vertices and one hyperedge es for every element s ∈ S:

es = {h0(s), . . . , hk−1(s)}.

The hypergraph is acceptable iff it is peelable, i.e., if it is possible to sort the
hyperedges in such a way that every hyperedge contains at least one vertex
that never appeared before (called the “hinge”); in the case of standard graphs
4 Whether the graph itself can be stored in memory, and how, will be discussed later

on; even this part is not at all obvious.
5 A k hypergraph is a hypergraph whose hyperedges contain exactly k vertices each.



Algorithmic Gems in the Data Miner’s Cave 7

(k = 2), peelability is equivalent to acyclicity. If the hypegraph we obtained is not
acceptable (or if other worse things happen, like having less than n hyperedges,
or a hyperedge with less than k vertices, due to hash collisions), we just throw
away our hash functions and start with a set of brand new ones.

After getting an acceptable hypergraph, consider the following set of equa-
tions, one for every hyperedge es:

f(s) = xh0(s) + xh1(s) + · · ·+ xhk−1(s) mod 2r. (1)

If you sort those equations in peeling order, you can find a solution by imposing
the value of each hinge in turn. The solution is an m-sized vector x of r-bit
integers, so it requires mr bits to be stored; storing it, along with the k hash
functions, is enough to evaluate f exactly using equation (1); as long as k is not
a function of n, the computation of f(s) is performed in constant time.

The value of m should be chosen so that the probability of obtaining an
acceptable hypergraph is positive; it turns out that the optimal such value is
attained when k = 3 (i.e., with 3-hypergraphs) and m = �γn� with γ ≈ 1.23.
This means that the overall footprint is going to be γrn bits.

Order-preserving minimal perfect hash (OPMPH). The MWHC technique de-
scribed above can be used, as a special case, to represent any given minimal
perfect hash6 S → [n]: in this case r = logn, so the memory footprint is γn logn
bits; this is in fact asymptotically optimal, because there are n! minimal perfect
hash functions.

Perfect and minimal perfect hash. The easiest way to obtain an arbitrary perfect
hash (not a minimal one!) from the MWHC technique is the following: we proceed
as in the construction above, but leaving f(−) undefined for the moment. When
we find a peelable 3-hypergraph inducing the equations

f(s) = xh0(s) + xh1(s) + xh2(s) mod 2r. (2)

we let f(s) be 0, 1 or 2 depending on whether the hinge is h0(s), h1(s) or h2(s),
respectively. This allows us to compute a perfect γn-values hash by mapping s
to hf(s)(s) (by the definition of hinge, all these values are different). The space
required is 2γn bits.

Turning this non-minimal perfect hash into a minimal one can be obtained
by using a further ranking structure [9]: we store the bit vector of length γn
containing exactly n ones (the values in the range of the just-computed perfect
hash), and we use o(n) extra bits to be able to answer ranking queries (how many
1’s appear before a given position in the array). Again, this extra structure can
be queried in constant time, and the overall space requirement7 is 3γn+ o(n) (2
for the perfect hash and 1 for the bit array).

6 A hash function X → [p] is perfect iff it is injective, minimal if p = |X|.
7 A cleverer usage of the construction leads to 2γn bits, as explained in [10].



8 P. Boldi

The case of monotone minimal perfect hash (MMPH). For reasons that will be
made more clear in the next section, data miners frequently find themselves in
an intermediate situation: they don’t want an arbitrary perfect hash, but neither
they aim at choosing a specific “fancy” one; they just want the hash function to
respect the lexicographic order. For this to make sense, let us assume that Ω is
the set of all strings (up to some given length) over some alphabet; we want to
represent the minimal perfect hash S → [n] that maps the lexicographically first
string to 0, the second string to 1 etc. This is more restrictive than OPMPH (so
we don’t incur in the Θ(n log n) bound) but less liberal than MPH (we do not
content ourselves with an arbitrary minimal perfect hash). The case of monotone
minimal perfect hash (as we called it) turns out to be tricky and gives rise to a
variety of solutions offering various tradeoffs (both in theory and in practice); this
area is still in its infancy, but already very interesting, and I refer the interested
reader to [10,11] and to [12,13] for a similar kind of problems that also pops up
in this context.

4 Fortunes and Misfortunes of Graph Compression

Data miners’ graphs, even after getting rid of node names, are often still difficult
to work with due to their large size: a typical web graph or real-world social
network contains millions, sometimes billions, of nodes and although sparse its
adjacency matrix is way too big to fit in main memory, even on large computers.
To overcome this technical difficulty, one can access the graph from external
memory, which however requires to design special offline algorithms even for the
most basic problems (e.g., finding connected components or computing shortest
paths); alternatively, one can try to compress the adjacency matrix so that it
can be loaded into memory and still be directly accessed without decompressing
it (or, decompressing it only partially, on-demand, and efficiently).

The latter approach, called graph compression, has been applied successfully
to the web from the early days [14] and led us to develop WebGraph [15], which
still provides some of the best practical compression/speed tradeoffs.

The ideas behind web graph compression rely on properties that are satisfied
by the typical web graphs. One example of such a property is “locality”: by
locality we mean that most hyperlinks x → y have the properties that the two
URLs corresponding to x and y share a long common prefix; of course, this is not
always true, but it is true for a large share of the links (the “navigational” ones,
in particular, i.e., those that allow the web surfer to move between the pages
of a web site) because of the way in which web developer tend to reason when
building a website. One way to exploit locality is the following: in the adjacency
list of x, instead of writing y we write y− x, exploiting a variable-length binary
encoding that uses few bits for small integers (for example, a universal code [16]).
Locality guarantees that most integers will be small, provided that nodes are
numbered in lexicographic ordering (so that two strings sharing a long prefix
will be close to each other in the numbering): the latter observation should be
enough to explain why I insisted on monotone minimal perfect hash functions
in the previous section.



Algorithmic Gems in the Data Miner’s Cave 9

This idea, albeit simple, turns out to be extremely powerful: exploiting lo-
cality, along with some other analogously simple observations, allows one to
compress web graphs to 2-3 bits/arc (i.e., using only the 10% of the space re-
quired according to the information-theoretical lower bound)! This incredible
compression rate immediately raises one question: is it possible to extend this
kind of technique to graphs other than the web?

A general way to approach this problem may be the following: given a graph
G with n nodes, find some permutation π : VG → [n] of its nodes minimizing∑

(x,y)∈EG
log |π(x)−π(y)|. This problem was formally defined in [17] and focuses

on locality only8, but even so it turns out to be NP-hard. Nonetheless, it is pos-
sible to devise heuristics that work very well on many social networks [17,19,20],
and they even turn out to allow for a compression of webgraphs better than the
one obtained by lexicographic order! The final word on this topic is not spoken
yet, though, and there is a lot of active research going on. The main, as yet
unanswered, question is whether non-web social networks are as compressible as
webgraphs, or not. At present, the best known ordering techniques applied to
social graphs constantly produce something between 6 → 12 bits/arc (attaining
about 50% of the information-theoretical lower bound), which is good but still
much larger than the incredible ratios that can be obtained on webgraphs. Is this
because we have not yet found the “right” way to permute them? or it’s not just
a matter of permutation, and social networks must be compressed with other
techinques (i.e., exploiting different properties)? or social networks are simply
“more random” than webgraphs, and so cannot be compressed as much as the
latter can?

5 Crunching Graphs in the Data Miner’s Grinder

Like Gollum in The Lord of the Rings, the graph is (one of) data miner’s “pre-
cious”: now we know how to extract it (from the raw data) and how to compress
it so that it can be stored in the data miner’s safe. But, at this point, the data
miner’s wants to use “his precious” to conquer and rule the (Middle-)earth. In
order to do so, the graph must undergo suitable analysis to bring out patterns,
communities, anomalies etc.: the typical bread and butter of data mining.

You may have the idea that the worst is over, and that now you can play
with the graph as you please, doing the standard things that a typical miner
does with a graph: computing indices, determining cutpoints, identifying com-
ponents. . . Yet, once more, size gets in the way. Many of the classical algorithms
from the repertoire of graph theory are O(n2) or O(nm), which may be ok when
n is small, but is certainly out of question as soon as gets to 108 or more!

In order to provide a concrete example, consider the world’s famous “six de-
grees of separation” experiment.

8 In [18] we discuss how one can take into account also other properties exploited
during compression, like similarity.



10 P. Boldi

Frigyes Karinthy, in his 1929 short story “Láncszemek” (in English, “Chains”)
suggested that any two persons are distanced by at most six friendship links.
Stanley Milgram, fourty years later, performed and described [21,22] an experi-
ment trying to provide a scientific confirmation of this idea. In his experiment,
Milgram aimed to answer the following question (in his words): “given two indi-
viduals selected randomly from the population, what is the probability that the
minimum number of intermediaries required to link them is 0, 1, 2, . . . , k?”. In
other word, Milgram is interested in computing the distance distribution of the
acquaintance graph.

The technique Milgram used was the following: he selected 296 volunteers (the
starting population) and asked them to dispatch a message to a specific individual
(the target person), a stockholder living in Sharon, MA, a suburb of Boston, and
working in Boston. The message could not be sent directly to the target person
(unless the sender knew him personally), but could only be mailed to a personal
acquaintance who is more likely than the sender to know the target person.

In a nutshell, the results obtained from Milgram’s experiments were the follow-
ing: only 64 chains (22%) were completed (i.e., they reached the target), and the
average number of intermediaries in these chains was 5.2. The main conclusions
outlined in Milgram’s paper were that the average path length is small, much
smaller than expected.

One of the goals in studying the distance distribution is the identification of
interesting statistical parameters that can be used to tell proper social networks
from other complex networks, such as web graphs. More generally, the distance
distribution is one interesting global feature that makes it possible to reject
probabilistic models even when they match local features such as the in-degree
distribution.

One way to approach the problem is, of course, to run an all-pair shortest-path
algorithm on the graph; since the graph is unweighted, we can just make one
breadth-first search per node, with an overall time complexity of O(nm). This
is too much, but we may content ourselves with an approximate distribution by
sampling. The idea of sampling, albeit intuitive [23], turns out to scale poorly
and to be hardly compatible with the directed and not connected case (making
the estimator unbiased in that scenario is not trivial and anyway the number
of samples required to obtain the same concentration may depend on the graph
size; see also [24]).

A more reasonable alternative, that does not require random access to the
graph (and so is more cache- and compression-friendly) consists in using neigh-
borhood functions. The neighbourhood function N(r) of a graph G returns for
each r ∈ N the number of pairs of nodes 〈x, y〉 such that y is reachable from x
in at most r steps; it is clear that from this function one can derive the distance
distribution. In [25], the authors observe that B(x, r), the ball of radius r around
node x (that is, the set of nodes that can be reached from x in at most r steps),
satisfies

B(x, r) =
⋃
x→y

B(y, r − 1) ∪ { x }.



Algorithmic Gems in the Data Miner’s Cave 11

Since B(x, 0) = { x }, we can compute each B(x, r) incrementally using sequen-
tial scans of the graph (i.e., scans in which we go in turn through the successor list
of each node). From the sets B(x, r) one can compute N(r) as

∑
x∈V |B(x, r)|.

The obvious problem at this point is no more time but space: storing the
sets B(x,−) (one per node) require O(n2) bits! To overcome this difficulty, [25]
proposed to use Flajolet-Martin’s probabilistic counters; in our HyperANF al-
gorithm [26] we improved over this idea in various ways, adopting in particular
HyperLogLog counters [27]. With this kind of probabilistic structures one can
have an extremely fine way to tune memory usage, time and precision: in partic-
ular, the size of the counters determines the worst-case bounds on their precision,
but we can increase it a posteriori repeating the experiments many times.

HyperANF is so efficient that we were able to use it for the first world-scale
social-network graph-distance computations, using the entire Facebook network
of active users (at that time, ≈ 721 million users, ≈ 69 billion friendship links).
The average distance we observe is 4.74, corresponding to 3.74 intermediaries or
“degrees of separation”, prompting the title of our paper [28].

6 What a Miner Should Not Know

In the case of web data, the miner is processing public data after all, and if there
is any sensitive information it is only because some website contains it. But this
is not always the case: sometimes, data are privately hold by some company, and
given to the miner only in virtue of some contract that should anyway preserve
the rights of the individuals whose personal information are contained in the
data being processed. For example, the Facebook graph mentioned above was
provided by Facebook itself, and that graph is likely to contain a lot of sensitive
information about Facebook users. In general, privacy is becoming more and
more a central problem in the data mining field.

An early, infamous example of the privacy risks involved in the data studied
by the miners is the so-called “AOL search data leak”. AOL (previously known as
“America Online”) is a quite popular Internet company that used to be running
a search engine; in 2006 they decided to distribute a large querylog for the sake
of research institutes around the world. A querylog is a dataset containing the
queries submitted to a search engine (during a certain time frame and from a
certain geographical region); some of the queries (besides the actual query and
other data, like when the query was issued or which links the users decided to
click on) came with an identification of the user that made the query (for the
users that were logged in). To avoid putting the privacy of its users at risk, AOL
substituted the names of the users with numeric identifiers.

Two journalists from The New York Times, though, by analysing the text of the
queries were able to give a name and a face to one of the users: they established
that user number 4417749 was in fact Thelma Arnold, a 62-year-old widow who
lived in Lilburn (Georgia). From that, they were able for example to determine that
Mrs. Arnold was suffering from a range of ailments (she kept searching things like



12 P. Boldi

“hand tremors”, “dry mouth” etc.9), and a number of other, potentially sensitive
information about her.

AOL acknowledged their mistake and the dataset was immediately removed,
but in September 2006 a class action was filed against AOL in the U.S. District
Court for the Northern District of California. The privacy breach ultimately led
to the resignation of AOL’s chief technology officer, Maureen Govern.

Preserving the anonymity of individuals when publishing social-network data
is a challenging problem that has recently attracted a lot of attention [29,30].
Even just the case of graph-publishing is difficult, and poses a number of the-
oretical and practical questions. Overall, the idea is to introduce in the data
some amount of noise so to protect the identity of individuals. There is clearly a
trade-off between privacy and utility: introducing too much noise certainly pro-
tects individuals but makes the publish data unusable for any practical purpose
by the data miners! Solving this conundrum is the mixed blessing of a whole
research area often referred to as data anonymization.

Limiting our attention to graph data only, most methods rely on a number of
(deterministic or randomized) modifications of the graph, where typically edges
are added, deleted or switched. Recently we proposed an interesting alterna-
tive, based on uncertain graphs. An uncertain graph is a graph endowed with
probabilities on its edges (where the probability is to be interpreted as a “proba-
bility that the edge exists”, and is independent for every edge); in fact, uncertain
graphs are a compact way to express some graph distributions.

The advantage of uncertain graphs for anonymization is that using proba-
bilities you have the possibility of “partially deleting” or “partially adding” an
edge, so to have a more precise knob to fine-tune the amount of noise you are
introducing. The idea is that you modify the graph to be published, turning it
into an uncertain graph, that is what the data miner will see at the end. The
uncertain graph will share (in expectation) many properties of the original graph
(e.g., degree distribution, distance distribution etc.), but the noise introduced in
the process will be enough to guarantee a certain level of anonymity.

The amount of anonymity can be determined precisely using entropy, as ex-
plained in [31]. Suppose you have some property P that you want to preserve:
a property is a map from vertices to values (of some kind); you want to be sure
that if the adversary knows the property of a certain vertex (s)he will still not be
able to single out the vertex in the published graph. An easy example is degree:
the adversary knows that Mr. John Smith has 173 Facebook friends and (s)he
would like to try to find John Smith out based only on this information; we will
introduce the minimum amount of noise to be sure that (s)he will always be
uncertain about who John Smith is, with a fixed desired minimum amount of
uncertainty k (meaning that (s)he will only be able to find a set of candidate
nodes whose cardinality will be k or more).

For the sake of simplicity, let us assume that you take the original graph G
and only augment it with probabilities on its edges. In the original graph G every



Algorithmic Gems in the Data Miner’s Cave 13

vertex (say, x) had a certain value of the probability (P (x)); in the uncertain
graph, it has a distribution of values: for example, the degree of x will be zero in
the possible world where all edges incident on x do not exist (which will happen
with some probability depending on the probability values we have put on those
edges), it will have degree 1 with some other probability and so on.

Let me write Xx(ω) the probability that vertex x has value ω; mutatis mu-
tandis, you can determine the probability Yω(x) that a given node is x, provided
that you know it had the property ω (say, degree 173). Now, you want these
probability distributions Yω(−) to be as “flat” as possible, because otherwise
there may be values of the property for which singling out the right vertex will
be easy for the adversary. In terms of probability, you want H(Yω) ≥ log k, where
H denotes the entropy. Now the problem will be chosing the probability labels
in such a way that the above property is guaranteed. In [31] we explain how it
is possible to do that.

7 Conclusions

I was reading again this paper, and it is not clear (not even clear to myself ) what
was the final message to the reader, if there was one. I think that I am myself
learning a lot, and I am not sure I can teach what I am learning, yet. The first
lesson is that computer science, in these years, and particularly data mining, is
hitting real “big” data, and when I say “big” I mean “so big10” that traditional
feasibility assumptions (e.g., “polynomial time is ok!”) does not apply anymore.
This is a stimulus to look for new algorithms, new paradigms, new ideas. And if
you think that “big data” can be processed using “big machines” (or largely dis-
tributed systems, like MapReduce), you are wrong: muscles are nothing without
intelligence (systems are nothing without good algorithms)! The second lesson
is that computer science (studying things like social networks, web graphs, au-
tonomous systems etc.) is going back to its roots in physics, and is more and
more a Galilean science: experimental, explorative, intrinsically inexact. This
means that we need more models, more explanations, more conjectures. . . Can
you see anything more fun around, folks?

Acknowledgements. I want to thank Andrea Marino and Sebastiano Vigna
for commenting on an early draft of the manuscript.

References

1. Johnson, S.: The Ghost Map: the Story of London’s Most Terrifying Epidemic -
And How It Changed Science, Cities, and the Modern World. Riverhead Books
(2006)

2. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical Report 66, Stanford University (1999)

10 Please, please: say “big data” one more time!



14 P. Boldi

3. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: A scalable fully dis-
tributed web crawler. Software: Practice & Experience 34(8), 711–726 (2004)

4. Boldi, P., Marino, A., Santini, M., Vigna, S.: Bubing: Massive crawling for the
masses. Poster Proc. of 23rd International World Wide Web Conference, Seoul,
Korea (2014)

5. Lee, H.T., Leonard, D., Wang, X., Loguinov, D.: Irlbot: Scaling to 6 billion pages
and beyond. ACM Trans. Web 3(5), 8:1–8:34 (2009)

6. Cho, J., Garcia-Molina, H.: Parallel crawlers. In: Proceedings of the 11th Interna-
tional Conference on World Wide Web, pp. 124–135. ACM (2002)

7. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In: Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, pp. 654–663. ACM (1997)

8. Majewski, B.S., Wormald, N.C., Havas, G., Czech, Z.J.: A family of perfect hashing
methods. Comput. J. 39(6), 547–554 (1996)

9. Jacobson, G.: Space-efficient static trees and graphs. In: 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Carolina, pp.
549–554. IEEE (1989)

10. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Theory and practise of monotone
minimal perfect hashing. In: Proceedings of the Tenth Workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 132–144. SIAM (2009)

11. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing:
Searching a sorted table with O(1) accesses. In: Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Mathematics (SODA), pp. 785–794. ACM
Press, New York (2009)

12. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Fast prefix search in little space,
with applications. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS,
vol. 6346, pp. 427–438. Springer, Heidelberg (2010)

13. Belazzougui, D., Boldi, P., Vigna, S.: Dynamic z-fast tries. In: Chavez, E., Lonardi,
S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 159–172. Springer, Heidelberg (2010)

14. Randall, K.H., Stata, R., Wiener, J.L., Wickremesinghe, R.G.: The Link Database:
Fast access to graphs of the web. In: Proceedings of the Data Compression Con-
ference, pp. 122–131. IEEE Computer Society, Washington, DC (2002)

15. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In:
Proc. of the Thirteenth International World Wide Web Conference, pp. 595–601.
ACM Press (2004)

16. Moffat, A.: Compressing integer sequences and sets. In: Kao, M.-Y. (ed.) Encyclo-
pedia of Algorithms, pp. 1–99. Springer, US (2008)

17. Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., Ragha-
van, P.: On compressing social networks. In: KDD 2009: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 219–228. ACM, New York (2009)

18. Boldi, P., Santini, M., Vigna, S.: Permuting web and social graphs. Internet
Math. 6(3), 257–283 (2010)

19. Boldi, P., Santini, M., Vigna, S.: Permuting web graphs. In: Avrachenkov, K.,
Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 116–126. Springer,
Heidelberg (2009)



Algorithmic Gems in the Data Miner’s Cave 15

20. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: A multires-
olution coordinate-free ordering for compressing social networks. In: Srinivasan, S.,
Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Pro-
ceedings of the 20th International Conference on World Wide Web, pp. 587–596.
ACM (2011)

21. Milgram, S.: The small world problem. Psychology Today 2(1), 60–67 (1967)
22. Travers, J., Milgram, S.: An experimental study of the small world problem. So-

ciometry 32(4), 425–443 (1969)
23. Lipton, R.J., Naughton, J.F.: Estimating the size of generalized transitive closures.

In: VLDB 1989: Proceedings of the 15th International Conference on Very Large
Data Bases, pp. 165–171. Morgan Kaufmann Publishers Inc. (1989)

24. Crescenzi, P., Grossi, R., Lanzi, L., Marino, A.: A comparison of three algorithms
for approximating the distance distribution in real-world graphs. In: Marchetti-
Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 92–103.
Springer, Heidelberg (2011)

25. Palmer, C.R., Gibbons, P.B., Faloutsos, C.: Anf: a fast and scalable tool for data
mining in massive graphs. In: KDD 2002: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 81–90.
ACM, New York (2002)

26. Boldi, P., Rosa, M., Vigna, S.: HyperANF: Approximating the neighbourhood func-
tion of very large graphs on a budget. In: Srinivasan, S., Ramamritham, K., Kumar,
A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th Inter-
national Conference on World Wide Web, pp. 625–634. ACM (2011)

27. Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.: HyperLogLog: the analysis of a
near-optimal cardinality estimation algorithm. In: Proceedings of the 13th Confer-
ence on Analysis of Algorithm (AofA 2007), pp. 127–146 (2007)

28. Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separa-
tion. In: ACM Web Science 2012: Conference Proceedings, pp. 45–54. ACM Press
(2012), Best paper award

29. Backstrom, L., Dwork, C., Kleinberg, J.M.: Wherefore art thou r3579x?:
anonymized social networks, hidden patterns, and structural steganography. In:
WWW, pp. 181–190 (2007)

30. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: IEEE Sympo-
sium on Security and Privacy (2009)

31. Boldi, P., Bonchi, F., Gionis, A., Tassa, T.: Injecting uncertainty in graphs for iden-
tity obfuscation. Proceedings of the VLDB Endowment 5(11), 1376–1387 (2012)



Fun with Fonts: Algorithmic Typography

Erik D. Demaine and Martin L. Demaine

MIT CSAIL, 32 Vassar St., Cambridge, MA 02139, USA
{edemaine,mdemaine}@mit.edu

Abstract. Over the past decade, we have designed five typefaces based
on mathematical theorems and open problems, specifically computa-
tional geometry. These typefaces expose the general public in a unique
way to intriguing results and hard problems in hinged dissections, geo-
metric tours, origami design, physical simulation, and protein folding. In
particular, most of these typefaces include puzzle fonts, where reading
the intended message requires solving a series of puzzles which illustrate
the challenge of the underlying algorithmic problem.

1 Introduction

Scientists use fonts every day to express their research through the written word.
But what if the font itself communicated (the spirit of) the research? What if
the way text is written, and not just the text itself, engages the reader in the
science?

We have been designing a series of typefaces (font families) based on our com-
putational geometry research. They are mathematical typefaces and algorithmic
typefaces in the sense that they illustrate mathematical and algorithmic struc-
tures, theorems, and/or open problems. In all but one family, we include puzzle
typefaces where reading the text itself requires engaging with those same mathe-
matical structures. With a careful combination of puzzle and nonpuzzle variants,
these typefaces enable the general public to explore the underlying mathematical
structures and appreciate their inherent beauty, challenge, and fun.

This survey reviews the five typefaces we have designed so far, in chronolog-
ical order. We describe each specific typeface design along with the underlying
algorithmic field. Figure 1 shows the example of “FUN” written in all five type-
faces. Anyone can experiment with writing text (and puzzles) in these typefaces
using our free web applications.1

2 Hinged Dissections

A hinged dissection is a hinged chain of blocks that can fold into multiple shapes.
Although hinged dissections date back over 100 years [Fre97], it was only very

1 http://erikdemaine.org/fonts/

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 16–27, 2014.
c© Springer International Publishing Switzerland 2014



Fun with Fonts: Algorithmic Typography 17

(a) Hinged-dissection typeface

(b) Conveyer typeface, solved with
belt

(c) Conveyer typeface, puzzle with-
out belt

(d) Origami-maze type-
face, 3D extrusion

(e) Origami-maze typeface, puzzle crease pattern

(f) Glass-squishing typeface, line
art after squish

(g) Glass-squishing typeface, puzzle line
art before squish

(h) Linkage typeface, correct font (i) Linkage typeface, a puzzle font

Fig. 1. FUN written in all five of our mathematical typefaces



18 E.D. Demaine and M.L. Demaine

Fig. 2. Hinged dissection typeface, from [DD03]

recently that we proved that hinged dissections exist, for any set of polygons of
equal area [AAC+12]. That result was the culmination of many years of exploring
the problem, starting with a theorem that any polyform—n identical shapes
joined together at corresponding edges—can be folded from one universal chain
of blocks (for each n) [DDEF99,DDE+05].

Our first mathematical/algorithmic typeface, designed in 2003 [DD03],2 illus-
trates both this surprising way to hinge-dissect exponentially many polyform
shapes, and the general challenge of the then-open hinged-dissection problem.
As shown in Figure 2, we designed a series of glyphs for each letter and numeral
as 32-abolos, that is, edge-to-edge gluings of 32 identical right isosceles triangles
(half unit squares). In particular, every glyph has the same area. Applying our
theorem about hinged dissections of polyforms [DDEF99,DDE+05] produces the
128-piece hinged dissection shown in Figure 3. This universal chain of blocks can
fold into any letter in Figure 2, as well as a 4× 4 square as shown in Figure 3.

2 http://erikdemaine.org/fonts/hinged/



Fun with Fonts: Algorithmic Typography 19

Fig. 3. Foldings of the 128-piece hinged dissection into the letter A and a square, from
[DD03]

An interesting open problem about this font is whether the chain of 128 blocks
can be folded continuously without self-intersection into each of the glyphs. In
general, hinged chains of triangles can lock [CDD+10]. But if the simple structure
of this hinged dissection enables continuous motions, we could make a nice ani-
mated font, where each letter folds back and forth between the informationless
open chain (or square) and its folded state as the glyph. Given a physical instan-
tiation of the chain (probably too large to be practical), each glyph is effectively
a puzzle to see whether it can be folded continuously without self-intersection.

It would also be interesting to make a puzzle font within this typeface. Un-
folded into a chain, each letter looks the same, as the hinged dissection is univer-
sal. We could, however, annotate the chain to indicate which parts touch which
parts in the folded state, to uniquely identify each glyph (after some puzzling).

3 Conveyer Belts

A seemingly simple yet still open problem posed by Manual Abellanas in 2001
[Abe08] asks whether every disjoint set of unit disks (gears or wheels) in the plane
can be visited by a single taut non-self-intersecting conveyer belt. Our research
with Belén Palop first attempted to solve this problem, and then transformed
into a new typeface design [DDP10a] and then puzzle design [DDP10b].

The conveyer-belt typeface, shown in Figure 4, consists of all letters and
numerals in two main fonts.3 With both disks and a valid conveyer belt (Fig-
ure 4(a)), the font is easily readable. But with just the disks (Figure 4(b)), we
obtain a puzzle font where reading each glyph requires solving an instance of
the open problem. (In fact, each distinct glyph needs to be solved only once, by
recognizing repeated disk configurations.) Each disk configuration has been de-
signed to have only one solution conveyer belt that looks like a letter or numeral,
which implies a unique decoding.

The puzzle font makes it easy to generate many puzzles with embedded secret
messages [DDP10b]. By combining glyphs from both the puzzle and solved (belt)

3 http://erikdemaine.org/fonts/conveyer/



20 E.D. Demaine and M.L. Demaine

(a) With belts. (b) Without belts.

Fig. 4. Conveyer belt alphabet, from [DDP10a]

font, we have also designed a series of puzzle/art prints. Figure 5 shows a self-
referential puzzle/art print which describes the very open problem on which it
is based.

4 Origami Mazes

In computational origami design, the typical goal is to develop algorithms that
fold a desired 3D shape from the smallest possible rectangle of paper of a desired
aspect ratio (typically a square). One result which achieves a particularly efficient
use of paper is maze folding [DDK10a]: any 2D grid graph of horizontal and
vertical integer-length segments, extruded perpendicularly from a rectangle of
paper, can be folded from a rectangle of paper that is a constant factor larger
than the target shape. A striking feature is that the scale factor between the
unfolded piece of paper and the folded shape is independent of the complexity of
the maze, depending only on the ratio of the extrusion height to the maze tunnel
width. (For example, a extrusion/tunnel ratio of 1 : 1 induces a scale factor of
3 : 1 for each side of the rectangle.)

The origami-maze typeface, shown in Figure 6, consists of all letters in three
main fonts [DDK10b].4 In the 2D font (Figure 6(a)), each glyph is written as
a 2D grid graph before extrusion. In the 3D font (Figure 6(b)), each glyph is
drawn as a 3D extrusion out of a rectangular piece of paper. In the crease-pattern
font (Figure 6(c)), each glyph is represented by a crease pattern produced by
the maze-folding algorithm, which folds into the 3D font. By properties of the
algorithm, the crease-pattern font has the feature that glyphs can be attached

4 http://erikdemaine.org/fonts/maze/



Fun with Fonts: Algorithmic Typography 21

Fig. 5. “Imagine Text” (2013), limited-edition print, Erik D. Demaine and Martin L.
Demaine, which premiered at the Exhibition of Mathematical Art, Joint Mathematics
Meetings, San Diego, January 2013



22 E.D. Demaine and M.L. Demaine

(a) 2D grid maze (b) 3D extrusion

(c) Crease pattern

Fig. 6. Origami-maze typeface, from [DDK10b]: (c) folds into (b), which is an extrusion
of (a). Dark lines are mountain folds; light lines are valley folds; bold lines delineate
letter boundaries and are not folds.

together on their boundary to form a larger crease pattern that folds into all of
the letters as once. For example, the entire crease pattern of Figure 6(c) folds
into the 3D shape given by Figure 6(b).



Fun with Fonts: Algorithmic Typography 23

ART
Fig. 7. “Science/Art” (2011), limited-edition print, Erik D. Demaine and Martin L.
Demaine, which premiered at the Exhibition of Mathematical Art, Joint Mathematics
Meetings, Boston, January 2012

The crease-pattern font is another puzzle font: each glyph can be read by
folding, either physically or in your head. With practice, it is possible to recognize
the extruded ridges from the crease pattern alone, and devise the letters in the
hidden message. We have designed several puzzles along these lines [DDK10b].

It is also possible to overlay a second puzzle within the crease-pattern font, by
placing a message or image in the ground plane of the 3D folded shape, dividing
up by the grid lines, and unfolding those grid cells to where they belong in the
crease pattern. Figure 7 shows one print design along these lines, with the crease
pattern defining the 3D extrusion of “SCIENCE” while the gray pattern comes
together to spell “ART”. In this way, we use our typeface design to inspire new
print designs.

5 Glass Squishing

Glass blowing is an ancient art form, and today it uses most of the same physi-
cal tools as centuries ago. In computer-aided glass blowing, our goal is to harness



24 E.D. Demaine and M.L. Demaine

geometric and computational modeling to enable design of glass sculpture and
prediction of how it will look ahead of time on a computer. This approach enables
extensive experimentation with many variations of a design before committing
the time, effort, and expense required to physically blow the piece. Our free
software Virtual Glass [WBM+12] currently focuses on computer-aided design
of the highly geometric aspects of glass blowing, particularly glass cane.

One aspect of glass blowing not currently captured by our software is the abil-
ity to “squish” components of glass together. This action is a common technique
for combining multiple glass structures, in particular when designing elaborate
glass cane. To model this phenomenon, we need a physics engine to simulate the
idealized behavior of glass under “squishing”.

To better understand this physical behavior, we designed a glass-squishing
typeface during a 2014 residency at Penland School of Crafts. As shown in
Figure 8, we designed arrangements of simple glass components—clear disks and
opaque thin lines/cylinders—that, when heated to around 1400◦F and squished
between two vertical steel bars, produce any desired letter. The typeface consists
of five main fonts: photographs of the arrangements before and after squishing,
line drawings of these arrangements before and after squishing, and video of the
squishing process. The “before” fonts are puzzle fonts, while the “after” fonts
are clearly visible. The squishing-process font is a rare example of a video font,
where each glyph is a looping video. Figure 9 shows stills from the video for the
letters F-U-N. See the web app for the full experience.5

Designing the before-squishing glass arrangements required extensive trial and
error before the squished result looked like the intended glyph. This experimenta-
tion has helped us define a physical model for the primary forces and constraints
for glass squishing in 2D, which can model the cross-section of 3D hot glass. We
plan to implement this physical model to both create another video font of line
art simulating the squishing process, and to enable a new category of computer-
aided design of blown glass in our Virtual Glass software. In this way, we use
typeface design to experiment with and inform our computer science research.

6 Fixed-Angle Linkages

Molecules are made up of atoms connected together by bonds, with bonds held
at relatively fixed lengths, and incident bonds held at relatively fixed angles. In
mathematics, we can model these structures as fixed-angle linkages, consisting of
rigid bars (segments) connected at their endpoints, with specified fixed lengths
for the bars and specified fixed angles between incident bars. A special case of
particular interest is a fixed-angle chain where the bars are connected together in
a path, which models the backbone of a protein. There is extensive algorithmic
research on fixed-angle chains and linkages, motivated by mathematical models
of protein folding; see, e.g., [DO07, chapters 8–9]. In particular, the literature
has studied flat states of fixed-angle chains, where all bars lie in a 2D plane.

5 http://erikdemaine.org/fonts/squish/



Fun with Fonts: Algorithmic Typography 25

(a) Line art, before squishing

(b) Line art, after squishing

Fig. 8. Glass-squishing typeface

Fig. 9. Frames from the video font rendering of F-U-N



26 E.D. Demaine and M.L. Demaine

Fig. 10. Linkage typeface, from [DD14]. Each letter has several glyphs; shown here is
the “correct” glyph. Doubled and tripled edges are spread apart for easier visibility.

Our linkage typeface, shown in Figure 10, consists of a fixed-angle chain for
each letter and numeral. Every fixed-angle chain consists of exactly six bars,

Fig. 11. A few random
linkage glyphs for F-U-N

each of unit length. Hence, each chain is defined just
by a sequence of five measured (convex) angles. Each
chain, however, has many flat states, depending on
whether the convex side of each angle is on the left or
the right side of the chain. Thus, each chain has 25 =
32 glyphs depending on the choice for each of the five
angles. (In the special cases of zero and 360◦ angles,
the choice has no effect so the number of distinct
glyphs is smaller.)

Thus each letter and numeral has several possible
glyphs, only a few of which are easily recognizable;
the rest are puzzle glyphs. Figure 11 shows some ex-
ample glyphs for F-U-N. We have designed the fixed-
angle chains to be uniquely decodable into a letter or
numeral; the incorrect foldings do not look like an-
other letter or numeral. The result is a random puzzle
font.6 Again we have used this font to design several
puzzles [DD14].

In addition, there is a rather cryptic puzzle font
given just by the sequence of angles for each letter. For example, F-U-N can be
written as 90-0-90-90-0 0-180-90-90-180 180-30-180-30-180.

6 http://erikdemaine.org/fonts/linkage/



Fun with Fonts: Algorithmic Typography 27

References

AAC+12. Abbott, T.G., Abel, Z., Charlton, D., Demaine, E.D., Demaine, M.L.,
Kominers, S.D.: Hinged dissections exist. Discrete & Computational Ge-
ometry 47(1), 150–186 (2012)

Abe08. Abellanas, M.: Conectando puntos: poligonizaciones y otros problemas rela-
cionados. Gaceta de la Real Sociedad Matematica Española 11(3), 543–558
(2008)

CDD+10. Connelly, R., Demaine, E.D., Demaine, M.L., Fekete, S., Langerman, S.,
Mitchell, J.S.B., Ribó, A., Rote, G.: Locked and unlocked chains of planar
shapes. Discrete & Computational Geometry 44(2), 439–462 (2010)

DD03. Demaine, E.D., Demaine, M.L.: Hinged dissection of the alphabet. Journal
of Recreational Mathematics 31(3), 204–207 (2003)

DD14. Demaine, E.D., Demaine, M.L.: Linkage puzzle font. In: Exchange Book of
the 11th Gathering for Gardner, Atlanta, Georgia (March 2014)

DDE+05. Demaine, E.D., Demaine, M.L., Eppstein, D., Frederickson, G.N., Fried-
man, E.: Hinged dissection of polyominoes and polyforms. Computational
Geometry: Theory and Applications 31(3), 237–262 (2005)

DDEF99. Demaine, E.D., Demaine, M.L., Eppstein, D., Friedman, E.: Hinged
dissection of polyominoes and polyiamonds. In: Proceedings of the 11th
Canadian Conference on Computational Geometry, Vancouver, Canada
(August 1999),
http://www.cs.ubc.ca/conferences/CCCG/elec_proc/fp37.ps.gz

DDK10a. Demaine, E.D., Demaine, M.L., Ku, J.: Folding any orthogonal maze. In:
Origami5: Proceedings of the 5th International Conference on Origami in
Science, Mathematics and Education, pp. 449–454. A K Peters, Singapore
(2010)

DDK10b. Demaine, E.D., Demaine, M.L., Ku, J.: Origami maze puzzle font. In: Ex-
change Book of the 9th Gathering for Gardner, Atlanta, Georgia (March
2010)

DDP10a. Demaine, E.D., Demaine, M.L., Palop, B.: Conveyer-belt alphabet. In:
Aardse, H., van Baalen, A. (eds.) Findings in Elasticity, pp. 86–89. Pars
Foundation, Lars Müller Publishers (April 2010)

DDP10b. Demaine, E.D., Demaine, M.L., Palop, B.: Conveyer belt puzzle font. In:
Exchange Book of the 9th Gathering for Gardner (G4G9), Atlanta, Georgia,
March 24-28 (2010)

DO07. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University Press (July 2007)

Fre97. Frederickson, G.N.: Dissections: Plane and Fancy. Cambridge University
Press (November 1997)

WBM+12. Winslow, A., Baldauf, K., McCann, J., Demaine, E.D., Demaine, M.L.,
Houk, P.: Virtual cane creation for glassblowers. Talk at SIGGRAPH
(2012), Software available from http://virtualglass.org

http://www.cs.ubc.ca/conferences/CCCG/elec_proc/fp37.ps.gz
http://virtualglass.org


Happy Edges: Threshold-Coloring of Regular Lattices∗

Md. Jawaherul Alam1, Stephen G. Kobourov1, Sergey Pupyrev1,2,
and Jackson Toeniskoetter1

1 Department of Computer Science, University of Arizona, USA
2 Institute of Mathematics and Computer Science, Ural Federal University, Russia

Abstract. We study a graph coloring problem motivated by a fun Sudoku-style
puzzle. Given a bipartition of the edges of a graph into near and far sets and an
integer threshold t, a threshold-coloring of the graph is an assignment of integers
to the vertices so that endpoints of near edges differ by t or less, while endpoints
of far edges differ by more than t. We study threshold-coloring of tilings of the
plane by regular polygons, known as Archimedean lattices, and their duals, the
Laves lattices. We prove that some are threshold-colorable with constant number
of colors for any edge labeling, some require an unbounded number of colors for
specific labelings, and some are not threshold-colorable.

1 Introduction

A Sudoku-style puzzle called Happy Edges. Similar to Sudoku, Happy Edges is a grid
(represented by vertices and edges), and the task is to fill in the vertices with numbers
and make all the edges “happy”: a solid edge is happy if the numbers of its endpoints
differ by at most 1, and a dashed edge is happy if the difference is at least 2; see Fig. 1.

In this paper, we study a generalization of the puzzle modeled by a graph coloring
problem. The generalization is twofold. Firstly, we consider several regular grids as a
base for the puzzle, namely Archimedean and Laves lattices. Secondly, we allow for
any integer difference to distinguish between solid and dashed edges. Thus, the for-
mal model of the puzzle is as follows. The input is a graph with near and far edges.

Fig. 1. An example of the Happy Edges puzzle: fill in numbers so that nodes connected by a
solid edge differ by at most 1 and nodes connected by a dashed edge differ by at least 2. Fearless
readers are invited to solve the puzzle before reading further! More puzzles are available online
at http://happy-edges.cs.arizona.edu.

∗Supported in part by NSF grants CCF-1115971 and DEB 1053573.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 28–39, 2014.
c© Springer International Publishing Switzerland 2014

http://happy-edges.cs.arizona.edu


Threshold-Coloring of Regular Lattices 29

The goal is to assign integer labels (colors) to the vertices and compute an integer
threshold so that the distance between the endpoints of a near edge is within the thresh-
old, while the distance between endpoints of a far edge is greater than the threshold.

We consider a natural class of graphs called Archimedean and Laves lattices, which
yield symmetric and aesthetically appealing game boards; see Fig. 2. An Archimedean
lattice is a graph of an edge-to-edge tiling of the plane using regular polygons with the
property that all vertices of the polygons are identical under translation and rotation.
Edge-to-edge means that each distinct pair of edges of the tiling intersect at a single
endpoint or not at all. There are exactly 11 Archimedean lattices and their dual graphs
are the Laves lattices (except for 3 duals which are Archimedean). We are interested in
identifying the lattices that can be appropriately colored for any prescribed partitioning
of edges into near and far. Such lattices can be safely utilized for the Happy Edges
puzzle, as even the simplest random strategy may serve as a puzzle generator.

Another motivation for studying the threshold coloring problem comes from the ge-
ometric problem of unit-cube proper contact representation of planar graphs. In such
a representation, vertices are represented by unit-size cubes, and edges are represented
by common boundary of non-zero area between the two corresponding cubes. Finding
classes of planar graphs with unit-cube proper contact representation was posed as an
open question by Bremner et al. [5]. As shown in [2], threshold-coloring can be used to
find such a representation of certain graphs.

Terminology and Problem Definition. An edge labeling of a graph G = (V,E) is a
map l : E → {N,F}. If (u, v) ∈ E, then (u, v) is called near if l(u, v) = N and u
is said to be near to v. Otherwise, (u, v) is called far and u is far from v. A threshold-
coloring of G with respect to l is a map c : V → Z such that there exists an integer
t ≥ 0, called the threshold, satisfying for every edge (u, v) ∈ E, |c(u) − c(v)| ≤ t if
and only if l(u, v) = N . If m is the minimum value of c, and M the maximum, then
r > M −m is the range of c. The map c is called a (r, t)-threshold-coloring and G is
threshold-colorable or (r, t)-threshold-colorable with respect to l.

If G is (r, t)-threshold-colorable with respect to every edge labeling, then G is
(r, t)-total-threshold-colorable, or simply total-threshold-colorable. If G is not (r, t)-
total-threshold-colorable, then G is non-(r, t)-total-threshold-colorable, or non-total-
threshold-colorable if G is non-(r, t)-total-threshold-colorable for all values of (r, t).

In an edge-to-edge tiling of the plane by regular polygons, the species of a vertex
v is the sequence of degrees of polygons that v belongs to, written in clockwise or-
der. For example, each vertex of the triangle lattice has 6 triangles, and so has species
(3, 3, 3, 3, 3, 3). A vertex of the square lattice has species (4, 4, 4, 4), and vertices of
the octagon-square lattice have species (4, 8, 8). Exponents are used to abbreviate this:
(4, 82) = (4, 8, 8). The Archimedean tilings are the 11 tilings by regular polygons such
that each vertex has the same species; we use this species to refer to the lattice. For
example, (63) is the hexagon lattice, and (3, 122) is the lattice with triangles and do-
decagons. An Archimedean lattice is an infinite graph defined by the edges and vertices
of an Archimedean tiling. If A is an Archimedean lattice, then we refer to its dual
graph as D(A). The lattice (36) of triangles and the lattice (63) of hexagons are dual to
each other, whereas the lattice (44) of squares is dual to itself. The duals of the other 8
Archimedean lattices are not Archimedean, and these are referred to as Laves lattices;



30 Md. J. Alam et al.

(4,6,12) (3,122) (3,4,6,4) (36)
Yes: r = 9, t = 2 Yes: r = 9, t = 2 Maybe No

(33, 42) (3,6,3,6) (63) (4, 82)
No Maybe Yes: r = 5, t = 1 Yes: r = 5, t = 1

(44) (34, 6) (32, 4, 3, 4) D(32, 4, 3, 4)
Maybe: r = O(|V |) No No Yes: r, t = O(|V |)

D(3, 122) D(4, 6, 12) D(4, 82) D(3,4,6,4)
No No No Maybe: r = O(|V |)

D(3, 6, 3, 6) D(34, 6) D(33, 42)
Maybe: r = O(|V |) Yes: r, t = O(|V |) Maybe

Fig. 2. The 11 Archimedean and 8 Laves lattices. With each lattice’s name, we provide a summary
of results concerning the threshold-coloring of the lattice. For those which are total-threshold-
colorable we list the best known values of r and t. For those which might be total-threshold-
colorable, we list known constraints on r and t.

see Fig. 2. By an abuse of notation, any induced subgraph of an Archimedean or Laves
lattice is called an Archimedean or Laves lattice.

Related Work. Many problems in graph theory deal with coloring the vertices of a
graph [14] and many graph classes are defined such colorings [4]. Alam et al. [2] intro-
duce threshold-coloring and show that deciding whether a graph is threshold colorable
with respect to an edge labeling is equivalent to the graph sandwich problem for proper-
interval-representability, which is NP-complete [10]. They also show that graphs with
girth (that is, length of shortest cycle) at least 10 are always total-threshold-colorable.

Total-threshold-colorable graphs are related to threshold and difference graphs. In
threshold graphs there exists a real number S and every vertex v has a real weight av so



Threshold-Coloring of Regular Lattices 31

that (v, w) is an edge if and only if av + aw ≥ S [13]. A graph is a difference graph if
there is a real number S and for every vertex v there is a real weight av so that |av| < S
and (v, w) is an edge if and only if |av − aw| ≥ S [12]. Note that for both these classes
the existence of an edge is determined wholly by the threshold S, while in our setting
the edges defined by the threshold must belong to the original graph.

Threshold-colorability is related to the integer distance graph representation [6,7].
An integer distance graph is a graph with the set of integers as vertex set and with an
edge joining two vertices u and v if and only if |u − v| ∈ D, where D is a subset of
the positive integers. Clearly, an integer distance graph is threshold-colorable if the set
D is a set of consecutive integers. Also related is distance constrained graph labeling,
denoted by L(p1, . . . , pk)-labeling, a labeling of the vertices of a graph so that for
every pair of vertices with distance at most i ≤ k the difference of their labels is at least
pi. L(2, 1)-labelings are well-studied [9] and minimizing the number of labels is NP-
complete, even for diameter-2 graphs [11]. It is NP-complete to determine if a labeling
exists with at most k labels for every fixed integer k ≥ 4 [8].

Our Results. We study the threshold-colorability of the Archimedean and Laves lat-
tices; see Fig. 2 for an overview of the results. First, we prove that 6 of them are
threshold-colorable for any edge labeling. Hence, the Happy Edges puzzle always have
a solution on these lattices. Then we show that 7 of the lattices have an edge labeling
admitting no threshold-coloring. Finally, for 3 no constant range of colors suffices.

2 Total-Threshold-Colorable Lattices

Given a graph G = (V,E), a subset I of V is called 2-independent if the shortest path
between any two distinct vertices of I has length at least 3. For a subset V ′ of V , we
denote the subgraph of G induced by V ′ as G[V ′]. We give an algorithm for threshold-
coloring graphs whose vertex set has a partition into a 2-independent set I and a set T
such that G[T ] is a forest. Dividing G into a forest and 2-independent set has been used
for other graph coloring problems, for example in [3,15] for the star coloring problem.

2.1 The (63) and (4, 82) Lattices

Lemma 1. Suppose G = (I ∪ T,E) is a graph such that I is 2-independent, G[T ] is a
forest, and I and T are disjoint. Then G is (5, 1)-total-threshold-colorable.

Proof. Suppose l : E → {N,F} is an edge labeling. For each v ∈ I , set c(v) = 0. Each
vertex in T is assigned a color from {−2,−1, 1, 2} as follows. Choose a component T ′

of G[T ], and select a root vertexw of T ′. If w is far from a neighbour in I , set c(w) = 2.
Otherwise, c(w) = 1. Now we conduct breadth first search on T ′, coloring each vertex
as it is traversed. When we traverse to a vertex u �= w, it has one neighbour x ∈ T ′

which has been colored, and at most one neighbour v ∈ I . If v does not exist, we
assume it does and that l(u, v) = N . We choose the color c(u) = 1 if l(u, v) = N , and
c(u) = 2 otherwise. Then, if the edge (u, x) is not satisfied, we multiply c(u) by−1. By
repeating the procedure on each component of G[T ], we construct a (5, 1)-threshold-
coloring of G with respect to the labeling l. ��



32 Md. J. Alam et al.

(a) (b)

Fig. 3. Decomposing vertices into a 2-independent set, shown in white, and a forest. (a) The (63)
lattice. (b) The (4, 82) lattice.

The (63) and (4, 82) lattices have such a decomposition; see Fig. 3. Hence,

Theorem 1. The (63) and (4, 82) lattices are (5,1)-total-threshold-colorable.

2.2 The (3, 122) and (4, 6, 12) Lattices

In order to color the lattices, we use (9, 2)-color space, that is, threshold 2 and 9 colors,
such as {0,±1,±2,±3,±4}. This color-space has the following properties.

Lemma 2. Consider a path with 3 vertices (v0, v1, v2), such that v0,v2 have colors
c(v0), c(v2) in {0,±1,±2,±3,±4}. For threshold 2 and any edge labeling,

(a) If c(v0)=0, and c(v2) ∈ {±1,±2,±3,±4}, then we can choose c(v1) in {±2,±3}.
(b) If c(v0) = 0 and c(v2) ∈ {±2,±3,±4}, then we can choose c(v1) in {±2,±4}.
(c) If c(v0) = ±1, and c(v2) ∈ {±2,±3}, then we can choose c(v1) in {±1,±4}.

Proof. (a) First, we choose c(v1) = ±2 if v1 is near to v0, and ±3 otherwise. Then,
if v1 is near to v2, choose the sign of c(v1) to agree with c(v2). Otherwise choose the
sign of c(v1) to be opposite c(v2). (b) Choose c(v1) = ±2 if v1 is near to v0, and ±4
otherwise. Then, choose the sign of c(v1) as before. (c) Choose c(v1) = ±1 if v1 is
near to v0, and c(v1) = ±4 otherwise. Then, choose the sign of c(v1) as before. ��

On a high level, our algorithms for the (3, 122) and (4, 6, 12) lattices are very similar
to each other: we identify small “patches”, and then assemble them into the lattice; see
Figs. 4-5. We first show how to color a patch for (3, 122) and then for (4, 6, 12).

Lemma 3. Let G be the graph shown in Fig 4(a). Suppose c(u0) = c(u1) = 0 and
c(v0) = ±1. Then for any edge labeling, this coloring can be extended to a (9, 2)-
threshold-coloring of G such that v5 is colored 1 or −1.

Proof. Assume c(v0) = 1. We apply Lemma 2(a) to the path (u0, v1, v0) to choose
a color for v1 in {±2,±3}, then apply part (c) of the lemma to the path (v0, v2, v1)
to choose c(v2) ∈ {±1,±4}. Then c(v3) is chosen in {±2,±3} using part (a) of the
lemma on the path (u1, v3, v2), and finally c(v4) ∈ {±2,±3} is chosen using part (a)
on the path (u1, v4, v3). Then we choose c(v5) = ±1 so that it is near or far from c(v4).

��



Threshold-Coloring of Regular Lattices 33

v5

v4

u1

v3 v2
v0

v1
u0

(a)

v0

u0

v1

v2

v3

v8

v6

v7

u3

v9 v10

u4

v4 v5

u1 u2

(b)

Fig. 4. (a) A subgraph of the (3, 122) lattice. (b) A subgraph of the (4, 6, 12) lattice. Square
vertices are colored 0.

A similar lemma concerns the (4, 6, 12) lattice; see the proof in the full version [1].

Lemma 4. Let G be the graph shown in Fig. 4(b), and consider any edge labeling.
Suppose that c(ui) = 0, for i = 0, . . . , 4, and c(v0) is a fixed color in {±2,±4} that
satisfies the label of (v0, u0). Then we can extend this partial coloring to a coloring c
of all of G, so that c is a (9,2)-threshold-coloring of G with respect to the edge labeling,
and c(v10) is in {±2,±4}.

Theorem 2. The (3, 122) and (4, 6, 12) lattices are (9,2)-total-threshold-colorable.

Proof. We prove the claim for (3, 122); see [1] for the (4, 6, 12) proof.
First, we join several copies of the graph G in Lemma 3. Let G1, . . . , Gn be copies

of G. Let us call ui,k and vj,k the vertices in Gk, corresponding to ui, vj (i = 0 or
1, 0 ≤ j ≤ 5). For 1 ≤ k < n, we set v5,k = v0,k+1. This defines a single row of the
(3, 122) lattice. We can construct a (9, 2)-threshold-coloring of this chain ofG1, . . . , Gn

by giving the vertex v0,1 the color 1 and repeatedly applying Lemma 3.
To construct the next row, we add a copy of G connected to Gi and Gi+2 for each

odd i with 1 ≤ i ≤ k − 2, by identifying u1,i = u0 and u0,i+2 = u1. We then join the
copies of G added above the first row in the same way that the copies G1, . . . , Gn were
joined. By repeatedly adding new rows, we complete the construction of the (3, 122)
lattice. We can threshold-color each row, and since the rows are connected only by
vertices colored 0, the entire graph is (9, 2)-total-threshold-colorable; see Fig. 5. ��

2.3 The D(32, 4, 3, 4) and D(34, 6) Lattices

Here we give an algorithm for threshold-coloring of the D(32, 4, 3, 4) and D(34, 6) lat-
tices using O(|V |) colors and O(|V |) threshold. By k-vertex, we mean a vertex of
degree k. We use the following strategy. First, we construct an independent set I . For
the D(32, 4, 3, 4) lattice, I consists of all the 4-vertices; see Fig. 6(b). For the D(34, 6)
lattice, I consists of all the 6-vertices and some 3-vertices; see [1]. Consider an edge
labeling l : E → {N,F}. We color all the vertices of I using |I| different colors such
that each gets a unique color. Next we color the remaining 3-vertices so that for each



34 Md. J. Alam et al.

(a) (b) (c)

Fig. 5. Threshold-coloring the (3, 122) lattice. (a) Identifying the rows separated by square ver-
tices. (b) One patch has been colored, shown inside the oval. (c) Coloring an entire row.

edge e = (u, v), |c(u) − c(v)| ≤ |I| if and only if l(e) = N , which gives a threshold-
coloring of the graph with threshold |I|. Note that for both these lattices, the 3-vertices
remaining after the vertices in I are removed induce a matching, that is, a set of edges
with disjoint end-vertices. We color these 3-vertices in pairs, defined by the matching.

We now describe the algorithm. Consider the graph G6 with edges e0, . . . , e4 parti-
tioned into near and far and coloring c : {w1, w2, w3, w4} → {k + 2, . . . , 2k + 1} for
some integer k > 0 such that each of the vertices gets a unique color; see Fig. 6(a).

After possible renaming assume that if l(e1) �= l(e2) then l(e1) = N , and if l(e3) �=
l(e4) then l(e3) = N . c is extendible with respect to l if one of the following holds.

1. l(e1) = l(e2) or l(e3) = l(e4).
2. l(e0) = N and c(w1) < c(w2) if and only if c(w3) < c(w4).
3. l(e0) = F and c(w1) < c(w2) if and only if c(w3) > c(w4).

The following lemma shows that if c is extendible with respect to l, then there is a
(3k + 1, k)-threshold-coloring of G6; see [1] for the proof.

Lemma 5. Consider the graph G6 in Fig. 6(a). Let l : E → {N,F} be an edge
labeling of E and let c : (V − {u, v}) → {k + 2, . . . , 2k + 1} be an extendible
coloring with respect to l. Then there exist colors c(u) and c(v) for u and v from the set
{1, . . . , 3k + 2} such that c is a threshold-coloring of G for l with threshold k.

Theorem 3. The D(32, 4, 3, 4) and D(34, 6) lattices are (O(|V |), O(|V |))-total-
threshold-colorable where V is the vertex set.

Proof. We give the proof for D(32, 4, 3, 4), see [1] for the rest.
Let G be a subgraph of D(32, 4, 3, 4) and let l be an edge labeling of G. Let m be

the number of 4-vertices in G. Assign the threshold t = m. The remaining vertices V2

of G have degree 3 and they form a matching. Each edge (u, v) between these vertices
is surrounded by exactly four 4-vertices, which are the other neighbors of u and v; see
Fig. 6(b). Call this edge horizontal if it is drawn horizontally in Fig. 6(b); otherwise call
it vertical. Our goal is to color the vertices of V1 so that for each horizontal and vertical
edge of G, this coloring is extendible with respect to l.



Threshold-Coloring of Regular Lattices 35

(c)(a) (b)

4w

3
w

e3

4e
v0

e2

u

e1

w
2

w
1

e

Fig. 6. (a) The graph G6, (b)–(c) Illustration for the proof of Theorem 3

Consider only the 4-vertices V1 of G and add an edge between two of them if they
have a common neighbour in G. This gives a square grid H ; see Fig. 6(c). Each square
S of H is horizontal (vertical) if it is associated with a horizontal (vertical) edge in G.
Let u1, u2, u3 and u4 be the left-top, right-top, left-bottom and right-bottom vertices of
S and let c1, c2, c3 and c4 be the colors assigned to them. Suppose S is a vertical square.
Then in order to make the coloring extendible with respect to l, we need that c1 < c2 or
c1 > c2 implies exactly one of the two relations c3 < c4 and c3 > c4, depending on the
edge-label of the associated vertical edge. Similarly if S is a horizontal square then the
relation between c1 and c3 implies a relation between c2 and c4 depending on the edge
label of the associated horizontal edge. Consider that an edge in H is directed from the
vertex with the smaller color to the vertex with the larger color. Then for the coloring to
be extendible to l, we need that for a vertical square S the direction of the edge (u3, u4)
is the same as or opposite to that of (u1, u2) and for a horizontal edge the direction of
(u2, u4) is the same as or opposite to that of (u1, u3), depending on the edge-label of
the associated vertical or horizontal edge. We call this a constraint defined on S. We
now show how to find an acyclic orientation of H so that these constraints are satisfied.

We traverse the square grid H from left-top to right-bottom. We thus assume that
when we are traversing a particular square S, the orientations of its top and left edge
have already been assigned. We now orient the bottom and right edge so that the con-
straint defined on S is satisfied. We also maintain an additional invariant that the right-
bottom vertex of each square is either a source or a sink; that is, the incident edges are
either both outgoing or both incoming. Consider the traversal of a particular square S.
If S is vertical, then the direction of the bottom edge is defined by the direction of the
top-edge and the constraint for S. We then orient the right edge so that the right-bottom
vertex is either a source or a sink; that is, we orient the right edge upward (downward
resp.) if the bottom edge is directed to the left (right resp.). Similarly if S is horizontal,
the direction of the right edge is defined by the constraint and we give direction to the
bottom edge so that the right-bottom vertex is either a source or a sink. We thus have an
orientation of the edges of H satisfying all the constraints at the end of the traversal. It
is easy to see that this orientation defines a directed acyclic graph. For a contradiction
assume that there is a directed cycle C in H . Then take the bottommost vertex x of C
which is to the right of every other bottommost vertex. Then x is either a source or a
sink by our orientation and hence cannot be part of a directed cycle, a contradiction.

Once we have the directed acyclic orientation of H , we compute the coloring c :
V1 → {1, . . . ,m} of the vertices V1 of G in a topological sort of this directed acyclic



36 Md. J. Alam et al.

graph. We shift this color-space to {m+2, . . . , 2m+1} by adding m+1 to each color.
This coloring is extendible to the edge labeling l since the orientation satisfies all the
constraints. Thus by Lemma 5 we can color all the 3-vertices of G, taking k = m. We
thus have a threshold-coloring of G with 3m+ 2 colors and a threshold m. ��

3 Non-Total-Threshold-Colorable Lattices

In this section, we consider several lattices that cannot be threshold-colored. We begin
with a useful lemma.

Lemma 6. Consider a K3 defined on {v0, v1, v2} and a 4-cycle (u0, u1, u2, u3, u0).
Then for a given threshold t, a threshold-coloring c and edge labeling l:

(a) Let l(v0, v2) = F and l(v0, v1) = l(v1, v2) = N . c(v0) < c(v1)⇒ c(v1) < c(v2).
(b) Let l(v0, v2) = N and l(v0, v1) = l(v1, v2) = F . c(v0) < c(v1)⇒ c(v2) < c(v1).
(c) Let l(u0, u3) = l(u2, u3) = F and l(u0, u1) = l(u1, u2) = N . c(u0) < c(u3) ⇒

c(u1) < c(u3) and c(u2) < c(u3).
(d) Let l(u0, u1) = l(u2, u3) = F and l(u0, u3) = l(u1, u2) = N . c(u0) < c(u1) ⇒

c(u0) < c(u2), c(u3) < c(u1), and c(u3) < c(u2).

Note that we can replace < with > in each case.

Proof. (a) Suppose that c(v0) < c(v1). Then c(v1) − t ≤ c(v0) < c(v1). If c(v2) <
c(v1), then also c(v1) − t ≤ c(v2) < c(v1), but then |c(v0) − c(v2)| ≤ t, a
contradiction. Thus c(v1) < c(v2).

(b) Suppose that c(v0) < c(v1). If c(v2) > c(v1), then c(v0) < c(v1) < c(v2) and
|c(v0)− c(v2)| ≤ t, so |c(v0)− c(v1)| ≤ t, a contradiction. Hence, c(v2) < c(v1).

(c) Suppose that c(u0) < c(u3). Then c(u0) < c(u3) − t and |c(u0)− c(u1)| ≤ t, so
c(u1) < c(u3), and therefore, c(u2) < c(u3) + t, so c(u2) must be less than c(u3)
since |c(u2)− c(u3)| > t.

(d) Suppose that c(u0) < c(u1). Then c(u0) < c(u1) − t, c(u2) ≥ c(u1) − t, and so
c(u1) < c(u2). c(u3) < c(u1) since |c(u0) − c(u3)| ≤ t. If c(u3) > c(u2), then
c(u1)− t ≤ c(u2) < c(u3) < c(u1), so |c(u2)− c(u3)| ≤ t, a contradiction. ��

Theorem 4. The (36), (34, 6), (33, 42), (32, 4, 3, 4), D(3, 122), D(4, 6, 12), and D(4, 82)
lattices are non-total-threshold-colorable.

Proof. It is easy to see that a cycle with exactly 1 far edge is not (r, 0)-threshold-
colorable, so we need only prove the lattices are not (r, t)-total-threshold-colorable for
t > 0. In this proof we assume that r is an arbitrary integer and t > 0.

The (36) and (34, 6) lattices contain the subgraph G in Fig. 7(a). Suppose there exists
an (r, t)-threshold-coloring c. Without loss of generality we may assume that c(v0) <
c(v1) < c(v2). Then c(v0) + t < c(v1) and c(v1) + t < c(v2), so c(v0) + 2t < c(v2).
Since the edges (v0, u2) and (v2, u2) are labeled N , we have |c(v2)−c(v0)| < |c(v2)−
c(u2)|+ |c(v0)− c(u2)| ≤ 2t, which is a contradiction.

A subgraph of (33, 42) is shown in Fig. 7(b). If c is an (r, t)-threshold-coloring and
w.l.o.g. c(v0) < c(v1) < c(v2), then we repeatedly apply Lemma 6 to the vertices



Threshold-Coloring of Regular Lattices 37

u0 v0 u2

v1 v2

u1

(a)

v5v6

v7 v1 v3

v4

v0 v2

(b) (c)

x

v u

w

(d) (e)

Fig. 7. Non-total-threshold-colorable graphs with dashed edges labeled F and solid ones labeled
N . (a) A subgraph of (36) and (34, 6). (b) A subgraph of (33, 42). (c) A subgraph of (32, 4, 3, 4).
(d) A subgraph of D(3, 122). (e) A subgraph of D(4, 6, 12) and D(4, 82).

around the boundary. First we obtain c(v2) < c(v3), and so c(v1) < c(v3) we get c(v4)
and c(v5) larger than c(v1), which leads to c(v6) and c(v7) greater than c(v1). Then
we must have c(v1) < c(v0) < c(v7), which means both c(v0) and c(v2) are in the set
{c(v1), c(v1)− 1, . . . , c(v1)− t}, a contradiction since the edge (v0, v2) is labeled far.

For the (32, 3, 4, 3) lattice, consider the graph in Fig. 7(c). Suppose there exists an
(r, t)-threshold-coloring c. Assume w.l.o.g. that c(v0) = 0 < c(v1). By Lemma 6,
c(v2), c(v3), and c(v4) are positive. Additionally, c(v0) < c(v5) < c(v4) < c(v6), and
c(v7), c(v8), c(v9) must all be greater than c(v5). Since c(v5) > 0, we have c(v9) ≥ t+
1, and since the edge (v9, v10) is labeled N it must be that c(v10) > 0. By Lemma 6(a),
we have c(v10) < c(v0) < c(v1), a contradiction.

D(3, 122) contains K4 as a subgraph. Label the edges of K4 so that each edge on the
outer face is far, and the other edges are near as in Fig. 7(d). Let u, v, w be the vertices of
the outerface, x be the interior vertex, and assume an (r, t)-threshold-coloring c exists.
Assume that c(u) < c(x). From Lemma 6(a), we then get that c(x) < c(v), which
implies by the same lemma that c(w) < c(x), and thus c(x) < c(u), a contradiction.

D(4, 6, 12), and D(4, 82) contains the subgraph in Fig. 7(e). Assume a threshold-
coloring c exists. Then without loss of generality say c(v4) < c(v0) < c(v1). By
Lemma 6(a) it follows that c(v1) < c(v2) so c(v2) > c(v0). By Lemma 6(b) we have
c(v3) > c(v0) and thus c(v4) > c(v0), a contradiction. ��

4 Graphs with Unbounded Colors

We consider lattices, which are not (r, t)-total-threshold-colorable for any fixed r > 0.

Theorem 5. For every r > 0, there exists finite subgraphs of (44), D(3, 4, 6, 4), and
D(3, 6, 3, 6), which are not (r, t)-total-threshold-colorable for any t ≥ 0.

Proof. We prove the claim for the (44) lattice (square grid); see [1] for the rest. By the
comment in the proof of Theorem 4, we know that the (44) lattice is not (r, 0)-total-
threshold-colorable for any r.

Let S be the infinite square grid, drawn as in Fig. 8. A vertex v in S has north, east,
south, and west neighbors. If P = (v1, . . . , vj) is a path in S, P is a north path if vi+1



38 Md. J. Alam et al.

Fig. 8. An example of a square lattice requiring an arbitrary range

is the north neighbour of vi, 1 ≤ i < j. East, south, and west paths are defined similarly
and each is uniquely defined for a given v1 and j ≥ 0.

For each odd n > 0, we define a path Sn = (v1, . . . , vn2) in S. Let S1 be the
path consisting of a single chosen vertex v1 of S. Let k = n + 2, and recursively
construct Sk from Sn by first adding the east neighbour vn2+1 of vn2 to Sn. Then, we
add the north path (vn2+1, . . . , vn2+k), the west path (vn2+k, . . . , vn2+2k), the south
path (vn2+2k, . . . , vn2+3k), and the east path (vn2+3k, . . . , vn2+4k); see Fig. 8.

With Sn defined for odd n, let Gn = (Vn, En) be the subgraph of S induced by
the vertices of Sn, and let ln : En → {N,F} be an edge labeling where ln(e) =
N if and only if e is in Sn. The graph G7 is shown in Fig. 8. We now prove that
Gn requires at least n colors to threshold-color, for any threshold t > 0. W.l.o.g.
suppose that c is a threshold coloring such that c(v4) > c(v1). Note that the cycles
(v4, v5, v6, v1), (v6, v7, v8, v1), and (v8, v9, v2, v1) match the cycles in Lemma 6, im-
plying that c(v6), c(v8) and c(v9) are greater than c(v1). This serves as the basis for
induction. Suppose that for some odd k > 1, the vertex c(vk2 ) > c(v(k−2)2 ) for any
assignment c of colors to the vertices of Gn, so long as c(v4) > c(v1) and c is an
(r, t)-threshold-coloring. Then we consider the color c(vi), for k2 < i ≤ (k + 2)2.
There are three cases. In the first, vi is the interior vertex of a north, east, west, or south
path in Sk+2. Then vi is on a cycle (vi−1, vi, vj , vj−1), j ≤ k2, with l(vi, vi−1) =
l(vj , vj−1) = N and l(vi, vj) = l(vi−1, vj−1) = F . By Lemma 6, we have c(vi) >
c(vj) and c(vi) > c(vj−1) so long as c(vi−1) > c(vj−1). In the second case, vi is part
of a 4 cycle (vi−1, vi, vi+1, vj), j ≤ k2, with l(vi−1, vi) = l(vi, vi+1) = N , and the
other edges labeled F . Again by Lemma 6, we have c(vi) > c(vj) and c(vi+1) > c(vj)
so long as c(vi−1) > c(vj). The third case is the same, except vi is in the place of vi+1.

Given these three cases and the assumption that c(vk2 ) > c(v(k−2)2), we conclude
that c(v(k+2)2 ) > c(vk2 ) for each odd k > 1. Therefore, the graph Gn, with edge
labeling ln, requires a distinct color for each of c(v1), c(v32), . . . , c(vn2). ��

5 Conclusion and Open Questions

Motivated by a fun Sudoku-style puzzle, we considered the threshold-coloring problem
for Archimedean and Laves lattices. For some of these lattices, we presented new color-
ing algorithms, while for others we found subgraphs that cannot be threshold-colored.



Threshold-Coloring of Regular Lattices 39

Several challenging open questions remain. While we showed that subgraphs of the
square lattice and two others require unbounded number of colors, we do not know
whether finite subgraphs thereof are threshold-colorable. In the context of the puzzle, it
would be useful to find algorithms for checking threshold-colorability for a particular
subgraph of a lattice, rather than checking all subgraphs, as required in total-threshold-
colorability. There are other interesting variants of the problem pertinent to the puzzle.
One restricts the problem by allowing only a fixed number of colors to assign to the
vertices. Another fixes the colors of certain vertices, similar to fixing boxes in Sudoku.

Acknowledgments. We thank Michael Bekos, Gašper Fijavž, and Michael Kaufmann
for helpful discussions about the problem.

References

1. Alam, M.J., Kobourov, S.G., Pupyrev, S., Toeniskoetter, J.: Happy edges: Threshold-coloring
of regular lattices. Arxiv report arxiv.org/abs/1306.2053 (2013)

2. Alam, M. J., Chaplick, S., Fijavž, G., Kaufmann, M., Kobourov, S.G., Pupyrev, S.: Threshold-
coloring and unit-cube contact representation of graphs. In: Brandstädt, A., Jansen, K.,
Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 26–37. Springer, Heidelberg (2013)

3. Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R.: Coloring
with no 2-colored P4. Electron. J. Combin. 11(1), R26 (2004)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. Society for Industrial and
Applied Mathematics (1999)

5. Bremner, D., Evans, W., Frati, F., Heyer, L., Kobourov, S., Lenhart, W., Liotta, G., Rappaport,
D., Whitesides, S.: On representing graphs by touching cuboids. In: Didimo, W., Patrignani,
M. (eds.) GD 2012. LNCS, vol. 7704, pp. 187–198. Springer, Heidelberg (2013)

6. Eggleton, R.B., Erdös, P., Skilton, D.K.: Colouring the real line. Journal of Combinatorial
Theory, Series B 39(1), 86–100 (1985)

7. Ferrara, M., Kohayakawa, Y., Rödl, V.: Distance graphs on the integers. Combinatorics,
Probability and Computing 14, 107–131 (2005)

8. Fiala, J., Kloks, T., Kratochvı́l, J.: Fixed-parameter complexity of λ-labelings. In: Widmayer,
P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 350–363. Springer,
Heidelberg (1999)

9. Fiala, J., Kratochvı̀l, J., Proskurowski, A.: Systems of distant representatives. Discrete
Applied Mathematics 145(2), 306–316 (2005)

10. Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. Journal of Algorithms
19(3), 449–473 (1995)

11. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM Journal on
Discrete Mathematics 5(4), 586–595 (1992)

12. Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Discrete Applied Mathematics 28(1),
35–44 (1990)

13. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. North-Holland (1995)
14. Roberts, F.: From garbage to rainbows: Generalizations of graph coloring and their applica-

tions. Graph Theory, Combinatorics, and Applications 2, 1031–1052 (1991)
15. Timmons, C.: Star coloring high girth planar graphs. The Electronic Journal of

Combinatorics 15(1), R124 (2008)



Classic Nintendo Games Are

(Computationally) Hard�

Greg Aloupis1,��, Erik D. Demaine2, Alan Guo2,���, and Giovanni Viglietta3

1 Département d’Informatique, Université Libre de Bruxelles, Belgium
aloupis.greg@gmail.com

2 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

{edemaine,aguo}@mit.edu
3 School of Electrical Engineering and Computer Science,

University of Ottawa, Canada
viglietta@gmail.com

Abstract. We prove NP-hardness results for five of Nintendo’s largest
video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid,
and Pokémon. Our results apply to generalized versions of Super Mario
Bros. 1, 3, Lost Levels, and Super Mario World; Donkey Kong Country
1–3; all Legend of Zelda games; all Metroid games; and all Pokémon
role-playing games. In addition, we prove PSPACE-completeness of the
Donkey Kong Country games and several Legend of Zelda games.

1 Introduction

A series of recent papers have analyzed the computational complexity of playing
many different video games [1,4,5,6], but the most well-known classic Nintendo
games have yet to be included among these results. In this paper, we analyze
some of the best-known Nintendo games of all time: Mario, Donkey Kong, Legend
of Zelda, Metroid, and Pokémon. We prove that it is NP-hard, and in some cases
PSPACE-hard, to play generalized versions of most games in these series. In par-
ticular, our NP-hardness results apply to the NES games Super Mario Bros., Su-
per Mario Bros.: The Lost Levels, Super Mario Bros. 3, and Super Mario World
(developed by Nintendo); to the SNES games Donkey Kong Country 1–3 (de-
veloped by Rare Ltd.); to all Legend of Zelda games (developed by Nintendo);1

to all Metroid games (developed by Nintendo); and to all Pokémon role-playing
games (developed by Game Freak and Creatures Inc.).2 Our PSPACE-hardness

� Full paper available as arXiv:1203.1895, http://arXiv.org/abs/1203.1895
�� Chargé de Recherches du FNRS. Work initiated while at Institute of Information

Science, Academia Sinica.
��� Partially supported by NSF grants CCF-0829672, CCF-1065125, and CCF-

6922462.
1 We exclude the Zelda CD-i games by Philips Media, which Nintendo does not list
as part of the Legend of Zelda series.

2 All products, company names, brand names, trademarks, and sprites are properties
of their respective owners. Sprites are used here under Fair Use for the educational
purpose of illustrating mathematical theorems.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 40–51, 2014.
c© Springer International Publishing Switzerland 2014



Classic Nintendo Games Are (Computationally) Hard 41

results apply to to the SNES games Donkey Kong Country 1–3, and to The
Legend of Zelda: A Link to the Past. Some of the aforementioned games are also
complete for either NP or PSPACE. All of these results are new.3

For these games, we consider the decision problem of reachability: given a
stage or dungeon, is it possible to reach the goal point t from the start point s?
Our results apply to generalizations of the games where we only generalize the
map size and leave all other mechanics of the games as they are in their original
settings. Most of our NP-hardness proofs are by reduction from 3-SAT, and
rely on a common construction. Similarly, our PSPACE-completeness results for
Legend of Zelda: A Link to the Past and Donkey Kong Country games are by a
reduction from True Quantified Boolean Formula (TQBF), and rely on a common
construction (inspired by a metatheorem from [5]). In addition, we show that
several Zelda games are PSPACE-complete by reducing from PushPush-1 [3].

We can obtain some positive results if we bound the “memory” of the game.
For example, recall that in Super Mario Bros. everything substantially off screen
resets to its initial state. Thus, if we generalize the stage size in Super Mario
Bros. but keep the screen size constant, then reachability of the goal can be
decided in polynomial time: the state space is polynomial in size, so we can
simply traverse the entire state space and check whether the goal is reachable.
Similar results hold for the other games if we bound the screen size in Donkey
Kong Country or the room size in Legend of Zelda, Metroid, and Pokémon. The
screen-size bound is more realistic (though fairly large in practice), while there
is no standard size for rooms in Metroid and Pokémon.

Membership in PSPACE. Most of the games considered are easy to show belong
to PSPACE, because every game element’s behavior is a simple (determinis-
tic) function of the player’s moves. Therefore, we can solve a level by making
moves nondeterministically while maintaining the current game state (which is
polynomial), and use that NPSPACE = PSPACE.

Some other games, such as Legend of Zelda and its sequels, also include en-
emies and other game elements that behave pseudorandomly. As long as the
random seed can be encoded in a polynomial number of bits, which is the case
in all reasonable implementations, the problem remains in PSPACE.

Game model and glitches. We adopt an idealized model of the games in which
we assume that the rules of the games are as (we imagine) the game developers
intended rather than as they are implemented. In particular, we assume the ab-
sence of major game-breaking glitches (for an example of a major game-breaking
glitch, see [17], in which the speed runner “beats” Super Mario World in less
than 3 minutes by performing a sequence of seemingly arbitrary and nonsensical
actions, which fools the game into thinking the game is won). We view these
glitches not as inherently part of the game but rather as artifacts of imperfect

3 A humorous paper (http://www.cs.cmu.edu/ tom7/sigbovik/mariox.pdf) and
video (http://www.youtube.com/watch?v=HhGI-GqAK9c) by Vargomax V. Vargo-
max claims that “generalized Super Mario Bros. is NP-complete”, but both versions
have no actual proof, only nonsensical content.



42 G. Aloupis et al.

implementation. However, in the case of Super Mario Bros., the set of glitches
has been well-documented [16] and we briefly show how our constructions can
be modified to take into account glitches that would otherwise break them.

Organization. Due to space constraints, we give here only cursory proofs and only
for one game per franchise. In Section 2, we present two general schematics used
in almost all of our NP-hardness and PSPACE-hardness reductions. In Section 3,
we prove that generalized Super Mario Bros. is NP-hard by constructing the
appropriate gadgets for the construction given in Section 2. In Sections 6, and 7,
we do the same for generalized Metroid, and Pokémon, respectively. Sections 4
and 5 show that the generalized Donkey Kong Country and generalized Legend
of Zelda: A Link to the Past are PSPACE-complete, again by constructing the
appropriate gadgets introduced in Section 2.

2 Frameworks for Platform Games

2.1 Framework for NP-hardness

We use a general framework for proving the NP-hardness of platform games,
illustrated in Figure 1.

The framework reduces from the classic NP-complete problem 3-SAT: decide
whether a 3-CNF Boolean formula can be made “true” by setting the variables
appropriately. The player’s character starts at the position labeled Start, then
proceeds to the Variable gadgets. Each Variable gadget forces the player to make
an exclusive choice of “true” (x) or “false” (¬x) value for a variable in the for-
mula. Either choice enables the player to follow paths leading to Clause gadgets,

Start

Finish

Variable

Clause Clause Clause Clause

Variable Variable

x¬x y¬y z¬z

x x x¬ x¬ y¬ z¬y¬ y¬y y¬ z¬z

Check out Check in

Clause check

Fig. 1. General framework for NP-hardness



Classic Nintendo Games Are (Computationally) Hard 43

corresponding to the clauses containing that literal (x or ¬x). These paths may
cross each other, but Crossover gadgets prevent the player from switching be-
tween crossing paths. By visiting a Clause gadget, the player can “unlock” the
clause (a permanent state change), but cannot reach any of the other paths con-
necting to the Clause gadget. Finally, after traversing through all the Variable
gadgets, the player must traverse a long “check” path, which passes through each
Clause gadget, to reach the Finish position. The player can get through the check
path if and only if each clause has been unlocked by some literal. Therefore, it
suffices to implement Start, Variable, Clause, Finish, and Crossover gadgets to
prove NP-hardness of each platform game.

Remark 2.1. The Crossover gadget only needs to be unidirectional, in the sense
that each of the two crossing paths needs to be traversed in only one direction.
This is sufficient because, for each path visiting a clause from a literal, instead
of backtracking to the literal after visiting the clause, we can reroute directly to
visit the next clause, so the player is never required to traverse a literal path in
both directions.

Remark 2.2. It is safe to further assume in a Crossover gadget that each of the
two crossing paths is traversed at most once, and that one path is never traversed
before the other path (i.e., if both paths are traversed, the order of traversal is
fixed). This is sufficient because two literal paths either are the two sides of the
same Variable (and hence only one gets traversed), or they come from different
Variables, in which case the one from the earlier Variable in the sequence is
guaranteed to be traversed before the other (if it gets traversed at all). Thus it
is safe to have a Crossover gadget, featuring two crossing paths A and B, which
after traversing path B allows leakage from A to B. (However, leakage from B
to A must still be prevented.)

2.2 Framework for PSPACE-hardness

For the PSPACE-hardness of Donkey Kong Country and Zelda: A Link to the
Past, we apply a modified version of a framework described in [5, Metatheo-
rem 2.c] and [6]. That framework reduces from the PSPACE-complete problem
True Quantified Boolean Formula (TQBF), and involves some doors, which may
be open or closed, and pressure plates, which open or close arbitrary doors as
the player walks on them. Each pressure plate operates only one door.

By inspecting the reduction in [5, Metatheorem 2.c], we observe that, for
each door, there is only one pressure plate opening it, and only one closing it.
Moreover, it is evident that we may even allow the player to decide to “skip”
a pressure plate that opens a door, because skipping it is never a good move
(indeed, opening a door can only make new areas accessible). Hence, here we
adopt a Door gadget that also incorporates the mechanisms to open and close
it, as shown in Figure 2.

Three distinct paths enter the gadget from the left and exit to the right,
without leakage. The “traverse” path implements the actual door, and may be



44 G. Aloupis et al.

open

traverse

close

Fig. 2. Door gadget

open

traverse

close

a a a

Fig. 3. Implementing doors and pressure plates with Door
gadgets

traversed if and only if the gadget is in the open state. The other two paths
allow to operate the door: as the player walks in the “close” path, the door
closes; while as they walk in the “open” path, they are allowed to make the door
open, but they may choose not to.

Figure 3 illustrates how to implement the framework in [5, Metatheorem 2.c]
with our Door gadgets. Note that we need Crossover gadgets to do this.

3 Super Mario Bros

Theorem 3.1. It is NP-hard to decide whether the goal is reachable from the
start of a stage in generalized Super Mario Bros.

Proof. When generalizing the original Super Mario Bros., we assume that the
screen size covers the entire level, because the game forbids Mario from going
left of the screen. This generalization is not needed in later games, because those
games allow Mario to go left. Figures 4, 5, 6, 7, and 8 shows all the gadgets. �

Glitches. Documentation on glitches present in Super Mario Bros. can be found
in [16], which also describes how to recreate and abuse these glitches. Here we
address two types of glitches that break our construction.

The first type allows Mario to walk through walls (for examples, see “Ap-
plication: Jump into a wall just below a solid ceiling and walk through it” and

Fig. 4. Left: Start gadget for Super
Mario Bros. Right: The item block con-
tains a Super Mushroom.

Fig. 5. Finish gadget for Super Mario
Bros



Classic Nintendo Games Are (Computationally) Hard 45

Fig. 6. Variable gadget
for Super Mario Bros

Fig. 7. Clause gadget for Super Mario Bros. The item
blocks contain Power Stars.

Fig. 8. Crossover gadget for Super Mario Bros

“Application: Jump into a solid wall and walk through it” in [16]). This would
break almost all of our gadgets because they depend on Mario’s inability to walk
through walls. Fortunately, our constructions can easily be fixed to address this
issue as follows; see Figure 9. We replace a one-tile-wide wall with a much thicker
wall and place an enemy in each row, preventing Mario from walking through
the wall (except perhaps the topmost tile) without getting hurt.

The second type of glitch allows Mario to perform wall jumps, i.e., jump off the
sides of walls to reach high places. This could potentially break one-way paths in
our construction, which consist of very long falls. Fortunately, we can fix this by
transforming our one-way paths as shown in Figure 10: widen the tunnel and place
blocks on the sides so that, even if Mario tries to wall jump, he will eventually run
into a block above him, preventing him from jumping any higher.



46 G. Aloupis et al.

Fig. 9. Wall transformation for Super
Mario Bros

Fig. 10. One-way transformation for
Super Mario Bros

4 Donkey Kong Country

Theorem 4.1. It is PSPACE-complete to decide whether the goal is reachable
from the start of a stage in generalized Donkey Kong Country 1.

Proof. We may assume that the player controls only a single Kong, by placing
a DK barrel (a barrel containing the backup Kong member) at the start of the
level, followed by a wall of red Zingers (which are not killable by Barrels). The
Door gadget is illustrated in Figure 11. We use a Tire to model the open/closed
state of the gadget, and moving swarms of Zingers to control the movements
of the player. The door is closed if the Tire is located as shown in the picture,
and is open if it is located up the slide. The ground is made of ice, so that both
the Tire and the player slide on it when they gain some speed. The right-facing
Zingers are static, while the left-facing ones move from left to right in swarms,
as indicated by arrows. �

5 The Legend of Zelda

Several Zelda games—Ocarina of Time, Majora’s Mask, Oracle of Seasons, The
Minish Cap, and Twilight Princess—contain dungeons with ice blocks, which
are pushed like normal blocks, except when pushed they slide all the way until
they encounter an obstacle. These games therefore include as a special case
PushPush-1 [3], which is PSPACE-complete. More interesting, we show:

Theorem 5.1. It is PSPACE-complete to decide whether a given target location
is reachable from a given start location in generalized Legend of Zelda: A Link
to the Past.

Proof. The Door gadget is depicted in the upper part of Figure 12. We use
Switch-operated Gates (each Switch alternately opens and closes the Gate with
the same number), and one-way Teleporters. Since all Gates in Legend of Zelda
are initially closed, we first make the player traverse all the “initialize” paths in
every Door gadget, which causes all Gates labeled ‘2’ to open. The tiles labeled



Classic Nintendo Games Are (Computationally) Hard 47

traverse

traverse

open

close

close

Fig. 11. Door gadget for Donkey Kong Country 1

‘a’ (resp. ‘b’) are implemented as lowered (resp. raised) Pillars, and can (resp.
cannot) be traversed.When all the Door gadgets have been initialized, the gadget
in the bottom part of Figure 12 is reached, which contains a Crystal Switch that
toggles the raised-lowered state of all the Pillars (effectively changing every ‘a’
into a ‘b’, and vice versa). From there, the player may proceed to the “start”
path, and the actual starting location of the level. �

6 Metroid

Theorem 6.1. It is NP-hard to decide whether a given target location is reach-
able from a given start location in generalized Metroid.

Proof. The Clause and Crossover gadgets are illustrated in Figures 13 and 14
respectively. In the Clause gadget, Samus can kill all the Zoomers from below
to enable later traversal in Morph Ball mode. In the Crossover gadget, Samus
waits for a gap in the Zoomers in an upper area, then she can follow the Zoomers



48 G. Aloupis et al.

traverse traverse
1

1

1

1

1

2

2

2

2

close

close

open

open

initialize initialize

initialize

start

a

a a

b

b

Fig. 12. Door gadget for Zelda

toward the center of the gadget, and fall down onto the lower platform. This
platform is traversed by two streams of Zoomers, going in opposite directions,
timed in such a way that, if Samus comes from the upper-left (respectively,
upper-right) platform, she is forced to go right (respectively, left) to run away
from the Zoomers. �

7 Pokémon

Theorem 7.1. It is NP-complete to decide whether a given target location is
reachable from a given start location in generalized Pokémon in which the only
overworld game elements are enemy Trainers.

Proof. In our implementations, we use three kinds of objects. Walls, represented
by dark grey blocks, cannot be occupied or walked through. Trainers’ lines of



Classic Nintendo Games Are (Computationally) Hard 49

Fig. 13. Clause gadget for Metroid

Fig. 14. Crossover gadget for Metroid

sight are indicated by translucent rectangles. We have two types of Trainers.
Weak Trainers, represented by red rectangles, are Trainers whom the player can
defeat with certainty without expending any effort, i.e., without consuming PP
or taking damage. Strong Trainers, represented by blue rectangles, are Trainers
against whom the player will always lose. The gadgets are illustrated in Fig-
ures 15, 16, 17, and 18. �



50 G. Aloupis et al.

Fig. 15. Vari-
able gadget for
Pokémon

Fig. 16. Clause gadget for Pokémon
Fig. 17. Single-use
path for Pokémon

Fig. 18. Crossover gadget for Pokémon

Acknowledgments. This work was initiated at the 25th Bellairs Winter Work-
shop on Computational Geometry, co-organized by Erik Demaine and Godfried
Toussaint, held on February 6–12, 2010, in Holetown, Barbados. We thank the
other participants of that workshop—Brad Ballinger, Nadia Benbernou, Prosen-
jit Bose, David Charlton, Sébastien Collette, Mirela Damian, Martin Demaine,
Karim Doüıeb, Vida Dujmović, Robin Flatland, Ferran Hurtado, John Iacono,
Krishnam Raju Jampani, Stefan Langerman, Anna Lubiw, Pat Morin, Vera Sac-
ristán, Diane Souvaine, and Ryuhei Uehara—for providing a stimulating research
environment. In particular, Nadia Benbernou was involved in initial discussions
of Super Mario Bros.



Classic Nintendo Games Are (Computationally) Hard 51

We thank readers Bob Beals, Curtis Bright, Istvan Chung, Peter Schmidt-
Nielsen, Patrick Xia, and the anonymous referees for helpful comments and cor-
rections, and for “beta-testing” our constructions.

We also thank The Spriters Resource [12], VideoGameSprites [13], NES
Maps [14], and SNES Maps [15] for serving as indispensable tools for provid-
ing easy and comprehensive access to the sprites used in our figures.

Finally, of course, we thank Nintendo and the associated developers for bring-
ing these timeless classics to the world.

References

1. Cormode, G.: The hardness of the Lemmings game, or Oh no, more NP-
completeness proofs. In: Proceedings of the 3rd International Conference on Fun
with Algorithms, pp. 65–76 (May 2004)

2. Demaine, E.D., Demaine, M.L., O’Rourke, J.: PushPush and Push-1 are NP-hard
in 2D. In: Proceedings of the 12th Annual Canadian Conference on Computational
Geometry, pp. 211–219 (August 2000)

3. Demaine, E.D., Hoffmann, M., Holzer, M.: PushPush-k is PSPACE-Complete.
In: Proceedings of the 3rd International Conference on Fun with Algorithms,
pp. 159–170 (May 2004)

4. Forǐsek, M.: Computational complexity of two-dimensional platform games. In:
Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 214–227. Springer, Heidelberg
(2010)

5. Viglietta, G.: Gaming is a hard job, but someone has to do it! In: Kranakis, E.,
Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 357–367. Springer,
Heidelberg (2012)

6. Viglietta, G.: Lemmings is PSPACE-complete. In: Ferro, A., Luccio, F., Widmayer,
P. (eds.) FUN 2014. LNCS, vol. 8496, Springer, Heidelberg (2014)

7. http://www.mariowiki.com/Super_Mario_Bros

8. http://donkeykong.wikia.com/wiki/Donkey_Kong_Country

9. http://www.zeldawiki.org/The_Legend_of_Zelda_(Game)

10. http://www.zeldawiki.org/The_Legend_of_Zelda:_A_Link_to_the_Past

11. http://www.metroidwiki.org/wiki/Metroid_(game)

12. http://spriters-resource.com/

13. http://www.videogamesprites.net/

14. http://www.nesmaps.com/

15. http://www.snesmaps.com/

16. http://tasvideos.org/GameResources/NES/SuperMarioBros.html

17. Masterjun. SNES Super Mario World (USA) “glitched” in 02:36.4 (2012),
http://www.youtube.com/watch?v=Syo5sI-iOgY (retrieved April 14, 2012)

http://www.mariowiki.com/Super_Mario_Bros
http://donkeykong.wikia.com/wiki/Donkey_Kong_Country
http://www.zeldawiki.org/The_Legend_of_Zelda_(Game)
http://www.zeldawiki.org/The_Legend_of_Zelda:_A_Link_to_the_Past
http://www.metroidwiki.org/wiki/Metroid_(game)
http://spriters-resource.com/
http://www.videogamesprites.net/
http://www.nesmaps.com/
http://www.snesmaps.com/
http://tasvideos.org/GameResources/NES/SuperMarioBros.html
http://www.youtube.com/watch?v=Syo5sI-iOgY


On the Solvability of the Six Degrees

of Kevin Bacon Game

A Faster Graph Diameter
and Radius Computation Method

Michele Borassi1, Pierluigi Crescenzi2, Michel Habib3,
Walter Kosters4, Andrea Marino5,�, and Frank Takes4

1 IMT Institute of Advanced Studies, Lucca, Italy
2 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy

3 LIAFA, UMR 7089 CNRS & Université Paris Diderot - Paris 7, France
4 Leiden Institute of Advanced Computer Science,

Leiden University, The Netherlands
5 Dipartimento di Informatica, Università di Milano, Italy

Abstract. In this paper, we will propose a new algorithm that com-
putes the radius and the diameter of a graph G = (V,E), by finding
bounds through heuristics and improving them until exact values can be
guaranteed. Although the worst-case running time is O(|V | · |E|), we will
experimentally show that, in the case of real-world networks, it performs
much better, finding the correct radius and diameter value after 10–100
BFSes instead of |V | BFSes (independent of the value of |V |), and thus
having running time O(|E|). Apart from efficiency, compared to other
similar methods, the one proposed in this paper has three other advan-
tages. It is more robust (even in the worst cases, the number of BFSes
performed is not very high), it is able to simultaneously compute radius
and diameter (halving the total running time whenever both values are
needed), and it works both on directed and undirected graphs with very
few modifications. As an application example, we use our new algorithm
in order to determine the solvability over time of the “six degrees of
Kevin Bacon” game.

1 Introduction

The six degrees of separation game is a trivia game which has been inspired by
the well-known social experiment of Stanley Milgram [11], which was in turn
a continuation of the empirical study of the structure of social networks by
Michael Gurevich [7]. Indeed, the notion of six degrees of separation has been
formulated for the first time by Frigyes Karinthy in 1929, who conjectured that
any two individuals can be connected through at most five acquaintances. This
conjecture has somehow been experimentally verified by Milgram and extremely
popularized by a theater play of John Guare, successively adapted to the cinema
by Fred Schepisi. The corresponding game refers to a social network, such as the

� The fifth author was supported by the EU-FET grant NADINE (GA 288956).

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 52–63, 2014.
c© Springer International Publishing Switzerland 2014



On the Solvability of the Six Degrees of Kevin Bacon Game 53

(movie) actor collaboration network, and can be played according to two main
different variants. In the first variant, given two vertices x and y of the network,
the player is asked to find a path of length at most six between x and y: for
instance, in the case of the actor collaboration network, the player is asked to
list at most five actors x1, . . . , x5 and at most six movies m1, . . . ,m6 such that
x and x1 played in m1, x5 and y played in m6, and xi and xi+1 played in mi+1,
for 1 ≤ i ≤ 4. In the second variant of the game, the vertex x is fixed and only
the target vertex y is chosen during the game: for instance, in the case of the
actor collaboration network, one very popular instance of this variant is the so-
called “six degrees of Kevin Bacon” game, where the vertex x is the actor Kevin
Bacon, who is considered one of the centers of the Hollywood universe [12]. Many
other examples of both variants of the six degrees of separation game are now
available on the web: one of the most popular games is the so-called “six degrees
of Wikipedia” [4], in which the vertices of the network are the Wikipedia articles
and the edges are the links between these articles (here, the network is directed).

In this paper we address the following question: is a given instance of a six
degrees of separation game solvable? More generally, is a given instance of a
k degrees of separation game solvable? In the case of the second variant of the
game, an additional question is the following: which is the choice of vertex x that
makes the game solvable? In particular, we will analyze the actor collaboration
network, in order to answer these questions, and we will consider the evolution
of this network over time, from 1940 to 2014. It will turn out that neither variant
of the six degrees of separation game has ever been solvable, since there have
always been actors at distance 13 (that is, in order to be solvable the first variant
of the game has to choose k = 13) and no actor ever existed who could reach all
other vertices in less than 7 steps. Moreover, it will turn out that, for the vast
majority of the analyzed period, Kevin Bacon has never been the right choice of
vertex x (indeed, this happened only in the last two/three years).

Answering the above questions is equivalent to computing the diameter and
the radius of a graph, where the diameter is the maximum distance between
two connected vertices, and the radius is the distance from a center (that is, a
vertex that minimizes the maximum distance to all other vertices) to the vertex
farthest from it. Indeed, if the diameter (respectively, radius) of the network used
by the game is equal to D (respectively, R), then the two variants of the game are
always solvable if and only if k ≥ D (respectively, k ≥ R). Actually, the diameter
and the radius are relevant measures (whose meaning depends on the semantics
of the network), which have been almost always considered while analyzing real-
world networks such as biological, collaboration, communication, road, social,
and web networks. Since the size of real-world networks has been increasing
rapidly, in order to compute these values, we need algorithms that can handle
a huge amount of data. Given a graph G = (V,E), the simplest algorithm to
compute the diameter and the radius performs a Breadth-First Search (in short,
BFS) from each vertex: the total running time is O(|V | · |E|) in the worst case,
which is too expensive for networks with millions or billions of vertices (especially
if we have to compute these values at several different instances in time). As a



54 M. Borassi et al.

consequence, much effort has been spent on improving performance at least in
practical cases, by developing algorithms that still have worst-case running time
O(|V |·|E|), but that performmuch better in most real-world networks and return
the correct values after very few BFSes. In this paper we propose a new and more
efficient algorithm to compute radius and diameter. Our algorithm relates the
sweep approach (i.e. a new visit of the graph depends on the previous one, as in
[5,6,9,10]) with the techniques developed in [15,16]. It is based on a new heuristic,
named SumSweep, which is able to compute very efficiently lower bounds on
the diameter and upper bounds on the radius of a given graph, and which can
be adapted both to undirected and to directed graphs. We will combine the new
SumSweep heuristic with the approach proposed in [15] in order to compute the
exact values of the radius and of the diameter in the case of undirected graphs,
and we will then adapt this combination to the case of directed graphs. We will
experimentally verify that the new algorithm significantly reduces the number
of required BFSes compared to previously proposed solutions.

Apart from efficiency, the new algorithm has many advantages over the ex-
isting ones. First of all, it is able to simultaneously compute the radius and the
diameter, instead of making one computation for each of these two parameters.
This way, if we are interested in both of them, the total time is halved. Moreover,
the new method is much more robust than the previous ones: other algorithms
are very fast on well-behaved graphs, but they obtain results which are far from
the optimum on particular inputs. The new algorithm is almost equivalent to the
existing ones on well-behaved graphs, and it drastically improves performance
in the “difficult” cases.

Preliminary Notations. In this paper, we address the problem of finding the
radius and the diameter of a (strongly) connected (directed) graph. Given an undi-
rected graphG = (V,E), the eccentricity of a vertex v is e(v) := maxw∈V d(v, w),
where the distance d(x, y) between two vertices x and y is defined as the num-
ber of edges contained in a shortest path from x to y. The diameter of G is
maxv∈V e(v) and the radius is minv∈V e(v). Moreover, given a directed graph
G = (V,E), the forward eccentricity of a vertex v is eF (v) := maxw∈V d(v, w),
the backward eccentricity is eB(v) := maxw∈V d(w, v). The diameter of G is
maxv∈V eF (v) = maxv∈V eB(v) and the radius is minv∈V eF (v) (in general it is
different fromminv∈V eB(v)). Note that in all those definitions the strong connec-
tivity of the graph plays a crucial role.

Structure of the Paper. In the rest of this section, we will briefly review the
existing methods used to compute the diameter and the radius. Then, in Section 2
we will explain in detail how the new SumSweep heuristic works. Section 3 will
show how the eccentricities of all the vertices of a graph can be bounded by mak-
ing use of a BFS starting from a given vertex. Section 4 will introduce the exact
diameter and radius computation algorithm, and finally Section 5 will experimen-
tally demonstrate the effectiveness of our approach. In Section 6, a case study on
the actor collaboration network is provided, while Section 7 concludes the paper.



On the Solvability of the Six Degrees of Kevin Bacon Game 55

Related Work. Until now, several algorithms have been proposed to approx-
imate or compute the diameter of big real-world graphs. A first possibility is
using approximation algorithms with bounded error, like [3,13]. Another possi-
bility is using heuristics that perform BFSes from random vertices, in order to
obtain an upper bound on the radius and a lower bound on the diameter (see for
example [14]). This technique is highly biased, because the bounds obtained are
rarely tight. More efficient heuristics have been proposed: the so-called 2Sweep

picks one of the farthest vertices x from a vertex and returns the distance of
the farthest vertex from x [9]; the 4Sweep picks the vertex in the middle of the
longest path computed by a 2Sweep and performs another 2Sweep from that
vertex [6]. Both methods work quite well and very often provide tight bounds.
Adaptations of these methods to directed graphs have been proposed in [2,5].
Even on directed graphs these techniques provide very good bounds.

However, heuristics cannot guarantee the correctness of the results obtained.
For this reason, a major further step in the diameter computation was the design
of bound-refinement algorithms. Those methods apply a heuristic and try to
validate the result found or improve it until they successfully validate it. Even if
in the worst case their time complexity is O(|V | · |E|), they turn out to be linear
in practice. The main algorithms developed until now are BoundingDiameters

[15] and iFub [6]. While the first works only on undirected graphs, the second
is also able to deal with the directed case (the adaptation is called diFub [5]).
For the radius computation, the current best algorithm is a modification of the
BoundingDiameters algorithm [16]. It is also possible to use the method in
[10], but this always requires the computation of all central vertices of the graph.

2 Bounding the Radius and Diameter Using SumSweep

Undirected Case. The idea behind the SumSweep heuristic is finding “key
vertices” in the computation of the radius and the diameter of a graph. It is based
on the simple observation that the well-known closeness centrality measure [1]
can be a good indicator for eccentricity when applied to the most and least central
vertices of a network. Moreover, given vertices v1, . . . , vk, the value

∑k
i=1 d(vi, w)

can give an idea about the closeness centrality of a vertex w in a real-world
network (hence, of its eccentricity). In particular, if the sum is big, the considered
vertex is more likely to be peripheral, so it is a good candidate to be a vertex with
maximum eccentricity. Conversely, if this sum is small, the vertex is probably
central. These intuitions are formalized by the following propositions.

Proposition 1. Let D be the diameter, let x and y be diametral vertices (that

is, d(x, y) = D), and let v1, . . . , vk be other vertices. Then,
∑k

i=1 d(x, vi) ≥ kD
2

or
∑k

i=1 d(vi, y) ≥ kD
2 .

Proof. kD =
∑k

i=1 d(x, y) ≥
∑k

i=1 [d(x, vi) + d(vi, y)] =
∑k

i=1 d(x, vi) +∑k
i=1 d(vi, y). ��



56 M. Borassi et al.

Proposition 2. Let R be the radius and let x ∈ V be such that maxy∈V d(x, y) =

R, and let v1, . . . , vk be other vertices. Then
∑k

i=1 d(x, vi) ≤ kR.

The previous intuition is the basis of the undirected SumSweep heuristic, that
provides a lower bound for the diameter and an upper bound for the radius,
by finding vertices v1, . . . , vk that are peripheral and well distributed within the
graph. More formally, a k-SumSweep is the following procedure:

– Given a random vertex v1 and setting i = 1, repeat k times the following:
1. Perform a BFS from vi and choose the vertex vi+1 as the vertex x max-

imizing
∑i

j=1 d(vj , x).
2. Increment i.

– The maximum eccentricity found, i.e. maxi=1,...,k e(vi), is a lower bound for
the diameter.

– Compute the eccentricity of w, the vertex minimizing
∑k

i=1 d(w, vi). The
minimum eccentricity found, i.e. min{mini=1,...,k e(vi), e(w)}, is an upper
bound for the radius.

We can also impose that vi �= vj and vi �= w: indeed, if this is not the case, then
we can simply choose vj or w as the best vertex different from the previous ones.

Directed Case. The main ideas of the previous method can also be applied to
strongly connected directed graphs. However, in such a context it is necessary
to take into account that the distance d(v, w) does not necessarily coincide with
d(w, v). Similarly to the previous case, we define two closeness centrality indi-
cators, one for forward eccentricity and one for backward eccentricity: a vertex
v is a source (respectively, target) if d(v, w) (respectively, d(w, v)) is high on
average. Note that there might be vertices that are both sources and targets.
Analogously, Propositions 1 and 2 still hold.

The definition of directed SumSweep is very similar to the undirected case,
with the difference that the BFSes are performed alternating their direction.
More formally, we do the following:

– Given a random vertex s1 and setting i = 1, repeat k/2 times the following.
1. Perform a forward BFS from si and choose the vertex ti as the vertex x

maximizing
∑i

j=1 d(sj , x).
2. Perform a backward BFS from ti and choose the vertex si+1 as the vertex

x maximizing
∑i

j=1 d(x, tj).
3. Increment i.

– The maximum eccentricity found, which is the maximum of the two val-
ues maxi=1,...,k/2 e

F (si) and maxi=1,...,k/2 e
B(ti), is a lower bound for the

diameter.
– Compute the eccentricity of w, the vertex minimizing

∑k/2
i=1 d(w, ti). The

minimum eccentricity found, i.e. min{mini=1,...,k/2 e
F (si), e

F (w)}, is an up-
per bound for the radius.

Once again, we impose vi �= vj and vi �= w.



On the Solvability of the Six Degrees of Kevin Bacon Game 57

3 Bounding the Eccentricities of the Vertices

This section aims to show some bounds on the eccentricity of the vertices. In
particular, we will explain how to lower and upper bound the eccentricity of a
vertex w, using a BFS from another vertex v.

Undirected Case. Suppose we have performed a BFS from a vertex v, forming
the BFS tree T , and we want to use the resulting information to bound the
eccentricity of all other vertices. The following observation can provide an upper
bound, while we will use Lv(w) := d(v, w) as a lower bound.

Lemma 1. Let v′ be the first vertex in T having more than one child. Let Φ be
the set of vertices on the (only) path from v to v′, let Ψ be the set of vertices in
the subtree of T rooted at the first child of v′, and let h be the maximum distance
from v′ to a vertex outside Ψ . Then, for each w ∈ V , e(w) ≤ Uv(w), where

Uv(w) :=

⎧⎪⎨
⎪⎩
max(d(v, w), e(v) − d(v, w)) w ∈ Φ

max(d(v′, w) + e(v′)− 2, d(v′, w) + h) w ∈ Ψ

d(v′, w) + e(v′) otherwise

Proof. If w ∈ Φ or w /∈ Φ ∪ Ψ , the conclusion follows easily by the triangle
inequality. If w ∈ Ψ , let x be the farthest vertex from w: if x /∈ Ψ , then d(x,w) ≤
d(x, v′) + d(v′, w) ≤ h+ d(v′, w). If x ∈ Ψ and r is the root of the subtree of T
consisting of vertices in Ψ , d(w, x) ≤ d(w, r) + d(r, x) = d(w, v′) + d(v′, x)− 2 ≤
d(w, v′) + e(v′)− 2. ��

Note that all values appearing in the definition of Lv(w) and Uv(w) can be
computed in linear time by performing a BFS from v.

Directed Case. In this case, the previous bounds do not hold: we will use a
weaker version, based on the following lemma, whose proof is straightforward.

Lemma 2. Let LF
v (w) := d(w, v), LB

v (w) := d(v, w), UF
v (w) := d(w, v) + eF (v)

and UB
v (w) := d(v, w) + eB(v). Then, for each v, w ∈ V ,

LF
v (w) ≤ eF (w) ≤ UF

v (w) and LB
v (w) ≤ eB(w) ≤ UB

v (v).

Note that LF
v (resp. LB

v ) can be computed through a backward (forward) visit
from v, while to compute the upper bounds we need both a forward and a
backward visit from v.

4 Computing Radius and Diameter

In order to exactly compute the radius and diameter, we apply the technique of
BoundingDiameters algorithm, improved through the use of SumSweep and
generalized to directed graphs. Generally speaking, our algorithm refines lower
and upper bounds on the eccentricities of vertices, until the correct eccentricity
is found.



58 M. Borassi et al.

Undirected Case. The algorithm maintains two vectors eL and eU of lower
and upper bounds on the eccentricity of all vertices, and a vector S containing
the sum of distances from the starting points of previous BFSes.

Every time a BFS is performed from a vertex u, for each v ∈ V eL[v] (resp.
eU [v]) is updated with max(eL[v], Lu(v)) (resp. max(eU [v], Uu(v))), and S[v] is
updated with S[v] + d(u, v). Let us denote by X the set of vertices v such that
eL[v] < eU [v] and by Y the set V −X . It is worth observing that for any v ∈ Y
we have e(v) = eL[v] = eU [v].

At the beginning, for each v, eL[v] = 0 and eU [v] = +∞. The algorithm
starts by performing k iterations of SumSweep (according to our preliminary
experiments, k = 3 or k = 4 is the best), updating eL and eU after each BFS.
Then, at each step, a vertex u is selected from the set X and a BFS starting
from u is performed, updating lower and upper bounds.
Termination. The radius is found when miny∈Y (e(y)) ≤ minx∈X(eL[x]), and the
value is miny∈Y (e(y)). Analogously, the diameter is found when maxy∈Y (e(y)) ≥
maxx∈X(eU [x]), and its value is maxy∈Y (e(y)).

The selection of vertex u is crucial to speed up the computation. At each step,
we alternate the following two choices:

1. choose a vertex u ∈ X minimizing eL[u];
2. choose a vertex u ∈ X maximizing eU [u].

In order to break ties (which occur very often), we use the vector S: in the
first case, we minimize S[v] and in the second case we maximize it. Intuitively,
the first choice should improve upper bounds, while the second choice should
improve lower bounds.

Although the algorithm could perform O(|V |) BFSes in the worst case, we
will show that in practice it needs just O(1) BFSes.

Directed Case. In the directed case, we need to maintain two vectors (eFL and
eBL ) containing lower bounds on forward and backward eccentricity, respectively,
and other two vectors (eFU and eBU ) containing upper bounds. Moreover, we need
to keep two vectors SF and SB containing the sum of forward and backward
distances from the starting points of previous BFSes.

Every time a forward visit is performed from a vertex u, eBL [v] is updated with
max(eBL [v], L

B
u (v)) and SB(v) is updated with SB(v) + d(u, v) (the backward

case is analogous). In order to update upper bounds, we need to perform both
a forward and a backward visit from a vertex u, and in that case the new value
of eFU [v] is min(eFU [v], U

F
v (w)) and the new value of eBU [v] is min(eBU [v], U

B
v (w)).

Let us denote by XF (resp. XB) the set of vertices v such that eFL [v] < eFU [v]
(resp. eBL [v] < eBU [v]), by Y F (resp. Y B) the set V − XF (resp. V − XB).
Observe that for any v ∈ Y F (resp. Y B) we have eF (v) = eFU [v] = eFL [v] (resp.
eB(v) = eBU [v] = eBL [v]).

At the beginning, for each v, all lower bounds are set to 0, all upper bounds
are set to +∞, SF and SB are set to 0. The algorithm starts by performing k
iterations of SumSweep (according to our preliminary experiments, k = 6 is
the best), updating lower and upper bounds after each BFS. Then, at each step,



On the Solvability of the Six Degrees of Kevin Bacon Game 59

a vertex u is selected and a BFS starting from u is performed, updating lower
and upper bounds.
Termination. The radius is found when miny∈Y F (eF (y)) ≤ minx∈X(eFL [x]), and
the value is miny∈Y F (eF (y)). Analogously, the diameter is found when

max(max
y∈Y B

(eB(y)), max
y∈Y F

(eF (y))) ≥ min( max
x∈XF

(eFU [x]), max
x∈XB

(eBU [x])).

The diameter value is then the left side of this inequality.
Once again, the selection of the vertex for the next visit is crucial for the effi-

ciency of the algorithm. The choices are made alternating the following strategies
(in the order in which they appear).

1. Choose a vertex u ∈ XF which minimizes eFL [u] and perform a forward BFS.
2. Choose a vertex u ∈ XF ∩ XB minimizing eFL [u] + eBL [u], and perform a

forward and backward BFS.
3. Choose a vertex u ∈ XB maximizing eBU [u] and perform a backward BFS.
4. Choose a vertex u ∈ XF maximizing eFU [u] and perform a forward BFS.
5. Repeat Item 2.

In Items 1, 2 and 5 we break ties by choosing u minimizing SF [u], in Item 3
and 4 by maximizing SB[u] and SF [u], respectively. Intuitively, Item 1 aims to
improve the forward upper bound of u (in order to find the radius), Items 2 and
5 aim to improve upper bounds on all the vertices; both Item 3 and Item 4 aim
to improve lower bounds: in particular, Item 3 improves the forward eccentricity,
while Item 4 improves the backward eccentricity.

5 Experimental Results

In order to compare the different methods, we analyzed a dataset of 34 undirected
graphs and 29 directed graphs, taken from the Stanford Large Network Dataset
Collection. This dataset is well-known and covers a large set of network types
(see [14] for more details). These experiments aim to show that the SumSweep

method improves the time bounds, the robustness, and the generality of all the
existing methods, since they are outperformed for both radius and diameter
computation, both in the directed and in the undirected case.

More detailed results about the comparison, together with the code used, are
available at amici.dsi.unifi.it/lasagne.

Undirected Case. In the undirected case, we compared our method with the
state of the art: the iFub algorithm for the diameter and the BoundingDiam-

eters (BD) algorithm both for the radius and for the diameter.
Indeed, this latter algorithm, used in [16] just to compute the diameter, can

be easily adjusted to also compute the radius, using the same vertex selection
strategy and updating rules for the eccentricity bounds. In particular, it bounds
the eccentricity of vertices similarly to our method, by using the fact that, after
a visit from a vertex v is performed, d(v, w) ≤ e(w) ≤ d(v, w) + e(v) (it is a

amici.dsi.unifi.it/lasagne


60 M. Borassi et al.

Table 1. The average performance ratio p, percentage of the number of BFSes used
by the different methods, with respect to the number of vertices (number of visits in
the worst-case)

Method p Std Error

SumSweep 0.023 % 5.49E-5
BD 0.030 % 9.62E-5

(a) Radius in Undirected Graphs

Method p Std Error

SumSweep 0.27 % 8.02E-4
HR >3.20 % 8.51E-3

(c) Radius in Directed Graphs

Method p Std Error

SumSweep 0.084 % 2.73E-4
BD 0.538 % 2.77E-3
iFubHd >0.677 % 3.34E-3
iFub4S >1.483 % 7.72E-3

(b) Diameter in Undirected Graphs

Method p Std Error

SumSweep 0.39 % 1.23E-3
diFubHdIn 3.06 % 1.47E-2
diFubHdOut 2.37 % 1.03E-2
diFub2In 1.12 % 4.68E-3
diFub2Out 1.02 % 4.45E-2

(d) Diameter in Directed Graphs

weaker version of Lemma 1). It does not perform the initial SumSweep and
simply alternates between vertices v with the largest eccentricity upper bound
and the smallest eccentricity lower bound.

For the diameter computation, we compared SumSweep not only with BD,
but also with two variations of iFub: iFubHd, starting from the vertex of highest
degree, and iFub4S, starting by performing a 4Sweep and choosing the central
vertex of the second iteration (see [6] or the section on related work for more
details about 2Sweep and 4Sweep).

The results of the comparison are summarized in Table 1: for each method and
for each graph in our dataset, we have computed the corresponding performance
ratio, that is the percentage of the number of visits performed by the method
with respect to the number of vertices of the network (i.e. the number of visits
in the worst case). In Table 1 we report the average of these values together with
the corresponding standard error.

In the radius computation, the SumSweep method is slightly more effective
than the BD algorithm. It is also more robust: in our dataset, it never needs
more than 18 BFSes, while the BD algorithm needs at most 29 BFSes. Moreover,
there are only 3 graphs where the BD algorithm beats the SumSweep algorithm
by more than one BFS.

In the diameter computation, the improvement is even more evident in Table 1
(b). Again, we see that the new method is much more robust than the previous
ones: the computation of the diameter for SumSweep always ends in less than
500 BFSes, while the old methods need up to 5000 BFSes.

Directed Case. In the directed case, the only efficient known method to
compute the radius is explained in [10], which we will refer to as HR. Ba-
sically, it works as follows: given the farthest pair of vertices x and y found
by the directed version of 2Sweep, order the vertices v according to g(v) =
max{d(v, x), d(v, y)}; scan the eccentricities of the vertices in this order and
stop when the next vertex w has a value of g(w) which is greater than the min-
imum eccentricity found. It is easy to see that all the vertices with minimum



On the Solvability of the Six Degrees of Kevin Bacon Game 61

eccentricity must always be scanned (which is not necessary for our algorithm).
Since this method is the only algorithm to compute the radius, we compared our
method just with this one. The results are shown in Table 1(c).

For the diameter computation, we compared our results to the four variations
of the diFub method:

diFubHdIn: starts from the vertex with highest in-degree;
diFubHdOut: starts from the vertex with highest out-degree;
diFub2In: starts from the central vertex of a 2Sweep performed from the

vertex with highest in-degree;
diFub2Out: starts from the central vertex of a 2Sweep performed from the

vertex with highest out-degree.

The results are shown in Table 1(d).
In the radius computation, the SumSweep algorithm performs about 12 times

better than the old method. We also remark that the robustness of SumSweep

applies also to the directed case: at most 40 BFSes are needed to find the radius
of any graph of our dataset.

In the diameter computation, the best previous method is diFub2Out: the
new SumSweep method performs about 2.5 times better. We note again the
robustness: the maximum number of BFSes is 93, against the maximum number
for diFub which is 482.

Overall, we conclude that the new method is more general (it is the only one
which is able to deal with both directed and undirected cases, both in the radius
and in the diameter computation), more robust, and more efficient than the best
previous methods.

Finally, we observe that, for each of the algorithms considered, the number
of BFSes for computing the radius or diameter is very low (often no more than
5) when D ≈ 2R. When D < 2R, then there are two other factors that appear
to influence performance. First, the relation D / 2R between the diameter and
radius appears to be of influence: the closer this value is to 1, the faster the
computation, in most cases. Second, the actual value of the diameter itself plays
a role: the diameter of graphs with a very small diameter is often harder to
compute, as there is little diversity in the eccentricity values and therefore little
opportunity for vertices to effectively influence the lower and upper eccentricity
bounds of neighboring vertices.

6 Internet Movies Database Case Study

This section applies the SumSweep algorithm to the Internet Movies Database,
in particular to the so-called actor graph, in which two actors are linked if they
played together in a movie (we ignore TV-series in this work). All data have been
taken from the website http://www.imdb.com. According to [12], we decided
to exclude some genres from our database: awards-shows, documentaries, game-
shows, news, realities and talk-shows. We analyzed snapshots of the actor graph,
taken every 5 years from 1940 to 2010, and 2014.

http://www.imdb.com


62 M. Borassi et al.

1
9
4
0

1
9
4
5

1
9
5
0

1
9
5
5

1
9
6
0

1
9
6
5

1
9
7
0

1
9
7
5

1
9
8
0

1
9
8
5

1
9
9
0

1
9
9
5

2
0
0
0

2
0
0
5

2
0
1
0

2
0
1
4

7
8
9

10
11
12
13
14
15
16
17
18
19

Year

V
a
lu
e

Radius

Diameter

Kevin Bacon

Bruce Willis

Carl Auen

Dasari Kotiratnam

Fig. 1. Actor graph evolution in terms of radius, diameter, and actor eccentricity

Running Time Analysis. First, we compared the performances of our algo-
rithm to the BoundingDiameters method. Similarly to the previous experi-
ments, we found that the new method improves the previous one in the diameter
computation, and it has similar results in the radius computation. However, in
this latter case, the new method needed a smaller number of BFSes for big ac-
tor graphs (the most recent ones), where a BFS is more expensive in terms of
computation time.

Analysis of the Actor Graph. Figure 1 shows the evolution of the diam-
eter, the radius and the eccentricity of some actors. It shows that the radius
and diameter of the graph increased between 1940 and 1955, then they started
decreasing, as also observed in [8] as a property of large evolving graphs. The
first increase might be explained by the fact that the years between the forties
and the sixties are known as the golden age for Asian cinema, especially Indian
and Japanese. This trend is also confirmed by the names of the central actors
during that period. In 1940, they are almost all western, usually German (like for
instance Carl Auen). By 1955, we find both western and eastern actors. Later,
in the sixties, the increase of independent producers and production companies
led to an increase of power of individual actors. This can explain the decreasing
size of the graph during those years: the number of contacts between actors from
different countries increased (consider for instance the first James Bond movie,
Dr. No). For further historical film information we refer the reader to [17]. The
decreasing of the graph diameter and radius halted in the eighties, and there
were little changes until the present. Now it seems that the radius is slightly
increasing again, but the number of central actors is increasing as well.

Almost all actors seem to have decreasing eccentricity over time, even actors
that are no longer active (like Dasari Kotiratnam and Carl Auen). Instead, the
periphery is usually made by recent actors. We finally remark that Kevin Bacon
has not minimum eccentricity until the present, and he never gets eccentricity 6,
as required by the game “Six Degrees of Kevin Bacon”. Hence not all the actors
can be linked to Kevin Bacon by using at most 6 edges.



On the Solvability of the Six Degrees of Kevin Bacon Game 63

7 Conclusion

In this paper, we proposed a new heuristic to upper and lower bound respec-
tively the radius and diameter of large graphs and a new algorithm for computing
their exact value. We performed experiments on a large number of graphs, in-
cluding the IMDb actor graph of which we analyzed the radius, diameter and
actor eccentricity over time in order to verify the hypothesis of six degrees of
separation.

In future work we would like to investigate theoretically how the observations
from the experiments regarding the link between the diameter, radius and the
number of BFSes can be exploited in the diameter and radius computation itself.

References

1. Bavelas, A.: Communication Patterns in Task-Oriented Groups. The Journal of
the Acoustical Society of America 22(6), 725–730 (1950)

2. Broder, A.Z., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.L.: Graph Structure in the Web. Computer Networks 33(1-
6), 309–320 (2000)

3. Chechik, S., Larkin, D., Roditty, L., Schoenebeck, G., Tarjan, R.E., Williams, V.V.:
Better approximation algorithms for the graph diameter. In: SODA, pp. 1041–1052
(2014)

4. Clemesha, A.: The Wiki Game (2013), http://thewikigame.com
5. Crescenzi, P., Grossi, R., Lanzi, L., Marino, A.: On computing the diameter of real-

world directed (Weighted) graphs. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276,
pp. 99–110. Springer, Heidelberg (2012)

6. Crescenzi, P., Grossi, R., Habib, M., Lanzi, L., Marino, A.: On Computing the
Diameter of Real-World Undirected Graphs. Theor. Comput. Sci. 514, 84–95 (2013)

7. Gurevich, M.: The Social Structure of Acquaintanceship Networks, PhD Thesis
(1961)

8. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph Evolution: Densification and
Shrinking Diameters. TKDD 1(1) (2007)

9. Magnien, C., Latapy, M., Habib, M.: Fast Computation of Empirically Tight
Bounds for the Diameter of Massive Graphs. Journal of Experimental Algorith-
mics 13 (2009)

10. Marino, A.: Algorithms for Biological Graphs: Analysis and Enumeration, PhD
Thesis, Dipartimento di Sistemi e Informatica, University of Florence (2013)

11. Milgram, S.: The Small World Problem. Psychology Today 2, 60–67 (1967)
12. Reynolds, P.: The Oracle of Kevin Bacon (2013), http://oracleofbacon.org
13. Roditty, L., Williams, V.V.: Fast Approximation Algorithms for the Diameter and

Radius of Sparse Graphs. In: STOC, pp. 515–524 (2013)
14. SNAP: Stanford Network Analysis Package (SNAP) Website (2009),

http://snap.stanford.edu
15. Takes, F.W., Kosters, W.A.: Determining the Diameter of Small World Networks.

In: CIKM, pp. 1191–1196 (2011)
16. Takes, F.W., Kosters, W.A.: Computing the Eccentricity Distribution of Large

Graphs. Algorithms 6(1), 100–118 (2013)
17. Thompson, K., Bordwell, D.: Film History: an Introduction. McGraw-Hill Higher

Education (2009)

http://thewikigame.com
http://oracleofbacon.org
http://snap.stanford.edu


No Easy Puzzles: A Hardness Result

for Jigsaw Puzzles

Michael Brand

Monash University, Faculty of IT
Clayton, VIC 3800, Australia

michael.brand@alumni.weizmann.ac.il

http://www.monash.edu.au

Abstract. We show that solving jigsaw puzzles requires Θ(n2) edge
matching comparisons, making them as hard as their trivial upper bound.
This result generalises to puzzles of all shapes, and is applicable to both
pictorial and apictorial puzzles.

Keywords: jigsaw puzzle, parsimonious testing, communication com-
plexity, subgraph isomorphism.

1 Introduction

Jigsaw puzzles [1] are among the most popular forms of puzzles. Figure 1 gives a
few examples of their variations. A canonical jigsaw puzzle [2] is one where the
pieces are square-like and are joined together in a grid-like fashion via tabs and
pockets along their edges. These tabs and pockets can be of arbitrary shape.
Figure 1(a) demonstrates a canonical puzzle. It differs from standard jigsaw
puzzles only in that it is apictorial [3], meaning that it has no guiding image.
Figure 1(b) also demonstrates an apictorial jigsaw puzzle, however, unlike the
first puzzle, it is not canonical: the pieces fit together in a scheme different to
the canonical grid scheme. Figure 1(c) demonstrates that puzzle schemes need
not even be planar. It depicts a partially-assembled 27-tile puzzle that can be
assembled into a 3× 3× 3 cube.

The study of jigsaw puzzles in computer science began with [3], where the
problem was investigated in terms of whether machine vision techniques are
able to determine whether two edges match. This problem was considered to
have uses, e.g. in piecing together archaeological artefacts, and, indeed, has since
been put to such use (see, e.g., [4]). Later improvements concentrated on better
edge-shape representations (e.g. [5–7]), use of pictorial data (e.g. [2]), better
match quality metrics (e.g. [8–10]), etc..

These papers all address the first of three sub-problems, which are normally
tackled jointly, which form jigsaw puzzle solving. We refer to it as the “tile
matching” problem. Suppose now that we take this problem as solved, that is to
say, that we are given a constant-time Oracle function that is able to provide a
precise Boolean answer regarding whether two tiles match. Then, we are faced

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 64–73, 2014.
c© Springer International Publishing Switzerland 2014

http://www.monash.edu.au


No Easy Puzzles: A Hardness Result for Jigsaw Puzzles 65

(a) (b) (c)

Fig. 1. Apictorial jigsaw puzzle variations: (a) a canonical puzzle, (b) a non-canonical
puzzle, (c) a partially-assembled non-planar puzzle

with the second question of which tile pairs to run this Oracle function on.
We call this the problem of “parsimonious testing”. Lastly, taking this second
problem as solved (e.g., by supposing that one has already applied the Oracle
function to every possible pair), then one is faced with the problem of finding a
mapping that would match the tile pairing data with the puzzle shape. This is the
“bijection reconstruction” problem. It is an instance of the well-studied problem
of graph isomorphism (see, e.g., [11–14]), or, in some contexts, an instance of
the well-studied problem of subgraph isomorphism (see, e.g., [15–18]).

In contrast to its popular siblings, the second of the three sub-problems in-
troduced, the problem of parsimonious testing, has not received much attention
in the literature. In practice, however, it appears to be quite important: the
solutions proposed to tile matching demonstrate that the more one improves
one’s method for tile-match assessment, the more time-consuming it becomes.
There is, therefore, an incentive to minimise the number of tile comparisons, or
otherwise to exploit trade-offs between tile-match accuracy and the number of
tile pairs that need to be tested.

This paper closes this gap in the literature by focusing on the problem of
parsimonious testing. To be able to study it in isolation from the two problems
flanking it, we consider the following model, which describes the issue as a prob-
lem in communication [19]. In this model, two entities, I and O, are tasked with
solving a puzzle. Entity I is an infinitely powerful computer, able to solve, for
example, subgraph isomorphism and related problems in constant time, but it
does not have any information regarding tile shapes and colours. Entity O, on
the other hand, has perfect information regarding the puzzle, including which
tiles match and how. For the puzzle to be considered solved, however, the so-
lution must be communicated from O to I. The puzzle is solved by entity I



66 M. Brand

making Oracle calls to entity O, in which I queries O over a fixed communication
protocol. The question is how many queries does I require in order to solve the
puzzle. We call this the communication complexity of jigsaw puzzles.

The remainder of this paper is arranged as follows. In Section 2, we give a
formal definition of the model. In Section 3 we then prove the main claim, that
jigsaw puzzles, regardless of their shape, are always as hard as the trivial upper
bound (up to a multiplicative constant). A short conclusions section follows.

2 Formal Definition of the Model

We use the following model to describe a jigsaw puzzle.

Definition 1. A jigsaw puzzle is a tuple 〈T, P,Ep, Q〉.
Here, T is the set of tiles and P is the set of positions to place them in. We

refer to n
def
= |T | = |P | as the size of the puzzle.

Ep is a relation over P that describes which positions are adjacent. We refer to
the (undirected) graph 〈P,Ep〉 as the shape of the puzzle. Our only requirement
from this graph is that it is connected. We refer to its maximum vertex degree
as the degree of the puzzle.

The last element in the tuple defining a jigsaw puzzle, Q, is a set of queries.
These can be of either of two types, as follows.

Match Queries: Does tile x ∈ T fit to tile y ∈ T? This query corresponds to a
test whether the tabs and pockets of two tiles match.

Positional Queries: Does tile x ∈ T fit to position p ∈ P? This query corre-
sponds to a test whether the image portion on tile x matches the portion of
the guiding image covered by position p.

Definition 2. A jigsaw puzzle is called pictorial if Q is the set of all possible
queries. It is called apictorial if Q is the set of all possible match queries.

Definition 3. A solution to a jigsaw puzzle 〈T, P,Ep, Q〉 is a bijection, π, from
T to P .

Definition 4. A solution algorithm to a jigsaw puzzle 〈T, P,Ep, Q〉 is a decision
tree, where each bifurcation is over one of the queries in Q and each leaf is a
solution, such that for every path, P, leading from the root of the tree to a leaf,
π, the following all hold.

1. For every match query on P between two tiles x, y ∈ T , the decision taken
on P corresponds to whether 〈π(x), π(y)〉 ∈ Ep or not.

2. For every positional query on P between tile x ∈ T and position p ∈ P , the
decision taken on P corresponds to whether p = π(x) or not.

3. The choice of π is unique given the restrictions above.



No Easy Puzzles: A Hardness Result for Jigsaw Puzzles 67

Definition 5. A jigsaw puzzle that has at least one solution algorithm is called
a solvable puzzle.

We note that all pictorial puzzles are solvable and all apictorial puzzles are
solvable given that their shapes have no self-symmetries.

Definition 6. The communication complexity of a jigsaw puzzle is the depth of
the minimum depth solution algorithm decision tree.

The main claim of this paper is the following.

Theorem 1. The communication complexity for any set of solvable jigsaw puz-
zles with bounded degree is Θ(n2), where n is the puzzle size.

The model above simplifies real-world puzzle-solving by abstracting away some
details that make no material difference to this main result. First, relating mainly
to pictorial puzzles, real-world puzzle solvers use “partial matches” to speed up
tile searching, such as by separating “sky” and “sea” tiles based on their colour.
Such heuristics are studied, e.g., in [20–22] and are likely to reduce expected
puzzle solving times. However, they do not change the worst-case complexities,
which are the focus of the present analysis.

Second, in real-world jigsaw puzzles one needs to find for each tile both its
correct position and orientation. In our model, tiles only have positions. Suppose,
however, that at the beginning of solving the puzzle the solver is given the full
list of the correct orientations for all tiles. This extra information effectively
makes the new puzzle into a puzzle without orientation. Giving the solver extra
information clearly cannot make the puzzle more difficult. The main claim of
this paper, however, is that even in the simpler case, communication complexity
is already at its trivial upper bound, that obtained by a solution algorithm
that runs every query in Q in every path. Orientation can therefore make no
difference.1

Lastly, our model of a jigsaw puzzle requires not only for any pair of tiles that
are to be placed in adjacent positions to fit to each other, but also for any pair
of tiles that are to be placed in non-adjacent positions to not fit to each other.
Similarly, for pictorial puzzles, we not only require that each tile’s image match
the swatch of the guiding image corresponding to its position, but also that each
tile’s image fails to match any other swatch of the guiding image. Once again,
by simplifying the problem we merely provide the solver with extra information,
so the Θ(n2) result will also apply in the harder case2.

1 It is possible, in fact, to simulate an n-piece puzzle with orientation by an O(n)-piece
puzzle without orientation. The details of how to do this are left for the reader.

2 The issue of spurious matches is known to make a major difference in bijection recon-
struction. Without it, reconstructing the bijection for a bounded-degree apictorial
puzzle is equivalent to solving isomorphism of bounded-degree graphs, a problem
known to be polynomially solvable [23]. By contrast, when spurious matches are
admitted, reconstructing the bijection equates to subgraph isomorphism, which is
known to be NP-complete even for canonical puzzles [24] (which are of bounded
degree 4).



68 M. Brand

3 Proof of the Main Claim

Consider the following lemma.

Lemma 1. Any bipartite graph, 〈L,R,E〉, with |L| = |R| = n, where the degree
of each vertex is at least n/2 has a perfect matching.

Proof. This is a direct corollary of Hall’s marriage theorem [25, 26]. By Hall’s
theorem, a perfect matching exists if and only if every subset, S, of the vertices
of the graph has a set of neighbours N(S) satisfying |S| ≤ |N(S)|. In the case
of bipartite graphs, one only needs to verify this condition for sets, S, that are
contained within either L or R.

For the graph of Lemma 1 one can further only consider S values that satisfy
|S| > n/2, because, by definition, for any non-empty S we have |N(S)| ≥ n/2.
We claim that if |S| > n/2 then |N(S)| = n.

Suppose, without loss of generality, that S ⊆ L. For |N(S)| to be smaller than
n there must be at least one element of R not in |N(S)|. However, this would
also indicate that all of its (at least n/2) neighbours are not in S, leading to a
contradiction.

To prove Theorem 1, we begin by analysing a new type of puzzle.

Definition 7. A jigsaw puzzle is called positional if Q is the set of all possible
positional queries.

Lemma 2. The communication complexity of positional puzzles is Θ(n2), where
n is the puzzle size.

We remark that unlike Theorem 1, Lemma 2 does not need to restrict itself to
solvable puzzles because every positional puzzle is solvable.

Proof. Because the communication complexity is known to be O(n2) simply
because this is the full number of distinct possible queries, what remains to be
proved is that it is Ω(n2). To show this, we construct a path in the solution tree
that is of length Ω(n2). The construction of such a path can be thought of as
the work of an “adversarial Oracle”. This is an Oracle that does not simply give
truthful answers regarding a chosen “correct” bijection from T to P , but rather
delays the choice of this bijection as much as possible, leading the solver at each
point to a sub-tree of the solution tree that has sufficiently large depth.

The strategy to be followed by this adversarial Oracle is described in Algo-
rithm 1.

The Oracle’s goal of deferring the choice of which tile to match to which
position is attained here by determining only a part of the matching at any
given point in time. The parts of the matching that are determined along the
way are stored in the set Matches. This leaves a subset L of the puzzle tiles and
a subset R of the positions that remain unmatched. The Oracle’s strategy is to
always maintain the following invariant.



No Easy Puzzles: A Hardness Result for Jigsaw Puzzles 69

Algorithm 1. Oracle strategy for positional queries

1: � Initialisation
2: Matches ← ∅ � Matches is the part of the bijection already determined.
3: U = 〈L,R,E〉 ← 〈T, P, T × P 〉 � U , also referred to as 〈L,R,E〉, is a bipartite

graph managing unmatched tiles and positions.
4: � E is the list of queries that have not yet been asked.
5:
6: function Does x fit position p(x, p)
7: M ← a perfect matching in U
8: E ← E \ {(x, p)}
9: while ∃(l, r) ∈ M such that NU (l) < |R|/2 + 1 or NU (r) < |L|/2 + 1 do
10: � NU (x) is the set of x’s neighbours in U .
11: Matches ← Matches ∪ {(l, r)}
12: Restrict U and M to (L \ {l}) × (R \ {r})
13: end while
14: return (x, p) ∈ Matches
15: end function

Invariant 1. For all l ∈ L, NU (l) ≥ |R|/2 + 1 and for all r ∈ R, NU (r) ≥
|L|/2 + 1, where NU (x) are the neighbours of x in the bipartite graph U =
〈L,R,E〉 and E is the set of (x, p) ∈ L×R pairs for which it was not yet asked
of the Oracle whether x fits in position p.

The “while” loop in step 10 of Algorithm 1 continues until Invariant 1 is
satisfied. This is guaranteed to happen eventually because at each iteration one
element of L and one element of R are removed. The loop continues at most
until they are both empty. This guarantees the invariant at the start of the next
query, which, by Lemma 1, ensures that at step 7 a perfect matching can be
found.

To analyse the bound on the communication complexity that this Oracle
strategy imposes, note that while U is non-empty, the puzzle is not solved:
because E is the list of queries not asked, yet, of the Oracle, with respect to
the elements currently in L and R, the puzzle is only solved when U has a
unique perfect matching. However, consider any perfect matching M in U . Let
(x, p) ∈M . If we remove (x, p) from U , the conditions of Lemma 1 still hold for
the graph. Therefore, U has a second perfect matching, M ′, with (x, p) �∈ M ′.
Hence, the matching is not unique and the puzzle is not solved.

Consider, now, how many queries are required in order to add a single (l, r)
pair to Matches. Removal of l from L and r from R can only happen after either
NU (l) < |R|/2 + 1 or NU (r) < |L|/2 + 1. Because the edges of E correspond to
queries that have not yet been asked of the Oracle, these inequalities imply that
at least one of l and r had more than |R|/2 − 1 = |L|/2 − 1 (or, equivalently,
at least �|R|/2� = �|L|/2�) queries asked about it in conjunction with current
members of U . For the first pair added to Matches, this is �n/2� queries, for the



70 M. Brand

second it is �(n − 1)/2�, and so on. The total, which is a lower bound on the
number of queries required to solve the puzzle, is⌊

n
2

⌋
+ ...+

⌊
1
2

⌋
,

which is Θ(n2).

We now extend the proof of Lemma 2, which works on positional puzzles, to
the general case. We assume that Q includes all possible queries. This is the
hardest case for the Oracle.

Proof (Proof of Theorem 1). Let us begin by finding a code of distance 3 in
〈P,Ep〉. This is a subset C of P such that the minimal path on Ep between any
two distinct elements in C is of length at least 3. One way to do this is by a
greedy algorithm, as described in Algorithm 2.

Algorithm 2. Greedy algorithm for finding a code of distance 3

1: function Greedy code(〈P,Ep〉)
2: C ← ∅
3: G ← 〈P,Ep〉
4: while ∃p ∈ V (G) do
5: C ← C ∪ {p}
6: Restrict G by removing p, NG(p) and {NG(q) : q ∈ NG(p)}
7: end while
8: return C
9: end function

Algorithm 2 adds an element to the code in every iteration. It also removes
at most 1+ d+ d(d− 1) = d2 +1 elements from G, where d is the puzzle degree.
Because the theorem is about bounded-degree puzzles, Algorithm 2 guarantees
that the returned set is Ω(n/(d2 + 1)) = Ω(n) in size.

Suppose now that we change the initialisation of Algorithm 1 to the initiali-
sation described in Algorithm 3.

Algorithm 3. Oracle initialisation

1: C ← Greedy code(〈P,Ep〉)
2: S ← an arbitrary bijection from T to P .
3: Tc ← {x ∈ T : S(x) ∈ C}
4: Matches ← {(x, S(x)) : x ∈ T \ Tc}
5: U = 〈L,R,E〉 ← 〈Tc, C, Tc × C〉

The new initialisation effectively determines the solution for the entire puz-
zle, except for the arrangement of the tiles that go into the code C. We have
seen that positional queries alone are not able to reduce the number of queries
needed to solve the puzzle from this position to o(n2). To complete the proof,
we demonstrate that match queries can be simulated by positional queries, and
hence add no power. Algorithm 4 shows how this is done.



No Easy Puzzles: A Hardness Result for Jigsaw Puzzles 71

We have already shown that no list of o(n2) positional queries can empty the
graph U , and that as long as U is non-empty, no solution can be determined.
Consider Algorithm 4. It does not affect the Oracle-maintained graph U directly,
but only by invoking the query “Does x fit position p?”. As such, if some list
of o(n2) combined match and positional queries solves the puzzle, necessarily
emptying U , then replacing each match query with at most one positional query
would have also emptied U . This creates a list of o(n2) positional-only queries
that empties U , and therefore a contradiction.

Algorithm 4. Oracle strategy for match queries

1: function Does x fit tile y(x, y)
2: if x ∈ Tc and y ∈ Tc then return False
3: else if x 
∈ Tc and y 
∈ Tc then
4: return (S(x), S(y)) ∈ Ep

5: else if y 
∈ Tc then
6: if ∃p ∈ C ∩N(S(y)) then � N(·) is neighbours in 〈P,Ep〉
7: � Because C is a code of distance 3, p is unique
8: return Does x fit position p(x, p)
9: else return False
10: end if
11: else
12: Same as previous case, but with x and y reversed.
13: end if
14: end function

4 Conclusions and Open Questions

In examining the communication complexity of puzzles, we concluded that there
are no easy puzzles: regardless of the shape of the puzzle or the query tools
at our disposal, the worst-case solving scenario always requires us to try out a
significant portion of all match combinations.

However, as an open problem for further research, we remark that this result
merely attests that there exists a worst case that requires Ω(n2) Oracle calls.
The derivation does not pertain to average case complexity in a randomised
setting, simulating more adequately the realistic scenario where the puzzle tiles
are arranged randomly, rather than adversarially. For average case complexity,
puzzle shapes and query types may still make a significant difference.

References

1. Norgate, M.: Cutting borders: Dissected maps and the origins of the jigsaw puzzle.
Cartogr. J. 44(4), 342–350 (2007)

2. Yao, F.H., Shao, G.F.: A shape and image merging technique to solve jigsaw puz-
zles. Pattern Recogn. Lett. 24, 1819–1835 (2003)



72 M. Brand

3. Freeman, H., Garder, L.: Apictorial jigsaw puzzles: The computer solution of a
problem in pattern recognition. IEEE Trans. Electron. Comput. EC-13, 118–127
(1964)

4. Kleber, F., Sablatnig, R.: Scientific puzzle solving: current techniques and appli-
cations. In: Computer Applications to Archaeology (CAA 2009), Williamsburg,
Virginia (March 2009)

5. Kong, W., Kimia, B.B.: On solving 2D and 3D puzzles using curve matching. In:
Proc. IEEE Conf. Computer Vision and Pattern Recognition, Hawaii (December
2001)

6. Radack, G.M., Badler, N.I.: Jigsaw puzzle matching using a boundary-centered
polar encoding. Comput. Vision Graph. 19, 1–17 (1982)

7. Webster, R.W., Ross, P.W., Lafollette, P.S., Stafford, R.L.: A computer vision
system that assembles canonical jigsaw puzzles using the euclidean skeleton and
Isthmus critical points. In: IAPR Workshop on Machine Vision Applications (MVA
1990), Tokyo, IAPR, pp. 118–127 (November 1990)

8. Gallagher, A.C.: Jigsaw puzzles with pieces of unknown orientation. In: 25th Conf.
Computer Vision and Pattern Recognition (CVPR 2012), Providence, Rhode Is-
land (June 2012)

9. Sağıroğlu, M.Ş., Erçil, A.: Optimization for automated assembly of puzzles. TOP:
An Official Journal of the Spanish Society of Statistics and Operations Re-
search 18(2), 321–338 (2010)

10. Wolfson, H., Schonberg, E., Kalvin, A., Lamdan, Y.: Solving jigsaw puzzles by
computer. Ann. Oper. Res. 12(1-4), 51–64 (1988)

11. Arvind, V., Köbler, J.: Graph isomorphism is low for ZPP(NP) and other lowness
results. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 431–442.
Springer, Heidelberg (2000)

12. Arvind, V., Kukur, P.P.: Graph isomorphism is in SPP. Inform. Comput. 204(5),
835–852 (2006)

13. Köbler, J., Schoöning, U., Torán, J.: Graph isomorphism is low for PP. Comput.
Complex. 2(4), 301–330 (1992)

14. McKay, B.D.: Practical graph isomorphism. In: 10th Manitoba Conf. Numerical
Mathematics and Computing (Winnipeg, 1980). Congressus Numerantium, vol. 30,
pp. 45–86 (1981)

15. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd ACM
Symp. Theory of Computing (STOC), pp. 151–158 (1971)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W. H. Freeman & Co (1979)

17. Gröger, H.D.: On the randomized complexity of monotone graph properties. Acta
Cybernet. 10(3), 119–127 (1992)

18. Ullman, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)
19. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University

Press, New York (1997)
20. Gindre, F., Trejo Pizzo, D.A., Barrera, G.: Daniela Lopez De Luise, M.: A criterion-

based genetic algorithm solution to the jigsaw puzzle NP-complete problem. In:
Proc. World Congress on Engineering and Computer Science (WCECS 2010), San
Francisco (October 2010)



No Easy Puzzles: A Hardness Result for Jigsaw Puzzles 73

21. Goldberg, D., Malon, C., Bern, M.: A global approach to automatic solution of
jigsaw puzzles. Comput. Geom. 28(2-3), 165–174 (2004)

22. Gwee, B.H., Lim, M.H.: Polyominoes tiling by a genetic algorithm. Comput. Optim.
Appl. 6(3), 273–291 (1996)

23. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci. 25, 42–65 (1982)

24. Demaine, E.D., Demaine, M.L.: Jigsaw puzzles, edge matching, and polyomino
packing: connections and complexity. Graphs Combin. 23(suppl. 1), 195–208 (2007)

25. Hall, P.: On representatives of subsets. J. London Math. Soc. 10(1), 26–30 (1935)
26. Halmos, P.R., Vaughan, H.E.: The marriage problem. Am. J. Math. 72, 214–215

(1950)



Normal, Abby Normal, Prefix Normal

Péter Burcsi1, Gabriele Fici2, Zsuzsanna Lipták3,
Frank Ruskey4, and Joe Sawada5

1 Dept. of Computer Algebra, Eötvös Loránd Univ., Budapest, Hungary
bupe@compalg.inf.elte.hu

2 Dip. di Matematica e Informatica, University of Palermo, Italy
gabriele.fici@math.unipa.it

3 Dip. di Informatica, University of Verona, Italy
zsuzsanna.liptak@univr.it

4 Dept. of Computer Science, University of Victoria, Canada
ruskey@cs.uvic.ca

5 School of Computer Science, University of Guelph, Canada
jsawada@uoguelph.ca

Abstract. A prefix normal word is a binary word with the property that
no substring has more 1s than the prefix of the same length. This class of
words is important in the context of binary jumbled pattern matching. In
this paper we present results about the number pnw(n) of prefix normal

words of length n, showing that pnw(n) = Ω
(
2n−c

√
n lnn

)
for some c

and pnw(n) = O
(

2n(lnn)2

n

)
. We introduce efficient algorithms for testing

the prefix normal property and a “mechanical algorithm” for computing
prefix normal forms. We also include games which can be played with
prefix normal words. In these games Alice wishes to stay normal but Bob
wants to drive her “abnormal” – we discuss which parameter settings
allow Alice to succeed.

Keywords: prefix normal words, binary jumbled pattern matching, nor-
mal forms, enumeration, membership testing, binary languages.

1 Introduction

Consider the binary word w = 10100110110001110010. Does it have a substring
of length 11 containing exactly 5 ones? In Fig. 1 the word w is represented by
the black line (go up and right for a 1, down and right for a 0), while the grid
points within the area between the two lighter lines form the Parikh set of w:
the set of vectors (x, y) s.t. some substring of w contains exactly x ones and
y zeros. Since the point (5, 6) lies within the area bounded by the two lighter
lines, we see that the answer to our question is ‘yes’. (Don’t worry, more detailed
explanation will follow soon.) Now, this paper is about the lighter lines, called
prefix normal words.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 74–88, 2014.
c© Springer International Publishing Switzerland 2014



Normal, Abby Normal, Prefix Normal 75

w

PNF1(w)

PNF0(w)

1s

0s

1

1

2

2

3

3

Fig. 1. The word w = 10100110110001110010 (dark line), its prefix normal forms
PNF1(w) = 11101001011001010010 and PNF0(w) = 00011010101011010101 (lighter
lines); the region between the two is the Parikh set of w; e.g. w has a substring con-
taining 5 ones and 6 zeros (black dot). Note that the axes are rotated by 45 degrees
clockwise.

Prefix Normal Words: A binary word w is called prefix normal (with respect
to 1) if no substring of w has more 1s then the prefix of the same length6. For
example, 110101101100100 is not prefix normal because it has a substring of
length 5 with 4 ones, while the prefix of length 5 has only 3 ones. In [14] it was
shown that to every word w, one can assign two prefix normal words, the prefix
normal forms (PNF) of w (w.r.t. 1 and w.r.t. 0), and that these are precisely
the lines bounding w’s Parikh set from above (w.r.t. 1) resp. from below (w.r.t.
0), interpreted as binary words.

Prefix Normal Games: Before we further elaborate on the connection be-
tween the initial problem and prefix normal words, let’s see how well you have
understood the definition. To this end, we define a two-player game. At the start
of the game Alice and Bob have n free positions. Alice moves first: she picks a
position and sets it to 0 or 1. Then in alternating moves, they pick an empty
position and set it. The game ends after n moves. Alice wins if and only if the
resulting binary word is prefix normal.

Example 1. Here is an example run. We have n = 5. Alice sets the first bit to 1,
then Bob sets the second bit to 0. Now Alice sets the 4th bit to 0, and she has
won, since whichever position Bob chooses, she will set the remaining position
to 0, thus ensuring that the word is prefix normal.

1. start 3. Bob 1 0
2. Alice 1 4. Alice 1 0 0

The solution to the following exercise can be found in Section 6.

Exercise 1. Find the maximum n such that Alice has a winning strategy.

Binary Jumbled Pattern Matching: The problem of deciding whether a
particular pair (x, y) lies within the Parikh set of a word w is known as binary

6 When not specified, we mean prefix normal w.r.t. 1.



76 P. Burcsi et al.

jumbled pattern matching. There has been much interest recently in the indexed
version, where an index for the Parikh set is created in a preprocessing step,
which can then be used to answer queries fast. The Parikh set can be represented
in linear space due to the interval property of binary strings: If w has k-length
substrings with x1 resp. x2 ones, where x1 < x2, then it also has a k-length
substring with y ones, for every x1 ≤ y ≤ x2 (folklore). Thus the Parikh set can
be represented by storing, for every 1 ≤ k ≤ |w|, the minimum and maximum
number of 1s in a substring of length k. Much recent research has focused on
how to compute these numbers efficiently [2, 10, 12, 15, 16, 20, 21]. The problem
has also been extended to graphs and trees [11, 15], to the streaming model [19],
and to approximate indexes [12]. There is also interest in the non-binary vari-
ant [9, 10, 18]. A closely related problem is that of Parikh fingerprints [1]. Appli-
cations in computational biology include SNP discovery, alignment, gene clusters,
pattern discovery, and mass spectrometry data interpretation [3, 4, 5, 13, 23].

The current best construction algorithms for the linear size index for binary
jumbled pattern matching run in O(n2/ logn) time [7, 20], for a word w of length
n, with some improvements for special cases (compressible strings [2, 15], bit-
parallel operations [16, 21])7. As we will see later, computing the prefix normal
forms is equivalent to creating an index for the Parikh set of w. Currently, we
know no faster computation algorithms for the prefix normal forms than already
exist for the linear-size index. However, should better algorithms be discovered,
these would immediately carry over to the problem of indexed binary jumbled
pattern matching.

Testing: It turns out that even testing whether a given word is prefix nor-
mal is a nontrivial task. We can of course compute w’s prefix normal form, in
O(n2/polylog n) time using one of the above algorithms: obviously w is prefix
normal if and only if w = PNF(w). In [8], we gave a generating algorithm for
prefix normal words, which exhaustively lists all prefix normal words of a fixed
length. The algorithm was based on the fact that prefix normal words are a
bubble language, a recently introduced class of binary languages [24, 26]. As
a subroutine of our algorithm, we gave a linear time test for words which are
obtained from a prefix normal word via a certain operation. In Section 7, we
present an algorithm to test whether an arbitrary word is prefix normal, based
on similar ideas. Our algorithm is quadratic in the worst case but we believe it
performs much better than other algorithms once some simple cases have been
removed.

We further demonstrate how using several simple linear time tests can be used
as a filtering step, and conjecture, based on experimental evidence, that these
lead to expected O(n) time algorithms. But first the reader is kindly invited to
try for herself.

Exercise 2. Decide whether the word 111010100110110011 is prefix normal.

7 Very recently, an algorithm with running time n2/2Ω(log n/ log log n)1/2 was pre-
sented [17].



Normal, Abby Normal, Prefix Normal 77

Enumerating: Another very interesting and challenging problem is the enu-
meration of prefix normal words. It turns out that even though the number of
prefix normal words grows exponentially, the fraction of these words within all
binary words goes to 0 as n goes to infinity. In Sections 3 to 5, we present both
asymptotic and exact results for prefix normal words, including generating func-
tions for special classes and counting extensions for particular words. Some of
the proofs in this part of the paper are rather technical: they will be available
in the full version.

Mechanical Algorithm Design: We contribute to the area of mechanical
algorithm design by presenting an algorithm for computing the Parikh set which
uses the new sandbeach technique, a technique we believe will be useful in many
other applications (Sec. 7).

We would like to point out that prefix normal words, albeit similar in name,
are not to be confused with so-called Abby Normal (a.k.a. abnormal or AB nor-
mal), words, or rather, brains, introduced in [6].— And now it is time to wish
you, the reader, as much fun in reading our paper as we had in writing it!

2 Prefix Normal Words

A binary word (or string) w = w1 · · ·wn over Σ = {0, 1} is a finite sequence of
elements from Σ. Its length n is denoted by |w|. For any 1 ≤ i ≤ |w|, the i-th
symbol of a word w is denoted by wi. We denote by Σn the words over Σ of
length n, and by Σ∗ = ∪n≥0Σ

n the set of finite words over Σ. The empty word
is denoted by ε. Let w ∈ Σ∗. If w = uv for some u, v ∈ Σ∗, we say that u is
a prefix of w and v is a suffix of w. A substring of w is a prefix of a suffix of
w. A binary language is any subset L of Σ∗. We denote by |w|c the number of
occurrences in w of character c ∈ {0, 1}; |w|1 is called the density of w.

Let w ∈ Σ∗. For i = 0, . . . , n, we set P (w, i) = |w1 · · ·wi|1, the number of 1s in
the i-length prefix of w, and F (w, i) = max{|u|1 : u is a substring of w and |u| =
i}, the maximum number of 1s over all substrings of length i.

Prefix normal words, prefix normal equivalence and prefix normal form were
introduced in [14]. A word w ∈ {0, 1}∗ is prefix normal (w.r.t. 1) if, for all
1 ≤ i ≤ |w|, F (w, i) = P (w, i). In other words, a word is prefix normal if no
substring contains more 1s than the prefix of the same length.

Example 2. We give all 23 prefix normal words of length n = 6:
000000, 100000, 100001, 100010, 100100, 101000, 101001, 101010, 110000, 110001,
110010, 110011, 110100, 110101, 110110, 111000, 111001, 111010, 111011, 111100,
111101, 111110, 111111.

Two words w,w′ are prefix normal equivalent (w.r.t. 1) if and only if F (w, i) =
F (w′, i) for all i. Given w ∈ Σ∗, the prefix normal form (w.r.t. 1) of w, PNF(w) =
PNF1(w), is the unique prefix normal word w′ which is prefix normal equivalent
(w.r.t. 1) to w. Prefix normality w.r.t. 0, prefix normal equivalence w.r.t. 0, and
PNF0(w) are defined analogously. When not stated explicitly, we are referring



78 P. Burcsi et al.

to the functions w.r.t. 1. For example, the words 0000111 and 1110000 are prefix
normal equivalent both w.r.t. 0 and 1. See [8, 14] for more examples.

In Fig. 1, we see an example string w and its prefix normal forms. The interval
property (see Introduction) can be graphically interpreted as vertical lines. The
vertical line through point (5, 6) represents length-11 substrings: the grid points
within the enclosed area are (7, 4), (6, 5), and (5, 6), so all length-11 substrings
have between 7 and 5 ones. We can interpret, for each length k, the intersection
of the kth vertical line with the top grey line as the maximum number of 1s, and
with the bottom grey line as the minimum number of 1s. Now it is easy to see
that, passing from k to k+1, this maximum, F1(w, ·), can either remain the same
or increase by one. This means that the top grey line allows an interpretation
as a binary word. A similar interpretation applies to the bottom line and prefix
normal words w.r.t 0.

It should now be clear, also graphically, that the maximum number of 1s for
a substring of length k, F (w, k), is precisely the number of 1s in the k-length
prefix of PNF1(w) (the upper grey line); and similarly for the maximal number
of 0s (equivalently, the minimal number of 1s) and PNF0(w, k) (the lower grey
line). Moreover, these values can be obtained in constant time with constant-time
rank-operations [15, 22].

We list a few properties of prefix normal words that will be useful later.

Lemma 1 (Properties of prefix normal words [14])

1. Every prefix of a prefix normal word is also prefix normal.
2. If w is prefix normal, then w0 is also prefix normal.
3. Given w of length n, it can be decided in O(n2) time whether w is prefix

normal.

We denote the language of prefix normal words by LPN, the number of prefix
normal words of length n by pnw(n), and the number of prefix normal words of
length n and density d by pnw(n, d). The first few values of the sequence pnw(n)
are listed in [25].

3 Asymptotic Bounds on the Number of Prefix Normal
Words

We give lower and upper bounds on the number of prefix normal words of length
n. Our lower bound on pnw(n) is proved in Section 6.

Theorem 1. There exists c > 0 such that

pnw(n) = Ω
(
2n−c

√
n lnn

)
= Ω ((2− ε)n) for all ε > 0. (1)

If we consider the length of the first 1-run, we obtain an upper bound.

Theorem 2. For n ≥ 1, we have pnw(n) = O
(

2n(lnn)2

n

)
= o(2n).



Normal, Abby Normal, Prefix Normal 79

Proof. Let k = k(n) > 0 be a number to be specified later. Partition LPN∩Σn \
{0n} into two classes according to the length of the first 1-run.
Case 1: If w is prefix normal and the first 1-run’s length is less than k, then there
are no k consecutive 1s in w. Write w as the concatenation of �n/k� blocks of
length k and a final, possibly shorter block: w = (w1 . . . wk)(wk+1wk+2 . . . w2k) . . .
For each block we have at most 2k − 1 possibilities, so there can be at most
(2k − 1)
n/k� words in this class. Case 2: The length of the first 1-run in w is at
least k. Since the first k symbols of w are already fixed as 1s, there can only be
2n−k = 2n/2k words in this class.

If we balance the two cases by letting k be the largest integer such that
2k · k2 · ln 2 ≤ n, then we have k = Θ(lnn) and

pnw(n)/2n ≤
(
1− 1

2k

)
n/k�
+

1

2k
= Θ

(
k2

n

)
= Θ

(
(lnn)2

n

)
= o(1),

as stated. ��

4 Exact Formulas for Special Classes of Prefix Normal
Words

Words with Fixed Density. We formulate an equivalent definition of the
prefix normal property that will be useful in the enumeration of prefix normal
words. Let w = 1w2w3 . . . wn be a prefix normal word of density d > 0. Denote
by r1, r2, . . . , rd−1 the distances between consecutive occurrences of 1 in w, and
set rd so that

∑
rj = n holds. We can thus write w = 10r1−110r2−1 . . . 10rd−1.

For w = 110100010, we have d = 4, r1 = 1, r2 = 2, r3 = 4 and r4 = 2. The prefix
normal property is equivalent to requiring that for all k, one of the shortest
substrings containing exactly k ones is a prefix. This gives us the following
lemma.

Lemma 2. The binary word w is prefix normal if and only if the following
inequalities hold:

r1 ≤ rj j = 2, 3, . . . , d− 3, d− 2, d− 1
r1 + r2 ≤ rj + rj+1 j = 2, 3, . . . , d− 3, d− 2

r1 + r2 + r3 ≤ rj + rj+1 + rj+2 j = 2, 3, . . . , d− 3
...

...
r1 + r2 + · · ·+ rd−2 ≤ rj + rj+1 + · · ·+ rd−1 j = 2



80 P. Burcsi et al.

Lemma 3. For d = 0, . . . , 6, we have the generating functions fd(x) =∑∞
n=1 pnw(n, d)x

n:

f0(x) =
1

1− x

f1(x) =
x

1− x

f2(x) =
x2

(1− x)2

f3(x) =
x3

(1− x2)(1− x)2

f4(x) =
x4

(1− x3)(1− x)3

f5(x) =
x5(1 + x+ x2)

(1− x4)(1− x2)2(1− x)2

f6(x)=
x6(1 + x+ x2 + x3)

(1− x5)(1 − x3)(1 − x2)(1− x)3

Similar formulas can be derived for pnw(n, n−d) for small values of d. Unfor-
tunately, no clear pattern is visible for fd(x) that we could use for calculating
pnw(n).

Words with a Fixed Prefix. We now fix a prefix w and give enumeration
results on prefix normal words with prefix w. Our first result indicates that we
have to consider each w separately.

Definition 1. If w is a binary word, let Lext(w) = {w′ : ww′ is prefix normal },
and Lext(w,m) = Lext(w) ∩ Σ|w|+m. Let ext(w,m, d) = |{w′ :
ww′ is prefix normal of length |w| + m and density d}|, and ext(w,m) =
|Lext(w,m)|.

Lemma 4. Let v, w ∈ 1{0, 1}∗ be both prefix normal. If v �= w then Lext(v) �=
Lext(w).

We were unable to prove that the growth of these two extension languages
also differ.

Conjecture 1. Let v, w ∈ 1{0, 1}∗ be both prefix normal. If v �= w then the
infinite sequences (ext(v,m))m≥1 and (ext(w,m))m≥1 are different.

The values ext(w,m, d) seem hard to analyze. We give exact formulas for a few
special cases of interest. Using Lemma 2, it is possible to give formulas similar
to those in Lemma 3 for ext(w,m, d) for fixed w and d. We only mention one
such result.

Lemma 5. For 1 ≤ d ≤ n we have ext(10, n+ d− 3, d) = pnw(n, d).

Proof. Let w be an arbitrary prefix normal word of length n and density d with
1 as its first symbol. Insert a 0 before each subsequent occurrence of 1. It is easy
to see that this operation creates a bijection between the two sets that we want
to enumerate. ��



Normal, Abby Normal, Prefix Normal 81

The following lemma lists exact values for ext(w, |w|) for some infinite families
of words w.

Lemma 6. Let F (n) denote the nth Fibonacci number: F (1) = F (2) = 1 and
F (n + 2) = F (n + 1) + F (n). Then for all values of n where the exponents are
nonnegative, we have the following formulas:

ext(0n, n) = 1

ext(1n, n) = 2n

ext(1n−10, n) = 2n − 1

ext(1n−201, n) = 2n − 5

ext(1n−200, n) = 2n − (n+ 1)

ext((10)
n
2 , n) = F (n+ 2) if n is even

ext((10)

n
2 �1, n) = F (n+ 1) if n is odd

ext(10n−21, n) = 3

ext(10n−1, n) = n+ 1

Proof. For w = 1n, w = 1n−10, w = 1n−201 and w = 1n−200, it is easy to count
those extensions that fail to give prefix normal words. Similarly, for w = 10n−21,
w = 10n−1 and w = 0n, counting the extensions that give prefix normal words
gives the results in a straightforward way.

Let n be even. For w = (10)
n
2 , note that ww′ is prefix normal if and only if

w′ avoids 11. The number of such words is known to equal F (n+2). For n odd,
the argument is similar. ��

5 Experimental Results about Prefix Normal Words

We consider extensions of prefix normal words by a single symbol to the right.
It turns out that this question has implications for the enumeration of prefix
normal words.

Definition 2. We call a prefix normal word w extension-critical if w1 is not
prefix normal. Let crit(n) denote the number of extension-critical words in LPN∩
Σn.

Lemma 7. For n ≤ 1 we have

pnw(n) = 2pnw(n− 1)− crit(n− 1) = pnw(n− 1)

(
2− crit(n− 1)

pnw(n− 1)

)
. (2)

From this it follows that

pnw(n) = 2

n−1∏
i=1

(
2− crit(i)

pnw(i)

)
. (3)



82 P. Burcsi et al.

Length of word
0 10 20 30 40 50

0

0,1

0,2

0,3

0,4

0,5

Length of word
0 10 20 30 40 50

0

0,2

0,4

0,6

0,8

1,0

1,2

Fig. 2. The ratio crit(n)
pnw(n)

(left), and the value crit(n)
pnw(n)

· n
lnn

(right)

From Theorem 1 we have:

Lemma 8. For n going to infinity, lim inf crit(n)/pnw(n) = 0.

We conjecture that in fact the ratio of extension-critical words converges to 0.
We study the behavior of crit(n)/p(n) for n ≤ 49. The left plot in Fig. 2 shows the
ratio of extension-critical words for n ≤ 49. These data support the conjecture
that the ratio tends to 0. Interestingly, the values decrease monotonically for
both odd and even values, but we have crit(n+1)/pnw(n+1) > crit(n)/pnw(n)
for even n. We were unable to find an explanation for this.

The right plot in Fig. 2 shows the ratio of extension-critical words multiplied
by n/ lnn. Apart from a few initial data points, the values for even n increase
monotonically and the values for odd n decrease monotonically, and the values
for odd n stay above those for even n.

Conjecture 2. Based on empirical evidence, we conjecture the following:

crit(n) = pnw(n)Θ(lnn/n), (4)

pnw(n) = 2n−Θ((lnn)2). (5)

Note that the second estimate follows from the first one by (3).

6 Prefix Normal Games

Variant 1: Prefix normal game starting from empty positions. See In-
troduction.

Lemma 9. For n ≥ 7 Bob has a winning strategy in the game starting from
empty positions.



Normal, Abby Normal, Prefix Normal 83

Variant 2: Prefix Normal Game with Blocks.The game is played as follows.
Now a block length of 2k is also specified, and we require that 2k divides n. The
first 4k symbols are set to 1 before the game starts (in order to give Alice a
fair chance). Divide the remaining empty positions into blocks of length 2k.
Then Bob starts by picking a block with empty positions, and setting half of the
positions of the block arbitrarily. Alice moves next and she sets the remaining
k positions in the same block as she wants. Now this block is completely filled.
Then Bob picks another block, fills in half of it, etc. Iterate this process until
every position is filled in.

Lemma 10. Alice has a winning strategy in the game with blocks, for any k ≥ 1.

Proof. Alice can always achieve that the current block contains exactly k 1s
and k 0s. Now consider a substring v of length m of the word w = 14ku that is
obtained in the end. We have to show that the prefix of the same length has at
least as many 1s. Clearly, only m ≥ 4k has to be considered, and we can also
assume that v starts after position 4k. The substring v contains some 2k-blocks
in full, and some others partially. Let p := �m2k �, then |v|1 ≤ (p + 1)k ≤ m

2 + k,
while the number of 1s in the prefix of length m is at least 4k+(p−2)k ≥ m

2 +k,
as claimed. ��

As a corollary, we can prove the lower bound in Theorem 1.

Proof. (of Theorem 1). There are at least as many prefix normal words of length
n as there are distinct words resulting after a game with blocks that Alice has
won using the above strategy. Note that with this strategy, each block has ex-
actly k many 0s and Bob is free to choose their positions within the block.
Moreover, for different choices of 0-positions by Bob, the resulting words will

be different. So overall, Bob can achieve at least
(
2k
k

)(n−4k)/2k
different out-

comes. If we set k = �
√
n logn�, and note that for 2k not dividing n, we can use

pnw(n) ≥ pnw(�n/2k� ·2k), then we obtain: − ln(pnw(n)/2n) = O(
√
n lnn), and

the statement follows. ��

7 Construction and Testing Algorithms

In this section, for strings w �= 1n, we use the notation w = 1s0tγ, with s ≥
0, t > 0 and γ ∈ 1Σ∗ ∪ {ε}. Note that this notation is unique. We call 1s0t the
critical prefix of w.

7.1 A Mechanical Algorithm for Computing the Prefix Normal
Forms

We now present a mechanical algorithm for computing the prefix normal form of
a word w. It uses a new algorithm technique we refer to as sandy beach technique,
a technique that we think will be useful for many other similar problems.



84 P. Burcsi et al.

First observe that if you draw your word w as in Fig. 1, then the Parikh set of
w will be the region spanned by drawing all the suffixes of w starting from the
origin. As we know, the prefix normal forms of w will be the upper and the lower
contour of the Parikh set, respectively. This leads to the following algorithm, that
we can implement in any sand beach—for example, Lipari’s Canneto (Fig. 3).

Take a folding ruler (see Fig. 3) and fold it in the form of your word. Now des-
ignate an origin in the sand. Put the folding ruler in the sand so that its beginning
coincides with the origin. Next, move it backwards in the sand such that the posi-
tion at the beginning of the (n−1)-length suffix coincides with the origin; thenwith
the next shorter suffix and so on, until the right end of the folding ruler reaches
the origin. The traced area to the right of the origin is the Parikh set of w, and its
top and bottom boundaries, the prefix normal forms of w (that you can save by
taking a photo).

Analysis: The algorithm requires a quadratic amount of sand, but can out-
perform existing ones in running time if implemented by a very fast person.

Fig. 3. The folding ruler used and a sandy beach (here the beautiful Liparis’s Canneto
black sand beach) in our mechanical prefix normal construction algorithm

7.2 Testing Algorithm

It can be tested easily in O(n2) time if a word is prefix normal, by computing its
F -function and comparing it to its prefixes; several other quadratic time tests
were presented in [14]. Currently, the fastest algorithms for computing F run
in worst-case O(n2/polylog n) time (references in the Introduction). Here we
present another algorithm, which, although O(n2) in the worst-case, we believe
could well outperform other algorithms when iterated on prefixes of increasing
length.

Given a word w of length n and density d, w = 1s0tγ. Since the cases d = 0, n
are trivial, we assume 0 < d < n. Notice that, then, in order for w to be prefix
normal, s > 0 must hold. Now build a sequence of words v0, v1, . . . , vd−s, where
v0 = 1d0n−d and vd−s = w, in the following way: for every i, vi+1 is obtained
from vi by swapping the positions d−i and j, where j is the rightmost mismatch
between vi and w. So for example, if w = 110100101, we have the following
sequence of words: 111110000, 111100001, 111000101, 110100101.



Normal, Abby Normal, Prefix Normal 85

The following lemma follows straightforwardly from the results of [8]:

Lemma 11. Given w ∈ Σn with |w|1 = d, and the sequence v0 =
1d0n−d, v1, . . . , vd−s = w, we have that w is prefix normal if and only if every vi
is.

Moreover, as was shown there, it can be checked efficiently whether these
strings are prefix normal. We summarize in the following lemma, and give a
proof sketch and an example.

Lemma 12 (from [8]). Given a prefix normal word w = 1s0tγ. Let w′ =
1s−10i10t−iγ, then it can be decided in linear time whether w′ is prefix normal.

We will give an intuition via a picture, see Fig. 4. If w′ is not prefix normal,
then there must be a k and a substring u of length k s.t. u has more 1s than
the prefix of length k. It can be shown that it suffices to check this for one value
of k only, namely for k = s − 1 + t, the length of the critical prefix length of
w′. The number of 1s in this prefix is s − 1. Now if such a u exists, then it is
either a substring of γ, in which case F (γ, k) > s− 1; or it is a substring which
contains the position of the newly swapped 1 (both in grey in the third line).
This latter case can be checked by computing the number of 1s in the prefix of
the appropriate length of γ (in slightly darker grey) and checking whether it is
greater than s− 2.

gammas t

w

gammas-1 i 

w'

t-i
k

Fig. 4. Proof of Lemma 12

Thus, for i = 1, . . . , d − s, we test if vi+1 is prefix normal. If at some point,
we receive a negative answer, then the test returns NO, otherwise it returns
YES. Additional data structures for the algorithm are the F -function, which is
updated to the current suffix following the critical prefix, up to the length of the
next critical prefix (in linear time); and a variable z containing the number of
1s in the appropriate length prefix of γ.

Example: We test whether the word w = 110101101100100 is prefix normal.

w 110101101100100 γ k F (k) z F
v1 111111110000000 ε 12 0 0 000000000000
v2 111111100000100 100 9 1 1 111111111
v3 111111000100100 100100 8 2 2 11122222
v4 111110001100100 1100100 6 3 2 122233
v5 111100101100100 101100100 5 3 3 12233

At this point we have z + 1 = 4 > 3 = s− 1 and therefore, we stop. Indeed,
we can see that the next word to be generated, v6 = 1110001101100100 is not



86 P. Burcsi et al.

be prefix normal, since it has a substring of length 5 with 4 ones, but the prefix
of length 5 has only 3 ones.

Analysis: The running time of the algorithm is O(
∑d

i=d−s pi) in the worst
case, where the pi are the positions of the 1s in w, so in the worst case quadratic.

Iterating Version. The algorithm tests a condition on the suffixes starting at
the 1s, in increasing order of length, and compares them to a prefix where the
remaining 1s but one are in a block at the beginning. This implies that for some
w which are not prefix normal, e.g. w = 101n, n > 1, the algorithm will stop
very late, even though it is easy to see that the word is not prefix normal. This
problem can be eliminated by running some linear time checks on the word first;
the power of this approach will be demonstrated in the next section.

Since we know that a word w is prefix normal iff every prefix of w is, we have
that a word which is not prefix normal has a shortest non-prefix-normal prefix.
We therefore adapt the algorithm in order to test the prefix normality on the
prefixes of w of length powers of 2, in increasing order. In the worst case, we
apply the algorithm logn times. Since the test on the prefix of length 2i takes
O(22i) time, we have an overall

∑logn
i=0 O(22i) = O(n2) worst case running time,

so no worse than the original algorithm.
We believe that our algorithm will perform well on strings which are “close to

prefix normal” in the sense that they have long prefix normal prefixes, or they
have passed the filters, i.e. that it will be expected strongly subquadratic, or
even linear, time even on these strings.

7.3 Membership Testing with Linear Time Filters

In this section, we provide a two-phase membership tester for prefix normal
words. Experimental evidence indicates that on average its running time is O(n).

Suppose there is an O(n) test that can be used to reject 2n−2n/n of the binary
strings outright (Phase I). For the remaining 2n/n strings, apply the worst case
O(n2) algorithm (Phase II). This gives an O(n)-amortized time algorithm when
taken over all 2n strings. For such a two-phase approach, let M denote the
strings not rejected by the first phase. We are interested in the ratio nM/2n.
As n grows, if it appears as though this ratio is bounded by a constant, then we
would conjecture that such a membership tester runs in O(n) average case time.

First we try a trivial O(n) test: a string will not be prefix-normal if the longest
substring of 1s is not at the prefix.Applying this test as the first phase, the resulting
ratios for some increasing values of n are given in Table 1(a). Since the ratios are
increasing as n increases, we require a more advanced rejection test.

The next attempt uses a more compact run-length representation for w. Let w
be represented by a series of c blocks, which are maximal substrings of the form
1∗0∗. Each block Bi is composed of two integers (si, ti) representing the number
of 1s and 0s respectively. For example, the string 11100101011100110 can be
represented by B1B2B3B4B5 = (3, 2)(1, 1)(1, 1)(3, 2)(2, 1). Such a representation
can easily be found in O(n) time. A word w will not be prefix normal word if
it contains a substring of the form 1i0j1k such that i + j + k ≤ s1 + t1 and



Normal, Abby Normal, Prefix Normal 87

Table 1. (a) Ratios from the trivial rejection test. (b) Ratios by adding secondary
rejection test.

n 10 12 14 16 18 20 22 24

(a) 2.500 2.561 2.602 2.631 2.656 2.675 2.693 2.708

(b) 2.168 2.142 2.121 1.106 2.093 2.083 2.075 2.067

i+ k > s1 (the substring is no longer, yet has more 1s than the critical prefix).
Thus, a word will not be prefix normal, if for some 2 ≤ i ≤ c:

si−1 + ti−1 + si ≤ s1 + t1 and si−1 + si > s1.

By applying this additional test in our first phase, we obtain algorithm
MemberPN(w), consisting of the two rejection tests, followed by any simple
quadratic time algorithm.

The ratios that result from this algorithm are given in Table 1(b). Since the
ratios are decreasing as n increases, we make the following conjecture.

Conjecture 3. The membership tester MemberPN(w) for prefix normal words
funs in average case O(n)-time.

We note that there are several other trivial rejection tests that run in O(n) time,
however these two were sufficient to obtain our desired experimental results.

Acknowledgements. We thank Ferdinando Cicalese who pointed us to [6] and
thus contributed to the fun part of our paper.

References

1. Amir, A., Apostolico, A., Landau, G.M., Satta, G.: Efficient text fingerprinting via
Parikh mapping. J. Discrete Algorithms 1(5-6), 409–421 (2003)

2. Badkobeh, G., Fici, G., Kroon, S., Lipták, Zs.: Binary jumbled string matching for
highly run-length compressible texts. Inf. Process. Lett. 113(17), 604–608 (2013)

3. Benson, G.: Composition alignment. In: Benson, G., Page, R.D.M. (eds.) WABI
2003. LNCS (LNBI), vol. 2812, pp. 447–461. Springer, Heidelberg (2003)

4. Böcker, S.: Simulating multiplexed SNP discovery rates using base-specific cleavage
and mass spectrometry. Bioinformatics 23(2), 5–12 (2007)

5. Böcker, S., Jahn, K., Mixtacki, J., Stoye, J.: Computation of median gene clus-
ters. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955,
pp. 331–345. Springer, Heidelberg (2008)

6. Brooks, M., Wilder, G.: Young Frankenstein (1974),
http://www.imdb.com/title/tt0072431/quotes,
http://www.youtube.com/watch?v=yH97lImrr0Q

7. Burcsi, P., Cicalese, F., Fici, G., Lipták, Zs.: On table arrangements, scrabble
freaks, and jumbled pattern matching. In: Boldi, P. (ed.) FUN 2010. LNCS,
vol. 6099, pp. 89–101. Springer, Heidelberg (2010)

http://www.imdb.com/title/tt0072431/quotes
http://www.youtube.com/watch?v=yH97lImrr0Q


88 P. Burcsi et al.

8. Burcsi, P., Fici, G., Lipták, Zs., Ruskey, F., Sawada, J.: On combinatorial gener-
ation of prefix normal words. In: Kulikov, A. (ed.) CPM 2014. LNCS, vol. 8486,
pp. 60–69. Springer, Heidelberg (2014)

9. Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. Inf.
Process. Lett. 92(6), 293–297 (2004)

10. Cicalese, F., Fici, G., Lipták, Zs.: Searching for jumbled patterns in strings. In:
Proc. of the Prague Stringology Conference 2009 (PSC 2009), pp. 105–117. Czech
Technical University in Prague (2009)

11. Cicalese, F., Gagie, T., Giaquinta, E., Laber, E.S., Lipták, Zs., Rizzi, R., Tomescu,
A.I.: Indexes for jumbled pattern matching in strings, trees and graphs. In: Kur-
land, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 56–63.
Springer, Heidelberg (2013)

12. Cicalese, F., Laber, E.S., Weimann, O., Yuster, R.: Near linear time construction
of an approximate index for all maximum consecutive sub-sums of a sequence. In:
Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 149–158. Springer,
Heidelberg (2012)

13. Dührkop, K., Ludwig, M., Meusel, M., Böcker, S.: Faster mass decomposition. In:
Darling, A., Stoye, J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 45–58. Springer,
Heidelberg (2013)

14. Fici, G., Lipták, Zs.: On prefix normal words. In: Mauri, G., Leporati, A. (eds.)
DLT 2011. LNCS, vol. 6795, pp. 228–238. Springer, Heidelberg (2011)

15. Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern
matching on trees and tree-like structures. In: Bodlaender, H.L., Italiano, G.F.
(eds.) ESA 2013. LNCS, vol. 8125, pp. 517–528. Springer, Heidelberg (2013)

16. Giaquinta, E., Grabowski, Sz.: New algorithms for binary jumbled pattern match-
ing. Inf. Process. Lett. 113(14-16), 538–542 (2013)

17. Hermelin, D., Landau, G.M., Rabinovich, Y., Weimann, O.: Binary jumbled pat-
tern matching via all-pairs shortest paths. Arxiv: 1401.2065v3 (2014)

18. Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern
matching with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.)
ESA 2013. LNCS, vol. 8125, pp. 625–636. Springer, Heidelberg (2013)

19. Lee, L.-K., Lewenstein, M., Zhang, Q.: Parikh matching in the streaming model. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 336–341. Springer, Heidelberg (2012)

20. Moosa, T.M., Rahman, M.S.: Indexing permutations for binary strings. Inf. Pro-
cess. Lett. 110, 795–798 (2010)

21. Moosa, T.M., Rahman, M.S.: Sub-quadratic time and linear space data structures
for permutation matching in binary strings. J. Discrete Algorithms 10, 5–9 (2012)

22. Ian Munro, J.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

23. Parida, L.: Gapped permutation patterns for comparative genomics. In: Bücher, P.,
Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 376–387. Springer,
Heidelberg (2006)

24. Ruskey, F., Sawada, J., Williams, A.: Binary bubble languages and cool-lex order.
J. Comb. Theory, Ser. A 119(1), 155–169 (2012)

25. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences, http://oeis.org
Sequence A194850

26. Williams, A.M.: Shift Gray Codes. PhD thesis, University of Victoria, Canada
(2009)

http://oeis.org


Nonconvex Cases for Carpenter’s Rulers

Ke Chen� and Adrian Dumitrescu�

Department of Computer Science, University of Wisconsin-Milwaukee
Milwaukee, WI 53201-0784, USA
{kechen,dumitres}@uwm.edu

Abstract. We consider the carpenter’s ruler folding problem in the
plane, i.e., finding a minimum area shape with diameter 1 that accom-
modates foldings of any ruler whose longest link has length 1. An upper
bound of 0.614 and a lower bound of 0.476 are known for convex cases.
We generalize the problem to simple nonconvex cases: we improve the
upper bound to 0.583 and establish the first lower bound of 0.073.

Keywords: Carpenter’s ruler, universal case, folding algorithm.

1 Introduction

Acquiring cases for their rulers that are compact and easy to carry around has
been a constant interest for carpenters all along. A carpenter’s ruler L of n
links is a chain of n line segments with endpoints p0, p1, ..., pn, with consecutive
segments connected by hinges. For 0 ≤ i ≤ n− 1, the segment pipi+1 is a link of
the ruler. A ruler with its longest link having length 1 is called a unit ruler. A
folding of a ruler L is represented by the n− 2 angles ∠pipi+1pi+2 ∈ [0, π] for all
0 ≤ i ≤ n− 2. A case is a planar shape whose boundary is a simple closed curve
(i.e., with no self-intersections). In particular, a case has no interior holes.

Obviously a unit ruler requires a case whose diameter is at least one; on the
other hand, there exist cases of unit diameter that allow folding of any unit ruler
inside, e.g., a disk of unit diameter, regardless of the number of links in the ruler.
A ruler L can be folded inside a case S if and only if there exists a point p ∈ S
and a folding of L such that all the points on L are in S when p0 is placed at
p. In a folded position of the ruler, its links may cross each other; an example is
shown in Figure 1.

A case is said to be universal if any unit ruler (or all unit rulers) can be
folded inside it. The question asks for the minimum area of a convex universal
case of unit diameter. This problem was introduced in 2005 by Călinescu and
Dumitrescu [3]; see also [2, Problem 9, p. 461]. A disk of unit diameter and
the Reuleaux triangle with one arc removed (call it R2), were shown to be
universal by the authors [3]. The area of R2, depicted in Figure 2 (left), is
π
3 −

√
3
4 = 0.614 . . .; it is the current best upper bound for the area of a convex

universal case. The authors [3] achieved a lower bound of 0.375 using 3-link

� Supported in part by NSF grant DMS-1001667.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 89–99, 2014.
c© Springer International Publishing Switzerland 2014



90 K. Chen and A. Dumitrescu

Fig. 1. A nonconvex case (in bold lines) with a folded ruler inside

rulers, and this was further improved by Klein and Lenz [4] to 0.476 using 5-link
rulers. Alt et al. [1] have studied rulers with a small number of links, for which
frequently better upper bounds can be derived.

It is easy to see that any universal case must be contained in a lens of radius
1, namely the intersection of two disks of unit radius passing through the centers
of each other. It was shown in [4] that no subset of R2 with a smaller area is
universal. All previous work has focused on convex cases; the lower bounds were
derived using convex hull of the rulers used in the respective arguments.

Călinescu and Dumitrescu [3] also asked whether the convexity of the case
makes any difference. Here we deal with nonconvex cases and give a first partial
answer to this question. Our main result concerning nonconvex cases is summa-
rized in the following theorem.

Theorem 1. There exists a (simple) nonconvex universal case C of unit diam-
eter and area at most 0.583. The folding of any unit ruler with n links inside
C can be computed in O(n) time. On the other hand, the area of any simple
nonconvex universal case of unit diameter must be at least 0.073.

In Section 2, we prove the case C together with the shaded trapezoid in
Figure 2 makes a convex universal case. Its area is ≥ 0.694, bigger than the area
of R2, whereas it is shown that the trapezoid is not necessary. Removing the
shaded area yields a nonconvex universal case whose area is at most 0.583, i.e.,
smaller than the area of R2.

In Section 3, nonconvex lower bounds are considered, i.e., cases with spikes
are allowed and only areas required by the simplicity of the case boundary are
taken into account. We first derive a lower bound of 0.038 using a suitable 3-link
ruler, and then extend the calculation to a suitable 5-link ruler and improve the
lower bound to 0.073.



Nonconvex Cases for Carpenter’s Rulers 91

1 1

Fig. 2. Universal cases (in bold lines) are contained in a lens of radius 1. Left: convex
universal case R2. Right: nonconvex universal case C; the shaded trapezoid can be
discarded.

2 Upper Bound

The upper bound in Theorem 1 will be proved using the simple nonconvex shape
C shown in Figure 3. C is constructed as follows.

– |ac| = |af | = |bg| = 1
– |bd| = |cd| = |ef | = |eg| = x, x ∈ [0, 12 ]
– Arcs ab and gf are centered at e with radii 1− x and x respectively
– Arcs ag and bc are centered at d with radii 1− x and x respectively

Notice that when x = 1
2 , C becomes a disk with diameter 1; and when x = 0,

C is identical to R2. We show below that for any x ∈ [0, 1
2 ], C is a universal case

with diameter 1. Choosing x = 0.165 yields a universal case with area ≤ 0.583;
notice that this area is smaller than 0.614 . . ., the area of R2, the current smallest
convex universal case.

Diameter of C. We show that C has diameter 1 for any x ∈ [0, 12 ]. The diameter
is given by a pair of points on the convex hull, thus it suffices to consider points
on arcs ab, bc, fg, ga and segment cf . Let p and p′ be two points on the convex
hull of C.

Fix p on arc ab. If p′ is on arc ab, |pp′| ≤ |ab| < |ac| = 1. If p′ is on arc
bc or segment cf , |pp′| ≤ |ac| = 1. If p′ is on arc fg, extend segment pe until
it intersects arc fg at point p′′. If p′ = p′′, |pp′| = |pe| + |ep′′| = 1; otherwise,



92 K. Chen and A. Dumitrescu

a

f c

b
de

g x

x

x

x

1− 2x

1− x 1− x

Fig. 3. Nonconvex universal case C

segments pe, ep′, pp′ form a triangle, thus, |pp′| < |pe| + |ep′| = |ae|+ |ef | = 1.
If p′ is on arc ga, |pp′| ≤ |bg| = 1.

Fix p on arc bc. If p′ is on segment cf , |pp′| ≤ |bf | < |bg| = 1. If p′ is on arc
fg, |pp′| ≤ |bg| = 1. By symmetry, C has diameter 1.

Algorithm for Folding a Ruler Inside C. We show that the folding of any unit
ruler with n links inside C can be computed in O(n) time. We adapt the algo-
rithm introduced in [3] to work with our case C. Fix the first free endpoint at
some (arbitrary) point p on a circular arc. Iteratively fix the next point of the
ruler at some intersection point between the arcs of C and the circle centered at
p with radius the length of the current link.

Notice that for any point p on the circular arcs of C, and for any t ∈ [0, 1],
there exists at least one point p′ on these arcs such that |pp′| = t. This guarantees
the existence of the intersection points used in the iterative steps of the above
algorithm.

Minimum Area of C. The area of C is the sum of areas of the sectors dag,
dbc, eab and efg minus the area of the triangle Δade. In the triangle Δade,
we have ∠ade = arccos 1−2x

2−2x . The sectors dag and eab have the same area
(1−x)2

2 arccos 1−2x
2−2x . The sectors dbc and efg have the same area x2

2 arccos 1−2x
2−2x .

The triangle Δade has area 1−2x
4

√
3− 4x. It follows that

area(C) = (1− x)2 arccos
1− 2x

2− 2x
+ x2 arccos

1− 2x

2− 2x
− 1− 2x

4

√
3− 4x

= (1− 2x+ 2x2) arccos
1− 2x

2− 2x
+

2x− 1

4

√
3− 4x.

Taking derivatives yields

d(area(C))

dx
= (4x− 2) arccos

1− 2x

2− 2x
+

3− 7x+ 5x2

(1 − x)
√
3− 4x

.



Nonconvex Cases for Carpenter’s Rulers 93

Solving for d(area(C))
dx = 0 yields a single root x = 0.165 . . ., at which C has

the smallest area, area(C) ≤ 0.583.

3 Lower Bound

We start with Lemma 1 (in Subsection 3.1), which gives a lower bound of 0.038
for the area required by a suitable 3-link ruler. As it turns out, this lower bound
is the best possible for all 3-link rulers. Lemma 1 will be reused when deriving a
lower bound for 5-link rulers (in Subsection 3.2), improving this first bound to
0.073.

3.1 Lower Bound with One 3-link Ruler

For 3-link rulers, it is sufficient to consider the sequence of lengths 1, t, 1 with
t ∈ (0, 1). Indeed, given a folding of ruler 1, t, 1, and an arbitrary unit 3-link
ruler with links a, t, b, make the t-links of the two rulers coincide, and fold the
a- and b-links over the two unit links; the resulting folding is a valid one in the
same case required by the 1, t, 1 ruler.

For the 3-link ruler with link lengths 1, t, 1, the two 1-links must intersect
otherwise the diameter constraint will be violated, see Figure 4. The shaded
triangle is the only area that counts for the nonconvex lower bound.

1 1

1

t
α

β

1
p0

p1 p2

p3

Fig. 4. For a 3-link ruler 1, t, 1, where t is fixed, the area of the shaded triangle is
minimized when |p0p3| = |p1p3| = 1

Lemma 1. For any t ∈ (0, 1), the shaded triangle in Figure 4 is minimized when
α = arccos t

2 −
π
3 and β = arccos t

2 .

Proof. By symmetry, we can assume that α ≤ β. Denote the area of the shaded
triangle by S. Since the triangle has base t, its height h determines the area. The
height h is the distance between p1p2 and the intersection point between p0p1



94 K. Chen and A. Dumitrescu

and p2p3. For any fixed α ∈ [arccos t
2 −

π
3 , arccos

t
2 ], the area is minimized when

β is minimized without violating the diameter constraint |p0p3| ≤ 1. Denote
this angle by β(α); β(α) is a monotonically decreasing function that can be
determined by computing the intersection of two circles of radius 1 centered at
p0 and p2.

It suffices to express the area S as a function of two parameters, t and α. In
fact, h cotα+ h cotβ(α) = t or

h =
t

cotα+ cotβ(α)
.

So

S(t, α) =
th

2
=

t2

2(cotα+ cotβ(α))
.

With standard means of differentiation, it is deduced that for any fixed t, S
is minimized when α is minimized. Refer to Figure 4. If |p1p3| = 1, then α and
correspondingly β(α) are determined. Moreover, this value of α is the minimum
possible; indeed, if α is getting smaller, either |p0p3| or |p1p3| will violate the
diameter constraint. In the isosceles triangle Δp1p2p3, we have β = α+∠p0p1p3
and cosβ = t

2 . In the equilateral triangle Δp0p1p3, we have ∠p0p1p3 = 60◦. So
β = α+ π

3 = arccos t
2 . ��

Now we are ready to show our first lower bound on simple nonconvex cases. By
Lemma 1,

S(t, α) ≥ U(t) :=
t2

2(cot(arccos t
2 −

π
3 ) + cot arccos t

2 )
. (1)

It is easy to check that U(0.676) ≥ 0.038, as desired. For t ∈ (0, 1), U(t)
attains its maximum value for t = 0.676 . . ., and this is the best possible bound
for a single 3-link ruler.

3.2 Lower Bound with One 5-link Ruler

Consider a special ruler with 5 links of lengths 1, 0.6, 1, 0.6, 1 as shown in
Figure 5. Recall that all the 1-links must pairwise intersect. Since the ruler is
symmetric, w.l.o.g., we can assume that β ≥ γ. The following lemma gives a
better lower bound using this ruler.

Lemma 2. The minimum area of a simple (nonconvex) case of unit diameter
required by folding the ruler 1, 0.6, 1, 0.6, 1 inside it is at least 0.073.

Proof. Put t = 0.6. The Cartesian coordinate is set up as follows: fix the ori-
gin at p2 and let the x-axis pass through p3. We have p2 = (0, 0), p3 = (1, 0),
p1 = (t cosβ, t sinβ) and p4 = (1−t cosγ, t sin γ). Recall that the case is required
to be simple, i.e., no self-intersections or holes are allowed. According to the



Nonconvex Cases for Carpenter’s Rulers 95

1

1
1

p0

p1

p2 (0,0) p3 (1,0)

p4

p5

α

β γ

δ

t t

x

y

Fig. 5. Legend for the 5-link ruler used (in bold lines)

analysis of 3-link rulers, β, γ ∈ [arccos t
2 −

π
3 , arccos

t
2 ]. We distinguish four cases

according to the angles β and γ.

Case 1: The two t-links do not intersect. This case includes the situation that
p3p4 is folded below p2p3. As shown in Figure 6 (left), each shaded triangle is
minimized using Lemma 1.

β = γ = arccos
t

2
= 72.54 . . .◦ , α = δ = arccos

t

2
− π

3
= 12.54 . . .◦ .

Observe that this is not a valid folding since the two 1-links p0p1 and p4p5 do
not intersect. However, it gives a valid lower bound since for any fixed β and γ,
increasing α or δ (to make the 1-links intersect) will increase the total area. By
(1), the lower bound for Case 1 is

2U(t) =
t2

cot(arccos t
2 −

π
3 ) + cot arccos t

2

≥ 0.074.

Case 2: The two t-links intersect and both β and γ are at least 16◦. As shown in
Figure 6 (right), increasing β or γ will enlarge the upper shaded area consisting
of the triangles Δq0p1p2 and Δq0p3q1. The area of the triangle below p2p3 will
decrease but we simply ignore it when computing the lower bound in this case.
Similar to the case of 3-link rulers, when β = γ = 16◦, α should be minimized
under the constraint |p0p3| ≤ 1 otherwise the area of the upper right small
triangle Δq1p1q2 will increase. In this configuration, triangle Δq0p1p2 has height
t sinβ. Its base |p2q0| is the difference between the projections of the segments
p2p1 and q0p1 on the x-axis, and ∠p1q0p3 = α+ β. It follows that

b = |p2q0| = t cosβ − t sinβ

tan(α+ β)
. (2)



96 K. Chen and A. Dumitrescu

p0

p1

p2 p3

p4

p5

α

β γ

δ

q0

q1

p0

p1

p2 p3

p4

p5

α
β γ

δ
q2

Fig. 6. Case 1 (left) and Case 2 (right): the lower bounds are given by the shaded areas
in each case

Triangle Δq0p3q1 has base 1 − b. Its height h equals to the y-coordinate of q1
which is the intersection point of lines p0p1 and p3p4. The equation of line p0p1 is
y = tan(α+β)(x−t cos β)+t sinβ. The equation of line p3p4 is y = (1−x) tan γ.
The y-coordinate of their intersection is

h =
(t sinβ + (1− t cosβ) tan(α + β)) tan γ

tan γ + tan(α+ β)
. (3)

The total shaded area is the sum of the two areas of triangles Δq0p1p2 and
Δq0p3q1, namely

bt sinβ + (1− b)h

2
≥ 0.073. (4)

Case 3: The two t-links intersect and β ≥ 16◦, γ ≤ 16◦. In this case, the lower
bound consists of two parts, the minimum shaded areas above and below p2p3,
denoted by Sa and Sb respectively.

As shown in Figure 7 (left), with a similar argument as in Case 2, the minimum
shaded area above p2p3 is achieved when β = 16◦, γ = arccos t

2 −
π
3 (which is the

minimum value) and α is minimized under the constraint |p0p3| ≤ 1. Plugging
in these values into (2), (3) and (4) in Case 2 yields Sa ≥ 0.067.

Observe that when β and γ increase, α and δ can take smaller values under
the constraints |p0p3| ≤ 1, |p2p5| ≤ 1 and thus form a smaller triangle below
p2p3. So the area of triangle Δq0q1q2 is minimized when both β and γ take the
maximum values, i.e., γ = 16◦ and β is chosen such that p4 lies on p1p2 (p1p2 and



Nonconvex Cases for Carpenter’s Rulers 97

p1

p2 p3

p4

p5

α
β γδ

p0

q1 q0

q2

p1

p2 p3

p4

p5

α
β γδ

p0

Fig. 7. Case 3: area above (left) and area below (right). The lower bound is given by
the sum of the two shaded areas.

p3p4 need to intersect). Then, both α and δ are minimized under the diameter
constraints. This configuration is shown in Figure 7 (right). Similar to (2), we
have

|p2q0| = t cosβ − t sinβ

tan(α+ β)
,

|q1p3| = t cos γ − t sin γ

tan(γ + δ)
.

(5)

The base of triangle Δq0q1q2 is b = |p2q0| + |q1p3| − 1. The height h of this
triangle is the absolute value of the y-coordinate of q2, the intersection point of
lines p0p1 and p4p5. The equation of line p0p1 is y = tan(α + β)(x − t cosβ) +
t sinβ. The equation of line p4p5 is y = tan(γ+δ)(1−t cosγ−x)+t sin γ. Solving
for their intersection point gives

h =
tan(α+ β) tan(γ + δ)(t cosβ + t cos γ − 1)

tan(α+ β) + tan(γ + δ)

− t tan(γ + δ) sinβ + t tan(α+ β) sin γ

tan(α+ β) + tan(γ + δ)
. (6)

It follows that Sb =
1
2hb ≥ 0.006, and consequently, the minimum total shaded

area is Sa + Sb ≥ 0.073.

Case 4: both β and γ are no more than 16◦. Notice since t = 0.6, the
two t-links must intersect. Similar to Case 3, the lower bound is calculated as



98 K. Chen and A. Dumitrescu

p1

p2 p3

p4
αβ γδ

p0 = p5

p1

p2 p3

p4

p5

α
β γ

δ

p0

Fig. 8. Case 4: area above (left) and area below (right). The lower bound is given by
the sum of the two shaded areas.

the sum of minimized areas of shaded triangles above and below p2p3. For the
triangle above p2p3, recall that β and γ both have the minimum possible value,
arccos t

2 −
π
3 , as shown in Figure 8 (left). The minimized isosceles triangle above

p2p3 has base 1 and height tan β
2 . Its area is

Sa =
tan(arccos t

2 −
π
3 )

4
≥ 0.055.

The area of the triangle below p2p3 is minimized when both β and γ take
the maximum value (16◦). Using (5) and (6) in Case 3 and α = δ, β = γ, the
triangle below p2p3 has base

b = 2(t cosβ − t sinβ

tan(α+ β)
)− 1

and height

h =
(2t cosβ − 1) tan(α + β)

2
− t sinβ.

Its area is Sb =
hb
2 ≥ 0.019. The minimum total shaded area is Sa + Sb ≥ 0.074.

In summary, by Cases 2 and 3 of the analysis, the minimum nonconvex area
required by folding the ruler 1, 0.6, 1, 0.6, 1 within a case of unit diameter is at
least 0.073. ��



Nonconvex Cases for Carpenter’s Rulers 99

4 Remarks

The best possible lower bound given by one 3-link ruler is achieved, whereas
the one given by a 5-link ruler is not. Computer experiments suggest that 5-link
rulers require folding area at least 0.137; more precisely:

1. The minimum folding of a 5-link ruler with lengths 1, 0.6, 1, 0.6, 1 has
(nonconvex) area at least 0.092.

2. The minimum folding of a 5-link (symmetric) ruler with lengths 1, t, 1, t, 1
has area at least 0.115 when t = 0.8.

3. The minimum folding of a 5-link (asymmetric) ruler with lengths 1, t1, 1, t2, 1
has area at least 0.137 when t1 = 0.7, t2 = 0.4.

The difficulty of approaching these better bounds lies in the complicated com-
putations of nonconvex areas in many sub-cases. Note however that even the
computational results were used, the resulting lower bounds would still be far
away from the current upper bound of 0.583, which we believe is closer to the
truth. A natural approach to derive better lower bounds is using rulers with
more links. Another possible method is using combinations of multiple rulers,
though we did not succeed in doing so.

References

1. Alt, H., Buchin, K., Cheong, O., Hurtado, F., Knauer, C., Schulz, A., Whitesides,
S.: Small boxes for carpenter’s rules (2006) (manuscript),
http://page.mi.fu-berlin.de/alt/papers/carpenter.pdf

2. Braß, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer,
New York (2005)

3. Călinescu, G., Dumitrescu, A.: The carpenter’s ruler folding problem. In: Good-
man, J., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry,
pp. 155–166. Mathematical Science Research Institute Publications, Cambridge Uni-
versity Press (2005)

4. Klein, O., Lenz, T.: Carpenters rule packings—a lower bound. In: Abstracts of 23rd
European Workshop on Computational Geometry, pp. 34–37 (2007)

http://page.mi.fu-berlin.de/alt/papers/carpenter.pdf


How to go Viral: Cheaply and Quickly

Ferdinando Cicalese1, Gennaro Cordasco2, Luisa Gargano1,
M. Milanič3, Joseph G. Peters4, and Ugo Vaccaro1

1 Department of Computer Science, University of Salerno, Italy
{cicalese,lg,uv}@dia.unisa.it

2 Department of Psychology, Second University of Naples, Italy
gennaro.cordasco@unina2.it

3 University of Primorska, UP IAM and UP FAMNIT, 6000 Koper, Slovenia, and
Institute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia

martin.milanic@upr.si
4 School of Computing Science, Simon Fraser University, Canada

peters@cs.sfu.ca

Abstract. Given a social network represented by a graph G, we consider the
problem of finding a bounded cardinality set of nodes S with the property that
the influence spreading from S in G is as large as possible. The dynamics that
govern the spread of influence is the following: initially only elements in S are in-
fluenced; subsequently at each round, the set of influenced elements is augmented
by all nodes in the network that have a sufficiently large number of already influ-
enced neighbors. While it is known that the general problem is hard to solve —
even in the approximate sense — we present exact polynomial time algorithms
for trees, paths, cycles, and complete graphs.

Keywords: Social Networks, Spread of Influence, Viral Marketing, Dynamic
Monopolies, Exact Polynomial Time Algorithms.

1 The Motivations

Gaming giant FONY R© is about to launch its brand new console PlayForFUN-7 R©, and
intends to maximize the adoption of the new product through a massive viral marketing
campaign, exploiting the human tendency to conform [4].

This tendency occurs for three reasons: a) the basic human need to be liked and
accepted by others [5]; b) the belief that others, especially a majority group, have more
accurate and trustworthy information than the individual [29]; c) the “direct-benefit”
effect, implying that an individual obtains an explicit benefit when he/she aligns his/her
behavior with the behavior of others (e.g., [20], Ch. 17).

In the case in point, argument c) is supported by the fact that each player who buys
the PlayForFUN-7 console will be able to play online with all of the people who already
have bought the same console. Indeed, the (possible) success of an on-line gaming
service comes from its large number of users; if this service had no members, there
would be no point to anyone signing up for it. But as people begin using the service, the
benefit for more people to sign up increases due to the increasing opportunities to play
games with others online. This motivates more people to sign up for the service which
further increases the benefit.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 100–112, 2014.
c© Springer International Publishing Switzerland 2014



How to go Viral: Cheaply and Quickly 101

FONY is also aware that the much-feared competitor Nanosoft R© will soon start to
flood the market with a very similar product: FUNBox-14. For this reason, it is crucial
to quickly spread the awareness of the new console PlayForFUN-7 to the whole market
of potential customers.

The CEO of FONY enthusiastically embraced the idea of a viral marketing cam-
paign1, and instructed the FONY Marketing Division to plan a viral marketing cam-
paign with the following requirements: 1) an initial set of influential people should be
targeted and receive a complimentary personalized PlayForFUN-7 station (because of
budget restrictions, this set is required to be small); 2) the group of influential people
must be judiciously chosen so as to maximize the spread of influence within the set of
potential PlayForFUN-7 buyers; 3) the spread of influence must happen quickly.

To comply with the CEO desiderata, FONY Marketing Division analyzed the be-
havior of players in the network during the past few years (i.e., when players bought
the latest console, how many games they bought, how many links/friends they have in
the network, and how long they play on average every week). On the basis of this
analysis, an estimate of each player’s tendency to conform was made, and the fol-
lowing mathematical model was put forward. The network of players is represented
by a graph G = (V,E), where V is the set of players, and there is an edge be-
tween two players if those two players are friends in the network. The individual’s
tendency to conform is quantified by a function t : V −→ N = {0, 1, 2, . . .}, with
easy-to-convince players having “low” t(·) values, and hard-to-convince players hav-
ing “high” t(·) values. If S ⊆ V is any initial set of targeted people (target set),
then an influence spreading process in G, starting at S, is a sequence of node sub-
sets Influenced[S, 0] ⊆ Influenced[S, 1] ⊆ . . . ⊆ Influenced[S, ρ] ⊆ . . . ⊆ V, such
that

Influenced[S, 0] = S

and for all ρ > 0,

Influenced[S, ρ] = Influenced[S, ρ−1] ∪
{
u :
∣∣N(u)∩Influenced[S, ρ−1]

∣∣ ≥ t(u)
}
,

where N(u) is the set of neighbors of u. In words, an individual v becomes influenced
if the number of his influenced friends is at least its threshold t(v). It will be said that
v is influenced within round ρ if v ∈ Influenced[S, ρ]; v is influenced at round ρ > 0 if
v ∈ Influenced[S, ρ] \ Influenced[S, ρ− 1].

Using this terminology and notation, we can formally state the original problem as:

(λ, β)-MAXIMALLY INFLUENCING SET ((λ, β)-MIS).
Instance: A graph G = (V,E), thresholds t : V −→ N, a latency bound λ ∈ N and a
budget β ∈ N.
Question: Find a set S ⊆ V such that |S| ≤ β and |Influenced[S, λ]| is as large as
possible.

1 “If politicians can sell their stuff through a viral marketing campaign [9, 25, 30], then why not
us?”, an unconfirmed source claims the CEO said.



102 F. Cicalese et al.

2 The Context

It did not spoil the fun(!) of FONY Marketing Division to learn that (variants of) the
(λ, β)-MIS problem have already been studied in the scientific literature. We shall limit
ourselves here to discussing the work that is most directly related to ours, and refer the
reader to the monographs [13, 20] for an excellent overview of the area. We just mention
that our results also seem to be relevant to other areas, like dynamic monopolies [21, 27]
for instance.

The first authors to study the spread of influence in networks from an algorithmic
point of view were Kempe et al. [23, 24]. However, they were mostly interested in
networks with randomly chosen thresholds. Chen [11] studied the following minimiza-
tion problem: given a graph G and fixed thresholds t(v), find a set of minimum size
that eventually influences all (or a fixed fraction of) nodes of G. He proved a strong
inapproximability result that makes unlikely the existence of an algorithm with approx-
imation factor better than O(2log

1−ε |V |). Chen’s result stimulated a series of papers
[1, 6, 7, 10, 14–17, 19, 22, 28, 31], that isolated interesting cases in which the problem
(and variants thereof) becomes tractable.

None of these papers considered the number of rounds necessary for the spread of in-
fluence in the network. However, this is a relevant question for viral marketing in which
it is quite important to spread information quickly. Indeed, research in Behavioural Eco-
nomics shows that humans make decisions mostly on the basis of very recent events,
even though they might remember much more [2, 12]. The only paper known to us that
has studied the spread of influence in the same diffusion model that we consider here,
and with constraints on the number of rounds in which the process must be completed,
is [18]. How our results are related to [18] will be elucidated in the next section. Finally,
we point out that Chen’s [11] inapproximability result still holds for general graphs if
the diffusion process must end in a bounded number of rounds.

3 The Results

Our main results are polynomial time algorithms to solve the (λ, β)-MIS problem on
Trees, Paths, Cycles, and Complete graphs, improving and extending some results from
[18]. In particular, the paper [18] put forward an algorithmic framework to solve the
(λ, β)-MIS problem (and related ones), in graphs of bounded clique-width. When in-
stantiated on trees, the approach of [18] would give algorithms for the (λ, β)-MIS prob-
lem with complexity that is exponential in the parameter λ, whereas our algorithm has
complexity polynomial in all the relevant parameters (cf., Theorem 1). We should also
remark that, in the very special case λ = 1 and thresholds t(v) = 1, for each v ∈ V ,
problems of influence diffusion reduce to well known domination problems in graphs
(and variants thereof). In particular, when λ = 1 and t(v) = 1, for each v ∈ V , our
(λ, β)-MAXIMALLY INFLUENCING SET problem reduces to the MAXIMUM COVER-
AGE problem considered in [8]. Therefore, our results can also be seen as far-reaching
generalizations of [8].



How to go Viral: Cheaply and Quickly 103

4 (λ, β)-Maximally Influencing Set on Trees

In this section, we give an algorithm for the (λ, β)-MAXIMALLY INFLUENCING SET

problem on trees. Let T = (V,E) be a tree, rooted at some node r. Once such a rooting
is fixed, for any node v, we denote by T (v) the subtree rooted at v. We will develop a
dynamic programming algorithm that will prove the following theorem.

Theorem 1. The (λ, β)-MAXIMALLY INFLUENCING SET problem can be solved in
time
O(min{nΔ2λ2β3, n2λ2β3}) on a tree with n nodes and maximum degree Δ.

The rest of this section is devoted to the description and analysis of the algorithm
that proves Theorem 1. The algorithm traverses the input tree T bottom up, in such a
way that each node is considered after all its children have been processed. For each
node v, the algorithm solves all possible (λ, b)-MIS problems on the subtree T (v), for
b = 0, 1, . . . , β. Moreover, in order to compute these values we will have to consider
not only the original threshold t(v) of v, but also the decreased value t(v)−1 which we
call the residual threshold. In the following, we assume without loss of generality that
0 ≤ t(u) ≤ d(u) + 1 (where d(u) denotes the degree of u) holds for all nodes u ∈ V
(otherwise, we can set t(u) = d(u) + 1 for every node u with threshold exceeding its
degree plus one without changing the problem).

Definition 1. For each node v ∈ V , integers b ≥ 0, t ∈ {t(v) − 1, t(v)}, and ρ ∈
{0, 1, . . . , λ} ∪ {∞}, let us denote by MIS[v, b, ρ, t] the maximum number of nodes
that can be influenced in T (v), within round λ, assuming that

– at most b nodes among those in T (v) belong to the target set;
– the threshold of v is t;
– the parameter ρ is such that

1) if ρ = 0 then v must belong to the target set, (1)

2) if 1 ≤ ρ ≤ λ then v is not in the target set and at least t of its children are active

within round ρ− 1, (2)

3) if ρ =∞ then v is not influenced within round λ. (3)

We define MIS[v, b, ρ, t] = −∞ when any of the above constraints is not satisfiable.
For instance, if b = ρ = 0 we have2 MIS[v, 0, 0, t] = −∞.

Denote by S(v, b, ρ, t) any target set attaining the value MIS[v, b, ρ, t].

We notice that in the above definition if 1 ≤ ρ ≤ λ then, the assumption that v has
threshold t implies that v is influenced within round ρ and is able to influence its neigh-
bors starting from round ρ+ 1. The value ρ =∞ means that no condition are imposed
on v: It could be influenced after round λ or not influenced at all. In the sequel, ρ =∞
will be used to ensure that v will not contribute to the influence any neighbor (within
round λ).

2 Since ρ = 0 then v should belong to the target set, but this is not possible because the budget
is 0.



104 F. Cicalese et al.

Remark 1. It is worthwhile mentioning that MIS[v, b, ρ, t] is monotonically non-
decreasing in b and non-increasing in t. However, MIS[v, b, ρ, t] is not necessarily
monotonic in ρ.

The maximum number of nodes in G that can be influenced within round λ with any
(initial) target set of cardinality at most β can be then obtained by computing

max
ρ∈{0,1,...,λ,∞}

MIS[r, β, ρ, t(r)]. (4)

In order to obtain the value in (4), we compute MIS[v, b, ρ, t] for each v ∈ V, for each
b = 0, 1, . . . , β, for each ρ ∈ {0, 1, . . . , λ,∞}, and for t ∈ {t(v)− 1, t(v)}.

We proceed in a bottom-up fashion on the tree, so that the computation of the various
valuesMIS[v, b, ρ, t] for a node v is done after all the values for v’s children are known.

For each leaf node � we have

MIS[�, b, ρ, t] =

⎧⎪⎨
⎪⎩
1 if (ρ = 0 AND b ≥ 1) OR (t = 0 AND 1 ≤ ρ ≤ λ)

0 if ρ =∞
−∞ otherwise.

(5)

Indeed, a leaf � gets influenced, in the single node subtree T (�), only when either �
belongs to the target set (ρ = 0) and the budget is sufficiently large (b ≥ 1) or the
threshold is zero (either t = t(�) = 0 or t = t(�)− 1 = 0) independently of the number
of rounds.

For an internal node v, we show how to compute each value MIS[v, b, ρ, t] in time
O(d(v)2λβ2).

We recall that when computing a value MIS[v, b, ρ, t], we already have computed
all the MIS[vi, ∗, ∗, ∗] values for each child vi of v.
We distinguish three cases for the computation of MIS[v, b, ρ, t] according to the value
of ρ.

CASE 1: ρ = 0. In this case we assume that b ≥ 1 (otherwise MIS[v, 0, 0, t] = −∞).
Moreover, we know that v ∈ S(v, b, 0, t) hence the computation of MIS[v, b, 0, t] must
consider all the possible ways in which the remaining budget b − 1 can be partitioned
among v’s children.

Lemma 1. It is possible to compute MIS[v, b, 0, t], where b ≥ 1, in time O(dλb2),
where d is the number of children of v.

Proof. Fix an ordering v1, v2, . . . , vd of the children of node v.
For i = 1, . . . , d and j = 0, . . . , b − 1, let AMAXv[i, j] be the maximum number of
nodes that can be influenced, within λ rounds, in T (v1), T (v2), . . . , T (vi) assuming that
the target set contains v and at most j nodes among those in T (v1), T (v2), . . . , T (vi).

By (1) we have

MIS[v, b, 0, t] = 1 +AMAXv[d, b− 1]. (6)

We now show how to compute AMAXv[d, b− 1] by recursively computing the values
AMAXv[i, j], for each i = 1, 2, . . . , d and j = 0, 1, . . . , b− 1.



How to go Viral: Cheaply and Quickly 105

For i = 1, we assign all of the budget to T (v1) and

AMAXv[1, j] = max
ρ1,t1

{MIS[v1, j, ρ1, t1]},

where ρ1 ∈ {0, . . . , λ,∞}, t1 ∈ {t(v1), t(v1)− 1}, and if t1 = t(v1) − 1 then
ρ1 ≥ 1.

For i > 1, we consider all possible ways of partitioning the budget j into two values
a and j − a, for each 0 ≤ a ≤ j. The budget a is assigned to the first i − 1 subtrees,
while the budget j − a is assigned to T (vi). Hence,

AMAXv[i, j] = max
0≤a≤j

{
AMAXv[i− 1, a] + max

ρi,ti
{MIS[vi, j − a, ρi, ti]}

}
where ρi ∈ {0, . . . , λ,∞}, ti ∈ {t(vi), t(vi) − 1}, and if ti = t(vi) − 1 then
ρi ≥ 1.

The computation of AMAXv comprises O(db) values and each one is com-
puted recursively in time O(λb). Hence we are able to compute it, and by (6), also
MIS[v, b, 0, t], in time O(dλb2).

CASE 2: 1 ≤ ρ ≤ λ. In this case v is not in the target set and at round ρ − 1 at
least t of its children must be influenced. The computation of a value MIS[v, b, ρ, t]
must consider all the possible ways in which the budget b can be partitioned among v’s
children in such a way that at least t of them are influenced within round ρ− 1.

Lemma 2. For each ρ = 1, . . . , λ, it is possible to compute MIS[v, b, ρ, t] recursively
in time O(d2λb2), where d is the number of children of v.

Proof. Fix any ordering v1, v2, . . . , vd of the children of the node v.
We first define the values BMAXv,ρ[i, j, k], for i = 1, . . . , d, j = 0, . . . , b, and k =
0, . . . , t.
If i ≥ k, we define BMAXv,ρ[i, j, k] to be the maximum number of nodes that can be
influenced, within λ rounds, in the subtrees T (v1), T (v2), . . . , T (vi) assuming that

– v is influenced within round ρ;
– at most j nodes among those in T (v1), T (v2), . . . , T (vi) belong to the target set;
– at least k among v1, v2, . . . , vi, will be influenced within round ρ− 1.

We define BMAXv,ρ[i, j, k] = −∞ when the above constraints are not satisfiable. For
instance, if i < k we have BMAXv,ρ[i, j, k] = −∞.

By (2) and by the definition of BMAX , we have

MIS[v, b, ρ, t] = 1 +BMAXv,ρ[d, b, t]. (7)

We can compute BMAXv,ρ[d, b, t] by recursively computing the values of
BMAXv,ρ[i, j, k] for each i = 1, 2, . . . , d, for each j = 0, 1, . . . , b, and for each
k = 0, 1, . . . , t, as follows.

For i = 1, we have to assign all the budget j to the first subtree of v. Moreover, if
k = 1, then by definition v1 has to be influenced before round ρ and consequently we



106 F. Cicalese et al.

can not use threshold t(v1) − 1 (which assumes that v contributes to the influence of
vi). Hence, we have

BMAXv,ρ[1, j, k] =

⎧⎪⎨
⎪⎩
maxρ1,t1{MIS[v1, j, ρ1, t1]}, if k = 0

maxδ{MIS[v1, j, δ, t(v1)]}, if k = 1

−∞, otherwise,

(8)

where
– ρ1 ∈ {0, . . . , λ,∞}
– t1 ∈ {t(v1), t(v1)− 1}
– if t1 = t(v1)− 1 then ρ1 ≥ ρ+ 1
– δ ∈ {0, . . . , ρ− 1}.

The third constraint ensures that we can use a reduced threshold on v1 only after the
father v has been influenced.

To show the correctness of equation (8), one can (easily) check that, for k < 2, any
target set solution S that maximizes the value on the left side of the equation is also a
feasible solution for the value on the right, and vice versa.

For i > 1, as in the preceding lemma, we consider all possible ways of partitioning
the budget j into two values a and j − a. The budget a is assigned to the first i − 1
subtrees, while the remaining budget j − a is assigned to T (vi). Moreover, in order to
ensure that at least k children of v, among children v1, v2, . . . , vi, will be influenced
before round ρ, there are two cases to consider: a) the k children that are influenced
before round ρ are among the first i− 1 children of v. In this case vi can be influenced
at any round and can use a reduced threshold; b) only k − 1 children among nodes
v1, v2, . . . , vi−1 are influenced before round ρ and consequently vi has to be influenced
before round ρ and cannot use a reduced threshold. Formally, we prove that

BMAXv,ρ [i, j, k]=max
{
max0≤a≤j

ρi,ti

(BMAXv,ρ[i−1, a, k]+MIS[vi, j−a, ρi, ti]),

max0≤a≤j
δ

(BMAXv,ρ[i−1, a, k−1] +MIS[vi, j−a, δ, t(vi)])
}

(9)

where

– ρi ∈ {0, . . . , λ,∞}
– ti ∈ {t(vi), t(vi)− 1}
– if ti = t(vi)− 1 then ρi ≥ ρ+ 1
– δ ∈ {0, . . . , ρ− 1}.

In the following we show the correctness of equation (9). First we show that

BMAXv,ρ[i, j, k] ≤max
{

max
0≤a≤j
ρi,ti

(BMAXv,ρ[i−1, a, k] +MIS[vi, j−a, ρi, ti]),

max
0≤a≤j

δ

(BMAXv,ρ[i−1, a, k−1] +MIS[vi, j−a, δ, t(vi)])
}

Let S ⊆
⋃i

z=1 T (vz) be a feasible target set solution that maximizes the number of
nodes that can be influenced, within λ rounds, in the subtrees T (v1), T (v2), . . . , T (vi)



How to go Viral: Cheaply and Quickly 107

and satisfies the constraints defined in the definition of BMAXv,ρ[i, j, k]. Hence |S| ≤
j. We can partition S into two sets Sa, where |Sa| ≤ a, and Sb (|Sb| ≤ j − a) in such a
way that Sa ⊆

⋃i−1
z=1 T (vz) while Sb ⊆ T (vi). Since S satisfies the constraints defined

in the definition of BMAXv,ρ[i, j, k], we have that, starting with S, at least k children
of v, among children v1, v2, . . . , vi, will be influenced before round ρ. Hence, starting
with Sa, at least k−1 children of v, among children v1, v2, . . . , vi−1, will be influenced
before round ρ. We distinguish two cases:

– If Sa influences k− 1 children of v, among children v1, v2, . . . , vi−1, before round
ρ, then we have that Sb must also influence vi before round ρ. Hence Sa is a feasible
solution for BMAXv,ρ[i−1, a, k−1] and Sb is a feasible solution for
maxδ{MIS[vi, j−a, δ, t(vi)]}.

– On the other hand when Sa influences at least k children of v,
among children v1, v2, . . . , vi−1, before round ρ then Sa is a feasi-
ble solution for BMAXv,ρ[i−1, a, k] and Sb is a feasible solution for
maxρi,ti{MIS[vi, j−a, ρi, ti]}.

In either case we have that the solution S is also a solution for the right side of the
equation. Perfectly similar reasoning can be used to show that

BMAXv,ρ[i, j, k] ≥max
{

max
0≤a≤j
ρi,ti

(BMAXv,ρ[i−1, a, k] +MIS[vi, j−a, ρi, ti]),

max
0≤a≤j

δ

(BMAXv,ρ[i−1, a, k−1] +MIS[vi, j−a, δ, t(vi)])
}

and hence equation (9) is proved.
The computation of BMAXv,ρ comprises O(d2b) values (recall that t ≤ d+2) and

each one is computed recursively in time O(λb). Hence we are able to compute it, and
by (7), also MIS[v, b, ρ, t], in time O(d2λb2).

CASE 3: ρ = ∞. In this case we only have to consider the original threshold t(vi)
for each child vi of v. Moreover, we must consider all the possible ways in which the
budget b can be partitioned among v’s children.

Lemma 3. It is possible to compute MIS[v, b,∞, t] in time O(dλb2), where d is the
number of children of v.

Proof. Fix any ordering v1, v2, . . . , vd of the children of the node v.
For i = 1, . . . , d and j = 0, . . . , b, let CMAXv[i, j] be the maximum number of nodes
that can be influenced, within λ rounds, in T (v1), T (v2), . . . , T (vi) assuming that

– v will not be influenced within λ rounds and
– at most j nodes, among nodes in T (v1), T (v2), . . . , T (vi), belong to the target set.

By (3) and by the definition of CMAX , we have

MIS[v, b,∞, t] = CMAXv[d, b]. (10)



108 F. Cicalese et al.

We can compute CMAXv[d, b] by recursively computing the values CMAXv[i, j] for
each i = 1, 2, . . . , d and for each j = 0, 1, . . . , b, as follows.
For i = 1, we can assign all of the budget to the first subtree of v and we have

CMAXv[1, j] = max
ρ1

{MIS[v1, j, ρ1, t(v1)]}

where ρ1 ∈ {0, . . . , λ,∞}.
For i > 1, we consider all possible ways of partitioning the budget j into two values a
and j−a, for each 0 ≤ a ≤ j. The budget a is assigned to the first i− 1 subtrees, while
the remaining budget j − a is assigned to T (vi). Hence, the following holds:

CMAXv[i, j] = max
0≤a≤j

{
CMAXv[i− 1, a] + max

ρi

{MIS[vi, j − a, ρi, t(vi)]}
}

where ρi ∈ {0, . . . , λ,∞}.
The computation of CMAXv comprises O(db) values and each one is computed

recursively in time O(λb). Hence, by (10), we are able to compute MIS[v, b,∞, t] in
time O(dλb2).

Thanks to the three lemmas above we have that for each node v ∈ V, for each b =
0, 1, . . . , β, for each ρ = 0, 1, . . . , λ,∞, and for t ∈ {t(v) − 1, t(v)}, MIS[v, b, ρ, t]
can be computed recursively in time O(d(v)2λβ2). Hence, the value

max
ρ∈{0,1,...,λ,∞}

MIS[r, β, ρ, t(r)]

can be computed in time∑
v∈V

O(d(v)2λβ2)×O(λβ)=O(λ2β3)×
∑
v∈V

O(d(v)2)=O(min{nΔ2λ2β3, n2λ2β3}),

where Δ is the maximum node degree. Standard backtracking techniques can be used
to compute a target set of cardinality at most β that influences this maximum number
of nodes in the same O(min{nΔ2λ2β3, n2λ2β3}) time. This proves Theorem 1.

5 (λ, β)-Maximally Influencing Set on Paths, Cycles, and
Complete Graphs

The results of Section 4 obviously include paths. However, we are able to significantly
improve on the computation time for paths.

Let Pn = (V,E) be a path on n nodes v1, v2, . . . , vn, and edges (vi, vi+1), for
i = 1, . . . , n − 1. Moreover, we denote by Cn the cycle on n nodes that consists of
the path Pn augmented with the edge (v1, vn). In the following, we assume that 1 ≤
t(i) ≤ 3, for i = 1, . . . , n. Indeed, paths with 0-threshold nodes can be dealt with by
removing up to λ 1-threshold nodes on the two sides of each 0-threshold node. In case
we remove strictly less than λ nodes, we can reduce by 1 the threshold of the first node
that is not removed (which must have threshold greater than 1). The path gets split into
several subpaths, but the construction we provide below still works (up to taking care
of boundary conditions).



How to go Viral: Cheaply and Quickly 109

Theorem 2. The (λ, β)-MAXIMALLY INFLUENCING SET problem can be solved in
time O(nβλ) on a path Pn.

Proof. (Sketch.) For i = 1, 2, . . . n, let r(i) be the number of consecutive nodes having
threshold 1 on the right of node vi, that is, r(i) is the largest integer such that i+ r(i) ≤
n and t(vi+1) = t(vi+2) = . . . = t(vi+r(i)) = 1. Analogously we define l(i) as the
largest integer such that i− l(i) ≥ 1 and t(vi−1) = t(vi−2) = . . . = t(vi−l(i)) = 1.

We use P (i, r, t) to denote the subpath of P induced by nodes v1, v2, . . . , vi+r,
where the threshold of each node vj with j �= i is t(vj), while the threshold of vi
is set to t ∈ {t(vi)− 1, t(vi)}.

We define MIS[i, b, r, t] to be the maximum number of nodes that can be influenced
in P (i, r, t) assuming that at most b nodes among v1, v2, . . . , vi belong to the target set
while vi+1, . . . , vi+r do not.

Noticing that P (n, 0, t(vn)) = P and we require that |S| ≤ β, the desired value is
MIS[n, β, 0, t(vn)].

In order to get MIS[n, β, 0, t(vn)], we compute MIS[i, b, r, t] for each i =
0, 1, . . . n, for each b = 0, 1, . . . , β, for each r = 0, 1, . . . ,min{λ, r(i)}, and for
t ∈ {t(vi)− 1, t(vi)}.

Denote by S(i, b, r, t) any target set attaining the value MIS[i, b, r, t].
If i = 0 OR b = 0 we set MIS[i, b, r, t] = 0.
If i > 0 AND b > 0. Consider the following quantities

� = min{λ, l(i)}

M0 =

{
MIS[i−�−1, b− 1, 0, t(vi−
−1)− 1] + r + �+ 1 if � < λ

MIS[i−�−1, b− 1, 0, t(vi−
−1)] + r + �+ 1 otherwise

M1 =

{
MIS[i−1, b, 0, t(vi−1)] if t > 1

MIS[i−1, b,min{λ, r + 1}, t(vi−1)] otherwise.

By distinguishing whether vi belongs to the target set S(i, b, r, t) or not we are able to
prove that

MIS[i, b, r, t] = max {M0,M1}
and vi ∈ S(i, b, r, t) if and only if MIS[i, b, r, t] = M0.

For cycles, the problem can be solved by simply solving two different problems on
a path and taking the minimum. Indeed, starting with a cycle we can consider any node
v such that t(v) ≥ 2 (if there is no such node, then the problem is trivial). If node v
belongs to the target set, we can consider the path obtained by removing all the nodes
influenced only by v and then solve the problem on this path with a budget β − 1. On
the other hand, if we assume that v does not belong to the target set, then we simply
consider the path obtained by eliminating v. Therefore, we obtain the following result.

Theorem 3. The (λ, β)-MAXIMALLY INFLUENCING SET problem can be solved in
time O(nβλ) on a cycle Cn.

Since complete graphs are of clique-width at most 2, results from [18] imply that the
(λ, β)-MIS problem is solvable in polynomial time on complete graphs if λ is constant.



110 F. Cicalese et al.

Indeed, one can see that for complete graphs the (λ, β)-MAXIMALLY INFLUENCING

SET can be solved in linear time, independently of the value of λ, by using ideas of
[26].

If G is a complete graph, we have that for any S ⊆ V , and any round ρ ≥ 1, it holds
that

Influenced[S, ρ] = Influenced[S, ρ− 1] ∪ {v : t(v) ≤ |Influenced[S, ρ− 1]|}.

Since Influenced[S, ρ− 1] ⊆ Influenced[S, ρ], we have

Influenced[S, ρ] = S ∪ {v : t(v) ≤ |Influenced[S, ρ− 1]|}. (11)

From (11), and by using a standard exchanging argument, one immediately sees that
a set S with largest influence is the one containing the nodes with highest thresholds.
Since t(v) ∈ {0, 1, . . . , n}, the selection of the β nodes with highest threshold can be
done in linear time. Summarizing, we have the following result.

Theorem 4. There exists an optimal solution S to the (λ, β)-MAXIMALLY INFLUENC-
ING SET problem on a complete graph G = (V,E), consisting of the β nodes of V with
highest thresholds, and it can be computed in linear time.

6 Concluding Remarks

We considered the problems of selecting a bounded cardinality subset of people in
(classes of) networks, such that the influence they spread, in a fixed number of rounds,
is the highest among all subsets of same bounded cardinality. It is not difficult to see that
our techniques can also solve closely related problems, in the same classes of graphs
considered in this paper. For instance, one could fix a requirement α and ask for the
minimum cardinality target set such that after λ rounds the number of influenced people
in the network is at least α. Or, one could fix a budget β and a requirement α, and ask
about the minimum number λ such that there exists a target set of cardinality at most
β that influences at least α people in the network within λ rounds (such a minimum λ
could be equal to ∞). Therefore, it is likely that the FONY R© Marketing Division will
have additional fun in solving these problems (and similar ones) as well.

References

1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set
selection. Theoretical Computer Science 411, 4017–4022 (2010)

2. Alba, J., Hutchinson, J.W., Lynch, J.: Memory and Decision Making. In: Robertson, T.S.,
Kassarjian, H. (eds.) Handbook of Consumer Behavior (1991)

3. Aral, S., Walker, D.: Identifying Influential and Susceptible Members of Social Networks.
Science 337(6092), 337–341 (2012)

4. Asch, S.E.: Studies of independence and conformity: A minority of one against a unanimous
majority. Psychological Monographs 70 (1956)

5. Baumeister, R.F., et al.: The need to belong: Desire for interpersonal attachments as a funda-
mental human motivation. Psychological Bulletin 117(3), 497–529 (1995)



How to go Viral: Cheaply and Quickly 111

6. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity
of target set selection. Discrete Optimization 8, 87–96 (2011)

7. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability of maxi-
mizing the spread of influence in networks. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013.
LNCS, vol. 7936, pp. 543–554. Springer, Heidelberg (2013)

8. Blair, J.R.S., Goddard, W., Hedetniemi, S.T., Horton, S., Jones, P., Kubicki, G.: On domina-
tion and reinforcement numbers in trees. Discrete Mathematics 308(7), 1165–1175 (2008)

9. Bond, R.M., et al.: A 61-million-person experiment in social influence and political mobi-
lization. Nature 489, 295–298 (2012)

10. Centeno, C.C., Dourado, M.C., Draque Penso, L., Rautenbach, D., Szwarcfiter, J.L.: Irre-
versible conversion of graphs. Theoretical Computer Science 412(29), 3693–3700 (2011)

11. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23,
1400–1415 (2009)

12. Chen, J., Iver, G., Pazgal, A.: Limited Memory, Categorization and Competition. Marketing
Science 29, 650–670 (2010)

13. Chen, W., Lakshmanan, L.V.S., Castillo, C.: Information and Influence Propagation in Social
Networks. Morgan & Claypool (2013)

14. Chiang, C.Y., et al.: The Target Set Selection Problem on Cycle Permutation Graphs, Gener-
alized Petersen Graphs and Torus Cordalis. arXiv:1112.1313 (2011)

15. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make
target set selection tractable. In: Even, G., Rawitz, D. (eds.) MedAlg 2012. LNCS, vol. 7659,
pp. 120–133. Springer, Heidelberg (2012)

16. Chiang, C.-Y., Huang, L.-H., Li, B.-J., Wu, J., Yeh, H.-G.: Some results on the target set
selection problem. Journal of Combinatorial Optimization 25(4), 702–715 (2013)

17. Chiang, C.-Y., Huang, L.-H., Yeh, H.-G.: Target Set Selection Problem for Honeycomb Net-
works. SIAM J. Discrete Math. 27(1), 310–328 (2013)

18. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-Bounded Target
Set Selection in Social Networks. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013.
LNCS, vol. 7921, pp. 65–77. Springer, Heidelberg (2013)

19. Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in expanders.
arXiv:1306.2465

20. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Con-
nected World. Cambridge University Press (2010)

21. Flocchini, P., Královic, R., Ruzicka, P., Roncato, A., Santoro, N.: On time versus size for
monotone dynamic monopolies in regular topologies. J. Discrete Algorithms 1, 129–150
(2003)

22. Gargano, L., Hell, P., Peters, J., Vaccaro, U.: Influence diffusion in social networks under
time window constraints. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS,
vol. 8179, pp. 141–152. Springer, Heidelberg (2013)

23. Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence through a social
network. In: Proc. of the Ninth ACM SIGKDD, pp. 137–146 (2003)

24. Kempe, D., Kleinberg, J.M., Tardos, É.: Influential Nodes in a Diffusion Model for So-
cial Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)

25. Leppaniemi, M., Karjaluoto, H., Lehto, H., Goman, A.: Targeting Young Voters in a Political
Campaign: Empirical Insights into an Interactive Digital Marketing Campaign in the 2007
Finnish General Election. Journal of Nonprofit & Public Sector Marketing 22, 14–37 (2007)

26. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set
selection. Social Network Analysis and Mining (2012)

27. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theoretical Com-
puter Science 282, 231–257 (2002)



112 F. Cicalese et al.

28. Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms
Appl. 15(5), 683–699 (2011)

29. Surowiecki, J.: The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How
Collective Wisdom Shapes Business, Economies, Societies and Nations. Doubleday (2004)

30. Tumulty, K.: Obama’s Viral Marketing Campaign. TIME Magazine (July 5, 2007)
31. Zaker, M.: On dynamic monopolies of graphs with general thresholds. Discrete Mathemat-

ics 312(6), 1136–1143 (2012)



Synchronized Dancing of Oblivious Chameleons

Shantanu Das1, Paola Flocchini2, Giuseppe Prencipe3, and Nicola Santoro4

1 LIF, Aix-Marseille University and CNRS, France
shantanu.das@lif.univ-mrs.fr

2 EECS, University of Ottawa, Canada
flocchin@site.uottawa.ca

3 Dipartimento di Informatica, Università di Pisa, Italy
prencipe@di.unipi.it

4 School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

Abstract. It has been recently discovered that oblivious iguanid lizards
can form a periodic sequence of tableaux vivants with some restrictions
on the tableaux. By viewing each tableau as a dance step, a formable se-
quence can be seen as a dance choreography, performable by the lizards.
Interestingly, a complete characterization exists of the dances performable
by all families of oblivious iguanid lizards except for the family of chame-
leons. This gap in knowledge opens the main research question addressed
here: what choreographies can be danced by oblivious chameleons? We
provide a full answer to this question, investigating formable tableaux,
danceable choreographies as well as number of skin colours. We show that,
unlike other lizards, in their feasible dances chameleons can touch and re-
peat steps. Also, they can do this even if they are asynchronous.

1 Introduction

Although the incidence of obliviousness among lizards of the suborder Iguania1 is
still matter of speculation, the body of studies and investigations on what these
oblivious lizards can and cannot do continues to grow. Since oblivious lizards can
decide, based on the observed environment, whether to stay still or to move to a
specific location, it is possible (at least in principle) for a group of lizards of the
same family to arrange themselves into a tableau vivant where all members of the
group stay still. Since forming a specific tableau depends both on the behaviour
of the lizards and on their initial location, the research quest of behaviouralist
engineers has been to determine what behaviours (if any) would allow a group
of oblivious lizards to create a given tableau, to characterize which tableaux can
be formed from a given initial location, and to identify which tableaux cannot
be formed regardless of the behaviour (e.g., see [1, 2, 5–9, 11–13]).

Several factors and conditions have been found to impact on the feasibility of a
certain tableau to be formed (e.g., whether the lizards are affected by narcolepsy,

1 Included in this suborder are iguanas, agamid lizards (such as the bearded dragon),
anoles, and chameleons.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 113–124, 2014.
c© Springer International Publishing Switzerland 2014



114 S. Das et al.

myopia, etc.). Foremost, whether or not a tableau can be formed depends on the
relationship between the symmetry of the initial position of the lizards and the
symmetricity of the tableau. Another crucial factor is the level of synchroniza-
tion of the group of lizards: Full synchrony of the group allows all members to
act simultaneously, while semi-synchrony allows only those awake to act simul-
taneously. Clearly any reduction in the level of synchrony, up to the complete
absence of any synchrony (asynchrony), reduces the possibilities of behavioural
engineering and thus the tableaux vivants that can be formed.

A recent result has opened new doors to the researchers of oblivious lizards
of the suborder Iguania, especially to those artistically inclined. It has been
shown [4] that, in spite of their obliviousness, a semi-synchronous group of those
lizards can actually form not just a single tableau but a repeating sequence of
distinct tableaux, pausing after each one! Since the tableaux must be formed
in the order specified by the sequence, this means that some form of collective
memory is possible in spite of the individual obliviousness. Clearly, not every
singly formable tableau can be included in a formable sequence; in fact the study
is on determining which repeating sequences of tableaux can be indeed formed.
The artistic excitement generated by the announcement of this result is due to
the fact that a sequence of tableaux vivants can be seen as the choreography of
a dance where the tableaux are the dance steps. Hence the research question is:
What choreographies can be danced by oblivious lizards?

This question has been recently answered [4]: any sequence of tableaux can be
choreographed provided that: (R1) no tableaux is repeated in the sequence, (R2)
in each tableaux the lizards never touch each other, and (R3) the symmetricity of
every tableaux is the same as that of the starting configuration. This completely
and fully characterizes all the choreographies achievable by all the families of
the suborder Iguania with the exception of the family Chamaeleonidae.

In fact, in spite of the sharing of special features with members of different
families of this suborder2, chameleons have specialized cells, chromatophores,
which contain pigments in their cytoplasm, allowing them to change their skin
coloration and pattern (e.g., [10]). By taking advantage of this unique feature,
chameleons are capable of forming colourful tableaux and dances, a feat that
other iguanid lizards are incapable of. But, in addition to adding colours to
a tableaux, are oblivious chameleons capable of forming different tableaux and,
thus, performing more complex and sophisticated dances? In other words, by con-
sidering tableaux and dances irrespective of the chameleons’ colours, the open re-
search question is: What choreographies can be danced by oblivious chameleons?

In this paper we fully answer this question by completely characterizing
the sequences of tableaux that can be formed by semi-synchronous oblivious
chameleons irrespective of their colours. We prove that oblivious chameleons
can form any sequence of tableaux even if (i) some tableaux are repeated within
the sequence, (ii) the lizards may touch each other, and (iii) all tableaux do
not necessarily have the same symmetricity, provided that the symmetricity of

2 E.g., the teeth of both agamids and chameleons are borne on the outer rim of their
mouths rather than on the inner side of their jaws, a feature unusual among lizards.



Synchronized Dancing of Oblivious Chameleons 115

(c)(a) (b)

Fig. 1. (a) A pattern with symmetricity 3. (b) A pattern with symmetricity 6. (c) A
pattern with symmetricity 1.

each tableaux is divisible by that of the starting configuration. In other words,
the formable sequence of tableaux for chameleons do not suffer from restrictions
(R1) and (R2) of the other iguanid lizards, and the restriction (R3) is substan-
tially weaker. We first consider sequences when chameleons can touch but no
tableau is repeated, then those when chameleons cannot touch but tableaux can
be repeated, and finally the class of arbitrary sequences. For each class we de-
termine the minimum number of colours needed to perform a feasible dance,
and present a simple algorithm that allows such a number to suffice (in order
of magnitude). In view of the recent result of [3] showing that asynchronous
oblivious chameleons with a small constant number of colours can simulate any
behaviour of any semi-synchronous oblivious iguanid lizards, it follows that all
our results hold also in the fully asynchronous model. Due to space limitations,
proofs are sketched or omitted.

2 Model and Definitions

Model: Let V = {v1, . . . , vN} be a set of points on a two dimensional plane,
and let size(V ) be the cardinality of V . The smallest circle enclosing the points
in V , denoted by SEC(V ), is the circle of minimum diameter such that every
point of V is either on or in the interior of this circle. The point set V is said to
be symmetric if V can be decomposed into a set of concentric circles centred in
the centre c of SEC(V ), each containing a set of regular q-gons for some q > 1,
divisor of N . The largest q for which this is true is called symmetricity of V
and denoted by q(V ). The set of points in each regular q(V )-gon centred in c,
is called a symmetricity class; the number of classes is denoted by α(V ). If V is
not symmetric then we define q(V ) = 1. Note that, by definition, if the centre
of SEC(V ) is an element of V , then q(V ) = 1 (see Figure 1).

Given a set of distinct colours C = {c1, . . . , ck}, we define a colouring as a
function λ : V → C. We say that λ is proper when λ(x) = λ(y) iff x and y
belong to the same symmetricity class in V . The chromatic symmetricity of V
with respect to λ is the largest q for which V can be partitioned into a set of
concentric regular q-gons where corners of a q-gon share the same color; β(V, λ)
denotes the number of chromatic symmetricity classes of V with respect to λ.
We extend the chromatic symmetricity definition to multi-sets of points (e.g.,
multiple chameleons can be colocated). Let GOLD and OFF be two special colours.



116 S. Das et al.

Let R = {r1, . . . , rn} be a set of chameleons on the plane, each modelled
as a computational unit provided with its own local memory and capable of
performing local computations, and viewed as a point in R

2. We assume that
the chameleons start from distinct points in the plane and the colour of their
skin is OFF, but during the course of the algorithm multiple chameleons may
occupy the same point in R

2. A chameleon coloured OFF will also be referred to
as “uncoloured”. Each chameleon has its own local coordinate system; the local
coordinate systems of the chameleons might not be consistent with each other,
but they all have the same chirality (e.g., a clockwise orientation of the plane).
A chameleon is endowed with sensorial capabilities and it observes the world
by activating its sensors, which return a snapshot of the positions of the other
chameleons in its local coordinate system. The chameleons are identical; they
execute the same protocol; they are autonomous (there is no central control);
they are silent (they have no means of sonic communication to other chameleons).
The skin of a chameleon can assume different colours (from the finite set C).
The chameleons are oblivious (they do not have persistent memory of the past).

Each chameleon can freely move in the plane. At any point in time, a chameleon
is either active or inactive. When active, a chameleon executes a Look-Compute-
Move (LCM) cycle. In Look, a chameleon observes the world obtaining the snap-
shot of the positions of all chameleons with respect to its own coordinate system
(since chameleons are viewed as points, it gets the set of their coordinates). In
Compute, the chameleon executes its algorithm, using the snapshot as input. The
result of the computation is a destination point. In Move, the chameleon moves
to the destination (always reaching it); if the destination is the current location,
the chameleon stays still. When inactive, a chameleon is idle. All chameleons are
initially inactive. The amount of time to complete a cycle is assumed to be finite,
and the Look is assumed to be instantaneous.

As mentioned before, each chameleon can colour its skin; the colour is visible
to all the chameleons when they perform their Look and can be updated by the
chameleon during the Compute operation. The colour is persistent; i.e., while the
chameleons are oblivious forgetting all other information from previous cycles,
their colours are not automatically turned off at the end of a cycle.

With respect to the activation schedule of the chameleons and their LCM cy-
cle, we distinguish the fully-synchronous (FSYNC), the semi-synchronous (SSYNC),
and the asynchronous (ASYNC) models. In ASYNC, the chameleons are activated
independently, and the duration of each Compute, Move and inactivity is finite
but unpredictable. As a result, the chameleons do not have a common notion
of time, chameleons can be seen while moving, and computations can be made
based on obsolete observations. On the opposite side of the spectrum, in FSYNC,
the activations of all chameleons can be logically divided into global rounds; in
each round, the chameleons are all activated, obtain the same snapshot, compute
and perform their move. Note that this is computationally equivalent to a fully
synchronized system in which all chameleons are activated simultaneously and
all operations are instantaneous. The SSYNC model is like the fully-synchronous
model where however not all chameleons are necessarily activated in each round.



Synchronized Dancing of Oblivious Chameleons 117

(b) (c)(a)

Fig. 2. (a) A pattern consisting of two classes. (b) and (c) show the two possible
kinds of contractions: in (b), the two classes are contracted into just one, where all
chameleons occupy distinct positions; in (c) the two classes are contracted into just
one, where points of multiplicity two are created (the circled dots).

In any case, the activation scheduler is assumed to be fair. We assume the SSYNC
model in this paper and show how to extend the results to the ASYNC model.

Notations: We will describe the global positions of the chameleons using a
fixed coordinate system Z, unknown to the chameleons: ri(t) denotes position
of ri at time t, and d(ri(t), rj(t)) the Euclidean distance between ri(t) and rj(t).
The configuration of the n chameleons on the plane at time t is denoted by
the multi-set Γ (t) = {(ri(t), λ(ri(t))), 1 ≤ i ≤ n} where λ(ri(t)) is the colour
of chameleon ri at time t. Given a configuration Γ (t), we denote by L(Γ (t))
the set of distinct points occupied by the chameleons in the configuration Γ (t),
and by size(Γ (t)) the cardinality of L(Γ (t)). We define q(Γ (t)) = q(L(Γ (t)))
and α(Γ (t)) = α(L(Γ (t))). When no ambiguity arises, we will omit t. Note that
α(V ) = n/q(V ), if there are n points in V .

A tableau or pattern P is a set of distinct points. A pattern Pi is said to
be isomorphic to a pattern Pj , denoted Pi ≡ Pj , if Pj can be obtained by
a combination of translation, rotation and uniform scaling of pattern Pi. Two
patterns that are not isomorphic to each other are said to be distinct. We will
denote the size of a pattern Pi by size(Pi). We say that the chameleons have
formed the pattern P at time t if L(Γ (t)) ≡ P .

Let S =< S0, . . . , Sm−1 > be an ordered sequence of patterns with Si �≡ Si+1,
called choreography. We define α(S) = maxi{α(Si)}. Given P ∈ S, we denote by
μ(P ) the number of occurrences of P in S, and μ(S) = maxi{μ(Si)}. We say that
S has repetitions if μ(S) > 1, and that S has contractions if there is a pattern P in
S such that α(P ) < α(S) (see Fig. 2). A set of chameleons executing an algorithm
A starting from a configuration Γ (t0) is said to form S if, during any possible
execution of A from Γ (t0), there exist times t1, . . . tm, where, ∀0 < j < m,
t0 < tj < tj+1 and L(Γ (tj)) ≡ Sj . A set of chameleons executing A, starting
from a configuration Γ (t0) performs the dance described by the choreography S,
if they repeatedly form S, i.e. if they form S∞ = 〈S0, . . . , Sm−1〉∞.



118 S. Das et al.

3 Fundamental Limitations and Techniques

3.1 Limits

To establish the artistic limits of oblivious chameleons, we first show the follow-
ing:

Lemma 1. If the initial configuration Γ0 has symmetricity q = q(Γ0) then, for
any algorithm, an adversary can ensure that any subsequent configuration Γ ′ has
symmetricity q(Γ ′) = a · q, for some integer a ≥ 1.

Proof. The adversary can decide the coordinate system of each chameleon and
also the activation schedule. First, observe that, if there is a chameleon at the
center of SEC(Γ0), then q = 1 by definition, and thus the lemma holds trivially.
Assume now that that there are no chameleons in the center of SEC(Γ0). Then
the adversary can define the coordinate system of each chameleon ri as follows:
the origin is at the location of ri, and the point of coordinates (1, 0) is at the
center of SEC(Γ0). If the adversary activates all chameleons together in each
round, the chameleons in the same class would always occupy the corners of a
regular q-gon and the symmetricity would be a multiple of q.

Theorem 1. A set of n oblivious chameleons starting from initial configura-
tion Γ (t0), regardless of the number of available colours, cannot perform the
dance S∞ = 〈S0, . . . , Sm−1〉∞ if any of the following holds, where q0 = q(Γ (t0))
and n0 = size(Γ (t0)): (1) q(Si) is a not multiple of q0, for some Si ∈ S, (2)
size(Si) > n0, for some Si ∈ S.

Proof. Part (1) follows from Lemma 1 and from the definition of formed pattern.
For part (2) note that, if two chameleons are co-located in Γ (t0) and they have
the same coordinate system, then they will choose the same point as the next
destination (and the same colour, if they change colour). Thus, if chameleons
that are co-located and have the same colour are always activated together, the
number of distinct points in a configuration can never increase, and (2) holds.

A pattern is feasible from initial configuration Γ (t0) if none of the two forbid-
den conditions stated in the previous theorem hold; furthermore, a choreography
is feasible if it is composed only of feasible patterns. In the following, we will only
consider feasible choreographies and patterns, and when no ambiguity arises, we
shall omit the term feasible.

3.2 Techniques

It is straightforward that the chameleons can agree on a total ordering of the
classes in any Si ∈ S. Also, since they agree on chirality, it follows that in a given
Γ (t) the chameleons can agree on a total ordering of the classes in L(Γ (t)).

Lemma 2. In any configuration Γ , the chameleons can elect a leader class
among the α(Γ ) classes.

In addition to this observation, we will make use of four techniques.



Synchronized Dancing of Oblivious Chameleons 119

Identification. The first technique that we will use in the following is based on
an idea introduced in [4], and is used to identify the pattern of the choreography
that the chameleons are currently forming.

Given a choreography S, each element Si ∈ S, 1 ≤ i ≤ m, is mapped to a
real number F (Si) using an appropriate injective function3 F : S �→ R. This
mapping is employed to allow the oblivious chameleons to distinguish which
pattern of the sequence they are currently forming. More precisely: A special
class of chameleons, the leaders (denoted by the set Rl) and whose identification
will be detailed in the following sections, move to create a special configuration,
named Ratio(F (Si)), such that the circle Q = SEC(Γ \ Rl) (i.e., the smallest
circle enclosing all non-leaders) has a radius that is 1/F (Si) times the distance
of any leader chameleon to the center of this circle Q (refer to Figure 3). Since
function F () is injective, once Ratio(F (Si)) has been created, all chameleons
can uniquely agree on the pattern Si that is being currently formed.

Expansion. The expansion process starts when we want to bring the chameleons
from a configuration Γ (colored or uncolored) to an uncoloured configuration Γ ′

such that β(Γ, λ) = α(Γ ′) and the number of concentric circles is precisely α(Γ ′).
Let Cir1, . . . , Cirα be the concentric circles populated by chameleons in Γ .

Starting from the inside to the outside, for each circle Ciri that contains multiple
(chromatic) classes, we expand Ciri by moving one class at a time, in an ordered
fashion, to a slightly bigger circle, until all classes on Ciri have been separated on
different circles, each containing a single class. We now uncolor the chameleons on
these circles, and expand Ciri+1. This process will be denoted by Expansion(Γ ).

Lemma 3. Let Γ be a coloured configuration, with coloring function λ, that has
β(Γ, λ) coloured classes. Expansion(Γ ) creates an uncoloured configuration Γ ′

with α(Γ ′) = β(Γ, λ).

Contraction. Let the chameleons start from an uncoloured configuration Γ
with α(Γ ) = α classes, each class located on a different circle. Let Si be any
pattern in S. If α(Si) < α, then we can activate the contraction process, as
described below. Let Cir1, . . . , Cirα be the concentric circles in Γ populated
by chameleons, and δ = �α/α(Si)�. Contraction is achieved by collapsing con-
secutive groups of δ circles, from the outside to the inside, until there are only
α(Si) circles populated by chameleons. For the smallest circle Ci containing a
single class, all chameleon on circles from Ciri+1 to Cirδ+i rotate, one group
at the time, so that there are no co-radial chameleons; Now, again one group
at the time, these chameleons collapse on Ciri. We iterate this process until we
obtain a new configuration Γ ′ that has exactly α(Si) populated circles. In the
following, we will denote this process by Contraction(Γ, Si), with α(Γ ) = α
and α(Si) < α. We define as density of the contraction the maximum number of
classes on the same circle at the end of this process, and we denote it by ψ(Γ, Si).

3 Note that F (Si) 
= F (Sj) whenever i 
= j, even if Si and Sj are isomorphic.



120 S. Das et al.

Lemma 4. Let Γ be an uncoloured configuration with α(Γ ) = α and let P be
a pattern with α(P ) < α. Contraction(Γ, P ) creates a coloured configuration
Γ ′ having exactly α(P ) concentric circles populated by chameleons.

Pattern Formation. Given any pattern Si belonging to a feasible choreogra-
phy, we can use a combination of expansion and contraction to obtain a backbone
of Si, which is defined as a configuration that contains exactly α(Si) populated
concentric circles and on each circle Ciri, the number of chameleons is a multiple
of the symmetricity of Si. An incomplete backbone is a backbone with one circle
missing (i.e. with only α(Si)− 1 circles).

Let Γi be either a complete or incomplete backbone of Si, and let Si be the
pattern in S to be formed. In the first phase of the pattern formation process,
for every two classes of Si that are on the same circle, the corresponding circles
of Γi are merged, after an appropriate rotation so that no chameleons collide.
After this process, the number of populated circles in Γi is equal to the number
of populated circles in Si; the circles of Γi are moved so as to coincide with the
circles of Si. We can assume the populated circle of Si with the smallest radius
already coincides with the populated circle of Γi with the smallest radius. The
next lemma follows from the total ordering of classes, colours, and populated
circles of both Γi and Γ ′.

Lemma 5. Starting from a backbone Γi of a given pattern Si ∈ S, the chameleons
can always reach a new configuration Γ ′, where (i) the radius of the i-th populated
circle in Γ ′ equals the radius of the i-th populated circle of Si; and (ii) the number of
chameleons on the i-th populated circle on Γ ′ is a multiple of the number of points
on the i-th circle on Si.

Let us call the Γ ′ of previous lemma the skeleton of Si; again, we will say that
the skeleton of Si is complete or incomplete depending on whether the backbone
of Si was complete or incomplete. Once the chameleons have formed the skeleton
of Si, the second phase of the pattern formation process consists in the actual
formation of Si. For those circles of the skeleton that contain more chameleons
than the corresponding circle of Si, the chameleons on these circles are assigned
different colours, one per class, using a routineAssigncoloursToClasses(Si).
Now, the positions of the chameleons having the smallest colour on Cir1 deter-
mine the final positions to be occupied by all chameleons in order to successfully
form Si (this follows from chirality, and total ordering of the colours). Once, the
final positions have been determined, the chameleons reach them, one class at a
time, moving within each circle ordered according to the colouring (multiplici-
ties can be formed if required). At this point, all chameleon but the leaders have
reached their final positions; let us call this configuration almost final.

The final step is to have the leaders to reach their final positions. Notice that,
if the skeleton was complete, then the configuration without the leaders already
forms Si; thus, the leaders will just occupy positions occupied by another class
on the outermost populated circle. Otherwise, the skeleton of Si is missing one
class in order to complete Si; thus, the leaders will occupy these missing final



Synchronized Dancing of Oblivious Chameleons 121

Fig. 3. The configuration Ratio(r), where the gray dots represent the leader
chameleons. The small circle is Q (refer to Section 3.2).

positions, ending the pattern formation process. We will denote this process by
PatternFormation(Γi, Si), where Γi is a backbone configuration of Si.

Lemma 6. Starting from a skeleton Γ ′
i of a given pattern Si ∈ S, the chameleons

can always form Si.

4 Contraction-Free Choreographies (with Repetitions)

In this section, we consider sequences of patterns where a pattern may appear
more than once in the sequence; however, all patterns have the same number
of classes; i.e., ∀i, j, α(Si) = α(Sj) = α. We first provide a lower bound on the
number of colours, k necessary to perform a choreography in this setting.

Theorem 2. Given a contraction-free choreography S with α classes, the chore-
ography described by S can be performed only if the number of available colors
k ≥ μ(Pi)

1
α , ∀Pi ∈ S, where μ(Pi) is the number of occurrences of Pi in S.

Proof. Due to the oblivious nature of the chameleons, it is necessary to distin-
guish between different occurrences of the same pattern. This means that, since
chameleons in the same equivalence class behave in the same way, and a pattern
Pi has α classes, using exactly l colours it is possible to distinguish lα repetitions.
Hence, with less than μ(Pi)

1
α distinct colours it is impossible to assign μ(Pi) dif-

ferent proper colourings for Pi so to distinguish the different occurrences.

We now show an algorithm that can form all feasible contraction-free sequences
using almost the minimum number of colours. The protocol is outlined in Fig-
ure 4, where each step is assumed to be completed before the next one takes
place. The chameleons start from an arbitrary initial uncoloured configuration I
with size(I) = n. The α(I) = α different classes in I can be lexicographically or-
dered by the chameleons; the first step of the algorithm is to have the chameleons
in the smallest class to become leaders. The leaders colour themselves GOLD, and
during the entire algorithm they will always maintain this special colour.

The leaders place themselves in the appropriate position so to create a
Ratio(F (Si)) configuration, as described in Section 3.2. When Ratio(F (Si))



122 S. Das et al.

has been completed, the chameleons know that Si is the next element of the
sequence to be formed. At this point, they perform an expansion to obtain a
backbone of Si. The chameleons then invoke AssigncoloursToPatterns(S),
to determine which new colour each should take next. This subroutine assigns
colours to the points of each Si so that each repetition in S of the same pattern
P become distinct, with the condition that in each colouring, the elements of
the same class are given the same colour. This assignment can be easily done
because colours and classes are totally ordered. When this process is completed,
PatternFormation() can be invoked, and Si is formed.

Protocol RepeatedCoreography

/* Si is the next pattern to be formed, 1 ≤ i ≤ m */
1. If no chameleons have GOLD colour, elect the leaders Rl, and colour them GOLD

2. Create a Ratio(F (Si)) configuration Γ
3. Expansion(Γ \Rl) creating configuration Γ
4. AssigncoloursToPatterns(S)
5. PatternFormation(Γ

′
, Si)

Fig. 4. The protocol to execute contraction-free choreographs

Theorem 3. Any contraction-free choreography S can be performed by a group

of chameleons with k = μ(S)
1

α(S)−1 + 1 colours.

Proof. By Lemma 2, a class can be unambiguously selected as leaders. According
to the RepeatedCoreography protocol, the leaders get coloured GOLD that
will never change during the dance: this class acts as coordinator for the entire
algorithm. To start the formation of a pattern, the leaders create aRatio(F (Si))
configuration which, by construction, unambiguously identifies what is the next
pattern to be performed. Since each P consists of α classes, and GOLD is re-
served only for the leaders, μ(P ) repetitions of P ∈ S can be distinguished using

μ(P )
1

α−1 +1 colours for the classes. Since distinct patterns in S can be coloured

independently of each other, for the entire process μ(S) 1
α−1 + 1 colours suffice.

5 Repetition-Free Choreographies (with Contractions)

In this section, we handle the case when the patterns in S might not have the
same number of equivalent classes (i.e. there could be contractions); however
there are no patterns that appear more than once in S.

We assume that the initial configuration I is such that size(I) = n, and that
∀i, n ≥ size(Si). We first give a lower bound on the number k of colours necessary
for the chameleons to be able to perform a choreography in this setting.

Theorem 4. Given a repetition-free choreography S, the dance described by S
can be performed only if the number of available colors k ≥ maxS(S)

minS(S) , where

maxS(S) = max{size(Pi)}, and minS (S) = min{size(Pi)}.



Synchronized Dancing of Oblivious Chameleons 123

Proof. Let Smax be a pattern in S such that size(Smax) = maxS(S), and let
Smin be a pattern in S such that size(Smin) = minS (S). By contradiction, let
us assume k is smaller than the bound in the theorem and there is an algorithm
that performs S using k colors. In particular, the algorithm correctly forms Smin.
Since n ≥ maxS (S) > k ·minS (S), it follows from the pigeon-hole principle that
there are points occupied by more than k chameleons (which cannot all have
distinct colors). Any two chameleons that are colocated and have the same color
may not be separated by a deterministic algorithm. Thus, in any subsequent
configuration, the chameleons may occupy at most k · minS (S) < maxS (S).
This implies that Smax may not be formed and the theorem follows.

We now prove that we can form all feasible repetition-free sequences by using
almost the minimum number of colours (see Figure 5). In contrast with the
previous case, the colours are not necessary to distinguish among patterns in the
sequence, but among chameleons from different classes that happen to contract
to points of multiplicity, and thus need to break the contraction at a later time.

Protocol ContractedCoreography

/* Si is the next pattern to be formed, 1 ≤ i ≤ m */
1. If no chameleons have GOLD colour, elect the leaders Rl, and colour them GOLD

2. Create a Ratio(F (Si)) configuration Γ
3. Call Expansion(Γ \Rl) creating configuration Γ
4. Call Contraction(Γ \Rl, Si) creating a backbone Γ ′

5. PatternFormation(Γ ′, Si)

Fig. 5. The protocol to execute repetition-free choreographs

The chameleons start by electing the leaders, colouring them GOLD, and having
them form configurationRatio(F (Si)). Then, the chameleons start an expansion
process that brings them into a configuration with α equivalence classes each in
a different circle (Section 3.2) and with the colours of all chameleons except the
leaders being OFF. When all non-leaders are OFF, they perform a contraction to
create the backbone of Si, and the PatternFormation() starts.

Theorem 5. Any non-repeating choreography S can be performed by chameleons

with maxS(S)
minS(S) + 1 colours.

6 Arbitrary Choreographies

We now have all the necessary tools to solve the most general case when S can
contain both repetitions and contractions. The algorithm has the same structure
of ContractedCoreography. The only crucial difference is in the function
used in AssigncoloursToClasses(). While in ContractedCoreography

colours were assigned only to the contracting classes, the function now deter-
mines how to assign colours, from a minimal set, to classes when forming a
specific occurrence of P in S so as to distinguish different repetitions as well as



124 S. Das et al.

contracting classes. The optimal number of colours k∗(S), although difficult to
express in a closed formula, is easily computable and easily bounded:

1 + μ(S)
1

α(S)−1

⌈
maxS (S)
minS (S)

⌉
≥ k∗(S) ≥Max

{
μ(S)

1
α(S) ,

⌈
maxS(S)
minS (S)

⌉}

7 Asynchronous Chameleons

The results we have presented so far have been established for SSYNC chameleons.
However, as recently shown in [3], any result for SSYNC iguanid lizards can be
achieved by ASYNC chameleons with a constant number of colours. This means
that the results of the previous section still hold in ASYNC with just an increase
in the multiplicative constant of the number of colours. In particular:

Theorem 6. Oblivious ASYNC chameleons with O(k∗(S)) colours can perform
any sequence of tableaux provided that the symmetricity of each tableau divides
that of the starting configuration.

References

1. Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for syn-
chronous mobile robots with limited visibility. In: Proc. of the 1995 IEEE Symp.
on Intelligent Control, pp. 453–460 (1995)

2. Chatzigiannakis, I., Markou, M., Nikoletseas, S.: Distributed circle formation for
anonymous oblivious robots. In: Proc. of 3rd Workshop on Efficient and Experi-
mental Algorithms, pp. 159–174 (2004)

3. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of
lights: Synchronizing asynchronous robots using visible bits. In: Proc. of 32nd
ICDCS, pp. 506–515 (2012)

4. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of
oblivious robots: forming a series of geometric patterns. In: Proc. of 29th PODC,
pp. 267–276 (2010)

5. Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile
robots with convergence toward uniformity. TCS 396(1-3), 97–112 (2008)

6. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile
robots. ACM Trans. on Autonom. and Adapt. Sys. 3(4), 1–16 (2008)

7. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mo-
bile Robots. Morgan&Claypool (2012)

8. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous oblivious robots. TCS 407(1-3), 412–447 (2008)

9. Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous pattern
formation by anonymous oblivious mobile robots. In: Aguilera, M.K. (ed.) DISC
2012. LNCS, vol. 7611, pp. 312–325. Springer, Heidelberg (2012)

10. Ligon, R.A., McGraw, K.J.: Chameleons communicate with complex colour
changes during contests. Biology Letters 9(6) (2013)

11. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. Journal of Robotics Systems 13, 127–139 (1996)

12. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)

13. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. TCS 411(26-28), 2433–2453 (2010)



Another Look at the Shoelace TSP:

The Case of Very Old Shoes

Vladimir G. Deineko1 and Gerhard J. Woeginger2

1 Warwick Business School, Coventry, United Kingdom
2 TU Eindhoven, Eindhoven, The Netherlands

Abstract. What is the most efficient way of lacing a shoe? Mathemat-
ically speaking, this question concerns the structure of certain special
cases of the bipartite travelling salesman problem (BTSP).

We show that techniques developed for the analysis of the (standard)
TSP may be applied successfully to characterize well-solvable cases of the
BTSP and the shoelace problem. In particular, we present a polynomial
time algorithm that decides whether there exists a renumbering of the
cities such that the resulting distance matrix carries a benevolent com-
binatorial structure that allows one to write down the optimal solution
without further analysis of input data. Our results generalize previously
published well-solvable cases of the shoelace problem.

Keywords: Bipartite travelling salesman problem, shoelace problem,
polynomially solvable case, relaxed Monge matrix, pick-and-place robot.

1 The Art of Shoelacing

In Europe, shoelaces are usually threaded in alternating zigzags, such that (when
viewed from above) the eyes of the shoes seem to be joined horizontally by the
shoelaces. In the USA, shoelaces are typically threaded in opposing zigzags, and
when seen from above they seem to be crossed. A third standard method is the
so-called shoe shop method, in which the shoelace makes a continuous zigzag
from top to bottom and then returns to the top in a diagonal line.

To the non-expert it would appear that there are only three or four accepted
methods of lacing our shoes. However, this is far, far, far from the truth! Experts
in the area of shoelacing are familiar with dozens of methods, as for instance
army lacing, bow-tie lacing, criss-cross lacing, double-helix lacing, gap lacing,
hash lacing, hexagram lacing, hidden-knot lacing, ladder lacing, lattice lacing,
left-right lacing, lightning lacing, over-under lacing, pentagram lacing, Roman
lacing, sawtooth lacing, spider-web lacing, star lacing, train-track lacing, zigzag
lacing, or zipper lacing.

Now a burning question arises: Which of these dozens of shoelacing methods
is the most efficient one? Or, in a more scientific formulation: Which lacing
method needs the smallest amount of shoelace? The mathematical literature
contains several studies on this theme. There are the short technical papers
by Halton [13], Misiurewicz [18] and Polster [19], and there also is a beautiful

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 125–136, 2014.
c© Springer International Publishing Switzerland 2014



126 V.G. Deineko and G.J. Woeginger

booklet [20] by Polster with the title “The shoelace book: a mathematical guide
to the best (and worst) ways to lace your shoes”. In this paper, we will add some
new insights to this research branch by exhibiting certain connections between
the shoelace problem and the travelling salesman problem.

2 Technical Introduction

The travelling salesman problem (TSP). In the TSP, the objective is to find
for a given n × n distance matrix C = (cij) a cyclic permutation τ of the set
{1, 2, . . . , n} that minimizes the sum c(τ) =

∑n
i=1 ciτ(i). In TSP slang, the ele-

ments of {1, 2, . . . , n} are usually called cities or points, the cyclic permutations
are called tours, and the value c(τ) is the length of permutation τ . The set of all
permutations over set {1, 2, . . . , n} is denoted by Sn. For τ ∈ Sn, we denote by
τ−1 the inverse of τ , that is, the permutation for which τ−1(i) is the predecessor
of i in the tour τ , for i = 1, . . . , n. We will also use a cyclic representation of
cyclic permutations τ in the form

τ = 〈i, τ(i), τ(τ(i)), . . . , τ−1(τ−1(i)), τ−1(i), i〉.

In the maximization version of the TSP (MaxTSP), one is interested in finding
the longest tour. The characterization of polynomially solvable cases is one of
the standard directions for research on NP-hard problems. For surveys on well-
solvable cases of the TSP, we refer the reader to Gilmore, Lawler & Shmoys [12]
and to Burkard & al [5].

The bipartite travelling salesman problem (BTSP). In the BTSP, there is an
even number n = 2k of cities which are partitioned into two classes: the class
K1 = {1, 2, . . . , k} of blue cities and the class K2 = {k+1, k+2, . . . , n} of white
cities. Any feasible tour in the BTSP has to alternate between blue and white
cities. The objective is to find the shortest tour with this special structure. The
set Tn of all feasible tours for the BTSP may formally be defined as

Tn = {τ ∈ Sn|τ−1(i), τ(i) ∈ K2 if i ∈ K1; τ
−1(i), τ(i) ∈ K1 if i ∈ K2}. (1)

By C[K1,K2] we denote the k × k matrix which is obtained from matrix C by
deleting the rows with numbers from K2 and by deleting the columns with num-
bers from K1. Note that the length c(τ) of any feasible BTSP tour is calculated
by using elements from C[K1,K2] only.

The BTSP is NP-hard, and there is no constant factor approximation al-
gorithm for it unless P = NP ; see Frank, Korte, Triesch & Vygen [11]. The
BTSP has also been investigated by Baltz [3], Baltz & Srivastav [4], Chalasani,
Motwani & Rao [8], and Frank, Korte, Triesch & Vygen [11]. Its relevance for
pick-and-place robots has been pointed out in Anily & Hassin [1], Atallah &
Kosaraju [2], Leipälä & Nevalainen [15], and Michel, Schroeter & Srivastav [17].



Another Look at the Shoelace TSP 127

2

1

9

7

8

3

4

105

11

6 12

Point number 1 2 3 4 5 6 7 8 9 10 11 12

X coordinate 5 5 5 5 5 5 40 40 40 40 40 40

Y coordinate 10 17 24 31 38 45 10 17 24 31 38 45

Fig. 1. An illustration to Halton’s [13] optimal lacing for new shoes with neat and tidy
rows of eyelets: the points with their coordinates, and an optimal BTSP tour

The shoelace problem. Halton [13] interprets the BTSP as a shoelacing problem:
the cities represent the eyelets of a shoe, and the objective is to find an optimal
shoe lacing strategy that minimizes the length of the shoelace. In Halton’s model
the eyelets are points in the Euclidean plane: the blue points lie on a straight
line and have coordinates (0, d), (0, 2d), . . . , (0, kd), and the white points lie on
some parallel line and have coordinates (a, d), (a, 2d), . . . , (a, kd). Halton proved
that in his special case the tour

τ∗ = 〈1, k + 1, 2, k + 3, 4, k + 5, 6 . . . , 7, k + 6, 5, k + 4, 3, k + 2, 1〉 (2)

is the shortest tour in Tn. Figure 1 illustrates Halton’s case of brand-new shoes
with two neat and tidy rows of eyelets.

In a follow-up paper, Misiurewicz [18] argues that Halton’s model is only
a crude approximation of reality: as shoes get older and worn-out, the eyelets
move out of place and will no longer form tidy rows. Misiurewicz observes that
for proving optimality of permutation τ∗, one actually does not need to have the
eyelets on two parallel lines; it is sufficient to require that the inequalities

cij + c
m ≤ cim + c
j (3)

hold for all indices i and j with 1 ≤ i ≤ � ≤ k and k + 1 ≤ j ≤ m ≤ n. In other
words, Halton’s tour τ∗ also solves the shoelace problem for older and somewhat
worn-out shoes; see Figure 2 for an illustration of Misiurewicz’s case.



128 V.G. Deineko and G.J. Woeginger

2

1

9

7

8

3

5

10

4

116

12

Point number 1 2 3 4 5 6 7 8 9 10 11 12

X coordinate 11 6 13 15 15 11 41 32 44 36 31 16

Y coordinate 10 14 26 31 36 40 10 22 34 38 40 46

Fig. 2. An illustration to Misiurewicz’s [18] optimal lacing for older and somewhat
worn-out shoes: an instance with a Euclidean distance matrix

Results and organization of this paper. We show that the techniques developed
for the analysis of the classical TSP can also be applied successfully to the
shoelace problem. In Section 3, we review some of the well-solvable cases of
the TSP which are relevant for the shoelace problem. We generalize the results
of Halton [13] and Misiurewicz [18], and we characterize a new polynomially
solvable case of the BTSP. In our case, the eyelets may indeed have very pe-
culiar locations, so that the old shoes of Misiurewicz now turn into very old,
deformed and mutilated shoes; see Figures 3 and 4 for an illustration (we hope
that this justifies the title of the paper!). In Section 4, we present an algorithm
for recognizing our new special case independently of the initial numbering of
the points/eyelets.

3 Polynomially Solvable TSP Cases and the BTSP

We start by reviewing some known results on specially structured distance ma-
trices. Readers who are familiar with the combinatorial optimization literature
will already have recognized that the inequalities in (3) are the notorious Monge
inequalities; see Burkard, Klinz & Rudolf [6] for further references. An n × n
matrix C = (cij) is called a Monge matrix, if it satisfies the following conditions
for all indices i, j,m, � ∈ {1, . . . , n} with i < � and j < m:

cij + c
m ≤ cim + c
j . (4)



Another Look at the Shoelace TSP 129

2

1

9

7

8

3

4

10

5
11

6
12

Point number 1 2 3 4 5 6 7 8 9 10 11 12

X coordinate 5 6 13 12 8 6 23 24 9 16 15 12

Y coordinate 6 21 25 28 38 43 10 18 30 32 40 46

Fig. 3. Instance 1 of the Euclidean BTSP with a relaxed Monge structure

As the inequality system (3) imposes the Monge inequalities only for the entries
in C[K1,K2], the system (3) is a relaxation of system (4).

Supnick [21] proved that the TSP with a symmetric Monge distance matrix
is always solved to optimality by the tour π∗

1 = 〈1, 3, 5, 7, . . . , 8, 6, 4, 2, 1〉, and
that the MaxTSP on symmetric Monge matrices is always solved by the tour
σ∗ = 〈1, n, 2, n− 2, 4, n− 4, . . . , n− 3, 3, n− 1, 1〉. Note that if the white points
in the shoelace problem were numbered in the reverse order, that is, if points
i ∈ K2 were renumbered by n+ k + 1 − i, then Halton’s permutation τ∗ in (2)
would become the Supnick permutation σ∗. We mention this fact here to stress
that the BTSP seems to have something in common with the MaxTSP.

Another well-known polynomially solvable case is the TSP with Kalmanson
distance matrices. A symmetric n × n matrix C is a Kalmanson matrix if it
fulfills the Kalmanson conditions

cij + c
m ≤ ci
 + cjm (5)

cim + cj
 ≤ ci
 + cjm, for all 1 ≤ i < j < � < m ≤ n. (6)

Kalmanson [14] showed that the TSP with a Kalmanson matrix is solved by the
tour π∗

2 = 〈1, 2, 3, 4, 5, 6 . . . , n − 1, n, 1〉. Furthermore, an optimal tour for the



130 V.G. Deineko and G.J. Woeginger

2

1

9

7

8

3

4
10511

6 12

Point number 1 2 3 4 5 6 7 8 9 10 11 12

X coordinate 22 22 16 4 18 2 7 16 14 26 12 12

Y coordinate 5 12 31 37 39 46 10 21 28 39 43 46

Fig. 4. Instance 2 of the Euclidean BTSP with a relaxed Monge structure

MaxTSP can always be found among n/2 specially structured tours containing
among them Halton’s tour τ∗.

Demidenko matrices form a common generalization of Supnick and Kalman-
son matrices. A symmetric matrix C = (cij) is a Demidenko matrix if

cij + c
m ≤ ci
 + cjm, for all 1 ≤ i < j < � < m ≤ n. (7)

Demidenko [10] showed that an optimal tour for the TSP with an n× n Demi-
denko distance matrix can be found in O(n2) time. Deineko & Woeginger [9]
proved that the MaxTSP with a Demidenko matrix remains NP-hard. However,
for a subclass of Demidenko matrices the longest tour can be found in the set
Tn of feasible BTSP tours as introduced in (1).

Proposition 1. (Deineko & Woeginger [9]). Let C be a symmetric n×n Demi-
denko matrix with n = 2k, that additionally fulfills the conditions

cik + ck+1,j ≤ ck+1,k + cij , for i ∈ K1 \ {k}, j ∈ K2 \ {k + 1}. (8)

Then there exists an optimal MaxTSP tour which belongs to the set Tn.

The problem of finding an optimal MaxTSP tour in Tn remains NP-hard. The
following proposition identifies an almost trivial special case.



Another Look at the Shoelace TSP 131

Proposition 2. (Deineko & Woeginger [9]). Let C be a symmetric n×n matrix
with n = 2k, that fulfills the conditions

c1,k+1 + cij ≥ c1j + ci,k+1, i = 2, . . . , k, j = k + 2, . . . , n (9)

cp+1,k+p + cij ≥ cp+1,j + ci,k+p, i = p+ 2, . . . , k, j = k + p+ 1, . . . , n (10)

cp,k+p+1 + cij ≥ cpj + ci,k+p+1, i = p+ 1, . . . , k, j = k + p+ 2, . . . , n (11)

p = 1, . . . , k − 2.

Then Halton’s tour τ∗ is a tour of maximum length in Tn.

It is easy to see that conditions (9)–(11) form a relaxation of the Kalmanson
conditions (6). Therefore, the TSP with a Kalmanson matrix that also fulfills (8)
has τ∗ as a tour of maximum length. Any Supnick matrix fulfills the inequalities
in (8). Furthermore, a Supnick matrix satisfies the reverse inequalities of (9)–
(11), where the ≥ signs are replaced by ≤. Therefore, if the points i ∈ K2 are
renumbered by n + k + 1 − i, then by Propositions 1 and 2, the permutation
σ∗ (which is obtained from τ∗ by the same renumbering) constitutes an optimal
solution to the MaxTSP with a Supnick matrix; we stress that the renumbering
does not affect the inequalities in (8). This comment explains the relationship
between the TSP and the MaxTSP with a Supnick matrix.

In the proof of Proposition 2 in [9], the well-known tour-improvement tech-
nique is used: starting from an arbitrary tour τ , a sequence of tours τ1, τ2, . . . , τT
is constructed, with τ1 = τ and τT = τ∗ such that

c(τ1) ≤ c(τ2) ≤ · · · ≤ c(τT ).

The inequalities (9)–(11) are used to establish the relationship c(τi) ≤ c(τi+1). If
inequalities (9)–(11) are all reversed, then it can be proved in a similar fashion
that the tour τ∗ is the shortest tour in Tn. We summarize this result in the
following theorem.

Theorem 3. Let C be a symmetric n × n matrix with n = 2k, that fulfills the
conditions

c1,k+1 + cij ≤ c1j + ci,k+1, i = 2, . . . , k, j = k + 2, . . . , n (12)

cp+1,k+p + cij ≤ cp+1,j + ci,k+p, i = p+ 2, . . . , k, j = k + p+ 1, . . . , n (13)

cp,k+p+1 + cij ≤ cpj + ci,k+p+1, i = p+ 1, . . . , k, j = k + p+ 2, . . . , n (14)

p = 1, . . . , k − 2.

Then the tour τ∗ is a tour of minimum length for the BTSP.

Of course the system (12)–(14) is just a further relaxation of the Monge inequali-
ties (4) and their relaxation (3). Figures 3 and 4 show two instances of the BTSP
with the Euclidean distance matrices that satisfy (12)–(14) but violate some of
the inequalities (3) of Misiurewicz.

The system (12)–(14) altogether contains Θ(n3) inequalities. The following
proposition shows that one needs only O(n2) time to verify these conditions.



132 V.G. Deineko and G.J. Woeginger

Proposition 4. The inequalities (12)–(14) can be verified in O(n2) time.

Proof. Let n = 2k throughout. To simplify notation, we consider an asymmetric
k × k submatrix A = C[K1,K2] of the n × n matrix C. The system (12)–(14)
can then be rewritten as

a11 + ast ≤ a1t + as1, 1 < s, t ≤ k (15)

ap,p−1 + ast ≤ apt + as,p−1, s = p+ 1, . . . , k; t = p, . . . , k; (16)

ap−1,p + ast ≤ ap−1,t + asp, s = p, . . . , k; t = p+ 1, . . . , k; (17)

p = 2, 3 . . . , k − 1.

We claim that the system (15)–(17) above is equivalent to the following system
with 2(k − 1)(k − 2) + 1 inequalities:

a11 + a22 ≤ a12 + a21; (18)

ap,p−1 + asp ≤ ap,p + as,p−1, (19)

ap,p−1 + as,p+1 ≤ ap,p+1 + as,p−1, s = p+ 1, . . . , k; (20)

ap−1,p + apt ≤ app + ap−1,t, (21)

ap−1,p + ap+1,t ≤ ap+1,p + ap−1,t, t = p+ 1, . . . , k; (22)

p = 2, 3, . . . , k − 1.

Indeed, it can be seen easily that the inequalities (18)–(22) form a proper subset
of the system (15)–(17). In particular, inequalities (16) and (17) with p = k − 1
are contained in (18)–(22). So what remains to be shown is that the inequalities
(15)–(17) with p ≤ k − 2 follow from (18)–(22).

Consider p∗ ≤ k − 1, and assume that (16)–(17) are satisfied for all p ≥ p∗.
Then the inequalities (16) with s = p∗ and s = p∗ + 1, and the inequalities
(17) with t = p∗ and t = p∗ + 1 are contained in (18)–(22). The inequalities
for s > p∗ + 1 and t > p∗ + 1 follow immediately from (18)–(22) and from the
following straightforward algebraic rearrangements:

ap∗,p∗−1 + ast − ap∗t − as,p∗−1 =

(ap∗,p∗−1 + as,p∗+1 − ap∗,p∗+1 − as,p∗−1) + (ap∗,p∗+1 + ast − ap∗t − as,p∗+1)

ap∗−1,p∗ + ast − ap∗−1,t − as,p∗ =

(ap∗−1,p∗ + ap∗+1,t − ap∗−1,t − ap∗+1,p∗) + (ap∗+1,p∗ + ast − ap∗+1,t − as,p∗)

Finally, the inequalities (15) follow from (16), (17) and (18), and from the fol-
lowing simple transformation:

a11 + ast − a1t − as1 =

(a11 + a22 − a12 − a21) + (a12 + ast − a1t − as2) + (a21 + as2 − a22 − as1).

This completes the proof of the proposition. ��



Another Look at the Shoelace TSP 133

4 The Recognition of Specially Structured Matrices

The combinatorial structure of the distance matrix C in Theorem 3 does heav-
ily depend on the numbering of its rows and columns. Hence it is natural to
formulate the following recognition problem:

Given an n×n distance matrix C = (cij), does there exist a renumbering
of the cities, that is, a permutation α of the rows and columns of C, such
that the resulting matrix (cα(i)α(j)) satisfies conditions (12)–(14)?

If we consider the submatrix A = C[K1,K2], then the recognition problem above
boils down to the problem of finding two permutations: one permutation for
permuting the rows and one permutation for permuting the columns in the
asymmetric matrix A:

Given a k × k matrix A = (aij), does there exist a permutation γ of
the rows and a permutation δ of the columns, such that the resulting
permuted matrix (cγ(i)δ(j)) satisfies the conditions (15)–(17)?

The following recognition algorithm is based on the technique developed by
Burkard & Deineko [7] for the recognition of a similar relaxed Monge structure
in a symmetric distance matrix.

Theorem 5. For a given k × k matrix A = (aij), it can be decided in O(k4)
time whether there exist permutations γ and δ such that the permuted matrix
(aγ(i)δ(j)) satisfies conditions (15)–(17). If the permutations γ and δ exist, then
they can be determined explicitly within this time bound.

Proof. First, we try all k indices as candidates for the first position in permuta-
tion γ. Without loss of generality let γ(1) = 1. Then an index i can be placed
in the first position of permutation δ if and only if the following inequalities are
satisfied:

a1i + ast ≤ asi + a1t for all s �= 1, t �= i. (23)

If there is another candidate j with the same property, then it follows imme-
diately from (23) that a1i + asj = asi + a1j ; in other words, we then have
asj = asi + d for all s, where d = a1i − a1j is the constant for fixed i and j.
Since adding a constant to a row or a column of matrix A does not affect the
inequalities (15)–(17), in this case any of the indices i or j may be placed in the
first position of permutation σ.

We claim that an appropriate candidate i can be picked in O(k2) time. Indeed,
the transformation a′st = ast − a1t for s = 1, . . . , k and t = 1, . . . , k transforms
matrix A into a matrix A′ = (a′i,j) with zeroes in the first row. The inequalities
(23) for matrix A are equivalent to the inequalities a′st ≤ a′si for matrix A′, for
all s, t and i. Therefore, an appropriate index i can be found in O(k2) time by
looking through the indices of the maximal elements in the rows of matrix A′.

The indices for the second position in permutations δ and γ can be chosen by
applying an analogous procedure to the submatrix A[{1, . . . , k}, {1, . . . , k} \ {i}]



134 V.G. Deineko and G.J. Woeginger

with the first row fixed to be 1, and to submatrix A[{2, . . . , k}, {1, . . . , k}] with
the first column fixed to be i. This yields an overall time complexity of O(k3)
for each candidate on the position γ(1), and therefore an O(k4) overall time
complexity for the entire algorithm. ��

1

Point number 1 2 3 4 5 6 7 8 9 10 11 12

X coordinate 26 21 26 26 26 26 21 15 21 33 15 21

Y coordinate 12 18 18 23 27 34 7 12 23 18 29 29

Fig. 5. Recognizing a rectilinear instance of the BTSP. The first point has been fixed

To illustrate the way our algorithm works, we consider the BTSP with a recti-
linear distance matrix where the distances between points i and j are calculated
as cij = |xi − xj | + |yi − yj|; see Figure 5 for an illustration. We assume here
that the first entry of permutation γ is fixed as γ(1) = 1. The corresponding
submatrix A of the distance matrix C and its transformed matrix A′ then look
as follows:

A6×6 =

7 8 9 10 11 12⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

1 10 11 16 13 28 22
2 11 12 5 12 17 11
3 16 17 10 7 22 16
4 21 22 5 12 17 11
5 25 26 9 16 13 7
6 32 33 16 23 16 10

A′
6×6 =

7 8 9 10 11 12⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

1 0 0 0 0 0 0
2 1 1 −11 −1 −11 −11
3 6 6 −6 −6 −6 −6
4 11 11 −11 −1 −11 −11
5 15 15 −7 3 −15 −15
6 22 22 0 10 −12 −12

Note that in all rows of matrix A′ the indices of the maximal elements are
{7, 8}. Hence either of these two columns may be picked as the first column,



Another Look at the Shoelace TSP 135

and we will pick δ(1) = 7. For choosing an appropriate row to be placed in the
second position of permutation γ, we next consider the following 5×6 submatrix
of the distance matrix:

A5×6 =

7 8 9 10 11 12⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

2 11 12 5 12 17 11
3 16 17 10 7 22 16
4 21 22 5 12 17 11
5 25 26 9 16 13 7
6 32 33 16 23 16 10

A′
5×6 =

7 8 9 10 11 12⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

2 0 1 −6 1 6 0
3 0 1 −6 −9 6 0
4 0 1 −16 −9 −4 −10
5 0 1 −16 −9 −12 −18
6 0 1 −16 −9 −16 −22

Now the indices of maximal elements in columns 7 through 12 of matrix A′

are: {2, 3, 4, 5, 6}; {2, 3}; {2}; {2, 3}; and {2, 3}. The only index that belongs
to all these sets is 2; hence γ(2) = 2. (If the intersection of these sets had been
empty, the choice of γ(1) = 1 as the first entry in permutation γ had failed and
would have to be reconsidered.)

We proceed with the following (analogous) steps and eventually find two per-
mutations γ = 〈1, 2, 3, 4, 5, 6〉 and δ = 〈7, 8, 9, 10, 11, 12〉 for the numbering of
the points. In permutation δ, the points 7 and 8 as well as the points 11 and 12
may be permuted, so that under the choice γ(1) = 1 there altogether exist four
pairs of permutations for feasibly renumbering the points. The corresponding
numbering and the optimal BTSP solution are reported in Figure 6.

2

1

9

7

8

3

4

10

5

11

6

12

Fig. 6. Recognizing a rectilinear instance of the BTSP: The final numbering



136 V.G. Deineko and G.J. Woeginger

References

1. Anily, S., Hassin, R.: The swapping problem. Networks 22, 11–18 (1992)
2. Atallah, M.J., Kosaraju, S.R.: Efficient solutions to some transportation problems

with applications to minimizing robot arm travel. SIAM Journal on Computing 17,
419–433 (1988)

3. Baltz, A.: Algorithmic and probabilistic aspects of the bipartite travelling salesman
problem. PhD Thesis. University of Kiel, Germany (2001)

4. Baltz, A., Srivastav, A.: Approximation algorithms for the Euclidean bipartite
TSP. Operations Research Letters 33, 403–410 (2005)

5. Burkard, R.E., Deineko, V.G., van Dal, R., van der Veen, J.A.A., Woeginger, G.J.:
Well-solvable special cases of the TSP: A survey. SIAM Review 40, 496–546 (1998)

6. Burkard, R.E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimiza-
tion. Discrete Applied Mathematics 70, 91–161 (1996)

7. Burkard, R.E., Deineko, V.: On the travelling salesman problem with a relaxed
Monge matrix. Information Processing Letters 67, 231–237 (1998)

8. Chalasani, P., Motwani, R., Rao, A.: Algorithms for robot grasp and delivery. In:
Proceedings of the 2nd International Workshop on Algorithmic Foundations of
Robotics, Toulouse, France, pp. 347–362 (1996)

9. Deineko, V., Woeginger, G.J.: The maximum travelling salesman problem on sym-
metric Demidenko matrices. Discrete Applied Mathematics 99, 413–425 (2000)

10. Demidenko, V.M.: A special case of travelling salesman problems. Izvestiya
Akademii Nauk BSSR, Seriya Fiziko-Matematicheskikh Nauk 5, 28–32 (1976) (in
Russian)

11. Frank, A., Korte, B., Triesch, E., Vygen, J.: On the bipartite travelling salesman
problem.Technical Report No. 98866-OR. Research Institute for Discrete Mathe-
matics, University of Bonn, Germany (1998)

12. Gilmore, P.C., Lawler, E.L., Shmoys, D.B.: Well-solved special cases. In: [16], ch.
4, pp. 87–143 (1985)

13. Halton, J.H.: The shoelace problem. The Mathematical Intelligencer 17, 36–41
(1995)

14. Kalmanson, K.: Edge-convex circuits and the travelling salesman problem. Cana-
dian Journal of Mathematics 27, 1000–1010 (1975)

15. Leipälä, T., Nevalainen, O.: Optimization of the movements of a component place-
ment machine. European Journal of Operational Research 38, 167–177 (1989)

16. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling
Salesman Problem. Wiley, Chichester (1985)

17. Michel, C., Schroeter, H., Srivastav, A.: Approximation algorithms for pick-and-
place robots. Annals of Operations Research 107, 321–338 (2001)

18. Misiurewicz, M.: Lacing irregular shoes. The Mathematical Intelligencer 18, 32–34
(1996)

19. Polster, B.: Lacing irregular shoes. Nature 420, 476 (2002)
20. Polster, B.: The shoelace book: a mathematical guide to the best (and worst) ways

to lace your shoes. American Mathematical Society (2006)
21. Supnick, F.: Extreme Hamiltonian lines. Annals of Mathematics 66, 179–201 (1957)



Playing Dominoes Is Hard, Except by Yourself

Erik D. Demaine, Fermi Ma, and Erik Waingarten

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

{edemaine,fermima,eaw}@mit.edu

Abstract. Dominoes is a popular and well-known game possibly dating
back three millennia. Players are given a set of domino tiles, each with
two labeled square faces, and take turns connecting them into a growing
chain of dominoes by matching identical faces. We show that single-
player dominoes is in P, while multiplayer dominoes is hard: when players
cooperate, the game is NP-complete, and when players compete, the
game is PSPACE-complete. In addition, we show that these hardness
results easily extend to games involving team play.

Keywords: algorithmic combinatorial game theory, mathematical
games and puzzles, computational complexity.

1 Introduction

Dominoes are 1 × 2 rectangular tiles with each 1× 1 square marked with spots
indicating a number, typically between 0 and 6. The precise origin of dominoes
remains a mystery, though the earliest domino set dates back to an Egyptian
tomb from around 1355 BC [1]. Even less clear is when and where various games
involving dominoes arose.

Today, the game of Dominoes is immensely popular around the world, with
annual tournaments including the World Domino Tournament, World Cham-
pionship Domino Tournament, Domino USA, and Federación Internacional de
Dominó. The game is typically played by two or four players who take turns lay-
ing down dominoes in a chain with the numbers matching at each adjacency. A
traditional set of dominoes consists of all 28 unordered pairs of numbers between
0 and 6 (a “double-6” set). Larger domino sets include all numbers between 0
and 9 (double-9s) and all numbers between 0 and 12 (double-12s).

In this paper, we consider a generalized version of this game, where the num-
bers on each side of a domino can take on any value, and the number of tiles
is unrestricted. We formalize this generalized domino game in Section 2, for one
or more players under both cooperative and competitive play. In Section 3, we
explore the cooperative version of the game. In particular, we show that single-
player (cooperative) dominoes is in P, while p-player cooperative dominoes is
NP-complete for any p ≥ 2. In Section 4, we show that competitive dominoes
is PSPACE-complete, as well as a competitive team variant. Some of our proofs
are similar to those for the related card game of UNO; see Section 2.4. Finally,
we list some open problems in Section 5.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 137–146, 2014.
c© Springer International Publishing Switzerland 2014

{edemaine,fermima,eaw}@mit.edu


138 E.D. Demaine, F. Ma, and E. Waingarten

2 Game Definitions

2.1 Classic Dominoes

The typical domino set consists of
(
7
2

)
+ 7 = 28 dominoes. Each domino is a

rectangular tile made up of two faces, where each face contains an integer value
from 0 to 6. (Typically, the dominoes faces are marked by dots similar to the faces
of a die.) A complete set of dominoes consists of all possible pairs of numbers,
including doubles, without repetition.

The game of dominoes1 is normally played with two or four players. In the
four-player game, the players sit around a table, play in clockwise order, and
players sitting across from each other form a team. In the two-player game, each
player forms his/her own team.

At the beginning, the dominoes are randomly and evenly distributed, and the
first player places any single domino. On each subsequent turn, a player plays
exactly one domino by matching one of its faces to one of the two ends of the
current chain of dominoes, extending the chain by one domino. Figure 2 shows
an example of a domino chain. Matching requires identically labeled domino
faces. If a player cannot match any of his/her dominoes to the current chain,
s/he can pass his/her turn.

The game ends when one player runs out of dominoes, in which case the team
of that player wins, or when both ends of the chain become “blocked”. An end is
blocked if none of the remaining dominoes can be matched with that end. When
both ends are blocked and thus no more moves are possible, the winning team
is the one with the smallest sum of all face values on their unplayed tiles.

2.2 Generalized Dominoes

We consider a generalized version of dominoes in which each domino can have
any integer (or symbol) on each end. Otherwise play is identical: the first play
can be any tile, and each subsequent tile can be played if it matches an end of
the chain. A player wins when s/he either plays all of his/her dominoes, and a
player loses when s/he cannot place down any dominoes. Importantly, we do not
allow players to pass (an assumption also made of cooperative UNO [2]). We also
do not assume that each player has the same number of tiles at the beginning
of the game.

Formally, a domino consists of two numbers, one on either end of the rect-
angular piece. A domino can be described as a multiset, {a, b} ∈ P(S), where
S = {0, 1, 2, . . . , c} is the set of symbols in the current game. We refer to indi-
vidual domino pieces with a single uppercase letter such as X = {a, b}.

At the beginning of the game, player i receives a multiset of dominoes Ti.
In particular, we allow each player to receive more than one copy of the same
domino; we will only use this flexibility to build “null” players when we have
more than two players.

1 In fact, there are many games played with domino pieces. The most popular game,
described here, is also called block dominoes.



Playing Dominoes Is Hard, Except by Yourself 139

The game of dominoes progresses as players add dominoes to the current chain
of dominoes on the board. The current chain of dominoes has two open ends,
a left end � and a right end r. If Player 1 has a domino X = {a, b} ∈ T1, then
Player 1 can match X to the left end of the current chain if and only if either
� = a or � = b (or both). In this case, � becomes b or a, respectively. Likewise, X
can be matched on the right if and only if either r = a or r = b, in which case r
becomes b or a respectively.

In our figures, we follow the tradition of dominoes of the form {a, a} (doubles)
being oriented perpendicular to the chain, to highlight that they did not change
the value of the end, but this unusual orientation does not change the behavior
of these dominoes. (In some variants of the game, doubles can branch the chain
of dominoes into a tree, but this is uncommon and not considered here.)

One key difference from traditional dominoes is that we assume perfect infor-
mation, instead of hidden dominoes, to make the optimal strategy well-defined.
For cooperative games, this assumption makes sense, as players should share all
of their knowledge. For competitive two-player games, this assumption is also
practical, assuming that the multiset of all dominoes is known, as that minus
one player’s hand is the other player’s hand.

2.3 Variants

We now define two versions of perfect-information dominoes: cooperative and
competitive.

Cooperative Dominoes

Instance: There are one or more players in the game. Each player has a
multiset of dominoes. All dominoes (in the chain and in the players’
hands) are visible to all players.

Question: Can all the players cooperate to help Player 1 play all of
his/her dominoes (and win the game)?

Competitive Dominoes

Instance: There are two or more players in the game. Each player has
a multiset of dominoes. Again, all dominoes are visible to all players.

Question: Does Player 1 have a winning strategy regardless of what
the other players do?

Team version: In addition, the players are partitioned into teams. Can
Player 1’s team win?

In all variants we consider, we assume that players begin play in order of
increasing index. Thus, Player 1 always makes the opening move.



140 E.D. Demaine, F. Ma, and E. Waingarten

2.4 UNO�

Our study of dominoes is similar to the recent study of the card game UNO2 [2].
Dominoes and UNO both involve players attempting to play all their pieces by
connecting them to pieces that have been played previously; the main difference
is that UNO has two dimensions (color and number) for pieces to match, while
dominoes has two chain ends for a piece to match. In particular, the multiplayer
cooperative variant of dominoes roughly corresponds to the multiplayer cooper-
ative version of UNO, and our proof that this dominoes game is NP-complete is
similar to the proof for UNO. Single-player UNO is NP-complete in general, but
polynomial when one of the two dimensions is constant, and this proof is similar
to our result that single-player dominoes is polynomial. On the other hand, some
complexities differ: two-player competitive UNO is polynomial, while we show
that two-player competitive dominoes is PSPACE-complete.

3 Cooperative Dominoes

In this section, we consider the cooperative game of dominoes and analyze its
complexity. For the multiplayer case, we first analyze the two-player case and
then generalize the result.

3.1 Two-Player Cooperative Dominoes

Theorem 1. Two-player cooperative dominoes is NP-complete.

Proof. First, two-player cooperative dominoes is in NP: a certificate is a move
sequence that causes Player 1 to win.

To show that two-player cooperative dominoes is NP-hard, we reduce from
Hamiltonian Path; refer to Figure 1. Suppose G = (V,E) is a graph and assume
that G is simple and connected. Then construct a dominoes instance as follows:

T1 = {{i, i} | i ∈ V } and T2 = {{i, j} | ij ∈ E} ∪ {{∗, ∗}}. (1)

Here we give Player 2 an extra domino {∗, ∗} so that Player 2 can never win,
as the domino matches nothing and Player 2 does not start. (If we did not give
Player 2 this extra domino, s/he can win in the case where G is the path graph.)
Thus, if there is a winning strategy, then Player 1 wins.

Player 1 cannot place dominoes next to other dominoes that belonged to
Player 1 because the dominoes, by construction, cannot match. Hence, whenever
Player 2 plays a domino, Player 1 must place a domino adjacent to it. Therefore,
if this game has a winner, Player 1 wins with a chain of dominoes that alternates
between Player 1 and Player 2.

The sequence generated by the chain of dominoes describes a Hamiltonian
path in G; refer to Figure 2. Because Player 1 gets one and only one domino per

2 UNO is a registered trademark of Mattel Corporation.



Playing Dominoes Is Hard, Except by Yourself 141

4

2

6

1

5

3

(a) An instance of Hamiltonian path

PLAYER 1 PLAYER 2

(b) Corresponding instance of 2-
player cooperative dominoes

Fig. 1. Reduction from Hamiltonian path to 2-player cooperative dominoes

Fig. 2. Hamiltonian path represented as domino chain

vertex, each vertex will appear only once as a domino in the chain. If Player 1
wins, then Player 1 played all of his/her dominoes, and so all vertices will appear.
The tiles that Player 2 plays are the edges that connect the vertices in the Hamil-
tonian path. Likewise, if there is a Hamiltonian path in G, then Player 1 and
Player 2 can play the sequence of dominoes corresponding to the Hamiltonian
path to make Player 1 win.

Because Hamiltonian Path is NP-hard [3], two-player cooperative dominoes
is NP-hard, and so it is NP-complete. �

3.2 p-Player Cooperative Dominoes

We can extend Theorem 1 to the p-player case for any fixed p ≥ 2. Note that
p must be fixed, because otherwise the statement follows trivially from the fact
that the p = 2 case is NP-complete.

Corollary 2. p-player cooperative dominoes is NP-complete for any fixed p ≥ 2.

Proof. As in Theorem 1, the game is in NP because any winning sequence for
Player 1 is a certificate.

We show that p-player dominoes is NP-hard because we can simulate any
two-player cooperative game. Players 1 and 2 correspond to Players 1 and 2
from the original reduction, and all other players serve as “null” players.



142 E.D. Demaine, F. Ma, and E. Waingarten

Each null player is given a domino {a, a} for each face a that appears in
T1 ∪T2, the set of dominoes owned by Player 1 and Player 2. (This construction
requires Ti for i > 2 to be a multiset.) This construction ensures that players
who are not Player 1 or 2 cannot change the faces at the end of the current
chain, so they serve only to “communicate” Player 2’s moves to Player 1. Note
that the null players have at least twice as many dominoes as Players 1 and 2,
so none of them can win. In addition, each null player has two dominoes for
any domino played by Player 1 or 2, so these players can never lose by getting
stuck. �

3.3 Single-Player Dominoes

Theorem 3. One-player dominoes is in P.

Proof. Construct the multigraph G where vertices correspond to numbers and
edges correspond to dominoes. That is, if we have a domino {a, b}, then the
multigraph G will have vertices a and b with an edge connecting them.

Now we claim the problem reduces to finding an Eulerian path in the multi-
graph. If we find an Eulerian path, then in the order of its edges, we can place
the corresponding dominoes. Because two successive edges in the path share a
vertex between them, the ends of those corresponding dominoes will have an
end in common, so the chain will be valid. Conversely, if there is a way to place
the dominoes, the resulting chain will correspond to an Eulerian path in the
multigraph.

We can determine in polynomial time whether the multigraph has an Eule-
rian path: the classic theorem of Euler says that we just need to check that all
nodes have even degree except for at most two nodes, which can have odd
degree [4]. �

4 Competitive Dominoes

In this section we discuss competitive dominoes between two or more players.
We do this by first analyzing the two-player case, and then we extend the result
to the general multiplayer and team variants.

Lemma 4. Two-player competitive dominoes is in PSPACE.

Proof. Each instance of dominoes can easily be transformed into the formula
game problem which is in PSPACE [5]. We can specify the possible moves as
variables indexed by domino, direction, position, and turn. If there are n total
dominoes in the game, then there are two directions, n positions, and n turns.
This gives us O(n3) variables.

The formula starts with alternating quantifiers: for Player 1 to have a winning
strategy, there must exist a move by Player 1 in turn 1 such that, for any move
by Player 2 in turn 2, there exists a move by Player 1 in turn 3, and so on.
The formula then has a predicate with four parts. The first part specifies that



Playing Dominoes Is Hard, Except by Yourself 143

Player 1 moves correctly, by checking that there is only one move per turn. The
second specifies that Player 2 moves correctly, by checking that there is at most
one move per turn. The third part specifies that the chain is correct, by checking
all pairs of dominoes with each other, and ignoring the ones that do not apply.
Finally, the last part specifies that Player 1 won by checking that Player 1 got
rid of all of his/her pieces, or Player 2 was stuck at some point.

There are polynomially many variables and all checks require checking a single
variable or a pair of variables. Because there are polynomially many pairs of
variables, we can write the formula down in polynomial space. �

Theorem 5. Two-player competitive dominoes is PSPACE-complete.

Proof. By Lemma 4, it remains to show that competitive dominoes is PSPACE-
hard. We do so by reducing from directed edge bipartite generalized geography
(BIPARTITE-GG). An instance of BIPARTITE-GG consists of a directed bi-
partite graph G = (A ∪ B,E) where E ⊆ A × B, and a start vertex a∗ ∈ A.
A token starts at vertex a, and two players alternate moving the token along
edges, where Player 1 may only use edges directed from A to B, and Player 2
may only use edges directed from B to A. Each edge can be played at most
once; a player loses if s/he has no possible moves. It is PSPACE-complete to
determine whether Player 1 has a winning strategy [6].

Given any such graph G and start vertex a∗, we construct an instance of two-
player competitive dominoes as follows; refer to Figure 3. For each directed edge
(a, b) where a ∈ A and b ∈ B, give Player 1 the domino {a, b}. Similarly, for
each directed edge (b, a) ∈ B×A, give Player 2 the domino {a, b}. We call these
dominoes edge dominoes. An edge domino itself does not encode information
about the direction of the original edge: the direction can be recovered by looking
at which player owns the edge, because Player 1 receives dominoes only for edges
pointing from nodes in A to nodes in B, and Player 2 receives dominoes only
for edges pointing from nodes in B to nodes in A.

Each player also receives one nonsense domino {#,#} that can be connected
only to the other player’s nonsense domino {#,#}. The purpose of these domi-
noes is to eliminate the option of a player winning by getting rid of all their
dominoes, and instead focus on blocking the opponent. It never makes sense to
play the nonsense domino first (as the other player would immediately win),
and the nonsense domino can never be played if a player starts with a different
domino, so it is impossible for a player to win by playing all dominoes.

BIPARTITE-GG requires Player 1 to start from some specified node a∗ ∈ A.
To reproduce this in our instance of two-player competitive dominoes, we define
Player 2 to move first, and give Player 2 the start domino {a∗, :-)}, where :-) is
a unique value. In addition, for each node b ∈ B, we give Player 1 the garbage
dominoes {b, b′}, {b, b′′}, {b′, b′}, and {b′′, b′′}. The “garbage” values b′ and b′′

(drawn in figures as squares or triangles) appear only in dominoes belonging to
Player 1, so they will effectively block Player 2.

We claim that this construction forces Player 2 to play the start domino first
(assuming s/he moves first). As argued above, Player 2 cannot start with the



144 E.D. Demaine, F. Ma, and E. Waingarten

A B

4

2
6

1
5

3
7

Fig. 3. Reduction from BIPARTITE-GG to two-player competitive dominoes

nonsense domino {#,#}. To see why Player 2 cannot start with an edge domino,
consider two cases; refer to Figure 4.

# #

(a) Case 1

# #:-)

(b) Case 2

Fig. 4. When Player 2 does not start with the start domino, in the example of Figure 3

Case 1: Player 2 starts with an edge domino {a, b} where a∗ �= a ∈ A and
b ∈ B. Player 1 can play the garbage tile {b, b′}. Then Player 2’s next move
must be some edge domino {a, c} where c ∈ B. But then Player 1 can play the
garbage tile {c, c′′}. This leaves Player 2 with no moves, which wins the game
for Player 1.

Case 2: Player 2 starts with an edge domino {a∗, b} where b ∈ B. Player 1 can
play the garbage tile {b, b′}. Then Player 2’s next move is forced to be {a∗, :-)},
as any other move would result in Player 1 winning as shown in Case 1. Then
Player 1 can play the garbage tile {b′, b′}. Again this leaves Player 2 with no
moves.



Playing Dominoes Is Hard, Except by Yourself 145

Therefore Player 2 starts with the start domino {a, :-)}. Because the value :-)
is unique, the domino chain can extend only on one end. We can think of this
one-way chain as moves in BIPARTITE-GG. The domino ends keep track of the
current vertex that the BIPARTITE-GG is on, and playing a domino changes
the current vertex in BIPARTITE-GG. Additionally, placing a domino means
that that domino cannot be used again, which models that BIPARTITE-GG
removes directed edges as the players pick them.

If Player 1 has a winning strategy in the two-player competitive dominoes
case with this arrangement, then the placement of the dominoes corresponds to
the directed edges that Player 1 picks in response to Player 2. Likewise, if there
is a winning strategy in BIPARTITE-GG, then Player 1 can use that strategy
for the placement of dominoes in the two-player competitive dominoes game.

One minor point is that the above construction switches the starting player,
but our definition of dominoes required Player 1 to move first. To fix this, simply
reverse the roles of Players 1 and 2 in the BIPARTITE-GG instance before
applying the reduction. �

Corollary 6. p-player competitive dominoes is PSPACE-complete for any fixed
p ≥ 2.

Proof. Similar to Lemma 4, this game is in PSPACE (Players 2 through p act
as a collective opponent to Player 1). PSPACE-hardness follows from the fact
that a game with p players can simulate any game with two players: all players
besides Player 1 and Player 2 act as null players, as in the proof of Theorem 2.

�

Corollary 7. The team version of competitive dominoes is PSPACE-complete.

Proof. Similar to Lemma 4, this game is in PSPACE (quantifiers switch when-
ever the team switches). PSPACE-hardness follows from the fact that a team
game can simulate any game with two players: any player not on Player 1’s team
can serve the role of Player 2, and all other players can function as null players,
as in the proof of Theorem 2. �

While Corollary 7 is simple, it confirms that competitive dominoes becomes
only harder when players are grouped into teams, which is often how the real
game is played.

5 Conclusion

In this paper, we determined the computational complexity of the game of domi-
noes under different variants: single-player, multiplayer cooperative, multiplayer
competitive, and team competitive. All variants of multiplayer dominoes were
intractable, while the single-player variant was easy.

Some details of our model deserve further study. First, we forbade players from
passing, but the classic game allows passing exactly when a player has no feasible
move. Second, we allowed the initial “hands” to have an unequal number of



146 E.D. Demaine, F. Ma, and E. Waingarten

dominoes between the players, but the classic game distributes dominoes evenly.
Third, we allowed arbitrary (multi)sets of dominoes for each player, but the
classic four-player game distributes a “double-n” set of dominoes (exactly one
of each possible domino {a, b} with a, b ∈ {0, 1, . . . , n}). Do our results extend
to these models?

A final direction for future work would be to consider the competitive mul-
tiplayer game with imperfect information. Bounded team games with imperfect
information are potentially as hard as NEXPTIME (see [7]). Analyzing dominoes
in this setting seems much more difficult, however.

Acknowledgments. We thank Diego Huyke Villeneuve for drawing the figures.

References

1. Stormdark, I.P., Media: Domino history (2010),
http://www.domino-play.com/History.htm

2. Demaine, E.D., Demaine, M.L., Harvey, N.J., Uehara, R., Uno, T., Uno, Y.: Uno is
hard, even for a single player. Theoretical Computer Science 521, 51–61 (2014)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

4. Bóna, M.: A Walk Through Combinatorics: An Introduction to Enumeration and
Graph Theory. World Scientific (2011)

5. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company
(1997)

6. Lichtenstein, D., Sipser, M.: Go is polynomial-space hard. J. ACM 27(2), 393–401
(1980)

7. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. AK Peters, Limited
(2009)

http://www.domino-play.com/History.htm


UNO Gets Easier for a Single Player

Palash Dey, Prachi Goyal, and Neeldhara Misra

Indian Institute of Science, Bangalore, India
{palash,prachi,neeldhara}@csa.iisc.ernet.in

Abstract. This work is a follow up to [2, FUN 2010], which initiated a
detailed analysis of the popular game of UNO R©. We consider the solitaire
version of the game, which was shown to be NP-complete. In [2], the

authors also demonstrate a nO(c2) algorithm, where c is the number of
colors across all the cards, which implies, in particular that the problem
is polynomial time when the number of colors is a constant.

In this work, we propose a kernelization algorithm, a consequence of
which is that the problem is fixed-parameter tractable when the number
of colors is treated as a parameter. This removes the exponential depen-
dence on c and answers the question stated in [2] in the affirmative. We
also introduce a natural and possibly more challenging version of UNO
that we call “All Or None UNO”. For this variant, we prove that even the
single-player version is NP-complete, and we show a single-exponential
FPT algorithm, along with a cubic kernel.

1 Introduction

UNO R© is a popular American card game invented in the year 1971, by Merle
Robbins. It is a shedding game, where the goal is to get rid of all the cards at
hand, while constrained by some simple rules1.

This paper is motivated largely by the work in [2], which formalizes the game
of UNO and studies it from an algorithmic combinatorial game theory perspec-
tive. It is also motivated to a smaller extent by the plight of our friend Sheldon
who, as it turns out, is a devoted UNO addict. On his birthday this year, Amy
gifts him a painstakingly collected set of UNO cards from different parts of the
world.

The gift, however, is accompanied by a challenge — Amy asks Sheldon to
demolish the entire collection in a single solitaire game. Sheldon is confident from
several hours of focused practice. However, this won’t be easy, for several reasons:
first, the cards were mostly second-hand, and so several cards from several decks
are simply missing. Further, while all cards were either red, green, blue, or yellow,
the numbers were often printed in the local language. Her collection involved
over a thousand and seven hundred and thirty six distinct number symbols.

1 For the non-UNO-player reader: every card has a number and a color, and when
one card is discarded, it must have either the same number or the same color as the
previous one.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 147–157, 2014.
c© Springer International Publishing Switzerland 2014



148 P. Dey, P. Goyal, and N. Misra

Even though Sheldon could stare at the entire deck all he liked, he could never
keep track of all of them!

Having accepted the challenge, and considering a precious lot was at stake (we
regret that we are unable to share the exact details here, but we are confident
that the interested reader will be able to guess), Sheldon ultimately found it
in his best interests to turn to the theory of algorithms for help. This work
investigates the game of UNO, and is especially relevant to those who are put
in precarious positions by solitaire game challenges.

The UNO game was formally addressed in [2], and several variations were
considered. For example, for the multiplayer versions, the authors suggest co-
operative versions, where all players help one player finish his (or her) deck;
and un-co-operative versions where everyone plays to win. On the other hand,
the simplest non-trivial style of playing UNO — involving only a single player
trying to discard a given deck — case turned out to be (somewhat surprisingly)
intricate. To begin with, it is already NP-complete. One of the results in [2]

shows an intricate nO(c2) algorithm for the problem, where c is the number
of distinct colors in the deck. This does imply that the problem is solvable in
polynomial time if the number of colors is a constant. The algorithm has a
geometric flavor — it treats every card as a point on a grid, and then performs
dynamic programming.

We pursue this question further, and in particular, address the question of
whether the problem is fixed-parameter tractable when parameterized by c —
that is, is there an algorithm whose running time is of the form f(c)·nO(1), so that
the exponent of n is independent of c. This a natural direction of improvement,
and we are able to answer this question in the affirmative.

Our approach to obtaining a FPT algorithm is kernelization. The algorithm
involves an analysis of the structure of a winning sequence, where we first demon-
strate that any winning sequence can be remodeled into another one with a lim-
ited number of “color chunks”, which are maximal subsequences of cards with
the same color. Based on this, we are able to formulate a reduction rule that
safely removes cards from the game when there are enough involving a particular
number. With this, we obtain that any instance of a single-player UNO game can
be turned into one where the number of numbers is O(c2), significantly reducing
the size of the game (note that with c colors and only c2 numbers, we can have
at most c3 distinct cards). Combined with the algorithm in [2], we remark that

the problem also admits an algorithm with running time 2O(c2 log c) · nO(1).
Next, we introduce and study a more challenging form of UNO (we believe it

to be more challenging for the player attempting it), which we call “All-Or-None”
UNO. Here, the first time a color turns up in a discarding sequence, the player
has to either commit to the color or choose to destroy it. If he commits, he must
exhaust all cards of the said color right away. Otherwise, the cards that bear
this color will be effectively rendered colorless, and they have to be discarded in
the future only with the help of the numbers on them. The single-player version
of this game turns out to be NP-complete as well, and in this setting we show



UNO Gets Easier for a Single Player 149

a single-exponential algorithm and a cubic kernel when parameterized by the
number of colors.

The rest of the paper is organized as follows. We first introduce some general
notation and establish the setup. Next, we illustrate the kernel for the standard
version, and finally describe the algorithm for the All-Or-None version. Due to
space constraints, some proofs have been omitted. Such statements are marked
with a �.

2 Preliminaries

In this section, we state some basic definitions related to our modeling of the
game of UNO, and introduce terminology from graph theory and algorithms.
We also establish some of the notation that will be used throughout.

We use N to denote the set of natural numbers. For a natural number n, we
use [n] to denote the set {1, 2, . . . , n}.

To describe running times of we will use the O� notation. Given f : N → N,
we define O�(f(n)) to be O(f(n) · p(n)), where p(·) is some polynomial func-
tion. That is, the O∗ notation suppresses polynomial factors in the running-time
expression.

We will often be dealing with permutations of objects from an universe, and
we represent permutations in a sequence notation. In fact, for ease of discussion,
we refer to permutations as sequences over the relevant universe. When we want
to emphasize the possibility that we have a string over an universe that allows
for repetition, we distinguish the situation by calling such a sequence a word.

We typically reserve π and σ for sequences, and use the notation σ � π to
indicate that σ is a contiguous subsequence of π. Our indexing starts at one, so
one may speak of the first element of the sequence π and refer to it by π[1]. For
a sequence π of n objects, the notation π[i, j] for 1 ≤ i ≤ j ≤ n refers to the
subsequence starting at the ith element of π and ending at the jth element of
π (note that these elements are included in π[i, j]). For ease of presentation, we
define π[i, j] to be the empty sequence when i > j. We use the notation π ◦ σ to
denote the concatenation of π and σ. We that we abuse standard terminology
and use “subsequence” to refer to contiguous subsequences.

The Game of UNO. An UNO card has two attributes — a color and a number.
More formally we define a card to be an ordered pair (x, y) ∈ C × B, where
C = {1, 2, . . . , c} is a set of colors and B = {1, 2, . . . , b} is a set of numbers.
A collection of cards, or a deck is usually denoted by Γ , and when we want to
pick a subset of the deck, we use the letter ℘. We often refer to the cards by
their ordered pair expression. Sometimes, the exact detail of the card is not of
interest, in such situations we use variations of the letters g and h to refer to
cards as a whole. We do use ℵ(g) and �(g) to refer to the color and the number
of the card g, respectively. As a matter of informal convention, we use �, �′, and
so on, to refer to colors, while we use t, p, q and such to refer to numbers.

While in general, any reasonably finite number of players are welcome to join
an UNO game, in this work we focus only on the single player or “solitaire”



150 P. Dey, P. Goyal, and N. Misra

version of the game. Therefore, we only describe the model in this setting. By
and large, we follow the setup suggested in [2]. At the beginning of the game the
player is dealt with a set of n cards. We assume that no card is repeated (and in
making this choice we deviate2 from the model proposed in [2]). After playing a
certain card in the ith round, for the (i + 1)th round, the only valid move that
he can make is a card that has the same number or the same color as the one in
the previous round.

Colorful UNO-1 (The Solitaire Version) Parameter: c
Input: A set Γ of n cards {(xi, yi) | i ∈ [n]}, where xi ∈ {1, 2, . . . , c}

and yi ∈ {1, 2, . . . , b}.
Question: Determine whether the player can play all the cards.

We use the adjective “colorful” to imply that the problem is parameterized
by the number of colors. We now introduce some notations that we use through
out the paper. We note that this problem continues to be NP-complete when
no duplicate cards are permitted (it is easy to verify that the reduced instance
obtained in [2] indeed creates no repeated cards).

If we encounter, in a sequence of cards, two consecutive cards that have dif-
ferent colors and different numbers, then we refer to this unfortunate situation
as a match violation. We say that a sequence of cards π = {x1, x2, . . . xl} is a
feasible playing sequence, if ∀i where 1 ≤ i < l, the cards xi and xi+1 either
have a common color or a common number. We refer to a sequence of cards as a
winning sequence if it is a feasible playing sequence that uses all the input cards.

For a color � ∈ [c], we denote the set of cards whose color is � by Γ [�].
Similarly, for a number t ∈ [b], we denote the set of cards whose number is t by
Γ [t]. Further, the degree of a color � is the number of cards in the deck that have
color � (notationally, we say d(�) := |Γ [�]|). Similarly, the degree of a number
t is the number of cards in the deck that have the number t (again, we write
d(t) := |Γ [t]|).

UNO: The All-Or-None Version. We also introduce an arguably more challeng-
ing version of the single-player UNO game. The revised rules require the player
to treat cards of the same color in an “all or nothing” spirit. When a card of
color r is played for the first time, then the color has to be either committed
or destroyed. If the color is committed, then the player is required to exhaust
all cards of color r in his playing sequence before playing a card whose color
is different from r. If the color is destroyed, then the player is forbidden from
playing two cards of color r consecutively in his playing sequence. Notice that
when a color is destroyed, then it cannot be used together at all, so it is as
if the card was effectively without a color (hence the terminology). We show
that this single-player version of this game is also NP-complete, and it admits a
single-exponential FPT algorithm, and a cubic kernel as well.

2 Having said that, our results scale easily enough when the number of duplicates is
bounded by a constant.



UNO Gets Easier for a Single Player 151

Graphs. In the following, let G = (V,E) and G′ = (V ′, E′) be graphs, and
U ⊆ V some subset of vertices of G. We introduce only the definitions that we
will be using. For any non-empty subset W ⊆ V , the subgraph of G induced by
W is denoted by G[W ]; its vertex set is W and its edge set consists of all those
edges of E with both endpoints in W . A path in a graph is a sequence of distinct
vertices v0, v1, . . . , vk such that (vi, vi+1) is an edge for all 0 ≤ i ≤ (k − 1). A
Hamiltonian path of a graph G is a path featuring every vertex of G.

We refer the reader to [3] for details on standard graph theoretic notation and
terminology we use in the paper. We also use standard terminology from param-
eterized algorithms, we refer the reader to [5, 4] for a detailed introduction.

3 The Standard UNO Game

In this section, we argue a polynomial kernel for Colorful UNO-1.
Let (Γ, c, b) be an instance of Colorful UNO-1. We will first need some

terminology. Let π be a feasible playing sequence of ℘ ⊆ Γ . For a color � ∈ [c],
we say that a maximal contiguous subsequence of cards in π of color � is a �-
chunk (see Figure 1). The length of a chunk is simply the number of cards in the
chunk. For a feasible playing sequence π and a color � ∈ [c], the frequency of � in
π is the number of distinct �-chunks in π. Further, we say that � is fragmented
in π if its frequency in π is more than c. We use the notation σ � π to denote a
contiguous subsequence of π.

5 2 3 3 3 3 3 3 33 3 33 4 1 3 3 5 7 4 4 33 3

Chunk

Bridge

Chunk

Fig. 1. Color chunks and number bridges (see Section 4.1 for the notion of a bridge)
in a feasible playing sequence

Our first observation is that fragmented colors can be “fixed”, in the following
sense. Given a feasible playing sequence of ℘ where a color � is fragmented, we
claim that there exists another feasible playing sequence where � is not frag-
mented. This uses a simple pigeon-holing argument followed by some re-wiring
that merges distant chunks. While the formal proof is deferred, the user may
find Figure 2 useful.

Lemma 1. [�] Let (Γ, c, b) be an instance of Colorful UNO-1, and let � ∈ [c].
Further, let π be a feasible playing sequence of ℘ ⊆ Γ where � is fragmented.
Then, there exists a feasible playing sequence π� where � is not fragmented.

Lemma 1 has the following consequence: if we have a Yes-instance of Color-

ful UNO-1, then there exists a feasible playing sequence exhausting all the
cards where no color is fragmented. Indeed, starting with an arbitrary winning



152 P. Dey, P. Goyal, and N. Misra

7 7 4 9 5 6 36 2

Fig. 2. Remodeling a playing sequence to merge far-apart color chunks

sequence, we may appeal to Lemma 1 for every fragmented color separately, by
observing that when the lemma is invoked for a color �, we do not increase the
frequency of any other color. This brings us to the following corollary.

Corollary 1. Let (Γ, c, b) be a Yes-instance of Colorful UNO-1. Then, there
exists a winning sequence where the frequency of � is at most c for all � ∈ [c]. In
particular, this sequence admits at most c2 chunks.

Note that in the setting where there are no duplicate cards, the number of
cards in any instance (Γ, c, b) of Colorful UNO-1 is at most bc. Therefore, to
obtain a polynomial kernel, it suffices to obtain a bound on b in terms of c.

We now introduce some more terminology. For � ∈ [c], the degree of � is simply
the number of cards in Γ that have color �. Notationally, the degree of �, which
we will denote by d(�), is simply |Γ [�]|. Note that d(�) ≤ b for all � ∈ [c]. For any
feasible sequence, the cards that occur at the beginning and end of chunks are
called critical cards, while all remaining cards are called wildcards. We begin with
an easy observation that is based on the fact that the predecessor and successor
of a wildcard necessarily match with each other. Therefore, the removal of such
a card does not “break” the associated feasible sequence. Similarly, we have that
a wildcard at the start or end of a sequence can always be removed without
affecting the sequence. This allows us to conclude the following.

Proposition 1. Let ℘ ⊆ Γ be a set of cards, and let π be a feasible sequence of
℘. If we remove a wildcard g from π, then we still have a feasible sequence of
℘ \ {g}.

We now propose the following kernelization algorithm. We will consider pairs of
cards. Initially, we say that all cards are unlabeled. Now, for 1 ≤ �, �′ ≤ c, we
consider

S
,
′ := {〈g, h〉 | �(g) = �(h) and g ∈ Γ [�], h ∈ Γ [�′]}.

If the number of unlabeled card pairs in S
,
′ is more than 5c, then we arbi-
trarily chose 5c unlabeled card pairs and given them the label [�, �′]. Otherwise,
we mark all the available unlabeled card pairs with the label [�, �′]. At the end of
this procedure, we say that a card is unlabeled if it doesn’t belong to any labeled
pair. We now propose the following reduction rule.



UNO Gets Easier for a Single Player 153

Reduction Rule 1. Let g be a an unlabeled card, where ℵ(g) = �. If d(�) >
c+ 1, then delete g from Γ .

Note that with one application of Reduction Rule 1, we have that if a card g of
color � was removed, then d(�) in the reduced game is at least (c + 1). Indeed,
if not, then the degree of � in the original game was at most (c + 1), which
contradicts the pre-requisite for removing g from the game in Reduction Rule 1.
Thus, it is easy to arrive at the following.

Proposition 2. Let (Γ �, c�, b�) be the reduced instance corresponding to (Γ, c, b),
and let Υ ⊆ [c] denote the set of colors on the cards that were deleted by the ap-
plication of Reduction Rule 1. If d(�) < c+ 1 in Γ �, then � /∈ Υ .

We are now ready to establish the correctness of this reduction rule.

Lemma 2. Let (Γ �, c�, b�) be the reduced instance corresponding to (Γ, c, b). We
claim that (Γ �, c�, b�) is a Yes instance if, and only if, (Γ, c, b) is a Yes instance.

Proof. In the forward direction, let π be a winning sequence for (Γ, c, b). By Re-
duction Rule 1 we may assume, without loss of generality, that π has at most
c2 chunks. Consider π� obtained by projecting π onto Γ �. Suppose now that
π� is not a winning sequence. Clearly, π� exhausts all cards in Γ �, therefore if
the sequence is not winning, it must be because of a match violation. Let π�[i]
and π�[i + 1] be such a violation. Note that these two cards must have been in
different and adjacent chunks in π. Let � be the color in the chunk of π�[i] in
π, and let �′ be the color in the chunk of π�[i + 1] in π. Note that both these
chunks in π contained cards that were deleted by Reduction Rule 1 (otherwise
this violation would be present in π).

This implies that there exist, in Γ , at least 5c card pairs 〈g, h〉 such that each
pair of cards share the same number, and these cards were labeled with the
pair [�, �′] by the kernelization algorithm. Since Reduction Rule 1 never deletes
a labeled pair, these card pairs, say ℘, are also present in Γ �. Observe that π�

has at most c �-chunks, and at most c �′ chunks. Therefore, at most 2c cards
in Γ �(�) are critical, and similarly, at most 2c cards in Γ �(�′) are critical, with
respect to π�. Therefore, in ℘, there is at least one pair of wildcards, say (x, y).
We now use this pair to fix the match violation by inserting x after π�[i] and
inserting y before π�[i+1]. This reduces the total number of violations in π� by
one, and doesn’t create any new violations by Proposition 1.

This shows that every violation can be iteratively fixed to obtain a winning
sequence π� for the instance (Γ �, c�, b�).

We now turn to the reverse direction. Let π� be a winning sequence for the
instance (Γ �, c�, b�). We may assume without loss of generality, by Lemma 1,
that for every � ∈ [c�], there are at most c� ≤ c �-chunks in π�.

To obtain a winning sequence for (Γ, c, b), we have to insert all the cards in
Γ \ Γ � into the sequence π. Consider g ∈ Γ \ Γ �, and assume that the color of g
is �. Notice that g is a card that was deleted by Reduction Rule 1. This implies
� has degree at least c + 1 in Γ �. Since there are at most c �-chunks, by the



154 P. Dey, P. Goyal, and N. Misra

pigeon-hole principle, there is a �-chunk of length at least two. Now, since π�

admits some �-chunk of length at least two, then g can be inserted inside this
chunk (specifically, making it a wildcard in the resulting sequence). Repeating
this argument for every card in Γ \Γ �, we are done in the reverse direction. ��

We now argue the size of the kernel obtained after the application of Reduction
Rule 1.

Theorem 1. Colorful UNO-1 admits a kernel on O(c3) cards.

Proof. Let (Γ �, c�, b�) be the reduced instance corresponding to (Γ, c, b). The
equivalence of these instances is given by Lemma 2. Now we analyze |Γ �|. Fix
� ∈ [c�]. If d(�) in Γ was at most (c + 1), then there are at most (c + 1) cards
of color � in Γ � as well. Otherwise, observe that the number of labeled cards in
Γ [�] is at most 5c(c− 1). Since we are considering the case when d(�) is strictly
greater than (c + 1) in Γ , we have that all unlabeled cards in Γ [�] are deleted
by Reduction Rule 1. Therefore, the degree of � in Γ � is at most 5c(c− 1). Since
there are c� ≤ c colors in total, evidently the total number of cards is bounded
by 5c2(c− 1) = O(c3). ��

4 The All-or-None UNO Game

In this section, we consider the game of All-Or-None UNO. We begin with
a mathematical formulation of the game. An instance of All-Or-None UNO

consists of a set of cards χ from [c] × [b], and a sequence of cards π := g1 · · · gn
is a valid playing sequence if, for every � ∈ [c], one of the following is true (see
also Figure 3):

– All cards of color � appear as a contiguous subsequence of π, or
– No two cards of color � appear consecutively in π.

We say that the player wins his game if there is a valid playing sequence that
exhausts all the cards, and as before, such a sequence is called a winning se-
quence. It turns out that determining if a player can win inAll-Or-None UNO

5 2 8 8 8 5 5 3 35 5 53 4 1 3 3 5 7 4 4 33 3

5 2 3 3 3 3 3 3 33 3 37 4 1 3 3 5 7 4 4 37 7

Fig. 3. Top: An invalid run of All-Or-None UNO (the green card is violating the rules).
Below: A valid run of All-Or-None UNO

.



UNO Gets Easier for a Single Player 155

is NP-hard3. Thereafter, we prove that the question admits a single-exponential
FPT algorithm and a cubic kernel when parameterized by the number of colors.

4.1 A Single-Exponential FPT Algorithm

As before, we analyze a Yes-instance of All-Or-None UNO. Let (Γ, c, b) be
an instance of All-Or-None UNO. Let π be a feasible playing sequence of
℘ ⊆ Γ . The most striking feature of π is the following: for any � ∈ [c], π has
either exactly one �-chunk, or all �-chunks in π are of length one.

We will need some additional terminology, mostly to observe the behavior of
maximal subsequences from the lens of numbers rather than colors. If σ is a
sequence of cards, we use σ† to refer to the sequence σ without the first and last
cards in σ, that is, σ† := σ[2, |σ| − 1]. Note that if σ is a sequence of length at
most two, σ† is the empty sequence.

Fix t ∈ [b], and let σ be a maximal contiguous subsequence of cards in π
with number t. When |σ| > 2, we call σ† a t-bridge. The length of a bridge is
simply the number of cards in the bridge. For a feasible playing sequence π and
a number t ∈ [b], the frequency of t in π is the number of distinct t-bridges in π.
Further, we say that t is broken in π if its frequency in π is more than one.

Our first task here is to fix broken numbers.

Lemma 3. Let (Γ, c, b) be an instance of All-Or-None UNO, and let t ∈ [b].
Further, let π be a feasible playing sequence of ℘ ⊆ Γ where t is broken. Then,
there exists a feasible playing sequence π� where t is not broken.

Proof. If t is broken in π, then π admits at least two t-bridges, say π[i1, j1] and
π[i2, j2]. Notice that the cards π[i1 − 1] and π[j1 + 1] have the same number,
by the definition of a bridge. We may therefore “pluck out” the bridge π[i1, j1]
(without affecting feasibility) and insert it into the second t-bridge. In particular,
we are considering the remodeled sequence (see Figure 4):

π� := π[1, i1] ◦ π[j1] ◦ π[j1 + 1, i2] ◦ π[i1 + 1, j1 − 1] ◦ π[i2 + 1, n],

and repeating this operation for every pair of t-bridges eventually merges them
all, and in the resulting sequence t is not broken any more.

Now, a winning sequence π can always be rearranged to look like a sequence of
chunks that are either consecutive, or are chained together by distinct number
bridges. Note that two number bridges cannot be consecutive, by definition. We
state this explicitly in the following corollary.

Corollary 2. Let (Γ, c, b) be a Yes-instance of All-Or-None UNO. Then,
there exists a winning sequence of the form η1, . . . , ηr, where every ηi is either
a �-chunk for some � ∈ [c] or a t-bridge for some t ∈ [b], and no two chunks or
bridges are associated with the same color or number, respectively.

3 The details are in the full version.



156 P. Dey, P. Goyal, and N. Misra

7 7 7 7 7 7 7 7

7

7 7

7 77 77 7 7 7 7

Fig. 4. Rearranging a card sequence to merge disjoint bridges

We are now ready to describe the algorithm. The starting point is the fact
that every color is going to either appear as a non-trivial chunk or will be spread
out over at most (c + 1) bridges. We begin by guessing the colors that will be
committed, that is, those that will feature in non-trivial chunks. We denote these
colors by X ⊆ [c]. For the remaining colors, we consider the numbers that they
appear with in the deck, that is, we let Y :=

⋃

∈[c]\X {�(g) | g ∈ Γ [�]} .

Notice that if |Y | > |X |+1, then we can stop and say No, by Corollary 2. Oth-
erwise, we have to try and find a winning sequence of cards where all cards that
have a color from X appear in exhaustive chunks while all remaining cards ap-
pear in bridges. For simplicity, we think of this as simply finding an arrangement
of elements in X ∪ Y that can be “pulled back” to a winning sequence. Specifi-
cally, let us call a sequence over X ∪ Y a motif. A motif σ = α1, . . . , α|X|+|Y | is
said to be feasible if, to begin with, if αi ∈ Y , then αi+1 ∈ X , and further, for
every αi ∈ X we have cards hi �= gi such that:

– For all αi ∈ X , ℵ(hi) = ℵ(gi) = αi.
– If αi ∈ X and αi+1 ∈ X , �(gi) = �(hi+1), and ℵ(gi) = αi and ℵ(hi+1) =

αi+1.
– If αi ∈ Y , and 1 < i < r + s, then �(gi−1) = αi = �(hi+1), and ℵ(gi−1) =

αi−1, and ℵ(gi+1) = αi+1.
– If α1 ∈ Y , then α1 = �(h2), and ℵ(g2) = α2.
– If α|X|+|Y | ∈ Y , then α|X|+|Y |−1 = �(h|X|+|Y |−1), and ℵ(g|X|+|Y |−1) =

α|X|+|Y |−1.

The cards {hi, gi | i such that αi ∈ X} will be referred to as the witnesses
of feasibility. We now claim that a winning sequence over Γ suggests a feasible
motif over (X ∪ Y ), and conversely.

Lemma 4. [�] The instance (Γ, c, b) has a winning sequence π if, and only if,
for some X ⊆ [c] there is a feasible motif σ of (X ∪ Y ) (where Y is defined as
before).

Note that it now suffices to check if X admits a feasible motif. While this can be
done by exploring all arrangements of the motifs, this proposition will lead us



UNO Gets Easier for a Single Player 157

to an algorithm whose running time O(c!), which is not single-exponential in c.
Therefore, to keep the time in check, we reduce this task to the problem of finding
a path in a restricted sense, and it turns out that the latter can be determined
by dynamic programming [1]. The details of this reduction are deferred to the
full version. The reduction eventually leads us to the following conclusion.

Theorem 2. There is an algorithm that decides All-Or-None UNO in time
O�(17c).

Proof. By Lemma 4, the input instance has a winning sequence π if, and only if,
for some X ⊆ [c] there is a feasible motif σ of (X ∪ Y ) (where Y is defined as
before). For every |X | ⊆ [c], we have to find a colorful path of length 3|X |+ |Y | ≤
3|X |+ |X |+ 1 (recall that |Y | ≤ |X |+ 1). By [1, Lemma 3.1], this can be done in
timeO((4|X |+1) ·2(4|X|+1) · |E(H)|. The running time, therefore, can be given by:

∑
X⊆[c]

2(4i+1) · (4i+ 1) · |E(H)| ≤
c∑

i=0

(
c

i

)
· 2(4i+1) · (4i+ 1) · |E(H)| ≤= O�(17c).

��
This concludes the proof of the theorem.

Despite the new rules in place (or thanks to them), All-Or-None UNO

admits a cubic kernel. We refer the reader to the full version for the details of
the kernelization.

5 Conclusions

We showed that deciding the single version of the UNO game is fixed-parameter
tractable by showing a cubic kernel for the problem. A natural question is to
improve the running time of the FPT algorithm from 2O(c2 log c) · nO(1), and the
size of the cubic kernel from O(c3).

It is also interesting to see if the multi-player versions are FPT when param-
eterized by the number of numbers. Also, it is natural to check if there are other
parameters that are much smaller than either b or c but that allow for fixed-
parameter tractable algorithms. In this context, exploring structural parameters
on the natural graph associated with an UNO game would offer a possible di-
rection for future work.

References

[1] Alon, Yuster, Zwick: Color-Coding. JACM: Journal of the ACM 42 (1995)
[2] Demaine, E.D., Demaine, M.L., Uehara, R., Uno, T., Uno, Y.: UNO Is Hard, Even

for a Single Player. In: Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 133–144.
Springer, Heidelberg (2010)

[3] Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)
[4] Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Com-

puter Science. An EATCS Series). Springer-Verlag New York, Inc. (2006)
[5] Niedermeier, R.: Invitation to Fixed Parameter Algorithms (Oxford Lecture Series

in Mathematics and Its Applications). Oxford University Press, USA (2006)



Secure Auctions without Cryptography

Jannik Dreier1, Hugo Jonker2, and Pascal Lafourcade3,4

1 Institute of Information Security, Department of Computer Science, ETH Zurich, Switzerland
2 University of Luxembourg, Luxembourg

3 Clermont Université, Université d’Auvergne, LIMOS, Clermont-Ferrand, France
4 CNRS, UMR 6158, LIMOS, Aubière, France

Abstract. An auction is a simple way of selling and buying goods. Modern auc-
tion protocols often rely on complex cryptographic operations to ensure manifold
security properties such as bidder-anonymity or bid-privacy, non-repudiation, fair-
ness or public verifiability of the result. This makes them difficult to understand
for users who are not experts in cryptography. We propose two physical auction
protocols inspired by Sako’s cryptographic auction protocol. In contrast to Sako’s
protocol, they do not rely on cryptographic operations, but on physical properties
of the manipulated mechanical objects to ensure the desired security properties.
The first protocol only uses standard office material, whereas the second uses a
special wooden box. We validate the security of our solutions using ProVerif.

1 Introduction

Auctions provide sellers and buyers with a way to exchange goods for a mutually
acceptable price. Unlike a marketplace, where the sellers compete with each other, auc-
tions are a seller’s market where buyers bid against each other over the goods for sale.
Because of the competitive nature of the process, often an auctioneer serves as a trusted
third party to mediate the process. However, in many cases (for example on eBay) the
auctioneer charges a percentage of the selling price as his fee. Hence he has a financial
interest in the auction, which may compromise his neutrality.

Auction protocols typically rely on assorted cryptographic primitives and/or trusted
parties to simultaneously achieve seemingly contrary security goals like privacy and
verifiability. Examples include signatures of knowledge and zero-knowledge proofs [1],
coin-extractability, range proofs and proofs of knowledge [2], hash chains [3], and
proxy-oblivious transfers and secure evaluation functions [4]. Sako’s protocol [5], ex-
plained in detail in Section 2, applies public-key encryption in a clever way to imple-
ment a verifiable sealed-bid auction. Although it is fully verifiable, the bidders need
to trust the auctioneers for privacy of the losing bids. Brandt’s protocol [6] goes even
further: with the help of an ad hoc cryptographic primitive, Brandt claims to achieve
full privacy for all bidders, i.e. only the winner and the seller learn who the winner
is. However, the reliance on cryptographic primitives has its downside: cryptographic
primitives are complex, and their use requires great care not to introduce subtle weak-
nesses, as recent analysis of Brandt’s protocol shows [7].

Moreover, as these protocols rely on complex cryptography, they are difficult to
understand for a non-expert. This is particularly intriguing when it comes to verifia-
bility – anyone lacking cryptographic expertise cannot ascertain for themselves that

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 158–170, 2014.
c© Springer International Publishing Switzerland 2014



Secure Auctions without Cryptography 159

the verification procedure is indeed correct, and is thus forced to trust the judgment of
cryptographic experts. This view underlies the German Constitutional Court’s decision
on electronic voting machines: “the use of electronic voting machines requires that the
essential steps of the voting and of the determination of the result can be examined by
the citizen reliably and without any specialist knowledge of the subject” [8]. Chaum [9]
argued along the same line in 2004 that all the ingeniously designed verifiable voting
protocols that had been put forward in literature did little to empower actual voters to
verify elections. To address this issue, he proposed a voting protocol using visual cryp-
tography: the ballot was distributed over two layers, that on top of each other showed the
voter’s choice. One layer was destroyed, leaving the voter with a layer full of random
dots from which no choice can be inferred. However, anyone can verify that the system
accurately recorded this layer – without any cryptographic expertise. In the same spirit,
we propose in this paper two auction protocols that only rely on physical manipulations
to enable non-experts to understand the protocol and its verification procedure.

Apart from Chaum’s “true voter-verifiable” voting protocol [9], the power of (partly)
physical protocols have also been studied for other applications. Stajano and Ander-
son [10] proposed a partly physical auction protocol using anonymous broadcast (e.g.
small radio transmitters), which however still uses some cryptography (e.g. one-way
functions and a Diffie-Hellman key exchange). More generally, Moran and Naor showed
that many cryptographic protocols can be implemented using tamper-evident seals [11].
They also analyzed a polling protocol based on physical envelopes [12]. Moreover, in
the context of game theory, Izmalkov, Lepinski and Micali [13] showed that a class of
games (normal-form mechanisms) can be implemented using envelopes, ballot boxes,
and a verifiable mediator in a privacy-preserving way. Fagin, Naor and Winkler [14] de-
scribed various physical methods of comparing two secret values. Finally, Schneier [15]
proposed a cypher based on a pack of cards.

Contributions. We start by recalling Sako’s auction protocol [5] in §2. Inspired by this
protocol, we propose a first physical implementation called Envelopako1 in §3. This
variant does not require cryptography nor trusted parties, yet retains the verifiability,
privacy, authentication and fairness properties of Sako’s protocol. Based on the defini-
tions by Dreier et al. [16,17] we also provide a formal analysis of these security prop-
erties in ProVerif [18], modeling their physical properties using a special equational
theory. Although ensuring privacy for the losing bidders, both the Sako protocol and
the Envelopako variant publicly reveal the winner. Our final contribution, Woodako2, is
described in §4: a physical auction protocol that offers stronger privacy i.e., the winner
is not publicly revealed, yet the result remains verifiable for losing bidders (similar to
the protocol by Brandt [6]). In this protocol, physical properties take the place of cryp-
tography and the trusted auctioneer. We build a concrete prototype, and formally verify
the security properties with the help of ProVerif. Finally, we conclude in §5.

1 Envelope version of Sako’s protocol.
2 Wooden box based implementation of Sako’s protocol.



160 J. Dreier, H. Jonker, and P. Lafourcade

2 Protocol by Sako

Sako [5] proposed a protocol for sealed-bid first-price auctions which hides the bids
of losing bidders and ensures verifiability. The paper provides a high-level description
using a generic cryptographic primitive that ensures certain properties (e.g. ciphertext
indistinguishability). Sako also proposes two instantiations using specific cryptographic
primitives: the first one uses Elgamal [19] encryption, and the second one employs a
probabilistic version of RSA [20].

2.1 Informal Description

Informally, the protocol works as follows:

1. The authorities select a list of allowed bids p1, . . . , pm and a public constant c.
2. For each allowed bid pi, the authorities set up encryption and decryption algorithms

Epi and Dpi (in both implementations simply a public-private key pair). The en-
cryption scheme must provide an indistinguishability property. The authorities pub-
lish the encryption algorithms (or public keys in the implementation) and the list of
allowed bids on a bulletin board (a public append-only broadcast channel).

3. To bid for price pi, a bidder encrypts the public constant c using Epi , signs it and
publishes the bid Cj = Epi(c) together with the signature on the bulletin board.

4. After the bidding phase is over, the authorities check the signatures and start de-
crypting all bids with the highest possible price t = pm. If Dt(Cj) = c, then bid j
was a bid for price t. If all decryptions fail, the authorities decrease t and try again.
Each time a decryption is done, they publish a proof of correct decryption to enable
verifiability. This can be a zero-knowledge proof, or it might be achieved by simply
publishing the secret key.

5. To verify the outcome, anybody can verify the signatures, and check the proofs of
correct decryption.

In the rest of the this section we consider the implementation based on public and private
key pairs as a concretization of the general encryption/decryption algorithms, however
we abstract away of the precise encryption scheme. Note that dishonest authorities can
break privacy since they have access to all secret keys, but because of verifiability a
manipulation of the auction outcome can be detected.

2.2 Security Properties

We now argue informally that the protocol ensures Fairness, Non-Repudiation, Non-
Cancellation and Verifiability (as defined in [17,16]). Moreover it ensures Privacy of
the losing bidders (“Strong Bidding-Price Secrecy” in terms of [17]) if the authorities
are trusted. To formally verify these properties we use ProVerif [18], which allows us to
prove that all the properties hold. Due to the space limitations we only give the informal
analysis here, the formal analysis is available in the extended version of the paper [21].

Non-cancellation and Non-repudiation [17]. The bids are signed and published on
the append-only bulletin board. Hence a bidder cannot deny that he made his bid, and
the submitted bids cannot be altered or otherwise canceled.



Secure Auctions without Cryptography 161

Fairness. We consider the two aspects defined in [17]:

– Highest-Price-Wins: This property is to ensure that an attacker cannot win the auc-
tion at a price below the actual highest bid. In this protocol, the authorities start
by decrypting using the decryption algorithm corresponding to the highest possible
price (if not, this can be detected, see Verifiability), hence they will identify the
highest bid. Similarly, because of the signatures on the bids and the properties of
the bulletin board, the bids cannot be modified, deleted or replaced.

– Weak-Non-Interference: This property is to ensure that no information about the
bidders’ bids is leaked before the bidding phase ends – otherwise they might em-
ploy unfair strategies based on that information. In this protocol the bids leak no
other information apart from the identity of the bidders (revealed by the signature)
because of the indistinguishability property of the encryption scheme.

Verifiability. Everybody can check the signatures of the bids on the bulletin board,
ensuring that all bids originated from eligible bidders and were not modified. Similarly,
all participants can use the proofs of correct decryption to check whether the authorities
opened the bids correctly, hence ensuring the correctness of the outcome computation.

Privacy. The authorities have all private keys and can hence open all bids, breaking pri-
vacy. If the authorities are trusted, they will discard all unused keys, thereby preventing
anyone from opening the losing bids and breaking the privacy of losing bidders. Given
the indistinguishability property of the encryption scheme, this ensures secrecy of the
losing bids.

3 The “Envelopako” Protocol

This protocol is a practical implementation of Sako’s protocol using office material.

3.1 Description

In the Envelopako protocol each bidder has one sheet of paper per price (the bidding
form) and as many envelopes with a transparent window (see Fig. 1). To bid for his
chosen price, the bidder marks “Yes” on the bidding form corresponding to his price,
and “No” on all other forms. All forms are inserted into the envelopes, and signed on
the outside by the bidder. The envelopes are sealed and shown to all other bidders so
that they can check the signatures. For m possible prices pm > pm−1 > . . . > p1, the
bid thus consists of m envelopes. The window allows to see the price without opening
the envelope, yet the envelope hides whether the bidder chose “Yes” or “No”.

Once all bidders have finished creating bids and shown their signatures, the bid-
ders randomly exchange their bids (i.e. the sets of m envelopes) and jointly open the
envelopes, starting with the highest possible price. If one of the envelopes contains a
“Yes”, the bidders identified a bid for this (highest) price, and hence a winner. The sig-
nature on the outside then allows for the identification of the winner. If all envelopes
contain “No”, the bidders open the envelopes for the second price, and so on. Note also
that the opening happens in presence of all bidders and the seller to ensure that protocol



162 J. Dreier, H. Jonker, and P. Lafourcade

Price pi:
Yes

No

(a) Envelopako biding form for price pi.

Window
Bidder’s
Signature

(b) Envelopako bidding envelope for price pi.

Fig. 1. The Envelopako protocol

is followed. To fully ensure verifiability, the protocol must also ensure that only eligi-
ble bidders can bid. This is achieved through the verification of the signatures on the
envelopes by the seller and bidders when bids are submitted.

3.2 Security Properties

The Envelopako protocol relies on the physical properties of the envelopes: Nobody
can see from the outside the contents of a envelope, in particular whether the bidder
marked “Yes” or “No” for a given price, and opening the envelopes breaks the seal.
Hence the bids are private, and by opening the envelopes one by one in decreasing
order only the winning bid(s) is/are revealed. The protocol offers verifiability similar to
Sako’s protocol as well as non-cancellation and non-repudiation due to the signatures
and the mixing of the envelopes: All participants are in the same room, can check the
signatures, and whether an envelope contained a “Yes” or “No”. It ensures fairness
since no premature information is leaked (Weak Non-Interference) and due to the joint
bid opening no cheating is possible (Highest Price Wins).

Obviously a malicious bidder can open an envelope of his choice to read its contents
– but this is actually similar to Sako’s protocol, where dishonest authorities can break
privacy. The difference is that in Envelopako such a behavior will be detected by the
other bidders, since they are in the same room and the envelope is damaged. An exten-
sion to improve privacy could be to put the signed envelopes into slightly bigger and
indistinguishable envelopes after the signature has been verified by the other parties.
These envelopes can be posted into a ballot box (one per possible price) to break the
link between a bidder and his bid. Hence a malicious bidder can only break the privacy
of a random bid, but not necessary of the one he is interested in. A detailed discussion
of other possible (side-channel) attacks is available in the extended version [21].

In our formal analysis [21] we model the physical properties of the envelopes using a
special equational theory in ProVerif, which allows to employ the same verification steps
as for Sako’s protocol. ProVerif concludes that the protocol ensures Non-Repudiation,
Non-Cancellation, Weak Non-Interference, Highest Price Wins and Verifiability. When
verifying Privacy, ProVerif finds the obvious attacks of opening the envelopes discussed
above, but if we assume honest bidders, Privacy can also be proven.



Secure Auctions without Cryptography 163

3.3 A Distributed Variant

The Envelopako protocol requires all participants to be in the same room during the
bid opening, yet we can build a distributed protocol with a few minor modifications,
and assuming a semi-trusted seller. Firstly each bidder also signs on the bidding form.
To prevent issues resulting from multiple instances run in parallel, the bidders should
also add an auction identifier to the form to link their bid to a specific auction. After
preparing the envelopes, each bidder then sends (e.g. by postal mail) his envelopes to
the seller, who collects all envelopes. The seller then determines the winner using the
same technique as above.3 To prove to the bidders that his result is correct, he sends
them photocopies of all bidding forms from the envelopes he opened. Moreover, he
returns the unopened envelopes to the bidders, in order to prove that he did not violate
privacy. This allows all bidders to verify the correctness of the outcome, and even their
privacy. In this variant the seller is semi-trusted in the sense that he can misbehave and
violate some properties of the protocol, e.g. privacy by opening all envelopes. However
his behavior is completely verifiable, i.e. any misbehavior is detectable.

4 The “Woodako” Protocol

To improve the privacy of the Envelopako protocol, we developed Woodako, which
relies on a special wooden box. Our prototype is designed for 3 bidders and 5 possible
prices, but such a box can be built for other numbers n,m of bidders and prices. Fig. 2a
shows all components of the box. The Woodako auction system uses: (1) five black
marbles per bidder, each size represents one price; (2) six layers (L0 – L5 ): layers L0
and L1 are made of transparent plexiglass and have no holes. The other layers are
made of wood and contain four holes per column4, which correspond to the size of
the marbles: the holes in L2 are only big enough for the smallest marbles, the holes
in L3 for the second-smallest etc.; (3) three top layers T1 , T2 , T3 – each layer is
associated with a bidder; (4) two inclined layers: these are placed below the layers, near
the bottom of the box; (5) locks and keys: each bidder and the seller has a set of locks
and keys; (6) one front side made of wood that closes the box and contains holes to
insert the extremities of the layers. These extremities will stick out and so constitute a
place where the parties can put locks. The locks are used to ensure security properties
regarding that layer, for example that it cannot be removed unless everybody agrees.

3 There is a potential attack when a bidder and the seller collude: the seller can open all bids
from the other bidders until he identifies the highest bid, and then inform the colluding bidder
to submit a bid for the same price in order to provoke a tie. Note that this can only be used
to provoke a tie, as submitting a higher bid afterwards results in two envelopes for different
prices containing “Yes” with broken seals, which can be detected. Moreover, it can be ad-
dressed by opening the envelopes for the same price one after the other, and declaring the first
“Yes” as the winner. No other envelope is opened, and hence any situation with two envelopes
containing “Yes” with broken seals (even for the same price, as in the above attack) identifies
a misbehavior of the seller.

4 The choice of four holes per column is arbitrary, we simply used multiple holes to improve
practicality.



164 J. Dreier, H. Jonker, and P. Lafourcade

(a) The Woodako prototype. (b) Inside our Woodako prototype,
where layers L1 and L2 are re-
moved.

Fig. 2. Our prototype

4.1 Description

The wooden box carries out the important steps of the auction in a secure way through
its physical properties. The box (see Fig. 2b) is composed of three columns and seven
horizontal plus two inclined layers. Each column (the left, middle and right part of the
box) corresponds to one bidder. The top layers T1 , T2 and T3 are used to achieve
confidentiality of the bid of each bidder, as the marbles (corresponding to the bids)
are inserted underneath. The transparent layer L0 is used to lock the bids, once they
are made, to achieve non-repudiation and non-cancellation. The five lower horizontal
layers L1 – L5 are used to determine the winning price in a private way. Finally, the
two inclined layers are intended to make it impossible to know from which column a
marble fell by guiding all of them to the same spot in the bottom left part of the box.

The main idea is the following: Each bidder places his bid, represented by a marble
of a certain size, in the top part of the box. We use five different sizes, the smallest
one representing the highest possible price, and the biggest one representing the lowest
possible price. In the bidding phase, all marbles are inserted into the box onto solid
layer L1 . In the opening phase, layer L1 is removed. Below there is layer L2 with
holes big enough to only let the smallest marbles pass through. Below L2 , there is L3
with bigger holes (the size of the next biggest marble), etc. If a bidder inputs the smallest
marble (the highest possible price), it will fall through all layers once the solid layer is
removed, hence revealing the winning price – but not the winning bidder, thanks to the
inclined layers. If nobody inserted the smallest marble, no marble will fall through and
the participants can remove the next layer to check for the second highest price, etc.

All layers L0 – L5 are equipped with four locks, one for each of the three bidders,
plus one for the seller. This ensures that a layer can only be removed if all parties agree
to do so. Similarly, the removable front side of the box is attached using four locks in



Secure Auctions without Cryptography 165

the four corners (cf. Fig. 3a), one for each bidder plus one for the seller. This allows the
parties to inspect the interior of the box before starting the protocol.

The topmost layer consists of three independent parts T1 , T2 and T3 that each
bidder can use to secure his bid (i.e. his marble inside the box, cf. Fig. 3a). Once all bids
are inserted, the transparent layer L0 is inserted just below and locked by all parties to
ensure non-cancellation (cf. Fig. 2b). Once the winning price is determined, the bidders
can open their column by removing their lock on Ti and check through the transparent
layer if their part of the box is empty or not, i.e. if they won or not (cf. Fig. 3b). Similarly
the seller can remove the two inclined layers at the bottom to check if a marble is present
inside a column or not (cf. Fig. 3d). The first solid layer L1 of the price determination
part is transparent to allow the participants to check at the start of the protocol if each
bidder inserted exactly one marble. Note also that all participants are always in presence
of the box to be able to detect misbehavior.

The protocol is divided into 4 phases:
1) Initialization: Each participant can check the material and look the inside of the

box as in Fig. 2b to convince himself of the correct design of the machine. The seller
gives black marbles of different sizes to each bidder. The smallest marble corresponds
to the biggest price, the biggest marble represents the lowest price. Moreover the seller
and each bidder have a set of padlocks and keys (as in Fig. 3a). Once all bidders have
checked the box and received their material, the seller closes the box with the front
side. The seller and each bidder put a padlock on the box (on each corner of Fig. 3c,
marked with 1, 2, 3, and S). The seller places the layers L1 – L5 in the box, but neither
the individual top layers T1 , T2 and T3 nor the transparent layer L0 . The seller also
places the two inclined layers in the bottom of the box. Finally, he puts one lock on each
layer on the middle column, all four locks on the inclined layers, and assigns a column
to each bidder.

2) Bidding Phase: Each bidder selects a marble corresponding to the price he wants
to bid and puts it in his column without showing the marble to the other parties. He
then closes his column using his top layer Ti and secures it using one of his locks. He
also puts locks on the five layers L1 – L5 below. In Fig. 3a you can see the box after
bidder number 2 assigned to the middle column has made his bid. Once all bids are
made and all locks in place, the seller introduces the transparent plexiglass layer L0 ,
i.e. in the hole between the individual top layers and the first full layer L1 . Finally each
participant puts a lock on plexiglass layer L0 .

3) Opening Phase: The seller and all bidders verify that each bidder inserted ex-
actly one marble by removing the inclined layers (to which the seller has the keys) and
looking through the holes of layers L2 – L5 and the plexiglass layer L1 from below5.
After the inclined layers have been reinstalled and locked by the seller, all participants
remove their lock on the layer L1 , and the seller removes it. If somebody chose to bid
the highest possible price, i.e. inserted the smallest possible marble, it will now fall
down through all the holes (since all lower layers have bigger holes) and all participants
know the winning price, yet not the winner. If no marble falls down, they repeat this
process with the next layer below corresponding to the next price. In Fig. 3c, we see the

5 In our experiments it was sometimes necessary to incline the box slightly so that the marbles
stay in the same corner, similar to Fig. 3d.



166 J. Dreier, H. Jonker, and P. Lafourcade

(a) The Woodako box after the bid
of bidder number two.

(b) Bidder verifiability (i.e. view from
top).

(c) The Woodako box after two prices
have been tested.

(d) Seller verifiability (i.e. view from
bottom).

Fig. 3. The Woodako box: bidding, determining the winner, and verification

back of the box once the two first prices have been tested. The inclined layers are there
to hide from which column the marble fell, as all marbles will end up in the bottom left
part independently of where they came from (cf. Fig. 2b).

4) Verification Phase: Once a marble has fallen down, each bidder can open his
lock on his top layer Ti and check if his marble is still inside. In Fig, 3b, bidder number
two notes that his marble is still inside the box, so he did not win. Similarly the seller
can remove the two inclined layers and check for each column, whether there is still a
marble inside, hence determining the winner – the column with no marble. An example



Secure Auctions without Cryptography 167

is given in Fig. 3d: the left bidder won since his column is empty, and the two others
lost, as their marbles are still there (highlighted by the yellow circles).

Resolving Ties: Note that in the case of a tie two or more marbles fall down at the
same time. Thus everybody knows that there is a tie, the seller can also identify the
tied parties, and the bidders know if they are tied or not. Moreover a tied party can
prove to anybody that he is tied by opening his top and showing that his compartment is
empty. To resolve the situation either an external tie-breaking mechanism can be used
(e.g. rolling a die), or the auction can simply be restarted. Using an external mechanism
implies revealing the identity of the tied parties or trusting the seller, since he is the only
one who knows who is tied. If privacy is the main concern and the seller is not to be
trusted, the auction can simply be restarted and giving the bidders the chance to modify
their bids. Sako’s protocol (our inspiration) also reveals the identity of the tied parties.

4.2 Security Properties

We now argue how the properties defined in [16,17] are achieved, as long as there is at
least one honest party following the protocol (i.e. one bidder or the seller). Note that we
also successfully verified all the properties using ProVerif. The box and its properties are
again modeled using a special equational theory, described in our extended version [21].

Non-cancellation and Non-repudiation. Everybody can see in which column a bidder
inserted his marble. Due to the fact that the layer L0 is locked by all the participants,
nobody can change his price during the execution of the protocol. Hence nobody can
cancel his bid. Similarly nobody can deny that it was his marble that fell down as the
seller and the concerned bidder can verify in which column a marble is still present.
Moreover the check at the beginning of the opening phase ensures due to the transparent
layer L1 that there is exactly one marble per bidder.

Fairness. We consider the two aspects defined in [17]: 1) Highest-Price-Wins: By the
design of the box and the holes of different size in layers L2 – L5 , the highest price
offered by a bidder which is represented by the smallest marble is the first marble to
fall down. No bidder can make a larger marble drop before a smaller one. 2) Weak-Non-
Interference: For a given set of bidders no information about the bids is leaked until the
end of the bidding phase, since each bidder can choose his marble privately and drop it
into the box in such a way that nobody can identify its size.

Privacy. The winner is only known to the seller and himself, but everybody knows the
winning price. The inclined layers prevent anybody else from determining the winner
by observing from which column the marble fell6. Once a marble has dropped, the

6 Note that with two layers as shown in Fig. 2b there is a side-channel attack: If the marble falls
down in the rightmost column, one can hear the sound of a falling marble only once, whereas
in the case of the other two columns the marble falls down twice. However there are simple
solutions: one can extend both layers further to the right so that the marbles fall down twice
independently of their original column, or one can use something similar to a “bean machine”,
i.e. several rows of pins, arranged so that the falling marble hits a pin in each row. The idea is
that the marble has a 50% chance of falling down on either side of the pin, hence arrives at a
random location on the bottom.



168 J. Dreier, H. Jonker, and P. Lafourcade

winner can check if his column is empty by unlocking his top layer Ti and looking
inside. The seller can also determine the winner by removing the inclined layers and
checking which column is empty as shown in Fig. 3d. Since the remaining marbles are
too big to fall through the holes, the seller can only see if there is a marble, but will
be unable to determine its size, as all marbles have the same color. This preserves the
secrecy of the losing bids. The losing bidders can also open their top layers Ti and
verify if their marbles are still inside as shown in Fig. 3b. This leaks no information
about the winner, yet they know the price from the moment when the marble falls as
each layer corresponds to a price. Hence we have two cases: If the seller is honest, the
winner stays anonymous, and only the winning price is revealed. If however the seller
is corrupted, he can reveal the winner, and we only have secrecy of the losing bids.

Verifiability. The registration is done at the beginning of the protocol by the seller, and
all participants can check if only the registered bidders participate by inserting a marble
into the box. Hence the protocol ensures registration verifiability. Outcome verifiability
is achieved by the fact that each participant can check the box and the mechanism at the
beginning of the protocol, and that each bidder can check at the end whether he lost or
won by opening his top layer Ti . The seller can also verify the outcome by opening the
bottom of the box.

5 Conclusion

Current auction protocols rely on complex cryptographic operations. However, we ar-
gued that the verifiability of an auction should not depend on cryptographic exper-
tise – without understanding, there is no meaningful verifiability. With that in mind,
we adapted a suitable cryptographic auction protocol to achieve its security properties
without cryptography. We began by analyzing Sako’s protocol for Non-Cancellation,
Non-Repudiation, Fairness, Verifiability and Privacy informally, and formally using the
ProVerif tool. As the protocol mostly passed our automated scrutiny (for privacy, the
auctioneers have to be trusted), we took this protocol as a base for the development of
our two protocols.

We then proposed the Envelopako protocol, an auction protocol inspired by Sako’s
protocol where each bidder marks on a separate piece of paper for each possible price
if they want to bid this price or not. These bidding forms are then inserted into signed
envelopes, which are opened in descending order to determine the winner in a private
way. We modeled the physical properties of the envelopes using an equational theory
in ProVerif, which allows to apply the exact same analysis as for the cryptographic
protocol. The analysis successfully proved Non-Repudiation, Non-Cancellation, Weak
Non-Interference, Verifiability, and Highest Price Wins. For privacy, an issue was auto-
matically found: dishonest participants may open an envelope to see the corresponding
bidding form. A mitigation is that such actions are readily detectable by all, as any han-
dling of the envelopes occurs in public view. We also discussed a distributed variant
of this protocol with a semi-trusted seller, i.e. the protocol does not prevent him from
misbehaving, but any misbehavior can be detected.

To improve privacy, we introduced the Woodako protocol. This protocol is again in-
spired by Sako’s protocol, and again replaces cryptography and trusted parties by phys-



Secure Auctions without Cryptography 169

ical properties. Bids are represented by marbles, where smaller marbles denote higher
bids. Bidders place the marble corresponding to their bid in their designated column in
a (mechanical) contraption. Then, the first layer below all columns is removed, leav-
ing a new layer with holes the size of the smallest marble. If at least one marble falls
through, there is a winner, otherwise this layer is removed and the next layer with larger
holes is now the base layer. We argued that Woodako achieves Non-Repudiation, Non-
Cancellation, Weak Non-Interference, Verifiability, and Highest Price Wins. Moreover,
this argumentation did not require any expert knowledge to understand, nor did it hinge
on correct behavior by trusted parties. As the seller knows the winning bidder, a dishon-
est seller can reveal the winner. As such, the protocol ensures Privacy for all bidders
including anonymity of the winner in case of an honest seller, and simple privacy for
losing bidders in case of a dishonest seller. This was again confirmed by a formal anal-
ysis in ProVerif. As future work we look to improve the practicality of our protocols,
as they do not scale well for higher numbers of bidders or possible prices. Moreover,
we would like to examine whether our protocols can be adapted for second-price auc-
tions, and how we can improve the handling of ties. For this we are looking into other
cryptographic protocols as sources of inspiration.

Acknowledgments. This research was conducted with the support of the ”Digital trust”
Chair from the University of Auvergne Foundation, and partly supported by the ANR
project ProSe (decision ANR 2010-VERS-004). We also want to thank our carpenter
Sylvain Thouvarecq for helping us building the Woodako prototype.

References

1. Omote, K., Miyaji, A.: A practical english auction with one-time registration. In: Varadhara-
jan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 221–234. Springer, Heidelberg
(2001)

2. Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg (2003)

3. Stubblebine, S.G., Syverson, P.F.: Fair on-line auctions without special trusted parties. In:
Franklin, M. (ed.) FC 1999. LNCS, vol. 1648, pp. 230–240. Springer, Heidelberg (1999)

4. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In:
Proc. 1st ACM Conference on Electronic Commerce, pp. 129–139 (1999)

5. Sako, K.: An auction protocol which hides bids of losers. In: Imai, H., Zheng, Y. (eds.) PKC
2000. LNCS, vol. 1751, pp. 422–432. Springer, Heidelberg (2000)

6. Brandt, F.: How to obtain full privacy in auctions. International Journal of Information Secu-
rity 5, 201–216 (2006)

7. Dreier, J., Dumas, J.-G., Lafourcade, P.: Brandt’s fully private auction protocol revisited. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp.
88–106. Springer, Heidelberg (2013)

8. Bundesverfassungsgericht (Germany’s Federal Constitutional Court): Use of voting comput-
ers in 2005 bundestag election unconstitutional,
http://www.bundesverfassungsgericht.de/
en/press/bvg09-019en.html (press release 19, 2009)

9. Chaum, D.: Secret-ballot receipts: True voter-verifiable elections. IEEE Security & Pri-
vacy 2(1), 38–47 (2004)

http://www.bundesverfassungsgericht.de/en/press/bvg09-019en.html
http://www.bundesverfassungsgericht.de/en/press/bvg09-019en.html


170 J. Dreier, H. Jonker, and P. Lafourcade

10. Stajano, F., Anderson, R.: The cocaine auction protocol: On the power of anonymous broad-
cast. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 434–447. Springer, Heidelberg
(2000)

11. Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. Theor. Com-
put. Sci. 411(10), 1283–1310 (2010)

12. Moran, T., Naor, M.: Polling with physical envelopes: A rigorous analysis of a human-centric
protocol. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 88–108. Springer,
Heidelberg (2006)

13. Izmalkov, S., Lepinski, M., Micali, S.: Perfect implementation. Games and Economic Be-
havior 71(1), 121–140 (2011)

14. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Commun.
ACM 39(5), 77–85 (1996)

15. Schneier, B.: The solitaire encryption algorithm (1999),
http://www.schneier.com/solitaire.html

16. Dreier, J., Jonker, H.L., Lafourcade, P.: Defining verifiability in e-auction protocols. In: Proc.
ASIACCS 2013, pp. 547–552. ACM (2013)

17. Dreier, J., Lafourcade, P., Lakhnech, Y.: Formal verification of e-auction protocols. In: Basin,
D., Mitchell, J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 247–266. Springer, Heidelberg
(2013)

18. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: Proc.
14th Computer Security Foundations Workshop (CSFW 2014), pp. 82–96. IEEE (June 2001)

19. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In: Blakely, G.R., Chaum, D. (eds.) Advances in Cryptology - CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1985)

20. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

21. Dreier, J., Jonker, H., Lafourcade, P.: Secure auctions without cryptography, extended version
(2014), http://dx.doi.org/10.3929/ethz-a-010127116

http://www.schneier.com/solitaire.html
http://dx.doi.org/10.3929/ethz-a-010127116


Towards an Algorithmic Guide to Spiral Galaxies

Guillaume Fertin, Shahrad Jamshidi, and Christian Komusiewicz�

Université de Nantes, LINA - UMR CNRS 6241, France
{guillaume.fertin,shahrad.jamshidi,christian.komusiewicz}@univ-nantes.fr

Abstract. In this paper, we are interested in the one-player game Spi-

ral Galaxies, and study it from an algorithmic viewpoint. Spiral

Galaxies has been shown to be NP-hard [Friedman, 2002] more than
a decade ago, but so far it seems that no one has dared exploring its
algorithmic universe. We take this trip and visit some of its corners.

1 Introduction

Spiral Galaxies (also called Tentai Show) is a one-player game, described
as follows by the Help of its Linux version: “You have a rectangular grid contain-
ing a number of dots. Your aim is to draw edges along the grid lines which divide
the rectangle into regions in such a way that every region is 180◦ rotationally
symmetric, and contains exactly one dot which is located at its center of sym-
metry”. Similarly to many other such puzzles (e.g., Sokoban, Sudoku), apart
from being a discrete pastime in boring meetings, it is also a nice combinato-
rial and algorithmic problem that one might try to solve computationally. This
trend has been developed, among others, by Demaine; see for instance [1], where
a survey over hardness results in games is given. For a more general introduction
into combinatorial games, we also refer to the book by Hearn and Demaine [6]).
Apart from the beauty (and fun!) aspect of such a study, this work is motivated
by the fact that while small to medium-size instances of Spiral Galaxies are
still fun to solve, larger problems become just too hard, which is frustrating for
many players... and might even lead to fits of rage (something you may want
to avoid in boring meetings). Hence, an automatic solver for Spiral Galaxies

is highly desirable for these cases. In this paper, we thus visit the algorithmic
universe of Spiral Galaxies, by providing a series of exact (thus exponential,
Spiral Galaxies being NP-hard [5]) algorithms for solving the problem. In
particular, we show two fixed-parameter algorithms: one for which the parame-
ter is the number of dots (i.e., of galaxies) of the input instance for a constrained
version of Spiral Galaxies (where galaxies must be rectangles), and one where
the number of “galaxy corners” in a solution is the parameter.

A Formal Problem Definition. We formalize the problem as follows. We have a
two-dimensional universe U , where each field in U is described by the coordinate
(i, j), where i = 1, . . . , N and j = 1, . . . ,M for some N,M ∈ N. We call two

� Supported by a post-doctorial grant funded by the Région Pays de la Loire.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 171–182, 2014.
c© Springer International Publishing Switzerland 2014



172 G. Fertin, S. Jamshidi, and C. Komusiewicz

Fig. 1. Two screenshots of a single Spiral Galaxies scenario. Left: the field of squares
U with the circular galaxy centers. Right: the corresponding solution. For example,
b(1, 1) = g ∈ G, where L(g) = (2, 1). Similarly, b(1, 5) = g′ ∈ G, where L(g′) = (1, 6.5).

fields (i, j) and (i′, j′) adjacent if |i− i′| = 1 and j − j′ = 0 or if |j − j′| = 1 and
i− i′ = 0, that is, a field is adjacent to the four fields that are directly left, right,
above, and below this field. Let n := |U | be the number of fields. We furthermore
are given a set G of k galaxies (’dots’ in the description) along with the location
L : G → {1, 1.5, 2, 2.5, . . . , N} × {1, 1.5, 2, 2.5, . . . ,M}. We use the noninteger
values to denote the case in which a galaxy center is located either between two
rows or columns. A galaxy center with noninteger coordinates is adjacent to all
fields that can be obtained by rounding its location values. For a galaxy g ∈ G,
we use L1(g) to denote the row coordinate of the center of g, and L2(g) to denote
its column coordinate. This is the input of Spiral Galaxies.

There are two natural ways of encoding this input. One is to present each field
and each possible galaxy location as a position in a bit string of length Θ(n).
Another way is to list the positions of the galaxy centers and the dimensions of
the universe. This representation has size Θ(k · log(n)) which is smaller than the
first representation if k � n/ logn. Hence, for our exact algorithms we assume
that the input length is Θ(n) and for our fixed-parameter algorithms (which
assume that k is small) we assume that the input length is Θ(k · log(n)).

A solution to Spiral Galaxies is given by assigning each field of U to some
galaxy g. We describe this using the function b : U → G. Before defining the
properties of a solution, we give some further definitions. An area A is a subset
of U . An area is called connected, if between each field (i, j) ∈ A and (i′, j′) ∈ A
there exists a path of adjacent fields that belong to A. Two areas A and B are
adjacent if there are two fields α ∈ A and β ∈ B that are adjacent.

In order to be a valid solution, b has to satisfy the following conditions:

– rotational symmetry, that is, if b(i, j) = g then b(i′, j′) = g, where i′ =
2 · (L1(g)− i) + i and j′ = 2 · (L2(g)− j) + j,

– connectivity, that is, {u ∈ U | b(u) = g} is a connected area, and
– hole-freeness, that is, if there is some set G′ of galaxies that is only adjacent

to galaxies in G′ ∪ {g} for some galaxy g, then at least one element in G′ is
at the limit of U .



Towards an Algorithmic Guide to Spiral Galaxies 173

Fig. 2. A galaxy with its corners marked as black dots

We call (i′, j′) ∈ U the g-twin of (i, j). The notation is displayed in the screenshot
in Fig. 1. The hole-freeness property is not explicitly demanded by the original
problem definition. However, we have not encountered any real-world instance in
which some galaxies completely contain other galaxies. Hence, we study the more
restricted variant presented here. We believe that our algorithms can, with some
technical overhead, be adapted to work for Spiral Galaxies without the hole-
freeness property. Note that our definition of a valid solution does not specify
that L(g) is inside the galaxy. This property is, however, already guaranteed by
the other properties of the solution.

Lemma 1. A nonempty area that is connected, hole-free and symmetric with
respect to a location L(g) contains all fields that are adjacent to L(g).

Proof. If the area is a rectangle or shaped like a cross, then the claim holds
trivially. Otherwise, assume without loss of generality, that the area contains a
field f1 which is at least as high as L(g) and to the left of L(g). By the symmetry
property the area, also contains a field f2 that is at most as high as L(g) and
to the right of L(g). Since the area is connected, the two fields are connected
by a path of other fields of the area. For each field of this path, its g-twin,
however, also belongs to g. Consequently, there are two paths from f1 to f2
that enclose L(g). Since the area is hole-free, this implies that all fields that are
adjacent to L(g) belong to the area. ��

A corner of an area A is a pair of noninteger coordinates (y, x) such that ei-
ther one or three of the four neighboring fields (�y�, �x�), (�y�, �x�), (�y�, �x�),
and (�y�, �x�) belongs to A (see Fig. 2).

In this paper we present exact algorithms for Spiral Galaxies. In particular,
we provide two fixed-parameter algorithms. Note that a problem with input
size n is said to be fixed-parameter tractable with respect to a parameter k if
it can be solved in f(k) · poly(n) time, where f is a computable function only
depending on k. For an introduction to parameterized algorithmics refer to [2].

2 A Nebula of Exact Algorithms

We first provide two exact exponential-time algorithms [4] for solving Spiral

Galaxies in the most general case. Though the running times of the two al-
gorithms presented here are quite similar, we mention both since they rely on
two different viewpoints of the problem. We then focus on the case where any



174 G. Fertin, S. Jamshidi, and C. Komusiewicz

solution of Spiral Galaxies contains only rectangular galaxies and provide a
fixed-parameter algorithm for the parameter number k of galaxies.

Theorem 1. Spiral Galaxies can be solved in 4NM poly(NM) time.

Proof. Given an instance of Spiral Galaxies, any solution can be interpreted
as a two-dimensional map, where each galaxy g (and the fields it contains) is a
region, and where two distinct regions are adjacent when they contain adjacent
fields. The famous four color theorem (see e.g., [8]) tells us that such a map
can be colored with at most four colors. The exact algorithm that follows from
the above argument can be described easily as follows: generate every possible
four-coloring CU of the fields of U ; for each such CU , check whether (a) each
connected set of fields of the same color contains a unique galaxy center, and
if so, whether (b) it is a valid galaxy, i.e., it satisfies the symmetry condition
and is hole-free. If this is the case, a solution has been found. If no coloring
satisfies the two conditions (a) and (b), we have an instance without solution.
The running time of the algorithm is straightforward: there are 4 colors and
|U | = NM fields to color. Hence the total number of colorings is 4NM ; besides,
for any given coloring CU , checking whether conditions (a) and (b) hold can be
done in poly(NM) time. ��

The time complexity can actually be slightly improved as shown in the following.

Theorem 2. Spiral Galaxies can be solved in 4NM

2N+M poly(NM) time.

Proof. Take any solution to Spiral Galaxies, and consider two adjacent fields
b and b′. They can be adjacent either horizontally or vertically. If b and b′ belong
to distinct galaxies, say g and g′, we will say there exists a border between
them; otherwise, the border does not exist. The algorithm is thus the following:
generate all possibilities for borders between adjacent fields (i.e., existence or
nonexistence) in U . For each such possibility, compute the maximal connected
areas and check whether conditions (a) and (b) from proof of Theorem 1 hold.
If this is the case, a solution has been found. If none of the tested possibilities
yields a solution, we are in presence of a no-instance. The running time for this
algorithm is thus 2nf poly(NM), where nf is the number of neighboring fields
in U . The neighboring fields amount to (N − 1)M vertical ones, and (M − 1)N
horizontal ones; thus nf = 2NM − N − M , which yields the claimed time
complexity. ��

Let Rectangular Spiral Galaxies denote the constrained version of Spiral
Galaxies where a solution may contain only rectangular galaxies. We have the
following result.

Theorem 3. RectangularSpiralGalaxies can be solved in k!·poly(k log(n))
time.

Proof. The idea here is to guess iteratively, for a free field f (that is, a field
not yet belonging to a galaxy), to which galaxy g it belongs, and to branch



Towards an Algorithmic Guide to Spiral Galaxies 175

on all possible solutions. Any galaxy must have a rectangular shape, thus we
choose at each step a free field f which appears as one of the four corners of the
galaxy g it will belong to. If such an f exists, knowing f and the center of g is
enough to completely determine the shape of g. Now it is easy to see that such a
field f always exists: consider for instance, at each iteration, the topmost among
all leftmost free fields. The time complexity is straightforward, since at each
iteration 1 ≤ i ≤ k, k− i+1 galaxies centers remain available, and thus we need
to branch into k− i+1 possible cases. Each time a galaxy center is chosen for a
field f , computing the dimensions of the rectangle representing the galaxy g that
contains f can be performed in O(log(n)) time by subtracting the coordinates
of f from L(g) and multiplying the result by two. Note that a free field as
described above is always adjacent to one of the four corners of a previously
computed galaxy corner, so a free field can be found in poly(k · log(n)) time.
Finally, we need to check whether all the rectangles are disjoint, which can be
also performed in this running time. Altogether, we obtain the claimed running
time. ��

3 An Algorithm for Solutions with Few Corners

It is relatively straightforward to decide in nf(
) time whether there is a solu-
tion with � corners: Guess the exact position and orientation of each corner,
then connect the corners accordingly and finally check whether this gives a so-
lution. The running time follows from the fact that for each corner we have
to consider poly(n) choices and that all steps after the guessing can be easily
performed in polynomial time.

We now describe an algorithm that can find solutions with at most � corners
in f(�) · poly(log(n)) time. The outline of the algorithm is as follows. First, we
show how to represent each spiral galaxy as a tiling of O(�) rectangles. Then, we
present an integer linear program (ILP) with f(�) many variables which, using
a known result on the running time of bounded variable ILPs [7] implies the
claimed running time.

Consider any galaxy. Our aim is to represent the galaxy as a tiling of few
rectangles. The first step is to divide the galaxy into three parts which will allow
us to naturally capture the symmetry condition when defining the rectangle
tiling. While doing so, we aim to keep the number of corners low.

Lemma 2. The fields of every galaxy g with � corners can be three-colored with
at most three colors black, red, and blue such that

– if L(g) has integer coordinates, then the field containing L(g) is black, oth-
erwise no fields are black,

– the red area has at most �+ 2 corners,
– the g-twin of every red field is blue.

Proof. Let L(g) = (y, x) be the location of the galaxy center. We discuss only the
cases in which y is noninteger (the case in which x is noninteger is symmetrical),
or in which both x and y are integers (see Fig. 3).



176 G. Fertin, S. Jamshidi, and C. Komusiewicz

Fig. 3. Examples of some galaxies and the coloring as provided by the algorithm in
the proof of Lemma 2 (herein, the red fields are hatched diagonally and the blue
fields horizontally). Left: L(g) has noninteger coordinates, middle: L(g) is a separator,
right: L(g) has 8 neighbors.

If y is noninteger, then color (�y�, �x�) red. Then check whether there is an
uncolored field that belongs to the galaxy and is to the left or to the right of a
red field. If this is the case, color it also red. When there is no such field, then
note that the row of red fields is a separator of the galaxy. Color the g-twins
of this line of red fields (which is the line below) blue. Now color all uncolored
fields that can reach blue fields only via red fields with red and all other fields
blue. The resulting coloring clearly fulfills the first and the last condition of the
lemma. It remains to show the number of corners. At most �/2 corners of the red
area are also corners in g. In addition, there are at most two corners between red
and blue fields (recall that the separator is a straight line of fields). Since g has at
least four corners, the number of corners in the red fields is at most �/2+ 2 ≤ �.

If y is integer, then color the field that contains y black. If the galaxy contains
no further fields, then the lemma holds. Otherwise, distinguish two further cases.

Case 1: Removing the center from the galaxy cuts the area in at least two con-
nected components. In this case, pick one of these components, color it red and
color the fields of its g-twins blue. Then pick, if it exists, another uncolored
connected component and color it red and its g-twins blue. No further uncol-
ored connected components exist. The red connected components has again at
most �/2 corners that are corners in g. Furthermore, there are at most four cor-
ners between red fields and the black field. Hence, the number of corners in the
areas defined by the red fields is at most �/2 + 4 ≤ � + 2.

Case 2: Otherwise. In this case, the galaxy center has eight neighbors. Color the
field to the left of the center red and call it the current field. While the current
field has a left neighbor that is part of g, color this field red and make it the
current field. Next, make the field to the top-left of the galaxy the current field
and color it red. Now, while the current field has a right neighbor that belongs
to g, color it red and make it the current field. Now, the red fields are a separator.
Color all fields that can reach the center only via red fields also with red. After
this, color all g-twins of the red fields blue.

Again, the area defined by the red fields has at most �/2 corners that are
corners in g plus four corners on the border to the blue or black fields. The
overall number of corners is thus at most �/2 + 4 ≤ �+ 2. ��

In order to formulate the ILP we will model each galaxy as a union of rectangles.
The following lemma is a straightforward corollary of [3, Theorem 1].



Towards an Algorithmic Guide to Spiral Galaxies 177

Lemma 3. An orthogonal polygon with � corners can be partitioned into at
most � nonoverlapping rectangles.

Definition 1. A rectangle representation of a galaxy g is a set of rectangles
Rg = {R1, R2, . . . , Rq} such that:

– the union of all Ri is exactly g,
– Ri and Rj do not overlap if i �= j,
– for each Ri, there is exactly one rectangle Rj ∈ Rg such that the four corners

of Rj are exactly the g-twins of the four corners of Ri.

For a galaxy representation, we use s(Ri) to denote the rectangle that is
symmetric to Ri.

Lemma 4. A galaxy g with at most � corners has a rectangle representation
with O(�) rectangles.

Proof. By Lemma 2 we can partition g into three areas that have O(�) corners
altogether. Now, for the red part we choose some partition into O(�) rectangles
which exists by Lemma 3. For the blue part choose the symmetric (with respect
to L(g)) partition into rectangles. The black part, if it exists, is a rectangle so
add the corresponding rectangle if it exists. Clearly, the union of the rectangles
is g, the rectangles do not overlap and, by the choice of the partition of the blue
part, there is for each red rectangle Ri a symmetric blue counterpart Rj . The
black rectangle R, if it exists, consists just of one field whose center is L(g), so
the corners of R are symmetric to themselves. ��

We now use the rectangle representation to fix the main structure of a putative
solution. A layout of a solution is a structure consisting of the following parts:

– For each galaxy g, we fix a set of rectangle identifiers Rg
1, . . . , R

g
q , q = O(�).

– For each rectangle Rg
i , we fix s(Rg

i ) (note that if L(g) has integer coordinates,
Rg

i = s(Rg
i ) is possible).

– For each pair of rectangles Rg
i and Rg′

j , we fix whether Rg
i is above, below,

to the left, or to the right of Rg′
j (at least one of the four must be the case).

– For each pair of rectangles Rg
i and Rg′

j , we fix whether they are adjacent or
not, and if this is the case, we fix the “extent” of the adjacency. For example,

if Rg
i is above Rg′

j , then we fix whether the left side of Rg′
j is at least as far

to the left as the left side of Rg
i or not, and similarly, whether the right side

of Rg′
j is at least as far to the right as Rg

i or not.
– For each rectangle, we fix whether it is adjacent to the left, right, top, or

bottom limit of the universe.

Clearly, the number of layouts is bounded by a function of � since the number
of rectangles to consider in any solution is O(�). The main structure of the
algorithm is now as follows. Try all possible layouts. For each layout, first filter
“bad” layouts that do not guarantee that the galaxies are connected, that the



178 G. Fertin, S. Jamshidi, and C. Komusiewicz

galaxies are hole-free, or that they cover the whole universe. Then, create an
ILP with O(�) variables and solve it. If it has a feasible solution, then use this
solution to construct a solution of Spiral Galaxies.

We now describe how to filter bad layouts. For each galaxy g, create a graph
whose vertices are the rectangles Rg

i . Make two vertices adjacent in this graph if
the corresponding rectangles are fixed to be adjacent by the layout. Reject the
layout if the resulting graph is not connected for some galaxy.

Now create a graph whose vertices are the galaxies. In this graph, make two

galaxies g and g′ adjacent if there is a pair of rectangles Rg
i and Rg′

j that are
fixed to be adjacent by the layout. Furthermore, add one vertex that represents
the limits of U and make it adjacent to each galaxy g that has a rectangle Rg

i

that is fixed to be adjacent to the respective limit. Now, reject the layout if
there is a galaxy g that is a cut-vertex in this graph, that is, there is a pair of
galaxies g′ �= g and g′′ �= g such that all paths between g′ and g′′ contain g.
Finally, consider each rectangle Ri of the layout that is adjacent to at least one
other rectangle. Assume without loss of generality, that the bottom fields of Ri

are adjacent to the rectangles Q1
i , . . . , Q

q
i , which are ordered such that

– the left border of Q1
i is fixed to be at least as far to the left as the left border

of Ri and there is no other rectangle Qj
i for which this holds,

– the right border of Qq
i is fixed to be at least as far to the right as the right

border of Ri and there is no other rectangle Qj
i for which this holds, and

– for i′ > 1, Qi′
i is fixed to be adjacent and to be to the right of Qi′−1

i .

If such an order does not exist, then reject the layout. Otherwise, we build the
ILP formulation. We only need to check for feasibility, hence there will be no
objective function that we need to maximize.

For each rectangle Ri in the layout, we introduce four variables: x1
i , y

1
i , x

2
i ,

and y2i , where (y1i , x
1
i ) shall be the top-left field of Ri and (y2i , x

2
i ) shall be the

bottom-right field of Ri. No further variables are introduced and the number of
variables thus is O(�). We now introduce inequality constraints that guarantee
that the ILP solution gives a solution to Spiral Galaxies. First, we constrain
all coordinates to be in the universe.

∀xj
i : 1 ≤ xj

i ≤M (1)

∀yji : 1 ≤ yji ≤ N (2)

The second set of constraints forces all rectangles to be nonempty and guarantees
that the coordinate pair (y1i , x

1
i ) is indeed the top-left field.

∀x1
i :x1

i − x2
i > 0 (3)

∀y1i :y1i − y2i > 0 (4)

Now we introduce constraints for rectangle pairs to force that the rectangles do
not overlap, that adjacencies are preserved as fixed in the layout, and that each
galaxy is symmetric. Herein, we describe only the case in which the rectangle Ri



Towards an Algorithmic Guide to Spiral Galaxies 179

is above Rj , all other cases can be obtained by rotating the universe. First, we
guarantee that the rectangles do not overlap.

y2i − y1j > 0 (5)

If Ri and Rj are fixed to be the corresponding rectangles in the two symmetric
parts of a galaxy g, that is, Ri = s(Rj), then assume without loss of generality,
that the right border of Ri is not to the left of the right border of Rj . Then, we
add the following constraints.

2 · L2(g)− x1
i − x2

j = 0 (6)

2 · L1(g)− y1i − y2j = 0 (7)

2 · L2(g)− x2
i − x1

j = 0 (8)

2 · L1(g)− y2i − y1j = 0 (9)

Now, we add the constraints concerning adjacent rectangles. If Ri and Rj are
fixed to be adjacent, then, since Ri is above Rj , we add the constraint

y2i − y1j = 1. (10)

If we fix the left border of Rj to be at least as far to the left as the left border
of Ri, then we add the constraint

x1
i − x1

j ≤ 0. (11)

We add similar constraints for the right borders of Ri and Rj (according to
whether or not we have fixed Ri to extend further to the right than Rj).

Finally, we add the following constraints for the rectangles that are adjacent
to the limit of the universe.

y1i = 1 if Ri is adjacent to the top limit of U (12)

y2i = N if Ri is adjacent to the bottom limit of U (13)

x1
i = 1 if Ri is adjacent to the left limit of U (14)

x2
i = M if Ri is adjacent to the right limit of U (15)

Lemma 5. If the ILP as constructed above has a feasible solution, then the
Spiral Galaxies instance is a yes-instance.

Proof. First, we show that the rectangles that are fixed to make up a galaxy g
create an area that fulfills the properties of a galaxy. By the filtering step and
by Constraint 10, the area created by the rectangles is connected. Furthermore,
every field in this area is contained in a rectangle. By Constraints 6–9 there
is a rectangle whose corners are g-twins of the rectangle containing this point.
Hence, the g-twin of the each field is also contained in g. Now, by the filtering
step before the ILP construction, the galaxy is also hole-free and therefore it
fulfills all properties of a galaxy.



180 G. Fertin, S. Jamshidi, and C. Komusiewicz

It remains to show the global property that the rectangles form a partition
of the universe. By Constraint 5, the rectangles do not overlap, so it remains
to show that the rectangles cover the universe. Assume that this is not the
case. Then there is some field not covered by any rectangle but adjacent to
some rectangle Ri. Assume without loss of generality that this field is below Ri.
Clearly, Ri is not fixed to be adjacent to the bottom border by the layout. By the
filtering step, the field Ri thus has at least one neighboring rectangle that is fixed
to be below Ri and extend further at least as far to the left than Ri. Similarly,
such a rectangle exists for the right border of Ri. Furthermore, between these
two rectangles the filtering step guarantees that there is a chain of horizontally
adjacent rectangles that are below Ri and adjacent to Ri. Hence, every field
below Ri is covered by some rectangle. ��

The converse of the above statement is also true in the sense, that if there is a
solution to Spiral Galaxies, then there is one layout which passes the filtering
and whose constructed ILP has a feasible solution. The existence of this layout
is guaranteed by Lemma 3 plus the fact that the filtering step does not remove
this layout. The feasible ILP solution is then obtained by simply plugging in the
coordinates of the rectangles. Altogether we thus obtain the following.

Theorem 4. Spiral Galaxies parameterized by the number � of corners of a
solution is fixed-parameter tractable.

Proof. The correctness follows from Lemma 5 and the discussion above. It re-
mains to show the running time. The number of layouts to consider is bounded
by a function in � since the number of galaxies is O(�) and the number of rectan-
gles that we need to consider for each galaxy is also O(�). Hence, the number of
objects for which all different possibilities of “applying some fix” only depends
on �. Therefore, the number of ILPs to solve is also only a function of �. Since
each ILP has O(�) variables and O(poly(�)) many constraints it can be solved
in f(�) · poly(log(n)) time [7]. All other steps can be performed in polynomial
time. ��

4 Outlook

We conclude with two open problems. First, is Rectangular Spiral Galax-

ies solvable in polynomial time? Second, is Spiral Galaxies fixed-parameter
tractable with respect to the number k of galaxies? A natural approach to
show fixed-parameter tractability for k would be to show that the solution has
only f(k) corners. Indeed, we tried to show that this is the case. However, even
for four galaxies only, this is not true.

Theorem 5. For every � ∈ N, there are yes-instances of Spiral Galaxies

with four galaxies such that every solution has more than � corners.

Proof. Let x > �+ 2 and consider the following instance with N = M = 2x+ 1
and four galaxies α, β, γ, δ. In the instance, α will be very large, γ and δ will



Towards an Algorithmic Guide to Spiral Galaxies 181

α

β

γ

δ

Fig. 4. An instance of Spiral Galaxies with four galaxies and many corners

be small, and β will be tiny. To denote the positioning of the centers of the
small galaxies, we introduce another variable y which is some even integer such
that � ≤ y < x. The four galaxy centers are as follows.

– L(α) = (x+ 1, x+ 1),

– L(β) = (1, 2),

– L(γ) = ((y + 3)/2, y/2 + 5/2), and

– L(δ) = (2x+ 1− y/2, 2x− y/2).

A sketch of the instance and of a solution for one set of values of x and y is given
in Fig. 4.

First, observe that by the choice of y, the galaxies β and γ live in the upper-
left quadrant, that is, the set of fields (i, j) with i, j ≤ x+1, and galaxy δ lives in
the lower-right quadrant. Therefore, all α-twins of fields of β and γ must belong
to δ. Hence, the shape of δ is a union of the shapes of β and γ. Further, galaxy β
has its center on the last row of U , so it must be flat (have height one) and, since
its center is on the second column, it can be either a galaxy containing just the
center or a flat galaxy of width three.

We now show that the solution must essentially look like the one shown in
Fig. 4. The center of β does not belong to α, so its α-twin which is (2x+1, 2x),
belongs to δ. But then the δ-twin of (2x+ 1, 2x) belongs to δ as well. This field
is (2x−y+1, 2x−y). Now, the α-twin of this field is (y+1, y+2) and it is again
not in galaxy α, so it must be in galaxy γ (recall that β is flat). Now the main
difference between γ and δ that creates the many corners is the following. The
height difference for γ-twins is odd since its center sits at noninteger coordinates.
The height difference for δ-twins, however, is even since δ’s center sits at integer
coordinates. Moreover, the height of γ is exactly y since it cannot reach fields
above (y+1, y+2) (their α-twins are unreachable for δ). Therefore, galaxy γ has
at least one field in each row from row y+1 until row 2. Similarly, galaxy δ has
at least one field in each row from row 1 until row y + 1. Note that for galaxy δ
the formula (i+1, i) defines a straight diagonal line between the three fields that
are already assumed to be in δ. We now show a statement which implies that
the fields of δ must be close to this main diagonal.

Claim. For 1 < i ≤ y + 1 and 1 ≤ j < 2x − i, if (2x + 1 − i, 2x− i − j)
belongs to δ, then (2x+ 2− i, 2x+ 1− i− j) belongs to δ.



182 G. Fertin, S. Jamshidi, and C. Komusiewicz

If (2x+ 1− i, 2x− i− j) belongs to δ, then its α-twin (i + 2, i+ 3 + j) belongs
to γ (since i > 1 it cannot belong to β). Therefore, the γ-twin of this field also
belongs to γ. This field is (y+1− i, y+2− i− j). Again, the α-twin of this field
belongs to δ. This field is (2x− y + i, 2x− 1 − y + i + j). Finally, the δ-twin of
this field belongs to δ. This field is (2x+ 2− i, 2x+ 1− i+ j) which proves the
claim.

Now, we know that (2x+ 1, 2x+ 2) cannot belong to δ as it is outside of the
universe. Hence, the maximum deviation of δ from the main diagonal to the right
is one, which implies that the maximum deviation of δ from the main diagonal
to the left is also one. We also know that in row 2x − y, the field that is on
the main diagonal belongs to δ. By the above claim the complete main diagonal
thus also belongs to δ. Since the galaxy is connected, this implies that either in
row 2x− y or in row 2x− y + 1 the right or left neighbor of the main diagonal
also belongs to δ. Again by the above claim this implies that either the left or
the right neighbor of the main diagonal is part of δ for all rows i ≥ 2x− y + 1.
By the symmetry of the galaxy we then obtain that the left and right neighbor
of the main diagonal have to belong to δ for all rows of δ.

Hence, each of the y+1 rows of δ, i.e., rows 2x− y to 2x+1, has two corners.
Therefore, the overall number of corners is larger than �. It is easy to verify,
that there is indeed for all x and y as chosen above a solution: the galaxy δ is
as described, the galaxy β is a flat galaxy with width 3, the galaxy γ is the set
of remaining α-twins of the fields that are in δ, and all other fields are in α. ��
Currently, we don’t have a conjecture on either of the two questions. We do have
a proof that the answer is not 42 but we defer it to a full version of the paper.

Acknowledgments. We thank the anonymous referees of FUN 2014 for several
comments improving the presentation of this paper.

References

[1] Demaine, E.D.: Playing games with algorithms: Algorithmic combinatorial game
theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp.
18–32. Springer, Heidelberg (2001)

[2] Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity. In: Un-
dergraduate Texts in Computer Science. Springer, Heidelberg (2012)

[3] Ferrari, L., Sankar, P., Sklansky, J.: Minimal rectangular partitions of digitized
blobs. Computer Vision, Graphics, and Image Processing 28(1), 58–71 (1984)

[4] Fomin, F.V., Kratsch, D.: Exact exponential algorithms. Springer, Heidelberg
(2010)

[5] Friedman, E.: Spiral galaxies puzzles are NP-complete (2002),
http://www2.stetson.edu/~efriedma/papers/spiral.pdf

[6] Hearn, R.A., Demaine, E.D.: Games, puzzles, and computation. AK Peters, Limited
(2009)

[7] Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathe-
matics of Operations Research 12(3), 415–440 (1987)

[8] Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: The four-colour theorem.
J. Comb. Theory, Ser. B 70(1), 2–44 (1997)

http://www2.stetson.edu/~efriedma/papers/spiral.pdf


Competitive Analysis of the Windfall Game�

Rudolf Fleischer1 and Tao Zhang2

1 School of Computer Science, IIPL, Fudan University, Shanghai, China
and GUtech, CS Department, Muscat, Oman

2 PICB, Shanghai, China
{rudolf,taozhang}@fudan.edu.cn

Abstract. We study the classical computer game ”Super Mario Power
Coins” as an online maximization problem with look-ahead. We show
nearly matching lower and upper bounds for deterministic online
algorithms.

1 Introduction

Super Mario Power Coins is a classical computer game [4]. While coins (and
other stuff) are falling from the sky (the top of the screen), Mario must run
around on the ground (the bottom of the screen) and try to catch as many coins
as possible (while dodging all the other stuff). Since the coins are falling at the
same speed as Mario is running, usually he cannot catch all the coins but must
choose a path that allows him to catch as many coins as possible. Fig. 1 shows
a screenshot of the game.

As we will see in the next section, this game may be modeled similar to a
benefit task system. However, we can improve on the general bounds for benefit
task systems exploiting some structural properties particular to Windfall.

2 Definitions

Formally, we can model this game as an online problem with look-ahead, which
we call Windfall. We assume that coins have diameter one and they can only
fall down at integer coordinates. Mario can also only live at integer coordinates,
and he can only catch a coin when he is at the same place as the coin.

We denote the width of the screen by d, where the width does not include
the two boundary columns 0 (leftmost column) and d + 1 (rightmost column),
which may also have coins falling down. This is motivated by our results because,
basically, Mario can usually make an optimal move when he is in a boundary
column (either stay, or move inwards), so the performance only depends on the

� RF acknowledges support by the National Natural Science Foundation of China
(No. 60973026), the Shanghai Leading Academic Discipline Project (project number
B114), the Shanghai Committee of Science and Technology of China (09DZ2272800),
the Robert Bosch Foundation (Science Bridge China 32.5.8003.0040.0), and the Re-
search Council (TRC) of the Sultanate of Oman.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 183–193, 2014.
c© Springer International Publishing Switzerland 2014



184 R. Fleischer and T. Zhang

d

K

D

L σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0

1 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 1 0 0 0 1

0 1 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 1

1 0 0 0 0 1 0

0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. Mario tries to catch many coins. In this instance, there exists a path where he
can catch one coin in every step. We have d = 5 and n = L = 9, and thus D = 2 and
K = 7; σ is the corresponding input matrix.

interior width d. Let L ≥ 1 be the height of the visible screen. L and d are fixed
throughout this paper. We define D = �d2� and K = L−D, and we assume that
K ≥ 1 (this will be justified later).

The input to Windfall is a sequence σ = σ1σ2 · · ·σn of (d + 2)-ary 0/1
vectors, where σt provides the positions of coins that appear in step t at the top
level L (the top row of the screen). We can view σ as an (n × (d + 2))-matrix
with 0/1 entries, where σ1 is the bottom row and σn the top row. Note that n,
the length of the input sequence, is not known a priori; only at time n − L + 1
Mario will realize that the game will end after the next L− 1 steps.

Instead of coins falling down on the screen, we can instead assume that the
coins are at fixed positions in the matrix σ and Mario is moving one row up in
every step. He can in each step choose whether to stay in his current column, or
move one cell to the left or one cell to the right. If he moves to a cell containing
a coin, he catches it (in the original game, this means that, in every step, Mario
moves to his new position at a constant speed of 1, while at the same time the
coins are falling down at the same speed; Mario can only catch a coin at the end
of his move, i.e., we may think of the coins first falling down one level and then
Mario moving to his new position where he may catch a coin). Formally, Mario’s
goal is to find a feasible path P = (p1, . . . , pn) through the matrix, where the
pi are cell coordinates, so as to maximize his profit

∑n
t=1 σt(pt). P is feasible if

the x-coordinate changes by at most one from pi to pi+1, while the y-coordinate
increases by exactly one, for all i.

In the offline Windfall problem, Mario knows σ. Computing an optimal
path is easy in this case, it is equivalent to finding a shortest path in the directed
graph where each cell has three edges to its three adjacent cells in the row above,
and the edge to vertex (t, j) has cost 1− σt[j].



Competitive Analysis of the Windfall Game 185

In the online problem with look-ahead L, Mario can only see rows t to t + L
when standing in row t (he could also remember earlier rows, but this does not
help him; even knowledge of row t is useless for planning the next move). When
we say at time t, we always mean the positions of Mario and the coins after
Mario moved to row t, i.e., Mario is standing at a cell in row t contemplating his
move to row t + 1. He must decide this move without knowing the rows above
t+L. At time t = 0, rows σ1 to σL are revealed, and Mario can choose his initial
position p1 in row 1 arbitrarily. For an online algorithm A, we denote its profit
on σ by CA(σ), while we use Copt(σ) to denote the optimal offline profit. We say
A is c-competitive if Copt ≤ c · CA for all σ.

2.1 Benefit Task Systems

Jayram et al. [2] introduced benefit task systems to study the online load alloca-
tion problem in a server farm. Benefit task systems can also model maximization
variants of k-server problems [3] and metrical task systems [1]. In a benefit task
system, we can be in any one of a finite number of states, but the benefit of
changing states is time dependent.

To be more precise, for each time t = 0, . . . , n let Ut be the set of possible
states, and let Bt : (Ut × Ut+1) �→ IR+ be the benefit function, measuring the
benefit of changing to a state in Ut+1 in step t. Starting from s0, a server must
choose a state st+1 in each time step t, gaining benefit Bt(st, st+1), so as to

maximize the total benefit
∑t−1

n=0 Bt(st, st+1). In the online problem with look-
ahead L, the server only knows Bt, . . . , Bt+L−1 at time t.

Jayram et al. proposed a (1 + 1
L)-competitive randomized online algorithm

for benefit task systems, which matches a lower bound of 1 + 1
L − ε for the

competitive ratio of any randomized online algorithm. In the deterministic case,
there is still a gap between the lower bound of 1+ 1

L+
1

L2+1 and an upper bound of

min{1+ 4
L−7 , (1+

1
L )·

L
√
L+ 1}, which is asymptotically equal to 1+Θ(logL)

L . They
also considered the special case of look-ahead L = 1 and showed a deterministic
lower bound of 4− ε versus an upper bound of 4.

2.2 Our Results

Windfall could nearly be viewed as a benefit task system, where the sets Ut

are the sets of positions pt for Mario, and Bt(pt, pt+1) = σt(pt+1) if |pt−pt+1| ≤
1, and Bt(pt, pt+1) = −∞ otherwise (which effectively prevents Mario from
jumping to non-neighboring cells). The negative benefit for the illegal jumps
makes it impossible to apply the results of Jayram et al. to Windfall, but we
acknowledge that our algorithms were inspired by their work.

In this paper we show that we can obtain stronger bounds for Windfall than
the bounds for general task systems. In Section 3, we show that no deterministic

online algorithm can be better than L+
d/2�
L−
d/2� -competitive. In Section 4, we present

several online algorithms for Windfall. We propose a (d + 1)-competitive al-
gorithm, Greedy, which is optimal if K = 1. For the case d = 1, the algorithm



186 R. Fleischer and T. Zhang

Perfect is optimally L+1
L -competitive. For larger d, Perfect generalizes to a

simple (1 + 2d2

K )-competitive algorithm, NaturalBreak. A refinement of this

algorithm yields the (1 + �K/d�√d)-competitive algorithm CleverBreak.
All four algorithms work in phases, and in each phase Mario tries to catch

coins optimally (or, at least, c-competitively). He may also need a few steps
between phases, willfully missing coins, to adjust the starting position for the
next phase. Jayram et al. [2] used similar ideas for their online algorithms for
benefit systems.

3 A Lower Bound

Remember that D = �d2� and we assumed K = L−D ≥ 1. If not, then L ≤ D
and the adversary can in every time step t place exactly one new coin on level
t+L in the boundary column farthest away from Mario. Since Mario would need
at least D + 1 steps to reach this boundary column, he cannot reach the coin.
So he will see all coins raining down outside his reach, i.e., his total profit will
be zero. The competitive ratio is unbounded in this case.

Theorem 1. If L > �d2�, then no deterministic online algorithm can be better

than L+
d/2�
L−
d/2� = K+d

K -competitive. ��

Proof. We will show how an adversary can prevent any deterministic online
algorithm from catching more than K coins on an instance with Copt = K + d.
At time t = 0, the adversary shows the lowest L rows of σ. The lowest D rows
are completely empty, while the next K rows contain two coins each, one in each
of the two boundary columns, see Fig. 2. Later, the adversary will always place
a coin in the boundary column farthest away from Mario and leave all other
cells empty. In case of ties, i.e., if d is odd and Mario is exactly at the middle
position, the adversary will place two coins, one in each boundary column. The
adversary will stop if one boundary column has received K + d coins.

We now argue that no online algorithm with look-ahead L can catch more than
K coins against this adversary. It is easy for Mario to catch exactly this number
of coins by starting in one of the two boundary columns and never moving. To
see that he cannot catch more coins, we observe that Mario must eventually
reach one boundary column, since otherwise he could not catch any coins. Let t0
be the first time when Mario catches a coin. We may assume that this happens
in the right boundary column. If he did not try to reach this position as quickly
as possible (i.e., he should actually start there), he may even have missed some
of the early coins in that boundary column. That is, lingering in the middle is a
waste.

We will now show that it does not pay off for Mario to cross over to the
left boundary column after time t0. Note that in the worst case Mario needs at
least d + 1 steps to reach the left boundary column. That is, he will not catch
any coins for at least d steps. Since t0 ≥ D + 1 and Mario needs at least D
steps to reach the middle position, the left boundary column will already have



Competitive Analysis of the Windfall Game 187

O O

O O

O OO O

O O

O O

O OO O

O O

d

K

D

L

Fig. 2. The screen at time 0 in the lower bound proof; Mario must choose whether to
reach the left or the right boundary column

at least K +D+D+1 ≥ K + d coins before Mario crosses the middle line, i.e.,
the game will be over before this happens. If Mario stays in the right boundary
column, the optimal offline strategy is to collect all the coins in the left boundary
column. Thus, Copt = K + d, while Mario can get at most the K coins in the
right boundary column. ��

Note that we could extend the construction in the previous proof (by repeating
the instances arbitrarily often with gaps of completely empty rows in between)
to give a lower bound for the asymptotic competitive ratio of Windfall.

4 Online Algorithms

In this section, we will present several online algorithms for Windfall.

4.1 A (d + 1)-Competitive Greedy Algorithm

We start with a simple greedy algorithm, called Greedy, see Algorithm 1. Mario
repeatedly tries to catch the closest coin. If the screen is empty or no coin can
be reached, he starts moving to the middle position. This simple strategy works
already fine if the look-ahead is only L = D + 1.

Theorem 2. Greedy is (d+ 1)-competitive.

Proof. Between any two coins caught by Greedy, the optimal offline algorithm
can catch at most d more coins. This can be seen as follows.

First assume that Mario does not stop in the middle. Mario needs at most
d + 1 steps to reach any position from any starting position. In the worst case,



188 R. Fleischer and T. Zhang

he would start in one boundary column and then move all the way to the other
boundary column in d + 1 steps. He would only do this if no closer coin is in
reach. In both cases, he would catch a coin within the next d+ 1 moves.

Mario will only stop in the middle if there is no coin he can reach, in particular
the top row is completely empty (since the top row is far enough away, he could
reach any coin on the top row from the middle position). But in this case, neither
Mario nor the optimal offline algorithm can catch a coin on the top row, so we
can also conclude in this case that the optimal offline algorithm can catch at
most d more coins between any two coins caught by Greedy. ��

Although the algorithm is quite simple, Greedy meets the lower bound of The-
orem 1 when K = 1 (i.e., Mario has very restricted look-ahead). It even performs
quite well for slightly larger values of K. The lower bound tells us that we cannot
hope to be very competitive when K is small compared to d, and Greedy may
be good enough for this case.

Note that it is essential for Greedy to always move towards the middle
position when no coin can be reached, otherwise Mario could get stuck on one
empty side of the screen while many coins rain down in the border column of
the other side.

Algorithm 1. Greedy

repeat
Move into the direction of the closest coin that can be reached;
if no coin is visible or reachable, move into the direction of the middle position.

until end of input;

4.2 Tight Bounds for the Case d = 1

We now study Windfall on a very narrow screen with d = 1. In this case,
D = 0, K = L, and there are only three positions for Mario: left, middle,
and right position. Theorem 1 gives a lower bound of L+1

L for the deterministic
competitive ratio for the case d = 1. We will now present an algorithm,Perfect,
that achieves this bound, see Algorithm 2. It is a deterministic version of the
randomized algorithm Reset by Jayram et al. [2]. It is actually equivalent to
Greedy when we give the middle position higher priority in case of ties.

To analyze the competitive ratio of Perfect, we introduce the notion of a
Greedy Break Point (GBP). In the case of d = 1, we say time t is a GBP for an
online algorithm if Mario is at the middle position at time t. We call the middle
position a GBP position.

Theorem 3. For L ≥ 1 and d = 1, Perfect is L+1
L -competitive.

Proof. We partition time into phases. Each phase, except maybe the last one,
ends when Mario moves to (or stays at) the GBP position, i.e., in the middle.
We will show that Perfect is at most L+1

L -competitive in each phase. This

shows that Perfect is at most L+1
L -competitive.



Competitive Analysis of the Windfall Game 189

Algorithm 2. Perfect

At time t = 0, 1, 2, 3, . . .,
If there are no coins in row t+ 1, or if there is a coin in the middle of row t+ 1, of if
Mario is in a boundary column and there is no coin in this boundary column in row
t+ 1

then move to the middle;
If Mario is in a boundary column and there is a coin in this boundary column in row
t+ 1

then stay in the boundary column;
If Mario is in the middle and there are only coins in the boundary columns of row t+1

then move to the boundary column whose first empty cell during the next L time
steps comes latest (breaking ties arbitrarily);

Note that Mario will only move to a boundary column if he can catch a coin
there, otherwise he will stay in the middle. Consider a phase ending at time t.
We distinguish several cases.

If Mario can catch a coin in every step of the phase, then he has collected
at least as many coins as the optimal offline algorithm, i.e., Perfect is 1-
competitive in this phase. So assume, this is not the case. Since Mario will only
move to a boundary column to catch a coin and he will only stay there as long
has he can catch more coins in every step, this can only happen if Mario was
catching a coin in every step of the phase except the last one when he moved
back to the middle position.

If he was already in the middle at time t− 1 (i.e., the current phase consists
only of a single time step, t), then row t is completely empty (otherwise, Mario
would move and catch a coin in one of the two boundary columns). Thus, staying
in the middle is an optimal move, also the optimal offline algorithm cannot catch
any coin, i.e., Perfect is 1-competitive in this phase.

If Mario was in a boundary column at time t− 1, we need to distinguish two
cases why Mario chose this column. Either some time back Mario could see the
lowest empty cell in one of the two boundary columns and decided to move to
the other boundary column where the first missing coin appeared at time t. In
this case, Perfect is 1-competitive in this phase because the optimal offline
algorithm algorithm either chose the same column as Perfect and thus got
the same number of coins, or it chose the other column and missed a coin at
an earlier time t′ < t. Or Mario could not see the lowest empty boundary cell
because the visible parts of both boundary columns were full with L coins each.
In this case, Mario’s profit is at least L (by cleaning out one boundary column),
while the optimal profit can only be one higher than Mario’s (for the last step t
where Mario does not catch a coin), thus the competitive ratio is at most L+1

L .
It remains to analyze the last phase if it is incomplete, i.e., it does not end

with Mario moving to the middle. Then Mario will catch a coin in every step
during the phase, i.e., Perfect is 1-competitive in this phase. ��



190 R. Fleischer and T. Zhang

4.3 Reasonable Bounds for Arbitrary d

Since Mario can reach any position in at most d + 1 steps, we can adapt the
deterministic algorithm Intermittent-Reset by Jayram et al. [2] to obtain
an online algorithm for Windfall which is approximately (1+ 4d

K )-competitive.
However, this algorithm requires K ≥ 4d. In this section, we will propose two
other algorithms which seem more practical. They generalize Perfect for the
case d = 1. In that algorithm, we used the middle position as a GBP. The
intuition was that via a GBP we can reach any position from any other position
(using one additional step, to reach the GBP). For d ≥ 1, we now define a GBP

as any sequence of d consecutive rows in σ where Mario does not try to catch
coins but instead tries to reach a certain position on the screen. We say that
a sequence of d consecutive rows without any coins is a natural GBP (because
Mario does not miss any coins during a natural GBP).

Obviously, the optimal offline algorithm cannot catch any coins during a natural
GBP, so we can use it to adjust Mario’s position between two phases, while he
serves each phase optimally (or, at least, c-competitively), see Algorthm 3. To be
more precise, we use the first d−D rows of a GBP to reach the middle position,
and then the nextD+1 rows to reach the optimal starting position for serving the
next phase. Note that this algorithm is possible because we need at most �d2� steps
to reach the middle position from any other position, and then we see already the
first L−�d2� = K rows of the next phase. If theseK rows are followed by d empty
rows (i.e., a naturalGBP), then Mario can catch an optimal number of coins (and
the empty rows will allow him to prepare for the optimal starting position of the
next phase). Otherwise, we cannot guarantee an optimal number of coins, but we
shall bound the competitive ratio.

Note that empty rows at the beginning of a phase are good for Mario because
they give him more time to move to his preferred position, so we do not consider
this case in our analysis.

Algorithm 3. NaturalBreak

The algorithm runs in phases. We assume we can arbitrarily choose the starting position
at the beginning of a phase. In each phase we do the following.

1. Let σt be the first row in the current phase with a coin; Mario does not need to
move until reaching this row. We say, the phase starts at time t.

2. Either we can find a natural GBP starting at row t+i (i.e., rows t+i, . . . , t+i+d−1
are empty) for some i ≤ K, or we set i = K.

3. We serve rows t, . . . , t+ i− 1 optimally.
4. We use the GBP (natural or not) in rows t+ i, . . . , t+ i+ d− 1 to adjust Mario’s

position in preparation for the next phase. We can in d steps reach any non-
boundary column, which makes it possible to reach any position as starting position
of the next phase.

5. The current phase ends at time t+ i+ d− 1.



Competitive Analysis of the Windfall Game 191

Theorem 4. NaturalBreak is (1 + 2d2

K )-competitive.

Proof. Consider any phase of the algorithm. Let Copt denote the maximum num-
ber of coins that an optimal offline algorithm could catch during the phase. If
the phase has a natural GBP, i.e., there are d consecutive empty rows starting
at a row i ≤ K, then Mario will also catch Copt coins during the phase, i.e., the
algorithm will be 1-competitive in this phase.

Otherwise, Mario may not catch Copt coins in the phase, but it will behave
optimally in the first K steps and afterwards miss at most d coins, making
the algorithm reasonably competitive. Remember that we assumed that a phase
starts with at least one coin in the first row. Since there must appear at least
one coin in every d rows if there is no natural GBP, an offline algorithm can
collect at least one coin in every 2d steps by staying in the left or right half of
the screen, whichever side has more coins, i.e., Copt ≥ �K2d�.

Mario will always catch the optimal number of coins in the first K steps of
a phase, and during a GBP phase he may miss at most d coins. Thus, the

competitive ratio is at most
Copt+d
Copt

≤ 1 + 2d2

K . ��

This performance is not very impressive, but the algorithm is not very sophisti-
cated either. There are cases where it behaves optimally, i.e., it is 1-competitive,

and cases where it is (1 + 2d2

K )-competitive. We can improve the competitive
ratio by better balancing these cases.

Let c denote the competitive ratio we want to achieve. A c-GBP is a GBP

with competitive ratio c. The competitive ratio of a GBP is defined as the
optimal profit on rows t, . . . , t+ i+ d− 1 divided by the optimal profit on rows
t, . . . , t + i − 1, where we assume that the phase starts at time t and the GBP

at time t+ i.
In Algorithm 4, we try to identify c-GBPs (versus natural GBPs in Natu-

ralBreak with a competitive ratio of 1). One difference to NaturalBreak is
that we now can only try to identify c-GBPs in the first K − d rows of a phase
because the GBP must be fully known at the time we start planning for the
phase, which happens D steps before the phase starts (except for the first phase,
where we could choose i = L− d+ 1). This requires K ≥ d+ 1. Let m = �Kd �.

Theorem 5. For K ≥ d+ 1, CleverBreak is (1 + m
√
d)-competitive.

Proof. If we find a c-GBP in the current phase, we can handle the phase c-
competitively. Otherwise, let ki = id + 1, for i ≥ 0. Since there is no c-GBP,
the optimal profit for the first ki rows is at least ci. In particular, the optimal
profit for the entire phase is at least cm. The competitive ratio in this phase is
therefore at most 1 + d

cm . Balancing the two cases, means this term should be

equal to c, which is equivalent to d = cm+1 − cm. Choosing c = 1+ m
√
d finishes

the proof. ��

For K close to d + 1, we can compute a more precise bound of 1
2 +

√
d+ 1

4 .

Note that the upper bound in Theorem 5 is quite poor if K
d = 1, in which case



192 R. Fleischer and T. Zhang

Algorithm 4. CleverBreak

The algorithm runs in phases. We assume that we can arbitrarily choose the starting
position at the beginning of a phase. In each phase we first serve up toK rows optimally
and then use the next d rows to position Mario at the best possible place for the next
phase.

1. Let σt be the first row in the current phase with a coin; Mario does not need to
move until reaching this row. We say, the phase starts at time t.

2. Either we can find a c-GBP starting at row t + i for some i ≤ K − d, or we set
i = K − d.

3. We serve rows t, . . . , t+ i− 1 optimally.
4. We use the GBP (natural or not) in rows t+i, . . . , t+i+d−1 to adjust Mario’s po-

sition in preparation for the next phase. We can in d steps reach any non-boundary
position, which makes it possible to reach any position as starting position of the
next phase.

5. The current phase ends at time t+ i+ d− 1.

CleverBreak is only (d + 1)-competitive, like the simple Greedy, although
this is optimal if d = K = 1. If K

d is large, CleverBreak is approximately
2-competitive.

5 Conclusions

We have seen several deterministic algorithms for Windfall, the (d + 1)-

competitive Greedy, the L
L+1 -competitive Perfect, the (1+ 2d2

K )-competitive

NaturalBreak, and the (1+
K
d

√
d)-competitive CleverBreak. There are still

some gaps betwen lower and upper bounds, and we think there should be better
deterministic L-lookahead algorithms.

We did not study randomized algorithms in this paper. A natural candidate
would be NaturalBreak, where the critical case in the deterministic analysis
was the case when Mario is in the middle and sees two full boundary columns.
What will be the expected competitive ratio if he picks one column with proba-
bility 0.5?

The real Super Mario Power Coins game has coins of different value, in par-
ticular coins with negative value that Mario must avoid. Our algorithms do not
seem to be applicable in this more general setting.

For deterministic benefit task systems, we would like to close the gap between
lower and upper bound. Also, our game seems to indicate that it might be of
interest to study benefit task systems with constraints, i.e., not all requests can
be satisfied from any server position.



Competitive Analysis of the Windfall Game 193

Acknowledgements. This research was done while Tao Zhang was a Master’s
student at Fudan University. We thank all anonymous reviewers whose comments
helped us to improve the presentation of this manuscript.

References

1. Borodin, A., Linial, N., Saks, M.E.: An optimal online algorithm for metrical task
systems. Journal of the ACM 39(4), 745–763 (1992)

2. Jayram, T.S., Kimbrel, T., Krauthgamer, R., Schieber, B., Sviridenko, M.: Online
server allocation in a server farm via benefit task systems. In: Proceedings of the
33rd ACM Symposium on the Theory of Computation (STOC 2001), pp. 540–549
(2001)

3. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server
problems. Journal of Algorithms 11(2), 208–230 (1990)

4. Super Mario Power Coins (2010),
http://www.onlinegames.net/games/961/super-mario-power-coins.html

http://www.onlinegames.net/games/961/super-mario-power-coins.html


Excuse Me!

or The Courteous Theatregoers’ Problem

(Extended Abstract)

Konstantinos Georgiou1, Evangelos Kranakis2,�, and Danny Krizanc3

1 Department of Combinatorics & Optimization, University of Waterloo
2 School of Computer Science, Carleton University

3 Department of Mathematics & Computer Science, Wesleyan University

Abstract. Consider a theatre consisting of m rows each containing n
seats. Theatregoers enter the theatre along aisles and pick a row which
they enter along one of its two entrances so as to occupy a seat. Assume
they select their seats uniformly and independently at random among the
empty ones. A row of seats is narrow and an occupant who is already
occupying a seat is blocking passage to new incoming theatregoers. As
a consequence, occupying a specific seat depends on the courtesy of the-
atregoers and their willingness to get up so as to create free space that
will allow passage to others. Thus, courtesy facilitates and may well in-
crease the overall seat occupancy of the theatre. We say a theatregoer is
courteous if (s)he will get up to let others pass. Otherwise, the theatre-
goer is selfish. A set of theatregoers is courteous with probability p (or
p-courteous, for short) if each theatregoer in the set is courteous with
probability p, randomly and independently. It is assumed that the be-
haviour of a theatregoer does not change during the occupancy of the
row. Thus, p = 1 represents the case where all theatregoers are courteous
and p = 0 when they are all selfish.

In this paper, we are interested in the following question: what is the
expected number of occupied seats as a function of the total number of
seats in a theatre, n, and the probability that a theatregoer is courteous,
p? We study and analyze interesting variants of this problem reflecting
behaviour of the theatregoers as entirely selfish, and p-courteous for a
row of seats with one or two entrances and as a consequence for a theatre
with m rows of seats with multiple aisles. We also consider the case where
seats in a row are chosen according to the geometric distribution and the
Zipf distibrution (as opposed to the uniform distribution) and provide
bounds on the occupancy of a row (and thus the theatre) in each case.
Finally, we propose several open problems for other seating probability
distributions and theatre seating arrangements.

Keywords and Phrases. (p-)Courteous, Theatregoers, Theatre occu-
pancy, Seat, Selfish, Row, Uniform distribution, Geometric distribution,
Zipf distribution.

� Research supported in part by NSERC Discovery grant.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 194–205, 2014.
c© Springer International Publishing Switzerland 2014



Excuse Me! or The Courteous Theatregoers’ Problem 195

1 Introduction

A group of Greek tourists is vacationing on the island of Lipari and they find
out that the latest release of their favourite playwright is playing at the local
theatre (see Figure 3), Ecclesiazusae by Aristophanes, a big winner at last year’s
(391 BC) Festival of Dionysus. Seating at the theatre is open (i.e., the seats
are chosen by the audience members as they enter). The question arises as to
whether they will be able to find seats. As it turns out this depends upon just
how courteous the other theatregoers are that night.

Consider a theatre with m rows containing n seats each. Theatregoers enter
the theatre along aisles, choose a row, and enter it from one of its ends, wishing to
occupy a seat. They select their seat in the row uniformly and independently at
random among the empty ones. The rows of seats are narrow and if an already
sitting theatregoer is not willing to get up then s(he) blocks passage to the
selected seat and the incoming theatregoer is forced to select a seat among
unoccupied seats between the row entrance and the theatregoer who refuses
to budge. Thus, the selection and overall occupancy of seats depends on the
courtesy of sitting theatregoers, i.e., their willingness to get up so as to create
free space that will allow other theatregoers go by.

An impolite theatregoer, i.e., one that never gets up from a position s(he)
already occupies, is referred to as selfish theatregoer. Polite theatregoers (those
that will get up to let someone pass) are referred to as courteous. On a given
evening we expect some fraction of the audience to be selfish and the remainder to
be courteous. We say a set of theatregoers is p-courteous if each individual in the
set is courteous with probability p and selfish with probability 1− p. We assume
that the status of a theatregoer (i.e., selfish or courteous) is independent of the
other theatregoers and it remains the same throughout the occupancy of the row.
Furthermore, theatregoers select a vacant seat uniformly at random. They enter
a row from one end and inquire (“Excuse me”), if necessary, whether an already
sitting theatregoer is courteous enough to let him/her go by and occupy the
seat selected. If a selfish theatregoer is encountered, a seat is selected at random
among the available unoccupied ones, should any exist. We are interested in the
following question:

What is the expected number of seats occupied by theatregoers when all
new seats are blocked, as a function of the total number of seats and the
theatregoers’ probability p of being courteous?

We first study the problem on a single row with either one entrance or two.
For the case p = 1 it is easy to see that the row will be fully occupied when
the process finishes. We show that for p = 0 (i.e., all theatregoers are selfish)
the expected number of occupied seats is only 2 lnn + O(1) for a row with two
entrances. Surprisingly, for any fixed p < 1 we show that this is only improved
by essentially a constant factor of 1

1−p .
Some may argue that the assumption of choosing seats uniformly at ran-

dom is somewhat unrealistic. People choose their seats for a number of reasons
(sight lines, privacy, etc.) which may result in a nonuniform occupancy pattern.



196 K. Georgiou, E. Kranakis, and D. Krizanc

A natural tendency would be to choose seats closer to the centre of the theatre
to achieve better viewing. We attempt to model this with seat choices made via
the geometric distribution with a strong bias towards the centre seat for the
central section of the theatre and for the aisle seat for sections on the sides of
the theatre. The results here are more extreme, in that for p constant, we expect
only a constant number of seats to be occupied when there is a bias towards the
entrance of a row while we expect at least half the row to be filled when the
bias is away from the entrance. In a further attempt to make the model more
realistic we consider the Zipf distribution on the seat choices, as this distribu-
tion often arises when considering the cumulative decisions of a group of humans
(though not necessarily Greeks)[18]. We show that under this distribution when
theatregoers are biased towards the entrance to a row, the number of occupied
seats is Θ(ln lnn) while if the bias is towards the centre of the row the number is
Θ(ln2 n). If we assume that theatregoers proceed to another row if their initial
choice is blocked it is easy to use our results for single rows with one and two
entrances to derive bounds on the total number of seats occupied in a theatre
with multiple rows and aisles.

1.1 Related Work

Motivation for seating arrangement problems comes from polymer chemistry and
statistical physics in [8, 16] (see also [17][Chapter 19] for a related discussion). In
particular, the number and size of random independent sets on grids (and other
graphs) is of great interest in statistical physics for analyzing hard particles in
lattices satisfying the exclusion rule, i.e., if a vertex of a lattice is occupied by
a particle its neighbors must be vacant, and have been studied extensively both
in statistical physics and combinatorics [2–5, 7].

Related to this is the “unfriendly seating” arrangement problem which was
posed by Freedman and Shepp [9]: Assume there are n seats in a row at a
luncheonette and people sit down one at a time at random. Given that they are
unfriendly and never sit next to one another, what is the expected number of
persons to sit down, assuming no moving is allowed? The resulting density has
been studied in [9, 10, 14] for a 1× n lattice and in [11] for the 2× n and other
lattices. See also [13] for a related application to privacy.

Another related problem considers the following natural process for generating
a maximal independent set of a graph [15]. Randomly choose a node and place
it in the independent set. Remove the node and all its neighbors from the graph.
Repeat this process until no nodes remain. It is of interest to analyze the expected
size of the resulting maximal independent set. For investigations on a similar
process for generating maximal matchings the reader is referred to [1, 6].

1.2 Outline and Results of the Paper

We consider the above problem for the case of a row that has one entrance and
the case with two entrances. We develop closed form formulas, or almost tight
bounds up to multiplicative constants, for the expected number of occupied seats



Excuse Me! or The Courteous Theatregoers’ Problem 197

in a row for any given n and p. First we study the simpler problem for selfish
theatregoers, i.e., p = 1, in Section 2. In Section 3, we consider p-courteous
theatregoers. In these sections, the placement of theatregoers obeys the uniform
distribution. Section 4 considers what happens with p-courteous theatregoers
under the geometric distribution. In Section 5 we look at theatregoers whose
placement obeys the Zipf distribution. And in Section 6 we show how the pre-
vious results may be extended to theater arrangements with multiple rows and
aisles. Finally, in Section 7 we conclude by proposing several open problems and
directions for further research. Details of all missing proofs can be found in the
full version of this work [12].

2 Selfish Theatregoers

In this section we consider the occupancy problem for a row of seats arranged
next to each other in a line. First we consider theater occupancy with selfish
theatregoers in that a theatregoer occupying a seat never gets up to allow another
theatregoer to go by. We consider two types of rows, either open on one side or
open on both sides. Although the results presented here are easily derived from
those in Section 3 for the p-courteous case, our purpose here is to introduce the
methodology in a rather simple theatregoer model.

Consider an arrangement of n seats in a row (depicted in Figure 1 as squares).
Theatregoers enter in sequence one after the other and may enter the arrange-
ment only from the left. A theatregoer occupies a seat at random with the
uniform distribution and if selfish (s)he blocks passage to her/his right. What is
the expected number of occupied seats?

Fig. 1. An arrangement of seats; theatregoers may enter only from the left and the
numbering of the seats is 1 to n from left to right

Theorem 1 (Row with only one entrance). The expected number of oc-
cupied seats by selfish theatregoers in an arrangement of n seats in a row with
single entrance is equal to Hn, the nth harmonic number.

Proof. (Theorem 1) Let En be the expected number of theatregoers occupying
seats in a row of n seats. Observe that E0 = 0, E1 = 1 and that the following
recurrence is valid for all n ≥ 1.

En = 1 +
1

n

n∑
k=1

Ek−1 = 1 +
1

n

n−1∑
k=1

Ek. (1)



198 K. Georgiou, E. Kranakis, and D. Krizanc

The explanation for this equation is as follows. A theatregoer may occupy any
one of the seats from 1 to n. If it occupies seat number k then seats numbered
k + 1 to n are blocked while only seats numbered 1 to k − 1 may be occupied
by new theatregoers. It is not difficult to solve this recurrence. Write down both
recurrences for En and En−1.

nEn = n+
n−1∑
k=1

Ek and (n− 1)En−1 = n− 1 +
n−2∑
k=1

Ek.

Substracting these two identities we see that nEn − (n − 1)En−1 = 1 + En−1.
Therefore En = 1

n + En−1. This proves Theorem 1. ��

Now consider an arrangement of n seats (depicted in Figure 2) with two entrances
such that theatregoers may enter only from either right or left.

Fig. 2. An arrangement of n seats; theatregoers may enter either from the right or
from the left

Theorem 2 (Row with two entrances). The expected number of occupied
seats by selfish theatregoers in an arrangement of n seats in a row with two
entrances is 2 lnn, asymptotically in n.

3 Courteous Theatregoers

Now consider the case where theatregoers are courteous with probability p and
selfish with probability 1 − p. We assume that the probabilistic behaviour of
the theatregoers is independent of each other and it is set at the start and
remains the same throughout the occupancy of the row of seats. Analysis of the
occupancy will be done separately for rows of seats with one and two entrances
(see Figures 1 and 2). Again, seat choices are made uniformly at random. Observe
that for p = 1 no theatregoer is selfish and therefore all seats in a row of seats
will be occupied. Also, since the case p = 0 whereby all theatregoers are selfish
was analyzed in the last section, we can assume without loss of generality that
0 < p < 1.

Theorem 3 (Row with only one entrance). Assume 0 < p < 1 is given.
The expected number En of occupied seats in an arrangement of n seats in a row
having only one entrance at an endpoint with p-courteous theatregoers is given
by the expression

En =

n∑
k=1

1− pk

k(1− p)
, (2)

for n ≥ 1. In particular, for fixed p, En is Hn+ln(1−p)
1−p , asymptotically in n.



Excuse Me! or The Courteous Theatregoers’ Problem 199

Proof. (Theorem 3) Consider an arrangement of n seats (depicted in Figure 1
as squares). Let En denote the expected number of occupied positions in an
arrangement of n seats with single entrance at an endpoint and p-courteous
theatregoers. With this definition in mind we obtain the following recurrence

En = 1 + pEn−1 +
1− p

n

n∑
k=1

Ek−1 (3)

where the initial condition E0 = 0 holds.
Justification for this recurrence is as follows. Recall that we have a line with

single entrance on the left. Observe that with probability 1− p the theatregoer
is selfish and if (s)he occupies position k then theatregoers arriving later can
only occupy a position in the interval [1, k− 1] with single entrance at 1. On the
other hand, with probability p the theatregoer is courteous in which case the
next person arriving sees n−1 available seats as far as (s)he is concerned; where
the first person sat doesn’t matter and what remains is a problem of size n− 1.
This yields the desired recurrence.

To simplify, multiply Recurrence (3) by n and combine similar terms to derive

nEn = n+ (np+ 1− p)En−1 + (1− p)

n−2∑
k=1

Ek.

A similar equation is obtained when we replace n with n− 1

(n− 1)En−1 = n− 1 + ((n− 1)p+ 1− p)En−2 + (1− p)

n−3∑
k=1

Ek.

If we substract these last two equations we derive nEn − (n − 1)En−1 = 1 +
(np+1−p)En−1− ((n− 1)p+1−p)En−2+(1−p)En−2. After collecting similar
terms. it follows that nEn = 1 + (n(1 + p)− p)En−1 − (n− 1)pEn−2.

Dividing both sides of the last equation by n we obtain the following recur-
rence

En =
1

n
+
(
1 + p− p

n

)
En−1 −

(
1− 1

n

)
pEn−2,

where it follows easily from the occupancy conditions that E0 = 0, E1 = 1, E2 =
3
2 +

p
2 . Finally, if we define Dn := En−En−1, substitute in the last formula and

collect similar terms we conclude that

Dn =
1

n
+

(
1− 1

n

)
pDn−1, (4)

where D1 = 1. The solution of Recurrence (4) is easily shown to be Dn = 1−pn

n(1−p)

for p < 1. By telescoping we have the identity En =
∑n

k=1 Dk. The proof of the
theorem is complete once we observe that

∑∞
k=1 p

k/k = − ln(1− p). ��



200 K. Georgiou, E. Kranakis, and D. Krizanc

Theorem 4 (Row with two entrances). Assume 0 < p < 1 is given. The
expected number Fn of occupied seats in an arrangement of n seats in a row hav-
ing two entrances at the endpoints with probabilistically p-courteous theatregoers
is given by the expression

Fn = −1− pn

1− p
+ 2

n∑
k=1

1− pk

k(1− p)
, (5)

for n ≥ 1. In particular, for fixed p, Fn is − 1
1−p + 2Hn−ln(1−p)

1−p , asymptotically
in n.

4 Geometric Distribution

In the sections above the theatregoers were more or less oblivious to the seat
they selected in that they chose their seat independently at random with the
uniform distribution. A more realistic assumption might be that theatregoers
prefer to be seated as close to the centre of the action as possible. For a row
in the centre of the theatre, this suggests that there would be a bias towards
the centre seat (or two centre seats in the case of an even length row) which
is nicely modelled by a row with one entrance ending at the middle of the row
where the probability of choosing a seat is biased towards the centre seat (which
we consider to be a barrier, i.e., people never go past the centre if they enter on
a given side of a two sided row). For a row towards the edge of the theatre this
would imply that theatregoers prefer to chose their seats as close to the aisle,
i.e., as close to the entrance, as possible. This is nicely modelled by a row with
one entrance with a bias towards the entrance.

As usual, we consider a row with one entrance with n seats (depicted in Fig-
ure 1 as squares) numbered 1, 2, . . . n from left to right. We refer to a distribution
modelling the first case, with bias away from the entrance, as a distribution with
a right bias, while in the second case, with bias towards the entrance, as dis-
tribution with a left bias. (We only consider cases where the bias is monotonic
in one direction though one could consider more complicated distributions if for
example there are obstructions part of the way along the row.)

A very strong bias towards the centre might be modelled by the geometric
distribution. For the case of a left biased distribution theatregoers will occupy
seat k with probability 1

2k for k = 1, . . . , n − 1 and with probability 1
2n−1 for

k = n. For the case of a right biased distribution theatregoers will occupy seat k
with probability 1

2n+1−k for k = 2, . . . , n and with probability 1
2n−1 for k = 1. We

examine the occupancy of a one-entrance row under each of these distributions
assuming a p-courteous audience.

Theorem 5 (Left bias). The expected number of occupied seats by p-courteous
theatregoers in an arrangement of n seats in a row with single entrance is

n∑
l=1

l−1∏
k=1

(
p+

1− p

2k

)
(6)



Excuse Me! or The Courteous Theatregoers’ Problem 201

In particular, the value Tp of (6) as n→∞, satisfies

1.6396− 0.6425p

1− p
≤ Tp ≤

1.7096− 0.6425p

1− p

for all p < 1.

We leave it as an open problem to determine the exact asymptotics of ex-
pression (6) above, as a function of p. As a sanity check, we can find (using any
mathematical software that performs symbolic calculations) the limit of (6) as
n→∞ when p = 0, which turns out to be approximately 1.64163.

Theorem 6 (Right bias). The expected number of occupied seats by p-courteous
theatregoers in an arrangement of n seats in a row with single entrance is at least
n+1
2 , for any p. Moreover, this bound is attained for p = 0.

5 Zipf Distribution

We now study the case where theatregoers select their seat using an arguably
more natural distribution, namely, the Zipf distribution [18]. As before, through-
out the presentation we consider an arrangement of n seats (depicted in Figure 1
as squares) numbered 1 to n from left to right with one entrance starting from
seat 1. Theatregoers enter in sequentially and may enter the row only from the
single entrance. There are two occupancy possibilities: Zipf with left bias and
Zipf with right bias. In Zipf with left bias (respectively, right) a theatregoer will
occupy seat k at random with probability 1

kHn
(respectively, 1

(n+1−k)Hn
) and a

selfish theatregoer blocks passage to her/his right, i.e., all positions in [k+1, n].
In the sequel we look at a row with a single entrance. The case of a row with
two entrances may be analyzed in a similar manner.

First we analyze the Zipf distribution with left bias for selfish theatregoers.

Theorem 7 (Selfish with left bias). The expected number of occupied seats
by selfish theatregoers in an arrangement of n seats in a row with single entrance
is equal to ln lnn, asymptotically in n.

Proof. (Theorem 7) Let Ln be the expected number of theatregoers occupying
seats in a row of n seats. Observe that L0 = 0, L1 = 1 and that the following
recurrence is valid for all n ≥ 1.

Ln = = 1 +
1

Hn

n∑
k=1

1

k
Lk−1. (7)

The explanation for this equation is as follows. A theatregoer may occupy any
one of the seats from 1 to n. If it occupies seat number k then seats numbered
k+1 to n are blocked while only seats numbered 1 to k− 1 may be occupied by
new theatregoers.



202 K. Georgiou, E. Kranakis, and D. Krizanc

It is not difficult to solve this recurrence. Write down both recurrences for Ln

and Ln−1.

HnLn = Hn +

n∑
k=1

1

k
Lk−1 and Hn−1Ln−1 = Hn−1 +

n−1∑
k=1

1

k
Lk−1.

Substracting these last two identities we see that

HnLn −Hn−1Ln−1 = Hn −Hn−1 +
1

n
Ln−1 =

1

n
+

1

n
Ln−1

Therefore HnLn = 1
n + HnLn−1. Consequently, Ln = 1

nHn
+ Ln−1. From the

last equation we see that

Ln =

n∑
k=2

1

kHk
≈
∫ n

2

dx

x lnx
= ln lnn.

This yields easily Theorem 7. ��

Next we consider selfish theatregoers choosing their seats according to the Zipf
distribution with right bias. As it turns out, the analysis of the resulting recur-
rence is more difficult than the previous cases. A technical lemma can be used
to prove that

Lemma 1. The solution of the recurrence relation

Rn = 1 +
1

Hn

n−1∑
k=1

1

n− k
Rk

with initial condition R1 = 1 satisfies

100

383
H2

n ≤ Rn ≤
5

7
H2

n. (8)

Note that Lemma 1 implies that limn→∞ Rn/ ln
2 n = c, for some constant c ∈

[0.261, 0.72]. This is actually the constant hidden in the Θ-notation of Theorem 8.
We leave it as an open problem to determine exactly the constant c. Something
worthwhile noticing is that our arguments cannot narrow down the interval of
that constant to anything better than [3/π2, 6/π2].

Theorem 8 (Selfish with right bias). The expected number of occupied seats
by selfish theatregoers in an arrangement of n seats in a row with single entrance
is Θ(ln2 n), asymptotically in n.

Proof. (Theorem 8) Let Rn be the expected number of theatregoers occupying
seats in a row of n seats, when seating is biased to the right, Observe that
R0 = 0, R1 = 1 and that the following recurrence is valid for all n ≥ 1.

Rn = 1 +
1

Hn

n∑
k=2

1

n+ 1− k
Rk−1 = 1 +

1

Hn

n−1∑
k=1

1

n− k
Rk. (9)



Excuse Me! or The Courteous Theatregoers’ Problem 203

The justification for the recurrence is the same as in the case of the left bias
with the probability changed to reflect the right bias. The theorem now follows
immediately from Lemma 1. ��

Theorem 9 (Courteous with left bias). The expected number of occupied
seats by p-courteous theatregoers in an arrangement of n seats in a row with
single entrance is equal to

Ln = ln lnn+

n∑
l=1

l∑
k=1

pk (1− hl) (1− hl−1) · · · (1− hl−k+1) hl−k (10)

asymptotically in n, where h0 := 0 and hk := 1
kHk

, for k ≥ 1. In particular, for

constant 0 < p < 1 we have that Ln = Θ( ln lnn
1−p ).

Theorem 10 (Courteous with right bias). The expected number Rn(p) of
occupied seats by p-courteous theatregoers in an arrangement of n seats in a row
with single entrance, and for all constants 0 ≤ p < 1 satisfies

Rn(p) = Ω

(
H2

n

1− 0.944p

)
and Rn(p) = O

(
H2

n

1− p

)
asymptotically in n.

6 The Occupancy of a Theater

Given the previous results it is now easy to analyze the occupancy of a theater.
A typical theater consists of an array of rows separated by aisles. This naturally
divides each row into sections which either have one entrance (e.g., when the
row section ends with a wall) or two entrances. For example in Figure 3 we see
the Greek theatre on Lipari consisting of twelve rows each divided into two one
entrance sections and three two entrance sections. In a sequential arrival model
of theatregoers, we assume that a theatergoer chooses a row and an entrance to
the row by some arbitrary strategy. If she finds the row blocked at the entrance,
then she moves on to the other entrance or another row. Then, the resulting
occupancy of the theater will be equal to the sum of the number of occupied
seats in each row of each section. These values depend only on the length of the
section. This provides us with a method of estimating the total occupancy of
the theatre.

For example, for the Lipari theatre if each row section seats n theatregoers
then we get the following:

Corollary 1. Consider a theater having twelve rows with three aisles where each
section contains n seats. For firxed 0 < p < 1, the expected number of occupied
seats assuming p-courteous theatregoers is given by the expression

− 36

1− p
+ 96

Hn − ln(1− p)

1− p
, (11)

asymptotically in n. ��



204 K. Georgiou, E. Kranakis, and D. Krizanc

Fig. 3. The Greek theatre on Lipari Island

7 Conclusions and Open Problems

There are several interesting open problems worth investigating for a variety of
models reflecting alternative and/or changing behaviour of the theatregoers, as
well as their behaviour as a group. Also problems arising from the structure (or
topology) of the theatre are interesting. In this section we propose several open
problems and directions for further research.

While we considered the uniform, geometric and Zipf distributions above, a
natural extension of the theatregoer model is to arbitrary distributions with
the probability that a theatregoer selects seat numbered k is pk. For example,
theatregoers may prefer seats either not too close or too far from the stage.
These situations might introduce a bias that depends on the two dimensions of
the position selected. It would be interesting to compare the results obtained to
the actual observed occupancy distribution of a real open seating theatre such
as movie theatres in North America.

Another model results when the courtesy of a theatregoer depends on the
position selected, e.g., the further away from an entrance the theatregoer is
seated the less likely (s)he is to get up. Another interesting question arises when
theatregoers not only occupy seats for themselves but also need to reserve seats
for their friends in a group. Similarly, the courtesy of the theatregoers may now
depend on the number of people in a group, e.g., the more people in a group
the less likely for all theatregoers to get up to let somebody else go by. Another
possibility is to consider the courteous theatregoers problem in an arbitrary
graph G = (V,E). Here, the seats are vertices of the graph. Theatregoers occupy
vertices of the graph while new incoming theatregoers occupy vacant vertices
when available and may request sitting theatregoers to get up so as to allow



Excuse Me! or The Courteous Theatregoers’ Problem 205

them passage to a free seat. Further, the set of nodes of the graph is partitioned
into a set of rows or paths of seats and a set of “entrances” to the graph. Note
that in this more general case there could be alternative paths to a seat. In
general graphs, algorithmic questions arise such as give an algorithm that will
maximize the percentage of occupied seats given that all theatregoers are selfish.

References

1. Aronson, J., Dyer, M., Frieze, A., Suen, S.: Randomized greedy matching. II. Ran-
dom Structures & Algorithms 6(1), 55–73 (1995)

2. Baxter, R.J.: Planar lattice gases with nearest-neighbour exclusion. Annals of Com-
bin. 3, 191–203 (1999)

3. Bouttier, J., Di Francesco, P., Guitte, E.: Critical and tricritical hard objects on
bicolorable random lattices: Exact solutions. J. Phys. A35, 3821–3854 (2012), Also
available as arXiv:cond-mat/0201213

4. Bouttier, J., Di Francesco, P., Guitte, E.: Combinatorics of hard particles on planar
graphs. J. Phys. A38, 4529–4559 (2005), Also available as arXiv:math/0501344v2

5. Calkin, N.J., Wilf, H.S.: The number of independent sets in a grid graph. SIAM
J. Discret. Math. 11(1), 54–60 (1998)

6. Dyer, M., Frieze, A.: Randomized greedy matching. Random Structures & Algo-
rithms 2(1), 29–45 (1991)

7. Finch, S.R.: Several Constants Arising in Statistical Mechanics. Annals of Combi-
natorics, 323–335 (1999)

8. Flory, P.J.: Intramolecular reaction between neighboring substituents of vinyl poly-
mers. Journal of the American Chemical Society 61(6), 1518–1521 (1939)

9. Freedman, D., Shepp, L.: An unfriendly seating arrangement (problem 62-3). SIAM
Review 4(2), 150 (1962)

10. Friedman, H.D., Rothman, D.: Solution to: An unfriendly seating arrangement
(problem 62-3). SIAM Review 6(2), 180–182 (1964)

11. Georgiou, K., Kranakis, E., Krizanc, D.: Random maximal independent sets
and the unfriendly theater seating arrangement problem. Discrete Mathemat-
ics 309(16), 5120–5129 (2009)

12. Georgiou, K., Kranakis, E., Krizanc, D.: Excuse Me! or The Courteous Theatre-
goers’ Problem, eprint arXiv, primary class cs.DM (2014),
http://arxiv.org/abs/1403.1988

13. Kranakis, E., Krizanc, D.: Maintaining privacy on a line. Theory of Computing
Systems 50(1), 147–157 (2012)

14. MacKenzie, J.K.: Sequential filling of a line by intervals placed at random and its
application to linear adsorption. The Journal of Chemical Physics 37(4), 723–728
(1962)

15. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge University Press (2005)

16. Olson, W.H.: A markov chain model for the kinetics of reactant isolation. Journal
of Applied Probability, 835–841 (1978)

17. Strogatz, S.H.: The Joy of X: A Guided Tour of Math, from One to Infinity. Eamon
Dolan/Houghton Mifflin Harcourt (2012)

18. Zipf, G.K.: Human behavior and the principle of least effort. Addison-Wesley
(1949)

http://arxiv.org/abs/1403.1988


Zombie Swarms: An Investigation

on the Behaviour of Your Undead Relatives

Vincenzo Gervasi, Giuseppe Prencipe, and Valerio Volpi

Dipartimento di Informatica, Università di Pisa, Italy
{gervasi,prencipe}@di.unipi.it, volpi@me.com

Abstract. While zombies have been studied in a certain detail in vivo1,
the attention has been mostly focused on small-scale experiences, typ-
ically on case studies unexplicabily concentrating on just a hero and a
few dozen zombies. Only recently a new, fruitful area of research on the
behaviour of masses of zombies has been investigated.

In this paper, we focus on modeling the behaviour of swarms of zom-
bies, according to the most recent theories of their cognitive, sensorial
and motion capabilities. In so doing, we also formulate recommendation
on how the hero might survive while putting the minimum effort needed
to succeed, thus helping keeping the sufficient amount of suspense in
future research scripts.

1 Introduction

Since the seminal study of Romero et al. [1] and their follow-up work, we have
been well aware of the menace of zombie attacks. Theories vary about the ex-
act mechanism of re-animation, and about the level of cognitive and sensorial
impairment that it entails. Two things, however, are clearly demonstrated by a
number of studies: (1) zombies are not as effective, in terms of perception and
planning, as ther uninfected human relatives, and (2) infection is propagated to
humans by physical, direct contact with zombies. Regarding the latter point, re-
searchers diverge on whether simply coming in contact with bodily fluid (blood,
salive) is sufficient to transfer the infection, or a full “zombie bite” is needed
(in addition, of course, to the infected person dying so that she or he can be re-
animated as zombie). On the other hand, zombies have been reported at times as
extremely slow and clumsy (e.g., in [1]). While, lamentably, Zombology has not
yet produced reliable reference works, nor even a systematic literature review,
still one strategy to avoid the infection emerges from the above mentioned stud-
ies: leverage the limited range of behaviours exhibited by zombies, by providing
them with purposefully engineering stimuli, in order to avoid direct contact and
escape attacks.

In particular, [2] established the link between noise level and activity level of
zombies. The author authoritatively arguments that zombies in their “unexcited”
state would just stay idle, or mildly wander around, and do not appear to be

1 Pun intended.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 206–217, 2014.
c© Springer International Publishing Switzerland 2014



An Investigation on the Behaviour of Your Undead Relatives 207

particularly aggressive. On hearing any sound2, the activity level of zombies
increases, in proportion to the loudness of the sound. With the activity level
increases also their aggressivity towards humans, and their speed of movement
and of attack. Indeed, despite the lack of proper statistical testing with a control
group, the behaviour described above is depicted with such graphical evidence in
documentaries such as [3] that little doubt about the validity of the relationship
between noise and aggressivity level is left to the spectator.

We start in Section 2 by reviewing some relevant literature, and highlight
the difference and novelty of our approach compared to earlier contributions.
Section 3 then sets out the theoretical work for our model, and Section 4 presents
the results of numerical simulations proving the effectiveness of the proposed
strategies. Some conclusion and plans for future work complete the paper.

2 Related Work

Historically, our understanding of zombies has not always been accurate. The
first ever zombie movie [4], misconstrued zombies as a sort of “golems”, con-
trolled by (evil) humans; we are well aware now that factually this is not the
case. A more precise account was given by Romero in his classic trilogy, starting
with [1]. Romero’s behavioural model was then adopted by essentially all subse-
quent studies, up to the most recent ones, namely: [5] and its movie adaptation,
[3]. In fact, in [3] and [6] the correlation between noise level, activation level,
aggressivity and speed of the zombies is clearly presented.

Another related strand of research concerns the epidemiology of a zombie
infection. Started by [7], the area has received increasing attention, till the latest
results such as [8] that have even reached the mainstream audience.

The final thread we are bringing together in our work is about the behaviour
of a group of zombies, which has been extensively studied (although usually not
specifically with zombies in mind) under the label of swarm behaviour. A signif-
icant difference, compared to other studies, is that in our case each individual
zombie is unaware of the presence (and behaviour) of other zombies in the area.
They can only feel the presence of humans in close proximity (i.e., in their attack
range), or establish the direction of any sound they perceive. In contrast, in most
swarm models each unit in the swarm is aware of the position of all other units.

Specifically, in this work we set to develop a computational model of this
particular behaviour, linking noise (emitted purposefully by humans) to zombie
activation (that happens in reaction), and suggest strategies that can be used
by unexperienced heroes in escaping, controlling, surviving, and ultimately de-
feating even large hordes of zombies. The model used in this paper is based on a
more general model widely used in literature to describe the behavior of a set of
autonomous and asynchronous entities that operate on a two dimensional plane:
ASYNC (also known as CORDA) [9–11].

2 Apparently, zombies’ senses of sight and smell are less effective than those of unin-
fected humans; hearing is much improved, whereas we have no information about
their sense of touch, and prefer not to investigate that of taste.



208 V. Gervasi, G. Prencipe, and V. Volpi

One of the distinctive features of ASYNC is the absence of any explicit and
direct mean of communication among the entities; in particular, communication
happens implicitly merely by observing movements of the entities on the plane.
A first attempt of modeling direct communication appears in [12], where the
entities can communicate by turning on and off external bulb lights, i.e. lights
visible to all entities. In this paper, we introduce for the first time, to the best of
our knowledge, audio signals as a direct communication mean. The first impor-
tant difference between lights in [12] and audio modeled here is that the intensity
of the audio signal emitted by an entity decreases following the inverse-square
law. The second main difference with the common features of ASYNC is that
the entity the perceives the audio signal will move with a speed that is pro-
portional to the perceived intensity (inversely proportional to its distance from
the source): in all previous works in literature, the speed of the entities never
changes during the execution of the protocols.

3 The Computational Model

We consider two kinds of entities: the Humans (H), and the Zombies (Z).

The Humans.Wemodel our fellow humans as deliberate, asynchronous, resource-
ful agents. In particular, they can act according to pre-agreed plans, can observe
their surroundings (including the positions of zombies and other humans, but
not how excited the zombies are), and can move (within limited speed and range)
and yell (i.e., emitting sound of a desired intensity). They cannot directly com-
municate with each other, but may have memory (hence, they can trace the
trajectories of other agents, and execute plans that are articulated in several
steps) and identities (i.e., they may discern who other humans are). Finally,
they all share the same world coordinates, so that knowing the pre-agreed plans,
and observing the current situation, they can act based on expectations of what
the behaviour of other humans will be.

Overall, Humans are quite powerful agents, much better endowed than the
Zombies, as we will see in Section 4. Any direct match between our resourceful
Humans and the brainless Zombies would thus be very uneven, except for two
(relatively minor) details. First, Humans can die, whereas Zombies cannot. In
fact, in this paper we will assume that death is a final occurrence for a Human
(other choices include turning the Human into a Zombie, or turning the Human
into a Body which can be either disposed of by other Humans, or turn into a
Zombie after a suitable incubation period). Second, Zombies are substantially
more numerous than Humans. In many cases, we will study a scenario with a
single Human and many dozens of Zombies, which seems to be the situation that
most frequently occurs in documented (filmed) encounters.

Our investigation will thus try to answer a pressing question: if you or your
family are confronted with an horde of zombies, which plans can you enact, alone
or in concert with others, so that you can survive and possibly trick the zombies
into adopting some desirable behaviour?



An Investigation on the Behaviour of Your Undead Relatives 209

The Zombies. The Zombies are modeled as simple and dumb units; in particular,
they are autonomous (that is they operate without a central control or external
intervention) and asynchronous, and are driven by sensing the noise emitted by
the humans. A Z has an activity level: at minimum activity level the zombie is in
a quiet state, and does not move; otherwise, it moves towards its current target
with a current speed proportional to the activity level. The activity level itself
is increased in proportion to the total amount of noise perceived by the Z, and
the current target is determined based on the direction of the noise.

A Z also has an attack range. If a H enters the attack range of a Z, it is assumed
that the Z will snatch at, and overpower, him or her in a single movement. The
outcome is usually unpleasant from the H’s point of view.

The Z has no memory whatsoever, and is thus totally oblivious. Additionally,
the Zs have no kind of agreement on their coordinates (i.e., no global compass
is available), and have no means to directly communicate among them. In other
words, the Zs move by just perceiving the noises emitted by the Hs.

The cycle of “life” of the Zs is described in Figure 1. At each cycle, each Z first
Looks for the presence of any human in its Attack Range (AR), and retrieves
their positions, stored in set H ; in case H is not empty, the Z will move towards
him/her and bite him or her. Then, the zombie Hears the noises emitted by the
humans; each noise is modeled by a vector whose direction is that of the source,
and whose magnitude is proportional to the noise intensity. Based on perceived
noises, the zombie calculates its Perceived Noise Level (PNL) as the sum of the
intensities of all noises it perceives. A zombie can perceive noises that are being
emitted at the exact time it is hearing: in other words, we do not model decay
of the sounds in relation to time, but only in relation to distance (in particular:
we do not model echoes, which in reality might be a useful tactic for Hs).

Based on PNL, it redetermines the Current Activity Level (CAL) and the
Current Speed (CS); thus, it computes the destination target, and moves towards
it. In determining the updated activity level, we consider anattenuation function,
obtained through successive divisions by a constant decay rate > 1 (see Figure 1).

Initial Conditions and Termination. At the beginning we assume that the hu-
mans are emitting no noise, i.e., there is silence, that the Zs occupy all arbitrarily
distinct positions in the environment, and that there is no human in the attack
range of any zombie. Also, we assume that the activation level of the zombies
is at their minimum3. Our game ends as soon as one human enters the attack
range of a zombie and gets bitten.

4 Problems

In this section we propose several survival tactics that the Humans should ac-
tuate in order to not be bitten by the Zombies; all of them have been tested by
numerical simulations, using the Sycamore simulation environment [13]. Given
the gruesome nature of the material, we recommend only readersaged 18+ to

3 Note that this state can be always reached by humans not emitting any noise until
the zombies reach their minimum activation level.



210 V. Gervasi, G. Prencipe, and V. Volpi

Zombie’s Cycle of Life

H := Look within my attack range AR;
If H 
= ∅ Then

BITE them;a

Hear noises;
PNL := Sum of the levels of the perceived noises;
If PNL > CAL Then

CAL := PNL;
Else

CAL := CAL/DecayRate;
d := Vector sum of all perceived noises
CS := Compute current speed based on CAL;
Move towards d with speed CS.

a Different models can be defined, based on whether all humans in H are bitten, or
just one of them – e.g., the closest. In our problems, we try to save all humans, and
consider that Hs have lost as soon as one of them is captured: hence, the choice is
immaterial in our context.

Fig. 1. The cycle of “life” of a zombie

continue with the paper — and, above all, not to try to replicate our experiments
without experienced supervision and emergency rescue personnel at hand!

In order to be able to test the effectiveness of the survival solutions proposed
in this paper, we model the Humans as entities that are able to asynchronously
and independently move on the plane, following the ASYNCmodel [9–11]. Their
aim is that of driving the Zs by emitting noise, trying to not become too close to
the Zs. In particular, at any point in time, a H is either active or inactive. When
active, a H executes the following three operations, each in a different state:

(i) Look: The human observes the presence of zombies and other humans in
the environment. The result of this operation is a snapshot of the positions
of all entities (both Hs and Zs) in the systems.

(ii) Compute: Each H executes the algorithm (the same for all Hs), using the
snapshot of the Look operation as input. The algorithm they execute is
related to the particular effect they want to achieve on the zombies’ pop-
ulation, and will be detailed in the following sections. The result of the
computation is a destination point and a noise level. The emitted noise is
persistent; i.e., their audio device is not automatically turned off at the end
of a cycle.

(iii) Move: The human moves towards the computed destination by emitting a
noise at the computed level. If the destination is the current location, the
human stays still, performing a null movement.

The Hs are modeled as powerful units; therefore, they can access unbounded
local memory, they all agree on a common coordinate system (i.e., they agree
on compasses), and they have unlimited visibility (i.e., when they Look, they



An Investigation on the Behaviour of Your Undead Relatives 211

can retrieve the positions of all Hs and Zs in the environment). The sequence
Look-Compute-Move forms the humans’ cycle of life.

In the following, we will denote the diameter of the zombies as the maximum
distance between any two zombies, that is maxi,j dist(Zi, Zj).

4.1 Gathering

The first problem considered is the Gathering: the aim of the humans is that
of having all the zombies gathered in a sufficiently small area of the plane. In
particular, the humans consider the task achieved when the diameter of the
zombies is smaller than a given distance ρ.

One Human. First we consider the case of just one human, and any large
number of zombies.

Unhappy ending. If the human just emits sounds (continously or repeatedly),
not moving, then he or she will be clearly be bitten by the zombies; thus, he/she
just waits for the inevitable end. That is, we can state that

Theorem 1. If a H emits a sound undefinitely and does not move, the H will
be caught (eventually).

Of course, a definite duration of sound may not always be fatal: in fact, if the
initial distance between the H and the Zs is sufficiently large, and the cumulative
duration of the sound sufficiently short, it may well happen that the Zs’ CAL
decays to quiet before they reach the H. The exact outcome depends on the
CAL decay function: if it reaches the minimum in a finite amount of time, then
perfect quiet (and a still form of safety) can be achieved. If on the contrary the
decay function has just an asymptote at 0 (as in our model in Figure 1), then
even a finite positive amount of sound stimulation (i.e. any sound, no matter
how brief) will lead to a final capture of the H.

The previous theorem stresses that a clever strategy must be decided by the Hs
to successfully survive the Zs and achieve the task; in other words, the Hs cannot
just use any strategy. An unwise choice of strategy will lead to a unhappy ending.

Happy ending. Thus, by previous Theorem 1, the lonely human needs to move
in order to be able to survive the zombies, and to complete the gathering task.
In particular, H can use the following simple strategy:

Protocol HappyGathering

1. H computes a circle centered in the centroid of the initial zombies’ positions,
and having radius larger than the diameter of the zombies.

2. H moves on this circle, continuously emitting a sound having constant in-
tensity.



212 V. Gervasi, G. Prencipe, and V. Volpi

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0  200  400  600  800  1000  1200  1400  1600

D
ia

m
et

er

Time

Speed 7
Speed 10
Speed 20

(a) (b)

Fig. 2. HappyGathering. (a) Traces of H and 1 zombie. The dash in the lower part
of the diagram marks the starting position of the zombie. (b) Variation in time of the
diameter of the Zs group with respect to different velocities of the leader.

Undergoing continous aural stimulation of varying direction will “trap” the
Zs into a spyraling pattern, as shown in Figure 2(a)4.

Because of the asynchronous nature of our model, no hard guarantee can be
given as to the final outcome of this protocol. In fact, a H could emit a sound (as
part of his or her strategy), and then just be inactive long enough for the Zs to
reach him, without ever getting to the second action prescribed by the strategy.

Lacking theoretical guarantees, we use numerical simulations to understand the
critical factors for success (and survival). Figure 2(b) shows the diameter of the Zs
group varying in time. All other parameters being the same (in particular, the ra-
dius of the circle chosen byH is 5 times the diameter of the zombies), three different
speeds for theH are shown.At speed 7, a satisfactory confinement is achieved, at an
average diameter of 5. At speed 10, better confinement at diameter 3 is obtained.
But beyond that at speed 20, the Zs move in a more chaotic manner (most prob-
ably, the randomness inherent in the asynchronous model plays a more important
role, the faster the orbit is performed), only achieves a diameter of around 9, and
risks “breaking up” the confinement.

It can be noted in all three simulations, that a pulse appears in the diameter of
the Zs group. The frequency of the pulse is in part given by the orbital period of
the H, and in part to semi-chaotic mareal effects, where small asymmetries in the
initial distribution of the Zs can be amplified by resonating with the H’s orbit.
Figure 2(b) testifies that the choice of parameters can lead to rather different
outcomes. A fuller analysis being out of scope for this introductory work, we
limit ourselves to state the following

Observation 1. If a H is “fast enough” and starts in a “favourable” configu-
ration, the H can survive.

4 In the interest of clarity, only the trace of one of the many Zs is plotted in Figure 2(a);
all other Zs have similary trajectories.



An Investigation on the Behaviour of Your Undead Relatives 213

Observation 2. Showing that two different H behaviours lead to different out-
comes for the same problem, shows that H’s deliberations are significant, and
that our work is relevant.

Multiple Humans. The case of multiple Hs (usually a small number) and any
large number of zombies, which apparently would seem to favour the Hs, actually
proves itself to be more complicated.

An obvious extension of protocol HappyGathering would see the n Hs
placed initially along the same circle as in the previous case, regularly spaced
at 2π

n angles. Given that our Hs have a shared coordinate system, can freely
communicate among themselves (presumibly, by gestures!), and that initially all
Zs are in perfect quiet, we can assume that in every non-degenerate initial con-
figuration, the Hs can reach the desired configuration prior to emitting the first
sound. Notice that we can have degenerate initial configurations, e.g. when one
of the Hs is totally surrounded by Zs whose attack ranges overlap, leaving him
or her no possible escape. To such configuration, our only reaction would be,
“though luck”. However, simulations show that a straight n-gon solution does
not work. Indeed, instead of being more closely packed, the Zs end up being
partitioned into n different groups, each getting closer and closer to one of the
Hs, until they get too close.

It is interesting to notice that while a single human orbiting around the Zs
has a packing effect, n > 1 humans orbiting cause the opposite behaviour. We
will turn back to this problem in Section 4.4.

We have not found a protocol to solve the Multiple Humans Gathering prob-
lem so far (except by reducing it to the Single Human variant, where other Hs
simply try to stay out of harm’s way and let “the hero” do the job).

4.2 Flocking

With the Flocking, the Hs aims at bringing the Zs to a designated target area,
while keeping them compacted. The idea in this case is as follows:

Protocol Flocking

1. The H gathers the Zs following Protocol HappyGathering.
2. When the Zs are close enough (i.e., the diameter of the zombies is smaller

than ρ), the H starts moving linearly towards the target area, while keeping
the circular movement of Protocol HappyGathering.

Alternatively, the protocol can be thought of as a variation on HappyGath-

ering where the H’s movement is computed according to a pure circular motion,
if the diameter of the Zs group is larger than ρ, or as the composition of a pure
circular motion and a linear “step” of length σ towards the target area, other-
wise. This second formulation, being a single stateless protocol, highlights the
self-stabilizing properties of the solution.



214 V. Gervasi, G. Prencipe, and V. Volpi

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0  2  4  6  8  10  12

D
ia

m
et

er

Time

Run 1
Run 2
Run 3
Run 4
Run 5

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12

D
ia

m
et

er

Time

Run 1
Run 2
Run 3
Run 4
Run 5

(a) (b)

Fig. 3. Outcome of few runs of StillSpreading, with starting n-gon of the Hs having
(a) diameter 15 and (b) 18. In these experiments, 6 Hs have been employed.

It is easy to see that, provided a sufficiently small σ, at each linear step the
offset σ is absorbed back due to the packing properties of HappyGathering

demonstrated in the previous section. The validity of the result is also shown by
numerical simulations, which we omit here for brevity.

4.3 Spreading

In this scenario, the zombies are grouped somewhere, and the goal of the humans
is to spread them. We consider two different variants of the problem:

Separation. The task is achieved when the distance between the closest pair
of Zs is greater than a given distance ρ. In particular, we can define a condition
of passage as requesting that there is a safe passage for Hs between any two
zombies (i.e, ρ > 2AR).

Diameter. The task is achieved when the diameter of the group of Zs is greater
than a given distance δ.

Note that the spreading operation is crucial in case the humans want to create
a safe path through the population of the zombies, avoiding the risk of being
bitten. We propose two different strategies to solve the problem.

Still Humans. The first strategy is quite simple: the humans stand still, contin-
uously emitting sound.

Protocol StillSpreading

1. The n humans compute the n-gon that surrounds the zombies, and place
themselves on its vertices.

2. The humans start emitting sound at a constant intensity.



An Investigation on the Behaviour of Your Undead Relatives 215

Obviously, as also stressed by previous Theorem 1, the effectiveness of this
strategy depends on how large is the n-gon the Hs decide to place themselves on
at the beginning: If it is sufficiently large, we may expect that the Spreading

task can be successfully achieved; otherwise, the Hs will be bitten. Also, the same
consideration about the CAL decay function apply; the protocol only works if
Zs stand still once their CAL reaches a minimum.

In fact, numerical simulations show that the Diameter variant of Still-

Spreading always succeeds, provided a sufficiently large initial n-gon. An in-
tuitive explanation can be given as follows: since the n-gon is centered on the
centroid of the Zs group, two Zs at opposite ends of the group (i.e., the two that
define the current diameter) will be more attracted towards humans placed on
opposite semi-n-gons, and hence their separation will further increase. For any
ρ, a sufficiently large n-gon will do the trick. As an example, in Figure 3, we
reported the outcomes of few runs of StillSpreading with 6 Hs; in (a), the
diameter of the starting n-gon of the Hs is not sufficiently large, and all curves
show a drop, representing the moment where the humans get bitten, hence their
diameter decreases correspondently (recall that, when a H gets bitten, he/seh
cannot yell anymore, hence the Zs reach their quiet state). In contrast, in part
(b) of the figure, the diameter of the starting n-gon of the Hs is larger, and the
StillSpreading technique always succeeds: When the desired spreading has
been reached by the Zs, the Hs stop emitting sounds, the Zs reach their quiet
state and their diameter does not change anymore.

In contrast, the Separation variant will in most cases fail. The explanation
is as follows: the two closest Zs in the group will be lying very close to each
other, hence they will receive almost the same noise stimulus, and thus will
move towards the same H. Their distance will thus decrease at each step, so that
the desired Separation is never achieved, and eventually they will reach and bite
the (still and noisy) H closest to them.

Mobile Humans. In this second approach, the humans move in order to produce
a more effective spreading strategy: first, they want to limit the radius of the
polygon where they start from; second, and most important, they want to de-
crease the chances of being bitten by the Zs. Thus, as already observed for the
Gathering case, they need to move. We suggest the two following strategies:

OneSpreading: After the placement on the initial n-gon, when a human real-
izes that a Z gets too close to him/her, he/she starts to move radially away
from the center of the initial n-gon. That is, a H moves away from the group
of Zs only if necessary.

CircleSpreading: As before, when a human realizes that a Z gets too close to
him/her, he/she starts to move radially away from Z. However, here, when
a H starts to move away, also all the other Hs do the same, even if there is
no Z too close to them. In other word, in this case the Hs try to be always
stationed on the vertices of a regular n-gon.

While both variants solve the problem, as usual under appropriate values
of the parameters, our numerical simulations show that CircleSpreading is



216 V. Gervasi, G. Prencipe, and V. Volpi

 5

 10

 15

 20

 25

 30

 35

 0  2  4  6  8  10  12  14  16  18  20

D
ia

m
et

er

Time

TimeTime

Circle
One
Still

Fig. 4. Average values of the three proposed solutions for Spreading with respect to
Diameter. In these set of experiments, the diameter of the starting n-gon of the Hs is
15 and n = 6.

somewhat more efficient at the task. In Figure 4 we present the average Di-
ameter values over a number of runs for all three scenarios, with 6 Hs: (S)
StillSpreading, (O) OneSpreading, and (C) CircleSpreading (the diam-
eter of the starting n-gon of the Hs is 15). While in all cases with (S) the Hs
do not reach their goal (here, the (S) curve is the average of the runs shown in
previous Figure 3(a)) and the Hs never make it to time t = 6, the moving vari-
ants progress indefinitely, with ever-increasing diameter, and with (C) achieving
a larger diameter than (O) at any given time t. Hence, (C) reaches a desired
diameter ρ faster than (O).

4.4 Splitting

We have observed in Section 4.1 that an n-humans orbiting configuration fails at
causing a faster packing, and instead tends to split the Zs group in n sub-groups,
each moving towards one of the n humans. While this behaviour does not realize
a gathering, it can be used to obtain a Splitting.

In Splitting, which is a variant of Spreading, we request that there is
an assignment of Zs to n groups such that the diameter of each group is no
greater than a given constant σ1, and the separation between groups (that is:
the minimum distance between two Zs which are members of different groups)
is no smaller than another constant σ2.

5 Conclusions

Zombology is not for the faint of heart. In an asynchronous environment, much
is at stake, and being inactive when one would had better be active might be
the difference between survival or extinction of the human race.

We believe that the various problems we have presented, and the suggested
solutions with corresponding simulations, will be a useful contribution when —
not if — the zombie outbreak arrives. Until that day, our models also introducea



An Investigation on the Behaviour of Your Undead Relatives 217

novel framework for signaling between autonomous robots, extending to sound
the light-based signalling introduced in [12]. It is worthwhile to remark that
sound-based communication and the notion of activation level, with its impact
on speed and long-lasting effects due to decay, substantially change the scenario.
In particular, our models sport second-order effects that are not found in first-
order mechanism (such as light and constant-speed linear movements). Also,
different strains of zombies might exhibit different behaviours, e.g. a were-zombie
could head towards the closest noise source, or the loudest one, instead of being
equally attracted by multiple sources, as in our model. Such variants will need
to be studied in future work, if we want to be prepared for any new outbreak.

We dedicate this work to the many lab assistants that were harmed in the
making of this paper. Running experiments with Zombies can be a tricky busi-
ness, and while we acknowledge that numerical simulations may never be an
adequate substitute for field experiments, yet after a number of such failed ex-
periments we came to the conclusion that we prefer the safety of tenure-track,
to the risks of a zombie startupper life.

To all the H instances that willingly gave their life in hundreds of simulations
for the progress of Science, goes our unbounded gratitude.

References

1. Romero, G.A., Russo, J.A.: Night of the living dead. Karl Hardman and Russel
Streiner (1968)

2. Brooks, M.: The Zombie Survival Guide. Three Rivers Press (2003)
3. Foster, M.: World War Z. Paramount Pictures (2013)
4. Alperin, V., Weston, G.: White zombie. Victor Alperin Productions (1932)
5. Brooks, M.: World War Z: An Oral History of the Zombie War. Duckworth Pub-

lishers (2007)
6. Darabont, F., Kirkman, R.: The walking dead. AMC Studios, seasons 1-4 (2010)
7. Munz, P., Hudea, I., Imad, J., Smith, R.J.: When zombie attack!: Mathemati-

cal modelling of an outbreak of zombie infection. In: Tchuenche, J., Chiyaka, C.
(eds.) Infectious Disease Modelling Research Progress, pp. 133–150. Nova Science
Publishers, Inc. (2009)

8. Caitlyn Witkowski, B.B.: Bayesian analysis of epidemics - zombies, influenza, and
other diseases. arXiv:1311.6376v2 (2013)

9. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: Gathering. SIAM Journal on Computing (2012)

10. Dieudonné, Y., Dolev, S., Petit, F., Sega, M.: Deaf, dumb, and chatting asyn-
chronous robots. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009.
LNCS, vol. 5923, pp. 71–85. Springer, Heidelberg (2009)

11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mo-
bile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Clay-
pool Publishers (2012)

12. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of
lights: Synchronizing asynchronous robots using visible bits. In: Proc. of 32nd Int.
Conf. on Distributed Computing Systems (ICDCS), pp. 506–515 (2012)

13. Volpi, V.: Sycamore: A 2D/3D mobile robots simulation environment (2013),
http://code.google.com/p/sycamore

http://code.google.com/p/sycamore


Approximability of Latin Square

Completion-Type Puzzles�

Kazuya Haraguchi1 and Hirotaka Ono2

1 Faculty of Commerce, Otaru University of Commerce, Japan
haraguchi@res.otaru-uc.ac.jp

2 Faculty of Economics, Kyushu University, Japan
hirotaka@econ.kyushu-u.ac.jp

Abstract. Among many variations of pencil puzzles, Latin square
Completion-Type puzzles (LSCP), such as Sudoku, Futoshiki and Block-
Sum, are quite popular for puzzle fans. Concerning these puzzles, the
solvability has been investigated from the viewpoint of time complexity
in the last decade; it has been shown that, in most of these puzzles, it is
NP-complete to determine whether a given puzzle instance has a proper
solution. In this paper, we investigate the approximability of LSCP. We
formulate LSCP as the maximization problem that asks to fill as many
cells as possible, under the Latin square condition and the inherent con-
dition. We then propose simple generic approximation algorithms for
LSCP and analyze their approximation ratios.

Keywords: Latin square Completion-Type puzzles, approximation
algorithms, Sudoku, Futoshiki, BlockSum.

1 Introduction

Pencil puzzles are now very popular all over the world, and even specialized
magazines are published.1 Among many variations of pencil puzzles, Latin square
Completion-Type puzzle (LSCP), such as Sudoku, is quite popular for puzzle
fans. In a typical LSCP, we are given an n × n partial Latin square. An n × n
partial Latin square is an assignment of n integers (i.e., 1, 2, . . . , n) to n2 cells
on the n × n grid such that the Latin square condition is satisfied. The Latin
square condition requires that, in each row and in each column, every integer in
{1, 2, . . . , n} should appear at most once. Then we are asked to fill all the empty
cells with n integers so that the Latin square condition and the constraints
peculiar to the puzzle are satisfied.

In this paper, we investigate the approximability of LSCP. We formulate LSCP
as the maximization problem that asks to fill as many empty cells as possible,
under the Latin square condition and the inherent condition. Picking up Sudoku,

� This work is partially supported by JSPS KAKENHI Grant Number 24106004,
25104521 and 25870661.

1 http://www.nikoli.co.jp/en/

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 218–229, 2014.
c© Springer International Publishing Switzerland 2014



Approximability of Latin Square Completion-Type Puzzles 219

Futoshiki and BlockSum, we present three generic algorithms for approximately
solving these puzzles. The generic approximation algorithms are standard ones:
a greedy approach, a matching-based approach and a local search approach. We
then analyze their approximation ratios.

Let us describe the background of the research. Concerning the pencil puz-
zles, the main attention in the last decade is solvability from the viewpoint of
time complexity. It has been shown that, in most of the pencil puzzles, it is NP-
complete to determine whether a given puzzle instance has a proper solution;
e.g., Hashiwokakero [1], Kurodoko [13], Shakashaka [5]. For LSCP, BlockSum [9]
and Sudoku [19] are NP-complete. Hearn and Demaine [10] investigated compu-
tational complexity of not only pencil puzzles but also other types of puzzles.

Unlike these previous studies, we are interested in the approximability of
LSCP rather than solvability because it might be more useful information for
puzzle solvers . From the viewpoint of puzzle solvers, the NP-completeness of
solvability is not necessarily useful information because the puzzle solvers are
usually given solvable puzzle instances. Alternatively, a useful theoretical result
for puzzle solvers could be approximability. It might be more fun to know that
a certain strategy (or algorithm) always fills 50% of the empty cells, or that it
is NP-hard to fill 99% of the empty cells. The complexity of solvability could
be meaningful rather for puzzle creators . They should create solvable puzzle
instances, often those having unique solutions. The intractability might imply
that the task is difficult even if they can use computers.

The paper is organized as follows. We prepare terminologies and formulate
the three LSCP as maximization problems in Sect. 2. In Sect. 3, we review the
previous results on computational hardness of the LSCP and present our new
results on Futoshiki. Then in Sect. 4, we present generic approximation algorithms
for the LSCP, along with their approximation ratios for the respective puzzles.
Finally we give concluding remarks in Sect. 5.

2 Preliminaries

2.1 Latin Square

Let n ≥ 2 be a natural number. First we introduce notations on the n× n grid
of cells. Let us denote [n] = {1, 2, . . . , n}. For any i, j ∈ [n], we denote the cell
in the row i and in the column j by (i, j). We say that two cells (i, j) and (i′, j′)
are adjacent if |i − i′| + |j − j′| = 1. The adjacency defines the connectivity of
cells. A block is a set of connected cells. We denote a block by B ⊆ [n]2. We call
B a τ-block if it consists of τ cells. In particular, we call 1-block a unit block .
When the cells in the block form a p× q rectangle, we call it a (p× q)-block .

Next we introduce notations on assignment of values to the grid. The values
to be assigned are the n integers 1, 2, . . . , n. We represent a partial assignment of
values by an n×n array, say A. For each cell (i, j), we denote the assigned value
by Aij ∈ [n]∪{0}, where Aij = 0 indicates that (i, j) is empty . When all the cells
are empty, we call A empty . We define the size of A as the number of non-empty
cells of A. We denote the size of A by |A|, that is, |A| = |{(i, j) ∈ [n]2 | Aij �= 0}|.



220 K. Haraguchi and H. Ono

We call A a partial Latin square (PLS ) if it satisfies the Latin square condition
that we introduced in Sect. 1. In particular, if all the cells are assigned values,
then we simply call A a Latin square (LS ). Two PLSs A and L are compatible
if the following two conditions hold:

(i) For every cell (i, j) ∈ [n]2, at least one of Aij = 0 and Lij = 0 holds.
(ii) The assignment A⊕ L defined as follows is a PLS:

(A⊕ L)ij =

⎧⎨
⎩

Aij if Aij �= 0 and Lij = 0,
Lij if Aij = 0 and Lij �= 0,
0 otherwise.

A PLS L′ is an extension of a PLS L (or equivalently, L is a restriction of L′)
if L′

ij = Lij whenever Lij �= 0. When L′ is an extension of L, we write L′ � L.
One readily sees that L′ � L holds iff there is a PLS A such that A and L are
compatible and L′ = A ⊕ L. Given a PLS L, the partial Latin square extension
(PLSE ) problem asks to construct a PLS A of the maximum size such that A
and L are compatible.

2.2 Sudoku, Futoshiki and BlockSum as Maximization Problems

We formulate the three puzzles as maximization problems. We illustrate in-
stances and solutions of these puzzles in Fig. 1. The rules of the respective
puzzles are described as follows: Sudoku asks to complete the Latin square so
that, in each block indicated by bold lines, every integer appears exactly once.
Futoshiki asks to complete the Latin square so that, when there is an inequality
sign between two adjacent cells, two integers assigned to them should satisfy the
inequality. BlockSum asks to complete the Latin square so that, in each block
indicated by bold lines, the sum of the assigned integers over the block should
be equal to the small value that is depicted in the block.

The puzzle maximization problems ask not to complete the Latin square but
to fill as many cells as possible. An optimal solution is not necessarily an LS,
whereas puzzle instances that are given to human solvers usually have unique LS
solutions. Each problem is a special type of the PLSE problem in the sense that,
given a PLS L and possibly additional parameters, we are asked to construct a
PLS A of the maximum size so that A and L are compatible, and at the same
time, A⊕L satisfies the condition C peculiar to the puzzle. The extra condition
C is peculiar to each puzzle, coming from the rule of the puzzle.

To deal with the ordinary PLSE and the three maximization problems in a
unified way, we denote the PLSE with extra condition C by C-PLSE . When we
write C-PLSE, C can be any of CSUD, CFUT, CBS and CNULL, where CSUD (resp.,
CFUT and CBS) denotes the constraint peculiar to Sudoku (resp., Futoshiki and
BlockSum) and CNULL denotes the null condition; CNULL-PLSE represents the
ordinary PLSE problem. For a C-PLSE instance, we call a PLS A a C-solution if
A and L are compatible and A⊕L satisfies C with respect to the given instance.
We may abbreviate it into simply a solution when C is clear from the context.



Approximability of Latin Square Completion-Type Puzzles 221

(Sudoku) (Futoshiki) (BlockSum)

1

2

3

4
<

>

>

<

<

1

24 2

7

7 7

8

9
2

1

1

1

2

2

2

3

3

3

4

4

4

1

2

3

4
<

>

>
<

<

1

1

1

2

2

2

3

3

3

3 4

4

4

1

24

1

1

1

1

2

2

2

3

3

3

3

4

4

4

4
2

7

7 7

8

9
2

Fig. 1. Instances (upper) and solutions (lower) of Sudoku, Futoshiki and BlockSum
(n = 4; n0 = n1 = 2 for Sudoku)

Below we explain the condition C and what is given as an instance besides a
PLS L in the respective puzzles.

In Sudoku, the grid length n is assumed to be a composite number. We are
given two positive integers n0 and n1 such that n = n0n1. Note that the n× n
grid is partitioned into n (n0 × n1)-blocks.

Condition CSUD: In every (n0 × n1)-block, each integer in [n] appears at most
once.

We call a PLS a Sudoku PLS if it satisfies CSUD. Given a Sudoku PLS L, the
CSUD-PLSE problem asks to construct a Sudoku PLS A of the maximum size
such that A and L are compatible, and that A⊕ L is a Sudoku PLS as well.

Problem CSUD-PLSE (Sudoku)
Input: Two positive integers n0 and n1 such that n = n0n1 and an n × n

Sudoku PLS L.
Output: An n× n Sudoku PLS A of the maximum size such that A and L

are compatible, and at the same time, A⊕ L is a Sudoku PLS.

In Futoshiki, we are given a set of inequality signs such that each inequality
sign is located between two adjacent cells. Let QL be the set of all the ordered
pairs of two adjacent cells such that at least one of them is empty in L, that is,

QL =
{
((i, j), (i′, j′)) ∈ [n]2 × [n]2 | (i, j) and (i′, j′) are adjacent, and

at least one of (i, j) and (i′, j′) is empty in L
}
.



222 K. Haraguchi and H. Ono

We call a subset Q of QL a sign set (with respect to L) when ((i, j), (i′, j′)) ∈ Q
implies ((i′, j′), (i, j)) /∈ Q. Each ((i, j), (i′, j′)) ∈ Q represents a constraint such
that (i, j) should be assigned a smaller integer than (i′, j′). Note that Q contains
at most one inequality sign between any two adjacent cells, and in particular,
it contains no inequality sign between two adjacent cells such that both cells
are non-empty; such an inequality sign would be redundant in the puzzle. The
CFUT-PLSE problem asks to construct a PLS A of the maximum size such that
A and L are compatible and A⊕ L satisfies the following condition.

Condition CFUT: For every pair ((i, j), (i′, j′)) of adjacent cells in Q, either (i)
or (ii) holds: (i) (A⊕L)ij = 0 or (A⊕L)i′j′ = 0, or (ii) (A⊕L)ij < (A⊕L)i′j′ .

Problem CFUT-PLSE (Futoshiki)
Input: An n× n PLS L and a sign set Q ⊆ QL.
Output: An n × n PLS A of the maximum size such that A and L are

compatible, and at the same time, that A⊕ L satisfies CFUT.

In BlockSum, we are given a partition B of n2 cells into blocks, and a function
σ : B → [n2(n+1)/2]. The B is a partition such that every non-empty cell (i, j)
in L constitutes a unit block, i.e., {(i, j)} ∈ B, and that every empty cell is
contained in a non-unit block. The function σ is called a capacity function. The
integer σ(B) assigned to each block B ∈ B is the capacity of B. For any unit
block {(i, j)}, its capacity σ({i, j}) is set to Lij . Also σ satisfies

∑
B∈B σ(B) =

n2(n + 1)/2, where the right hand side is the sum of n2 integers in any n × n
LS. The CBS-PLSE problem asks to construct an n× n PLS A of the maximum
size such that A and L are compatible and that and A⊕L satisfies the following
condition.

Condition CBS: For every block B in the partition B,∑
(i,j)∈B

(A⊕ L)ij ≤ σ(B). (1)

In (1), we relax the condition of the orignal BlockSum by replacing the equality
with the inequality in order to treat the puzzle as the maximization problem.

Problem CBS-PLSE (BlockSum)

Input: An n×n PLS L, a partition B of n2 cells into blocks, and a capacity
function σ : B → [n2(n+ 1)/2].

Output: An n × n PLS A of the maximum size such that A and L are
compatible, and at the same time, that A⊕ L satisfies CBS.

Note that we have only to consider how we assign integers to the empty cells,
all of which are contained in non-unit blocks; in any unit block {(i, j)} ∈ B, the
cell is already assigned the integer Lij . Since it is equal to the capacity σ({i, j})
of the block, (1) is automatically satisfied.



Approximability of Latin Square Completion-Type Puzzles 223

We have finished explaining the three maximization problems. In each prob-
lem, one can easily confirm the solution monotonicity such that, when A is a
solution, any restriction A′ � A is a solution as well. A solution A is blocked if
any extension A′ of A (A′ �= A) is not a solution.

Let us denote a maximization problem instance by I and its global optimal
solution by A∗(I). For a real number ρ ∈ [0, 1], a solution A to the instance I is
a ρ-approximate solution if |A|/|A∗(I)| ≥ ρ holds. A polynomial time algorithm
is called a ρ-approximation algorithm if it delivers a ρ-approximate solution for
any instance. The bound ρ is called the approximation ratio of the algorithm.

3 Hardness

We review previous studies on computational complexity of C-PLSE and present
our new results on CFUT-PLSE. First we mention that CNULL-PLSE (i.e., the
ordinary PLSE) is computationally expensive.

Theorem 1 (Colbourn [3]). CNULL-PLSE is NP-hard.

Theorem 2 (Easton and Parker [6]). CNULL-PLSE is NP-hard even if at
most three empty cells exist in any row or in any column, and only three values
are available.

Theorem 3 (Hajirasouliha et al. [7]). CNULL-PLSE is APX-hard.

CSUD-PLSE is NP-hard in general [19]. Interestingly, it is still NP-hard even
if each row (or column) is either empty or full, whereas CNULL-PLSE in this case
can be solved in polynomial time [2]. CBS-PLSE is NP-hard even if every block
consists of at most two cells [9].
CFUT-PLSE has been hardly studied in the literature except [8], which dis-

cusses how many inequality signs should be given in automatic instance gen-
eration. We summarize the computational hardness of CFUT-PLSE in Table 1.
A CFUT-PLSE instance is given in terms of (L,Q) such that L is a PLS and
Q ⊆ QL is a sign set. When L is empty, we know nothing about the hardness
except the trivial case of Q = ∅, where any LS is as an optimal solution. We leave
the case of empty L open. Let us turn our attention to the case of non-empty L.
When Q = ∅, the problem is equivalent to CNULL-PLSE, and thus is NP-hard by
Theorem 1. When Q is a non-empty subset of QL, it is NP-hard by the following
Theorem 4.

Theorem 4. CFUT-PLSE is NP-hard if L is a non-empty PLS and Q is a non-
empty subset of QL.

Proof. We prove the theorem by reduction from the special case of CNULL-PLSE
in Theorem 2; at most three cells are empty in each row and in each column,
and only three values are available. Permuting the n values appropriately, we
can set the three available values to 1, 2 and 3. Let L be the PLS that is given
in this way. We transform L into a CFUT-PLSE instance on the 2n × 2n grid.



224 K. Haraguchi and H. Ono

Table 1. Computational hardness of CFUT-PLSE

Sign set Q ⊆ QL

empty non-empty
(Q is any subset of QL) (Q = QL)

PLS L empty trivial ? ?
non-empty NP-hard NP-hard NP-hard

(Theorem 1) (Theorem 4) (Corollary 1)

Let L′ be an arbitrary n × n LS. We define a 2n × 2n PLS L′′ as follows; for
k, � = 1, 2, . . . , n,

L′′
(2k−1)(2
−1) = Lk
, L′′

(2k−1)(2
) = L′′
(2k)(2
−1) = L′

k
 + n, L′′
(2k)(2
) = L′

k
.

Let us emphasize that the PLS L should be copied to the n2 (2k−1, 2�−1)’-s, i.e.,
the cells such that both row order and column order are odd. All the remaining
cells are assigned values in [2n] so that, in each row and column, any value in
[2n] appears at most once; they play the role of garbage collection. The empty
cells appear in only (2k − 1, 2� − 1)’-s and any two of them are not adjacent.
Then for any empty cell (2k − 1, 2�− 1) and any non-empty cell (i, j) adjacent
to it, we let ((2k− 1, 2�− 1), (i, j)) ∈ Q, i.e., (2k− 1, 2�− 1) should be assigned a
smaller value than (i, j), where (i, j) is already assigned an integer larger than n
in L′′. We have finished constructing the CFUT-PLSE instance. The construction
time is obviously polynomial. In the decision problem versions, the answers to
CNULL-PLSE instance and the constructed CFUT-PLSE instance agree. �

In the above proof, the sign set Q is set to the full sign set QL′′ .

Corollary 1. When L is non-empty, CFUT-PLSE is still NP-hard even if Q is
restricted to Q = QL.

4 Approximation Algorithms

In this section, we present approximation algorithms for C-PLSE. The algorithms
generalize existing ones for CNULL-PLSE. We borrow three types of algorithms
from the literature: greedy algorithm, matching based approach, and local search.
All the algorithms introduced below run in polynomial time. See the referred
papers for time complexity analysis.

4.1 Greedy Algorithm

The greedy algorithm in this case refers to an algorithm as follows; starting from
an empty solution, we repeat choosing an arbitrary empty cell and assigning a
value in [n] to the cell so that the resulting assignment remains a solution. This
is repeated until the solution is blocked. For CNULL-PLSE, Kumar et al. [14]
showed that it is a 1/3-approximation algorithm.



Approximability of Latin Square Completion-Type Puzzles 225

Theorem 5 (Kumar et al. [14]). For any instance of CNULL-PLSE, a blocked
solution is a 1/3-approximate solution.

To extend this theorem, we give the detailed proof of the theorem.

Proof. Let A be a blocked solution and A∗ be an optimal solution. We cannot
assign the value A∗

pq to any cell (p, q) in A since at least one element in A
“blocks” (p, q) from taking A∗

pq. We claim that each element Aij in A should

block at most three cells (p, q)’-s from taking A∗
pq; denoted by SNULL

ij (A,A∗),
the set of such blocked cells is defined as follows:

SNULL
ij (A,A∗) ={(i, j)} ∪ {(i′, j) | Ai′j = 0 and A∗

i′j = Aij}
∪ {(i, j′) | Aij′ = 0 and A∗

ij′ = Aij}, (2)

that is, (i, j) itself, the cell (i′, j) in the same column with A∗
i′j = Aij , and the

cell (i, j′) in the same row with A∗
ij′ = Aij . Clearly |SNULL

ij (A,A∗)| ≤ 3 holds
for any (i, j).

We see that |A∗| ≤
∑

ij |SNULL
ij (A,A∗)| holds; if not so, there exists (p, q) /∈⋃

ij S
NULL
ij (A,A∗) such that (p, q) is non-empty in A∗. Then in A, (p, q) is empty

and is not blocked by any Aij from taking A∗
pq. This means that we can extend

A by assigning the value A∗
pq to (p, q), contradicting that A is blocked.

Finally we have the inequalities |A∗| ≤
∑

ij |SNULL
ij (A,A∗)| ≤ 3|A|, which

proves that A is a 1/3-approximate solution. �

The point is the size of SNULL
ij (A,A∗) in (2). Since it is at most three, any

blocked solution is a 1/3-approximate solution. Then for C-PLSE, designing the
similar set SC

ij(A,A
∗) appropriately, we can prove any blocked solution to be

a 1/βC-approximate solution in the analogous way, where βC denotes an upper
bound on the size of SC

ij(A,A
∗). For CSUD-PLSE, we can set the upper bound

to βSUD = 4 by taking the set SSUD
ij (A,A∗) as follows:

SSUD
ij (A,A∗) =SNULL

ij (A,A∗) ∪ {(p, q) | Apq = 0, A∗
pq = Aij and

(i, j) and(p, q) belong to the same (n0 × n1)-block}.

Theorem 6. For any CSUD-PLSE instance, a blocked solution is a 1/4-
approximate solution.

For CFUT-PLSE, the approximation ratio depends on how many inequality signs
are around a cell. Let δ denote the maximum number of inequality signs that
surround an empty cell over the given instance. Clearly we have δ ∈ {0, 1, . . . , 4}.
Then we can set the bound to βFUT = 3 + δ by taking the set SFUT

ij (A,A∗) as
follows since, in the right hand, the size of the second set is at most δ.

SFUT
ij (A,A∗) =SNULL

ij (A,A∗) ∪ {(p, q) | Apq = 0, and either

(A∗
pq > Aij and ((p, q), (i, j)) ∈ Q) or

(A∗
pq < Aij and ((i, j), (p, q)) ∈ Q)}.



226 K. Haraguchi and H. Ono

Theorem 7. Suppose that we are given a CFUT-PLSE instance such that the
number of inequality signs surrounding a cell is at most δ. Then any blocked
solution is a 1/(3 + δ)-approximate solution.

For CBS-PLSE, the approximation ratio depends on the maximum size of the
block over the instance, which we denote byΔ. We set the bound to βBS = 2+Δ,
taking the set SBS

ij (A,A∗) as follows since, in the right hand, the size of the second
set is at most Δ− 1.

SBS
ij (A,A∗) =SNULL

ij (A,A∗) ∪ {(p, q) | Apq = 0, (i, j) and (p, q) belong

to the same block B ∈ B, and A∗
pq +

∑
(i′,j′)∈B

Ai′j′ > σ(B)}.

Theorem 8. Suppose that we are given a CBS-PLSE instance such that the block
size is at most Δ. Then any blocked solution is a 1/(2+Δ)-approximate solution.

We observe that these approximation ratios are tight, but we omit the tight
examples due to space limitation.

4.2 Matching Based Approach

Another approximation algorithm for CNULL-PLSE is based on matching. We
call this algorithm Matching. The algorithm behaves as follows. Let Iijk be
a PLS such that Iijkpq = k if (p, q) = (i, j) and Iijkpq = 0 otherwise. For a given
instance, it assigns the value k to empty cells in the order k = 1, 2, . . . , n. Let
Ak−1 be the solution that has been constructed so far such that the values from
1 to k − 1 are already assigned. Initially, A0 is set to an empty solution. Which
empty cells are assigned k is determined by a maximum matching in the graph
Gk = (R ∪ C,Ek) such that R = {r1, r2, . . . , rn} and C = {c1, c2, . . . , cn} are
the node sets that represent rows and columns of the grid respectively, and

Ek = {(ri, cj) ∈ R× C | Ak−1
ij = 0 and Ak−1 ⊕ Iijk is a solution}

is the edge set. Computing a maximummatchingM ⊆ Ek, the algorithm extends
Ak−1 by assigning k to (i, j) for each edge (ri, cj) ∈M , which is used as the next
solution Ak. The algorithm repeats this process from k = 1 to n and outputs
An.

Theorem 9 (Kumar et al. [14]). The algorithm Matching is a 1/2-
approximation algorithm for CNULL-PLSE.

See the proof for [14]. The point is that any matching in Gk provides a set of
cells to which k can be assigned simultaneously. This property holds because, in
CNULL-PLSE, Aij = k never blocks any other cells out of row i and column j
from taking k, i.e., the set SNULL

ij (A,A∗) in (2) contains no (p, q) ∈ [n]2 such that
p �= i and q �= j. To C-PLSE that has the property, we can apply the algorithm
Matching directly so that the approximation ratio remains 1/2. Then it is
applicable to CFUT-PLSE in general.



Approximability of Latin Square Completion-Type Puzzles 227

Theorem 10. The algorithm Matching is a 1/2-approximation algorithm for
CFUT-PLSE.

On the other hand, the algorithm is not applicable to CSUD-PLSE directly since
the problem does not have the above property; once value k is assigned to (i, j),
we cannot assign k to any other cell (p, q) in the same (n0 × n1)-block even
though (i, j) and (p, q) belong to different rows and columns, i.e., i �= p and
j �= q. In this case, a matching in Gk does not necessarily provide a set of empty
cells that can be assigned k simultaneously. The algorithm is not applicable to
CBS-PLSE either, except the special case in the following theorem. The point is
that each block is closed in one row or in one column.

Theorem 11. Suppose that we are given a CBS-PLSE instance such that each
block is either a (1 × �)-block or an (� × 1)-block. To such an instance, the
algorithm Matching delivers a 1/2-approximate solution.

4.3 Local Search

Let t denote a positive integer. We introduce the t-set packing problem; Let S be
a finite set of elements and suppose that we are given a family F = {F1, . . . , Fq}
of q subsets of S such that each Fi ∈ F contains at most t elements. A collection
F ′ ⊆ F is called a packing if any two subsets in F ′ are disjoint. The problem
asks to find a largest packing in F , belonging to Karp’s list of 21 NP-hard
problems [12].

For this problem, we consider a local search algorithm that behaves as follows;
given a positive integer r as a parameter, let F ′ ⊆ F be an arbitrary packing.
Then repeat replacing r′ ≤ r sets in F ′ with r′ + 1 sets in F such that F ′

continues to be a packing, as long as the replacement is possible. The following
result is well-known.

Theorem 12 (Hurkens and Schrijver [11]). Suppose that an instance of the
t-set packing problem is given in terms of a family F of subsets of an element
set S. For any parameter r ≥ 1, there exists a constant ε > 0 such that the local
search algorithm delivers a (2/t− ε)-approximate solution.

Hajirasouliha et al. [7] applies the local search to CNULL-PLSE by reducing it
to the 3-set packing problem. Given a CNULL-PLSE instance in terms of a PLS
L, the packing problem instance F is constructed as follows. Let the element
set be SNULL = (R × C) ∪ (R × [n]) ∪ (C × [n]). Then let F contain a subset
{(ri, cj), (ri, k), (cj , k)} ⊆ SNULL iff the value k can be assigned to (i, j), i.e., L
does not assign k to any cell in row i or column j. Obviously there is one-to-
one, size-preserving correspondence between the solution sets of the two problem
instances.

Theorem 13 (Hajirasouliha et al. [7]). For any parameter r ≥ 1, there
exists a constant ε > 0 such that the local search is a (2/3 − ε)-approximation
algorithm for CNULL-PLSE.



228 K. Haraguchi and H. Ono

We can apply the local search to CSUD-PLSE, regarding it as the 4-set packing
problem. Suppose that a CSUD-PLSE instance is given. Let B = {B1, . . . , Bn}
denote the set of (n0 × n1)-blocks in the grid, and the element set be SSUD =
SNULL ∪ (B × [n]). We then construct the family F so that it contains a subset
{(ri, cj), (ri, k), (cj , k), (Bp, k)} ⊆ SSUD iff k can be assigned to an empty cell
(i, j) that belongs to the block Bp. The solution correspondence is immediate.

Theorem 14. For any ε > 0, there exists a (1/2− ε)-approximation algorithm
for CSUD-PLSE.

Recently, Cygan [4] improved the approximation ratio for the t-set packing prob-
lem from 2/t − ε to 3/(t + 1) − ε by means of bounded pathwidth local search.
This improves the approximation ratios for CNULL-PLSE and CSUD-PLSE.

Theorem 15. For any ε > 0, there exists a (3/4− ε)-approximation algorithm
for CNULL-PLSE.

Theorem 16. For any ε > 0, there exists a (3/5− ε)-approximation algorithm
for CSUD-PLSE.

5 Concluding Remarks

In summary, the current best approximation ratios for C-PLSEs are as follows:

– CNULL-PLSE: 3/4− ε (Theorem 15).
– CSUD-PLSE (Sudoku): 3/5− ε (Theorem 16).
– CFUT-PLSE (Futoshiki): 1/2 (Theorem 10).
– CBS-PLSE (BlockSum): 1/(2 + Δ) (Theorem 8); when each block is closed

in one row or in one column, there is a 1/2-approximation algorithm (The-
orem 11).

It is interesting future work to pursuit the limit by improving these ratios. For
CNULL-PLSE, since it is APX-hard (Theorem 3), there exists a constant ρ∗ ∈
(0, 1) such that no ρ∗-approximation algorithm exists unless P=NP. The above
result indicates ρ∗ ≥ 3/4. For the other C-PLSEs, whether they are APX-hard
or not is open.

We described previous results on NP-hardness of PLSE, Sudoku and BlockSum
and presented our results on Futoshiki in Sect. 3. Still, it is open whether the
spacial case of Futoshiki such that an empty PLS is given is NP-hard (see Table 1).

An LSCP called KenKen [15–18] is a generalization of BlockSum. BlockSum
deals with the summation of the assigned integers in its inherent condition CBS,
while subtraction, multiplication and division are also treated in KenKen. Since
its special case is NP-hard, KenKen is also NP-hard. Furthermore, we can apply
the greedy algorithm and the matching based algorithm to KenKen similarly to
BlockSum, which achieves the same approximation ratios. We omit the details
due to space limitation.

We have studied approximability and inapproximability of LSCP in general
settings in the sense that we do not make any assumption on whether a puzzle



Approximability of Latin Square Completion-Type Puzzles 229

instance has an LS solution or not. As pointed out in the introductory section,
however, a puzzle instance given to a human solver usually has a unique solu-
tion. Hence it may be more meaningful to restrict our attention to such puzzle
instances. This suggests an interesting direction of our future research.

References

1. Andersson, D.: Hashiwokakero is NP-complete. Information Processing Let-
ters 109(19), 1145–1146 (2009)

2. Béjar, R., Fernández, C., Mateu, C., Valls, M.: The Sudoku completion prob-
lem with rectangular hole pattern is NP-complete. Discrete Mathematics 312(22),
3306–3315 (2012)

3. Colbourn, C.J.: The complexity of completing partial latin squares. Discrete Ap-
plied Mathematics 8(1), 25–30 (1984)

4. Cygan, M.: Improved approximation for 3-dimensional matching via bounded path-
width local search. arXiv preprint arXiv:1304.1424 (2013)

5. Demaine, E.D., Okamoto, Y., Uehara, R., Uno, Y.: Computational complexity and
an integer programming model of Shakashaka. In: CCCG, pp. 31–36 (2013)

6. Easton, T., Parker, R.G.: On completing latin squares. Discrete Applied Mathe-
matics 113(2), 167–181 (2001)

7. Hajirasouliha, I., Jowhari, H., Kumar, R., Sundaram, R.: On completing latin
squares. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 524–
535. Springer, Heidelberg (2007)

8. Haraguchi, K.: The number of inequality signs in the design of Futoshiki puzzle.
Journal of Information Processing 21(1), 26–32 (2013)

9. Haraguchi, K., Ono, H.: Blocksum is NP-complete. IEICE Transactions on Infor-
mation and Systems 96(3), 481–488 (2013)

10. Hearn, R.A., Demaine, E.D.: Games, puzzles, and computation. AK Peters, Lim-
ited (2009)

11. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics 2(1), 68–72 (1989)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

13. Kölker, J.: Kurodoko is NP-complete. Journal of Information Processing 20(3),
694–706 (2012)

14. Kumar, S.R., Russell, A., Sundaram, R.: Approximating latin square extensions.
Algorithmica 24(2), 128–138 (1999)

15. Miyamoto, T.: Black Belt KenKen: 300 Puzzles. Puzzlewright (2013)
16. Miyamoto, T.: Brown Belt KenKen: 300 Puzzles. Puzzlewright (2013)
17. Miyamoto, T.: Green Belt KenKen: 300 Puzzles. Puzzlewright (2013)
18. Miyamoto, T.: White Belt KenKen: 300 Puzzles. Puzzlewright (2013)
19. Yato, T., Seta, T.: Complexity and completeness of finding another solution and

its application to puzzles. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 86(5), 1052–1060 (2003)



Sankaku-Tori: An Old Western-Japanese Game

Played on a Point Set

Takashi Horiyama1, Masashi Kiyomi2, Yoshio Okamoto3, Ryuhei Uehara4,
Takeaki Uno5, Yushi Uno6, and Yukiko Yamauchi7

1 Information Technology Center, Saitama University, Japan
horiyama@al.ics.saitama-u.ac.jp

2 International College of Arts and Science, Yokohama City University, Japan
masashi@yokohama-cu.ac.jp

3 Graduate School of Informatics and Engineering,
University of Electro-Communications, Japan

okamotoy@uec.ac.jp
4 School of Information Science,

Japan Advanced Institute of Science and Technology, Japan
uehara@jaist.ac.jp

5 National Institute of Informatics, Japan
uno@nii.jp

6 Graduate School of Science, Osaka Prefecture University, Japan
uno@mi.s.osakafu-u.ac.jp

7 Graduate School of ISEE, Kyushu University, Japan
yamauchi@inf.kyushu-u.ac.jp

Abstract. We study a combinatorial game named “sankaku-tori” in
Japanese, which means “triangle-taking” in English. It is an old pencil-
and-paper game for two players played in Western Japan. The game is
played on points on the plane in general position. In each turn, a player
adds a line segment to join two points, and the game ends when a trian-
gulation of the point set is completed. The player who completes more
triangles than the other wins. In this paper, we consider two restricted
variants of this game. In the first variant, the first player always wins in
a nontrivial way, and the second variant is NP-complete in general.

1 Introduction

“Sankaku-tori” is a classic pencil-and-paper game for two players, traditionally
played in Western Japan. Sankaku-tori literally means “triangle taking” in En-
glish. The rule is as follows. First, two players put a number of points on a sheet
of paper. Then, they join the points alternately by a line segment. Line segments
cannot cross each other.When an empty triangle is completed by a move, it scores
+1 to the player who draws the line segment (if two empty triangles are completed,
it scores +2). When no more line segments can be drawn, the game ends, and the
player who scores more wins (see Fig. 1; in the figure, solid lines and dotted lines
are played by the first player R and the second player B, respectively. Finally, R
wins since she obtains four triangles, while B obtains two triangles).

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 230–239, 2014.
c© Springer International Publishing Switzerland 2014



Sankaku-Tori: An Old Western-Japanese Game Played on a Point Set 231

1

2

4

3

5
R 6 R

B

8

R
B

7
9

R
B

10

R

R

R
B

R

R
B

11R
B

R

R
B

R

Fig. 1. Sample play

We study the algorithmic aspects of the sankaku-tori game. First, we prove
that if the points are in convex position, then the first player always has a
winning strategy. Second, we consider a solitaire version of the sankaku-tori
game. Namely, we are given a point set and some line segments connecting pairs
of those points, and we want to maximize the number of triangles that can be
constructed by drawing k more line segments. We prove that this problem is
NP-complete.

The game has a similar flavor to those studied by Aichholzer et al. [1] under
the name of “Games on Triangulations.” Among variations they studied, the
most significant resemblance can be seen in the monochromatic complete tri-
angulation game. The only difference between the sankaku-tori game and the
monochromatic complete triangulation game is the following. In the monochro-
matic complete triangulation game, if a player completes a triangle, then she
can continue to draw a line segment. This rule is similarly seen in Dots and
Boxes, where two players construct a grid instead of a triangulation. Dots and
Boxes has been investigated in the literature (see [4,2]), and especially, one book
is devoted to the game [3], revealing a rich mathematical structure. Aichholzer
et al. [1] proved that the monochromatic complete triangulation game is a first-
player win if the number of points is odd, and a tie if it is even. We note that a
few problems left by Aichholzer et al. [1] have recently been resolved by Manić
et al. [5].

On the other hand, in the sankaku-tori game, even though a player completes a
triangle, she should leave the token to the next player. Hence, we cannot directly
use the previously known results, and we need to develop new techniques for our
game.

2 Preliminaries

In this paper, a finite planar point set S is always assumed to be in general
position, i.e., no three points in S are collinear. A triangulation of a finite planar
point set S is a decomposition of its convex hull by triangles in such a way that
their vertices are precisely the points in S. Two players R(ed) and B(lue) play



232 T. Horiyama et al.

p1 pn

Fig. 2. (Case 1)

pn

pi pj

p1

Fig. 3. (Case 2)

p1

p2 pn-1

pn

Fig. 4. (Case 3)

in turns, and we assume that R is the first player. That is, the players construct
a triangulation on a given point set S.1 Starting from no edges, players R and
B play in turn by drawing one edge in each move. We note that each player
draws precisely one edge. This is the difference from the dots-and-boxes-like
games. The game ends when a triangulation is completed. Each triangle belongs
to the player who draws the last edge of the triangle.2 The player who has more
triangles than the other wins.

We first note that, for any point set, the number of edges of a triangulation
is determined by the position of the points. That is, the number of turns of the
sankaku-tori game is determined when the position of the points are given.

3 The First Player Wins on Convex Position

In this section, the main theorem is the following.

Theorem 1. When S is a point set in convex position, the first player R always
wins.

To prove the theorem, we describe a winning strategy for R in Lemma 1. Once
the first player R draws a line pipj in the first move, we have two intervals
I1 = [pi, pi+1, . . . , pj−1, pj] and I2 = [pj , pj+1, . . . , pi−i, pi]. Then any point p in
I1 can be joined to the other point q if and only if q is in I1 when the points are
in convex position. That is, each line segment separates an interval of the points
into two independent intervals. The winning strategy is an inductive one that
consists of three substrategies. We note that the strategy in Lemma 1 is applied
simultaneously in each interval. For example, suppose that R has two strategies
S1 and S2 on intervals I1 = [pi, pi+1, . . . , pj−1, pj ] and I2 = [pj, pj+1, . . . , pi−i, pi],
respectively. If B joins two points in I1, R uses S1 on the interval I1, and then,
if B joins two points in I2, R now uses S2 on the interval I2, and so on. Since
the points are in convex position, they can apply their strategies independently
in each interval.

1 In a real game, two players arbitrarily draw the point set by themselves simultane-
ously until both agree with.

2 In a real game, when a player draws the last edge, she writes her initials in the
triangle.



Sankaku-Tori: An Old Western-Japanese Game Played on a Point Set 233

Lemma 1. Suppose that, at a certain point of the game, B has to move and there
are some intervals resembling Cases 1, 2, and 3 in Fig.s 2, 3, and 4, respectively.
Then, after two moves, R can replicate the same configuration without losing
points. Moreover, if the number of vertices in an interval is odd, at the end it is
possible for R to get one more points.

Proof. We show an induction for the number of turns of the game. As mentioned
in the last paragraph in Preliminaries, if we have n points in convex position,
the number of turns is exactly 2n− 3. In the figures, dotted lines illustrate the
isolated points. In base cases, dotted lines mean that no points are there. We
can check the claims in Lemma 1 in base cases by simple case analysis. Now we
turn to general cases.

(Case 1) Player B has two choices. If B joins pi and pj with 1 < i < j < n,
R joins p1 and pj and obtain (Case 2). Therefore, without loss of generality, we
assume that B joins p1 and pi with 1 < i < n. In this case, R can join pi and
pn, and obtain the triangle p1pipn. Moreover, (Case 1) applies to both intervals
p1, . . . , pi and pi, . . . , pn. Therefore, by induction, R wins in this case because R
already obtains +1 by the triangle p1pipn.

(Case 2) The same analysis of (Case 1) can be applied in the interval [pi..pj ].
Therefore, by inductive hypothesis, B cannot take an advantage in this inter-
val. Without loss of generality, we can assume that B plays in interval [p1..pi].
Essentially, B has four choices.

(Subcase 2-1) If B joins p1 and pi, R joins pj and pn, and they have three
intervals in (Case 1). Then it is easy to check that the claim holds.

(Subcase 2-2) If B picks pi′ with 1 < i′ < i and joins it to either p1 or pi, R
again joins pj and pn. Then we have two intervals [pi..pj] and [pj ..pn] in (Case
1). If B joins p1 and pi′ , we have an interval [p1..pi′ ] in (Case 1), and the other
interval [pi′ ..pi] in (Case 3). The other case (B joins pi′ and pi) is symmetric. In
any case, by inductive hypothesis, the claim holds.

(Subcase 2-3) If B joins pj and pi′ for some 1 < i′ < i, R joins pi′ to pi. Then
R obtains the triangle pipjpi′ , and two intervals [pi′ ..pi] and [pi..pj ] are in (Case
1), and two intervals [p1..pi′ ] and [pj ..pn] together essentially in the same case
as (Case 2). Therefore, R wins in this case.

(Subcase 2-4) The last case is that B picks up two points pi′ and pi′′ with
1 < i′ < i′′ < i and join them by an edge. Then R joins pi′ to pj , and obtain
two intervals [p1..pi′ ] and [pj ..pn] together in (Case 2), an interval [pi′′ ..pi] with
an edge (pi′′ , pi′) in (Case 3), and two intervals [pi′ ..pi′′ ] and [pi..pj ] in (Case 1).
Therefore, we have the claim in this case again.
(Case 3) Now we have three subcases.

(Subcase 3-1) B joins two points in {p1, p2, pn−1, pn}. If B joins p2 and pn−1,
R joins p1 and pn−1, and obtain two triangles (p1p2pn−1 and p1pn−1pn), and
they end up in Case 1. On the other hand, if B joins p1 and pn−1, R joins p2
and pn−1 and obtains (Case 1). The other cases are symmetric. Thus we have
the claim.

(Subcase 3-2) B joins one point in {p1, p2, pn−1, pn} and another one pi with
2 < i < n − 1. If B joins p1 and pi, R joins pi and p2 and obtain the triangle



234 T. Horiyama et al.

p1p2pi. Then they also have an interval [p2..pi] in (Case 1) and [pi..pn] with p1
in (Case 3) again. Thus we have the claim. If B joins p2 and pi, R now joins pi
and p1 and get the same situation. The other two cases are symmetric.

(Subcase 3-3) B joins two points pi and pj with 2 < i < j < n−1. In the case,
R joins pi and pn. Then both of the interval [p1..pi] with pn and the interval
[pi..pn] are independently in (Case 3). Therefore, we again use the induction.

By the induction for the number of points, we have the lemma. ��

Now we prove Theorem 1:

Proof (of Theorem 1). When n = 2k+1 for some k > 1, R joins p1 and pk. Then
two intervals [p1..pk] and [pk..pn] are both in (Case 1) in Lemma 1. Moreover,
one of two intervals consists of odd number of points. Thus R obtains at least
one more triangle than B.

When n = 2k for some k > 1, R joins p1 and p3. Then two intervals [p1..p3]
and [p3..pn] are both in (Case 1), and they are of odd length. Thus R obtains
at least two more triangles than B.

In any case, R always wins. ��

4 NP-Completeness

In this section, we consider the solitaire variant by modifying the rule of the
game. We start halfway through the game. That is, we are given a set of n
points and O(n) lines joining them. We are also given two integers k = O(n)
and t. The decision problem asks whether we can obtain t triangles after k moves
for the set of points and lines.

Theorem 2. The solitaire variant of Sankaku-Tori is NP-complete.

The problem is in NP since we can guess k new edges and easily check whether we
can obtain t triangles. Later in this section, we reduce the POSITIVE PLANAR
1-IN-3-SAT problem [6] to our problem. In POSITIVE PLANAR 1-IN-3-SAT,
we are given a 3-CNF formula ϕ with n variables and m clauses, together with a
planar embedding of its incidence graph G(ϕ). Each clause of ϕ consists of three
positive literals (i.e., variable itself). The incidence graph G(ϕ) of ϕ consists of n
vertices vxi corresponding to the variables xi and m vertices vCj corresponding
to the clauses Cj . There is an edge (vxi , vCj ) if and only if xi appears in Cj . The
problem is to decide whether there exists a satisfying assignment to the variables
of ϕ such that each clause in ϕ has exactly one literal assigned true. POSITIVE
PLANAR 1-IN-3-SAT is NP-complete [6].

Basic Idea. Suppose that we are given a set of points and lines illustrated in
Fig. 5(a), which consists of two components called crescents and eight lines,
calles barriers, that surround the crescents. A crescent consists of c points and
2c− 3 lines (we have c = 5 in the figure), and is triangulated by the lines. The
barriers define a barrier region that prevent us from drawing a line between
the points inside and outside of the region. (Although there exist no points in
the outside of the barrier in Fig. 5(a), such points will appear later.)



Sankaku-Tori: An Old Western-Japanese Game Played on a Point Set 235

(a) (b)

Fig. 5. Basic idea: two crescents and their enclosing line segments

(a) (b)

(c) (d)

Fig. 6. Line gadget

If we are given two integers k = 2c − 1 and t = 2c − 2, a unique solution
for obtaining t triangles is illustrated in Fig. 5(b). We can deduce this observa-
tion by introducing a loss which is defined as i − j if we obtain j triangles by
drawing i lines. In Fig. 5(a), we can obtain triangles by drawing lines between
two connected components (crescents and/or barriers), which requires at least
one loss. (We are required to draw at least two lines for obtaining one triangle.)
Here, k = 2c− 1 and t = 2c− 2 means the loss should be at most one. Thus, we
are required to draw k lines so as not to connect three or more connected com-
ponents. Here, we cannot obtain t or more triangles if we connect two barriers,
or if we connect a crescent and a barrier. A unique solution is to connect two
crescents by drawing k lines, which results in Fig. 5(b).

Line Gadgets. A line gadget of length �, illustrated in Fig. 6(a), consists of
�+ 1 crescents and 4(�+ 1) barriers surrounding them. By drawing 2c− 1 lines
between two adjacent crescents, we can obtain 2c − 2 triangles. Note that the
barriers prevent us from drawing a line between nonadjacent crescents.

Suppose that we are required to obtain i(2c−2) triangles by drawing i(2c−1)
lines (0 < i ≤ ��/2�). By an argument similar to one in the basic idea, loss should



236 T. Horiyama et al.

be at most i. We cannot obtain i(2c− 2) triangles, if we connect two barriers, if
we connect a crescent and a barrier, or if we connect three or more crescents. A
unique solution for obtaining i(2c−2) triangles is to connect i pairs of crescents.
For example, Fig. 6(a) is a line gadget of length 4, and we can obtain Fig. 6(b)
and (c) by connecting two pairs of crescents by 2(2c− 1) lines.

For convenience, we abbreviate Fig. 6(a) as in Fig. 6(d). The points in the
figure denote crescents, and the (solid) edges denote the adjacency among the
crescents. The dotted rectilinear polygon in Fig. 6(d) denotes the barriers. Each
line segment of the dotted polygon has one barrier. At each corner of the dotted
polygon, we have an additional barrier. Since any crescent can be connected with
at most one adjacent crescent, we can associate the connecting pairs of crescents
in Fig. 6(a) with a matching of the graph in Fig. 6(d).

Line gadgets have flexibility on their shapes: We can extend or shorten the
distance between any two adjacent crescents. We can select a direction at each
bend of the gadget. We can also set any angles at the bends within 90 degrees.

(a) (b)

(c)

Fig. 7. Variable gadget

Variable Gadgets. As illustrated in Fig. 7(a), we arrange ci line gadgets of
length 2� + 1 (ci = 3 and 2� + 1 = 9 in the figure). As in Fig. 6(d), the dotted
polygons denote barriers. The uppermost line gadget crosses the remaining ci−1
line gadgets. We have 8(ci − 1) crossing points, each of which requires eight
additional lines as barriers. Since a non-crossing line gadget requires 4(2� + 2)
barriers, a variable gadget with ci line gadgets requires 4(2�+2)ci+8 ·8(ci−1) =
O(�ci) barriers.



Sankaku-Tori: An Old Western-Japanese Game Played on a Point Set 237

A unique non-crossing maximum matching of Fig. 7(a) is, as illustrated in
the bold lines in Fig. 7(b), achieved by taking � + 1 matching edges in each
line gadget. In case we are not allowed to use crescents at both ends of the line
gadgets, a unique non-crossing maximum matching for the remaining crescents
is, as illustrated in the bold lines in Fig. 7(c), achieved by taking � matching
edges in each line gadget. As the rule of the Sankaku-tori prohibits crossing lines,
matching edges for Fig. 7(a) cannot cross each other. Thanks to this property,
as in Fig. 7(b) and (c), we can synchronize the selection of vertical or horizontal
matching edges among all line gadgets in a variable gadget.

(a)

(b)

Fig. 8. Clause gadget

Clause Gadgets. As illustrated in Fig. 8(a), we share the crescents at the ends
of three line gadgets of length 2�+1. Since each clause has three literals, we use
the line gadgets corresponding to them. A clause gadget has 6� + 2 crescents.
The crucial part is on the top of the clause gadget, whose details are illustrated
in Fig. 8(b). We note here that the number of barriers in a clause gadget is the
same as that of (non-sharing) three line gadgets.



238 T. Horiyama et al.

In case one of the three line gadgets takes both of the top two crescents to
realize the matching in Fig. 7(b), the other two line gadgets cannot use the
top crescents. This means that the maximum matching for the other two is the
matching in Fig. 7(c). In this case, the number of matching edges is 3�+1, which
is a perfect matching on 6�+ 2 crescents.

If no line gadgets take either of the top two crescents, we cannot obtain
a perfect matching. If two line gadgets take one of the top two respectively,
each of them has unmatched crescents, which means we cannot obtain a perfect
matching. Thus, we can obtain a perfect matching if and only if one of the three
line gadgets takes the top two crescents, and the other two do not take any.

Reduction. Let ci denote the number of occurrences of literal xi in ϕ (i =
1, 2, . . . , n). As illustrated in Fig. 7(a), a variable gadget for xi has ci line gadgets
of length 2�+1. Since we have 3m literals in ϕ, n variable gadgets have 3m line
gadgets in total. Since line gadgets have flexibility on their shape, line gadgets
are arranged along the planar embedding of G(ϕ).

Each clause has variable gadgets as illustrated in Fig. 8(a), which consists of
three line gadgets corresponding to the three literals in the clause. Since ϕ has m
clauses, we have m clause gadgets with (6�+2)m crescents and O(�m) barriers.
Two magic numbers are set to k = (3�+1)m(2c− 1) and t = (3�+1)m(2c− 2).

If ϕ is 1-in-3 satisfiable, by the following strategy, we can obtain t triangles.
For literals assigned true, the corresponding line gadgets take the two crescents
at both ends of the gadgets and achieve the maximum matching as illustrated in
Fig. 7(b). For literals assigned false, as illustrated in Fig. 7(c), the corresponding
line gadgets do not take the two crescents at both ends of the gadgets and achieve
the maximummatching for other crescents. The formula ϕ hasm literals assigned
true, and they satisfy all clauses with 1-in-3 property. This means that, for every
clause gadget, exactly one line gadget takes the top two crescents, and no two
line gadgets take the same crescents at the same time. From the argument above,
each clause gadget has one line gadget with � + 1 matching edges and two line
gadgets with � matching edges. Thus, we have (3� + 1)m matching edges in
total, which means we can obtain t = (3� + 1)m(2c − 2) triangles by drawing
k = (3� + 1)m(2c − 1) lines. The opposite direction is clear from the above
discussion.

As mentioned before, line gadgets have flexibility on their shapes. Using this
fact, it is easy to see that all gadgets can be joined appropriately by polynomial
number of line gadgets. Thus this is a polynomial time reduction.

Therefore, we complete the proof of Theorem 2.

5 Conclusion

In this paper, we formalized a combinatorial game that is an old pencil-and-
paper game for two players played in Western Japan. This game has a similar
flavor to “Games on Triangulations” investigated by Aichholzer et al. [1]. We
have only showed the computational complexity in a few restricted cases of the
game. Along the line in [1], we have a lot of unsolved variants in our game. For



Sankaku-Tori: An Old Western-Japanese Game Played on a Point Set 239

example, the hardness of a two-player variant of this game in general position,
the strategies for the points in convex position with (fixed) k points inside of
the points in convex position, and so on. At a glance at Theorem 1, the first
player seems to have an advantage. It is interesting to investigate the positions
of points where this intuition is false. For example, if the four points are placed
as three points in convex position and one center point, the second player can
win by simple case analysis.

Acknowledgments. The fourth author thanks his mother for playing the game
with him many times, and she tells him about this game played in the west of
Japan.

References

1. Aichholzer, O., Bremner, D., Demaine, E.D., Hurtado, F., Kranakis, E., Krasser,
H., Ramaswami, S., Sethia, S., Urrutia, J.: Games on triangulations. Theoretical
Computer Science 343, 42–71 (2005)

2. Albert, M.H., Nowakowski, R.J., Wolfe, D.: Lessons in Play: An Introduction to
Combinatorial Game Theory. A K Peters (2007)

3. Berlekamp, E.R.: The Dots and Boxes Game: Sophisticated Child’s Play. A K Peters
(2000)

4. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays, vol. 1-4. A K Peters (2001–2003)

5. Manić, G., Martin, D.M., Stojaković, M.: On bichromatic triangle game. Discrete
Applied Mathematics (2013) (article in press)

6. Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM 55(2)
(2008)



Quell

Minghui Jiang, Pedro J. Tejada, and Haitao Wang

Department of Computer Science, Utah State University, Logan, Utah 84322-4205, USA
mjiang@cc.usu.edu, p.tejada@aggiemail.usu.edu, haitao.wang@usu.edu

Abstract. We study the computational complexity of the puzzle Quell. The goal
is to collect pearls by sliding a droplet of water over them in a grid map. The map
contains obstacles. In each move, the droplet slides in one of the four directions
to the maximal extent, until it is stopped by an obstacle. We show that ANY-
MOVES-ALL-PEARLS (deciding whether it is possible to collect all the pearls
using any number of moves) can be solved in polynomial time. In contrast, both
ANY-MOVES-MAX-PEARLS (finding the maximum number of pearls that can
be collected using any number of moves) and MIN-MOVES-ALL-PEARLS (find-
ing the minimum number of moves required to collect all the pearls) are APX-
hard, although the corresponding decision problems are in FPT. We also present
a simple 2-approximation for ANY-MOVES-MAX-PEARLS, and leave open the
question whether MIN-MOVES-ALL-PEARLS admits a polynomial-time constant
approximation.

1 Introduction

Quell is a popular puzzle developed by Fallen Tree Games (www.fallentreegames.com).
The goal is to collect pearls by sliding a droplet of water over them in a grid map. The
map contains obstacles. In each move, the droplet slides in one of the four directions to
the maximal extent, until it is stopped by an obstacle. Refer to Fig. 1. Throughout the
paper, we focus on the basic version of Quell where the map contains only the obstacles,
the pearls, and the droplet, and moreover the pearls and the droplet are contained in a
connected region surrounded by the obstacles. We say that the map is simple if the
bounded region is simply connected.

The maximal sliding movement of the droplet in Quell naturally models the move-
ment of a robot with limited sensing capabilities navigating in an unfamiliar environ-
ment. While numerous games and puzzles have been rigorously studied in terms of their
computational complexities, and many of them involve moving objects in a grid map,
only a few adopt the maximal sliding model for the movement of the objects. They in-
clude Lunar Lockout [12,9], Randolphs Robot [7], and PushPush [11]. Unlike Quell, in
which the droplet is the only moving object, both Lunar Lockout and Randolphs Robot
have swarms of moving robots. In PushPush, there is only one agent that moves by
itself, but the agent can push other things, so still there are multiple moving objects.

The challenging aspects of puzzles such as Lunar Lockout and PushPush are mostly
related to the complicated interaction among the multiple moving objects. The corre-
sponding computational problems often turn out to be NP-hard and in PSPACE, and
the central question regarding their computational complexities is whether they are

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 240–251, 2014.
c© Springer International Publishing Switzerland 2014



Quell 241

Fig. 1. Screenshots of two maps of Quell. Obstacles are shown as square blocks, pearls as small
golden circles, and the water droplet as a larger blue circle. Left: a simple map with only obstacles,
pearls, and the droplet; the three pearls can be collected with seven moves: left, up, left, down,
right, up, left. Right: a more complex map with gaps in the boundary and with special objects;
after the droplet exits through a gap in the boundary, it enters from the gap on the opposite side;
after the droplet enters one golden ring, it is teleported to the other ring and keeps sliding in the
same direction; the one-pass gate, shown as a small dark green circle (below the left ring), turns
into an obstacle after the droplet passes through it; the block with the ♂ symbol can be pushed
by the droplet; the droplet is destroyed when it slides onto a spike; the switch (above the right
ring) changes the directions of the spikes when the droplet passes through it; the four pearls can
be collected with 26 moves.

PSPACE-hard or in NP. Indeed, in the original, purest version of Lunar Lockout, the
whole space consists of only moving robots and nothing else, and whether the problem
is PSPACE-hard or in NP has remained open for more than a decade.

On the other hand, the difficulty of Quell is mainly due to the contrast between the
severe restriction of the maximal sliding movement and the complexity of the geometric
environment. The three decision problems that we study in this paper are easily in NP,
and the central question is whether they are NP-hard or in P.

The most fundamental problem about Quell is the following decision problem:

– ANY-MOVES-ALL-PEARLS: decide if it is possible to collect all the pearls using
any number of moves.

The following two parameterized decision problems also arise naturally:

– ANY-MOVES-k-PEARLS: decide whether at least k pearls can be collected using
any number of moves;

– k-MOVES-ALL-PEARLS: decide whether all the pearls can be collected using at
most k moves.

We show that ANY-MOVES-ALL-PEARLS is in P and, in contrast, both ANY-MOVES-
k-PEARLS and k-MOVES-ALL-PEARLS are NP-complete and are in FPT with
parameter k.

The two parameterized decision problems correspond to the following two optimiza-
tion problems:

– ANY-MOVES-MAX-PEARLS: determine the maximum number of pearls that can
be collected using any number of moves.



242 M. Jiang, P.J. Tejada, and H. Wang

– MIN-MOVES-ALL-PEARLS: determine the minimum number of moves required to
collect all the pearls.

We show that both ANY-MOVES-MAX-PEARLS and MIN-MOVES-ALL-PEARLS

are APX-hard, and give a simple 2-approximation for ANY-MOVES-MAX-PEARLS.
For MIN-MOVES-ALL-PEARLS, however, we are unable to find any constant approxi-
mation, even in simple maps.

2 Negative Results

2.1 Approximation Lower Bound for ANY-MOVES-MAX-PEARLS

Theorem 1. ANY-MOVES-MAX-PEARLS is at least as hard to approximate as MAX-
2-SAT, even in simple maps. In particular, ANY-MOVES-MAX-PEARLS is NP-hard to
approximate within a factor of 22/21 = 1.04761 . . . , and moreover it is NP-hard to
approximate within a factor of 1.05938 . . . if the unique games conjecture is true.

We prove that ANY-MOVES-MAX-PEARLS is at least as hard to approximate as MAX-
2-SAT by a gap-preserving reduction. Let (V,C) be a MAX-2-SAT instance where
V = {v1, . . . , vn} is the set of variables and C = {c1, . . . , cm} is the set of clauses.
Since MAX-2-SAT without duplicate clauses is exactly as hard to approximate as
MAX-2-SAT [6], we can assume without loss of generality that the m clauses in C
are all distinct.

Fig. 2. Left: The 2-choose-1 gadget for a single variable. From either one of the two paths for
vi−1, the droplet (shown as a white circle) can continue along only one of the two paths for vi.
Right: The 2-choose-1 gadgets for all variables combined together in nested horizontal layers.
The solid concatenated path corresponds to the assignment v1 = false, v2 = false, v3 = true,
v4 = false, and v5 = true.

Refer to Fig. 2. We construct a 2-choose-1 gadget for each variable, then combined
the gadgets for all variables into a layered structure. Then the droplet may take either
one of two possible paths through each gadget corresponding to the two possible values
of the variable. For each variable, associate the upper path in the corresponding gadget
with positive literals of the variable, and associate the lower path with negative literals.



Quell 243

Fig. 3. The layered structure of 2-choose-1 gadgets is twisted such that the paths from different
gadgets intersect in the shaded area. For each clause, a pearl (shown as a solid black dot) is placed
at an intersection of the corresponding paths. For the MAX-2-SAT instance of n = 4 variables
and m = 5 clauses c1 = v̄1 ∨ v2, c2 = v̄1 ∨ v̄2, c3 = v1 ∨ v3, c4 = v1 ∨ v̄3, and c5 = v̄3 ∨ v4,
the solid concatenated path corresponds to the assignment v1 = false, v2 = false, v3 = true,
and v4 = true, which satisfies all the clauses except c4.

Refer to Fig. 3. We twist the layered structure of 2-choose-1 gadgets such that each
of the two paths for any variable has exactly one horizontal segment and one vertical
segment in the gray area. For each clause, place a pearl at the intersection of two seg-
ments: a horizontal segment in the path for the first literal, and a vertical segment in the
path of the second literal.

It is straightforward to verify the following lemma:

Lemma 1. There is an assignment to V that satisfies k clauses of C if and only if k
pearls in the map can be collected using any number of moves.

The reduction clearly runs in polynomial time. Thus we have a gap-preserving reduction
from MAX-2-SAT to ANY-MOVES-MAX-PEARLS. Consequently, the lower bounds for
ANY-MOVES-MAX-PEARLS follow from the known lower bounds for MAX-2-SAT
[10,13].

2.2 Approximation Lower Bound for MIN-MOVES-ALL-PEARLS

Theorem 2. MIN-MOVES-ALL-PEARLS is NP-hard to approximate within 2 − ε, for
any fixed ε > 0, even in simple maps.



244 M. Jiang, P.J. Tejada, and H. Wang

We prove that MIN-MOVES-ALL-PEARLS is NP-hard to approximate within 2 − ε,
for any fixed ε > 0, by a reduction from 3-SAT. Let (V,C) be a 3-SAT instance, where
V = {v1, . . . , vn} is the set of variables and C = {c1, . . . , cm} is the set of clauses.

Fig. 4. The droplet can traverse only one of the two solid horizontal segments in the 2-choose-1
gadget (left), and only one of the three solid horizontal segments in the 3-choose-1 gadget (right)

Refer to Fig. 4 for two basic building blocks of our construction: the 2-choose-1
gadget for the variables and the 3-choose-1 gadget for the clauses.

Refer to Fig. 5 for the complete construction. We combine n 2-choose-1 gadgets,
one for each variable, and m 3-choose-1 gadgets (rotated by 90 degrees), one for each
clause, such that the 2n horizontal segments from the 2-choose-1 gadgets intersect the
the 3m vertical segments from the 3-choose-1 gadgets. For each literal of a variable
vi that appears in a clause cj , we place a pearl at the intersection of two segments:
a horizontal segment (the upper one if the literal is positive, or the lower one if it is
negative) from the 2-choose-1 gadget for vi, and a vertical segment (corresponding to
its position in the clause) from the 3-choose-1 gadget for cj .

Consider any path of the droplet. After going through first the 2-choose-1 gadgets
and then the 3-choose-1 gadgets, the droplet can return via the back path to go through
the 3-choose-1 gadgets again, and can repeat this as many times as needed. The por-
tion of the path through the 2-choose-1 gadgets corresponds to an assignment to the
variables, which satisfies a subset of the clauses. Through the 2-choose-1 gadgets, the
path covers at least one of three pearls for each satisfied clause, and covers none of
three pearls for each unsatisfied clause. If all clauses are satisfied, then at most two
pearls remain for each clause; these pearls can be covered by the path going through
the 3-choose-1 gadgets twice and hence the back path once. If at least one clause is not
satisfied, then the three pearls in this clause have to be collected by going through the
3-choose-1 gadgets three times and hence the back path two times.

It is straightforward to verify the following lemma:

Lemma 2. If the 3-SAT instance (V,C) is satisfiable, then there is a path of the droplet
in the map that covers all the pearls and follows the back path at most once; otherwise,
every path of the droplet that covers all the pearls must follow the back path at least
twice.



Quell 245

Fig. 5. For each literal of a variable vi that appears in a clause cj , a pearl is placed at the in-
tersection of a horizontal segment in the 2-choose-1 gadget for vi and a vertical segment in the
3-choose-1 gadget for cj . After going through the 2-choose-1 gadgets and then the 3-choose-1
gadgets, the droplet can follow the back path (with each end marked by a cross ×) through the
triangular region on the right, then return and go through the 3-choose-1 gadgets again. For the
3-SAT instance of n = 3 variables and m = 2 clauses c1 = v1 ∨v2∨v3, and c2 = v̄1∨ v̄2 ∨ v̄3,
the partial path shown here corresponds to the assignment v1 = false, v2 = false, and v3 = true.

By setting the length of the back path sufficiently large, but still polynomial in (n+
m)/ε, we make sure that the reduction runs in polynomial time and obtain the 2 − ε
lower bound for any fixed ε > 0.

3 Positive Results

Refer to Fig. 6. Let M be a map. Instead of specifying the location of every individual
obstacle in a typical grid representation, we can represent the free space bounded by
all obstacles more compactly as a set of closed rectilinear curves. Then the pearls and
the droplet are just points. Each move of the droplet corresponds to a segment in the
supporting line of some edge in the set of curves.

Let n be the number of edges of the set of closed rectilinear curves in the compact
representation of M , and let p be the number of pearls. Then the n vertices and the one



246 M. Jiang, P.J. Tejada, and H. Wang

Fig. 6. Directed graph representation of a Quell map. Left: map M ; pearls are shown as black
circles and the starting location is shown as a white circle; the droplet can traverse any of the
dashed line segments. Center: directed graph G; vertex v0, shown as a white circle, represents
the droplet’s starting location, and each vertex vi, shown as a gray circle, represents the line
segment �i in M , for i ≥ 1. Right: strongly-connected component graph G′ of G. The pearls are
associated with the vertices of G and G′ as indicated by dashed lines.

droplet are incident to at most n + 2 horizontal or vertical maximal segments for the
sliding movement of the droplet.

Let G be the directed graph with one vertex for each maximal segment, and with one
directed edge from a vertex u to a vertex v if and only if there exist two consecutive
moves for the droplet turning from the maximal segment for u to the maximal segment
for v. In addition, G contains one special vertex v0 for the droplet, and two directed
edges from v0 to the two vertices corresponding to the two maximal segments incident
to the droplet. Observe that each vertex in G, besides v0, also has out-degree at most
two, since each maximal segment connects to at most two other maximal segments, one
on each end.

Let G′ be the strongly-connected component graph of G. Then the special vertex v0
for the droplet must be in a component all by itself, with no incoming edges.

3.1 Exact Algorithm for ANY-MOVES-ALL-PEARLS

Theorem 3. ANY-MOVES-ALL-PEARLS admits a polynomial-time exact algorithm.

We reduce ANY-MOVES-ALL-PEARLS to 2-SAT. Given a map M , we first compute
its compact representation and the corresponding directed graph G, then compute the
strongly-connected component graph G′, and then construct a boolean formula φ as
follows.

For each component u in G′, φ has a corresponding variable u.
For the droplet, φ includes a start clause u∨u, where u is the only component in G′

that contains the special vertex v0 in G.
For each pearl, φ includes a choice clause u ∨ v, where u and v are the two com-

ponents in G′ that contain the two vertices for the horizontal maximal segment and the
vertical maximal segment through the pearl. If the two segments are in the same com-
ponent u, or if only one of the two segments corresponds to a vertex in G, which is in



Quell 247

the component u, then the choice clause is just u∨u. If neither segment corresponds to
a vertex in G, then obviously the pearl cannot be collected.

For each pair of components u and v in G′, if there is no directed path from either
one to the other, then φ includes a conflict clause ū ∨ v̄.

Lemma 3. All the pearls can be collected if and only if the 2-SAT formula is
satisfiable.

Proof. We first prove the direct implication. Suppose there is a sequence of moves
for the droplet that collects all the pearls. This sequence corresponds to a walk in the
directed graph G starting from the special vertex v0 for the droplet. For each component
in G′, we set the corresponding variable to true if the walk visits at least one vertex in
the component, and set it to false otherwise. Then the start clause is satisfied, since the
variable for the component containing v0 is set to true. For each pearl, at least one of
the two incident maximal segments supports a move of the droplet; correspondingly, at
least one of the two vertices is visited by the walk, and hence at least one of the two
positive literals in the choice clause is true. For each pair of components in G′ with no
directed path from either one to the other, the walk must miss all vertices in one of the
two components; correspondingly, at least one of the two negative literals in the conflict
clause is true. Thus the 2-SAT formula is satisfied by the assignment.

We next prove the reverse implication. Suppose the 2-SAT formula has a satisfying
boolean assignment. Consider the set of components in G′ corresponding to the set of
variables that are set to true. Since all conflict clauses are satisfied, there is a path in G′

that visits all components in this set. This path must start at the component containing
only the special vertex v0 for the droplet, and can be extended to a walk in G that
visits all vertices in these components. The walk corresponds to a sequence of moves
for the droplet. For each move in the sequence, we replace it by two moves along the
same maximal segment, first backward then forward, such that all pearls in the segment
are collected. Since all choice clauses are satisfied, at least one of the two maximal
segments incident to each pearl supports such a double-move of the droplet. Thus all
the pearls are collected. ��

We now analyze the running time of our algorithm for ANY-MOVES-ALL-PEARLS.
First, obtaining the compact representation of a map from its grid representation can be
done in time polynomial in the size of the grid representation. Then, given the compact
representation of size O(n + p), the remaining steps of the algorithm take O(n2 +
p logn) time, as shown in the following.

Recall that G has at most n + 3 vertices and each vertex has out-degree at most
two. We can construct G in O(n log n) time by the standard sweeping technique in
computational geometry [4], and then construct G′ in O(n log n) time by depth-first
search. Then, after sorting the O(n) maximal segments represented by vertices in G
in O(n log n) time, we can associate the p pearls with the vertices in G and then the
components in G′ in O(p logn) time.

The 2-SAT formula can be constructed in O(n2 + p) time: the O(p) choice clauses
can be easily constructed in O(p) time; the O(n2) conflict clauses can be constructed
in O(n2) time by O(n) graph traversals, one from each of the O(n) components in G′.



248 M. Jiang, P.J. Tejada, and H. Wang

The 2-SAT formula has O(n) variables and O(n2 + p) clauses, and can be solved in
O(n2+p) time by the well-known linear-time algorithm for 2-SAT; see for example [3].

3.2 NP-membership of ANY-MOVES-k-PEARLS and k-MOVES-ALL-PEARLS

Theorem 4. ANY-MOVES-k-PEARLS and k-MOVES-ALL-PEARLS are both in NP.

Since the directed graph G has size O(n), there exists a directed path of length O(n)
in G from any vertex v to any other vertex w reachable from v. It follows that, as in
the proof for the reverse implication of Lemma 3, to visit all ni vertices of a strongly
connected component Ci the droplet only needs O(ni · n) moves. Consequently, to
collect any subset of the p pearls, the droplet needs at most O(

∑
i ni · n) = O(n2)

moves. This proves Theorem 4. The NP-hardness of the two problems follows from
the proofs of Theorems 1 and 2. Thus ANY-MOVES-k-PEARLS and k-MOVES-ALL-
PEARLS are both NP-complete.

3.3 Constant Approximation for ANY-MOVES-MAX-PEARLS

Theorem 5. ANY-MOVES-MAX-PEARLS admits a polynomial-time 2-approximation
algorithm.

We use a greedy algorithm. As in our algorithm for ANY-MOVES-ALL-PEARLS, con-
struct the directed graph G and the strongly-connected component graph G′. Assign
each component a weight equal to the number of pearls that can be collected by travers-
ing all maximal segments in the component. Since G′ is acyclic, a simple algorithm
based on topological ordering can find a path of components with largest total weight.
This path corresponds to a sequence of double-moves for the droplet that collects all
the pearls associated with these components. Recall that a pearl can be collected by
traversing either a horizontal segment or a vertical segment. Thus each pearl is associ-
ated with at most two components in the path, and hence counted at most twice. Thus
the algorithm gives a 2-approximation.

3.4 Fixed-Parameter Algorithm for ANY-MOVES-k-PEARLS

Theorem 6. ANY-MOVES-k-PEARLS admits a ck · poly(n + p) time exact algorithm,
for some constant c.

We use the color coding technique of Alon et al. [1] based on perfect hash functions.
Using this technique it is possible to compute, for any set S of n elements and for any
number k, a set CS of at most 2O(k) ·poly(n) different k-colorings of the elements in S
such that for each subset Si ⊆ S of k elements, there is a k-coloring in CS that assigns
each of the k elements in Si a distinct color.

Given a map M , we first compute the directed graph G and the strongly-connected
component graph G′, and then compute the 2O(k) · poly(p) different k-colorings of the
pearls in M . For each k-coloring of the pearls, we try to collect k pearls with k distinct
colors as follows.



Quell 249

For each component v and for each subset C of colors in {1, . . . , k}, let T [v, C]
denote whether there is a directed path in the strongly-connected component graph
starting from v such that C is covered by the union of colors associated with all com-
ponents along the path. Then for this k-coloring, we can collect k pearls with k distinct
colors if and only if T [{v0}, {1, . . . , k}] is true. The table T [v, C] can be computed
in 2k · poly(n + p) time by dynamic programming. The total running time for the
2O(k) · poly(p) different k-colorings is thus ck · poly(n+ p) for some constant c.

3.5 Fixed-Parameter Algorithm for k-MOVES-ALL-PEARLS

Theorem 7. k-MOVES-ALL-PEARLS admits a ck · poly(n + p) time exact algorithm,
where c = 1 +

√
3 = 2.73205 . . . .

We use a bounded search tree algorithm. First observe that the direction of any move
cannot be the same as the direction of the previous move, if any. Thus the direction of
any move, except the first one, is either B for back, or L for left turn, or R for right
turn. If we ignore the first move, then any sequence of k moves can be represented as
a string with length k over the alphabet {B,L,R}. This leads to a simple brute-force
algorithm with O(3k) branches.

Next observe that no three consecutive moves have to be on the same line, that is,
the droplet never needs to go back twice consecutively. Thus, ignoring the first move,
the number of sequences that we have to consider for k moves is at most the number of
strings over the alphabet {B,L,R} with length k and without two consecutive Bs.

We can determine the number of such strings as follows. Denote by a(k) the total
number of strings with length k that end with L or R. Denote by b(k) the total number
of strings with length k that end with B. Then we have the following recurrences:
a(k) = 2(a(k − 1) + b(k − 1)) and b(k) = a(k − 1).

Write a(k) = ck. The second recurrence yields b(k) = a(k − 1) = ck−1. Then
the first recurrence yields the equation ck = 2(ck−1 + ck−2), which has the solution
c = 1 +

√
3. The total number of branches for k moves is thus O(ck).

4 Concluding Remarks

We studied two optimization problems, one for maximizing the number of pearls that
can be collected using any number of moves, and one for minimizing the number of
moves required to collect all the pearls. We obtained approximation lower bounds for
both optimization problems, and we also obtained fixed-parameter algorithms for their
corresponding decision problems. However, we only obtained a constant approximation
for the maximization problem. It is an interesting open question whether MIN-MOVES-
ALL-PEARLS admits a constant approximation too. In the following, we show that MIN-
MOVES-ALL-PEARLS is related to a difficult variant of the TSP problem, and hence is
likely to be difficult too.

TSP (with triangle inequality, of course) admits a 3/2-approximation by the well-
known Christofides algorithm [5] when the edge weights are symmetric. When the
edge weights can be asymmetric, TSP is called asymmetric TSP or ATSP. The first



250 M. Jiang, P.J. Tejada, and H. Wang

O(log n)-approximation for ATSP, where n is the number of vertices of the graph, was
given by Frieze et al. [8] in 1982. Then, for almost three decades, subsequent works
only improved the constant factor of the approximation ratio until Asadpour et al. [2]
obtained a randomized O(log n/ log logn)-approximation algorithm in 2010. In con-
trast, the best known lower bound for ATSP is only 117/116 = 1.00862 . . . [14].
Whether ATSP can be approximated within a constant factor remains a major open
question.

We next give a reduction from a restricted version of ATSP to MIN-MOVES-ALL-
PEARLS, which shows that MIN-MOVES-ALL-PEARLS is likely at least as hard to ap-
proximate as ATSP. Let G be an instance of ATSP in which the edge weights are
positive integers that are polynomial in the number n of vertices. We reduce G to an
instance of MIN-MOVES-ALL-PEARLS in polynomial time by embedding it in a Quell
map M , which has a vertex gadget for each vertex in G, and a one-way tunnel connect-
ing two vertex gadgets for each edge in G.

Fig. 7. A vertex gadget in the reduction from ATSP to MIN-MOVES-ALL-PEARLS. Incoming
tunnels corresponding to incoming edges are on the left, and outgoing tunnels corresponding to
outgoing edges are on the right. The droplet (shown as a white circle) is placed in the vertex
gadget for the starting vertex, in the horizontal tunnel in the middle which connects all incoming
and outgoing tunnels. A pearl (shown as a solid black dot) is placed in each vertex gadget at the
lower end of the vertical tunnel that merges all incoming tunnels. For the starting vertex, this
vertical tunnel has both ends in pockets so that after the pearl is collected the droplet cannot go
out. For any other vertex, this vertical tunnel has only the upper end in a pocket so that after the
pearl is collected the droplet can still go out through one of the outgoing tunnels.

Refer to Fig. 7 for the construction of a vertex gadget. Fix an arbitrary vertex v of G
as the starting vertex. We place the droplet in the vertex gadget for v, and place a pearl
in each vertex gadget. For each edge in G with weight w, we add enough turns to the
corresponding tunnel in M so that it requires exactly f(n) · w moves to go through,
where f(n) is some function polynomial in n. (Note that the crossings of tunnels for
different edges are not a problem since with the maximal sliding model each move
continues until an obstacle is reached.) Then G has a Hamiltonian cycle of weight k
starting from v if and only if there is a sequence of f(n) · k moves for the droplet
starting in the vertex gadget for v in M that collects all the pearls. Consequently, any
α-approximation for MIN-MOVES-ALL-PEARLS would lead to an α-approximation for
the restricted version of ATSP.



Quell 251

Acknowledgment. The first author would like to thank Ms. Whayling Ng for bringing
this interesting puzzle to his attention and for discussion. The research of the third
author was supported in part by NSF under Grant CCF-1317143.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42, 844–856 (1995)
2. Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An O(log n/ log log n)-

approximation algorithm for the asymmetric traveling salesman problem. In: Proceedings of
the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 379–389 (2010)

3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain
quantified boolean formulas. Information Processing Letters 8, 121–123 (1979)

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algo-
rithms and Applications, 3rd edn. Spring, Heidelberg (2008)

5. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical report 388. Graduate School of Industrial Administration, Carnegie-Mellon
University, Pittsburgh (1976)

6. Crescenzi, P., Silvestri, R., Trevisan, L.: On weighted vs unweighted versions of combinato-
rial optimization problems. Information and Computation 167, 10–26 (2001)

7. Engels, B., Kamphans, T.: Randolphs robot game is NP-hard! Electronic Notes in Discrete
Mathematics 25, 49–53 (2006)

8. Frieze, A.M., Galbiati, G., Maffioli, F.: On the worst-case performance of some algorithms
for the asymmetric traveling salesman problem. Networks 12, 23–39 (1982)

9. Hartline, J.R., Libeskind-Hadas, R.: The computational complexity of motion planning.
SIAM Review 45, 543–557 (2003)

10. Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48, 798–859 (2001)
11. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. CRC Press (2009)
12. Hock, M.: Exploring the Complexity of the UFO Puzzle. B.S.Thesis, Department of Com-

puter Science, Carnegie Mellon University (2002),
http://www.cs.cmu.edu/afs/cs/user/mjs/
ftp/thesis-program/2002/hock.ps

13. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for
MAX-CUT and other 2-Variable CSPs? In: Proceedings of the 45th Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 146–154 (2004)

14. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem.
Combinatorica 26, 101–120 (2006)

http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-program/2002/hock.ps
http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-program/2002/hock.ps


How Even Tiny Influence Can Have a Big Impact!

Barbara Keller1, David Peleg2, and Roger Wattenhofer1

1 ETH Zürich, Switzerland
2 The Weizmann Institute, Rehovot, Israel

Abstract. An influence network is a graph where each node changes its state
according to a function of the states of its neighbors. We present bounds for the
stabilization time of such networks. We derive a general bound for the classic
“Democrats and Republicans” problem and study different model modifications
and their influence on the way of stabilizing and their stabilization time. Our main
contribution is an exponential lower and upper bound on weighted influence net-
works. We also investigate influence networks with asymmetric weights and show
an influence network with an exponential cycle length in the stable situation.

Keywords: Social Networks, Stabilization, Influence Networks, Majority Func-
tion, Equilibrium, Weighted Graphs, Asymmetric Graphs.

1 Introduction

“My kid is . . . a brat, a bully, ugly, fat, a loser, out of control, smoking weed.”
“My parents are . . . stupid, overprotective, annoying, idiots, too strict, . . . , cousins!”

Googles autocomplete feature (quotes above) may teach us a thing or two about what
is going on in parent-kid relationships these days. Indeed, when their children become
teenagers, parents around the world are frightened of losing their influence. Instead, the
kids are rather influenced by (and will influence) their peers.

In this paper we want to understand the complexity of influence networks from a
computer science perspective. How erratic can the behavior of such a weighted influ-
ence network be? Can even a bit of (bad) influence by the parents have an impact on all
the (good) influence of the peers? Can a social network become unstable in the sense
that the nodes of the network change their opinions often?

As it turns out, having weighted influence changes the behavior of networks quite
dramatically. Whereas previous work showed that unweighted influence networks al-
ways stabilize in polynomial time, weighted networks may need exponential time to
stabilize. Influence may also be highly asymmetric: If Justin Bieber and Katy Perry
declare that facebook all of a sudden is cool again (yes, facebook currently is uncool,
according to Google autocomplete), then quite a few of their combined 100M followers
will agree. On the other hand, if the authors of this paper proclaim that this paper is a
super submission, the impact on the reviewers may be limited. However, our story does
not stop at asymmetric weighted influence: Teenagers might consider their parents a
perfect counter example, i.e., many parents may be shocked to learn that they probably
even have negative influence, that is, their children will try to do exactly the opposite of
what they are told.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 252–263, 2014.
c© Springer International Publishing Switzerland 2014



How Even Tiny Influence Can Have a Big Impact! 253

Background. Influence networks (INs) are networks whose entities are continuously
influenced by the state of their neighbors. Such networks are widespread in nature and
are of interest in many research areas. Despite their conceptual simplicity and easy to
describe mode of operation, their dynamic behavior is sometimes surprisingly complex,
and is known to be a source of many open and often hard to analyze problems.

In this paper we study a synchronous and generic version of these systems. We as-
sume a graph G = (V,E) where the nodes are influenced by the states of their neigh-
bors. We assume binary states and focus on the synchronous setting where all nodes
simultaneously update their state on each time step according to the majority of their
neighbors. (Nonetheless, let us mention that all of the findings presented in this paper
also apply to the iterative setting, where exactly one node is activated on each time
step, and the schedule is determined by an adversary.) These systems “stabilize” after
a certain amount of time and we are interested in the states to which they converge,
and in their stabilization time within different models. We consider positive and nega-
tive influence as well as weighted influence, where the influence of different neighbors
weighs differently. In addition, we investigate asymmetrically weighted INs (where the
influence of v on its neighbor u may be different from that of u on v), which turns out
to have different “stable” states than the INs with symmetric weights.

Related Work. The mechanisms by which people influence each other have been ob-
jects of considerable interest in psychology and sociology for a long time, and the roles
of peer pressure, conformity and socialization, as well as persuasion in sales and mar-
keting, were extensively studied [MJ34, Kel58, Car59]. With the appearance of online
social networks, the computer science community too began investigating ties and in-
fluences in social networks, cf. [MMG+07, LHK10].

Influence networks, based on the concept of nodes being continuously influenced by
their neighbors, are studied in diverse areas, such as mechanical engineering [Koh89],
brain science [RT98], ant colonies [AG92] and the spreading of diseases [KMLA13].
Even more heterogeneous are asymmetrically weighted influence networks, which play
an important role in fields such as metabolic pathways [JTA+00], power distribution
networks [WS98] and citations between academic papers [GM79]. A famous applica-
tion example concerns the classification of the importance of web pages [BP98, Kle99].

A lot of work has been done on analyzing rumor spreading, either structurally or al-
gorithmically, using the random phone call model [FPRU90, KSSV00, SS11, DFF11].
One may try to predict the most influential nodes which can spread the rumor (in this
case - a product) as widely as possible cf. [KKT05, CYZ10]. In [KOW08] the authors
study a model somewhat closer to ours, which involves competitors on graphs, leading
to nodes with different states. The main difference between these models and ours is
that in the rumor spreading process nodes may change their state at most once during
the execution, once they get infected they stay infected. In contrast, in our model a node
can change its state several times until it reaches a “stable state”, and even after entering
this stable state, it may continue changing its opinion in a cyclic pattern.

In this sense cellular automata [Neu66, Wol02] are closer to our model. One can
interpret our synchronous model as a cellular automata on a general graph instead of a
grid, where the rule used to update the state of the nodes is to adopt the majority of the
states of the neighboring nodes.



254 B. Keller, D. Peleg, and R. Wattenhofer

The same model we study is used to study a dynamic monopoly
[Pel96, FLL+04, Man12], abbreviated dynamo. A dynamo is an initial set of
vertices in an influence network, all with the same opinion, such that after a finite
number of steps all nodes in the network share their opinion. The minimum size of a
dynamo was studied in [Pel98], where it is shown that Ω(

√
n) nodes are needed for

a monotone dynamo (assuming no node ever changes back its state) and for 2-round
dynamos (where the network stabilizes after exactly 2 rounds). Berger [Ber08] extends
these results by proving that a constant number of nodes may suffice to convert a
network of size at least n for arbitrary n. In the current work we ignore the final
opinions of the network, and focus on stabilization time.

Updating rules taking into account the states of ones neighbors and a threshold is
wide spread in biological applications and neural networks, and was studied already
during the 1980’s. Goles and Olivos [GO80] have shown that a synchronous binary in-
fluence network with symmetric weights and a generalized threshold function always
leads to a cycle of length at most 2. This implies that after an influence network has
balanced itself, each node has either a fixed opinion or changes its mind every round.
This result was extended by Poljak and Sura [PS83] to a finite number of opinions.
Moreover, Goles and Tchuente [GT83] show that an iterative behavior of a threshold
function with symmetric weights always leads to a fixed point. Sauerwald and Sud-
holt [SS10] studied the evolution of cuts in a binary influence network model where
nodes may flip sides probabilistically. In comparison, our work may be interpreted as
looking at the deterministic and weighted case of that problem instead. In [FKW13] the
authors proved a lower bound for the stabilization time of unweighted influence net-
works. They constructed a class of synchronous influence networks with stabilization
time Ω(n2/ log2 n) and proved a worst case stabilization time of Θ(n2) for iterative
influence networks.

2 Preliminaries

Model. We model an influence network (IN) as a graph G = (V,E, ω, μ0). The set of
nodes V is connected by an arbitrary set of edges E. Each edge is assigned a weight
ω(e) ∈ N. We refer to an edge between nodes u and v with weight ω as (u, v, ω). Usu-
ally we talk about undirected edges, except in Section 4 (about asymmetric graphs),
where we consider directed edges. In this case u, v, ω stands for an edge from node u
towards node v with weight ω The weight of a graph G is defined as ω(G) =

∑
e∈E

ω(e).

Each node has an initial opinion (or state) μ0(v) ∈ {R,B} (graphically interpreted as
the Red and Blue colors respectively). The opinions of the nodes at every time t are also
represented in the same way by a function μt : V �→ {R,B}.

We define the “red neighborhood” of node v by ΓR,t(v) = {u ∈ Γ (v) | μt(u) = R}
at time t and similarly for the “blue neighborhood” ΓB,t(v). A node changes its opin-
ion on time step t if a weighted majority of its neighbors has a different opinion. One
can consider different actions in case of a tie. We chose the nodes own opinion as a
tie breaker because of two reasons. First it seems to be a natural choice and secondly
one can build an equivalent graph with the same behavior in asymptotic running time



How Even Tiny Influence Can Have a Big Impact! 255

by cloning the graph and connecting each node with its clone and the neighbors of its
clones. More formally the state of a node at time t+ 1 is defined as

μt+1(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
R, if

∑
u∈ΓR,t(v)

ω(u, v) >
∑

u∈ΓB,t(v)

ω(u, v)

B, if
∑

u∈ΓB,t(v)

ω(u, v) >
∑

u∈ΓR,t(v)

ω(u, v)

μt(v), otherwise .

A synchronous IN develops in rounds. In each round the nodes simultaneously up-
date their opinion to the weighted majority of their neighbors according to the above
rule.

As INs are deterministic, they necessarily enter a cyclic pattern after a certain num-
ber of rounds. We call an IN stable with a cycle of length q if each node changes its
opinion in a cyclic pattern with cycle length k for some k ≤ q. This means that in a
stable IN it is still possible that nodes change their opinions.

Definition 1. An IN G = (V,E, μ0) is stable at time t with cycle length q, if for all
vertices v ∈ V : μt+q(v) = μt(v). A fixed state of an IN G is a stable state with cycle
length 1. The stabilization time c of an IN G is the smallest t for which G is stable.

The Classical (Unweighted) Model. The classical model, sometimes also known as
“Democrats and Republicans”, is unweighted, i.e., all the edges of the IN have weight
exactly 1. We hereafter refer to such an IN as an unweighted influence network, or UIN in
short. A known basic fact concerning the dynamical behavior of UIN’s is the following.

Theorem 1 ([GO80]). The cycle length of the stable state of a synchronous unweighted
influence network with symmetric weights is at most 2.

Theorem 2 ([Win08]). An n-node unweighted influence network stabilizes in O(n2)
time steps.

Using Theorem 1 and Theorem 2, near-tight bounds were recently established
in [FKW13] on the stabilization time of UIN’s.

Theorem 3 ([FKW13]). There is a family of n-node unweighted influence networks
that require Ω(n2/ log2 n) rounds to stabilize.

The proof of the upper bound in Theorem 2 uses a bound argument on the edges. Each
edge (v, u) is substituted by two directed edges 〈v, u〉 and 〈u, v〉, with the same weight,
referred to as the outgoing and incoming edges of v, respectively. One can think of these
edges as representing “advice” given between neighbors. The outgoing edge from node
v to node u can be seen as the opinion that node v proposes to its neighbor u and the
incoming edge can be seen as the opinion that node u proposes to v. In each time step
t, each of these directed edges is declared to either “succeed” or “fail”. The outgoing
edge 〈v, u〉 succeeds on time step t if the neighbor u accepts the opinion proposed by v
during the round leading from time step t to time step t+ 1, namely, μt+1(u) = μt(v),
and fails otherwise.



256 B. Keller, D. Peleg, and R. Wattenhofer

The analysis is based on the initial observation that a UIN starts with a certain num-
ber of failed edges f(0) at time step 0, which is naturally bounded by f(0) ≤ 2|E|.
It is shown that as long as the UIN has not stabilized, the number of failed edges f(t)
decreases in every round by at least one. Using the same arguments, the upper bound
for a UIN can be restated as 2|E|.

Theorem 4 ([Win08]). An n-node unweighted influence network with edge set E sta-
bilizes in at most 2|E| time steps.

Friends and Fiends. Some online networks allow not only to be connected to one’s
friends but also to one’s fiends (e.g. Epinions, Slashdot). We model such a network by
allowing not only positive but also negative influence between members. Informally,
one can think of a negative link between u and v as u’s tendency to adopt the opinion
opposite to that of v.

The proof given in [Win08] for the upper bound, as well as the lower bound con-
struction used in [FKW13], can be applied to this model. The definition of a “failed
edge” has to be updated to apply also for negative edges. This is done in a straightfor-
ward manner by using the same definition for successful and failed edges in the case
of positive ties and by using the opposite definition in case of negative ties. Namely, a
negative outgoing edge 〈v, u〉 fails on time step t if u adopts v’s opinion on time step
t+ 1, and succeeds otherwise. We get the following results.

Lemma 1. There exists a family of n-node unweighted synchronous influence networks
with stabilization time Ω(n2/ log2 n).

Lemma 2. An n-node unweighted influence network with positive and negative friend-
ship ties stabilizes in O(n2) time steps.

3 Weighted Graphs

In a social network it seldom happens that all ties have the exact same interpretation.
Considering, for instance, different acquaintance ties between people, one may observe
that usually people listen to their best friends more than to their colleagues. We model
the influence between a pair of nodes by assigning a weight to the corresponding edge.
It is then assumed that a node changes its opinion if the weighted majority of its neigh-
bors have a different opinion. We are interested in the influence of adding weights to
our graph on the stabilization time. We start by proving the following lemma.

Lemma 3. An n-node weighted influence network G stabilizes in min{2ω(G), 2n}
time steps.

Proof. Note that there is a bijective relation between weighted graphs and multigraphs.
A weighted graph can be modeled as a multigraph by replacing each edge e of weight
ω(e) = k by k edges of weight 1 each. Conversely, each multigraph can be modeled as
a weighted graph with weights ω(e) ∈ N by substituting k multiedges by a single edge
of weight k. The transformation does not influence the behavior of the nodes as in both
situations the weight of the influence is not changed. For the multigraph we can apply



How Even Tiny Influence Can Have a Big Impact! 257

Theorem 4 to conclude that the multigraph stabilizes in 2|E| tie steps. As the number
of edges in the multigraph corresponds to the weight ω(G) of the weighted graph, we
conclude that a weighted IN stabilizes in 2ω(G) time. Moreover, this process is deter-
ministic, and the execution enters a cycle once some global state repeats itself. Conse-
quently, since the IN has 2n global states, it must stabilizes in at most 2n time step. ��

The stabilization time of an IN can not be prolonged arbitrarily by just setting the edge
weights higher. A path network, for example, will stabilize in O(n) rounds no matter
how the edge weights are chosen. It is an intriguing question if the weights do indeed
have an influence on the stabilization time or if there is another mechanism which may
prevent INs from having a higher stabilization time than O(n2). As we show in the next
paragraphs, edge weights can significantly increase the stabilization time of INs. We do
this by presenting a family of graphs with stabilization time 2Ω(n)

Lemma 4. There is a family of n-node weighted influence networks with stabilization
time 2Ω(n).

To provoke as many changes as possible we build a graph consisting of 3 different com-
ponent types: Two different colored paths of length l and several levels of a structure
to which we refer as transistor lines. The transistor lines consist of 2 different colored
lines of k transistors. The main idea is that the paths, with a suitable initial coloring,
get “discharged” by a lengthy process during which they change their colors node by
node as often as possible, and once a path is completely discharged, it gets recharged
(i.e., reset to the original color pattern) by the transistor above it. In turn, each transistor
in the transistor lines recharges the levels below it. So each level adds another multi-
plicative factor to the stabilization time. (Let us remark that we have programmed the
construction and simulated the influence propagation process on this graph; the inter-
ested reader may find a program and a video tracing the simulation as well as a more
formal definition of the graph at http://www.disco.ethz.ch/members/barkelle/FUN.zip)
Let us now take a closer look how the two paths, illustrated in Figure 1, work.

At round 0 all the nodes in path P 1 are blue and all the nodes in path P 2 are red.
The first nodes of the paths are denoted by F . When they change their color they start a
cascade of changes through the path. To achieve this, the weights of the edges between
the path nodes are decreasing from the first to the last node. This ensures that the change
of the first node is cascaded through the path without any influence going the opposite
direction. The summed up influence to change the color of the first node has therefore
also to be higher than the weight of the edge between the first and the second node.

Definition 2. We define our path graph P = (VP , EP ) as an undirected weighted
graph, where VP = {p1, . . . , pk} and

EP = {(pi, pi+1, 2k + l− i) | i = 0, 1, . . . , k − 2}.

The levels above the paths consist of two transistor lines. At time 0, line L1 is blue and
L2 is red. Each transistor line is composed of k transistors. The basic function of the
transistor is to change the color in the level below it in a controlled manner. A transistor
(see Figure 2) consists of three nodes: A switch node (Sw), a collector node (Co) and
an emitter node (Em). The idea behind this is to control the color of the transistor by the



258 B. Keller, D. Peleg, and R. Wattenhofer

Fig. 1. The path nodes are connected with decreasing weights from the first node (F) to the last
(L) in the path. This induces a cascade of color changes through the path once the first node
changes its opinion. The edge between the last and second-to-last node has a weight larger than
k · 2 where k is the number of transistors in a transistor line. The cascade of changes is triggered
by changing the color of one external node that is connected to F .

Fig. 2. A transistor on the left consists of the following three nodes: switch (Sw), collector (Co)
and an emitter (Em). Its edge weights satisfy 2x >

∑
(u,Em)∈E

ω(u,Em) and x < y < x + 3.

The graph with four nodes on the right will never change their color, as they share an edge with a
higher weight than all the other adjacent edges combined. With k transistors per line, this weight
is set to k · y + 1.

Fig. 3. A level of transistor lines, consisting of k blue and k red transistors. Each switch is wired
to the emitter of the transistor in front of it, so that the transistors get activated in the order from
left to right.



How Even Tiny Influence Can Have a Big Impact! 259

switch node. This is done by using the switch node to change the color of the collector
node which in return changes the color of the emitter node. To do so, the switch node
shares an edge with the collector node of weight 3 and the collector node is balanced
in a way that it will only change its color, if the summed up influence from the level
above is the opposite color and the switch node changes to this color. The collector node
shares an edge with the emitter node which is heavier than all the other edges adjacent
to the emitter node combined. This makes sure that the emitter node changes its color
exactly one round after the collector node changed its color, no matter what the color
of the other neighboring nodes are.

The order in which the transistors are activated is level by level, and in each level -
transistor by transistor. To make sure that a transistor is only activated when the tran-
sistor in front of it already finished, we add an edge of weight 2 between the emitter
node and the switch node of the next transistor in the transistor line (the switch node
of the first transistor in each line is connected to the last emitter of the opposite colored
transistor line); see Figure 3.

Above the levels we have 4 special nodes, S1 − S4. These 4 nodes consist of two
pairs of nodes, one (S1, S2) blue and the other (S3, S4) red. Each pair is connected by
an edge which is heavier than all the other edges adjacent to these nodes combined (see
Figure 2). This ensures that these nodes never change their color.

Definition 3. A transistor T = (VT , ET ) is an undirected weighted graph, where
VT = {Sw,Co,Em} and ET = {(Sw,Co, 3), (Co,Em, x)}, where x is dependent
on the level i of the transistor and the length l of the path.

x0 = k · (k · 2 + l) + 2k + 3

xi = k · (xi−1 + 2k + 3) + 3.

Definition 4. A transistor line Lj = (VLj , ELj ) is an undirected weighted graph con-
sisting of k transistors, where

VLj =

k−1⋃
i=0

VTi and ELj =

k−1⋃
i=0

ETi ∪ {(Emi, Swi+1, 2) | i = 0, 1, . . . , k − 1}.

Definition 5. A level L = (VL, EL) is an undirected weighted graph consisting of two
transistor lines L1, L2, where VL = VL1 ∪ VL2 and

EL = EL1 ∪ EL2 ∪ {(u, v) | u = Sw ∈ T0 ∈ L1 ∧ v = Em ∈ Tk−1 ∈ L2}
∪ {(u, v) | u = Sw ∈ T0 ∈ L2 ∧ v = Em ∈ Tk−1 ∈ L1}.

We now show how the structures and different levels are wired. We start with the two
paths and the first transistor lines. We want the blue path P 1 to turn alternately red and
blue. As the blue transistors have the potential to turn red we connect the emitter of the
first blue transistor with the first node of the blue path with weight w = 2 · k + l. Sim-
ilarly, we connect the first red transistor with the first node of the red path. In order to



260 B. Keller, D. Peleg, and R. Wattenhofer

turn them back to their original color we connect the emitter of the second red transistor
to the first node of P 1 and the emitter of the second blue transistor to the first node of
P 2. We continue this until the first node of P 2 is connected with all the emitters of the
even transistors in L1 and all the emitters of the odd transistors in L2. To inhibit the
second transistor from changing P 1 back before the first cascade finished we connect
the last node in P 2 with the switch of the second transistor in L2 with a weight w = 2.
So the switch node can only switch if the transistor in front of it and the last node of
the opposite colored path did switch. As P 1 and P 2 have the same length and start at
the same time they will also finish at the same time the cascade and will influence the
second transistors to switch. All these edges are added for the first node F in P 2 and the
last node L in P 2 respectively. Note that with k being odd, there is always a summed
up influence on the first node of the path with value 2k + l. The edges added between
the paths and the first levels are denoted by EPL1 .

The different levels are wired similarly to the first level and the path. The first node
of the path corresponds to the collector nodes of the transistors one level below and the
last node of the path corresponds to the emitter node of the last transistor. We denote
the edges between level Li and level Li+1 as ELLi .

The last level Lr is wired to the special nodes in the following way:

ESLr = {(u, v, xr + 2k + 2) | u = S1 ∧ v ∈ {Coj ∈ L2
r}}

∪ {(u, v, xr + 2k + 2) | u = S3 ∧ v ∈ {Coj ∈ L1
r}}.

The complete asymmetric IN is a union of all these structures and can be seen with
k = 3 and l = 3 and 2 levels in Figure 4.

Definition 6. Our worst case IN is an undirected weighted graph consisting of 2 paths,
r levels and the 4 special nodes. Formally it is defined as IN = (VIN , EIN ), where

VIN = VP 1 ∪ VP 2 ∪
r⋃

i=1

VLi ∪ {S1, S2, S3, S4}

EIN = EP 1 ∪EP 2 ∪ EPL1 ∪
r−1⋃
i=1

ELLi ∪ ESLr

Stabilization Time. We analyze the stabilization time of the presented graph. Each
time the path is activated it takes l rounds to complete. As the transistors from the first
level are connected to the last nodes of the two paths they only change when all the
nodes in the path changed their color. As a transistor needs 3 rounds to change (switch
→ collector → emitter) and nothing of this happens in parallel, the first level takes
k ·(3+ l) rounds. Each additional level adds a factor of k to the stabilization time which
leads to the following recursive function for the running time: Ti = ki · (3+ l)+Ti−1 .
Solving the recurrence formula gives

Ti =
(l + 3)(ki+1 − 1)

k − 1
∈ O(ki) .



How Even Tiny Influence Can Have a Big Impact! 261

Fig. 4. This is an IN with stabilization time l · k(n−l)/k∗6 with k = 3, l = 5 and r = 2.

The running time grows exponentially in the number of levels. Each level consists
of 2k̇ transistors and each transistor consists of 3 nodes. The constant nodes con-
sist of 2 · 2 nodes. The IN consists of n nodes, therefore we can build an IN with
i = n−l−4

6·k levels. Choosing l to be constant and k = 3, we achieve a stabilization time
of Ω(3n/18) = Ω(20.088n).

4 Asymmetric Weights

In real life, ties between people do not necessarily have the same weight for both ad-
jacent nodes. Although friendships are often symmetrically perceived concerning how
strong they are, there are a lot of examples where this is not the case. One example is the
student advisor relation. Usually the advisor’s opinion has a larger influence on the stu-
dent than vice versa, hence the edge between advisor and student has a smaller weight
for the advisor than for the student. This is even more extreme in the case of celebrities:
A famous artist may influence people whom she does not even know, who in return do
not influence her at all. We extend the model to allow asymmetric weights. Note that
the weight can also be 0 on one side, which is then equivalent to a directed edge. Inter-
estingly, in this new model the “stable states” are not that simple anymore, as the cycle
length can be larger than 2. We are interested in the cycle length which can be achieved.
An easy lower bound on it is n. One can think of a circle with edges directed in one
direction. Initially, one node is red and all the others are blue. This red “token” cycles
through the circle with cycle length n. We are interested in how big the cycle length
can get in an IN with asymmetric weights. As asymmetric INs are deterministic too, we
have an upper bound of 2n. We show a family of graphs with a cycle length of 2Ω(n)

Lemma 5. There are families of n-node influence networks with a cycle length 2Ω(n).

We use the same IN as described in Section 3 as a basis for our construction but sub-
stitute most of the symmetric edges by directed edges. The main idea is to have the
same process as the IN in Section 3, except that in the round where the symmetric IN



262 B. Keller, D. Peleg, and R. Wattenhofer

would stabilize, our IN gets restarted by changing the colors of the special 4 nodes
S1 − S4. This leads to a cycle length for our asymmetric IN that’s twice as long,
as the stabilization time of the previous IN. In order to do so, we add directed edges
from the last emitter of each transistor line and each path to the nodes S1 − S4 with a
weight x that sums up to a weight higher than the edge weight w(S1, S2) = w(S3, S4)
but so that each subset of these weights is smaller than w. This will change the spe-
cial nodes exactly when all the levels have switched. This is achieved by assigning the
edges w(S1, S2) = w(S3, S4) = 3(r + 1) − 1, where r is the number of levels. Note
that as directed edges can be used, we do not need an exponential growth of the weights
anymore which makes the graph simpler.

To build our AIN we change the edges in the IN from Sect. 3 in the following way:
The edges in the path graph are directed from the first node (F ) to the last (L) with
weight 1. The edges between the emitter from the first level and F are directed towards
F and have weight 4. For each transistor the two edges of the switch node with weight
2 are now directed towards the switch node. The edge between the switch node and the
collector node is substituted by a directed edge to the collector node with weight 3. The
edge between a collector and an emitter in the same transistor stays symmetrical but its
weight is now 4. All the edges between collector and emitter nodes from different levels
are substituted by directed edges from the emitter of the higher level to the collector on
the lower level with weight 4. All the edges between the special nodes and the collectors
from level r are now directed towards the collector nodes and have weight 4. The edge
between S1 and S2 (as well as between S3 and S4) is symmetric and has an assigned
weight of 3(r + 1)− 1. Additionally we add the previously described special edges.

References

[AG92] Adler, F.R., Gordon, D.M.: Information Collection and Spread by Networks of
Patrolling Ants. The American Naturalist (1992)

[Ber08] Berger, E.: Dynamic Monopolies of Constant Size. Journal of Combinatorial
Theory Series B (2008)

[BP98] Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
In: WWW (1998)

[Car59] Cartwright, D.: Studies in Social Power. Publications of the Institute for Social
Research: Research Center for Group Dynamics Series (1959)

[CYZ10] Chen, W., Yuan, Y., Zhang, L.: Scalable Influence Maximization in Social Networks
under the Linear Threshold Model. In: ICDM (2010)

[DFF11] Doerr, B., Fouz, M., Friedrich, T.: Social Networks Spread Rumors in Sublogarith-
mic Time. In: STOC (2011)

[FKW13] Frischknecht, S., Keller, B., Wattenhofer, R.: Convergence in (Social) Influence
Networks. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 433–446. Springer,
Heidelberg (2013)

[FLL+04] Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic Monopolies in
Tori. In: IWACOIN (2004)

[FPRU90] Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized Broadcast in Networks.
In: Asano, T., Imai, H., Ibaraki, T., Nishizeki, T. (eds.) SIGAL 1990. LNCS,
vol. 450, pp. 128–137. Springer, Heidelberg (1990)

[GM79] Garfield, E., Merton, R.K.: Citation Indexing-Its Theory and Application in Science,
Technology, and Humanities (1979)



How Even Tiny Influence Can Have a Big Impact! 263

[GO80] Goles, E., Olivos, J.: Periodic Behaviour of Generalized Threshold Functions.
Discrete Mathematics (1980)

[GT83] Goles, E., Tchuente, M.: Iterative Behaviour of Generalized Majority Functions.
Mathematical Social Sciences (1983)

[JTA+00] Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabsi, A.L.: The Large-Scale
Organization of Metabolic Networks. Nature (2000)

[Kel58] Kelman, H.C.: Compliance, Identification, and Internalization: Three Processes of
Attitude Change. Journal of Conflict Resolution (1958)

[KKT05] Kempe, D., Kleinberg, J.M., Tardos, É.: Influential Nodes in a Diffusion Model for
Social Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg
(2005)

[Kle99] Kleinberg, J.M.: Hubs, Authorities, and Communities. CSUR (1999)
[KMLA13] Kamp, C., Moslonka-Lefebvre, M., Alizon, S.: Epidemic Spread on Weighted

Networks. PLoS Computational Biology (2013)
[Koh89] Kohonen, T.: Self-Organization and Associative Memory. Springer, Heidelberg

(1989)
[KOW08] Kostka, J., Oswald, Y.A., Wattenhofer, R.: Word of Mouth: Rumor Dissemination

in Social Networks. In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS,
vol. 5058, pp. 185–196. Springer, Heidelberg (2008)

[KSSV00] Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized Rumor
Spreading. In: FOCS (2000)

[LHK10] Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Signed Networks in Social
Media. In: CHI (2010)

[Man12] Manouchehr, Z.: On Dynamic Monopolies of Graphs with General Thresholds.
Discrete Mathematics (2012)

[MJ34] Moreno, J.L., Jennings, H.H.: Who Shall Survive?: A New Approach to the Problem
of Human Interrelations. Nervous and mental disease monograph series. Nervous
and mental disease publishing co. (1934)

[MMG+07] Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.:
Measurement and Analysis of Online Social Networks. In: SIGCOMM (2007)

[Neu66] Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press
(1966)

[Pel96] Peleg, D.: Local Majority Voting, Small Coalitions and Controlling Monopolies in
Graphs: A Review. In: SIROCCO (1996)

[Pel98] Peleg, D.: Size Bounds for Dynamic Monopolies. Discrete Applied Mathematics
(1998)

[PS83] Poljak, S., Sra, M.: On Periodical Behaviour in Societies with Symmetric Influences.
Combinatorica (1983)

[RT98] Rolls, E.T., Treves, A.: Neural Networks and Brain Function. Oxford University
Press, USA (1998)

[SS10] Sauerwald, T., Sudholt, D.: A Self-Stabilizing Algorithm for Cut Problems in
Synchronous Networks. Theoretical Computer Science (2010)

[SS11] Sauerwald, T., Stauffer, A.: Rumor Spreading and Vertex Expansion on Regular
Graphs. In: SODA (2011)

[Win08] Winkler, P.: Puzzled: Delightful Graph Theory. CACM (2008)
[Wol02] Wolfram, S.: A New Kind of Science. Wolfram Media (2002)
[WS98] Watts, D.J., Strogatz, S.H.: Collective Dynamics of ‘Small-World’ Networks.

Nature (1998)



Optimizing Airspace Closure
with Respect to Politicians’ Egos

Irina Kostitsyna1, Maarten Löffler2, and Valentin Polishchuk3

1 Department of Mathematics and Computer Science, Eindhoven University of Technology,
The Netherlands

i.kostitsyna@tue.nl
2 Department of Information and Computing Sciences, Utrecht University, The Netherlands

m.loffler@uu.nl
3 Communications and Transport Systems, ITN, Linköping University, Sweden

valentin.polishchuk@liu.se

Abstract. When a president is landing at a busy airport, the airspace around the
airport closes for commercial traffic. We show how to schedule the presidential
squadron so as to minimize its impact on scheduled civilian flights; to obtain an
efficient solution we use a “rainbow” algorithm recoloring aircraft on the fly as
they are stored in a special type of forest. We also give a data structure to answer
the following query efficiently: Given the president’s ego (the requested duration
of airspace closure), when would be the optimal time to close the airspace? Fi-
nally, we study the dual problem: Given the time when the airspace closure must
start, what is the longest ego that can be tolerated without sacrificing the general
traffic? We solve the problem by drawing a Christmas tree in a delay diagram;
the tree allows one to solve also the query version of the problem.

1 Introduction

Airspace closure due to military activities is a pain for civilian air traffic controllers (AT-
COs), pilots, airlines and other stakeholders; the issue is especially notorious in coun-
tries with heavy military control of the skies (such as China). Military flight operations
range from strike and defense missions to drills to humanitarian airdrops. The missions
are impossible to reschedule, and military ATCOs are entitled to ceasing airspace from
civilian use at any time when the traffic could conflict with the mission aircraft. Drills
are better in this regard because they are planned in advance, but nevertheless airspace
closure due to drills harms commercial airlines. On the contrary, humanitarian aid de-
livery typically has little effect on general air traffic – not the least due to the fact that
the aid is often delivered to places far from mainstream airports.

There is one activity involving military air force, however, whose scheduling most
certainly could have been done wiser than it is done today: air transfer of VIPs (pres-
idents and other high-ranked politicians). We trust that planners of such activities are
instructed by their superiors (the VIPs at hand) to take civilian needs into account when
planning the flights – all VIPs are conscientious citizens putting needs of the people
above their personal comfort. Unfortunately, no matter how hard the planners strive to
follow the instructions, the civilians do get annoyed with delays caused by VIP flights.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 264–276, 2014.
c© Springer International Publishing Switzerland 2014



Optimizing Airspace Closure with Respect to Politicians’ Egos 265

For instance, the recent visit of the US President to Sweden disrupted air traffic to
Stockholm area and gave rise to heated discussions among professionals in the Malmö
Air Traffic Control Center (in the south of Sweden) about possible measures that could
have been taken to diminish the disruption [2]. Apparently, the only reason preventing
the planners of VIP flights from requesting airspace closure with minimum impact on
scheduled traffic is the absence of efficient algorithms for computing the optimum.

In this paper we set out to alleviate the difficulty by providing algorithms for decid-
ing the optimal airspace closure timing. Employing our solutions will make the general
public happier about VIPs, which will eventually pay back to politicians at future elec-
tions.

1.1 Model

For every aircraft the optimal flight plan exists (it can be fuel-optimal or time-optimal
or optimal according to another objective) which includes both the altitude profile and
the speed at every point along the path. Whether the aircraft is able to execute such a
plan depends heavily on the other aircraft around. In the uncongested enroute portion
of the flight aircraft with similar headings can generally “overtake” each other; to quote
Director General of Luftfartsverket (Swedish air navigation service provider) [1], the
uncontrolled oceanic airspace witnesses “air race over the Atlantic” on a daily basis.
On the contrary, in the vicinity of an airport, the arrival manager sequences aircraft
“ducks-in-a-row” to the approach (the final phase of the flight); here, faster aircraft
(those whose desired speed is larger) must slow down in order to maintain separation
from the preceding slower plane. This latter scenario is the one considered in this paper.

Assume that the approach to an airport is a “single-lane road” of length 1. The ap-
proach does not have to be a straight-line segment (in fact, in real world, approaches to
many airports are curved); the important thing is that it is a one-dimensional curve. Air-
craft enter the approach at times t1, . . . , tn ∈ [0, 1] (known from the schedules or flight
plans) and have desired speeds v1, . . . , vn (known from communication between pilots
and ATCOs or from automated flight management systems); n is the number of the air-
craft. For simplicity assume all tis and all vis are distinct. In absence of the other planes,
aircraft i would traverse the approach uniformly at speed vi, arriving at the airport at
time τi = ti + 1/vi; this is an oversimplification, but our solutions can be modified to
work with arbitrary desired speed profiles. Since passing is not allowed on the approach,
any aircraft must slow down to the speed of the preceding plane as soon as the aircraft
catches up the plane. In other words, we assume that aircraft have 0 length and can fol-
low each other without gaps; this is also an oversimplification, but again, our algorithms
can work under the requirement of minimum safe separation distances between aircraft
as well (in reality, the minimum miles-in-trail restriction is not uniform – it depends
on the types of aircraft, with light aircraft having to stay farther behind a heavier one
to avoid wake vortices). That is, in the tx-plane, the desired trajectory of aircraft i is
the segment si going from (ti, 0) to (τi, 1); we identify i with the segment and use i
or si interchangeably. However, if the aircraft catches up with a slower plane they start
moving together at the slower speed; thus the actual aircraft location on the approach
is a concave piecewise-linear function of time, and in the tx-plane the trajectories get
merged into trees corresponding to platoons of aircraft (Fig. 1, left).



266 I. Kostitsyna, M. Löffler, and V. Polishchuk

t

x

t1 t2

τ 4

t5t3

τ 5

t4 t6 t7 t8 ...

r 1
=τ
 1

r 2
=τ
 2

r 8
=τ
 8

t

x
r 2,3,4 r6,7,8

T=t3 T+L

r 5

t1 t2 t5t4 t6 t7 t8 ...

r 1

Fig. 1. Left: The desired trajectories are dashed, the actual trajectories are green; the green seg-
ment starting at (ti, 0) is the part that aircraft i travels with its desired speed vi. Trees correspond
to platoons of aircraft landing at the same time; dark green are platoon heads. Right: The trajec-
tories change due to the closure (the aircraft are colored according to our algorithm in Section 2)

Let ri denote the actual time when aircraft i lands (ri = τi for platoon heads);
the points (ri, 1) are roots of platoon trees. The trees can be built from the segments
s1, . . . , sn by modifying the Bentley–Ottmann sweep for segment intersection [3, Chap-
ter 7]: just remove the faster segment on any intersection. Since the total complexity of
the trees is linear (every segment is removed at most once), the sweep completes in
O(n log n) time. We remark that our algorithms do not need to construct the trees in the
xt-plane exactly; we will store only the combinatorial structure of every tree (Section 2).

When a VIP is expected to arrive at the airport, the airspace has to be closed tem-
porarily. All that is known about the VIP is the length L of its ego, which measures for
how long the approach will be closed. If the closure starts at time T , then all aircraft
with entry times in the interval (T, T + L) will be put into a holding pattern and will
effectively enter the approach at time T + L. We assume that the sequence of aircraft
does not change at the exit from holding (which is mostly true in the real world). Thus
equivalently, the aircraft entrance is delayed until T +L, at which time they all enter in
the same order in which they arrived (Fig. 1, right). Let ri(T, L) denote the time when
aircraft i will land; our cost function is the total sum the landing times

D(T, L) =

n∑
i=1

ri(T, L) .

Minimizing D(T, L) is the same as minimizing the total delay D(T, L) −
∑n

i=1 ri
caused by the VIP; therefore will call D(T, L) also the delay.

To avoid trivialities we assume that there is a lower and an upper bound on the
location of T (otherwise, one would trivially set T > tn or T < t1 − L).

1.2 Our Contributions

We consider several problems:

Delay minimization (Section 2): Given L, find T to minimize D(T, L). To solve the
problem in O(n log n) time we store the combinatorial structure of platoons in
a forest which can be updated efficiently as the closure interval slides along the t



Optimizing Airspace Closure with Respect to Politicians’ Egos 267

axis. The forest may be of independent interest, as it can be viewed as a juste milieu
between storing platoons as lists and storing the full platoon trees in the xt-plane
(the former does not have enough structure to allow for efficient updates, while the
latter contains “too much” structure and therefore is hard to update).

Ego query (Section 3): The query version of delay minimization. We give a nearly-
quadratic-time algorithm to compute the functionD(T, L) for all L and T (a simple
example shows that the function can have quadratic complexity). We show that the
marginal minimum f(L) = minT D(T, L) of D(T, L) has O(n2α(n)) complexity
and can also can be built in nearly-quadratic time. Knowing the function f(L)
allows one to give logarithmic-time answer to the delay minimization query “Given
L, report T that minimizes D(T, L)”.

The Harmless President problem (Section 4): Given T , find maximum L for which
D(T, L) is 0. This is the dual problem to delay minimization: for the latter we as-
sumed that the VIP would be willing to shift T so as to minimize the delay – this
could be an unrealistic assumption since VIPs have tight schedules; the solution to
the Harmless President problem helps modest but busy VIPs who cannot reschedule
the entry into the airspace but are willing to curb their egos so as to do no harm to
the people (of course, the majority of politicians are such, so this is the most prac-
tical problem). The Harmless President problem can be solved in nearly-quadratic
time using our results for the Ego query problem: after the functionD(T, L) is built
we can find, for the given T , the largest L such that (T, L) is in the 0-level (com-
plement of the support) of D(T, L). We show that the 0-level actually has linear
complexity and can be built in O(n log n) time; thus the Harmless President prob-
lem can be solved in O(n logn) time. In addition, using the 0-level, one can solve
the query version of the Harmless President problem in logarithmic time per query.

Naturally, our algorithms are applicable to arbitrary scenarios of temporary traffic
disruption: train track closure, farmers machinery (or geese, or kids) crossing a rural
road, walkway blockage, etc. The algorithms can also be extended to handle (multiple-
lane) roads where passing is allowed. Some proofs and details are omitted from this
version and will appear in the full paper.

1.3 Related Work

Traffic jam formation is a vast research area heated by enormous real-life importance of
the field. Many studies—ranging from on-site experimental measurements to simula-
tion and modelling to purely theoretical developments—have been performed over the
years. Various traffic flow characteristics were explored, most notably the fundamen-
tal diagram of the flow (the relationship between flow rate, vehicle speed and density),
aiding in understanding flow breakdown, jam formation and other processes occurring
in the traffic. Not attempting to survey the huge amount of literature on the subject,
we refer to books and surveys [7,8,5]. A related domain of active research is motion
information gathering: traffic participants (be it cars, aircraft, ships, trains, pedestrians,
birds or other animals) are being tracked using mobile phones, GPS navigators, special-
purpose devices, etc. One popular form of processing of the gathered data is information
summarization, in particular – trajectory clustering; for some recent work see, e.g., [4]
and references thereof.



268 I. Kostitsyna, M. Löffler, and V. Polishchuk

2 Delay Minimization

In this section we consider the following problem: GivenL, findT to minimizeD(T, L).
First we discuss a simple O(n2) algorithm to solve the problem. For a more efficient
solution we introduce a special data structure and assign colors to aircraft.

Our first goal is to calculate the landing times ri for all aircraft. Define the platoon
structure P to be the list of aircraft platoons sorted by the entry times of head aircraft.

Lemma 1. The platoon structure P can be computed in O(n logn) time.

Proof. Construct the lists T1 = (t1, t2, . . . , tn) and T2 = (τi1 , τi2 , . . . , τin), sorted
from lowest to highest value. For every pair of corresponding elements tj and τj store
pointers to each other. Consider the maximum landing time τin and the corresponding
entering time tk (where in = k). Aircraft Sk = {ik, ik+1, . . . , in} form a platoon with
aircraft ik in the head. Put the platoon at the beginning of P and delete the aircraft from
the lists T1 and T2. Repeat until T1 and T2 are empty. By construction, each element in
P is a sorted list of aircraft of one platoon, and platoons in P are sorted by the entering
times of their lead aircraft. The constructive part takes O(n) time as each aircraft is
deleted from T1 and T2 only once. The bottleneck is sorting T2 which gives the total
O(n log n) time for constructing the platoon structure. ��

Next note that there exists an optimal closure interval with the starting point T equal to
one of the entry times t1, . . . , tn; otherwise we can slide the interval to the left along the
time axis without changing its length until we reach some ti – this would not increase
the delay. The simple solution is thus to consider all intervals (ti, ti + L) separately,
calculating the platoon structure for each interval in O(n) time and comparing the re-
sulting values of D(T, L); this leads to an overall O(n2)-time algorithm.

The above approach is not efficient, as it involves recomputing the delay n times. For
a more efficient algorithm we will slide the interval of length L from left to right along
the time axis, updating the delay D(T, L) as a function of T . To facilitate the update
we will introduce an upgraded version of the platoon structure, storing each platoon in
a tree (Section 2.2).

2.1 Aircraft Flying through Rainbows

We introduce several colors to distinguish between how aircraft are affected by the
closure. Let ti(T, L) ∈ {ti, T +L} denote the time when aircraft i enters the approach

undelayed & un-
affected

undelayed & dir.
affected

delayed & dir.
affected

delayed & ind.
affected

platoon head impossible

following aircraft

Fig. 2. Overview of the colors, based on the properties of the aircraft before the closure and their
interaction with the current closure interval



Optimizing Airspace Closure with Respect to Politicians’ Egos 269

given that the airspace is closed during the interval (T, T + L). Call aircraft i delayed
if it lands later than its scheduled landing time ri, i.e., if ri(T, L) > ri; otherwise (i.e.,
if ri(T, L) = ri) aircraft i is undelayed. Say that an aircraft j is directly affected by the
closure interval (T, T + L) if tj ∈ (T, T + L), i.e., if tj(T, L) = T + L > tj (note
that j may still be undelayed, because it was following a slow aircraft even without
the closure). Say that i is indirectly affected if it is delayed but is not directly affected:
ri(T, L) > ri, ti(T, L) = ti ≥ T + L (i.e., landing of i is delayed because another
aircraft in front of i is directly affected).

We define seven aircraft colors (Fig. 2; see also Fig. 1, right):

dark green aircraft i is an undelayed head of a platoon: ti(T, L) = ti and ri(T, L) =
ri = τi,

red aircraft i is a delayed directly affected aircraft that would have been dark green
(head of a platoon) if the airspace was not closed: T < ti < T + L, ti(T, L) =
T + L, and ri(T, L) > ri = τi,

yellow aircraft i is a delayed aircraft that is indirectly affected (through some red air-
craft) and that originally, before introducing an airspace closure, was dark green:
T + L < ti(T, L) = ti, ri(T, L) > ri = τi,

light green aircraft i is an undelayed aircraft that is not the head of a platoon:
ti(T, L) = ti and ri(T, L) = ri > τi,

purple aircraft i is a delayed aircraft that is directly affected and that originally, before
introducing an airspace closure, was light green: T < ti < T+L, ti(T, L) = T+L,
ri(T, L) > ri > τi,

orange aircraft i is a delayed aircraft that is indirectly affected (through some red
aircraft) and that originally, before introducing an airspace closure, was light green:
T + L < ti(T, L) = ti, ri(T, L) > ri > τi,

blue aircraft i is an undelayed aircraft that is directly affected: T < ti < T + L,
ti(T, L) = T + L, ri(T, L) = ri; an aircraft can be blue only if originally, before
the closure, it was light green.

The colors indicate whether an aircraft is delayed or not, and if originally, before
introducing approach closure, the aircraft headed a platoon or not. A dark green air-
craft (head of a platoon) can become red or yellow, but never blue, purple, light green
or orange; similarly, a light green aircraft (not a head of a platoon), cannot become

4.a 2
4.a

1.d

1.a 4.a
3

4.a

1.c

1.a
4.b

1.a,2,3
4.a

Fig. 3. Change of the aircraft colors

red or yellow (refer to Fig. 2, 3).
We will slide the closure in-

terval (T, T + L) to the right,
starting from T = t1 −
L, updating the colors of the
aircraft and the delay func-
tion D(T, L) for all T =
ti (1 ≤ i ≤ n). Air-
craft change their colors when:

1. the right end of the interval hovers over the starting point of some aircraft j, i.e.,
when tj(T, L) changes from tj to T + L. If j was (a) dark green, then it becomes
red, and the rest of the aircraft in the platoon following j become orange, (b) light



270 I. Kostitsyna, M. Löffler, and V. Polishchuk

green, then it becomes blue, (c) orange, then it becomes purple, (d) yellow, then it
becomes red.

2. two consecutive platoons pj , with red head aircraft j, and pk, with dark green head
aircraft k, merge, i.e., T + L + τj − tj > τk. This event changes the color of k to
yellow and the rest of the aircraft from platoon pk from light green to orange.

3. the interval pushes some aircraft out of a platoon. More precisely, when j is a blue
aircraft in a platoon pk with dark green head aircraft k, i.e., tk < T < tj < T +L,
and T+L+τj−tj = τk , then new platoon pj with head aircraft j is separated from
platoon pk. This event changes the color of j from blue to purple and the colors of
the rest of the aircraft in the new platoon from light green to orange.

4. at every step the aircraft i can change its color back to light or dark green. Its color
right before this event can be red, purple, blue, light or dark green.
(a) if i was red then it becomes dark green, if i was purple then it becomes light

green. There can be following changes in other aircrafts’ colors: (i) if there
were yellow aircraft, some of them can become dark green, (ii) if there were
orange aircraft, they can become light green, (iii) if there were other purple
aircraft, some of them can become blue.

(b) if i was blue, then it becomes light green.

2.2 Platoon Tree Structure

We now introduce the platoon tree structure that will allow us to update D(T, L) ef-
ficiently while sliding the closure interval. Instead of representing each platoon as a
sorted list as before, now we store it in a tree whose nodes are sorted by increasing
approach-entry times top-to-bottom and left-to-right among siblings, and are also sorted
by desired speeds increasing top-to-bottom but decreasing left-to-right among siblings
(Fig. 4). Specifically:

– the root of the tree is the head of the platoon,
– if node j is a child of node i then ti < tj and vi < vj
– if j is the left sibling of i then ti > tj but vi < vj . Moreover, the same inequalities

hold for i and any descendant j′ of j: ti > tj′ but vi < v′j .

v=80v=85v=90

v=67v=70

v=65

v=70

v=60

v=401

2 8

3 9

4 5 6

7

t1 t2 t3 t4 t6 t9t8

τ 4 τ 5 τ 7 r1=τ 1τ 6

t1 t2 t3t5t6 t9t8

τ 4 τ 5 τ 7τ 2 τ 9

Fig. 4. Platoon tree for aircraft with desired velocities (40, 65, 70, 90, 85, 80, 68, 60, 70) – listed
in the order of increasing entry times. Note that the same platoon tree may correspond to different
platoons on the tx-space (shown left and right).



Optimizing Airspace Closure with Respect to Politicians’ Egos 271

This tree structure has one nice property that we are going to use later on: consider
a platoon p consisting of several aircraft {j, j + 1, . . . ,m}, and the corresponding tree
structure T . Let the closure interval (T, T +L) for some T = ti contain the entry times
{ti+1, . . . , ti+k} of k aircraft from p (tj < ti+1 and ti+k < tm). Mark the nodes in T

1

2 8

3 9

4 5 6

7

t2 t9t8t1 t3 t4 t6 t2+L

Fig. 5. The property of the platoon tree structure illustrated
on the platoon from the left example in Fig. 4. Left: Tra-
jectories in tx-space after the closure (t2, t2 + L). Right:
Colored nodes of the tree are affected by the interval. They
form three subtrees, and there are three “sub-platoons” en-
tering the approach at the same time t2 + L.

that correspond to the aircraft
affected by the interval (see
Fig. 5). Then the marked nodes
form several subtrees, i.e., there
is no unmarked node with a
marked parent. The number of
these subtrees is equal to the
number of “sub-platoons” start-
ing at point T +L, and the delay
depends only on the sizes of the
marked subtrees and the landing
times of their root nodes.

A platoon tree can be con-
structed from a platoon list in
linear time by scanning the list
in the increasing order of ti (i.e.,
starting from the head) and making node i + 1 the child of i if vi+1 > vi. Otherwise,
i.e., if vi+1 < vi, we go up the tree to the first node j on the i-to-root path that has
vj < vi+1 and make i + 1 the rightmost child of j. Any node is visited only once,
as the construction is equivalent to traversing the tree in the depth-first-search order.
Therefore, the total time it takes to construct a platoon tree structure is O(n).

2.3 Rainbow Algorithm

In this section we present an algorithm to find an optimal interval of given length L that
minimizes the total delay introduced in O(n log n) time.

Let F(T ) be a forest structure consisting of platoon trees that contain all aircraft
with starting times greater than T . All the aircraft with a starting point before T cannot
be delayed, therefore we do not keep track of them in F(T ). The trees are sorted by the
starting times of their head aircraft. All the nodes in a tree have the same landing time
as the root of the tree (the head of the platoon). If the root is delayed, all the nodes in
the corresponding tree are delayed by the same amount. Therefore, to calculate the total
delay we need to know the number of nodes in the tree, and the difference between the
delayed arrival time and the scheduled arrival time. In every node i we store ti, τi and
ri. Moreover, we store the current values of ti(T, L) and ri(T, L) in the root nodes of
the trees in F(T ) that are affected by the closure interval. We also color the nodes of
the trees in F(T ) into the corresponding colors of the aircraft (see Fig. 6).

If the closure (T, T+L) falls in between two platoons, thenF(T ) consists of several
trees with red roots, possibly followed by several trees with yellow roots, and several
trees with dark green roots in the end (Fig. 6a). The red roots correspond to the heads
of the platoons that are directly affected by the closure, their starting time is T + L.
All the following aircraft in these platoons are orange, they have the same landing times



272 I. Kostitsyna, M. Löffler, and V. Polishchuk

0 or more 0 or more 0 or more

(a) The closure interval falls in between of
two platoons

0 or more 0 or more 0 or more

(b) Zero-delay airspace closure

0 or more 0 or more 0 or more 0 or more

(c) General case of F(T )

Fig. 6. F(T ) consists of trees with blue, purple, red, light green, and dark green roots

as their roots. The yellow roots correspond to the heads of the platoons that are indi-
rectly affected by the closure. Their landing time is the same as the landing time of the
last red head of a platoon.

If the closure interval falls in the middle of a platoon, then F(T ) can consist of
several trees with blue roots, followed by several trees with light green roots (Fig. 6b),
or of several trees with blue roots, followed by trees with purple roots, then with red
roots, yellow roots, and dark green roots in the end (Fig. 6c). The first case corresponds
to a zero-delay airspace closure. There are several aircraft with starting times moved to
T + L, but their landing times are not affected by the closure. In this case, we can stop
the algorithm and report a zero-delay position of the closure. In further description of
the algorithm we assume that this case does not occur. In the second case, the trees with
the purple, red and yellow roots contain aircraft that are delayed.

At every step of the algorithm, we slide the closure interval from (ti, ti + L) to
(ti+1, ti+1 + L), and remove the leftmost root i from F(T ). The children of i move
one level up and become roots of their subtrees. After that we update the colors of some
nodes and the value of D(T, L). Node i, before the removal from F(T ), can be blue,
light green, purple, red or dark green. It cannot be yellow or orange, as all aircraft of
these colors must follow a delayed aircraft, which has to be in F(T ) before such nodes.

After sliding the interval and removing i from F(T )

– some yellow and dark green nodes can become red (if the right end of the closure
interval slides over the starting times of these aircraft). However red nodes can-
not become yellow, they only change their color back to dark green once they are
removed from F(T );

– some dark green nodes can become yellow, or some yellow nodes can become dark
green;

– some blue roots in F(T ) can become purple (if i was blue and the right end of
the interval “pushes” some blue sub-platoons out of the current platoon), or some
purple roots can become blue (if i was purple and some of the following aircraft
fall back under the current platoon).



Optimizing Airspace Closure with Respect to Politicians’ Egos 273

Ltt1

t1

t2

τ1

t2

t3

t3

t4

τ5

t4

Tx

r 5
=r

6=
r 7

I

t6 t7

τ2

t5

τ6r 3
=r

4

t5

t6

t7

1 1–4
2–4

1–5 1–7
2–5 2–7

3–4 3–5 3–7

4 4,5 4–7

5 5–7

6–7

7

Fig. 7. The diagram (right) for the instance on the left. (Green is the 0-impact region; see Sec-
tion 4.) The aircraft influenced by the closure are indicated in each cell. Point I corresponds to
the closure interval from the left

We omit the proof of the following lemma (refer to the full version of this paper for
the details):

Lemma 2. After sliding the closure interval from (ti, ti+L) to (ti+1, ti+1 +L), forest
F(T ) and delay D(T, L) can be updated in O(log n) time.

The rainbow algorithm performs n iterations, each in O(log n) time. Therefore, we get:

Theorem 1. The rainbow algorithm finds an optimal interval of given length that min-
imizes the delay in O(n log n) time.

3 Ego Query

We now consider the query version of delay minimization, i.e., answering queries of
the type “Given the length L of the ego, report the best closure start moment T ”. We
build an O(n2α(n))-complexity function to answer such queries in O(log n) time using
O(n2 logn) preprocessing time.

Extending the idea from the previous section, we start from building the delay dia-
gram (Fig. 7) – the subdivision the LT -space into cells such that the delay D(T, L) is
given by the same function within a cell. We build the diagram separately in each strip
between the lines T = ti and T = ti+1; clearly, the function D(T, L) stays combina-
torially the same for all T ∈ (ti−1, ti) (however not all lines T = ti are necessarily
edges of the diagram, so we may actually compute a slightly finer subdivision than
needed). We fix an arbitrary point T ∈ (ti−1, ti) and increase L watching for events
when D(T, L) changes; the events and updates are analogous to those considered in the



274 I. Kostitsyna, M. Löffler, and V. Polishchuk

D(T,L)

L

Fig. 8. The lower envelope (red) for the instance from
Fig. 7. Every color corresponds to a horizontal line
T = ti in the diagram (the functions for diagonal
edges of the diagram are not shown because the min-
imum is attained on the horizontal edges)

previous section (note that in the pre-
vious section we kept the length L
fixed an varied the starting time T ,
but we can modify the algorithm to
work for fixed T and varied L; we
omit the details from this version).
We spend O(n log n) time per strip,
constructing the diagram in overall
O(n2 logn) time (note that the dia-
gram may have quadratic complex-
ity overall, e.g., if the trajectories of
aircraft pairwise do not cross, i.e., if
each aircraft is a platoon by itself).

Since D(T, L) changes linearly
within each cell of the diagram, for
any L, the optimal T will lie on
an edge of the diagram. We graph
D(T, L) as functions of L for all di-
agram edges on a single plot (Fig. 8); since the diagram has O(n2) complexity, there are
O(n2) segments on the plot, and the optimal T as a function of L is the lower envelope
of the segments. The function has O(n2α(n)) complexity and can be constructed from
the segments in O(n2 logn) time [6].

Theorem 2. We can build a data structure of O(n2α(n)) size in O(n2 logn) time that
can answer ego queries in O(log n) time.

4 Algorithms for Harmless VIPs

The 0 level of the function D(T, L) corresponds to closure intervals (T, T + L) that
do not introduce any delay into the traffic. Obviously, the T -axis belongs to the 0 level
(D(T, L) = 0 for L = 0) and for every T there is a maximum L for which D(T, L) =
0. Thus, the right boundary of the level is a T -monotone curve, and the level is (the
right half of) a tree with the T -axis as the trunk. Moreover, since the 0 level is a union
of cells of the delay diagram and edges of the diagram are straight-line segments, the
right boundary of the level is a polygonal curve. We therefore refer to the 0 level as the
Christmas tree (Fig. 9; see also Fig. 7).

Clearly, the Christmas tree can be constructed in O(n2) time using results from the
previous section. In this section we show how to compute the tree in linear time (af-
ter platoons in the absence of the closure have been identified, which can be done in
O(n log n) time.The crucial observation is that the Christmas tree can be built platoon-
by-platoon: if the closure interval (T, T + L) contains the entry time ti for a platoon
head i, then i is delayed and (L, T ) is not in the Christmas tree; thus, it is enough to
consider only intervals lying between entry times of two consecutive heads. Moreover,
the right boundary of the Christmas tree must touch the T -axis at ti (since for T in-
finitesimally smaller than ti we have D(T, L) > 0 for infinitesimally small L). Hence,



Optimizing Airspace Closure with Respect to Politicians’ Egos 275

L

T

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

Fig. 9. Left: A platoon with 10 aircraft; i = 1, h = 11. Right: the corresponding sub-Christmas-
tree. Platoon heads are green, and other aircraft that influence the shape of the tree are orange;
the other aircraft are blue. Circles are the points (τj − τi, tj)

entry times of platoon heads split the Christmas tree into “sub-Christmas-trees” touch-
ing the T -axis at their bottoms and tops (Fig. 9, right). In what follows we will focus on
building the (sub-)tree for one platoon, headed by i, and assume that the closure starts
between ti and th where h is the head of the platoon that follows i’s platoon (so the
aircraft in i’s platoon are i, . . . , h − 1). That is, our goal will be to build the (sub-)tree
in the strip between the lines T = ti and T = th.

Let j ∈ {i, . . . , h} be an aircraft from i’s platoon or h. Aircraft j is delayed iff it is
directly affected (tj ∈ (T, T+L)) and lands later than i does (T+L+τj−tj > τi), i.e.,
iff (L, T ) lies in the wedge between the rays T = tj and T+L = tj+τi−τj emanating
from the point (τj − τi, tj) (refer to Fig. 9, right). Our (sub-)tree is the complement of
the union of the wedges for all aircraft i, . . . , h. To build the tree observe that it is the
Pareto envelope (set of undominated points) of the apexes of the wedges in a sheared
copy of the LT -space. Since aircraft are sorted along the T axis, the envelope can be
build in linear time: scan the apexes from top to bottom and for each apex test whether
it lies to the left or to the right of the diagonal line through the previous apex; in the
former case include it in the envelope, in the latter case throw it away.

Theorem 3. We can build a data structure in O(n log n) time that can answer a query
“Given T , report the largest L for which D(T, L) = 0” in O(log n) time.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
Irina Kostitsyna is supported in part by the Netherlands Organisation for Scientific
Research (NWO) under project no. 612.001.106. Maarten Löffer is supported by the
Netherlands Organisation for Scientific Research (NWO) under grant no. 639.021.123.
Valentin Polishchuk’s work was supported by the Academy of Finland grant 1138520.



276 I. Kostitsyna, M. Löffler, and V. Polishchuk

References

1. Allard, T.: Personal communication (2012)
2. ATCOs, Personal communication (2013)
3. Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M.: Computational Geometry: Algorithms

and Applications, 3rd edn. Springer, Santa Clara (2008)
4. Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting commuting patterns

by clustering subtrajectories. Int. J. Comput. Geometry Appl. 21(3), 253–282 (2011)
5. Hall, F.L.: Traffic stream characteristics. In: Traffic Flow Theory, US Federal Highway Ad-

ministration (1996)
6. Hershberger, J.: Finding the upper envelope of n line segments in O(n log n) time. Inf. Process.

Lett. 33(4), 169–174 (1989)
7. May, A.: Traffic Flow Fundamentals. Prentice Hall (1990)
8. McShane, W.R., Roess, R.P., Prassas, E.S.: Traffic Engineering. Prentice Hall (1998)



Being Negative Makes Life NP-hard

(for Product Sellers)

Sven O. Krumke, Florian D. Schwahn, and Clemens Thielen

Department of Mathematics, University of Kaiserslautern,
Paul-Ehrlich-Str. 14, 67663 Kaiserslautern, Germany
{krumke,fschwahn,thielen}@mathematik.uni-kl.de

Abstract. We study a product pricing model in social networks where
the value a possible buyer (vertex) assigns to a product is influenced
by the previous buyers and buying proceeds in discrete, synchronous
rounds. Each arc in the social network is weighted with the amount
by which the value that the end node of the arc assigns to the prod-
uct is changed in the following rounds when the starting node buys the
product. We show that computing the price generating the maximum
revenue for the product seller in this setting is possible in strongly poly-
nomial time if all arc weights are non-negative, but the problem becomes
NP-hard when negative arc weights are allowed. Moreover, we show that
the optimization version of the problem exhibits the interesting property
that it is solvable in pseudopolynomial time but not approximable within
any constant factor unless P = NP.

Keywords: product pricing, social networks, computational complexity.

1 Introduction

Tony has just developed his new smartshoe with LoveLace-technology and won-
ders what would be a good sales price. A quick poll among his internet friends
Ada, Butch, and Cathy reveals that they are willing to pay different prices of
$500, $100, and $300, respectively. Using a linear time algorithm, Tony first com-
putes that $300 is the best price since then Ada and Cathy will buy LoveLaces
guaranteeing him a revenue of $600. A chat with Butch and Cathy, however,
makes Tony realize that they are big admirers of Ada and if Ada has acquired
LoveLaces, the next day (round) Butch would pay additional $400 and Cathy
$100 for the smartshoe. Thus, under these circumstances, Tony could generate
a total revenue of $1200 by offering the product for $400 and then letting things
evolve. This situation describes the “easy” case of our model: problems such as
finding a price for a product when people within a social network influence each
other “in a positive way” can be solved efficiently in polynomial time.

Life, however, is more complicated. In the meantime, Djustin1 has heard about
the existence of the revolutionary LoveLaces and is willing to pay $400, no matter

1 A German version of Justin.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 277–288, 2014.
c© Springer International Publishing Switzerland 2014



278 S.O. Krumke, F.D. Schwahn, and C. Thielen

who else owns the product. Butch and Cathy dislike Djustin and find his taste
just tasteless. This can be modelled as Djustin decreasing Butch’s and Cathy’s
valuation for the smartshoe by $400 and $200, respectively. Hence, the small
social network comprised of Ada, Butch, Cathy, and Djustin looks as in Figure 1
and the highest possible revenue is $1000 obtained for the price $500 (and not
$800, which would be obtained for the price $400). This second situation, where
some people may exert negative influences within the social network, is the “NP-
hard” case of our model and Tony’s life.

Ada

$500

Butch

$100

Cathy

$300

Djustin

$400+$400

+$100

−$400

−$200

Fig. 1. Tony’s friends, values for LoveLaces, and influences within the social network

Related Work. Models for the propagation of ideas and influence through a
social network have already been studied in a number of domains. Examples
include the diffusion of medical and technological innovations [1, 2], the sudden
and widespread adoption of various strategies in game-theoretic settings [3–6],
and the effects of “word of mouth” in the promotion of new products [7, 8].
Domingos and Richardson [7] proposed a new view on marketing. Instead of
viewing a market as a set of independent entities, they suggested to consider it
as a social network and modelled it as a Markov random field. The central idea
was that exploiting the network value of customers, which is also known as viral
marketing, can be extremely effective. Such issues were studied in greater detail
in [9] using the so-called Linear Threshold Model. In this model, each node v
chooses a threshold θv ∈ [0, 1] uniformly at random. After the initial random
choices have been made, the spread of the product proceeds in discrete rounds
deterministically as follows: in round i, a node v that has not yet acquired the
product does so if the weight of its neighbours having bought the product in
rounds 1, . . . , i− 1 is at least θv. Kempe et al. [9] showed that the optimization
problem of selecting the most influential nodes is NP-hard and provided approx-
imation algorithms. In a subsequent paper, Acemoglu et al. [10] used the Linear
Threshold Model to analyze the effects of the network structure, the threshold
values, and the seed set on the dynamics of the diffusion and provided charac-
terizations of the final adopter set. Our model can be seen as a special case of
a synchronous dynamical system (cf. [11]). In contrast to general synchronous
dynamical systems, however, the number of “computation steps” in our case is
bounded by a polynomial in the input and our focus is on revenue maximization
and not on other questions such as reachability and predecessor existence.



Being Negative Makes Life NP-hard (for Product Sellers) 279

Outline. In Section 2, we formally state the Product Pricing Problem with Addi-
tive Influence (PPAI) and derive basic properties. Section 3 contains our hardness
results. We show that, in general, PPAI is NP-hard to solve and cannot be ap-
proximated within any constant factor unless P = NP. In Section 4, we introduce
the notion of fragments, which are basically inclusionwise maximal intervals of
prices that yield the same outcome. We give an algorithm that computes the
fragments in a graph G = (V,A) in time polynomial in the input and the to-
tal number |frag(G)| of fragments. Although |frag(G)| may be exponential, we
identify special cases where |frag(G)| is polynomially bounded. Specifically, if

all influences are non-negative, |frag(G)| ≤ |V |2 and we obtain a polynomial
time algorithm. Section 5 contains an improved algorithm for computing the
maximum revenue with a running time of O (|A|+ |V | log |V |).

2 Problem Definition and Preliminaries

We are given a weakly connected, directed graph G = (V,A) (without loops or
parallel arcs) with n = |V | vertices and m = |A| arcs. The vertices v ∈ V are the
potential buyers of a product. Every node v ∈ V has an initial value p(v) ∈ Z

that it is willing to pay for the product as an early adopter, that is, if no one
else has the product.

The arcs express the influence exerted by the nodes. Every node is influenced
by its predecessors N−(v) := { u : (u, v) ∈ A } and influences its successors
N+(v) := { u : (v, u) ∈ A }. For an arc a = (u, v) ∈ A, the influence w(a) =
w(u, v) ∈ Z denotes the additional value for the product that node v is willing
to pay if node u already bought it. Thus, if at some point in time the subset
B ⊆ V of nodes already bought the product and v has not, then the influenced
value pB(v) for v is pB(v) := p(v)+

∑
u∈B∩N−(v) w(u, v) and v buys the product

in the next step if the sales price π ∈ Z satisfies pB(v) ≥ π.
The whole selling process in the network proceeds in discrete, synchronous

selling rounds. Given a (fixed) price π, in the first round t = 1, all nodes in
the set B1(π) := { v : p∅(v) ≥ π } acquire the product. For round t > 1, we
inductively let B := B<t(π) :=

⋃
i<t Bi(π) denote the previous buyers. Then,

the set of (new) buyers in round t is Bt(π) := { v /∈ B : pB(v) ≥ π }. The
overall revenue obtained is R(π) = π · |B(π)|, where B(π) :=

⋃
i≥1 Bi(π) is

the set of nodes who buy the product in some round. For the scope of this
paper, we assume that there exists a no-return policy and that the product is
imperishable (Tony’s smartshoes are indestructible and never wear out): once
v has bought the product, it will keep it forever no matter how its influenced
value pB(v) evolves. We remark that, even though initial and influenced values
may be negative (a possible interpretation is that the corresponding person would
be paid for “acquiring” the product), for determining the maximum revenue, one
can restrict oneself to non-negative values of the sales price π since giving away
the product for free (i.e., for price π = 0) is not worse than the non-positive
revenue generated for negative prices.



280 S.O. Krumke, F.D. Schwahn, and C. Thielen

Note that, if there is no new buyer for some selling round t ∈ N, i.e., Bt(π) = ∅,
then the influenced values will not change for round t+ 1 and, hence, there will
be no new buyers in any round i > t. Since the sets Bt(π) form a partition of
B(π) ⊆ V , there can be at most n rounds with Bt(π) �= ∅. This proves the
following easy result:

Observation 1. If Bt(π) = ∅ for some round t, then B(π) = B<t(π) =
B<t+1(π). In particular, the selling process terminates after at most n selling
rounds.

Algorithm 1. Sell(G, π)

Data: A graph G = (V,A) with weights p and w, and a price π.
Result: The set B(π) ⊆ V of buyers.
Initialize: p′(v) = p(v) for v ∈ V and B(π) = ∅
Set the initial buyers B′ = { v ∈ V : p(v) ≥ π }
while B′ 
= ∅ do

B(π) = B(π) ∪B′

C = ∅ (nodes that have not yet bought and whose valuations change)
for u ∈ B′ do

For all v ∈ (
N+(u) \B(π)

)
update p′(v) = p′(v) + w(u, v)

C = C ∪ (
N+(u) \ B(π)

)

B′ = ∅
for v ∈ C do

if p′(v) ≥ π then B′ = B′ ∪ {v}
return B(π)

As a preliminary result, we show that the set B(π) of buyers can be computed
in linear time by a breadth-first-search type algorithm shown in Algorithm 1.

Lemma 1. The algorithm Sell(G, π) computes the buyers B(π) of a graph G for
a given price π in O (m) time.

Proof. Correctness is immediate. The initial selling runs in O (n) time. All other
computations - checking and changing influenced values - are indirectly triggered
by arcs, each of which is only processed once. ��

Definition 1. An instance of the Product Pricing Problem with Additive Influ-
ence (PPAI) is given by a directed graph G = (V,A), initial values p(v) ∈ Z for
the nodes v ∈ V , influences w(u, v) ∈ Z for the arcs (u, v) ∈ A, and some rev-
enue R ∈ N. The question posed is whether there exists a price π ∈ N such that
R(π) ≥ R. We use PPAIopt to denote the corresponding revenue maximization
problem. By PPAI-1 we denote the variant of PPAI where, instead of a revenue R,
we are given a special vertex v ∈ V and the question is whether there exists a
price π such that v ∈ B(π). Similarly, PPAI-n asks whether there exists a price
such that all vertices buy the product.



Being Negative Makes Life NP-hard (for Product Sellers) 281

3 Computational Complexity

Note that the set of meaningful prices for PPAI is a subset of the integers in the
range from 1 to pmax := maxv∈V p(v). For a price π > pmax, we already have
B1(π) = ∅ and no one will buy the product. This yields:

Observation 2. The answer to an instance of PPAI is yes if and only if there
exists a price π ∈ {1, . . . , pmax} such that R(π) ≥ R.

Thus, exhaustively checking all values 1, . . . , pmax by means of the Sell algorithm
solves PPAI (as well as PPAI-1, PPAI-n, and PPAIopt) in time O (n · pmax), i.e.,
in pseudopolynomial time. The next theorem shows that this is best possible
(assuming P �= NP) in the general case where negative influences are allowed:

Theorem 1. PPAI is NP-complete in the weak sense.

Proof. We provide a polynomial time reduction from 3SAT, which is well known
to be NP-complete. Given a set of clauses C = {c1, c2, . . . , cm} (|ci| = 3 for
i = 1, . . . ,m) over the set of variables U = {u1, u2, . . . , un}, we construct an
instance of PPAI such that the instance of 3SAT is satisfiable if and only if there
is a price π that yields total revenue R(π) at least R := 2(n+1) · (4n+m+ 1).

Let M := 5n+m+ 1 be a large integer. The vertices of the graph are parti-
tioned into the sets V = Vt ∪ Vx ∪ Vx̄ ∪ Vy ∪ {z−, z+} ∪ VM , where

Vt = {t1, . . . , t2n} Vx = {x1, . . . , xn} Vx̄ = {x̄1, . . . , x̄n}
Vy = {y1, . . . , ym} VM = {z1, . . . , zM}.

The initial values p(v) are all zero except for vertices t1, z+, and z−, which
satisfy p(t1) = 2(n+1) − 1, p(z+) = (1 −m) · (2(n+1) − 1) and p(z−) = 2n − 1.
The arc weights are given as follows:

w(ti, ti+1) = 2(n+1) − 1 i = 1, . . . , 2n− 1

w(t2i−1, x̄i) = (2n − 1) + 2(n−i) i = 1, . . . , n

w(xi, x̄j) = 2(n−i) 1 ≤ i < j ≤ n

w(t2i, xi) = 2(n+1) − 1 i = 1, . . . , n

w(x̄i, xi) = −(2(n+1) − 1) i = 1, . . . , n

w(xi, yj) = 2(n+1) − 1 if ui ∈ cj

w(x̄i, yj) = 2(n+1) − 1 if ūi ∈ cj

w(z−, z+) = −(2(n+1) − 1)

w(yi, z+) = 2(n+1) − 1 i = 1 . . . ,m

w(z+, zi) = 2(n+1) − 1 i = 1, . . . ,M

All arcs not explicitly listed here are omitted from the graph. An illustration
is given in Figure 2. The graph constructed above has |V | = 4n + m + 2 + M



282 S.O. Krumke, F.D. Schwahn, and C. Thielen

x̄1t1

x1t2

x̄2t3

x2t4

x̄nt2n−1

xnt2n

z−

y1

y2

ym

z+

z1

z2

z3

zM−1

zM

...

...

...
... ...

...

Fig. 2. Graph obtained from a 3SAT instance (dashed arcs have negative weight)

vertices and |A| = 5n− 1 + n(n−1)
2 + 4m+ 2 +M arcs. The encoding length of

the largest number in the resulting instance of PPAI is bounded by a polynomial
in n and log(m). Thus, the transformation is polynomial.

By Observation 2, the meaningful prices are {1, . . . , 2(n+1) − 1 = pmax}. In
fact, the set of “interesting” prices is Π := {2n, . . . , 2(n+1) − 1}. To see this,
observe that, for a price π ≤ 2n− 1, the node z− (who, in some sense, plays the
role of Djustin) buys in the first round. Then z+ will never buy, which in turn
means that none of the vertices in VM buy. This means that the revenue can be
at most (2n − 1) · (|Vt|+ |Vx|+ |Vx̄|+ |Vy |+ 1) = (2n − 1) · (4n+m+ 1) < R.

Each price π ∈ Π = {2n, . . . , 2(n+1)−1} corresponds to a truth assignment in
the following way: if the binary representation (π)2 of π is 1 at the (i+1)-th digit
from the left, then ui = true = 1. Otherwise, ui = false = 0. For example, we
have

(π)2 = 110100 . . .11
lower n bits

= 1u1u2u3u4u5 . . . un−1un

Property 1. All vertices in Vt buy for every price π ∈ Π . More precisely, vertex ti
buys in round i for i = 1, . . . , 2n.

Proof. The claim follows by induction: node t1 buys in round 1 since it has initial
value p(t1) = pmax. All other vertices in Vt have initial value 0 and will not buy
in the first round. Now assume that the claim holds for rounds i = 1, . . . , k−1 for
some k ≥ 2. Then, in round k, the value of node tk is 0+w(tk−1, tk) = 2(n+1)−1
and all vertices tj with j > k still have influenced value 0. Thus, tk buys in
round k and no other node from Vt buys in this round. ��

Property 2. For every price π ∈ Π , exactly one of the two vertices x̄i and xi buys.
If x̄i buys, this happens in round 2i and if xi buys, this happens in round 2i+1.



Being Negative Makes Life NP-hard (for Product Sellers) 283

Proof. The maximum influence exerted onto x̄i from nodes in Vx is
∑i−1

j=1 2
(n−j) ≤

2n − 1. Thus, node x̄i can only buy for a price π ∈ Π after influence of t2i−1 has
arrived, which, by Property 1, is exactly in round 2i. On the other hand, xi is only
influenced in a positive way by t2i and, consequently, can only buy in round 2i+1.
If node x̄i bought in round 2i, then its negative influence of −

(
2(n+1) − 1

)
com-

pletely cancels out the positive influence of t2i, which prohibits xi from buying.
But if x̄i does not buy in round 2i−1, then only the positive influence of 2(n+1)−1
from t2i is exerted on xi and xi buys. ��

Property 3. Vertex x̄k ∈ Vx̄ buys iff the (k + 1)-th digit of the price π ∈ Π is 0.

Proof. The claim follows by induction on k: vertex x̄1 buys in round 2 (by
Property 2) for the prices {2n, . . . , 2n + 2(n−1) − 1}, namely all prices with the
value 0 on the second digit. Thus, the claim holds for k = 1. We now assume
that, for a k < n, the vertices x̄1, . . . , x̄k bought as claimed and consider node
x̄k+1 for which whether to buy or not is decided in round 2k+ 2 by Property 2.
By the same property for i = 1, . . . , k, vertex xi has bought if and only if the
vertex x̄i has not. The value of vertex x̄k+1 in round 2(k + 1) is

2n + 2(n−k−1) − 1︸ ︷︷ ︸
w(t2k+1,x̄k+1)

+

k∑
i=1

ui · 2(n−i)︸ ︷︷ ︸
w(xi,x̄k+1)

= 1u1 . . . uk01 . . . 1

while the price (by assumption) is between 1u1 . . . uk00 . . .0 and 1u1 . . . uk11 . . .1.

Hence, only the (k + 2)-th digit decides whether x̄k+1 buys or not. ��

Property 4. Let yi ∈ Vy be a node corresponding to a clause with the literals
l1, l2, l3. Then yi buys if and only if at least one of the nodes corresponding to
the literals l1, l2, l3 buys.

Proof. Identify l1, l2, l3 with the corresponding nodes in the graph. Node yi starts
with p(yi) = 0 and is influenced only by l1, l2, l3. So yi can only buy if some
of its literals does. On the other hand, each lj alone has the ability to exert
influence pmax on yi. ��

Now we are ready to prove that there exists a satisfying assignment if and only if
a revenue of at least R can be generated. Suppose that there exists a satisfying
assignment and fix the corresponding price π ∈ Π . In every clause ci, there
exists at least one literal that evaluates to one. By Property 3, this literal will
buy and, hence, by Property 4 clause node yi buys. Thus, all clause nodes buy,
which means that the influenced value of z+ is pushed to

(1 −m) · pmax︸ ︷︷ ︸
p(z+)

+
m∑
i=1

pmax︸︷︷︸
w(yi,z+)

= pmax.

Hence, z+ buys and, in the next round, all nodes of VM buy. The revenue is

π·(2n+ n+m+ 1 +M) ≥ 2n ·(2n+ n+m+ 1 +M) = 2n ·(8n+ 2m+ 2) = R.



284 S.O. Krumke, F.D. Schwahn, and C. Thielen

Conversely assume that a revenue of at leastR can be generated for some price
π ∈ Π . Then this price corresponds to a truth assignment. Since the revenue R
can only be generated if the nodes in VM buy, we must have that z+ buys, which
means that all the clause nodes must buy. By Property 4, this implies that the
truth assignment satisfies every clause. ��

We remark that the problems PPAI-1 and PPAI-n can be shown to be NP-
complete by the same approach. For PPAI-1, we may drop z− and the vertices
of VM and only check whether z+ buys. For PPAI-n, we may introduce a big
influence that z+ exerts on all other vertices so that everyone buys at most one
round after z+.

Corollary 1. Unless P = NP, there is no polynomial time approximation algo-
rithm for PPAIopt with approximation ratio r for any r ≥ 1.

Proof. For M = n(8r−3)+m(2r−1)+(2r−1), if the instance is satisfiable, it is
possible to obtain a revenue of at least r·2(n+1) (4n+m+ 1). On the other hand,
any price that does not correspond to a satisfying assignment may only generate
a revenue of (2(n+1)−1) · (4n+m+ 1). Thus, an r-approximation algorithm can
be used to distinguish between satisfiable and non-satisfiable instances of 3SAT.
Since we have M = O (r ·m) in the above construction, the size of the instance
of PPAI is still polynomial. ��

4 The Frag Algorithm

In this section, we introduce the fragment algorithm Frag that yields an alterna-
tive pseudopolynomial time algorithm for PPAI and its variants. As we will see
later, the concept of the fragments is quite useful and, in case of non-negative
influences, the algorithm in fact yields a polynomial time method (see Section 5).

For a round t = 1, . . . , n, a t-fragment is an inclusionwise maximal integer
interval (a, b] = { x ∈ N : a < x ≤ b } ⊆ (0, pmax] of prices such that, for all
π, π′ ∈ (a, b] and all rounds i ≤ t, we have Bi(π) = Bi(π

′). We call Bt((a, b]) :=
Bt(b) the buyers associated with t-fragment (a, b]. By a temporary fragment we
mean a t-fragment for some t < n. The n-fragments are just called fragments.
We denote by fragt(G) and frag(G) the collection of t-fragments and fragments,
respectively.

Remark 1. Note that, for the graph in Figure 2, even the subgraph restricted to
Vt ∪Vx ∪Vx̄ has at least 2n fragments, where n denotes the number of variables.

For every t, the set fragt(G) is a partition of the meaningful prices. Moreover,
each (t + 1)-fragment is a subset of a t-fragment. Given a fragment (a, b], the
maximum profit we can make by choosing any price from the fragment is given
by b·|B(b)|. Thus, if we know frag(G), it is easy to solve PPAI as we may evaluate
each upper bound from a fragment by a single call to the Sell algorithm. This
yields an overall running time of O (|frag(G)| ·m), provided frag(G) is known.
A crude upper bound on the size of frag(G) is of course pmax.



Being Negative Makes Life NP-hard (for Product Sellers) 285

Let (x, y] be a t-fragment and B the set of buyers associated with it. We
partition V \ B into three sets: L := { v ∈ V \ B : pB(v) ≤ x }, O := { v ∈
V \ B : y ≤ pB(v) }, and H := { v ∈ V \ B : pB(v) ∈ (x, y) }. By the fact
that the (t + 1)-fragments are subsets of t-fragments, the t-fragment (x, y] is a
disjoint union of (t+1)-fragments Any node in L will not buy in round t+1 for
any price π ∈ (x, y]. Similarly, any node in O buys in round t + 1 for all prices
π ∈ (x, y]. Finally, each hitter v ∈ H induces the endpoint of a (t+ 1)-fragment
within (x, y]: at pB(v), the decision of v whether to buy in round t+1 switches.
Hence, if s1 < · · · < sq is the sorted order of different influenced values from
hitters, then (x = s0, s1], (s1, s2], . . . , (sq−1, sq], (sq, sq+1 = y] is the collection of
(t+1)-fragments that partition (x, y]. The maximum revenue R∗((x, y]) that can
be obtained by any price from the t-fragment (x, y] then satisfies the recursion

R∗((x, y]) = max
i=1,...,q+1

R∗ ((si−1, si]) . (1)

The algorithm Frag (displayed in Algorithm 2) uses Equation (1) to com-
pute the optimum revenue for a given temporary fragment (x, y]. In order to
conserve space, the algorithm uses a depth-first technique to iterate over the
“subfragments” into which (x, y] is ultimately split.

Theorem 2. A call Frag(G, (0, pmax], ∅) correctly computes the optimum solu-
tion for a given instance of PPAIopt in O

(
|frag(G)| ·

(
nm+ n2 logn

))
time.

Proof. Correctness follows immediately from the validity of Equation (1).
The running time for a single call without the effort for recursive calls can be

estimated as follows: we needO (m+ n) time to compute all the values pB(v) and
the sets H , O, and P . Here P as in the algorithm denotes the set of new fragment
endpoints within the current t-fragment. Without any additional assumption on
the prices, the sorting of P needs O (n logn) time. It is easy to see that we can
then compute the set B|P | in O (n) time and any subsequent set Bi, i < |P |,
then in O (1) time. Thus, the total running time is O (m+ n logn) plus the time
needed for recursive calls. Since, for any t, the number of t-fragments is bounded
by |frag(G)|, the total number of recursive calls is in O (n · |frag(G)|). This yields
the claimed running time. ��

We note that, by more clever bookkeeping, the running time can be reduced.
However, as noted in Remark 1, |frag(G)| can be of exponential size. On the
other hand, as long as |frag(G)| is polynomial, the method yields a polynomial
time algorithm.

The proof of the following observation is omitted due to lack of space.

Observation 3. The problem PPAIopt can be solved in polynomial time if one
of the following conditions holds:

1. The maximum indegree of a vertex in the graph is bounded by a constant.
2. The maximum number of arcs on a simple path in which all arcs have positive

weight is bounded by a constant. ��



286 S.O. Krumke, F.D. Schwahn, and C. Thielen

Algorithm 2. Frag(G, (x, y], B)

Data: A graph G = (V,A) with weights p and w. The temporary fragment of
prices (x, y] ⊆ N with its previous buyers B ⊆ V .

Result: (R, π), the optimal revenue R obtainable from a price π ∈ (x, y].
Initialize H = ∅, O = ∅, and P = ∅ (set of next fragment endpoints in (x, y])
if B 
= V then

Calculate influenced values pB(v) for all v ∈ V \ B.
for v ∈ V \ B do

if pB(v) ∈ (x, y) then H = H ∪ {v}, P = P ∪ {pB(v)} if pB(v) ≥ y
then O = O ∪ {v}, P = P ∪ {y}

Set π = y, R = y · |B|
if P 
= ∅ then

Let s1 < · · · < s|P | be the sequence of prices in P and s0 = x.
for i = |P | , . . . , 1 do

Initialize Bi = ∅
for v ∈ H do

if pB(v) ≥ si then Bi = Bi ∪ {v}
Bi = Bi ∪B ∪O

(Ri, πi) = Frag(G, (si−1, si], B
i)

if Ri > R then R = Ri and π = πi

return (R, π)

5 Non-negative Influence

In this section, we consider PPAI with the additional restriction that w(a) > 0
for all a ∈ A. Arcs with weight zero do not change the buying behavior and are
therefore omitted. For a node v ∈ V , we define P (v) ⊆ N to be the set of buying
prices of v, i.e., prices at which v buys in some round. More precisely, for v ∈ V :

Pt(v) := { π ∈ N : v ∈ Bt(π) } t = 1 . . . , n

P<t(v) :=
⋃
i<t

Pi(v) t = 2, . . . , n and P (v) := P<n+1(v)

The following lemma states that, in contrast to our results for arbitrary in-
fluences, higher prices generate fewer buyers.

Lemma 2. If w(a) > 0 for all a ∈ A, then, for each node v ∈ V and all
t = 2, . . . , n, the set P<t(v) is an interval of the form (0, x] for some x ∈ N.
Consequently the upper bound x is obtained as x := p∗t−1(v) := maxπ∈P<t(v) π,
i.e., the maximum price for which v would buy in the first t − 1 rounds. In
particular, all P (v) are (integer) intervals.

Proof. We show the statement by induction on t. If t = 2, we have P<2(v) =
P1(v) = (0, p(v)] = (0, p∗1(v)] for all vertices. Assume that the claim holds for
some t ≥ 2, i.e., P<t(v) = (0, p∗t−1(v)] for all nodes v ∈ V and, thus, B<t(π) ⊆



Being Negative Makes Life NP-hard (for Product Sellers) 287

B<t(π
′) for π ≥ π′. As P<t+1(v) = P<t(v) ∪ Pt(v), we need to calculate Pt(v)

and, therefore, define ft,v(π) : (p∗t−1(v), pmax] → N, π �→ pB<t(π)(v) to denote
the influenced value of v in round t given the price π. As we have seen above that
higher prices lead to fewer buyers (that exert non-negative influence on potential
buyers), each function ft,v is non-increasing. By definition, the node v buys in
round t for price π if and only if ft,v(π) ≥ π > p∗t−1(v). With ft,v non-increasing
and the identity function increasing, the set Pt(v) = { π ∈ (p∗t−1(v), pmax] :
ft,v(π) ≥ π } has to be an interval of the form (p∗t−1(v), p

∗
t (v)] (empty in case

p∗t−1(v) = p∗t (v)) and, hence, P<t+1(v) = (0, p∗t (v)] as claimed. ��

We note that the structure of the sets P<t(v) can actually be established by
a simpler proof. The proof above, however, also shows the monotonicity of the
functions ft,v and the statement of Lemma 2 holds for all graphs for which the
monotonicity of ft,v holds.

Corollary 2. For all graphs G with non-negative influences |frag(G)| ≤ n2.
Hence, algorithm Frag may be used to solve PPAIopt in time O

(
n3m+ n4 logn

)
.

Proof. Consider an arbitrary fragment (x, y]. Then, by definition, there can be
no p∗t (v) with x < p∗t (v) < y. Hence, fragments can start and end only at the
given values p∗t (v). Since t = 1, . . . , n and v ∈ V there are at most n2 many. The
running time follows from Theorem 2. ��

By the above corollary, we already have a polynomial time algorithm for PPAIopt
with non-negative influences. We now improve upon this result by a faster algo-
rithm. For the sake of a shorter notation, let p∗(v) := p∗n(v) denote the maximum
price at which node v would buy in any round. The maximum revenue Ropt then
satisfies Ropt = maxv∈V p∗(v) · |B(p∗(v))|. The Algorithm 3 FixHighest computes
those values and the optimum revenue.

Algorithm 3. FixHighest(G)

Data: A graph G = (V,A) with weights p and non-negative w.
Result: The optimal revenue R with corresponding price π.
Initialize the “fixed” nodes F = ∅, revenue R = 0 and values p′(v) = p(v) for all
v ∈ V
while V \ F 
= ∅ do

Compute π∗ = maxv∈V \F p′(v) and N = { v ∈ V \ F : p′(v) = π∗ }
F = F ∪N
if π∗ · |F | > R then π = π∗ and R = π∗ · |F |
Compute p′(v) = min{pF (v), π∗} for all v ∈ V \ (F )

return (R, π)

Theorem 3. Algorithm FixHighest correctly computes the optimal revenue for
PPAIopt with non-negative influence in O (m+ n logn) time.



288 S.O. Krumke, F.D. Schwahn, and C. Thielen

Proof (Sketch). Denote by Fi, Ni, π
∗
i , and p′i(v) the values of algorithm FixHigh-

est at the end of iteration i of the while-loop. Then one can show by induction
that for all iterations i we have Fi ⊆ B(π∗

i ) and p′i(v) ≤ p∗(v) for all v ∈ V \Fi−1.
As a consequence, at the end of algorithm FixHighest, we have p′(v) ≤ p∗(v) for
all v ∈ V . The next step is to show that if π∗

i > π∗
i+1, then Fi = B(π∗

i ). This in
turn implies that, for a given price π∗

i and π∗
k > π∗

k+1 = · · · = π∗
i−1 = π∗

i > π∗
i+1,

we get that B(π∗
i ) \B(π∗

k) = Fi \ Fk and all v ∈ B(π∗
i ) \B(π∗

k) are “fixed” with
p′(v) = π∗

i . Now it suffices to show that, for any round i, the values p′(v) of
the vertices v ∈ B(π∗

i ) \ B(π∗
k) are correctly set to p∗(v). Since we know that

p′(v) ≤ p∗(v), we only have to show the other inequality. This is achieved by
proving that there are no additional buyers for any price in the interval (πi, πi−1].

The running time can be achieved similar to the implementation of Dijkstra’s
Algorithm by using Fibonacci-heaps as a priority queue. ��

References

1. Coleman, J.S., Katz, E., Menzel, H.: Medical innovation: A diffusion study. Bobbs
Merrill (1966)

2. Valente, T.: Network Models of the Diffusion of Innovations. Hampton Press (1995)
3. Blume, L.: The statistical mechanics of strategic interaction. Games and Economic

Behavior 5, 387–424 (1993)
4. Ellison, G.: Learning, local interaction, and coordination. Econometrica 61(5),

1047–1071 (1993)
5. Morris, S.: Contagion. Review of Economic Studies 67, 57–78 (2000)
6. Young, H.P.: The Diffusion of Innovations in Social Networks. In: Economy as an

Evolving Complex System, vol. 3, pp. 267–282. Oxford University Press, US (2006)
7. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceed-

ings of the 7th International ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 57–66 (2001)

8. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex sys-
tems look at the underlying process of word-of-mouth. Marketing Letters 12(3),
211–223 (2001)

9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a
social network. In: Proceedings of the 9th International ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

10. Acemoglu, D., Ozdaglar, A., Yildiz, E.: Diffusion of innovations in social net-
works. In: Proceedings of the 50th IEEE Conference on Decision and Control,
pp. 2329–2334 (2011)

11. Mortveit, H.S., Reidys, C.M.: An Introduction to Sequential Dynamical Systems.
Universitext. Springer, Heidelberg (2007)



Clearing Connections by Few Agents

Christos Levcopoulos1, Andrzej Lingas1
Bengt J. Nilsson2, and Paweł Żyliński3

1 Lund University, 221 00 Lund, Sweden
{Christos.Levcopoulos,Andrzej.Lingas}@cs.lth.se

2 Malmö University, 205 06 Malmö, Sweden
bengt.nilsson.TS@mah.se

3 University of Gdańsk, 80-952 Gdańsk, Poland
zylinski@inf.ug.edu.pl

Abstract. We study the problem of clearing connections by agents
placed at some vertices in a directed graph. The agents can move only
along directed paths. The objective is to minimize the number of agents
guaranteeing that any pair of vertices can be connected by a underlying
undirected path that can be cleared by the agents. We provide several re-
sults on the hardness, approximability and parameterized complexity of
the problem. In particular, we show it to be: NP-hard, 2-approximable
in polynomial-time, and solvable exactly in O(αn322α) time, where α
is the number of agents in the solution. In addition, we give a simple
linear-time algorithm optimally solving the problem in digraphs whose
underlying graphs are trees. Finally, we discuss a related problem, where
the task is to clear with a minimum number of agents a subgraph of
the underlying graph containing its spanning tree. We show that this
problem also admits a 2-approximation in polynomial time.

Keywords: clearing paths, NP-hardness, approximation, parametrized
complexity.

1 Introduction

Let D = (V,A) be a directed graph whose underlying graph is connected. We
say that an agent placed at a vertex of D can clear a directed path π in D if and
only if it can follow a directed path in D that includes π. The Agent Clearing
Path problem (ACP) is defined as follows (see Fig. 1).

Given a directed graph D = (V,E), whose underlying undirected graph
is connected, determine a placement of the minimum number α of agents
a1, . . . , aα in D such that for any pair of distinct vertices u, v ∈ V , there
is a permutation f of {1, ..., α} and a path π with endpoints u and v in
the underlying graph that is a concatenation of directed paths π1, π2, ..., πα

in D, where for i = 1, ..., α, the path πi can be cleared by agent af(i) or it is
empty.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 289–300, 2014.
c© Springer International Publishing Switzerland 2014



290 C. Levcopoulos et al.

We shall refer to a solution to ACP (as well as any placement of agents) for D
as a placement function c : S → V , where S is a set of agents in the solution, and
call the number of agents that solves ACP in D, denoted by acp(D), as the path
clearing number of D. For simplicity of presentation, we assume that if D ∼= N1,
that is, D is a trivial 1-vertex graph, then acp(D) = 1. And, we shall restrict
ourselves only to directed graphs whose underlying graphs are connected.

v1

v3

v2

Fig. 1. There is a path with endpoints v1 and v2 that is a concatenation of directed
paths (marked with (solid arrows) which can be simultaneously cleared by the three
agents placed at black vertices, one per each vertex. However, these agents cannot clear
any path connecting vertices v1 and v3.

The Agent Clearing Path problem seems to have several natural applications.
For example, in disaster circumstances, the underground sewage channels in a
city can be used as an extraordinary transportation network. The aforementioned
channels have slopes (directions) allowing for a continuous flow of sewage. The
problem of placing a minimum number of water flushing robots that for any pair
of exits could clean a path of channels connecting them can be modelled by a
variant of the ACP problem.

Related work. The Agent Clearing Path problem is a variant of the problem of
cleaning a graph with brushes, see e.g. [1,4,5,8,9,11]. In this problem, given a
connected graph, initially with all dirty vertices and edges, a number of agents,
called brushes, are placed on some vertices of the graph. When a vertex has at
least as many brushes as dirty incident edges, it may be cleaned and then ‘fired’:
each dirty incident edge is traversed (i.e. cleaned) by one and only one brush, but
brushes can not traverse already cleaned edges. The problem is to determine the
initial brush configuration and a corresponding vertex-firing sequence such that
the whole graph becomes clean. The minimum number of brushes required to
clean a given graph G = (V,E) is denoted by b(G), and for a given integer k, the
problem of determining whether b(G) ≤ k, is NP-complete [4]. Bounds on b(G)
are discussed in [8], cleaning random graphs was considered in [1,9,11], whereas
the parallel version of the model has been studied in [5]. Other variations on this
problem have been studied in [6,10,12].



Clearing Connections by Few Agents 291

Our results. Some elementary properties are discussed in Section 2. In partic-
ular, we show that, up to the time of constructing the condensation (acyclic)
digraph of a given digraph, we may restrict ourselves to consider only directed
acyclic graphs. In Section 3, we provide a simple linear-time 2-approximation
for ACP in acyclic digraphs, and an exact algorithm with the running time of
O(sn322s), where s is the number of source vertices in the input n-vertex di-
graph. These results yield a polynomial-time 2-approximation algorithm as well
as an O(αn322α)-time exact algorithm for ACP for an arbitrary directed graph
on n vertices, where α is the number of agents in the solution. We continue our
study of ACP in Section 4, with an NP-hardness proof valid even for bipartite
acyclic digraphs and in Section 5 with a simple linear-time algorithm optimally
solving ACP in digraphs whose underlying graphs are trees. Finally, we discuss
a related problem, where the task is to clear with a minimum number of agents
a subgraph of the underlying graph containing its spanning tree. We show that
this problem also admits a 2-approximation in polynomial time.

Notation. Let D = (V,A) be a directed graph. For two distinct vertices u, v ∈ V ,
a directed path (resp. walk) connecting u and v (in any direction) is called the
(u, v)-path (resp. (u, v)-walk). For a vertex v ∈ V , Π(v) denotes the set of paths
in D that can be cleared by an agent placed at v, and C(v) denotes the strongly
connected component in D that v belongs to.

2 Preliminaries

The first crucial property that allow us to simplify our analysis is that for an
arbitrary digraph D = (V,A), ACP for D can be reduced (in polynomial time)
to ACP for its condensation digraph D↓. Recall that the condensation digraph
D↓ = (V ↓, A↓) of D is the (acyclic) digraph whose vertices correspond to strongly
connected components in D and there is an arc (C′, C′′) ∈ A↓ if and only if there
is an arc (v′, v′′) ∈ A, where v′ (resp. v′′) is a vertex that belongs to component
C′ (resp. C′′).

Lemma 1. For an arbitrary digraph D = (V,A), acp(D) = acp(D↓) holds,
where D↓ is the condensation digraph of D.

Proof. Due to space limits, we omit the proof.

From now on, taking into account the above lemma, we shall restrict ourselves
only to non-trivial directed acyclic graphs (DAGs) whose underlying graphs are
connected. Another crucial property is established by the following lemma.

Lemma 2. For an arbitrary DAG D = (V,A), one may assume without loss of
generality that in a solution to ACP for D, all agents are placed at the source
vertices of D.

Proof. It follows from the fact that for any source vertex u such that there exists
a directed path from u to v in D, Π(v) ⊂ Π(u) holds. ��



292 C. Levcopoulos et al.

Consequently, if s = s(D) denotes the number of source vertices in a directed
acyclic graph D = (V,A), we have the following corollary.

Corollary 1. For an arbitrary DAG D = (V,A), we have acp(D) ≥ s.

Proof. It follows from Lemma 2 and the fact that at least one agent has to be
placed on each source vertex in order to clear the edge leading to a successor of
the source vertex. ��

3 Approximation and Exact Algorithms

In this section we propose two algorithms for solving ACP: an approximation
of factor 2 and an exact parameterized one. Both are based upon the following
lemma. (Recall, for a directed acyclic graph D = (V,E), s = s(D) denotes the
number of source vertices in D.)

Lemma 3. Let c : S → V be a solution to ACP in a DAG D = (V,A). Then,
at most two agents are placed at any source vertex s in D, that is, |c−1(s)| ≤ 2.

v′

v′′

πi−1

vi

πj

πk+1vk

s π′k

π′i

Fig. 2. If three agents at s clears three (directed) subpaths, then there is a shortcut
via s that can be cleared only by two agents

Proof. Suppose on the contrary that |c−1(s)| > 2 for some source vertex s in
D. Since the placement function c is optimal, there exist two disjoint vertices
v′, v′′ ∈ V such that any path π connecting v′ and v′′ requires at least three
agents from s. Consider any such path π and assume that π consists of l ≥ 3
directed paths π1, . . . , πl; set π0 := {{v′}, ∅} and πl+1 := {{v′′}, ∅}. Then there
exist three paths πi, πj , πk, 1 ≤ i < j < k ≤ l, that are cleared by three agents,
say ai, aj and ak, from s; assume that i is minimal and k is maximal with
respect to this property. Let πi be a (s, vi)-path in D, where vi is the vertex
that πi−1 and πi have in common, and let πk be a (s, vk)-path in D, where vk
is the vertex that πk and πk+1 have in common, see Fig. 2 for an illustration.
Then the path π can be replaced with the path π′ that consists of l′ < l paths
π1, . . . , πi−1, π

′
i, π

′
k, πk+1, . . . , πl and uses only two agents ai and ak from s.



Clearing Connections by Few Agents 293

By applying a similar argument to any source vertex s such that |c−1(s)| > 2,
we obtain a contradiction with minimality of c. ��

The above lemma immediately results in the following upper bound on the path
clearing number.

Corollary 2. For an arbitrary directed acyclic graph D = (V,A), we have
acp(D) ≤ 2s(D).

3.1 2-Approximation Algorithm

Taking into account Corollary 1 and the proof of Lemma 3, by placing two agents
at each source vertex in D, we obtain a simple 2-approximation algorithm to
ACP for D.

Theorem 1. There exists a linear-time 2-approximation algorithm to ACP in
directed acyclic graphs.

3.2 Exact Parameterized Algorithm

Keeping in mind Corollary 1 and Lemma 3, following the dynamic programming
based approach for the Traveling Salesman Problem [7], the idea is to try all
possible placements for at most s = s(D) additional agents at s source vertices
in a directed acyclic graph D = (V,A) and check, whether a given placement is
valid, that is, for any pair of distinct vertices u, v ∈ V , there is a path π with
endpoints v and u that is a concatenation of directed paths in D which can be
simultaneously cleared by the agents. The valid placement that uses the fewest
number of agents constitutes a solution to ACP in D.

Theorem 2. A solution to ACP in a directed acyclic graph D = (V,A) on n
vertices can be computed in O(sn322s) time, where s = s(D).

Proof. Consider s = s(D) pairs of agents, numbered 1 through 2s, on the s source
vertices of the input directed acyclic graph D = (V,A), respectively. Assume that
V = {1, 2, . . . , n}. In O(sn3) time, form an edge-colored multigraph M = (V,E)
such that an edge {i, j} with color c in {1, ..., 2s} occurs in M if and only if the
c-th agent can traverse some (i, j)-path. Let M(c) denote the subset of edges in
M colored with c. (When constructing the graph M , we also pre-compute the
relevant data that allows answering the following query in a constant time: “For
a fixed color c ∈ C, does {i, j} ∈M(c)?”)

Now, for a subset C ⊆ {1, ..., 2s} of colors and two vertices i, k ∈ V , let
P (i, C, k) be the (sub)problem of determining whether there is a path connect-
ing i with k in D that can be cleared by agents from C, or equivalently, whether
there is a path connecting i with k in M colored with distinct colors. The dynamic
programming recursion (Bellman equation) is defined as follows. The base of the



294 C. Levcopoulos et al.

recursion is C = {c}: f(i, C, k) = ‘yes’ if {i, k} ∈ M(c); otherwise, f(i, C, k) =
‘no’. Next, for a set of colors C, |C| ≥ 2, we define

P (i, C, k) =
∨
j∈V

∨
c∈C

P (i, C \ {c}, j) ∧ ({j, k} ∈M(c)).

Clearly, there are O(n222s) subproblems P (i, C, k). If C is a singleton set,
P (i, C, k) can be solved in O(1) time using the information gathered during the
construction of the graph M . If |C| > 1 then P (i, C, k) can be solved by the
aforementioned recurrence on the basis of solutions to the subproblems with
smaller color subsets in O(sn) time. Thus, the overall time required to solve the
subproblems is O(sn322s).

Afterwards, in the order of increasing size of C ⊆ {1, ..., 2s}, we check if for
all i, k ∈ V , and the given C, the subproblems P (i, C, k) are answered positively.
If so, we can answer that |C| agents are sufficient to solve ACP for D. Overall,
this postprocessing takes O(n222s) time. ��

By combining Lemma 1 and Corollary 1 with Theorem 2, we obtain the following
parametrized upper bound on ACP.

Corollary 3. A solution to ACP in a directed graph on n vertices can be com-
puted in O(αn322α) time, where α is the size of the solution, i.e., the number of
agents in the solution.

4 NP-Hardness

In this section we present a proof of NP-hardness of ACP. Our proof is a reduction
from the connected set cover problem (CSC) [13,14], which is known to be NP-
hard; its decision version can be formulated as follows.

Let V be a finite set of elements, let F be a family of non-empty subsets of
V , and let G = (F , E) be a graph. A connected set cover S ⊆ F is a set cover
of V such that S induces a connected subgraph of G. The size of S, that is, the
number of sets in S, is denoted by |S|.

The connected set cover problem (CSC)
Given a triple (V,F , G) and a positive integer k, does there exists a connected
set cover of size at most k?

The connected set cover problem is NP-complete even if at most one vertex of
the auxiliary graph G has degree greater than two [14]. In addition, the reduction
of the set cover problem to the connected set cover problem in [14] implies that
the variant of CSC when the adjacency relation E in the auxiliary graph G
is determined by having an element in common, that is, {S′, S′′} ∈ E if and
only if S′ ∩ S′′ �= ∅, is also NP-complete. We shall use this fact in our proof of
NP-hardness of ACP.

Specifically, let V be a set of m ≥ 2 elements, and let F be a family of subsets
of V . Define a graph G = (F , E) where two disjoint vertices/sets S′, S′′ ∈ F



Clearing Connections by Few Agents 295

are adjacent if and only if S′ ∩ S′′ �= ∅ (Fig. 3(a)). We also define a bipartite
DAG D = (F ∪ V,A), with the elements of F on one side and the elements of
V on the other (Fig. 3(b)); we have that for any (S, v) ∈ F × V , (S, v) ∈ A, if
and only if v ∈ S. Observe that all source vertices in D correspond to sets in F
(s(D) = |F|), and we shall use the terminology ‘vertex’ and ‘set’ (in G or D)
interchangeably. The following lemma is crucial.

Lemma 4. Given a positive integer k, there exists a connected set cover of size
at most k for the triple (V,F , G) if and only if acp(D) ≤ s(D) + k.

Proof. The direct implication. Let S be a connected set cover for (V,F , G) with
|S| ≤ k. Define a placement function c : {a1, . . . , as(D)+|S|} → (F ∪ V ) as fol-
lows: place s(D) agents a1, . . . , as(D) at all source vertices of D, and |S| agents
as(D)+1, . . . , as(D)+|S| at the source vertices of D that constitute S (Fig. 3(c)).
We claim that the placement function c is valid, that is, for any pair of distinct
vertices u, v ∈ F ∪ V , there is a path π with endpoints v and u that is a con-
catenation of directed paths in D which can be simultaneously cleared by the
agents. (And thus acp(D) ≤ s(D) + k.)

Consider a pair of distinct vertices u, v ∈ F ∪ V . There are three cases to
consider.

Case 1: u ∈ V and v ∈ V (Fig. 3(d). Since S is a connected set cover of V , taking
into account the definition of D, there exists a path π in D connecting u and v
that consists of arcs (s1, u), (s1, v1), (s2, v1), . . . , (sl−1, vl−1), (sl, vl−1), (sl, v),
l ≥ 1, where vi ∈ V , i = 1, . . . , l − 1, and si ∈ S, i = 1, . . . , l. And, since
|c−1(si)| = 2, i = 1, . . . , l, path π can be cleared by agents placed at source
vertices s1, . . . , sl.

Case 2: u ∈ V and v ∈ F (Fig. 3(e)). By the same argument as above, taking
into account that each set in F \ S has an element in common with some
set in S, there exists a path π in D connecting u and v that consists of arcs
(s1, u), (s1, v1), (s2, v1), (s2, v2), . . . , (sl, vl−1), (sl, vl), (v, vl), where vi ∈ V
and si ∈ S, i = 1, . . . , l. Again, since |c−1(v)| ≥ 1, and |c−1(si)| = 2, i =
1, . . . , l, path π can be cleared by agents placed at source vertices s1, . . . , sl
and v.

Case 3: u ∈ F and v ∈ F (Fig. 3(f)). By the same argument as in Case 2,
there exists a path π in D connecting u and v that consists of a sequence
of arcs (u, v1), (s1, v1), (s1, v2), . . . , (sl, vl), (sl, vl+1), (v, vl+1), where vi ∈ V ,
i = 1, . . . , l + 1, and si ∈ S, i = 1, . . . , l, l ≥ 0. And, since |c−1(u)| ≥ 1 and
|c−1(v)| ≥ 1, and |c−1(si)| = 2, i = 1, . . . , l, path π can be cleared by agents
a1, . . . , as(D)+|C| placed at source vertices s1, . . . , sl and source vertices u
and v.

Consequently, the placement function c is valid, and thus acp(D) ≤ s(D) + k as
required.

The converse implication. Let c : S → (S ∪ V ) be a solution to ACP in D. By
Lemma 2, we may assume that all agents are placed at source vertices of D.
Define S := {s ∈ F : |c−1(s)| = 2}; notice that |S| = k by Corollary 1 and
Lemma 3. We claim that S is a connected set cover for (V,F , G).



296 C. Levcopoulos et al.

X1

X2

X3 X4

X5

X6

a)

u1 u2 u3 u4 u5 u6

X1 X2 X3 X4 X5 X6
b)

X1

X2

X3 X4

X5

X6

c)

u1 u2 u3 u4 u5 u6

X1 X2 X3 X4 X5 X6

u v1 v2 v

s1 s2 s3
d)

u v1 v2

s1 s2 v
e)

v1 v2 v3

u s1 s2 v
f)

u1 u2 u3 u4 u5 u6

X1 X2 X3 X4 X5 X6
g)

Fig. 3. V = {u1, u2, . . . , u6}, F = {X1, X2, . . . , X3}, where X1 = {u2, u3}, X2 =
{u1, u2}, X3 = {u1, u3, u4, u5}, X4 = {u4, u6}, X5 = {u4, u6}, and X6 = {u6}. (a) The
graph G = (F , E), where two disjoint vertices/sets X ′, X ′′ ∈ F are adjacent if and only
if X ′ ∩X ′′ 
= ∅. (b) The bipartite digraph D = (F ∪ V, A). (c) A connected set cover
S for (V,F , G) and the relevant agent placement in D: there is one agent at any gray
vertex, and two agents at any black vertex. (d) Case 1: clearing path between u ∈ V
and v ∈ V . (e) Case 2: clearing path between u ∈ V and v ∈ F . (f) Case 3: clearing
path between u ∈ F and v ∈ F . (g) If the set cover S is not connected, then placing
two agents only at vertices corresponding the sets in S (and one agent at any other
source vertex) does not imply a solution to ACP in D: here, {X1, X3, X6} is a set cover
for (V,F), and there is no path between u1 and u6 that can be cleared by agents.



Clearing Connections by Few Agents 297

Consider an element v ∈ V . Since c solves ACP, there exists a path π con-
necting v and some u ∈ V , u �= v, in D that can be cleared by agents. By the
definition of graph D, π must visit a source vertex s ∈ F , more precisely, π must
traverse two arcs (s, u′) and (s, u′′). Since these arcs can be only cleared from
s, we have |c−1(s)| = 2, and thus s ∈ S. Consequently, v is covered by S, and
since v is an arbitrary element in V , F is a set cover of V .

To finalize the proof, we have to show that S is connected. Suppose on the
contrary that S is not connected. W.l.o.g. assume that the induced graph G[S]
has two connected components, induced by two disjoint families S1 and S2,
S = S1 ∪ S2. Consider S1 ∈ S1 and S2 ∈ S2. Again, since c solves ACP,
there exists a path π connecting sets/vertices S1 and S2 in D that can be
cleared by agents. By the definition of the graph D, π consists of a sequence
of arcs (S1, v1), (s1, v1), (s1, v2), . . . , (sl, vl), (sl, vl+1), (S2, vl+1), where vi ∈ V ,
i = 1, . . . , l + 1, and si ∈ S, i = 1, . . . , l. Since |c−1(si)| = 2, we have si ∈ S,
i = 1, . . . , l. And, since v1 ∈ S1∩s1, vi ∈ si−1∩si, i = 2, . . . , l, and vl+1 ∈ S2∩sl,
there exists a path connecting S1 and S2 in G[S] — a contradiction with S1 and
S2 lying in two different connected components of G[S]. Consequently, G[S] is
connected, and thus S is a connected set cover for (V,F , G) of size k. ��

With the result of Lemma 4, we obtain the following theorem.

Theorem 3. ACP in bipartite directed acyclic graphs is NP-hard.

5 Trees

In view of the NP-hardness of ACP for general directed graphs, it is natural
and interesting to analyze the complexity of ACP for dags whose underlying
undirected graph are trees. We shall term such dags tree dags.

Theorem 4. ACP for tree dags can be solved in linear time.

Proof. Recall, for a vertex v ∈ V in a directed graph D = (V,A), N−(v) (resp.
N+(v)) denotes the set of all vertices u ∈ V such that (u, v) ∈ A (resp. (v, u) ∈
A); the number of elements in N−(v), denoted by degin(v), is called the indegree
of v, while the number of element in N+(v), denoted by degout(v), is called the
outdegree of v.

For a tree dag T = (V,A), let l(T ) and s(T ) be the set of leaves and the set
of source vertices in T , respectively. Suppose that c : S → s(T ) is a solution to
ACP in T , where S is the set of agents, with |S| = acp(T ). Since T is a tree dag,
observe that for any s ∈ s(T ), if degout(s) ≥ 2 then c must place two agents at s,
that is, |c−1(s)| = 2; otherwise, |c−1(s)| ∈ {1, 2} (by Corollary 1 and Lemma 3).
Consequently, to compute acp(T ), all we need is to determine all such source
vertices s in s(T ) ∩ l(T ) such that for any solution c to ACP in T , |c−1(s)| = 2
holds.

Consider a source vertex s ∈ s(T )∩ l(T ). A vertex v ∈ Π(s) is called essential
with respect to s if degout(v) ≥ 2 and all vertices on the (unique directed) (s, v)-
path in T are of indegree at most one. We need the following lemma.



298 C. Levcopoulos et al.

s′
s

v

v′

x2

x1

π

T (v)

a)

s′
s

v

v′

x2

x1

π

T (v)

b)

s′
s

v

v′

x2x1

π
T (v)

c)

Fig. 4. Lemma 5, Case 2

Lemma 5. Any solution to ACP in T places two agents at s if and only if there
is an essential vertex with respect to s.

Proof (of Lemma). The direct implication. Suppose on the contrary that there
exists a solution c to ACP in T that places two agents a1 and a2 at some
s ∈ s(T )∩ l(T ) such that there is no essential vertex with respect to s. We claim
that c is not optimal, i.e., one of the agents at s is superfluous.

Case 1: Vertices in Π(s) form a directed path, that is, there is no vertex v ∈
Π(s) ⊆ V \ s(T ) such that degout(v) ≥ 2; among all such v’s, choose the
closest one to s. Then, in any path connecting two vertices x1 and x2 in T
that can be cleared by agents, there is at most one directed path induced by
some vertices in Π(s), which requires only one agent at s — a contradiction
to the optimality of c.

Case 2: There is a vertex v ∈ Π(s) ⊆ V \ s(T ) such that degout(v) ≥ 2.
(Notice v �= s.) Since v is not essential with respect to s (according to
our assumption), there is a vertex v′ on the (s, v)-path, v′ �= s such that
degin(v

′) ≥ 2. Since T is a tree dag, there is a source s′ ∈ s(T ), s′ �= s, such
that v′ ∈ Π(s′) and hence v ∈ Π(s′). (Fig. 4.) Let a′ be one of the agents
placed at s′.

Deleting all arcs (u, v) ∈ A results in several tree subdags of T ; let
T (v) = (Vv , Av) denote the relevant tree subdag such that v ∈ Vv. Observe
that v is a source vertex in T (v). Consider now some (unique) path π between
two vertices x1 and x2 in T that can be cleared with agents placed by our
placement function c.

Subcase 2.a: x1 /∈ Vv and x2 /∈ Vv (Fig. 4(a)). By the choice of v, all
but v vertices on the unique (s, v)-path in T are of outdegree one, and
thus, vertices in Π(s) contribute at most one directed path in π, which
requires only one agent at s.
Subcase 2.b: either x1 ∈ Vv and x2 /∈ Vv or x1 /∈ Vv and x2 ∈ Vv

(Fig. 4(b)). Similarly as above, since all but v vertices on the unique
(s, v)-path in T are of outdegree one, vertices in Π(s) contribute at
most one directed path in π, which requires only one agent at s.



Clearing Connections by Few Agents 299

Subcase 2.c: x1 ∈ Vv and x2 ∈ Vv (Fig. 4(c)). Since agent a′ can reach
v only through vertices in V \ Vv, vertex v is “supported” with at least
three agents (a1, a2 and a′) that may take a part in clearing π ⊆ T (v).
Since T is a tree dag, vertices in Π(v) ⊆ Vv contribute only at most two
directed paths in π, and thus a2 is useless for clearing π.

Consequently, in Case 2 as well, any solution to ACP requires only one agent
at s — a contradiction to the optimality of c.

The converse implication. It follows from the fact that T is a tree dag. Namely,
consider the essential vertex v with respect to s ∈ s(T ) ∩ l(T ). Any path π
connecting two successors v′ and v′′ of v that can be cleared by agents must use
arcs e′ = (v, v′) and e′′ = (v, v′′), respectively. Since all vertices on the (unique
directed) (s, v)-path are of inner degree at most one, the arcs e′ and e′′ can be
cleared only from agent(s) in s (by Lemma 2), which requires two agents at s. ��
Continuing the proof of Theorem 4.
Given Lemma 5, all we need to determine a solution to ACP in T is to check
whether there is an essential vertex with respect to s, for each s ∈ s(T ) ∩ l(T ).
This can be done by a standard DFS-based approach, starting from any element
in s(T ) ∩ l(T ). ��

6 Extentions

A natural extension of ACP, more closely related to the problem of cleaning
a graph with brushes, is the following variant where we want to clear some
connections between all vertices.

The Agent Clearing Tree problem (ACT)

Given a directed graph D = (V,A) whose underlying graph G = (V,E) is
connected, determine a placement of minimum number of agents in D such
that agents can simultaneously clear some subgraph of D whose underlying
graph includes a spanning tree of G.

The complexity status of ACT remains open, however, there is a simple 2-
approximation algorithm for solving ACT.

Theorem 5. For a given n-vertex DAG D = (V,A), ACT is 2-approximable in
polynomial time.

Proof. Let Π be a minimum path cover of D. (A path cover Π of D is a set of
directed paths in D such that for every v ∈ V , there exists at least one path
π ∈ Π visiting v.) Recall that by considering the reflexive transitive closure of D,
Π can be computed in polynomial time by reduction to the maximum matching
problem in a bipartite graph [3]. Initially, set S = Π . Now, since the underlying
graph of D is connected and paths in Π visits all vertices in V , by adding at
most |Π | − 1 single arcs to S, we obtain a set of at most 2|Π | − 1 directed paths
that constitute the required connected spanning subgraph of D, and so at most
2|Π | − 1 agents are enough to solve ACT in D. On the other hand, any solution
for ACT uses at least |Π | agents, which concludes the proof of the theorem. ��



300 C. Levcopoulos et al.

7 Final Remarks

There are several interesting generalizations, variants of ACP and ACT and
problems related to them. For instance, for each placement of an agent on the
underlying graph, one could specify a set of paths that can be cleared by the
agent and then ask for a minimum number of agents that for any given pair
of vertices could clear (not necessarily in the directed fashion) a path between
them, or that could clear a spanning tree of the underlying graph.

Also, the complexity status of ACP and ACT and their variants where the
underlying graph is restricted to some special graph class substantially larger
than trees, e.g., graphs of bounded treewidth, are interesting open problems.

Acknowledgments. The authors thank Adrian Kosowski for valuable remarks
and interesting discussions on the topic.

References

1. Alon, N., Prałat, P., Wormald, N.: Cleaning regular graphs with brushes. SIAM
Journal on Discrete Mathematics 23(1), 233–250 (2008)

2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

3. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)
4. Gaspers, S., Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Clean the graph before

you draw it! Information Processing Letters 109(10), 463–467 (2009)
5. Gaspers, S., Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Parallel cleaning of a

network with brushes. Discrete Applied Mathematics 158(5), 467–478 (2010)
6. Gordinowicz, P., Nowakowski, R.J., Prałat, P.: Polish — Let us play the cleaning

game. Theoretical Computer Science 463, 123–132 (2012)
7. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.

Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210
(1961)

8. Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Cleaning a network with brushes.
Theoretical Computer Science 399, 191–205 (2008)

9. Messinger, M.-E., Prałat, P., Nowakowski, R.J., Wormald, N.: Cleaning random
d-regular graphs with brushes using a degree-greedy algorithm. In: Janssen, J.,
Prałat, P. (eds.) CAAN 2007. LNCS, vol. 4852, pp. 13–26. Springer, Heidelberg
(2007)

10. Messinger, M.-E., Nowakowski, R.J., Prałat, P.: Cleaning with Brooms. Graphs
and Combinatorics 27(2), 251–267 (2011)

11. Prałat, P.: Cleaning random graphs with brushes. Australasian Journal of Combi-
natorics 43, 237–251 (2009)

12. Prałat, P.: Cleaning random d-regular graphs with Brooms. Graphs and Combina-
torics 27(4), 567–584 (2011)

13. Ren, W., Zhao, Q.: A note on Algorithms for connected set cover problem and
fault-tolerant connected set cover problem. Theoretical Computer Science 412(45),
6451–6454 (2011)

14. Shuai, T.-P., Hu, X.-D.: Connected set cover problem and its applications. In:
Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 243–254.
Springer, Heidelberg (2006)



Counting Houses of Pareto Optimal Matchings

in the House Allocation Problem

Andrei Asinowski1,�, Balázs Keszegh2,��, and Tillmann Miltzow1

1 Institut für Informatik, Freie Universität Berlin, Germany
2 Alfréd Rényi Institute of Mathematics, Budapest, Hungary

asinowski@gmail.com, keszegh.balazs@renyi.mta.hu, t.m@fu-berlin.de

Abstract. In an instance of the house allocation problem two sets A
and B are given. The set A is referred to as applicants and the set
B is referred to as houses. We denote by m and n the size of A and
B respectively. In the house allocation problem, we assume that every
applicant a ∈ A has a preference list over every house b ∈ B. We call
an injective mapping τ from A to B a matching. A blocking coalition of
τ is a subset A′ of A such that there exists a matching τ ′ that differs
from τ only on elements of A′, and every element of A′ improves in τ ′,
compared to τ according to its preference list. If there exists no blocking
coalition, we call the matching τ an Pareto optimal matching (POM).

A house b ∈ B is reachable if there exists a Pareto optimal matching
using b. The set of all reachable houses is denoted by E∗. We show

|E∗| ≤
∑

i=1,...,m

⌊m
i

⌋
= Θ(m logm).

This is asymptotically tight. A set E ⊆ B is reachable (respectively
exactly reachable) if there exists a Pareto optimal matching τ whose
image contains E as a subset (respectively equals E). We give bounds
for the number of exactly reachable sets. We find that our results hold
in the more general setting of multi-matchings, when each applicant a
of A is matched with �a elements of B instead of just one. Further,
we give complexity results and algorithms for corresponding algorithmic
questions. Finally, we characterize unavoidable houses, i.e., houses that
are used by all POM’s. This yields efficient algorithms to determine all
unavoidable elements.

1 Introduction

1.1 Definitions

In an instance of the house allocation problem two sets A and B are given. The
set A is referred to as applicants and the set B is referred to as houses. We denote

� Research supported by the ESF EUROCORES programme EuroGIGA, CRP ‘Com-
PoSe’, Deutsche Forschungsgemeinschaft (DFG), grant FE 340/9-1.

�� Research supported by Hungarian National Science Fund (OTKA), under grant PD
108406 and under grant NN 102029 (EUROGIGA project GraDR 10-EuroGIGA-
OP-003) and the János Bolyai Research Scholarship of the Hungarian Academy of
Sciences and by the DAAD.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 301–312, 2014.
c© Springer International Publishing Switzerland 2014



302 A. Asinowski, B. Keszegh, and T. Miltzow

by m and n the size of A and B respectively. In the house allocation problem, we
assume that every applicant a ∈ A has a preference list over every house b ∈ B.
We call an injective mapping τ from A to B a matching. A blocking coalition of
τ is a subset A′ of A such that there exists a matching τ ′ that differs from τ
only on elements of A′, and every element of A′ improves in τ ′, compared to τ
according to its preference list. If there exists no blocking coalition, we call the
matching τ a Pareto optimal matching (POM).

The underlying graph is a complete bipartite graph on the set A ∪B. In this
graph injective mappings indeed correspond to matchings.

We represent the preference lists by anm×n matrix. Every row represents the
preference list of one of the applicants in A, i.e., in a given row r corresponding
to some applicant a ∈ A, the leftmost house is the one that a prefers most, etc.,
house b1 is left to b2 in r if and only if a prefers b1 over b2. Note that no row
contains an element from B twice. We usually denote this matrix by M and fol-
lowing this interpretation we usually denote the applicants of A by r1, r2, . . . rm
and the houses of B by 1, 2, . . . , n. Because of this matrix representation, we
usually refer to applicants of A only as rows and to houses of B as elements (of
the matrix).

To illustrate the notion consider the following matrix and observe that the
matching indicated by circles is indeed Pareto optimal.⎛

⎜⎝ 1 5 3 2 4

3 1 4 5 2

1 3 5 4 2

⎞
⎟⎠

With this notation the edge set of a matching τ in the underlying graph corre-
sponds to a set of positions in the matrix. To make this formal consider an edge
(a, b) in the underlying graph. Let r be the row of a in M and b the kth house
in row a. Then edge (a, b) corresponds to position p = (r, k) in M . The image
set of τ corresponds to the set of houses of B in these positions. Thus, we say
that τ picks, selects, chooses, reaches, assigns some position p of M (resp. some
element b of B), if p is in τ (resp. b is in the image set of τ). Similarly, we say
that a row a picks, selects, chooses, reaches, assigns a position P in row a (resp.
b) if this holds for the matching τ under consideration.

In a POM the positions after the m-th column will never be assigned, because
at least one of the previous m elements in that row is preferred and not assigned
to any other element on A. Therefore it is sufficient to consider only m × m
square matrices.

If some POM τ assigns p (resp. b), then it is a reachable position (resp. reach-
able house). More generally, a set E ⊆ B is reachable if there exists a POM τ
with E ⊆ s(τ). In this case we also say that τ reaches E. A set E with |E| = m
is exactly reachable if there exists a Pareto optimal matching τ with E = s(τ).
An element b is unavoidable if it belongs to the set s(τ) for every Pareto optimal
matching τ of M and avoidable otherwise. A set E is avoidable if there exists
a POM τ with s(τ) ∩ E = ∅. Note that for a set |E| = m it is exactly reach-
able if and only if B \ E is avoidable. We will also study matrices with fewer



Counting Houses of Pareto Optimal Matchings 303

than m columns, precise definitions will be given in Subsection 1.4. As a rule
of thumb, in this case preference lists are shorter and it can happen that some
elements of A are not assigned.

1.2 Results

Enumerating Reachable Elements and Sets. In Section 2 we deal with
enumerative problems related to reachable elements. Our main result here is
the following. Let M be an m ×m matrix and E∗ be the set of all reachable
elements. Then

|E∗| ≤
m∑
i=1

�m/i� ≤ m(ln(m) + 1).

This improves the trivial upper bound of m2 which appears in [8]. In [8] the
authors also showed a lower bound construction which has asymptotically as
many reachable elements as is implied by our upper bound. Thus Theorem 1.2
is asymptotically tight.

Denote by E(M) the family of all (exactly) reachable m-element sets of M .
For example, if all the elements in the first column of M are distinct (or, more
generally, if |B| = m), then |E(M)| = 1. With Theorem 1.2 we can bound E(M).

Corollary 1. For any matrix M , we have |E(M)| ≤
(
m(lnm+1)

m

)
.

This is the only non-trivial upper bound that we found, improving
(
m2

m

)
of [8].

As an important consequence, our upper bound also improves the upper bound
on the pattern matching problem regarded in [8]. The best known lower bound
is
(

m

m/2�

)
[8]. The construction in that paper is a matrix where in the first

�m/2� columns the i-th column ci contains only element i and in the (�m/2�+
1)-st column there are m different elements which are also all different from
1, 2, . . . �m/2�.

Characterization of Avoidable Elements and Sets. Section 3 concentrates
on the notion of avoidable elements. Let x be the element suspect to be avoidable.
Given some set of rows R we denote by Ex(R) the set of elements left of x in
the rows R (i.e., y is in Ex(R) if and only if there exists a row r ∈ R in which
y appears to the left of x; if x does not appear in R then all elements in R are
regarded to be left of x).

An element x of a matrix M is avoidable if and only if for every set R of rows
of M , we have:

|Ex(R)| ≥ |R|

Extremal results and algorithmic results in connection to avoidable elements
are included in Section 3.



304 A. Asinowski, B. Keszegh, and T. Miltzow

Complexity of Reachability. Computational questions about reachable el-
ements are considered detailed proofs can be found in the full version. We
considered all reasonable computational questions connected to the notions we
considered. The problems are defined as follows:

Problem 1 (Deciding Reachability)
Input: A matrix M and a set D ⊆ B.
Question: Is D reachable?

Problem 2 (Counting Exactly Reachable Supersets)
Input: A matrix M and some set D ⊆ B.
Question: How many sets E with D ⊆ E ⊆ B are exactly reachable?

Problem 3 (Deciding Exact Reachability)
Input: A matrix M and a set E ⊆ B, |E| = m.
Question: Is E (exactly) reachable?

Problem 4 (Counting Reachable Sets)
Input: A matrix M .
Question: How many sets D ⊆ B are reachable?

Problem 5 (Counting Exactly Reachable Sets)
Input: A matrix M .
Question: How many sets E are exactly reachable?

The next table summarizes our findings about algorithmic questions. The general
case is always the same as with 3 column matrices. Problems 1 and 2 are already
complete if D contains exactly 1 element. Our contribution among others is to
show NP-completeness also for matrices with only 3 columns.

Problem 2 columns 3 columns
1) Deciding Reachability polynomial NP-complete
2) Counting Exactly Reachable Supersets #P-complete #P-complete
3) Deciding Exactly Reachability polynomial polynomial
4) Counting Reachable Sets explicit formula ?
5) Counting Exactly Reachable Sets #P-complete #P-complete

It remains an open question whether Problem 4 is hard for general matrices.
We conjecture it is already #P-complete for 3 column matrices.

1.3 Motivation and Related Work

One-sidedmatchings have natural practical uses, e.g. consider the house-allocation
problem where the setA consists of people and the setB consists of houses, see for
instance [2].

A recent book on matchings under preferences is by David Manlove [9]. In
this paper we tried, whenever applicable, to follow the notation therein.

A field that evidently seems to be related to our topic is that of stable match-
ings. This field is very broad and belongs to economic game theory. The seminal



Counting Houses of Pareto Optimal Matchings 305

work from Gale and Shapley is the starting point for this field [7]. Some work
in this field and different variations of the problem can be found in the PHD
thesis of Sandy Scott [13], recent papers can be found in the online available
proceedings of the Second International Workshop on Matching Under Prefer-
ences called MATCH UP [1]. In these works there are many different concepts
of preferences and stability and they ask for efficient computable solutions that
maximize the outcome for the participants in one way or the other. Readers
interested more broadly in the topic of algorithmic game theory are referred to
the book edited by Nisan, Roughgarden, Tardos and Vazirani [10].

In contrast to most research done in these areas, our question is more combi-
natorial in nature. The underlying algorithmic question of computing a Pareto
optimal matching is trivial. Thus, instead of existence questions, rather the enu-
merative questions become interesting. However, for the original definition of
stability many authors have tried to upper and lower bound the number of
stable matchings and some combinatorial structures have been unfolded. See
Section 2.2.2 [9] for an overview of results in this direction.

Further some of the complexity results we will present have been found, in
parallel and without our awareness. The first dates back to 2005 [3]. Their main
result is an efficient algorithm to compute a POM with maximal cardinality.
Further they show hardness to compute a minimum maximal POM. The first
results already has some ideas of the proof of Theorem 1.2. Although they show
an easy 2-approximation, it is open, whether there exists a PTAS for a minimum
maximal POM.

We are aware of 4 more papers that considered similar results to our com-
plexity results [12], [4] , [5] and [6]. All of them appeared in 2013 three of them
in December. Their main motivation is to study the behavior of the randomized
serial dictatorship also called randomized priority allocation. The randomized
serial dictatorship picks a permutation at random and thereafter computes the
corresponding greedy matching.

Saban and Sethuraman solveed ,in this context, NP-hardness of Problem 1, for
arbitrary matrices [12]. Note that Henze, Jaume and Keszegh showed first that
Problem 1 is NP-complete [8]. Aziz, Brandt and Brill showed #P-hardness for a
variant of Problem 2 for arbitrary matrices [4]. We improve these results, as we
can show this holds also for matrices with only 3 columns. Aziz and Meske show
that constraint versions are solvable in polynomial time [5]. At last Cechlárová
et. al. consider a generalized setting. However they show NP-hardness of compute
a minimum maximal matching even for matrices with 2 columns by an elegant
and simple reduction from vertex-cover [6].

Another important connection is that this work is originally motivated by a
work that was presented at the EuroCG 2012 in Braunschweig [8]. The authors
considered a generalisation of Voronoi diagrams under the assumption that not
just one point, but many points are matched injectively to a ‘nearest neighbor’, in
a way that minimizes the sum of the square root of distances between matched
points. From the definitions in their paper, the Pareto optimality comes as a
natural property. They asked explicitly for the number of exactly reachable sets,



306 A. Asinowski, B. Keszegh, and T. Miltzow

as it gives an upper bound on the number of Voronoi cells in the above setting.
Motivated by this, they gave lower and upper bounds on the number of exactly
reachable stable sets. To do this, first they gave lower and upper bounds for the
number of reachable elements. In this paper we improve their upper bound for
the number of reachable elements and by that we prove that their lower bound is
asymptotically correct. This also yields a significant improvement on the previous
upper bound on the number of exactly reachable stable sets, although in this
case our new upper bound still does not meet the lower bound they had.

Their work is based on a work by Rote presented at the EuroCG 2010 (2 years
earlier) in Dortmund [11].

1.4 Preliminaries

As we also want to study matrices with fewer than m columns, we need to
define what we mean by a matching under these assumptions. There are two
equivalent ways. First we could say that every row, for which all elements are
already picked by other rows just do not get assigned to anything. A nicer way
is to add columns, with all elements in one column being the same and not
appearing before. If we want to know if some set E is exactly reachable in the
first way, we construct E′ from E by adding the elements from the first m− |E|
additional columns (and vice versa). The following is an example of a 2 column
matrix. ⎛

⎜⎜⎝
1 4
2 1
2 5
4 3

⎞
⎟⎟⎠ ∼

⎛
⎜⎜⎝

1 4 c1 c2
2 1 c1 c2
2 5 c1 c2
4 3 c1 c2

⎞
⎟⎟⎠

We use the first approach. However, using the second approach, some hardness
results will carry over from 2 or 3 column matrices to k column matrices (2 ≤
k ≤ m). In such a case, we will point this out again at the appropriate places.

To see the correspondence between matchings in a graph theoretical sense
and in our context we define the bipartite row element graph G as follows. The
vertices are defined as the set of rows and elements; an element e is adjacent to
some row r if and only if e appears in r. See an example for the special case of
a matrix with only 2 columns.

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2
1 3
1 4
3 4
5 6
7 6

⎞
⎟⎟⎟⎟⎟⎟⎠

r1

r2

r3

r4

r5

r6

1

2

3

4

5

6

7

The circled POM corresponds to the dashed matching on the right side.
If there is no blocking coalition of size ≤ i, we call the matching an

i-Pareto optimal matching (i-POM). In particular this implies that every POM



Counting Houses of Pareto Optimal Matchings 307

is an i-POM. We call a matching 1-POM if there is no blocking coalition of size
one. The next matching is one-Pareto optimal but not Pareto optimal.⎛

⎜⎝1 5 3

5 1 4

5 1 1

⎞
⎟⎠

A matching τ is greedy if there exists a permutation π of A such that the
matching can be generated in the following manner: we process the rows of M
in the order determined by π, and in each row we pick the leftmost element that
was not picked earlier. Given some permutation π we call the corresponding
greedy matching τπ .

Lemma 1 brings all the introduced notions together, showing that POM, 1-
POM and greedy matchings select exactly the same sets. The equivalence of
POM and greedy matchings was already proved in [8].

Lemma 1. Let E ⊆ [n] with |E| = m. The following statements are equivalent.

1. E is (exactly) reachable, i.e. there exists a POM τ with s(τ) = E.
2. There exists a permutation π such that for the greedy matching τπ we have

s(τπ) = E.
3. There exists an one-Pareto optimal matching (1-POM) τ with s(τ) = E.

Proof. [1 ⇒ 2] Let τ be a POM matching such that s(τ) = E. We construct
a permutation π inductively. If possible take as the next row, in the order of
our permutation, the one that has a position of τ in its first entry. Delete the
element a at this position from all other rows and continue. We show that at
each stage there must be such a row. For the purpose of contradiction assume
such a row does not exist. Take any row, denoted by q1 and let e1 be some
element which is left to the element selected by τ in row q1. Because τ is Pareto
optimal, there exists some row r2 selecting e1. Let e2 be any element left to e1
in row r2. In this way we can define a sequence (ei) and (ri). As we have only
finitely many elements, at some point we get a first ej that appears earlier in the
sequence ei = ej , i < j. This implies that in the rows ri, . . . rj we can improve
simultaneously (i.e., it is a blocking coalition), which is a contradiction to the
assumption that τ is Pareto optimal.

[2⇒ 3] As every row picks the best element, not yet selected, it is clear that
no single row can improve.

[3 ⇒ 1] Let τ0 be some 1-Pareto optimal matching and E = s(τ0). Observe
that all the elements left to the elements picked by τ are in E. The set of
matchings that are better or equal to τ0 is non-empty as it contains τ0 and the
set is of course finite, so there exists a best matching τ1 among them, i.e. one for
which there is no better matching. This must be a POM and by Observation 2
s(τ1) = s(τ0) = E, and the size of s(τ1) is also m. ��

Note that this lemma implies that also for any i, i-POMs select the same sets
as POMs/1-POMs. Note also that the proof of Lemma 1 implies that actually
every greedy matching is Pareto optimal and vice versa.



308 A. Asinowski, B. Keszegh, and T. Miltzow

2 Enumerating Reachable Elements and Sets

We start with a trivial but important observation.

Lemma 2. If τ is a POM and τ selects position p in row a, then τ selects every
element that appears in row a left of p.

For every row r, there exists a reachable position pr furthest to the right in that
row, we call such a position last reachable. However note, that not all positions
must be reachable left of the last reachable position. Consider the following
matrix. Together with the matching τ indicated by circles.⎛

⎜⎜⎜⎝
5 4 3 2

5 1 6 7

1 2 8 9

2 1 5 4

⎞
⎟⎟⎟⎠

Clearly, τ is a POM and thus the circled position in the bottom row with element
4 is the last reachable position in that row. However, it is easy to check, that
the two positions left to this circled position (with elements 1 and 5) are not
reachable.

Let M be an m×m matrix and E∗ be the set of all reachable elements. Then

|E∗| ≤
m∑
i=1

�m/i� ≤ m(ln(m) + 1).

Proof. Let τi be a POM selecting the last reachable position pi in row i (1 ≤
i ≤ m) (these matchings are not necessarily different.).

Let e be some element that can be reached by some POM. We show e is
selected by one of the POMs τ1, . . . , τm. Indeed, if e is at some last reachable
position then this is clear. Otherwise, e appears in some row r not at the last
position pr. By Observation 2, e must be picked by τr. Thus the matchings
τ1 . . . , τm reach together all reachable elements. As τ1 . . . , τm are m POMs, the
first inequality follows from Lemma 3. Finally, it is well-known that the harmonic
series is bounded by ln(m) + 1, thus the second inequality holds as well. ��

Lemma 3. Let T be some set of k POMs. We denote by E(T ) the set of elements
reached by at least one POM of T . Then

|E(T )| ≤
k∑

i=1

�m/i�.

Proof. The proof goes by induction on k. The base case k = 1 is true as one
POM selects exactly m different elements.

Consider now a set T of k ≥ 2 POMs and the set of positions reached by
T . Among these positions we denote by pi the position furthest to the right in



Counting Houses of Pareto Optimal Matchings 309

row i and we denote F = {p1, . . . pm}. We say that an element e (resp. position
p) is uniquely reachable by some τ if τ is the only POM in T that reaches e
(resp. selects p). Consider the set G ⊆ F of those rightmost reachable positions
that are reachable by exactly one POM of T . By the pigeon-hole principle there
exists a POM τ in T that reaches at most 1/k portion of G. Denote the set of
elements in these positions by H (|H | ≤ �m/k�).

By the definition of H all other elements are not selected uniquely by τ , i.e.
some other matching of T also selects it. Thus the rest of the reached elements
are also reachable by T − τ . By induction we get

E(T ) ≤ E(T − τ) + �m/k� ≤
(

k−1∑
i=1

�m/i�
)

+ �m/k� =
k∑

i=1

�m/i�.

This finishes the proof. ��

Next we show two constructions concerning tightness of the results from Theo-
rem 1.2 and Lemma 3.

Asymptotic tightness of Theorem 1.2 follows from the following construction
by Henze, Jaume and Keszegh [8].

Example 1 ([8]). For each k, a matrix Mk with m = 2k rows and (m/2) log 4m =
(k + 2)2k−1 reachable elements is constructed recursively as follows.

M0 =
(
1
)
;

and, for k ≥ 0,

Mk+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
... M ′

k

2k

1
... M ′′

k

2k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where M ′
k and M ′′

k are relabelings 1 of Mk with no common element and all
elements different from 1, 2, . . . , 2k. The undefined entries of the matrix can be
filled arbitrarily.

Regarding Lemma 3, we prove that it is tight for certain values of k and m:

Corollary 2. For every k there exists a matrix Nk with m = k! rows and a
set Tk of k POMs, such that the number of elements reached by Tk is exactly∑k

i=1 m/i.

1 A matrix M ′ is a relabeling of a matrix M if there is a bijective function between
the elements (not positions!) of M and M ′ such that applying this function to the
elements in all the positions ofM we getM ′. Clearly two matrices that are relabelings
of each other are equivalent from our perspective.



310 A. Asinowski, B. Keszegh, and T. Miltzow

Proof. The construction is again recursive. For each k we define the matrix Nk

with m = k! rows and k columns with the property that each element appears
only in one column, and each element that appears in the jth column (j ≤ k),
appears there exactly k−j+1 times. We also define a setΠk of k permutations of
the k! rows from which we get Tk by taking the greedy matchings corresponding
to the permutations. We will prove that all the elements of Nk are reachable by
some greedy matching of Tk.

The matrices Nk are defined in the following way:

N1 =
(
1
)
,

and for k ≥ 1:

Nk+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
... N1

k

k!
...

...
1
... Nk+1

k

k!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here N1
k , N

2
k , . . . N

k+1
k are k + 1 matrices which are all relabelings of Nk with

no elements common to each other and to the set {1, 2, . . . , k!}. It is clear that
Nk+1 has (k + 1)! rows and k + 1 columns. Moreover, each element in the jth
column (j ≤ k + 1) appears there (k + 1)− j + 1 times: this is clear for the first
column, and is easily seen for other columns by induction.

Next we define the permutations. For k = 1,Π1 contains the only permutation
on the one row of N1. Next we recursively define Πk+1. For each N j

k (1 ≤ j ≤
k + 1), we have by recursion an associated set {πj

1, π
j
2 . . . π

j
k} of k permutations

(thus, πj
i is the ith permutation from Πk relabeled accordingly to N j

k – the jth
copy of Nk in Nk+1). Now the permutations in Πk+1 are defined as follows. For
every i (1 ≤ i ≤ k + 1), the permutation πi is obtained by taking first the k!
rows of N i

k in any (for example, the natural) order; then the rows of N1
k ∪N2

k ∪
· · · ∪ N i−1

k in the order determined by the permutations π1
i−1, π

2
i−1, . . . , π

i−1
i−1 ;

and, finally, the rows of N i+1
k ∪ N i+2

k ∪ · · · ∪ Nk+1
k in the order determined by

the permutations πi+1
i , πi+2

i , . . . , πk+1
i . Clearly, each row was taken once, so πi is

indeed a permutation. Also, when processing such a permutation, in the first k!
steps we choose all elements 1, 2, . . . , k!, so in the rest the permutation chooses
the same elements in each N j

k (j �= i) as the corresponding permutation (πj
i−1

or πj
i ) would choose in N j

k .
Thus by induction it is true that these permutations choose all elements of

Nk. Indeed, this is true for N1 and by induction it remains true as for every N j
k

(1 ≤ j ≤ k + 1) all πj
i (1 ≤ i ≤ k) is part of some πu (1 ≤ u ≤ k + 1). Finally,

the number of different elements in Nk+1 is
∑k+1

i=1 m/i, as we have k+1 columns
and in the jth column (1 ≤ j ≤ k + 1) each element appears (k + 1) − j + 1
times, thus this column has m

(k+1)−j+1 different elements. ��



Counting Houses of Pareto Optimal Matchings 311

3 Characterization of Avoidable Elements

In this section we give characterization of avoidable elements. Recall that we
define Ex(R) as the set of elements left of x in the rows of R (i.e., y is in Ex(R)
if and only if there exists a row r ∈ R in which y appears to the left of x; if x
does not appear in R then all elements in R are regarded to be left of x).

An element x of a matrix M is avoidable if and only if for every set R of rows
of M , we have:

|Ex(R)| ≥ |R|

Proof. [⇒] Let τ be a POM which does not pick x and let R be a set of rows.
In each row a different element is picked by τ , which is left of x. This shows the
claim.

[⇐] W.l.o.g. x is present in all the rows. Consider the bipartite graph on
A∪B, defined by all pairs (a, b) ∈ A×B such that b appears in row a before x.
The above condition says, that for all subsets R ⊂ A the neighbourhood of R is
larger or equal to R in terms of size.

By Hall’s theorem, there exists a matching τ that picks elements to the left of
x. W.l.o.g. in τ each row picks an element farthest to the left in M not chosen
by any other row. In other words τ is an 1-POM. By Lemma 1 there is a POM
τ ′ selecting the same set of elements as τ , thus τ ′ does not choose x and so x is
avoidable.

Acknowledgments. We want to thank Matthias Henze and Rafel Jaume for
posing this open question. We also want to thank Rob Irving, Ágnes Cseh and
David Manlove for helping us to find related work to our problem. Special thanks
goes to Nieke Aerts for enjoyable and interesting discussions on attempts to
improve Corollary 1.

This research was partially done while the second author was at FU Berlin in
the scope of an EuroGIGA Cross-CRP visit and later with a DAAD Study Visit
Grant for Senior Academics.

References

1. MATCH-UP 2012: The Second International Workshop on Matching Under Pref-
erences. Corvinus University of Budapest, Hungary (2012)

2. Abdulkadiroğlu, A., Sönmez, T.: Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica 66(3), 689–701
(1998)

3. Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto optimality
in house allocation problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004.
LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004)

4. Aziz, H., Brandt, F., Brill, M.: The computational complexity of random serial
dictatorship. Economics Letters 121(3), 341–345 (2013)

5. Aziz, H., Mestre, J.: Parametrized algorithms for random serial dictatorship. arXiv
preprint arXiv:1403.0974 (2014)



312 A. Asinowski, B. Keszegh, and T. Miltzow

6. Cechlárová, K., Eirinakis, P., Fleiner, T., Magos, D., Mourtos, I., Potpinková, E.:
Pareto optimality in many-to-many matching problems. Preprint (2013)

7. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The
American Mathematical Monthly 69(1), 9–15 (1962)

8. Henze, M., Jaume, R., Keszegh, B.: On the complexity of the partial least-squares
matching voronoi diagram. In: Proceedings of the 29th European Workshop on
Computational Geometry (EuroCG), pp. 193–196 (March 2013)

9. Manlove, D.: Algorithmics of matching under preferences. World Scientific Pub-
lishing (2013)

10. Nisan, N.: Algorithmic game theory. Cambridge University Press (2007)
11. Rote, G.: Partial least-squares point matching under translations. In: 26th Euro-

pean Workshop on Computational Geometry (EuroCG 2010), pp. 249–251 (March
2010)

12. Saban, D., Sethuraman, J.: The complexity of computing the random priority
allocation matrix. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289,
p. 421. Springer, Heidelberg (2013)

13. Scott, S.: A study of stable marriage problems with ties. PhD thesis. University of
Glasgow (2005)



Practical Card-Based Cryptography

Takaaki Mizuki1 and Hiroki Shizuya2

1 Cyberscience Center, Tohoku University,
6–3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980–8578, Japan

tm-paper+cardmali@g-mail.tohoku-university.jp
2 Center for Information Technology in Education, Tohoku University,

41 Kawauchi, Aoba-ku, Sendai 980–8576, Japan

Abstract. It is known that secure multi-party computations can be
achieved using a number of black and red physical cards (with identical
backs). In previous studies on such card-based cryptographic protocols,
typically an ideal situation where all players are semi-honest and all cards
of the same suit are indistinguishable from one another was assumed. In
this paper, we consider more realistic situations where, for example, some
players possibly act maliciously, or some cards possibly have scuff marks,
so that they are distinguishable, and propose methods to maintain the
secrecy of players’ private inputs even under such severe conditions.

1 Introduction

It is known that secure multi-party computations can be conducted using a
number of black ( ♣ ) and red ( ♥ ) physical cards with identical backs ( ? ).
Indeed, as listed in Table 1, several card-based cryptographic protocols have been
invented thus far for secure computations, such as secure AND and XOR. In
previous studies on such card-based protocols, typically an ideal situation where
all players are semi-honest and all cards of the same color are indistinguishable
from one another was assumed. In contrast, this paper considers more realistic
situations where, for example, some players act maliciously, or some cards have
scuff marks (scratches) so that they are distinguishable.

This paper begins with a review of the “five-card trick [3],” the first card-based
protocol.

1.1 Five-Card Trick

The five-card trick, invented in 1989 by den Boer, securely computes the AND
function using five cards [3]. Before introducing the details of the protocol, we
present some notations.

To deal with Boolean values, we fix an encoding rule using a pair of cards
as

♣ ♥ = 0, ♥ ♣ = 1. (1)

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 313–324, 2014.
c© Springer International Publishing Switzerland 2014



314 T. Mizuki and H. Shizuya

Table 1. Existing card-based protocols

No. of colors No. of cards Avg. no. of trials

◦ Non-committed-format AND

den Boer [3] (§1.1) 2 5 1

Mizuki-Kumamoto-Sone [8] 2 4 1

◦ Committed-format AND

Crépeau-Kilian [2] 4 10 6

Niemi-Renvall [10] 2 12 2.5

Stiglic [13] 2 8 2

Mizuki-Sone [7] (§2.1) 2 6 1

◦ Committed-format XOR

Crépeau-Kilian [2] 4 14 6

Mizuki-Uchiike-Sone [9] 2 10 2

Mizuki-Sone [7] (§2.2) 2 4 1

◦ Committed-format half adder

Mizuki-Asiedu-Sone [5] 2 8 1

◦ Committed-format full adder

Mizuki-Asiedu-Sone [5] 2 10 1

◦ Committed-format 3-variable symmetric-function evaluation

Nishida-Mizuki-Sone [11] 2 8 1

For a bit x ∈ {0, 1}, when two face-down cards ? ? have a value equaling x
according to the encoding (1) above, the pair of these face-down cards is called
a commitment to x, and is written as

? ?︸ ︷︷ ︸
x

.

Now, assume that Alice, holding a bit a ∈ {0, 1}, and Bob, holding a bit
b ∈ {0, 1}, together want to securely compute the conjunction a ∧ b, i.e., they
wish to learn only the value of a ∧ b. The five-card trick [3] achieves this as
follows.

1. Alice privately arranges a commitment to negation ā of bit a, and Bob
privately arranges a commitment to b. These two commitments together
with a red card are put forth:

? ?︸ ︷︷ ︸
ā

♥ ? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
ā

? ? ?︸ ︷︷ ︸
b

.

It should be noted that the three middle cards would be ♥ ♥ ♥ only if
a = b = 1.

2. Alice and Bob apply a random cut, which is denoted by 〈·〉, to the sequence
of five cards: 〈

? ? ? ? ?

〉
→ ? ? ? ? ? .



Practical Card-Based Cryptography 315

A random cut means a cyclic shuffling operation; Alice and Bob can imple-
ment it by cutting the deck in turn until they are satisfied that the cards
have been adequately shuffled.

3. Reveal all of the five cards; then, we have either three (cyclically) consecutive

♥ ’s or not:

♥ ♥ ♣ ♣ ♥ or ♣ ♥ ♣ ♥ ♥ .

The former case implies a ∧ b = 1 and the latter implies a ∧ b = 0.

1.2 Other Existing Protocols

As seen in the previous subsection, the five-card trick [3] developed in 1989
performs a secure AND computation with five cards. In 2012, it was proved
that the same cryptographic approach can be conducted with four cards [8] (see
Table 1 again).

All the remaining protocols in Table 1 are, however, “committed format.”
Committed-format protocols are those that produce their output as commit-
ments; for example, AND protocols [2,7,10,13] and XOR protocols [2,7,9] gener-
ate the commitments

? ?︸ ︷︷ ︸
a∧b

and ? ?︸ ︷︷ ︸
a⊕b

,

respectively, without revealing the values of inputs a and b. It should be noted
that any protocol in Table 1 whose average number of trials is more than one
is a Las Vegas algorithm. We introduce the existing efficient AND and XOR
protocols [7] in Section 2.

A secure NOT computation is trivial, i.e., only swapping the two cards of a
commitment yields the negation

? ?︸ ︷︷ ︸
x

→

�︷ ︸︸ ︷
? ? → ? ?︸ ︷︷ ︸

x̄

.

In addition, there are protocols for copying a commitment [2,7,10]. Therefore,
obviously, by combining these AND/XOR/NOT and copy protocols, one can
construct a card-based protocol for any given (multi-valued multiple-variable)
function provided that many cards are available.

Further, there are some efficient protocols designed only for specific functions,
such as the adder and the majority function [5,11]. A formal mathematical model
for card-based protocols appears in [6].

1.3 Semi-Honest Model

As seen in the execution of the five-card trick, introduced above in Section 1.1,
when executing a card-based protocol, all players gather at the same place and
publicly apply operations, such as flipping cards over and making random cuts,



316 T. Mizuki and H. Shizuya

to the deck of cards in cooperation. Therefore, basically, it is very difficult for
any player to deviate from the protocol, and hence, all the players are typically
assumed to be semi-honest.

For example, in the case of the five-card trick, if the commitments to the input
values are put correctly in step 1 and a random cut is applied correctly in step
2, then the outcome in step 3 must be information-theoretically secure, that is,
only the value of a ∧ b becomes public and no other information leaks.

As mentioned above, the assumption that a protocol is always executed cor-
rectly with all eyes fixed on how the cards are manipulated after all players place
commitments on the table as their input is natural1. However, in the case of a
commitment that is supposed to be placed according to every player’s private
bit, a player may be able to act maliciously. For instance, ignoring the encoding
rule (1), Alice might place two cards of the same color ( ♣ ♣ or ♥ ♥ ) with
their faces down on the table. This paper addresses such an active attack, and
its countermeasure is discussed in Section 3.

1.4 Our Main Results

The main results of this paper are as follows. In Section 3, taking the five-card
trick as an example, we demonstrate that an attack that exploits the input format
as mentioned above is possible and then propose a general way to prevent such
an attack. In Section 4, we discuss the advantages and disadvantages when the
cards were manufactured such that the pattern on their back sides is rotationally
symmetric. In Section 5, we deal with an issue where some cards possibly have
scuff marks on their backs so that they are distinguishable, and propose methods
to maintain secrecy under such a severe condition.

Section 2 is devoted to a review of the existing committed-format protocols,
and Section 6 concludes the paper.

2 Existing Committed-Format AND/XOR Protocols

In this section, we introduce Mizuki-Sone’s AND and XOR protocols [7], which
are the best among the currently known committed-format protocols (recall
Table 1). As seen below, the results of this paper are partially based on the idea
behind these protocols.

First, we present some notations. For a pair of bits (x, y), define operations
get and shift as

get0(x, y) = x, get1(x, y) = y;

shift0(x, y) = (x, y), shift1(x, y) = (y, x).

That is, get0(x, y) returns the first bit of the pair, get1(x, y) returns the second
bit, shift0(x, y) returns the pair without changing it, and shift1(x, y) swaps the
pair. Using these notations, we can write

a ∧ b = geta⊕r(shiftr(0, b)) (2)

1 We assume that no player has the skills of a professional magician.



Practical Card-Based Cryptography 317

where r ∈ {0, 1} is an arbitrary bit. In addition, for two bits x and y, the
expression

? ? ? ?︸ ︷︷ ︸
(x,y)

means

? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
y

.

2.1 AND Protocol

Given commitments to a and b together with two additional cards, Mizuki-Sone’s
AND protocol [7] produces a commitment to a ∧ b, as follows.

1. In addition to the two commitments, arrange a commitment to 0:

? ?︸ ︷︷ ︸
a

♣ ♥ ? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
b

,

which can be written as

?︸︷︷︸
a

?︸︷︷︸
ā

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
b

where a single-card encoding, ♣ = 0, ♥ = 1, is used for the sake of
convenience.

2. Rearrange the order of the sequence as

? ? ? ? ? ?
�
������ ���

? ? ? ? ? ? .

3. Bisect the sequence of six cards, and switch them randomly (we call it a
random bisection cut [7] denoted by [ · | · ]):

?︸︷︷︸
a

? ?︸ ︷︷ ︸
0

?︸︷︷︸
ā

? ?︸ ︷︷ ︸
b

↓[
? ? ?

∣∣∣ ? ? ?
]

↓

?︸︷︷︸
a

? ?︸ ︷︷ ︸
0

?︸︷︷︸
ā

? ?︸ ︷︷ ︸
b

or ?︸︷︷︸
ā

? ?︸ ︷︷ ︸
b

?︸︷︷︸
a

? ?︸ ︷︷ ︸
0

,

where each case occurs with the probability of 1/2.



318 T. Mizuki and H. Shizuya

4. Rearrange the order of the sequence as follows:

? ? ? ? ? ?
������

�
��	

? ? ? ? ? ? .

Then, we have

? ?︸ ︷︷ ︸
a⊕r

? ? ? ?︸ ︷︷ ︸
shiftr(0,b)

where r is a (uniformly distributed) random bit because of the random bi-
section cut.

5. Reveal the first two cards from the left; then, the value of a ⊕ r together
with Eq. (2) tells us the position of the desired commitment to a ∧ b:

♣ ♥ ? ?︸ ︷︷ ︸
a∧b

? ? or ♥ ♣ ? ? ? ?︸ ︷︷ ︸
a∧b

.

Since r is random, no information about bit a leaks. In addition, the two face-
up cards are available for another computation. It should be noted, furthermore,
that the other pair of two face-down cards is a commitment to ā ∧ b.

2.2 XOR Protocol

Mizuki-Sone’s XOR protocol [7] produces a commitment to a ⊕ b without any
additional card, as follows.

1. Arrange two commitments as

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

.

2. Rearrange the order of the sequence as

? ? ? ?
������

? ? ? ? .

3. Apply a random bisection cut[
? ?

∣∣∣ ? ?
]
→ ? ? ? ? .

4. Rearrange the order of the sequence again as

? ? ? ?
������

? ? ? ? .



Practical Card-Based Cryptography 319

Then, we have

? ?︸ ︷︷ ︸
a⊕r

? ?︸ ︷︷ ︸
b⊕r

where r is a random bit.

5. Reveal the leftmost two cards; then, we know whether r = a or r = ā, and
we have

♣ ♥ ? ?︸ ︷︷ ︸
a⊕b

or ♥ ♣ ? ?︸ ︷︷ ︸
a⊕b

,

and hence, we obtain a commitment to a ⊕ b. (Note that the secure NOT
computation can transform a commitment to a⊕ b into one to a⊕ b.)

3 Attack Exploiting Input Format

This section addresses an “injection attack” type problem, namely, the issue
where an input that does not follow the encoding rule (1) is given to a protocol.
In Section 3.1, we illustrate how the attack succeeds by considering the five-card
trick as an example. In Section 3.2, we present a general method for preventing
such an attack.

3.1 Example of the Attack

Consider the five-card trick explained in Section 1.1, and suppose that Bob is
honest but Alice is malicious. Then, assume that Alice placed two cards ♣ ♣
of the same color with their face down on the table, which is not in a correct
format for a commitment (encoding (1)). That is, the sequence of five cards in
step 1 of the protocol satisfies

?
♣

?
♣

?
♥

? ?︸ ︷︷ ︸
b

,

where a mark denoting its color is attached below a card for the sake of conve-
nience.

Hence, if b = 1, two red cards ♥ ♥ would be consecutive; if b = 0, they would
not be. Therefore, after all five cards are revealed in step 3, their order will tell
us the value of Bob’s private bit b (further, the protocol does not terminate
successfully).

One possible way to prevent such an attack might be to hand only one pair
of a black card and a red one to Alice; however, it is possible that Alice could
conceal her action when she makes her commitment, and hence, the situation
where she is able to input an injection ♣ ♣ covertly, having obtained another

black card ♣ from somewhere, may reasonably occur.



320 T. Mizuki and H. Shizuya

3.2 Countermeasure

Here, we give a general method to avoid the attack described in the previous
subsection. The basic idea is simple: we check that the two cards placed on the
table by each player satisfy the encoding rule (1). The method proposed below
is based on the idea behind the XOR protocol [7], introduced in Section 2.2.

Assume that we want to check that the two cards

?
α1

?
α2

placed by Alice comprise a black card and a red one (where α1 and α2 denote the

marks of colors). Adding two cards ♣ ♥ , we execute the following procedure.

1. Arrange Alice’s input and a commitment to 0 as

?
α1

?
α2

♣ ♥ → ?
α1

?
α2

? ?︸ ︷︷ ︸
0

.

2. Rearrange the order as

? ? ? ?
������

? ? ? ? .

3. Apply a random bisection cut[
? ?

∣∣∣ ? ?
]
→ ? ? ? ? .

4. Rearrange the order again as

? ? ? ?
������

? ? ? ? .

Then, we have

? ?
SHIFTr(α1,α2)

? ?︸ ︷︷ ︸
r

,

where r is a random bit, and furthermore, the order of the leftmost two cards
is α1, α2 if r = 0; and α2, α1 if r = 1. It should be noted that, if Alice placed
a commitment (in a correct format) as her input, then it would be

? ?︸ ︷︷ ︸
a⊕r

? ?︸ ︷︷ ︸
r

.



Practical Card-Based Cryptography 321

5. Reveal the leftmost two cards. If the two face-up cards are ♣ ♣ or ♥ ♥ ,
then Alice must have acted maliciously. Otherwise, Alice placed the com-
mitment in a correct format, and hence,

♣ ♥ ? ?︸ ︷︷ ︸
a

or ♥ ♣ ? ?︸ ︷︷ ︸
ā

;

consequently, we keep a commitment to a without leaking any information
about a (it was only a secure XOR computation of a and 0).

Given two face-down cards placed by a player, this procedure allows us to
determine whether they follow the format correctly or not, and in the former
case, no information about the commitment leaks.

4 Backs with a Rotationally Symmetric Pattern

As seen thus far, any cards used in the previous work have non-rotationally
symmetric patterns, such as ♣ or ♥ (for face sides) and ? (for back sides).
Therefore, during the execution of a protocol, players can easily arrange all
cards in the same (up/down) direction; usually, people arrange them so that the
bottom edge of every card is down. (Actually, as seen below, a bottom-edge-up

card, such as

♣

, possibly leaks some information.)
In this section, we discuss the advantages and disadvantages of the cards

being manufactured such that the pattern on their back sides is rotationally
symmetric, such as (plain-colored backs). In particular, in Section 4.1, we
demonstrate that indeed such a card possibly leaks information about a player’s
private input. However, since such a (single) card can hold information with
up/down directions, it enables us to construct a protocol with fewer colors and
fewer cards, as shown in Section 4.2.

4.1 Disadvantage

Consider the case where Alice and Bob execute the five-card trick with a deck
of cards whose backs are rotationally symmetric, such as .

When Alice makes a commitment to ā, suppose that she places two face-down
cards on the table so that the bottom edge of the first (namely, leftmost)

card is up (like

♣

or

♥

):

︸ ︷︷ ︸
ā

︸ ︷︷ ︸
b

.

If the bottom edges of the remaining four cards are all down (like ♣ or ♥ ),
then after applying a random cut and revealing the five cards, the position of the
card whose bottom edge is up tells Alice about the complete status of the five
cards before the random cut, and hence, she can learn the value of b. It should
be noted that if Bob notices the bottom-edge-up card, then he can learn a, as
well; thus, malicious Alice potentially takes a risk.



322 T. Mizuki and H. Shizuya

Against such an attack, we can apply the method given in Section 3.2 directly;
it suffices to check whether the directions of the input commitments are the same
before starting an intended protocol. Recall that the method results in either
the very same sequence of four cards or the sequence where the first two and the
second two cards are both swapped, and hence, any rotated card can be found.

Thus, when using a deck of cards whose backs have rotationally symmetric
patterns, one should note their up/down directions during an execution of a
card-based protocol. In a sense, this can be performed more easily when the
non-rotationally symmetric back pattern is adopted; or it is a reasonable idea
that both sides are designed to be rotationally symmetric.

4.2 Advantage

In Section 4.1 above, we mentioned that one needs to note the up/down direc-
tions of the cards during a protocol for cards with rotationally symmetric backs,
such as . However, we mention here that there is an advantage to using such
rotationally symmetric backs. That is, we design a new protocol that suits a
deck of cards with such a property.

For a (single) black card ♣ whose back is , consider an encoding

♣ = 0,

♣

= 1,

and write

︸︷︷︸
x

for bit x, the value of which the face-down card holds in accordance with the
encoding. Then, inverting a face-down card, that is, rotating the card by 180 de-
grees, yields a NOT computation. Below, we construct AND and XOR protocols
under the encoding.

First, consider an XOR computation. Given (up/down-direction) commit-
ments to a and b

︸︷︷︸
a

︸︷︷︸
b

,

a shuffle in which they are inverted together or remain the same can be easily
implemented; for example, it suffices for Alice and Bob to rotate the two cards
together in turn until they are satisfied that the cards have been adequately
shuffled. After applying such a shuffle, we have

︸︷︷︸
a⊕r

︸︷︷︸
b⊕r

where r is a random bit. According to the idea on which the XOR protocol [7]
explained in Section 2.2 is based, turning over the left card produces a (up/down-
direction) commitment to a⊕ b.



Practical Card-Based Cryptography 323

Next, consider an AND computation. We simulate the idea behind the AND
protocol [7] explained in Section 2.1. Starting from

︸︷︷︸
a

♣ ︸︷︷︸
b

→ ︸︷︷︸
a

︸︷︷︸
0

︸︷︷︸
b

,

apply a shuffle where the actions of inverting the leftmost card and swapping
the rightmost two cards are synchronized, then we have

︸︷︷︸
a

︸︷︷︸
0

︸︷︷︸
b

or ︸︷︷︸
ā

︸︷︷︸
b

︸︷︷︸
0

,

and hence, revealing the leftmost card gives us a commitment to a∧ b. It should,
however, be noted that it is not clear whether a person could easily physically
implement such a shuffle.

Thus, when adopting cards having a rotationally symmetric pattern on their
backs, AND and XOR computations can be achieved with a single color and
half of the number of cards required for the previous protocols; however, there
remains an implementation issue for the AND computation.

5 Backs with Scuff Marks

The previous work, implicitly or explicitly, assumes that all cards of the same
color are indistinguishable from one another. However, in reality, such an as-
sumption does not always hold; for example, some cards possibly have scuff
marks on their backs making them distinguishable from other cards.

Now, suppose that a black card ♣ has a scuff mark on its back, ?1, where
the tiny number 1 represents the scuff mark. If an input commitment made by
Alice contains that flawed card, then we have

?1 ?︸ ︷︷ ︸
a

or ? ?1︸ ︷︷ ︸
a

,

and hence, a person who has noticed the scuff mark can learn a = 0 (in the
former case) or a = 1 (in the latter case). Therefore, when an input commitment
has a scuff mark, critical information leakage occurs.

To avoid this, adopting an idea similar to the one on which the Secret Sharing
Scheme or Garbled Circuit (e.g. refer to [1,4,12]) is based, we make a commitment
shared, as follows. For a bit x and a natural number s ≥ 2, a sequence of s
commitments

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

· · · ? ?︸ ︷︷ ︸
xs

,

such that
⊕s

i=1 xi = x is called an s-shared commitment to x.
Using this new concept, we can construct novel scuff-proof XOR and AND

protocols. Our protocols can maintain secrecy even if at most t cards are flawed.
The details are omitted in this LNCS paper due to the page limitation.



324 T. Mizuki and H. Shizuya

6 Conclusion

In this paper, we considered realistic situations in card-based cryptography
where some players possibly act maliciously, backs of cards are rotationally sym-
metric, or some cards possibly have scuff marks. We then proposed methods to
maintain the secrecy of players’ private inputs even under such severe conditions.

Acknowledgments. We thank the anonymous referees whose comments helped
us improve the presentation of the paper. This work was supported by JSPS
KAKENHI Grant No. 23700007.

References

1. Cramer, R., Damg̊ard, I., Nielsen, J.: Secure Multiparty Computation and Secret
Sharing – An Information Theoretic Approach, book draft (May 11, 2013)

2. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) Advances
in Cryptology - CRYPT0 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg
(1994)

3. den Boer, B.: More efficient match-making and satisfiability: the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) Advances in Cryptology - EUROCRYPT
1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990)

4. Goldreich, O.: Foundations of Cryptography II: Basic Applications. Cambridge
University Press, Cambridge (2004)

5. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 162–173. Springer, Heidelberg (2013)

6. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols
via abstract machine. International Journal of Information Security 13(1), 15–23
(2014)

7. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009)

8. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
598–606. Springer, Heidelberg (2012)

9. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Aus-
tralasian Journal of Combinatorics 36, 279–293 (2006)

10. Niemi, V., Renvall, A.: Secure multiparty computations without computers. The-
oretical Computer Science 191, 173–183 (1998)

11. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B., Vega-
Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Hei-
delberg (2013)

12. Schneider, T.: Engineering Secure Two-Party Computation Protocols. Springer,
Heidelberg (2012)

13. Stiglic, A.: Computations with a deck of cards. Theoretical Computer Science 259,
671–678 (2001)



The Harassed Waitress Problem�

Harrah Essed1 and Wei Therese2

Italian House of Pancakes

Abstract. It is known that a stack of n pancakes can be rearranged
in all n! ways by a sequence of n!−1 flips, and that a stack of n ‘burnt’
pancakes can be rearranged in all 2nn! ways by a sequence of 2nn!−1 flips.
Unfortunately, the known algorithms are too difficult to be used by the
waitstaff of a busy restaurant. How can humans can determine the next
flip from the current stack and no extra information? We provide such
successor rules that run in O(n)-time using no memory. More broadly,
we discuss how iteration and computational complexity provide helpful
constraints when solving Hamilton cycle problems in highly symmetric
graphs, and how simple greedy algorithms can produce globally optimal
Gray codes.

Keywords: pancake sorting, greedy algorithm, Gray code, permuta-
tions, prefix-reversal, symmetric group, Cayley graph, Hamilton cycle.

1 Introduction

Jacob Goodman, writing under the name Harry Dweighter (“harried waiter”),
introduced the original pancake problem: Given a stack of n pancakes of vari-
ous sizes, what is the minimum number of flips required to sort the pancakes
from smallest to largest? In this problem, the individual pancakes are numbered
1, 2, . . . , n by increasing size; a stack of pancakes can be represented by a per-
mutation in one-line notation. Each ‘flip’ of the topmost i pancakes corresponds
to a prefix-reversal of length i in the permutation. For example, the following
illustration shows how the stack 632514 can be sorted in 5 flips:

6→ 2→ 3→ 5→ 3→

632514 415236 145236 541236 321456 123456

A well-studied variation features ‘burnt’ pancakes, which have two distinct
sides. In this problem, a stack is represented by a signed permutation in one-line
notation, with i and ī being used when the burnt side of pancake i is facing
down or up, respectively. Each ‘flip’ of the topmost i pancakes corresponds to a
sign-complementing prefix-reversal in the signed permutation. For example, the
following illustration shows how the stack 3̄ 2̄ 1̄ can be sorted in 7 flips:

� 1Joe Sawada and 2Aaron Williams, University of Guelph, Canada, thank NSERC
for the support of their research.

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 325–339, 2014.
c© Springer International Publishing Switzerland 2014



326 H. Essed and W. Therese

2→ 1→ 2→ 1→ 3→ 1→ 3→

1̄ 2̄ 3̄ 2 1 3̄ 2̄ 1 3̄ 1̄ 2 3̄ 1 2 3̄ 3 2̄ 1̄ 3̄ 2̄ 1̄ 1 2 3

Recently it was shown that Goodman’s original harried waiter problem is NP-
hard to solve in general [2] while the complexity of the burnt variation is un-
known. If arbitrary substacks are allowed to be flipped, then the unburnt sort-
ing problem is APX-hard [1] and the burnt sorting problem can be solved in
polynomial-time [4].

Research on pancake sorting had humble beginnings — Goodman formulated
the problem while sorting a stack of towels — but has a number of interesting
applications including genomics (see Fertin et al [3]) and in vivo computing (see
Haynes [5] for an introduction to the ‘e.Hop’ restaurant), and has been discussed
by the media (see Singh [9]).

1.1 The Harassed Waitress Problem

Zaks [16] asked the following question: Can a stack of n pancakes be rearranged
in all n! ways by a sequence of n! − 1 flips? To differentiate this problem from
Goodman’s, we refer to it as the harassed waitress problem. The following passage
from [16] explains its relevant results:

Using our algorithms the poor waiter waitress will be able to generate, in
n! such steps, all possible n! stacks (returning to the original one) . . . in
(k− 1)/k! of them he will reverse the top k pancakes, which amounts to
less than 2.8 pancakes reversed on the average.

For example, Zaks’s solution for n = 3 is as follows:

2→ 3→ 2→ 3→ 2→ 3→

123 213 312 132 231 321

Zaks’s result is a Gray code of permutations using prefix-reversals, and the Gray
code is cyclic since the first and last stacks differ by a prefix-reversal. Equiv-
alently, Zaks’s solution gives a Hamilton cycle in the pancake network, whose
vertices are the permutations of n with adjacencies between those that differ by
a prefix-reversal. The simplicity of Zaks’s solution is interesting given the fact
that the shortest path problem in this graph is NP-hard.

As with Goodman’s problem, there is also a natural ‘burnt’ variation. The
underlying graph is the burnt pancake network, and successful orders are Gray
codes of signed permutations using sign-complementing prefix-reversals.

The aforementioned solutions can be generated one stack at a time by efficient
algorithms. Unfortunately, the algorithms are designed for computers. We would
like to have a simple successor rule that maps each stack to the next stack in a
particular solution. More specifically, we are interested in the following question:

How efficiently can we compute the next flip from the current
stack with no additional information given?



The Harassed Waitress Problem 327

Fig. 1. The most important question for solving the harassed waitress problem

To motivate this question it is helpful to focus on the harassed waitress. We
suppose that our heroine is working at a busy restaurant and may need to stop
and restart her task many times. These interruptions do not afford her the luxury
of recalling the context of the previous flips made – she has no memory!

Another issue one may consider is the total number of pancakes that the
waitress must flip throughout a given solution. In particular, we are interested in
solutions that flip either the minimum or maximum possible number of pancakes
overall (or equivalently the average number of pancakes in each flip). Un-fun-
tunately, we do not have the space to address this issue.

1.2 New Results

We provide four results (assume worst-case analysis unless specified).

1. With a minimum-flip strategy, our waitress can determine how many pancakes
to flip at each step in O(n)-time. On average, she uses O(1)-time.

2. With a minimum-flip strategy, our waitress can determine how many burnt
pancakes to flip at each step in O(n)-time. On average, she uses O(1)-time.

3. With a maximum-flip strategy, our waitress can determine how many pan-
cakes to flip at each step in O(n)-time. On average, she uses O(1)-time if she
considers two flips at a time.

4. With a maximum-flip strategy, our waitress can determine how many burnt
pancakes to flip at each step in O(n)-time. On average, she uses O(1)-time if
she considers two flips at a time.

Our results are focused on the complexity of determining the next flip and not
performing the flip in a data structure (see [12] for a fun O(1)-time implementa-
tion of prefix-reversals). The results are based on four greedy algorithms given by
SawadaandWilliams [8,7]. The algorithmsbuild a list of stacks one at a time, start-
ing from 1 2 · · · n. The next stack is created by taking the last stack in the list and



328 H. Essed and W. Therese

applying the ‘best’ flip that creates a ‘new’ stack. In this context ‘new’ means that
the stack is not already in the list, and ‘best’ meansminimumormaximumdepend-
ing on the algorithm. The new stack is appended to the list, and the algorithm ter-
minates when a new stack cannot be created. For example, let us illustrate one step
of the minimum flip algorithm when n = 4 starting from the following list:

2→ 3→ 2→ 3→ 2→ ?→ ?
1234 2134 3124 1324 2314 3214

We cannot flip the top two pancakes of 3214 since 2314 is already in the list.
Similarly, we cannot flip the top three pancakes since 1234 is already in the list.
However, we can flip the top four pancakes, and so the resulting new stack 4123
is added to the list. Eventually, this approach lists all stacks. All four greedy
algorithms are illustrated by Table 1 in the Appendix. While these greedy de-
scriptions are simple, they are only practical for waitresses with photographic
memories! Just for fun, we implemented our successor algorithms in C and in-
cluded them in the Appendix.

2 Successor Rules for Four Greedy Flip Strategies

For each of the greedy flip strategies to list stacks of (burnt) pancakes, we recall
the recursive definitions provided in [7]. These recursive definitions are used to
prove the correctness of the successor rules. First, some notation is required.

Let P(n) denote the set of permutations of {1, 2, . . . , n} and let P(n) de-
note the set of signed permutations of {1, 2, . . . , n}. For example, P(3) =
{123, 132, 213, 231, 312, 321} and P(2) = {12, 21, 1̄2, 21̄, 12̄, 2̄1, 1̄2̄, 2̄1̄}. Given a
(signed) permutation p = p1p2 · · · pn, we will use the following notation:

– flipj(p) = pjpj−1 · · · p1pj+1 · · · pn, a flip (prefix reversal) of length j,

– flipj(p) = p̄j p̄j−1 · · · p̄1pj+1 · · · pn, a signed flip (prefix reversal) of length j,
– p · n denotes the concatenation of the symbol n to the permutation p.

2.1 Minimum Flip for Permutations

Given p = p1p2 · · · pn ∈ P(n), let qi = pi+1 · · · pnp1 · · · pi−1 denote a rotation of
the permutation p with the element pi removed. Consider the following definition:

Min(p) = Min(qn) · pn, Min(qn−1) · pn−1, . . . , Min(q1) · p1, (1)

with base case Min(p1) = p1 when n = 1. This recursive listing corresponds
to a greedy minimum flip strategy [7] for permutations, where the first and
last strings differ by flipn. It is used to prove the correctness of the upcoming
successor rule.

A permutation p ∈ P(n) is increasing if it corresponds to a rotation of the
word 12 · · ·n. It is decreasing if it is a reversal of an increasing permutation.
Specifically, the set of all n increasing permutations is:

{12 · · ·n, 23 · · ·n1, 34 · · ·n12, . . . , n12 · · ·n−1}.



The Harassed Waitress Problem 329

A k-permutation is any string of length k over the set {1, 2, 3, . . . , n} with no re-
peating symbols. A k-permutation is increasing (decreasing) if it is a subsequence
of an increasing (decreasing) permutation. For instance, 5124 is increasing, but
5127 is not.

Remark 1. If p is increasing (decreasing) then both flipn−1(p) and flipn(p) are
decreasing (increasing).

Given a permutation p′, let succ(p′) denote the successor of p′ in Min(p)
when the listing is considered to be circular.

Lemma 1. Let p′ = p′1p
′
2 · · · p′n be a permutation in the (circular) listingMin(p),

where p = p1p2 · · · pn is increasing. Then:

succ(p′) = flipj(p
′),where p′1p

′
2 · · · p′j is the longest prefix of p′ that is decreasing.

Proof. We focus on the permutations whose successor is the result of a flip of size
n and then apply induction (the base case when n = 2 is easily verified). Consider
the recursive definition forMin(p) in (1). Given a permutationp′, its successor will
be flipn(p

′) if and only if it is the last permutation in one of the recursive listings
of the formMin(qi) · pi. Clearly, at most one permutation in each recursive listing
can be decreasing. By showing that the last permutation in each listing is the one
that is decreasing, we verify the successor rule for flips of size n.

We are given that the initial permutation is increasing. Also, note that the last
permutation inMin(qn) ·pn is flipn−1(p). Thus, by Remark 1 this last permutation
is decreasing. By applying the flip of size n to this last permutation, Remark 1 im-
plies that the resulting permutation, which is the first permutation ofMin(qn−1) ·
pn−1, will be increasing. Repeating this argument for i = n−1, n−2, . . . , 1 verifies
our claim that the last permutation in each recursive listing is decreasing; it is true
for the final recursive listing since the last permutation in Min(p) differs from the
first by a flip of size n.

Thus, the successor rule is correct for all permutations whose successor is the
result of a flip of size n. For all other permutations whose successor is not a flip of
size n, the successor rule follows from induction. ��

As an example, consider the permutation 3764512 with respect to the listing
Min(12 · · ·n). The prefix 3764 is the longest one that is decreasing, thus j = 4
and the next permutation in the listing is flip4(3764512). Determining the value
j in this successor rule can easily be determined in O(n) time by applying the
pseudocode given in Algorithm 1.

Theorem 1. Successor(p) returns the size of the flip required to obtain the
successor of p in the (circular) listing Min(12 · · ·n) in O(n) time.

This function runs in expected O(1) time when the permutation is passed by
reference because the average flip size is bounded above by the constant e [7].
Thus, by repeatedly applying this successor rule, our waitress can iterate through
all n! stacks of pancakes in constant amortized time starting from p = 12 . . . n.
She will return to the initial stack after she completes a flip of size n and the
top pancake p1 = 1.



330 H. Essed and W. Therese

Algorithm 1. Computing the successor of p in the listing Min(12 · · ·n)
1: function Successor(p)
2: incr ← 0
3: for j ← 1 to n− 1 do
4: if pj < pj+1 then incr ← incr + 1

5: if incr = 2 or (incr = 1 and pj+1 < p1) then return j

6: return n

2.2 Minimum Flips for Signed Permutations

A recursive formulation for signed permutations is similar to the formulation for
the non-signed case with a minor change to some notation. Let q = q1q2 · · · q2n =
p̄1p̄2 · · · p̄np1p2 · · · pn be a circular string of length 2n. Let qi denote the length
n−1 subword ending with qi−1. For instance, q3 = p4p5 · · · pnp̄1p̄2. Consider the
following recursive definition:

Min(p) = Min(q2n) · q2n, Min(q2n−1) · q2n−1, . . . , Min(q1) · q1, (2)

where Min(p1) = p1, p̄1. This listing corresponds to a greedy minimum flip strat-
egy [7] for signed permutations, where the first and last strings differ by a flip
of size n.

We say a signed permutation p ∈ P(n) is increasing if it corresponds to a
length n subword of the circular string 1̄2̄ · · · n̄12 · · ·n. It is decreasing if it is a
reversal of an increasing permutation. For example, the set of all 2n increasing
signed permutations is

{1̄2̄3̄ · · · n̄, 2̄3̄ · · · n̄1, 3̄4̄ · · · n̄12, . . . , n1̄ · · ·n−1}.

A signed k-permutation is any string of length k over the set
{1, 2, . . . , n, 1̄, 2̄, . . . n̄} with no repeating symbols when taking absolute
value. A signed k-permutation is increasing (decreasing) if it is a subsequence of
an increasing (decreasing) signed permutation. For example, 5672̄4̄ is increasing,
but 4̄567 is not.

Remark 2. If a signed permutation p is increasing (decreasing) then both
flipn−1(p) and flipn(p) are decreasing (increasing).

Given a signed permutation p′, let succ(p′) denote the successor of p′ in
Min(p) when the listing is considered to be circular. A proof of the following
lemma uses Remark 2 and follows the exact same inductive style as the proof
for Lemma 1.

Lemma 2. Let p′ = p′1p
′
2 · · · p′n be a signed permutation in the (circular) listing

Min(p), where p = p1p2 · · · pn is increasing. Then:

succ(p′) = flipj(p
′),where p′1p

′
2 · · · p′j is the longest prefix of p′ that is decreasing.

Pseudocode for such a successor function is given in Algorithm 2.



The Harassed Waitress Problem 331

Algorithm 2. Computing the successor of p in the listing Min(12 · · ·n)
1: function Successor(p)
2: incr ← 0
3: for j ← 1 to n− 1 do
4: if |pj | < |pj+1| then incr ← incr + 1

5: if incr = 2 or (incr = 1 and |pj+1| < |p1|) then return j

6: if |pj | < |pj+1| and sign(pj) = sign(pj+1) then return j

7: if |pj | > |pj+1| and sign(pj) 
= sign(pj+1) then return j

8: return n

Theorem 2. Successor(p) returns the size of the flip required to obtain the
successor of p in the listing Min(12 · · ·n) in O(n) time.

Observe that this function runs in expected O(1) time when the permutation
is passed by reference because the average flip size is bounded above by the
constant

√
e [7]. Thus, by repeatedly applying this successor rule, our waitress

can iterate through all 2nn! stacks of burnt pancakes in constant amortized time
starting from p = 12 . . . n. She will return to the initial stack after she completes
a flip of size n and the top pancake p1 = 1.

2.3 Maximum Flips for Permutations

Define the bracelet order of permutation p1 ∈ P(n) as:

brace(p1) = p1,p2, . . . ,p2n such that pi =

{
flipn(pi−1) if i is even

flipn−1(pi−1) if i > 1 is odd.

The last string in brace(p1) is flipn−1(p1). A bracelet class is a set containing
the strings in a bracelet order brace(p1). The following lemma is proved in [7]:

Lemma 3. If p1 and p2 are distinct permutations in P(n−1), then p1 · n and
p2 · n are in the same bracelet class if and only if p2 = flipn−1(p1).

We now give a recursive definition to list P(n):

Max(n) = brace(q1 · n), brace(q3 · n), brace(q5 · n), . . . , brace(qm−1 · n), (3)

where Max(n − 1) = q1,q2, . . . ,qm and Max(1) = 1. This listing corresponds
to a greedy maximum flip strategy [7] for permutations, where the first and last
strings differ by a flip of size 2. The recursive definition is used to prove the
correctness of the upcoming successor rule.

Given a permutation p = p1p2 · · · pn, let succ(p) denote the successor of p
in Max(n). One may observe that every second permutation in Max(n), starting
with the first, contains the subsequence 123, 231, or 312; or in other words, they
contain the subsequence 123 when p is considered circularly. If a permutation

contains such a subsequence we say it has property
−→
123.



332 H. Essed and W. Therese

Lemma 4. For n ≥ 3:

succ(p) =

{
flipn(p) if p has property

−→
123

flipmax(j−1,2)(p) otherwise,
(4)

where j is the largest index such that pj �= j.

Proof. This successor rule is easy to verify for n = 3. By induction, assume the
successor rule is correct for Max(n−1), where n > 3. Additionally, by induction,
assume the rule is correct when applied to the first r−1 permutations in Max(n).
We must show that the successor of permutation p = p1p2 · · · pn at rank r is
given by (4). Observe that the first r permutations will alternately have, and

not have the property
−→
123. This is because (4) always flips at least two of the

values 1,2, and 3. Thus, p has property
−→
123 if and only if r is odd. We consider

two cases depending on whether r is odd or even.

If r is odd, we have established that p has property
−→
123. By (3) and the

definition of a bracelet class, succ(p) = flipn(p), which verifies (4).

If r is even, we have established that p does not have property
−→
123. Consider

two cases depending on the last element pn. If pn �= n, then by Lemma 3, p
will not be the last permutation in a bracelet class from (3) and thus succ(p) =
flipn−1(p), which verifies (4). If pn = n, then r being even implies that p is the
last permutation in a bracelet class from (3) by Lemma 3. Thus, succ(p) will
correspond to succ(p1p2 · · · pn−1) inMax(n−1) with n appended to the end. Since

p1p2 · · · pn−1 does not have property
−→
123, by induction succ(p1p2 · · · pn−1) =

flipmax(j−1,2)(p1p2 · · · pn−1) where j is the largest index such that pj �= j. Thus,
since pn = n, succ(p) is equal to flipmax(j−1,2)(p) where j is the largest index
such that pj �= j, satisfying (4). ��

Pseudocode for a successor rule based on this lemma is given in Algorithm 3.

Algorithm 3. Computing the successor of p in the listing Max(n)

1: function Successor(p)
2: for j ← 1 to n do
3: if pj = 1 then pos1 ← j

4: if pj = 2 then pos2 ← j

5: if pj = 3 then pos3 ← j

6: if (pos1 < pos2 < pos3) or (pos2 < pos3 < pos1) or (pos3 < pos1 < pos2)
then return n

7: j ← n
8: while pj = j and j > 3 do j ← j − 1

9: return j − 1

Theorem 3. Successor(p) returns the successor of the permutation p in the
listing Max(n) in O(n) time.



The Harassed Waitress Problem 333

By applying the observations from this successor rule, our waitress can apply
a very simple and elegant algorithm to generate Max(n). The main idea is to
visit two permutations at a time; pseudocode is given in Algorithm 4. Since the
average flip length approaches n− 1

2 , the while loop iterates less than once on
average. Thus, this simple algorithm runs in constant amortized time per flip.

Algorithm 4. Exhaustive algorithm to list the ordering Max(n) of P(n)

1: procedure Gen

2: p ← 12 · · ·n
3: repeat
4: Visit(p)
5: p ← flipn(p)
6: Visit(p)
7: j ← n
8: while pj = j do j ← j − 1

9: p ← flipj−1(p)
10: until j = 2

2.4 Maximum Flips for Signed Permutations

Define the signed bracelet order of permutation p1 ∈ P(n) as:

brace(p1) = p1,p2, . . . ,p4n such that pi =

{
flipn(pi−1) if i is even

flipn−1(pi−1) if i > 1 is odd.

Using this definition, we arrive at a similar recurrence to list P(n) as the unsigned
case in the previous section:

Max(n) = brace(q1 · n), brace(q3 · n), brace(q5 · n), . . . , brace(qm−1 · n), (5)

where Max(n− 1) = q1,q2, . . . ,qm and Max(1) = 1, 1̄. This listing corresponds
to a greedy maximum flip strategy [7] for signed permutations, where the first
and last strings differ by a flip of size 1.

Given a permutation p = p1p2 · · · pn, let succ(p) denote the successor of p
in Max(n). To find an efficient successor rule for this listing, observe that every
second permutation, starting with the first, contains the subsequence 12, 21̄, 1̄2̄,

or 2̄1. If a permutation contains such a subsequence we say it has property
−→
12.

Lemma 5. For n ≥ 2:

succ(p) =

{
flipn(p) if p has property

−→
12

flipmax(j−1,1)(p) otherwise,
(6)

where j is the largest index such that pj �= j.



334 H. Essed and W. Therese

Algorithm 5. Computing the successor of p in the listing Max(n)

1: function Successor(p)
2: for j ← 1 to n do
3: if |pj | = 1 then pos1 ← j

4: if |pj | = 2 then pos2 ← j

5: if pos1 < pos2 and sign(ppos1) = sign(ppos2) then return n

6: if pos1 > pos2 and sign(ppos1) 
= sign(ppos2) then return n

7: j ← n
8: while pj = j and j > 2 do j ← j − 1

9: return j − 1

A proof of this lemma is similar to the one for Lemma 4. Pseudocode for a
successor rule based on this lemma is given in Algorithm 5.

Theorem 4. Successor(p) returns the successor of the permutation p in the
listing Max(n) in O(n) time.

By applying the observations from this successor rule, our waitress can apply a
simple and elegant algorithm to generate Max(n). The main idea is to consider
two consecutive pancake stacks; pseudocode is given in Algorithm 6. Since the
average flip length approaches n− 1

2 , the while loop iterates less than once on
average. Thus, this simple algorithm runs in constant amortized time per flip.

Algorithm 6. Exhaustive algorithm to list the ordering Max(n) of P(n)

1: procedure Gen

2: p ← 12 · · ·n
3: repeat
4: Visit(p)
5: p ← flipn(p)
6: Visit(p)
7: j ← n
8: while pj = j do j ← j − 1

9: p ← flipj−1(p)
10: until j = 1

3 The Bigger Picture

A classic conjecture attributed to Lovász is the following: Every connected vertex-
transitive graph has a Hamilton path. Several well-known variations of this
conjecture exist including the following:Every connectedCayley graphhas aHamil-
ton cycle. Despite significant attention, these conjectures have proven to be quite
stubborn. For this reason, there is value in developing novel approaches. One such
approach to develop a suitable successor rule as the first step. For example, our
heroine could create a rule for modifying a stack of pancakes, and then determine



The Harassed Waitress Problem 335

if it creates all possible stacks. Although this approach involves trial and error, and
equal parts of art and science, it has lead to a number of recent successes:

1. Cool-lex order. The following rule uses rotations to cyclically create all
(
n
w

)
binary strings of length n and weight w: Rotate the shortest prefix ending in
010 or 011 one position to the right (or the entire string if there is no such
prefix). The rule runs in amortized O(1)-time with no additional storage, and
O(1)-time with O(log n) bits of memory that can be recomputed in amor-
tized O(1)-time or worst-case O(n)-time. This result has led to applications
involving computer words, binary strings, multiset permutations, k-ary trees,
necklaces and Lyndon words, fixed-weight de Bruijn sequences, and bubble
languages. For a ’fun’ introduction see Stevens and Williams [10,11].

2. The sigma-tau Gray code. A simple generating set for the symmetric group
Sn is the rotation σ = (1 2 · · · n) and the swap of the first two symbols
τ = (1 2). The directed Cayley graph does not contain a Hamilton cycle for
odd values of n and the remaining Hamiltonicity problems were open for forty
years (see Problem 6 in [6]). Williams [14] recently solved the problems with
successor rules that can be applied in worst-caseO(n)-time with no additional
storage, or worst-case O(1)-time with O(log n) bits of memory that can be
recomputed in worst-case O(n)-time.

3. A new de Bruijn sequence. k-ary de Bruijn sequences are in one-to-one cor-
respondence with Eulerian cycles in the k-ary de Bruijn graph. Equivalently,
they are in one-to-one correspondence with Hamilton cycles in the correspond-
ing line graph. Recently, Wong discovered a simple successor rule for creating
such a Hamilton cycle when k = 2 [15]: Given a current string b1b2 · · · bn the
next string is b2b3 · · · bnb1 if b2b3 · · · bn1 is a necklace, and otherwise the next
vertex is the rotation b2b3 · · · bnb1. The successor rule can be generalized to
arbitrary k, and the result generates each symbol of a new de Bruijn sequence
in O(n)-time using no additional memory.

Solving mathematical problems often reduces to choosing the right type of con-
straints. A key ingredient to developing the above results was computational
complexity. More specifically, the authors considered aggressive measures of effi-
ciency to ensure that only the simplest possible successor rules were considered.
For example, we have mentioned several successor rules for permutations that
run in O(1)-time and use O(log n) bits of additional memory. This is significant
because the rules cannot uniquely determine the permutation they are being
applied to! Thus, the rule must implicitly group the permutations into non-
trivial equivalence classes, and must exploit symmetries in the graph to function
properly. More generally, the authors’ underlying assumption is the following:

If a Hamilton graph has ‘simple’ description, then at least one of its
Hamilton paths or cycles has a ‘simple’ successor rule.



336 H. Essed and W. Therese

Table 1. The two orders of burnt pancakes for n = 3. Each flip is determined directly
using the relevant information in the successor rule.

Stack flipi Rule

1234 2 12

2134 3 213

3124 2 31

1324 3 132

2314 2 23

3214 4 3214

4123 2 41

1423 3 142

2413 2 24

4213 3 421

1243 2 12

2143 4 2143

3412 2 34

4312 3 431

1342 2 13

3142 3 314

4132 2 41

1432 4 1432

2341 2 23

3241 3 324

4231 2 42

2431 3 243

3421 2 34

4321 4 4321

(i) Minimum flips

Stack flipi Rule

1234 4 123

4321 3

2341 4 23 1

1432 3

3412 4 3 12

2143 3

4123 4 123

3214 2 4

2314 4 231

4132 3

3142 4 31 2

2413 3

1423 4 1 23

3241 3

4231 4 231

1324 2 4

3124 4 312

4213 3

1243 4 12 3

3421 3

2431 4 2 31

1342 3

4312 4 312

2134 1 34

(ii) Maximum flips

Stack flipi Rule

123 1 1

1̄23 2 1̄2

2̄13 1 2̄

213 2 21

1̄2̄3 1 1̄

12̄3 2 12̄

21̄3 1 2

2̄1̄3 3 2̄1̄3

3̄12 1 3̄

312 2 31

1̄3̄2 1 1̄

13̄2 2 13̄

31̄2 1 3

3̄1̄2 2 3̄1̄

132 1 1

1̄32 3 1̄32

2̄3̄1 1 2̄

23̄1 2 23̄

32̄1 1 3

3̄2̄1 2 3̄2̄

231 1 2

2̄31 2 2̄3

3̄21 1 3̄

321 3 321

1̄2̄3̄ 1 1̄

12̄3̄ 2 12̄

21̄3̄ 1 2

2̄1̄3̄ 2 2̄1̄

123̄ 1 1

1̄23̄ 2 1̄2

2̄13̄ 1 2̄

213̄ 3 213̄

31̄2̄ 1 3

3̄1̄2̄ 2 3̄1̄

132̄ 1 1

1̄32̄ 2 1̄3

3̄12̄ 1 3̄

312̄ 2 31

1̄3̄2̄ 1 1̄

13̄2̄ 3 13̄2̄

231̄ 1 2

2̄31̄ 2 2̄3

3̄21̄ 1 3̄

321̄ 2 32

2̄3̄1̄ 1 2̄

23̄1̄ 2 23̄

32̄1̄ 1 3

3̄2̄1̄ 3 3̄2̄1̄

(i) Minimum flips

Stack flipi Rule

123 3 12

3̄2̄1̄ 2

231̄ 3 2 1̄

13̄2̄ 2

31̄2̄ 3 1̄2̄

213̄ 2

1̄2̄3̄ 3 1̄2̄

321 2

2̄3̄1 3 2̄ 1

1̄32 2

3̄12 3 12

2̄1̄3 1 3

21̄3 3 21̄

3̄12̄ 2

1̄32̄ 3 1̄ 2̄

23̄1 2

32̄1 3 2̄1

1̄23̄ 2

2̄13̄ 3 2̄1

31̄2 2

13̄2 3 1 2

2̄31̄ 2

3̄21̄ 3 21̄

12̄3 1 3

1̄2̄3 3 1̄2̄

3̄21 2

2̄31 3 2̄ 1

1̄3̄2 2

312 3 12

2̄1̄3̄ 2

123̄ 3 12

32̄1̄ 2

23̄1̄ 3 2 1̄

132̄ 2

3̄1̄2̄ 3 1̄2̄

213 1 3

2̄13 3 2̄1

3̄1̄2 2

132 3 1 2

2̄3̄1̄ 2

321̄ 3 21̄

12̄3̄ 2

21̄3̄ 3 21̄

312̄ 2

1̄3̄2̄ 3 1̄ 2̄

231 2

3̄2̄1 3 2̄1

1̄23 0 23

(i) Maximum flips



The Harassed Waitress Problem 337

1 //---------------------------------------------------------------

2 // GENERATING (SIGNED) PERMUTATIONS BY MIN or MAX FLIPS

3 // BY APPLYING SUCCESSOR RULES

4 //---------------------------------------------------------------

5 #include <stdio.h>

6 #include <stdlib.h>

7 #define MAX_N 20

8
9 int n, k, a[MAX_N], sign[MAX_N], total, type, SIGNED = 0;

10
11 //-------------------------------------------------------------

12 void Input() {

13
14 printf(" ----------------------\n");

15 printf(" Permutation Generation \n");

16 printf(" ----------------------\n");

17 printf(" 1. Max Flip \n");

18 printf(" 2. Min Flip\n");

19 printf(" 3. Max Flip (Signed) \n");

20 printf(" 4. Min Flip (Signed) \n");

21
22 printf("\n ENTER selection #: "); scanf("%d", &type);

23
24 if (type < 0 || type > 4) {

25 printf("\n INVALID ENTRY\n\n");

26 exit(0);

27 }

28
29 printf(" ENTER length n: ");

30 scanf("%d", &n);

31
32 k = 1;

33 if (type == 3 || type == 4) { SIGNED = 1; k = 2; }

34 printf("\n");

35 }

36 //----------------------------------------

37 void Print() {

38 int i;

39
40 for (i=1; i<=n; i++) {

41 if (sign[i] == 0 || !SIGNED) printf(" %d ", a[i]);

42 else printf("-%d ", a[i]);

43 }

44 printf("\n");

45 total++;

46 }

47 //-------------------------------------------------

48 void Flip(int t) {

49 int i, b[MAX_N];

50
51 for (i=1; i<=t; i++) b[i] = a[t-i+1];

52 for (i=1; i<=t; i++) a[i] = b[i];

53
54 //============================

55 // Flip Signs for signed case

56 //============================

57 if (k > 1) {

58 for (i=1; i<=t; i++) b[i] = sign[t-i+1];

59 for (i=1; i<=t; i++) sign[i] = (b[i]+1) % k;

60 }

61 }

62 //----------------------------------------

63 void MinFlip() {

64 int incr,j;

65
66 do {



338 H. Essed and W. Therese

67 Print();

68 incr=0;

69 j=1;

70 while (j < n) {

71 if (a[j] < a[j+1]) incr++;

72 if (incr == 2 || (incr == 1 && a[j+1] < a[1])) break;
73 j++;

74 }

75 Flip(j);

76 } while (!(j == n && a[1] == 1));

77 }

78 //----------------------------------------

79 void SignedMinFlip() {

80 int incr,j;

81 do {

82 Print();

83 incr=0;

84 j=1;

85 while (j < n) {

86 if (a[j] < a[j+1]) incr++;

87 if (incr == 2 || (incr == 1 && a[j+1] < a[1])) break;
88 if (a[j] < a[j+1] && sign[j] == sign[j+1]) break;
89 if (a[j] > a[j+1] && sign[j] != sign[j+1]) break;
90 j++;

91 }

92 Flip(j);

93 } while (!(j == n && a[1] == 1 && sign[1] == 0));

94 }

95 //----------------------------------------

96 void MaxFlip() {

97 int j;

98 do {

99 Print(); Flip(n); Print();

100 j = n;

101 while (a[j] == j) j--;

102 Flip(j-1);

103 } while (j > 2);

104 }

105 //----------------------------------------

106 void SignedMaxFlip() {

107 int j;

108 do {

109 Print(); Flip(n); Print();

110 j = n;

111 while (a[j] == j && sign[j] == 0) j--;

112 Flip(j-1);

113 } while (j > 1);

114 }

115 //----------------------------------------

116 int main() {

117 int j;

118
119 Input();

120 //==============

121 // INITIAL PERM

122 //==============

123 for (j=1; j<=n; j++) a[j] = j;

124 for (j=1; j<=n; j++) sign[j] = 0;

125
126 if (type == 1) MaxFlip();

127 if (type == 2) MinFlip();

128 if (type == 3) SignedMaxFlip();

129 if (type == 4) SignedMinFlip();

130
131 printf("Total = %d\n\n", total);

132 }



The Harassed Waitress Problem 339

To investigate this assumption it will be helpful to build a catalogue of successor
rules and their computational complexities. The entries given by this article are
particularly interesting because the associated shortest path problem is NP-hard,
the Gray codes are conjectured to unique in a greedy sense [7], and the fun story
helps us focus on the importance of simplicity. Eventually, the authors believe
that theorems of the following form will be developed: If a graph is of type X,
then it has a Hamiltonian successor rule with computational complexity Y .

References

1. Berman, P., Karpinski, M.: On some tighter inapproximability results (extended
abstract). In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999)

2. Bulteau, L., Fertin, G., Rusu, I.: Pancake flipping is hard. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 247–258. Springer,
Heidelberg (2012)

3. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of
Genome Rearrangements. MIT Press (August 2009)

4. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial al-
gorithm for sorting signed permutations by reversals. Journal of the ACM 46(1),
1–27 (1999)

5. Haynes, K.A.: We Flip Them For You! E. coli House of Pancakes
6. Nijenhuis, A., Wilf, H.: Combinatorial Algorithms, 1st edn. Academic Press, New

York (1975)
7. Sawada, J., Williams, A.: Greedy flipping of pancakes and burnt pancakes (2013)

(submitted manuscript)
8. Sawada, J., Williams, A.: Greedy pancake flipping. Electronic Notes in Discrete

Mathematics (LAGOS, 2013) 44(5), 357–362 (2013)
9. Singh, S.: Flipping pancakes with mathematics. The Guardian (2013)

10. Stevens, B., Williams, A.: The coolest order of binary strings. In: Kranakis, E.,
Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 322–333. Springer,
Heidelberg (2012)

11. Stevens, B., Williams, A.: The coolest way to generate binary strings. Theory of
Computing Systems (2014), doi:10.1007/s00224-013-9486-8:28

12. Williams, A.: O(1)-time unsorting by prefix-reversals in a boustrophedon linked
list. In: Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 368–379. Springer, Heidel-
berg (2010)

13. Williams, A.: The greedy gray code algorithm. In: Dehne, F., Solis-Oba, R., Sack,
J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 525–536. Springer, Heidelberg (2013)

14. Williams, A.: Hamiltonicity of the Cayley digraph on the symmetric group gener-
ated by (1 2) and (1 2 ··· n). arxiv.org/abs/1307.2549, 14 pages (2013)

15. Wong, D.: Constructions for Universal Cycles (supervised by Joe Sawada). PhD
thesis in Computer Science. University of Guelph (2014)

16. Zaks, S.: A new algorithm for generation of permutations. BIT Numerical Mathe-
matics 24(2), 196–204 (1984)



Lemmings Is PSPACE-Complete

Giovanni Viglietta

Carleton University, Ottawa, Canada
viglietta@gmail.com

Abstract. Lemmings is a computer puzzle game developed by DMA
Design and published by Psygnosis in 1991, in which the player has
to guide a tribe of lemming creatures to safety through a hazardous
landscape, by assigning them specific skills that modify their behavior in
different ways. In this paper we study the optimization problem of saving
the highest number of lemmings in a given landscape with a given number
of available skills.

We prove that the game is PSPACE-complete, even if there is only
one lemming to save. We thereby settle an open problem posed by Cor-
mode in 2004, and again by Forǐsek in 2010. However, if we restrict to
levels in which the available Builders, Bashers, and Miners are polyno-
mially many, then the game is solvable in NP.

Furthermore, we show that saving the maximum number of lemmings
is APX-hard, even when only Climbers are available. This contrasts with
the membership in P of the decision problem restricted to levels with no
“deadly areas” (such as water or traps) and only Climbers and Floaters,
as previously established by Cormode.

1 Introduction

Lemmings is a popular computer game originally developed by DMA Design
for PC and Commodore Amiga. Since its first release in 1991, by Psygnosis,
several ports, sequels and imitations have appeared, for various systems. The
game revolves around the behavior of some creatures called lemmings, which
deterministically walk across a landscape, turning around at walls, and blindly
falling into pitfalls or drowning in water. The player’s goal is to guide the high-
est number of lemmings through the landscape, from their respective entrance
locations to any exit location, within a certain amount of time. To do so, the
player has an arsenal of skills that he can individually assign to lemmings, in
order to modify their behavior in different ways, and hopefully prevent them
from perishing. Because the number of available skills is limited, and most skills
have just a temporary effect, the player must carefully plan his strategy, which
makes Lemmings a challenging puzzle game.

In this paper we study the computational complexity of the optimization
problem of saving the highest number of lemmings in a given level of the game,
contributing to a fast-growing branch of research delightfully surveyed in [6,3].

In [7], McCarthy first studied the game of Lemmings as an archetypical model
for the logical approach to AI, attempting a formalization of the game using

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 340–351, 2014.
c© Springer International Publishing Switzerland 2014



Lemmings Is PSPACE-Complete 341

situation calculus, and discussing the features that make Lemmings a challenge
to both experimental and theoretical AI. Spoerer later used genetic algorithms
to generate successful solutions for a severely simplified version of Lemmings [9].

In [2], Cormode established several complexity results related to another sim-
plified version of Lemmings. In Cormode’s model, the landscape contains no
deadly areas such as water, lava or traps, the player can assign skills to several
different lemmings at the same time instant, and the time limit to complete each
level is bounded by a polynomial in the size of the level itself. Cormode’s paper
shows the NP-completeness of deciding if a level of such a game is solvable,
even when only a single lemming is present, and only Digger skills are available.
It is further shown that, if only Floater and Climber skills are available, then
solvability is decidable in P.

The rationale behind Cormode’s assumption on the time limit is the claim
that any level of Lemmings is either unsolvable or solvable within a polynomial
amount of time. Later, in [4], Forǐsek disproved such a claim by constructing a
class of levels whose solutions involve “waiting” an exponentially long time for
certain configurations to occur, hence suggesting that the full Lemmings game
may fail to be in NP. Both Cormode and Forǐsek conjectured that Lemmings,
with no restrictions, is PSPACE-complete. Cormode also asked for the compu-
tational complexity of classes of game instances with different combinations of
initially available skills.

Recently, in [10], the author gave an independent NP-hardness proof that
works for instances with only Basher skills, and observed that a similar argument
can be extended to instances with only Miner skills.

Our Contribution. In Section 2 we define Lemmings, the optimization prob-
lem of maximizing the number of saved lemmings in a given level. One of the
novelties of our approach is that we do not aim at studying a simplified or con-
veniently modified version of the game, but our model incorporates every aspect
and feature of the original Lemmings game developed by DMA Design, including
the known glitches.1 (The only, obvious, exception is that we allow arbitrarily
large levels with arbitrarily many objects.)

In Section 3 and Section 4 we argue that what separates the “harder” levels of
Lemmings from the “easier” ones is the number of constructive and destructive
commands that can be assigned to lemmings. Namely, if the number of Builder
skills and the number of Basher skills are both exponential in the size of the
level (or unlimited), then we are able to construct a PSPACE-complete class of
instances with the bonus feature of having only one lemming each. Conversely,
we show that the decision problem restricted to instances with only polynomially
many available Builder, Basher, and Miner skills (and any number of other skills)
belongs to NP. We thus provide an adequate answer to the open problem of
Cormode and Forǐsek on the complexity of the full Lemmings game.

In Section 5 we discuss the restriction of Lemmings to instances with only
Climber skills, and we give a proof of its APX-hardness, which also implies that

1 See http://www.lemmingsforums.com/index.php?topic=525.0.

http://www.lemmingsforums.com/index.php?topic=525.0


342 G. Viglietta

computing approximate solutions with a relative error lower than 1/8 is NP-
hard. Combined with Cormode’s results, this suggests that what makes levels
with only Climber skills “hard” is the presence of traps.

All our constructions have been tested with the DOS version of the
original Lemmings game, and can be downloaded as a level pack from
http://giovanniviglietta.com/files/lemmings/gadgets.dat.

2 Game Definition

We model Lemmings as an optimization problem (refer to [1]) whose instances
are levels of the form L = (time, terrain, steel, objects, lemmings, rate, skills).

Time. In Lemmings, time is discretized and subdivided into time units. Ac-
cordingly, in each level of Lemmings, time is the amount of time units that the
player has to achieve his goal of saving as many lemmings as possible. The value
of time is assumed to be at most exponential in the size of the landscape (see
below), or unlimited.

Landscape. terrain, steel and objects collectively define the landscape of the
level:

• terrain is a rectangular array of cells, each of which is the size of a pixel and
can be empty or solid. Informally, this is a bitmap containing the “shape” of
the landscape: lemmings can freely walk across empty cells, but are stopped
by solid cells. It is convenient to consider terrain as (logically) partitioned
into blocks of 4× 4 cells.

• steel is a rectangular array that tells whether each terrain block is “made
of steel” or is “permeable”. It may be viewed as a block-aligned “mask”
that is overlaid on terrain, and is used to check if solid terrain cells may
be “excavated” by Bombers, Bashers, Miners or Diggers (see below). Notice
that each terrain 4 × 4 block is either entirely made of steel or entirely
permeable, regardless of the amount of solid cells that it actually contains.

• objects is an array (of length polynomial in the size of terrain) whose elements
have a position within the landscape, a trigger area, a type, and an optional
delay parameter (whose value is bounded by a polynomial). Like steel masks,
trigger areas are block-aligned bitmaps that are overlaid on terrain. However,
if a block hosts the trigger area of some object, it cannot be made of steel,
and hence it must be permeable. There are four types of objects:
◦ Entrance. Each lemming enters the level through an entrance (see below).
◦ Exit. A lemming reaching the trigger area of an exit is “rescued” and is
removed from the game. There may be several exits in the same level.

◦ Deadly zone. A lemming lying in the trigger area of a deadly zone in-
stantly dies and is removed from the game. However, after a deadly zone
has killed a lemming, it remains harmless for k time units, where k is the
object’s delay parameter, and then it becomes deadly again. During that
window of k time units, lemmings can safely traverse the trigger area.

http://giovanniviglietta.com/files/lemmings/gadgets.dat


Lemmings Is PSPACE-Complete 343

(Even if several lemmings enter the trigger area at the same time unit,
only one is killed immediately.) Deadly zones with k > 0 are represented
in Lemmings as “traps”, such as presses, gallows poles and electrocuting
devices; deadly zones with k = 0 are represented as water or lava.

◦ One-way wall. The terrain cells underlying its trigger area are perceived
as permeable by Bashers and Miners going in one direction, and made of
steel by Bashers and Miners going in the opposite direction (see below).

Notice that both steel and the trigger areas of objects have a coarser resolution
than terrain, due to the file format that Lemmings uses to store levels. We also
stress that a 4× 4 block cannot simultaneously be made of steel and be part of
the trigger area of an object. These features will add an extra challenge to the
design of our gadgets.

Lemmings. The lemmings parameter of a level is the total amount of lemmings
that the level contains (which is assumed to be bounded by a polynomial in the
size of terrain). Lemmings enter the game one at a time, at a frequency given
by the parameter rate. If several entrances are present, they release lemmings in
turns, following an order determined by their position in the objects array.

Upon entering the land, each lemming is facing right, and is normally a Faller,
which falls vertically through empty terrain cells due to gravity, until it lands
on a solid cell. Then it becomes a Walker, which keeps walking straight (in the
direction it is facing) as long as it can. In Lemmings, the sprite of a lemming is
between nine and ten pixels high, depending on the animation frame. However,
only one cell matters for collision detection with the landscape, which is the
lemming’s pin. The pin is located one cell below the lemming’s feet, and its
exact position varies depending on the animation frame and the direction the
lemming is facing.

On flat ground, a Walker’s pin moves forward by eight cells every four time
units. Between time units, the collision detection algorithm first moves the
Walker’s pin forward by one cell, no matter if it is solid or empty. Then ter-
rain cells are checked to determine the lemming’s behavior.

If the pin has reached a solid cell, then the cells above are also checked. If the
lowest empty cell is eight cells above the pin or higher, then the slope is too high
and the Walker reverses its direction. Otherwise, the pin “jumps” above by at
most two cells, and then goes further up by one cell per time unit, until the top
is reached.

Otherwise, if the pin has reached an empty cell, the lemming falls down until
it reaches a solid cell again. On the first time unit, the pin’s position instantly
drops by at most four cells. If a solid cell has not been reached yet, then the
lemming becomes a Faller and its pin gradually moves down, by at most two
cells per time unit. If the fall is longer than 63 cells (or crosses the bottom of
the terrain), the lemming dies and is removed from the game.

Depending on the Walker’s animation frame, the above procedure may be
repeated between one and three times per time unit (on “almost flat” ground).
Figure 1(a) illustrates an example, in which dots represent the final positions of
the lemming’s pin each time the collision detection algorithm is executed.



344 G. Viglietta

(a) Walker (b) Builder (c) Basher

Fig. 1. (a) Sequence of pins (black dots) of the lemming, as it walks rightward over the
gray solid cells. (b) First step of the stairway (dashed area), and the three cells that
are tested for solidity (asterisks). (c) Cells dug on the first stroke (dashed area), the
cell tested for permeability (asterisk), and the four cells tested for solidity (circles).

Skills. Finally, the level parameter skills is an array containing the number
of skills that the player can assign to lemmings. We will assume that all skill
quantities are bounded by an exponential in the size of terrain, or unlimited.
The skills are:

• Climber. A permanent skill that makes a lemming climb vertical rows of
more than six solid cells, at an average speed of one cell every two time
units, instead of turning around like a Walker. As soon as a Climber reaches
the “top of a wall”, it starts behaving like a Walker again. If it hits a “ceiling”
while it is climbing, it turns around and falls back down.

• Floater. A permanent skill that makes a lemming survive falls of any height.
Floaters also fall slower than Fallers.

• Bomber. Makes a lemming explode after a short amount of time units. A
Bomber keeps behaving normally until it actually blows up, also turning the
surrounding terrain cells from solid to empty, provided that the Bomber’s
pin lies on a permeable cell.

• Blocker. Makes a lemming stand in place and act as a wall for the other
lemmings. Climbers cannot climb on Blockers.

• Builder. Makes a lemming construct a “stairway” by turning empty terrain
cells into solid ones. Each “step” of the stairway is six cells wide and one cell
high, and is laid on top of the Builder’s pin, as Figure 1(b) indicates. Then
three test cells, represented as asterisks in the figure, are checked for solidity.
If all of them are empty, the Builder’s pin is moved one cell up and two cells
forward, and a new step is laid. Otherwise, the Builder turns around and
becomes a Walker. After dropping 12 bricks, a Builder becomes a Walker
anyway, and proceeds forward as usual.

• Basher. Makes a lemming “dig” a horizontal hole in the direction it is facing,
by turning solid terrain cells into empty cells. Upon assignment of the skill,
the lemming checks the test cell marked by an asterisk in Figure 1(c). If it is
permeable (no matter if it is solid or empty), the lemming becomes a Basher



Lemmings Is PSPACE-Complete 345

and makes a hole shaped like the dashed area. It then proceeds digging
forward at five cells per stroke. It only stops when it falls into a hole (then it
becomes a Faller), or when it encounters a steel cell in the location marked
by the asterisk (then it turns around and becomes a Walker), or when all
the four circled cells are empty (then it becomes a Walker without turning
around). One-way walls are treated as steel or permeable cells, depending
on their orientation.

• Miner. Similar to Basher, but a Miner digs diagonally.
• Digger. Similar to Basher, but a Digger digs vertically.

Builders, Bashers, Miners, and Diggers can be interrupted by the player at any
time by assigning them a different skill (that is not a Climber or a Floater skill).
Blockers can be interrupted only by digging the solid terrain cell on which they
stand, or by assigning them a Bomber skill, which kills them. We remark that
assigning a Basher skill to a Walker that is not facing a wall will make it stroke
once, with no effect other than delaying its walk for a couple of time units.

Actions. A player’s action is the assignment of a certain skill to a certain
lemming at a certain time. Actions are done by “clicking” on lemmings. At most
one skill can be assigned per time unit. In particular, if several lemmings lie
under the “cursor” at the same time, the skill is assigned only to one lemming.
An action is encoded by a lemming’s position in the lemmings array, a skill
identifier, and a timestamp.

A feasible solution of Lemmings is then a finite sequence of actions that are
compatible with each other and with the given amount of available skills. To
complete the definition of Lemmings, we still need a measure function, which is
obviously the number of lemmings that the player saves within the time limit,
by making a certain sequence of actions given by a feasible solution.

3 Instances Solvable in NP

Here we consider the restriction of Lemmings to instances whose number of
initially available Builder, Basher, and Miner skills is bounded by a polynomial
in the size of the landscape. We prove that the decision version of such a re-
stricted problem is in NP. This result extends [2, Lemma 1] by Cormode, which
states that Lemmings is in NP, provided that the time limit to solve a level is
polynomial (and in particular there are polynomially many available skills).

Theorem 1. The decision version of Lemmings, restricted to levels in which
the Builder, Basher, and Miner skills are polynomially many, belongs to NP.

Proof. Recall that the total number of lemmings is polynomial in the number of
terrain cells. It follows that permanent skills, i.e., Climber and Floater skills, can
be assigned only polynomially many times, and therefore involve a polynomial
number of moves. The same holds, for obvious reasons, also for Bomber skills.

Observe that Digger skills can be assigned only to lemmings that can effec-
tively dig some solid cells. Because the initial number of these cells is polynomial,



346 G. Viglietta

and each cell can be “restored” at most once per available Builder, it follows that
Digger skills involve at most a polynomial number of moves.

Blocker skills can also be assigned polynomially many times, because a Blocker
can be interrupted only by killing it with a Bomber skill, or by digging the terrain
on which it stands.

Finally, Builder, Basher, and Miner skills are polynomially many by assump-
tion. It follows that the total number of actions performed by the player is
bounded by a polynomial.

Let us consider a feasible solution that saves a certain number of lemmings in
a given level. We will transform it into a new feasible solution of polynomial size
that saves as many lemmings. By the above reasoning, we only have to prove
that the timestamps of all moves have polynomial size.

It is easily seen that terrain may change only at polynomially many time
units. Indeed, terrain can be altered only as a consequence of a player’s action.
Moreover, the only way to create new solid cells is via a Builder, which affects
at most 72 cells. Hence the number of cells that can be restored is bounded by
a polynomial. As a consequence, also the cells that can be destroyed is bounded
by a polynomial.

Hence there are at most polynomially many maximal timespans during which
no skill is assigned, terrain does not change, and no lemming dies. Let [t, t′]
be one such maximal timespan. Because there exists at most an exponential
amount of combined configurations of all lemmings, the configuration at time t′

is reached also at some time t′′ � t′ such that t′′−t is bounded by an exponential.
Therefore we may assume that all timestamps are bounded by an exponential
in the size of the level (even if the level’s time limit is unlimited), and that in
turn all of them can be encoded using polynomially many digits.

Now we show that a polynomial-size sequence of actions is a valid certificate,
by arguing that it is possible to compute in polynomial time the number of
lemmings that it saves. Indeed, the polynomially many transitions between time
units in which moves are made, or terrain changes, or some lemming dies can
be simulated in polynomial time, because each transition involves a constant
number of operations and tests for each lemming. The remaining time intervals
are polynomially many and may be exponentially long. Observe that, during each
such interval of time, lemmings do not interfere with each other, and hence each
of them follows a polynomially long periodic path. So each lemming’s periodic
path is computed independently, and the whole time interval is divided by that
period, in order to efficiently compute the lemming’s final position (with no need
of explicitly simulating exponentially many transitions). ��

As a side note, we observe that the above proof does not easily extend to in-
stances with exponentially many Basher or Miner skills. Indeed, in contrast with
Digger skills, these skills can be assigned not only to effectively dig a positive
amount of solid cells, but also to delay a Walker for a couple of time units, or
to reverse its direction, without altering terrain (refer to Section 2). A similar
observation holds for Builder skills.



Lemmings Is PSPACE-Complete 347

4 PSPACE-Complete Instances

Next we show that there are classes of levels of Lemmings that are PSPACE-
hard. Due to Theorem 1, it comes as no surprise that such levels have exponen-
tially many (or unlimited) available Builder and Basher skills.

Theorem 2. Lemmings is PSPACE-complete, even restricted to levels with
only one lemming, and only Builder and Basher skills.

Proof. The membership in NPSPACE of Lemmings is obvious, because each
game configuration can be stored in polynomial space, and the configuration
graph can be efficiently navigated. The membership in PSPACE thus follows
from Savitch’s Theorem (see [8]).

As for PSPACE-hardness, we apply [10, Metatheorem 2.c], which is based on
a reduction fromQuantified Boolean Formula involving a player-controlled
avatar, a starting location, an exit location, several paths, pressure plates and
doors. In our implementation, the only lemming in the level will be the avatar,
which will be controlled by the player via the assignment of Builder and Basher
skills at very specific locations. We build the level in such a way that every 4× 4
cell is made of steel, unless it contains the trigger area of a deadly zone (recall
from Section 2 deadly zones must be permeable).

(a) (b) (c) (d) (e)

Fig. 2. Paths. The lemming’s pin must never touch the deadly zones

Figure 2 shows how paths are implemented. White space denotes empty ter-
rain cells, shaded space denotes solid cells, and black dots mark the positions
occupied by the lemming’s pin as paths are traversed following the arrows. Each
large crossed square represents a 4 × 4 block containing the trigger area of a
deadly zone. Collectively, deadly zones prevent the lemming from striving from
its path. The one in Figure 2(b) is also a one-way path, because it cannot be
traversed from right to left. This is attached after the crossover in Figure 2(e)
(one copy is attached to the right, and a symmetric copy to the left), so that the
lemming cannot take the wrong path, should it accidentally reverse its direction
anywhere after the crossover. Observe that some of the paths may occasionally
be “broken” if the lemming becomes a Basher at the right time. However, this
action has the only possible effect of rendering some paths unusable. Moreover,
there is no need to implement a way of letting the avatar reverse its direction in



348 G. Viglietta

the middle of a path, because this is not necessary to solve the levels constructed
in the proof of [10, Metatheorem 2.c].

It is easy to see that any directed graph can be embedded in the plane by
suitably arranging copies of the five gadgets in Figure 2 and their mirror images,
provided that forks are implemented. This is done with the selector gadget in
Figure 3(a). The lemming enters from the left, and then the player may redirect
it to any of the three exits on the right. The deadly zones are the only permeable
blocks, and they are positioned in such a way that a Builder can lay a single
step of a stairway (indicated by a dashed rectangle in Figure 3(a)), climb on
it, and then immediately become a Basher to stop building further steps and
proceed to the right as a Walker. Moreover, if a step is already present when
the lemming arrives, it can be removed by assigning a Basher skill right before
the lemming climbs on it. This will cause the lemming to excavate precisely the
6-cell step with one stroke (refer to Figure 1(c)) and then fall down. Any other
way of assigning skills is either ineffective, or deadly, or prevents lower areas
from being reached (which never helps the lemming reach its final goal). The
asterisks in the figure mark the cells that are tested for permeability when the
lemming becomes a Basher as described above.

(a) Selector

A

A

B

B

C

C

(b) Door

Fig. 3. PSPACE-hardness gadgets

Finally, we need doors, which are areas that can be traversed by the avatar if
and only if they are open. For each door, there are exactly two pressure plates
located somewhere in the level, which open and close the door, respectively.
Pressure plates are activated whenever the avatar traverses them, but we observe
that the proof of [10, Metatheorem 2.c] keeps working even if the pressure plates
that open doors are implemented as buttons, i.e., the avatar is not forced to
activate them upon traversal, but may or may not do it, at the player’s will.



Lemmings Is PSPACE-Complete 349

Indeed, opening a door has the only effect of expanding the set of locations that
can be reached by the avatar, so it is never “wrong” to do it as soon as possible.

Our door gadget is depicted in Figure 3(b), where the door is considered open
if and only if the central dashed rectangle is made of empty cells. A pressure plate
is implemented “indirectly”, as a path that starts from the location that should
contain it, reaches the corresponding door gadget from the proper direction, and
then leads back to where it started. The two locations marked with a letter A
(respectively, B) are connected to the pressure plate that closes (respectively,
opens) the door.

If the lemming is coming from A and the door is open, then it must construct
a stairway step, thus closing the door, and then stop immediately, using a Basher
skill, in order to proceed to the right without “hitting the ceiling” and turning
around (refer to Figure 1(b)). If it does anything different, it is bound to enter
some deadly zone and perish. In particular, it is straightforward to see that if it
tries to build an additional stairway step when the door is already closed, then it
cannot become a Basher because the permeable block is too low, so it eventually
hits the ceiling, turns left and dies in the deadly zones no matter what it does.

If the lemming is coming from B, then it can open the door with a Basher
skill, right before falling down, thanks to the permeable blocks on the left. If it
ever becomes a Builder, then it is bound to die in a few time units, as it can be
easily verified.

When the lemming actually attempts to cross the door, it enters from the
path marked with a letter C, and survives if and only if the door is open. Again,
becoming a Builder at any time would kill it, no matter what it does next.

This completes the construction. It is clear, also referring to the proof of [10,
Metatheorem 2.c], that each of these levels is either unsolvable with any amount
of Builder and Basher skills, or solvable with exponentially many of them. ��

5 Inapproximability

Here we consider the restriction of Lemmings to instances with only Climber
skills. By Theorem 1, this variation is solvable in NP, while its further restriction
to levels with no deadly zones is solvable in P, due to [2, Theorem 2]. We now
show that the presence of deadly zones makes Lemmings APX-hard, and thus
not in P (unless P = NP, see [1]).

Theorem 3. Lemmings is APX-hard, even restricted to levels in which only
Climber skills are available.

Proof. We give an L-reduction from the APX-complete problem Max-3-Sat

(refer to [1]), in which the number of satisfied clauses of a 3-CNF Boolean formula
has to be maximized. We need variable gadgets and clause gadgets, both depicted
in Figure 4, wired together with the paths of Figure 2, which have the same
properties highlighted in the proof of Theorem 2, no matter if several lemmings
traverse them simultaneously, and some of them are Climbers.



350 G. Viglietta

(a) Variable

A

B

C

B

1�

2�

3�

(b) Clause

Fig. 4. APX-hardness gadgets

Referring to Figure 4(a), a gadget for variable x is made of several layers, each
containing an entrance for exactly one lemming (vertical arrows). There are 2k−1
layers, where k is the number of occurrences of x in the formula. All lemmings are
initially confined in a small area, until the player decides to make them escape,
either from the left or from the right, by assigning them a Climber skill at the
correct time. All lemmings exiting from the same side eventually reach a common
path, on which a row of k− 1 traps is found (not shown in Figure 4(a)), each with
a parameter of eight time units. Because each trap kills at least one lemming upon
traversal, no two lemmings can exit the gadget from different sides and survive.
The way to guarantee that k lemmings may indeed safely exit the gadget (all from
the same side) is to “synchronize” them by delaying those on lower layers, via a
series of 3-cell bumps. Each bump delays aWalker by exactly one time unit, so that
the pins of all the 2k− 1 lemmings will eventually lie within three cells from each
other (depending on their animation frames), and exactly one lemming will be
killed by each of the k−1 traps. So, the truth value of xwill be encoded by the side
fromwhich k (or fewer) lemmings exit the corresponding gadget. After coming out
of the true (respectively, false) side of the variable gadget, the group of lemmings
traverses, one by one, all the clause gadgets containing a positive (respectively,
negative) occurrence of x. The group then reaches a pool of water, so that any
remaining lemming is killed.

Figure 4(b) shows a gadget for clause (�1∨�2∨�3), in which a single lemming,
entering from the top (arrow with letter A), is bound to walk in a loop until
the player assigns it a Climber skill and makes it escape from one of three
exits, each corresponding to a literal of the clause. After each exit, a trap is
encountered (only shown for literal �3 in Figure 4(b)), and then a path safely
leads to a level exit (arrow with letter C). The same trap is also traversed, in
the opposite direction, by a path coming from the variable corresponding to that
literal (arrows with letter B), in such a way that the clause lemming can be saved
by the group of variable lemmings if and only if the literal is true according to
the chosen assignment. In order to guarantee synchronization and make sure
that the trap is reached by the head of the group of variable lemmings just a
couple of time units before the upcoming clause lemming, a series of bumps is



Lemmings Is PSPACE-Complete 351

added to path B slightly before the gadget is reached. Indeed, notice that all
the clause gadgets have the same shape and size, so each clause lemming will
complete its loop in a constant number of time units, say, d. Hence, each clause
lemming will have a chance of exiting the gadget from each of the three exits
exactly once every d time units, and therefore it is sufficient to add at most d−1
bumps to each path entering a clause gadget to enforce synchronization.

Clearly, only the clause lemmings can possibly be saved in these levels, and
each of them may indeed be saved if and only if at least one literal of its clause
gadget is true according to the assignment encoded by the corresponding variable
lemmings. Therefore, the reduction preserves the optimal value, and any solution
that saves n lemmings in one of these levels can be trivially converted into a
variable assignment that satisfies exactly n clauses of the corresponding Boolean
formula. As a consequence, this is an L-reduction. ��
It follows that the optimal number of saved lemmings is not approximable within
a small-enough ratio, even in this severely restricted case.

Corollary 1. Computing approximate solutions to Lemmings with a relative
error lower than 1/8 is NP-hard, even for levels with only Climber skills.

Proof. The proof of Theorem 3 describes an L-reduction from Max-3-Sat with
β = γ = 1 (refer to [1, Definition 8.4]), hence the claim follows from [5, Theo-
rem 6.1]. ��

References
1. Ausiello, C., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,

Protasi, M.: Complexity and approximation: Combinatorial optimization problems
and their approximability properties. Springer, Heidelberg (2003)

2. Cormode, G.: The hardness of the Lemmings game, or Oh no, more NP-
completeness proofs. In: Proceedings of FUN 2004, pp. 65–76 (2004)

3. Demaine, E.D., Hearn, R.A.: Playing games with algorithms: Algorithmic com-
binatorial game theory. In: Albert, M.H., Nowakowski, R.J. (eds.) Games of No
Chance, 3rd edn., vol. 56, pp. 3–56. MSRI Publications (2009)

4. Forǐsek, M.: Computational complexity of two-dimensional platform games. In:
Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 214–227. Springer, Heidelberg
(2010)

5. H̊astad, J.: Some optimal inapproximability results. In: Proceedings of STOC 1997,
pp. 1–10 (1997)

6. Kendall, G., Parkes, A., Spoerer, K.: A survey of NP-complete puzzles. Interna-
tional Computer Games Association Journal 31, 13–34 (2008)

7. McCarthy, J.: Partial formalizations and the Lemmings game. Technical report.
Stanford University, Formal Reasoning Group (1998)

8. Papadimitriou, C.H.: Computational complexity. Addison-Wesley Publishing Com-
pany, Inc. (1994)

9. Spoerer, K.: The Lemmings puzzle: computational complexity of an approach and
identification of difficult instances. Ph.D. thesis (2007)

10. Viglietta, G.: Gaming is a hard job, but someone has to do it! In: Kranakis, E.,
Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 357–367. Springer,
Heidelberg (2012)



Finding Centers and Medians of a Tree

by Distance Queries

Bang Ye Wu

National Chung Cheng University, ChiaYi, Taiwan 621, R.O.C.
bangye@cs.ccu.edu.tw

Abstract. We investigate the problem of finding centers and medians
of a tree on the distance oracle model. In this model, the tree is not given
as the input and the cost is counted by the number of performed queries
for distances between leaves. We show that 2n− 3 queries are necessary
and sufficient for finding the diameter, the radius, and the centers, where
n is the number of leaves. For the median problem, we propose an n lg n-
queries deterministic algorithm and a randomized algorithm with less
than 6n expected queries.

Keywords: distance oracle model, algorithm, tree, median, diameter,
center.

1 Introduction

Finding centers or medians of a edge-weighted tree is a basic problem, and it
can be easily solved in linear time if the tree is given as the input. In this
paper, we study the tree center and the tree median problems on the distance
oracle model. In this model, the tree is not given as the input. Instead, there
is a distance oracle which returns the distance between two given leaves of the
tree. The major concern of designing algorithms on this model is the number of
queries to the oracle.

The problem of reconstructing a tree on the distance oracle model has been
extensively studied due to the application in bio-informatics, namely distance-
based evolutionary tree reconstruction problem. An evolutionary tree is a rooted
tree representing the relationship among species, in which leaves are the species
and internal vertices are the inferred ancestors. Earlier studies for this problem
take all the pairwise distances as the input and focus on the time complexities.
Let S be a set and c a cost function mapping from S × S to real numbers. An
ordered pair (S, c) is a metric space if it is symmetric, positive, and satisfies the
triangle inequality. A metric space (S, c) is a tree metric if there exists a tree
T with leaf set S and nonnegative edge lengths such that c(u, v) = dT (u, v) for
all u, v ∈ S, where dT (u, v) is the distance between u and v on the tree T . We
say that the tree realizes the tree metric. Let n = |S|. There are several works
devoted to the problem of recognizing a tree metric and constructing the tree
realizing the tree metric [1, 3, 11, 16, 22], and the time complexity is improved
from O(n4) to the optimal O(n2) which meets the problem lower bound Ω(n2)

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 352–363, 2014.
c© Springer International Publishing Switzerland 2014



Centers and Medians of a Tree 353

[16]. However, since the distance between two species usually comes from costly
experiments or sequence alignments. It attracts researchers to study the methods
minimizing the number of relation (experiment) or distance queries [2, 18, 19].
In [19], it was shown that any algorithm requires at least Ω(Δn logΔ n) distance
queries to reconstruct the tree, where Δ is the maximum degree. In the worst
case, the lower bound is Ω(n2).

Finding 1-median, or more generally k-median, of a metric space is a basic
problem and there are many applications such as biology, facility location, data
clustering, social network analysis [4, 5, 21]. Although polynomial time solvable,
approximating 1-median is still interesting under different considerations. Sub-
linear time algorithms have been studied [4–6, 14, 17, 25]. Particularly, the star
centered at the median is an important heuristic to guide a tree-driven multiple
sequence alignment [15, 24]. In such an application, the distance between two
species possibly comes from pairwise alignments which takes time quadratic in
the length of sequences. When the sequences are long, using sublinear number
of distance queries reduces the entire running time significantly.

In this paper, we investigate the problem of finding centers and medians of a
tree on the distance oracle model, i.e., with minimum number of distance queries.
We show the following results.

– The diameter, the radius, and the center(s) of a tree can be found by 2n− 3
queries, and no deterministic algorithms can approximate the diameter or
the radius with ratio two by using less than 2n− 3 queries.

– The leaf median(s) of a tree can be found by n lgn distance queries, where
a leaf median is an internal vertex with minimum total distance to all the
leaves.

– There is a randomized algorithm for the leaf medians with 6n expected
queries.

Computing the diameter of a tree metric also is also useful in some related
problems. Approximating or estimating the diameter of a massive graph is im-
portant in complex network analysis. The diameters of some spanning trees are
usually used to estimate the diameter of the original graph [10, 20]. It is well-
known that a metric (S, c) is a tree metric if and only if the following four-points
condition holds: For any four points u, v, w, x in S, the two larger of the sums
d(u, v)+d(w, x), d(u,w)+d(v, x), d(u, x)+d(v, w) are the same. If the condition
is relaxed such that the two larger of the sums differ by at most 2δ, the metric is
called a δ-Hyperbolic metric space. Constructing distance approximating trees
for δ-Hyperbolic metrics is an interesting problem in computational geometry,
and efficient algorithms approximating the diameter and the radius can be found
in [8].

In the next section, we first give some basic definitions and the precise def-
inition of the model. The algorithms for diameters and centers are given in
Section 3, and the deterministic algorithm for leaf medians is presented in Sec-
tion 4. In Section 5 we show a randomized algorithm for the leaf median, and
conclusion remarks are given in Section 6.



354 B.Y. Wu

2 Preliminaries

A tree is a connected acyclic graph. It is known that the tree realizing a tree
metric is unique if there are no degree-two vertices and all edges except for leaf
edges have positive lengths. On the other hand, a degree-two vertex cannot be
identified by only queries for distances between leaves. We make the following
assumptions:

– The tree metric is realized by an undirected tree T with leaf set S and
|S| = n ≥ 3. The degree of any internal vertex of T is at least three.

– Each edge in T is associated with a positive length except leaf edges may
have zero length.

– For any two leaves u, v of T , the distance dT (u, v) is positive.
– Distance queries can only be performed between leaves of T .
– Only internal vertices will be considered as centers or medians.

For a vertex v in a tree T , each component of T − v is also called a branch
of v, where T − v denotes the subgraph resulting from removing v from T . A
uv-path is a path with endpoints u and v. By G = (V,E,w), we denote a graph
G with vertex set V , edges set E, and nonnegative edge length function w. For
u, v ∈ V , dG(u, v) denote the distance between u and v, which is the total length
of edges on a shortest uv-path on G. When there is no confusion, we shall omit
the subscript and simply use d(u, v). Let G = (V,E,w) be a graph. For a vertex
v ∈ V , the eccentricity of v is the maximum of the distance from v to any vertex
in the graph, i.e., maxu∈V {dG(v, u)}. The diameter of a graph is the maximum
of the eccentricity of any vertex in the graph, and a diameter path is a path
whose length equals to the diameter. In other words, the diameter is the longest
distance between any two vertices in the graph. The radius of a graph is the
minimum eccentricity among all vertices in the graph, and a vertex is a center
if its eccentricity equals to the radius. For U ⊆ V , a vertex m ∈ V is a median
of U in G if

∑
u∈U dG(m,u) ≤

∑
u∈U dG(v, u) for any v ∈ V . When U = V , we

say that u is a median of G. When G is a tree and U is the leaf set, we also say
that m is a leaf median of G. A tree may have one or two centers and also one
or two medians under the above assumptions.

For any three vertices x, y, z of a tree T , the three paths between x, y, z inter-
sect at a vertex of T .

Definition 1. For any three leaves x, y, z of a tree T , let φ(x, y, z) = dT (x,m),
where m is the intersection vertex of the three paths between x, y, z.

It can be easily realized that φ(x, y, z) = (1/2)(d(x, y) + d(x, z) − d(y, z)).
Since only leaves are labeled, we should give a precise definition of “finding
centers/medians” since they are internal vertices.

Definition 2. For a vertex v of a tree T , a 3-tuple (p, q, dT (p, v)) is an identifier
of v, where p, q are two leaves on different branches of v, i.e., v is on the pq-path.

Although the number of queries is the major concern for algorithms on the
distance oracle model, we shall also consider the time complexities. We shall use



Centers and Medians of a Tree 355

lgn to denote the logarithm with base two. Of course the base does not matter
if it appears in the big-O notation. A multiset is a set in which elements may
appear more than once. For a multiset of n numbers, the �n/2�-largest element
is a median, i.e., both the numbers of elements larger than and smaller than the
median are at most n/2. Finding a median of a multi-set of numbers can be done
in linear time [9].

3 Diameter, Radius and Center

3.1 Algorithms

The following property appeared in the literature, for example, [11, 23].

Lemma 1. Let v be any vertex in a tree T . If s is a farthest vertex to v in T ,
then s is an endpoint of a diameter path of T .

By the above property, we may have a simple linear-time algorithm for comput-
ing the diameter of a tree when the tree is given. It is also good on the distance
oracle model and has been used in related work [8, 10, 23].

Farthest-to-Farthest: Pick an arbitrary vertex r and find a vertex
s farthest to r. Find a vertex t farthest to s, and report dT (s, t) as the
diameter of the tree.

Finding a farthest vertex to r can be done by querying the distances to all the
other n− 1 leaves. The second step uses another n− 2 queries for distances from
s to leaves other than r. The next result is immediate.

Lemma 2. The diameter of a tree can be found with 2n− 3 queries and O(n)
time.

Next, we turn to the problem of finding centers. The following well-known prop-
erty is useful for finding a center.

Proposition 1. If d(s, t) is the diameter of a tree T , then the eccentricity of
any vertex v is max{d(v, s), d(v, t)}. A vertex on the st-path with minimum ec-
centricity is a center of the tree. Also, a vertex v on the st-path with d(v, s)
closest to d(s, t)/2 is a center.

Lemma 3. If v is an arbitrary leaf and s is a leaf farthest to v, then any center
c is on the vs-path.

Proof. By Lemma 1, s is an endpoint of a diameter path. Suppose that the
st-path is a diameter and p is the intersect vertex of the three paths between
v, s, t. Since d(v, s) ≥ d(v, t), we have that d(p, s) ≥ d(p, t), and therefore the
eccentricity of p is d(p, s). For any vertex x �= p on the pt-path, since d(x, s) =
d(x, p) + d(p, s) ≥ d(p, t) > d(x, t), the eccentricity of x is d(x, s). Also d(x, s) >
d(p, s), and therefore x cannot be a center. Since any center must be on the
st-path, we conclude that it must be on the sp-path which is a subpath of the
vs-path. ��



356 B.Y. Wu

Lemma 4. The radius and the centers of a tree can be found with 2n−3 queries
and O(n) time.

Proof. Starting from an arbitrary leaf v, we run the Farthest-to-Farthest

algorithm to find the two endpoints s and t of a diameter and obtain the 2n− 3
distances from v and s to all the other leaves. Since we have d(s, u) and d(v, u)
for all leaves u, we can identify all the vertices on the sv-path, as well as their
distances to s. By Lemma 3, any center must be on the sv-path. Then the vertices
on the sv-path with its distance to s closest to d(s, t)/2 are centers. ��

3.2 Lower Bounds for the Center and the Diameter Problems

In this subsection, we show that any deterministic algorithm must make 2n− 3
queries to find the diameter. The same proof can also show the lower bound of the
radius problem. We use the adversary arguments. A player wants to find out the
answer by making queries to the adversary. The player queries the distances one
by one, and he/she can decide the queries according to the adversary’s responses
to the previous queries. The adversary’s responses must be consistent and the
final answer must satisfy the responses. The adversary’s strategy for showing the
lower bound is quite simple.

Adversary’s strategy: For any query (u, v), reply d(u, v) = 2.

Let Q denote the query set composed of all the pairs {u, v} such that d(u, v)
has been queried. Recall that S is the leaf set of T . The query graph of Q
is a simple undirected graph G = (S,E), in which (u, v) ∈ E if and only if
{u, v} ∈ Q. For a graph G = (S,E), a vertex subset is an independent set
if there are no edges between vertices in the subset. A vertex subset C is an
independent vertex-cut if C is an independent set and G[S−C] is disconnected,
where G[S −C] is the subgraph induced by S −C. By definition, the empty set
is an independent vertex-cut for disconnected graphs. In the literature, a graph
with an independent vertex-cut is also known as a “fragile graph” and the next
lemma was shown by Chen and Yu.

Lemma 5. Any n-vertex graph with less than 2n− 3 edges has an independent
vertex-cut [7].

Lemma 6. To determine the diameter of a tree, any deterministic algorithm
must make 2n− 3 queries.

Proof. By Lemma 5, if the number of queries is less than 2n− 3, there exists an
independent vertex-cut in the query graph. In Figure 1, we show two trees with
diameter two and four, respectively. The proof is completed by the following
claim.

Claim. If there exists an independent vertex-cut C in the query graph, then
both the trees (a) and (b) in Figure 1 satisfy adversary’s responses.



Centers and Medians of a Tree 357

3 X4

Fig. 1. Two possible trees satisfying the adversary’s responses. When C = ∅, the center
vertex in (b) is eliminated by replacing the two center edges with one edge (x, y) of
length two.

For tree (a), all distances between leaves are two. It remains to show that in tree
(b) the distance between any queried pair of leaves is two. By definition, there
is no query between vertices in C. Also the set S − C can be partitioned into
V1 and V2 such that there are no edges between V1 and V2, i.e., no queries in
V1×V2 have been performed. It can be easily verified that the distances between
all the other pairs are two. ��

Theorem 1. The diameter of a tree can be found with 2n− 3 queries and O(n)
computation time. Both the number of queries and the time complexity are opti-
mal.

Proof. By Lemmas 2 and 6.

It is clear that the lower bound in Lemma 6 is also true for the center problem.
By Lemma 4, we have the next result.

Corollary 1. The radius and centers of a tree can be found with 2n− 3 queries
and O(n) computation time. Both the number of queries and the computation
time complexity are optimal.

By observing that the ratios of diameters/radii of the two trees in Figure 1 are
two, we have the next corollary.

Corollary 2. No deterministic algorithms can approximate the diameter or the
radius of a tree with ratio 2 by less than 2n− 3 queries.

4 Leaf Median of a Tree

For a tree, a vertex is a 1/2-separator if each branch has at most n/2 vertices.
Such a vertex v is also known as a centroid. The following property can be easily
proved [23].

Claim. A median of a tree is a 1/2-separator.



358 B.Y. Wu

3
o 4

x3

x

x5

2/n≤

o

2/n≤

V
V

o 3
o 4

V

x3
x5 x4

),,( 21 vmmφ

Fig. 2. (a) Rooted at the m1m2-path. (b) Partitioning into subtrees

The property can also be generalized to the vertex-weighted case. Let G be
a graph in which each vertex v is associated with a nonnegative weight λ(v).
The weighted median is defined by a vertex m minimizing

∑
v λ(v)dG(m, v).

In the weighted case, a vertex is a 1/2-separator if, after removing the vertex,
each component has weight at most one half of the total weight. The following
property is already known in the literature [13, 23].

Claim. A vertex v is a weighted median of a tree T if and only if it is a weighted
1/2-separator.

Lemma 7. Let T = (V,E,w) be a tree and V1, V2 two disjoint subsets of V . If
m1 and m2 are medians of V1 and V2, respectively, then any median of V1 ∪ V2

is on the m1m2-path.

Proof. Let n1 = |V1|, n2 = |V2| and n′ = n1 + n2. Since V1 and V2 are disjoint,
n′ = |V1 ∪ V2|. Consider a vertex weight function λ1 such that λ1(v) = 1 for all
v ∈ V1 and λ1(v) = 0 otherwise. Since m1 is a median of V1, by the separator
property, each branch of m1 contains at most n1/2 of vertices in V1. Similarly,
each branch of m2 contains at most n2/2 of vertices in V2.

First, if m1 = m2, then m1 is a median of V1 ∪ V2 since each branch contains
at most n1/2+n2/2 = n′/2 vertices. Otherwise, let us root T at the m1m2-path,
see Figure 2.(a). For any subtree T1 rooted at a descendant of m1, T1 contains
at most n1/2 vertices in V1 since m1 is a median of V1. Also, there are at most
n2/2 − 1 vertices in V2 since T1 and m1 are in a branch of m2. Therefore v1
cannot be a median of V1 ∪ V2 since T − T1 is a branch of v1 with more than
n′/2 vertices. Similarly, any descendant v2 of m2 is not a median of V1 ∪ V2.
For a descendant v3 of the path, since T3 and m2 are in one branch of m1, T3

contains at most n1/2−1 vertices in V1; and similarly there are at most n2/2−1
vertices in V2. Thus, v3 cannot be a median of V1 ∪V2. In summary, any median
of V1 ∪ V2 must be on the m1m2-path. ��

We are going to show the algorithm for the leaf median problem. It is a recursive
algorithm using the divide-and-conquer strategy. We first sketch the algorithm.



Centers and Medians of a Tree 359

Algorithm 1. Recursive algorithm for leaf median of a tree

Input: A subset S of leaves of a tree T .
Output: An identifier (r1, r2, l) of the median m of S such that r1, r2 ∈ S, and the
distances from r1, r2 to all vertices in S.

1: procedure Median1(S)
2: if S = {x, y} then
3: return (x, y, 0) as an identifier of x;
4: else if S = {x, y, z} then
5: return (x, y, φ(x, y, z)) as an identifier of the median;
6: end if
7: partition S into subset S1 and S2 as even as possible;
8: recursively find identifiers (p1, q1, l1) and (p2, q2, l2) of medians m1 and m2 of

S1 and S2, respectively;
9: determine r1 ∈ {p1, q1} and r2 ∈ {p2, q2} such that (r1,m1,m2, r2) is a path;
10: query d(v, r2) ∀v ∈ S1 − {p1, q1}; and d(v, r1) ∀v ∈ S2 − {p2, q2};
11: find the median α of the multiset {φ(r1, r2, v)|v ∈ S};
12: return (r1, r2, α) and the distances d(ri, v) ∀v ∈ S and i = 1, 2;
13: end procedure

The input is the leaf subset S of an unknown tree T , and it outputs a leaf
median of T . The algorithm starts at dividing S into two equal-size subsets
and recursively finds the medians m1,m2 of the two subsets. By Lemma 7, the
median of S must be on the m1m2-path. Then we compute φ(m1,m2, v) for
all v ∈ S, which are the distances from m1 to the root of v on the path (
Figure 2.(b)). Intuitively, if we sort these distances, we can partition all the
vertices into subtrees, and then the leaf median can be found by scanning and
counting the numbers of leaves in the subtrees. For the sake of time complexity,
we find the median by computing the median of these distances since it takes
only O(|S|) time [9] while sorting takes O(|S| log |S|) time.

However, there are some ambiguous and doubtable steps in the above algo-
rithm description. For a leaf subset S of a tree, the median of S on T is not in
S, and therefore we cannot query the distances from the median to other ver-
tices. We need to use an identifier to represent an internal vertex so as to avoid
too many distance queries. The whole procedure is given in Algorithm 1. The
algorithm returns an identifier (p, q, l) of the median m. For the sake of avoiding
redundant queries, at each recursive call, we not only return p, q but also the
distances from p, q to all the others in S.

We detail step 9. Let pi, qi be two the vertices identifying mi for i = 1, 2.
The goal of step 9 is to find r1 ∈ {p1, q1} and r2 ∈ {p2, q2} such that the walk
(r1,m1,m2, r2) is a simple path. There are only two possible topologies of the
relations among the four vertices: either p1, q1 on the same or different sides of
the “center path” (the xy-path in Figure 3.(a) and (b)). The topology and the
two internal vertices x, y can be easily computed by the distances among the
four vertices. Note that the case of x = y is included in case (a).



360 B.Y. Wu

3

o 3

o 4

r 4

s3 s4

r 3

o 3 o 4

r 4

s 3

s4
z { z {

Fig. 3. The two possible topologies. (a) p1 and q1 are on the same side of the center
edge. (b) p1 and q1 are on the different sides.

For case (a), neither m1 nor m2 can be on the center path. We choose r1 in
{p1, q1} such that d(r1,m1) ≤ d(r1, x), choosing arbitrarily ifm1 = x. The vertex
r2 can be determined similarly. For case (b), we first check whether m1 and m2

are on the center path. If m1 is not on the center path, it is similar to case (a),
and r1 can be determined. After that, r2 can be also determined by comparing
d(p2,m2) and d(p2, x). If both m1 and m2 are on the center path, we compute
the distances d(x,m1) = d(p1,m1)−d(p1, x) and d(x,m2) = d(p2,m2)−d(p2, x)
so as to determine which is closer to x. If m1 is closer to x, we choose r1 = p1
and r2 = q2; and otherwise r1 = q1 and r2 = p2.

In summary, we can determine the r1 and r2 in constant time after querying
the four distances of {p1, q1} × {p2, q2}. Note that r1, r2 can be used to identify
the median m since m must be on the r1r2-path.

Theorem 2. The leaf medians of a tree can be found with n lgn queries and
O(n log n) time complexity.

Proof. The queries are all performed at steps 9 and 10. Let Q(n) denote the
number of queries taken by the algorithm for n vertices. We have that Q(2) = 1
and Q(3) = 3. At step 9, we make four queries to determine r1 and r2. At step 10,
the number of queries is |S1| − 2 + |S2| − 2 = |S| − 4. So the total number of
queries in one recursive call is |S| when |S| ≥ 4. That is, for n ≥ 4,

Q(n) = Q(�n/2�) +Q(�n/2�) + n

In can be shown by induction that Q(n) < n lgn − 1 when n ≥ 4. Let T (n)
denote the time complexity for n vertices. We have that

T (n) =

{
O(1) if n ≤ 3;
2T (n/2) +O(n) otherwise.

Therefore T (n) = O(n log n). ��

5 Randomized Algorithm for Leaf Median

One of the key points of identifying a leaf median is to find two leaves on different
branches of the median. Since a leaf median m of a tree is also a 1/2-separator of



Centers and Medians of a Tree 361

Algorithm 2. RanMedian: A randomized algorithm for leaf median of a tree

Input: The leaf set S of a tree.
Output: An identifier of the leaf median.

1: choose an arbitrary leaf r;
2: query the distance d(r, v) for all v;
3: loop
4: randomly choose a leaf t;
5: query the distance d(t, v) for all v;
6: find the median(s) of the numbers in the multiset K = {φ(r, t, v)|v ∈ S};
7: if K has two medians α1 and α2 then
8: return (r, t, α1) and (r, t, α2) as identifiers of the medians;
9: end if
10: let B = {v|φ(r, t, v) = α∗} and m be the vertex identified by (r, t, α∗);
11: if no branches of m contain more than n/2 leaves in B then
12: return (r, t, α∗) as an identifier of median;
13: end if
14: end loop

the leaves, for any leaf r, there are at least n/2 leaves not in the same branch of
m. In other words, for a leaf r, if we pick another leaf t randomly, the probability
of the event that m is on the rt-path is at least 1/2. However, we need to check
if r and t successfully identifies a median.

For each different value α in the multiset K = {φ(r, t, v)|v ∈ S}, the 3-tuple
(r, t, α) identifies a distinct vertex on the rt-path. First, if K has two medians
α1 and α2, then both the internal vertices identified by (r, t, α1) and (r, t, α2)
are leaf medians of the tree. The remaining case is that K has only one median
α∗. Let m′ be the vertex identified by (r, t, α∗). If the leaf median m is indeed on
the rt-path, then m = m′. Therefore it is sufficient to solve the following “giant
branch” problem.

Let B = {v|φ(r, t, v) = α∗} and m be the vertex identified by (r, t, α∗).
The giant branch problem is to determine if there are more than n/2
leaves in B which are in the same branch of m.

Consider the following more general problem.

The majority vote problem: There are n color balls and we want to de-
termine if there are more than n/2 balls of the same color. The cost is
counted by the number of performed queries between balls, where each
query R(u, v) returns Equal/NotEqual according to if the two balls u
and v are of the same color.

It was shown that �3n/2�−2 queries are necessary and sufficient for the majority
vote problem [12]. For the giant-branch problem, recall that B = {v|φ(r, t, v) =
α∗}, where r and t are two leaves. If |B| ≤ n/2, then there is surely no giant
branches. But |B| may be up to n − 2. For u, v ∈ B, let R(u, v) = yes iff u
and v are in the same branch of m. To transform the giant-branch problem to



362 B.Y. Wu

the majority-vote problem, each leaves in B is thought of as a ball and two
balls are of the same color iff R(u, v) = yes. Furthermore, for u, v ∈ B, we have
that R(u, v) = yes iff φ(r, u, v) > α∗. Therefore we can test R(u, v) by querying
d(u, v) since d(r, u) and d(r, v) are already known. Since n/2 > |B|/2, if there is
a branch with more than n/2 leaves, there must be a majority color. Thus, by
the algorithm in [12] the giant-branch problem can be solved by no more than
3|B|/2 queries.

Theorem 3. The leaf median(s) of a tree can be found by a randomized algo-
rithm with less than 6n expected queries and O(n) expected time complexity.

Proof. The probability of successfully choosing an identifier is at least 1/2 for
each iteration. The algorithm makes n−1 queries at step 2. In each iteration the
number of queries is less than 5n/2. Therefore, the expected number of queries
is less than

(n− 1) + (5n/2)
∑
i≥1

i/2i < 6n.

For running time, in each iteration, it takes O(n) time, and the expected time
complexity is O(n). ��

6 Concluding Remarks

The algorithms derived in this paper can also work for the case that distance
queries are allowed for any pair of vertices but not only leaves. It is clear that the
lower bound of 2n− 3 queries for the diameter problem also holds for the leaf-
median problem. But it remains open if the n lgn-queries algorithm in Section
4 is optimal.

Acknowledgment. This work was supported in part by NSC 100-2221-E-194-
036-MY3 and NSC 101-2221-E-194-025-MY3 from the National Science Council,
Taiwan, R.O.C.

References

1. Bandelt, H.J.: Recognition of tree metrics. SIAM J. Discrete Math 3(1), 1–6 (1990)
2. Brodal, G.S., Fagerberg, R., Pedersen, C.N.S., Östlin, A.: The complexity of con-

structing evolutionary trees using experiments. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 140–151. Springer, Heidel-
berg (2001)

3. Buneman, P.: A note on metric properties of trees. J. Comb. Theory B 17, 48–50
(1974)

4. Cantone, D., Cincotti, G., Ferro, A., Pulvirenti, A.: An efficient algorithm for the
1-median problem. SIAM J. Optim. 16(2), 434–451 (2005)

5. Chang, C.L.: Some results on approximate 1-median selection in metric spaces.
Theor. Comput. Sci. 426, 1–12 (2012)



Centers and Medians of a Tree 363

6. Chang, C.L.: Deterministic sublinear-time approximations for metric 1-median se-
lection. Inf. Process. Lett. 113, 288–292 (2013)

7. Chen, G., Yu, X.: A note on fragile graphs. Discrete Mathematics 249, 41–43 (2002)
8. Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and

approximating trees of δ-hyperbolic geodesic spaces and graphs. In: Proceedings
of the Twenty-fourth Annual Symposium on Computational Geometry, pp. 59–68.
ACM (2008)

9. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT
Press and McGraw-Hill (2001)

10. Crescenzi, P., Grossi, R., Habib, M., Lanzi, L., Marino, A.: On computing the
diameter of real-world undirected graphs. Theor. Comput. Sci. 514, 84–95 (2013)

11. Culberson, J., Rudnicki, P.: A fast algorithm for constructing trees from distance
matrices. Inf. Process. Lett. 30, 215–220 (1989)

12. Fischer, M.J., Salzberg, S.L.: Solution to problem 81-5. J. Algorithms 3, 376–379
(1982)

13. Goldman, A.J.: Optimal center location in simple networks. Transp. Sci. 5, 212–221
(1979)

14. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering
data streams: Theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515–528
(2003)

15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences – Computer Science and
Computational Biology. Cambridge University Press (1997)

16. Hein, J.: An optimal algorithm to reconstruct trees from additive distance data.
Bull. Math. Biol. 51, 597–603 (1989)

17. Indyk, P.: Sublinear time algorithms for metric space problems. In: Proceedings of
the 31st Annual ACM Symposium on Theory of Computing, pp. 428–434 (1999)

18. Kannan, S., Lawler, E., Warnow, T.: Determining the evolutionary tree. In:
Proceedings of 1st Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 475–484 (1990)

19. King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based evolutionary
tree reconstruction. In: Proceedings of 14th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 444–453 (2003)

20. Magnien, C., Latapy, M., Habib, M.: Fast computation of empirically tight bounds
for the diameter of massive graphs. J. Exp. Algorithmics 13, 10 (2009)

21. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press (1994)

22. Waterman, M., Smith, T., Singh, M., Beyer, W.: Additive evolutionary trees. J.
Theor. Biol. 64, 199–213 (1977)

23. Wu, B.Y., Chao, K.M.: Spanning Trees and Optimization Problems. Chapman &
Hall (2004)

24. Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R., Tang, C.Y.: A polynomial
time approximation scheme for minimum routing cost spanning trees. SIAM J.
Comput. 29, 761–778 (2000)

25. Wu, B.Y.: On approximating metric 1-median in sublinear time. Inf. Process.
Lett. 114(4), 163–166 (2014)



Swapping Labeled Tokens on Graphs

Katsuhisa Yamanaka1, Erik D. Demaine2, Takehiro Ito3, Jun Kawahara4,
Masashi Kiyomi5, Yoshio Okamoto6, Toshiki Saitoh7, Akira Suzuki3,

Kei Uchizawa8, and Takeaki Uno9

1 Iwate University, Japan
yamanaka@cis.iwate-u.ac.jp

2 Massachusetts Institute of Technology, USA
edemaine@mit.edu

3 Tohoku University, Japan
{takehiro,a.suzuki}@ecei.tohoku.ac.jp

4 Nara Institute of Science and Technology, Japan
jkawahara@is.naist.jp

5 Yokohama City University, Japan
masashi@yokohama-cu.ac.jp

6 University of Electro-Communications, Japan
okamotoy@uec.ac.jp

7 Kobe University, Japan
saitoh@eedept.kobe-u.ac.jp
8 Yamagata University, Japan

uchizawa@yz.yamagata-u.ac.jp
9 National Institute of Informatics, Japan

uno@nii.ac.jp

Abstract. Consider a puzzle consisting of n tokens on an n-vertex
graph, where each token has a distinct starting vertex and a distinct
target vertex it wants to reach, and the only allowed transformation is
to swap the tokens on adjacent vertices. We prove that every such puz-
zle is solvable in O(n2) token swaps, and thus focus on the problem of
minimizing the number of token swaps to reach the target token place-
ment. We give a polynomial-time 2-approximation algorithm for trees,
and using this, obtain a polynomial-time 2α-approximation algorithm
for graphs whose tree α-spanners can be computed in polynomial time.
Finally, we show that the problem can be solved exactly in polynomial
time on complete bipartite graphs.

1 Introduction

A ladder lottery, known as “Amidakuji” in Japan, is one of the most popular
lotteries. It is often used to assign roles to children in a group, as in the following
example. Imagine a teacher of an elementary school wants to assign cleaning
duties to two students among four students A, B, C and D. Then, the teacher
draws four vertical lines and several horizontal lines between two consecutive
vertical lines. (See Fig. 1(a).) The teacher randomly chooses two vertical lines,

A. Ferro, F. Luccio, and P. Widmayer (Eds.): FUN 2014, LNCS 8496, pp. 364–375, 2014.
c© Springer International Publishing Switzerland 2014



Swapping Labeled Tokens on Graphs 365

(a) (b)

D B A C

(c)

D B A C

Fig. 1. How to use ladder lottery (Amidakuji) in Japan

1 2 3 4

4 2 1 3

(a)

4 2 1 3

2 4 1 3

2 1 4 3

2 1 3 4

1 2 3 4

(c)

 f0

ft
v1 v2 v3 v4

v1 v2 v3 v4

4 2 1 3

1 2 3 4

(b)

 f0

ft
v1 v2 v3 v4

v1 v2 v3 v4

?

Fig. 2. (a) Ladder lottery of the permutation (4, 2, 1, 3) with the minimum number of
bars, (b) its corresponding instance of token swapping for a path, and (c) a trans-
formation from f0 to ft with the minimum number of token swaps

and draws check marks at their bottom ends. The ladder lottery is hidden, and
each student chooses one of the top ends of the vertical lines, as illustrated in
Fig. 1(b). Then, the ladder lottery assigns two students to cleaning duties (check
marks) by the top-to-bottom route from each student which always turns right
or left at each junction of vertical and horizontal lines. (In Fig. 1(c), such a
route is drawn as a dotted line.) Therefore, in this example, cleaning duties are
assigned to students B and C.

More formally, a ladder lottery can be seen as a model of sorting a particular
permutation. Let π = (p1, p2, . . . , pn) be a permutation of integers 1, 2, . . . , n.
Then, a ladder lottery of π is a network with n vertical lines (lines for short) and
zero or more horizontal lines (bars for short) each of which connects two con-
secutive vertical lines and has a different height from the others. (See Fig. 2(a)
as an example.) The top ends of the lines correspond to π, and the bottom
ends of the lines correspond to the target permutation (1, 2, . . . , n). Then, each
bar connecting two consecutive lines corresponds to a modification of the cur-
rent permutation by swapping the two numbers on the lines. The sequence of
such modifications in a ladder lottery must result in the target permutation
(1, 2, . . . , n).

There are many ladder lotteries that transform the same permutation π =
(p1, p2, . . . , pn) into the target one. Thus, one interesting research topic is



366 K. Yamanaka et al.

(a)  f0 (b) (c) (d)  ft

v1

v4

5

4

v2

v5

1

2

v3

v6

3

6

v1

v4

1

4

v2

v5

5

2

v3

v6

3

6

v1

v4

4

1

v2

v5

5

2

v3

v6

3

6

v1

v4

4

1

v2

v5

5

2

v3

v6

6

3

Fig. 3. A sequence of token placements of the same graph

minimizing the number of bars in a ladder lottery for a given permutation π.
This minimization problem on ladder lottery can be solved by counting the num-
ber of “inversions” in π [8,10], where a pair (pi, pj) in π is called an inversion in
π if pi > pj and i < j; for example, there are four inversions in the permutation
(4, 2, 1, 3), that is, (4, 2), (4, 1), (4, 3) and (2, 1), and hence the ladder lottery in
Fig. 2(a) has the minimum number of bars. The bubble sort algorithm sorts π us-
ing a number of adjacent swaps equal to the number of inversions in π, and hence
gives an optimal ladder lottery of π. In this paper, we study a generalization of
this minimization problem from one dimension to general graphs.

1.1 Our Problem

Suppose that we are given a connected graph G = (V,E) with n = |V | vertices,
with n tokens 1, 2, . . . , n already placed on distinct vertices of G. (Refer to Fig. 3,
where the number i written inside each vertex represents the token i.) We wish
to transform this initial token placement f0 into another given target token
placement ft. The transformation must consist of a sequence of token swaps,
each defined by an edge of the graph and consisting of swapping the two tokens
on the two adjacent vertices of the edge. (See Fig. 3 as an example.) Notice that
we need the graph to be connected for there to be a solution.

We will show that such a transformation exists for any two token placements
f0 and ft. Therefore, we consider the token swapping problem of minimizing
the number of token swaps to transform a given token placement f0 into another
given token placement ft. Figure 3 illustrates an optimal solution for transform-
ing the token placement f0 in Fig. 3(a) into the token placement ft in Fig. 3(d)
using a sequence of three token swaps.

As illustrated in Fig. 2, token swapping on a path is identical to minimizing
the number of bars in a ladder lottery. The permutation π = (p1, p2, . . . , pn) in
the ladder lottery corresponds to the initial token placement f0, and the target
identity permutation (1, 2, . . . , n) corresponds to the target token placement ft
where each token i, 1 ≤ i ≤ n, is placed on the vertex vi. Then, the number of
bars is identical to the number of token swaps.



Swapping Labeled Tokens on Graphs 367

1.2 Related Work and Known Results

A ladder lottery appears in a variety of areas in different forms. First, it is
strongly related to primitive sorting networks, which are deeply investigated
by Knuth [9]. (More precise discussion will be given in Section 2.3.) Second,
in algebraic combinatorics, a “reduced decomposition” of a permutation π [11]
corresponds to a ladder lottery of π with the minimum number of bars. Third,
a ladder lottery of the reverse permutation (n, n − 1, . . . , 1) corresponds to a
pseudoline arrangement in discrete geometry [13].

The computational hardness of token swapping is unknown even for general
graphs. However, the problem of minimizing the number of bars in a ladder
lottery, and hence token swapping for paths, can be solved in time O(n2)
by counting the number of inversions in a given permutation [8,10], or by the
application of the bubble sort algorithm. Furthermore, token swapping can
be solved in time O(n2) for cycles [8] and for complete graphs [3,8]. Heath
and Vergara [7] proposed a polynomial-time 2-approximation algorithm for the
square of a path P , where the square of P is the graph obtained from P by adding
a new edge between two vertices with distance exactly two in P . Therefore,
token swapping has been studied for very limited classes of graphs.

1.3 Our Contribution

In this paper, we study the token swapping problem for some larger classes
of graphs, and mainly design three algorithms. We first give a polynomial-time
2-approximation algorithm for trees. Based on the algorithm for trees, we then
present a 2α-approximation algorithm for graphs having tree α-spanners. (The
definition of tree α-spanners will be given in Section 3.2.) We finally show that
the problem is exactly solvable in polynomial time for complete bipartite graphs.

In addition, we give several results and observations which are related to the
three main results above. In Section 2.2, we prove that any token placement for a
(general) graph G can be transformed into any target token placement by O(n2)
token swaps, where n is the number of vertices in G. We also show that there are
instances on paths which require Ω(n2) token swaps. In Section 2.3, we discuss
the relationship between our problem and sorting networks. We finally note that
our lower bound (in Lemma 1) on the minimum number of token swaps holds
not only for trees but also for general graphs.

Due to the page limitation, several proofs are omitted.

2 Preliminaries

In this paper, we assume that all graphs are simple and connected. Let G =
(V,E) be an undirected and unweighted graph with vertex set V and edge set
E. We sometimes denote by V (G) and E(G) the vertex set and edge set of G,
respectively. We always denote n = |V |.



368 K. Yamanaka et al.

2.1 Definitions for token swapping

Suppose that the vertices in a graph G = (V,E) are assigned distinct labels
v1, v2, . . . , vn. Let L = {1, 2, . . . , n} be a set of n labeled tokens. Then, a token
placement f of G is a mapping f : V → L such that f(vi) �= f(vj) holds for every
two distinct vertices vi, vj ∈ V ; imagine that tokens are placed on the vertices
of G. Since f is a one-to-one correspondence, we can obtain its inverse mapping
f−1 : L→ V .

Two token placements f and f ′ of a graph G = (V,E) are said to be adjacent
if the following two conditions (a) and (b) hold:
(a) there exists exactly one edge (vi, vj) ∈ E such that f ′(vi) = f(vj) and

f ′(vj) = f(vi); and
(b) f ′(vk) = f(vk) for all vertices vk ∈ V \ {vi, vj}.

In other words, the token placement f ′ is obtained from f by swapping the tokens
on two vertices vi and vj such that (vi, vj) ∈ E. For two token placements f and
f ′ of G, a sequence S = 〈f1, f2, . . . , fh〉 of token placements is called a swapping
sequence between f and f ′ if the following three conditions (1)–(3) hold:
(1) f1 = f and fh = f ′;
(2) fk is a token placement of G for each k = 2, 3, . . . , h− 1; and
(3) fk−1 and fk are adjacent for every k = 2, 3, . . . , h.

The length len(S) of a swapping sequence S is defined to be the number of token
placements in S minus one, that is, len(S) indicates the number of token swaps
in S. For example, len(S) = 3 for the swapping sequence S in Fig. 3.

Without loss of generality, we always denote by ft the target token place-
ment of a graph G such that ft(vi) = i for all vertices vi ∈ V (G).
For a token placement f0 of G, let OPT(f0) be the minimum length of a
swapping sequence between f0 and ft, that is, OPT(f0) = min{len(S) :
S is a swapping sequence between f0 and ft}. As we will prove in Theorem 1,
there always exists a swapping sequence from any token placement f0 to the
target one ft, and hence OPT(f0) is well-defined. Given a token placement f0 of
a graph G, the token swapping problem is to compute OPT(f0). We denote
always by f0 the initial token placement of G.

2.2 Polynomial Upper Bound on the Minimum Length

We show the following upper bound for any graph.

Theorem 1. For any token placement f0 of a graph G, OPT(f0) = O(n2).

It is remarkable that there exists an infinite family of instances on paths such
that OPT(f0) = Ω(n2). Recall that token swapping for paths is equivalent to
minimizing the number of bars in a ladder lottery of a given permutation π =
(p1, p2, . . . , pn). As we have mentioned in Introduction, the minimum number
of bars is equal to the number of inversions in π [8,10]. Consider the reverse
permutation πr = (n, n−1, . . . , 1). The number of inversions in πr is Ω(n2), and
hence OPT(f0) = Ω(n2) for the corresponding instance of token swapping.



Swapping Labeled Tokens on Graphs 369

2.3 Relations to Sorting Networks

In this subsection, we explain that token swapping has a relationship to sorting
networks in the sense that we can obtain an upper bound on OPT(f0) for a given
token placement f0 from a sorting network which sorts f0.

We first explain that a primitive sorting network [9] gives an upper bound on
OPT(f0) for token swapping on paths (i.e., ladder lotteries). A primitive sort-
ing network transforms any given permutation into the permutation (1, 2, . . . , n)
by comparators each of which replaces two consecutive elements pi and pi+1

with min (pi, pi+1) and max (pi, pi+1), respectively. Therefore, in token swap-

ping for paths, we can obtain a swapping sequence for a given token placement
f0 by swapping two tokens whose corresponding elements are swapped in the
primitive sorting network when f0 is input as a particular permutation.

We generalize this argument to parallel sorting algorithms on an SIMD ma-
chine consisting of several processors with local memory which are connected
by a network [1]. For our purpose, an interconnection network is modeled as an
undirected graph G with n labeled vertices v1, v2, . . . , vn. Then, a (serial) sorting
on G can be seen as a problem to transform a given token placement f0 of G into
the target one ft by swapping two tokens on the adjacent vertices. In a parallel
sorting algorithm for G, we can swap more than one pair of tokens at the same
time along a matching M of G; note that each pair of two adjacent tokens in M
can be swapped independently. More formally, a parallel sorting algorithm for
G with r rounds consists of r prescribed matchings M1,M2, . . . ,Mr of G and
r prescribed swapping rules R1, R2, . . . , Rr; each swapping rule Ri, 1 ≤ i ≤ r,
determines whether each pair of two adjacent tokens in Mi is swapped or not
by the outcome of comparison of adjacent tokens in Mi. It should be noted that
the parallel sorting algorithm must sort any given token placement f0 of G by
the prescribed r matchings and their swapping rules. Then, since each matching
contains at most n/2 edges, the argument similar to primitive sorting networks
establishes the following theorem.

Theorem 2. Suppose that there is a parallel sorting algorithm with r rounds for
an interconnection network G. Then, in token swapping, OPT(f0) = O(rn)
for any token placement f0 of the graph G.

For example, it is known that there is a parallel sorting algorithm with O(
√
n)

rounds for a
√
n×

√
n mesh [12]. Thus, we have OPT(f0) = O(n3/2) for token

swapping on such meshes. Similarly, from an O(log n(log logn)2)-round algo-
rithm on hypercubes [4], we obtain OPT(f0) = O(n log n(log logn)2) for token
swapping on hypercubes.

3 Approximation

In this section, we give approximation results.
We first give a lower bound on OPT(f0) which holds for any graph. For a

graph G and two vertices v, w ∈ V (G), we denote by spG(v, w) the number of



370 K. Yamanaka et al.

(a)  f

v1

v4

5

4

v2

v5

1

2

v3

v6

3

6

(b)  D

v1

v4

5

4

v5

1

v3

v6

3

6

Fig. 4. (a) token placement f of a graph, and (b) its conflict graph D

edges in a shortest path on G between v and w. For a token placement f of G,
we introduce a potential function pG(f), as follows:

pG(f) =
∑

1≤i≤n

spG(f
−1(i), vi),

that is, the sum of shortest path lengths of all tokens from their current positions
to the target positions. Notice that f−1

t (i) = vi for all tokens i, 1 ≤ i ≤ n, and
hence pG(ft) = 0. Then, we have the following lemma.

Lemma 1. OPT(f0) ≥ 1
2pG(f0) for any token placement f0 of a graph G.

3.1 Trees

The main result of this subsection is the following theorem.

Theorem 3. There is a polynomial-time 2-approximation algorithm for token

swapping on trees.

As a proof of Theorem 3, we give a polynomial-time algorithm which actually
finds a swapping sequence S between two token placements f0 and ft of a tree
T such that

len(S) ≤
∑

1≤i≤n

spT (f
−1
0 (i), vi) = pT (f0). (1)

Then, Lemma 1 implies that len(S) ≤ 2 · OPT(f0), as required.

Conflict graph
To give our algorithm, we introduce a digraph D = (VD, ED) for a token place-
ment f of a graph G (which is not necessarily a tree), called the conflict graph
for f , as follows:

• VD = {vi ∈ V (G) : f(vi) �= ft(vi)}; and
• there is an arc (vi, vj) from vi to vj if and only if f(vi) = ft(vj) = j.

Therefore, each token f(vi) on a vertex vi ∈ VD needs to be moved to the vertex
vj ∈ VD such that (vi, vj) ∈ ED. (See Fig. 4 as an example.)

Lemma 2. Let D be the conflict graph for a token placement f of a graph G.
Then, every component in D is a directed cycle.



Swapping Labeled Tokens on Graphs 371

2 3 4

9

1

10 6 7 5 8

(c)  f2,0

w1

w3

w2

w4

2 3 4

9

1

75 610 8

(d)  f3,0

w1

w3

w2

w4

2 3 9

10

1

4 5 6 7 8

(e)  f4,0

w1

w3

w2

w4

1 2 3

9

10

4 5 6 7 8

(f )  ft

w1

w3

w2

w4

1 2 3

9

10

4 5 6 7 8

(b)  ft

w1

w3

w2

w4

(a)  f0 = f1,0

7 2 3

9

1

4 10 6 5 8

w1

w3

w2

w4

Fig. 5. (a) Initial token placement f0 of a tree and (b) target one ft, where a directed
cycle C = (w1, w2, w3, w4, w1) in the conflict graph D for f0 is depicted by dotted
arrows. (c), (d) and (e) indicate the applications of Step (1) to the tokens �1 = 7,
�2 = 5 and �3 = 10, respectively. (f) indicates the application of Step (2) to the token
�4 = 1.

Algorithm for Trees
We now give our algorithm for trees. For two vertices u and v of a tree T , we
denote by P (u, v) a unique path in T between u and v. Let D be the conflict
graph for an initial token placement f0 of T , and let C = (w1, w2, . . . , wq) be an
arbitrary directed cycle in D where wq = w1. Let �k = f0(wk) for each k, 1 ≤
k ≤ q−1; then ft(wk+1) = �k. Our algorithm moves the tokens �1, �2, . . . , �q−1 on
the vertices in C to their target positions along the unique paths. More formally,
we construct a swapping sub-sequence SC for C, as follows; let f1,0 = f0 as the
initialization. (See also Fig. 5 as an example.)
(1) At the k-th step of the algorithm, 1 ≤ k ≤ q− 2, we focus on the token �k

(= f0(wk)) which is currently placed on the vertex f−1
k,0(�k), and move it

to the vertex in the path P (f−1
k,0(�k), f

−1
k,0(�k+1)) which is adjacent to the

vertex f−1
k,0(�k+1). Let fk+1,0 be the resulting token placement of T .

(2) At the (q − 1)-st step of the algorithm, we move the token �q−1 (=
f0(wq−1)) from the vertex f−1

q−1,0(�q−1) to the vertex wq (= w1).

Then, we have the following lemma.

Lemma 3. For the swapping sub-sequence SC , the following (a) and (b) hold:
(a) len(SC) ≤

∑
1≤k≤q−1 spT (wk, wk+1); and



372 K. Yamanaka et al.

(b) the token placement f of T obtained by SC satisfies

f(vi) =

{
ft(vi) if vi in C;
f0(vi) otherwise,

for each vertex vi ∈ V (T ).

It should be noted that Lemma 3(b) ensures that we can choose directed cycles
in D in an arbitrary order. Therefore, by repeatedly constructing swapping sub-
sequences for all directed cycles inD (in an arbitrary order), we eventually obtain
the target token placement ft of T . Furthermore, notice that f−1

0 (�k) = wk for
each k, 1 ≤ k ≤ q − 1, and hence Lemma 3(a) implies that Eq. (1) holds.

This completes the proof of Theorem 3. ��

3.2 General Graphs

We now give an approximation algorithm for general graphs by combining our
algorithm in Section 3.1 with the notion of “tree spanner” of a graph.

A tree α-spanner T of an unweighted graph G = (V,E) is a spanning tree
of G such that spT (v, w) ≤ α · spG(v, w) for every pair of vertices v, w ∈ V [2].
Then, we have the following theorem.

Theorem 4. Suppose that a graph G has a tree α-spanner, and it can be com-
puted in polynomial time. Then, there is a polynomial-time 2α-approximation
algorithm for token swapping on G.

Theorem 4 requires to find a tree α-spanner of a graph G in polynomial
time. However, Cai and Corneil [2] proved that deciding whether an unweighted
graph G has a tree α-spanner is NP-complete for any fixed α ≥ 4, while it
can be solved in polynomial time for α ≤ 2. Therefore, several approximation
and FPT algorithms have been studied extensively. For example, Emek and
Peleg [6] proposed a polynomial-time O(log n)-approximation algorithm on any
unweighted graph for the problem of finding the minimum value of α. Dragan
and Köhler [5] gave approximation results for some graph classes. (For details,
see their papers and the references therein.)

4 Complete Bipartite Graphs

The main result of this section is the following theorem.

Theorem 5. Token swapping can be solved exactly in polynomial time for
complete bipartite graphs.

Let G be a complete bipartite graph, and let X and Y be the bipartition of
the vertex set V (G). We again construct the conflict graph D = (VD, ED) for
a token placement f of G. Then, we call a directed cycle in D an XY -cycle
if it contains at least one vertex in X and at least one vertex in Y . Similarly,
a directed cycle in D is called an X-cycle (or a Y -cycle) if it consists only of



Swapping Labeled Tokens on Graphs 373

vertices in X (resp., only of vertices in Y ). Let cXY (f), cX(f) and cY (f) be the
numbers of XY -cycles, X-cycles and Y -cycles in D, respectively. Let c0(f) be
the number of vertices in V (G) that are not in D, that is, c0(f) = |V (G) \ VD|.
Then, we introduce the following value s(f) for f :

s(f) = cXY (f) + cX(f) + cY (f) + c0(f)− 2 ·max
{
cX(f), cY (f)

}
. (2)

For a token placement f of a complete bipartite graph G, let q(f) = n− s(f).
Then, we have the following formula for OPT(f0).

Lemma 4. OPT(f0) = q(f0).

Lemma 4 implies that OPT(f0) can be computed in polynomial time for a com-
plete bipartite graph G. Therefore, in the remainder of this section, we prove
Lemma 4 as a proof of Theorem 5.

4.1 Upper Bound

We first proveOPT(f0) ≤ q(f0) by induction on q(f0). Our proof yields an actual
swapping sequence S between two token placements f0 and ft of a complete
bipartite graph G such that len(S) = q(f0).

Base Case
Let f0 be an initial token placement of G such that q(f0) = 0. Then, we claim
that f0 = ft. Recall that cXY (f0), cX(f0) and cY (f0) denote the numbers of
directed cycles in D, while c0(f0) denotes the number of vertices in G that are
not contained in D. Since each directed cycle in D contains at least two vertices
of G, we have c0(f0) = |V (G) \ VD| ≤ n − 2 ·

(
cXY (f0) + cX(f0) + cY (f0)

)
.

Therefore, by Eq. (2) we have

s(f0) ≤ n−
(
cXY (f0) + cX(f0) + cY (f0)

)
− 2 ·max

{
cX(f0), cY (f0)

}
.

Since cXY (f0), cX(f0) and cY (f0) are all non-negative integers, we thus have
s(f0) ≤ n. Furthermore, s(f0) = n holds if and only if cXY (f0) = cX(f0) =
cY (f0) = 0, that is, the conflict graph D has no vertex. Therefore, if q(f0) =
n− s(f0) = 0 and hence s(f0) = n holds, then we have f0 = ft as claimed. We
thus have OPT(f0) = 0 = q(f0).

Inductive Step
Suppose that OPT(f ′

0) ≤ q(f ′
0) holds for any token placement f ′

0 of G such that
q(f ′

0) = k. Let f0 be an initial token placement of G such that q(f0) = k + 1.
Then, we prove that OPT(f0) ≤ q(f0) = k + 1 holds.

We may assume without loss of generality that cX(f0) ≥ cY (f0). We first
choose one directed cycle C from the conflict graph D for f0 in the following
manner:
(A) if cXY (f0) ≥ 1, then choose any XY -cycle C in D;
(B) if cXY (f0) = 0 and cY (f0) ≥ 1, then choose any Y -cycle C in D; and
(C) otherwise choose any X-cycle C in D.



374 K. Yamanaka et al.

X

Y

(a)  f0

v1

v5

6

1

v2

v6

7

3

v3

v7

8

4

v4

v8

5

2

(b)  f0’

X

Y

v1

v5

6

1

v2

v6

7

3

v3

v7

8

4

v4

v8

2

5

CX

C

Fig. 6. Example of Case (B)

It should be noted that at least one of cXY (f0), cX(f0) and cY (f0) is non-zero
because q(f0) = n − s(f0) �= 0. Therefore, we can always choose one directed
cycle C from D according to the three cases (A)–(C) above.

We then swap some particular pair of tokens according to the chosen directed
cycle C. We will show that the resulting token placement f ′

0 of G satisfies q(f ′
0) =

k. Then, by applying the induction hypothesis to f ′
0, we have

OPT(f0) ≤ 1 + OPT(f ′
0) ≤ 1 + q(f ′

0) = 1 + k = q(f0).

Due to the page limitation, we here prove only Case (b), that is, C is a Y -cycle;
the remaining cases can be proved similarly.

In this case, by the choice of directed cycles from D, we have cXY (f0) = 0.
Furthermore, since cX(f0) ≥ cY (f0), we have cX(f0) ≥ 1 and hence the conflict
graph D for f0 contains at least one X-cycle CX . Figure 6(a) illustrates an
example; in the figure, for the sake of simplicity, we omit all the edges in E(G)
and depict the arcs in the conflict graph by dotted arrows.

We arbitrarily pick one vertex in C and one vertex in CX , and swap the two
tokens on them. (See Fig. 6(b).) Then, the resulting token placement f ′

0 of G
satisfies cXY (f

′
0) = cXY (f0) + 1 (= 1); cX(f ′

0) = cX(f0) − 1 (≥ 0); cY (f
′
0) =

cY (f0)− 1 (≥ 0); and c0(f
′
0) = c0(f0). Therefore, by Eq. (2) we have

s(f ′
0) =

(
cXY (f0) + 1

)
+
(
cX(f0)− 1

)
+
(
cY (f0)− 1

)
+c0(f0)− 2 ·max

{
cX(f0)− 1, cY (f0)− 1

}
= s(f0) + 1.

We thus have q(f ′
0) = n− s(f ′

0) = n−
(
s(f0) + 1

)
= q(f0)− 1 = k for Case (b).

In this way, we can verify that OPT(f0) ≤ q(f0) holds.

4.2 Lower Bound

We then prove OPT(f0) ≥ q(f0). Since q(ft) = 0, it suffices to show that one
token swap can decrease the value q(f0) by at most one. More formally, we have
the following lemma, which completes the proof of Lemma 4.

Lemma 5.
∣∣q(f ′) − q(f)

∣∣ ≤ 1 holds for any two adjacent token placements f
and f ′ of a complete bipartite graph G.



Swapping Labeled Tokens on Graphs 375

5 Concluding Remark

In this paper, we investigated algorithms for the token swapping problem
on some non-trivial graph classes. We note that the algorithm for trees runs in
O(n2) time, because each step moves the token �k along the unique path of O(n)
length in the tree. A swapping sequence S can be represented by outputting the
edges used for the token swaps in S. Therefore, the algorithm can return an
actual swapping sequence for a given token placement f0 in O(n2) time, while
there are instances on paths such that OPT(f0) = Ω(n2) as we have discussed in
Section 2.2. Therefore, it seems difficult to improve the time complexity O(n2)
of the algorithm if we wish to output an actual swapping sequence explicitly.

Acknowledgment. We are grateful to Takashi Horiyama, Shin-ichi Nakano
and Ryuhei Uehara for their comments on related work and fruitful discussions
with them. This work is partially supported by MEXT/JSPS KAKENHI, includ-
ing the ELC project. (Grant Numbers 24.3660, 24106010, 24700130, 25106502,
25106504, 25330003.)

References

1. Bitton, D., DeWitt, D.J., Hsaio, D.K., Menon, J.: A taxonomy of parallel sorting.
ACM Computing Surveys 16, 287–318 (1984)

2. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discrete Mathematics 8, 359–387
(1995)

3. Cayley, A.: Note on the theory of permutations. Philosophical Magazine 34,
527–529 (1849)

4. Cypher, R., Plaxton, C.G.: Deterministic sorting in nearly logarithmic time on the
hypercube and related computers. J. Computer and System Sciences 47, 501–548
(1993)

5. Dragan, F.F., Köhler, E.: An approximation algorithm for the tree t-spanner
problem on unweighted graphs via generalized chordal graphs. In: Goldberg,
L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.)APPROX/RANDOM 2011. LNCS,
vol. 6845, pp. 171–183. Springer, Heidelberg (2011)

6. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on un-
weighted graphs. SIAM J. Computing 38, 1761–1781 (2008)

7. Heath, L.S., Vergara, J.P.C.: Sorting by short swaps. J. Computational Biology 10,
775–789 (2003)

8. Jerrum, M.R.: The complexity of finding minimum-length generator sequence. The-
oretical Computer Science 36, 265–289 (1985)

9. Knuth, D.E. (ed.): Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992)
10. Knuth, D.E.: The Art of Computer Programming, 2nd edn., vol. 3. Addison-Wesley

(1998)
11. Manivel, L.: Symmetric Functions, Schubert Polynomials and Degeneracy Loci.

American Mathematical Society (2001)
12. Thompson, C.D., Kung, H.T.: Sorting on a mesh-connected parallel computer.

Communications ACM 20, 263–271 (1977)
13. Yamanaka, K., Nakano, S., Matsui, Y., Uehara, R., Nakada, K.: Efficient enumer-

ation of all ladder lotteries and its application. Theoretical Computer Science 411,
1714–1722 (2010)



Author Index

Alam, Muhammad Jawaherul 28
Aloupis, Greg 40
Asinowski, Andrei 301

Boldi, Paolo 1
Borassi, Michele 52
Brand, Michael 64
Burcsi, Péter 74

Chen, Ke 89
Cicalese, Ferdinando 100
Cordasco, Gennaro 100
Crescenzi, Pierluigi 52

Das, Shantanu 113
Deineko, Vladimir G. 125
Demaine, Erik D. 16, 40, 137, 364
Demaine, Martin L. 16
Dey, Palash 147
Dreier, Jannik 158
Dumitrescu, Adrian 89

Essed, Harrah 325

Fertin, Guillaume 171
Fici, Gabriele 74
Fleischer, Rudolf 185
Flocchini, Paola 113

Gargano, Luisa 100
Georgiou, Konstantinos 194
Gervasi, Vincenzo 206
Goyal, Prachi 147
Guo, Alan 40

Habib, Michel 52
Haraguchi, Kazuya 218
Horiyama, Takashi 230

Ito, Takehiro 364

Jamshidi, Shahrad 171
Jiang, Minghui 240
Jonker, Hugo 158

Kawahara, Jun 364
Keller, Barbara 252

Keszegh, Balázs 301
Kiyomi, Masashi 230, 364
Kobourov, Stephen G. 28
Komusiewicz, Christian 171
Kosters, Walter 52
Kostitsyna, Irina 264
Kranakis, Evangelos 194
Krizanc, Danny 194
Krumke, Sven O. 277

Lafourcade, Pascal 158
Levcopoulos, Christos 289
Lingas, Andrzej 289
Lipták, Zsuzsanna 74
Löffler, Maarten 264

Ma, Fermi 137
Marino, Andrea 52
Milanič, Martin 100
Miltzow, Tillmann 301
Misra, Neeldhara 147
Mizuki, Takaaki 313

Nilsson, Bengt J. 289

Okamoto, Yoshio 230, 364
Ono, Hirotaka 218

Peleg, David 252
Peters, Joseph G. 100
Polishchuk, Valentin 264
Prencipe, Giuseppe 113, 206
Pupyrev, Sergey 28

Ruskey, Frank 74

Saitoh, Toshiki 364
Santoro, Nicola 113
Sawada, Joe 74
Schwahn, Florian D. 277
Shizuya, Hiroki 313
Suzuki, Akira 364

Takes, Frank 52
Tejada, Pedro J. 240



378 Author Index

Therese, Wei 325
Thielen, Clemens 277
Toeniskoetter, Jackson 28

Uchizawa, Kei 364
Uehara, Ryuhei 230
Uno, Takeaki 230, 364
Uno, Yushi 230

Vaccaro, Ugo 100
Viglietta, Giovanni 40, 340
Volpi, Valerio 206

Waingarten, Erik 137
Wang, Haitao 240
Wattenhofer, Roger 252
Woeginger, Gerhard J. 125
Wu, Bang Ye 352

Yamanaka, Katsuhisa 364
Yamauchi, Yukiko 230

Zhang, Tao 185
Żyliński, Pawe�l 289


	Preface
	Organization
	Table of Contents
	Algorithmic Gems in the Data Miner’s Cave
	1 Welcome to the Dungeon
	2 Please, Crawl as you Enter the Cave
	3 Data Miners Eat Perfect Hash
	4 Fortunes and Misfortunes of Graph Compression
	5 Crunching Graphs in the Data Miner’s Grinder
	6 What a Miner Should Not Know
	7 Conclusions
	References

	Fun with Fonts: Algorithmic Typography
	1 Introduction
	2 Hinged Dissections
	3 Conveyer Belts
	4 Origami Mazes

	5 Glass Squishing
	6 Fixed-Angle Linkages
	References

	Happy Edges: Threshold-Coloring of Regular Lattices
	1 Introduction
	2 Total-Threshold-Colorable Lattices
	2.1 The (63) and (4, 82) Lattices
	2.2 The (3, 122) and (4, 6, 12) Lattices
	2.3 The D(32, 4, 3, 4) andD(34, 6) Lattices

	3 Non-Total-Threshold-Colorable Lattices
	4 Graphs with Unbounded Colors
	5 Conclusion and Open Questions
	References

	Classic Nintendo Games Are
(Computationally) Hard

	1 Introduction
	2 Frameworks for Platform Games
	2.1 Framework for NP-hardness
	2.2 Framework for PSPACE-hardness

	3 Super Mario Bros
	4 Donkey Kong Country
	5 The Legend of Zelda
	6 Metroid
	7 Pok´emon
	References

	On the Solvability of the Six Degrees
of Kevin Bacon Game

	1 Introduction
	2 Bounding the Radius and Diameter Using SumSweep
	3 Bounding the Eccentricities of the Vertices
	4 Computing Radius and Diameter
	5 Experimental Results
	6 Internet Movies Database Case Study
	7 Conclusion
	References

	No Easy Puzzles: A Hardness Result
for Jigsaw Puzzles

	1 Introduction
	2 Formal Definition of the Model
	3 Proof of the Main Claim
	4 Conclusions and Open Questions
	References

	Normal, Abby Normal, Prefix Normal
	1 Introduction
	2 Prefix Normal Words
	3 Asymptotic Bounds on the Number of Prefix Normal Words
	4 Exact Formulas for Special Classes of Prefix Normal Words
	5 Experimental Results about Prefix Normal Words
	6 Prefix Normal Games
	7 Construction and Testing Algorithms
	7.1 A Mechanical Algorithm for Computing the Prefix Normal Forms

	7.2 Testing Algorithm
	7.3 Membership Testing with Linear Time Filters

	References

	Nonconvex Cases for Carpenter’s Rulers
	1 Introduction
	2 Upper Bound
	3 Lower Bound
	3.1 Lower Bound with One 3-link Ruler
	3.2 Lower Bound with One 5-link Ruler

	4 Remarks
	References

	How to go Viral: Cheaply and Quickly
	1 The Motivations
	2 The Context
	3 The Results

	4 (λ, β)-Maximally Influencing Set on Trees
	5 (λ, β)-Maximally Influencing Set on Paths, Cycles, and Complete Graphs

	6 Concluding Remarks
	References

	Synchronized Dancing of Oblivious Chameleons
	1 Introduction
	2 Model and Definitions
	3 Fundamental Limitations and Techniques
	3.1 Limits
	3.2 Techniques

	4 Contraction-Free Choreographies (with Repetitions)
	5 Repetition-Free Choreographies (with Contractions)
	6 Arbitrary Choreographies
	7 Asynchronous Chameleons
	References

	Another Look at the Shoelace TSP:
The Case of Very Old Shoes

	1 The Art of Shoelacing
	2 Technical Introduction
	3 Polynomially Solvable TSP Cases and the BTSP
	4 The Recognition of Specially Structured Matrices
	References

	Playing Dominoes Is Hard, Except by Yourself
	1 Introduction
	2 Game Definitions
	2.1 Classic Dominoes
	2.2 Generalized Dominoes
	2.3 Variants
	2.4 UNO

	3 Cooperative Dominoes

	3.1 Two-Player Cooperative Dominoes
	3.2 p-Player Cooperative Dominoes

	3.3 Single-Player Dominoes

	4 Competitive Dominoes
	5 Conclusion
	References

	UNO Gets Easier for a Single Player
	1 Introduction
	2 Preliminaries
	3 The Standard UNO Game
	4 The All-or-None UNO Game
	4.1 A Single-Exponential FPT Algorithm

	5 Conclusions
	References

	Secure Auctions without Cryptography
	1 Introduction
	2 Protocol by Sako

	2.1 Informal Description
	2.2 Security Properties

	3 The “Envelopako” Protocol
	3.1 Description
	3.2 Security Properties
	3.3 A Distributed Variant

	4 The “Woodako” Protocol
	4.1 Description
	4.2 Security Properties

	5 Conclusion
	References

	Towards an Algorithmic Guide to Spiral Galaxies
	1 Introduction
	2 A Nebula of Exact Algorithms
	3 An Algorithm for Solutions with Few Corners
	4 Outlook
	References

	Competitive Analysis of the Windfall Game
	1 Introduction
	2 Definitions
	2.1 Benefit Task Systems
	2.2 Our Results

	3 A Lower Bound
	4 Online Algorithms
	4.1 A (d + 1)-Competitive Greedy Algorithm

	4.2 Tight Bounds for the Case d = 1

	4.3 Reasonable Bounds for Arbitrary d


	5 Conclusions
	References

	Excuse Me!
or The Courteous Theatregoers’ Problem

	1 Introduction
	1.1 Related Work
	1.2 Outline and Results of the Paper

	2 Selfish Theatregoers
	3 Courteous Theatregoers
	4 Geometric Distribution
	5 Zipf Distribution
	6 The Occupancy of a Theater
	7 Conclusions and Open Problems
	References

	Zombie Swarms: An Investigation
on the Behaviour of Your Undead Relatives

	1 Introduction
	2 Related Work
	3 The Computational Model
	4 Problems
	4.1 Gathering
	4.2 Flocking
	4.3 Spreading
	4.4 Splitting

	5 Conclusions
	References

	Approximability of Latin Square
Completion-Type Puzzles

	1 Introduction
	2 Preliminaries
	2.1 Latin Square
	2.2 Sudoku, Futoshiki and BlockSum as Maximization Problems


	3 Hardness
	4 Approximation Algorithms
	4.1 Greedy Algorithm
	4.2 Matching Based Approach
	4.3 Local Search

	5 Concluding Remarks
	References

	Sankaku-Tori: An Old Western-Japanese Game
Played on a Point Set

	1 Introduction
	2 Preliminaries
	3 The First Player Wins on Convex Position
	4 NP-Completeness
	5 Conclusion
	References

	Quell
	1 Introduction
	2 Negative Results
	2.1 Approximation Lower Bound for ANY-MOVES-MAX-PEARLS
	2.2 Approximation Lower Bound for MIN-MOVES-ALL-PEARLS

	3 Positive Results

	3.1 Exact Algorithm for ANY-MOVES-ALL-PEARLS
	3.2 NP-membership of ANY-MOVES-k-PEARLS and k-MOVES-ALL-PEARLS
	3.3 Constant Approximation for ANY-MOVES-MAX-PEARLS
	3.4 Fixed-Parameter Algorithm for ANY-MOVES-k-PEARLS
	3.5 Fixed-Parameter Algorithm for k-MOVES-ALL-PEARLS

	4 Concluding Remarks
	References

	How Even Tiny Influence Can Have a Big Impact!
	1 Introduction
	2 Preliminaries
	3 Weighted Graphs
	4 AsymmetricWeights
	References

	Optimizing Airspace Closure with Respect to 
Politicians’ Egos
	1 Introduction
	1.1 Model
	1.2 Our Contributions
	1.3 RelatedWork

	2 Delay Minimization
	2.1 Aircraft Flying through Rainbows
	2.2 Platoon Tree Structure
	2.3 Rainbow Algorithm

	3 Ego Query
	4 Algorithms for Harmless VIPs
	References

	Being Negative Makes Life NP-hard
(for Product Sellers)

	1 Introduction
	2 Problem Definition and Preliminaries
	3 Computational Complexity
	4 The Frag Algorithm

	5 Non-negative Influence
	References

	Clearing Connections by Few Agents
	1 Introduction
	2 Preliminaries
	3 Approximation and Exact Algorithms
	3.1 2-Approximation Algorithm
	3.2 Exact Parameterized Algorithm

	4 NP-Hardness
	5 Trees
	6 Extentions
	7 Final Remarks

	References

	Counting Houses of Pareto Optimal Matchings
in the House Allocation Problem

	1 Introduction
	1.1 Definitions
	1.2 Results
	1.3 Motivation and Related Work
	1.4 Preliminaries

	2 Enumerating Reachable Elements and Sets
	3 Characterization of Avoidable Elements
	References

	Practical Card-Based Cryptography
	1 Introduction
	1.1 Five-Card Trick
	1.2 Other Existing Protocols
	1.3 Semi-Honest Model
	1.4 Our Main Results

	2 Existing Committed-Format AND/XOR Protocols
	2.1 AND Protocol
	2.2 XOR Protocol

	3 Attack Exploiting Input Format
	3.1 Example of the Attack
	3.2 Countermeasure

	4 Backs with a Rotationally Symmetric Pattern
	4.1 Disadvantage
	4.2 Advantage

	5 Backs with Scuff Marks
	6 Conclusion
	References

	The Harassed Waitress Problem
	1 Introduction
	1.1 The Harassed Waitress Problem
	1.2 New Results

	2 Successor Rules for Four Greedy Flip Strategies
	2.1 Minimum Flip for Permutations
	2.2 Minimum Flips for Signed Permutations
	2.3 Maximum Flips for Permutations
	2.4 Maximum Flips for Signed Permutations

	3 The Bigger Picture
	References

	Lemmings Is PSPACE-Complete
	1 Introduction
	2 Game Definition
	3 Instances Solvable in NP
	4 PSPACE-Complete Instances

	5 Inapproximability
	References

	Finding Centers and Medians of a Tree
by Distance Queries

	1 Introduction
	2 Preliminaries
	3 Diameter, Radius and Center
	3.1 Algorithms
	3.2 Lower Bounds for the Center and the Diameter Problems

	4 Leaf Median of a Tree
	5 Randomized Algorithm for Leaf Median
	6 Concluding Remarks
	References

	Swapping Labeled Tokens on Graphs
	1 Introduction
	1.1 Our Problem
	1.2 Related Work and Known Results
	1.3 Our Contribution

	2 Preliminaries
	2.1 Definitions for token swapping

	2.2 Polynomial Upper Bound on the Minimum Length
	2.3 Relations to Sorting Networks

	3 Approximation
	3.1 Trees
	3.2 General Graphs

	4 Complete Bipartite Graphs
	4.1 Upper Bound
	4.2 Lower Bound

	5 Concluding Remark
	References

	Author Index



