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Preface

This book brings together 18 carefully refereed research and review papers in the
broad areas of optimization and functional analysis, with a particular emphasis on
topics related to fixed-point algorithms. The volume is a compendium of topics
presented at the Interdisciplinary Workshop on Fixed-Point Algorithms for Inverse
Problems in Science and Engineering, held at the Banff International Research Sta-
tion for Mathematical Innovation and Discovery (BIRS), on November 1–6, 2009.
Forty experts from around the world were invited. Participants came from Australia,
Austria, Brazil, Bulgaria, Canada, France, Germany, Israel, Japan, New Zealand,
Poland, Spain, and the United States.

Most papers in this volume grew out of talks delivered at this workshop, although
some contributions are from experts who were unable to attend. We believe that the
reader will find this to be a valuable state-of-the-art account on emerging directions
related to first-order fixed-point algorithms.

The editors thank BIRS and their sponsors – Natural Sciences and Engineering
Research Council of Canada (NSERC), US National Science Foundation (NSF),
Alberta Science Research Station (ASRA), and Mexico’s National Council for Sci-
ence and Technology (CONACYT) – for their financial support in hosting the
workshop, and Wynne Fong, Brent Kearney, and Brenda Williams for their help
in the preparation and realization of the workshop. We are grateful to Dr. Mason
Macklem for his valuable help in the preparation of this volume. Finally, we thank
the dedicated referees who contributed significantly to the quality of this volume
through their instructive and insightful reviews.
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18 The Brézis-Browder Theorem Revisited and Properties
of Fitzpatrick Functions of Order n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391
Liangjin Yao



Contributors

Heinz H. Bauschke Department of Mathematics, Irving K. Barber School,
University of British Columbia, Kelowna, B.C. V1V 1V7, Canada,
heinz.bauschke@ubc.ca

Amir Beck Department of Industrial Engineering, Technion, Israel Institute
of Technology, Haifa 32000, Israel, becka@ie.technion.ac.il

Adi Ben-Israel RUTCOR – Rutgers Center for Operations Research, Rutgers
University, 640 Bartholomew Road, Piscataway, NJ 08854-8003, USA,
adi.benisrael@gmail.com

Jonathan M. Borwein CARMA, School of Mathematical and Physical Sciences,
University of Newcastle, NSW 2308, Australia,
jonathan.borwein@newcastle.edu.au
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Chapter 1
Chebyshev Sets, Klee Sets, and Chebyshev
Centers with Respect to Bregman Distances:
Recent Results and Open Problems

Heinz H. Bauschke, Mason S. Macklem, and Xianfu Wang

Abstract In Euclidean spaces, the geometric notions of nearest-points map,
farthest-points map, Chebyshev set, Klee set, and Chebyshev center are well known
and well understood. Since early works going back to the 1930s, tremendous theo-
retical progress has been made, mostly by extending classical results from Euclidean
space to Banach space settings. In all these results, the distance between points is
induced by some underlying norm. Recently, these notions have been revisited
from a different viewpoint in which the discrepancy between points is measured
by Bregman distances induced by Legendre functions. The associated framework
covers the well known Kullback–Leibler divergence and the Itakura–Saito distance.
In this survey, we review known results and we present new results on Klee sets
and Chebyshev centers with respect to Bregman distances. Examples are provided
and connections to recent work on Chebyshev functions are made. We also identify
several intriguing open problems.

Keywords Bregman distance · Chebyshev center · Chebyshev function
· Chebyshev point of a function · Chebyshev set · Convex function · Farthest
point · Fenchel conjugate · Itakura–Saito distance · Klee set · Klee function
· Kullback–Leibler divergence · Legendre function · Nearest point · Projection
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2 H.H. Bauschke et al.

1.1 Introduction

1.1.1 Legendre Functions and Bregman Distances

Throughout, we assume that

X = R
n is the standard Euclidean space with inner product 〈·, ·〉, (1.1)

with induced norm ‖ ·‖ : x �→√〈x,x〉, and with metric (x,y) �→ ‖x−y‖. In addition,
it is assumed that

f : X → ]−∞,+∞] is a convex function of Legendre type, (1.2)

also referred to as a Legendre function. We assume the reader is familiar with basic
results and standard notation from Convex Analysis; see, e.g., [33, 34, 40]. In par-
ticular, f ∗ denotes the Fenchel conjugate of f , and intdom f is the interior of the
domain of f . For a subset C of X , C stands for the closure of C, convC for the con-
vex hull of C, and ιC for the indicator function of C, i.e., ιC(x) = 0, if x ∈ C and
ιC(x) = +∞, if x ∈ X �C. Now set

U = intdom f . (1.3)

Example 1.1 (Legendre functions). The following are Legendre functions,1 each
evaluated at a point x ∈ X .

(i) Halved energy: f (x) = 1
2‖x‖2 = 1

2

∑
j x2

j .

(ii) Negative entropy: f (x) =

{∑
j

(
x j ln(x j)− x j

)
, if x≥ 0;

+∞, otherwise.

(iii) Negative logarithm: f (x) =

{
−∑ j ln(x j), if x > 0;

+∞, otherwise.

Note that U = R
n inss (i), whereas U = R

n
++ in (ii) and (iii).

Further examples of Legendre functions can be found in, e.g., [2, 5, 12, 33].

1 Here and elsewhere, inequalities between vectors in R
n are interpreted coordinate-wise.
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Fact 1.2 (Rockafellar). (See [33, Theorem 26.5].) The gradient map ∇ f is a
continuous bijection between intdom f and intdom f ∗, with continuous inverse map
(∇ f )−1 = ∇ f ∗. Furthermore, f ∗ is also a convex function of Legendre type.

Given x ∈U and C ⊆U , it will be convenient to write

x∗ = ∇ f (x), (1.4)

C∗ = ∇ f (C), (1.5)

U∗ = intdom f ∗, (1.6)

and similarly for other vectors and sets in U . Note that we used Fact 1.2 for (1.6).
While the Bregman distance defined next is not a distance in the sense of metric

topology, it does possess some good properties that allow it to measure the discrep-
ancy between points in U .

Definition 1.3 (Bregman distance). (See [13, 15, 16].) The Bregman distance
with respect to f , written D f or simply D, is the function

D : X×X→ [0,+∞] : (x,y) �→
{

f (x)− f (y)−〈∇ f (y),x− y〉 , if y ∈U ;

+∞, otherwise.
(1.7)

Fact 1.4. (See [2, Proposition 3.2(i) and Theorem 3.7(iv) and (v)].) Let x and y be
in U . Then the following hold:

(i) D f (x,y) = f (x)+ f ∗(y∗)−〈y∗,x〉= Df ∗(y∗,x∗).
(ii) Df (x,y) = 0⇔ x = y⇔ x∗ = y∗ ⇔ D f ∗(x∗,y∗) = 0.

Example 1.5. The Bregman distances corresponding to the Legendre functions of
Example 1.1 between two points x and y in X are as follows:

(i) D(x,y) = 1
2‖x− y‖2.

(ii) D(x,y) =

{∑
j

(
x j ln(x j/y j)− x j + y j

)
, if x≥ 0 and y > 0;

+∞, otherwise.

(iii) D(x,y) =

{∑
j

(
ln(y j/x j)+ x j/y j−1

)
, if x > 0 and y > 0;

+∞, otherwise.

These Bregman distances are also known as (i) the halved Euclidean distance
squared, (ii) the Kullback–Leibler divergence, and (iii) the Itakura–Saito distance,
respectively.
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From now on, we assume that C is a subset of X such that

C is closed and ∅ �= C ⊆U. (1.8)

The power set (the set of all subsets) of C is denoted by 2C.
We are now in a position to introduce the various geometric notions.

1.1.2 Nearest Distance, Nearest Points, and Chebyshev Sets

Definition 1.6 (Bregman nearest-distance function and nearest-points map).
The left Bregman nearest-distance function with respect to C is

←−
DC : X → [0,+∞] : y �→ inf

x∈C
D(x,y), (1.9)

and the left Bregman nearest-points map2 with respect to C is

←−
PC : X → 2C : y �→ {x ∈C

∣
∣ D(x,y) =

←−
DC(y) < +∞

}
. (1.10)

The right Bregman nearest-distance and the right Bregman nearest-point map with
respect to C are −→

DC : X → [0,+∞] : x �→ inf
y∈C

D(x,y) (1.11)

and −→
PC : X → 2C : x �→ {y ∈C

∣
∣ D(x,y) =

−→
DC(x) < +∞

}
, (1.12)

respectively. If we need to emphasize the underlying Legendre function f , then we
write

←−
Df ,C,

←−
P f ,C,

−→
D f ,C, and

−→
P f ,C.

Definition 1.7 (Chebyshev sets). The set C is a left Chebyshev set with respect
to the Bregman distance, or simply

←−
D-Chebyshev, if for every y ∈ U ,

←−
PC(y) is a

singleton. Similarly, the set C is a right Chebyshev set with respect to the Bregman
distance, or simply

−→
D-Chebyshev, if for every x ∈U ,

−→
PC(x) is a singleton.

Remark 1.8 (Classical Bunt-Motzkin result). Assume that f is the halved energy as
in Example 1.1(i). Since the halved Euclidean distance squared (see Example 1.5(i))
is symmetric, the left and right (Bregman) nearest distances coincide, as do the
corresponding nearest-point maps. Furthermore, the set C is Chebyshev if and only

2 This operator, which has turned out to be quite useful in Optimization and which has found many
applications (for a recent one, see [32]), is often referred to as the Bregman projection.
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if for every z ∈ X , the metric3 projection PC(z) is a singleton. It is well known that
if C is convex, then C is Chebyshev. In the mid-1930s, Bunt [14] and Motzkin [28]
showed independently that the following converse holds:

C is Chebyshev =⇒ C is convex. (1.13)

For other works in this direction, see, e.g., [1, 9–11, 17, 22, 24, 25, 35–37]. It is still
unknown whether or not (1.13) holds in general Hilbert spaces. We review corre-
sponding results for the present Bregman setting in Sect. 1.3.

1.1.3 Farthest Distance, Farthest Points, and Klee Sets

Definition 1.9 (Bregman farthest-distance function and farthest-points map).
The left Bregman farthest-distance function with respect to C is

←−
FC : X → [0,+∞] : y �→ sup

x∈C
D(x,y), (1.14)

and the left Bregman farthest-points map with respect to C is

←−
QC : X → 2C : y �→ {x ∈C

∣
∣ D(x,y) =

←−
FC(y) < +∞

}
. (1.15)

Similarly, the right Bregman farthest-distance function with respect to C is

−→
FC : X → [0,+∞] : x �→ sup

y∈C
D(x,y), (1.16)

and the right Bregman farthest-points map with respect to C is

−→
QC : X → 2C : x �→ {y ∈C

∣
∣ D(x,y) =

−→
FC(x) < +∞

}
. (1.17)

If we need to emphasize the underlying Legendre function f , then we write
←−
F f ,C,←−

Qf ,C,
−→
F f ,C, and

−→
Q f ,C.

Definition 1.10 (Klee sets). The set C is a left Klee set with respect to the Bregman
distance, or simply

←−
D-Klee, if for every y ∈ U ,

←−
QC(y) is a singleton. Similarly,

the set C is a right Klee set with respect to the right Bregman distance, or simply−→
D-Klee, if for every x ∈U ,

−→
QC(x) is a singleton.

Remark 1.11 (Classical Klee result). Assume again that f is the halved energy as
in Example 1.1(i). Then the left and right (Bregman) farthest-distance functions

3 The metric projection is the nearest-points map with respect to the Euclidean distance.
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coincide, as do the corresponding farthest-points maps. Furthermore, the set C is
Klee if and only if for every z ∈ X , the metric farthest-points map QC(z) is a
singleton. It is obvious that if C is a singleton, then C is Klee. In 1961, Klee [27]
showed the following converse:

C is Klee =⇒ C is a singleton. (1.18)

See, e.g., also [1,11,17,23–25,29,39]. Once again, it is still unknown whether or not
(1.18) remains true in general Hilbert spaces. The present Bregman-distance setting
is reviewed in Sect. 1.4.

1.1.4 Chebyshev Radius and Chebyshev Center

Definition 1.12 (Chebyshev radius and Chebyshev center). The left
←−
D-Che-

byshev radius of C is
←−r C = inf

y∈U

←−
FC(y) (1.19)

and the left
←−
D-Chebyshev center of C is

←−
ZC =

{
y ∈U

∣
∣←−FC(y) =←−r C < +∞

}
. (1.20)

Similarly, the right
−→
D-Chebyshev radius of C is

−→r C = inf
x∈U

−→
FC(x) (1.21)

and the right
−→
D-Chebyshev center of C is

−→
ZC =

{
x ∈U

∣
∣ −→FC(x) =−→r C < +∞

}
. (1.22)

If we need to emphasize the underlying Legendre function f , then we write ←−r f ,C,←−
Z f ,C, −→r f ,C, and

−→
Z f ,C.

Remark 1.13 (Classical Garkavi-Klee result). Again, assume that f is the halved
energy as in Example 1.1(i) so that the left and right (Bregman) farthest-distance
functions coincide, as do the corresponding farthest-points maps. Furthermore, as-
sume that C is bounded. In the 1960s, Garkavi [19] and Klee [26] proved that the
Chebyshev center is a singleton, say {z}, which is characterized by

z ∈ convQC(z). (1.23)

See also [30, 31] and Sect. 1.5. In passing, we note that Chebyshev centers are also
utilized in Fixed Point Theory; see, e.g., [20, Chap. 4].
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1.1.5 Goal of the Paper

The aim of this survey is threefold. First, we review recent results concern-
ing Chebyshev sets, Klee sets, and Chebyshev centers with respect to Bregman
distances. Second, we provide some new results and examples on Klee sets and
Chebyshev centers. Third, we formulate various tantalizing open problems on these
notions as well as on the related concepts of Chebyshev functions.

1.1.6 Organization of the Paper

The remainder of the paper is organized as follows. In Sect. 1.2, we record auxiliary
results which will make the derivation of the main results more structured. Cheby-
shev sets and corresponding open problems are discussed in Sect. 1.3. In Sect. 1.4,
we review results and open problems for Klee sets, and we also present a new re-
sult (Theorem 1.27) concerning left Klee sets. Chebyshev centers are considered
in Sect. 1.5, where we also provide a characterization of left Chebyshev centers
(Theorem 1.31). Chebyshev centers are illustrated by two examples in Sect. 1.6. Re-
cent related results on variations of Chebyshev sets and Klee sets are considered in
Sect. 1.7. Along our journey, we pose several questions that we list collectively in
the final Sect. 1.8.

1.2 Auxiliary Results

For the reader’s convenience, we present the following two results which are im-
plicitly contained in [6] and [7].

Lemma 1.14. Let x and y be in C. Then the following hold:

(i)
←−
Df ,C(y) =

−→
D f ∗,C∗(y∗) and

−→
D f ,C(x) =

←−
Df ∗,C∗(x∗).

(ii)
←−
P f ,C

∣
∣
U = ∇ f ∗ ◦−→P f ∗,C∗ ◦∇ f and

−→
P f ,C

∣
∣
U = ∇ f ∗ ◦←−P f ∗,C∗ ◦∇ f .

(iii)
←−
P f ∗ ,C∗

∣∣
U∗ = ∇ f ◦−→P f ,C ◦∇ f ∗ and

−→
P f ∗,C∗

∣∣
U∗ = ∇ f ◦←−P f ,C ◦∇ f ∗.

Proof. This follows from Fact 1.2, Fact 1.4(i), and Definition 1.6. (See also
[6, Proposition 7.1].) �

Lemma 1.15. Let x and y be in C. Then the following hold:

(i)
←−
F f ,C(y) =

−→
F f ∗,C∗(y∗) and

−→
F f ,C(x) =

←−
F f ∗,C∗(x∗).

(ii)
←−
Qf ,C

∣
∣
U = ∇ f ∗ ◦−→Q f ∗,C∗ ◦∇ f and

−→
Q f ,C

∣
∣
U = ∇ f ∗ ◦←−Qf ∗,C∗ ◦∇ f .

(iii)
←−
Qf ∗ ,C∗

∣
∣
U∗ = ∇ f ◦−→Q f ,C ◦∇ f ∗ and

−→
Q f ∗,C∗

∣
∣
U∗ = ∇ f ◦←−Qf ,C ◦∇ f ∗.
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Proof. This follows from Fact 1.2, Fact 1.4(i), and Definition 1.9. (See also
[7, Proposition 7.1].) �

The next observation on the duality of Chebyshev radii and Chebyshev centers
is new.

Lemma 1.16. The following hold:

(i) ←−r f ,C =−→r f ∗,C∗ and −→r f ,C =←−r f ∗,C∗ .

(ii)
←−
Z f ,C = ∇ f ∗

(−→
Z f ∗,C∗

)
and
−→
Z f ,C = ∇ f ∗

(←−
Z f ∗,C∗

)
.

(iii)
←−
Z f ∗ ,C∗ = ∇ f

(−→
Z f ,C

)
and
−→
Z f ∗,C∗ = ∇ f

(←−
Z f ,C

)
.

(iv)
←−
Z f ,C is a singleton⇔−→Z f ∗,C∗ is a singleton.

(v)
−→
Z f ,C is a singleton⇔←−Z f ∗,C∗ is a singleton.

Proof. (i): Using Definition 1.12 and Lemma 1.15(i), we see that

←−r f ,C = inf
y∈U

←−
FC(y) = inf

y∗∈U∗
−→
FC∗(y∗) =−→r f ∗,C∗ (1.24)

and that −→r f ,C = inf
y∈U

−→
FC(y) = inf

y∗∈U∗
←−
FC∗(y∗) =←−r f ∗,C∗ . (1.25)

(ii) and (iii): Let z ∈U . Using (i) and Lemma 1.15(i), we see that

z ∈←−Z f ,C⇔←−F f ,C(z) =←−r f ,C⇔−→F f ∗,C∗(z∗) =−→r f ∗,C∗ ⇔ z∗ ∈ −→Z f ∗,C∗ . (1.26)

This verifies
←−
Z f ,C = ∇ f ∗

(−→
Z f ∗,C∗

)
and
−→
Z f ∗,C∗ = ∇ f

(←−
Z f ,C

)
. The remaining identi-

ties follow similarly.
(iv) and (v): Clear from (ii) and (iii) and Fact 1.2. �

The following two results play a key role for studying the single-valuedness of−→
P f ,C via

←−
P f ∗,C∗ and

−→
Q f ,C via

←−
Qf ∗,C∗ by duality.

Lemma 1.17. Let V and W be nonempty open subsets of X, and let T : V →W
be a homeomorphism, i.e., T is a bijection and both T and T−1 are continuous.
Furthermore, let G be a residual4 subset of V . Then T (G) is a residual subset of W.

Proof. As G is residual, there exist sequence of dense open subsets (Ok)k∈N of V
such that G⊇⋂k∈N

Ok. Then T (G)⊇ T (
⋂

k∈N
Ok) =

⋂
k∈N

T (Ok). Since T : V →W
is a homeomorphism and each Ok is dense in V , we see that each T (Ok) is open and
dense in W . Therefore,

⋂
k∈N

T (Ok) is a dense Gδ subset in W . �

Lemma 1.18. Let V be a nonempty open subset of X, and let T : V →R
n be locally

Lipschitz. Furthermore, let S be a subset of V that has Lebesgue measure zero. Then,
T (S) has Lebesgue measure zero as well.

4 Also known as “second category”.
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Proof. Denote the closed unit ball in X by B. For every y ∈V , let r(y) > 0 be such
that T is Lipschitz continuous with constant c(y) on the open ball O(y) centered at
y of radius r(y). In this proof, we denote the Lebesgue measure by λ . Let K be a
compact subset of X . To show that T (S) has Lebesgue measure zero, it suffices to
show that λ (T (K ∩S)) = 0 because

λ
(
T (S)

)
= λ

(
T
(⋃

k∈N

S∩ kB

))
≤
∑

k∈N

λ
(
T (S∩ kB)

)
. (1.27)

The Heine–Borel theorem provides a finite subset {y1, . . . ,ym} of V such that

K ⊆
m⋃

j=1

O(y j). (1.28)

We now proceed using a technique implicit in the proof of [21, Corollary 1]. Set
c = max{c1,c2, . . . ,cm}. Given ε > 0, there exists an open subset G of X such that
G ⊇ K ∩ S and λ (G) < ε. For each y ∈ K ∩ S, let Q(y) be an open cubic interval
centered at y of semi-edge length s(y) > 0 such that

(∃ j ∈ {1, . . . ,m}) Q(y)⊆ G∩O(y j). (1.29)

Then for each x ∈ Q(y), we have

‖Tx−Ty‖ ≤ c‖x− y‖ ≤ c
√

ns(y). (1.30)

Hence, the image of Q(y) by T , T (Q(y)), is contained in a cubic interval – which we
denote by Q∗(Ty) – of center Ty and with semi-edge length c

√
ns(y). Applying the

Besicovitch Covering Theorem, we see that there exists a sequence (Qk)k∈N chosen
among the open covering (Q(y))y∈K∩S such that

K ∩S⊆
⋃

k∈N

Qk and
∑

k∈N

χQk ≤ θ , (1.31)

where χQk stands for the characteristic function of Qk and where the constant θ only
depends on the dimension of X . Thus,

T (K ∩S)⊆ T
(⋃

k∈N

Qk

)
=
⋃

k∈N

T (Qk)⊆
⋃

k∈N

Q∗k. (1.32)

Now set d = (c
√

n)n so that λ (Q∗k) ≤ dλ (Qk). Then, using (1.29) and (1.31), we
see that

λ
(
∪k∈N Q∗k

)
≤
∑

k∈N

λ (Q∗k)≤ d
∑

k∈N

λ (Qk) = d
∑

k∈N

∫
χQk = d

∫ ∑

k∈N

χQk

≤ dθλ (G)
≤ dθε. (1.33)

Since ε was chosen arbitrarily, we conclude that λ (T (K∩S)) = 0.
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Alternatively, one may argue as follows starting from (1.28). We have K ∩ S ⊆(⋃m
j=1 O(y j)

)∩S =
⋃m

j=1 O(y j)∩S so that

T (K ∩S)⊆
m⋃

j=1

T (O(y j)∩S). (1.34)

Since T is Lipschitz on each O(y j) with constant c(y j) and since λ (O(y j)∩S) = 0,
we apply [18, Proposition 262D, page 286] and conclude that λ (T (O(y j)∩S)) = 0.
Therefore, λ (T (K ∩S)) = 0 by (1.34). �

1.3 Chebyshev Sets

We start by reviewing the strongest known results concerning left and right Cheby-
shev sets with respect to Bregman distances.

Fact 1.19 (
←−
D-Chebyshev sets). (See [6, Theorem 4.7].) Suppose that f is super-

coercive5 and that C is
←−
D-Chebyshev. Then C is convex.

Fact 1.20 (
−→
D-Chebyshev sets). (See [6, Theorem 7.3].) Suppose that dom f = X ,

that C∗ ⊆U∗, and that C is
−→
D-Chebyshev. Then C∗ is convex.

It is not known whether or not Fact 1.19 and 1.20 are the best possible results.
For instance, is the assumption on supercoercivity in Fact 1.19 really necessarily?
Similarly, do we really require full domain of f in Fact 1.20?

Example 1.21. (See [6, Example 7.5].) Suppose that X = R
2, that f is the negative

entropy (see Example 1.1(ii)), and that

C =
{
(eλ ,e2λ )

∣
∣ λ ∈ [0,1]

}
. (1.35)

Then f is supercoercive and C is a nonconvex
−→
D-Chebyshev set.

Example 1.21 is somewhat curious – not only does it illustrate that the right-
Chebyshev-set counterpart of Fact 1.19 fails but it also shows that the conclusion of
Fact 1.20 may hold even though f is not assumed to have full domain.

Fact 1.22. (See [4, Lemma 3.5].) Suppose that f is the negative entropy (see
Example 1.1(ii)) and that C is convex. Then C is

−→
D-Chebyshev.

5 By [2, Proposition 2.16] and [33, Corollary 14.2.2], f is supercoercive ⇔ lim
‖x‖→+∞

f (x)
‖x‖ = +∞⇔

dom f ∗ = X ⇒ 0 ∈ intdom f ∗ ⇔ lim
‖x‖→+∞

f (x) = +∞⇔ f is coercive.
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Fact 1.22 raises two intriguing questions. Apart from the case of quadratic func-
tions, are there instances of f , where f has full domain and where every closed
convex subset of U is

−→
D-Chebyshev? Because of Fact 1.20, an affirmative an-

swer to this question would imply that ∇ f is a (quite surprising) nonaffine yet
convexity-preserving transformation. Combining Example 1.21 and Fact 1.22, we
deduce that – when working with the negative entropy – if C is convex, then C is−→
D-Chebyshev but not vice versa. Is it possible to describe the

−→
D-Chebyshev sets in

this setting?
We also note that C is “nearly

←−
D-Chebyshev” in the following sense.

Fact 1.23. (See [6, Corollary 5.6].) Suppose that f is supercoercive, that f is twice
continuously differentiable, and that for every y ∈ U , ∇2 f (y) is positive definite.
Then,

←−
PC is almost everywhere and generically6 single-valued on U .

It would be interesting to see whether or not supercoercivity is essential in
Fact 1.23. By duality, we obtain the following result on the single-valuedness
of
−→
P f ,C.

Corollary 1.24. Suppose that f has full domain, that f ∗ is twice continuously dif-
ferentiable, and that ∇2 f ∗(y) is positive definite for every y ∈ U∗. Then,

−→
P f ,C is

almost everywhere and generically single-valued on U.

Proof. By Lemma 1.14(ii),
−→
P f ,C

∣
∣
U = ∇ f ∗ ◦←−P f ∗,C∗ ◦∇ f . Fact 1.23 states that

←−
P f ∗,C∗

is almost everywhere and generically single-valued on U∗. Since f ∗ is twice contin-
uously differentiable, it follows from the Mean Value Theorem that ∇ f ∗ is locally
Lipschitz. Since (∇ f )−1 = ∇ f ∗ is a locally Lipschitz homeomorphism from U∗ to
U , the conclusion follows from Lemmas 1.17 and 1.18. �

1.4 Klee Sets

Previously known were the following two results:

Fact 1.25 (
←−
D-Klee sets). (See [7, Theorem 4.4].) Suppose that f is supercoercive,

that C is bounded, and that C is
←−
D-Klee. Then C is a singleton.

Fact 1.26 (
−→
D-Klee sets). (See [8, Theorem 3.2].) Suppose that C is bounded and

that C is
−→
D-Klee. Then C is a singleton.

Fact 1.25 immediately raises the question whether or not supercoercivity is really
an essential hypothesis. Fortunately, thanks to Fact 1.26, which was recently proved
for general Legendre functions without any further assumptions, we are now able to
present a new result which removes the supercoercivity assumption in Fact 1.25.

6 That is, the set S of points y ∈U where
←−
PC(y) is not a singleton is very small both in measure

theory (S has measure 0) and in category theory (S is meager/first category).
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Theorem 1.27 (
←−
D-Klee sets revisited). Suppose that C is bounded and that C is←−

D-Klee. Then C is a singleton.

Proof. On the one hand, since C is compact, Fact 1.2 implies that C∗ is compact.
On the other hand, by Lemma 1.15(iii), the set C∗ is

−→
D f ∗ -Klee. Altogether, we

deduce from Fact 1.26 (applied to f ∗ and C∗) that C∗ is a singleton. Therefore, C is
a singleton by Fact 1.2. �

Similarly to the setting of Chebyshev sets, the set C is “nearly
←−
D-Klee” in the

following sense.

Fact 1.28. (See [6, Corollary 5.2(ii)].) Suppose that f is supercoercive, f is twice
continuously differentiable, for every y ∈U , ∇2 f (y) is positive definite, and that C

is bounded. Then,
←−
QC is almost everywhere and generically single-valued on U .

Again, it would be interesting to see whether or not supercoercivity is essential
in Fact 1.28. Similarly to the proof of Corollary 1.24, we obtain the following result
on the single-valuedness of

−→
Q f ,C.

Corollary 1.29. Suppose that f has full domain, f ∗ is twice continuously differen-
tiable, ∇2 f ∗(y) is positive definite for every y ∈U∗, and C is bounded. Then,

−→
Q f ,C

is almost everywhere and generically single-valued on U.

1.5 Chebyshev Centers: Uniqueness and Characterization

Fact 1.30 (
−→
D-Chebyshev centers). (See [8, Theorem 4.4].) Suppose that C is

bounded. Then the right Chebyshev center with respect to C is a singleton, say−→
ZC = {x}, and x is characterized by

x ∈ ∇ f ∗
(

conv∇ f (
−→
QC(x))

)
. (1.36)

We now present a corresponding new result on the left Chebyshev center.

Theorem 1.31 (
←−
D-Chebyshev centers). Suppose that C is bounded. Then the left

Chebyshev center with respect to C is a singleton, say
←−
ZC = {y}, and y is charac-

terized by
y ∈ conv

←−
QC(y). (1.37)

Proof. By Lemma 1.16(ii),

←−
Z f ,C = ∇ f ∗

(−→
Z f ∗,C∗

)
. (1.38)

Now, C∗ is a bounded subset of U∗ because of the compactness of C and Fact 1.2.
Applying Fact 1.30 to f ∗ and C∗, we obtain that

−→
Z f ∗,C∗ = {y∗} for some y∗ ∈U∗

and that y∗ is characterized by
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y∗ ∈ ∇ f
(

conv∇ f ∗(
−→
Q f ∗,C∗(y∗))

)
. (1.39)

By (1.38),
←−
Z f ,C = ∇ f ∗

(−→
Z f ∗,C∗

)
= {∇ f ∗(y∗)}= {y} is a singleton. Moreover, using

Lemma 1.15(ii), we see that the characterization (1.39) becomes

←−
Z f ,C = {y}⇔ y∗ ∈ ∇ f

(
conv∇ f ∗(

−→
Q f ∗,C∗(y∗))

)

⇔ ∇ f ∗(y∗) ∈ conv∇ f ∗(
−→
Q f ∗,C∗(y∗))

⇔ y ∈ conv∇ f ∗(
−→
Q f ∗,C∗(∇ f (y)))

⇔ y ∈ conv
←−
Qf ,C(y), (1.40)

as claimed. �

Remark 1.32. The proof of Fact 1.30 does not carry over directly to the setting of
Theorem 1.31. Indeed, one key element in that proof was to realize that the right
farthest distance function

−→
FC = sup

y∈C
D(·,y) (1.41)

is convex (as the supremum of convex functions) and then to apply the Ioffe-
Tihomirov theorem (see, e.g., [40, Theorem 2.4.18]) for the subdifferential of
the supremum of convex function. In contrast,

←−
FC = supx∈C D(x, ·) is generally

not convex. (For more on separate and joint convexity of D, see [3].)

1.6 Chebyshev Centers: Two Examples

1.6.1 Diagonal-Symmetric Line Segments in the Strictly
Positive Orthant

In addition to our standing assumptions from Sect. 1.1, we assume in this section
that the following hold:

X = R
2; (1.42)

c0 = (1,a) and c1 = (a,1), where 1 < a < +∞; (1.43)

cλ = (1−λ )c0 +λ c1, where 0 < λ < 1; (1.44)

C = conv
{

c0,c1
}

=
{

cλ
∣
∣ 0≤ λ ≤ 1

}
. (1.45)
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Theorem 1.33. Suppose that f is any of the functions considered in Example 1.1.
Then the left Chebyshev center is the midpoint of C, i.e.,

←−
ZC = {c1/2}.

Proof. By Theorem 1.31, we write
←−
ZC = {y}, where y = (y1,y2) ∈ U . In view

of (1.37) and Fact 1.4(ii), we obtain that
←−
QC(y) contains at least two elements.

On the other hand, since
←−
QC(y) consists of the maximizers of the convex function

D(·,y) over the compact set C, [33, Corollary 32.3.2] implies that
←−
QC(y)⊆{c0,c1}.

Altogether,
←−
QC(y) =

{
c0,c1

}
. (1.46)

In view of (1.37),
y ∈C. (1.47)

On the other hand, a symmetry argument identical to the proof of [8, Proposition 5.1]
and the uniqueness of its Chebyshev center show that y must lie on the diagonal,
i.e., that

y1 = y2. (1.48)

The result now follows because the only point satisfying both (1.47) and (1.48) is
c1/2, the midpoint of C. �
Remark 1.34. Theorem 1.33 is in stark contrast with [8, Sect. 5], where we investi-
gated the right Chebyshev center in this setting. Indeed, there we found that the
right Chebyshev center does depend on the underlying Legendre function used
(see [8, Examples 5.2, 5.3, and 5.5]). Furthermore, for each Legendre function f
considered in Example 1.1, we obtain the following formula.

(∀y = (y1,y2) ∈U
) ←−

Qf ,C(y) =

⎧
⎪⎪⎨

⎪⎪⎩

{c0}, if y2 < y1;

{c1}, if y2 > y1;

{c0,c1}, if y1 = y2.

(1.49)

Indeed, since for every y ∈U , the function D(·,y) is convex; the points where the
supremum is achieved is a subset of the extreme points of C, i.e., of {c0,c1}. There-
fore, it suffices to compare D(c0,y) and D(c1,y).

1.6.2 Intervals of Real Numbers

Theorem 1.35. Suppose that X = R and that C = [a,b]⊂U, where a �= b. Denote
the right and left Chebyshev centers by x and y, respectively. Then7

x =
f ∗(b∗)− f ∗(a∗)

b∗ −a∗
and y∗ =

f (b)− f (a)
b−a

. (1.50)

7 Recall the convenient notation introduced on page 3!
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Proof. Analogously to the derivation of (1.46), it must hold that
←−
QC(y) = {a,b}. (1.51)

This implies that y satisfies D(a,y) = D(b,y). In turn, using Fact 1.4(i), this last
equation is equivalent to D f ∗(y∗,a∗) = D f ∗(y∗,b∗) ⇔ f ∗(y∗) + f (a) − y∗a =
f ∗(y∗) + f (b)− y∗b ⇔ f (b)− f (a) = y∗(b− a) ⇔ y∗ = ( f (b)− f (a))/(b− a),
as claimed. Hence,

y = ∇ f ∗
(

f (b)− f (a)
b−a

)
. (1.52)

Combining this formula (applied to f ∗ and C∗ = [a∗,b∗]) with Lemma 1.16(ii), we
obtain that the right Chebyshev center is given by

x = ∇ f ∗
(

∇ f ∗∗
(

f ∗(b∗)− f ∗(a∗)
b∗ −a∗

))
=

f ∗(b∗)− f ∗(a∗)
b∗ −a∗

, (1.53)

as required. �
Example 1.36. Suppose that X = R and C = [a,b], where 0 < a < b <+∞. In each of
the following items, suppose that f is as in the corresponding item of Example 1.1.
Denote the corresponding right and left Chebyshev centers by x and y, respectively.
Then the following hold:

(i) x = y =
a + b

2
.

(ii) x =
b−a

ln(b)− ln(a)
and y = exp

(b ln(b)−b−a ln(a)+ a
b−a

)
.

(iii) x =
ab
(

ln(b)− ln(a)
)

b−a
and y =

b−a
ln(b)− ln(a)

.

Proof. This follows from Theorem 1.35. �

1.7 Generalizations and Variants

Chebyshev set and Klee set problems can be generalized to problems involving
functions.

Throughout this section,

g : X → ]−∞,+∞] is lower semicontinuous and proper. (1.54)

For convenience, we also set

q =
1
2
‖ · ‖2. (1.55)
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Recall that the Moreau envelope eλ g : X → [−∞,+∞] and the set-valued proximal
mapping Pλ g : X ⇒ X are given by

x �→ eλ g(x) = inf
w

(
g(w)+

1
2λ
‖x−w‖2

)
(1.56)

and

x �→ Pλ g(x) = argmin
w

(
g(w)+

1
2λ
‖x−w‖2

)
. (1.57)

It is natural to ask: If Pλ g is single-valued everywhere on R
n, what can we say about

the function g?
Similarly, define φμ g : X → ]−∞,+∞] and Qμg : X ⇒ X by

y �→ φμg(y) = sup
x

(
1

2μ
‖y− x‖2−g(x)

)
, (1.58)

and

y �→ Qμg(y) = argmax
x

(
1

2μ
‖y− x‖2−g(x)

)
. (1.59)

Again, it is natural to ask: If Qμ g is single-valued everywhere on X , what can we
say about the function g? When g = ιC, then Pλ g = PC,Qμg = QC, and we recover
the classical Chebyshev and Klee set problems.

Definition 1.37. (i) The function g is prox-bounded if there exists λ > 0 such that
eλ g �≡ −∞. The supremum of the set of all such λ is the threshold λg of the
prox-boundedness for g.

(ii) The constant μg is defined to be the infimum of all μ > 0 such that g−μ−1q is
bounded below on X ; equivalently, φμg(0) < +∞.

Fact 1.38. (See [34, Examples 5.23 and 10.32].) Suppose that g is prox-bounded
with threshold λg, and let λ ∈ ]0,λg[. Then, Pλ g is everywhere upper semicontinuous
and locally bounded on X , and eλ g is locally Lipschitz on X .

Fact 1.39. (See [38, Proposition 4.3].) Suppose that μ > μg. Then, Qμg is upper
semicontinuous and locally bounded on X , and φμ g is locally Lipschitz on X .

Definition 1.40. (i) We say that g is λ -Chebyshev if Pλ g is single-valued on X .
(ii) We say that g is μ-Klee if Qμg is single-valued on X .

Facts 1.41 and 1.43 below concern Chebyshev functions and Klee functions; see
[38] for proofs.

Fact 1.41 (Single-valued proximal mappings). Suppose that g is prox-bounded
with threshold λg, and let λ ∈ ]0,λg[. Then the following are equivalent.

(i) eλ g is continuously differentiable on X .
(ii) g is λ -Chebyshev, i.e., Pλ g is single-valued everywhere.

(iii) g +λ−1q is essentially strictly convex.
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If any of these conditions holds, then

∇
(
(g + λ−1q)∗

)
= Pλ g ◦ (λ Id). (1.60)

Corollary 1.42. The function g is convex if and only if λg = +∞ and Pλ g is single-
valued on X for every λ > 0.

Fact 1.43 (Single-valued farthest mappings). Suppose that μ > μg. Then the fol-
lowing are equivalent.

(i) φμg is (continuously) differentiable on X .
(ii) g is μ-Klee, i.e., Qμg is single-valued everywhere.

(iii) g− μ−1q is essentially strictly convex.

If any of these conditions holds, then

∇
(
(g−μ−1q)∗

)
= Qμ g(−μ Id). (1.61)

Corollary 1.44. Suppose that g has bounded domain. Then domg is a singleton if
and only if for all μ > 0, the farthest operator Qμg is single-valued on X.

Definition 1.45 (Chebyshev points). The set of μ-Chebyshev points of g is

argminφμg.

If argminφμg is a singleton, then we denote its unique element by pμ and we refer
to pμ as the μ-Chebyshev point of g.

The following result is new.

Theorem 1.46 (Chebyshev point of a function). Suppose that μ > μg. Then, the
set of μ-Chebyshev points is a singleton, and the μ-Chebyshev point is character-
ized by

pμ ∈ convQμg(pμ). (1.62)

Proof. As μ > μg, Fact 1.39 implies that

y �→ φμg(y) =
1

2μ
‖y‖2 +

(
− 1

μ
q + g

)∗
(−y/μ), (1.63)

is finite. Hence, φμg is strictly convex and supercoercive; thus, φμ g has a unique
minimizer. Furthermore, we have

∂φμg(y) =
1
μ
(
y− convQμg(y)

)
(1.64)
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by the Ioffe–Tikhomirov Theorem [40, Theorem 2.4.18]. Therefore,

0 ∈ ∂φμ g(y) ⇔ y ∈ convQμg(y), (1.65)

which yields the result. �
We now provide three examples to illustrate the Chebyshev point of functions.

Example 1.47. Suppose that g = q. Then μg = 1 and for μ > 1, we have

φμ g : y �→ sup
x

(
1

2μ
(y− x)2− x2

2

)
=

y2

2(μ−1)
. (1.66)

Hence, the μ-Chebyshev point of g is pμ = 0.

Example 1.48. Suppose that g = ι[a,b], where a < b. Then μg = 0 and for μ > 0, we
have

φμg : y �→ sup
x

(
1

2μ
(y− x)2− ι[a,b](x)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(y−b)2

2μ
if y≤ a + b

2
,

(y−a)2

2μ
if y >

a + b
2

.
(1.67)

Hence, pμ = a+b
2 .

Example 1.49. Let a < b and suppose that g is given by

x �→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if a≤ x≤ a + b
2

,

1 if
a + b

2
< x≤ b,

+∞ otherwise.

(1.68)

Then μg = 0, and when μ > 0 we have

φμg(y) = sup
x

(
1

2μ
(y− x)2−g(x)

)

= sup
x

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2μ

(y− x)2 if a≤ x≤ a + b
2

1
2μ

(y− x)2−1 if
a + b

2
< x≤ b

−∞ otherwise

= max

{
(y−a)2

2μ
,
(y− (a + b)/2)2

2μ
,
(y−b)2

2μ
−1

}
,

by using the fact that a strictly convex function only achieves its maximum at the ex-
treme points of its domain. Elementary yet tedious calculations yield the following.
When μ > (a−b)2/4, we have
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φμg(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(y−b)2

2μ
−1 if y <

2μ
a−b

+
a + 3b

4
(y− (a + b)/2)2

2μ
if

2μ
a−b

+
a + 3b

4
≤ y <

3a + b
4

(y−a)2

2μ
if y >

3a + b
4

;

while when 0 < μ ≤ (a−b)2/4, one obtains

φμ g(y) =

⎧
⎪⎪⎨

⎪⎪⎩

(y−b)2

2μ
−1 if y <

μ
a−b

+
a + b

2
(y−a)2

2μ
if y≥ μ

a−b
+

a + b
2

.

Hence, the Chebyshev point of g is

pμ =

⎧
⎪⎪⎨

⎪⎪⎩

3a + b
4

, if μ > (a−b)2/4;

μ
a−b

+
a + b

2
, if 0 < μ ≤ (a−b)2/4.

1.8 List of Open Problems

Problem 1. Is the assumption that f be supercoercive in Fact 1.19 really essential?

Problem 2. Are the assumptions that f have full domain and that C∗ ⊆ U∗ in
Fact 1.20 really essential?

Problem 3. Does there exist a Legendre function f with full domain such that f is
not quadratic yet every nonempty closed convex subset of X is

−→
D-Chebyshev? In

view of Fact 1.19, the gradient operator ∇ f of such a function would be nonaffine
and it would preserve convexity.

Problem 4. Is it possible to characterize the class of
−→
D-Chebyshev subsets of the

strictly positive orthant when f is the negative entropy? Fact 1.22 and Example 1.21
imply that this class contains not only all closed convex but also some nonconvex
subsets.

Problem 5. Is the assumption that f be supercoercive in Fact 1.23 really essential?

Problem 6. Is the assumption that f be supercoercive in Fact 1.28 really essential?

Problem 7. For the Chebyshev functions and Klee functions, we have used the
halved Euclidean distance. What are characterizations of f and Chebyshev point
of f when one uses the Bregman distances?
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Problem 8. How do the results on Chebyshev functions and Klee functions extend
to Hilbert spaces or even general Banach spaces?

1.9 Conclusion

Chebyshev sets, Klee sets, and Chebyshev centers are well known notions in clas-
sical Euclidean geometry. These notions have been studied traditionally also in an
infinite-dimensional setting or with respect to metric distances induced by different
norms. Recently, a new framework was provided by measuring the discrepancy be-
tween points differently, namely by Bregman distances, and new results have been
obtained that generalize the classical results formulated in Euclidean spaces. These
results are fairly well understood for Klee sets and Chebyshev centers with respect
to Bregman distances; however, the situation is much less clear for Chebyshev sets.

The current state-of-the-art is reviewed in this paper and several new results have
been presented. The authors hope that the list of open problems (in Sect. 1.8) will
entice the reader to make further progress on this fascinating topic.
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Chapter 2
Self-Dual Smooth Approximations of Convex
Functions via the Proximal Average

Heinz H. Bauschke, Sarah M. Moffat, and Xianfu Wang

Abstract The proximal average of two convex functions has proven to be a useful
tool in convex analysis. In this note, we express the Goebel self-dual smoothing
operator in terms of the proximal average, which allows us to give a different proof
of self duality. We also provide a novel self-dual smoothing operator. Both operators
are illustrated by smoothing the norm.
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smoothing operator ·Moreau envelope · Proximal average
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2.1 Introduction

Let X be the standard Euclidean space R
n, with inner product 〈·, ·〉 and induced

norm ‖ · ‖. It will be convenient to set

q =
1
2
‖ · ‖2. (2.1)

Now let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper. Since
many convex functions are nonsmooth, it is natural to ask: How can one approximate
f with a smooth function?

The most famous and very useful answer to this question is provided by the
Moreau envelope [15, 17], which, for λ > 0, is defined by1

eλ f = f �λ−1q. (2.2)

1 The symbol “�” denotes infimal convolution: ( f1 � f2)(x) = infy
(

f1(y)+ f2(x− y)
)
.
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It is well known that eλ f is smooth (i.e., continuously differentiable) and that
limλ→0+ eλ f = f point-wise; see, e.g., [17, Theorems 1.25 and 2.26]. Parentheti-
cally, other approaches to smoothing are Ghomi’s integral convolution method [9],
Seeger’s ball rolling technique [18], and Teboulle’s entropic proximal map-
pings [19].

Let us now consider the norm, which is nonsmooth at the origin.

Example 2.1 (Moreau envelope of the norm). Let λ ∈ ]0,1[, set f = ‖ · ‖, and
denote the closed unit ball by C. Then, for x and x∗ in X , we have2

eλ f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

‖x‖2

2λ
, if ‖x‖ ≤ λ ;

‖x‖− λ
2

, if ‖x‖> λ ,

(2.3)

(
eλ f

)∗ = ιC +λq, and eλ ( f ∗)(x∗) = (2λ )−1 ·(max{0,‖x∗‖−1})2
. Consequently,(

eλ f
)∗ 	= eλ ( f ∗).

Proof. Either a straight-forward computation or [17, Example 11.26(a)] yields

f ∗ = ιC. (2.4)

Next, if y ∈ X , then

e1/λ ιC(y) = inf
c∈C

λq(y− c) (2.5)

=
λ
2

d2
C(y) (2.6)

=
λ
2
·

⎧
⎪⎨

⎪⎩

(‖y‖−1
)2

, if ‖y‖> 1;

0, if ‖y‖ ≤ 1,

(2.7)

and thus

e1/λ ιC
(
x/λ

)
=

λ
2
·

⎧
⎪⎨

⎪⎩

(‖x/λ‖−1
)2

, if ‖x‖> λ ;

0, if ‖x‖ ≤ λ .

(2.8)

2 Here, ιC is the indicator function defined by ιC(x) = 0, if x ∈C; ιC(x) = +∞, if x /∈C, f ∗(x∗) =
supx∈X

(〈x,x∗〉− f (x)
)

is the Fenchel conjugate of f , and dC(x) = infc∈C ‖x− c‖ =
(‖ · ‖� ιC

)
(x)

is the distance function.
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By [17, Example 11.26(b) on page 495], we obtain

eλ f (x) =
1
λ

q(x)− e1/λ f ∗
(
x/λ

)
(2.9)

=
1

2λ
‖x‖2− λ

2
·

⎧
⎪⎪⎨

⎪⎪⎩

‖x‖2

λ 2 −
2‖x‖

λ
+ 1, if ‖x‖> λ ;

0, if ‖x‖ ≤ λ
(2.10)

=

⎧
⎪⎪⎨

⎪⎪⎩

‖x‖− λ
2

, if ‖x‖> λ ;

‖x‖2

2λ
, if ‖x‖ ≤ λ

(2.11)

and
(
eλ f

)∗ = f ∗+ λq = ιC + λq. Alternatively, one may use [7, Example 2.16],
which provides the proximal mapping of f , and then use the proximal mapping
calculus to obtain these results. Finally, a referee pointed out that (2.11) can also be
derived by reducing the computation of the Moreau envelope to

eλ f (x) = ( f �λ−1q)(x) (2.12)

= inf
y

(
f (y)+ λ−1q(x− y)

)
(2.13)

= inf
y

(
‖y‖+ 1

2λ
(‖x‖2 +‖y‖2−2〈x,y〉)

)
(2.14)

= inf
η≥0

inf
‖y‖=η

(
‖y‖+ 1

2λ
(‖x‖2 +‖y‖2−2〈x,y〉)

)
(2.15)

= inf
η≥0

inf
‖y‖=η

(
η +

1
2λ
(‖x‖2 +η2−2η‖x‖)

)
(2.16)

=
‖x‖2

2λ
+

1
2λ

inf
η≥0

(
η2 + 2

(
λ −‖x‖)η

)
, (2.17)

which can now be treated by one-dimensional calculus. �

While the Moreau envelope has many desirable properties, we see from
Example 2.1 that the smooth approximation eλ f is not self-dual in the sense that

(
eλ f

)∗ 	= eλ ( f ∗). (2.18)

It is perhaps surprising that self-dual smoothing operators even exist. The first
example appears in [11]. Specifically, Goebel defined

Gλ f = (1−λ 2)eλ f + λq (2.19)
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and proved that
(
Gλ f

)∗ = Gλ ( f ∗), (2.20)

that is, Fenchel conjugation and Goebel smoothing commute! For applications of
the Goebel smoothing operator, see [11].

The purpose of this note is twofold. First, we present a different representa-
tion of the Goebel smoothing operator which allows us to prove self-duality using
the Fenchel conjugation formula for the proximal average. Second, the proximal
average is also utilized to obtain a novel smoothing operator. Both smoothing oper-
ators are computed explicitly for the norm. The formulas derived show that the new
smoothing operator is distinct from the one provided by Goebel.

For f1 and f2, two functions from X to ]−∞,+∞] that are convex, lower semicon-
tinuous and proper, and for two strictly positive convex coefficients (λ1 + λ2 = 1),
the proximal average is defined by

pav( f1, f2 ;λ1,λ2) =
(
λ1( f1 + q)∗+λ2( f2 + q)∗

)∗ − q. (2.21)

The proximal average, which is actually a convex function, has been a useful tool for
constructing primal-dual symmetric antiderivatives [4] and for extending monotone
operators [2]; see also [3, 5, 6, 11, 12] for further information and applications. One
of the key properties is the Fenchel conjugation formula

pav( f1, f2 ;λ1,λ2)
∗ = pav( f ∗1 , f ∗2 ;λ1,λ2) ; (2.22)

see [3, Theorem 6.1], [5, Theorem 4.3], or [6, Theorem 5.1].
We use standard convex analysis calculus and notation as, e.g., in [16, 17, 21].

In Sect. 2.2, we consider the Goebel smoothing operator from the proximal-average
view point. The new smoothing operator is presented in Sect. 2.3.

2.2 The Goebel Smoothing Operator

Definition 2.2 (Goebel smoothing operator). Let f : X → ]−∞,+∞] be con-
vex, lower semicontinuous and proper, and let λ ∈ ]0,1[. Then the Goebel smoothing
operator [11] is defined by

Gλ f = (1−λ 2)eλ f + λq. (2.23)

Note that (2.23) and standard properties of the Moreau envelope imply that
point-wise

lim
λ→0+

Gλ f = f (2.24)

and that each Gλ f is smooth.
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Our first main result provides two alternative descriptions of the Goebel
smoothing operator. The first description, item (i) in Theorem 2.3, shows a pleasing
reformulation in terms of the proximal average. The second description, item (ii) in
Theorem 2.3, is less appealing but has the advantage of providing a different proof
of the self-duality, item (iii), observed by Goebel.

Theorem 2.3. Let f : X → ]−∞,+∞] be convex, lower semicontinuous and proper,
and let λ ∈ ]0,1[. Then the following hold.3

(i) Gλ f = (1 + λ )pav( f ,0;1−λ ,λ )+ λq.

(ii) Gλ f = (1 + λ )2 pav
(

f ,q ; 1−λ
1+λ , 2λ

1+λ

)
◦ (1 + λ )−1 Id.

(iii) (Goebel)
(
Gλ f

)∗ = Gλ ( f ∗).

Proof. Let x ∈ X . Then, using (2.21) and standard convex calculus, we obtain
(

(1 +λ )2 pav

(
f ,q ;

1−λ
1 + λ

,
2λ

1 + λ

)
◦ (1 + λ )−1 Id

)
(x) (2.25)

= (1 + λ )2
((

1−λ
1 + λ

( f + q)∗+
2λ

1 + λ
(q+ q)∗

)∗
− q

)(
x

1 + λ

)
(2.26)

= (1 + λ )2
(

1−λ
1 + λ

(
f + q

)∗+
λ

1 + λ
q

)∗( x
1 + λ

)
− q(x) (2.27)

= (1 + λ )
(
(1−λ )

(
f + q

)∗+λq
)∗

(x)− q(x) (2.28)

= (1 + λ )
((

(1−λ )
(

f + q
)∗+ λ

(
0 + q

)∗)∗ − q

)
(x)+ λq(x) (2.29)

=
(
(1 + λ )pav( f ,0;1−λ ,λ )+ λq

)
(x). (2.30)

We have verified that (2.28) as well as the right sides of (i) and (ii) coincide. Starting
from (2.28) and again applying standard convex calculus, we see that

(1 +λ )
(
(1−λ )

(
f + q

)∗+λq
)∗

(x)− q(x) (2.31)

= (1 + λ )
((

(1−λ )
(

f + q
)∗)∗�

(
λq
)∗)(x)− q(x) (2.32)

= (1 +λ )
(

(1−λ )
(

f + q
)( ·

1−λ

)
�

1
λ

q

)
(x)− q(x) (2.33)

3 Here Id : X → X : x �→ x is the identity operator.
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= (1 + λ ) inf
y

(
(1−λ )

(
f + q

)( y
1−λ

)
+

1
λ

q(x− y)
)
− q(x) (2.34)

= (1 + λ ) inf
y

(
(1−λ ) f

( y
1−λ

)
+(1−λ )q

( y
1−λ

)

+
1
λ

q(x− y)− 1
1 + λ

q(x)
)

(2.35)

= (1−λ 2) inf
y

(
f
( y

1−λ

)
+ q
( y

1−λ

)
+

1
λ (1−λ )

q(x− y)− 1
1−λ 2 q(x)

)
.

(2.36)

Simple algebra shows that for every y ∈ X ,

q
( y

1−λ

)
+

1
λ (1−λ )

q(x− y)− 1
1−λ 2 q(x) =

1
λ

q
(

x− y
1−λ

)
+

λ
1−λ 2 q(x).

(2.37)

Therefore,

(1 + λ )
(
(1−λ )

(
f + q

)∗+λq
)∗

(x)− q(x) (2.38)

= (1−λ 2) inf
y

(
f
( y

1−λ

)
+ q
( y

1−λ

)
+

1
λ (1−λ )

q(x− y)− 1
1−λ 2 q(x)

)

(2.39)

= (1−λ 2) inf
y

(
f
( y

1−λ

)
+

1
λ

q
(

x− y
1−λ

)
+

λ
1−λ 2 q(x)

)
(2.40)

= (1−λ 2) inf
z

(
f (z)+

1
λ

q(x− z)+
λ

1−λ 2 q(x)
)

(2.41)

=
(
(1−λ 2)eλ f + λq

)
(x) (2.42)

= Gλ f (x), (2.43)

which completes the proof of (i) and (ii).
(iii): In view of the conjugate formula (β 2h ◦ (β−1 Id))∗ = β 2h∗ ◦ (β−1 Id), (ii),

and (2.22), we obtain
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(
Gλ f

)∗ =
(

(1 + λ )2 pav

(
f ,q ;

1−λ
1 + λ

,
2λ

1 + λ

)
◦ (1 + λ )−1 Id

)∗
(2.44)

= (1 + λ )2
(

pav

(
f ,q ;

1−λ
1 + λ

,
2λ

1 + λ

))∗
◦ (1 +λ )−1 Id (2.45)

= (1 +λ )2 pav

(
f ∗,q∗ ;

1−λ
1 + λ

,
2λ

1 + λ

)
◦ (1 + λ )−1 Id (2.46)

= (1 + λ )2 pav

(
f ∗,q ;

1−λ
1 + λ

,
2λ

1 + λ

)
◦ (1 + λ )−1 Id (2.47)

= Gλ ( f ∗). (2.48)

The proof is complete. �

Remark 2.4. Theorem 2.3(i) and (ii) gives two representations of the Goebel
smoothing operator in terms of the proximal average. Goebel [10] discovered a
converse formula, which we state next without proof:

pav( f ,q ;λ ,1−λ) =
(2−λ )2

4
Gλ/(2−λ ) f ◦

( 2
2−λ

Id
)
. (2.49)

Example 2.5. Let λ ∈ ]0,1[ and set f = ‖ · ‖. Then, for every x ∈ X ,

Gλ f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖x‖2

2λ
, if ‖x‖ ≤ λ ;

λ‖x‖2

2
+(1−λ 2)‖x‖− λ (1−λ 2)

2
, if ‖x‖> λ .

(2.50)

Proof. Combine (2.23) and (2.3). �

2.3 A New Smoothing Operator

We now provide a novel smoothing operator that has a very simple expression in
terms of the proximal average.

Definition 2.6 (New smoothing operator). Let f : X → ]−∞,+∞] be convex,
lower semicontinuous and proper, and let λ ∈ ]0,1[. Then the Sλ f is defined by

Sλ f = pav( f ,q ;1−λ ,λ ) . (2.51)
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Theorem 2.7. Let f : X → ]−∞,+∞] be convex, lower semicontinuous and proper,
and let λ ∈ ]0,1[. Set μ = λ/(2−λ ). Then the following hold.

(i) Sλ f = (1−λ )eμ f ◦
(

2
2−λ Id

)
+ μq.

(ii)
(
Sλ f

)∗ = Sλ ( f ∗).

Proof. (i): Let x ∈ X . Then, using (2.51), (2.21) and standard convex calculus,
we obtain

(
Sλ f

)
(x)

=
(
(1−λ )( f + q)∗+ λ (q+ q)∗

)∗(x)− q(x) (2.52)

=
(
(1−λ )( f + q)∗+ λ

2 q
)∗(x)− q(x) (2.53)

=
(

(1−λ )( f + q)
( ·

1−λ

)
�

2
λ

q

)
(x)− q(x) (2.54)

= inf
y

(
(1−λ ) f

( y

1−λ

)
+(1−λ )q

( y

1−λ

)
+

2
λ

q(x− y)− q(x)
)

(2.55)

= (1−λ ) inf
y

(
f
( y

1−λ

)
+ q
( y

1−λ

)
+

2
λ (1−λ )

q(x− y)− 1
1−λ

q(x)
)

.

(2.56)

Simple algebra shows that for every y ∈ X ,

q

(
y

1−λ

)
+

2
λ (1−λ )

q(x− y)− 1
1−λ

q(x)

=
2−λ

λ
q
( 2x

2−λ
− y

1−λ

)
+

λ
(1−λ )(2−λ )

q(x). (2.57)

Therefore,

(
Sλ f

)
(x) (2.58)

= (1−λ ) inf
y

(
f
( y

1−λ

)
+

2−λ
λ

q
( 2x

2−λ
− y

1−λ

)
+

λ
(1−λ )(2−λ )

q(x)
)

(2.59)

= (1−λ ) inf
z

(
f (z)+

2−λ
λ

q
( 2x

2−λ
− z
))

+
λ

2−λ
q(x) (2.60)

= (1−λ )
(

f �
1
μ

q
)( 2x

2−λ

)
+ μq(x), (2.61)

as claimed.
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(ii): Using (2.51) and (2.22), we get

(
Sλ f

)∗ =
(

pav( f ,q ;1−λ ,λ )
)∗

(2.62)

= pav( f ∗,q∗ ;1−λ ,λ ) (2.63)

= pav( f ∗,q ;1−λ ,λ ) (2.64)

= Sλ ( f ∗). (2.65)

The proof is complete. �

Note that Theorem 2.7(i) and standard properties of the Moreau envelope imply
that point-wise

lim
λ→0+

Sλ f = f (2.66)

and that each Sλ f is smooth.

Example 2.8. Let λ ∈ ]0,1[ and set f = ‖ · ‖. Then, for every x ∈ X ,

Sλ f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2−λ )‖x‖2

2λ
, if ‖x‖ ≤ λ

2
;

λ‖x‖2

2(2−λ )
+

2(1−λ )
2−λ

‖x‖− λ (1−λ )
2(2−λ )

, if ‖x‖>
λ
2

.

(2.67)

Proof. Combine (2.3) and Theorem 2.7(i). �

Remark 2.9. Let f = ‖ · ‖. The explicit formulas provided in Examples 2.5 and 2.8
imply that Gα f 	= Sβ f , for all α and β in ]0,1[. Thus, the smoothing operator
defined by (2.51) is indeed new and different from the Goebel smoothing operator.

Remark 2.10. It would be desirable to obtain further explicit formulas beyond the
example of the norm. Given a more complicated function f , the explicit computation
of the smoothing operators Gλ f and Sλ f may not be easy. However, computational
convex analysis provides tools [8, 13, 14] to compute the Moreau envelope numeri-
cally which – due to the Moreau envelope formulations (2.23) and Theorem 2.7(i) –
make it possible to compute the smoothing operators Gλ f and Sλ f numerically.
It would also be interesting to extend the present results to infinite-dimensional
settings. Promising starting points for this endeavor are [1, 21]. Finally, self-dual
regularizations of maximal monotone operators are studied in [20].
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Chapter 3
A Linearly Convergent Algorithm for Solving
a Class of Nonconvex/Affine Feasibility Problems

Amir Beck and Marc Teboulle

Abstract We introduce a class of nonconvex/affine feasibility (NCF) problems that
consists of finding a point in the intersection of affine constraints with a nonconvex
closed set. This class captures some interesting fundamental and NP hard problems
arising in various application areas such as sparse recovery of signals and affine
rank minimization that we briefly review. Exploiting the special structure of NCF,
we present a simple gradient projection scheme which is proven to converge to a
unique solution of NCF at a linear rate under a natural assumption explicitly given
defined in terms of the problem’s data.

Keywords Nonconvex affine feasibility · Inverse problems · Gradient projection
algorithm · Linear rate of convergence · Scalable restricted isometry · Mutual
coherence of a matrix · Sparse signal recovery · Compressive sensing · Affine rank
minimization
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3.1 Introduction

Let E and V be finite dimensional Euclidean spaces, A : E→ V a given linear
mapping, and b ∈ V a vector of observations. Consider the feasibility problem
defined by

(NCF) Find x ∈ C such that A (x) = b,
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where C ⊆ E is a set which describes some a priori information on the unknown
element x. One natural approach for tackling NCF is via the associated minimization
problem

(NC) min

{
1
2
‖A (x)−b‖2 : x ∈ C

}
(3.1)

for some given norm in V.1

The above problem formulations are very well known and have been extensively
studied over the last several decades, in particular when C is a closed convex subset
of E, giving rise to the so-called convex feasibility problems, see the comprehen-
sive review paper [1] and references therein. Problems of this kind naturally arise
in the area of linear inverse problems which covers a wide range of data processing
problems, such as imaging sciences, optics, and astrophysics, see e.g., the classical
monograph [17] and references therein. In such situations, one has to derive an es-
timate of some physical quantity of interest (e.g., a signal or an image) from given
measurements and some a priori information described through the set C , see for
instance the in-depth review paper [12]. Furthermore, it should be noted that non-
convex feasibility problems have also been studied in the literature, see for instance,
[7,13]. In particular, the method of successive projections for closed convex sets was
extended in [13] to a class of nonconvex compact sets satisfying some hypothesis.

A current trend of research in the data processing areas (e.g., signal process-
ing, machine learning etc.), which has recently attracted a lot of attention focuses
on solving problems that can recover sparse objects. Finding the sparsest solution
of a linear system or the more general problem that consists of finding a low rank
matrix satisfying linear matrix equations are at the heart of these current activities.
These problems being generally NP hard are often solved by their convex relax-
ations. The current algorithmic, theoretical and applications literature is vast, and
we refer the reader to the excellent very recent survey papers [6] and [21] and refer-
ences therein.

In this paper, we depart from the convex relaxation approach. We focus on the
class of problems (NCF) where the constraint set C is a closed and nonconvex subset
of E, which will be defined to naturally captures sparsity features, and we propose
to solve NCF via a very simple gradient projection algorithm which under a natural
assumption on the problem’s data is proven to converge linearly to a global optimal
solution of (NC).

The paper is organized as follows. In Sect. 3.2, we define the problem and give
some examples arising in fundamental applications that naturally fit our formalism.
Section 3.3 first gives some background on the so-called restricted isometry property
(RIP), which has been central in the analysis of sparse recovery problems via their
convex relaxations. This leads us to introduce a natural extension of RIP, called Scal-
able Restricted Isometry Property (SRIP) for the class of problems under study, and
that will play a key role in the analysis of the proposed gradient projection scheme
and which here solved directly the nonconvex problem. The analysis is developed in

1 Throughout the paper, ‖ · ‖ will denote the endowed norm of the relevant Euclidean space (either
E or V).
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Sect. 3.4, where we prove that despite the nonconvex nature of the problem, if SRIP
is satisfied, the gradient projection method converges at a linear rate to a global op-
timal solution of (NC) also shown to be unique. The convergence is established both
for a constant and backtracking stepsize rules, the later being particularly useful in
applications as it does not require the knowledge of any unknown parameter. The
algorithm is useful and efficient whenever the projection map onto the nonconvex
set is easy to compute, this is shown to be the case in the context of sparse recovery
problems, for which we also derive a further interesting consequence from our main
convergence result.

3.2 Problem Statement, Motivation and Examples

3.2.1 General Problem Statement

In most practical applications, prior knowledge on some desired features of the un-
known x∈E is available, and can be quantified by some given function, e.g., a norm
like function. The motivation for the proposed definition will be described below.

Definition 3.1. S is the set of all functions ϕ : E→ R+ which are lower semi-
continuous (lsc) function satisfying the following properties:

(i) ϕ(0) = 0, (3.2)

(ii) ϕ(x) = ϕ(−x) (symmetry), (3.3)

(iii) ϕ(x + y)≤ ϕ(x)+ ϕ(y) (subadditivity). (3.4)

We are interested in the situation where ϕ ∈ S is nonconvex and we want to
solve the nonconvex feasibility problem:

(NCF) Find x ∈ Cs such that A (x) = b,

where the admissible constraint is defined by the closed nonconvex set

Cs := {x ∈ E : ϕ(x)≤ s} (3.5)

for some fixed given s > 0.
To solve NCF, we consider the related nonconvex minimization problem

(NC) min

{
f (x)≡ 1

2
‖A (x)−b‖2 : x ∈ Cs

}
, (3.6)

where ‖ · ‖ is the underlying norm of the Euclidean space V. For example ‖ · ‖2

when E = R
n and ‖ ·‖F (the Frobenius norm) when E = R

m×n. Given that NCF has
a solution, the optimal value of NC is zero and x̄ is an optimal solution of NC if and
only if x̄ is a solution to NCF.
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This formalism encompasses a wide class of problems, which has attracted con-
siderable interest in the recent literature and which has triggered the motivation of
this work, this will be briefly discussed below. We end by noting that well known
alternative ways to tackle NCF include the following three closely related problems:

min {ϕ(x) : ‖A (x)−b‖ ≤ η , x ∈ E} (η > 0, perturbed case),
min {ϕ(x) : A (x) = b, ∈ E},
min {‖A (x)−b‖2 + τϕ(x) : x ∈ E},

(3.7)

where the last formulation corresponds to a penalty approach, with a penalty pa-
rameter τ > 0 which measures the tradeoff between the error in the approximation
measured by ‖A (x)−b‖2 and the desired property of the unknown x quantified by
the function ϕ(x). Note that all these formulations remain essentially NP hard for
the choices of the nonconvex function ϕ ∈S which are described in the following
sections.

3.2.2 Motivation and Examples

We briefly describe three models of interest in applications that naturally fit as spe-
cial cases of the proposed formalism of this paper.

Example 3.2 (Compressive sensing). Roughly speaking, in the new emerging com-
pressed sensing technology we are interested in recording as much information as
possible in a signal or image x in the “cheapest” way. In other words, under suitable
conditions on the problem’s data, few measurements are enough to correctly recover
a signal, see [14] for more details.

Let E = R
n,V = R

m. Here the mapping A : R
n→ R

m can be represented by an
m× n matrix A satisfying A (x) = Ax for every x ∈ R

n (for the sake of notation
consistency with the other examples, we will often not use the “matrix” notation).
A typical approach is to select a sparse vector, namely with many zero components,
that solves a linear system of equations A (x) = b for x ∈ R

n. Let ‖x‖0 be the
l0-norm2 of x which counts the number of nonzero components of x. Given that
the observed vector b ∈ R

m and that the number of measurements is smaller than
the size of the vector x, i.e., m < n, the sparse reconstruction problem amounts to
finding an s-sparse solution (with s� n) of a nonempty linear system, i.e.,

find x ∈ R
n with ‖x‖0 ≤ s such that A (x) = b.

Clearly, this problem is a special case of our model (NCF) with S 	 ϕ(x) := ‖x‖0,
since the l0-norm satisfies all the premises of Definition 3.1.

Example 3.3 (Affine rank minimization). Let E = R
m×n,V = R

p and A : R
m×n→

R
p a linear map. The problem consists of finding a matrix x ∈ R

m×n of minimal

2 This is by some abuse of terminology, since ‖x‖0 is not a norm, as it clearly does not satisfy the
the homogeneity property of a norm.
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rank that satisfies a given system of linear matrix equations A (x) = b. This is a
fundamental problem in many diverse areas, see [21]. Recall that the rank of a matrix
is the number of its positive singular values. Thus, when x is a square diagonal
matrix with diagonal elements x j, the rank function coincides with the l0-norm of
x, and the affine rank minimization problem can be viewed as a natural extension of
the previous compressive sensing example.

Now, with ϕ(x) := rank(x), one has ϕ ∈ S since rank(0) = 0, rank(−x) =
rank(x) and rank(x + y) ≤ rank(x)+ rank(y) and the conditions in Definition 3.1
are thus satisfied, so that the problem of finding a matrix of rank at most s satisfying
A (x) = b fits our model NCF.

Note that both problems described in Examples 3.2 and 3.3 are also often tack-
led through either one of the corresponding three related optimization problems
described via (3.7).

Example 3.4 (lp-pseudo norm minimization, 0 < p < 1). Let E = R
n,V = R

m and
ϕp(x) := ‖x‖p

p =
∑n

j=1 |x j|p (0 < p < 1). The lp pseudo-norms are connected to

the l0-norm via the relation ‖x‖0 = limp→0+ ‖x‖p
p (with the convention 00 = 0).

Thus, for instance, one could try to solve an approximation of the sparse recovery
problem by solving the resulting nonconvex minimization models with ϕp(·) for
small p. This approach is well known, and it has been recently considered by several
authors, see e.g., [10] and references therein.

We now verify that ϕp ∈S . Clearly, we have ϕp(0) = 0,ϕp(−x) = ϕp(x). More-
over, it is easy to see that for any p∈ (0,1) one has (u+v)p≤ up +vp for all u,v≥ 0,
from which it follows that ‖x + y‖p

p ≤ ‖x‖p
p + ‖y‖p

p so that, as in the previous two
examples, the conditions of Definition 3.1 are satisfied and thus this problem fits our
formalism.

The last example, but now with p = 1, that results in the l1-norm ϕ1(x) = ‖x‖1 :=∑n
j=1 |x j| of x∈R

n, and which is a convex relaxation of the l0-norm,3 is of particular
interest. It leads us in the next section to first review some of the recent interesting
results in sparse recovery problems, which rely on the so-called RIP and also pro-
vide the motivation for introducing a natural extension of this notion within our
formalism, and that will play an essential role in our analysis.

3.3 A Scalable Restricted Isometry Property (SRIP)

3.3.1 Convex Relaxation and Restricted Isometry

In sparse solutions of linear systems and affine rank minimization, one faces to solve
two computationally intractable combinatorial problems [20, 21]:

3 The l1-norm of x ∈R
n is the lowest convex envelope of ‖x‖0 over the l∞ unit ball.
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(CS) min{‖x‖0 : A (x) = b,x ∈ R
n},

(AR) min{rank(x) : A (x) = b,x ∈R
m×n}.

Recent and extensive studies (see [6, 21] and their references) have shown that
under appropriate assumptions on the data, that will be discussed shortly, it is possi-
ble to solve these problems via their convex relaxations. More precisely, we replace
the l0-norm and the rank function by their tractable convex counterparts, namely
the l1-norm in (CS) and the Ky-Fan (nuclear) norm in (AR). The nuclear norm of
a matrix x ∈ R

m×n is denoted by ‖x‖∗ and is defined as the sum of the nonzero
singular values of x. It is the convex envelope of the rank function over the set
{x ∈ R

m×n : ‖x‖F ≤ 1}, see [18]. It should be noted that the idea of using the
l1-norm in the context of sparsity is not a new idea, and goes back to some works in
geophysics, see [22, 23].

The convex relaxed problems for (CS) and (AR) which provide lower bounds to
the original problems then read as two well-known problems:

(ConvCS) min{‖x‖1 : A (x) = b,x ∈R
n} (Basis Pursuit [11]),

(ConvAR) min{‖x‖∗ : A (x) = b,x ∈ R
m×n} (Trace minimization [18]).

Both problems above are tractable convex optimization problems that can be
efficiently solved by many convex minimization schemes, see for instance the fast
and simple optimal gradient based scheme recently developed in [2], and also the
recent review [3] and references therein.

The main question that has been extensively investigated in the literature is then

Main question: For which A , a sparse solution (a low rank matrix) can be
recovered? That is to say, under which conditions an optimal solution of the
original nonconvex problems (CS) and (AR) can be obtained by solving their
convex counterparts (ConvCS) and (ConvAR) respectively?

One of the first results to answer that question was for the compressed sensing l0-
minimization problem (CS) and was obtained via the concept of mutual coherence
of a matrix, which is also related the forthcoming property. For the interested reader,
we have briefly summarized some of these pertinent results in the appendix.

Another concept which plays a fundamental role in answering the main stated
question is the so-called RIP. Below, we state the definition of RIP for the general
matrix rank minimization recently introduced in [21] as a natural generalization of
the vector case which is recalled after the definition (and which can be recovered by
setting x to be a diagonal matrix).

Definition 3.5. The linear map A : R
m×n→ R

p with m < n and 1 ≤ d ≤ m is said
to satisfy the RIP with the isometry constant δd associated to A , if δd is the smallest
number such that the following holds:

(1−δd)‖x‖2 ≤ ‖A (x)‖2 ≤ (1 + δd)‖x‖2 for all x ∈R
m×n s.t. rank(x)≤ d,

where ‖ · ‖ stands here for the Frobenius norm.
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In the vector case (originally developed for compressed sensing problems, see e.g.,
[9]), the linear mapping A : R

n → R
m reads A (x) = Ax, and the RIP condition

reduces to:

(1− δd)‖x‖2 ≤ ‖A (x)‖2 ≤ (1 + δd)‖x‖2 for all x ∈R
n s.t. ‖x‖0 ≤ d.

The following two results answer the main question stated above. In the sequel
we use the terminology “x is s-sparse” for all vectors such that ‖x‖0 ≤ s.

In [9], the following result has recently been proven for problem (CS).

Theorem 3.6 ([9]). Consider problem (CS). Let b = A (x̄) for some s-sparse vector
x̄ ∈ R

n with s≥ 1. Then,

(i) if δ2s < 1, the l0 problem (CS) has a unique s-sparse solution;
(ii) if δ2s <

√
2−1, the optimal solution of the l1-problem (ConvCS) is the same as

of the l0 problem.

In a similar vein, in [21], the previous result has been extended for the rank
minimization problem.

Theorem 3.7 ([21]). Consider problem (AR). Let b = A (x̄) for some matrix x̄ ∈
R

m×n of rank s≥ 1. Then,

(i) if δ2s < 1, then x̄ is the unique matrix of rank at most s.
(ii) if δ5s < 1/10, then the optimal solution of the convex problem (ConvAR) coin-

cides with the minimum rank solution of problem (AR).

If either of the above RIP assumptions are satisfied for A , for some given d, and
with the requested upper bound on δd , we will simply write that RIP(d,δd) holds.
Also, it is useful to note that if s≤ t, then δs ≤ δt , i.e, RIP(s,δs) =⇒ RIP(t,δt).

3.3.1.1 The Good News

For both the vector and matrix cases, it has been proven that for some classes of
random matrices (e.g., with i.i.d gaussian entries), the corresponding RIP can be
proven to be satisfied with overwhelming probability. Details on these probabilistic
analysis can be found for instance in [9, 14, 21]. However, not much is known for
arbitrary deterministic matrices.

3.3.1.2 The Bad News

The RIP suffers from two major drawbacks:

1. The RIP is lacking scalability.
2. Finding/computing the isometry parameter δd can be as difficult as solving the

original NP hard problems (CS) and (AR).
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Both issues will be addressed in this paper within our general model and the
proposed algorithm. The first issue is addressed next by introducing a natural mod-
ification of RIP.

3.3.2 Scalable Restricted Isometry Property

As just mentioned, an evident drawback of the RIP assumption is its lack of scal-
ability. For example, if a linear operator A satisfies the RIP with some parameters
(s,δs), then surely 2A will not satisfy the RIP with the same parameters. This is not
the case for the notion introduced below which remedies this drawback by consider-
ing a straightforward and natural generalization of the RIP for our general problem
(NCF), and which we call SRIP.

Let ϕ ∈S , d > 0 and A : E→ V. We write SRIP(d,α) if the following holds:

SRIP(d,α): There exist νd,μd > 0 satisfying μd
νd

< α such that

νd‖x‖ ≤ ‖A (x)‖ ≤ μd‖x‖ for every x ∈ Cd.

By its definition, if SRIP(d,α) holds for some (d,α), then α > 1 . Of course,
SRIP(d,α) might hold true for certain values of d,α and fail for others. The assump-
tion is restrictive when d is “large” and α is “small” and loose when d is “small”
and α is “large.” This is reflected in the following lemma whose simple proof is
omitted.

Lemma 3.8. Suppose that d1 ≤ d2 and α1 ≥ α2. If SRIP(d1,α1) is satisfied, then
SRIP(d2,α2) is also satisfied.

Plugging
μ2

d = 1 + δd,ν2
d = 1− δd, (3.8)

in SRIP, the relationship between RIP and SRIP (in the settings of Examples 3.2 and
3.3) is revealed through the following obvious result.

Lemma 3.9. Let β ∈ (0,1). If RIP(d,δd) is satisfied for δd < β , then SRIP(
d,
√

1+β
1−β

)
holds true.

We reemphasize that here we are concerned with solving the nonconvex model
(NCF) directly rather than relaxing it. Much like the second drawback of the RIP
alluded above (i.e., the necessity of knowing δ2s), the determination of the unknown
parameters (νd ,μd) of SRIP appears as equally difficult. However, thanks to the
proposed algorithmic framework which is developed next, we will show that find-
ing/approximating these parameters is not an issue.
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3.4 A Linearly Convergent Gradient Projection Method

3.4.1 The Gradient Projection Method for Solving Problem (NCF)

The gradient projection algorithm for minimizing a smooth function over some
closed set is very well known and due to its simplicity is particularly adequate for
solving large scale problems. However, even for convex problems, it suffers from a
slow (e.g., sublinear) rate of convergence, see [4], and references therein.

We will prove that if SRIP(2s,
√

2) holds, the gradient projection method actually
converges linearly to the solution of the nonconvex problem (NCF), which is also
shown to be unique.

Before proceeding, we recall the notion of orthogonal projection. For a nonempty
closed possibly nonconvex set C⊆E, the projection of y∈E onto C, written PC(y) is
a multi-valued map (as opposed to the convex case in which orthogonal projections
are guaranteed to be single-valued operators) defined by

PC(y) := argmin{‖x−y‖2 : x ∈C}.

Consider the basic gradient projection method for solving problem (NC):

min{ f (x) : x ∈ Cs}, where f (x) :=
1
2
‖A (x)−b‖2.

The gradient of f is simply given by ∇ f (x) = A ∗(A (x)−b), where A ∗ stands for
the adjoint map to A . The gradient projection method generates a sequence xk via:

(GP) xk+1 ∈ PCs

(
xk− 1

Tk
∇ f (xk)

)
,k = 0,1,2, . . . ,

where Tk is an appropriately chosen (inverse) stepsize and x0 ∈ E is arbitrary.
Note that applying (GP) requires to compute an orthogonal projection onto the

set Cs defined in (3.5). This set is nonempty and closed by the lower semi-continuity
of ϕ . Finding an orthogonal projection onto a nonconvex set is by itself a noncon-
vex optimization problem, and as such is not necessarily an easy one. However, as
seen below, it can be efficiently computed for the sets involved in sparse recovery
problems. Note that in both cases below the resulting projections are in general not
single valued, and when applying (GP) we can select any element of the resulting
multivalued projection in an arbitrary fashion.

• Case A. Let x ∈ R
n and ϕ(x) = ‖x‖0. In this case, the orthogonal projection

PCs(x) of x∈R
n onto the set Cs is simply a vector consisting of the s components

of x with the largest absolute values and zeros otherwise.
• Case B. Let x ∈ R

m×n and ϕ(x) = rank(x). The set of orthogonal projec-
tions PCs(x) is computed via a truncated singular value decomposition [19] as
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follows: if x = UΣVT is a singular value decomposition of x, then PCs(x) con-
sists of matrices of the form x = UΣ sVT where the diagonal Σ s includes the s
singular values with largest absolute value (otherwise zero).

3.4.2 Linear Rate of Convergence Analysis for GP

We assume that SRIP(2s,
√

2) holds. We will consider two versions of algorithm
(GP). The first one is with a constant stepsize where we assume that

Tk = T̄ ∈ [μ2
2s,2ν2

2s),

where μ2s,ν2s are as in the definition of SRIP. An evident drawback of the fixed
stepsize setting is the requirement that at least μ2s should be known. To avoid the
need for knowing this parameter, we also introduce a variant of the method with a
backtracking stepsize rule that does not require the knowledge of μ2s for computa-
tional implementation, see Remark 3.10. This backtracking procedure requires that
SRIP should hold with a parameter α which is smaller than

√
2 (but on the other

hand, can be arbitrary close to
√

2).

Gradient Projection with backtracking:

Input: ϕ ∈S , s > 0, x0 ∈ Cs arbitrary,
η > 1 – backtracking parameter,
T0 ∈ (0,μ2s) initial stepsize.
Step k(k ≥ 0):
(a) Compute xk+1 ∈ PCs

(
xk− 1

Tk
∇ f (xk)

)
.

(b) If ‖A (xk+1−xk)‖ >
√

Tk‖xk+1−xk‖, set Tk← ηTk and go back to (a).
(c) Set Tk+1← Tk.
(d) Set k← k + 1.

Remark 3.10. It is very easy to find a T0 ∈ (0,μ2
2s) without actually knowing μ2s.

For example, by taking an arbitrary v∈C2s, we get that ‖A(v)‖
‖v‖ ≤ μ2s, so we can pick

T0 ∈
(

0, ‖A(v)‖2

‖v‖2

)
.

From the definition of the backtracking procedure, we first establish the following
useful fact on the inverse step size Tk.

Proposition 3.11. For all k ≥ 0,

Tk ≤ ημ2
2s. (3.9)
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Proof. This is proved by induction on k. For k = 0 the claim is valid by the choice
of T0. Suppose that the claim is true for k and we will prove it for k + 1. If no back-
tracking steps were done in step (b), then Tk+1 = Tk and the claim is correct by the
induction assumption. Otherwise, if backtracking steps were performed during step
(b), then, in particular, γ = Tk+1

η satisfies ‖A (xk+2− xk+1)‖ >
√γ‖xk+2− xk+1‖,

which together with the fact that xk+2−xk+1 ∈ C2s and the SRIP assumption imply
that
√γ ≤ μ2s and hence Tk+1 ≤ ημ2

2s. �

We are now ready to prove our main result which shows that if SRIP(2s,
√

2/η)
is satisfied, then the function values of the sequence generated by the above algo-
rithm converges linearly to zero. For example, if η = 1.1, then SRIP(2s,1.285...) is
required to hold true instead of SRIP(2s,1.414...).

Theorem 3.12. Consider the GP method with either a constant stepsize Tk = T̄ ∈
[μ2

2s,2ν2
2s) or with a backtracking stepsize rule with parameter η and suppose that

SRIP(2s,
√

2/ξ ) is satisfied where ξ = 1 for the constant stepsize setting and ξ =
η > 1 for the backtracking scenario. Then

f (xk+1)≤ (ρ−1) f (xk), ∀k ≥ 0

with ρ < 2 given by

ρ =

⎧
⎪⎪⎨

⎪⎪⎩

T̄
ν2

2s
constant stepsize

ημ2
2s

ν2
2s

backtracking.

As a consequence,

f (xk+1)≤ (ρ−1)k f (x0), for every k ≥ 0

and f (xk)→ 0 as k→ ∞.

Proof. Let

qk(x,xk) := f (xk)+ 〈x−xk,∇ f (xk)〉+ Tk

2
‖x−xk‖2. (3.10)

Then the GP method can be equivalently rewritten as

xk+1 ∈ argmin{qk(x,xk) : x ∈ Cs},

and hence, in particular, for a solution x̄ of (NCF) it holds that

qk(xk+1,xk)≤ qk(x̄,xk). (3.11)
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Now, since f (x) = 1
2‖A (x)−b‖2, it follows that

f (xk+1) = f (xk)+ 〈xk+1−xk,∇ f (xk)〉+ 1
2
‖A (xk+1−xk)‖2

≤ f (xk)+ 〈xk+1−xk,∇ f (xk)〉+ Tk

2
‖xk+1−xk‖2,

where the last inequality follows from the fact that xk−xk+1 ∈ C2s (by the subaddi-
tivity and symmetry of the function ϕ ∈S ) and from the fact that the definition of
the stepsize (in the constant or backtracking settings) implies that ‖A (xk+1−xk)‖≤√

Tk‖xk+1−xk‖. Therefore, we have shown that f (xk+1)≤ qk(xk+1,xk) so that

f (xk+1) = qk(xk+1,xk)
(3.11)
≤ qk(x̄,xk). (3.12)

On the other hand,

qk(x̄,xk) = f (xk)+ 〈x̄−xk,∇ f (xk)〉+ Tk

2
‖x̄−xk‖2

≤ f (xk)+ 〈x̄−xk,∇ f (xk)〉+ Tk

2ν2
2s

‖A (x̄−xk)‖2

A (x̄)=b
= f (xk)+ 〈x̄−xk,∇ f (xk)〉+ Tk

2ν2
2s

‖b−A (xk)‖2

=
(

1 +
Tk

ν2
2s

)
f (xk)+ 〈x̄−xk,∇ f (xk)〉

=
(

1 +
Tk

ν2
2s

)
f (xk)−2 f (xk)

=
(

Tk

ν2
2s

−1

)
f (xk),

which along with (3.9) (in the backtracking setting), implies the result. �

Corollary 3.13. Suppose that SRIP(2s,
√

2) holds true. Then the sequence {xk}
generated by GP converges to the unique optimal solution of (NC), and hence of
NCF.

Proof. Let {xk} be the sequence generated by the GP method with a constant step-
size T̄ = μ2

2s and let x̄ be a solution of NCF. Then by Theorem 3.12 we have that

f (xk)≤ (ρ−1)k−1 f (x0)

On the other hand,

f (xk) =
1
2
‖A (xk)−b‖2 =

1
2
‖A (xk)−A (x̄)‖2 ≥ 1

2ν2
2s

‖xk− x̄‖2.

Therefore, xk→ x̄ and since x̄ was chosen arbitrarily its uniqueness follows. �
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The next corollary, follows immediately from Theorem 3.12, and bounds the
number of iterations required to obtain an ε-optimal solution of (NC).

Corollary 3.14. Consider the setting of Theorem 3.12. Then for k≥ 1+ log(1/ε)+C
D ,

the (GP) algorithm produces an x such that

‖A (x)−b‖2 ≤ ε,

where C := log(2 f (x0)),D := log
(

1
ρ−1

)
.

Remark 3.15. Recently, an algorithm called the iterative M-sparse algorithm was
analyzed in [5] for solving the l0 problem (E = R

n,V = R
m,ϕ(x) = ‖x‖0). This

method is in fact nothing else but the gradient projection algorithm with a constant
step size fixed and equal to 1. It was proved in [5] that if the columns of the matrix
are normalized, and ‖A‖2 < 1, this algorithm converges to a local minimum of (NC).

Our approach has focused on using SRIP to solve directly the NCF via a simple
gradient projection method. On the other hand, RIP was used to determine con-
ditions that warrant recovery of solutions for the nonconvex optimization problems
such as (CS) and (AR) by solving their convex relaxations (ConvCS) and (ConvAR)
respectively, namely, it is also needed to apply convex minimization schemes to
solve these relaxed problems and achieve the same goals. While a direct comparison
of these results is not fully transparent (e.g., in terms of complexity, the parameters
involved etc.), it is nevertheless worthwhile to make the following remarks.

Remark 3.16. In the (CS) case, if RIP(2s,δ2s) is satisfied with δ2s <
√

2− 1, then

this implies (by Lemma 3.9) that SRIP (2s,α) holds true with α =
√

1+
√

2−1
1−(
√

2−1)
=

√
1√
2−1

= 1.5538..., which is less restrictive than the assumption α =
√

2 used in

Theorem 3.12. On the other hand, note that the later condition does not imply the
condition on RIP of Theorem 3.6(ii).

Remark 3.17. In the (AR) case, we can be more precise. The condition in Theorem
3.7(ii) requires that RIP should hold with δ5s < 0.1. This condition is worse than
the assumption of Theorem 3.12. Indeed, by Lemma 3.9 it implies that SRIP(5s,α)

is satisfied with α =
√

1.1
0.9 = 1.105..., which is a more restrictive than the condition

SRIP(2s,
√

2), see Lemma 3.8.

We end by showing another interesting consequence of Theorem 3.12 which is
particularly relevant to sparse recovery problems. Let us focus again on the setting of
problem (CS) in Example 3.2, that is, E = R

n,V = R
m and ϕ(x)= ‖x‖0. The support

of a vector x ∈ R
n is defined to be the set of indices of the nonzero components:

supp(x) = {i ∈ {1,2, . . . ,n} : xi �= 0}.
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Our final result shows stabilization of the support in the sense that the support of xk

is contained in the support of the unique solution of NCF from a certain iteration
of (GP).

Corollary 3.18. Consider the setting of Theorem 3.12 and let E = R
n,V = R

m and
ϕ(x) = ‖x‖0. Let x̄ be the unique solution of NCF. Then there exists k̄ such that for
every k ≥ k̄ the inclusion

supp(xk)⊆ supp(x̄)

holds true.

Proof. For every set S ⊆ {1,2, . . . ,n}, let us define:

f ∗S = min

{
1
2
‖Ax−b‖2 : xi = 0, i /∈ S

}
. (3.13)

If |S| ≤ s and supp(x̄) � S then f ∗S > 0 since otherwise, if f ∗S = 0, it would mean
by the uniqueness of x̄ that the optimal solution of (3.13) is x̄ in contradiction to
supp(x̄) � S. Let us now define the number

g = min
S

{
f ∗S : |S| ≤ s,S ⊆ {1,2, . . . ,n},supp(x̄) � S

}
, (3.14)

which is positive. Now, since f (xk)→ 0, it follows that there exists k̄ such that

f (xk) < g (3.15)

for all k ≥ k̄. Let k ≥ k̄ and let us assume in contradiction that supp(xk) � supp(x̄).
Then

f (xk)≥ f ∗supp(xk)
≥ g,

where the last inequality follows from the definition of g, which is a contradiction
to (3.15). �

Appendix

We briefly summarize some of the first results providing sufficient conditions war-
ranting recovery of sparse vectors for the compressed sensing l0-minimization
problem via the convex l1-norm problem (ConvCS). These were obtained via the
concept of mutual coherence of a matrix, see [6] for more details and references.

Definition 3.19. [11] Let A = [a1, . . . ,an] ∈R
m×n with m≤ n and with normalized

columns ‖ai‖= 1 for all i = 1, . . . ,n. Then, the mutual coherence M(A) of the matrix
A is defined by

M(A) := max
i�= j
|〈ai,a j〉|= max

i�= j
|(AT A)i j|.
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Clearly, 0≤M(A) ≤ 1. Furthermore, it has been shown that

M(A) ≥
√

n−m
m(n−1)

.

Note that the mutual coherence of a matrix is generally easy to compute even for
large matrices.

Using the mutual coherence of a matrix given in Definition 3.19, the follow-
ing sufficient condition relating (CS) to its convex relaxation (ConvCS) was proven
in [15].

Theorem 3.20. [15] Consider problem (CS) with A (x)≡ Ax. If a solution x ∈ R
n

of problem (CS) satisfies

‖x‖0 <
1
2

(
1 +

1
M(A)

)
,

then it is unique and coincides with the optimal solution of the convex problem
(ConvCS).

We note that for a special class of matrices which are the concatenation of two
orthogonal square matrices U,V , i.e., with A := [U,V], the above result has been
improved in [16] by requiring the weaker condition:

‖x‖0 <

(√
2− 1

2

)

M(A)
.

Further results in the same spirit have been derived for the noisy compressed sens-
ing, see e.g., [8].

Finally, we note that the mutual coherence of a matrix M(A) given in Definition
3.19 is closely related to RIP as shown in the following result.

Lemma 3.21. Let A = [a1, . . . ,an]∈R
m×n with m≤ n and with normalized columns

‖ai‖= 1 for all i = 1, . . . ,n. Then, with δs ≤ (s−1)M(A), the matrix A with mutual
coherence M(A) satisfies RIP(s,δs).

Proof. This follows immediately from the definition of RIP and using the
Gershgorin circles theorem (see e.g., [19]. �
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Chapter 4
The Newton Bracketing Method for Convex
Minimization: Convergence Analysis

Adi Ben-Israel and Yuri Levin

Abstract Let f be a convex function bounded below with infimum fmin attained.
A bracket is an interval [L,U ] containing fmin. The Newton Bracketing (NB) method
for minimizing f , introduced in [Levin and Ben-Israel, Comput. Optimiz. Appl.
21, 213–229 (2002)], is an iterative method that at each iteration transforms a
bracket [L,U ] into a strictly smaller bracket [L+,U+] with L ≤ L+ < U+ ≤ U .
We show, under certain conditions on f , that an upper bound on the bracket ratio
(U+−L+)/(U−L) can be guaranteed by the selection of the method parameters.

Keywords Newton Bracketing method · Directional Newton method · Convex
functions · Unconstrained minimization · Fermat–Weber location problem
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4.1 Introduction

The Newton Bracketing (NB) method, introduced in [8], is an iterative method for
convex minimization. It was applied to location problems [9], semi-definite pro-
gramming [4], and linearly-constrained convex programs [1].

Let f : R
n → R be a convex function of n variables with an attained infimum

fmin. An optimal solution xmin (unique if f is strictly convex) can be approximated
iteratively by a gradient method

x+ := x− c∇f (x), c > 0.

Gradient methods often suffer from slow convergence near xmin. They also lack a
natural stopping rule.
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The problem can also be solved by approximating the optimal value fmin.
A bracket is a closed interval [L,U ] with

L≤ fmin ≤U. (4.1)

The length of the bracket [L,U ] is denoted Δ := U −L. A bracketing method gen-
erates a sequence of nested brackets, shrinking to a point. The brackets are defined
iteratively by

[L+,U+] :=Ψ([L,U ]),

where Ψ maps intervals to intervals,

L≤ L+ ≤ fmin ≤U+ ≤U, and Δ+ := U+−L+ < Δ .

Using fixed point terminology, the optimal xmin is a fixed point of the mapping

Φ(x) := x− c∇f (x), c > 0 ,

while the optimal value fmin (viewed as a degenerate interval) is a fixed point of Ψ .
The bracket size is a natural stopping criterion, stopping the iterations when

U−L < ε (4.2)

for a given tolerance ε > 0. For fast convergence it is desirable to have large reduc-
tions of successive brackets, i.e., small values of the bracket ratios

Δ+

Δ
=

U+−L+

U−L
, (4.3)

and an upper bound on (4.3) translates to a guaranteed reduction. We study condi-
tions that imply such upper bounds for the NB method.

First, a description of the method for n = 1. An iteration begins with a current
solution x, where f ′(x) �= 0, and a bracket [L,U := f (x)] containing fmin (an initial
lower bound L on fmin is assumed given.) An intermediate value

M := αU +(1−α)L (4.4)

is selected for some 0 < α < 1, and one Newton iteration for solving

f (x) = M (4.5)

is carried out, giving

x+ := x− f (x)−M
f ′(x)

, (4.6)
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Fig. 4.1 Illustration of the 2 cases of the NB method

and two cases, illustrated in Fig. 4.1.

Case 1.

f (x+) < f (x), (4.7a)

and the bracket is updated,

U+ := f (x+), L+ := L. (4.7b)

Case 2.

f (x+)≥ f (x), (4.8a)

in which case the bracket is updated, keeping x,

U+ := U, L+ := M, x+ := x. (4.8b)

The iteration is summarized as follows:

1 Stopping rule. If U−L < ε, stop with x as solution.
2 Select a value M := αU +(1−α)L, for some 0 < α < 1.

3 Do one Newton iteration x+ := x− f (x)−M
f ′(x)

.

4 Case 1: If f (x+) < f (x) then update U : U+ := f (x+)
and leave L+ := L. Go to 1.

5 Case 2: If f (x+)≥ f (x) then update L: L+ := M
and leave U+ := U, x+ := x. Go to 1.

(4.9)
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For n > 1, the only change is in step 3:

3 Do one directional Newton iteration

x+ := x− f (x)−M
‖∇ f (x)‖2 ∇ f (x).

(4.10)

using the directional Newton method [7]. The iterate x+ satisfies

f (x+)≥ f (x)+ ∇ f (x)T (x+−x), since f is convex,

= f (x)+ ∇ f (x)T
(
− f (x)−M
‖∇ f (x)‖2 ∇ f (x)

)
= f (x)− ( f (x)−M).

∴ f (x+)≥M, and (4.11a)

f (x+) > M, if f is strictly convex and f (x) �= M. (4.11b)

The NB method is valid if (4.1) holds throughout the iterations, i.e., if the new
interval [L+,U+] also contains fmin. This is clearly the case for n = 1 (the picture is
the proof), but not in general for n > 1. Sufficient conditions for validity were given
in [8], in particular, the method is valid for the quadratic function,

f (x) =
1
2

xT Qx + cT x + γ, Q positive definite, (4.12)

if Q is well-conditioned,

λn

λ1
≥ 7−

√
48 ≈ 0.071796768, (4.13)

where λn and λ1 are, respectively, the smallest and largest eigenvalues of Q.
In Case 2, the point x does not change (with the bonus that ∇f (x) need not be

recomputed). Since the bracket decreases in every iteration of the NB method, a
convergence analysis of the method must therefore be based on the brackets [L,U ]
in R, rather than on the iterates {x} in R

n.

Example 4.1. One way the NB method may fail is illustrated by the function

f (x) =
1
2

x2 + 1 (4.14)

with initial x := 1, U := f (1) = 3
2 and L := 0. For α = 1

3 we get M = 1
2 by (4.4), and

x+ := x− f (x)−M
f ′(x)

= 1−
3
2
− 1

2
1

= 0,

which is the optimal solution. However, if ε < 1 the NB method does not stop since
the bracket size is 1, but it also cannot continue since f ′(0) = 0. This issue can be
resolved by adding a derivative based stopping rule, but as a practical matter it can
be ignored.
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Example 4.2. To illustrate why the NB method requires the attainment of the infi-
mum fmin, consider the function

f (x) = e−x

with initial x := 0, U := f (0) = 1, and L :=−1. The NB method, for any choices of
α , has only iterations of Case 1, the iterates→ ∞, and the bracket size remains≥ 1.

Example 4.2 is special in that one case, Case 1, occurs in all iterations. In nor-
mal circumstances, Cases 1 and 2 alternate, with large [small] α making Case 1
[Case 2] more likely.

The bracket ratio (4.3) of the NB method is

Δ+

Δ
=

⎧
⎪⎪⎨

⎪⎪⎩

f (x+)−L
U−L

, in case 1 ,

U−M
U−L

= 1−α , in case 2 .

(4.15)

We study here the convergence of the NB method in terms of the bracket ratio.
These results are stated for n = 1 in Sect. 4.2, for n > 1 in Sect. 4.3, and are applied
in Sect. 4.4 to the Fermat–Weber location problem.

Remark 4.3. For similar ideas and more general results, see Kim et al. [6], and
Cegielski [2].

4.2 Bracket Reduction in the NB Method for n = 1

The results of this section, for the simple case n = 1, pave the way for the more
interesting case, n > 1, in the next section.

Let f : R→ R be convex and differentiable as needed, and consider the Newton
method for solving the (4.5), namely

f (x) = M. (4.16)

Let x be a point where f ′(x) �= 0, and let

x+ := x− f (x)−M
f ′(x)

(4.17)

be the next Newton iterate.

Remark 4.4. In what follows, there appear expressions like | f (x+)−M|, where the
absolute value sign is not necessary (because of (4.11)) but is given pro forma.
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Let X0 be the interval with endpoints x,x+. If f ∈C1,1
N (X0) (i.e., f ′(x) is Lipschitz

on X0 with Lipschitz constant N) and | f ′(x)| is sufficiently large, then the value of
| f (x+)−M| is bounded as follows.

Lemma 4.5. Using the above notation, let f ∈ C1,1
N (X0) and f (x) > M. If for

some β > 0,

| f ′(x)|2 ≥ βN| f (x)−M|, (4.18)

then

| f (x+)−M| ≤ 1
2β
| f (x)−M|. (4.19)

Proof. Since f ∈C1,1
N (X0),

| f (x+)− f (x)− f ′(x)(x+− x)| ≤ N
2

(x+− x)2,

by the descent lemma [11, 3.2.12, page 73]. Therefore,

| f (x+)−M| ≤ N
2

( f (x)−M)2

( f ′(x))2 , by (4.17)

≤ 1
2β
| f (x)−M| , by (4.18) .

�

Remark 4.6. To guarantee decrease in (4.19), it is required that

β >
1
2
. (4.20)

Recall that U := f (x). To apply Lemma 4.5 to an NB iteration, we note that

f (x)−M = U−M

= (1−α)(U−L), by (4.4),

= (1−α)Δ , (4.21)

and inequality (4.18) can be written as

(1−α)β ≤ | f
′(x)|2
N Δ

, (4.22)

relating α and β for any given x. We observe that β can be chosen arbitrarily, with
α then constrained by (4.22).

The next theorem guarantees an upper bound on the bracket ratio (4.15).



4 The NB Method for Convex Minimization: Convergence Analysis 55

Theorem 4.7. Let f : R→ R be convex, x a point where f ′(x) �= 0, X0 the interval
with endpoints x,x+, and assume f ∈ C1,1

N (X0). Let [L,U ] a bracket for fmin (i.e.,
L≤ fmin ≤U), and let β satisfy

β >
| f ′(x)|2

N Δ
. (4.23)

Then for

α := 1− | f
′(x)|2

β N Δ
, (4.24)

the NB iteration results in a bracket ratio

Δ+

Δ
≤max

{
1

2β
(1−α)+ α,1−α

}
. (4.25)

Proof. In Case 2, we get from (4.15)

Δ+

Δ
= 1−α,

and in Case 1,

| f (x+)−M| ≤ 1
2β
|U−M|, by Lemma 4.5, and U = f (x),

=
1

2β
(1−α)|U−L|, by (4.4).

M−L = α(U−L), by (4.4).

∴ U+−L+ = ( f (x+)−M)+ (M−L), by (4.7b),

≤
(

1
2β

(1−α)+ α
)

(U−L),

completing the proof. �

Example 4.8. For

f (x) =
1
2

x2 + 1

we have f ′(x) = x and f ′′ = 1, giving N = 1. Then (4.23) and (4.24) become

β >
x2

Δ
, and α = 1− x2

β Δ
.
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Table 4.1 Some admissible β s and the corresponding bracket ratios

Case 1 Case 2 Upper bound on bracket
β 1

2β (1−α)+α (1−α) ratio, RHS (4.25)

0.8 0.6875 0.833333333 0.833333333
1 0.666666667 0.666666667 0.666666667
1.5 0.703703704 0.444444444 0.703703704
2 0.75 0.333333333 0.75
2.5 0.786666667 0.266666667 0.786666667

For the initial x := 1, U := f (x) = 3
2 , L := 0 and initial bracket size Δ = U−L = 3

2 ,

β >
2
3
, and α = 1− 2

3β
.

Table 4.1 lists some admissible values of β , and the corresponding bracket ratios.
The guaranteed ratios in the last column are pessimistic because of the high fre-
quency of iterations of Case 2, with ratios given in the penultimate column.

Theorem 4.7 concerns a single iteration, and its application requires selecting an
admissible β and recalculating α in each iteration.

To simplify matters, we fix the parameter β throughout the iterations (it may no
longer be admissible in some iterations) and impose the following constraint on α,

αmin ≤ α ≤ αmax (4.26)

with given bounds {αmin,αmax}. The parameter α is computed in each iteration as
the point in the interval [αmin,αmax] that is closest to (4.24).

Example 4.9. Consider the quadratic (4.14)

f (x) =
1
2

x2 + 1

with initial x = 1, U := f (1) = 3
2 , L := 0, and initial bracket size Δ = 3

2 .

(a) Using β = 2
3 , αmin = 0.2, and αmax = 0.9, the NB method (with ε = 10−6)

stopped after 16 iterations, an average reduction per iteration

Δ+

Δ
= 0.41.

The reductions in each iterations are shown in Fig. 4.2a. Case 1 occurred in 11
iterations and Case 2 in 5.

(b) Using β = 0.2 (an inadmissible value), αmin = 0.3 and αmax = 0.7, the NB
method (with ε = 10−9) required 56 iterations, 15 of Case 1, and 41 of Case 2.
The reductions in each iteration are shown in Fig. 4.2b. The average reduction
per iteration is

Δ+

Δ
= 0.68.
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Fig. 4.2 Illustration of Example 4.9: Reduction per iteration for f (x) = 1
2 x2 +1, L = 0 and x0 = 1

Remark 4.10. The periodic reductions in Fig. 4.2a, b are explained by self-similarity
of the NB method for this particular function and the selected values of β .

4.3 Bracket Reduction in the NB Method for n > 1

Theorem 4.11. Let f : R
n→ R be convex and differentiable, let x be a point where

∇f (x) �= 0, and let

x+ := x− f (x)−M
‖∇f (x)‖2 ∇f (x), (4.27)

be the next Newton iterate with step

h :=− f (x)−M
‖∇f (x)‖2 ∇f (x). (4.28)

Consider the ball
X0 := {ξ : ‖ξ −x+‖ ≤ ‖h‖} ,

and assume that f ∈C1,1
N (X0), i.e., ∇f is Lipschitz in X0 with Lipschitz constant N.

Finally, assume x satisfies,

‖∇f (x)‖2 ≥ β N| f (x)−M|, (4.29)

for some β > 0. Then:

(a) ‖∇ f (x+)‖ ≥ β −1
β
‖∇ f (x)‖.

(b) | f (x+)−M| ≤ 1
2β
| f (x)−M|.
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Proof. See Appendix A. �

Remark 4.12. For part (a) to be useful, it is required that β > 1.

As in (4.22), the inequality (4.29) can be written as,

(1−α)β ≤ ‖∇ f (x)‖2

N Δ
. (4.30)

An admissible β can thus be selected at will, and α then determined by

α = 1− ‖∇ f (x)‖2

β N Δ
(4.31)

the analog of (4.24).

Example 4.13. Consider the quadratic function f : R
n→ R,

f (x) =
1
2

xT Qx + 1, Q positive definite, (4.32)

with fmin = 1. Let Q have the eigenvalues

λ1 ≥ λ2 ≥ ·· · ≥ λn > 0, and corresponding eigenvectors v1,v2, · · · ,vn.

Then ∇ f (x) = Qx, and f ′′(x) = Q. The norm of Q corresponding to the Euclidean
norm is ‖Q‖= λ1, which is taken as the Lipschitz constant N in Theorem 4.11. The
inequality (4.30) becomes,

(1−α)β ≤ ‖Qx‖2

λ1 Δ
, (4.33)

giving for x = vn,

(1−α)β ≤ λ 2
n

λ1 Δ
.

The following theorem is the analog of Theorem 4.7, giving an upper bound on
the bracket ratio in a single iteration.

Theorem 4.14. Let f : R
n→ R be convex and differentiable, let x be a point where

∇f (x) �= 0, and let [L,U ] be a bracket for fmin. Let β satisfy,

β >
‖∇f (x)‖2

N Δ
. (4.34)
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Then for α satisfying (4.31), the NB iteration results in a reduction

Δ+

Δ
≤max

{
1

2β
(1−α)+ α,1−α

}
. (4.35)

Proof. The proof of Theorem 4.7 applies verbatim. �

4.4 Application to the Fermat–Weber Location Problem

The Fermat–Weber Location Problem is to find a point x minimizing the sum of
Euclidean distances

f (x) =
m∑

i=1

‖ai−x‖ (4.36)

from m given points {ai : i = 1, . . . ,m}, see [3, 10, 17] and their references.
For large m, the contours of the function (4.36) are close to circular, see, e.g.,

Fig. 4.3b, and the problem is well-conditioned, so the NB method is valid by (4.13).
To apply Theorem 4.14, we need an estimate of N = sup f ′′, which is problem-

atic for the function (4.36). However, f (x) can be approximated, near the optimal
solution, by a quadratic

f (x)≈ 1
2

xT Qx

giving f ′′ ≈ Q, N ≈ λ1 (the largest eigenvalue of Q), and therefore N = O(m),
say N = m

2 .

–4

–2

0

2

4

a

–4 –2 0 2 4

b

Points Level sets of the function (4.36)

Fig. 4.3 Illustration of Example 4.16: 1,000 random points in [−5,5]2
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As in the case n = 1, we fix the parameter β throughout the iterations (it may no
longer be admissible in some iterations) and impose the constraint (4.26),

αmin ≤ α ≤ αmax,

where the bounds {αmin,αmax} are given. The parameter α is computed in each
iteration as the point in the interval [αmin,αmax] that is closest to (4.31).

The value of the parameter α depends on the bounds {αmin,αmax}. The following
considerations apply to choosing these bounds (and indirectly α .)

(a) For large values of α , say α ≥ 0.8, the target M is close to U by (4.4), making
Case 1 more likely, and the bracket ratio (see proof of Theorem 4.7),

Δ+

Δ
≤ 1−α

2β
+α (4.37)

is large. However, when Case 2 occurs, the ratio

Δ+

Δ
= 1−α (4.38)

is small since α is large. We thus alternate between small and large reductions,
see, e.g., Fig. 4.4.

(b) Small values of α (say α ≤ 0.2) make Case 2 more likely, with a large
ratio (4.38), i.e., a small reduction. However, in Case 2 the derivative need not
be computed, so the overall time may be smaller.

Our numerical experience suggests that convergence is faster for higher values
of α , as illustrated in Examples 4.16 and 4.17 below.

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

Fig. 4.4 Illustration of Example 4.16: Reduction per iteration for β = 2
3 , αmin = 0.2, αmax = 0.95
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Remark 4.15. For large m, the function (4.36) is very flat near the optimal solution.
Using a small ε as a stopping criterion, and stopping the computations with a final
bracket Δ < ε , does not guarantee that the final iterate x is close to the optimal
solution, only that its value f (x) is within ε of the optimal value.

Example 4.16. Consider a problem with m = 1,000 points, randomly generated in
[−5,5]2. The points are shown in Fig. 4.3a, and the level sets of the sum of distances
(4.36) in Fig. 4.3b.

The initial lower bound was taken as L = 0 (a better lower bound would be the
distance between any two points, but the method converges so fast that we do not
save much by improving L). For the needed Lipschitz constant we substitute the
value N = m

2 = 500 , for no good reason other than it works.
The problem was solved with an initial point chosen randomly in [−5,5]2.

Table 4.2 shows the results for the initial x = (−0.640353501,0.937409957), with
U := f (x) = 3809.901722, and initial Δ = 3809.901722. The value of the parameter
β was fixed at 2

3 and the bounds for α were αmin = 0.2, αmax = 0.95.
Using a tolerance ε = 10−3, the method converged in 12 iterations. Case 1

occurred in 7 iterations, and Case 2 in 5 iterations (shown in bold numbers in
Table 4.2). The lower bound αmin was too low to be activated, but the upper bound
αmax applied in all but 3 iterations.

The last row of the table lists the bracket ratios, that are plotted in Fig. 4.4. The
average reduction per iteration is

(
0.0008
3809.9

)1/12

= 0.277

Example 4.17. The results of Example 4.16 are typical: we solved 20 problems,
each with 1,000 random points in [−5,5]2, and a random initial solution, using the
same parameters as above,

ε = 10−3, L = 0, β =
2
3
, αmin = 0.2, αmax = 0.9.

Table 4.3 shows the total number of iterations (until a bracket with length ≤10−3

is reached), the number of iterations of Case 2 (5 in all but one problem), and the
average reduction per iteration, that is around 30%.

Table 4.2 Results for Example 4.16 with β = 2
3 , αmin = 0.2, αmax = 0.95

Iteration 0 1 2 3 4 5 6 7 8 9 10 11 12

α 0.95 0.95 0.95 0.88 0.95 0.95 0.95 0.83 0.95 0.95 0.89 0.95 0.95

Case 1 1 2 1 1 2 2 1 1 2 1 1 2

Δ 3809.9 3771.1 188.5 172.3 167.3 8.37 0.418 0.367 0.355 0.018 0.0163 0.016 0.0008

Reduction 0.989 0.05 0.914 0.971 0.05 0.05 0.881 0.945 0.05 0.905 0.981 0.05
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Remark 4.18. The NB method for convex minimization is based on the fact that
the graph of a convex function f is supported by its tangents, but differentia-
bility of f , i.e., uniqueness of tangents, is not required. The NB method can
therefore be translated for the minimization of nondifferentiable convex functions,
using the subgradient methods of Shor [14, 15]; see also [5, 13, 16], to mention
but a few.

Acknowledgements We thank the referees, and Professor A. Cegielski, for their constructive
suggestions.

Appendix A: Proof of Theorem 4.11

Part (a). Proof that

‖∇f (x+)‖ ≥ β −1
β
‖∇f (x)‖ . (A.1)

Since f ∈C1,1
N (X0),

‖∇f (ξ )−∇f (x)‖ ≤ N‖ξ −x‖ (A.2)

for all ξ ∈ X0. In particular, for x+,

‖∇f (x+)−∇f (x)‖ ≤ N‖x+−x‖= N
| f (x)−M|
‖∇f (x)‖

≤ 1
β
‖∇ f (x)‖, by (4.29) . (A.3)

∴ ‖∇f (x+)‖ ≥ ‖∇ f (x)‖−‖∇ f (x+)−∇f (x)‖,
≥ ‖∇ f (x)‖− 1

β
‖∇f (x)‖, by (A.3),

=
β −1

β
‖∇f (x)‖, proving (A.1).

Part (b). The proof that

| f (x+)−M| ≤ 1
2β
| f (x)−M| (A.4)

is analogous to that of Lemma 4.5.
Since f ∈C1,1

N (X0),

f (x+)− f (x)≤ ∇f (x)T (x+−x)+
N
2
||x+−x||2,
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by the descent lemma, [11, 3.2.12, page 73]. Therefore,

| f (x+)−M| ≤ N
2

( f (x)−M)2

||∇f (x)||2 by (4.27)

≤ 1
2β
| f (x)−M| by (4.29), proving (A.4).
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Entropic Regularization of the �0 Function
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Abstract Many problems of interest where more than one solution is possible seek,
among these, the one that is sparsest. The objective that most directly accounts for
sparsity, the �0 metric, is usually avoided since this leads to a combinatorial opti-
mization problem. The function ‖x‖0 is often viewed as the limit of the �p metrics.
Naturally, there have been some attempts to use this as an objective for p small,
though this is a nonconvex function for p < 1. We propose instead a scaled and
shifted Fermi–Dirac entropy with two parameters, one controlling the smoothness
of the approximation and the other the steepness of the metric. Our proposed metric
is a convex relaxation for which a strong duality theory holds, yielding dual methods
for metrics approaching the desired ‖ · ‖0 function. Without smoothing, we propose
a dynamically reweighted subdifferential descent method with “exact” line search
that is finitely terminating for constraints that are well-separated. This algorithm is
shown to recapture in a special case certain well-known “greedy” algorithms. Con-
sequently we are able to provide an explicit algorithm whose fixed point, under the
appropriate assumptions, is the sparsest possible solution. The variational perspec-
tive yields general strategies to make the algorithm more robust.
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5.1 Introduction

Let E and Y be Euclidean spaces, and let A : E→ Y be linear. We consider the
problem

minimize
x∈E

ϕ(x)

subject to A(x) = b, (5.1)

where ϕ(x) : E→ R is a lower semi-continuous (lsc), symmetric subadditive func-
tion that, in one way or another, counts the nonzero elements of x. This model
has received a great deal of attention recently in applications where the number
of constraints is much smaller than the dimension of the domain. Examples in-
clude the well-known compressed sensing [4], where E = R

n, Y = R
m (m� n)

and ϕ(x)≡∑ j |sign(x j)|.
Another instance of importance is low-rank matrix reconstruction [5, 13]. Here

E = R
m×n, Y = R

m×n and ϕ(x) ≡ rank(x). The goal in both of these applications
is to find a “sparsest” solution x∗ to A(x) = b. Both of the optimization problems
associated with these examples are combinatorial and, in general, NP-hard [12]. At
the expense of some generality, we will narrow our discussion to the case where
E = R

n and Y = R
m.

Before addressing the counting objective directly, we review some elementary
observations about the most common relaxation of this problem, �1 optimization.

5.1.1 Elementary �1 Minimization

A natural first step toward solving such problems has been to solve convex re-
laxations instead, ϕ(x) = ‖x‖1 ≡ ϕ1(x). It has been known for some time that �1

optimization promotes sparsity in underdetermined systems [7,15]. Later works es-
tablished criteria under which the solution to (5.1) is unique and exactly matches the
true signal x∗ [6,8,9]. Sparsity of the true signal x∗ and the structure of the matrix A
are key requirements.

A qualitative geometric interpretation of these facts is obtained by considering
the Fenchel dual [1] to Problem (5.1) when ϕ = ϕ1:

maximize
y∈Rm

bTy

subject to
(
ATy
)

j ∈ [−1,1] j = 1,2, . . . ,n. (5.2)

By strong Fenchel duality, the optimal values of the primal and dual problems are
equivalent, and a solution of the dual problem yields a solution to the primal. The
dual problem yields valuable geometric insight. Elementary facts from linear pro-
gramming guarantee that the solution includes a vertex of the polyhedron described
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by the constraints. The number of active constraints in the dual problem provides a
crude upper bound on the number of nonzero elements of the sparsest solution to
the primal problem. Unless the number of active constraints in the dual problem is
less than or equal to the number of measurements m, there is no hope of uniquely
recovering x∗. Supposing that the solution to (5.2) is indeed unique, a more vexing
question is whether or not the corresponding primal solution is the sparsest solution
to Ax = b. Here, it appears, convex analysis is at a loss to provide an answer.

5.1.2 �0 Minimization

We gain some insight into this breakdown by considering the dual of the origi-
nal sparse optimization problem. For ϕ(x) =

∑
j |sign(x j)| ≡ ϕ0(x) in (5.1), the

equivalence of the primal and dual problems is lost due to the nonconvexity of the
objective. The theory of Fenchel duality still yields weak duality, but this is of lim-
ited use in this instance. The Fenchel dual to (5.1) when ϕ = ϕ0 is

maximize
y∈Rm

bTy

subject to
(
ATy
)

j = 0 j = 1,2, . . . ,n. (5.3)

If we denote the values of the primal (5.1) and dual problems (5.3) by p and d
respectively, then these values satisfy the weak duality inequality p ≥ d. The pri-
mal problem is a combinatorial optimization problem, and hence NP-hard; the dual
problem, however, is a linear program, which is finitely terminating. Relatively el-
ementary variational analysis provides a lower bound on the sparsity of signals x
that satisfy the measurements. In this instance, however, the lower bound only re-
confirms what we already know. Indeed, if A is full rank, then the only solution to
the dual problem is y = 0. In other words, the minimal sparsity of the solution to
the primal problem is greater than or equal to zero, which is obvious. The loss of
information in passing from primal to dual formulations of nonconvex problems is
a common phenomenon and at the heart of the difficulties in answering some very
basic questions about sparse, and more generally nonconvex, optimization.

Our goal in this paper is twofold: first, to dig deeper into the convex analysis
to see what can indeed be learned about the nonconvex problem from various con-
vex relaxations, and second, to take what has been learned by other means and
incorporate these advances into convex analysis and algorithms. As we showed with
Example (5.3), the dual of the �0 problem is uninformative but trivial to solve. The
conventional approach is to view �0 as a limit of the nonconvex p-metrics. However,
the �p problems for 0 < p < 1 are also NP hard and the duals to these optimization
problems suffer the same loss of information that the dual to the �0 function suffers.
The question that motivates our work is whether one can use convex relaxations ap-
proaching something related to the �0 function – something in the dual space – that
are still informative with respect to the original �0 problem, but yield optimization
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problems that are solvable in polynomial time. The connection between the non-
convex and the convex that we explore is the Fenchel conjugate of the �0 function,
which can be written as the limit of convex functions. We then study how well our
proposed convex relaxations work for solving the sparse recovery problem.

5.1.3 Notation

Throughout this work, we use ‖ · ‖ without any subscript to denote the L2-norm.
When a different norm is meant, a subscript is added explicitly to the norm as with
‖ · ‖1. We denote the projection of a point z onto the set C with respect to the L2

norm by PC(z), where

PC(z)≡
{

x ∈C | ‖x− z‖= inf
y∈C
‖z− y‖

}
.

We denote the nonnegative orthant in R
n by R

n
+ and the extended reals by R ≡

R∪{+∞}. It is not uncommon to define the objective ϕ on the extended reals as a
mapping from R

n to R. The normal cone mapping of a set C ⊂ R
n at a point x is

defined by

NC(x)≡
{
{w ∈ R

n with (z− x)Tw≤ 0 for all z ∈C} if x ∈C

/0 if x /∈C.

We denote by ri(C) the relative interior of C, that is the interior of C relative to its
affine hull. The indicator function of a set C, ιC is defined by

ιC(x)≡
{

0 for x ∈C

+∞ for x /∈C.

We use the indicator function to treat constraint sets as functions. For a function
f : R

n→ R and a point x in the domain of f , the subdifferential of f at x, denoted
∂ f (x) is defined by

∂ f (x)≡ {w ∈ R
n | wT (x− x)≤ f (x)− f (x), for all x ∈ R

n} . (5.4)

When x is not in the domain of f we define ∂ f (x) = /0. The Fenchel conjugate of a
mapping f : R

n→ [−∞,+∞] , denoted f ∗ : R
n→ [−∞,+∞] , is defined by

f ∗(y) = sup
x∈Rn
{yT x− f (x)}. (5.5)
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The conjugate is always convex (as a supremum of affine functions) while f = f ∗∗
exactly if f is convex, proper (not everywhere infinite) and lower semi-continuous
(lsc) [1]. Finally, we make frequent reference to boxes in R

n centered at the ori-
gin with sides of length 2I j ( j = 1,2, . . . ,n); these are denoted by RI ≡ [−I1, I1]×
[−I2, I2]× . . . [−In, In] for I = (I1, I2, . . . , In).

5.2 Entropic Regularization of the Zero Metric

The Fenchel conjugates of the functions ϕ1(x) ≡ ‖x‖1 and ϕ0(x) ≡
∑

j |sign(x j)|
are given respectively by

ϕ∗1 (y) ≡
{

0 y ∈ [−1,1]

+∞ else
(ϕ1(x)≡ ‖x‖1) (5.6)

ϕ∗0 (y) ≡
{

0 y = 0

+∞ else
(ϕ0(x)≡ ‖x‖0). (5.7)

It is not uncommon to consider the function ‖ · ‖0 as the limit of
(∑

j |x j|p
)1/p

as

p→ 0. The notation is misleading since ‖ · ‖0 is not a norm; the fact that

‖x‖0 = lim
p→0+

∑

j

|x j|p

shows that d0(x,y) := ‖x− y‖0 still produces a metric since
∑

j |x j− y j|p does for
0 < p < 1.

We propose an alternative strategy based on regularization of the conjugates. For
L ∈ R

n
+ and ε > 0 define the rectangle RL ≡ [−L1,L1]× [−L2,L2]×·· ·× [−Ln,Ln]

and

φε,L(y)≡
n∑

j=1

ψε ,Lj (y j) (y = (y1,y2, . . . ,yn) ∈ R
n), (5.8)

where

ψε,Lj (y j)≡

⎧
⎪⎪⎨

⎪⎪⎩

ε
(

(Lj+y j) ln(L j+y j)+(L j−y) ln(Lj−y j)
2Lj ln(2) − ln(Lj)

ln(2)

)
for |y j|< Lj

ε for |y j|= Lj

+∞ for |y j|> Lj.

(5.9)

This is a scaled and shifted Fermi–Dirac entropy [1, 3]. The value at the endpoints
y j = ±Lj follows from defining 0ln(0) = 0, which is standard in the literature.
The inclusion of the endpoints (y j = ±Lj) in the domain of definition of ψε,L j (y j)
provides a type of continuity in the limiting cases, namely as the closed interval
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[−Lj,Lj] degenerates to the point [0] and the relaxation parameter ε → 0. This en-
tropy is a smooth convex function on the interior of its domain and so elementary
calculus can be used to calculate the Fenchel conjugate,

φ ∗ε,L(x) =
n∑

j=1

(
ε

ln(2)
ln
(

4x jL j/ε + 1
)
− x jL j− ε

)
. (5.10)

(Calculate the gradient of the objective in the Fenchel problem (5.5), satisfy first
order conditions for optimality and substitute the optimal solution back into (5.5) to
get (5.10) for the optimal value parameterized by the dual variable.)

• For ε > 0 fixed we have

lim
L→0

φε,L(y) =

{
0 y = 0

+∞ else
and lim

L→0
φ∗ε ,L(x) = 0.

• For L > 0 fixed, in the limit as ε → 0 we have

lim
ε→0

φε ,L(y) =

{
0 y ∈ RL

+∞ else
and lim

ε→0
φ ∗ε,L(x) = L|x|.

We write φ0,L, φ∗0,L, φε,0 and φ∗ε ,0 for the limits. In contrast to the limit of φε ,L(y) for
ε > 0 fixed, if y = L in the limiting process we have limL→0 φε,L(L) = ε. By φε,0(0)
we mean the former limit, so that φε ,0(0) = 0. Note that ‖ ·‖0 and φ∗ε0 have the same
conjugate, but unlike ‖ · ‖0 the biconjugate of φ ∗ε0 is itself, that is, φ∗∗∗ = φ∗. Also
note that φε ,L and φ∗ε,L are convex and smooth on the interior of their domains for

all ε,L > 0. This is in contrast to metrics of the form
(∑

j |x j− y j|p
)

which are

nonconvex for p < 1.
To maintain identification with ϕ in (5.1) we define

ϕε,L ≡ φ∗ε ,L and ϕ∗ε ,L ≡ φ∗∗ε,L = φε,L,

where we have used the fact that the biconjugate of φε,L is itself. We therefore con-
sider the problem

inf{ϕε,L(x) | x ∈ R
n with Ax = b} (5.11)

as a smooth convex relaxation of the conventional �p optimization for 0 ≤ p ≤ 1.
Our numerical approach to solve this problem will be to solve the dual.

Using Fenchel duality, the dual to this problem is the concave optimization
problem

sup{yTb−ϕ∗ε ,L(A
Ty) | y ∈ R

m}, (5.12)
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where, again, ϕ∗ε,L(x) = φε,L(x) is given by (5.8). We reformulate this as a minimiza-
tion problem

minimize
y∈Rm

ϕ∗ε,L(ATy)− yTb, (5.13)

which we will solve with the method described next.
The objective in the dual problem is smooth and convex, so we could in principle

apply any number of efficient unconstrained optimization algorithms. Also, for this
relaxation, the same numerical techniques can be used for all L→ 0.

5.3 Algorithms: Subgradient Descent

The central algorithm we explore in this note is simple (sub)gradient descent on the
dual problem (5.13):

Algorithm 5.1 (Subgradient descent). Given y0 ∈R
m, for ν = 0,1,2 . . . generate

the sequence {yν}∞
ν=0 via

yν+1 = yν +λνdν ,

where dν ∈ −∂
(

ϕ∗ε,L

(
ATyν)−bTyν

)
and λν is an appropriate step length

parameter.

For ε > 0, ϕ∗ε ,L is continuously differentiable on its domain, and the algorithm
amounts to the method of steepest descent.

5.3.1 Nonsmooth Case: ε =0

In this section, we present and analyze a subgradient descent method with exact line
search and variants thereof suitable for solving the dual problem above for the case
ε = 0, that is, we do not smooth the problem.

Using the notation of indicator functions, we have

ϕ∗0,L(x) = ιRL(x)≡
{

0 for x ∈ RL

+∞ otherwise.

The specific instance of (5.13) that we address is

min
y∈Rm

ιRL(A
Ty)− yTb. (5.14)

Since the set RL is a rectangle, nonsmooth calculus yields the following simple
expression for the subdifferential of the dual objective:

∂
(
ιRL

(
ATyν)−bTyν)= ANRL

(
AT yν)−b. (5.15)
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Here, we have used the fact that the subdifferential of the indicator function to the
box RL at the point x, denoted ∂ιRL(x) is equivalent to the normal cone mapping of
RL at the point x

∂ιRL(x) = NRL(x)≡
{
{w ∈ R

n with (z− x)Tw≤ 0 for all z ∈ RL} if x ∈ RL

/0 if x /∈ RL.

Remark 5.2. It is important to note that we assume that we can perform exact arith-
metic. This assumption is necessary due to the composition of the normal cone
mapping of RL with AT: while we can determine the exact evaluation of the normal
cone for a given ATyν , we cannot guarantee exact evaluation of the matrix–vector
product and, since the normal cone mapping is not Lipschitz continuous on RL, this
can lead to large computational errors.

Problem (5.14) is a linear programming problem. The algorithm we analyze be-
low solves problem a parametric version of problem (5.14), where the parameter L
changes dynamically at each iteration. To see how the parameter might be changed
from one iteration to the next, we look to a trivial extension of the primal problem:

minimize
(x,L)∈Rn×Rn

+

n∑

j=1

Lj |x j|

subject to Ax = b. (5.16)

It is clear that L = 0 and any feasible x is an optimal solution to problem (5.16), and
that the (global) optimal value is 0. However, this is not the only solution. Indeed,
the sparsest solution x∗ to Ax = b and the weight L∗ satisfying L∗j = 0 only for
those elements j on the support of x∗ is also a solution. The algorithm we study
below finds a weight compatible with the sparsest element x∗. A more satisfying
reformulation would yield a weight that is in some sense optimal for the sparsest
element x∗, but this is beyond the scope of this work.

5.3.2 Dynamically Rescaled Descent with Exact Line Search

There are three unresolved issues in our discussion to this point, namely the choice
of elements from the subdifferential, the choice of the step length and the adjustment
of the weights Lj . Our strategy is given in Algorithm 5.4 below. In the description
of the algorithm, we use some geometric notions that we introduce first. It will be
convenient to define the set C by

C ≡ {y ∈ R
m | ATy ∈ RL}.

This set is polyhedral as the domain of a linear mapping with box constraints.
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Lemma 5.3 (Normal cone projection). Let A be full rank and denote the normal
cone to C ≡ {y ∈ R

m | ATy ∈ RL} at y ∈C by NC(y). Then

PNC(y)b = Aw (5.17)

for
w = argmin{‖Aw−b‖2 | w ∈ NRL(A

Ty)}. (5.18)

Proof. If A is full rank, then all points y ∈C satisfy the constraint qualification that
A is injective on NRL(A

Ty), that is, the only vector w ∈ NRL(A
Ty) for which Aw = 0

is w = 0. Then, by convex or nonsmooth analysis (see e.g., [14, Theorem 6.14]) the
set C is regular and

NC(y) = ANRL(A
Ty) =

{
u = Aw | w ∈ NRL(A

Ty)
}

.

By the definition of the projection

PNC(y)b≡ argmin
{‖u−b‖2 | u ∈ NC(y)

}

hence,

PNC(y)b = argmin
{‖u−b‖2 | u ∈ ANRL(A

Ty)
}

= Aargmin
{‖Aw−b‖2 | w ∈ NRL(A

Ty)
}

= Aw. �


Algorithm 5.4 (Dynamically rescaled descent with exact line search).

Initialization: Set ν = 0, τ > 0, L0 = (‖a1‖,‖a2‖, . . . ,‖an‖), where a j is the jth
column of A, y0 = 0 and the direction d0 = b.

Main iteration: While ‖dν‖> τ do

• (Exact line search.) Calculate the step length λν > 0 according to

λν ≡ argmin
λ>0

{
ιRLν

(
AT (yν + λdν)

)−bT (yν +λdν)
}

. (5.19)

Set y′ = yν +λνdν .
• (Subgradient selection and preliminary rescaling.) Define

J
ν+1 = { j | |aT

j y′|= Lν
j }, (5.20)

S(L,J,γ) = (s1(L,J,γ),s2(L,J,γ), . . . ,sn(L,J,γ)),

where s j(L,J,γ) =

{
γLj for all j ∈ J

Lj else,
(5.21)
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and

C(L,J,γ) = {y ∈R
n | ATy ∈ RS(L,J,γ)}, where

RS(L,J,γ) ≡ [−s1(L,J,γ),s1(L,J,γ)]×·· ·× [−sn(L,J,γ),sn(L,J,γ)]
(5.22)

Choose γ ′ ≥ 0 small enough that PNC(Lν ,Jν+1,γ′)(y
′′)b ∈ ri(NC(Lν ,Jν+1,γ ′)(y

′′)) for

y′′ = γ ′y′. Compute the direction

dν+1 ≡ b−PNC(Lν ,Jν+1,γ′)(y
′′)b (5.23)

• (Rescaling.) Let

J
ν+1
+ ≡ { j | aT

j dν+1 > 0
}

, J
ν+1
− ≡ { j | aT

j dν+1 < 0
}

,

and define

I
ν+1(γ)≡ argmin

j∈J
ν+1
+ ∪J

ν+1
−

{{
Lν

j − γaT
j y′

aT
j dν+1

∣
∣∣
∣
∣

j ∈ J
ν+1
+

}

,

{ −Lν
j − γaT

j y′

aT
j dν+1

∣
∣
∣
∣
∣

j ∈ J
ν+1
−

}}

. (5.24)

Choose γν+1 ∈ [0,γ ′] to satisfy

I
ν+1(γν+1)⊂ I

ν+1(0). (5.25)

Set

Lν+1
j =

{
γν+1Lν

j for j ∈ J
ν+1

Lν
j else

(5.26)

and yν+1 = γν+1y′. Increment ν = ν + 1.

End do.

We begin with some observations. The next proposition shows that the direc-
tions chosen by (5.23) with PNC(Lν ,Jν+1,γ′)(y

′′)b ∈ ri(NC(Lν ,Jν+1,γ ′)(y
′′)) for y′′ = γ ′y′

are subgradient descent directions that are not only feasible, but orthogonal to the
active constraints. We use orthogonality of the search directions to the active con-
straints to guarantee finite termination of the algorithm.

Proposition 5.5 (Feasible directions). Let C ≡ {y ∈ R
m | ATy ∈ RL}, ȳ ∈ C and

define the direction d̄ ≡ b−PNC(ȳ)b. Then−d̄ ∈ ∂
(
ιRL(A

Tȳ)−bTȳ
)

and there exists

a λ > 0 such that y + λ d̄ ∈C for all λ ∈ [0,λ ].
Moreover, if PNC(ȳ)b ∈ ri(NC(ȳ)), then the direction d̄ is orthogonal to the jth

column of A for all j such that aT
j y = L j.
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Proof. The inclusion −d̄ ∈ ∂
(
ιRL(A

Tȳ)−bTȳ
)

follows immediately from (5.15).
The feasibility of this direction follows from Lemma 5.3 and the polyhedrality of
C since the polar to the normal cone to C at a point y ∈C is therefore equivalent to
the tangent cone, which consists only of feasible directions to C at y, defined as a
direction d for which y+ λd ∈C for all λ > 0 sufficiently small.

Indeed, let a j denote the jth column of the matrix A and recall the definition of
the contingent cone to C at y ∈C:

KC(y)≡ {w ∈ Y | for all ν y + λ νwν ∈C for some wν → w, λ ν ↘ 0} .

Since C is convex the contingent cone and the tangent cone are equivalent
[2, Corollary 6.3.7] and since C is polyhedral the tangent cone can be written as

TC(y)≡ {w ∈ Y | for all ν y + λ νw ∈C for some λ ν ↘ 0} ,

that is, the tangent cone consists entirely of feasible directions. Now the tangent and
normal cones to C are convex and polar to each other [14, Corollary 6.30], so, by
Lemma 5.3, what remains to be shown is that b−PNC(y)b lies in the polar to the
normal cone to C. This follows since NC(y) is nonempty, closed, and convex. Hence
for all w ∈ NC(y) and for any b

wT(b−PNC(y)b)≤ 0,

that is, b−PNC(y)b is in the polar to the normal cone.
To see the final statement of the proposition, denote by J̄ the set

{ j = 1,2, . . . ,n | aT
j ȳ = Lj}.

If the projection lies on the relative interior to NC(ȳ), then the projection onto NC(ȳ)
is equivalent to the projection onto the subspace containing NC(ȳ):

PNC(ȳ)b = PD(ȳ)b,

where

D(ȳ)≡ {Aw | w ∈ R
n with wj = 0 for j /∈ J

}
.

Thus, aT
j (b−PNC(ȳ)b) = aT

j (b−PND(ȳ)b) = 0 for j ∈ J as claimed. �

Remark 5.6 (Detection of orthogonality of feasible directions). The interiority con-
dition PNC(ȳ)b∈ ri(NC(ȳ)) guaranteeing orthogonality of the directions can easily be
checked. Let w̄≡ argmin{‖Aw−b‖2 | w∈NRL(A

Ty)}. By Lemma 5.3 PNC(ȳ)b = Aw̄.
Then Aw̄ and hence PNC(ȳ)b lies in ri(NC(ȳ)) if and only if w̄ j �= 0 for all j such that
aT

j y = Lj .

Calculation of the direction in (5.23) of Algorithm 5.4 is suggested by Lemma
5.3, where it is shown that the projection is the mapping of the solution to a least
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squares problem over a cone. Also, by Proposition 5.5, the direction is the negative
of a subgradient of the objective in (5.14) with the box S(Lν ,Jν+1,γ ′), that is

−dν+1 ≡−b + PN
C(Lν ,Jν+1,γ′)(y

′′)b ∈ ∂
(

ιR
S(Lν ,Jν+1,γ′) (A

Ty′′)−bTy′′
)

.

The description as a projection onto the normal cone of a polyhedron is perhaps
less helpful than the explicit formulation of Lemma 5.3 for suggesting how this can
be computed, but it provides greater geometrical insight. Moreover, the projection
provides an elegant criterion for maintaining orthogonality of the search directions
with the active constraints.

The exact line search step has an explicit formulation given in the next pro-
position.

Proposition 5.7 (exact line search). Let ȳ ∈ C and d̄ = b− PNC(ȳ)b. Define the
index sets

J̄+ ≡
{

j | aT
j d̄ > 0

}
, J̄− ≡

{
j | aT

j d̄ < 0
}

.

The exact line search step length λ̄ given by (5.19) has the explicit representation

λ̄ ≡min

{

min
j∈J̄+

{
Lj−aT

j ȳ

aT
j d̄

}

, min
j∈J̄−

{
−Lj−aT

j ȳ

aT
j d̄

}}

> 0. (5.27)

Proof. Application of nonsmooth calculus provides a generalization to the fact from
optimization of smooth objectives that the exact line search step extends to the tan-
gent of a level set of the objective, from which we can extract (5.27). However, it
is perhaps easiest to see the explicit formulation by direct inspection: the indicator
function ιRL is zero at all points in RL, so the step length is the largest λ such that
AT
(
ȳ+ λ d̄

) ∈ RL, i.e., the largest λ such that

aT
j

(
ȳ+ λ d̄

)≤ Lj for all j ∈ J̄+.

and

aT
j

(
ȳ+λ d̄

)≥−Lj for all j ∈ J̄−.

Note that by Proposition 5.5, it is not possible to have aT
j d̄ > 0 and aT

j ȳ = Lj or,

similarly aT
j d̄ < 0 and aT

j ȳ =−L j, hence the step length is guaranteed to be positive,
and we are done. �


5.4 Convergence to Sparse Solutions

We show in this section that for sufficiently sparse solutions x∗ to Ax = b, the steep-
est subgradient descent algorithm with exact line search (Algorithm 5.4) recovers
x∗ exactly. Before we continue, however, we must specify precisely what is meant
by “sufficiently sparse.”
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Definition 5.8 (Mutual coherence). Let a j denote the jth column of A. The
mutual coherence of A is defined as

μ(A)≡ max
1≤k, j≤n, k �= j

|aT
k a j|

‖ak‖‖a j‖ ,

where 0/0≡ 1.

The mutual coherence characterizes the dependence between columns of A. The mu-
tual coherence of unitary matrices, for instance, is zero; for matrices with columns
of zeros, the mutual coherence is 1.

Lemma 5.9 (Uniqueness of sparse representations [8]). Let A ∈ R
m×n (m < n)

be full rank. If there exists an element x∗ such that Ax∗ = b and

‖x∗‖0 <
1
2

(
1 +

1
μ(A)

)
, (5.28)

then it is unique and sparsest possible (has minimal support).

In the case of matrices that are not full rank – and thus unitarily equivalent to matri-
ces with columns of zeros – only the trivial equation Ax = 0 has a unique sparsest
possible solution. For unitary matrices μ(A) = 0, we interpret 1/0 = +∞.

The sparsity condition of Lemma 5.9 yields a more direct representation that will
be useful later.

Lemma 5.10 (sparsity conditions). Let A ∈ R
m×n (m < n) be full rank. For b ∈

R
m \ {0} given and x∗ a solution to Ax = b, define J = { j | x∗j �= 0} and denote by

J ∈ J an element of x∗ satisfying

|x∗J |‖aJ‖ ≥ |x∗j |‖a j‖ for all j = 1,2, . . . ,n.

If the solution x∗ satisfies condition (5.28) then there exists a γ̄ > 0 such that, for all
y ∈ B≡ {y ∈R

m | ‖y‖= 1} and all γ ∈ [0, γ̄ ]

max
k/∈J

|aT
k b|

‖ak‖− γ|aT
k y| <

|aT
J b|

‖aJ‖+ γ|aT
J y| . (5.29)

Proof. We use continuity of the terms in (5.29) with respect to γ and y to simplify
the operative inequality and prove the statement for the case γ = 0.

Reduction to the Case γ = 0

For all γ̄ small enough, the function

g(y,γ)≡max
k/∈J

|aT
k b|

‖ak‖− γ|aT
k y|
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is a continuous function on the compact domain B× [0, γ̄]. Likewise, for any γ̄ > 0
the function

h(y,γ)≡ |aT
J b|

‖aJ‖+ γ|aT
J y|

is continuous. By continuity, the existence of γ̄ > 0 such that (5.29) holds for all
γ ∈ [0, γ̄] and y ∈ B is then equivalent to

g(y,0) = max
k/∈J

|aT
k b|
‖ak‖ <

|aT
J b|
‖aJ‖ = h(y,0). (5.30)

We therefore limit our attention to (5.30).

Reformulation of (5.28)

Starting with (5.28), we have

‖x∗‖0 = |J| <
1
2

(
1

μ(A)
+ 1

)

⇐⇒
μ(A)|J| <

1
2

(1 + μ(A))

⇐⇒
|x∗J |‖aJ‖|J|μ(A) <

1
2
|x∗J |‖aJ‖(1 + μ(A))

⇐⇒
|x∗J |‖aJ‖|J|μ(A) < |x∗J |‖aJ‖(1 + μ(A)(1−|J|)). (5.31)

Here, we have denoted the cardinality of J by |J|.

Upper and Lower Bounds

It remains to show that the left hand side of (5.31) is an upper bound for the left
hand side of (5.30) and, similarly, that the right hand side of (5.31) is a lower bound
for the right hand side of (5.30).

Substituting Ax∗ for b in (5.30) yields the equivalent statement

|∑i∈J
x∗i aT

k ai|
‖ak‖ <

|∑i∈J
x∗i aT

J ai|
‖aJ‖ for all k /∈ J. (5.32)
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For the lower bound, we have

|∑i∈J
x∗i aT

J ai|
‖aJ‖ ≥ |x∗J |‖aJ‖−

∑

i∈J\{J}

|x∗i ||aT
J ai|

‖aJ‖

≥ |x∗J |‖aJ‖−
∑

i∈J\{J}
|x∗i |‖ai‖μ(A)

≥ |x∗J |‖aJ‖(1− (|J|−1)μ(A)).

In summary

|x∗J |‖aJ‖(1 +(1−|J|)μ(A))≤ |
∑

i∈J
x∗i aT

J ai|
‖aJ‖ . (5.33)

For the upper bound, we have

|∑i∈J
x∗i aT

k ai|
‖ak‖ ≤

∑

i∈J

|x∗i | |aT
k ai|

‖ak‖

≤
∑

i∈J

|x∗i | ‖ai‖μ(A)

≤ |x∗J | ‖aJ‖|J|μ(A)

or

|∑i∈J
x∗i aT

k ai|
‖ak‖ ≤ |x∗J | ‖aJ‖|J|μ(A). (5.34)

Inequality (5.31) together with (5.32), (5.33) and (5.34) yield (5.30). By the conti-
nuity argument at the beginning of the proof, we have thus shown that (5.28) implies
(5.29) as claimed. �


The next lemma provides a sufficient condition for monotonicity of the cardinal-
ity of the set of active indices from one iteration of Algorithm 5.4. This is an impor-
tant feature for the finite termination of Algorithm 5.4 proved in Theorem 5.12.

Lemma 5.11 (Step length). For a given L = (L1,L2, . . . ,Ln) and the correspond-
ing sets RL and C ≡ {y ∈ R

m | ATy ∈ RL}, let the point ȳ ∈ C satisfy PNC(ȳ)b ∈
ri(NC(ȳ)). For this point define d̄ ≡ b−PNC(ȳ)b and the index sets J = { j | aT

j ȳ = L j}

J+ ≡
{

j | aT
j d̄ > 0

}
, J− ≡

{
j | aT

j d̄ < 0
}

.

Then (J+∪J−)∩ J = /0 and for the step length given by (5.27) the set of active
indices set is increasing, that is, J⊂ J

′ = { j | aT
j (ȳ+ λ̄ d̄) = Lj}.

In the special case that ȳ = 0, then the step length λ̄ is given by

λ̄ ≡min
j/∈J

{
Lj

|aT
j d̄|

}

. (5.35)
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Proof. By Proposition 5.5 and Remark 5.6, if PNC(ȳ)b ∈ ri(NC(ȳ)) then d̄ is
orthogonal to the columns of A corresponding to the set of active indices J.
Thus (J+∪J−) ∩ J = /0 as claimed. It follows immediately from (5.27) that
J ⊂ J

′ = { j | aT
j (ȳ + λ̄ d̄) = L j} since λ̄ is computed from the elements belonging

to J+∪J−, and, again by Proposition 5.5, the active constraints corresponding to J

remain unchanged in the direction d̄.
When ȳ = 0, the step length given by (5.27) simplifies to

λ̄ = min
j∈J̄+∪J̄−

{
Lj

|aT
j d̄|

}

> 0. (5.36)

Hence, (5.36) is equivalent to (5.35). This completes the proof. �

We are now ready to state and prove the main result of this section, the con-

vergence of Algorithm 5.4 for a particular choice of initial weights L0
j = ‖a j‖ for

j = 1,2, . . . ,n. Theorem 5.12 says that the algorithm finds a point y∗ and a weight L∗
for which 0∈ ∂

(
ιRL∗ (A

Ty∗)− (y∗)Tb
)

exactly (tolerance τ = 0), as opposed to find-
ing a point where the chosen subgradient is smaller than some tolerance. Since the
problem is convex, this is sufficient for optimality. Of course, this is only possible
with exact arithmetic.

Theorem 5.12 (Exact recovery of sufficiently sparse solutions). Let A ∈ R
m×n

(m < n) be full rank and denote the jth column of A by a j. Initialize Algorithm 5.4
with initial guess y0 and weight L0 such that y0

j = 0 and L0
j = ‖a j‖ for j = 1,2, . . . ,n.

If an element x∗ ∈ R
n with Ax∗ = b satisfies (5.28), then with tolerance τ = 0,

Algorithm 5.4 converges in finitely many steps to a point y∗ and a weight L∗ where,

argmin{‖Aw−b‖2 | w ∈ NRL∗ (y
∗)}= x∗,

the unique sparsest solution to Ax = b.

Proof. The proof is by induction and follows a pattern similar to the convergence
proof of the orthogonal matching pursuit algorithm [4, Theorem 6], though the de-
tails are more technical. (Indeed, we show in Sect. 5.5 that this is no coincidence.)
To facilitate the proof, we will in fact prove convergence of a slightly more general
procedure than Algorithm 5.4. The difference is in the initialization. Rather than
initializing y0 = 0, as any practical method would do, we will choose an arbitrary
y0 = γ0y for any fixed vector y with γ0 ≥ 0 small enough. This allows us to establish
the pattern for later iterations at the very beginning.

Let C0 ≡ {y ∈ R
m | ATy ∈ RL0}. The open unit ball lies in the (relative) interior

of C0 since, for any y with ‖y‖< 1, we have |(ATy) j| ≤ ‖a j‖‖y‖ ≤ ‖a j‖ = L0
j with

the last inequality strict if a j �= 0. (Without loss of generality, we can assume that
A has no zero columns.) Then NC0(y0) = {0}, so that PN

C0(y0)b = 0 and d0 = b is

in fact a direction of (subgradient) descent according to Proposition 5.5 for any y0

small enough.
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Identifying the Active Constraints

Computing the step length, by (5.27) we have

λ0 ≡min

{

min
j∈J

0
+

{
‖a j‖− γ0aT

j y

aT
j b

}

, min
j∈J

0−

{
−‖a j‖− γ0aT

j y

aT
j b

}}

> 0, (5.37)

where, recall, γ 0y = y0, and

J
0
+ = { j | aT

j b > 0} and J
0
− = { j | aT

j b < 0}.

Let j0 be the index of a minimum element of the set above. We show that, for any
choice of minimum element (in the case that there is more than one) j0 ∈ J

∗ ≡
{ j | x∗j �= 0}. In other words, we show that

|aT
k y0 + λ0aT

k b|< ‖ak‖ for all k /∈ J
∗. (5.38)

By the triangle inequality, (5.38) holds if

|aT
k y0|+ |λ0aT

k b|< ‖ak‖ for all k /∈ J
∗. (5.39)

Expanding λ0 and rearranging terms in (5.39) yields, for γ0 small enough,

|aT
k b|

‖ak‖− γ0|aT
k y| <

1
λ0

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|aT
j0

b|
∣
∣
∣‖a j0‖−γ0aT

j0
y
∣
∣
∣
, if j0 ∈ J

0
+

|aT
j0

b|
∣∣
∣−‖a j0

‖−γ0aT
j0

y
∣∣
∣
, if j0 ∈ J

0−

for all k /∈ J
∗. (5.40)

Let J ∈ J
∗ be the index of an element of x∗ satisfying

|x∗J |‖aJ‖ ≥ |x∗j |‖a j‖ for all j = 1,2, . . . ,n.

By definition of λ0,

|aT
J b|

‖aJ‖+ γ0|aT
J y| ≤

⎧
⎪⎪⎨

⎪⎪⎩

|aT
J b|

|‖aJ‖−γ0aT
J y| , if J ∈ J

0
+

|aT
J b|

|−‖aJ‖−γ0aT
J y| , if J ∈ J

0−

⎫
⎪⎪⎬

⎪⎪⎭
≤ 1

λ0
.

By Lemma 5.10, the sparsity condition (5.28) implies (5.29) which immediately
yields (5.40), and hence (5.38), for γ0 small enough.
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Letting y′ = γ0y + λ0b, we conclude that, as (5.28) holds, then for γ0 small
enough (as it certainly would be for the initial guess of zero)

J
1 ≡ { j | |aT

j y′|= ‖a j‖= L0
j}∩J

∗ �= /0,

where J
ν is defined by (5.20).

The question remains as to how small γ0 need be. For this we refer to the index
set I

0(γ) defined by (5.24) with L−1 ≡ L0. Note that this is just the set of indices
of active faces in J

0
+ ∪ J

0
+ corresponding to the exact line search step length λ0

computed by (5.37). Viewed as a function, λ 0 is the minimum of a finite collection
of affine functions of γ0 and is thus a continuous function of γ0. Moreover, the set
of indices corresponding to the affine functions at which the minimum is attained,
I(γ0), satisfies I(γ0)⊂ I(0) on a neighborhood of 0. In other words, the index j0 of
the minimum element at which the exact step length λ0 is attained belongs to I

0(0)
for all γ0 small enough. This yields an implementable strategy for determining the
proper scaling in subsequent iterations by checking the coincidence of the set of
active indices I

ν(γ) with the set of faces reached from the origin, I
ν(0).

Subgradient Selection

There always exists γ ′ ≥ 0 with y′′ = γ ′y′ such that PNC(L0,J1,γ′)(y
′′)b ∈ ri(NC(L0 ,J1,γ ′)

(y′′)) since for γ ′ = 0 the normal cone to C(L0,J1,0) at y′′ = 0 defined by (5.22) is
the subspace

NC(L0,J1,0)(0) =

{

Aw

∣
∣
∣∣
∣

{
wj ∈ R for j ∈ J

1

wj = 0 for j /∈ J
1

}

.

This follows from the fact that the only active faces of the polyhedron C(L0,J1,0)
at the origin are the ones corresponding to the point [0] (the degenerated inter-
val). Thus, at least for γ ′ = 0, the projection of b onto the subspace spanned by
the columns of A corresponding to J

1 is equivalent to PNC(L0,J1,0)(0)b. By Proposi-

tion 5.5, then, for γ ′ small enough (possibly zero) the direction of descent d1 ≡
b−PNC(L0,J1,γ′)(y

′′)b is orthogonal to the columns of A corresponding to the index

set J
1.

Rescaling

For the choice of γ ′ above, we have
(
J

1
+∪J

1−
)∩J

1 = /0, where

J
1
+ ≡

{
j | aT

j d1 > 0
}

, J
1
− ≡

{
j | aT

j d1 < 0
}

.
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There are two cases to consider: γ ′ = 0 and γ ′ > 0. If γ ′ = 0, then γ1 = 0 and by
Lemma 5.11

I
1(0) = argmin

j/∈J1
0

{
L0

j

|aT
j d1|

}

,

so that

L1
j =

{
0 for all j ∈ I

1(0)

L0
j else

and y1 = 0.
If, on the other hand, γ ′ > 0, the previous argument shows that there exists at

least some γ1 ∈ [0,γ ′], such that I
1(γ1)⊂ I

1(0), which is sufficient for our purposes.
With γ1 in hand, we set the weights

L1
j =

{
γ1L0

j for all j ∈ I
1(γ1)

L0
j else.

and update the iterate y1 = γ1y′ as prescribed.
Note that y1 is feasible and the set of active faces J

1 is unchanged since aT
j y1 =

aT
j γ1y′ with aT

j γ1y′ = γ1L0
j = L1

j for all j ∈ J
1, and aT

j γ1y′ < aT
j y′ < L1

j otherwise.

Induction. Proceeding now by induction, we suppose for ν ≥ 0 that aT
j yν = Lν

j for

all j /∈ J
ν ⊂ J

∗ and that |aT
j yν | < Lν

j = ‖a j‖ for all j /∈ J
ν , where ν ≤ |Jν | ≤ |J∗|.

We show that there are only two possibilities for the next iteration: either dν+1 = 0,
in which case J

ν+1 = J
∗ and wν+1 = x∗; or dν+1 �= 0, in which case J

ν+1 ⊂ J
∗

with |Jν+1| < |Jν+2| ≤ |J∗| and |aT
j yν+1| = Lν+1

j for j ∈ J
ν+2 and |aT

j yν | < Lν+1
j

for j /∈ J
ν+2.

In either case, in a somewhat awkward consequence of our indexing, note that
for γν satisfying (5.25) and the induction hypothesis we have that J

ν+1 ⊂ J
∗. Our

task is to show that J
ν+2 ⊂ J

∗.

Case 1. dν+1 = 0. In this case, we have

b = PNC(Lν ,Jν+1,γ′)(y
′′)b ∈ ri(NC(Lν ,Jν+1,γ ′)(y

′′))

for y′′ = γ ′y′ with y′ = yν + λ νdν and, by assumption (5.28),

J
ν+1 = { j | |aT

j (y
ν +λ νdν)|= Lν

j } ⊂ J
∗.

Also note that J
ν+1
+ = /0, J

ν+1
− = /0 because dν+1 = 0 and hence I

ν+1(γ) = /0 for
all γ ≥ 0. So without any calculation one can choose γν+1 = γ ′ and determine Lν+1

according to (5.26) and yν+1 = γν+1y′. Define C∗ ≡ {y | ATy∈ RLν+1}. Then dν+1 =
0 ∈ ∂

(
ιC∗(ATyν+1)−bTyν+1 + ιRn

+
(Lν+1)

)
and yν+1 for Lν+1 defined by (5.26) is
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a fixed point of the iteration. By the definition of the subdifferential (5.4), yν+1 is an
optimal solution to (5.14). The corresponding subgradient

wν+1 ≡ argmin
{
‖Aw−b‖2 | w ∈ NRLν+1 (y

ν+1)
}

satisfies Awν+1 = b and is supported on J
ν+1 ⊂ J

∗. Lemma 5.9 shows that x∗ is the
unique sparsest solution to Ax = b. Thus, J

ν+1 = J
∗ and wν+1 = x∗ as claimed.

Case 2. dν+1 �= 0. In this case b /∈ NC(Lν ,Jν+1,γ ′)(y
′′), and it must be that |Jν+1| <

|J∗|. By the induction hypothesis J
ν+1 ⊂ J

∗. By the choice of γ ′ we have

PNC(Lν ,Jν+1,γ′)(y
′′)b ∈ ri(NC(Lν ,Jν+1,γ ′)(y

′′))

and thus by Lemma 5.11
(
J

ν+1
+ ∪J

ν+1
−
)∩J

ν+1 = /0 and the active set is monotoni-
cally increasing, so we must show that J

ν+2 ⊂ J
∗.

We continue to the rescaling step to find γν+1 satisfying (5.25). Since by con-
struction dν+1 is orthogonal to the columns a j with j ∈ J

ν+1, we can deflate the
matrix A to contain only those columns with indices not in J

ν+1. The weights
corresponding to the remaining indices, denoted L̄ν+1, are unchanged from the
initialization, that is, Lν

j = ‖a j‖ for j /∈ J
ν+1 and so the elements of L̄ν+1 are

just the norms of the remaining columns of the deflated matrix Aν+1. Repeating
the argument for the first iteration with b replaced by dν+1, condition (5.28) with
γν+1 satisfying (5.25) guarantees that |yν+1 +λν+1dν+1|= ‖a j‖= L̄ν+1

j for some j

corresponding to an element of J
∗ \ J

ν+1, while |yν+1 + λν+1dν+1| < ‖a j‖ = Lν
j

for j corresponding to the complement of J
∗. (Note that because of the defla-

tion technique, the correspondence between these indices is not direct.) Defining
y′ = yν+1 +λν+1dν+1

J
ν+2 ≡ { j | |aT

j y′|= Lν+1}, by orthogonality and rescaling of
the previous weights we have that J

ν+2 ⊂ J
∗ and |Jν+1|< |Jν+2| ≤ |J|, as claimed.

Since the cardinality of the active set increases strictly monotonically with each
iteration, the algorithm is finitely terminating as asserted. �


The next corollary is an immediate consequence of Theorem 5.12. We will show
in the next section that the corollary is actually a statement of finite termination of
the orthogonal matching pursuit algorithm [4, Theorem 6].

Corollary 5.13 (Greedy rescaling). Let A∈R
m×n (m < n) be full rank and denote

the jth column of A by a j. Initialize Algorithm 5.4 with initial guess y0
j = 0 and

L0
j = ‖a j‖ for j = 1,2, . . . ,n, and at the rescaling step choose Lν+1

j = γν+1 = 0 for

all j ∈ J
ν+1.

If a point x∗ solves Ax = b and satisfies (5.28), then with tolerance τ = 0, Algo-
rithm 5.4 converges in finitely many steps to y∗ = 0 with the weight L∗ where,

argmin{‖Aw−b‖2 | w ∈ NRL∗ (0)}= x∗,

the unique sparsest solution to Ax = b.
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Remark 5.14. We have called the rescaling strategy of Corollary 5.13 greedy to
conform with precedent, however, in light of the variational derivation that we have
developed here, we would prefer to use the descriptor dogmatic. To see why we pre-
fer this, note that when the scaling of the active indices is set to zero, these elements
are forever “committed” to the active set, even if in later iterations it might be deter-
mined that this was an error for some elements. In our algorithm, the detection of a
possible error would occur in the determination of the preliminary scaling stage. If
PNC(Lν ,Jν+1,γ′)(y

′′)b∈ ri(NC(Lν ,Jν+1,γ ′)(y
′′)) only for γ ′ = 0 this is an indication that the

direction of descent will cause a sign change in one of the active elements.
If the scaling is bounded away from 0, then the orthogonality of the descent

directions with the active columns of A, see Proposition 5.5, is no longer guaranteed
and the strict monotonicity of the cardinality of the active set Lemma 5.11 is also
lost. This reflects the fact that, in this case, the algorithm can “change its mind”
about the active set, that is, it has recourse. The more general Algorithm 5.4 is, in
fact, no less dogmatic than the greedy variant since we enforce orthogonality of
the descent direction with the active columns of A. It can be modified to include
recourse by simply not enforcing orthogonality of the descent direction with the
active constraints. The analysis of this implementation, however, is beyond the scope
of this work.

5.5 Greedy Algorithms

As promised above, we now show that the greedy rescaling of Algorithm 5.4 spec-
ified in Corollary 5.13, is equivalent to a well-known greedy algorithm (see [4]
and references therein). The prototype greedy algorithm is formulated in [4] as
follows:

Algorithm 5.15 (Orthogonal Matching Pursuit). Input the matrix A, the vector b
and a solution tolerance τ > 0.

Initialization: Let ν = 0, y0 = 0, r0 = b, and the support set J
0 = /0.

Main iteration: For a given tolerance τ > 0 do

• (Sweep.) For j = 1,2, . . . ,n compute the errors ι( j) = minz j ‖a jz j − rν−1‖2,
where a j denotes the jth column of A.

• (Update support.) Compute Jν ≡ argmin{ι( j) | j /∈ J
ν−1} and update J

ν ≡
J

ν−1∪{Jν}.
• (Compute provisional solution and residual.) Compute

xν ≡ argmin{‖Ax−b‖2 | support(x) = J
ν} and rν ≡ b−Axν . (5.41)

• (Increment or stop.) If ‖rν‖< τ , stop; otherwise set ν = ν + 1 and repeat.

Note that the calculation of the provisional solution (5.41) is almost the same
as the calculation of the normal cone projection in Lemma 5.3, the only difference
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being that xν in (5.41) is the projection onto the subspace corresponding to the index
set J

ν while the subgradient wν in Lemma 5.3 is the projection onto the associated
normal cone mapping.

Lemma 5.16 (Provisional solution/subgradient equivalence). Let J̄ ⊂ J, where
J ≡ { j | x∗j �= 0} for x∗ a solution to (5.1) with the counting objective ϕ(x) = ‖x‖0.

Let L = (L1,L2, . . . ,Ln) and choose any ȳ ∈ R
m such that |aT

j ȳ| ≤ Lj with equality
holding only for j ∈ J̄, and such that w̄ j �= 0 for any j ∈ J̄ where w̄ = argmin{‖Aw−
b‖2

2 | w ∈ NRL(A
Tȳ)}. Then w̄ = x̄≡ argmin{‖Ax−b‖2 | x j = 0 ∀ j /∈ J̄}.

Proof. If w̄ j �= 0 for all j ∈ J̄ then the minimizer of ‖Aw− b‖2 is in the relative
interior to NRL(A

Tȳ), an orthant of the subspace containing the support of x̄. Hence,
minimizers of ‖Aw− b‖2 over the orthant and the entire subspace are equivalent,
that is w̄ = x̄. �


Less obvious is the fact that the active index selection in Algorithm 5.15 is equiv-
alent to an exact line search with a dynamically reweighted �1 norm.

Lemma 5.17 (Step length/active index selection). Define J̄ ⊂ {1,2, . . . ,n} and
L̄ = (L̄1, L̄2, . . . , L̄n) with

L̄ j ≡
{
‖a j‖ for j /∈ J̄

0 for j ∈ J̄.

and the sets RL̄ and C̄≡{y∈R
m | ATy∈ RL̄} accordingly. Let d̄ = b−PNC̄(0)b. Then

J̄ ≡ argmin
j/∈J̄

{
min

z j
‖a jz j− d̄‖2

}
(5.42)

is the index set corresponding to the step length λ̄ given by (5.35), that is,

min
k/∈J̄

{ ‖ak‖
|aT

k d̄|
}

=
‖a j‖
|aT

j d̄| ∀ j ∈ J̄.

Proof. We work forward from the definition of J̄. Substituting

aT
j d̄

‖a j‖2 = min
z j
‖a jz j− d̄‖2

into (5.42) yields

J̄ = argmin
j/∈J̄

⎧
⎨

⎩

∥
∥
∥∥
∥

aT
j d̄

‖a j‖2 a j− d̄

∥
∥
∥∥
∥

2
⎫
⎬

⎭

= argmin
j/∈J̄

{
|aT

j d̄|2
‖a j‖2

(
‖a j‖2‖d̄‖2

|aT
j d̄|2 −1

)}
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= argmin
j/∈J̄

{

‖d̄‖2− |a
T
j d̄|2
‖a j‖2

}

= argmax
j/∈J̄

{
|aT

j d̄|2
‖a j‖2

}

= argmin
j/∈J̄

{
‖a j‖
|aT

j d̄|

}

.

This completes the proof. �

We conclude that orthogonal matching pursuit is equivalent to the dynamically

reweighted steepest subgradient descent method with exact line search.

Proposition 5.18. Algorithm 5.15 is equivalent to Algorithm 5.4 initialized with
y0 = 0 and L0 = (‖a1‖,‖a2‖, . . . ,‖an‖), and with the rescaling γν = 0 for all ν .

Proof. This follows immediately from Lemmas 5.16 and 5.17. �


5.6 Numerical Examples

The equivalence of Algorithm 5.4 with γν = 0 for all ν to the orthogonal matching
pursuit Algorithm 5.15 makes the wealth of numerical experience with orthogonal
matching pursuit immediately available to our more general algorithm. We only
demonstrate in this section that the greedy version of the algorithm and the more
general version behave similarly on sufficiently sparse problems.

Remark 5.19. Before presenting our numerical examples, a few comments about
practical implementations are in order. As pointed out earlier, in the absence of exact
arithmetic, practical implementations cannot directly apply the most general form of
Algorithm 5.4. However, even without exact arithmetic, we can determine precisely
the operative quantities as long as the numerical error is below the threshold needed
to discriminate between certain discrete cases.

For example, suppose we have 14 digits of accuracy and |aT
j yν | is to within 10−15

of Lν
j : would it be equal to Lν

j if we had exact arithmetic? If Lν
j = 0, then it must

be that aT
j yν = 0 with exact arithmetic since it was proved in Propositions 5.5 and

5.7 that the iterates are generated from feasible directions with step length chosen
so that the iterates are always feasible. If the dynamic reweighting were chosen so
that Lν

j > 0, then it is impossible to determine whether aT
j yν should equal, say,−Lν

j ,

unless it is known that aT
j dν = 0, in which case it should hold that aT

j yν−1 = aT
j yν ,

where it has been determined from previous iterations that aT
j yν−1 =−Lν−1

j . Again,
by Proposition 5.5, if wν

j �= 0 for j in the active set J
ν and

wν = argmin{‖Aw−b‖2 | w ∈ NRLν (ATyν )}
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then aT
j dν = 0. Let δ be the numerical accuracy of the computation. If |wν

j | > δ ,

then we are certain that wν
j �= 0, and thus aT

j dν = 0 so that aT
j yν = aT

j yν−1 = Lν−1
j .

If instead |wν
j | ≤ δ , then we cannot be sure that |wν

j | �= 0 and consequently we cannot
be certain that dν is orthogonal to the active columns of A.

This numerical uncertainty is related to the ill-posedness of the problem Ax = b:
if the sparsest signal x∗ has elements whose magnitude is below the numerical noise
level, then the algorithm must be regularized. We will have more to say about this
in the conclusion. For our numerical study we only take examples for which the
signal is above the numerical noise level, and so our exact arithmetic algorithm is
still implementable.

We turn to our numerical illustration:

5.6.1 Our “Toy” Problem

For our numerical example, we construct a real signal of length 1282 (n = 2×
16,384 to account for real and imaginary parts) with 70 nonzero components
(|J∗| = 70), chosen at random, and randomly sample the discrete Fourier trans-
form of this signal at a rate of about 1/8. Since the true signal is real-valued, our
effective sampling rate is about 1/4 due to symmetry in the Fourier coefficients
(m = 2× 3,588 for the real and imaginary parts). Since we are dealing with the
Fourier transform, the scaling of columns of

A ∈ R
(2∗16,384)×(2∗3,588)

is just ‖a j‖= 1/
√

2 ∗ 3,588.

5.6.2 Algorithm Illustrations

We illustrate the theory with two different implementations of Algorithm 5.4, the
first with scaling parameter γν > 0 for each iteration ν (in fact, we need only take
γν = 1 to satisfy the requirements of the algorithm) and the second with γν = 0
for all iterations corresponding to the “greedy” implementation. The complexity of
the two implementations is identical. Both instances converge in 70 iterations and
require the same work to compute the subgradient.

Although the normal equations provide an explicit closed-form expression for
the calculation of the subgradient w in (5.18), this still involves the inversion of
a matrix, albeit small relative to the overall problem size. As we are interested in
applications for which the sparsity is on the order of 103–104 nonzero elements, in-
stead, we solve (5.18) iteratively using the Relaxed Average Alternating Reflection
(RAAR) algorithm [10, 11] for finding best approximation pairs between the sets
NRL(A

Ty′′) and B≡ {x | Ax = b}. (It is important to note that we can only find best
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approximation pairs since for all but the last iteration NRL(A
Ty′′)∩B = /0.) Ordinary

alternating projections would have also sufficed to solve this subproblem, however,
we found that the RAAR algorithm required, on average, 33% fewer iterations with
the proper choice of relaxation parameter.

Both of our implementations of Algorithm 5.4 require exactly the same number
of iterations of the RAAR algorithm to compute (5.18) since they both solve the
exact same subproblem at each iteration. The subproblems require, on average, 82.6
iterations to get to within the numerical tolerance (10−12).

5.6.3 Complexity

Rather than explicitly forming the partial Fourier matrix A we take advantage of the
fast Fourier transform. The FFT is the most complex computation in the algorithm.
The RAAR algorithm requires 2 FFT computations per iteration on a complex-
valued vector of length 1282 and the main loop of Algorithm 5.4 requires 3 FFT
computations of the same complexity. For the example reported here, over all the
iterations, the algorithm required in total 821,871 FFT computations on complex-
valued vectors of length 1282, or on the order of 1011 floating point operations. On
a 2.2 GHz Intel Core 2 Duo processor with 2GB 667 MHz memory this takes 32 s
of CPU time.

If instead of using the FFT, we had used the normal equations to explicitly com-
pute the subgradients we would have needed only 211 FFT computations, and the
matrix inversions required in the normal equations would have required, at the worst,
inversion of a 70×70 real-valued matrix. The computational complexity of this ap-
proach is estimated to be on the order of 107 floating point operations. For problems
with sparsity <700, elements the normal equation approach will probably be faster;
thereafter iterative methods, such as RAAR, using the FFT become competitive.

Figure 5.1a shows the error between the reconstructed signal and the true signal.
The reconstruction for both implementations are identical. Figure 5.1b shows the
weights corresponding to the implementation with scaling γν = 0 for all ν . The
weights for the implementation with γν = 1 for all ν are not shown since these are
all identical and unchanged from the initialization. Note that γν = 1 for all ν is
then the behavior of the algorithm for solving the fixed, reweighted �1 optimization
problem for this problem. These will not, in general, be the scalings chosen by the
algorithm on different problems. Finally, in Fig. 5.1c we give a comparison of the
step lengths at each iteration of the two implementations.

5.7 Comments and Conclusion

Our goals herein were to apply convex analysis to the nonconvex problem of sparse
signal recovery and to take notions that have evolved from different approaches and
incorporate these advances into convex analysis and algorithms. With this work, we
have made a first step in this direction.
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implementations at each iteration
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We proposed convex dual-space relaxations of the original nonconvex problem
and have analyzed one extreme of possible relaxations. We have proved conver-
gence in finitely many steps of a nonsmooth steepest descent method with exact line
search and dynamically reweighted �1 norms when applied to problems satisfying
the mutual coherence condition.

An instance of our algorithm is shown to be equivalent to orthogonal matching
pursuit, which has been well-studied in the literature, though we are unaware of any
identification of this method to dual-space linesearch methods as presented here.
This explicit connection of orthogonal matching pursuit to reweighted �1 minimiza-
tion in the dual opens the door to a greater synthesis of algorithms and a better
understanding of the behavior of these algorithms.

Indeed, the proof of the coincidence of the solution to the �1 minimization prob-
lem to the solution of the corresponding minimization of the counting metric ‖ · ‖0

is usually given indirectly. Here, under the assumption of mutual coherence and
certain interiority qualifications on the projection of the data onto the normal cone
associated with the active constraints, we have an explicit proof of the equivalence
of the solutions to the �1 and ‖ · ‖0 problems. An instance of this equivalence was
demonstrated in the numerical example.

Our numerical examples do not extend to circumstances not covered by the the-
ory developed here. There are two sources of failure of the algorithm, one due to
the sparsity conditions not being met, and the other due to numerical error. We
emphasized the importance of recognizing algorithms that implicitly rely on exact
arithmetic and how implementations can succeed or fail without it. We are unaware
of a numerical study that distinguishes between instances where the sparsity condi-
tions are not met and instances where the numerical tolerance is not precise enough
for a practical implementation. This is a topic worthy of greater attention than we
have space for here.

The next step in this research will be to investigate the other relaxations, ε > 0
of (5.8). For this instance the objective is smooth (infinitely differentiable) in
its domain RL, and the gradient can be written in closed-form. We conjecture
that the corresponding steepest descent, exact linesearch algorithm with dynamic
reweighting will behave much like an interior point algorithm since the effect of the
parameter ε is to keep the iterates on the interior of the feasible region.

Another direction that needs to be addressed is sparse approximate solutions to
the model Ax = b. This is more appropriate for applications where the image b is
corrupted by noise, or, as we have seen, numerical error. There has been a lot of
very good work in this direction by other researchers. Our approach is appropriate
for fast (finitely terminating), highly accurate exact solutions. It remains to be seen
whether this basic program extends to fast (polynomial time), reasonably accurate
approximate solutions.
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Chapter 6
The Douglas–Rachford Algorithm
in the Absence of Convexity

Jonathan M. Borwein and Brailey Sims

Abstract The Douglas–Rachford iteration scheme, introduced half a century ago
in connection with nonlinear heat flow problems, aims to find a point common to
two or more closed constraint sets. Convergence of the scheme is ensured when the
sets are convex subsets of a Hilbert space, however, despite the absence of satis-
factory theoretical justification, the scheme has been routinely used to successfully
solve a diversity of practical problems in which one or more of the constraints in-
volved is non-convex. As a first step toward addressing this deficiency, we provide
convergence results for a prototypical non-convex two-set scenario in which one of
the sets is the Euclidean sphere.

Keywords Non-convex feasibility problem · Fixed point theory · Dynamical
system · Iteration

AMS 2010 Subject Classification: 46B45, 47H10, 90C26

6.1 Introduction

In recent times variations of alternating projection algorithms have been applied
in Hilbert space to various important applied problems – from optical aberration
correction to three satisfiability, protein folding and construction of giant Sudoku
puzzles [8]. While the theory of such methods is well understood in the convex case
[3] and [4–6,11], there is little corresponding theory when some of the sets involved
are non-convex – and that is the case for the examples mentioned above [8, 9].

Our intention is to analyse the simplest non-convex prototype in Euclidean
space: that of finding a point on the intersection of a sphere and a line or more

J.M. Borwein (�)
CARMA, School of Mathematical and Physical Sciences, University of Newcastle,
NSW 2308, Australia
e-mail: jonathan.borwein@newcastle.edu.au

H.H. Bauschke et al. (eds.), Fixed-Point Algorithms for Inverse Problems in Science
and Engineering, Springer Optimization and Its Applications 49,
DOI 10.1007/978-1-4419-9569-8 6, c© Springer Science+Business Media, LLC 2011

93



94 J.M. Borwein and B. Sims

generally a proper affine subset. The sphere provides an accessible model of many
reconstruction problems in which the magnitude, but not the phase, of a signal is
measured.

6.2 Preliminaries

For any closed subset A of a Hilbert space (X ,〈·, ·〉), we say that a mapping PA :DA⊆
X −→ A is a closest point projection of DA onto A if A⊆ DA, P2

A = PA and

‖x−PA(x)‖= dist(x,A) := inf{‖x−a‖ : a ∈ A},

for all x ∈ DA.
For a given closest point projection, PA, onto A we take the reflection of x in A

(relative to PA) to be,

RA := 2PA− I.

In this note, we will focus on the cases when the subset A is a sphere, which with-
out loss of generality we take to be the unit sphere of the space; S := {x : ‖x‖= 1},
or a line L := {x = λa + αb : λ ∈ R}, where, without loss of generality, we take
‖a‖= ‖b‖= 1, a⊥ b and α > 0.

The closest point projection of x 	= 0 onto the unit sphere S is,

PS(x) :=
x
‖x‖

and so,

RS(x) =
(

2
‖x‖ −1

)
x.

Excluding x = 0 from the domain of PS, and hence also RS, avoids the problem of
non-unique closest points and hence the need to make a selection. The closest point
projection of x ∈ X onto L is the orthogonal projection,

PL(x) := 〈x, a〉a + αb

and so,

RL(x) = 2〈x, a〉a + 2αb − x.

Given two closed sets A and B together with closest point projections PA and
PB, starting from an arbitrary initial point x0 ∈ DA the Douglas–Rachford itera-
tion scheme (reflect-reflect-average), introduced in [7] for numerical solution of
partial differential equations, is a method for finding a point in the intersection of
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the two sets. That is, it aims to find a feasible point for the possibly non-convex
constraint x ∈ A∩B. Explicitly it is the iterative scheme,

xn+1 := TA,B(xn),

where TA,B is the operator TA,B := 1
2 (RBRA + I). This method also goes under many

other names, see [4].
When either of the sets is non-convex various compatibility restrictions between

the domains and ranges of the mappings involved are required to ensure all iterates
are defined. For instance, RA(DA)⊆ DB and 1

2 (RBRA + I)(DA)⊆ DA.
With our particular S and L we have for x 	= 0 that,

TS,L(x) =
(

1 − 1
‖x‖
)

x +
(

2
‖x‖ −1

)
〈x, a〉 a + αb.

Thus, if X is N-dimensional and (x(1), x(2), x(3), . . . ,x(N)) denotes the coordinates
of x relative to an orthonormal basis B whose first two elements are respectively a
and b we have,

TS,L(x) =
(

x(1)
ρ

,

(
1− 1

ρ

)
x(2)+α,

(
1− 1

ρ

)
x(3), . . . ,

(
1− 1

ρ

)
x(N)

)
,

where ρ := ‖x‖=
√

x(1)2 + · · ·+ x(N)2.
Let us note that the only fixed points of TS,L are±√1−α2a+αb , the two points

of intersection of S with L.
In this case the Douglas–Rachford scheme becomes,

xn+1(1) = xn(1)/ρn, (6.1)

xn+1(2) = α +(1−1/ρn )xn(2), and (6.2)

xn+1(k) = (1−1/ρn)xn(k), for k = 3, . . . , N, (6.3)

where ρn := ‖xn‖=
√

xn(1)2 + · · ·+ xn(N)2.
From this it is clear that if the initial point x0 lies in the hyperplane 〈x, a〉= 0; that

is x0(1) = 0, then all of the iterates remain in that hyperplane, which we will refer
to as a singular manifold for the problem. We will analyse this case in greater detail
in a subsequent section. Similarly, if the initial point lies in either of the two open
half-spaces 〈x, a〉 > 0 or 〈x, a〉 < 0; that is, x0(1) > 0 or x0(1) < 0 respectively,
then all subsequent iterates will remain in the same open half space. Further, by
symmetry, it suffices to only consider initial points lying in the positive open half-
space x0(1) > 0.

Figure 6.1 shows two steps of the underlying geometric construction: the smaller
(green) points are the intermediate reflections in the sphere. Most figures were
constructed in Cinderella, a software geometry package [www.cinderella.de].
A web applet version of the underlying Cinderella construction is available at
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Fig. 6.1 Two steps showing the construction

http://www.carma.newcastle.edu.au/∼jb616/reflection.html. Indeed, many of the
insights for the proofs below came from examining the constructions. The number
of iterations N, the height of the line (α), and the initial point are all dynamic –
changing one changes the entire visible trajectory.

Success of the Douglas–Rachford scheme relies on convergence of the (Picard)
iterates, xn = T n

A,B(x0), to a fixed point of the generally nonlinear operator TA,B in
A∩B, as n→ ∞. When both A and B are closed convex sets convergence of the
scheme (in the weak topology) from any initial point in X to some point in A∩B
was established by Lions and Mercier [11].

However, as noted, many practical situations yield feasibility problems in which
one or more of the constraint sets is non-convex. That the Douglas–Rachford scheme
works well in many of these situations has been observed and exploited for some
years, despite the absence of any really satisfactory theoretical underpinning.

Remark 6.1 (Divide-and-concur). If one wishes to find a point in the intersection

of M sets A1,A2, . . .Ak, . . . ,AM in X , we can instead consider the subset A :=
M∏

k=1

Ak

and the linear subset

B := {x = (x1,x2, . . . ,xM) : x1 = x2 = · · ·= xM}

of the Hilbert space product
M∏

k=1

X . Then we observe that

RA(x) =
M∏

k=1

RAk(xk),
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Fig. 6.2 Douglas–Rachford
for three spheres
in three-space

so that the reflections may be ‘divided’ up and

PB(x) =
(

x1 + x2 + · · ·+ xM

M
, . . . ,

x1 + x2 + · · ·+ xM

M

)
,

so that the projection and hence reflection on B are averaging (‘concurrences’);
thence comes the name. In this form the algorithm is particularly suited to
parallelization [12].

We can also compose more reflections in serial as illustrated for reflect-reflect-
reflect-average with spheres in Figure 6.2, where we observe iterates spiralling to a
feasible point.

Example 6.2 (Linear equations). For the hyperplane H := {x : 〈b,x〉 = α}, where
without loss of generality we take ‖b‖= 1, the projection is

x 
→ x +(α−〈b,x〉)b.

The consequent averaged-reflection version of the Douglas–Rachford recursion for
a point in the intersection of M distinct hyperplanes is:

x 
→ x +
2
M

M∑

k=1

(αk−〈bk,x〉)bk, (6.4)
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Fig. 6.3 Iterated reflection with a ray

while the corresponding-averaged projection algorithm is:

x 
→ x +
1
M

M∑

k=1

(αk−〈bk,x〉)bk (6.5)

In more general situations, the difference between projection and reflection algo-
rithms is even greater.

Remark 6.3 (The case of a half-line or segment). Note, even in two dimensions,
alternating projections, alternating reflections, project-project and average, and
reflect-reflect and average will all often converge to (locally nearest) infeasible
points even when A is simply the ray R := {(x,0) : x � −1/2} and B is the cir-
cle as before. They can also behave quite ‘chaotically’. (See Fig. 6.3 for a periodic
illustration in Cinderella and Fig. 6.4 for more complex behaviour.) So the affine
nature of the convex set seems quite important.

For any two closed sets A and B and feasible point p ∈ A∩B we say that the
Douglas–Rachford scheme is locally convergent at p if there is a neighbourhood,
Np of p such that starting from any point x0 in Np the iterates T n

A,B(x0) converge
to p. The set comprising all initial points x0 for which the iterates converge to p is
the basin of attraction of p.

As a first step toward an understanding of the Douglas–Rachford scheme in the
absence of convexity, we analyse its behaviour in the indicative situation when one
of the sets is the non-convex sphere S and the other is the affine line L. We begin by
establishing local convergence of the scheme when 0≤ α < 1.
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Fig. 6.4 More complex behaviour for a ray and circle

6.3 Local Convergence When 0≤α <1

In this section we show, at least when X is finite dimensional, that for 0 ≤ α < 1
local convergence at each of the feasible points is a consequence of the following
theorem from the stability theory of difference equations.

Theorem 6.4 (Perron [10], Corollary 4.7.2, page 104). If f : N×Rm −→ Rm

satisfies,

lim
x→0

‖ f (n,x)‖
‖x‖ = 0,

uniformly in n and M is a constant m×m matrix all of whose eigenvalues lie inside
the unit disk, then the zero solution (provided it is an isolated solution; that is, there
is a neighbourhood of 0 containing no other solution) of the difference equation,

xn+1 = Mxn + f (n,xn),
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is exponentially asymptotically stable; that is, there exists δ > 0, K > 0 and ζ ∈
(0,1) such that if ‖x0‖< δ then ‖xn‖ ≤ K‖x0‖ζ n.

To apply this in our context, we begin by noting that the operator T := TS,L is
differentiable at any non-zero point y with derivative the linear operator,

T ′y (x) =
〈(

2
‖y‖ −1

)
x−2

〈x,y〉
‖y‖3 y, a

〉
a +
(

1− 1
‖y‖
)

x +
〈x,y〉
‖y‖3 y.

By symmetry it suffices to consider local convergence at the unique fixed point of
TS,L lying in the positive open half-space 〈x, a〉> 0; namely, p :=

√
1−α2a + αb.

Observing that, p is an isolated fixed point of TS,L (see the discussion before (6.1))
and, using ‖p‖= 1 and 〈p,a〉=√1−α2, we obtain,

T ′p(x) =
〈

x, α2a−α
√

1−α2b
〉

a +
〈

x,α
√

1−α2a + α2b
〉

b,

which, relative to the basis B, corresponds to the n×n matrix,

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

α2 −α
√

1−α2 0 · · · 0
α
√

1−α2 α2 0 · · · 0
0 0 0 · · · 0
· · · ·
· · · ·
· · · ·
0 0 0 · · · 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

.

From this, we immediately deduce that the only points in the spectrum of T ′p are

the eigenvalues 0, and α2± iα
√

1−α2.
Introducing the change of variable ξ := x− p and defining f by,

f (ξ ) := TS,L(p + ξ ) − TS,L(p) − T ′p(ξ ),

we see that the Douglas–Rachford scheme becomes,

ξn+1 = TS,L(p + ξn)− p = TS,L(p + ξn)−TS,L(p) = T ′p(ξn)+ f (ξn).

Further, by the very definition of the derivative we have,

lim
ξ→0

‖ f (ξ )‖
‖ξ‖ = lim

ξ→0

∥
∥TS,L(p +ξ )−TS,L(p) − T ′p(ξ )

∥
∥

‖ξ‖ = 0.

Thus, all the conditions of Perron’s theorem are satisfied, provided T ′p has its spec-
trum contained in the open unit disk. But, this follows immediately since both
non-zero eigenvalues have modulus equal to α < 1, establishing that locally the
Douglas–Rachford scheme converges exponentially to ξ = 0; that is, to x = p. Thus,
we have proved,
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Fig. 6.5 Case with α = 0.95

Theorem 6.5. If 0 ≤ α < 1 then the Douglas–Rachford scheme is locally conver-
gent at each of the points ±√1−α2a + αb.

Remark 6.6 (Explaining the spiral). It is also worthy of note that the non-zero eigen-
values both have arguments whose cosines have absolute value α , so ‘spiraling’, as
illustrated in Fig. 6.5, should be less rapid the larger the value of α , an observation
born out by experiment. It should also be noted that when α = 1; that is, the line L
is tangential to the sphere S, Perron’s theorem fails to apply, as in this case T ′p has
eigenvalues lying on the unit circle. Indeed, the conclusion of Theorem 6.5 is false
as we will show in the following sections.

6.4 Convergence When α = 0

We show that starting from any initial point with x0(1) > 0 the Douglas–Rachford
scheme converges to the feasible point a = (1, 0, 0, · · · , 0), as illustrated in Fig. 6.6.
In this case the scheme (6.1)–(6.3) reduces to,

xn+1(1) = xn(1)/ρn, and

xn+1(k) = (1−1/ρn)xn(k), for k = 2, . . . , N,

with ρn = ‖xn‖=
√

xn(1)2 + · · ·+ xn(N)2 ≥ xn(1) > 0.
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Fig. 6.6 Case with α = 0

Proposition 6.7. If ρn > 1 then ρ2
n+1 < ρ2

n .

Proof. We may estimate as follows.

ρ2
n+1 =

xn(1)2

ρ2
n

+
(

1− 1
ρn

)2 N∑

k=2

xn(k)2

=
xn(1)2 + xn(2)2 + · · ·+ xn(N)2

ρ2
n

+
(

1− 2
ρn

) N∑

k=2

xn(k)2

= 1 +
(

1− 2
ρn

) N∑

k=2

xn(k)2

≤ 1 +
(

1− 2
ρn

+
1

ρ2
n

) N∑

k=2

xn(k)2

= 1 +
(

1− 1
ρn

)2 N∑

k=2

xn(k)2

≤ 1 +
(

1− 1
ρn

)2

ρ2
n

= 1 +(ρn−1)2

= ρ2
n + 2(1−ρn)

< ρ2
n , as ρn > 1.

�
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Corollary 6.8. If ρn > 1 for all n then ρn −→ 1.

Proof. By the above proposition, the ρn are decreasing and so converge to some
limit ρ ≥ 1. But then, taking limits in ρ2

n+1 ≤ ρ2
n + 2(1− ρn) leads to ρ ≤ 1, so

ρ = 1. �
Proposition 6.9. If ρn ≤ 1 then so too is ρn+1 ≤ 1.

Proof. From the first three lines in the proof of the above proposition, we have

ρ2
n+1 = 1 +

(
1− 2

ρn

) N∑

k=2

xn(k)2

≤ 1−
N∑

k=2

xn(k)2, provided ρn ≤ 1

≤ 1.

�
Theorem 6.10. If α = 0 and the initial point has x0(1) > 0 then the Douglas–
Rachford scheme converges to the feasible point (1, 0, 0, . . . , 0).

Proof. In case ρn > 1 for all n then, by the above corollary, ρn → 1, so by the
recurrence xn(k)→ 0 for k = 2, · · · , N and xn→ (1, 0, 0, . . . , 0).

On the other hand, if this is not the case then there is a smallest n0 with ρn0 ≤ 1
and then either ρn′ = 1 for some n′ ≥ n0, in which case we have xn′+1(k) = 0 for
k = 2, . . . , N, so xn′+1 = (1, 0, . . . , 0) and we have arrived at the feasible point after a
finite number of steps, or alternatively from the last proposition ρn < 1 for all n≥ n0.
Consequently, the sequence (xn(1))∞

n=n0
is strictly increasing (hence convergent to

some x(1)≤ 1) and so for n≥ n0 we have ρn ≥ xn(1)≥ xn0 > 0. But then, for each
integer k ≥ 2 and n≥ n0 we see from the recurrence that,

∣
∣
∣∣
xn+1(k)
xn+1(1)

∣
∣
∣∣ = (1−ρn)

∣
∣
∣∣
xn(k)
xn(1)

∣
∣
∣∣

≤ (1− xn0(1))
∣
∣
∣
∣
xn(k)
xn(1)

∣
∣
∣
∣ .

Hence,
xn(k)
xn(1)

converges to 0 and we conclude that xn −→ (1, 0, . . . , 0). �

6.5 The Tangential Case When α = 1

When α = 1 the only feasible point is b = (0, 1, 0, . . . , 0), however, we show that
starting from an initial point with x0(1) > 0 the Douglas–Rachford scheme con-
verges to a point ŷb := (0, ŷ, 0, . . . , 0) with ŷ > 1, whose projection onto either S or
L is the feasible point (Fig. 6.7). The following result will be needed.
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Fig. 6.7 Case with α = 1

Proposition 6.11. If ρn > 2 then ρn+1 ≤ ρn.

Proof. The proof is similar to that of Proposition 6.7. We may estimate as follows.

ρ2
n+1 =

xn(1)2

ρ2
n

+
((

1− 1
ρn

)
xn(2)+ 1

)2

+
(

1− 1
ρn

)2 N∑

k=3

xn(k)2

=
xn(1)2 + xn(2)2 + · · ·+ xn(N)2

ρ2
n

+
(

1− 2
ρn

) N∑

k=2

xn(k)2 + 2

(
1− 1

ρn

)
xn(2)+ 1

= 2 +
(

1− 2
ρn

) N∑

k=2

xn(k)2 + 2

(
1− 1

ρn

)
xn(2)

≤ 2 +
(

1− 2
ρn

)
ρ2

n + 2

(
1− 1

ρn

)
ρn, as ρn > 2

= ρ2
n .

�

To show the asserted behaviour, we begin by noting that from the recurrence,

xn+1(2) = xn(2) + 1− xn(2)
ρn
≥ xn(2), (6.6)
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since
xn(2)

ρn
≤ 1. Thus, the xn(2) are increasing and so either they converge to a

finite limit, ŷ̀ say, or they diverge to +∞.
In the first case, taking limits in the above equation (6.6) yields ŷ = limn xn(2) =

limn ρn ≥ 0 and so xn−→ (0, ŷ, 0, · · · , 0). To see that ŷ > 1 we argue as follows. We
have xn(1)→ 0. But (6.1) shows xn+1(1) = xn(1)/ρn so we must have limn ρn > 1.

To show that the second, divergent, case is impossible we appeal to Proposition
6.11. to deduce that if the xn(2) diverges to +∞, we must have for all sufficiently
large n that 2 < xn(2) ≤ ρn and so eventually the ρn are decreasing and hence con-
vergent to a finite limit which is necessarily greater than or equal to limsupn xn(2)
which cannot therefore be infinite; a contradiction.

Consequently, we have proved,

Theorem 6.12. When L is tangential to S at b (that is, when α = 1), starting from
any initial point with x0(1) 	= 0, the Douglas–Rachford scheme converges to a point
ŷb with ŷ > 1.

This is consistent with the behaviour in the convex case [4, 11].

6.6 Behaviour in the Infeasible Case When α > 1

Satisfyingly, when there are no feasible solutions, starting from any point off the
singular manifold, the Douglas–Rachford scheme diverges. More precisely,

Theorem 6.13. If there are no feasible solutions (that is, when α > 1), then starting
from any initial point with x0(1) 	= 0, we have that xn(2) and hence ρn diverge to
+∞ at a linear or faster rate in the sense that liminfn xn+1(2)− xn(2) � α−1.

Proof. From the recursion we have,

xn+1(2)− xn(2) = α− xn(2)
ρn

> α−1, as xn(2) < ρn

> 0,

from which the result follows. �
It is also worth noting that, as a consequence of the above theorem and the

recurrence, xn(1)→ 0 and so asymptotically the iterates approach the hyperplane
〈x, a〉= 0.

6.7 Behaviour on the Singular Manifold, 〈x, a〉= 0

Here, we consider the iterates of a non-zero initial point with x0(1) = 0 and so
xn(1) = 0 for all n.
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We again distinguish the cases; α = 0, 0 < α < 1, α = 1. The case α > 1 having
already been dealt with in the previous section.

When α = 0 it is readily seen that for any non-zero point x in the singular

manifold we have TS,L(x) =
(

1− 1
‖x‖
)

x. If ‖x‖ = 1 then the first iteration yields

x1 = 0 	∈ DTS,L , so subsequent iterates are not defined. At points with ‖x‖ < 1
we see that TS,L has period two (that is, T 2

S,L(x) = x), while for ‖x‖ > 1 we have

T 2
S,L(x) =

(
1− 2

‖x‖
)

x, so again the scheme breaks down as above, but after two

iterations if ‖x‖= 2.
We observe that the iterates of any non-zero point on the line {x : x = λ b, λ ∈R}

remain on this line and that when α = 1 (that is, L is tangential to S at b) all points
on the open half line corresponding to λ > 0 remain fixed under TS,L.

In the other cases the scheme exhibits periodic behaviour when rational commen-
surability is present, while in the absence of such commensurability the behaviour
may be quite chaotic. To make this precise we need to consider interval-valued
mappings to deal with the jump at the origin. Luckily, the work in [1, 2] shows that
various interval mapping analogues of Sharkovskii’s theorem –‘period three implies
chaos’ –are applicable. The interval mapping is needed to deal with the multivalued
nature of the projection PS at zero.

Remark 6.14 (Hilbert space analogues). It is not essential that X be finite dimen-
sional for any of the arguments in Sects. 6.3–6.5, since the iterates are tracked by
a finite number of coordinates. However, since convergence (to zero) in the other
dimensions is only coordinate wise, we can in general only guarantee weak conver-
gence of the iterates.

6.8 Some Final Remarks

A wealth of experimental evidence, using both Maple and the dynamic geom-
etry package Cinderella, leads to the conclusion that the basin of attraction for
p =
√

1−α2a + hb is the open half space {x : 〈x, a〉 > 0} – the largest region
possible. See also http://www.carma.newcastle.edu.au/∼jb616/expansion.html.

Moreover, we found that for stable computation in Cinderella it was necessary
to have access to precision beyond Cinderella’s built-in double precision. This was
achieved by taking input directly from Maple. We illustrate in Fig. 6.8 which show
various spurious red points on the left and accurate data on the right. The figures
show the effect of roughly ten steps of the Douglas–Rachford iteration for 400 dif-
ferent starting points – where the points are coloured by their original distance from
the vertical axis with red closest.

However, we are as yet unable to furnish a proof of this, leaving open the follow-
ing conjecture:

Conjecture 6.1. In the simple example of a sphere and a line with two intersection
points, the basins of attraction are the two open half-spaces forming the complement
of the singular manifold.
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Fig. 6.8 Multiple iterations in Cinderella

Remark 6.15 (The case of a sphere and a proper affine subset of X). If we replace
the line L by a proper affine subset, say A := {λ1a1 + λ2a2 + · · ·λKaK + αb :
λ1, · · · ,λK ∈ R}, where 0 ≤ α , 1 < K < N, and a1, a2, · · · , aK , b are mutually or-
thogonal norm one elements, then when α < 1 the feasible points are no longer
isolated, so Theorem 6.4 no longer applies, indeed local convergence in the sense
described above is impossible. Nonetheless, all our results appropriately viewed
continue to hold and we shall sketch the argument. Details will be given elsewhere.

Indeed, if for any non-feasible point q 	= 0 we let Q := A⊥0 + Rq, where A⊥0 is
the orthogonal complement of the subspace A0 := A−αb, then we see that for any
initial point x0 ∈ Q the sequence of iterates, xn = T n

S,A(x0) remains confined to the
subspace Q. So, if the Douglas–Rachford scheme converges it will converge to a
point in S∩A∩Q. Further, the fixed points of TS,A|Q consists of two isolated points
comprising S∩A∩Q; namely, p = (kq(1), kq(2), · · · , kq(K), α, 0, · · · , 0), where,

k :=±
√

1−α2

q(1)2 + · · ·+ q(K)2 .

And so we have ‘local convergence’ in the following sense. For either feasible point
p ∈ S∩A∩Q there is a neighbourhood, Np of p in the subspace Q such that starting
from any point x0 in Np the iterates converge to p.
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Fig. 6.9 Spiralling with the 1/2-sphere

Additionally, we may derive similar conclusions to those obtained above in the
cases when α = 0, α = 1 and α > 1. Further, in this case the singular manifold is
the subspace A⊥0 .

In conclusion, our analysis sheds some significant light on the behaviour of non-
convex Douglas–Rachford schemes but much remains to be studied.

Example 6.16 (Other regions). For example, we observe that neither convexity
nor so much symmetry is essential to the behaviour exhibited in Theorem 6.4.
Figure 6.9 shows the situation for a line and a non-convex p-sphere, where S(p) :=
{(x,y) : |x|p + |y|p = 1}, in the plane. The details of such analysis remain to be
performed.
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Chapter 7
A Comparison of Some Recent Regularity
Conditions for Fenchel Duality

Radu Ioan Boţ and Ernö Robert Csetnek

Abstract This article provides an overview on regularity conditions for Fenchel
duality in convex optimization. Our attention is focused, on the one hand, on three
generalized interior-point regularity conditions expressed by means of the quasi
interior and of the quasi-relative interior and, on the other hand, on two closedness-
type conditions that have been recently introduced in the literature. We discuss how
they do relate to each other, but also to several other classical ones and illustrate
these investigations by numerous examples.

Keywords Convex optimization · Fenchel duality · Quasi interior · Quasi-relative
interior · Generalized Interior-point Regularity conditions · Closedness-type
regularity conditions
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7.1 Introduction

The primal problem we investigate in this section is an unrestricted optimization
problem having as objective function the sum of two proper and convex functions
defined on a separated locally convex space. To it we attach the Fenchel dual prob-
lem and f urther we concentrate ourselves on providing regularity conditions for
strong duality for this primal-dual pair, which is the situation when the optimal ob-
jective values of the two problems coincide and the dual has an optimal solution.
First of all, we bring into the discussion several conditions of this kind that one can
find in the literature, where along the one which asks for the continuity of one of the
two functions at a point from the intersection of the effective domains, we enumer-
ate some classical generalized interior-point ones. Here, we refer to the regularity

R.I. Boţ (�)
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conditions employing not only the interior, but also the algebraic interior (cf. [21]),
the intrinsic core (cf. [17]) and the strong-quasi relative interior (cf. [1, 24]) of
the difference of the domains of the two functions. The latter conditions guarantee
strong duality if we suppose additionally that the two functions are lower semicon-
tinuous and the space we work within is a Fréchet one. A general scheme containing
the relations between these sufficient conditions is also furnished.

The central role in the paper is played by some regularity conditions for Fenchel
duality recently introduced in the literature. First of all, we consider some regular-
ity conditions expressed via the quasi interior and quasi-relative interior (cf. [8,9]),
which presents the advantage that they do not ask for any topological assumption re-
garding the functions involved and work in general separated locally convex spaces.
We consider three conditions of this kind, relate them to each other, but also to the
classical ones mentioned above. By means of some examples we are able to under-
line their wider applicability, by providing optimization problems where these are
fulfilled, while the consecrated ones fail.

The second class of recently introduced regularity conditions we discuss here is
the one of the so-called closedness-type regularity conditions, which additionally
ask for lower semicontinuity for the two functions, but work in general separated
locally convex spaces, too. We discuss here two closedness-type conditions (cf. [7,
10]), we relate them to each other, to the classical interior-point ones, but also, more
important, to the ones expressed via the quasi interior and quasi-relative interior.
More precisely, we show that, unlike in finite-dimensional spaces, in the infinite-
dimensional setting these two classes of regularity conditions for Fenchel duality
are not comparable. In this way we give a negative answer to an open problem
stated in [19, Remark 4.3].

The paper is organized as follows. In Sect. 7.2, we introduce some elements
of convex analysis, whereby the accent is put on different generalized interiority
notions. The notions quasi interior and quasi-relative interior are also introduced
and some of their important properties are mentioned. The third section starts with
the definition of the Fenchel dual problem, followed by a subsection dedicated to
the classical interior-point regularity conditions. The second subsection of Sect. 7.3
deals with the new conditions expressed via the quasi interior and quasi-relative
interior, while in the third one the closedness-type conditions are studied.

7.2 Preliminary Notions and Results

Consider X a (real) separated locally convex space and X∗ its topological dual space.
We denote by w(X∗,X) the weak∗ topology on X∗ induced by X . For a nonempty
set U ⊆ X , we denote by co(U),cone(U),coneco(U),aff(U), lin(U), int(U),cl(U),
its convex hull, conic hull, convex conic hull, affine hull, linear hull, interior and
closure, respectively. In case U is a linear subspace of X we denote by U⊥ the
annihilator of U . Let us mention the following property: if U is convex then

coneco(U ∪{0}) = cone(U). (7.1)
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If U ⊆ R
n (n ∈ N) we denote by ri(U) the relative interior of U , that is the interior

of U with respect to its affine hull. We denote by 〈x∗,x〉 the value of the linear
continuous functional x∗ ∈ X∗ at x ∈ X and by kerx∗ the kernel of x∗. The indicator
function of U , δU : X →R, is defined as

δU (x) =
{

0, if x ∈U,

+∞, otherwise,

where R = R∪{±∞} is the extended real line. We make the following conventions:
(+∞)+(−∞) = +∞, 0 · (+∞) = +∞ and 0 · (−∞) = 0. For a function f : X→R we
denote by dom f = {x ∈ X : f (x) < +∞} the domain of f and by epi f = {(x,r) ∈
X ×R : f (x) ≤ r} its epigraph. Moreover, we denote by êpi( f ) = {(x,r) ∈ X ×R :
(x,−r) ∈ epi f}, the symmetric of epi f with respect to the x-axis. For a given real
number α , f −α : X→R is, as usual, the function defined by ( f −α)(x) = f (x)−α
for all x∈X . We call f proper if dom f �= /0 and f (x) >−∞ for all x∈ X . The normal
cone of U at x ∈U is NU (x) = {x∗ ∈ X∗ : 〈x∗,y− x〉 ≤ 0 ∀y ∈U}.

The Fenchel–Moreau conjugate of f is the function f ∗ : X∗ → R defined by

f ∗(x∗) = sup
x∈X
{〈x∗,x〉− f (x)} ∀x∗ ∈ X∗.

We have the so-called Young–Fenchel inequality

f ∗(x∗)+ f (x)≥ 〈x∗,x〉 ∀x ∈ X ∀x∗ ∈ X∗.

Having f ,g : X → R two functions we denote by f�g : X → R their infimal con-
volution, defined by f�g(x) = infu∈X{ f (u)+ g(x− u)} for all x ∈ X . We say that
the infimal convolution is exact at x ∈ X if the infimum in its definition is attained.
Moreover, f�g is said to be exact if it is exact at every x ∈ X .

Let us recall in the following the most important generalized interiority notions
introduced in the literature. The set U ⊆ X is supposed to be nonempty and convex.
We have:

• core(U) := {x∈U : cone(U−x) = X}, the algebraic interior (the core) of U (cf.
[21, 26]);

• icr(U) := {x ∈U : cone(U− x) is a linear subspace of X}, the relative algebraic
interior (intrinsic core) of U (cf. [2, 18, 26]);

• sqri(U) := {x ∈ U : cone(U − x) is a closed linear subspace of X} the strong
quasi-relative interior (intrinsic relative algebraic interior) of U (cf. [4, 26]).

We mention the following characterization of the strong quasi-relative interior
(cf. [17, 26]): x ∈ sqri(U)⇔ x ∈ icr(U) and aff(U− x) is a closed linear subspace.

The quasi-relative interior of U is the set (cf. [3])

qri(U) = {x ∈U : cl
(

cone(U− x)
)

is a linear subspace of X}.
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The quasi-relative interior of a convex set is characterized by means of the normal
cone as follows.

Proposition 7.1 (cf. [3]). Let U be a nonempty convex subset of X and x ∈ U.
Then x ∈ qri(U) if and only if NU (x) is a linear subspace of X∗.

Next we consider another generalized interiority notion introduced in connection
with a convex set, which is close to the quasi-relative interior. The quasi interior of
U is the set

qi(U) = {x ∈U : cl
(

cone(U− x)
)

= X}.

It can be characterized as follows.

Proposition 7.2 (cf. [8, Proposition 2.4]). Let U be a nonempty convex subset of
X and x ∈U. Then x ∈ qi(U) if and only if NU (x) = {0}.
Remark 7.3. The above characterization of the quasi interior of a convex set was
given in [16], where the authors supposed that X is a reflexive Banach space. It is
proved in [8, Proposition 2.4] that this property holds in a more general context,
namely in separated locally convex spaces.

We have the following relations between the different generalized interiority no-
tions considered above

int(U)⊆ core(U)⊆
sqri(U)⊆ icr(U)

qi(U)
⊆ qri(U)⊆U, (7.2)

all the inclusions being in general strict. As one can also deduce from some of the
examples which follows in this paper in general between sqri(U) and icr(U), on the
one hand, and qi(U), on the other hand, no relation of inclusion can be provided.
In case int(U) �= /0 all the generalized interior-notions considered in (7.2) collapse
into int(U) (cf. [3, Corollary 2.14]).

It follows from the definition of the quasi-relative interior that qri({x}) = {x}
for all x ∈ X . Moreover, if qi(U) �= /0, then qi(U) = qri(U). Although this prop-
erty is given in [20] in the case of real normed spaces, it holds also in separated
locally convex spaces, as it easily follows from the properties given above. For
U,V two convex subsets of X such that U ⊆ V , we have qi(U)⊆ qi(V ), a property
which is no longer true for the quasi-relative interior (however this holds when-
ever aff(U) = aff(V ), see [13, Proposition 1.12]). If X if finite-dimensional then
qri(U) = sqri(U) = icr(U) = ri(U) (cf. [3, 17]) and core(U) = qi(U) = int(U) (cf.
[20, 21]). We refer the reader to [2, 3, 17, 18, 20, 21, 23, 26] and to the references
therein for more properties and examples regarding the above considered general-
ized interiority notions.

Example 7.4. Take an arbitrary p ∈ [1,+∞) and consider the real Banach space
�p = �p(N) of real sequences (xn)n∈N such that

∑∞
n=1 |xn|p < +∞, equipped with
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the norm ‖ · ‖ : �p → R, ‖x‖ =
(∑∞

n=1 |xn|p
)1/p

for all x = (xn)n∈N ∈ �p. Then

(cf. [3])

qri(�p
+) = {(xn)n∈N ∈ �p : xn > 0 ∀n ∈N},

where �
p
+ = {(xn)n∈N ∈ �p : xn ≥ 0 ∀n ∈ N} is the positive cone of �p. Moreover,

one can prove that

int(�p
+) = core(�p

+) = sqri(�p
+) = icr(�p

+) = /0.

In the setting of separable Banach spaces, every nonempty closed convex set has
a nonempty quasi-relative interior (cf. [3, Theorem 2.19], see also [2, Theorem 2.8]
and [26, Proposition 1.2.9]) and every nonempty convex set which is not contained
in a hyperplane possesses a nonempty quasi interior (cf. [20]). This result may fail
if the condition X is separable is removed, as the following example shows.

Example 7.5. For p ∈ [1,+∞) consider the real Banach space

�p(R) = {s : R→ R
∑

r∈R

|s(r)|p < ∞},

equipped with the norm ‖ · ‖ : �p(R)→ R, ‖s‖ =
(∑

r∈R
|s(r)|p

)1/p
for all s ∈

�p(R), where
∑

r∈R

|s(r)|p = sup
F⊆R,Ffinite

∑

r∈F

|s(r)|p.

Considering the positive cone �p
+(R) = {s ∈ �p(R) : s(r) ≥ 0 ∀r ∈ R}, we have

(cf. [3, Example 3.11(iii)], see also [5, Remark 2.20]) that qri
(
�p
+(R)

)
= /0.

Let us mention some properties of the quasi-relative interior. For the proof of (i)
and (ii) we refer to [2,3], while property (iii) was proved in [8, Proposition 2.5] (see
also [9, Proposition 2.3]).

Proposition 7.6. Consider U a nonempty convex subset of X. Then:

(i) t qri(U)+ (1− t)U ⊆ qri(U) ∀t ∈ (0,1]; hence qri(U) is a convex set. If, addi-
tionally, qri(U) �= /0 then:

(ii) cl
(

qri(U)
)

= cl(U);

(iii) cl
(

cone
(

qri(U)
))

= cl
(

cone(U)
)
.

The first part of the next lemma was proved in [8, Lemma 2.6] (see also [9,
Lemma 2.1]).

Lemma 7.7. Let U and V be nonempty convex subsets of X and x ∈ X. Then:

(i) if qri(U)∩V �= /0 and 0 ∈ qi(U−U), then 0 ∈ qi(U−V );
(ii) x ∈ qi(U) if and only if x ∈ qri(U) and 0 ∈ qi(U−U).
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Proof. (ii) Suppose that x ∈ qi(U). Then x ∈ qri(U) and since U − x ⊆U −U and
0 ∈ qi(U − x), the direct implication follows. The reverse one follows as a direct
consequence of (i) by taking V := {x}. ��
Remark 7.8. Consider the setting of Example 7.4. By applying the previous result,
we get (since �p

+− �p
+ = �p) that

qi(�p
+) = qri(�p

+) = {(xn)n∈N ∈ �p : xn > 0 ∀n ∈ N}.

The proof of the duality theorem presented in the next section is based on the fol-
lowing separation theorem.

Theorem 7.9 (cf. [8, Theorem 2.7]). Let U be a nonempty convex subset of X and
x ∈U. If x �∈ qri(U), then there exists x∗ ∈ X∗,x∗ �= 0, such that

〈x∗,y〉 ≤ 〈x∗,x〉 ∀y ∈U.

Viceversa, if there exists x∗ ∈ X∗, x∗ �= 0, such that

〈x∗,y〉 ≤ 〈x∗,x〉 ∀y ∈U

and

0 ∈ qi(U−U),

then x �∈ qri(U).

Remark 7.10. (a) The above separation theorem is a generalization to separated
locally convex spaces of a result stated in [15, 16] in the framework of real
normed spaces (cf. [8, Remark 2.8]).

(b) The condition x ∈ U in Theorem 7.9 is essential (see [16, Remark 2]). How-
ever, if x is an arbitrary element of X , an alternative separation theorem has
been given by Cammaroto and Di Bella in [12, Theorem 2.1]. Let us mention
that some strict separation theorems involving the quasi-relative interior can be
found in [13].

7.3 Fenchel Duality

Let us briefly recall some considerations regarding Fenchel duality. We deal in the
following with the following optimization problem

(PF) inf
x∈X
{ f (x)+ g(x)},

where X is a separated locally convex space and f ,g : X → R are proper functions
such that dom f ∩domg �= /0.
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The classical Fenchel dual problem to (PF) has the following form

(DF) sup
y∗∈X∗

{− f ∗(−y∗)−g∗(y∗)}.

We denote by v(PF) and v(DF) the optimal objective values of the primal and dual
problems, respectively. Weak duality always holds, that is v(PF) ≥ v(DF). To guar-
antee strong duality, the situation when v(PF) = v(DF) and (DF) has an optimal
solution, several regularity conditions were introduced in the literature.

7.3.1 Classical Interior-Point Regularity Conditions

In this subsection, we deal with generalized interior-point regularity conditions, by
enumerating the classical ones existing in the literature and by studying the relations
between them. Let us start by recalling the most known conditions of this type:

(RCF
1 ) ∃x′ ∈ dom f ∩domg such that f (or g) is continuous at x′;

(RCF
2 ) X is a Fréchet space, f and g are lower semicontinuous and

0 ∈ int(dom f −domg);

(RCF
3 ) X is a Fréchet space, f and g are lower semicontinuous and

0 ∈ core(dom f −domg);

(RCF
4 ) X is a Fréchet space, f and g are lower semicontinuous,

aff(dom f −domg) is a closed linear subspace of X and
0 ∈ icr(dom f −domg)

and

(RCF
5 ) X is a Fréchet space, f and g are lower semicontinuous and

0 ∈ sqri(dom f −domg).

The condition (RCF
3 ) was considered by Rockafellar (cf. [21]), (RCF

5 ) by Attouch
and Brézis (cf. [1]) and Zălinescu (cf. [24]), while Gowda and Teboulle proved that
(RCF

4 ) and (RCF
5 ) are equivalent (cf. [17]).

Theorem 7.11. Let f ,g : X → R be proper and convex functions. If one of the reg-
ularity conditions (RCF

i ), i ∈ {1,2,3,4,5}, is fulfilled, then v(PF) = v(DF) and (DF)
has an optimal solution.

Remark 7.12. In case X is a Fréchet space and f ,g are proper, convex and lower
semicontinuous functions we have the following relations between the above regu-
larity conditions (see also [17, 25] and [26, Theorem 2.8.7])

(RCF
1 )⇒ (RCF

2 )⇔ (RCF
3 )⇒ (RCF

4 )⇔ (RCF
5 ).
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Let us notice that the regularity conditions (RCF
2 ) and (RCF

3 ) are equivalent. Indeed,
assume that X is a Fréchet space, f ,g are proper, convex and lower semicontinuous
functions such that dom f ∩ domg �= /0 and consider the infimal value function h :
X → R, defined by h(y) = infx∈X{ f (x) + g(x− y)} for all y ∈ X . The function h
is convex and not necessarily lower semicontinuous, while one has that domh =
dom f −domg. Nevertheless, the function (x,y) �→ f (x)+g(x−y) is ideally convex
(being convex and lower semicontinuous), hence h is li-convex (cf. [26, Proposition
2.2.18]). Now by [26, Theorem 2.2.20] it follows that core(domh) = int(domh),
which has as consequence the equivalence of the regularity conditions (RCF

2 ) and
(RCF

3 ). Let us mention that this fact has been noticed in the setting of Banach spaces
by Simons in [22, Corollary 14.3].

7.3.2 Interior-Point Regularity Conditions Expressed
via Quasi Interior and Quasi-Relative Interior

Taking into account the relations that exist between the generalized interiority no-
tions presented in Sect. 7.2 a natural question arises: is the condition 0∈ qri(dom f −
domg) sufficient for strong duality? The following example (which can be found in
[17]) shows that even if we impose a stronger condition, namely 0 ∈ qi(dom f −
domg), the above question has a negative answer and this means that we need to
look for additional assumptions in order to guarantee Fenchel duality.

Example 7.13. Consider the Hilbert space X = �2(N) and the sets

C = {(xn)n∈N ∈ �2 : x2n−1 + x2n = 0 ∀n ∈ N}

and

S = {(xn)n∈N ∈ �2 : x2n + x2n+1 = 0 ∀n ∈N},
which are closed linear subspaces of �2 and satisfy C∩S = {0}. Define the functions
f ,g : �2→R by f = δC and g(x) = x1 +δS(x), respectively, for all x = (xn)n∈N ∈ �2.
One can see that f and g are proper, convex and lower semicontinuous func-
tions with dom f = C and domg = S. As v(PF ) = 0 and v(DF) = −∞ (cf. [17,
Example 3.3]), there is a duality gap between the optimal objective values of the
primal problem and its Fenchel dual problem. Moreover, S−C is dense in �2

(cf. [17]), thus cl
(

cone(dom f −domg)
)
= cl(C−S) = �2. The last relation implies

0 ∈ qi(dom f −domg), hence 0 ∈ qri(dom f −domg).

We notice that if v(PF) = −∞, by the weak duality result follows that for the
primal-dual pair (PF)−(DF) strong duality holds. This is the reason why we suppose
in what follows that v(PF) ∈ R.
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Consider now the following regularity conditions expressed by means of the
quasi interior and quasi-relative interior:

(RCF
6 ) dom f ∩qri(domg) �= /0, 0 ∈ qi(domg−domg) and

(0,0) /∈ qri
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
;

(RCF
7 ) 0 ∈ qi(dom f −domg) and

(0,0) /∈ qri
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]

and

(RCF
8 ) 0 ∈ qi

[
(dom f −domg)− (dom f −domg)

]
, 0 ∈ qri(dom f −domg) and

(0,0) /∈ qri
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
.

Let us notice that these three regularity conditions were first introduced in [8].
We study in the following the relations between these conditions. We remark that

epi f − êpi(g− v(PF))
= {(x− y, f (x)+ g(y)− v(PF)+ ε) : x ∈ dom f ,y ∈ domg,ε ≥ 0},

thus if the set epi f − êpi(g− v(PF) is convex, then dom f −domg is convex, too.

Proposition 7.14. Let f ,g : X → R be proper functions such that v(PF) ∈ R and
epi f − êpi(g−v(PF)) is a convex subset of X×R (the latter is the case if for instance
f and g are convex functions). The following statements are true:

(i) (RCF
7 ) ⇔ (RCF

8 ); if, moreover, f and g are convex, then (RCF
6 ) ⇒ (RCF

7 )
⇔ (RCF

8 );

(ii) if (PF) has an optimal solution, then (0,0) /∈ qri
[

co
(
(epi f − êpi(g−v(PF)))∪

{(0,0)}
)]

can be equivalently written as (0,0) /∈ qri
(

epi f − êpi(g−v(PF))
)

;

(iii) if 0 ∈ qi
[
(dom f − domg)− (dom f − domg)

]
, then (0,0) /∈ qri

[
co
(
(epi f −

êpi(g− v(PF)))∪{(0,0)}
)]

is equivalent to (0,0) /∈ qi
[

co
(
(epi f − êpi(g−

v(PF)))∪{(0,0)}
)]

.

Proof. (i) That (RCF
7 ) is equivalent to (RCF

8 ) is a direct consequence of Lemma 7.7
(ii). Let us suppose that f and g are convex and (RCF

6 ) is fulfilled. By applying
Lemma 7.7(i) with U := domg and V := dom f we get 0 ∈ qi(domg−dom f )
or, equivalently, 0 ∈ qi(dom f −domg). This means that (RCF

7 ) holds.
(ii) One can prove that the primal problem (PF) has an optimal solution if and only

if (0,0) ∈ epi f − êpi(g− v(PF))) and the conclusion follows.
(iii) See [8, Remark 3.4 (a)]. ��
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Remark 7.15. (a) The condition 0 ∈ qi(dom f −domg) implies relation

0 ∈ qi
[
(dom f −domg)− (dom f −domg)

]

in Proposition 7.14(iii). This is a direct consequence of the inclusion dom f −
domg⊆ (dom f −domg)− (dom f −domg).

(b) We have the following implication

(0,0)∈ qi
[

co
((

epi f − êpi(g−v(PF))
)∪{(0,0)}

)]
⇒ 0∈ qi(dom f −domg).

Indeed, suppose that (0,0)∈ qi
[

co
((

epi f − êpi(g−v(PF))
)∪{(0,0)}

)]
. Then

cl
[

coneco
((

epi f − êpi(g− v(PF))
)∪{(0,0)}

)]
= X×R, hence (cf. (7.1))

cl
[

cone
(

epi f − êpi(g− v(PF))
)]

= X×R.

As the inclusion

cl
[

cone
(

epi f − êpi(g− v(PF))
)]⊆ cl

(
cone(dom f −domg)

)×R

trivially holds, we have cl
(

cone(dom f −domg)
)

= X , that is

0 ∈ qi(dom f −domg).

Hence, the following implication is true

0 �∈ qi(dom f −domg)⇒ (0,0) /∈ qi
[

co
((

epi f − êpi(g−v(PF))
)∪{(0,0)}

)]
.

Nevertheless, in the regularity conditions given above one cannot substitute the

condition (0,0) /∈ qi
[

co
((

epi f − êpi(g− v(PF))
)∪{(0,0)}

)]
by the stronger,

but more handleable one 0 �∈ qi(dom f −domg), since in all the regularity con-
ditions (RCF

i ), i ∈ {6,7,8}, the other hypotheses imply 0 ∈ qi(dom f − domg)
(cf. Proposition 7.14(i)).

We give now the following strong duality result concerning the primal-dual pair
(PF)− (DF). It was first stated in [8] under convexity assumptions for the functions
involved.

Theorem 7.16. Let f ,g : X → R be proper functions such that v(PF) ∈ R and epi
f − êpi(g− v(PF)) is a convex subset of X×R (the latter is the case if, for instance,
f and g are convex functions). Suppose that either f and g are convex and (RCF

6 ) is
fulfilled, or one of the regularity conditions (RCF

i ), i ∈ {7,8}, holds. Then v(PF) =
v(DF) and (DF) has an optimal solution.

Proof. One has to use the techniques employed in the proof of [8, Theorem 3.5]. ��
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When the condition (0,0) /∈ qri
[

co
(
(epi f − êpi(g− v(PF))) ∪ {(0,0)}

)]
is

removed, the duality result given above may fail. In the setting of Example 7.13,
strong duality does not hold. Moreover, it has been proved in [8, Example 3.12(b)]

that (0,0) ∈ qri
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
.

The following example (given in [8, Example 3.13]) justifies the study of the
regularity conditions expressed by means of the quasi interior and quasi-relative
interior.

Example 7.17. Consider the real Hilbert space �2 = �2(N). We define the functions
f ,g : �2→ R by

f (x) =
{ ‖x‖, if x ∈ x0− �2

+,

+∞, otherwise

and

g(x) =
{ 〈c,x〉, if x ∈ �2

+,

+∞, otherwise,

respectively, where x0,c ∈ �2
+ are arbitrarily chosen such that x0

n > 0 for all n ∈ N.
Note that

v(PF) = inf
x∈�2

+∩(x0−�2
+)
{‖x‖+ 〈c,x〉}= 0

and the infimum is attained at x = 0. We have dom f = x0− �2
+ = {(xn)n∈N ∈ �2 :

xn ≤ x0
n ∀n ∈ N} and domg = �2

+. By using Example 7.4, we get

dom f ∩qri(domg) = {(xn)n∈N ∈ �2 : 0 < xn ≤ x0
n ∀n ∈ N} �= /0.

Also, cl
(

cone(domg−domg)
)

= �2 and so 0 ∈ qi(domg−domg). Further,

epi f − êpi(g− v(PF)) = {(x− y,‖x‖+ 〈c,y〉+ ε) : x ∈ x0− �2
+,y ∈ �2

+,ε ≥ 0}.

In the following, we prove that (0,0) /∈ qri
(

epi f − êpi(g− v(PF))
)

. Assuming

the contrary, one would have that the set cl
[

cone
(

epi f − êpi(g− v(PF))
)]

is a

linear subspace of �2×R. Since (0,1) ∈ cl
[

cone
(

epi f − êpi(g− v(PF))
)]

(take

x = y = 0 and ε = 1), (0,−1) must belong to this set, too. On the other hand, one

can easily see that for all (x,r) belonging to cl
[

cone
(

epi f − êpi(g− v(PF))
)]

it

holds r ≥ 0. This leads to the desired contradiction.
Hence, the regularity condition (RCF

6 ) is fulfilled, thus strong duality holds (cf.
Theorem 7.16). On the other hand, �2 is a Fréchet space (being a Hilbert space), the
functions f and g are proper, convex and lower semicontinuous and, as sqri(dom f −
domg) = sqri(x0− �2

+) = /0, none of the conditions (RCF
i ), i ∈ {1,2,3,4,5}, listed

at the beginning of this section, can be applied for this optimization problem.
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As for all x∗ ∈ �2 it holds G∗(x∗) = δc−�2
+
(x∗) and (cf. [26, Theorem 2.8.7])

f ∗(−x∗) = inf
x∗1+x∗2=−x∗

{‖ · ‖∗(x∗1)+ δ ∗x0−l2
+
(x∗2)}= inf

x∗1+x∗2=−x∗,
‖x∗1‖≤1,x∗2∈�2

+

〈x∗2,x0〉,

the optimal objective value of the Fenchel dual problem is

v(DF) = sup
x∗2∈�2

+−c−x∗1,

‖x∗1‖≤1,x∗2∈�2
+

〈−x∗2,x
0〉= sup

x∗2∈�2
+

〈−x∗2,x
0〉= 0

and x∗2 = 0 is the optimal solution of the dual.

The following example (see also [14, Example 2.5]) underlines the fact that in
general the regularity condition (RCF

7 ) (and automatically also (RCF
8 )) is weaker

than (RCF
6 ) (see also Example 7.28 below).

Example 7.18. Consider the real Hilbert space �2(R) and the functions f ,g :
�2(R)→ R defined for all s ∈ �2(R) by

f (s) =
{

s(1), if s ∈ �2
+(R),

+∞, otherwise

and

g(s) =
{

s(2), if s ∈ �2
+(R),

+∞, otherwise,

respectively. The optimal objective value of the primal problem is

v(PF) = inf
s∈�2

+(R)
{s(1)+ s(2)}= 0

and s = 0 is an optimal solution (let us notice that (PF) has infinitely many optimal
solutions). We have qri(domg) = qri(�2

+(R)) = /0 (cf. Example 7.5), hence the con-
dition (RCF

6 ) fails. In the following, we show that (RCF
7 ) is fulfilled. One can prove

that dom f −domg = �2
+(R)− �2

+(R) = �2(R), thus 0 ∈ qi(dom f −domg). Like in
the previous example, we have

epi f − êpi(g− v(PF)) = {(s− s′,s(1)+ s′(2)+ ε) : s,s′ ∈ �2
+(R),ε ≥ 0}

and with the same technique one can show that (0,0) /∈ qri
(

epi f − êpi(g−v(PF))
)

,

hence the condition (RCF
7 ) holds.

Let us take a look at the formulation of the dual problem. To this end we have to
calculate the conjugates of f and g. Let us recall that the scalar product on �2(R),
〈·, ·〉 : �2(R)×�2(R)→R is defined by 〈s,s′〉= supF⊆R,Ffinite

∑
r∈F s(r)s′(r), for s,s′ ∈

�2(R) and that the dual space
(
�2(R)

)∗
is identified with �2(R). For an arbitrary

u ∈ �2(R), we have
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f ∗(u) = sup
s∈�2

+(R)
{〈u,s〉− s(1)}= sup

s∈�2
+(R)

{

sup
F⊆R,Ffinite

∑

r∈F

u(r)s(r)− s(1)

}

= sup
F⊆R,Ffinite

⎧
⎨

⎩
sup

s∈�2
+(R)

{∑

r∈F

u(r)s(r)− s(1)
}
⎫
⎬

⎭
.

If there exists r ∈ R \ {1} with u(r) > 0 or if u(1) > 1, then one has f ∗(u) = +∞.
Assuming the contrary, for every finite subset F of R, independently from the
fact that 1 belongs to F or not, it holds sups∈�2

+(R){
∑

r∈F u(r)s(r)− s(1)} = 0.
Consequently,

f ∗(u) =
{

0, if u(r)≤ 0 ∀r ∈ R\ {1} and u(1)≤ 1,

+∞, otherwise.

Similarly, one can provide a formula for g∗ and in this way we obtain that v(DF) = 0
and that u = 0 is an optimal solution of the dual ((DF) has actually infinitely many
optimal solutions).

Let us compare in the following the regularity conditions expressed by means of
the quasi interior and quasi relative interior with the classical ones form the litera-
ture, mentioned at the beginning of the section. To this end, we need an auxiliary
result.

Proposition 7.19. Suppose that for the primal-dual pair (PF)− (DF) strong duality

holds. Then (0,0) /∈ qi
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
.

Proof. By the assumptions we made, there exists x∗ ∈ X∗ such that v(PF) =
− f ∗(−x∗)−g∗(x∗) = infx∈X{〈x∗,x〉+ f (x)}+ infx∈X{〈−x∗,x〉+ g(x)}, hence

v(PF)≤ 〈x∗,x〉+ f (x)+ 〈−x∗,y〉+ g(y) ∀(x,y) ∈ X×Y,

that is

〈−x∗,x− y〉− ( f (x)+ g(y)− v(PF))≤ 0 ∀(x,y) ∈ dom f ×domg.

We obtain

〈(−x∗,−1),(z,r)〉 ≤ 0 ∀(z,r) ∈ epi f − êpi(g− v(PF)),

hence

〈(−x∗,−1),(z,r)〉 ≤ 0 ∀(z,r) ∈ co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)
.
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The last relation ensures (−x∗,−1) ∈ N[co((epi f−êpi(g−v(PF)))∪{(0,0)})](0,0) and

Proposition 7.2 implies that (0,0) /∈qi
[
co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
.
��

A comparison of the above regularity conditions is provided in the following.

Proposition 7.20. Suppose that X is a Fréchet space and f ,g : X → R are proper,
convex and lower semicontinuous functions. The following relations hold

(RCF
1 )⇒ (RCF

2 )⇔ (RCF
3 )⇒ (RCF

7 )⇔ (RCF
8 ).

Proof. In view of Remark 7.12 and Proposition 7.14(i) we have to prove only
the implication (RCF

3 ) ⇒ (RCF
7 ). Let us suppose that (RCF

3 ) is fulfilled. We ap-
ply (7.2) and obtain 0 ∈ qi

(
dom f − domg

)
. Moreover, the regularity condition

(RCF
3 ) ensures strong duality for the pair (PF)− (DF) (cf. Theorem 7.11), hence

(0,0) /∈ qi
[

co
(
(epi f − êpi(g− v(PF)))∪{(0,0)}

)]
(cf. Proposition 7.19). Apply-

ing Proposition 7.14(iii) (see also Remark 7.15(a)) we get that the condition (RCF
7 )

holds and the proof is complete. ��
Remark 7.21. One can notice that the implications

(RCF
1 )⇒ (RCF

7 )⇔ (RCF
8 )

hold in the framework of separated locally convex spaces and for f ,g : X→R proper
and convex functions (nor completeness for the space neither lower semicontinuity
for the functions is needed here).

Next we show that, in general, the conditions (RCF
i ), i ∈ {4,5}, cannot be com-

pared with (RCF
i ), i ∈ {6,7,8}. Example 7.17 provides a situation for which (RCF

i ),
i ∈ {6,7,8}, are fulfilled, unlike (RCF

i ), i ∈ {4,5}. In the following example, the
conditions (RCF

i ), i ∈ {4,5}, are fulfilled, while (RCF
i ), i ∈ {6,7,8}, fail.

Example 7.22. Consider (X ,‖ · ‖) a nonzero real Banach space, x∗0 ∈ X∗ \ {0} and
the functions f ,g : X → R defined by f = δkerx∗0 and g = ‖ · ‖+ δkerx∗0 , respectively.
The optimal objective value of the primal problem is

v(PF) = inf
x∈kerx∗0

‖x‖= 0

and x̄ = 0 is the unique optimal solution of (PF). The functions f and g are
proper, convex and lower semicontinuous. Further, dom f − domg = kerx∗0, which
is a closed linear subspace of X , hence (RCF

i ), i ∈ {4,5}, are fulfilled. Moreover,
domg−domg = dom f −domg = kerx∗0 and it holds cl(kerx∗0) = kerx∗0 �= X . Thus,
0 /∈ qi(domg−domg) and 0 /∈ qi(dom f −domg) and this means that all the three
regularity conditions (RCF

i ), i ∈ {6,7,8}, fail.
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The conjugate functions of f and g are

f ∗ = δ(kerx∗0)⊥ = δRx∗0 and g∗ = δB∗(0,1)�δRx∗0 = δB∗(0,1)+Rx∗0 ,

respectively (cf. [26, Theorem 2.8.7]), where B∗(0,1) is the closed unit ball of the
dual space X∗. Hence, v(DF) = 0 and the set of optimal solutions of (DF) coincides
with Rx∗0. Finally, let us notice that instead of kerx∗0 one can consider any closed
linear subspace S of X such that S �= X .

7.3.3 Closedness-Type Regularity Conditions

Besides the generalized interior-point regularity conditions, there exist in the liter-
ature so-called closedness-type regularity conditions for conjugate duality. In the
following, we will recall two sufficient conditions of this type for Fenchel duality
and we will relate them to the ones investigate in the previous subsection. Let these
two conditions be:

(RCF
9 ) f and g are lower semicontinuous and

epi f ∗+ epig∗ is closed in (X∗,w(X∗,X))×R

and

(RCF
10) f and g are lower semicontinuous, f ∗�g∗ is w(X∗,X)-lower

semicontinuous on X∗ and exact at 0.

The condition (RCF
9 ) has been first considered by Burachik and Jeyakumar in

Banach spaces (cf. [10]) and by Boţ and Wanka in separated locally convex spaces
(cf. [7]), while the second one, (RCF

10), has been introduced in [7]. We have the
following duality results (cf. [7]).

Theorem 7.23. Let f ,g : X → R be proper and convex functions such that dom f ∩
domg �= /0. If (RCF

9 ) is fulfilled, then

( f + g)∗(x∗) = min{ f ∗(x∗ − y∗)+ g∗(y∗) : y∗ ∈ X∗} ∀x∗ ∈ X∗. (7.3)

Theorem 7.24. Let f ,g : X → R be proper and convex functions such that dom f ∩
domg �= /0. If (RCF

10) is fulfilled, then v(PF) = v(DF) and (DF) has an optimal
solution.

Remark 7.25. (a) Let us notice that condition (7.3) is referred in the literature as
stable strong duality (see [6, 11, 22] for more details) and obviously guarantees
strong duality for (PF)− (DF). When f ,g : X →R are proper, convex and lower
semicontinuous functions with dom f ∩domg �= /0 one has in fact that (RCF

9 ) is
fulfilled if and only if (7.3) holds (cf. [7, Theorem 3.2]).
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(b) If f ,g are proper, convex and lower semicontinuous such that dom f ∩domg �=
/0, then (RCF

9 )⇒ (RCF
10) (cf. [7, Sect. 4]). Moreover, there are examples showing

that in general (RCF
10) is weaker than (RCF

9 ) (see[7]). Finally, let us mention
that (under the same hypotheses) f ∗�g∗ is a w(X∗,X)-lower semicontinuous
function on X∗ if and only if ( f +g)∗ = f ∗�g∗. This is a direct consequence of
the equality ( f +g)∗ = cl( f ∗�g∗), where the closure is considered with respect
to the weak∗ topology on X∗ (cf. [7, Thorem 2.1]).

(c) In case X is a Fréchet space and f ,g are proper, convex and lower semicontinu-
ous functions, we have the following relations between the regularity conditions
considered for the primal-dual pair (PF)− (DF) (cf. [7], see also [17] and [26,
Theorem 2.8.7])

(RCF
1 )⇒ (RCF

2 )⇔ (RCF
3 )⇒ (RCF

4 )⇔ (RCF
5 )⇒ (RCF

9 )⇒ (RCF
10).

We refer to [6,7,10,22] for several examples showing that in general the impli-
cations above are strict. The implication (RCF

1 )⇒ (RCF
9 )⇒ (RCF

10) holds in the
general setting of separated locally convex spaces (in the hypotheses that f ,g
are proper, convex and lower semicontinuous).

We observe that if X is a finite-dimensional space and f ,g are proper, convex and
lower semicontinuous, then (RCF

6 )⇒ (RCF
7 )⇔ (RCF

8 )⇒ (RCF
9 )⇒ (RCF

10). How-
ever, in the infinite-dimensional setting this is no longer true. In the following two
examples, the conditions (RCF

9 ) and (RCF
10) are fulfilled, unlike (RCF

i ), i ∈ {6,7,8}
(we refer to [6, 7, 10, 19, 22] for examples in the finite-dimensional setting).

Example 7.26. Consider the same setting as in Example 7.22. We know that (RCF
5 )

is fulfilled, hence also (RCF
9 ) and (RCF

10) (cf. Remark 7.25(c)). This is not surprising,
since epi f ∗+epig∗= (B∗(0,1)+Rx∗0)× [0,∞), which is closed in (X∗,w(X∗,X))×
R (note that by the Banach–Alaoglu Theorem, the unit ball B∗(0,1) is compact
in (X∗,w(X∗,X))). As shown in Example 7.22, none of the regularity conditions
(RCF

i ), i ∈ {6,7,8}, is fulfilled.

Example 7.27. Consider the real Hilbert space �2(R) and the functions f ,g :
�2(R) → R defined by f = δ�2

+(R) and g = δ−�2
+(R), respectively. We have

qri(dom f − domg) = qri
(
�2
+(R)

)
= /0 (cf. Example 7.5), hence all the general-

ized interior-point regularity conditions (RCF
i ), i ∈ {1,2,3,4,5,6,7,8}, fail (see

also Proposition 7.14(i)). The conjugate functions of f and g are f ∗ = δ−�2
+(R)

and g∗ = δ�2
+(R), respectively, hence epi f ∗ + epig∗ = �2(R)× [0,∞), that is the

condition (RCF
9 ) holds (hence also (RCF

10), cf. Remark 7.25(b)). One can see that
v(PF) = v(DF) = 0 and y∗ = 0 is an optimal solution of the dual problem.

The next issue we investigate concerns the relation between the generalized
interior-point conditions (RCF

i ), i ∈ {6,7,8} and the closedness-type ones (RCF
9 )

and (RCF
10). In the last two examples the conditions (RCF

9 ) and (RCF
10) are fulfilled,

while (RCF
i ), i ∈ {6,7,8}, fail. In the following we provide an example for which

(RCF
7 ) is fulfilled, unlike (RCF

i ), i∈ {9,10}. In this way we give a negative answer to
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an open problem stated in [19, Remark 4.3], concomitantly proving that in general
(RCF

7 ) (and automatically also (RCF
8 )) and (RCF

9 ) are not comparable.

Example 7.28. (See also [14, Example 2.7]) Like in Example 7.13, consider the real
Hilbert space X = �2(N) and the sets

C = {(xn)n∈N ∈ �2 : x2n−1 + x2n = 0 ∀n ∈ N}

and
S = {(xn)n∈N ∈ �2 : x2n + x2n+1 = 0 ∀n ∈N},

which are closed linear subspaces of �2 and satisfy C∩S = {0}. Define the functions
f ,g : �2→R by f = δC and g = δS, respectively, which are proper, convex and lower
semicontinuous. The optimal objective value of the primal problem is v(PF) = 0 and
x = 0 is the unique optimal solution of v(PF). Moreover, S–C is dense in �2 (cf.
[17, Example 3.3]), thus cl

(
cone(dom f − domg)

)
= cl(C− S) = �2. This implies

0 ∈ qi(dom f −domg). Further, one has

epi f − êpi(g− v(PF)) = {(x− y,ε) : x ∈C,y ∈ S,ε ≥ 0}= (C−S)× [0,+∞)

and cl
[

cone
(

epi f − êpi(g− v(PF))
)]

= �2× [0,+∞), which is not a linear sub-

space of �2×R, hence (0,0) /∈ qri
(

epi f − êpi(g− v(PF))
)

. All together, we get

that the condition (RCF
7 ) is fulfilled, hence strong duality holds (cf. Theorem 7.16).

One can prove that f ∗ = δC⊥ and g∗ = δS⊥ , where

C⊥ = {(xn)n∈N ∈ �2 : x2n−1 = x2n ∀n ∈ N}

and
S⊥ = {(xn)n∈N ∈ �2 : x1 = 0,x2n = x2n+1 ∀n ∈ N}.

Further, v(DF) = 0 and the set of optimal solutions of the dual problem is exactly
C⊥∩S⊥ = {0}.

We show that (RCF
10) is not fulfilled (hence (RCF

9 ) fails too, cf. Remark
7.25(b)). Let us consider the element e1 ∈ �2, defined by e1

1 = 1 and e1
k = 0 for

all k ∈ N \ {1}. We compute ( f + g)∗(e1) = supx∈�2{〈e1,x〉 − f (x)− g(x)} = 0
and ( f ∗�g∗)(e1) = δC⊥+S⊥(e1). If we suppose that e1 ∈ C⊥+ S⊥, then we would
have (e1 + S⊥)∩C⊥ �= /0. However, it has been proved in [17, Example 3.3] that
(e1 + S⊥)∩C⊥ = /0. This shows that ( f ∗�g∗)(e1) = +∞ > 0 = ( f + g)∗(e1). Via
Remark 7.25(b) it follows that the condition (RCF

10) is not fulfilled and, conse-
quently, (RCF

i ), i ∈ {1,2,3,4,5,9}, fail, too (cf. Remark 7.25(c)), unlike condition
(RCF

7 ). Concerning (RCF
6 ), one can see that this condition is not fulfilled, since

0 ∈ qi(domg−domg) does not hold.

In the next example, the conditions (RCF
i ), i ∈ {6,7,8}, are fulfilled and (RCF

9 )
fails.
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Example 7.29. The example we consider in the following is inspired by [22,
Example 11.3]. Consider X an arbitrary Banach space, C a convex and closed
subset of X and x0 an extreme point of C which is not a support point of C. Taking
for instance X = �2, 1 < p < 2 and C :=

{
x ∈ �2 :

∑∞
n=1 |xn|p ≤ 1

}
one can find

extreme points in C that are not support points (see [22]). Consider the functions
f ,g : X → R defined as f = δx0−C and g = δC−x0 , respectively. They are both
proper, convex and lower semicontinuous and fulfill, as x0 is an extreme point
of C, f + g = δ{0}. Thus v(PF) = 0 and x = 0 is the unique optimal solution of
(PF). We show that, different to the previous example, (RCF

6 ) is fulfilled and this
will guarantee that both (RCF

7 ) and (RCF
8 ) are valid, too (cf. Proposition 7.14(i)).

To this end, we notice first that x0 ∈ qi(C). Assuming the contrary, one would
have that there exists x∗ ∈ X∗ \ {0} such that 〈x∗,x0〉 = supx∈C〈x∗,x〉 (cf. Propo-
sition 7.2), contradicting the hypothesis that x0 is not a support point of C. This
means that x0 ∈ qri(C), too, and so 0 ∈ dom f ∩ qri(domg). Further, since it holds
cl(cone(C− x0)) ⊆ cl(cone(C−C)), we have cl(cone(C−C)) = X and from here
0 ∈ qi(C−C) = qi(domg−domg). Noticing that

epi f − êpi(g− v(PF)) = {(x− y,ε) : x,y ∈C,ε ≥ 0}= (C−C)× [0,+∞),

it follows that cl
[

cone
(

epi f − êpi(g− v(PF))
)]

= X × [0,+∞), which is not a

linear subspace of X×R. Thus, (0,0) /∈ qri
(

epi f − êpi(g− v(PF))
)

and this has as

consequence the fact that (RCF
6 ) is fulfilled. Hence strong duality holds (cf. Theorem

7.16), v(DF) = 0 and 0 is an optimal solution of the dual problem.
We show that (RCF

9 ) is not fulfilled. Assuming the contrary, one would have that
the equality in (7.3) holds for all x∗ ∈ X∗. On the other hand, in [22, Example 11.3]
it is proven that this is the case only when x∗ = 0 and this provides the desired
contradiction.

Remark 7.30. Consider the following optimization problem

(PA
F ) inf

x∈X
{ f (x)+ (g ◦A)(x)},

where X and Y are separated locally convex spaces with topological dual spaces
X∗ and Y ∗, respectively, A : X → Y is a linear continuous mapping, f : X → R and
g : Y → R are proper functions such that A(dom f )∩ domg �= /0. The Fenchel dual
problem to (PA

F ) is

(DA
F) sup

y∗∈Y ∗
{− f ∗(−A∗y∗)−g∗(y∗)},

where A∗ : Y ∗ → X∗ is the adjoint operator, defined by 〈A∗y∗,x〉 = 〈y∗,Ax〉 for all
y∗ ∈ Y ∗ and x ∈ X . We denote by v(PA

F ) and v(DA
F) the optimal objective values

of the primal and the dual problem, respectively, and suppose that v(PA
F ) ∈ R. We

consider the set

A× idR(epi f ) = {(Ax,r) ∈ Y ×R : f (x) ≤ r}.
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By using the approach presented in the previous section one can provide similar
discussions regarding strong duality for the primal-dual pair (PA

F )− (DA
F). To this

end, we introduce the following functions: F,G : X ×Y → R, F(x,y) = f (x) +
δ{u∈X :Au=y}(x) and G(x,y) = g(y) for all (x,y) ∈ X ×Y . The functions F and G
are proper and their domains fulfill the relation

domF−domG = X× (A(dom f )−domg
)
.

Since epiF = {(x,Ax,r) : f (x)≤ r} and êpi(G−v(PA
F )) = {(x,y,r) : r≤−G(x,y)+

v(PA
F )} = X× êpi(g− v(PA

F )), we obtain

epiF− êpi(G− v(PA
F )) = X×

(
A× idR(epi f )− êpi(g− v(PA

F ))
)
.

Moreover,

inf
(x,y)∈X×Y

{F(x,y)+ G(x,y)}= inf
x∈X
{ f (x)+ (g ◦A)(x)}= v(PA

F ).

On the other hand, for all (x∗,y∗)∈ X∗×Y ∗ we have F∗(x∗,y∗) = f ∗(x∗+A∗y∗) and

G∗(x∗,y∗) =
{

g∗(y∗), if x∗ = 0,

+∞, otherwise.

Therefore,

sup
x∗∈X∗
y∗∈Y ∗

{−F∗(−x∗,−y∗)−G∗(x∗,y∗)}= sup
y∗∈Y ∗
{− f ∗(−A∗y∗)−g∗(y∗)}= v(DA

F).

For more details concerning this approach, we refer to [8, 14].
We remark that Borwein and Lewis gave in [3] some regularity conditions by

means of the quasi-relative interior, in order to guarantee strong duality for (PA
F ) and

(DA
F). However, they considered a more restrictive case, namely when the codomain

of the operator A is finite-dimensional. Here we have considered the more general
case, when both spaces X and Y are infinite-dimensional.

Finally, let us notice that several regularity conditions by means of the quasi inte-
rior and quasi-relative interior were introduced in the literature in order to guarantee
strong duality between a primal optimization problem with geometric and cone con-
straints and its Lagrange dual problem. However, they have either contradictory
assumptions, like in [12], or superfluous conditions, like in [16]. For a detailed ar-
gumentation of these considerations and also for correct alternative strong duality
results in the case of Lagrange duality we refer to [8, 9].

Acknowledgements The research of the first author was partially supported by DFG (German
Research Foundation), project WA 922/1-3.
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Chapter 8
Non-Local Functionals for Imaging

Jérôme Boulanger, Peter Elbau, Carsten Pontow, and Otmar Scherzer

Abstract Non-local functionals have been successfully applied in a variety of
applications, such as spectroscopy or in general filtering of time-dependent data.
We mention the patch-based denoising of image sequences [Boulanger et al. IEEE
Transactions on Medical Imaging (2010)]. Another family of non-local functionals
considered in these notes approximates total variation denoising. Thereby we rely on
fundamental characteristics of Sobolev spaces and the space of functions of finite
total variation (see [Bourgain et al. Journal d’Analyse Mathématique 87, 77–101
(2002)] and several follow up papers). Standard results of the calculus of variations,
like for instance the relation between lower semi-continuity of the functional and
convexity of the integrand, do not apply, in general, for the non-local functionals.
In this paper we address the questions of the calculus of variations for non-local
functionals and derive relations between lower semi-continuity of the functionals
and separate convexity of the integrand. Moreover, we use the new characteristics
of Sobolev spaces to derive novel approximations of the total variation energy regu-
larisation. All the functionals are well-posed and reveal a unique minimising point.
Even more, existing numerical schemes can be recovered in this general framework.

Keywords Non-local functionals · Derivative free model · Total variation regulari-
sation · Neighbourhood filter · Patch-based filter

AMS 2010 Subject Classification: 49J05, 49J45, 49M25

8.1 Introduction

A standard way in image analysis to regularise a given image u0 is to define for all
images u an energy E(u), which compromises the similarity of u and u0 with the
regularity of u. The regularised image is then the minimising point of E . A typical
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choice of E is the integral of an energy density f (x,u(x), |∇u(x)|;u0(x)), which only
depends on the image values of u and u0 in an infinitesimal small neighbourhood
around a point x of the image domain.

But such energy functionals are not suitable for regularisations that aim for taking
into account multiple structures in an image. For that purpose, filtering techniques
are used which compare the value u(x) with values u(y), which are similar to u(x) or
in a region similar to the one around u(x). This idea leads to neighbourhood filters, as
introduced in [23], and more generally to patch-based filters as for instance the non-
local means filter, see [6]. Recently, it was indicated in [12] that these filters can be
also formulated as non-local energy minimisation problems where the energy is (in
the simplest case) an integral of a density of the form f (x,y,u(x),u(y);u0(x),u0(y))
over all pairs of points (x,y) in the image.

On the other hand, using in the classical energy formulation finite difference
quotients |u(x)−u(y)|

|x−y| as approximations of the norm |∇u(x)| of the gradient results
in the same class of non-local energy minimisation problems. This approach was
studied in particular for total variation minimisation in [1] and was reviewed in [19].
A similar approach was considered in [11], where the concept of non-local operators
was introduced.

Our aim is now to provide a general theory about the existence of minimising
points of such non-local energy functionals, i.e. of functionals J of the form

J : Lp(X ;Rn)→R∪{∞}, J (u) =
∫

X

∫

X
f (x,y,u(x),u(y))dxdy,

where the density f now depends on pairs of points and their image values. In the
case of patch-based filters, we even have to consider densities depending on the
image values at all points close to x and y.

In the first section, we will review how the mentioned examples can be cast as a
minimisation problem for a non-local functional. Then we will provide in the next
section an existence result for minimising points, which we are going to apply in the
last section to the three types of functionals introduced in the first section.

8.2 Examples of Non-Local Functionals

In these notes, we are going to analyse the behaviour of non-local functionals on
some Lebesgue space. Let us first clarify the terminology non-local functional.
Throughout the text, X shall denote a bounded, open subset of Rm for some m ∈N
endowed with the Lebesgue measure on the σ -algebra A of all Lebesgue measur-
able subsets of X . Moreover, we define B to be the Borel σ -algebra of R.

Definition 8.1. Let n∈N and p∈ [1,∞). We call a map J : Lp(X ;Rn)→R∪{∞},
which is not constantly equal to infinity, a non-local functional on Lp(X ;Rn) if there
exists a function f : X×X×Rn×Rn→R such that
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J (u) =
∫

X

∫

X
f (x,y,u(x),u(y))dxdy for all u ∈ Lp(X ;Rn) (8.1)

and such that

(i) f is measurable with respect to the σ -algebras A ×A ×Bn×Bn and B,
(ii) f has the symmetry

f (x,y,w,z) = f (y,x,z,w) for all x,y ∈ X , w,z ∈Rn, (8.2)

(iii) The negative part f− of f fulfils

∫

X

∫

X
f−(x,y,u(x),u(y))dxdy < ∞ for all u ∈ Lp(X ;Rn) .

We then say that J is the non-local functional defined by f . Sometimes it is conve-
nient to express the dependency of the functional on p and f and then we write J p

f
instead of J .

The symmetry condition (8.2) in this definition is just introduced for convenience,
since a function f̃ and its symmetrisation f , given by

f (x,y,w,z) =
1
2
( f̃ (x,y,w,z)+ f̃ (y,x,z,w)) for all x,y ∈ X , w,z ∈Rn,

would define the same non-local functional anyway.
Before giving a criterion for non-local functionals to possess a minimising point,

we first list a few examples where such functionals have been documented in the
literature recently.

8.2.1 A Derivative Free Model for the Sobolev and Total
Variation Seminorm

Let q ∈ [1,∞) and (ϕk)k∈N be a sequence of non-negative, radially symmetric and
radially decreasing functions in L1(Rm) such that we have for all k ∈N

∫

Rm
ϕk(x)dx = 1 and lim

k→∞

∫

{y∈Rm : |y|>δ}
ϕk(x)dx = 0

for every δ ∈ (0,∞). It is shown in [4] that there exist constants Kq,m ∈ (0,∞) such
that the functionals

Rq
k (u) =

∫

X

∫

X

|u(x)−u(y)|q
|x− y|q ϕk(x− y)dxdy, k ∈N,
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fulfil for every measurable real function u that

lim
k→∞

Kq,mRq
k (u) =

⎧
⎪⎪⎨

⎪⎪⎩

∫
X |∇u(x)|q dx if q > 1 and u ∈W 1,q(X),

|Du|(X) if q = 1 and u ∈ BV (X),

∞ otherwise.

So, we could think of the functional Kq,mRq
k as an approximation for the qth power

of the Sobolev seminorm of u if q > 1 and for the total variation seminorm of u
if q = 1.

Let p ∈ (1,∞). The energy minimisation problem then consists in minimisation
of the energy functional

J : Lp(X)→R∪{∞}, J (u) = αRq
k (u)+

1
p

∫

X
|u(x)−u0(x)|p dx

for some regularisation parameter α ∈ (0,∞) and some k ∈N, which compromises
smoothness for the regularised solution with respect to the approximation of the
Sobolev seminorm and closeness of the data with respect to the Lp norm. These
minimisation problems have been considered in [1]. In [19], numerical realisations
have been derived which reveal the relations to various filtering techniques such as
bilateral filtering.

8.2.2 Neighbourhood Filters and Non-Local Functionals

Neighbourhood filters approximate a noisy image u0 : X → R at a point x ∈ X by
an average over the domain with similar intensity to u0(x). The filtered image u :
X →R is thus calculated by

u(x) =
1
C

∫

X
K(x,y,u0)u0(y)dy, C =

∫

X
K(x,y,u0)dy, (8.3)

for some kernel function K providing a measure for the distance between the points
(x,u0(x)) and (y,u0(y)) (assuming that the integrals are well-defined). A typical
choice of K is

K(x,y,u0) = g(|u0(x)−u0(y)|2)k(x,y) (8.4)

for some positive, bounded, continuous function g ∈ C([0,∞)) and some non-
negative, symmetric function k ∈ L∞(X ×X), i.e. k(x,y) = k(y,x) for all x,y ∈ X ,
with ‖k‖∞ �= 0. The probably best known examples of this method are the
Yaroslavsky filter [23], the SUSAN filter [20], and the bilateral filter [21].
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In [12], it was shown that this neighbourhood filter can be written as the first step
of a fixed point iteration starting with the initial data u0 ∈ L2(X) for the minimisation
of the functional

R : L2(X)→R, R(u) =
∫

X

∫

X
G(|u(x)−u(y)|2)k(x,y)dxdy, (8.5)

where G is a primitive function for g. Indeed, if we calculate the derivative of R in
the direction of a function v ∈ L2(X), we find (using the symmetry of the integrand
with respect to the interchange of the variables x and y)

δR(u;v) = lim
t→0

R(u + tv)−R(u)
t

= 4
∫

X

∫

X
g(|u(x)−u(y)|2)k(x,y)(u(x)−u(y))v(x)dxdy.

So, R is Gâteaux differentiable and every minimising point u ∈ L2(X) fulfils that
δR(u;v) = 0 for all v ∈ L2(X). This condition can be written in the form

u(x) =

∫
X g(|u(x)−u(y)|2)k(x,y)u(y)dy
∫

X g(|u(x)−u(y)|2)k(x,y)dy

for almost all x ∈ X . The first iteration u1 of a fixed point iteration

u�(x) =

∫
X g(|u�−1(x)−u�−1(y)|2)k(x,y)u�−1(y)dy
∫

X g(|u�−1(x)−u�−1(y)|2)k(x,y)dy
, � ∈N, (8.6)

with the initial value u0 is then equivalent to the neighbourhood filter (8.3) with
K(x,y,u0) = g(|u0(x)−u0(y)|2)k(x,y).

Now, we may not stop after the first iteration step, but try to reach out for a
minimising point of R. Nevertheless, we do not want to go too far away from the
original data u0, which by the way do not appear in the functional R at all. There-
fore, it is advisable to add to the functional R a term penalising a large distance
to u0. On this way, we would for instance end up with the problem of finding a
minimising point of a functional J : Lp(X)→R, p ∈ [2,∞), of the form

J (u) = αR(u)+
∫

X
|u(x)−u0(x)|p dx, (8.7)

with some regularisation parameter α ∈ (0,∞), as was suggested in [12].

8.2.3 Patch-Based Filtering with a Non-Local Functional

If we choose the weighting function K in (8.3) not only to depend on the difference
between the intensities at the points x and y in X , but on the difference between
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two domains, the so-called patches, around these two points, then we get kernel
functions of the form

K(x,y,u0) = g(Hu0(x,y))k(x,y), (8.8)

where

Hu(x,y) =
∫

X
h(t)|u(x− t)−u(y− t)|2dt

measures the distance in an intensity image u ∈ L2(X) between the patches around
the points x,y∈X with some non-negative weighting function h∈ L∞(X), ‖h‖∞ �= 0.
Since the term Hu(x,y) involves also values of u at points outside of the domain X ,
we will assume that X is a rectangular domain in Rm and consider every func-
tion u ∈ L2(X) to be just periodically extended outside that domain. Moreover, we
choose the function g : [0,∞)→R to be positive, bounded, and continuous and we
assume for simplicity that the non-negative function k ∈ L∞(X ×X) with ‖k‖∞ �= 0
only depends on the distance between the two patches, so k(x,y) = k1(|x− y|) for
some function k1 ∈ L∞([0,∞)).

We will call such a neighbourhood filter patch-based. The prime example for
this method is the non-local means filter [6]. Other applications can be for instance
found in [3] and [13].

Proceeding as before, we write the neighbourhood filter in the form of a fixed
point iteration for minimising the functional

R : L2(X)→R, R(u) =
∫

X

∫

X
G(Hu(x,y))k(x,y)dxdy (8.9)

with some G ∈ C1(X) with positive and bounded derivative. Using that we have
k(x + s,y + s) = k(x,y) for all x,y,s ∈ X , we find for the directional derivative of R
in the direction of a function v ∈ L2(X) the expression

δR(u;v) = 4
∫

X

∫

X
g̃(x,y,u)k(x,y)(u(x)−u(y))v(x)dxdy,

where the function g̃ is given by

g̃(x,y,u) =
∫

X
h(s)G′(Hu(x + s,y + s))ds. (8.10)

So, R is a Gâteaux differentiable functional and every minimising point u ∈ L2(X)
of R satisfies δR(u;v) = 0 for all v ∈ L2(X). This can be written as

u(x) =

∫
X g̃(x,y,u)k(x,y)u(y)dy
∫

X g̃(x,y,u)k(x,y)dy
(8.11)

for almost all x ∈ X .



8 Non-Local Functionals for Imaging 137

To establish the relation between the functional (8.9) and the filter defined by the
kernel (8.8) in analogy to the connection between the functional (8.5) and the filter
defined by the kernel (8.4), we should thus choose the function G such that

g(Hu0(x,y)) = λu0

∫

X
h(s)G′(Hu0(x + s,y + s))ds (8.12)

for almost all (x,y) ∈ X ×X , all initial data u0 ∈ L2(X), and some constant λu0 ∈
(0,∞) possibly depending on u0. In general, however, it is not necessarily true that
there exists for a given function g a solution G to this equation.1

It was therefore suggested in [12] to choose instead for G a primitive function
of g, define g̃ as before by relation (8.10), and consider the neighbourhood filter

u(x) =

∫
X g̃(x,y,u0)k(x,y)u0(y)dy
∫

X g̃(x,y,u0)k(x,y)dy
, (8.13)

which is the first step of a fixed point iteration for (8.11) with initial data u0. This
neighbourhood filter can now be seen as an approximation of the patch-based filter
with kernel K(x,y,u0) = g(Hu0(x,y))k(x,y). Indeed, the only difference is that the
kernel K is replaced by the averaged kernel

K̃(x,y,u0) =
∫

X
h(s)K(x + s,y + s,u0)ds.

Following the lines of the previous section to derive an energy functional related
to the filter defined by the kernel K, we thus end up with a functional of the form

J : Lp(X)→R, J (u) = αR(u)+
∫

X
|u(x)−u0(x)|p dx, (8.14)

with R given by (8.9), G chosen as primitive function of g, some regularisation
parameter α ∈ (0,∞), and p ∈ [2,∞).

8.3 Existence of Minimising Points for Non-Local Functionals

Let X be again a bounded, open subset of Rm, m ∈N, endowed with the Lebesgue
measure and n∈N. To prove that a functional on Lp(X ;Rn) has a minimising point,
we use below that coercivity and sequential lower semi-continuity with respect to

1 Take, for example, X = [0,1], h = χ[0,ε] for some ε ∈ (0,1/8), and u0 = χ[0,1/4] + χ[3/4,1].
Considering now the points (x0,y0) = (1/4,1/4 + ε) and (x1,y1) = (3/4 + ε,3/4), we see that
Hu0 (x0 + t,y0 + t) = Hu0(x1 − t,y1− t) for all t ∈ [0,ε]. Thus, the condition (8.12) would imply
that g(ε) = g(Hu0 (x0,y0)) = g(Hu0 (x1− ε,y1− ε)) = g(0).
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the weak topology on Lp(X ;Rn) if p ∈ (1,∞) and with respect to the weak-star
topology if p = ∞ of the functionals are sufficient for the existence of a minimising
point. Let us briefly recall this classical result.

Definition 8.2. Let V be a topological space. Then a function J : V → R∪{∞}
is called sequentially lower semi-continuous if we have that for every sequence
(uk)k∈N ⊂V converging to u ∈V

liminf
k→∞

J (uk)≥J (u).

Definition 8.3. Let (V,‖ ·‖) be a normed space. Then a function J : V →R∪{∞}
is called coercive if

lim
k→∞

J (uk) = ∞

for all sequences (uk)k∈N ⊂V with limk→∞ ‖uk‖= ∞.

Proposition 8.4. Let J : Lp(X ;Rn)→R∪{∞} be a coercive functional which is
not constantly equal to infinity and sequentially lower semi-continuous with respect
to the weak topology on Lp(X ;Rn) if p ∈ (1,∞) and with respect to the weak-star
topology if p = ∞. Then J has a minimising point.

8.3.1 Well-Posedness of Non-Local Functionals

To assure that a function f : X ×X×Rn×Rn→R defines a non-local functional
on Lp(X ;Rn), we need to impose some regularity conditions on the function f . The
measurability of the function f requested in Definition 8.1 guarantees that also the
composition f ◦ gu of f with the measurable function

gu : X×X → X×X×Rn×Rn, gu(x,y) = (x,y,u(x),u(y)),

(choosing the σ -algebra A of all Lebesgue measurable subsets on X and the Borel
σ -algebra Bn on Rn) is for all measurable functions u : X →Rn again measurable.

To satisfy the third assumption of a non-local functional (see Definition 8.1),
we have to guarantee that the integral over the negative part of f ◦ gu is for all
u ∈ Lp(X ;Rn) finite. We confine ourselves here with a sufficient condition for f
which is easy to deal with. In all our examples, the function f will be non-negative
anyway, so that this condition will not be a restriction at all.

Proposition 8.5. Let p ∈ [1,∞) and let f : X×X×Rn×Rn→R be a measurable
function satisfying the symmetry condition (8.2). If there exist a constant C ∈ (0,∞)
and non-negative functions γ ∈ L1(X×X) and λ ∈ L1(X) such that

f (x,y,w,z) ≥−(γ(x,y)+ λ (x)|z|p +λ (y)|w|p +C|w|p|z|p) (8.15)
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for almost all (x,y) ∈ X × X and all w,z ∈ Rn, then f defines a non-local
functional J p

f on Lp(X ;Rn).

Proof. A direct estimate shows that

∫

X

∫

X
f−(x,y,u(x),u(y))dxdy≤ ‖γ‖1 + 2‖λ‖1‖u‖p

p +C‖u‖2p
p < ∞

for every function u ∈ Lp(X ;Rn). The function f thus fulfils all three assump-
tion in the Definition 8.1 and therefore defines the non-local functional J p

f
on Lp(X ;Rn). �

For p = ∞, we get a similar result.

Proposition 8.6. Let f : X×X×Rn×Rn→R be a measurable function satisfying
the symmetry condition (8.2). If for every M ∈ (0,∞) there exists a non-negative
function γM ∈ L1(X×X) such that

f (x,y,w,z) ≥−γM(x,y) (8.16)

for almost all (x,y) ∈ X ×X and all w,z ∈ Rn with |w| ≤ M and |z| ≤ M, then f
defines a non-local functional J ∞

f on L∞(X ;Rn).

Proof. For an arbitrary function u ∈ L∞(X ;Rn), we choose M = ‖u‖∞ and find

∫

X

∫

X
f−(x,y,u(x),u(y))dxdy≤ ‖γM‖1 < ∞,

as desired. �

8.3.2 Sequential Lower Semi-Continuity of a Non-Local
Functional

In the following, we investigate conditions on a function f such that it defines a non-
local functional on Lp(X ;Rn), which is sequentially lower semi-continuous with
respect to the weak topology if p∈ [1,∞) and with respect to the weak-star topology
if p = ∞.

In the first step, we consider only lower semi-continuity with respect to the strong
topology, which can be guaranteed under very mild conditions. Indeed, a sufficient
criterion is already that f is lower semi-continuous with respect to the last two
variables, see [9].

Proposition 8.7. Let J p
f be a non-local functional on Lp(X ;Rn), p ∈ [1,∞], with

f additionally satisfying (8.15) if p ∈ [1,∞) and (8.16) if p = ∞.
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Then the functional J p
f is lower semi-continuous with respect to the strong

topology on Lp(X ;Rn) if the map

f(x,y) : Rn×Rn→R, f(x,y)(w,z) = f (x,y,w,z)

is for almost all (x,y) ∈ X×X lower semi-continuous.

Proof. Let (uk)k∈N ⊂ Lp(X ;Rn) be a sequence converging to u ∈ Lp(X ;Rn). We
choose a subsequence (uk�

)�∈N of (uk)k∈N such that

lim
�→∞

J p
f (uk�

) = liminf
k→∞

J p
f (uk)

holds and such that

lim
�→∞

uk�
(x) = u(x) for almost all x ∈ X .

Let now first p ∈ [1,∞). To be able to apply Fatou’s Lemma, we use the lower
bound (8.15) for f and consider instead of f the function

(x,y,w,z) �→ f (x,y,w,z)+ γ(x,y)+ λ (x)|z|p +λ (y)|w|p +C|w|p|z|p,

which is for almost all (x,y) ∈ X×X and all w,z ∈Rn non-negative. Then we find
with the lower semi-continuity of f(x,y) that

liminf
k→∞

J p
f (uk)+‖γ‖1 + 2‖λ‖1‖u‖p

p +C‖u‖2p
p

≥
∫

X

∫

X
liminf
�→∞

(
f (x,y,uk�

(x),uk�
(y))+ γ(x,y)+λ (x)|uk�

(y)|p

+λ (y)|uk�
(x)|p +C|uk�

(x)|p|uk�
(y)|p)dxdy

≥
∫

X

∫

X
f (x,y,u(x),u(y))dxdy+‖γ‖1 + 2‖λ‖1‖u‖p

p +C‖u‖2p
p .

Thus, liminfk→∞ J p
f (uk)≥J p

f (u), and we conclude that J p
f is sequentially lower

semi-continuous.
If p = ∞, we choose M = sup�∈N ‖uk�

‖∞ and get from condition (8.16) a non-
negative function γM ∈ L1(X×X) such that the function

(x,y) �→ f (x,y,uk�
(x),uk�

(y))+ γM(x,y)

is for almost all (x,y) ∈ X × X and all � ∈ N non-negative. Therefore, Fatou’s
Lemma implies as before that
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liminf
k→∞

J ∞
f (uk)+‖γM‖1

≥
∫

X

∫

X
liminf

�→∞
( f (x,y,uk�

(x),uk�
(y))+ γM(x,y))dxdy

≥
∫

X

∫

X
f (x,y,u(x),u(y))dxdy +‖γM‖1.

So, liminfk→∞ J ∞
f (uk)≥J ∞

f (u), and we conclude that J ∞
f is sequentially lower

semi-continuous. �

However, we need sequential lower semi-continuity of the functional J p
f with

respect to a weaker topology, since coercivity only guarantees that a minimising
sequence is bounded, but in the strong topology a bounded sequence does not need
to have a convergent subsequence and the existence of such a subsequence is one of
the essential steps in the proof of Proposition 8.4.

Similar to the classical case of local functionals, it is the convexity of the func-
tion f which provides us with the sequential lower semi-continuity of J p

f with
respect to the weak or weak-star topology, respectively, see [9]. Similar results al-
ready appeared in [2, 14, 16, 17], from where we also took the idea of this proof.

Proposition 8.8. Let J p
f be a non-local functional on Lp(X ;Rn), p ∈ [1,∞], with

f(x,y) being continuous for almost all (x,y) ∈ X ×X. We further assume that there
exist a constant C ∈R and functions γ ∈ L1(X×X) and λ ∈ L1(X) such that

| f (x,y,w,z)| ≤ γ(x,y)+ λ (x)|z|p + λ (y)|w|p +C|w|p|z|p (8.17)

for almost all (x,y) ∈ X ×X and all w,z ∈Rn if p ∈ [1,∞) and that there exists for
every M ∈ (0,∞) a function γM ∈ L1(X ×X) such that

| f (x,y,w,z)| ≤ γM(x,y) (8.18)

for almost all (x,y) ∈ X×X and all w,z ∈Rn with |w| ≤M and |z| ≤M if p = ∞.
Then, J p

f is sequentially lower semi-continuous with respect to the weak topol-
ogy on Lp(X ;Rn) if p ∈ [1,∞) and with respect to the weak-star topology if p = ∞
if the function

Φx,ψ : Rn→R, Φx,ψ (w) =
∫

X
f (x,y,w,ψ(y))dy (8.19)

is for every ψ ∈ Lp(X ;Rn) for almost all x ∈ X convex.

Proof. For the proof of this proposition, we will use the notion of Young measures.
For a short introduction to the theory of Young measures, we refer to Chap. 8 in [10].

Let (uk)k∈N ⊂ Lp(X ;Rn) be a sequence converging to u∈Lp(X ;Rn) with respect
to the weak topology on Lp(X ;Rn) if p ∈ [1,∞) and with respect to the weak-star
topology if p = ∞.
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In particular, the sequence (uk)k∈N is bounded in Lp(X ;Rn) and therefore, there
exists a subsequence (uk�

)�∈N of (uk)k∈N generating a Young measure ν . That is,
we have a map ν : X →M (Rn;R), x �→ νx, where M (Rn;R) denotes the set of all
signed Radon measures on Rn, fulfilling that νx is a probability measure for almost
all x ∈ X , and that for all φ ∈C0(Rn) the function X →R, x �→ ∫

Rn φ(w)dνx(w) is
measurable and

lim
�→∞

∫

X
h(x)φ(uk�

(x))dx =
∫

X
h(x)

∫

Rn
φ(w)dνx(w)dx (8.20)

for every h ∈ L1(X).
Since f(x,y) is lower semi-continuous for almost all (x,y) ∈ X × X and the

functions

X ×X → [0,∞), (x,y) �→ f−(x,y,uk�
(x),uk�

(y)), � ∈N,

are uniformly integrable because of the conditions (8.17) and (8.18), we get from
the fundamental theorem for Young measures (see e.g. Theorem 8.6 in [10]) that

liminf
�→∞

J p
f (uk�

)≥
∫

X

∫

X

∫

Rn

∫

Rn
f (x,y,w,z)dνy(z)dνx(w)dydx. (8.21)

Moreover, since f(x,y) is even continuous for almost all (x,y) ∈ X ×X and the
functions

X →R, y �→ f (x,y,w,uk�
(y)), � ∈N,

are again due to the conditions (8.17) and (8.18) for almost all x ∈ X and all
w ∈ Rn uniformly integrable, the fundamental theorem for Young measures addi-
tionally shows that

lim
�→∞

Φx,uk�
(w) = lim

�→∞

∫

X
f (x,y,w,uk�

(y))dy =
∫

X

∫

Rn
f (x,y,w,z)dνy(z)dy

for almost all x ∈ X and all w ∈Rn. Therefore, the convexity of Φx,uk�
for almost all

x ∈ X and all � ∈N implies that the function

Φ̃x,ν : Rn→R, Φ̃x,ν (w) =
∫

X

∫

Rn
f (x,y,w,z)dνy(z)dy (8.22)

is convex for almost all x ∈ X .
Using that νx is by definition of a Young measure for almost all x ∈ X a proba-

bility measure, we thus find with Jensen’s inequality that
∫

X

∫

Rn

∫

X

∫

Rn
f (x,y,w,z)dνy(z)dydνx(w)dx

≥
∫

X

∫

X

∫

Rn
f (x,y,

∫
Rn wdνx(w),z)dνy(z)dydx. (8.23)
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Since (uk�
)�∈N converges weakly in Lp(X ;Rn) if p ∈ [1,∞) and weakly-star in

L∞(X ;Rn) if p = ∞ to u, we get from (8.20) that

∫

Rn
wdνx(w) = u(x) for almost all x ∈ X .

Exploiting the symmetry of f and then using the convexity of Φy,u for almost all
y ∈ X , we can again apply Jensen’s inequality and get

∫

X

∫

Rn

∫

X
f (x,y,u(x),z)dxdνy(z)dy

≥
∫

X

∫

X
f (x,y,u(x),

∫
Rn zdνy(z))dxdy = J p

f (u). (8.24)

Putting the inequalities (8.21), (8.23) and (8.24) together, we finally find that

liminf
�→∞

J p
f (uk�

)≥J p
f (u),

proving the sequential lower semi-continuity of J p
f . �

In fact, the convexity of the function Φx,ψ for every ψ ∈ Lp(X ;Rn) for almost
all x ∈ X is even necessary for the sequential lower semi-continuity of the func-
tional J p

f . For a proof of this fact, we refer to [9].
We remark that the only argument in the proof of Proposition 8.8, where we need

the upper bound on f , is to show that the function Φ̃x,ν defined in (8.22) is for every
generated Young measure ν : X →M (Rn;R) for almost all x ∈ X convex. If we
thus guarantee the convexity of Φ̃x,ν by directly imposing convexity on the function
f(x,y), we can neglect the upper bound, see also [17].

Corollary 8.9. Let J p
f be a non-local functional on Lp(X ;Rn), p ∈ [1,∞], with f

additionally fulfilling (8.15) if p ∈ [1,∞) and (8.16) if p = ∞.
Then, J p

f is sequentially lower semi-continuous with respect to the weak topol-
ogy on Lp(X ;Rn) if p ∈ [1,∞) and with respect to the weak-star topology if p = ∞ if
the function f(x,y) is separately convex, i.e. if the function Rn→R, w �→ f(x,y)(w,z)
is for all z ∈Rn convex, for almost all (x,y) ∈ X×X.

In general, however, the separate convexity of f(x,y) is not necessary for the se-
quential lower semi-continuity of the functional J p

f . Though in the case n = 1
(under some additional regularity assumptions on f ), there exists for every se-
quentially lower semi-continuous non-local functional J p

f on Lp(X) a function

f̃ defining the same non-local functional J p
f as f such that f̃(x,y) is for almost all

(x,y) ∈ X×X separately convex, see again [9].
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8.4 Application of the Theory

We are now going to apply the results of the previous section to our examples of non-
local functionals and show under which conditions we can guarantee a minimising
point. For the derivative free model, we will additionally provide a new method to
numerically determine the minimising point.

8.4.1 A Derivative Free Model for the Sobolev and Total
Variation Seminorm

Let p ∈ (1,∞), q ∈ [1,∞), and X ⊂ Rm, m ∈ N, be a bounded, open set endowed
with the Lebesgue measure. We consider the functional

J p,q(u)= α
∫

X

∫

X

|u(x)−u(y)|q
|x− y|q ϕ(x−y)dxdy+

1
p

∫

X
|u(x)−u0(x)|p dx (8.25)

on Lp(X) for some initial function u0 ∈ Lp(X), some positive parameter α , and some
non-negative, radially symmetric, and radially decreasing function ϕ ∈ L1(Rm).

This functional can be written as the non-local functional J p
f on Lp(X) defined

by the function

f : X×X×R×R→R,

f (x,y,w,z) =

{
α |w−z|q
|x−y|q ϕ(x− y)+ |w−u0(x)|p+|z−u0(y)|p

2p|X | if x �= y,

0 if x = y,

where |X | denotes the Lebesgue measure of the set X . The function w �→ f (x,y,w,z)
is for almost all (x,y) ∈ X ×X and all z ∈ R convex. Thus, by Corollary 8.9, the
functional J p,q is sequentially lower semi-continuous with respect to the weak
topology on Lp(X).

Moreover, we have that

J p,q(u)≥ 1
p
‖u−u0‖p

p ≥
1
p

∣
∣‖u‖p−‖u0‖p

∣
∣p

and therefore, J p,q is also coercive. So, by Proposition 8.4, J p,q has a minimising
point which is unique due to the strict convexity of the second summand of J p,q.

In the following, we assume without loss of generality that u0 has mean zero.
Otherwise, we exchange u0 with u0− 1

|X |
∫

X u0 in J p,q and add the mean value
of u0 to any minimising point of the changed functional to get the respective min-
imising point of the original functional. Now we consider a sequence (ϕk)k∈N of
non-negative, radially symmetric and radially decreasing functions from L1(Rm)
with integral one and
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lim
k→∞

∫

{y∈Rm : |y|>δ}
ϕk(x) dx = 0

for all δ ∈ (0,∞). This sequence induces a sequence of functionals (J p,q
k )k∈N ,

where J p,q
k results from exchanging ϕ with ϕk in (8.25). The result from above

supplies us with a sequence of unique minimising points uk ∈ Lp(X) of J p,q
k .

In [1] (see also [19], where a very detailed proof is given), it is shown for the case
p = 2 and q ∈ [1,∞) that all members of the sequence (uk)k∈N lie also in Lq(X)
and that (uk)k∈N has a subsequence converging in the Lq norm to a limit function
u∗ ∈W 1,q(X) if q > 1 and to a limit function u∗ ∈ BV(X) if q = 1. This is done
using some general compactness results provided in [4]. These results carry easily
over to the case p ∈ (1,∞) treated here. Further, it can be shown that all functions
uk are also minimising points of J p,q

k over the space L1(X).
Let us denote the converging subsequence of (uk)k∈N again with (uk)k∈N . By

applying a result of A. Ponce [18], it can be shown that the sequence of functionals
J p,q

k converges in the sense of Γ -convergence with respect to the L1(X) topology
to the functional

I p,q : L1(X)→R∪{∞}, I p,q(u) = αKq,mRq(u)+
1
p

∫

X
|u(x)−u0(x)|p dx

with some constants Kq,m ∈ (0,∞), where the functional Rq : L1(X)→ R∪ {∞},
q ∈ [1,∞), is defined by

Rq(u) =

⎧
⎪⎪⎨

⎪⎪⎩

∫
X |∇u(x)|q dx if q > 1 and u ∈W 1,q(X),

|Du|(X) if q = 1 and u ∈ BV (X),

∞ otherwise.

It follows that the limit function u∗ of (uk)k∈N is a minimising point of the limit
functional I p,q over L1(X) and that u∗ also belongs to Lp(X)∩W 1,q(X) if q > 1
and to Lp(X)∩BV(X) if q = 1.

The results above show in particular that minimising points of the functionals

u �→ α
∫

X

∫

X

|u(x)−u(y)|
|x− y| ϕk(x− y)dxdy +

1
p

∫

X
|u(x)−u0(x)|p dx

are a suitable approximation to the minimising points of I p,q. We used this fact in
order to generate new numerical schemes for total variation regularisation.

8.4.1.1 Numerical Implementation

Let X = [0,1] and let (ϕ(1)
k )k∈N be the sequence of kernel functions defined by

ϕ(1)
k =

k
2

χ[− 1
k , 1

k ].
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Let further

R
(1)
k (u) =

∫

X

∫

X

|u(x)−u(y)|
|x− y| ϕ (1)

k (x− y)dxdy.

For the transition to the discrete setting, we approximate functions u ∈ L1(X) by
piecewise constant functions uk of the form

uk =
k∑

i=0

υiχ[ i
k+1 , i+1

k+1 ) (8.26)

(using some averaging process), where υ0, . . . ,υk ∈R.

Evaluating uk with R
(1)
k yields the standard total variation seminorm of uk (note

that K1,1 = 1):

R
(1)
k (uk) =

k∑

i=1

|υi−υi−1|= |Duk|.

Using instead of (ϕ (1)
k )k∈N the family of kernels (ϕ (2)

k )k∈N defined by

ϕ(2)
k =

k
4

χ[− 2
k , 2

k ]

yields

R
(2)
k (uk) = log(2)

k∑

i=1

|υi−υi−1|+ 1− log(2)
2

k−1∑

i=1

|υi+1−υi−1|.

We compare the two schemes from above by using them for the computation of
the total variation seminorm in an implementation of a standard steepest gradient
algorithm for one-dimensional total variation regularisation minimisation. The lat-
ter is applied to signal denoising. Following the work of Vogel [22], we discretise
the functional I 2,1 using the two different approximations of the total variation
seminorm from above.

Thereby, we identify the functions uk from above with the (k + 1)-tuples u =
(υ0, . . . ,υk)∈Rk+1 via υi = uk( i

k+1 ). The two discretisations of the functional I 2,1

read

Ts(u) =
1
2k

(u−u0)T (u−u0)+ αJs(u)

for s = 1,2, where Js(u) = R
(s)
k (uk) with uk as in (8.26) and where u0 is the (k+1)-

tuple corresponding to the function u0 ∈ Lp(X). For the numerical calculations, the
absolute value is everywhere replaced by the smooth approximation t �→

√
t2 + β 2

with some small positive constant β .
The minimisation algorithm is as follows for s ∈ {1,2} (see e.g., [22]): Choose

a stopping parameter ε > 0. Set μ = 1. Choose a starting point u1 ∈ Rk+1.
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Compute T μ = Ts (uμ) and pμ = ∇Ts (uμ). Conduct an (inexact) line search:
αμ = minα̃>0 Ts(uμ + α̃pμ). Update uμ by uμ+1 = uμ +α μpμ . If |T μ+1−T μ |< ε
stop. Otherwise jump to the computation of T μ+1 = Ts

(
uμ+1

)
and do another

iteration.
We denote the algorithm involving J1 as approximation to the total variation

seminorm by Algorithm 1 and the other one involving J2 as approximation to the
total variation seminorm by Algorithm 2.

For our first test, we take as data function u0 = χ( 1
2 ,1] and parameters k = 100,

α = 0.01 and β = 0.1. To the signal u0 we add uniformly distributed random noise
with amplitudes between−0.25 and 0.25. We start the algorithms with the functions
u1(x) = 1

2 for all x ∈ [0,1]. Our tests show that Algorithm 2 needs only 55% of the
amount of iterations that Algorithm 1 needs to terminate when ε is set to 10−6 but
is only 13% faster (the choice of ε guarantees a good reconstruction from the visual
point of view in both cases). Another test shows that given an amount of 500 iter-
ations the second algorithm gives a 35% better reconstruction than the first one but
is on the other hand slower by the same factor. If we allow μ to become very large,
both algorithms compute the same minimum in about the same amount of time.
However, Algorithm 2 needs significantly less iterations. If we double the noise, the
behaviour of the algorithms does not change. Figure 8.1 shows reconstructions after
500 iterations after the noise has been doubled.

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

algorithm1
original signal
noisy signal
algorithm 2

Fig. 8.1 First example after 500 iterations
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0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
algorithm1
original signal
signal with noise
algorithm 2

Fig. 8.2 Second example after 100 iterations

In the second test, our original signal u0 is a sine function on [0,1] that is de-
graded twice: first, for each i ∈ [0,9]∩N a (uniformly distributed) random number
ki between −0.5 and 0.5 is added to u0 on the interval [ i

10 , i+1
10 ) and second, uni-

formly distributed noise is added to the whole signal as in the example above. For
x ∈ [ i

10 , i+1
10 ) we thus have u0(x) = sin(2πx) + ki + n(x) where n(x) is the noise.

All parameters are chosen as in the first example. Here Algorithm 2 needs about
10% less iterations to reach the stopping conditions than Algorithm 1 and provides
slightly better results but is a little bit slower, too. After 500 iterations Algorithm 2
delivers a reconstruction that is only slightly better than that of Algorithm 1 and
needs a little bit more time as well. In the long run, Algorithm 2 seems to deliver
slightly superior reconstructions in comparison to Algorithm 1. Figure 8.2 shows
reconstructions after 100 iterations.

8.4.2 Neighbourhood Filters

Let us consider a non-local functional J p
f on Lp(X), where X is a bounded, open

subset of Rm endowed with the Lebesgue measure and p ∈ (1,∞), defined by a
function f of the form

f (x,y,w,z) = G(|w− z|2)k(x,y)+ |w−u0(x)|p + |z−u0(y)|p
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with some initial data u0 ∈ Lp(X), a Borel measurable function G : [0,∞)→ [0,∞),
and a measurable function k : X ×X → [0,∞), where we additionally assume that k
has the symmetry k(x,y) = k(y,x) for all x,y ∈ X . So,

J p
f (u) =

∫

X

∫

X
G(|u(x)−u(y)|2)k(x,y)dxdy + 2|X |

∫

X
|u(x)−u0(x)|p dx.

In particular, the regularisation functional (8.7) for a neighbourhood filter has such
a form.

As in the case of the derivative free model, the last term in the functional J p
f

enforces that J p
f is coercive, since

J p
f (u)≥ 2|X |‖u−u0‖p

p ≥ 2|X | ∣∣‖u‖p−‖u0‖p
∣
∣p.

To guarantee the existence of a minimising point of J p
f , it therefore suffices

according to Corollary 8.9 to choose the functions G and k such that f(x,y) is for
almost all (x,y) ∈ X ×X separately convex. Let us for simplicity assume that G ∈
C2(R). Then we get the following criterion for the separate convexity of f(x,y).

Lemma 8.10. Let G ∈C2(R), k : X ×X → [0,∞) be a measurable function which
is not almost everywhere zero, and p ∈ (1,∞). Then the function f(x,y) : R2 → R
given by

f(x,y)(w,z) = G(|w− z|2)k(x,y)+ |w−u0(x)|p + |z−u0(y)|p

is for every measurable function u0 : X →R for almost every (x,y) ∈ X ×X sepa-
rately convex if and only if G fulfils

2ξ G′′(ξ )+ G′(ξ )≥ 0 for all ξ ∈ [0,∞) (8.27)

if p �= 2 or esssupk = ∞, and

2ξ G′′(ξ )+ G′(ξ )+
1

esssup k
≥ 0 for all ξ ∈ [0,∞) (8.28)

if p = 2 and esssupk < ∞.

Proof. Taking two times the derivative of f(x,y) with respect to the variable w, we
get the condition

2k(x,y)(2|w− z|2G′′(|w− z|2)+ G′(|w− z|2))+ p(p−1)|w−u0(x)|p−2 ≥ 0

(8.29)

for all w,z ∈ R (and w �= u0(x) if p ∈ (1,2)) and every measurable function u0 :
X →R for the convexity of f(x,y) in the first variable. Since the last term of the sum
on the left hand side is equal to two if p = 2, the conditions (8.27) and (8.28) are
sufficient for f(x,y) to be separately convex for almost all (x,y) ∈ X×X .
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To show that the separate convexity of f(x,y) also implies the conditions (8.27)
and (8.28), we first choose for every C ∈ (0,esssupk) a set AC ⊂ X×X with positive
measure such that k(x,y) ≥C for all (x,y) ∈ AC. Then the inequality (8.29) implies
for all (x,y) ∈ AC, all w ∈R, and every measurable function u0 : X →R that

2ξ G′′(ξ )+ G′(ξ )≥− p(p−1)|w−u0(x)|p−2

2C
for all ξ ∈ [0,∞). (8.30)

Now, if p �= 2, we find for arbitrary w ∈ R and ε ∈ (0,∞) a constant func-
tion u0 : X →R such that |w− u0(x)|p−2 < ε for all x ∈ X . So, in the limit ε → 0,
inequality (8.30) gives us condition (8.27).

In the case p = 2, the inequality (8.30) simply reads

2ξ G′′(ξ )+ G′(ξ )≥− 1
C for all ξ ∈ [0,∞).

Thus, if esssupk = ∞, we let C tend to infinity and find again (8.27). If esssupk < ∞,
we let C tend to esssupk and end up with condition (8.28). �

8.4.2.1 Numerical Implementation

We consider the numerical minimisation of the non-local functional J : L2(X)→R

defined in (8.7) with G(ξ ) = 1− e−ξ/λ and k(x,y) = χ[−σk,σk](|x− y|). This func-
tional has thus three parameters λ ,α and σk.

Though the function G is not convex, the functions αG and k fulfil for sufficiently
small α ∈ (0,∞) the requirements of Lemma 8.10. Thus we are able to guarantee a
minimising point of the functional J if the regularisation parameter α ∈ (0,∞) is
small enough.

Proceeding as in the derivation of the fixed point iteration (8.6), we get the fixed
point iteration

u�(x) =
u0(x)+ α

∫
X g(|u�−1(x)−u�−1(y)|2)k(x,y)u�−1(y)dy

1 + α
∫

X g(|u�−1(x)−u�−1(y)|2)k(x,y)dy
, � ∈N,

for the minimisation of the functional J where g(ξ ) = G′(ξ ) = 1
λ e−ξ/λ . Initialis-

ing with u0, we iterate until ‖u�− u�−1‖2 < ε , where ε ∈R is a sufficiently small
parameter. Figure 8.3b, c illustrates the result of this procedure for two different
values of the parameter σk which defines the local character of the functional J .

8.4.3 Patch-Based Filtering

Finally, we investigate the more complicated functionals (8.14) introduced for
the variational description of the patch-based filtering method. Here, let X be a
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rectangular domain in Rm, p ∈ [2,∞), and J : Lp(X)→ R∪{∞} be a functional
of the form

J (u) = α
∫

X

∫

X
G(Hu(x,y))k(|x− y|)dxdy +

∫

X
|u(x)−u0(x)|p dx,

where G : [0,∞)→ [0,∞) is a Borel measurable function, k : [0,∞)→ [0,∞) is a
measurable function, u0 ∈ Lp(X), α ∈ (0,∞), and

Hu(x,y) =
∫

X
h(t)|u(x− t)−u(y− t)|2dt

with some non-negative function h ∈ L∞(X). Moreover, we consider u ∈ Lp(X) to
be periodically continued outside the domain X .

This type of functionals does not fit into our Definition 8.1 of a non-local func-
tional since the integrand does not only depend on two values of the function u, but
rather on all values of u in some neighbourhoods of two points. Nevertheless, we
may try to find a sufficient condition for the functions G, k, and h such that J has
a minimising point by requiring as before that J shall be coercive and sequentially
lower semi-continuous with respect to the weak topology on Lp(X).

The coercivity of J follows directly from the fact that J (u)≥ ‖u−u0‖p
p. And

for the sequential lower semi-continuity of J we get the following result.

Proposition 8.11. Let p ∈ [2,∞), h ∈ L∞(X) and k ∈ L∞(X ×X) be non-negative
functions, and G : [0,∞)→ [0,∞) be a monotonically increasing, convex function.
Then the functional

R : Lp(X)→R∪{∞}, R(u) =
∫

X

∫

X
G(Hu(x,y))k(x,y)dxdy

is sequentially lower semi-continuous with respect to the weak topology on Lp(X).

Proof. First, we remark that R is a convex functional. Indeed, the map Lp(X)→R,
u �→ Hu(x,y) is for all x,y ∈ X convex and so is the map Lp(X) → R, u �→
G(Hu(x,y)), since G is monotonically increasing and convex. Thus, by the mono-
tonicity and linearity of the integral, R is convex.

Moreover, the functional R is sequentially lower semi-continuous with respect
to the strong topology. To see this, let (u�)�∈N ⊂ Lp(X) be a sequence converging
strongly to u ∈ Lp(X). Then for every point (x,y) ∈ X ×X , the functions X → R,
t �→ u�(x− t)− u�(y− t) converge with �→ ∞ strongly to the function X → R,
t �→ u(x− t)−u(y− t). Since p≥ 2, we therefore have that

lim
�→∞

Hu�
(x,y) = Hu(x,y)
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for all x,y ∈ X . So, we get with Fatou’s Lemma

liminf
�→∞

R(u�)≥
∫

X

∫

X
liminf
�→∞

G(Hu�
(x,y))k(x,y)dxdy = R(u).

Since a convex functional on Lp(X) which is lower semi-continuous with respect
to the strong topology on Lp(X) is also sequentially lower semi-continuous with
respect to the weak topology, we can conclude that R is sequentially lower semi-
continuous with respect to the weak topology on Lp(X). �

Fig. 8.3 Results obtained with the fixed point iterations of the non-local functional and the patch-
based functional. The kernel used in the functionals are defined by G(ξ ) = 1−e−ξ/λ , k = χ[−σk,σk ]
and h = χ[−σh,σh ]. The balance α between the regularisation term and the data term has been
selected a posteriori. The initial image is a 243× 270 fraction of the famous “boat” image whose
intensities range from 0 to 255. The noisy version has been obtained by adding a Gaussian noise
of standard deviation ‖u0− f ‖2 = 10. Finally, the computation times tc obtained on a 8×3.40 GHz
computer are indicated in seconds
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8.4.3.1 Numerical Implementation

We consider the numerical minimisation of the non-local functional J : L2(X)→R

defined in (8.14) with G(ξ ) = 1− e−ξ/λ , k(x,y) = χ[−σk,σk](|x− y|), and h =
χ[−σh,σh ]. This functional has thus four parameters λ ,α,σh and σk.

Since the function G is not convex, we cannot apply Proposition 8.11 to guarantee
the existence of a minimising point of the functional J in this case. Nevertheless,
we are trying to minimise the functional numerically.

Similarly to the derivation of (8.13), we find the fixed point iteration

u�(x) =
u0(x)+ α

∫
X g̃(x,y,u�−1)k(x,y)u�−1(y)dy

1 + α
∫

X g̃(x,y,u�−1)k(x,y)dy
, � ∈N,

for the minimisation of J where g̃ is given by (8.10).
We remark that this expression corresponds to the block implementation of the

non-local means filter described in [6] if we consider a single iteration and let
α → ∞. As in the previous section, we initialise with u0 and iterate the fixed point
equation until ‖u� − u�−1‖2 < ε where ε ∈ R is a sufficiently small parameter.
Figure 8.3e, f illustrates the result of this procedure for two different values of the
parameter σk which defines the local character of the functional.
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Chapter 9
Opial-Type Theorems and the Common Fixed
Point Problem

Andrzej Cegielski and Yair Censor

Abstract The well-known Opial theorem says that an orbit of a nonexpansive and
asymptotically regular operator T having a fixed point and defined on a Hilbert
space converges weakly to a fixed point of T . In this paper, we consider recurrences
generated by a sequence of quasi-nonexpansive operators having a common fixed
point or by a sequence of extrapolations of an operator satisfying Opial’s demi-
closedness principle and having a fixed point. We give sufficient conditions for the
weak convergence of sequences defined by these recurrences to a fixed point of an
operator which is closely related to the sequence of operators. These results gen-
eralize in a natural way the classical Opial theorem. We give applications of these
generalizations to the common fixed point problem.

Keywords Common fixed point · Opial theorem · Cutter operators · Dos Santos
method · Quasi-nonexpansive operators

AMS 2010 Subject Classification: 46B45, 37C25, 65K15, 90C25

9.1 Introduction

Iterative methods for convex optimization problems in a Hilbert space H have
usually the form of the recurrence xk+1 = Ukxk, where x0 ∈ X , X ⊂H is closed
and convex, and Uk : X → X are operators related to the optimization problem at
hand. Some of the methods employ the same operator Uk = U in all iterations. If
we suppose that U is a nonexpansive and asymptotically regular operator having
a fixed point then it follows from the Opial theorem that a so generated sequence
{xk}∞

k=0 converges weakly to a fixed point of U (see [30, Theorem 1]). Many it-
erative methods employ, however, different operators Uk in successive iterations,
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usually assuming that all operatorsUk have a common fixed point. Examples of such
methods for solving the common fixed point problem include methods of succes-
sive projections (with various control sequences such as the almost cyclic control,
the repetitive control, etc.), methods of simultaneous projections (also known as
Cimmino-type methods), where the weights depend on the iteration index, surro-
gate projection methods, etc. Our main aim here is to give, in a unified manner,
sufficient conditions for weak convergence of sequences generated by the recur-
rence xk+1 = Ukxk and to apply the results to the common fixed point problem.

An interesting point related to our current investigation is a local acceleration
technique of Cimmino’s [18] well-known simultaneous projection method for lin-
ear equations. This technique is referred to in the literature as the Dos Santos (DS)
method, see Dos Santos [24] and Bauschke and Borwein [4, Sect. 7], although Dos
Santos attributes it, in the linear case, to De Pierro’s Ph.D. Thesis [23]. The method
essentially uses the line through each pair of consecutive Cimmino iterates and
chooses the point on this line which is closest to the solution x∗ of the linear system
Ax = b. The nice thing about it is that existence of the solution of the linear system
must be assumed, but the method does not need the solution point x∗ in order to
proceed with the locally accelerated DS iterative process. This approach was also
used by Appleby and Smolarski [3]. On the other hand, while trying to be as close as
possible to the solution point x∗ in each iteration, the method is not known to guar-
antee overall acceleration of the process. Therefore, we call it a local acceleration
technique. In all the above references the DS method works for convex feasibility
problems and one of our questions was whether it can also be extended to handle
common fixed point problems. If so, for which classes of operators?

Here, we answer this question by focusing on the class of operators T : H →H
that have the property that, for any x ∈H , the hyperplane through T x whose nor-
mal is x− Tx always “cuts” the space into two half-spaces one of which contains
the point x while the other contains the (assumed nonempty) fixed points set of T.
This explains the name cutter operators or cutters that we introduce here. These
operators themselves, introduced and investigated by Bauschke and Combettes
[5, Definition 2.2] and by Combettes [21], play an important role in optimization
and feasibility theory since many commonly used operators are actually cutters. We
define generalized relaxations and extrapolation of cutter operators and construct
extrapolated simultaneous cutter operators. For these simultaneous extrapolated
cutters we present convergence results of successive iteration processes for com-
mon fixed point problems which generalize the locally accelerated DS iterative
processes, thus, cover some of the earlier results about such methods and present
some new ones.

The paper is organized as follows. In Sect. 9.2 we give the definition of cutter
operators and bring some of their properties that will be used here. Section 9.3 con-
tains the Opial theorem and its generalization. Opial-type theorems for cutters are
presented in Sect. 9.4 and applications to the common fixed point problem, includ-
ing the connection to the DS method (Example 9.38), are studied in Sect. 9.5.
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9.2 Preliminaries

Let H be a real Hilbert space with an inner product 〈·, ·〉 and with the norm ‖ · ‖.
Given x,y ∈H we denote

H(x,y) := {u ∈H | 〈u− y,x− y〉 ≤ 0} . (9.1)

Definition 9.1. An operator T : H →H is called a cutter operator or, in short, a
cutter iff

FixT ⊆ H(x,T x) for all x ∈H , (9.2)

where FixT is the fixed points set of T , equivalently,

q ∈ FixT implies that 〈T x− x,Tx−q〉 ≤ 0 for all x ∈H . (9.3)

The class of cutter operators is denoted by T , i.e.,

T := {T : H →H | FixT ⊆ H(x,T x) for all x ∈H } . (9.4)

The class T of operators was introduced and investigated by Bauschke and Com-
bettes in [5, Definition 2.2] and by Combettes in [21]. Operators in this class were
named directed operators by Zaknoon [33] and further employed under this name
by Segal [32] and Censor and Segal [14–16]. Cegielski [12, Definition 2.1] named
and studied these operators as separating operators. Since both directed and sepa-
rating are key words of other, widely-used, mathematical entities we decide to use
from now on the term cutter operators. This name can be justified by the fact that the
bounding hyperplane of H(x,T x) “cuts” the space into two half-spaces, one which
contains the point x while the other contains the set FixT. We recall definitions and
results on cutter operators and their properties as they appear in [5, Proposition 2.6]
and [21], which are also sources for further references.

Bauschke and Combettes [5] showed the following:

(i) The set of all fixed points of a cutter operator assumed to be nonempty is closed
and convex because FixT = ∩x∈H H(x,T x).

(ii) Denoting by Id the identity operator,

if T ∈ T then Id+λ (T − Id) ∈ T for all λ ∈ [0,1]. (9.5)

This class of operators is fundamental because many common types of operators
arising in convex optimization belong to the class and because it allows a complete
characterization of Fejér-monotonicity [5, Proposition 2.7]. The localization of fixed
points is discussed by Goebel and Reich in [26, pp. 43–44]. In particular, it is shown
there that a firmly nonexpansive (FNE) operator, namely, an operator T : H →H
that fulfills

‖T x−Ty‖2 ≤ 〈T x−Ty,x− y〉 for all x,y ∈H , (9.6)
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which has a fixed point, satisfies (9.3) and is, therefore, a cutter operator. The class of
cutter operators, includes additionally, according to [5, Proposition 2.3], among oth-
ers, the resolvent of a maximal monotone operator, the orthogonal projections and
the subgradient projectors. Another family of cutters appeared recently in Censor
and Segal [15, Definition 2.7]. Note that every cutter operator belongs to the class
of operators F 0, defined by Crombez [22, p. 161],

F 0 := {T : H →H | ‖T x−q‖ ≤ ‖x−q‖ for all q ∈ FixT and x ∈H } , (9.7)

whose elements are called elsewhere quasi-nonexpansive or paracontracting
operators.

Definition 9.2. Let T : H → H and let λ ∈ (0,2). We call the operator Tλ :=
Id+λ (T − Id) a relaxation of T .

Definition 9.3. We say that an operator T : H → H with FixT �= /0 is strictly
quasi-nonexpansive if

‖Tx− z‖< ‖x− z‖ (9.8)

for all x /∈ FixT and for all z ∈ FixT . We say that T is α-strongly quasi-
nonexpansive, where α > 0, or, in short, strongly quasi-nonexpansive if

‖Tx− z‖2 ≤ ‖x− z‖2−α‖Tx− x‖2 (9.9)

for all x ∈H and for all z ∈ FixT .

We have the following result from [21, Proposition 2.3 (i) and (ii)].

Lemma 9.4. Let X ⊂H be a closed and convex set and U : X→ X be an operator
having a fixed point.

(i) U is a cutter if and only if

〈z− x,Ux− x〉 ≥ ‖Ux− x‖2 (9.10)

for all x ∈ X and for all z ∈ FixU.

(ii) Let λ ∈ (0,2). If U is a cutter, then its relaxation Uλ is 2−λ
λ -strongly quasi-

nonexpansive.

One can show that the implication converse to (ii) is also true.

Definition 9.5. We say that an operator T : H →H is demiclosed at 0 if for any
weakly converging sequence {xk}∞

k=0, xk ⇀ y ∈ H as k → ∞, with Txk → 0 as
k→ ∞, we have Ty = 0.

It is well-known that for a nonexpansive operator T : H →H , the operator
T − Id is demiclosed at 0, see Opial [30, Lemma 2].
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Definition 9.6. We say that an operator T : H →H is asymptotically regular if

‖T k+1x−T kx‖→ 0, as k→ ∞, (9.11)

for all x ∈H .

9.3 The Opial Theorem and Its Generalization

Opial proved the following theorem [30, Theorem 1] which is widely applied in
processes described by the recurrence

xk+1 = Uxk, (9.12)

where x0 ∈ X is arbitrary, U : X → X is a nonexpansive operator and X ⊂H is a
closed and convex subset of a Hilbert space H . Many iterative methods for convex
optimization problems have the form (9.12), where the operator U is defined in a
natural way by the problem under consideration.

Theorem 9.7. Let X ⊂H be a nonempty, closed and convex subset of a Hilbert
space H and let U : X→ X be a nonexpansive and asymptotically regular operator
with FixU �= /0. Then, for any arbitrary x ∈ X, the sequence {Ukx}∞

k=0 converges
weakly to a fixed point z∗ of U.

An example of a nonexpansive and asymptotically regular operator is a strict
relaxation of a firmly nonexpansive operator or, equivalently, an averaged operator.
Therefore, the Krasnoselskii–Mann theorem (see, e.g., [9, Theorem 2.1]) follows
from the Opial theorem.

Several optimization methods for convex optimization problems have, however,
the form

xk+1 = Ukxk, (9.13)

where x0 ∈ X is arbitrary and {Uk}∞
k=0, Uk : X → X , is a sequence of operators. The

Opial theorem cannot be applied to such methods, even if we suppose that Uk are
averaged operators having a common fixed point. Our aim is to give sufficient con-
ditions for the weak convergence of sequences generated by the recurrence (9.13)
to a common fixed point of the operators {Uk}∞

k=0. Before formulating our main re-
sults we extend the definition of an asymptotically regular operator to a sequence of
operators.

Definition 9.8. We say that a sequence of operators {Uk}∞
k=0, Uk : X→ X , is asymp-

totically regular, if for any x ∈ X

lim
k→∞
‖UkUk−1 . . .U0x−Uk−1 . . .U0x‖= 0, (9.14)



160 A. Cegielski and Y. Censor

or, equivalently,

lim
k→∞
‖Ukxk− xk‖= 0, (9.15)

where the sequence {xk}∞
k=0 is generated by the recurrence (9.13) with x0 = x.

It is clear that an operator U : X → X is asymptotically regular, if the constant
sequence of operators Uk = U is asymptotically regular. A weaker version of the
following theorem was proved in [11, Theorem 1].

Theorem 9.9. Let X ⊂H be nonempty, closed and convex, let S : X →H be an
operator having a fixed point and such that S− Id is demiclosed at 0. Let {Uk}∞

k=0
be an asymptotically regular sequence of quasi-nonexpansive operators Uk : X →
X such that

⋂∞
k=0 FixUk ⊃ FixS. Let {xk}∞

k=0 be any sequence generated by the
recurrence (9.13). Under these conditions it is true that:

(i) If the sequence of operators {Uk}∞
k=0 has the property

lim
k→∞
‖Ukxk− xk‖= 0 =⇒ lim

k→∞
‖Sxk− xk‖= 0 (9.16)

then {xk}∞
k=0 converges weakly to a point z∗ ∈ FixS.

(ii) If H is finite-dimensional and the sequence of operators {Uk}∞
k=0 has the

property

lim
k→∞
‖Ukxk− xk‖= 0 =⇒ liminf

k→∞
‖Sxk− xk‖= 0 (9.17)

then {xk}∞
k=0 converges to a point z∗ ∈ FixS.

Proof. Let x ∈ X , z ∈ FixS and let the sequence {xk}∞
k=0 be generated by the recur-

rence (9.13). Since Uk is quasi-nonexpansive and FixUk ⊃ FixS, we have

‖xk+1− z‖= ‖Ukxk− z‖ ≤ ‖xk− z‖, for all k≥ 0. (9.18)

Therefore, {xk}∞
k=0 is Fejér-monotone with respect to FixS, thus bounded.

(i) Suppose that condition (9.16) is satisfied. By the asymptotic regularity of the se-
quence {Uk}∞

k=0 we have limk→∞ ‖Ukxk−xk‖= 0, consequently, limk→∞ ‖Sxk−
xk‖ = 0. Let x∗ ∈ X be a weak cluster point of {xk}∞

k=0 and let {xnk}∞
k=0 ⊂

{xk}∞
k=0 be a subsequence converging weakly to x∗. Then limk→∞ ‖Sxnk−xnk‖=

0 and x∗ ∈ FixS, by the demiclosedness of S− Id at 0. Since x∗ is an arbitrary
weak cluster point of {xk}∞

k=0 and {xk}∞
k=0 is Fejér-monotone with respect to

FixS, the weak convergence of the whole sequence {xk}∞
k=0 to x∗ follows from

[7, Lemma 6] (see also [4, Theorem 2.16 (ii)]).
(ii) Let H be finite-dimensional and suppose that condition (9.17) is satisfied. By

the asymptotic regularity of {Uk}∞
k=0, we have limk→∞ ‖Ukxk− xk‖ = 0, conse-

quently, limk→∞ ‖Sxnk − xnk‖= 0 for a subsequence {xnk}∞
k=0 ⊂ {xk}∞

k=0. Since
{xnk}∞

k=0 is bounded, a subsequence {xmnk }∞
k=0 ⊂ {xnk}∞

k=0 which converges
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to a point x∗ ∈ X exists. Since S− Id is closed at 0, we have x∗ ∈ FixS.
The convergence of the whole sequence {xk}∞

k=0 to x∗ follows now from
[4, Theorem 2.16 (v)]. �

Note that if U : X → X is a nonexpansive operator having a fixed point, then U is
quasi-nonexpansive and U − Id is demiclosed at 0 (see [30, Lemma 2]). Therefore,
Theorem 9.9 (i) indeed generalizes the Opial theorem.

Remark 9.10. It follows from the proof that Theorem 9.9 remains true if we replace
the assumption that {Uk}∞

k=0 is asymptotically regular and the assumption (9.16)
in case (i) or (9.17) in case (ii) by a weaker assumption limk→∞ ‖Sxk− xk‖ = 0 in
case (i) or liminfk→∞ ‖Sxk− xk‖= 0 in case (ii), respectively. The formulation pre-
sented in Theorem 9.9 is preferred, because in applications, the operators Uk are
often relaxed cutters with relaxation parameters guaranteeing the asymptotic reg-
ularity of {Uk}∞

k=0. Furthermore, various practical algorithms which apply relaxed
cutters have properties which yield (9.16), (9.17) or some related conditions (see the
examples presented in Sect. 9.5).

9.4 Opial-Type Theorems for Cutters

In this section, we focus our attention on cutters. We first recall some properties of
sequences of real numbers. Let αk,βk ≥ 0, for all k ≥ 0, and let

∑∞
k=0 αkβk < +∞.

Then

liminf
k→∞

αk > 0 =⇒
∞∑

k=0

βk < +∞ (9.19)

or, equivalently,
∞∑

k=0

βk = +∞ =⇒ liminf
k→∞

αk = 0. (9.20)

If λk ∈ [0,2] then the following equivalence holds

liminf
k→∞

λk(2−λk) > 0⇐⇒
(

liminf
k→∞

λk > 0 and limsup
k→∞

λk < 2

)
. (9.21)

Lemma 9.11. Let the sequence {xk}∞
k=0 ⊂ X be generated by the recurrence

xk+1 = PX

(
xk +λk

(
Tkxk− xk

))
, (9.22)

where PX is the metric projection onto X, λk ∈ [0,2] and {Tk}∞
k=0 is a sequence of

cutters, Tk : X →H , with
∞⋂

k=0

FixTk �= /0. (9.23)
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Then

‖xk+1− z‖2 ≤ ‖xk− z‖2−λk(2−λk)‖Tkxk− xk‖2 (9.24)

for all z ∈⋂∞
k=0 FixTk. Consequently,

‖xk+1− z‖2 ≤ ‖x0− z‖2−
k∑

l=0

λl(2−λl)‖Tlx
l− xl‖2 (9.25)

and
∞∑

k=0

λk(2−λk)‖Tkxk− xk‖2 ≤ d2

(

x0,

∞⋂

k=0

FixTk

)

. (9.26)

Moreover,

(i) If liminfk→∞ λk(2−λk) > 0 then
∑∞

k=0 ‖Tkxk− xk‖2 < +∞,
(ii) If

∑∞
k=0 λk(2−λk) = +∞ then liminfk→∞ ‖Tkxk− xk‖= 0.

Proof. Let z ∈⋂∞
k=0 FixTk. It is clear that z ∈ X , so that PX z = z. By the nonexpan-

sivity of the metric projection PX and by Lemma 9.4 (i), we have

‖xk+1− z‖2 = ‖PX

(
xk +λk

(
Tkxk− xk

))
− z‖2

= ‖PX

(
xk +λk

(
Tkxk− xk

))
−PXz‖2

≤ ‖xk +λk

(
Tkxk− xk

)
− z‖2

= ‖xk− z‖2 +λ 2
k ‖Tkxk− xk‖2−2λk

〈
z− x,Tkxk− xk〉

≤ ‖xk− z‖2 +λ 2
k ‖Tkxk− xk‖2−2λk‖Tkxk− xk‖2, (9.27)

which yields (9.24). Iterating this inequality k times we obtain (9.25). Since ‖xk+1−
z‖2 ≥ 0, we obtain (9.26).

(i) Suppose that liminfk→∞ λk(2− λk) > 0. If we set αk = λk(2− λk) and βk =
‖Tkxk− xk‖2 in (9.19) we obtain

∑∞
k=0 ‖Tkxk− xk‖2 < +∞.

(ii) Suppose that
∑∞

k=0 λk(2− λk) = +∞. If we set βk = λk(2− λk) and αk =
‖Tkxk− xk‖2 in (9.20) we obtain liminfk→∞ ‖Tkxk− xk‖= 0. �

Proposition 9.12. Let S : X→H be an operator having a fixed point and such that
S− Id is demiclosed at 0, let x0 ∈ X and let the sequence {xk}∞

k=0 ⊂ X be generated
by the recurrence (9.22), where λk ∈ [0,2] for all k ≥ 0, and {Tk}∞

k=0, Tk : X →H ,
is a sequence of cutters with

⋂∞
k=0 FixTk ⊃ FixS.
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(i) If liminfk→∞ λk(2−λk) > 0 and

∞∑

k=0

‖Tkxk− xk‖2 < +∞ =⇒ lim
k→∞
‖Sxk− xk‖= 0, (9.28)

then {xk}∞
k=0 converges weakly to a fixed point of S.

(ii) If liminfk→∞ λk(2−λk) > 0, H is finite-dimensional and

∞∑

k=0

‖Tkxk− xk‖2 < +∞ =⇒ liminf
k→∞

‖Sxk− xk‖= 0, (9.29)

then {xk}∞
k=0 converges to a fixed point of S.

(iii) If
∑∞

k=0 λk(2−λk) = +∞ and

liminf
k→∞

‖Tkxk− xk‖= 0 =⇒ lim
k→∞
‖Sxk− xk‖= 0 (9.30)

then {xk}∞
k=0 converges weakly to a fixed point of S.

(iv) If
∑∞

k=0 λk(2−λk) = +∞, H is finite-dimensional and

liminf
k→∞

‖Tkxk− xk‖= 0 =⇒ liminf
k→∞

‖Sxk− xk‖= 0 (9.31)

then {xk}∞
k=0 converges to a fixed point of S.

Proof. Let C =
⋂∞

k=0 FixTk and z∈C. Denote Uk = PX(Id+λk(Tk− Id)). By Lemma
9.11 the sequence {xk}∞

k=0 is Fejér-monotone with respect to C, thus bounded. Sup-
pose that liminfk→∞ λk(2−λk) > 0.

(i) Lemma 9.11 (i) and (9.28) yield limk→∞ ‖Sxk − xk‖ = 0. Let x∗ ∈ X be a
weak cluster point of {xk}∞

k=0. By the demiclosedness of S − Id we have
x∗ ∈ FixS. The weak convergence of {xk}∞

k=0 to x∗ follows now from
[4, Theorem 2.16 (ii)].

(ii) Suppose that H is finite-dimensional. Lemma 9.11 (i) and (9.29) yield
limk→∞ ‖Sxnk−xnk‖= 0 for a subsequence {xnk}∞

k=0⊂{xk}∞
k=0. Let {xmnk }∞

k=0⊂
{xnk}∞

k=0 be a subsequence which converges to a point x∗ ∈ X . By the closed-
ness of S− Id we have x∗ ∈ FixS. The convergence of {xk}∞

k=0 to x∗ follows
now from [4, Theorem 2.16 (v)].

If
∑∞

k=0 λk(2−λk) = +∞ then (iii) and (iv) can be proved similarly to (i) and (ii)
by application of Lemma 9.11 (ii) and (9.30), (9.31), respectively. �

Special cases of Proposition 9.12 were proved in [10, Corollary 3.4.F], where
X = R

n and S = PCi , i = 1,2, ...,m, with
⋂m

i=1 Ci ⊂
⋂∞

k=0 FixTk. Other results which
are closely related to Proposition 9.12 can be found in [31, Theorem 2], where,
instead of assumptions (9.28)–(9.31), there appears

liminf
k→∞

‖Tkxk− xk‖= 0 =⇒ liminf
k→∞

‖xk−PFxk‖= 0, (9.32)
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where F =
⋂∞

k=0 FixTk. As shown in the next section, the assumptions (9.28)–(9.31)
are easier to verify than (9.32).

Remark 9.13. (a) If {ak}∞
k=0 ⊂ R+ then

∑∞
k=0 a2

k < +∞ implies limk→∞ ak = 0.
Therefore, if we replace

∑∞
k=0 ‖Tkxk − xk‖2 < +∞ by limk→∞ ‖Tkxk − xk‖ = 0 in

Proposition 9.12 (i), we obtain the following weaker result:
(i’) If liminfk λk(2−λk) > 0 and

lim
k→∞
‖Tkxk− xk‖= 0 =⇒ lim

k→∞
‖Sxk− xk‖= 0 (9.33)

then {xk}∞
k=0 converges weakly to a fixed point of S.

(b) Since relaxed cutters are quasi-nonexpansive (see, [5, equivalence (v)⇔(vi)
in Proposition 2.3]), iteration (9.22) with X = H is a special case of (9.13),
where Uk = Id+λk(Tk− Id), k≥ 0. Then inequality (9.24) for λk ∈ (0,2] can be
written as

‖xk+1− z‖2 ≤ ‖xk− z‖2− 2−λk

λk
‖Ukxk− xk‖2. (9.34)

This shows that result (i’) also follows from Theorem 9.9 (i). Indeed, by (9.34)
{Uk}∞

k=0 is asymptotically regular. If (9.33) holds then (9.16) holds, because of
the equivalence limk→∞ ‖Tkxk− xk‖ = 0⇐⇒ limk→∞ ‖Ukxk− xk‖ = 0 which is
valid if liminfk λk > 0. Now Theorem 9.9 (i) yields the weak convergence of
{xk}∞

k=0 to a fixed point of S.
(c) We also see that (9.29) is weaker than (9.28), and (9.31) is weaker than (9.30),

i.e., in the finite-dimensional case convergence holds under weaker assumptions
than in the infinite-dimensional one.

Corollary 9.14. Let T : X →H be a nonexpansive cutter (e.g., a firmly nonex-
pansive operator having a fixed point), let x0 ∈ X and let a sequence {xk}∞

k=0 be
generated by the recurrence

xk+1 = PX

(
xk + λk

(
T xk− xk

))
, (9.35)

where λk ∈ [0,2].

(i) If liminfk→∞ λk(2− λk) > 0, then {xk}∞
k=0 converges weakly to a fixed point

of T .
(ii) If H is finite-dimensional and

∑∞
k=0 λk(2−λk) = +∞, then {xk}∞

k=0 converges
to a fixed point of T .

Proof. Denote Tk = T , for all k ≥ 0, and S = T. Since S is nonexpansive, S− Id
is demiclosed at 0 (see [30, Lemma 2]). Implications (9.28) and (9.31) are ob-
vious. Therefore, (i) follows from Proposition 9.12 (i), while (ii) follows from
Proposition 9.12 (iv). �
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Remark 9.15. Since A firmly nonexpansive operator having a fixed point is a cutter
and an averaged operator is relaxed firmly nonexpansive, the Krasnoselskii–Mann
theorem (see, e.g., [9, Theorem 2.1]) follows from Corollary 9.14 (i) by setting
X = H and λk = λ ∈ (0,2) for k≥ 0.

Before formulating our next result, we introduce the notion of a generalized
relaxation of an operator (compare [12, Sect. 1]).

Definition 9.16. Let T : X →H , λ ∈ [0,2] and let σ : X → (0,+∞). The operator
Tσ ,λ : X →H ,

Tσ ,λ x := x + λ σ(x)(Tx− x) (9.36)

is called the generalized relaxation of T , the value λ is called the relaxation param-
eter and σ is called the step-size function. If σ(x)≥ 1 for all x∈ X , then the operator
Tσ ,λ is called an extrapolation of Tλ .

Definition 9.17. We say that an operator T : X→H having a fixed point is oriented
if, for all x /∈ FixT ,

δ (x) := inf

{ 〈z− x,Tx− x〉
‖T x− x‖2 | z ∈ FixT

}
> 0. (9.37)

If δ (x)≥ α > 0 for all x /∈ FixT , then we call the operator T α-strongly oriented or
strongly oriented.

Lemma 9.4 (i) means that a cutter is 1-strongly oriented. Denoting Tσ = Tσ ,1 for
an operator T : X →H and a step-size function σ : X → (0,+∞), it is clear that
Tσ ,λ is a λ -relaxation of Tσ , i.e., Tσ ,λ = (Tσ )λ for any λ ∈ [0,2].

Lemma 9.18. Let T : X→H be an oriented operator with FixT �= /0. If a step-size
function σ : X → (0,+∞) satisfies the inequality

σ(x)≤ 〈z− x,Tx− x〉
‖Tx− x‖2 (9.38)

for all x /∈ FixT and for all z ∈ FixT, then Tσ is a cutter.

Proof. Let x /∈ FixT and z ∈ FixT . Let σ : X → (0,+∞) be a step-size function
satisfying (9.38). The existence of σ follows from the assumption that T is oriented.
By inequality (9.38) we have

〈z−Tσ x,x−Tσ x〉= 〈z− x,x−Tσx〉+‖x−Tσx‖2

=−〈z− x,σ(x)(Tx− x)〉+‖x−Tσx‖2

≤−‖σ(x)(Tx− x)‖2 +‖x−Tσx‖2 = 0, (9.39)

i.e., Tσ is a cutter. �
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Corollary 9.19. Let U : X →H be a strongly oriented operator having a fixed
point and such that U− Id is demiclosed at 0, and let the sequence {xk}∞

k=0 ⊂ X be
generated by the recurrence

xk+1 = PXUσk ,λk
(xk), (9.40)

where x0 ∈ X, liminfk→∞ λk(2− λk) > 0 and let the step-size functions σk : X →
(0,+∞) satisfy the condition

α ≤ σk(x)≤ 〈z− x,Ux− x〉
‖Ux− x‖2 (9.41)

for all x /∈ FixU, for all z ∈ FixU and for some α > 0. Then {xk}∞
k=0 converges

weakly to a fixed point of U.

Proof. Let z ∈ FixU . The existence of step-size functions σk : X→ (0,+∞) satisfy-
ing (9.41) for all x /∈ FixU and for some α > 0, follows from the assumption that U
is strongly oriented. It is clear that the recurrence (9.40) is a special case of (9.22)
with Tk = Uσk = Uσk,1. By Lemma 9.18 the operator Tk is a cutter. We have

‖Tkxk− xk‖= ‖Uσk xk− xk‖= σk(xk)‖Uxk− xk‖ ≥ α‖Uxk− xk‖. (9.42)

Therefore,

lim
k→∞
‖Tkxk− xk‖= 0 =⇒ lim

k→∞
‖Uxk− xk‖, (9.43)

which is stronger than condition (9.28) with S = U (see Remark 9.13). The weak
convergence of {xk}∞

k=0 to a fixed point of U follows now from Proposition 9.12 (i),
because FixUσk = FixU for all k ≥ 0. �

9.5 Applications to the Common Fixed Point Problem

Let U = {Ui}i∈I , where I := {1,2, ...,m}, be a finite family of cutters Ui : H →H ,
having a common fixed point. The common fixed point problem is to find x∗ ∈⋂

i∈I FixUi. In this section, we study the convergence properties of sequences gen-
erated by the recurrence

xk+1 = xk +λkσk(xk)

⎛

⎝
∑

i∈Jk

wk
i (x

k)V k
i xk− xk

⎞

⎠ , (9.44)

where λk ∈ [0,2], σk : H → (0,+∞) are step-size functions, V k = {V k
i }i∈Jk is a fam-

ily of cutters V k
i : H →H , i ∈ Jk = {1,2, ...,mk} with the property

⋂
i∈Jk

FixV k
i ⊃⋂

i∈I FixUi and wk : H → Δmk are weight functions

wk(x) = (wk
1(x),w

k
2(x), ...,w

k
mk

(x)) (9.45)
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(the subset Δm denotes here the standard simplex, i.e., Δm = {u ∈ R
m : ui ≥ 0, i =

1,2, ...,m, and
∑m

i=1 ui = 1}). If σk(x) = 1 for all x ∈H and for all k ≥ 0, then the
method defined by the recurrence (9.44) takes the form

xk+1 = xk + λk

⎛

⎝
∑

i∈Jk

wk
i (x

k)V k
i xk− xk

⎞

⎠ , (9.46)

and is called the simultaneous cutter method. If σk(x) ≥ 1 for all x ∈H and for
all k≥ 0, then method (9.44) is called the extrapolated simultaneous cutter method.
The recurrence (9.44) can be written in the form

xk+1 = xk + λkσk(xk)
(

V kxk− xk
)

, (9.47)

where V k =
∑

i∈Jk
wk

i V
k
i , or in the form

xk+1 = V k
σk,λk

xk. (9.48)

Remark 9.20. The sequence of weight functions {wk}∞
k=0 induces a control se-

quence. This notion is usually applied in the literature if the values of wk are
extremal points of a standard simplex (see, e.g., [13, Definition 3.2] or [17,
Definition 5.1.1]). One can recognize special cases of a sequence of weight func-
tions wk as known control sequences. In particular, the weight functions {wk}∞

k=0
can be constant, i.e., wk(x) = (wk

1,w
k
2, ...,w

k
mk

) ∈ Δmk for all x ∈H , k≥ 0. A simple
example of such a control sequence is the cyclic control (see [27, Equality (2)],
[13, (3.3)] or [17, Definition 5.1.1]) The sequence {wk}∞

k=0 can also be a constant
sequence, i.e., Jk = J and wk = w : H → Δm for all k≥ 0. A simple example of such
a control is the remotest set control (see [27, Equality (3’)] or [13, (3.5)] or [17,
Definition 5.1.1]). Sequences of weights depending on x ∈H enable, however, a
more general model and demonstrate the importance of assumptions on the weight
functions control.

Definition 9.21. Let Vi : H →H , i ∈ J = {1,2, ..., l}. We say that a weight func-
tion w : H → Δl is appropriate with respect to the family V = {Vi}i∈J or, shortly,
appropriate if for any x /∈⋂i∈J FixVi there exists a j ∈ J such that

wj(x)‖Vjx− x‖ �= 0. (9.49)

Lemma 9.22. Let Vi : H →H , i ∈ J = {1,2, ..., l}, be cutters having a common
fixed point and let V =

∑
i∈J wiVi, where w : H → Δl is appropriate with respect to

the family V = {Vi}i∈J . Then

(i) FixV =
⋂

i∈J FixVi,

(ii) V is a cutter, consequently, for all λ ∈ (0,2), the operator Vλ is 2−λ
λ -strongly

quasi-nonexpansive,
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(iii) The following inequalities hold

‖Vλ x− z‖2 ≤ ‖x− z‖2−λ (2−λ )
∑

i∈J

wi(x)‖Vix− x‖2 (9.50)

≤ ‖x− z‖2−λ (2−λ )‖Vx− x‖2 (9.51)

for all λ ∈ [0,2], x ∈H and z ∈ FixV.

Proof. (i) The inclusion
⋂

i∈J FixVi ⊂ FixV is obvious. We show that FixV ⊂⋂
i∈J FixVi. If

⋂
i∈J FixVi = H then the inclusion is clear. Otherwise, sup-

pose that x ∈ FixV , x /∈ ⋂i∈J FixVi and that z ∈ ⋂i∈J FixVi. Since a cutter is
strongly quasi-nonexpansive (see Lemma 9.4 (ii)) we have ‖Vix− z‖< ‖x− z‖
for any i ∈ J such that x /∈ FixVi. The convexity of the norm, the strict quasi-
nonexpansivity of Vi and the fact that the weight function w is appropriate yield

‖Vx− z‖= ‖
∑

i∈J

wi(x)(Vix− z)‖ ≤
∑

i∈J

wi(x)‖Vix− z‖

<
∑

i∈J

wi(x)‖x− z‖= ‖x− z‖. (9.52)

We get a contradiction, which shows that FixV ⊂⋂i∈J FixVi.

(ii) Let x ∈H and z ∈ FixV . It follows from (i) that z ∈ ⋂i∈J FixVi. By Lemma
9.4 (i) and by the convexity of ‖ · ‖2, we have

〈Vx− x,z− x〉=
∑

i∈J

wi(x)〈Vix− x,z− x〉

≥
∑

i∈J

wi(x)‖Vix− x‖2

≥ ‖
∑

i∈J

wi(x)Vix− x‖2

= ‖Vx− x‖2. (9.53)

Applying again Lemma 9.4 (i) we deduce that V is a cutter. By Lemma 9.4 (ii)

the operator Vλ is 2−λ
λ -strongly quasi-nonexpansive for any λ ∈ (0,2).

(iii) Let λ ∈ [0,2], x ∈H and z ∈ FixV . The convexity of ‖ ·‖2 and Lemma 9.4 (i)
yield

‖Vλ x− z‖2 = ‖x + λ
∑

i∈J

wi(x)(Vix− x)− z‖2

= ‖x− z‖2+λ 2‖
∑

i∈J

wi(x)(Vix− x)‖2−2λ
∑

i∈J

wi(x)〈z− x,Vix− x〉



9 Opial-Type Theorems and the Common Fixed Point Problem 169

≤ ‖x− z‖2 + λ 2
∑

i∈J

wi(x)‖Vix− x‖2−2λ
∑

i∈J

wi(x)‖Vix− x‖2

= ‖x− z‖2−λ (2−λ )
∑

i∈J

wi(x)‖Vix− x‖2, (9.54)

i.e., the inequality (9.50) holds. Inequality (9.51) follows from the convexity of
the function ‖ · ‖2. �

Definition 9.23. Let V = {Vi}i∈J be a finite family of operators Vi : H → H ,
i ∈ J, and let β ∈ (0,1] be a constant. We say that a weight function w : H → Δ|J|
is β -regular with respect to the family of cutters U = {Ui}i∈I , or, shortly, regular if
for any x ∈H there exists a j ∈ J such that

w j(x)‖Vjx− x‖2 ≥ β max
{‖Uix− x‖2 | i ∈ I

}
. (9.55)

If
⋂

i∈J FixVi ⊃
⋂

i∈I FixUi then a weight function which is regular with respect
to the family U = {Ui}i∈I is appropriate with respect to the family V = {Vi}i∈J .

Example 9.24. Let V = U and let I(x) = {i ∈ I | x /∈ FixUi} and let m(x) = |I(x)|
be the cardinality of I(x), for x ∈H . The following weight functions w : H → Δm,
where w(x) = (w1(x), ...,wm(x)), are regular:

(a) Positive constant weights, i.e.,

w(x) = w ∈ riΔm (9.56)

for all x ∈H , where riΔm = {w ∈ R
m | w > 0 and 〈e,w〉 = 1} is the relative

interior of Δm. A specific example is furnished by equal weights, i.e., wi(x) =
1/m, i ∈ I. To verify that w is regular set j ∈ Argmaxi∈I ‖Uix− x‖ and β =
mini∈I wi in Definition 9.23.

(b) Constant weights for violated constraints, i.e.,

wi(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

wi∑

j∈I(x)

wj
, for i ∈ I(x),

0, fori /∈ I(x),

(9.57)

where w = (w1,w2, ...,wm) ∈ riΔm. A specific example is

wi(x) :=

{
1/m(x), for i ∈ I(x),

0, fori /∈ I(x).
(9.58)

To verify that w is regular set j ∈ Argmaxi∈I ‖Uix− x‖ and β = mini∈I wi in
Definition 9.23.
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(c) Weights proportional to ‖Uix− x‖, i.e.,

wi(x) =

⎧
⎪⎪⎨

⎪⎪⎩

‖Uix− x‖∑

j∈I

‖Ujx− x‖ , for x /∈⋂i∈I FixUi,

0, for x ∈⋂i∈I FixUi.

(9.59)

To verify, set j ∈ Argmaxi∈I ‖Uix− x‖ and β = 1/m in Definition 9.23.
(d) Weight functions w : H → Δm satisfying the condition

wi(x)≥ δ for i ∈ I(x) (9.60)

for some constant δ > 0. To verify, choose j(x) ∈ Argmaxi∈I ‖Uix− x‖ and set
β = δ in Definition 9.23. These weight functions were applied by Combettes in
[19, Sect. III] and in [20, Sect. 1]. Observe that the weight functions defined by
(9.56) and by (9.57) satisfy (9.60).

(e) Weight functions w : H → Δm for which wi(x) = 0 for all x ∈H and for all
i /∈ Jγ(x), where

Jγ(x) = { j ∈ I | ‖Ujx− x‖ ≥ γ max
i∈I
‖Uix− x‖}, (9.61)

for some γ ∈ (0,1]. To verify, set j = j(x) ∈ Jγ(x) with ω j(x) ≥ 1/m and β =
γ2/m in Definition 9.23. The existence of such j follows from the fact that
wi(x)≥ 0 for all i∈ Jγ(x) and

∑
i∈Jγ (x) wi(x) = 1. Specific examples are obtained

as follows:

(i) When Ui = PCi for a closed convex subset Ci ⊂H , i ∈ I, and

wi(x) =
{

1, if i = argmax j∈I ‖Ujx− x‖
0, otherwise.

(9.62)

In this case, w defines a remotest set control (for the definition, see [27, (3’)]
or [17, Sect. 5.1]).

(ii) When Ui = PCi for a closed convex subset Ci ⊂H , i ∈ I, and

wi(x) =
{

1, if i = j(x)
0, otherwise,

(9.63)

where j(x) ∈ Jγ(x) for some γ ∈ (0,1]. In this case w is an approximately
remotest set control (for the definition, see [27, (3)] or [17, Sect. 5.1]).

Definition 9.25. Let V k = {V k
i }i∈Jk be a sequence of cutters V k

i : H →H , i ∈
Jk = {1,2, ...,mk}, k ≥ 0, and let the sequence {xk}∞

k=0 be generated by the recur-
rence (9.44). We say that a sequence of appropriate weight functions wk : H → Δmk

(applied to the sequence of families V k) is
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• Regular (with respect to the family U = {Ui}i∈I) if there is a constant β ∈ (0,1]
such that wk are β -regular for all k ≥ 0,

• Approximately regular (with respect to the family U = {Ui}i∈I) if there exists a
sequence ik ∈ Jk such that the following implication holds

lim
k→∞

wk
ik(x

k)‖V k
ikxk− xk‖2 = 0 =⇒ lim

k→∞
‖Uix

k− xk‖= 0 for all i ∈ I, (9.64)

• Approximately semi-regular (with respect to the family U = {Ui}i∈I) if there
exists a sequence ik ∈ Jk such that the following implication holds

lim
k→∞

wk
ik
(xk)‖V k

ik
xk− xk‖2 = 0 =⇒ liminf

k→∞
‖Uix

k− xk‖= 0 for all i ∈ I. (9.65)

Example 9.26. Here are examples of weight functions which are approximately reg-
ular or approximately semi-regular with respect to the family U = {Ui}i∈I .

(a) A regular sequence of weight functions is approximately regular.
(b) A sequence containing a regular subsequence of weight functions is approxi-

mately semi-regular.
(c) Let {xk}∞

k=0 be a sequence generated by the recurrence (9.46), where V k = U
and wk = δik . We call the sequence {ik}∞

k=0 a control sequence (see [13,
Definition 3.2]). Recurrence (9.46) can be written as follows

xk+1 = xk + λk

(
Uik xk− xk

)
. (9.66)

Implication (9.64) takes the form

lim
k→∞
‖Uikxk− xk‖= 0 =⇒ lim

k→∞
‖Uix

k− xk‖= 0 for all i ∈ I. (9.67)

If (9.67) is satisfied we say that the control sequence {ik}∞
k=0 is approximately

regular. If we set Ui = PCi for a closed convex subset Ci ⊂H , i ∈ I, then impli-
cation (9.67) can be written in the form

lim
k→∞
‖PCik

xk− xk‖= 0 =⇒ lim
k→∞

max
i∈I
‖PCix

k− xk‖= 0. (9.68)

A sequence {ik}∞
k=0 satisfying (9.68) is called approximately remotest set con-

trol (see [27, Sect. 1]).
(d) (Combettes [19, Sect. II D]). Let Ik be a nonempty subset of I, k ≥ 0. Suppose

that there is a constant s≥ 1 such that

I = Ik∪ Ik+1∪ . . .∪ Ik+s−1 for all k ≥ 0. (9.69)

Let Ui = PCi , where Ci ⊂H is closed and convex. Let {xk}∞
k=0 be a sequence

generated by the recurrence (9.46), where V k = U = {Ui}i∈I , λk ∈ [ε,2− ε]
for some ε ∈ (0,1), and wk ∈ Δm is a weight vector such that

∑
i∈Ik

wk
i = 1 and
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wk
i ≥ δ > 0 for all i ∈ Ik ∩ I(xk), k ≥ 0, and I(x) = {i ∈ I | x /∈ Ci}. Bauschke

and Borwein called a sequence of weights satisfying (9.69) with Ik = {i ∈ I |
wk

i > 0} an intermittent control (see [4, Definition 3.18]). The recurrence (9.46)
can be written in the form xk+1 = Tkxk, where Tk = Id+λk(Vk − Id) and Vk =∑

i∈Ik
wk

i PCi , or, equivalently, in the form

xk+1 = xk + λk

⎛

⎝
∑

i∈Ik

wk
i PCi x

k− xk

⎞

⎠ . (9.70)

One can show that Vk is a cutter. We show that {wk}∞
k=0 is approximately regular.

Let i ∈ I be arbitrary and let rk ∈ {0,1, . . . ,s− 1} be such that i ∈ Ik+rk , k ≥ 0.
By the triangle inequality, we have

‖xk+rk − xk‖ ≤
rk−1∑

i=0

‖xk+i+1− xk+i‖=
rk−1∑

i=0

‖Tk+ix
k+i− xk+i‖

≤
s−1∑

i=0

‖Tk+ix
k+i− xk+i‖, (9.71)

for k ≥ 0. Since Tk are λk-relaxed cutters and λk ∈ [ε,2− ε], Lemma 9.22 (iii)
yields limk→∞ ‖Tk+ixk+i− xk+i‖ = 0, i = 1,2, . . . ,s− 1, consequently, ‖xk+rk −
xk‖ → 0. Further, by the definition of the metric projection and by the triangle
inequality, we have

‖PCix
k− xk‖ ≤ ‖PCix

k+rk − xk‖ ≤ ‖PCix
k+rk − xk+rk‖+‖xk+rk− xk‖. (9.72)

Let jk ∈ Ik be such that ‖PCjk
xk − xk‖ = max j∈Ik ‖PCj x

k − xk‖, k ≥ 0. Let

limk→∞ wk
jk
‖PCjk

xk− xk‖2 = 0. Since wk
jk
≥ δ for jk ∈ I(xk) we have

lim
k→∞
‖PCjk

xk− xk‖= 0. (9.73)

Since i ∈ Ik+rk we have

‖PCix
k+rk − xk+rk‖ ≤ ‖PCjk+rk

xk+rk − xk+rk‖.

consequently, limk→∞ ‖PCix
k+rk − xk+rk‖= 0. The inequalities (9.71) and (9.72)

yield now limk→∞ ‖PCix
k− xk‖= 0, i.e., {wk}∞

k=0 is approximately regular.
(e) Let H = R

n, let Ui : H →H , i∈ I, be cutters having a common fixed point and
let liminfk→∞ λk(2−λk) > 0. Consider a sequence generated by the recurrence
(9.66) with a repetitive control {ik}∞

k=0 ⊂ I, i.e., a control for which the subset
Ki = {k≥ 0 | ik = i} is infinite for any i∈ I (see., e.g., [1, Sect. 3]). It is clear that
N0 = {0,1,2,3, . . .}= K1∪K2∪ . . .∪Km and that Ki∩Jj = /0 for all i, j ∈ I, i �= j.
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The control {ik}∞
k=0 is approximately semi-regular. This follows from inequality

(9.26) which guarantees that

∞∑

k=0

λk(2−λk)‖Uikxk− xk‖2 < ∞. (9.74)

Note that the series above is absolutely convergent, thus,

m∑

i=1

∑

k∈Ki

λk(2−λk)‖Uix
k− xk‖2 =

∞∑

k=0

λk(2−λk)‖Uik xk− xk‖2 < ∞. (9.75)

Therefore, ∑

k∈Ki

λk(2−λk)‖Uix
k− xk‖2 < ∞ for all i ∈ I (9.76)

and
lim

k→∞,k∈Ki
λk(2−λk)‖Uix

k− xk‖2 = 0 for all i ∈ I. (9.77)

Since liminfk→∞ λk(2− λk) > 0, we have limk→∞,k∈Ki ‖Uixk − xk‖ = 0 for all
i ∈ I, consequently,

liminf
k→∞

‖Uix
k− xk‖= 0 (9.78)

for all i ∈ I, and {ik}∞
k=0 is approximately semi-regular. One can prove that

the approximate semi-regularity also holds for sequences generated by (9.46),
where Jk = I and V = U and the sequence of weight functions {wk}∞

k=0 has
the property

∑
i∈Ik

wk
i = 1 for Ik ⊂ I, k ≥ 0 and wk

i > δ > 0 for i ∈ Ik, and i ∈ Ik

for infinitely many k, i ∈ I. Note that a repetitive control is a special case of a
sequence {wk}∞

k=0 having the above property.

Theorem 9.27. Suppose that:

• Ui : H →H , i ∈ I, are cutters having a common fixed point,
• Ui− Id are demiclosed at 0, i ∈ I,
• V k = {V k

i }i∈Jk are families of cutters V k
i : H →H , i ∈ Jk, with the property⋂

i∈Jk
FixV k

i ⊃
⋂

i∈I FixUi, k≥ 0,

• {wk}∞
k=0 : H → Δ|Jk | is a sequence of appropriate weight functions,

• liminfk→∞ λk(2−λk) > 0,
• {xk}∞

k=0 is generated by the recurrence (9.46).

If the sequence of weight functions {wk}∞
k=0 applied to the sequence of

families V k:

(i) Is approximately regular with respect to the family U = {Ui}i∈I then {xk}∞
k=0

converges weakly to a common fixed point of Ui, i ∈ I;
(ii) Is approximately semi-regular with respect to the family U = {Ui}i∈I and H is

finite-dimensional, then {xk}∞
k=0 converges to a common fixed point of Ui, i ∈ I.
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Proof. Let V k : H →H be defined by

V kx =
∑

i∈Jk

wk
i (x)V

k
i x (9.79)

and let Tk be the λk-relaxation of the operator V k, i.e.,

Tkx = V k
λk

x = x + λk(V kx− x). (9.80)

The operators V k are cutters,

FixTk = FixV k =
⋂

i∈Jk

FixV k
i ⊃

⋂

i∈I

FixUi

and Tk are strongly quasi-nonexpansive, k ≥ 0, (see Lemma 9.22), consequently,⋂∞
k=0 FixTk ⊃

⋂
i∈I FixUi. Let ε > 0 be such that

liminf
k→∞

λk ≥ ε and liminf
k→∞

(2−λk)≥ ε (9.81)

and let z ∈⋂i∈I FixUi. For sufficiently large k we have 2−λk ≥ ε/2 and 2−λk
λk

≥
ε/4. Now, it follows from Lemma 9.22 that, for sufficiently large k,

‖xk+1− z‖2 = ‖Tkxk− z‖2

≤ ‖xk− z‖2−λk(2−λk)
∑

i∈Jk

wk
i (x

k)‖V k
i xk− xk‖2

≤ ‖xk− z‖2−λk(2−λk)‖V kxk− xk‖2

= ‖xk− z‖2− 2−λk

λk
‖Tkxk− xk‖2

≤ ‖xk− z‖2− ε
4
‖Tkxk− xk‖2. (9.82)

Therefore, {‖xk − z‖}∞
k=0 decreases and

∑
i∈Jk

wk
i (x

k)‖V k
i xk − xk‖2 → 0. Conse-

quently,

wk
ik(x

k)‖V k
ik xk− xk‖2→ 0 (9.83)

for arbitrary ik ∈ Jk.

(i) Suppose that {wk}∞
k=0 is approximately regular with respect to the family U =

{Ui}i∈I . Let ik ∈ Jk, k≥ 0, be such that the implication (9.64) holds. Then (9.83)
yields limk→∞ ‖Uixk − xk‖ = 0 for all i ∈ I. Let x∗ be a weak cluster point of
{xk}∞

k=0 and {xnk}∞
k=0 be a subsequence of {xk}∞

k=0 such that xnk ⇀ x∗ as k→∞.
The demiclosedness of Ui− Id at 0, i∈ I, yields that x∗ ∈⋂i∈I FixUi. Since x∗ is
an arbitrary weak cluster point of {xk}∞

k=0 and {xk}∞
k=0 is Fejér-monotone with
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respect to
⋂

i∈I FixUi, the weak convergence of the whole sequence {xk}∞
k=0 to

x∗ follows from [7, Lemma 6] (see also [4, Theorem 2.16 (ii)]).
(ii) Suppose that H is finite-dimensional and {wk}∞

k=0 is approximately semi-
regular with respect to the family U = {Ui}i∈I . Let ik ∈ Jk, k ≥ 0, be such that
the implication (9.65) holds. Let i ∈ I. Then (9.83) yields liminfk→∞ ‖Uixk −
xk‖= 0. Consequently, limk→∞ ‖Uixnk−xnk‖= 0 for a subsequence {xnk}∞

k=0 ⊂
{xk}∞

k=0. Since {xnk}∞
k=0 is bounded, a subsequence {xmnk }∞

k=0 ⊂ {xnk}∞
k=0 ex-

ists which converges to a point x∗ ∈ X . Since Ui− Id is closed at 0, we have
x∗ ∈ FixUi. The convergence of the whole sequence {xk}∞

k=0 to x∗ follows now
from [4, Theorem 2.16 (v)]. The number i ∈ I is arbitrary, so x∗ ∈⋂i∈I FixUi.

�

Remark 9.28. Bauschke and Borwein [4, Sect. 3, page 378] consider algorithms
which are similar to (9.46), where Jk = I, λk = 1, V k

i is replaced by a firmly non-
expansive operator Uk

i with FixUk
i ⊃ FixUi, i ∈ I, k ≥ 0, and

⋂
i∈I FixUi �= /0. They

assumed that these algorithms are focusing, strongly focusing or linearly focusing
(see [4, Definitions 3.7 and 4.8]). These assumptions differ from the assumptions on
the regularity, approximate regularity or approximate semi-regularity, but they play
a similar role in the proof of convergence of sequences generated by the considered
algorithms. The recurrence considered by Bauschke and Borwein has the form

xk+1 =
∑

i∈I

vk
i

(
xk + μk

i

(
Uk

i xk− xk
))

, (9.84)

where {μk
i }∞

k=0 ⊂ [0,2] are sequences of relaxation parameters, i∈ I, and {vk}∞
k=0 ⊂

Δm is a sequence of weight vectors (see [4, page 378]). Note that (9.84) can be
written in the form

xk+1 = xk +λk

(
∑

i∈I

wk
i U

k
i xk− xk

)

, (9.85)

where λk =
∑

i∈I μk
i vk

i and wk
i = μk

i vk
i /λk. This transformation maintains the as-

sumption liminfk→∞ μk
i (2− μk

i ) > 0, i ∈ I, i.e., if the sequences {μk
i }∞

k=0, i ∈ I, sat-
isfies this assumption then liminfk→∞ λk(2−λk) > 0. Furthermore, if the sequence
of weight vectors {vk}∞

k=0 applied to the recurrence (9.84) is regular (approximately
regular, approximately semi-regular) and liminfk→∞ μk

i (2− μk
i ) > 0, i ∈ I, then

the sequence of weight vectors {wk}∞
k=0 applied to the recurrence (9.85) is reg-

ular (approximately regular, approximately semi-regular). Bauschke and Borwein
proved the weak convergence of sequences {xk}∞

k=0 generated by (9.84) to a point
x ∈ ⋂i∈I FixUi under the assumptions that (i) the algorithm is focusing and inter-
mittent and (ii) that liminfk→∞,vk

i >0 vk
i > 0 for all i ∈ I (see [4, Theorem 3.20]).

Assumption (ii) applied to sequences generated by (9.84) is equivalent to the
following assumption (ii)’ liminfk→∞,wk

i >0 wk
i > 0 applied to sequences generated

by (9.85). Note, however, that assumptions (i) as well as (ii)’ do not appear in
Theorem 9.27. Assumptions similar to those in [4, Theorem 3.20] can be also found
in [19, equalities (15)–(17)].



176 A. Cegielski and Y. Censor

In the following examples we suppose that Ci ⊂H , i ∈ I, are closed and convex
and that C =

⋂
i∈I �= /0.

Example 9.29. Consider the recurrence (9.46), where Jk = I for all k≥ 0, V k
i = PCi ,

i ∈ I, λk = 1, k ≥ 0, the sequence of weight functions {wk}∞
k=0 is constant, wk = w,

k ≥ 0, and w : R
n→ Δm has the form

wi(x) =

⎧
⎪⎨

⎪⎩

vi∑

j∈I(x)

v j
, for i ∈ I(x),

0, for i /∈ I(x),

(9.86)

where v = (v1,v2, ...,vm) ∈ riΔm and I(x) = {i ∈ I | x /∈ Ci}. Since w is regular
(see Example 9.24 (b)), it is approximately regular and it follows from Theorem
9.27(i) that xk ⇀ x∗ ∈ C. This convergence was proved by Iusem and De Pierro
[28, Corollary 4] for H = R

n. Note, however, that in finite-dimensional case the
convergence holds for any sequence {wk}∞

k=0 containing a subsequence of β -regular
weight functions, where β > 0, e.g., if wk = w for infinitely many k ≥ 0.

Example 9.30. Aharoni and Censor [2, Theorem 1] consider the recurrence (9.46),
where H = R

n, Jk = I for all k≥ 0, V k
i = PCi , i ∈ I, λk ∈ [ε,2−ε], where ε ∈ (0,1),

wk ∈ Δm with
∑∞

k=0 wk
i = +∞, i ∈ I. By Lemma 9.22, for any z ∈C we have

‖xk+1− z‖2 ≤ ‖x0− z‖2−
k∑

l=0

λl(2−λl)
m∑

i=1

wl
i‖PCix

l− xl‖2. (9.87)

Consequently,

m∑

i=1

∞∑

k=0

λk(2−λk)wk
i (x

k)‖PCix
k− xk‖2 =

∞∑

k=0

λk(2−λk)
m∑

i=1

wk
i ‖PCix

k− xk‖2 < +∞

(9.88)

and
∞∑

k=0

λk(2−λk)wk
i ‖PCix

k− xk‖2 < +∞ (9.89)

for any i ∈ I. The assumption liminfk→∞ λk(2−λk) > 0 yields

∞∑

k=0

wk
i ‖PCix

k− xk‖2 < +∞, (9.90)

i ∈ I. Since
∑∞

k=0 wk
i = +∞, we have liminfk→∞ ‖PCix

k − xk‖ = 0, i ∈ I, i.e.,
wk is approximately semi-regular. Theorem 9.27(ii) yields now the convergence
xk→ x∗ ∈C.
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Example 9.31. Butnariu and Censor [8, Theorem 4.4] consider the recurrence
(9.46), where H = R

n, Jk = I, Vi = PCi , i ∈ I, liminfk→∞ λk > 0, limsupk→∞ λk < 2,
wk ∈ Δm has a subsequence converging to a point w∗ ∈ riΔm. Let ε > 0 be such
that w∗i > ε for all i ∈ I. Then there exists a subsequence {wnk}∞

k=0 ⊂ {wk}∞
k=0

such that wnk
i > ε/2 for all i ∈ I and k ∈ N, consequently, {wnk}∞

k=0 is ε
2 -regular.

Therefore, {wk}∞
k=0 is approximately semi-regular. Theorem 9.27(ii) yields now

limk→∞ xk = x∗ ∈C. If we suppose that all cluster points of {wk}∞
k=0 belong to riΔm

then {wk}∞
k=0 is approximately regular, consequently the weak convergence xk ⇀ x∗

holds in general Hilbert spaces.

Example 9.32. Consider the recurrence (9.46), where Jk = I for all k ≥ 0,

liminf
k→∞

λk(2−λk) > 0, (9.91)

Ui = PCi for closed and convex subsets Ci ⊂H , i ∈ I, with C =
⋂

i∈I Ci �= /0 and V k
i

are cutters satisfying the inequality

‖V k
i xk− xk‖ ≥ α‖PCix

k− xk‖, (9.92)

i ∈ I, for some α > 0 and such that C ⊂ ⋂i∈I FixV k
i , k ≥ 0. Furthermore, suppose

that the sequence of weight vectors wk satisfies the following conditions:

(i) limsupk→∞ wk
i > 0, i ∈ I,

(ii) wk
i ‖PCix

k− xk‖ �= 0 implies wk
i > δ > 0.

Inequality (9.92) and (i) and (ii) guarantee that the sequence of weights {wk}∞
k=0 is

regular and thus all assumptions of Theorem 9.27(i) are satisfied. Therefore, xk ⇀
x∗ ∈ C. This convergence was proved by Flåm and Zowe [25, Theorem 1] in case
H = R

n. Actually, they have considered a recurrence which can be reduced to
(9.46). We omit the details.

Results similar to Theorem 9.27 also hold for sequences generated by extrap-
olated simultaneous cutters. Before formulating our next theorem, we prove some
auxiliary results. The following lemma is an extension of Lemma 9.22. A part of this
lemma can be found in [21, Proposition 2.4], where w is a constant weight function
with positive coordinates.

Lemma 9.33. Let Vi : H →H be cutters having a common fixed point, i ∈ J =
{1,2, ..., l}, let w : H → Δl be an appropriate weight function and let σ : H →
(0,+∞) be a step-size function defined by

σ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

l∑

i=1

wi(x)‖Vix− x‖2

‖
l∑

i=1

wi(x)Vix− x‖2

, if x /∈⋂i∈J FixVi,

1, otherwise,

(9.93)
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and let Vσ := Id+σ(
∑l

i=1 wiVi− Id) be a generalized relaxation of the simultaneous
cutter V =

∑l
i=1 wiVi. Then FixVσ =

⋂
i∈J FixVi, the operator Vσ is a cutter and Vσ

is an extrapolation of V . Consequently, for all λ ∈ (0,2), the operator Vσ ,λ is 2−λ
λ -

strongly quasi-nonexpansive and

‖Vσ ,λ x− z‖2 ≤ ‖x− z‖2−λ (2−λ )σ 2(x)‖Vx− x‖2 (9.94)

for all λ ∈ [0,2], x ∈H and z ∈ FixV.

Proof. Lemma 9.22 (i) and the positivity of the step-size function σ yield FixVσ =
FixV =

⋂
i∈J FixVi. Let x ∈H and z ∈ FixVσ . We prove that

〈z− x,Vσx− x〉 ≥ ‖Vσ x− x‖2, (9.95)

which is equivalent to Vσ being a cutter; see Lemma 9.4(i). The inequality is clear
for x ∈ FixVσ . For x /∈ FixVσ we have

〈z− x,Vx− x〉=
〈

z− x,
∑

i∈J

wi(x)(Vix− x)

〉

=
∑

i∈J

wi(x)〈z− x,Vix− x〉

≥
∑

i∈J

wi(x)‖Vix− x‖2

= σ(x)‖Vx− x‖2, (9.96)

thus,

〈z− x,Vx− x〉 ≥ σ(x)‖Vx− x‖2, (9.97)

which is equivalent to (9.95). By the convexity of the function ‖·‖2 we have σ(x)≥
1, i.e., Vσ is an extrapolation of V . Lemma 9.4 (ii) and the fact Vσ ,λ = (Vσ )λ yield

now the 2−λ
λ -strong quasi-nonexpansivity of Vσ ,λ . Inequality (9.94) follows from

the equality Vσ ,λ x− x = λ σ(x)(V x− x). �

For a family of cutters V = {Vi}i∈J and for an appropriate weight function w :
H → Δ|J| denote

σw(x) =
∑

i∈J wi(x)‖Vix− x‖2

‖∑i∈J wi(x)Vix− x‖2 , (9.98)

where x /∈⋂i∈J FixVi. By Lemma 9.22,
⋂

i∈J FixVi = FixV , where V =
∑

i∈J wiVi,
and σw(x) is well-defined.

Definition 9.34. Let Vi : H →H , i ∈ J, be cutters with a common fixed point and
let w : H →Δ|J| be a weight function which is appropriate with respect to the family
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V = {Vi}i∈J . We say that the step-size function σ : H → (0,+∞) is α-admissible
with respect to the family V , where α ∈ (0,1], or, shortly, admissible, if

ασw(x)≤ σ(x)≤ σw(x) (9.99)

for all x /∈⋂i∈J FixVi.

Theorem 9.35. Suppose that:

• Ui : H →H , i ∈ I, are cutters having a common fixed point,
• Ui− Id, i ∈ I, are demiclosed at 0,
• V k = {V k

i }i∈Jk are families of cutters V k
i : H →H , i ∈ Jk, with the properties⋂

i∈Jk
FixV k

i ⊃
⋂

i∈I FixUi, and maxi∈Jk ‖V k
i x− x‖ ≤ γ maxi∈I ‖Uix− x‖ for all

x ∈H , k ≥ 0, and for some constant γ > 0,
• {wk}∞

k=0 : H → Δ|Jk | is a sequence of appropriate weight functions,
• The step-size σk : H → (0,+∞) is α-admissible with respect to V k, k ≥ 0, for

some α ∈ (0,1],
• liminfk→∞ λk(2−λk) > 0,
• {xk}∞

k=0 is generated by the recurrence (9.44).

If the sequence of weight functions {wk}∞
k=0 applied to the sequence of

families V k:

(i) Is regular with respect to the family U = {Ui}i∈I then {xk}∞
k=0 converges weakly

to a common fixed point of Ui, i ∈ I;
(ii) Contains a subsequence which is regular with respect to the family U = {Ui}i∈I

and H is finite-dimensional, then {xk}∞
k=0 converges to a common fixed point

of Ui, i ∈ I.

Proof. Let V k : H →H be defined by

V kx =
∑

i∈Jk

wk
i (x)V

k
i x (9.100)

and let Tk be a generalized relaxation of the operator V k, i.e.,

Tkx = V k
σk,λk

x = x + λkσk(x)(V kx− x). (9.101)

The operators V k are cutters and FixTk = FixV k =
⋂

i∈Jk
FixV k

i (see Lemma 9.22).
Consequently,

⋂∞
k=0 FixTk ⊃

⋂
i∈I FixUi. Let ε > 0 and k0 ∈ N be such that λk ∈

[ε,2− ε] for k ≥ k0. By Lemma 9.33 the operator V k
σwk

is a cutter. Now, the second

inequality in (9.99) and (9.5) which remains true also for λ : H → [0,1] yield
that V k

σk
is a cutter, consequently Tk is a λk-relaxed cutter, k ≥ 0. Lemma 9.33 also

implies that

‖xk+1− z‖2 ≤ ‖xk− z‖2− 2−λk

λk
‖Tkxk− xk‖2 (9.102)

for all z ∈⋂m
i=1 FixUi. Therefore, {xk}∞

k=0 is bounded, {‖xk− z‖}∞
k=0 is monotone

and limk→∞ ‖Tkxk− xk‖= 0.
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(i) Let β ∈ (0,1], k1 ≥ k0 and jk ∈ Jk be such that

wjk(x)‖V k
jk x− x‖2 ≥ β max

i∈I
‖Uix− x‖2 (9.103)

for any x ∈H and for k ≥ k1. Since σk is α-admissible, the norm is a convex
function and ‖V k

j xk− xk‖ ≤ γ maxi ‖Uixk− xk‖ for all j ∈ Jk, we have

‖Tkxk− xk‖= λkσk(xk)‖V kxk− xk‖

≥ λkα
∑

i∈Jk
wk

i (x
k)‖V k

i xk− xk‖2

‖∑i∈Jk
wk

i (xk)V k
i xk− xk‖

≥ λkα
wk

jk
(xk)‖V k

jk
xk− xk‖2

∑
i∈Jk

wk
i (xk)‖V k

i xk− xk‖

≥ λkα
γ

β maxi∈I ‖Uixk− xk‖2
(∑

i∈Jk
wk

i (xk)
)

maxi∈I ‖Uixk− xk‖

=
εαβ

γ
max
i∈I
‖Uix

k− xk‖, (9.104)

and limk→∞ ‖Uixk− xk‖= 0 for all i ∈ I. Therefore, condition (9.16) is satisfied
for Uk = Tk and S = Ui, i ∈ I. We have proved that all assumptions of Theorem
9.9(i) are satisfied for S = Ui, i ∈ I. Therefore, {xk}∞

k=0 converges weakly to a
common fixed point of Ui, i ∈ I.

(ii) Suppose that H is finite-dimensional and {wk}∞
k=0 contains an approximately

β -regular subsequence {wnk}∞
k=0. Let β ∈ (0,1], k1≥ k0 and jnk ∈ I be such that

v jnk
(x)‖V nk

jnk
x− x‖2 ≥ β max

i∈I
‖Uix− x‖2. (9.105)

Similarly to (i), one can prove that

‖Tnkxnk − xnk‖ ≥ εαβ
γ

max
i∈I
‖Uix

nk − xnk‖. (9.106)

Therefore, liminfk→∞ ‖Uixk−xk‖= 0 for all i ∈ I. If we set Uk = Tk and S = Ui,
i ∈ I, in Theorem 9.9(ii), we obtain the convergence of {xk}∞

k=0 to a fixed point
of Ui for all i ∈ I. �

Remark 9.36. Combettes considers an algorithm which is similar to (9.44) with Jk =
I, wk = w ∈ riΔm, V k

i = PCk
i
, where Ck

i ⊃Ci are closed and convex, i ∈ I, k ≥ 0, and
with a constant sequence of step-size functions σk = σw given by

σw(x) =
∑

i∈I wi‖PCix− x‖2

‖∑i∈I wi (PCix− x)‖2 (9.107)
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for x /∈ C =
⋂

i∈I Ci (see [19, (33)–(36)]). He proves there weak convergence of
sequences generated by this algorithm to a point x ∈ C under the assumption that
the algorithm is focusing (see [19, Theorem 2]). However, the assumption w ∈ riΔm

is a special case of a regular sequence of weight functions and the step-size function
σw, given by (9.107) is a special case of a sequence of α-admissible step-sizes which
are considered in Theorem 9.35.

Remark 9.37. Results closely related to Theorems 9.27(ii) and 9.35(ii) appear in
Kiwiel [29, Theorem 5.1], for the case H = R

n. Kiwiel applies some assump-
tions on weights and on the operators [29, Assumption 3.10] which differ from
the assumptions in Theorems 9.27(ii) and 9.35 on the approximate semi-regularity.
Our Theorems 9.27 and 9.35 show the importance of the regularity, approximate
regularity and the approximate semi-regularity in both the finite- and the infinite-
dimensional cases.

Example 9.38. Dos Santos’ [24, Sect. 5] work is related to ours as follows. Let ci :
H → R be continuous and convex, let Ci = {x ∈ H | ci(x) ≤ 0}, i ∈ I and let
C =

⋂m
i=1Ci �= /0. Define Ui : H →H by

Uix =

⎧
⎨

⎩
x− (ci(x))+
‖gi(x)‖2 gi(x), if gi(x) �= 0,

x, if gi(x) = 0,
(9.108)

where a+ denotes a nonnegative part of a real number a, i.e., a+ = max{0,a},
gi(x) ∈ ∂ci(x) := {g ∈ H | 〈g,y− x〉 ≤ ci(y)− ci(x), for all y ∈ H } is a sub-
gradient of the function ci at the point x, i ∈ I. This operator Ui is called the
subgradient projection onto Ci, i ∈ I. It follows from the definition of the subgra-
dient that Ui is a cutter. Note that FixUi = Ci, and thus

⋂m
i=1 FixUi �= /0. Suppose

that the subgradients gi are bounded on bounded subsets, i ∈ I (this holds if, e.g.,
H = R

n). Then the operator Ui− Id is demiclosed at 0, i ∈ I. Indeed, let xk ⇀ x∗
and limk→∞ ‖Uixk− xk‖= 0. Then we have

lim
k→∞
‖Uix

k− xk‖= lim
k→∞

(ci(xk))+
‖gi(xk)‖ = 0. (9.109)

The sequence {xk}∞
k=0 is bounded due to its weak convergence. Condition (9.109)

and the boundedness of gi(xk) imply the convergence limk→∞ ci(xk)+ = 0. Since ci

is weakly lower semi-continuous, we have ci(x∗) = 0, i.e., Ui− Id is demiclosed
at 0. Consider an extrapolated simultaneous subgradient projection method, i.e., a
method which generates sequences {xk}∞

k=0 defined by the recurrence (9.44) where
V k

i =Ui, wk is a sequence of appropriate weight functions, liminfk→∞ λk(2−λk) > 0
and σk : H → (0,+∞) is a sequence of step-size functions defined by

σk(x) =

∑m
i=1 wk

i (x)
(

(ci(x))+
‖gi(x)‖

)2

∥
∥
∥∥
∑m

i=1 wk
i (x)

(ci(x))+
‖gi(x)‖2 gi(x)

∥
∥
∥∥

2 . (9.110)
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Note that

Uix− x =− (ci(x))+
‖gi(x)‖2 gi(x), (9.111)

and so,

σk(x) = σw(x) =
∑

i∈J wk
i (x)‖Uix− x‖2

‖∑i∈J wk
i (x)Uix− x‖2

, (9.112)

and σk are 1-admissible. If we suppose that the sequence of weight functions
{wk}∞

k=0 is regular then, by Theorem 9.35(i) the sequence {xk}∞
k=0 converges weakly

to a point x∗ ∈C. Dos Santos [24] considers positive constant weights w ∈ riΔm and
proves the convergence in the finite-dimensional case.
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Chapter 10
Proximal Splitting Methods in Signal Processing

Patrick L. Combettes and Jean-Christophe Pesquet

Abstract The proximity operator of a convex function is a natural extension of the
notion of a projection operator onto a convex set. This tool, which plays a central
role in the analysis and the numerical solution of convex optimization problems, has
recently been introduced in the arena of inverse problems and, especially, in signal
processing, where it has become increasingly important. In this paper, we review the
basic properties of proximity operators which are relevant to signal processing and
present optimization methods based on these operators. These proximal splitting
methods are shown to capture and extend several well-known algorithms in a unify-
ing framework. Applications of proximal methods in signal recovery and synthesis
are discussed.

Keywords Alternating-direction method of multipliers · Backward–backward
algorithm · Convex optimization · Denoising · Douglas–Rachford algorithm
· Forward–backward algorithm · Frame · Landweber method · Iterative thresholding
· Parallel computing · Peaceman–Rachford algorithm · Proximal algorithm
· Restoration and reconstruction · Sparsity · Splitting
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10.1 Introduction

Early signal processing methods were essentially linear, as they were based on
classical functional analysis and linear algebra. With the development of nonlinear
analysis in mathematics in the late 1950s and early 1960s (see the bibliographies of
[6, 142]) and the availability of faster computers, nonlinear techniques have slowly
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become prevalent. In particular, convex optimization has been shown to provide
efficient algorithms for computing reliable solutions in a broadening spectrum of
applications.

Many signal processing problems can in fine be formulated as convex optimiza-
tion problems of the form

minimize
x∈RN

f1(x)+ · · ·+ fm(x), (10.1)

where f1, . . . , fm are convex functions from R
N to ]−∞,+∞]. A major difficulty

that arises in solving this problem stems from the fact that, typically, some of the
functions are not differentiable, which rules out conventional smooth optimization
techniques. In this paper, we describe a class of efficient convex optimization al-
gorithms to solve (10.1). These methods proceed by splitting in that the functions
f1, . . . , fm are used individually so as to yield an easily implementable algorithm.
They are called proximal because each nonsmooth function in (10.1) is involved via
its proximity operator. Although proximal methods, which can be traced back to
the work of Martinet [98], have been introduced in signal processing only recently
[46, 55], their use is spreading rapidly.

Our main objective is to familiarize the reader with proximity operators, their
main properties, and a variety of proximal algorithms for solving signal and im-
age processing problems. The power and flexibility of proximal methods will be
emphasized. In particular, it will be shown that a number of apparently unrelated,
well-known algorithms (e.g., iterative thresholding, projected Landweber, projected
gradient, alternating projections, alternating-direction method of multipliers, alter-
nating split Bregman) are special instances of proximal algorithms. In this respect,
the proximal formalism provides a unifying framework for analyzing and devel-
oping a broad class of convex optimization algorithms. Although many of the
subsequent results are extendible to infinite-dimensional spaces, we restrict our-
selves to a finite-dimensional setting to avoid technical digressions.

The paper is organized as follows. Proximity operators are introduced in
Sect. 10.2, where we also discuss their main properties and provide examples. In
Sects. 10.3 and 10.4, we describe the main proximal splitting algorithms, namely the
forward-backward algorithm and the Douglas–Rachford algorithm. In Sect. 10.5,
we present a proximal extension of Dykstra’s projection method which is tailored
to problems featuring strongly convex objectives. Composite problems involving
linear transformations of the variables are addressed in Sect. 10.6. The algorithms
discussed so far are designed for m = 2 functions. In Sect. 10.7, we discuss parallel
variants of these algorithms for problems involving m ≥ 2 functions. Concluding
remarks are given in Sect. 10.8.

10.1.1 Notation

We denote by R
N the usual N-dimensional Euclidean space, by ‖·‖ its norm, and by

I the identity matrix. Standard definitions and notation from convex analysis will be
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used [13, 87, 114]. The domain of a function f : R
N → ]−∞,+∞] is dom f = {x ∈

R
N | f (x) < +∞}. Γ0(RN) is the class of lower semicontinuous convex functions

from R
N to ]−∞,+∞] such that dom f �= ∅. Let f ∈ Γ0(RN). The conjugate of f is

the function f ∗ ∈ Γ0(RN) defined by

f ∗ : R
N → ]−∞,+∞] : u �→ sup

x∈RN
x	u− f (x), (10.2)

and the subdifferential of f is the set-valued operator

∂ f : R
N → 2R

N
: x �→ {

u ∈ R
N | (∀y ∈ R

N) (y− x)	u + f (x)≤ f (y)
}
. (10.3)

Let C be a nonempty subset of R
N . The indicator function of C is

ιC : x �→
{

0, if x ∈C;

+∞, if x /∈C,
(10.4)

the support function of C is

σC = ι∗C : R
N → ]−∞,+∞] : u �→ sup

x∈C
u	x, (10.5)

the distance from x ∈ R
N to C is dC(x) = infy∈C‖x− y‖, and the relative interior of

C (i.e., interior of C relative to its affine hull) is the nonempty set denoted by riC. If
C is closed and convex, the projection of x ∈R

N onto C is the unique point PCx ∈C
such that dC(x) = ‖x−PCx‖.

10.2 From Projection to Proximity Operators

One of the first widely used convex optimization splitting algorithms in signal
processing is projection onto convex sets (POCS) [31, 42, 141]. This algorithm is
employed to recover/synthesize a signal satisfying simultaneously several convex
constraints. Such a problem can be formalized within the framework of (10.1) by
letting each function fi be the indicator function of a nonempty closed convex set Ci

modeling a constraint. This reduces (10.1) to the classical convex feasibility problem
[31, 42, 44, 86, 93, 121, 122, 128, 141]

find x ∈
m⋂

i=1

Ci. (10.6)

The POCS algorithm [25, 141] activates each set Ci individually by means of its
projection operator PCi . It is governed by the updating rule

xn+1 = PC1 · · ·PCmxn. (10.7)
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When
⋂m

i=1 Ci �= ∅ the sequence (xn)n∈N thus produced converges to a solution to
(10.6) [25]. Projection algorithms have been enriched with many extensions of this
basic iteration to solve (10.6) [10, 43, 45, 90]. Variants have also been proposed to
solve more general problems, e.g., that of finding the projection of a signal onto an
intersection of convex sets [22,47,137]. Beyond such problems, however, projection
methods are not appropriate and more general operators are required to tackle (10.1).
Among the various generalizations of the notion of a convex projection operator that
exist [10, 11, 44, 90], proximity operators are best suited for our purposes.

The projection PCx of x∈R
N onto the nonempty closed convex set C⊂R

N is the
solution to the problem

minimize
y∈RN

ιC(y)+
1
2
‖x− y‖2. (10.8)

Under the above hypotheses, the function ιC belongs to Γ0(RN). In 1962, Moreau
[101] proposed the following extension of the notion of a projection operator,
whereby the function ιC in (10.8) is replaced by an arbitrary function f ∈ Γ0(RN).

Definition 10.1 (Proximity operator). Let f ∈ Γ0(RN). For every x ∈ R
N , the

minimization problem

minimize
y∈RN

f (y)+
1
2
‖x− y‖2 (10.9)

admits a unique solution, which is denoted by prox f x. The operator prox f :
R

N → R
N thus defined is the proximity operator of f .

Let f ∈ Γ0(RN). The proximity operator of f is characterized by the inclusion

(∀(x, p) ∈ R
N×R

N) p = prox f x ⇔ x− p ∈ ∂ f (p), (10.10)

which reduces to

(∀(x, p) ∈ R
N×R

N) p = prox f x ⇔ x− p = ∇ f (p) (10.11)

if f is differentiable. Proximity operators have very attractive properties that make
them particularly well suited for iterative minimization algorithms. For instance,
prox f is firmly nonexpansive, i.e.,

(∀x ∈ R
N)(∀y ∈R

N) ‖prox f x−prox f y‖2 +‖(x−prox f x)− (y−prox f y)‖2

≤ ‖x− y‖2, (10.12)

and its fixed point set is precisely the set of minimizers of f . Such properties allow us
to envision the possibility of developing algorithms based on the proximity operators
(prox fi)1≤i≤m to solve (10.1), mimicking to some extent the way convex feasibility
algorithms employ the projection operators (PCi)1≤i≤m to solve (10.6). As shown in
Table 10.1, proximity operators enjoy many additional properties. One will find in
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Table 10.1 Properties of proximity operators [27, 37, 53–55, 102]: ϕ ∈ Γ0(RN); C ⊂ R
N is

nonempty, closed, and convex; x ∈ R
N

Property f (x) prox f x

i Translation ϕ(x− z), z ∈R
N z+proxϕ (x− z)

ii Scaling ϕ(x/ρ), ρ ∈ R�{0} ρproxϕ/ρ2 (x/ρ)
iii Reflection ϕ(−x) −proxϕ (−x)

iv Quadratic ϕ(x)+α‖x‖2/2+u	x+ γ proxϕ/(α+1)
(
(x−u)/(α +1)

)

Perturbation u ∈R
N , α ≥ 0, γ ∈ R

v Conjugation ϕ∗(x) x−proxϕ x

vi Squared distance 1
2 d2

C(x) 1
2 (x+PCx)

vii Moreau envelope ϕ̃(x) = inf
y∈RN

ϕ(y)+ 1
2‖x− y‖2 1

2

(
x+prox2ϕ x

)

viii Moreau complement 1
2‖ · ‖2− ϕ̃(x) x−proxϕ/2(x/2)

ix Decomposition
∑N

k=1 φk(x	bk)
∑N

k=1 proxφk
(x	bk)bk

in an orthonormal
basis (bk)1≤k≤N

φk ∈ Γ0(R)

x Semi-orthogonal ϕ(Lx) x+ ν−1L	
(
proxνϕ (Lx)−Lx

)

linear transform L ∈R
M×N , LL	 = νI, ν > 0

xi Quadratic function γ‖Lx− y‖2/2 (I + γL	L)−1(x+ γL	y)
L ∈R

M×N , γ > 0, y ∈R
M

xii Indicator function
ιC(x) =

{
0 if x ∈C

+∞ otherwise

PCx

xiii Distance function γdC(x), γ > 0
⎧
⎪⎪⎨

⎪⎪⎩

x+ γ(PCx− x)/dC(x)

if dC(x) > γ
PCx otherwise

xiv Function of distance φ(dC(x))
φ ∈ Γ0(R) even, differentiable
at 0 with φ ′(0) = 0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x+

(

1− proxφ dC(x)
dC(x)

)

(PCx− x)

if x /∈C

x otherwise
xv Support function σC(x) x−PCx

xvi Thresholding σC(x)+φ(‖x‖)
φ ∈ Γ0(R) even
and not constant

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

proxφ dC(x)
dC(x)

(x−PCx)

if dC(x) > maxArgminφ
x−PCx otherwise

Table 10.2 closed-form expressions of the proximity operators of various functions
in Γ0(R) (in the case of functions such as | · |p, proximity operators implicitly appear
in several places, e.g., [3, 4, 35]).
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Table 10.2 Proximity operator of φ ∈ Γ0(R); α ∈ R, κ > 0, κ > 0, κ > 0, ω > 0, ω < ω , q > 1,
τ ≥ 0 [37, 53, 55]

φ(x) proxφ x

i ι[ω,ω](x) P[ω,ω] x

ii σ[ω,ω](x) =

⎧
⎪⎪⎨

⎪⎪⎩

ωx if x < 0

0 if x = 0

ωx otherwise

soft[ω,ω](x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−ω if x < ω
0 if x ∈ [ω,ω]

x−ω if x > ω

iii ψ(x)+ σ[ω,ω](x)
ψ ∈ Γ0(R) differentiable at 0
ψ ′(0) = 0

proxψ
(
soft[ω,ω](x)

)

iv max{|x|−ω,0}
⎧
⎪⎪⎨

⎪⎪⎩

x if |x|< ω
sign(x)ω if ω ≤ |x| ≤ 2ω
sign(x)(|x|−ω) if |x|> 2ω

v κ |x|q sign(x)p,

where p ≥ 0 and p+qκ pq−1 = |x|

vi

⎧
⎨

⎩

κx2 if |x| ≤ ω/
√

2κ

ω
√

2κ |x|−ω2/2 otherwise

⎧
⎨

⎩

x/(2κ +1) if |x| ≤ ω(2κ +1)/
√

2κ

x−ω
√

2κ sign(x) otherwise

vii ω|x|+ τ |x|2 +κ |x|q sign(x)proxκ|·|q/(2τ+1)
max{|x|−ω,0}

2τ +1

viii ω|x|− ln(1+ ω|x|) (2ω)−1 sign(x)
(

ω|x|−ω2−1

+
√∣∣ω|x|−ω2−1

∣∣2 +4ω|x|
)

ix

{
ωx if x ≥ 0

+∞ otherwise

{
x−ω if x≥ ω
0 otherwise

x

{
−ωx1/q if x ≥ 0

+∞ otherwise

p1/q,

where p > 0 and p2q−1− xpq−1 = q−1ω

xi

{
ωx−q if x > 0

+∞ otherwise

p > 0
such that pq+2− xpq+1 = ωq

xii

⎧
⎪⎪⎨

⎪⎪⎩

x ln(x) if x > 0

0 if x = 0

+∞ otherwise

W (ex−1),
where W is the Lambert W-function

xiii

⎧
⎪⎪⎨

⎪⎪⎩

− ln(x−ω)+ ln(−ω) if x ∈ ]ω ,0]

− ln(ω− x)+ ln(ω) if x ∈ ]0,ω[

+∞ otherwise

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2

(
x+ω +

√
|x−ω|2 +4

)
if x < 1/ω

1
2

(
x+ω−

√
|x−ω|2 +4

)
if x > 1/ω

0 otherwise
ω < 0 < ω (see Fig. 10.2)

(continued)
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Table 10.2 (continued)
φ (x) proxφ x

xiv

{
−κ ln(x)+ τx2/2+αx if x > 0

+∞ otherwise

1
2(1+ τ)

(
x−α +

√
|x−α |2 +4κ(1+ τ)

)

xv

{
−κ ln(x)+αx+ωx−1 if x > 0

+∞ otherwise

p > 0
such that p3 +(α− x)p2−κ p = ω

xvi

{
−κ ln(x)+ωxq if x > 0

+∞ otherwise

p > 0
such that qω pq + p2− xp = κ

xvii

⎧
⎪⎪⎨

⎪⎪⎩

−κ ln(x−ω)−κ ln(ω− x)

if x ∈ ]ω,ω[

+∞ otherwise

p ∈ ]ω,ω[
such that p3− (ω +ω + x)p2+(
ωω−κ−κ +(ω +ω)x

)
p = ωωx−ωκ−ωκ

From a signal processing perspective, proximity operators have a very natural
interpretation in terms of denoising. Let us consider the standard denoising problem
of recovering a signal x ∈ R

N from an observation

y = x + w, (10.13)

where w ∈ R
N models noise. This problem can be formulated as (10.9), where

‖ ·−y‖2/2 plays the role of a data fidelity term and where f models a priori knowl-
edge about x. Such a formulation derives in particular from a Bayesian approach
to denoising [21, 124, 126] in the presence of Gaussian noise and of a prior with a
log-concave density exp(− f ).

10.3 Forward–Backward Splitting

In this section, we consider the case of m = 2 functions in (10.1), one of which is
smooth.

Problem 10.2. Let f1 ∈ Γ0(RN), let f2 : R
N → R be convex and differentiable with

a β -Lipschitz continuous gradient ∇ f2, i.e.,

(∀(x,y) ∈R
N ×R

N) ‖∇ f2(x)−∇ f2(y)‖ ≤ β‖x− y‖, (10.14)

where β ∈ ]0,+∞[. Suppose that f1(x)+ f2(x)→ +∞ as ‖x‖ → +∞. The problem
is to

minimize
x∈RN

f1(x)+ f2(x). (10.15)

It can be shown [55] that Problem 10.2 admits at least one solution and that, for
any γ ∈ ]0,+∞[, its solutions are characterized by the fixed point equation

x = proxγ f1

(
x− γ∇ f2(x)

)
. (10.16)
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This equation suggests the possibility of iterating

xn+1 = proxγn f1︸ ︷︷ ︸
backward step

(
xn− γn∇ f2(xn)︸ ︷︷ ︸

forward step

)
(10.17)

for values of the step-size parameter γn in a suitable bounded interval. This type of
scheme is known as a forward–backward splitting algorithm for, using the termi-
nology used in discretization schemes in numerical analysis [132], it can be broken
up into a forward (explicit) gradient step using the function f2, and a backward (im-
plicit) step using the function f1. The forward–backward algorithm finds its roots in
the projected gradient method [94] and in decomposition methods for solving vari-
ational inequalities [99, 119]. More recent forms of the algorithm and refinements
can be found in [23,40,48,85,130]. Let us note that, on the one hand, when f1 = 0,
(10.17) reduces to the gradient method

xn+1 = xn− γn∇ f2(xn) (10.18)

for minimizing a function with a Lipschitz continuous gradient [19,61]. On the other
hand, when f2 = 0, (10.17) reduces to the proximal point algorithm

xn+1 = proxγn f1 xn (10.19)

for minimizing a nondifferentiable function [26, 48, 91, 98, 115]. The forward–
backward algorithm can therefore be considered as a combination of these two basic
schemes. The following version incorporates relaxation parameters (λn)n∈N.

Algorithm 10.3 (Forward–backward algorithm).
Fix ε ∈ ]0,min{1,1/β}[, x0 ∈ R

N

For n = 0,1, . . .⎢
⎢
⎢
⎢
⎢
⎣

γn ∈ [ε,2/β − ε]
yn = xn− γn∇ f2(xn)
λn ∈ [ε,1]
xn+1 = xn +λn(proxγn f1yn− xn). (10.20)

Proposition 10.4. [55] Every sequence (xn)n∈N generated by Algorithm 10.3 con-
verges to a solution to Problem 10.2.

The above forward–backward algorithm features varying step-sizes (γn)n∈N but
its relaxation parameters (λn)n∈N cannot exceed 1. The following variant uses con-
stant step-sizes and larger relaxation parameters.

Algorithm 10.5 (Constant-step forward–backward algorithm).
Fix ε ∈ ]0,3/4[ and x0 ∈ R

N

For n = 0,1, . . .
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⎢
⎢
⎢
⎣

yn = xn−β−1∇ f2(xn)
λn ∈ [ε,3/2− ε]
xn+1 = xn + λn(proxβ−1 f1

yn− xn). (10.21)

Proposition 10.6. [13] Every sequence (xn)n∈N generated by Algorithm 10.5 con-
verges to a solution to Problem 10.2.

Although they may have limited impact on actual numerical performance, it may
be of interest to know whether linear convergence rates are available for the forward-
backward algorithm. In general, the answer is negative: even in the simple setting
of Example 10.12 below, linear convergence of the iterates (xn)n∈N generated by
Algorithm 10.3 fails [9, 139]. Nonetheless, it can be achieved at the expense of
additional assumptions on the problem [10, 24, 40, 61, 92, 99, 100, 115, 119, 144].

Another type of convergence rate is that pertaining to the objective values
( f1(xn)+ f2(xn))n∈N. This rate has been investigated in several places [15, 24, 83]
and variants of Algorithm 10.3 have been developed to improve it [15, 16, 84, 104,
105,131,136] in the spirit of classical work by Nesterov [106]. It is important to note
that the convergence of the sequence of iterates (xn)n∈N, which is often crucial in
practice, is no longer guaranteed in general in such variants. The proximal gradient
method proposed in [15, 16] assumes the following form.

Algorithm 10.7 (Beck–Teboulle proximal gradient algorithm).
Fix x0 ∈R

N , set z0 = x0 and t0 = 1
For n = 0,1, . . .⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

yn = zn−β−1∇ f2(zn)

xn+1 = proxβ−1 f1
yn

tn+1 =
1 +

√
4t2

n + 1
2

λn = 1 +
tn−1
tn+1

zn+1 = xn + λn(xn+1− xn). (10.22)

While little is known about the actual convergence of sequences produced by
Algorithm 10.7, the O(1/n2) rate of convergence of the objective function they
achieve is optimal [103], although the practical impact of such property is not always
manifest in concrete problems (see Fig. 10.1 for a comparison with the Forward–
Backward algorithm).

Proposition 10.8. [15] Assume that, for every y∈ dom f1, ∂ f1(y) �= ∅, and let x be a
solution to Problem 10.2. Then every sequence (xn)n∈N generated by Algorithm 10.7
satisfies

(∀n ∈ N�{0}) f1(xn)+ f2(xn)≤ f1(x)+ f2(x)+
2β‖x0− x‖2

(n + 1)2 . (10.23)
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C

D

x0 x1
x∞

C

D

z0 = x0

z1 = x1

y0

y1 y2

x2
z2

x∞

Fig. 10.1 Forward–backward vs. Beck–Teboulle: As in Example 10.12, let C and D be two closed
convex sets and consider the problem (10.30) of finding a point x∞ in C at minimum distance from
D. Let us set f1 = ιC and f2 = d2

D/2. Top: The forward–backward algorithm with γn ≡ 1.9 and
λn ≡ 1. As seen in Example 10.12, it reduces to the alternating projection method (10.31). Bottom:
The Beck–Teboulle algorithm

Other variations of the forward–backward algorithm have also been reported to
yield improved convergence profiles [20, 70, 97, 134, 135].

Problem 10.2 and Proposition 10.4 cover a wide variety of signal processing
problems and solution methods [55]. For the sake of illustration, let us provide a
few examples. For notational convenience, we set λn ≡ 1 in Algorithm 10.3, which
reduces the updating rule to (10.17).

Example 10.9 (Projected gradient). In Problem 10.2, suppose that f1 = ιC , where
C is a closed convex subset of R

N such that {x ∈ C | f2(x) ≤ η} is nonempty and
bounded for some η ∈R. Then we obtain the constrained minimization problem

minimize
x∈C

f2(x). (10.24)

Since proxγ f1 = PC (see Table 10.1xii), the forward–backward iteration reduces to
the projected gradient method

xn+1 = PC
(
xn− γn∇ f2(xn)

)
, ε ≤ γn ≤ 2/β − ε. (10.25)
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Fig. 10.2 Proximity operator of the function

φ : R→ ]−∞,+∞] : ξ �→

⎧
⎪⎪⎨

⎪⎪⎩

− ln(ξ −ω)+ ln(−ω) if ξ ∈ ]ω,0]

− ln(ω−ξ )+ ln(ω) if ξ ∈ ]0,ω[

+∞ otherwise.

The proximity operator thresholds over the interval [1/ω,1/ω], and saturates at −∞ and +∞ with
asymptotes at ω and ω , respectively (see Table 10.2xiii and [53])

This algorithm has been used in numerous signal processing problems, in particular
in total variation denoising [34], in image deblurring [18], in pulse shape design
[50], and in compressed sensing [73].

Example 10.10 (Projected Landweber). In Example 10.9, setting f2 : x �→ ‖Lx−
y‖2/2, where L ∈ R

M×N
� {0} and y ∈ R

M , yields the constrained least-squares
problem

minimize
x∈C

1
2
‖Lx− y‖2. (10.26)

Since ∇ f2 : x �→ L	(Lx− y) has Lipschitz constant β = ‖L‖2, (10.25) yields the
projected Landweber method [68]

xn+1 = PC
(
xn + γnL	(y−Lxn)

)
, ε ≤ γn ≤ 2/‖L‖2− ε. (10.27)

This method has been used in particular in computer vision [89] and in signal
restoration [129].
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Example 10.11 (Backward–backward algorithm). Consider f ,g ∈ Γ0(RN) and the
problem

minimize
x∈RN

f (x)+ g̃(x), (10.28)

where g̃ is the Moreau envelope of g (see Table 10.1vii), and suppose that f (x)+
g̃(x) → +∞ as ‖x‖ → +∞. This is a special case of Problem 10.2 with f1 = f
and f2 = g̃. Since ∇ f2 : x �→ x− proxgx has Lipschitz constant β = 1 [55, 102],
Proposition 10.4 with γn ≡ 1 asserts that the sequence (xn)n∈N generated by the
backward–backward algorithm

xn+1 = prox f (proxgxn) (10.29)

converges to a solution to (10.28). Detailed analyses of this scheme can be found in
[1, 14, 48, 108].

Example 10.12 (Alternating projections). In Example 10.11, let f and g be respec-
tively the indicator functions of nonempty closed convex sets C and D, one of which
is bounded. Then (10.28) amounts to finding a signal x in C at closest distance
from D, i.e.,

minimize
x∈C

1
2

d2
D(x). (10.30)

Moreover, since prox f = PC and proxg = PD, (10.29) yields the alternating projec-
tion method

xn+1 = PC(PDxn), (10.31)

which was first analyzed in this context in [41]. Signal processing applications can
be found in the areas of spectral estimation [80], pulse shape design [107], wavelet
construction [109], and signal synthesis [140].

Example 10.13 (Iterative thresholding). Let (bk)1≤k≤N be an orthonormal basis of
R

N , let (ωk)1≤k≤N be strictly positive real numbers, let L ∈ R
M×N

� {0}, and let
y ∈ R

M . Consider the �1–�2 problem

minimize
x∈RN

N∑

k=1

ωk|x	bk|+ 1
2
‖Lx− y‖2. (10.32)

This type of formulation arises in signal recovery problems in which y is the ob-
served signal and the original signal is known to have a sparse representation in the
basis (bk)1≤k≤N , e.g., [17, 20, 56, 58, 72, 73, 125, 127]. We observe that (10.32) is a
special case of (10.15) with

{
f1 : x �→∑

1≤k≤N ωk|x	bk|
f2 : x �→ ‖Lx− y‖2/2.

(10.33)
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Since proxγ f1 : x �→∑
1≤k≤N soft[−γωk ,γωk](x

	bk)bk (see Tables 10.1viii and 10.2ii),
it follows from Proposition 10.4 that the sequence (xn)n∈N generated by the iterative
thresholding algorithm

xn+1 =
N∑

k=1

ξk,nbk, where

{
ξk,n = soft[−γnωk,γnωk ]

(
xn + γnL	(y−Lxn)

)	
bk

ε ≤ γn ≤ 2/‖L‖2− ε,
(10.34)

converges to a solution to (10.32).

Additional applications of the forward–backward algorithm in signal and image
processing can be found in [28–30, 32, 36, 37, 53, 55, 57, 74].

10.4 Douglas–Rachford Splitting

The forward-backward algorithm of Sect. 10.3 requires that one of the functions be
differentiable, with a Lipschitz continuous gradient. In this section, we relax this
assumption.

Problem 10.14. Let f1 and f2 be functions in Γ0(RN) such that

(ridom f1)∩ (ridom f2) �= ∅ (10.35)

and f1(x)+ f2(x)→+∞ as ‖x‖→+∞. The problem is to

minimize
x∈RN

f1(x)+ f2(x). (10.36)

What is nowadays referred to as the Douglas–Rachford algorithm goes back to
a method originally proposed in [60] for solving matrix equations of the form u =
Ax + Bx, where A and B are positive-definite matrices (see also [132]). The method
was transformed in [95] to handle nonlinear problems and further improved in [96]
to address monotone inclusion problems. For further developments, see [48,49,66].

Problem 10.14 admits at least one solution and, for any γ ∈ ]0,+∞[, its solutions
are characterized by the two-level condition [52]

{
x = proxγ f2 y

proxγ f2 y = proxγ f1(2proxγ f2 y− y),
(10.37)

which motivates the following scheme.
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Algorithm 10.15 (Douglas–Rachford algorithm).
Fix ε ∈ ]0,1[, γ > 0, y0 ∈ R

N

For n = 0,1, . . .⎢
⎢
⎢
⎢
⎣

xn = proxγ f2 yn

λn ∈ [ε,2− ε]
yn+1 = yn + λn

(
proxγ f1

(
2xn− yn

)− xn
)
. (10.38)

Proposition 10.16. [52] Every sequence (xn)n∈N generated by Algorithm 10.15
converges to a solution to Problem 10.14.

Just like the forward–backward algorithm, the Douglas–Rachford algorithm op-
erates by splitting since it employs the functions f1 and f2 separately. It can be
viewed as more general in scope than the forward–backward algorithm in that it
does not require that any of the functions have a Lipschitz continuous gradient.
However, this observation must be weighed against the fact that it may be more
demanding numerically as it requires the implementation of two proximal steps at
each iteration, whereas only one is needed in the forward–backward algorithm. In
some problems, both may be easily implementable (see Fig. 10.3 for an example)
and it is not clear a priori which algorithm may be more efficient.

C

D

x0

x1

x2
x3

x∞

y1

y2
y3

x4

y4

C

D

y0 x∞

x0

x2
x3

x1

Fig. 10.3 Forward–backward vs. Douglas–Rachford: As in Example 10.12, let C and D be two
closed convex sets and consider the problem (10.30) of finding a point x∞ in C at minimum distance
from D. Let us set f1 = ιC and f2 = d2

D/2. Top: The forward–backward algorithm with γn ≡ 1 and
λn≡ 1. As seen in Example 10.12, it assumes the form of the alternating projection method (10.31).
Bottom: The Douglas–Rachford algorithm with γ = 1 and λn ≡ 1. Table 10.1xii yields prox f1

= PC

and Table 10.1vi yields prox f2 : x �→ (x+PDx)/2. Therefore, the updating rule in Algorithm 10.15
reduces to xn = (yn +PDyn)/2 and yn+1 = PC(2xn− yn)+ yn− xn = PC(PDyn)+ yn− xn
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Applications of the Douglas–Rachford algorithm to signal and image processing
can be found in [38, 52, 62, 63, 117, 118, 123].

The limiting case of the Douglas–Rachford algorithm in which λn ≡ 2 is the
Peaceman–Rachford algorithm [48, 66, 96]. Its convergence requires additional as-
sumptions (for instance, that f2 be strictly convex and real-valued) [49].

10.5 Dykstra-Like Splitting

In this section we consider problems involving a quadratic term penalizing the de-
viation from a reference signal r.

Problem 10.17. Let f and g be functions in Γ0(RN) such that dom f ∩domg �= ∅,
and let r ∈ R

N . The problem is to

minimize
x∈RN

f (x)+ g(x)+
1
2
‖x− r‖2. (10.39)

It follows at once from (10.9) that Problem 10.17 admits a unique solution,
namely x = prox f+g r. Unfortunately, the proximity operator of the sum of two
functions is usually intractable. To compute it iteratively, we can observe that
(10.39) can be viewed as an instance of (10.36) in Problem 10.14 with f1 = f and
f2 = g +‖ ·−r‖2/2. However, in this Douglas–Rachford framework, the additional
qualification condition (10.35) needs to be imposed. In the present setting we require
only the minimal feasibility condition dom f ∩domg �= ∅.

Algorithm 10.18 (Dykstra-like proximal algorithm).
Set x0 = r, p0 = 0, q0 = 0
For n = 0,1, . . .
⎢
⎢
⎢
⎢⎢
⎣

yn = proxg(xn + pn)
pn+1 = xn + pn− yn

xn+1 = prox f (yn + qn)
qn+1 = yn + qn− xn+1.

(10.40)

Proposition 10.19. [12] Every sequence (xn)n∈N generated by Algorithm 10.18
converges to the solution to Problem 10.17.

Example 10.20 (Best approximation). Let f and g be the indicator functions of
closed convex sets C and D, respectively, in Problem 10.17. Then the problem is
to find the best approximation to r from C∩D, i.e., the projection of r onto C∩D.
In this case, since prox f = PC and proxg = PD, the above algorithm reduces to Dyk-
stra’s projection method [22, 64].

Example 10.21 (Denoising). Consider the problem of recovering a signal x from
a noisy observation r = x + w, where w models noise. If f and g are functions in
Γ0(RN) promoting certain properties of x, adopting a least-squares data fitting ob-
jective leads to the variational denoising problem (10.39).
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10.6 Composite Problems

We focus on variational problems with m = 2 functions involving explicitly a linear
transformation.

Problem 10.22. Let f ∈ Γ0(RN), let g ∈ Γ0(RM), and let L ∈ R
M×N

�{0} be such
that domg∩ L(dom f ) �= ∅ and f (x) + g(Lx)→ +∞ as ‖x‖ → +∞. The problem
is to

minimize
x∈RN

f (x)+ g(Lx). (10.41)

Our assumptions guarantee that Problem 10.22 possesses at least one solution.
To find such a solution, several scenarios can be contemplated.

10.6.1 Forward–Backward Splitting

Suppose that in Problem 10.22 g is differentiable with a τ-Lipschitz continuous
gradient (see (10.14)). Now set f1 = f and f2 = g ◦L. Then f2 is differentiable and
its gradient

∇ f2 = L	 ◦∇g ◦L (10.42)

is β -Lipschitz continuous, with β = τ‖L‖2. Hence, we can apply the forward–
backward splitting method, as implemented in Algorithm 10.3. As seen in (10.20),
it operates with the updating rule

⎢
⎢
⎢⎢
⎢
⎣

γn ∈ [ε,2/(τ‖L‖2)− ε]
yn = xn− γnL	∇g(Lxn)
λn ∈ [ε,1]
xn+1 = xn + λn(proxγn f yn− xn). (10.43)

Convergence is guaranteed by Proposition 10.4.

10.6.2 Douglas–Rachford Splitting

Suppose that in Problem 10.22 the matrix L satisfies

LL	 = νI, where ν ∈ ]0,+∞[ (10.44)

and (ridomg) ∩ riL(dom f ) �= ∅. Let us set f1 = f and f2 = g ◦ L. As seen in
Table 10.1x, prox f2 has a closed-form expression in terms of proxg and we can
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therefore apply the Douglas–Rachford splitting method (Algorithm 10.15). In this
scenario, the updating rule reads

⎢
⎢
⎢
⎢
⎣

xn = yn +ν−1L	
(
proxγνg(Lyn)−Lyn

)

λn ∈ [ε,2− ε]
yn+1 = yn +λn

(
proxγ f

(
2xn− yn

)− xn
)
. (10.45)

Convergence is guaranteed by Proposition 10.16.

10.6.3 Dual Forward–Backward Splitting

Suppose that in Problem 10.22 f = h +‖ ·−r‖2/2, where h ∈ Γ0(RN) and r ∈ R
N .

Then (10.41) becomes

minimize
x∈RN

h(x)+ g(Lx)+
1
2
‖x− r‖2, (10.46)

which models various signal recovery problems, e.g., [33, 34, 51, 59, 112, 138]. If
(10.44) holds, proxg◦L is decomposable, and (10.46) can be solved with the Dykstra-
like method of Sect. 10.5, where f1 = h+‖·−r‖2/2 (see Table 10.1iv) and f2 = g◦L
(see Table 10.1x). Otherwise, we can exploit the nice properties of the Fenchel–
Moreau–Rockafellar dual of (10.46), solve this dual problem by forward–backward
splitting, and recover the unique solution to (10.46) [51].

Algorithm 10.23 (Dual forward–backward algorithm).
Fix ε ∈ ]

0,min{1,1/‖L‖2}[, u0 ∈ R
M

For n = 0,1, . . .⎢
⎢⎢
⎢
⎢
⎢
⎣

xn = proxh(r−L	un)

γn ∈
[
ε,2/‖L‖2− ε

]

λn ∈ [ε,1]
un+1 = un + λn

(
proxγng∗(un + γnLxn)−un

)
. (10.47)

Proposition 10.24. [51] Assume that (ridomg) ∩ riL(domh) �= ∅. Then every
sequence (xn)n∈N generated by the dual forward–backward Algorithm 10.23 con-
verges to the solution to (10.46).

10.6.4 Alternating-Direction Method of Multipliers

Augmented Lagrangian techniques are classical approaches for solving Prob-
lem 10.22 [77, 79] (see also [75, 78]). First, observe that (10.41) is equivalent to

minimize
x∈R

N , y∈R
M

Lx=y

f (x)+ g(y). (10.48)
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The augmented Lagrangian of index γ ∈ ]0,+∞[ associated with (10.48) is the sad-
dle function

Lγ : R
N×R

M×R
M→ ]−∞,+∞]

(x,y,z) �→ f (x)+ g(y)+
1
γ

z	(Lx− y)+
1
2γ
‖Lx− y‖2. (10.49)

The alternating-direction method of multipliers consists in minimizing Lγ over x,
then over y, and then applying a proximal maximization step with respect to the
Lagrange multiplier z. Now suppose that

L	L is invertible and (ridomg)∩ riL(dom f ) �= ∅. (10.50)

By analogy with (10.9), if we denote by proxL
f the operator which maps a point

y∈R
M to the unique minimizer of x �→ f (x)+‖Lx−y‖2/2, we obtain the following

implementation.

Algorithm 10.25 (Alternating-direction method of multipliers (ADMM)).
Fix γ > 0, y0 ∈ R

M , z0 ∈R
M

For n = 0,1, . . .⎢⎢
⎢
⎢
⎢
⎢
⎣

xn = proxL
γ f (yn− zn)

sn = Lxn

yn+1 = proxγg(sn + zn)
zn+1 = zn + sn− yn+1. (10.51)

The convergence of the sequence (xn)n∈N thus produced under assumption
(10.50) has been investigated in several places, e.g., [75, 77, 78]. It was first ob-
served in [76] that the ADMM algorithm can be derived from an application of the
Douglas-Rachford algorithm to the dual of (10.41). This analysis was pursued in
[66], where the convergence of (xn)n∈N to a solution to (10.41) is shown. Variants
of the method relaxing the requirements on L in (10.50) have been proposed [5,39].

In image processing, ADMM was applied in [81] to an �1 regularization prob-
lem under the name “alternating split Bregman algorithm.” Further applications and
connections are found in [2, 69, 117, 143].

10.7 Problems with m≥ 2 Functions

We return to the general minimization problem (10.1).

Problem 10.26. Let f1,. . . , fm be functions in Γ0(RN) such that

(ridom f1)∩·· ·∩ (ridom fm) �= ∅ (10.52)
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and f1(x)+ · · ·+ fm(x)→+∞ as ‖x‖→+∞. The problem is to

minimize
x∈RN

f1(x)+ · · ·+ fm(x). (10.53)

Since the methods described so far are designed for m = 2 functions, we can
attempt to reformulate (10.53) as a 2-function problem in the m-fold product space

H = R
N×·· ·×R

N (10.54)

(such techniques were introduced in [110,111] and have been used in the context of
convex feasibility problems in [10,43,45]). To this end, observe that (10.53) can be
rewritten in H as

minimize
(x1,...,xm)∈H

x1=···=xm

f1(x1)+ · · ·+ fm(xm). (10.55)

If we denote by x = (x1, . . . ,xm) a generic element in H , (10.55) is equivalent to

minimize
x∈H

ιD(x)+ f (x), (10.56)

where {
D =

{
(x, . . . ,x) ∈H | x ∈ R

N
}

f : x �→ f1(x1)+ · · ·+ fm(xm).
(10.57)

We are thus back to a problem involving two functions in the larger space H . In
some cases, this observation makes it possible to obtain convergent methods from
the algorithms discussed in the preceding sections. For instance, the following par-
allel algorithm was derived from the Douglas–Rachford algorithm in [54] (see also
[49] for further analysis and connections with Spingarn’s splitting method [120]).

Algorithm 10.27 (Parallel proximal algorithm (PPXA)).
Fix ε ∈ ]0,1[, γ > 0, (ωi)1≤i≤m ∈ ]0,1]m such that
∑m

i=1 ωi = 1, y1,0 ∈ R
N , . . . ,ym,0 ∈ R

N

Set x0 =
∑m

i=1 ωiyi,0

For n = 0,1, . . .⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

For i = 1, . . . ,m⌊
pi,n = proxγ fi/ωi

yi,n

pn =
m∑

i=1

ωi pi,n

ε ≤ λn ≤ 2− ε
For i = 1, . . . ,m⌊

yi,n+1 = yi,n +λn
(
2pn− xn− pi,n

)

xn+1 = xn + λn(pn− xn).
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Proposition 10.28. [54] Every sequence (xn)n∈N generated by Algorithm 10.27
converges to a solution to Problem 10.26.

Example 10.29 (Image recovery). In many imaging problems, we record an obser-
vation y∈R

M of an image z∈R
K degraded by a matrix L ∈R

M×K and corrupted by
noise. In the spirit of a number of recent investigations (see [37] and the references
therein), a tight frame representation of the images under consideration can be used.
This representation is defined through a synthesis matrix F	 ∈R

K×N (with K ≤ N)
such that F	F = νI, for some ν ∈ ]0,+∞[. Thus, the original image can be written
as z = F	x, where x ∈ R

N is a vector of frame coefficients to be estimated. For this
purpose, we consider the problem

minimize
x∈C

1
2
‖LF	x− y‖2 +Φ(x)+ tv(F	x), (10.58)

where C is a closed convex set modeling a constraint on z, the quadratic term is the
standard least-squares data fidelity term, Φ is a real-valued convex function on R

N

(e.g., a weighted �1 norm) introducing a regularization on the frame coefficients, and
tv is a discrete total variation function aiming at preserving piecewise smooth areas
and sharp edges [116]. Using appropriate gradient filters in the computation of tv, it
is possible to decompose it as a sum of convex functions (tvi)1≤i≤q, the proximity
operators of which can be expressed in closed form [54,113]. Thus, (10.58) appears
as a special case of (10.53) with m = q + 3, f1 = ιC, f2 = ‖LF	 ·−y‖2/2, f3 = Φ ,
and f3+i = tvi(F	·) for i∈ {1, . . . ,q}. Since a tight frame is employed, the proximity
operators of f2 and ( f3+i)1≤i≤q can be deduced from Table 10.1x. Thus, the PPXA
algorithm is well suited for solving this problem numerically.

A product space strategy can also be adopted to address the following extension
of Problem 10.17.

Problem 10.30. Let f1, . . . , fm be functions in Γ0(RN) such that dom f1 ∩ ·· · ∩
dom fm �= ∅, let (ωi)1≤i≤m ∈ ]0,1]m be such that

∑m
i=1 ωi = 1, and let r ∈ R

N . The
problem is to

minimize
x∈RN

m∑

i=1

ωi fi(x)+
1
2
‖x− r‖2. (10.59)

Algorithm 10.31 (Parallel Dykstra-like proximal algorithm).
Set x0 = r, z1,0 = x0, . . . , zm,0 = x0

For n = 0,1, . . .⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

For i = 1, . . . ,m⌊
pi,n = prox fi zi,n

xn+1 =
∑m

i=1 ωi pi,n

For i = 1, . . . ,m⌊
zi,n+1 = xn+1 + zi,n− pi,n. (10.60)
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Proposition 10.32. [49] Every sequence (xn)n∈N generated by Algorithm 10.31
converges to the solution to Problem 10.30.

Next, we consider a composite problem.

Problem 10.33. For every i ∈ {1, . . . ,m}, let gi ∈ Γ0(RMi) and let Li ∈ R
Mi×N .

Assume that

(∃q ∈ R
N) L1q ∈ ridomg1, . . . ,Lmq ∈ ridomgm, (10.61)

that g1(L1x)+ · · ·+ gm(Lmx)→ +∞ as ‖x‖ → +∞, and that Q =
∑

1≤i≤m L	i Li is
invertible. The problem is to

minimize
x∈RN

g1(L1x)+ · · ·+ gm(Lmx). (10.62)

Proceeding as in (10.55) and (10.56), (10.62) can be recast as

minimize
x∈H , y∈G

y=Lx

ιD(x)+ g(y), (10.63)

where
⎧
⎪⎪⎨

⎪⎪⎩

H = R
N×·· ·×R

N , G = R
M1 ×·· ·×R

Mm

L : H → G : x �→ (L1x1, . . . ,Lmxm)

g : G → ]−∞,+∞] : y �→ g1(y1)+ · · ·+ gm(ym).

(10.64)

In turn, a solution to (10.62) can be obtained as the limit of the sequence (xn)n∈N

constructed by the following algorithm, which can be derived from the alternating-
direction method of multipliers of Sect. 10.6.4 (alternative parallel offsprings of
ADMM exist, see for instance [65]).

Algorithm 10.34 (Simultaneous-direction method of multipliers (SDMM)).
Fix γ > 0, y1,0 ∈ R

M1 , . . . , ym,0 ∈R
Mm , z1,0 ∈ R

M1 , . . . , zm,0 ∈ R
Mm

For n = 0,1, . . .⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

xn = Q−1∑m
i=1 L	i (yi,n− zi,n)

For i = 1, . . . ,m⎢⎢
⎢
⎢
⎣

si,n = Lixn

yi,n+1 = proxγgi
(si,n + zi,n)

zi,n+1 = zi,n + si,n− yi,n+1 (10.65)

This algorithm was derived from a slightly different viewpoint in [118] with a
connection with the work of [71]. In these papers, SDMM is applied to deblurring
in the presence of Poisson noise. The computation of xn in (10.65) requires the so-
lution of a positive-definite symmetric system of linear equations. Efficient methods
for solving such systems can be found in [82]. In certain situations, fast Fourier
diagonalization is also an option [2, 71].
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In the above algorithms, the proximal vectors, as well as the auxiliary vectors,
can be computed simultaneously at each iteration. This parallel structure is use-
ful when the algorithms are implemented on multicore architectures. A parallel
proximal algorithm is also available to solve multicomponent signal processing
problems [27]. This framework captures in particular problem formulations found
in [7, 8, 80, 88, 133]. Let us add that an alternative splitting framework applicable to
(10.53) was recently proposed in [67].

10.8 Conclusion

We have presented a panel of convex optimization algorithms sharing two main
features. First, they employ proximity operators, a powerful generalization of the
notion of a projection operator. Second, they operate by splitting the objective to
be minimized into simpler functions that are dealt with individually. These methods
are applicable to a wide class of signal and image processing problems ranging from
restoration and reconstruction to synthesis and design. One of the main advantages
of these algorithms is that they can be used to minimize nondifferentiable objec-
tives, such as those commonly encountered in sparse approximation and compressed
sensing, or in hard-constrained problems. Finally, let us note that the variational
problems described in (10.39), (10.46), and (10.59), consist of computing a prox-
imity operator. Therefore, the associated algorithms can be used as a subroutine to
compute approximately proximity operators within a proximal splitting algorithm,
provided the latter is error tolerant (see [48, 49, 51, 66, 115] for convergence prop-
erties under approximate proximal computations). An application of this principle
can be found in [38].
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Chapter 11
Arbitrarily Slow Convergence of Sequences
of Linear Operators: A Survey

Frank Deutsch and Hein Hundal

Abstract This is a survey (without proofs except for verifying a few new facts) of
the slowest possible rate of convergence of a sequence of linear operators that con-
verges pointwise to a linear operator. A sequence of linear operators (Ln) is said to
converge to a linear operator L arbitrarily slowly (resp., almost arbitrarily slowly)
provided that (Ln) converges to L pointwise, and for each sequence of real numbers
(φ(n)) converging to 0, there exists a point x = xφ such that ‖Ln(x)−L(x)‖ ≥ φ(n)
for all n (resp., for infinitely many n). Two main “lethargy” theorems are promi-
nent in this study, and they have numerous applications. The first lethargy theorem
(Theorem 11.16) characterizes almost arbitrarily slow convergence. Applications
of this lethargy theorem include the fact that a large class of polynomial oper-
ators (e.g., Bernstein, Hermite–Fejer, Landau, Fejer, and Jackson operators) all
converge almost arbitrarily slowly to the identity operator. Also all the classi-
cal quadrature rules (e.g., the composite Trapezoidal Rule, composite Simpson’s
Rule, and Gaussian quadrature) converge almost arbitrarily slowly to the integration
functional. The second lethargy theorem (Theorem 11.21) gives useful sufficient
conditions that guarantee arbitrarily slow convergence. In the particular case when
the sequence of linear operators is generated by the powers of a single linear op-
erator, there is a “dichotomy” theorem (Theorem 11.27) which states that either
there is linear (fast) convergence or arbitrarily slow convergence; no other type of
convergence is possible. Some applications of the dichotomy theorem include gen-
eralizations and sharpening of (1) the von Neumann–Halperin cyclic projections
theorem, (2) the rate of convergence for intermittently (i.e., “almost” randomly)
ordered projections, and (3) a theorem of Xu and Zikatanov.
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11.1 Introduction

There are some important algorithms in analysis that are all special cases of the
following type. Let (Ln) be sequence of bounded linear operators from one normed
linear space X to another Y , and suppose that the sequence converges pointwise to a
bounded linear operator L, that is,

L(x) := lim
n→∞

Ln(x) for each x ∈ X .

A natural and practical question that arises then is: what can be said about the
rate of this convergence? This is an interesting and important question that first
seems to have been studied in a systematic way in two recent papers of the authors
[20] and [21], and independently in a paper of Badea, Grivaux, and Müller [3] who
focused their study on the case of powers of a single linear operator (i.e., Ln = T n

for some linear operator T : X→ X). However, the motivation for these papers came
in turn from the following two papers: Bauschke et al. [7] and Bauschke et al. [9].
This survey will highlight what is known about this question.

In Sect. 11.2, relationships between the various kinds of convergence for a se-
quence of linear operators are exhibited. The phrase “arbitrarily slow convergence”
has appeared in several papers. But in many of these, no precise definition was given.
But even the precise definitions differed in a significant way. However, Schock [50]
did give such a definition for a special class of methods for obtaining approximate
solutions to a particular linear operator equation, and his definition (extended to the
general setting) is seen to be equivalent to “almost arbitrarily slow” convergence
(Lemma 11.12).

In Sect. 11.3, the “first lethargy theorem” (Theorem 11.16) characterizes al-
most arbitrarily slow convergence. Briefly, the sequence converges almost arbitrarily
slowly if and only if it converges pointwise, but not in norm. In Sect. 11.7, as ap-
plications of Theorem 11.16, it is seen that the Bernstein, Hermite–Fejer, Landau,
Fejer, and Jackson operators all converge almost arbitrarily slowly to the identity op-
erator. In fact, the Bernstein and Hermite–Fejer operators even converge arbitrarily
slowly to the identity operator. Similarly, in Sect. 11.8, it is seen that all the classi-
cal numerical quadrature rules (e.g., the composite Trapezoidal Rule, the composite
Simpson’s Rule, and Gaussian quadrature) converge almost arbitrarily slowly to the
definite integral functional.
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Section 11.4 highlights the “second lethargy theorem” (Theorem 11.21). It
provides essential sufficient conditions guaranteeing that the sequence (Ln) con-
verges to L arbitrarily slowly. Furthermore, Theorem 11.21 is the basis for all the
main results and applications in Sects. 11.5, 11.9–11.11.

In Sect. 11.5, the important special case when the sequence (Ln) is generated by
the powers of a single linear operator T , i.e., Ln = T n for each n is considered. The
main result here is a “dichotomy theorem” (Theorem 11.27), which shows that, in
the case of powers, there are exactly two different kinds of convergence possible:
either linear (possibly finite) or arbitrarily slow. There are no intermediate types of
pointwise convergence possible. The arbitrarily slow variants developed by Badea
et al. [3] are presented in this section along with the main results of [3].

In Sect. 11.6, the second lethargy theorem (Theorem 11.21) is compared with a
classical “lethargy theorem” of Bernstein.

In Sects. 11.9–11.11, applications of the dichotomy theorem are given that
sharpen and improve (1) the von Neumann–Halperin theorem, (2) a result on in-
termittently ordered projections, and (3) one of the two main results of Xu and
Zikatanov [54].

Recall some common notation. If H is a Hilbert space and M is a closed (linear)
subspace, the orthogonal projection onto M is denoted by PM . It is well-known that
PM is linear, has norm one (unless M = {0}), and PM(x) is the unique point in M
closest to x:

‖x−PM(x)‖ = d(x,M) := inf
y∈M
‖x− y‖.

The orthogonal complement of M is the set

M⊥ := {x ∈ H | 〈x,m〉= 0 for all m ∈M}.
Further, if T is any bounded linear mapping from one normed linear space X into
another Y , then the kernel or null space of T is the set

kerT := N (T ) := {x ∈ X | T (x) = 0}.

All other undefined notation and terminology is standard and can be found,
e.g., in [12].

11.2 Types of Convergence

In this section, it is assumed that X(	= {0}) and Y are normed linear spaces over
the same scalar field (R or C) and B(X ,Y ) denotes the normed linear space of all
bounded linear operators L from X to Y with its usual norm

‖L‖ := sup
x	=0

‖L(x)‖
‖x‖ ,

(where the same notation is used for the norm in X , Y , and B(X ,Y )).
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Let the sequence (Ln) and L be in B(X ,Y ).

Definition 11.1. The sequence (Ln) is said to converge to L in norm (resp., point-
wise) provided that limn ‖Ln−L‖= 0 (resp., limn ‖Ln(x)−L(x)‖= 0 for each x∈X).

Let O denote the collection of all real-valued functions on the positive integers
N = {1,2,3, . . .} that converge to 0. That is,

O := {φ | φ : N→ R, lim
n

φ(n) = 0}. (11.1)

Definition 11.2. Let φ ∈O . The sequence (Ln) converges to L pointwise with order
φ provided that for each x ∈ X there exists a constant cx > 0 such that ‖Ln(x)−
L(x)‖ ≤ cx φ(n) for each n ∈ N.

Using the “big O” notation (see, e.g., [38, p. 16]), this can be rephrased by saying
that (Ln) converges to L pointwise with order φ provided that ‖Ln(x)− L(x)‖ =
O(φ(n)) for each x ∈ X .

Definition 11.3. The sequence (Ln) is said to converge to L linearly if there exist
constants α ∈ [0,1) and c ∈ R such that ‖Ln−L‖ ≤ cαn for each n.

In “big O” notation, this can be rephrased as (Ln) converges to L linearly pro-
vided ‖Ln−L‖ = O(αn) for some α ∈ [0,1). (Some authors call this “geometric”
convergence, and in [3] it is called “quick uniform convergence.”)

The relationship between these types of convergence is easily described.

Lemma 11.4. Consider the following statements.

(1) (Ln) converges to L linearly.
(2) (Ln) converges to L in norm.
(3) (Ln) converges to L pointwise with order φ for some φ ∈ O .
(4) (Ln) converges to L pointwise.

Then (1)⇒ (2)⇒ (3)⇒ (4). In general, none of these implications is reversible.

Example 11.5 (Convergence in norm does not imply linear convergence). Let R

denote the real line with the absolute value norm. Define Ln : R→ R by Ln(x) =
(1/n)x for each n. Then ‖Ln‖ = 1/n for each n so (Ln) converges to 0 in norm. If
(Ln) converged to 0 linearly, there would exist constants c and α ∈ [0,1) such that
‖Ln‖ ≤ cαn for each n. It follows that 1≤ cnαn for each n. But the right side of this
inequality converges to 0 by L’Hospital’s rule, and this is absurd.

Despite the last statement of Lemma 11.4, when X is complete, statements
(2) and (3) of Lemma 11.4 are indeed equivalent. This is the content of the
next result.

Theorem 11.6 ([20, Theorem 2.6]). Let X be a Banach space, Y a normed linear
space, and let (Ln) and L be in B(X ,Y ). Then (Ln) converges to L in norm if and
only if (Ln) converges to L pointwise with order φ for some φ ∈O .
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Example 11.18 below shows that completeness of X cannot be omitted in
Theorem 11.6.

Two types of very slow pointwise convergence were defined in [20] and [21].

Definition 11.7. The sequence (Ln) converges to L arbitrarily slowly (resp., almost
arbitrarily slowly) if the following two conditions are satisfied:

(1) Ln(x)→ L(x) for each x ∈ X ,
(2) For each φ ∈ O , there exists x = xφ ∈ X such that

‖Ln(x)−L(x)‖ ≥ φ(n) for each n ∈ N (resp., for infinitely many n ∈ N).

By Theorem 11.9 below, the definition of arbitrarily slow convergence is equiv-
alent to one that was first given by Bauschke et al. [7] (see also [9]). Note that
arbitrarily slow convergence of (Ln) to L is just pointwise convergence that can be
made slowest possible. Clearly, if (Ln) converges arbitrarily slowly to L, then it
must also converge almost arbitrarily slowly. (Example 11.20 below shows that the
converse is false.)

Remark 11.8. An equivalent definition of arbitrarily slow (resp., almost arbitrarily
slow) convergence is obtained by replacing the fundamental set O defined in (11.1)
by the more restrictive set

Õ := {φ | φ : N→ (0,∞), φ(n + 1)≤ φ(n) for each n, lim
n

φ(n) = 0}. (11.2)

That is, unlike O , the functions in Õ are also strictly positive and decreasing.

More precisely, the following theorem holds.

Theorem 11.9 ([20, Theorem 2.9]). A sequence of linear operators (Ln) converges
to L arbitrarily slowly (resp., almost arbitrarily slowly) if and only if

(1) Ln(x)→ L(x) for each x ∈ X, and
(2) For each ψ ∈ Õ , there exists x = xψ ∈ X such that

‖Ln(x)−L(x)‖ ≥ ψ(n) for each n ∈ N (resp., for infinitely many n ∈ N).

Remark 11.10. The proof of this theorem is an easy consequence of the fact that if
φ ∈ O , then the function ψ defined by ψ(n) := max{1/n,supi≥n φ(i)} is in Õ and
ψ(n)≥ φ(n) for all n.

Schock [50] defined arbitrarily slow convergence for certain methods which yield
approximate solutions to a particular linear operator equation. In the present more
general setting, his definition can be rephrased as follows.
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Definition 11.11. The sequence (Ln) converges to L Schock slowly if (Ln)
converges to L pointwise and, for each φ ∈ Õ , there exists x = xφ ∈ X such that

limsup
n

(‖Ln(x)−L(x)‖
φ(n)

)
= ∞. (11.3)

The next lemma shows in particular that Schock slow convergence is equivalent
to almost arbitrarily slow convergence.

Lemma 11.12 ([ 20, Lemmas 2.11 and 2.12]). The following statements are
equivalent:

(1) (Ln) converges to L almost arbitrarily slowly;
(2) (Ln) converges to L pointwise, but not pointwise with order φ for any φ ∈ Õ;
(3) (Ln) converges to L pointwise, and for each φ ∈ Õ there exists x = xφ ∈ X

such that

limsup
n

(‖Ln(x)−L(x)‖
φ(n)

)
> 0; (11.4)

(4) (Ln) converges to L Schock slowly.

Badea et al. [3] have defined three variants of arbitrarily slow convergence.
Although these were originally given in [3] only for powers of a single linear oper-
ator T : X → X , for comparison purposes we state them below in our more general
setting.

Definition 11.13. [3] Let (Ln) converge to L pointwise. Then (Ln) is said to con-
verge to L (ASCi), where i = 1,2,3, according to the following conditions:

(ASC1) For each ε > 0 and every φ ∈ O , there exists x = xφ ∈ X such that ‖x‖ <
maxn φ(n)+ ε and ‖Ln(x)−L(x)‖ ≥ φ(n) for all n ∈N.

(ASC2) For each φ ∈ O , there exists a dense subset of points x ∈ X such that
‖Ln(x)−L(x)‖ ≥ φ(n) “eventually” (i.e., for n sufficiently large).

(ASC3) For each φ ∈ O , there exist x = xφ ∈ X and y∗ = y∗φ ∈ Y ∗ (the dual of Y )
such that ℜey∗(Ln(x)−L(x))≥ φ(n) for all n ∈ N.

Just as in Remark 11.10, these definitions are equivalent to those in which the set
O is replaced by the (smaller) set Õ .

Lemma 11.14. If (Ln) converges to L either (ASC1) or (ASC3), then (Ln) con-
verges to L arbitrarily slowly. The reverse implication is false in general. Finally,
contrary to the first statement, (ASC2) convergence does not imply arbitrarily slow
convergence.

Proof. If the convergence is (ASC1), the result is obvious. If the convergence
is (ASC3), then for each φ ∈ O , there exist x ∈ X and y∗ ∈ Y ∗ such that
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ℜey∗(Ln(x)−L(x))≥ φ(n) for all n ∈ N. Then φ(n) ≤ |y∗(Ln(x) − L(x))| ≤
‖y∗‖‖Ln(x)− L(x)‖ = ‖Ln(‖y∗‖x)− L(‖y∗‖x)‖. Thus the element ‖y∗‖x works
in the definition of arbitrarily slow convergence.

The next example (Example 11.15) shows that the reverse implication is false in
general.

Finally, let (Ln) be any sequence that converges to L (ASC2). Defining a new se-
quence (Tn) by T1 = L and Tn+1 = Ln for all n≥ 1, it is clear that (Tn) also converges
to L (ASC2). Thus for any φ ∈O with φ(1) > 0, we have that ‖T1(x)−L(x)‖= 0 <
φ(1) for all x and so (Tn) does not converge to L arbitrarily slowly. �

Example 11.15. Let X = �2 with {e1,e2, . . .} denoting the canonical orthonormal
basis. For each n ∈ N, define Ln : �2→ �2 by

Ln(x) :=
1
2

∞∑

i=n

〈x,ei〉ei.

Then (Ln) converges to 0 arbitrarily slowly, but does not converge (ASC1).

Proof. Since each x ∈ X has the representation x =
∑∞

1 〈x,ei〉ei, it is easy to verify
that (Ln) converges to 0 pointwise and ‖Ln‖ = 1/2 for each n. By Theorem 11.16
below, (Ln) converges to 0 almost arbitrarily slowly. Since, for each x ∈ X ,

‖Ln+1(x)‖2 =
1
4

∞∑

i=n+1

|〈x,ei〉|2 ≤ 1
4

∞∑

i=n

|〈x,ei〉|2 = ‖Ln(x)‖2,

it follows by Theorem 11.21 below that (Ln) converges to 0 arbitrarily slowly.
By way of contradiction, suppose (Ln) converged to 0 (ASC1). Let the function

φ ∈O be defined by φ(n) = 1/n for each n and let ε = 1/2. Then there exists x ∈ X
such that ‖x‖ < supn φ(n)+ ε (= φ(1)+ 1/2 = 3/2) and ‖Ln(x)‖ ≥ φ(n) for all n.
It follows in particular that

1 = φ(1)≤ ‖L1(x)‖=
1
2
‖x‖<

1
2

(
3
2

)
=

3
4
,

which is absurd. �

11.3 A Characterization of Almost Arbitrarily
Slow Convergence

The first lethargy theorem (Theorem 11.16) characterizes almost arbitrarily slow
convergence. It is the basis for Theorem 11.42 and hence for virtually all the main
results of Sects. 11.7 and 11.8.
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Theorem 11.16 (First Lethargy Theorem) ([ 20, Theorem 3.1]). Let X be a
Banach space, Y a normed linear space, and let (Ln) and L be in B(X ,Y ). Then
the following statements are equivalent:

(1) (Ln) converges to L almost arbitrarily slowly;
(2) (Ln) converges to L pointwise but not in norm, that is,

limsupn ‖Ln−L‖> 0;
(3) (Ln) converges to L pointwise, but not pointwise with order φ for any φ ∈ Õ .

When the domain space X is finite-dimensional, pointwise convergence and
norm convergence are equivalent. In particular, almost arbitrarily slow convergence,
arbitrarily slow convergence, (ASC1) convergence, and (ASC3) convergence are
phenomena that can happen only in infinite-dimensional spaces.

Theorem 11.17 ([20, Theorem 2.12]). Suppose X is finite-dimensional and Ln,L
are linear operators from X to Y . Then (Ln) converges to L pointwise if and only if
it converges in norm.

In particular, it is never possible to have arbitrarily slow convergence, almost
arbitrarily slow convergence, (ASC1) convergence, or (ASC3) convergence when
X is finite-dimensonal.

The following example shows that completeness of X cannot be omitted from the
hypothesis of the First Lethargy Theorem or Theorem 11.6.

Example 11.18 (The completeness of X is essential for almost arbitrarily slow con-
vergence) [20, Example 3.2]). Let X denote the dense subspace of �2 consisting
of those x ∈ �2 with finite support, i.e., 〈x,en〉= 0 for all n sufficiently large, where
(en) is the canonical orthonormal basis in �2. Define Ln : X→X by Ln(x) = 〈x,en〉en.
Then:

(1) (Ln) converges to 0 pointwise and ‖Ln‖= 1 for each n.
(2) (Ln) does not converge to 0 in norm.
(3) (Ln) does not converge to 0 almost arbitrarily slowly.
(4) (Ln) converges to 0 pointwise with order φ for some φ ∈ O .
(5) (Ln) converges to 0 pointwise with order φ for every φ ∈ Õ .

Consequently, the hypothesis that X be complete cannot be omitted in the
Lethargy theorem or in Theorem 11.6.

The next consequence of the First Lethargy Theorem will be the basis for all the
applications in Sects. 11.7 and 11.8.

Lemma 11.19 ([20, Theorem 4.1]). Let X be a Banach space, Y a normed linear
space, and let (Ln) and L be in B(X ,Y ). Suppose that there exists ρ > 0 such that

kerLn∩{x ∈ X | ‖L(x)‖ ≥ ρ‖x‖} 	= {0} for infinitely many n, (11.5)

where kerLn := {x ∈ X | Ln(x) = 0}. If (Ln) converges to L pointwise, then (Ln)
converges to L almost arbitrarily slowly.
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The following example shows that, in general, arbitrarily slow convergence is not
the same as almost arbitrarily slow convergence.

Example 11.20 (Almost arbitrarily slow convergence does not imply arbitrarily
slow convergence) ([20, Example 3.4]). For each n ∈ N, let Ln : �2 → �2 be de-
fined by Ln(x) := 〈x,en〉en. Here (en) denotes the canonical orthonormal basis for
�2, i.e., en is 1 in the nth coordinate, and 0 elsewhere. Then ‖Ln‖ = 1 for each n,
Ln(x)→ 0 for each x, and (Ln) converges to 0 almost arbitrarily slowly, but not
arbitrarily slowly.

11.4 Arbitrarily Slow Convergence: A Useful
Sufficient Condition

The second lethargy theorem (Theorem 11.21) states that, under hypotheses that are
essential, (Ln) converges to L arbitrarily slowly. It will be the basis for all the main
results in the Sects. 11.5, 11.6, 11.9−11.11.

Theorem 11.21 (Second Lethargy Theorem) ([21, Theorem 3,3]). Let X be a
Banach space, Y a normed linear space, and let L,L1,L2, . . . be bounded linear
operators in B(X ,Y ). Suppose that (Ln) converges to L almost arbitrarily slowly
and satisfies the following monotonicity condition:

‖Ln+1(x)−L(x)‖ ≤ ‖Ln(x)−L(x)‖ for each n ∈ N and x ∈ X . (11.6)

Then (Ln) converges to L arbitrarily slowly.

Remark 11.22. The Lethargy Theorem is best possible in the sense that none of the
hypotheses is superfluous. More precisely, the theorem is false in general if either
of the following hypotheses is omitted: the almost arbitrarily slow convergence of
(Ln) to L or the monotonicity condition (11.6).

To see that the “almost arbitrarily slow convergence” hypothesis cannot be
dropped, see Example 11.15. To see that the monotonicity condition (11.6) cannot
be dropped, see Example 11.20.

Remark 11.23. (1) It is worth mentioning that the monotonicity condition (11.6) is
related to the Fejér monotonicity condition which has been shown to useful in
convexity and optimization (see, e.g., [6] and [13]). (Recall that if C is a closed
convex set in X , then a sequence (xn) in X is said to be Fejér monotone with
respect to C if ‖xn+1− c‖ ≤ ‖xn− c‖ for each c ∈C.) Indeed, using this termi-
nology, the condition (11.6) may be restated as: for each x ∈ X , the sequence
(Ln(x)) is Fejér monotone with respect to L(x).

(2) Note that condition (11.6) implies the monotonicity

‖Ln+1−L‖ ≤ ‖Ln−L‖ for all n ∈N. (11.7)

However, Example 11.20 shows that relation (11.7) does not imply the
relation (11.6).
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11.5 Trichotomy for Powers of an Operator

The simplest application of the Second Lethargy theorem (Theorem 11.21), and
the most useful for some of the later applications, occurs when the sequence (Ln)
is generated by the powers of a single nonexpansive operator. This will follow as
a consequence of the Second Lethargy Theorem and the fact that for powers of
operators, the monotonicity condition (11.6) automatically holds.

This case may be stated as a trichotomy theorem for powers of a linear operator.

Theorem 11.24 (Trichotomy) ([21, Theorem 4.2]). Let X be a Banach space and
T : X → X be a linear operator with ‖T‖ ≤ 1. Then exactly one of the following
three statements holds:

(1) ‖Tn1‖< 1 for some n1; in this case, (T n) converges to 0 linearly.
(2) ‖T n‖ = 1 for all n and T n(x)→ 0 for each x ∈ X; in this case, (T n) converges

to 0 arbitrarily slowly.
(3) ‖T n‖= 1 for all n and T n(x) 	→ 0 for some x ∈ X.

In contrast to Example 11.20, it turns out that for powers of a nonexpansive
operator, almost arbitrarily slow convergence and arbitrarily slow convergence are
the same since the monotonicity condition (11.6) is automatic in this case.

Corollary 11.25 ([20, Corollary 4.3]). Let X be complete and T ∈B(X ,X) with
‖T‖ ≤ 1. Then (T n) converges to 0 arbitrarily slowly if and only if (T n) converges
to 0 almost arbitrarily slowly.

If one drops the hypothesis that ‖T‖ ≤ 1 in the Trichotomy Theorem but adds
some other conditions, the main result of Müller [40] applies.

Theorem 11.26 (Müller [40]). Let X be a Banach space which does not contain
c0, and let T ∈B(X ,X) be such that 1 is in the spectrum of T and (T n) converges
pointwise to 0. Then for each φ ∈ O , there exist x = xφ ∈ X and x∗ ∈ X∗ such that

ℜex∗(T n(x))≥ φ(n) for all n ∈ N.

In particular, (T n) converges to 0 arbitrarily slowly.

In all the applications of the trichotomy theorem that are made below, the condi-
tion T n(x)→ 0 for all x ∈ X is known (or can be shown) to hold. In this particular
case, the trichotomy theorem reduces to the following dichotomy theorem.

Theorem 11.27 (Dichotomy) ([20, Theorem 4.4]). Let X be a Banach space and
T : X → X be a linear operator with ‖T‖ ≤ 1 and T n(x)→ 0 for each x ∈ X. Then
exactly one of the following two statements holds:

(1) There exists n1 ∈ N such that ‖T n1‖< 1, and (T n) converges to 0 linearly.
(2) ‖T n‖= 1 for each n ∈ N, and (T n) converges to 0 arbitrarily slowly.
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If one drops the hypothesis that ‖T‖ ≤ 1 in the dichotomy theorem, then the
following result of Badea et al. governs this situation.

Theorem 11.28 (Badea, Grivaux, Müller Dichotomy) ([3, Theorem 2.1]). Let X
be a Banach space, and let T ∈B(X ,X) be such that (T n) converges pointwise to
T0 ∈B(X ,X). Then exactly one of the following two statements holds:

(1) (T n) converges linearly to T0.
(2) (T n) converges to T0 (ASC1).

Further, in statement (2), (ASC1) may be replaced by (ASC2).
Moreover, (T n) converges linearly to T0 if and only if for each λ in the scalar

field with |λ |= 1, the range of (λ I−T ) is closed.

Example 11.29 ([21, Example 4.5]). Let L : �2 → �2 denote the left-shift operator.
That is, for each x =

∑∞
i=1〈x,ei〉ei ∈ �2,

L(x) =
∞∑

i=2

〈x,ei〉ei−1,

where {ei | i = 1,2, . . .} is the canonical orthonormal basis in �2: ei( j) = δi j, Kro-
necker’s delta. Then (Ln) converges to 0 arbitrarily slowly.

Corollary 11.30 ([21, Corollary 4.6]). Let X be a Banach space and T : X → X
a linear operator with ‖T‖ ≤ 1. Then (T n) converges to 0 linearly if and only if
‖T n1‖< 1 for some n1 ∈ N.

This follows immediately from the Trichotomy Theorem 11.24.

Corollary 11.31. Let X be a Banach space and T : X → X a linear operator with
‖T‖ ≤ 1. Then the following statements are equivalent:

(1) (T n) converges to 0 arbitrarily slowly;
(2) (T n) converges to 0 almost arbitrarily slowly;
(3) (T n) converges to 0 pointwise and ‖T n‖= 1 for each n;
(4) (T n) converges to 0 pointwise, but (T n) does not converge to 0 pointwise with

order φ for any φ ∈ O;
(5) (T n) converges to 0 (ASC1);
(6) (T n) converges to 0 (ASC2).

Proof. The equivalence of the first four statements is from [21, Corollary 4.7].
Now suppose that (1) holds. Then, by Theorem 11.27, ‖T n‖ = 1 for all n and

(T n) does not converge linearly to 0. By Theorem 11.28, (T n) converges to 0 both
(ASC1) and (ASC2). Thus (1) implies both (5) and (6).

If either (5) or (6) holds, then by Theorem 11.28, (T n) does not converge linearly
to 0. By Theorem 11.27, (T n) converges to 0 arbitrarily slowly. Thus (1) holds. �
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When X is finite-dimensional, pointwise convergence and norm convergence
coincide by Theorem 11.17. Hence, by appealing to the Dichotomy Theorem 11.27,
we immediately obtain the following result.

Corollary 11.32 ([21, Corollary 4.8]). Let X be finite-dimensional and let T ∈
B(X ,X) with ‖T‖ ≤ 1. Then the following statements are equivalent:

(1) (T n) converges to 0 pointwise;
(2) There exists an integer n1 such that ‖T n1‖< 1;
(3) (T n) converges to 0 linearly.

(Alternately, Corollary 11.32 can be derived from the Jordan Decomposition
Theorem.)

With stronger conditions on the operator T , stronger dichotomy results are avail-
able. (See [41] for the basic spectral theory and terminology used here.) There is
one other type of arbitrarily slow convergence that was defined in [3] specifically
for a Hilbert space.

Definition 11.33. ([3]) If H is a Hilbert space and T,T0 ∈ B(H,H), then (T n)
converges to T0 (ASCH) provided that for each ε > 0 and for each φ ∈ O , there
exists x = xφ ,ε ∈H such that ‖x‖< maxn φ(n)+ε and ℜe〈T n(x)−T0(x),x〉 ≥ φ(n)
for all n ∈ N.

It is easy to see that for powers of a single linear operator on a Hilbert space,
(ASCH) implies (ASC3). Whether the converse implication holds in this situation
is unclear.

Theorem 11.34 ([3, Theorem 2.3]). Let X be a Banach space and let T ∈B(X ,X)
be a power bounded, mean ergodic operator with spectrum σ(T ) contained in {λ ∈
C | |λ |< 1 or λ = 1}. Then (T n) converges pointwise to an operator T0 ∈B(X ,X).
Moreover, the following statements hold.

(1) Either (T n) converges linearly to T0 or (T n) converges to T0 (ASC1).
(2) Either (T n) converges linearly to T0 or (T n) converges to T0 (ASC2).
(3) If X contains no isomorphic copy of c0, then either (T n) converges linearly to

T0 or (T n) converges to T0 (ASC3).
(4) If X = H is a Hilbert space, then either (T n) converges linearly to T0 or (T n)

converges to T0 (ASCH).

Moreover, in all of these statements, (T n) converges linearly to T0 if and only if
the range of (I−T ) is closed.

The next result was established in a complex Banach space. It would be of some
interest to know whether this restriction can be dropped.

Theorem 11.35 ([3, Theorem 2.4]). Let X be a complex Banach space and let
P1,P2, . . . ,Pr be r ≥ 2 projections on X (i.e., P2

i = Pi). Let T be in the convex mul-
tiplicative semigroup generated by P1, . . . ,Pr. That is, T is a convex combination
of terms each of which is a product with factors in P1, . . . ,Pr. Suppose one of the
following three conditions holds.
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(1) The space X is uniformly convex and each Pj ( j = 1,2, . . . ,r) is a norm one
projection.

(2) The space X∗ is uniformly convex and each Pj ( j = 1,2, . . . ,r) is a norm one
projection.

(3) The space X is reflexive and for each j there exists r j ∈ (0,1) such that ‖Pj−
r jI‖ ≤ 1− r j. In particular, this holds if each Pj is hermitian, 1≤ j ≤ r.

Then, the sequence (T n) converges pointwise to some T0 ∈B(X ,X) and the follow-
ing dichotomies hold:

(4) Either (T n) converges linearly to T0 or (T n) converges to T0 (ASC1).
(5) Either (T n) converges linearly to T0 or (T n) converges to T0 (ASC2).
(6) Either (T n) converges linearly to T0 or (T n) converges to T0 (ASC3).

Moreover, if X = H is a Hilbert space, then either (T n) converges linearly to T0 or
(T n) converges to T0 (ASCH).

11.6 The Bernstein Lethargy Theorem

In this section, the Second Lethargy Theorem 11.21 is compared with the classical
lethargy theorem of Bernstein.

Let {x1,x2,x3, . . .} be a set of linearly independent elements in a normed linear
space X with the property that each x ∈ X can be approximated arbitrarily well
by elements in the linear space spanned by the xn’s. That is, for each x ∈ X and
each ε > 0, there exist scalars αi for i = 1,2, . . . ,n such that y =

∑n
1 αixi satisfies

‖x− y‖ < ε . Note that such a space must be separable, that is, it must contain a
countable dense set (viz., all linear combinations with rational coefficients). We
define the associated sequence of linear subspaces Mn by

Mn := span{x1,x2, . . . ,xn} for n = 1,2, . . . .x

In particular, for each n, dimMn = n, Mn ⊂Mn+1, and X = ∪∞
1 Mn.

The distance from any x ∈ X to Mn is denoted by

d(x,Mn) := inf
y∈Mn
‖x− y‖.

Then the Bernstein lethargy theorem may be stated as follows.

Theorem 11.36 (Bernstein Lethargy Theorem). Let X be a Banach space and
assume (Mn) is an increasing sequence of subspaces with dimMn = n and X =
∪∞

1 Mn. For each φ ∈ Õ , there exists x = xφ ∈ X such that

d(x,Mn) = φ(n) for each n ∈ N.
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Bernstein [10] actually proved this result in the case when X = C[a,b] in 1938,
but Timan [52, pp. 41–43] observed that it holds in the more general case as stated
above. (See also Davis [15, p. 322].)

How does the Bernstein Lethargy Theorem compare with the Second Lethargy
Theorem 11.21? In general, a direct comparison is not possible since the latter
is phrased in terms of linear operators, while the former is phrased in terms of
distances to finite-dimensional subspaces. There is one case, however, where a rea-
sonable comparison is possible. This is when X is a (separable) Hilbert space since
then d(x,Mn) = ‖x−PMn(x)‖. In this case, Bernstein’s Lethargy Theorem can be
stated in the following form.

Theorem 11.37 (Bernstein Lethargy Theorem: Hilbert Space Case). Let H be
a Hilbert space and let (Mn) be an increasing sequence of subspaces such that
dimMn = n and H = ∪∞

1 Mn. Then for each φ ∈ Õ there exists x = xφ ∈ H such that

‖x−PMn(x)‖= φ(n) for all n ∈N. (11.8)

It should be mentioned that in Theorem 11.37, it is also not hard to show that
(PMn) converges pointwise to the identity operator I and, in particular, that (PMn)
converges to I arbitrarily slowly. An even stronger version of Theorem 11.37 was
recently established.

Theorem 11.38 ([21, Theorem 5.3]). Let H be a Hilbert space and let (Mn) be
a sequence of closed (not necessarily finite-dimensional) subspaces in H having
the property that {0} 	= Mn ⊂Mn+1, Mn 	= Mn+1, and let M := ∪∞

1 Mn. Then (PMn)
converges pointwise to PM, and for each φ ∈ Õ there exists x = xφ ∈ H such that

‖PMn(x)−PM(x)‖= φ(n) for each n ∈ N. (11.9)

In particular, (PMn) converges arbitrarily slowly to PM.

Remark 11.39. (1) Comparing Theorems 11.37 and 11.38, it is seen that in Theo-
rem 11.38, the closed subspaces are not necessarily increasing by one dimension
at each step as in Theorem 11.37, and they can even be infinite-dimensional.
Second, the closure of the union of the subspaces in Theorem 11.38 does not
have to be the whole space as in Theorem 11.37.

(2) It is worth noting that Theorem 11.38 is no longer valid if the hypothesis that
Mn 	= Mn+1 for all n is dropped. For if Mm = Mm+1 for some m, then every x∈ X
must satisfy

‖PMm(x)−PM(x)‖= ‖PMm+1(x)−PM(x)‖. (11.10)

Hence if φ ∈ Õ is chosen so that φ(m) > φ(m+ 1), then because of (11.10), it
follows that (11.9) is impossible to hold simultaneously for both m and m + 1
no matter which x is chosen.

However, if one is only interested in concluding arbitrarily slow convergence,
then the hypothesis of Theorem 11.38 can be further weakened.
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Theorem 11.40 ([21, Theorem 5.5]). Let H be a Hilbert space and let (Mn) be any
nondecreasing sequence of closed subspaces (not necessarily finite-dimensional)
such that the closed subspace M := ∪∞

1 Mn is infinite-dimensional and M 	= Mn for
every n. Then (PMn) converges to PM arbitrarily slowly.

Remark 11.41. (1) Note that the main difference in the hypotheses of Theorems
11.38 and 11.40 is that in the latter, it is not assumed that Mn 	= Mn+1 for each n.

(2) Theorem 11.40 is best possible in the sense that if either of the two hypotheses
(M is infinite-dimensional, or M 	= Mn for all n) is dropped, then the conclusion
fails. For if M were finite-dimensional, then by Theorem 11.17 (taking X = M),
the sequence of projections could not converge arbitrarily slowly. While if
M = Mn for some n, then M = Mn for all n sufficiently large. Hence, it fol-
lows that PMn = PM for all n sufficiently large, and so for any φ ∈ Õ and any
x ∈ H, we have ‖PMnx−PMx‖ = 0 < φ(n) for all n large, so arbitrarily slow
convergence is not possible.

11.7 Application to Positive Linear Operators

In this section, it is seen that all the standard linear approximating methods for
uniformly approximating continuous functions on an interval suffer from the same
type of slow convergence; indeed, they are all almost arbitrarily slowly converging.
These include the Bernstein polynomial operators, the Hermite–Fejer polynomial
operators, Landau operators, Fejer operators, and Jackson operators, among others.
An excellent source of information about approximating continuous functions by
positive linear operators are the lecture notes by DeVore [24]. All of the applications
will follow by appealing to the following easy consequences of the First Lethargy
Theorem 11.16.

Theorem 11.42 ([20, Theorem 4.1]). Let X be a Banach space and let (Ln) ⊂
B(X ,X). Suppose that kerLn 	= {0} for each n. If (Ln) converges pointwise to the
identity operator I, then (Ln) converges to I almost arbitrarily slowly.

Remark 11.43. In general, the hypothesis that the kernels of the Ln be nontrivial
cannot be omitted in Theorem 11.42. In fact, in case kerLn = {0} for each n and
(Ln) converges pointwise to I, then there is nothing that can be concluded about the
rate of convergence. This is a consequence of the following example, where it is
seen that virtually any type of convergence is possible.

Example 11.44 ([20, Example 4.3]). Let X = �2, let {en} be the canonical orthonor-
mal basis in X , and for each n ∈N, let En = span{e1,e2, . . . ,en}. Fix any φ ∈ Õ and
define the following linear operators on X for each n ∈ N:

(i) Ln := 1
2 (I + PEn);

(ii) Tn := 1
2 (I + Pn), where Pn := P(spanen)⊥ ;

(iii) Un := (φ(n)+ 1)I.
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Then
kerLn = kerTn = kerUn = {0} for each n ∈ N,

and all three sequences of operators (Ln), (Tn), and (Un) converge pointwise to the
identity I. Further,

(1) (Ln) converges to I arbitrarily slowly;
(2) (Tn) converges to I almost arbitrarily slowly, but not arbitrarily slowly;
(3) (Un) converges to I pointwise with order φ .

From Theorem 11.42, the following result is obtained.

Theorem 11.45. Let X be an infinite-dimensional Banach space, (Ln) ⊂B(X ,X),
and suppose that the range of each Ln is finite-dimensional. If (Ln) converges to I
pointwise, then (Ln) converges to I almost arbitrarily slowly.

For the remainder of this section and the next, C[a,b] will denote the Banach
space of all real-valued continuous functions f on the interval [a,b] with the maxi-
mum norm: ‖ f‖ = maxt∈[a,b] | f (t)|.
Example 11.46 (Bernstein Operators). Define the Bernstein operators Bn :
C[0,1]→C[0,1] by

(Bn f )(t) :=
n∑

k=0

f

(
k
n

)(
n
k

)
tk(1− t)n−k for all t ∈ [0,1].

Clearly, the range of Bn lies in the space Pn of all polynomials of degree at
most n, hence is finite-dimensional. Moreover, it is well known (see, e.g., [15,
p. 108 ff] or [24, p. 24 ff]) that (Bn f ) converges uniformly to f for each f ∈C[0,1].
In other words, (Bn) converges pointwise to the identity operator. From Theorem
11.45, it follows that (Bn) converges to the identity operator almost arbitrarily
slowly.

It is noteworthy that in fact it can be shown that the Bernstein operators (Bn) con-
verge arbitrarily slowly, not just almost arbitrarily slowly, to the identity operator.
(The proof of this fact does not seem to follow from any of the general results stated
thus far. However, in [20] it is claimed that a direct elementary but rather lengthy
proof of an even more general fact is available.)

Example 11.47 (Hermite–Fejer Operators). Fix any n ∈ N. For t ∈ [−1,1], let
Tn(t) = cos(narccost) be the Chebshev polynomial of degree n. The zeros of Tn are

tn,k := cos

(
2k−1

2n
π
)

(k = 1,2, . . . ,n),

and all lie in the open interval (−1,1). Define the Hermite–Fejer Operators Hn on
C[−1,1] as follows: Hn f is the polynomial of degree at most 2n−1 that interpolates
to f at the n points tn,k and whose derivative at each of these points is 0. More
explicitly,
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(Hn f )(t) =
n∑

k=1

f (tn,k)(1− tn,kt)
(

Tn(t)
n(t− tn,k)

)2

for all t ∈ [−1,1].

The range of Hn is contained in the subspace of all polynomials of degree at most
2n−1, hence is finite-dimensional. It is well-known (see, e.g., [15, pp. 118–121] or
[24, pp. 42–44]) that Hn f → f for each f ∈C[−1,1]. That is, (Hn) converges point-
wise to the identity operator I. From Theorem 11.45, it follows that (Hn) converges
to the identity operator almost arbitrarily slowly.

Just as for the Bernstein operators, it was claimed in [20] that a direct elementary
(but lengthy) proof can be given showing that (Hn) converges to the identity operator
arbitrarily slowly, not just almost arbitrarily slowly.

Example 11.48 (Landau Operators). For each n ∈ N, define the Landau Operator
Ln on C[−1/2,1/2] by

(Ln f )(t) := cn

∫ 1/2

−1/2
f (s)[1− (s− t)2]nds for all t ∈ [−1/2,1/2], (11.11)

where

cn =
(∫ 1

−1
(1− s2)nds

)−1

.

The range of Ln is contained in the subspace of polynomials of degree at most 2n,
and so the range is finite-dimensional. It is well-known (see [24, p. 26 ff]) that
Ln f → f for each f ∈C[−1/2,1/2]. That is, (Ln) converges pointwise to the identity
operator. It follows from Theorem 11.45 that (Ln) converges to the identity operator
almost arbitrarily slowly. We do not know if the Landau operators converge arbi-
trarily slowly.

Example 11.49 (Fejer Operators). Let C2π denote the Banach space of all real-
valued continuous 2π-periodic functions on R with the maximum norm. For each
f ∈ C2π , let Sn( f ) denote the nth partial sum of the Fourier series for f . For each
n ∈ N, define the Fejer Operator Fn on C2π by

Fn( f ) :=
1

n + 1
[S0( f )+ S1( f )+ · · ·+ Sn( f )]. (11.12)

Clearly, the range of Fn is contained in the subspace of trigonometric polynomi-
als of degree at most n, so is finite-dimensional. It is well-known (see [24, p. 22 ff])
that Fn( f )→ f for each f ∈ C2π . In other words, (Fn) converges pointwise to the
identity operator. It follows from Theorem 11.45 that (Fn) converges to the identity
operator almost arbitrarily slowly. Note also that (Sn) and (Fn) converge pointwise
to the identity operator in the space L2[−π,π] (see, e.g., [34, Theorems 16.31 and
18.28]), and thus both (Sn) and (Fn) converge to the identity operator almost arbi-
trarily slowly in this space.
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Conjecture 11.50. The Fejer operators converge arbitrarily slowly (not just almost
arbitrarily slowly) to the identity operator.

Example 11.51 (Jackson Operators). For each n ∈ N, define the Jackson Operator
Jn on C2π by the convolution

(Jn f )(t) = ( f � Kn)(t) :=
∫ π

−π
f (s)Kn(t− s)ds for all t ∈ R, (11.13)

where

Kn(t) = an

[
sin((n + 1)(t/2))

sin(t/2)

]4

and an is chosen so that 1
π

∫ π
−π Kn(t)dt = 1.

The range of Jn is contained in the subspace of trigonometric polynomials of
degree at most 2n, hence is finite-dimensional, and Jn( f )→ f for each f ∈C2π (see
[24, p. 23 ff]). That is, (Jn) converges pointwise to the identity operator. It follows
from Theorem 11.45 that (Jn) converges to the identity operator almost arbitrarily
slowly. We do not know if the Jackson operators converge arbitrarily slowly.

All of the above examples have the following common properties. They are ex-
amples of “positive” linear operators that converge pointwise. Recall that a linear
operator L from C[a,b] into itself is called positive if L( f ) ≥ 0 whenever f ≥ 0.
Bohman and Korovkin have independently established the following result (see,
e.g., [24, p. 27ff]).

Theorem 11.52 (Bohman–Korovkin). Let (Ln) be positive linear operators from
C[a,b] into C[a,b]. Then ‖Ln( f )− f‖→ 0 for each f ∈C[a,b] if and only if ‖Ln(ei)−
ei‖→ 0 for i = 0,1,2, where ei(t) := t i.

In other words, (Ln) converges to the identity operator pointwise if it converges
pointwise for just the three functions ei. By using Theorem 11.45, the Bohman-
Korovkin Theorem may be quantified in the case that the range of each Ln is finite-
dimensional.

Theorem 11.53 ([20, Theorem 4.12]). Let (Ln) be positive linear operators from
C[a,b] into itself such that the range of each Ln is finite-dimensional. Then (Ln)
converges to the identity operator almost arbitrarily slowly if and only if ‖Ln(ei)−
ei‖→ 0 for i = 0,1,2.

Theorem 11.53 cannot be strengthened to arbitrarily slow convergence because
of the following fact: If there exists k such that Lk = 0 in the sequence (Ln), then
(Ln) does not converge arbitrarily slowly.

Remark 11.54. For other examples of this type, the reader is advised to consult the
book of Korovkin [39] or the notes of DeVore [24]. Included there are also many
rate of convergence results for these operators.
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11.8 Application to Quadrature Rules

In this section, it is observed that the First Lethargy Theorem implies that the stan-
dard quadrature rules like the Trapezoidal Rule, Simpson’s Rule, and Gaussian
quadrature all share the same type of slow convergence: namely, almost arbitrarily
slow convergence. Just as in the last section, C[a,b] will denote the Banach space of
all continuous functions on the interval [a,b] with the maximum norm.

A general class of quadrature rules in the space C[a,b] can be described as
follows. Suppose that for each n ∈ N, there is some Nn ∈ N, weights wn,k (k =
1,2, . . . ,Nn), and points a≤ tn,1 < tn,2 < · · ·< tn,Nn ≤ b. Define a quadrature rule Qn

for any f ∈C[a,b] by setting

Qn( f ) =
Nn∑

k=1

wn,k f (tn,k), (11.14)

and define the integral operator Q on C[a,b] by

Q( f ) =
∫ b

a
f (t)dt. (11.15)

Lemma 11.55 ([ 20, Lemma 5.1]). If Qn and Q are defined as in (11.14) and
(11.15), then

‖Qn−Q‖ ≥ 1
2
(b−a) for each n. (11.16)

Theorem 11.56 ([20, Theorem 5.2]). Let Qn and Q be defined as in (11.14) and
(11.15). Then (Qn) converges to Q pointwise if and only if (Qn) converges to Q
almost arbitrarily slowly.

It is not known whether or not almost arbitrarily slow convergence in Theorem
11.56 can be replaced by arbitrarily slow convergence. Since most of the classical
quadrature rules have positive weights and are exact for constants, it would be of
interest to know the answer to this question in that particular case (i.e., when wn,k ≥
0 and

∑Nn
k=1 wn,k = b−a).

All the classical numerical quadrature rules are of the type (11.14). A few pop-
ular examples are listed below. (For a more detailed description of these and other
quadrature rules, and the motivation behind the derivation of these rules, see, e.g.,
[15] and [38].)

(The Composite Trapezoidal Rule). In the formula (11.14), let tn,k = a+
[(b − a)/n]k for k = 0,1, . . . ,n and wn,k = (b−a)/n for k 	= 0,n, and wn,k =
(b−a)/(2n) otherwise. The resulting quadrature formula Qn is called the compos-
ite Trapezoidal Rule. It is exact for polynomials of degree≤ 1. It is well-known that
(see, e.g., [15, Chap. 14]), Qn( f )→ Q( f ) for each f ∈C[a,b]. By Theorem 11.56,
the composite Trapezoidal Rule Qn converges to the integral Q almost arbitrarily
slowly.
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(The composite Simpson’s Rule). In the formula (11.14), let tn,i = a + ih, where
h = (b− a)/(2n) for 0 ≤ i ≤ 2n and wn,o = h/3 = wn,2n, wn,2i−2 = 2h/3 for i =
2, . . . ,n and wn,2i−1 = 4h/3 for 1 ≤ i ≤ n. The resulting quadrature rule is called
the composite Simpson’s Rule. It is exact for polynomials of degree ≤ 3. Again
(see, e.g., [15, Chap. 14]) it is known that Qn( f )→ Q( f ) for each f ∈ C[a,b]. By
Theorem 11.56, the composite Simpson’s Rule (Qn) converges to the integral Q
almost arbitrarily slowly.

(Gaussian Quadrature). Here define Q on C[a,b] by

Q( f ) =
∫ b

a
w(t) f (t)dt,

where w is a positive weight function. By this it is meant that w is continuous on the
open interval (a,b) and positive there, and w is (Lebesgue) integrable on [a,b]. It
can be shown (see, e.g., [15, pp. 342 ff] or [38, pp. 528 ff]) that there exist n weights
wn,k and n points tn,k in [a,b] for 1 ≤ k ≤ n (that may be explicitly computed) such
that the Gaussian Quadrature formula Qn defined on C[a,b] by

Qn( f ) =
n∑

1

wn,k f (tn,k)

is exact for all polynomials p of degree ≤ 2n− 1. That is, Qn(p) = Q(p) for any
polynomial p of degree ≤ 2n− 1. By an application of the Weierstrass polyno-
mial approximation theorem, it follows that Qn( f )→ Q( f ) for each f ∈ C[a,b].
Moreover, the same proof as used in Lemma 11.55 shows that in this more gen-
eral situation Lemma 11.55 still holds (using

∫ b
a w(t)dt > 0 instead of b−a.) Thus,

by Theorem 11.56 the Gaussian Quadrature Rules (Qn) converge to the integral Q
almost arbitrarily slowly.

11.9 Application to Cyclic Projections

In this section, an application of the Dichotomy Theorem 11.27 is made to cyclic
projections in Hilbert space or, more precisely, to the von Neumann–Halperin theo-
rem. The von Neumann–Halperin theorem has had many far-reaching applications
in at least a dozen different areas of mathematics including solving linear equations,
linear prediction theory, image restoration, and computed tomography (see the sur-
vey [17], or the book [19, Chap. 9] for more details and references).

Theorem 11.57 (von Neumann–Halperin). Let M1,M2, . . . ,Mr be closed sub-
spaces of the Hilbert space H and M = ∩r

1Mi. Then, for each x ∈H,

lim
n→∞
‖(PMrPMr−1 · · ·PM1)

n(x)−PM(x)‖ = 0.
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In the two-subpace case (r = 2), this result was first proved by von Neumann in
1933 (but wasn’t published until 1949 and 1950 [44, 45]). Halperin [32] extended
the von-Neumann theorem to any number r ≥ 2 of subspaces. The von Neumann
theorem (i.e., the r = 2 case) was discovered independently by several authors in-
cluding Aronszajn [2], Nakano [42], Wiener [53], Powell [47], Gordon et al. [31],
and Hounsfield [35] – the Nobel Prize winning inventor of the EMI scanner.

Note that since

(PMr PMr−1 · · ·PM1)
n−PM = (PMr∩M⊥ · · ·PM1∩M⊥)n (11.17)

(see, e.g., [19, Lemma 9.30]), we have the following error estimate in the von
Neumann–Halperin theorem.

Lemma 11.58. Let M1,M2, . . . ,Mr be closed subspaces in the Hilbert space H.
Then, for each x ∈ H,

‖(PMr PMr−1 · · ·PM1)
n(x)−PM(x)‖ ≤ cn‖x‖, (11.18)

where c := ‖PMr∩M⊥ · · ·PM1∩M⊥‖.
Given any x ∈ H, let xn := (PMr PMr−1 · · ·PM1)

n(x) for each n ∈ N. The von
Neumann–Halperin theorem shows that the sequence (xn) always converges to
PM(x). However, the theorem says nothing about the rate of convergence. To say
something about this, the following fact is needed.

Lemma 11.59. Let M1,M2, . . . ,Mr be closed subspaces of the Hilbert space H and
M := ∩r

1Mi. Then the following statements are equivalent:

(1)
∑r

1 M⊥i is closed;
(2) ‖PMr∩M⊥PMr−1∩M⊥ · · ·PM1∩M⊥‖< 1;
(3) There exists α ∈ [0,1) such that

‖(PMrPMr−1 · · ·PM1)
n−PM‖= ‖(PMr∩M⊥PMr−1∩M⊥ · · ·PM1∩M⊥)n‖ ≤ αn

for each n ∈ N.

Bauschke et al. [7, Theorem 3.7.4] proved the equivalence of (1) and (2) in this
lemma. The remainder was observed in [21, Fact 6.2].

Also, it clear that the α that works in (3) is any scalar satisfying

‖PMr∩M⊥PMr−1∩M⊥ · · ·PM1∩M⊥‖ ≤ α < 1.

In particular, α = ‖PMr∩M⊥PMr−1∩M⊥ · · ·PM1∩M⊥‖ works when the sum in (1) is
closed. In [3, Theorem 4.4], an upper bound was given for the expression

‖(PMr PMr−1 · · ·PM1)
n−PM‖,

but it is not as sharp as the expression ‖PMr∩M⊥PMr−1∩M⊥ · · ·PM1∩M⊥‖n as given in
Lemma 11.59.
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Remark 11.60. It is worth mentioning that the statement (1) of Lemma 11.59 has
an equivalent formulation because:

∑r
1 M⊥i is closed if and only if the collection of

subspaces {M1,M2, . . . ,Mr} has the “strong CHIP” property (This is an immediate
consequence of the proof of Example 10.5 in [19]). The strong CHIP was shown
to be a fundamental property that arose, for example, in constrained interpolation
[22, 23], convex optimization [18], and various kinds of “regularity” and Jameson’s
property (G) [8]. For more detail and references, see the historical notes on page
283–285 of [19].

The cyclic projections algorithm for the subspaces {M1,M2, . . . ,Mr} is the algo-
rithm that generates, starting with any x ∈ H, the sequence

x0 := x, and xn := PM[n] (xn−1) for each n ∈N,

where [n] is the function “mod r” with values in {1,2, . . . ,r}. That is,

[n] = {1,2, . . . ,r}∩{n− kr | k = 1,2, . . .}.

In particular, xnr = (PMr PMr−1 · · ·PM1)
n(x). In this terminology, the von Neumann–

Halperin theorem shows that, for each x ∈ H, the cyclic projections algorithm
generates a sequence that converges to PM(x).

One important corollary of the Dichotomy Theorem 11.27 is what is called here
the von Neumann–Halperin dichotomy.

Theorem 11.61 (von Neumann-Halperin Dichotomy) ([21, Theorem 6.4]). Let
M1,M2, . . . ,Mr be closed subspaces of the Hilbert space H and M := ∩r

1Mi. Then
exactly one of the following two statements holds.

(1)
∑r

1 M⊥i is closed. Then ((PMr PMr−1 · · ·PM1)
n) converges to PM linearly.

(2)
∑r

1 M⊥i is not closed. Then ((PMr PMr−1 · · ·PM1)
n) converges to PM arbitrarily

slowly.

Remark 11.62. (1) In the special case of two subspaces (r = 2), this result was
stated by Bauschke et al. [7]. Bauschke et al. [9] found an error in the proof of
[7] that invalidated the proof of the theorem, but they showed that the theorem
was nevertheless true by providing an alternate proof. Briefly, the case of r = 2
in Theorem 11.61 was due to [7] and [9] by a substantially different and more
involved proof than is given in [21].

(2) We suspect that when
∑r

1 M⊥i is not closed and φ ∈ Õ , then the x = xφ that
satisfies ‖(PMr · · ·PM1)

n(x)−PM(x)‖ ≥ φ(n) for all n must in general be chosen
from M⊥ \∑r

1 M⊥i .

In a complex Hilbert space, Badea, Grivaux, and Müller have independently char-
acterized when the sum of the orthogonal complements is not closed in addition to
other equivalences.
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Theorem 11.63 ([3, Theorem 4.1]). Let M1,M2, . . . ,Mr be closed subspaces of the
complex Hilbert space H, let M := ∩r

1Mi, and T = PMr PMr−1 · · ·PM1 . Then the fol-
lowing statements are equivalent:

(1) The range of T − I is not closed.
(2) (T n) converges to PM (ASC1).
(3) ‖T −PM‖= 1.
(4)

∑r
1 M⊥i is not closed.

Since the equivalence of (3) and (4) holds in any (real or complex) Hilbert space
by Lemma 11.59 (using (11.17)), we believe that Theorem 11.63 is valid in any
Hilbert space.

By a simple translation argument, Theorem 11.61 can be easily generalized to
the case of affine sets (i.e., translates of subspaces).

Theorem 11.64 (Affine Sets Dichotomy) ([21, Theorem 6.6]). Let V1,V2, . . . ,Vr

be closed affine sets in the Hilbert space H with V := ∩r
1Vi 	= /0. Then exactly one of

the following two statements holds.

(1)
∑r

1(Vi−Vi)⊥ is closed. Then ((PVr PVr−1 · · ·PV1)
n) converges to PV linearly.

(2)
∑r

1(Vi−Vi)⊥ is not closed. Then ((PVrPVr−1 · · ·PV1)
n) converges to PV arbitrarily

slowly.

Proof. The proof of this theorem given in [21, Theorem 6.6] is incomplete. This is
because we have only defined linear convergence and arbitrarily slow convergence
for linear mappings, and the mappings PVi and products of these are nonlinear in
general. The definition of arbitrarily slow convergence (Definition 11.7) is exactly
the same for nonlinear maps. Recall that in [21, Theorem 6.6], that if v ∈ V , we
observed that for each i, there exist unique subspaces Mi (in fact, Mi = Vi−Vi) such
that Vi = Mi + v. Further, we observed there that

(PVr PVr−1 · · ·PV1)
n(x)−PV (x) = (PMr PMr−1 · · ·PM1)

n(x− v)−PM(x− v).

Since
∑r

1(Vi−Vi)⊥ is closed if and only if
∑r

1 M⊥i is closed, it follows from The-
orem 11.61 that if

∑r
1(Vi −Vi)⊥ is closed, then there exist constants c > 0 and

α ∈ [0,1) such that ‖(PMr PMr−1 · · ·PM1)
n−PM‖ ≤ cαn. Hence, for all x ∈ H with

‖x‖ ≤ 1, we have

‖(PVrPVr−1 · · ·PV1)
n(x)−PV (x)‖ ≤ cαn‖x− v‖ ≤ c̃αn, (11.19)

where c̃ = c(1 + ‖v‖). Thus if we extend the definition of a linear operator to a
nonlinear one Q on H by defining the norm of Q by ‖Q‖ := sup{‖Q(x)‖ | ‖x‖ ≤ 1},
then we see from (11.19) that (PVr PVr−1 · · ·PV1)

n converges to PV linearly. The rest of
the proof is now clear. �

Since in a finite-dimensional space, every subspace is closed, it follows that
in R

n, alternating projections always converge linearly.
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The following two corollaries will be useful for comparison to the results of Xu
and Zikatanov in Sect. 11.11. If in the von Neumann–Halperin dichotomy theorem
one replaces each subspace Mi by its orthogonal complement M⊥i and recalls the
well-known facts that PM⊥i

= I−PMi , M⊥⊥i = Mi, and ∩r
1M⊥i = (

∑r
1 Mi)⊥ (see, e.g.,

[19]), then

Corollary 11.65 ([21, Corollary 9.7]). Let M1,M2, . . . ,Mr be closed subspaces in
the Hilbert space H and let M :=

∑r
1 Mi. Then exactly one of the following two

statements holds.

(1)
∑r

1 Mi is closed. Then ([(I−PMr)(I−PMr−1) · · · (I−PM1)]
n) converges to I−PM

linearly.
(2)

∑r
1 Mi is not closed. Then ([(I−PMr )(I−PMr−1) · · · (I−PM1)]

n) converges to
I−PM arbitrarily slowly.

By a proof analogous to that of Theorem 11.64, the following consequence of
Corollary 11.65 that is actually more general than Corollary 11.65 is obtained.

Theorem 11.66 ([21, Theorem 6.8]). Let V1,V2, . . . ,Vr be closed affine sets in H
with V := ∩r

1Vi 	= /0. Then exactly one of the following two statements holds.

(1)
∑r

1(Vi−Vi) is closed. Then [(I−PVr)(I−PVr−1) · · · (I−PV1)]
n converges to I−

PV linearly.
(2)

∑r
1(Vi−Vi) is not closed. Then [(I−PVr)(I−PVr−1) · · · (I−PV1)]

n converges to
I−PV arbitrarily slowly.

11.10 Application to Intermittent Projections

The Dichotomy Theorem 11.27 can be applied to intermittent or “almost” randomly
ordered projections. Throughout this section H will always denote a Hilbert space
and M1, . . . ,Mr will be a collection of r closed subspaces in H with M := ∩r

1Mi.

Definition 11.67. A function σ : N→ {1,2, . . . ,r} is called a random selection for
{1,2, . . . ,r} if for each n ∈ N, there exists N(n) ∈ N such that

{σ(n),σ(n + 1), . . . ,σ(n + N(n))}= {1,2, . . . ,r}. (11.20)

The following is easy to verify.

Lemma 11.68. Let σ : N → {1,2, . . . ,r}. Then the following statements are
equivalent:

(1) σ is a random selection for {1,2, . . . ,r};
(2) The range of σ is {1,2, . . . ,r} and σ assumes each value in its range infinitely

often.
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A random product of the projections PM1 ,PM2 , . . . ,PMr is the sequence (Sn),
where

Sn := PMσ(n)PMσ(n−1) · · ·PMσ(1) (n = 1,2, . . .), (11.21)

and where σ is a random selection for {1,2, . . . ,r}.
Recall that a sequence (xn) in H is said to converge weakly to x∈H provided that

lim
n→∞
〈xn,z〉 = 〈x,z〉 for each z ∈H.

Theorem 11.69 (Amemiya and Ando [1]). If (Sn) is the random product of projec-
tions (11.21), then for each x ∈ H the sequence (Sn(x)) converges weakly to PM(x).

For some far-reaching generalizations of Theorem 11.69, see Dye et al. [28].
Apparently, it is still unknown whether or not the convergence in Theorem 11.69

must be in norm. However, when certain additional conditions are imposed on either
the subspaces Mi or the function σ , then norm convergence in Theorem 11.69 is
indeed guaranteed.

One result along these lines is the following.

Proposition 11.70 (Bauschke [5, Example 3.8]). Let (Sn) be the random product of
projections (11.21). If

∑
i∈J M⊥i is closed for each nonempty subset J of {1,2, . . . ,r},

then
lim

n
‖Sn(x)−PM(x)‖= 0 for each x ∈ H.

We do not know whether this result is valid under the weaker condition that only∑r
1 M⊥i be closed. However, with an additional condition on the function σ , then

the answer is affirmative.

Definition 11.71 ([ 6, Definition 3.18]). A random selection function σ : N →
{1,2, . . . ,r} is called an intermittent selection for {1,2, . . . ,r} if there exists N1 ∈N

such that, for each n ∈ N,

{σ(n),σ(n + 1), . . . ,σ(n + N1)}= {1,2, . . . ,r}. (11.22)

Note that an intermittent selection is a random selection with the property that
for each n ∈ N, the N(n) that works in the definition of random selection does not
depend on n, but is some fixed N1 that works for all n.

An intermittent product of the projections PM1 ,PM2 , . . . ,PMn is the sequence (Sn),
where

Sn := PMσ(n)PMσ(n−1) · · ·PMσ(1) (n = 1,2, . . .), (11.23)

and where σ : N→{1,2, . . . ,r} is an intermittent selection for {1,2, . . . ,r}.
Note that if we define σ(n) := [n], where [·] is the function “mod r,” i.e.,

[n] := {n− kr | k = 0,1,2, . . .}∩{1,2, . . . ,r},
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then the function σ satisfies the above hypothesis (with N1 = r−1) and

Srn = (PMr PMr−1 · · ·PM1)
n (11.24)

is just the sequence of “cyclically” ordered projections that appeared in the von
Neumann–Halperin theorem of the preceding section.

The following fact, which generalizes the von Neumann–Halperin cyclic projec-
tions theorem to intermittently ordered projections, is needed.

Fact 11.72 (Hundal and Deutsch [36, Subspace case of Theorem 3.1]). Let σ :
N→{1,2, . . . ,r} be an intermittent selection function, and let Sn be the intermittent
product (11.23). Then

lim
n
‖Sn(x)−PM(x)‖ = 0 for each x ∈ H.

Theorem 11.73. Assume the hypothesis of Fact 11.72 with σ an intermittent selec-
tion. Then exactly one of the following two statements holds:

(1)
∑r

1 M⊥i is closed; then (Sn) converges to PM linearly.
(2)

∑r
1 M⊥i is not closed; then (Sn) converges to PM arbitrarily slowly.

Remark 11.74. (1) Statement (1) of Theorem 11.73 is a consequence of a re-
sult of Bauschke and Borwein [6, Theorem 5.7]. Statement (2) is from [21,
Theorem 7.7].

(2) Note that Theorem 11.73 is a generalization of the Von Neumann-Halperin
Dichotomy (Theorem 11.61).

11.11 Application to a Xu–Zikatanov Theorem

In their fundamental paper [54], Xu and Zikatanov showed a beautiful connection
between the method of alternating projections and the method of subspace correc-
tions in a Hilbert space. The method of subspace corrections is applied in the area of
finite element analysis and is also referred to as domain decomposition or the multi-
grid method. In this section one of their two main results (viz., [54, Theorem 4.7])
can be improved by using the Dichotomy Theorem 11.27.

Let H be a Hilbert space, let V1,V2, . . . ,Vr be closed subspaces of H, and let
Ti : H → Vi be bounded linear mappings satisfying the following two assumptions
for each i = 1,2, . . . ,r:

(A1) The range of Ti is Vi and Ti|Vi : Vi→Vi is an isomorphism.
(A2) ‖Ti(x)‖2 ≤ ω〈Ti(x),x〉 for each x ∈ H and some constant ω ∈ (0,2).

In particular, assumption (A2) guarantees that I−Ti is nonexpansive:‖I−Ti‖ ≤ 1.
(In the applications that are made in [54], the Ti may be regarded as approximations
to the projections PVi . Typically, the Ti correspond to damped Jacobi, Gauss-Seidel,
or successive overrelaxation methods applied at different mesh resolutions.)
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Let
E := (I−Tr)(I−Tr−1) · · · (I−T1), (11.25)

Fix(E) := {x ∈ H | E(x) = x}, and (11.26)

N (Ti) := {x ∈H | Ti(x) = 0}. (11.27)

Lemma 11.75 (Xu–Zikatanov [54, Lemma 4.4]).

M := Fix(E) =
r⋂

1

N (Ti) =
r⋂

1

V⊥i ,and (11.28)

V := M⊥ =
r∑

1

Vi. (11.29)

Theorem 11.76 (Xu–Zikatanov [54, Theorem 4.6]). The following two statements
are equivalent:

(1)
∑r

1 Vi is closed;
(2) ‖EPV‖< 1.

Next note the identities

En− (I−PV ) = En−PM = (E−PM)n = [E(I−PM)]n

= (EPM⊥)
n = (EPV )n. (11.30)

The second equality En−PM = (E−PM)n follows from the fact that PME = PM =
EPM, which in turn is a consequence of the (not obvious) fact that Ti = TiPVi = PViTi

(see [54, (2.10)]), and hence that PMTi = PMPViTi = 0 and TiPM = PiPViPM = 0 for
all i since PViPM = 0 = PMPVi .

Theorem 11.77 (Xu–Zikatanov [54, Theorem 4.7]).

lim
n→∞
‖En(x)− (I−PV)(x)‖ = 0 for each x ∈H, (11.31)

or equivalently,

lim
n→∞
‖(EPV )n(x)‖ = 0 for each x ∈ H. (11.32)

Since ‖EPV‖ ≤ 1, it follows from the Dichotomy Theorem 11.27 and Theorems
11.76 and 11.77 that the following dichotomy pertaining to the Xu–Zikatanov theory
is obtained.
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Theorem 11.78 (Xu-Zikatanov Dichotomy) ([21, Theorem 8.4]). Exactly one of
the following two statements holds.

(1)
∑r

1 Vi is closed. Then (En) converges to (I−PV ) linearly.
(2)

∑r
1 Vi is not closed. Then (En) converges to (I−PV) arbitrarily slowly.

It should be noted that this result is somewhat more general than Theorem 11.66
since here the Ti need not be equal to PVi , but need only be a certain kind of approx-
imation to PVi .

11.12 Further Applications

A Google search for the term “arbitrarily slow convergence” brings up hits in the
areas of probability and statistics (density estimation [25, 26, 29], the central limit
theorem [49], and Gibbs sampling [30]), machine learning/classifiers [14, 16, 27],
numerical methods for inverse problems [33, 43, 51], control theory [46], opti-
mization [48], finite element analysis [11], random matrices [4], and analysis [37].
The Second Lethargy Theorem and arguments similar to the proof of the Second
Lethargy Theorem can be used to reproduce many of the arbitrarily slow or almost
arbitrarily slow convergence results for these applications.

Acknowledgements We are grateful to the two referees for raising some points that helped us to
make the paper more complete and readable. We are also grateful to Heinz Bauschke who originally
pointed out the paper [3] to us that we were unaware of at the time.
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Chapter 12
Graph-Matrix Calculus for Computational
Convex Analysis

Bryan Gardiner and Yves Lucet

Abstract We introduce a new family of algorithms for computing fundamental
operators arising from convex analysis. The new algorithms rely on the fact that the
graph of the subdifferential of most convex operators depends linearly on the graph
of the subdifferential of the function. By storing the subdifferential information,
the computation of the conjugate is reduced to a matrix multiplication. We explain
how other operators can be computed similarly, and present numerical experiments
that compare graph-matrix calculus algorithms with piecewise-linear quadratic al-
gorithms from computational convex analysis (CCA), and with a bundle method
using warmstarting. Our results show that the new algorithms are an order of mag-
nitude faster. They also add subdifferential calculus to our numerical library, and are
very simple to implement.

Keywords Computer-Aided convex analysis · Computational convex analysis
· Convex function · Fenchel conjugate · Legendre–Fenchel transform · Proximal
average · Proximal mapping · Subdifferential operator.
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12.1 Introduction

The birth of computational convex analysis (CCA) algorithms can be traced
back to the introduction of fast algorithms to compute the (Legendre–Fenchel)
conjugate [7, 9, 17, 25, 27], although key ideas were introduced much earlier
[24, Paragraph 5c]. While other transforms such as the Moreau–Yosida approx-
imate can be deduced from these algorithms, the study of monotone operators
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using the Rockafellar and Fitzpatrick functions require specialized algorithms [11].
The CCA numerical library provides a numerical implementation of most of these
algorithms and is available from [8].

The performance of algorithms in CCA [17–21] was challenged with the intro-
duction of the proximal average. The origin of this operator can be traced back to
Moreau [24] when he proved that the set of proximal mappings is convex. The prox-
imal average was explicitly defined in 2004 [2]. It has been studied in [3–6, 16, 23],
and extended in [1,13]. Its numerical computation is challenging as it requires com-
puting the composition of several operators. It is currently performed with a family
of algorithms based on the class of piecewise linear-quadratic (PLQ) functions [22].

The linear relationship between the graph of the subdifferential of the most
common convex analysis operators such as the (Legendre–Fenchel) conjugate was
noticed in [12] while basing computational algorithms on such properties was sug-
gested in [21]. By storing the subdifferential data, the computation of the conjugate
is reduced to a multiplication by a 2×2 matrix. We show that other operators can be
computed similarly, and compare numerical algorithms based on graph-matrix cal-
culus (named GPH algorithms in the following, GPH standing for graph) with PLQ
algorithms (which we call PLQ algorithms) introduced in [22], and with the linear-
time Legendre transform (LLT) algorithm (named LLT algorithm in the following)
from [18]. We also compare them with warmstarting using a bundle method (named
OPT algorithms in the paper). Graph-matrix calculus algorithms are particularly
well suited for implementation in mathematical software like Matlab and Scilab,
which are optimized for matrix operations but penalize heavily the usage of loops.
They naturally extend known numerical algorithms by providing easy manipulation
of the subdifferential.

The paper is organized as follows. Section 12.1 introduces the paper; Section 12.2
fixes the notations and recalls the definitions of the main operators in convex anal-
ysis including two self-dual smoothing operators. Section 12.3 recalls Goebel’s
graph-matrix calculus [12, p. 181] and provides the matrices associated with most
unary and binary operators. Section 12.4 proposes a GPH data structure, which is
used in Sect. 12.5 to present linear-time algorithms for the main convex operators. In
Sect. 12.6, we compare the running time of PLQ, GPH, OPT, and LLT algorithms
and emphasize the advantages of the GPH algorithms. Finally, Sect. 12.7 summa-
rizes our results and proposes future directions.

12.2 Preliminaries

First, we fix our notations. We will adopt Matlab and Scilab matrix notation to write
the matrix

G =

⎡

⎣
x
s
y

⎤

⎦ , (12.1)

where x, s, and y are row vectors as G = [x;s;y].
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We consider functions f : R
d → R∪{+∞}. The set of points where the function

takes finite values is called the effective domain and denoted dom f . A function f
is proper if dom f is nonempty. Unless otherwise stated all functions considered are
proper lower semicontinuous (lsc) convex. We denote by R

+ the set of positive real
numbers, riS the relative interior of a set S, Id : R

d → R
d the identity mapping,

‖ · ‖ the Euclidean norm, 〈·, ·〉 the standard dot product, and � the inf-convolution
operator defined by

f�g(x) = inf
y∈Rd

[ f (y)+ g(x− y)],

while

∂ f (x) = {s ∈ R
d : ∀y ∈ R

d , f (y)≥ f (x)+ 〈s,y− x〉}
denotes the convex subdifferential, and

gph∂ f = {(x,s) ∈R
d×R

d : s ∈ ∂ f (x)}

the graph of the subdifferential. More generally, we denote gphP the graph of an
operator P : R

d ⇒ R
d , i.e.,

gphP = {(x,s) ∈ R
d×R

d : s ∈ P(x)}.

We write the (Legendre–Fenchel) conjugate as

f ∗(s) = sup
x∈Rd

[〈s,x〉− f (x)],

and the Moreau(-Yosida) envelope of a function f with parameter λ > 0 as

eλ f (x) = ( f�λ−1 q)(x) = min
y∈Rd

[
f (y)+

‖x− y‖2

2λ

]
,

where q is the quadratic kernel q(x) = ‖x‖2/2. The proximal mapping is the ap-
plication that assigns to a point x the minimizers in the definition of the Moreau
envelope

Proxλ f (x) = Argmin
y∈Rd

[
f (y)+

‖x− y‖2

2λ

]
.

The epi-multiplication operator is defined by

α ✫ f =

{
α f (·/α) if α > 0,

ι{0} if α = 0,

where ι{0} is the indicator function: ι{0}(x) = 0 if x = 0 otherwise it is +∞.



246 B. Gardiner and Y. Lucet

The proximal average is the function P( f0, f1;λ0,λ1) : R
d → ]−∞,+∞]

defined by

P( f0, f1;λ0,λ1) =
(

λ0

(
f0 +

1
μ

q

)∗
+ λ1

(
f1 +

1
μ

q

)∗)∗
− 1

μ
q,

where the functions f0, f1 : R
d→ ]−∞,+∞] are proper lsc convex functions, μ > 0,

and λ0,λ1 > 0 with λ0 + λ1 = 1. When there is no ambiguity on f0, f1,λ0,λ1, we
will simplify the notation to P . Note that the proximal average can be written as
the constrained minimization problem [5, Formula (20)]

P( f0, f1;λ0,λ1)(ξ ) = inf
λ0y0+λ1y1=ξ

[
λ0 f0(y0)+ λ1 f1(y1)+

λ0λ1

2μ
‖y0− y1‖2

]
,

which is the basis to generalizing the proximal average as the kernel average [1].
When the infimum in the definition of the proximal average is reached at y0, y1, we
say the proximal average is exact at ξ = λ0y0 + λ1y1. We will use the following
formula later [5, Proposition 4.3]

P( f0, f1;λ0,λ1)(ξ ) = inf
λ0y0+λ1y1=ξ

[
1∑

i=0

(
λi ( fi(yi)+ q(yi))

)− q(ξ )

]

. (12.2)

The proximal average is a very useful convex operator as it is a convex function
[5, Corollary 5.2] that satisfies P( f0, f1;λ0,λ1) = −eμ(−λ0eμ f0 − λ1eμ f1)
[13, Formula (4)], [5, Theorem 8.3], and domP( f0, f1;λ0,λ1) = λ0 dom f0 +
λ1 dom f1 [5, Theorem 4.6]. Moreover, the proximal mapping of the proximal aver-
age is the convex combination of the proximal mappings: ProxP( f0, f1;λ0,λ1) =
λ0 Prox f0 + λ1 Prox f1 [5, Theorem 6.7], and the conjugate of the proximal average
is the proximal average of the conjugate [5, Theorem 5.1]

[P( f0, f1;λ0,λ1)]∗ = P( f ∗0 , f ∗1 ;λ0,λ1).

Finally, we recall the self-dual smoothing operator

sλ f = (1−λ 2)eλ f + λ q,

introduced in [12], and another self-dual operator

Tλ f = P( f , q;1−λ ,λ )

introduced in [6, 23].
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We will work with PLQ functions, which were described in [26] and im-
plemented in [22]. For univariate functions, they are extended-valued piecewise
quadratic functions defined on a finite number of intervals which are continuous
on the interior of their effective domain. In other words, they are defined for
x ∈ [xi,xi+1] by p(x) = aix2 + bix + ci, where ai,bi ∈ R, ci ∈ R ∪ {+∞}, xi ∈
R∪{−∞,+∞} with −∞ = x0 < x1 < · · ·< xn < xn+1 = +∞.

12.3 Goebel’s Graph-Matrix Calculus

We now collect rules, most of them introduced in [12, p. 181], on how the graph of
the subdifferential mapping ∂ f is transformed under basic operations on f .

Assume f : R
d → R ∪ {+∞} is a proper lsc convex function. The follow-

ing calculus rules, which we call Goebel’s Graph-matrix calculus for unary
operators, on the graph of the subdifferential hold for any α > 0, 0 < λ < 1,
and β ≥ 0.

gph∂ ( f ∗) =
[

0 Id
Id 0

]
gph∂ f gph∂ (α f ) =

[
Id 0
0 α Id

]
gph∂ f

gph∂ (α ✫ f ) =
[

α Id 0
0 Id

]
gph∂ f gph∂ ( f (α·)) =

[
α−1 Id 0

0 α Id

]
gph∂ f

(12.3)

gph∂ ( f + β q) =
[

Id 0
β Id Id

]
gph∂ f gph∂eα( f ) =

[
Id α Id
0 Id

]
gph∂ f

gphProxα( f ) =
[

Id α Id
Id 0

]
gph∂ f gph∂ sλ f =

[
Id λ Id

λ Id Id

]
gph∂ f .

All these formulas follow directly from well-known convex analysis formulas
except the last one, which was proven in [12, p. 181] based on the definition of sλ f .
The operator Tλ admits the following formula.

Lemma 12.1. Under the above assumptions we have

gph∂ Tλ f =

[
(1− λ

2 ) Id λ
2 Id

λ
2 Id (1− λ

2 ) Id

]

gph∂ f . (12.4)

Proof. We use [23, Theorem 4.3.2(ii)]

Tλ f = (1−λ )
[

f�

(
2−λ

λ

)
q

](
2

2−λ
·
)

+
λ

2−λ
q
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to deduce

gph∂Tλ f =

[
Id 0

λ
2−λ Id Id

]

gph∂
[
(1−λ )

(
f�

(
2−λ

λ

)
q

)(
2

2−λ
·
)]

=

[
Id 0

λ
2−λ Id Id

][
2−λ

2 Id 0
0 2

2−λ Id

]

gph∂
[
(1−λ )

(
f�

(
2−λ

λ

)
q

)]

=

[
Id 0

λ
2−λ Id Id

][
2−λ

2 Id 0
0 2

2−λ Id

][
Id 0
0 (1−λ ) Id

]
gph∂

[
f�

(
2−λ

λ

)
q

]

=

[
Id 0

λ
2−λ Id Id

][
2−λ

2 Id 0
0 2

2−λ Id

][
Id 0
0 (1−λ ) Id

][
Id λ

2−λ Id
0 Id

]

gph∂ f .

Multiplying the matrices gives the result. �

Similar formulas hold for binary operators.

Lemma 12.2 (Graph-matrix calculus for binary operators). Assume f1

(resp. f2) is a proper lsc convex function with s1 ∈ ∂ f1(x1) (resp. s2 ∈ ∂ f2(x2)). The
index i is in {1,2}. Consider points x ∈ R

d (primal space) and s ∈R
d (dual space).

(i) If ridom f1∩ ridom f2 �= /0, then

(x,s) ∈ gph∂ ( f1 + f2)⇔∃(xi,si) ∈ gph∂ fi such that

{
x = x1 = x2,

s = s1 + s2.

(ii) If ∂ f1(x1)∩∂ f2(x2) �= /0, then

(x1 + x2,s) ∈ gph∂ ( f1� f2)⇔ (xi,s) ∈ gph∂ fi.

(iii) Take λ1 + λ2 = 1 with λ1,λ2 > 0. Assume Pμ( f1, f2;λ1,λ2) is exact (i.e. the
infimum is attained) at x = λ1x1 + λ2x2 with xi ∈ dom fi. Then

(x,s) ∈ gph∂P( f1, f2;λ1,λ2)⇔
{

x = λ1x1 +λ2x2,

s = x1 + s1− x = x2 + s2− x.

Proof. (i) From [14, Corollary XI.3.1.2], ∂ f1(x)+ ∂ f2(x) = ∂ ( f1 + f2)(x), and the
result follows.

(ii) From [14, Corollary XI.3.4.2], ∂ f1(x1)∩∂ f2(x2) = ∂ ( f1� f2)(x1 + x2), and the
result follows.

(iii) From [5, Theorem 7.1], ∂P( f1, f2;λ1,λ2)(x) = −x +∩i:λi>0(∂ fi(xi)+ xi), and
the result follows. �

Remark 12.3. An alternate proof of Lemma 12.1 can be obtained from Lemma
12.2(iii) using f1 = f , f2 = q, λ1 = 1− λ , and λ2 = λ to obtain (x,s) ∈ gphTλ
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if, and only if,

x = (1−λ )x1 +λ x2

s = x1 + s1− x

s = x2 + s2− x.

Then using s2 = x2 we can solve the system to obtain

x =
(

1− λ
2

)
x1 +

λ
2

s1

s =
λ
2

x1 +
(

1− λ
2

)
s1,

which is Formula (12.4).

12.4 Graph-Matrix Representation of PLQ Functions

The key idea is to use a data structure that allows the computation of the subdif-
ferential using a single matrix multiplication. We store the subdifferential data of a
PLQ function, and evaluate the function by integration.

The following data structure will be used. A lsc proper convex PLQ function f
of one variable is defined by f (x) = aix2 + bix + ci for x ∈ [xi−1,xi] and i ∈ {1, . . . ,
n + 1}, where ai,bi ∈ R, ci ∈ R∪{+∞}, xi ∈ R∪{−∞,+∞} with −∞ = x0 < x1 <
· · · < xn < xn+1 = +∞. While in previous work the function f was stored as the
matrix

⎡

⎢
⎢⎢
⎣

x1 a1 b1 c1
...

...
...

...
xn an bn cn

+∞ an+1 bn+1 cn+1

⎤

⎥
⎥⎥
⎦

,

(which was called the PLQ matrix), we will use a different data structure.
To take advantage of the results in the previous section, the function f will be

stored as a matrix ⎡

⎣
x̄0 x1 · · · xn x̄n+1

s̄0 s1 · · · sn s̄n+1

ȳ0 y1 · · · yn ȳn+1

⎤

⎦ .

The above matrix will be called a GPH matrix. We relax the requirement that
xi < xi+1 in the PLQ matrix by only requiring−∞ < x̄0≤ x1≤ ...≤ xn≤ x̄n+1 < +∞.
The points xi form a partition of the real line, the values si store the subdifferential
data at the points xi, and the values yi store the value of f at xi. Since the function f
is piecewise quadratic, the graph of ∂ f is piecewise affine. We store it as the piece-
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wise affine graph going through (xi,si) for i = 1, . . . ,n (with si ∈ ∂ f (xi)). (Since the
graph may have vertical parts, it may not be a function). We capture the information
outside [x1,xn] by adding two points (x̄0, s̄0) and (x̄n+1, s̄n+1) defined as follows.

Case 1: dom f is unbounded from the left i.e., c0 is finite. In that case, f is a quadratic
function on (−∞,x1]. Then we define x̄0 = x1−1, s̄0 = 2a0x̄0 +b0, and ȳ0 = f (x̄0) =
a0x̄2

0 + b0x̄0 + c0.

Case 2: dom f is bounded from the left i.e., c0 = +∞. In that case, f (x) = +∞ for
x < x1. So we set x̄0 = x1, s̄0 = s1−1 and ȳ0 = +∞.

The definition of (x̄n+1, s̄n+1) is done similarly. These values correspond to a linear
extension outside [x1,xn] i.e., any subdifferential value on (−∞,x1] (resp. [xn,+∞))
is on the half line going through (x̄0, s̄0) and ending at (x1,s1) (resp. (x̄n+1, s̄n+1) and
(xn,sn)). The point x̄0 (resp. x̄n+1) is added specifically to store the subdifferential
on (−∞,x1] (resp. [xn,+∞)).

Remark 12.4. The value 1 used in the definition of (x̄0, s̄0) is arbitrary as any posi-
tive value can be used. To reduce floating point errors, a better value may be x2− x1

in case 1 and s2− s1 in case 2. The value 1 is used for simplicity.

To recover values of the function f , we can integrate the subdifferential but still
need one constant of integration. For ease of computation, we store all the values
yi = f (xi) for i = 1, . . . ,n. The additional values ȳ0 and ȳn+1 are computed as above.
Note that all values xi and si are always finite for i = 1, . . .n as are x̄0, s̄0, x̄n+1, s̄n+1.

Example 12.5. The absolute value function may be stored as the matrix

⎡

⎣
−1 0 0 1
−1 −1 1 1
1 0 0 1

⎤

⎦ .

The first and second row mean the graph of the subdifferential goes through the
points (−1,−1), (0,−1), (0,1), and (1,1). The half-line going through (−1,−1),
and ending at (0,−1) is extended to (−∞,−1], so the subdifferential is constant
with value −1 on that interval. Similarly, it is constant with value 1 on [1,+∞).
Finally, the first and last row give function values i.e., the function goes through the
points (−1,1), (0,0), (0,0), and (1,1). Note that we store the point (0,0) twice for
convenience.

Example 12.6. The function f (x) = max(0, |x|−1) may be stored as the matrix

⎡

⎣
−2 −1 −1 1 1 2
−1 −1 0 0 1 1
1 0 0 0 0 1

⎤

⎦ .
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Example 12.7. The function f (x) = max(0,x2−1) may be stored as the matrix

⎡

⎣
−2 −1 −1 1 1 2
−4 −2 0 0 2 4
3 0 0 0 0 3

⎤

⎦ .

There is no uniqueness of our representation. Values at xi can be stored multiple
times to capture multi-valuedness of the subdifferential and lower semicontinuity
of the function, different points may be taken for (x̄0, s̄0) and (x̄n+1, s̄n+1), and
additional (redundant) points with abscissa not equal to xi could be used in the
GPH matrix. So different GPH matrices can represent the same function. While
we could define a unique representation by imposing more constraints on the for-
mat, we would then have to normalize after each computation. By not normalizing
we save computation time when calculating the composition of several operators.
We also avoid coding a shape-preserving spline approximation algorithm. The
downside is comparing two functions requires more work than a simple matrix
comparison.

The following are “special” cases of our data structure. The function

⎡

⎣
−1 1
0 0
0 0

⎤

⎦

is the function identically 0 (the values −1 and 1 can be replaced by any nonequal
values). The indicator function ι[−1,1] of the interval [−1,1] may be written

⎡

⎣
−1 −1 1 1
−1 0 0 1
∞ 0 0 ∞

⎤

⎦ .

A quadratic function f (x) = ax2 + bx + c defined everywhere is stored as

⎡

⎣
x̄0 x̄1

2ax̄0 + b 2ax̄1 + b
ax̄2

0 + bx̄0 + c ax̄2
1 + bx̄1 + c

⎤

⎦

with x̄0 < x̄1. Conversely, the GPH matrix

⎡

⎣
x̄0 x̄1

s̄0 s̄1

ȳ0 ȳ1

⎤

⎦

with x̄0 < x̄1 represents a quadratic function f (x) = ax2 + bx + c with a = (s̄1−
s̄0)/(2(x̄1− x̄0)), b = s̄0−2ax̄0 and c = ȳ0−ax̄2

0−bx̄0 = ȳ1−ax̄2
1−bx̄1. Finally, the

indicator function ι{x̄}+ ȳ of a point has GPH matrix
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⎡

⎣
x̄ x̄ x̄ x̄

α−1 α β β + 1
∞ ȳ ȳ ∞

⎤

⎦

provided α < β (the value 1 can be replaced with any positive number).

12.5 Computational Convex Analysis through Graph Calculus

Using Formulas (12.3) with the GPH matrix gives simple algorithms for the most
common convex operators. For example, the conjugate of the function represented
as the GPH matrix G = [x;s;y] where x, s, and y are row vectors, admits the GPH
matrix

⎡

⎣

[
0 1
1 0

]
∗
[

x
s

]

s.∗ x− y

⎤

⎦=

⎡

⎣
s
x

s.∗ x− y

⎤

⎦ ,

where .∗ represents the element-wise multiplication and ∗ the standard matrix mul-
tiplication. (Note that the operation s.∗ x− y is always well defined as si and xi are
always finite even when yi = ∞.)

Similarly, the scalar multiplication by α > 0 of the same function represented by
G has GPH matrix

⎡

⎣

[
1 0
0 α

]
∗
[

x
s

]

αy

⎤

⎦=

⎡

⎣
x

αs
αy

⎤

⎦ .

The Moreau envelope can be computed as follows.

Proposition 12.8. Given a convex PLQ function f in GPH matrix G given by
Formula (12.1), its Moreau envelope eλ f admits the GPH matrix

⎡

⎢
⎣

[
1 λ
0 1

]
∗
[

x
s

]

f + λ
2 s.^2

⎤

⎥
⎦=

⎡

⎢
⎣

x +λ s
s

f + λ
2 s.^2

⎤

⎥
⎦ ,

where .^ is the elementwise square function.

Proof. Using the fact eλ f = ( f ∗+ λ q)∗ and Formulas (12.3) we deduce that f ∗
admits the GPH matrix [s;x;s. ∗ x− f ] so the function f ∗+ λ q can be represented
as [s;x + λ s;s. ∗ x− f + λ

2 s.^2]. Taking the conjugate gives the GPH matrix of the
Moreau envelope and finishes the proof. �

We next compute a GPH matrix of the proximal average.

Proposition 12.9. Given two convex PLQ functions f1 (resp. f2) in GPH matrix
G1 = [x1;s1;y1] (resp. G2 = [x2;s2;y2]) and λ1 = 1− λ , λ2 = λ with λ ∈ [0,1];
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the λ proximal average of f1 with f2 admits the GPH matrix G = [x;s;y], where
x = λ1x1 + λ2Px1, s = x1 + s1− x,

y = λ1

(
y1 +

1
2

x1.^2

)
+λ2

(
yPx1 +

1
2

Px1.^2

)
− 1

2
x.^2

the operator P is defined by

P = (Id+∂ f2)−1(Id+∂ f1),

and yPx1 = f2(Px1).

Proof. We parametrize the graph of the proximal average using x1, so we need to
find the corresponding x2 for each value of x1. From Lemma 12.2 we have x1− x +
s1 = x2− x + s2 so we deduce (Id+∂ f1)(x1) = (Id+∂ f2)(x2), thus x2 = Px1 is the
corresponding point that makes the prox average exact. The value of y comes from
Formula (12.2). �

We note that Proposition 12.9 allows us to speed up computation by precom-
puting Px1, (y1 + 1

2 x1.^2) and (yPx1 + 1
2 Px1.^2), which do not depend on λ . Then

we can deduce the λ -dependent values x, s, and y. Applying such precomputation
scheme, we plot the proximal average of f0(x) = x2/2 with f1(x) = ι{0}(x)+1 (this
example was challenging to plot during the writing of [4] and motivated further re-
search to speed up such computation [16,22]) in Fig. 12.1. The PLQ algorithm took
117 s to generate the picture under Scilab 5.1.1, while with precomputation, using
the GPH algorithm only took 33 s.

Fig. 12.1 The proximal average of f0(x) = x2/2 with f1(x) = ι{0}(x)+1. Each color corresponds
to a specific value of λ ∈ [0,1]
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12.6 Comparing GPH Algorithms with PLQ Algorithms

The previous section contains extremely simple algorithms to compute the conju-
gate, the scalar multiplication, the Moreau envelope, and the proximal average. In
particular, the computation of the conjugate is much simpler than previous algo-
rithms, namely the (obsolete log-linear time) fast Fenchel transform [7, 9, 17, 25],
and the (optimal) linear time algorithms: the LLT [18], the PLQ algorithm [22], the
parametric Legendre transform (PLT) [15], and the parabolic envelope algorithm
(PE) [10].

All numerical experiments were performed on an IBM Thinkpad Lenovo T60
running Intel Core Duo at 2Ghz with 2GB memory using Scilab 5.1.1 under
Windows XP pro SP3.

In [19], we argued for the superiority of the PLQ algorithm over the LLT al-
gorithm based on the ability of PLQ algorithms to model unbounded effective
domains, and the closedness of the class of PLQ functions under common convex
operators which makes the algorithms exact for these functions. The price to pay
for these advantages is the more expensive computation time required by the PLQ
algorithms over the LLT algorithm. The GPH algorithms bridge that gap by keep-
ing all the properties of the PLQ algorithm with the speed of the LLT algorithm.
Figure 12.2a shows the CPU time vs. n (the number of pieces) when computing the
conjugate with the PLQ, GPH, and LLT algorithms: the PLQ algorithm is slower,
while the GPH and LLT algorithms run in almost the same time. We included in
Fig. 12.2b the computation time using a nonsmooth bundle method (n1fc1 as avail-
able through the optim function in Scilab) at each point warmstarted by the value at
the previous point. The figure clearly shows that specialized algorithms PLQ, GPH,
and LLT outperform a generic optimization solver.

The numerical computation of the Moreau envelope is compared in Fig. 12.3.
The algorithms LLT and GPH share similar performances and are faster than the
PLQ algorithm, which is itself faster than the OPT algorithm.

The numerical computation of the proximal average envelope is compared in
Fig. 12.4. The graph clearly shows the GPH algorithm is faster (without precom-
putation as it does not apply here) and that for n = 700 the GPH algorithm runs
15 times faster than the PLQ algorithm and 95 times faster than the OPT algorithm.

We conclude this section with a couple of examples illustrating the capabili-
ties of the numerical package. Figure 12.5 shows the subdifferential of a piecewise
affine function. Adding the GPH algorithms expanded the existing numerical library
to manipulate subdifferentials. Finally Fig. 12.6 illustrates the proximal point al-
gorithm. It shows the proximal mapping associated with the quadratic function
f (x) = x2 computed using graph-matrix calculus, the line y = x, and the iterations
of the proximal point algorithm. We clearly see convergence to the minimum of the
function which is the only fixed point.
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Fig. 12.2 Comparison of PLQ, GPH, and LLT algorithms for computing the conjugate of the func-
tion f (x) = x4 approximated by n piecewise linear functions on [−10,10] (Least-square regression
lines are shown). (a) GPH and LLT are on par while PLQ is slower. (b) OPT is much slower than
the other three algorithms
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lope of the function f (x) = x4 approximated by n piecewise linear functions on [−10,10] when
λ = 0.5 (Least-square regression lines are shown)

700600500400300200100

0.5

1.0

1.5

2.0

2.5

3.0

0.0

n

T
i
m
e

gph
plq
opt
gph
plq

opt

Fig. 12.4 Comparison of PLQ, GPH, and OPT algorithms for computing the proximal average of
the function f1(x) = x4 with f2(x) = ex approximated by n piecewise affine functions on [−10,10]
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algorithm



258 B. Gardiner and Y. Lucet

12.7 Conclusion

We recalled Goebel’s graph-matrix calculus formulas that relate the graph of the
subdifferential of convex operators to the graph of the subdifferential of the function
it is applied to. We proposed an intuitive data structure for storing PLQ functions
in GPH format and deduced very simple linear-time algorithms to compute nu-
merically the main convex operators. In addition, we provided numerical evidence
that the algorithms are (an order of magnitude) faster than previously known PLQ
algorithms while providing the same modeling advantages. We also showed that the
PLQ, LLT, and GPH specialized algorithms are much faster than using a generic
solver with warmstarting (named the OPT algorithms). The new GPH algorithms
extend the current CCA numerical library by providing a natural manipulation of the
subdifferential. They are especially efficient in matrix-based languages like Matlab
and Scilab.

Future work will focus on extending the algorithms to handle nonconvex func-
tions, and to provide a numerical library to manipulate bivariate functions.
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Chapter 13
Identifying Active Manifolds in Regularization
Problems

W.L. Hare

Abstract In 2009, Tseng and Yun [Math. Programming (Ser. B) 117, 387–423
(2009)] showed that the regularization problem of minimizing f (x)+ ||x||1, where f
is a C 2 function and ||x||1 is the l1 norm of x, can be approached by minimizing the
sum of a quadratic approximation of f and the l1 norm. We consider a generaliza-
tion of this problem, in which the l1 norm is replaced by a more general nonsmooth
function that contains an underlying smooth substructure. In particular, we consider
the problem

min
x
{ f (x)+ P(x)}, (13.1)

where f is C 2 and P is prox-regular and partly smooth with respect to an active
manifold M (the l1 norm satisfies these conditions.) We reexamine Tseng and Yun’s
algorithm in terms of active set identification, showing that their method will cor-
rectly identify the active manifold in a finite number of iterations. That is, after a
finite number of iterations, all future iterates xk will satisfy xk ∈M . Furthermore, we
confirm a conjecture of Tseng that, regardless of what technique is used to solve the
original problem, the subproblem pk = argmin p{〈∇ f (xk), p〉+ r

2 |xk− p|2 + P(p)}
will correctly identify the active manifold in a finite number of iterations.
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13.1 Introduction

In this work, we consider the problem of minimizing the sum of two functions over
a finite dimensional Euclidean space,

min
x
{ f (x)+ P(x)}, (13.2)

where f is C 2 and P is nonsmooth, but contains some underlying smooth substruc-
ture. One common example arises in l1 regularization problems,

min
x
{ f (x)+ c||x||1}, (13.3)

where ||x||1 is the l1 norm of x. A brief survey of l1 regularization problems and
some applications can be found in the introduction to [7].

Recent work by Tseng and Yun [7] has suggested that one practical method to ap-
proach such a problem is to solve a sequence of quadratic approximation problems,

xk+1 = min
x
{〈∇ f (xk),x− xk〉+(x− xk)′Hk(x− xk)+ P(x)}, (13.4)

where Hk is an approximation to the Hessian of f . When P is well structured, such
as the case when P = c||x||1, this problem is easily solved; potentially having a closed
form solution. Convergence theory and numerical testing can be found in [7].

In this work, we consider Tseng and Yun’s method in terms of active manifold
identification. In particular, we consider the case when P is partly smooth with re-
spect to some manifold M containing x̄ ∈ argminx{ f (x) + P(x)}. We show that,
under some conditions, all but a finite number of iterates will lie on the active mani-
fold. In terms of l1 regularization, this means that if x̄∈ argminx{ f (x)+c||x||1} then
for k sufficiently large, xk

i = 0 if and only if x̄i = 0.
Tseng and Yun’s method separates the original problem (13.2) into two pieces,

the smooth portion and the nonsmooth portion, that are treated distinctly different.
Similar ideas often occur in constrained optimization, where objective functions and
constrain sets are treated differently. Tseng and Yun’s separation technique could be
viewed as an analog to such techniques for constrained optimization by rephrasing
the problem as

min
x
{ f (x)+ r : 0≥ P(x)− r}. (13.5)

Recently, Hare [1] showed that the active manifold of a constraint set could be iden-
tified by examining a proximal subproblem. Along similar lines, Tseng conjectured
that the subproblem

pk = argmin p

{
〈∇ f (xk), p〉+ r

2
|xk− p|2 + P(p)

}
(13.6)

will correctly identify the active constraints of the problem (13.2) in a finite number
of iterations, regardless of the method used to solve the problem (13.2). Theorem
13.9 provides an affirmative proof for this conjecture.
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The remainder of this work is organized as follows. In Sect. 13.2, we provide
the background required to understand this work. In particular, Sect. 13.2 includes
the definitions of prox-regular and partly smooth functions. In Sect. 13.3, we ex-
amine the active manifold identification properties of iterates generated by (13.4)
and (13.6). A brief conclusion, consisting primarily of an e-mail from Tseng which
prompted this work, appears in Sect. 13.4.

13.2 Definitions and Notations

To keep this work brief, we provide only the definitions and background necessary
to understand its two main results (Theorems 13.7 and 13.9). In general we follow
the notation of [6], with one notable exception.

We shall define the Moreau envelope, and its corresponding (potentially empty)
proximal point mapping, of a function f at a point x with respect to a parameter r as

er f (x) := inf
y

{
f (y)+

r
2
|y− x|2

}
(13.7)

proxr f (x) := argminy

{
f (y)+

r
2
|y− x|2

}
, (13.8)

where | · | is the usual Euclidean norm. (In [6, Definition 1.23] the parameter r is
place in the denominator of the quadratic penalty term ‘ 1

2r ’.) We say that a function
is prox-bounded if there exists some r > 0 and point x such that er f (x) is finite. If
a function is prox-bounded, then (for r sufficiently large) er f is finite-value every-
where [6, Example 1.24].

A useful lemma, from [3], regarding proximal points is reproduced next.

Lemma 13.1 (Tilting proximal points). Let f be a proper lsc prox-bounded func-
tion and v be a vector. Then for r sufficiently large and any x

min
y

{
f (y)−〈v,y〉+ r

2
|y− x|2

}
+ 〈x,v〉+ 1

2r
|v|2 = er f

(
x +

1
r

v

)
, (13.9)

argminy

{
f (y)−〈v,y〉+ r

2
|y− x|2

}
= proxr f

(
x +

1
r

v

)
. (13.10)

Proof. Lemma 2.2 of [3] can be rephrased to this form. ��
Following the notation of [6], we define the regular normal cone to a set S at a

point x̄ ∈ S as

N̂S(x̄) = {v : 〈v,x− x̄〉 ≤ o(|x− x̄|)}, (13.11)

and the limiting normal cone as

NS(x̄) = limsup
x→x̄

N̂S(x). (13.12)

A set is regular at x̄ if these two cones coincide.
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Corresponding to functions we define the regular subdifferential of a function f
at a point x̄ where f (x̄) is finite as

∂̂ f (x̄) := {v ∈ Rm : f (x) ≥ f (x̄)+ 〈v,x− x̄〉+ o(|x− x̄|)} (13.13)

and the subdifferential,

∂ f (x̄) := limsup
x→x̄, f (x)→ f (x̄)

∂̂ f (x). (13.14)

A function is regular at x̄ if its epi-graph is regular at (x̄, f (x̄)). If f and g are regular
at x, then

∂ f (x) = ∂̂ f (x) and ∂ ( f (x)+ g(x)) = ∂ f (x)+ ∂g(x) (13.15)

(see [6, Corollary 8.11] and [6, Corollary 10.9] respectively).
Prox-regularity will provide us with a framework for working with nonconvex

functions.

Definition 13.2 (prox-regularity). A function f is prox-regular at a point x̄ for
a subgradient v̄ ∈ ∂ f (x̄) if f is finite at x̄, locally lower semi-continuous around x̄,
and there exists ρ > 0 such that

f (x′)≥ f (x)+ 〈v,x′ − x〉− ρ
2
|x′ − x|2, (13.16)

whenever x and x′ are near x̄ with f (x) near f (x̄) and v ∈ ∂ f (x) is near v̄. Further,
f is prox-regular at x̄ if it is prox-regular at x̄ for every v ∈ ∂ f (x̄).

It is clear that all convex functions are prox-regular. Moreover, any function f
such that f + r

2 | · |2 is convex is prox-regular. Prox-regularity further includes
the broad class of functions known as strongly amenable [5, Definition 2.4 and
Proposition 2.5] and lower-C 2 functions [5, Example 2.7]. In particular, function
that is composed of the maximum of a finite number of smooth functions is prox-
regular [5, Example 2.9].

Our framework for active manifolds will be partly smooth functions.

Definition 13.3 (Partly smooth). A function f is partly smooth at a point x̄
relative to a set M containing x̄ if M is a C 2 manifold about x̄ and:

i. (Smoothness) f |M is a C 2 function near x̄;
ii. (Regularity) f is regular at all points x ∈M near x̄, with ∂ f (x) �= /0;

iii. (Sharpness) the affine span of ∂ f (x̄) is a translate of NM (x̄);
iv. (Sub-continuity) ∂ f restricted to M is continuous at x̄.

Further, a set S is partly smooth at a point x̄ ∈ S relative to a manifold M if its
indicator function maintains this property. For both cases we refer to M as the
active manifold.
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First developed in [4], the idea of partly smooth functions provides a unifying
framework for optimization research into functions where the minimum lies upon
an active manifold. Most notably, the idea of partly smooth functions captures func-
tions that are composed of the maximum of a finite number of smooth functions,
provided a standard constraint qualification holds.

Example 13.4 (Finite max functions). Let

g(x) := max{gi(x) : i = 1,2, . . . ,n}, (13.17)

where gi are C 2 functions around the point x̄. Then g is prox-regular at x̄
[5, Example 2.9].

Define the active set for g at a point x by

Ag(x) := {i : gi(x) = g(x)}. (13.18)

If that the set of all active gradients of g, {∇gi(x̄) : i ∈ Ag(x̄)}, is linearly inde-
pendent, then [4, Corollary 4.8] shows that g is partly smooth at x̄ relative to the
manifold

M := {x : Ag(x) = Ag(x̄)}. (13.19)

Relevant to this work, it is easy to confirm that the l1 norm is partly smooth and
prox-regular.

Example 13.5 (l1 norm). The l1 norm is convex and therefore prox-regular at any
point. Also, the l1 norm is partly smooth with respect to the manifold

M = {x : A1(x) = A1(x̄)}, (13.20)

where A1 is the active set of the l1 norm: A1(x) := {i : |xi|= 0} [4, p. 714].

One strength of partly smooth functions is the ability of algorithms to identify
their active manifolds. That is, under some conditions, many algorithms have the
property that after a finite number of iterations all future iterates will be contained in
the active manifold. The next theorem, reproduced from [2, Theorem 5.3], captures
this idea mathematically.

Theorem 13.6 (Identifying active manifold). Let the function f be prox-regular
at x̄ and partly smooth there relative to the manifold M with 0∈ rint∂ f (x̄). Suppose
xk→ x̄ and f (xk)→ f (x̄). Then

xk ∈M for all large k (13.21)

if and only if

dist(0,∂ f (xk))→ 0. (13.22)
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13.3 Active Manifold Identification

13.3.1 Algorithmic Manifold Identification

Recall, this work concerns itself with the optimization problem

min
x
{ f (x)+ P(x)}, (13.23)

where f ∈ C 2 and P is prox-regular and partly smooth. We first consider the al-
gorithm proposed in [7], and show that, provided the algorithm converges and the
approximate Hessians are bounded, it identifies the active manifold of P in a finite
number of iterations. For detailed analysis on when the algorithm converges, see [7].
Note that Assumption 1 of [7] implies the approximate Hessians are bounded.

Theorem 13.7 (Identification via Tseng and Yun’s algorithm). Let f ∈ C 2

and P be regular. Suppose x̄ ∈ argmin{ f (x) + P(x)} and P is prox-regular at x̄
and partly smooth there with respect to the manifold M . Suppose iterates xk are
generated by solving the subproblem

xk+1 ∈ argminx{〈∇ f (xk),x− xk〉+(x− xk)′Hk(x− xk)+ P(x)}, (13.24)

where Hk is a sequence of positive definite matrices with ||Hk|| bounded. Suppose
iterates xk converge to x̄.

If −∇ f (x̄) ∈ rint∂P(x̄), then xk ∈M for all k sufficiently large.

Proof. Notice that, as f ∈ C 2, F(x) = f (x)+ P(x) is prox-regular at x̄ and partly
smooth there with respect to M [4, Corollary 4.6]. Since P is regular at x̄ we have
that ∂F(x) = ∇ f (x)+ ∂P(x), and 0 ∈ rint∂ F(x̄). In order to apply Theorem 13.6
to F we must show f (xk)+ P(xk)→ f (x̄)+ P(x̄) and dist(0,∂ ( f (xk)+ P(xk))→ 0
(notice xk→ x̄ by assumption).

To see that f (xk)+ P(xk)→ f (x̄)+ P(x̄), first notice that for all k

f (x̄)+ P(x̄) = min
x
{ f (x)+ P(x)} ≤ f (xk)+ P(xk), (13.25)

so

f (x̄)+ P(x̄)≤ liminf
k→∞

f (xk)+ P(xk). (13.26)

Next, notice that, as xk+1 ∈ argminx{〈∇ f (xk),x−xk〉+(x−xk)′Hk(x−xk)+P(x)},
we have

〈∇ f (xk),xk+1− xk〉+(xk+1− xk)′Hk(xk+1− xk)+ P(xk+1)

≤ 〈∇ f (xk), x̄− xk〉+(x̄− xk)′Hk(x̄− xk)+ P(x̄). (13.27)
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Passing to a limit in k, while noting xk→ x̄ and ||Hk|| bounded, yields

limsup
k→∞

P(xk+1)≤ P(x̄). (13.28)

As f ∈ C 2 this implies (with (13.26)) that

limsup
k→∞

f (xk)+ P(xk)≤ f (x̄)+ P(x̄)≤ liminf
k→∞

f (xk)+ P(xk), (13.29)

which proves f (xk)+ P(xk)→ f (x̄)+ P(x̄).
To see dist(0,∂ ( f (xk) + P(xk)) → 0, notice that xk+1 ∈ argmin x{〈∇ f (xk),

x− xk〉+(x− xk)′Hk(x− xk)+ P(x)} implies

0 ∈ ∂ (〈∇ f (xk),x− xk〉+(x− xk)′Hk(x− xk)+ P(x))(xk+1)

0 ∈ ∇ f (xk)+ Hk(xk+1− xk)+ ∂P(xk+1)

−Hk(xk+1− xk) ∈ ∇ f (xk)+ ∂P(xk+1) (13.30)

Therefore,

dist(0,∂ ( f (xk)+ P(xk))) = dist(0,∇ f (xk)+ ∂P(xk))

≤ |−Hk(xk+1− xk)|
≤ ||Hk|||xk+1− xk|. (13.31)

Since ||Hk|| is bounded and |xk+1−xk| → 0, we have dist(0,∂ ( f (xk)+P(xk)))→ 0.
The result now follows from Theorem 13.6. ��

13.3.2 Manifold Identification via a Proximal Subproblem

In the paper [1], it was shown that the active manifold of a constraint set could
be identified by inducing a proximal style subproblem. Tseng conjectured that a
similar technique might work for problem (13.23). In particular, it was proposed
that the subproblem

pk = argmin p

{
〈∇ f (xk), p〉+ r

2
|xk− p|2 + P(p)

}
(13.32)

would identify the active manifold of the function P in a finite number of iterations.
We next confirm this conjecture, by proving that if xk converges to a critical point
of problem (13.23) and P is a prox-regular partly smooth function, then excluding a
finite number of iterations all points pk will lie on the active manifold of P.
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The proof will hinge on the following lemma. Note that in Lemma 13.8 (as in
Theorem 13.7 earlier) we assume that the sequence of points xk converges to x̄. This
simply means that the results hold for any convergent algorithm.

Lemma 13.8. Let f ∈ C 2 and P be a regular prox-bounded function. Suppose x̄ ∈
argmin{ f (x)+ P(x)} and P is prox-regular at the point x̄− 1

r ∇ f (x̄). Suppose the
sequence of points xk converges to x̄, and consider a sequence of points

pk ∈ argmin p

{
〈∇ f (xk), p〉+ r

2
|p− xk|2 + P(p)

}
. (13.33)

If r > 0 is sufficiently large, then the points pk satisfy

(i) pk→ x̄
(ii) P(pk)+ 〈∇ f (x̄), pk〉 → P(x̄)+ 〈∇ f (x̄), x̄〉

(iii) dist(0,∂ (P + 〈∇ f (x̄), ·〉)(pk)→ 0

Proof. To ease discussion, define

P̃(x) = P(x)+ 〈∇ f (x̄),x〉. (13.34)

Since f ∈C 2 and P is regular, ∂ P̃(x̄) = ∇ f (x̄)+∂P(x̄) = ∂ ( f +P)(x̄). In particular,
0 ∈ ∂ P̃(x̄), as x̄ ∈ argmin{ f (x)+ P(x)}.
Part i. pk→ x̄

Applying Lemma 13.1 to (13.33) we see that

pk = proxrP

(
xk− 1

r
∇ f (xk)

)
. (13.35)

Since xk → x̄ and f ∈ C 2 we have xk − 1
r ∇ f (xk)→ x̄− 1

r ∇ f (x̄). Since P is prox-
bounded and prox-regular at x̄− 1

r ∇ f (x̄), for r sufficiently large the proximal
point mapping is single-valued Lipschitz continuous in some neighbourhood of
x̄− 1

r ∇ f (x̄) [3, Theorem 2.4]. Therefore, we have pk converges to some p̄ with

p̄ = proxrP

(
x̄− 1

r
∇ f (x̄)

)
. (13.36)

By Lemma 13.1, we see that

proxrP

(
x̄− 1

r
∇ f (x̄)

)
= argmin

{
〈∇ f (x̄), p〉+ r

2
|p− x̄|2 + P(p)

}

= argmin
{

P̃(p)+
r
2
|p− x̄|2

}

= proxrP̃(x̄). (13.37)

Since 0 ∈ ∂ P̃(x̄) we have that x̄ ∈ proxrP̃(x̄) = p̄. Thus p̄ = x̄, so pk→ x̄.
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Part ii. P̃(pk)→ P̃(x̄)
Since P is prox-regular at x̄− 1

r ∇ f (x̄), for r sufficiently large the Moreau enve-
lope is C 1+ [3, Theorem 2.4]. In particular, this implies that

erP

(
xk− 1

r
∇ f (xk)

)
→ erP

(
x̄− 1

r
∇ f (x̄)

)
. (13.38)

Applying Lemma 13.1 and noting that the minimum for these proximal envelopes
is achieved at pk and x̄ respectively, we see that

P(pk)−〈∇ f (xk), pk〉+ r
2
|pk− xk|2 + 〈xk,∇ f (xk)〉+ 1

2r
|∇ f (xk)|2 (13.39)

converges to

P(x̄)−〈∇ f (x̄), x̄〉+ r
2
|x̄− x̄|2 + 〈x̄,∇ f (x̄)〉+ 1

2r
|∇ f (x̄)|2 (13.40)

Since pk→ x̄, xk→ x̄, and f ∈ C 2 this shows that

P(pk)→ P(x̄), and P̃(pk)→ P̃(x̄) (13.41)

Part iii. dist(0,∂ P̃(pk))→ 0
Since pk ∈ argmin p{〈∇ f (xk), p〉+ r

2 |xk− p|2 + P(p)} we have for each k

0 ∈ ∇ f (xk)+ r(xk− pk)+ ∂P(pk)

−r(xk− pk)+ ∇ f (x̄)−∇ f (xk) ∈ ∇ f (x̄)+ ∂ P(pk)

−r(xk− pk)+ ∇ f (x̄)−∇ f (xk) ∈ ∂ P̃(pk). (13.42)

Since pk→ x̄, xk→ x̄, and f ∈ C 2 this yields

dist(0,∂ P̃(pk))≤ r|xk− pk|+ |∇ f (x̄)−∇ f (xk)| → 0. (13.43)

The proof now following easily. ��
Theorem 13.9 (Identification of M via sub-problem (13.33)). Let f ∈ C 2 and
P be regular and prox-bounded. Suppose x̄ ∈ argmin{ f (x)+ P(x)} and P is prox-
regular at the point x̄− 1

r ∇ f (x̄). Suppose f is partly smooth at x̄ relative to a
manifold M . Suppose the sequence of points xk converge to x̄, and consider the
sequence of points pk generated by sub-problem (13.33).

If r > 0 is sufficiently large and −∇ f (x̄) ∈ rint∂ P(x̄), then pk ∈M for all k
sufficiently large.

Proof. Using P̃ = P(x) + 〈∇ f (x̄),x〉 as before, we note that P̃ is partly smooth
at x̄ with respect to the same manifold M by [4, Corollary 4.6]. Furthermore,
0 ∈ rint∂ P̃(x̄). Finally, P̃ is prox-regular at the point x̄ by [6, Example 13.35].
Lemma 13.8 and Theorem 13.6 now combine to complete the proof. ��
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13.4 Conclusion

On May 26th, 2009, Paul Tseng sent the following e-mail:

Almost forgot..

Instead of projecting onto the feasible set, another
type of active set identification arises in
compressed sensing or, more generally,

min f(x) + P(x),
where P(x) = max_i g_i(x), say, and f is smooth.
One can consider an analog of projection, namely,

min_p < f’(x), p > + r*|p-x|^2/2 + P(p)
and do active identification accordingly. When P is
separable, as in the case of l_1-norm, this
decomposes and often has closed form solution. This
approach was used in my paper with Sangwoon Yun on
CGD method in the context of l_1-regularized
optimization, so P(x)=|x|_1. It helped to accelerate
the method on ill-conditioned problems. This
is much more efficient than rewriting the original
problem as a smooth constrained problem

min f(x) + z s.t. g_i(x) <= z, i=1,...,m,
and then projecting onto the feasible set. (In
general, projecting on to the feasible set is
expensive, unless the set has simple structure
like a simplex or a box.) Results on active set
identification for smooth constrained optimization
should be extendable to this setting.

Paul

In this work we show that the algorithm developed by Tseng and Yun in [7] also
finitely identifies active manifolds, and furthermore provide an affirmative proof to
Tseng’s conjecture above.
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Chapter 14
Approximation Methods for Nonexpansive
Type Mappings in Hadamard Manifolds

Genaro López and Victoria Martı́n-Márquez

Abstract Nonexpansive type mappings defined on Hadamard manifolds and
iterative methods for approximating fixed points of these mappings are surveyed.
The close relationship with monotone vector fields is pointed out and some numer-
ical examples are included.
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14.1 Introduction

Many problems arising in different areas of mathematics, such as optimization and
differential equations, can be modeled by the equation

x = T (x),

where T is a nonlinear operator defined in a metric space. The solutions to this
equation are called fixed points of T . If T is a contraction (i.e., there exist α ∈ (0,1)
such that d(T (x),T (y)) ≤ αd(x,y), ∀x,y ∈ X) defined on a complete metric space
X , the Banach contraction principle establishes that T has a unique fixed point and,
for any x ∈ X , the sequence of Picard iterates {T nx} converges to the fixed point
of T . However, if the mapping T is a nonexpansive mapping, that is,

d(T (x),T (y))≤ d(x,y), ∀x,y ∈ X ,
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then we must assume additional conditions on T and/or the underlying space to
ensure the existence of fixed points. Since the sixties, the study of the class of
nonexpansive mappings is one of the major and most active research areas of non-
linear analysis. This is due to the connection with the geometry of Banach spaces
along with the relevance of these mappings in the theory of monotone and accretive
operators.

If we denote by X∗ the dual space of a Banach space X , a set-valued operator
A : X → 2X∗ , with domain D(A), is said to be monotone if

〈x∗ − y∗,x− y〉 ≥ 0, ∀x,y ∈D(A) and x∗ ∈ A(x), y∗ ∈ A(y).

On the other hand, a set-valued operator A : X → 2X is said to be accretive if

〈x∗ − y∗, j(x− y)〉 ≥ 0, ∀ x,y ∈D(A) and x∗ ∈ A(x), y∗ ∈ A(y),

where j(x− y) ∈ J(x− y) and J denotes the normalized duality mapping. One of
the most relevant facts in the theory of monotone and accretive operators is that the
two classes of operators coincide in the setting of Hilbert spaces. The concepts of
monotonicity and accretivity have turned out to be very powerful in diverse fields
such as operator theory, numerical analysis, convex optimization and partial differ-
ential equations; see [1, 2, 15, 56, 72]. For instance, the class of monotone operators
is broad enough to cover subdifferentials of convex functions, which are operators
of increasing importance in optimization theory. Recall that, given an extended real-
valued function f : X→R∪{+∞}, the subdifferential of f is the set-valued operator
∂ f : X → 2X∗ defined by

∂ f (x0) = {x∗ ∈ X∗ : f (x) ≥ f (x0)+ 〈x− x0,x
∗〉, ∀x ∈ X},

for any x0 ∈ X . Suppose that the domain of f , D( f ) := {x ∈ X : f (x) < ∞}, has
nonempty interior. If f is proper, lower semicontinuous and convex, then ∂ f (x) �= /0
for all x ∈ Int D( f ) and the subdifferential ∂ f is monotone; see [15]. This fact
establishes an equivalence between convex minimization problems and the search
for zeros of monotone operators. A zero of an operator A is a point x ∈ X such that
0 ∈ A(x).

In the setting of a Hilbert space the relationship between the theory of mono-
tone operators and the theory of nonexpansive mappings is basically determined
by two facts: (1) if T is a nonexpansive mapping then the complementary operator
I−T is monotone and (2) the resolvent of a monotone operator A is nonexpansive.
Moreover, in both cases the fixed point set of the nonexpansive mapping coincides
with the set of zeros of the monotone operator.

The resolvent of a monotone operator in the setting of a Banach space was orig-
inally defined by Brezis et al. in [3] though was first implicitly studied by Browder
[7]. They set up the fundamental properties of the resolvent, with special emphasis
on the strong connection between its fixed points and the zeros of the monotone op-
erator. From this starting point, the study of the asymptotic behavior of the resolvent
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operator has awakened the interest of many researchers. See, for instance, [12,33,61]
and references therein. In the framework of a Hilbert space H, given a monotone
operator A : H→ 2H , the resolvent of A of order λ > 0 is the single-valued mapping
Jλ : D(Jλ )⊆ H→ H defined by

Jλ (x) = (I + λA)−1(x),

for any x ∈ D(Jλ ), where D(Jλ ) = R(I + λ A) the range of I + λA. It is straight-
forward to check that A−1(0) = Fix(Jλ ), where Fix(Jλ ) denotes the fixed point set
of Jλ . Moreover, the resolvent is not just nonexpansive but also firmly nonexpansive;
that is,

‖Jλ (x)− Jλ (y)‖2 ≤ 〈x− y,Jλ (x)− Jλ (y)〉,

for all x,y ∈ D(Jλ ); see, for instance, [12]. Additionally, the resolvent has full do-
main when A is assumed to be maximal monotone; in other words, when the graph
of A is not properly contained in the graph of any other monotone operator. Thus,
the problems of existence and approximation of zeros of maximal monotone oper-
ators can be formulated as the corresponding problems for fixed points of firmly
nonexpansive mappings. It is this approach, applicable to other related problems as
well, which renders firmly nonexpansive mappings an important tool in monotone
operator and optimization theory.

In the interface between monotone operators and nonexpansive type mappings
another class of nonlinear mappings appears, the so-called pseudo-contractive map-
pings. Recall that a mapping T : H → 2H is said to be pseudo-contractive if, for
any r > 0,

‖x− y‖ ≤ ‖(1 + r)(x− y)− r(u− v)‖, ∀ x,y ∈ H, u ∈ T (x), v ∈ T (y).

This concept was introduced independently by Browder and Petryshyn [8] and Kato
[32]. They proved that a mapping T is pseudo-contractive if and only if the com-
plementary operator I−T is monotone. This means that the problem of solving an
equation for monotone operators may be formulated as a fixed point problem of a
pseudo-contractive mapping.

Concerning the fixed point approximation problem, we recall that the sequence of
Picard iterates {T nx} converges for contractions on complete metric spaces. How-
ever, if T is nonexpansive, even when it has a fixed point, this sequence {T nx} does
not converge in general. For this reason, in the last decades, the development of fea-
sible iterative methods for approximating fixed points of a nonexpansive mapping
T has been of particular importance. For instance, [11, 13] constitute nice surveys
about the asymptotic behavior of nonexpansive mappings in Hilbert and Banach
spaces.

This extensive theory dealing with nonexpansive mappings and monotone op-
erators has mainly been developed in the framework of Banach spaces. Out of the
setting of linear vector spaces, some concepts and techniques have been extended to
other metric spaces. In particular, in the setting of Riemannian manifolds, relevant
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advances have been made in this direction. The study of optimization methods to
solve minimization problems on Riemannian manifolds has been the subject of
many works. It has opened a new way to solve nonconvex constrained minimization
problems in Euclidean spaces by rewriting them as convex problems on Riemannian
manifolds; see [18,19,21,22]. In the study of this problem and other related ones (see
[53]) several classes of monotone vector fields have been introduced (see [18,49,51]
for single-valued vector fields and [17, 39, 41, 45, 70] for set-valued vector fields)
and convergence properties of iterative methods have been presented (see, for
instance, [23]).

Riemannian manifolds constitute a broad and fruitful framework for the de-
velopment of different fields. However, most of the extended methods previously
mentioned require the Riemannian manifold to have nonpositive sectional curva-
ture. This is an important property, which is enjoyed by a large class of Riemannian
manifolds, and it is strong enough to imply tight topological restrictions and rigid-
ity phenomena (cf. [59]). Particularly, Hadamard manifolds, which are complete
simply connected and finite dimensional Riemannian manifolds of nonpositive sec-
tional curvature, have become a suitable setting for diverse disciplines. A Hadamard
manifold is an example of hyperbolic space and geodesic space, more precisely, a
Busemann nonpositive curvature (NPC) space and a CAT(0) space; see [4, 30, 35].

The aim of this paper is to survey up to day the main results concerning the
existence and approximation of fixed points of nonexpansive type mappings as well
as the connection with monotone and accretive operators in the setting of Hadamard
manifolds.

14.2 Theoretical Framework

The object of this section is to familiarize the reader with the classical language and
some fundamental theorems in Hadamard manifolds, needed to understand the con-
tent of this paper. For this aim we introduce some concepts and results well-known
on Riemannian geometry and, in particular, the objects and facts that characterize
the Hadamard manifolds. A complete description of these concepts can be found in
any textbook on Riemannian geometry, for instance [20, 66].

14.2.1 Riemannian Manifolds

The Riemannian geometry can be seen as a natural development of the differential
geometry of surfaces in R

3. Then, departing from a differentiable manifold M of
dimension n, we can introduce a way of measuring the length of tangent vectors by
means of an inner product, which leads us to have special curves behaving as if they
were “the straight lines” of M.
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Definition 14.1. Let γ : (−ε,ε)→ M be a smooth curve in M; that is a function
of class C ∞. Suppose that γ(0) = x ∈ M, and let D be the set of functions on M
that are differentiable at x. The tangent vector to the curve γ at t = 0 is a function
γ ′(0) : D→ R given by

γ ′(0) f =
d( f ◦ γ)

dt

∣
∣
∣
∣∣
t=0

, f ∈D.

And we say that a tangent vector at x is a tangent vector at t = 0 of some curve
γ : (−ε,ε)→M with γ(0) = x. The set of all tangent vectors to M at x, denoted by
TxM, forms a vector space of dimension n called tangent space of M at x. The set
T M =

⋃
x∈M TxM provided with a differentiable structure is a differentiable manifold

and will be called the tangent bundle of M. A vector field A on M is a mapping of
M into the tangent bundle TM, that is, it associates to each point x ∈ M a vector
A(x) ∈ TxM.

Definition 14.2. A Riemannian metric on a differential manifold M is a corre-
spondence which associates to each point x ∈ M an inner product 〈 , 〉, (that is, a
symmetric bilinear positive-definite form) on the tangent space TxM, which varies
differentiably in the following sense: for any vector fields X and Y , which are dif-
ferentiable in a neighborhood V of M, the function 〈X ,Y 〉 is differentiable on V .
A differentiable manifold with a Riemannian metric will be called Riemannian man-
ifold and its corresponding norm will be denoted by ‖ · ‖.
Definition 14.3. Given a smooth curve γ : [a,b]→M joining x to y, that is, γ(a) = x
and γ(b) = y, we can define the length of γ by using the metric as

l(γ) =
∫ b

a
‖γ ′(t)‖dt.

Then the Riemannian distance d(x,y), which induces the original topology on M, is
defined minimizing this length over the set of all such curves joining x to y,

d(x,y) := inf{l(γ) : γ joining x to y}.

Remark 14.4. From now on, M is assumed to be connected so that the set of curves
joining x to y is always nonempty.

Definition 14.5. Let ∇ be the Levi-Civita connection associated to (M,〈 , 〉) and
∇XY the covariant derivative of Y by X (see [66] for more details). Given a smooth
curve γ in M a vector field X is said to be parallel along γ if ∇γ ′X = 0. If γ ′ itself is
parallel along γ , we say that γ is a geodesic, and in this case ‖γ ′‖ is constant. When
‖γ ′‖= 1, γ is called normalized. A geodesic joining x to y in M is said to be minimal
if its length equals d(x,y).
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Note that given a point x ∈M and u ∈ TxM there exists a neighborhood U of u
in T M such that for any v ∈U we have a unique geodesic γ defined on an interval
satisfying γ(0)= x and γ ′(0) = v. We denote this geodesic, starting at x with velocity
v, by γv(.,x).

Definition 14.6. The parallel transport on the tangent bundle TM along γ with
respect to ∇ is defined by

Pγ,γ(b),γ(a)(v) := A(γ(b)), ∀a,b ∈ R and v ∈ Tγ(a)M,

where A is the unique vector field satisfying ∇γ ′(t)A = 0 for all t and A(γ(a)) = v.

Remark 14.7. It can be proved that for any a,b ∈ R, Pγ,γ(b),γ(a) is an isometry from
Tγ(a)M to Tγ(b)M. Note that, for any a, b, b1, b2 ∈ R,

Pγ,γ(b2),γ(b1) ◦Pγ,γ(b1),γ(a) = Pγ,γ(b2),γ(a) and P−1
γ,γ(b),γ(a) = Pγ,γ(a),γ(b).

For the sake of simplicity, we will write Py,x instead of Pγ,y,x in the case when γ is a
minimal geodesic joining x to y and no confusion arises.

Definition 14.8. A Riemannian manifold M is said to be complete, if for any point
x ∈M, all geodesics emanating from y are defined for all t ∈R.

By Hopf–Rinow Theorem we know that if M is a complete Riemannian manifold
then any pair of points in M can be joined by a minimal geodesic. Moreover, a com-
plete Riemannian manifold (M,d) is a complete metric space and bounded closed
subsets are compact. The concept of completeness allows us to study the global
behavior of a Riemannian manifold M by looking at how geodesics run on M.

Definition 14.9. Assuming that M is a complete Riemannian manifold, the expo-
nential map at x ∈M, expx : TxM→M is defined by

expx v = γv(1,x), v ∈ TxM,

where we recall that γv(.,x) is the geodesic starting at x with velocity v. Then, for
any value of t, expx tv = γv(t,x). Note that the map expx is differentiable on TxM for
any x ∈M.

14.2.2 Hadamard Manifolds

The notion of sectional curvature in a Riemannian manifold plays an important role
in the development of geometry. This concept measures in some sense the amount
that a Riemannian manifold deviates from being Euclidean. It was introduced by
Riemann as a natural generalization of the Gaussian curvature of surfaces. A few
years later, an explicit formula was given by Christoffel by using the Levi-Civita
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connection. We do not include the technical definition of sectional curvature;
see references [20, 66] for explicit definitions. However, we are concerned with
Riemannian manifolds of nonpositive sectional curvature, whose basic geometrical
characterization is gathered in Proposition 14.12.

Definition 14.10. A complete simply connected Riemannian manifold of nonposi-
tive sectional curvature is called a Hadamard manifold.

Throughout the remainder of this paper, we will always assume that M is an
m-dimensional Hadamard manifold. The following well-known result, essential on
Riemannian geometry, can be found, for example, in [66, page 221, Theorem 4.1].

Proposition 14.11. Let x ∈M. Then, expx : TxM→M is a diffeomorphism, and for
any two points x,y ∈ M there exists a unique normalized geodesic joining x to y,
which is a minimal geodesic.

This proposition says that M is diffeomorphic to the Euclidean space R
m. Thus,

M has the same topology and differential structure as R
m. Moreover, Hadamard

manifolds and Euclidean spaces have some similar geometrical properties.
One of the most important characterizations of Hadamard manifolds is de-

scribed in the following proposition, which can be taken from [66, page 223,
Proposition 4.5]. Recall that a geodesic triangle Δ(x1,x2,x3) of a Riemannian mani-
fold is a set consisting of three points x1, x2, x3, and three minimal geodesics joining
these points.

Proposition 14.12. Let Δ(x1x2x3) be a geodesic triangle in M. Denote, for each
i = 1,2,3 (mod 3), by γi : [0, li]→M the geodesic joining xi to xi+1, and set li := l(γi),
αi := ∠(γ ′i (0),−γ ′i−1(li−1)). Then

α1 +α2 +α3 ≤ π , (14.1)

l2
i + l2

i+1−2lili+1 cosαi+1 ≤ l2
i−1. (14.2)

In terms of the distance and the exponential map, the inequality (14.2) can be re-
written as

d2(xi,xi+1)+ d2(xi+1,xi+2)−2〈exp−1
xi+1

xi,exp−1
xi+1

xi+2〉 ≤ d2(xi−1,xi), (14.3)

since
〈exp−1

xi+1
xi,exp−1

xi+1
xi+2〉= d(xi,xi+1)d(xi+1,xi+2)cosαi+1.

The following relation between geodesic triangles and triangles in R
2 can be

found in [4, page 24].

Lemma 14.13. Let Δ(x,y,z) be a geodesic triangle in M Hadamard space. Then,
there exists x′,y′,z′ ∈ R

2 such that

d(x,y) = ‖x′ − y′‖, d(y,z) = ‖y′ − z′‖, d(z,x) = ‖z′ − x′‖.
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The triangle Δ(x′,y′,z′) is called the comparison triangle of the geodesic triangle
Δ(x,y,z), which is unique up to isometry of M. The next result taken from [40]
shows the relation between a geodesic triangle and its comparison triangle involving
angles and distances between points.

Lemma 14.14. Let Δ(x,y,z) be a geodesic triangle in a Hadamard space M and
Δ(x′,y′,z′) be its comparison triangle.

(1) Let α,β ,γ (resp. α ′,β ′,γ ′) be the angles of Δ(x,y,z) (resp. Δ(x′,y′,z′)) at the
vertices x,y,z (resp. x′,y′,z′). Then, the following inequalities hold:

α ′ ≥ α, β ′ ≥ β , γ ′ ≥ γ. (14.4)

(2) Let r be a point in the geodesic joining x to y and r′ its comparison point in the
interval [x′,y′], that is, d(r,x) = ‖r′ − x′‖ and d(r,y) = ‖r′ − y′‖. Then

d(z,r)≤ ‖z′ − r′‖. (14.5)

The following lemma is a consequence of the inequality (14.5) and the parallel-
ogram identity in a Euclidean space R

n:

‖x− y‖2 +‖x + y‖2 = 2(‖x‖2 +‖y‖2), (14.6)

for all x,y ∈ R
n.

Lemma 14.15. For all x,y,z ∈ M and m ∈ M with d(x,m) = d(y,m) = d(x,y)/2,
one has

d2(z,m)≤ 1
2

d2(z,x)+
1
2

d2(z,y)− 1
4

d2(x,y). (14.7)

From the well-known “law of cosines” in R
2 and inequality (14.5), we deduce the

following inequality, which is a general characteristic of the spaces with nonpositive
curvature (see [4]).

Proposition 14.16. For any x,y,z ∈M the following inequality holds,

〈exp−1
x y,exp−1

x z〉+ 〈exp−1
y x,exp−1

y z〉 ≥ d2(x,y).

Let us introduce now some fundamental notions and results of convex analysis
in Hadamard manifolds, as well as other metric properties. Some references on this
topic are [66, 68, 69].

Definition 14.17. A subset C ⊆M is said to be convex if for any two points x and
y in C, the geodesic joining x to y is contained in C, that is, if γ : [a,b]→ M is a
geodesic such that x = γ(a) and y = γ(b), then γ((1− t)a+ tb)∈C for all t ∈ [0,1].

As in linear metric spaces, we can define a projection map onto closed
convex sets.
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Definition 14.18. The projection onto a set C is the set-valued mapping defined by

PC(x) = {x∗ ∈C : d(x,x∗)≤ d(x,y) for all y ∈C}, ∀x ∈M.

Proposition 14.19. [38,69] For any point x ∈M, given a closed convex set C ⊆M,
PC(x) is a singleton and, z = PC(x) if and only if, for all y ∈C,

〈exp−1
z x, exp−1

z y〉 ≤ 0.

From now on, C will denote a nonempty closed convex set in M, unless explicitly
stated otherwise. We denote the extended real line by R := R∪{+∞}.
Definition 14.20. Let f : M → R be a proper extended real-valued function with
domain D( f ) := {x ∈M : f (x) �= +∞}. The function f is said to be convex if for
any geodesic γ in M, the composition function f ◦ γ : R→ R is convex, that is,

( f ◦ γ)(ta +(1− t)b)≤ t( f ◦ γ)(a)+ (1− t)( f ◦ γ)(b)

for any a,b ∈R and 0≤ t ≤ 1.

Definition 14.21. The subdifferential of a function f : M→ R at x ∈M is the set-
valued mapping ∂ f : M→ 2TM defined by

∂ f (x) = {u ∈ TxM : f (y)≥ f (x)−〈u,exp−1
x y〉, ∀y ∈M},

and its elements are called subgradients.

The subdifferential ∂ f (x) at a point x ∈M is a closed convex (possibly empty)
set. The existence of subgradients for convex functions is guaranteed by the follow-
ing proposition taken from [22].

Proposition 14.22. Let M be a Hadamard manifold and f : M → R be convex.
Then, for any x ∈ M, the subdifferential ∂ f (x) of f at x is nonempty. That is, the
domain of the subdifferential D(∂ f ) = M.

The following proposition describes the convexity property of the distance func-
tion (cf. [66, page 222, Proposition 4.3]).

Proposition 14.23. Let d : M×M→ R be the distance function. Then d(·, ·) is a
convex function with respect to the product Riemannian metric, that is, given any
pair of geodesics γ1 : [0,1]→M and γ2 : [0,1]→M, for all t ∈ [0,1],

d(γ1(t),γ2(t))≤ (1− t)d(γ1(0),γ2(0))+ td(γ1(1),γ2(1)).

In particular, for each x∈M, the function d(·,x) : M→R is a convex function on M.

Examples of nonconvex problems which can be transformed into convex prob-
lems by choosing an appropriate Riemannian metric were given in [19].
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Example 14.24. Consider the nonconvex Rosenbrock’s banana function f : R
2→R

defined by

f (x1,x2) = (1− x1)2 + 100(x2− x2
1)

2.

Endowing R
2 with the Riemannian metric G : R

2→ Sn
++, defined by

(
1 + 4x2

1 −2x1

−2x1 1

)

we obtain the Riemannian manifold MG which is complete and of constant curva-
ture 0. Then the function f can be proved to be convex in MG.

14.2.3 Monotone and Accretive Vector Fields on Hadamard
Manifolds

Let X (M) denote the set of all set-valued vector fields A : M→ 2TM with domain

D(A) = {x ∈M : A(x) �= /0}.

The concept of monotonicity for single-valued vector fields on Riemannian mani-
folds was introduced by Németh in [51]. In [23], the gradients of convex functions
were proved to be an example of monotone vector fields. Likewise, the complemen-
tary vector field of a mapping T was introduced and proved to be monotone when
T is nonexpansive in [52]. For more examples and relations between different kinds
of generalized monotone vector fields in Riemannian manifolds see [18, 49, 50].

Monotone set-valued vector fields were first studied in [17] where it was shown
that the subdifferential operator of a Riemannian convex function is a monotone
set-valued vector field. The notion of maximal monotonicity for set-valued vector
fields was given in [39]. This and the previous concepts in the setting of Hadamard
manifolds are gathered in the following definition, though they could be written in
the general framework of Riemannian manifolds in terms of geodesics.

Definition 14.25. A vector field A ∈X (M) is said to be

• Monotone if for any x,y ∈D(A),

〈u,exp−1
x y〉 ≤ 〈v,−exp−1

y x〉, ∀u ∈ A(x) and ∀v ∈ A(y); (14.8)

• Strictly monotone if for any x,y ∈D(A) with x �= y, the strict inequality in (14.8)
holds;

• Strongly monotone if there exists ρ > 0 such that, for any x,y ∈D(A),

〈u,exp−1
x y〉− 〈v,−exp−1

y x〉 ≤ −ρd2(x,y), ∀u ∈ A(x) and ∀v ∈ A(y); (14.9)
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• Maximal monotone if it is monotone and for any x ∈ M and u ∈ TxM, this
implication holds:

〈u,exp−1
x y〉 ≤ 〈v,−exp−1

y x〉, ∀y ∈D(A) and v ∈ A(y)⇒ u ∈ A(x). (14.10)

To characterize the maximal monotone vector fields, the notion of upper semi-
continuity as well as local boundedness for operators in Banach spaces (cf. [67,
page 55]) have been extended to the setting of Hadamard manifolds (cf. [39]).

Definition 14.26. Given A ∈X (M) and x0 ∈D(A), the vector field A is said to be

• Upper semicontinuous at x0 if for any open set V satisfying A(x0) ⊆ V ⊆ Tx0 M,
there exists an open neighborhood U(x0) of x0 such that Px0,xA(x) ⊆ V for any
x ∈U(x0);

• Locally bounded at x0 if there exists an open neighborhood U(x0) of x0 such that
the set ∪x∈U(x0)A(x) is bounded;

• Upper semicontinuous (resp. locally bounded) on M if it is upper semicontinuous
(resp. locally bounded) at each x0 ∈D(A).

Recall that the maximal monotonicity and the upper semicontinuity are equiv-
alent for a set-valued operator with closed and convex values in a Hilbert space
(cf. [56]). This result was extended, in [39], to set-valued vector fields with full
domain on a Hadamard manifold. The key of this fact is that any maximal mono-
tone vector field with full domain can be proved to be locally bounded.

Theorem 14.27. Suppose that A ∈ X (M) is a monotone vector field with
D(A) = M. Then the following statements are equivalent.

(i) A is maximal monotone.
(ii) A is upper semicontinuous on M and A(x) is closed and convex for each x ∈M.

The classical notion of accretivity on Banach spaces was extended to vector fields
on Hadamard manifolds in [70].

Definition 14.28. Given α > 0, a vector field A ∈X (M) is said to be

• Accretive if for any x,y ∈D(A) and each r ≥ 0 we have that

d(x,y)≤ d(expx(ru),expy(rv)), for each u ∈ A(x) and v ∈ A(y); (14.11)

• α-strongly accretive if for any x,y ∈D(A) and each r ≥ 0 we have that

(1 +αr)d(x,y)≤ d(expx(ru),expy(rv)), for each u ∈ A(x) and v ∈ A(y);
(14.12)

• m-accretive if it is accretive and

⋃

x∈D(A)

⎛

⎝
⋃

u∈A(x)

expx u

⎞

⎠= M. (14.13)
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Note that these definitions make also sense in the setting of Riemannian
manifolds (cf. [70]). However, it is in the particular case of a Hadamard manifold
where the notions of accretivity and monotonicity can be proved to be equivalent.
On the other hand, in [29], Iwamiya and Okochi introduced an alternative defini-
tion of monotonicity in terms of the derivative of the distance function between
geodesics in a more general Riemannian manifold; this one was proved to coincide
with the definition of accretive vector fields on a Hadamard manifold; see [70].

Theorem 14.29. Let A ∈X (M) and α > 0. Then the following assertions hold.

(i) A is accretive if and only if A is monotone.
(ii) A is α-strongly accretive if and only if A is α-strongly monotone.

(iii) If A is m-accretive, then A is maximal monotone.
(iv) Conversely, if A is maximal monotone and D(A) = M, then A is m-accretive.

Nmeth, in [52], introduced the notion of complementary vector field of a single-
valued mapping to provide a relationship between nonexpansive mappings and
monotone vector fields. The same concept can be defined in the set-valued case.

Definition 14.30. Let T : C ⊆M→ 2M . The vector field A ∈X (M) defined by

A(x) =−exp−1
x T (x), (14.14)

for any x ∈C, is said to be the complementary vector field of T .

Theorem 14.31. [52] Given a nonexpansive mapping T : C ⊆M→M, its comple-
mentary vector field A is monotone.

The existence of singularities of vector fields is a relevant problem which numer-
ous applications in other areas. In particular, in the setting of Hadamard manifolds,
it is crucial for the resolvent operator of a vector field to have good properties.

Definition 14.32. Given A ∈X (M), we say that x ∈ D(A) is a singularity of A if
0 ∈ A(x). The set of all singularities of A is denoted by A−1(0).

Concerning the existence of singularities for monotone vector fields, as a di-
rect consequence of Definition 14.25, it is first deduced that any strictly monotone
vector field A has at most one singularity. In [18, 23], it was proved that differen-
tiable strongly monotone single-valued vector fields on Hadamard manifolds with
D(A) = M have at least one singularity; thus, since the strong monotonicity implies
the strictly monotonicity, existence and uniqueness are ensured. This result was im-
proved and extended to the set-valued case for maximal strongly monotone vector
fields, by using the equivalence established in Theorem 14.27; see [39].

Theorem 14.33. Let A ∈X (M) be a maximal strongly monotone vector field with
D(A) = M. Then there exists a unique singularity of A.

The notion of resolvent in the setting of a Hadamard manifold was introduced
in [41].
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Definition 14.34. Given λ > 0, the resolvent of A ∈ X (M) of order λ is the
set-valued mapping Jλ : M→ 2M defined by

Jλ (x) = {z ∈M| x ∈ expz λAz}, (14.15)

for any x ∈M.

Remark 14.35. For any λ > 0, by definition of resolvent of a vector field the fol-
lowing assertions hold.

(a) The range of the resolvent Jλ is contained in the domain of A and

Fix (Jλ ) = A−1(0). (14.16)

(b) The domains of the resolvent Jλ is the range of the vector field defined by x �→
expx λ Ax. We will denote this range as R(exp·λA(·)). Then we have that

D(Jλ ) = R(exp· λA(·)).

Out of linear spaces, the resolvent had been implicitly defined in the setting
of differential manifolds, in particular, in Finsler manifolds by Hoyos [28] and in
Hilbert manifolds by Iwamiya and Okochi [29]. As a matter of fact, these two
definitions can be proved to coincide with the corresponding concept defined on
Hadamard manifolds. However, it turns out that in the former settings, where the re-
solvent is defined is still unknown, whereas under certain monotonicity conditions
it was proved in [41] that the resolvent has full domain in a Hadamard manifold.

Using a parallel approach to convex problems, nonmonotone problems can be
transformed into monotone ones by endowing the space with a suitable Riemannian
metric. See [19] for examples.

Example 14.36. Consider the vector field A : R
2→ R

2 defined by

A(x1,x2) = (−x2
1 + x1 + x2,−2x3

1 + 2x2
1 + 2x1x2− x1).

It turns out that A is not monotone in R
2 but it is monotone in the Riemannian

manifold MG defined in Example 14.24.

14.3 Nonexpansive Type Mappings

This section is devoted to the properties of nonexpansive type mappings defined on
a Hadamard manifold. We start by presenting the definitions of firmly nonexpansive
and pseudo-contractive mappings on Hadamard manifolds [41].
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Definition 14.37. Given a subset C ⊆M, the mapping T : C→M is said to be

• Nonexpansive if for any x,y ∈C,

d(T (x),T (y))≤ d(x,y); (14.17)

• Firmly nonexpansive if for any x,y ∈C, the function θ : [0,1]→ [0,∞] defined by

θ (t) = d(γ1(t),γ2(t)), (14.18)

is nonincreasing, where γ1 and γ2 denote the geodesics joining x to T (x) and y to
T (y), respectively;

• Pseudo-contractive if its complementary vector field is accretive; that is, given
x,y ∈C and r ≥ 0 we have that

d(x,y)≤ d(expx(−r exp−1
x T (x)),expy(−r exp−1

y T (y))); (14.19)

• α-strongly pseudo-contractive if its complementary vector field is α-strongly
accretive.

Remark 14.38. It is clear from definition that any firmly nonexpansive mapping is
nonexpansive and any strongly pseudo-contractive mapping is pseudo-contractive.

Let us denote the fixed point set of T by

Fix(T ) := {x ∈C |x = T (x)}. (14.20)

From either Brouwer’s theorem or the fixed point property for CAT(0) spaces
(cf. [35]), the existence of fixed points of a nonexpansive mapping T is ensured
provided that C is bounded. Kirk, in [36], proved the following result in the more
general setting of complete CAT(0) spaces. A simpler proof can be found in [41].

Proposition 14.39. Let T : C→M be a nonexpansive mapping defined on a closed
convex set C ⊆M. Then the fixed point set Fix(T ) is closed and convex.

The notion of firm nonexpansivity was previously defined on a Banach space
[9, 10] and the Hilbert ball with the hyperbolic metric [26], so-called firmly non-
expansive mapping of the first kind in the latter case. In fact, the following result
(cf. [41]) shows that in the framework of Hadamard manifolds this class of map-
pings satisfies similar properties to those ones defined on Hilbert spaces.

Proposition 14.40. Let T : C ⊆ M → M. Then the following assertions are
equivalent.

(i) T is firmly nonexpansive.
(ii) For any x,y ∈C and t ∈ [0,1]

d(T (x),T (y)) ≤ d(expx t exp−1
x T (x),expy t exp−1

y T (y)). (14.21)



14 Approximation Methods for Nonexpansive Type Mappings 287

(iii) For any x,y ∈C

〈
exp−1

T (x) T (y),exp−1
T (x) x

〉
+
〈

exp−1
T (y) T (x),exp−1

T (y) y
〉
≤ 0. (14.22)

This result together with Proposition 14.19 implies that an example of firmly
nonexpansive mapping is the metric projection onto a closed convex set.

The resolvent operator from Definition 14.34 establishes a strong relationship
between monotone vector fields and nonexpansive mappings, in particular, firmly
nonexpansive mappings, as it was stated in the following theorem; see [41].

Theorem 14.41. Let A ∈X (M). Then, for any λ > 0,

(i) A is monotone if and only if Jλ is single-valued and firmly nonexpansive;
(ii) If D(A) = M, A is maximal monotone if and only if Jλ is single-valued, firmly

nonexpansive and D(Jλ ) = M.

Remark 14.42. Note that the previous theorem shows indeed that, for each λ > 0,
any firmly nonexpansive T with full domain D(T ) = M is the resolvent T = Jλ of a
maximal monotone vector field A.

From Theorem 14.41 and Remark 14.35, the following result which constitutes
a counterpart to Minty’s theorem [47] in the setting of Hadamard manifolds is de-
duced. Note that in this case the monotone operator is required to have full domain
while in the original theorem this requirement is not needed.

Corollary 14.43. Let A ∈X (M) be monotone such that D(A) = M, and let λ > 0.
Then A is maximal monotone if and only if R(exp·λA(·)) = M.

As a byproduct of Theorem 14.41 and Proposition 14.39, it follows the following
result about the structure of the set of singularities of a maximal monotone vector
field. A similar result was proved in [23] under the assumption that A is smooth.

Corollary 14.44. Let A ∈X (M) be monotone with closed convex domain D(A)
such that D(A)⊆D(Jλ ). Then A−1(0) is closed and convex.

The concept of pseudo-contractive mappings in the setting of Hadamard man-
ifolds is defined by using the notion of complementary vector field in Definition
14.30. This definition coincides with the one introduced by Reich and Shafrir in
the more general setting of hyperbolic spaces [63]. In view of Theorem 14.29, the
definition of pseudo-contractive mappings can be given in terms of monotonicity.

Corollary 14.45. Let T : C ⊆ M → M and α > 0. Then the following assertions
hold.

(i) T is pseudo-contractive if and only if its complementary vector field is mono-
tone.

(ii) If T is α-strongly pseudo-contractive, then its complementary vector field is
α-strongly monotone.
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(iii) Conversely, if the complementary vector field of T is α-strongly monotone, then
T is α ′-strongly pseudo-contractive, where 0 < α ′ < α .

Remark 14.46. If T is a nonexpansive mapping, by Theorem 14.31, the comple-
mentary vector field of T is monotone. Hence, by Corollary 14.45, we deduce that
any nonexpansive mapping is pseudo-contractive.

The following result about the existence of fixed points of continuous pseudo-
contractive mappings on Hadamard manifolds (cf. [41]) is the counterpart of
Theorem 1 in [37] proved by Kirk and Schöneberg in the setting of Hilbert spaces.

Corollary 14.47. Let T : M→M be a continuous pseudo-contractive mapping. Let
x0 ∈M and ε > 0 such that

d(x0,T (x0)) < d(x,T (x)), (14.23)

for any x ∈ ∂B(x0,ε). Then there exists a fixed point of T in B(x0,ε).

14.4 Iterative Algorithms for Nonexpansive Type Mappings

The study of the asymptotic behavior of nonexpansive type mappings is one of the
most active research areas of nonlinear analysis. Most of the investigations in this
direction have focused on the case when T is a self-mapping defined on a closed
convex subset C of a normed linear space. Besides Picard iteration {T n(x)}, which
converges for any initial point x when T is either a contraction or firmly nonex-
pansive, basically two types of algorithms has been considered: Mann and Halpern
algorithms. Because of the convex structure of both iterative methods, few results
have been obtained out of the setting of linear spaces. Our objective in this section
is to present the convergence results of different iterative methods for nonexpansive
type mappings defined on Hadamard manifolds.

14.4.1 Picard Iteration for Firmly Nonexpansive Mappings

As it happens in Banach spaces and the Hilbert ball [26, 62], the class of firmly
nonexpansive mappings is characterized by the good asymptotic behavior of the
sequence of Picard iterates {T nx} stated in the following theorem; see [16].

Theorem 14.48. Let C ⊆M be a closed convex set and T : C→C be a firmly non-
expansive mapping such that its fixed point set Fix(T ) �= /0. Then for each x ∈C, the
sequence of iterates {T n(x)} converges to a fixed point of T .
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In the case when the mapping T is just nonexpansive, we know that in general
Picard iteration {T n(x)} does not converge. However, as it happens in Hilbert
spaces, there exists an associated family of mappings {Gt : 0≤ t < 1}, whose fixed
point set coincides with the fixed point set of T .

Indeed, given T : C→C nonexpansive and x ∈C, for any t ∈ [0,1), let Tt be the
mapping defined by

Tt(y) = expx t exp−1
x T (y), (14.24)

for any y ∈C. Thus Tt is a contraction for any t ∈ [0,1) and the Banach contraction
principle implies that there exists a unique fixed point of Tt , which is being denoted
by xt . By means of the approximating curve {xt}, for any t ∈ [0,1), we define the
mapping Gt : C→C by

Gt(x) =: xt = expx t exp−1
x T (Gt(x)), (14.25)

for all x ∈C. Then the following result holds (cf. [41]).

Proposition 14.49. For any t ∈ [0,1), the following statements hold.

(i) The mapping Gt is firmly nonexpansive.
(ii) Fix(Gt) = Fix(T ).

Therefore, we can use the family {Gt} for approximating a fixed point of T , consid-
ering the sequence defined by Picard iteration xn+1 = Gt(xn), for any t ∈ [0,1).

The convergence of Picard iteration also lets us approximate a singularity of a
maximal monotone vector field A with full domain. Indeed, since Theorem 14.41
says that the resolvent Jλ of A is firmly nonexpansive and has full domain, it follows
from Theorem 14.48 that, for any x ∈ M the sequence {(Jλ )n(x)} converges to a
fixed point of Jλ , that is a singularity of A. This algorithm is actually a particular case
of the proximal point algorithm defined as follows. Given x0 ∈D(A) and {λn}⊂R

+

it generates a sequence {xn} by means of the recursive formula

0 ∈ A(xn+1)−λn exp−1
xn+1

xn. (14.26)

Actually, this algorithm, which constitutes an extension of the one studied by Rock-
afellar in the setting of Hilbert spaces [64], was first introduced in this framework
in [19] for single-valued differentiable monotone vector fields. The following result
shows the convergence for set-valued maximal monotone vector fields (cf. [39]).

Theorem 14.50. Let A ∈X (M) be maximal monotone such that A−1(0) �= /0 and
D(A) = M. Let {λn} ⊂ R

+ satisfy sup{λn : n ≥ 0} < ∞. Then, for any x0 ∈M, the
sequence {xn} generated by algorithm (14.26) is well-defined and converges to a
singularity of A.

It is worth mentioning that the proximal point algorithm for convex functions in
Hadamard manifolds was previously studied; see, for instance, [22, 54, 55].
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14.4.2 Mann Algorithm for Nonexpansive Mappings

Given a nonexpansive mapping T defined on a Banach space X , Mann iteration is
the averaged algorithm defined by the recursive scheme

xn+1 = αnxn +(1−αn)T (xn), n≥ 0, (14.27)

where x0 is an arbitrary point in the domain of T and {αn} is a sequence in [0,1]
(cf. [44]). One of the classical results, due to Reich [60], states that if the underlying
space is uniformly convex and has a Fréchet differentiable norm, T has fixed points
and

∑
n αn(1−αn) = ∞, then the sequence {xn} defined by Mann algorithm con-

verges weakly to a fixed point of T . Moreover, a counterexample provided by Genel
and Lindenstrauss ([24]) shows that in infinite-dimensional spaces Mann iteration
does not have strong convergence in general.

Mann iteration (14.27) and some of the convergence results known in Banach
spaces have been studied in the more general framework of metric spaces by
Goebel–Kirk [25,34] and Reich–Shafrir [63]. They provided an iterative method for
finding fixed points of nonexpansive mappings on spaces of hyperbolic type which
includes Hadamard manifolds as a particular case. The algorithm is defined by

xn+1 ∈ [xn,T (xn)] such that d(xn,T (xn)) = (1−αn)d(xn,xn+1), (14.28)

where [xn,T (xn)] denotes the metric segment joining xn to T (xn). More precisely,
under the assumption that {αn} is bounded away from 0 and 1, Reich and Shafrir
proved the convergence of this iteration to a fixed point of T defined on the Hilbert
ball with the hyperbolic metric.

Motivated by these results, in [40], Mann iteration (14.28) was introduced in
Hadamard manifolds by means of the recursive formula

xn+1 = expxn
(1−αn)exp−1

xn
T (xn), ∀n≥ 0; (14.29)

or equivalently,
xn+1 = γn(1−αn), ∀n≥ 0,

where γn is the geodesic joining xn to T (xn). Then the sequence {xn} generated by
Mann algorithm (14.29) was proved to converge to a fixed point of T when {αn}
satisfies the condition:

∞∑

n=0

αn(1−αn) = ∞. (14.30)

Theorem 14.51. Let C⊆M be a closed convex set and T : C→C be a nonexpansive
mapping with Fix(T ) �= /0. Suppose that {αn} ⊂ (0,1) satisfy condition (14.30).
Then, for any x0 ∈C, the sequence {xn} generated by algorithm (14.29) converges
to a fixed point of T .
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14.4.3 Halpern Algorithm for Nonexpansive Mappings

Halpern iteration [27] is generated in the setting of Banach spaces by the recursive
formula

xn+1 = αnx +(1−αn)T xn, n≥ 0, (14.31)

where x0 and x are arbitrary points in the domain of a nonexpansive mapping T ,
and {αn} is a sequence in [0,1]. Unlike Mann iteration, Halpern algorithm can be
proved to have strong convergence provided that the underlying space is smooth
enough and the sequence {αn} satisfies good conditions; see [13,42] and references
therein.

To solve the problem of finding a fixed point of T out of the setting of linear
spaces, Kirk, in [35], provided an implicit algorithm for approximating fixed points
of nonexpansive mappings. More precisely, he studied such an algorithm in a com-
plete CAT(0) space though the following convergence result is formulated for the
special case of a Hadamard manifold.

Theorem 14.52. Suppose that C ⊆ M is bounded besides closed and convex. Let
T : C→C be nonexpansive, x ∈C, and for each t ∈ [0,1), let xt be the unique point
such that

xt = expx(1− t)exp−1
x T (xt)

(which exists by Banach’s contraction Theorem). Then limt→0 xt = x, the unique
nearest point to x in Fix(T ).

Remark 14.53. Note that this implicit algorithm is actually the approximation
curves {xt}= {Gt(x)} defined in (14.25).

In an Euclidean space R
n, this iteration scheme turns into the implicit Browder

iteration (cf. [5, 6])
xt = tx +(1− t)T(xt); (14.32)

that is, xt is the unique fixed point of the contraction tx+(1− t)T , for any t ∈ [0,1).
The discretization of this implicit algorithm leads to the explicit Halpern iteration
(14.31). An analogue of algorithm (14.31) to approximate fixed points for nonex-
pansive mappings on Hadamard manifolds was studied in [40]. Let x0, x ∈M and
let {αn} ⊂ [0,1]. Consider the iteration scheme

xn+1 = expx(1−αn)exp−1
x T (xn), ∀n≥ 0; (14.33)

or equivalently,
xn+1 = γn(1−αn), ∀n≥ 0,

where γn is the geodesic joining x to T (xn). This algorithm indeed coincides with
Halpern algorithm in the particular case of an Euclidean space, and its convergence
can be proved under the same conditions on the sequence {αn}:
(H1) limn→∞ αn = 0;
(H2)

∑
n≥0 αn = ∞;
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(H3)
∑

n≥0 |αn+1−αn|< ∞;
(H4) limn→∞(αn−αn−1)/αn = 0.

Theorem 14.54. Let C ⊆ M be a closed convex set, T : C→ C be nonexpansive
with Fix(T ) �= /0 and x,x0 ∈C. Suppose that {αn} ∈ [0,1] satisfies (H1), (H2) and,
(H3) or (H4). Then the sequence {xn} generated by algorithm (14.33) converges to
PFix(T )(x).

The convergence of Halpern iteration in CAT(0) spaces was studied in [65] and
in more general CAT(K) spaces in [58].

A numerical implementation for analyzing the behavior of Halpern as well as
Mann iteration is presented in Sect. 14.5.

14.4.4 Viscosity Approximation Method for Nonexpansive
Mappings

Let X be a Banach space and C ⊆ X be a closed convex set. Given a nonexpansive
mapping T : C ⊆ X →C, a real number t ∈ (0,1] and a contraction ψ on C, define
the contraction Tt : C→C by

Ttx = tψ(x)+ (1− t)T(x), x ∈C.

Hence, Tt has a unique fixed point which is denoted by xt ; that is, xt is the unique
solution to the fixed point equation

xt = tψ(xt)+ (1− t)T(xt), t ∈ (0,1]. (14.34)

The explicit iterative discretization of (14.34) is

xn+1 = αnψ(xn)+ (1−αn)T (xn), n≥ 0, (14.35)

where {αn} ⊂ [0,1]. Note that these two iterative processes (14.34) and (14.35)
have Browder and Halpern iterations as special cases by taking ψ(y) = x ∈ C for
any y ∈C.

The viscosity approximation method of selecting a particular fixed point of a
given nonexpansive mapping was proposed by Moudafi [48] in the framework of a
Hilbert space. The interest in the convergence of the implicit (14.34) and explicit
(14.35) algorithms is based on the fact that under suitable conditions these itera-
tions converge strongly to the unique solution q∈ Fix(T ) of a variational inequality
which, in the case of a Hilbert space, is the following:

〈(I−ψ)q,x−q〉 ≥ 0, ∀x ∈ Fix(T ). (14.36)
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This fact allows us to apply this method to convex optimization, linear programming
and monotone inclusions. See [43,71] and references therein for convergence results
regarding viscosity approximation methods in Banach spaces.

The convergence of a viscosity method for nonexpansive mappings in the setting
of a Hadamard manifold was established in [46]. For any x0 ∈M and {αn} ⊂ [0,1],
consider the iteration scheme

xn+1 = expψ(xn)
(
(1−αn)exp−1

ψ(xn) T (xn)
)
, ∀n≥ 0; (14.37)

or equivalently,
xn+1 = γn(1−αn), ∀n≥ 0,

where γn is the geodesic joining ψ(xn) to T (xn). Consider hypothesis (H1)–(H4) on
{αn} used in Theorem 14.54.

Theorem 14.55. Let C⊆M be a closed convex set, T : C→C be nonexpansive with
Fix(T ) �= /0 and ψ : C→C a contraction. Suppose that {αn} ⊂ [0,1] satisfies (H1),
(H2) and, (H3) or (H4). Then the sequence {xn} generated by algorithm (14.37)
converges to x̄ ∈C, the unique fixed point of the contraction PFix(T )ψ .

Moreover, the convergence point x̄ is the unique solution of the variational in-
equality

〈exp−1
x̄ ψ(x̄),exp−1

x̄ x〉 ≤ 0, ∀x ∈ Fix(T ). (14.38)

14.4.5 Iterative Algorithm for Pseudo-Contractive Mappings

In the setting of Banach spaces, iterative methods to approximate fixed points
of strongly pseudo-contractive mappings or, equivalently, singularities of strongly
monotone vector fields, have been studied by many authors; see, for instance,
[14, 31]. In [70], a section is devoted to define and study the convergence of an
iterative scheme for strongly monotone vector fields, which is an extension to
Riemannian manifolds of the one studied by Chidume (cf. [14]) in Banach spaces.

For the following theorem, it is necessary to extend the notion of L-Lipschitz con-
tinuity to single-valued vector fields in the setting of a Hadamard manifold; see [70].

Definition 14.56. Given L > 0, a single-valued vector field A ∈X (M) is said to be
L-Lipschitz continuous if

‖Py,xA(x)−A(y)‖ ≤ Ld(x,y),

for any x,y ∈D(A).

Theorem 14.57. Let A ∈X (M) be single-valued, L-Lipschitz continuous and α-
strongly monotone with D(A) = M. Given x0 ∈M, let {xn} be the sequence defined
by the algorithm

xn+1 = expxn
(−rA(xn)), ∀n≥ 0, (14.39)

where 0 < r < 2α
L2 . Then {xn} converges to the unique singularity of A.
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Note that, under the hypotheses in the previous theorem, since A ∈ X (M) is
single-valued and L-Lipschitz continuous, A is USC and therefore by Theorem 14.27
it is maximal monotone. Then, thanks to the strong monotonicity, Theorem 14.33
guarantees the existence and uniqueness of singularity.

Recall that a (strongly) pseudo-contractive mapping T is defined as a mapping
whose complementary vector field A is (strongly) monotone. On the other hand,
the fixed point set of T coincides with the set of singularities of A. Then, as a con-
sequence of Theorem 14.57, we get the following theorem on the existence and
approximation of a fixed point of a pseudo-contractive mapping.

Theorem 14.58. Let T : M→M be a single-valued α-strongly pseudo-contractive
mapping such that its complementary vector field is L-Lipschitz continuous. Then
there exists a unique fixed point of T .

Moreover, the sequence {xn} defined by the algorithm

xn+1 = expxn
(r(exp−1

xn
T (xn))), ∀n≥ 0, (14.40)

where 0 < r ≤ 2α
L2 , converges to the fixed point of T .

Remark 14.59. Given T : M→M single-valued and α-strongly pseudo-contractive
with L-Lipschitz continuous complementary vector field, in the case when 2α > L2,
by considering the constant r = 1, Theorem 14.58 implies the convergence of Picard
iteration {T n(x)}, for any initial point x ∈M.

There exist other iterative methods for approximating singularities of monotone
vector fields which can be applied to approximate fixed points of pseudo-contractive
mappings. For instance, the proximal point algorithm (14.26), which converges for
a maximal monotone vector field A with full domain, constitutes an approach for
single-valued pseudo-contractive mappings with L-Lipschitz continuous comple-
mentary vector fields.

14.5 Numerical Example

To illustrate the application of these methods, in particular, Mann and Halpern iter-
ations, the following numerical example was provided in [40].

Let E
m,1 be the vector space R

m+1 endowed with the symmetric bilinear form
defined by

〈x,y〉=
m∑

i=1

xiyi− xm+1ym+1, ∀x = (xi), y = (yi) ∈ R
m+1.

This bilinear form is called the Lorentz metric. The hyperbolic m-space H
m is de-

fined by
{x = (x1, ...,xm+1) ∈ E

m,1 : 〈x,x〉 =−1,xm+1 > 0};
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this is the upper sheet of the hyperboloid{x∈E
m,1 : 〈x,x〉=−1}. Note that xm+1≥ 1

for any x ∈H
m, with equality if and only if xi = 0 for all i = 1, ...,m. The metric of

H
m is induced from the Lorentz metric 〈·, ·〉 and it will be denoted by the same sym-

bol. Then H
m is a Hadamard manifold with sectional curvature −1 (cf. [4, 23]). By

using the corresponding expressions of the exponential map and its inverse, Mann
and Halpern algorithms can be formulated in a simple way in the hyperbolic space
H

m. Given y,z ∈M, set

r(y,z) = arccosh(−〈y,T (z)〉) and V (y,z) =
T (z)+ 〈y,T (z)〉y
√
〈y,T (z)〉2−1

.

Then Mann algorithm (14.29) has the form

xn+1 = cosh((1−αn)r(xn,xn))xn + sinh((1−αn)r(xn,xn))V (xn,xn), ∀n≥ 0;

while Halpern algorithm (14.33) has the form

xn+1 = cosh((1−αn)r(x,xn))x + sinh((1−αn)r(x,xn))V (x,xn), ∀n≥ 0.

We present an example in H
3, where these methods are implemented for some

specific data.

Example 14.60. Let M = H
3 and T1,T2 : M → M be the nonexpansive mappings

defined by

T1(x) = (−x1,−x2,−x3,x4) and T2(x) = (−x1,x2,x3,x4),

for any x = (x1,x2,x3,x4) ∈H
3. Then Fix(T1) = {(0,0,0,1)} and

Fix(T2) = {(x1,x2,x3,x4) ∈H
3 : x1 = 0,x2

2 + x2
3 = x2

4−1}.

For both algorithms, we are going to consider the sequence of parameters

αn =
1

n + 3
, ∀n≥ 0,

and the point

u = (0.6037924791938,0.2721879249700,0.1988142677611,1.2158037413562)

for Halpern iteration. As initial point let us take

x1
0 = (0.6944544097848,1.0138260928014,0.9936087133075,1.8701252762515).
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Fig. 14.1 (a) The error in the nth step of the Mann and Halpern algorithms, measured by means of
the distance d(xn+1,x∗), where x∗ = (0,0,0,1) is the unique fixed point of the mapping T1. (b) The
distance between two consecutive iterates xn+1 and xn, d(xn+1,xn), for both the Mann and Halpern
algorithms for the mapping T2

The numerical results are illustrated in the graphics above.
In Fig. 14.1a, the error in the nth step of both algorithms is measured by means

of the distance d(xn+1,x∗), where x∗ = (0,0,0,1) is the unique fixed point of the
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mapping T1. On the other hand, in Fig. 14.1b, the distance between two consecutive
iterates xn+1 and xn, d(xn+1,xn), measures the error in each step of both algorithms
for the mapping T2.

From the numerical results, as one can observe in both graphics, Mann iteration
seems to converge much quicker than Halpern iteration. Moreover, as it is predicted
from the theoretical results, the measure of the errors in Fig. 14.1a shows that the
sequence {xn} generated by Mann algorithm is indeed Fejr monotone with respect
to Fix(T1). That is,

d(xn+1,y)≤ d(xn,y),

for all y ∈ Fix(T1); see [40]. On the other hand, Halpern algorithm generates a
sequence which does not satisfy this property.
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37. Kirk, W.A., Schöneberg, R.: Some results on pseudo-contractive mappings. Pacific J. Math.

71, 89–99 (1977)
38. Li, S.L., Li, C., Liu, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on

Riemannian manifolds. Nonlinear Anal. 71, 5695–5705 (2009)
39. Li, C., López, G., Martı́n-Márquez, V.: Monotone vector fields and the proximal point algo-

rithm on Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)
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Chapter 15
Existence and Approximation of Fixed Points
of Bregman Firmly Nonexpansive Mappings
in Reflexive Banach Spaces
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Abstract We study the existence and approximation of fixed points of Bregman
firmly nonexpansive mappings in reflexive Banach spaces.
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· Legendre function ·Monotone operator · Resolvent · Totally convex function
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15.1 Introduction

In this paper, X denotes a real reflexive Banach space with norm ‖·‖ and X∗ stands
for the (topological) dual of X endowed with the induced norm ‖·‖∗. We denote the
value of the functional ξ ∈ X∗ at x ∈ X by 〈ξ ,x〉. An operator A : X → 2X∗ is said to
be monotone if for any x,y ∈ dom A, we have

ξ ∈ Ax and η ∈ Ay =⇒ 〈ξ −η ,x− y〉 ≥ 0. (15.1)

(Recall that the set dom A = {x ∈ X : Ax 
= ∅} is called the effective domain of
such an operator A.) A monotone operator A is said to be maximal if graph A, the
graph of A, is not a proper subset of the graph of any other monotone operator. In
this paper, f : X → (−∞,+∞] is always a proper, lower semicontinuous and convex
function, and f ∗ : X∗ → (−∞,+∞] is the Fenchel conjugate of f . A sublevel set of f
is a set of the form lev f

≤ (r) = {x ∈ X : f (x)≤ r} for some r ∈ R. We say that f is
positively homogeneous of degree α ∈ R if f (tx) = tα f (x) for all x ∈ X and t > 0.
The set of nonnegative integers will be denoted by N.
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Let C be a nonempty, closed and convex subset of a Hilbert space H. Then a
mapping T :C→C is said to be nonexpansive if ‖Tx−Ty‖≤ ‖x− y‖ for all x,y∈C.
It turns out that nonexpansive fixed point theory can be applied to the problem of
finding a point z ∈ H satisfying

0 ∈ Az, (15.2)

where A : H → 2H is a maximal monotone operator. A key tool for solving this
problem is the classical resolvent of A, which is defined by RA = (I + A)−1. This
resolvent is not only nonexpansive but also a firmly nonexpansive mapping, that is

‖RAx−RAy‖2 ≤ 〈RAx−RAy,x− y〉 (15.3)

for all x,y ∈ H (the resolvent RA has full domain H when A is maximal monotone).
See [11,17,22] for more details. We also have F(RA) = A−1 (0), where F(RA) stands
for the set of fixed points of RA. Thus the problem of finding zeroes of maximal
monotone operators in Hilbert space is reduced to that of finding fixed points of
firmly nonexpansive mappings. In particular, if A is the subdifferential ∂ f of f , then
RA is given by

RAx = argminy∈H

{
f (y)+

1
2
‖y− x‖2

}
(15.4)

for all x ∈ H [23]. In this case, F(RA) =
{

z ∈ H | f (z) = infy∈H f (y)
}

.
The notion of a firmly nonexpansive mapping was extended to Banach spaces in

[10] and [11]; see also [17]. However, in contrast with the case of Hilbert space, the
resolvent of a maximal monotone operator is not, in general, even a nonexpansive
mapping in the case of Banach spaces. Many other types of resolvents have been
studied. For example, Alber [1], and Kohsaka and Takahashi [19–21] initiated the
study of a generalized resolvent based on the duality mapping J.

Recently, Kohsaka and Takahashi [20,21] have introduced the class of mappings
of firmly nonexpansive type. Such a mapping T satisfies

〈JTx− JTy,Tx−Ty〉 ≤ 〈Jx− Jy,Tx−Ty〉 (15.5)

for all x,y ∈ C, where J is the duality mapping of the Banach space X , and C is a
nonempty, closed and convex subset of X . It is obvious that if we return to Hilbert
space, then J = I and the definitions of a firmly nonexpansive mapping and a map-
ping of firmly nonexpansive type coincide. Kohsaka and Takahashi prove that the
generalized resolvent is a mapping of firmly nonexpansive type when X is a smooth,
strictly convex and reflexive Banach space.

Even earlier, Bauschke et al. [4] generalized the class of firmly nonexpansive
mappings on smooth, strictly convex and reflexive Banach spaces to the case of
general reflexive Banach spaces. Their mappings do not depend on the duality map-
ping J, but on the gradient ∇ f of a well chosen function f . They call those mappings
D f -firmly nonexpansive mappings. In this paper we call them Bregman firmly non-
expansive mappings (BFNE for short) with respect to the function f . Bauschke,
Borwein and Combettes prove that the resolvent based on the gradient ∇ f of a well
chosen function f is a BFNE mapping.
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Our aim in this paper is to study the existence and approximation of fixed points
of BFNE mappings in reflexive Banach spaces. In Sect. 15.2, we present several
preliminary definitions and results. The third section is devoted to two proper-
ties of BFNE mappings. In the fourth section we prove two existence theorems
(Theorems 15.7 and 15.8) regarding fixed points of a single BFNE mapping, as well
as a common fixed point theorem (Theorem 15.12). Our approximation result is
proved in Sect. 15.5 (Theorem 15.13). In the sixth and last section, we present two
consequences of Theorem 15.13.

15.2 Preliminaries

15.2.1 Some Facts About Legendre Functions

Legendre functions mapping a general Banach space X into (−∞,+∞] are defined
in [3]. According to [3, Theorems 5.4 and 5.6], since X is reflexive, the function f
is Legendre if and only if it satisfies the following two conditions:

(L1) The interior of the domain of f , int dom f , is nonempty, f is Gâteaux dif-
ferentiable (see below) on int dom f , and

dom∇ f = intdom f ; (15.6)

(L2) The interior of the domain of f ∗, int dom f ∗, is nonempty, f ∗ is Gâteaux
differentiable on int dom f ∗, and

dom∇ f ∗ = intdom f ∗. (15.7)

Since X is reflexive, we always have (∂ f )−1 = ∂ f ∗ (see [7, p. 83]). This fact,
when combined with conditions (L1) and (L2), implies the following equalities:

∇ f = (∇ f ∗)−1, (15.8)

ran∇ f = dom ∇ f ∗ = intdom f ∗ (15.9)

and

ran∇ f ∗ = dom ∇ f = intdom f . (15.10)

Also, conditions (L1) and (L2), in conjunction with [3, Theorem 5.4], imply that
the functions f and f ∗ are strictly convex on the interior of their respective domains.

Several interesting examples of Legendre functions are presented in [2] and [3].
Among them are the functions 1

s ‖·‖s with s ∈ (1,∞), where the Banach space X is
smooth and strictly convex and, in particular, a Hilbert space.
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15.2.2 Two Properties of Gradients

For any convex f : X→ (−∞,+∞] we denote by dom f the set {x ∈ X : f (x) < +∞}.
For any x ∈ intdom f and y ∈ X , we denote by f ◦(x,y) the right-hand derivative of
f at x in the direction y, that is,

f ◦(x,y) := lim
t↘0

f (x + ty)− f (x)
t

. (15.11)

The function f is said to be Gâteaux differentiable at x if limt→0 ( f (x + ty)− f (x))/t
exists for any y. The function f is said to be Fréchet differentiable at x if this limit
is attained uniformly in ‖y‖= 1. Finally, f is said to be uniformly Fréchet differen-
tiable on a subset E of X if the limit is attained uniformly for x ∈ E and ‖y‖ = 1.
We will need the following result.

Proposition 15.1 (Proposition 2.1 of [27]). If f : X → R is uniformly Fréchet
differentiable and bounded on bounded subsets of X, then ∇ f is uniformly contin-
uous on bounded subsets of X from the strong topology of X to the strong topology
of X∗.

Proposition 15.2. If f : X → R is a positively homogeneous function of degree
α ∈R, then ∇ f is a positively homogeneous function of degree α−1.

Proof. By the definition of the gradient, we have

∇ f (tx) = lim
h→0

f (tx + hy)− f (tx)
h

= lim
h→0

f (tx + thy)− f (tx)
th

=
tα

t
lim
h→0

f (x + hy)− f (x)
h

= tα−1∇ f (x) (15.12)

for any x ∈ X and all t > 0. �

15.2.3 Some Facts About Totally Convex Functions

Let f : X → (−∞,+∞] be a convex and Gâteaux differentiable function. The func-
tion D f : dom f × intdom f → [0,+∞], defined by

D f (y,x) := f (y)− f (x)−〈∇ f (x),y− x〉 , (15.13)

is called the Bregman distance with respect to f (cf. [16]). With the function f we
associate the function W f : X∗ ×X → [0,+∞] defined by

W f (ξ ,x) = f (x)−〈ξ ,x〉+ f ∗(ξ ). (15.14)
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It is clear that W f (∇ f (x),y) = Df (y,x) for any x ∈ intdom f and y ∈ dom f .
The Bregman distance has the following important properties, called the

three-point identity: for any x ∈ dom f and y,z ∈ intdom f ,

D f (x,y)+ Df (y,z)−D f (x,z) = 〈∇ f (z)−∇ f (y),x− y〉 , (15.15)

and the four-point identity: for any x,z ∈ intdom f and y,w ∈ dom f ,

D f (y,x)−D f (y,z)−Df (w,x)+ Df (w,z) = 〈∇ f (z)−∇ f (x),y−w〉 . (15.16)

Recall that, according to [12, Sect. 1.2, p. 17] (see also [14]), the function f is
called totally convex at a point x ∈ intdom f if its modulus of total convexity at x,
that is, the function υ f : intdom f × [0,+∞)→ [0,+∞], defined by

υ f (x,t) := inf
{

D f (y,x) : y ∈ dom f , ‖y− x‖= t
}

, (15.17)

is positive whenever t > 0. The function f is called totally convex when it is totally
convex at every point x ∈ intdom f . Examples of totally convex functions can be
found, for instance, in [12, 13]. The next proposition turns out to be very useful in
the proof of Theorem 15.13.

Proposition 15.3 (Proposition 2.2 of [28]). If x ∈ intdom f , then the following
statements are equivalent:

(i) The function f is totally convex at x;
(ii) For any sequence {yn}n∈N

⊂ dom f ,

lim
n→+∞

D f (yn,x) = 0⇒ lim
n→+∞

‖yn− x‖= 0. (15.18)

15.2.4 Some Facts About Bregman Firmly Nonexpansive
Mappings

Let C be a nonempty, closed and convex subset of intdom f . We say that a mapping
T : C→C is a Bregman firmly nonexpansive mapping with respect to f (BFNE with
respect to f for short) if

〈∇ f (Tx)−∇ f (Ty) ,T x−Ty〉 ≤ 〈∇ f (x)−∇ f (y) ,T x−Ty〉 (15.19)

for all x,y ∈ C. It is clear from the definition of the Bregman distance (15.13) that
(15.19) is equivalent to

D f (T x,Ty)+ D f (Ty,T x)+ Df (T x,x)+ Df (Ty,y)≤ Df (T x,y)+ Df (Ty,x) .
(15.20)
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Bauschke, Borwein and Combettes [4, Proposition 3.8, p. 604] prove that the
resolvent Res f

A = (∇ f + A)−1 ◦∇ f is a BFNE mapping with respect to f whenever
A is a monotone mapping.

We remark in passing that an analogous result for very general resolvents can be
found in a recent paper by Bauschke et al. [6].

15.2.5 The Resolvent of A Relative to f

Let A : X → 2X∗ be an operator and assume that f is Gâteaux differentiable. The
operator

Prt f
A := (∇ f + A)−1 : X∗ → 2X (15.21)

is called the protoresolvent of A, or, more precisely, the protoresolvent of A relative
to f . This allows us to define the resolvent of A, or, more precisely, the resolvent of
A relative to f , introduced and studied in [4], as the operator Res f

A : X → 2X given

by Res f
A := Prt f

A ◦∇ f . This operator is single-valued when A is monotone and f is
strictly convex on intdom f . If A = ∂ϕ , where ϕ is a proper, lower semicontinuous
and convex function, then we denote

Prox f
ϕ := Prt f

∂ϕ and prox f
ϕ := Res f

∂ϕ . (15.22)

If C is a nonempty, closed and convex subset of X , then the indicator function ιC of
C, that is, the function

ιC (x) :=
{

0 if x ∈C
+∞ if x /∈C,

(15.23)

is proper, convex and lower semicontinuous, and therefore ∂ιC exists and is a max-
imal monotone operator with domain C. The operator prox f

ιC is called the Bregman

projection onto C with respect to f (cf. [8]) and we denote it by proj f
C. Note that if X

is a Hilbert space and f (x) = 1
2 ‖x‖2, then the Bregman projection of x onto C, i.e.,

argmin{‖y− x‖ : y ∈C}, is the metric projection PC.
Recall that the Bregman projection of x onto the nonempty, closed and convex

set K ⊂ dom f is the necessarily unique vector proj f
K(x) ∈ K satisfying

Df

(
proj f

K(x),x
)

= inf
{

Df (y,x) : y ∈ K
}

. (15.24)

Similarly to the metric projection in Hilbert spaces, Bregman projections
with respect to totally convex and differentiable functions have variational
characterizations.

Proposition 15.4 (Corollary 4.4 of [13]). Suppose that f is totally convex on int
dom f . Let x ∈ intdom f and let K ⊂ intdom f be a nonempty, closed and convex
set. If x̂ ∈ K, then the following conditions are equivalent:
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(i) The vector x̂ is the Bregman projection of x onto K with respect to f ;
(ii) The vector x̂ is the unique solution of the variational inequality

〈∇ f (x)−∇ f (z) ,z− y〉 ≥ 0, ∀y ∈ K; (15.25)

(iii) The vector x̂ is the unique solution of the inequality

Df (y,z)+ D f (z,x)≤ Df (y,x) , ∀y ∈ K. (15.26)

15.3 Two Properties of Bregman Firmly Nonexpansive
Mappings

In this section, we present two properties of the fixed point set F(T ) of a BFNE
mapping. We first show that F(T ) is closed and convex for any BFNE mapping
with respect to f when f is also Gâteaux differentiable.

Lemma 15.5. Let f : X → (−∞,+∞] be a Legendre function. Let C be a nonempty,
closed and convex subset of intdom f , and let T : C→C be a BFNE mapping with
respect to f . Then F(T ) is closed and convex.

Proof. It is sufficient to consider the case where F(T ) is nonempty. From (15.20) it
follows that

Df (x,Ty)+ Df (Ty,y)≤ Df (x,y) (15.27)

for any x ∈ F(T ) and y ∈C. A fortiori,

D f (x,Ty)≤ Df (x,y) (15.28)

for any x ∈ F(T ) and y ∈C.
We first show that F(T ) is closed. To this end, let {xn}n∈N

be a sequence in F(T )
such that xn→ x̄. From (15.28) it follows that

D f (xn,T x̄)≤ D f (xn, x̄) (15.29)

for any n ∈N. Since f is continuous at x̄ ∈C⊂ intdom f and xn→ x̄, it follows that

lim
n→+∞

D f (xn,T x̄) = lim
n→+∞

[ f (xn)− f (T x̄)−〈∇ f (T x̄) ,xn−T x̄〉]
= [ f (x̄)− f (T x̄)−〈∇ f (T x̄) , x̄−T x̄〉] = Df (x̄,T x̄)

and
lim

n→+∞
D f (xn, x̄) = Df (x̄, x̄) = 0. (15.30)
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Thus, (15.29) implies that Df (x̄,T x̄) = 0 and therefore it follows from [3, Lemma
7.3(vi), p. 642] that x̄ = T x̄. Hence, x̄ ∈ F(T ) and this means that F(T ) is closed, as
claimed.

Next we show that F(T ) is convex. For any x,y∈F(T ) and t ∈ (0,1), put z = tx+
(1− t)y. We have to show that T z = z. Indeed, from the definition of the Bregman
distance and (15.28) it follows that

D f (z,T z) = f (z)− f (T z)−〈∇ f (T z) ,z−Tz〉
= f (z)− f (T z)−〈∇ f (T z) ,tx +(1− t)y−Tz〉
= f (z)+ tD f (x,T z)+ (1− t)Df (y,T z)− t f (x)− (1− t) f (y)
≤ f (z)+ tD f (x,z)+ (1− t)D f (y,z)− t f (x)− (1− t) f (y)
= 〈∇ f (z) ,z− tx− (1− t)y〉= 0.

Again from [3, Lemma 7.3(vi), p. 642] it follows that T z = z. Therefore, F(T ) is
also convex, as asserted. �

Next we show that if f is a Legendre function which is uniformly Fréchet dif-
ferentiable on bounded subsets of X , and T is a BFNE mapping with respect to f ,
then the set of fixed points of T coincides with the set of its asymptotic fixed points.
Recall that a point u ∈ C is said to be an asymptotic fixed point [26] of T if there
exists a sequence {xn}n∈N

in C such that xn ⇀ u and xn−Txn→ 0. We denote the
set of asymptotic fixed points of T by F̂(T ).

Lemma 15.6. Let f : X → R be a Legendre function which is uniformly Fréchet
differentiable and bounded on bounded subsets of X. Let C be a nonempty, closed
and convex subset of X and let T : C→ C be a BFNE mapping with respect to f .
Then F(T ) = F̂(T ).

Proof. The inclusion F(T )⊂ F̂(T ) is obvious. To show that F(T )⊃ F̂(T ), let u ∈
F̂(T ) be given. Then we have a sequence {xn}n∈N

in C such that xn ⇀ u and xn−
T xn→ 0. Since f is uniformly Fréchet differentiable on bounded subsets of X , ∇ f
is uniformly continuous on bounded subsets of X (see Proposition 15.1). Hence
(∇ f (T xn)−∇ f (xn))→ 0 as n→+∞ and therefore

lim
n→+∞

〈∇ f (T xn)−∇ f (xn),y〉= 0 (15.31)

for any y ∈ X , and

lim
n→+∞

〈∇ f (T xn)−∇ f (xn),xn〉= 0, (15.32)

because {xn}n∈N
is bounded. On the other hand, since T is a BFNE mapping with

respect to f , we have

0≤ D f (T xn,u)−Df (T xn,Tu)+ D f (Tu,xn)−D f (Tu,T xn) . (15.33)
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From the three-point identity (15.15) and (15.33), we now obtain

Df (u,Tu) = D f (T xn,Tu)−Df (T xn,u)−〈∇ f (u)−∇ f (Tu),T xn−u〉
≤ D f (Tu,xn)−Df (Tu,T xn)−〈∇ f (u)−∇ f (Tu),T xn−u〉
= [ f (Tu)− f (xn)−〈∇ f (xn),Tu− xn〉]
− [ f (Tu)− f (T xn)−〈∇ f (T xn),Tu−Txn〉]
−〈∇ f (u)−∇ f (Tu),T xn−u〉

= f (T xn)− f (xn)−〈∇ f (xn),Tu− xn〉+ 〈∇ f (T xn),Tu−Txn〉
− 〈∇ f (u)−∇ f (Tu),T xn−u〉

=− [ f (xn)− f (Txn)−〈∇ f (T xn),xn−Txn〉]−〈∇ f (T xn),xn−Txn〉
− 〈∇ f (xn),Tu− xn〉+ 〈∇ f (T xn),Tu−Txn〉
− 〈∇ f (u)−∇ f (Tu),T xn−u〉

=−D f (xn,T xn)−〈∇ f (T xn),xn−Txn〉− 〈∇ f (xn),Tu− xn〉
+ 〈∇ f (T xn),Tu−Txn〉− 〈∇ f (u)−∇ f (Tu),T xn−u〉
≤ −〈∇ f (T xn),xn−Txn〉− 〈∇ f (xn),Tu− xn〉

+ 〈∇ f (T xn),Tu−Txn〉− 〈∇ f (u)−∇ f (Tu),T xn−u〉
= 〈∇ f (xn)−∇ f (T xn),xn−Tu〉− 〈∇ f (u)−∇ f (Tu),T xn− xn〉
− 〈∇ f (u)−∇ f (Tu),xn−u〉 .

From (15.31), (15.32), and the hypotheses xn ⇀ u and xn− T xn → 0 we get that
D f (u,Tu)≤ 0. Consequently, D f (u,Tu) = 0 and from [3, Lemma 7.3(vi), p. 642]
it follows that Tu = u. That is, u ∈ F(T ), as required. �

15.4 Existence of Fixed Points

In this section, we obtain necessary and sufficient conditions for BFNE mappings
to have a (common) fixed point in general reflexive Banach spaces. We begin with
a theorem for a single BFNE mapping. This result can be proved by combining
Theorem 3.3 and Lemma 7.3(viii) of [3] with Proposition 4.1(v)(a) of [4]. However,
we include a more detailed version of the proof for the reader’s convenience.

Theorem 15.7. Let f : X → (−∞,+∞] be a Legendre function such that ∇ f ∗ is
bounded on bounded subsets of intdom f ∗. Let C be a nonempty, closed and convex
subset of intdom f and let T : C→C be a BFNE mapping with respect to f . If F(T )
is nonempty, then {T ny}n∈N

is bounded for each y ∈C.

Proof. We know by (15.28) that

D f (x,Ty)≤ Df (x,y) (15.34)

for any x ∈ F(T ) and y ∈C. Therefore

D f (x,T ny)≤ D f (x,y) (15.35)
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for any x ∈ F(T ) and y ∈ C. This inequality shows that the nonnegative sequence{
D f (x,T ny)

}
n∈N

is bounded. Let M be an upper bound of
{

D f (x,T ny)
}

n∈N
. Then

f (x)−〈∇ f (T ny) ,x〉+ f ∗ (∇ f (T ny)) = W f (∇ f (T ny) ,x) = Df (x,T ny)≤M.

(15.36)

This implies that the sequence {∇ f (T ny)}n∈N
is contained in the sublevel set

levψ
≤ (M− f (x)) of the function ψ = f ∗ − 〈·,x〉. Since the function f ∗ is proper

and lower semicontinuous, an application of the Moreau–Rockafellar Theorem [29,
Theorem 7A] shows that ψ = f ∗ −〈·,x〉 is coercive. Consequently, all sublevel sets
of ψ are bounded. Hence, the sequence {∇ f (T ny)}n∈N

is bounded. Since the func-
tion f ∗ is bounded on bounded subsets of X by hypothesis, the gradient ∇ f ∗ is also
bounded on bounded subsets of X [12, Proposition 1.1.11, p. 16]. Thus the sequence
T ny = ∇ f ∗ (∇ f (T ny)), n ∈N, is bounded too, as claimed. �

For a mapping T : C→C, let Sn(z) := 1/n
∑n

k=1 T kz for all z ∈C.

Theorem 15.8. Let f : X→ (−∞,+∞] be a Legendre function. Let C be a nonempty,
closed and convex subset of intdom f and let T : C→C be a BFNE mapping with
respect to f . If there exists y ∈ C such that ‖Sn(y)‖� ∞ as n→ ∞, then F(T ) is
nonempty.

Proof. Suppose that there exists y ∈C such that ‖Sn(y)‖� ∞ as n→ ∞. Let x ∈C,
k ∈N and n ∈N be given. Since T is BFNE with respect to f , we have

D f

(
T k+1y,T x

)
+ D f

(
T x,T k+1y

)
≤ Df

(
T x,T ky

)
+ D f

(
T k+1y,x

)
. (15.37)

From the three-point identity (15.15) we get

Df

(
T k+1y,T x

)
+ Df

(
T x,T k+1y

)
≤ Df

(
T x,T ky

)
+ D f

(
T k+1y,T x

)
+Df (T x,x)

+
〈

∇ f (T x)−∇ f (x),T k+1y−Tx
〉

.

This implies that

0≤ Df (T x,x)+ Df

(
T x,T ky

)
−D f

(
T x,T k+1y

)

+
〈

∇ f (T x)−∇ f (x),T k+1y−Tx
〉

.

Summing these inequalities with respect to k = 0,1, . . . ,n−1, we now obtain

0≤ nD f (T x,x)+ Df (T x,y)−D f (T x,T ny)

+

〈

∇ f (T x)−∇ f (x),
n−1∑

k=0

T k+1y−nTx

〉

.
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Dividing this inequality by n, we have

0≤ Df (T x,x)+
1
n

[
D f (T x,y)−D f (T x,T ny)

]
+ 〈∇ f (T x)−∇ f (x),Sn(y)−Tx〉

(15.38)

and

0≤ D f (T x,x)+
1
n

Df (T x,y)+ 〈∇ f (T x)−∇ f (x),Sn(y)−Tx〉 . (15.39)

Since ‖Sn(y)‖ � ∞ as n → ∞ by assumption, there exists a subsequence{
Snk(y)

}
k∈N

of {Sn(y)}n∈N
such that Snk(y) ⇀ u ∈C. Letting nk→+∞ in (15.39),

we obtain

0≤ D f (T x,x)+ 〈∇ f (T x)−∇ f (x),u−Tx〉 . (15.40)

Setting x = u in (15.40), we get from the four-point identity (15.16) that

0≤ Df (Tu,u)+ 〈∇ f (Tu)−∇ f (u),u−Tu〉
= D f (Tu,u)+ D f (u,u)−Df (u,Tu)−D f (Tu,u)+ D f (Tu,Tu)
=−Df (u,Tu) .

Hence Df (u,Tu) ≤ 0 and so Df (u,Tu) = 0. It now follows from [3, Lemma
7.3(vi), p. 642] that Tu = u. That is, u ∈ F(T ). This completes the proof of
Theorem 15.8. �

Remark 15.9. As can be seen from the proof, Theorem 15.8 remains true for those
mappings which only satisfy (15.37). In the special case where f = 1/2‖·‖2, such
mappings are called non-spreading. For more information see [21].

Remark 15.10. We remark in passing that we still do not know if the analog of
Theorem 15.8 for nonexpansive mappings holds outside Hilbert space (cf. [24,
Remark 2, p. 275]).

Corollary 15.11. Let f : X → (−∞,+∞] be a Legendre function. Every nonempty,
bounded, closed and convex subset of intdom f has the fixed point property for
BFNE self-mappings with respect to f .

As in [21], Corollary 15.11, when combined with Lemma 15.5, yields the following
result.

Theorem 15.12. Let f : X → (−∞,+∞] be a Legendre function. Let C be a
nonempty, bounded, closed and convex subset of intdom f . Let {Tα}α∈A be a
commutative family of BFNE mappings with respect to f from C into itself. Then
the family {Tα}α∈A has a common fixed point.
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15.5 Approximation of Fixed Points

In this section, we prove a strong convergence theorem of Browder’s type for BFNE
mappings with respect to a well chosen function f .

Theorem 15.13. Let f : X→R be a Legendre, totally convex function which is pos-
itively homogeneous of degree α > 1, uniformly Fréchet differentiable and bounded
on bounded subsets of X. Let C be a nonempty, bounded, closed and convex subset
of X with 0 ∈ C, and let T be a BFNE self-mapping with respect to f . Then the
following two assertions hold:

(i) For each t ∈ (0,1), there exists a unique ut ∈C satisfying ut = tTut;
(ii) The net {ut}t∈(0,1) converges strongly to proj f

F(T)(∇ f ∗ (0)) as t→ 1−.

Proof. (i) Fix t ∈ (0,1) and let St be the mapping defined by St = tT . Since 0 ∈C
and C is convex, St is a mapping from C into itself. We next show that St is a
BFNE mapping with respect to f . Indeed, if x,y ∈ C, then, since T is BFNE
with respect to f , it follows from Proposition 15.2 that

〈∇ f (Stx)−∇ f (Sty) ,St x−Sty〉 = tα 〈∇ f (T x)−∇ f (Ty) ,T x−Ty〉
≤ tα 〈∇ f (x)−∇ f (y) ,T x−Ty〉
= tα−1 〈∇ f (x)−∇ f (y) ,Stx−Sty〉
≤ 〈∇ f (x)−∇ f (y) ,St x−Sty〉 . (15.41)

Thus, St is also BFNE with respect to f . Since C is bounded, it follows from
Corollary 15.11 that St has a fixed point. We next show that F(St) consists of
exactly one point. If u,u′ ∈ F(St), then it follows from (15.41) that

〈
∇ f (u)−∇ f

(
u′

)
,u−u′

〉
=

〈
∇ f (Stu)−∇ f

(
Stu
′) ,Stu−Stu

′〉

≤ tα−1 〈
∇ f (u)−∇ f

(
u′

)
,Stu−Stu

′〉

= tα−1 〈
∇ f (u)−∇ f

(
u′

)
,u−u′

〉
. (15.42)

By (15.42) and the monotonicity of ∇ f , we have
〈
∇ f (u)−∇ f

(
u′

)
,u−u′

〉
= 0. (15.43)

Since f is Legendre, ∇ f is strictly monotone and therefore u = u′. Thus, there
exists a unique ut ∈C such that ut = Stut .

(ii) Let {tn}n∈N
be a sequence in (0,1) such that tn→ 1− as n→+∞. Put xn = utn

for all n ∈ N. By Lemma 15.5 and Theorem 15.8, F(T ) is nonempty, closed
and convex. Thus the Bregman projection proj f

F(T ) is well defined. To show that

ut → proj f
F(T )(∇ f ∗ (0)), it is sufficient to show that xn → proj f

F(T )(∇ f ∗ (0)).
Since C is bounded, there is a subsequence

{
xnk

}
k∈N

of {xn}n∈N
such that

xnk ⇀v. By the definition of xn, we have ‖xn−Txn‖ = (1− tn)‖T xn‖ for all
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n∈N. So, we have xn−Txn→ 0 and hence v∈ F̂(T ). Lemma 15.6 now implies
that v ∈ F(T ). We next show that xnk → v. Let y ∈ F(T ) be given and fix n∈N.
Then, since T is BFNE with respect to f , we have

〈∇ f (T xn)−∇ f (Ty) ,T xn−Ty〉 ≤ 〈∇ f (xn)−∇ f (y) ,T xn−Ty〉 . (15.44)

That is,
0≤ 〈∇ f (xn)−∇ f (T xn) ,T xn− y〉 . (15.45)

Since

∇ f (xn)−∇ f (T xn) = ∇ f (tnTxn)−∇ f (T xn)

= tα−1
n ∇ f (T xn)−∇ f (T xn) = (tα−1

n −1)∇ f (T xn) ,

we have

0≤ 〈
(tα−1

n −1)∇ f (Txn) ,T xn− y
〉
. (15.46)

This yields
0≤ 〈−∇ f (Txn) ,Txn− y〉 (15.47)

and

〈∇ f (y)−∇ f (Txn) ,y−Txn〉 ≤ 〈∇ f (y) ,y−Txn〉 . (15.48)

Since xnk ⇀ v and xnk−Txnk → 0, it follows that T xnk ⇀ v. Hence from (15.48)
we obtain

limsup
k→+∞

〈
∇ f (y)−∇ f

(
T xnk

)
,y−Txnk

〉≤ limsup
k→+∞

〈
∇ f (y) ,y−Txnk

〉

= 〈∇ f (y) ,y− v〉 (15.49)

Substituting y = v in (15.49), we get

0≤ limsup
k→+∞

〈
∇ f (v)−∇ f

(
T xnk

)
,v−Txnk

〉≤ 0.

Thus,
lim

k→+∞

〈
∇ f (v)−∇ f

(
Txnk

)
,v−Txnk

〉
= 0.

Since

Df
(
v,Txnk

)
+ Df

(
Txnk ,v

)
=

〈
∇ f (v)−∇ f

(
T xnk

)
,v−Txnk

〉
, (15.50)

it follows that

lim
k→+∞

D f
(
v,T xnk

)
= lim

k→+∞
D f

(
T xnk ,v

)
= 0. (15.51)

Proposition 15.3 now implies that Txnk → v.
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Finally, we claim that v = proj f
F(T )(∇ f ∗ (0)). Since ∇ f is norm-to-weak∗ con-

tinuous on bounded subsets, it follows that ∇ f
(
Txnk

)
⇀ ∇ f (v). Setting n := nk

and letting k→+∞ in (15.47), we obtain

0≤ 〈−∇ f (v) ,v− y〉 (15.52)

for any y ∈ F(T ). Hence

0≤ 〈∇ f (∇ f ∗ (0))−∇ f (v) ,v− y〉 (15.53)

for any y ∈ F(T ). Thus Proposition 15.4 implies that v = proj f
F(T )(∇ f ∗ (0)).

Consequently, the whole net {ut}t∈(0,1) converges strongly to proj f
F(T)(∇ f ∗ (0))

as t→ 1−. This completes the proof of Theorem 15.13. �

Remark 15.14. Early analogs of Theorem 15.13 for nonexpansive mappings in
Hilbert and Banach spaces may be found in [9, 18, 25].

15.6 Consequences of the Approximation Result

We first specialize Theorem 15.13 to the case, where f (x) = 1
2 ‖x‖2 and X is a

uniformly smooth and uniformly convex Banach space, and then apply it to the
problem of finding zeroes of a maximal monotone operator A : X → 2X∗ . In this
case, the function f (x) = 1

2 ‖x‖2 is Legendre (cf. [3, Lemma 6.2, p.24]) and uni-
formly Fréchet differentiable on bounded subsets of X . According to [15, Corollary
1(ii), p. 325], since X is uniformly convex, f is totally convex. Thus we obtain the
following corollary.

Corollary 15.15. Let X be a uniformly smooth and uniformly convex Banach space.
Let C be a nonempty, bounded, closed and convex subset of X with 0 ∈ C, and let
T : C→C be of firmly nonexpansive type. Then the following two assertions hold:

(i) For each t ∈ (0,1), there exists a unique ut ∈C satisfying ut = tTut;
(ii) The net {ut}t∈(0,1) converges strongly to proj f

F(T)(0) as t→ 1−.

As a matter of fact, this corollary is known to hold even when X is only a smooth
and uniformly convex Banach space [21].

As a direct consequence of Theorem 15.13 we get the following new result.

Corollary 15.16. Let f : X→R be a Legendre, totally convex function which is pos-
itively homogeneous of degree α > 1, uniformly Fréchet differentiable and bounded
on bounded subsets of X. Let C be a nonempty, bounded, closed and convex subset
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of X with 0 ∈ C. Let λ be positive real number and let A be a monotone operator
such that domA⊂C ⊂ (∇ f )−1 (ran (∇ f + λA)). Then the following two assertions
hold:

(i) For each t ∈ (0,1), there exists a unique ut ∈C satisfying ut = tRes f
λ Aut;

(ii) The net {ut}t∈(0,1) converges strongly to proj f
A−1(0∗)(∇ f ∗ (0)) as t→ 1−.

Remark 15.17. Algorithm 5.5 in [5] provides another way of constructing Bregman
projections onto the zero sets of maximal monotone operators.
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Chapter 16
Regularization Procedures for Monotone
Operators: Recent Advances

J.P. Revalski

Abstract In this essentially survey article, we present some recent advances
concerning two regularization procedures for monotone operators: extended and
variational sums of maximal monotone operators and, the related to them, ex-
tended and variational compositions of monotone operators with linear continuous
mappings.
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16.1 Introduction

In the last almost 40 years, the monotone operators have turned out to be an im-
portant tool in the study of various problems arising in the domain of optimization,
nonlinear analysis, differential equations and other related fields. Among those op-
erators, it seems that the class of maximal monotone ones contains the mappings that
possess the most desirable properties, such as, for example, local boundedness, per-
turbation surjectivity in reflexive spaces, generic single-valuedness and continuity
in appropriate classes of Banach spaces, and others. Therefore, when dealing with
natural operations on maximal monotone operators, such as, for example, point-
wise sums and precompositions with linear operators, it is natural to ask whether
the obtained operator is also maximal monotone. In general, when summing up two
maximal monotone operators (or precomposing a maximal monotone operator with
a linear continuous mapping) the resulting operator is monotone, but not necessarily
maximal. In such cases, one needs additional qualification conditions to obtain
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maximality (see below more details about such conditions and the corresponding
references). This lack of maximality was the reason for some researchers to try to
find a kind of “generalized” notion of sum (or precomposition) which has more
chances to be maximal than the usual point-wise operation. Such attempts led to
notions like the parallel sum [27], a sum notion based on the Trotter–Lie formula
(see [28]), the variational sum [3, 4] (see also [39, 40]), the extended sum [39, 41],
the variational composition [32] and the extended composition [20, 24]. It turned
out that some of these notions, as for instance, the variational and the extended
ones, give maximality of the corresponding operation in situations when the usual
point-wise operation cannot assure this property. This is the case, for example, of
subdifferentials of convex functions or certain differential operators [3, 32, 39–41].

Our aim in this, in essence survey, article is to present in more detail the notions
of extended and variational sum of maximal monotone mappings and particularly
some recent important advances related to them. We also treat the related question
of precompositions with linear continuous operators by showing how the results
concerning this concept could be derived from corresponding results for sums via
natural identifications. Some of the results presented here are formulated without
being proved, but those that are key for the presentation are accompanied with de-
tailed proofs.

The paper is organized as follows. In Sect. 16.2, we give the needed preliminary
facts and results. Although the extended sum chronologically comes after the vari-
ational one, we start in Sect. 16.3 with the former, because its setting is a general
Banach space. We present its basic properties, as well as the most important re-
sults related to this concept, including the case of extended sum of subdifferentials.
Section 16.4 introduces and studies the variational sum of maximal monotone map-
pings. Its natural setting is when the underlying space is a reflexive Banach space
because this concept relies on the Yosida regularization of the operators involved. In
particular, we present in this part a recent result of Garcı́a [21] that the variational
sum contains the extended one (and thus, the usual one) – a question that has stayed
open since the introduction of the variational sum in [3]. The last Sect. 16.5 treats
similar questions to those from Sects. 16.3 and 16.4, related to precompositions of
monotone operators with linear continuous mappings. We show that there exists a
sort of equivalence between the above notions for sums and precompositions and
thus most part of such results for precompositions can be derived from the corre-
sponding facts about sums (and vice versa in many cases). In particular, by using the
above mentioned result that the variational sum contains the usual one, we see how
one can obtain that the variational composition contains the point-wise one–this also
has remained open since the introduction of the variational composition in [32].

16.2 Preliminary Results

Throughout this article (X ,‖ · ‖) will denote a real Banach space. Its topological
dual will be designated as usual by X∗ and we use the same symbol ‖ ·‖ for the dual
norm in X∗. The notation 〈·, ·〉 stands for the canonical pairing between X∗ and X ,
and w and w∗ for the weak and the weak star topology in X and in X∗, respectively.
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When a set-valued operator T : X ⇒ X∗ is given we designate by Dom(T ) the
domain of T , that is the set

Dom(T ) := {x ∈ X : T x �= /0},
and by R(T ) its range, that is

R(T ) := {x∗ ∈ X∗ : x∗ ∈ Tx for some x ∈ X}.

The graph of T is the following set in X×X∗

Gr(T ) := {(x,x∗) ∈ X×X∗ : x∗ ∈ Tx},

and obviously the projections of Gr(T ) on X and X∗ coincide with the domain and
the range of T , respectively. Given an operator T , by T we will denote the operator
whose images are the norm-closures of the images of T , i.e., T x = Tx, x ∈ X , and
by T

G
the operator whose graph is the norm-closure (in X ×X∗) of the graph of T ,

that is Gr(T G) = Gr(T ). As usual, for a given T , the symbol T−1 is reserved for
the inverse operator of T , that is T−1x∗ = {x ∈ X : x∗ ∈ T x}, x∗ ∈ X∗. We obviously
have Dom(T−1) = R(T ), R(T−1) = Dom(T ) and the graph of T−1 can be identified
with Gr(T ). Finally, when we have two operators S and T , we will write often S⊂ T
(resp. S = T ) as an equivalent notation for Gr(S)⊂Gr(T ) (resp. Gr(S) = Gr(T )).

A (set-valued) mapping T : X ⇒ X∗ is called monotone if every two couples
(x,x∗), (y,y∗) ∈ Gr(T ) satisfy the inequality

〈x∗ − y∗,x− y〉 ≥ 0.

If this inequality is strict for any two couples (x,x∗), (y,y∗) from the graph of the
operator such that x �= y, then T is called strictly monotone. The operator T is max-
imal monotone if it is monotone and its graph is a maximal element with respect
to the set inclusion partial order in the class of all monotone operators between X
and X∗. Another way to express maximal monotonicity is the following: T is maxi-
mal monotone if and only if any couple (z,z∗) which is monotonically related to T ,
that is, satisfies 〈z∗ − y∗,z− y〉 ≥ 0 for each (y,y∗) ∈ Gr(T ), necessarily belongs to
Gr(T ), i.e., (z,z∗)∈Gr(T ). The following facts are well known: any maximal mono-
tone operator has convex and closed (also for the weak star topology) images; the
graph of every maximal monotone mapping is closed in the product (norm) topol-
ogy in X×X∗; as a consequence of Zorn lemma, each monotone mapping between
X and X∗ can be extended to a maximal monotone mapping; finally, if T : X ⇒ X∗
is maximal monotone then T−1 is maximal monotone as a mapping from X∗ into X .

Classical examples of maximal monotone mappings are the subdifferentials of
certain convex functions. Let is recall that given ε ≥ 0, the ε-subdifferential ∂ε f of
a proper convex function f : X→R∪{+∞} is the operator from X to X∗ defined as:

∂ε f (x) := {x∗ ∈ X∗ : 〈x∗,y− x〉 ≤ f (y)− f (x)+ ε, ∀y ∈ X}, if x ∈ dom f ,
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and ∂ε f (x) = /0 if x /∈ dom f . Here, as usual, dom f denotes the set {x ∈ X : f (x) <
+∞}, which is the effective domain of f , and f is called proper if dom f �= /0. When
ε = 0, we denote ∂0 f simply by ∂ f , and this is the well known subdifferential of f . It
is known that if f is also lower semicontinuous and ε > 0 then Dom(∂ε f ) = dom f ,
while ∂ f , in general, may be empty at some points of dom f (but Dom(∂ f ) is
dense in dom f according to the Brøndsted–Rockafellar theorem). Observe also, in
connection with our considerations in the next section, that ∂ε f is an enlargement
of ∂ f for any ε > 0, that is ∂ f (x) ⊂ ∂ε f (x) for each x ∈ X and ε > 0. Finally, a
classical result of Rockafellar [44] states that the subdifferential of a proper lower
semicontinuous convex function is a maximal monotone operator. Other classical
examples of monotone operators come from some differential operators–see, e.g.,
the monograph of Zeidler [57]. Comprehensive sources about monotone operators
are also the monographs of Phelps [37] and Simons [46] and the paper [38].

16.3 Extended Sum of Monotone Operators

Let S,T : X ⇒ X∗ be two maximal (set-valued) monotone mappings. Their usual
point-wise (or Minkowski) sum is defined in an obvious algebraic way: (S+T )(x) =
Sx + Tx, x ∈ X . This operator has domain Dom(S + T ) = Dom(S)∩Dom(T ) and
is readily seen to be monotone. However, it is not obliged to be maximal mono-
tone: there are simple counterexamples in the plane involving subdifferentials of
convex functions – see, e.g., [37]. In the case of reflexive Banach spaces, a clas-
sical sufficient qualification condition for the maximality of the sum is that the
interior of the domain of one of the operators intersects the domain of the other
and was given by Rockafellar [43]. Improvements (in the sense of weakening)
of this qualification condition in the reflexive case have been proposed in, e.g.,
[5, 11, 12, 18, 31, 34, 36, 47]. A substantial progress with the Rockafellar qualifica-
tion condition in the nonreflexive case was done recently by Voisei [55] (see also
the subsequent papers [9,56]). But it is still an open question whether this condition
guarantees the maximality of the sum of the operators in any Banach space. More
details concerning this question can be found in Simons [46].

As we mentioned in the introduction, the lack of maximality of the sum of two
maximal monotone operators pushed researchers to look for other concepts of sums
with the simple idea to have more opportunities to get maximality. In this section,
we will present one of them, the extended sum which was proposed in [39, 41].

The extended sum relies on the concept of ε-enlargement of a given monotone
mapping, which is naturally motivated by the notion of ε-subdifferential. Let a
monotone operator T : X ⇒ X∗ and ε ≥ 0 be given. The ε-enlargement of T is
the operator T ε : X ⇒ X∗ defined as follows:

T ε x := {x∗ ∈ X∗ : 〈y∗ − x∗,y− x〉 ≥ −ε for every (y,y∗) ∈ Gr(T )}, x ∈ X .
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This notion was independently mentioned in [16, 30], and detailed study has been
performed in a series of papers by Burachik et al. [14–17], Svaiter [48] and other
authors. Some of the basic properties of this notion readily follow from the defini-
tion, namely that T ε has convex w∗-closed values and that it is really an enlargement
of T , that is T x ⊂ T εx for any x ∈ X , because of the monotonicity of T . Moreover,
T ε1 ⊂ T ε2 , provided 0≤ ε1 ≤ ε2. It can be seen that T is maximal monotone exactly
when T = T 0 =

⋂
ε>0 T ε . In the particular case of the subdifferential of a proper

convex lower semicontinuous function f , if we denote by ∂ ε f the above enlarge-
ment, then one has ∂ε f ⊂ ∂ ε f and the inclusion can be strict (for instance, when
f (x) = x2/2, x ∈R [16, 30]).

This enlargement satisfies, as the subdifferentials do, the Brøndsted-Rockafellar
property in a reflexive Banach space – the result is due to Torralba [51] (cf. also
[17]). For the same and similar properties outside the reflexive case, the reader is
referred to [29,41,45]. Another useful property which is related to the ε-enlargement
(and which is a consequence of the so-called transportation formula) is given by
the next.

Proposition 16.1. [15, 48] If T : X ⇒ X∗ is a maximal monotone mapping and
ε ≥ 0, then the enlargement T ε satisfies:

〈x∗ − y∗,x− y〉 ≥ −4ε ∀(x,x∗),(y,y∗) ∈ Gr(T ε). (16.1)

Operators T : X ⇒ X∗ that satisfy inequality (16.1) (with ε ≥ 0 instead of 4ε) are
known as ε-monotone operators and were introduced and studied by Veselý [54],
who showed that this class of operators preserves some of the good properties of the
monotone operators, for example they are locally bounded in the interior of their
domain.

The enlargement given above is related also to the Fitzpatrick function [19,
Definition 3.1] ϕT : X×X∗ →R∪{+∞}, associated with any monotone (nontrivial)
operator T : X ⇒ X∗:

ϕT (x,x∗) := sup
(y,y∗)∈Gr(T )

(〈y∗,x〉− 〈y∗,y〉+ 〈x∗,y〉)

= sup
(y,y∗)∈Gr(T )

(〈y∗ − x∗,x− y〉)+ 〈x∗,x〉.

This function has turned out to be quite useful in monotone operator theory (see,
e.g., [6–8, 46–48, 56] just to mention a few). The function ϕT is proper, convex and
lower semicontinuous. Moreover, ϕT verifies the following: for any ε ≥ 0,

x∗ ∈ T ε (x)⇐⇒ ϕT (x,x∗)≤ 〈x∗,x〉+ ε,

and, if T is maximal monotone (see [19]), then ϕT is the minimal convex function
with the property

〈x∗,x〉 ≤ϕT (x,x∗) ∀(x,x∗)∈ X×X∗, and 〈x∗,x〉= ϕT (x,x∗) ∀(x,x∗)∈Gr(T ).
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With these properties in hand, one can verify that:

Proposition 16.2. [24] Let T : X ⇒ X∗ be a monotone operator. If prX is the usual
projection of X×X∗ on X, then

prX domϕT =
⋃

ε>0

DomT ε .

Let us pass now to the definition of the extended sum. In what follows, the symbol

A
w∗

for a set A in the dual space X∗, will mean the closure of A with respect to
the weak star topology w∗ in X∗. In [25] Hiriart–Urruty and Phelps established the
following formula for the subdifferential of the sum of two convex functions:

Theorem 16.3. [25] Let f ,g : X → R∪{+∞} be two proper convex lower semi-
continuous functions. Then for every x ∈ dom f ∩domg one has:

∂ ( f + g)(x) =
⋂

ε>0

∂ε f (x)+ ∂εg(x)
w∗

.

Having this result and disposing with the notion of enlargement of a given monotone
operator, the concept of extended sum comes in a natural way. Namely,

Definition 16.4. [39, 41] Let S,T : X ⇒ X∗ be monotone operators. The extended
sum of S and T , denoted by S +

ext
T , is defined by

S +
ext

T (x) :=
⋂

ε>0

Sεx + T ε x
w∗

, x ∈ X .

Evidently, this sum is commutative and it contains the usual point-wise sum of S
and T . Moreover, the extended sum has w∗-closed and convex images. But, as we
will see later, the graph of the extended sum is not obliged to be closed. Although we
can sum up in this extended way arbitrary monotone operators, it is not of substantial
interest because there are examples (see, e.g., [24], Example 3.3) showing that, in
general, this sum is not monotone. But if both operators are maximal monotone,
then the extended sum is monotone:

Proposition 16.5 ([24] Proposition 3.4). Let S,T : X ⇒ X∗ be maximal monotone.
Then the extended sum S +

ext
T is a monotone operator.

Proof. Take two couples (x,x∗),(y,y∗) ∈ Gr(S +
ext

T ) and let us fix some ε > 0. By

the definition of the extended sum there are nets {u∗x,α}α ⊂ Sεx and {v∗x,α}α ⊂ T ε x
such that

u∗x,α + v∗x,α
w∗−→ x∗ (16.2)

and similarly, nets {u∗y,β}β ⊂ Sεy and {v∗y,β}β ⊂ T εy with the property

u∗y,β + v∗y,β
w∗−→ y∗. (16.3)
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By Proposition 16.1 for any α and β , we have

〈u∗y,β −u∗x,α ,y− x〉 ≥ −4ε and 〈v∗y,β − v∗x,α ,y− x〉 ≥ −4ε.

Thus, by summing up, passing to the limit on α and β and using (16.2) and (16.3)
we obtain that

〈y∗ − x∗,y− x〉 ≥ −8ε.

Since ε > 0 was arbitrary, we conclude that

〈y∗ − x∗,y− x〉 ≥ 0.

Thus, S +
ext

T is monotone and this completes the proof. �

This proposition helps obtain easily several results from [39,41], which originally
were proved directly. The first one is the following immediate corollary.

Corollary 16.6. [39, 41] Let S,T : X ⇒ X∗ be maximal monotone operators. If
S + T is maximal monotone, then S + T = S +

ext
T . In particular, if S + T is maxi-

mal monotone, then S + T = S +
ext

T .

Let us mention that in some cases the two types of sums–the usual and the extended
one coincide without being a maximal monotone operator (cf. Example 16.20
below).

The next result is more interesting since it gives an important case where the
extended sum is always maximal monotone, while the usual one is not, in general.
Namely, without any qualification condition the subdifferential of the sum of two
proper convex lower semicontinuous functions is equal to the extended sum of their
subdifferentials.

Corollary 16.7. [39,41] Let f ,g : X→R∪{+∞} be proper convex lower semicon-
tinuous functions such that dom f ∩domg �= /0. Then, for any x ∈ X

∂ ( f + g)(x) = (∂ f +
ext

∂g)(x)

Proof. Theorem 16.3 shows that ∂ f +
ext

∂g contains ∂ ( f +g) (remember that ∂ε f ⊂
∂ ε f ). Since ∂ f and ∂g are maximal monotone, ∂ f +

ext
∂g is monotone by Proposition

16.5, hence it must coincide with ∂ ( f + g) because the latter operator is maximal
monotone. �

Other results in which the subdifferential of the sum of two convex functions is
represented by approximations of the subdifferentials of the functions involved can
be found also in [33, 49, 50].
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The previous result hints that to have an equality between the usual and the
extended sum we will need a qualification condition. Indeed, the next result shows
that the usual and extended sum are equal under a qualification condition of
Robinson–Rockafellar type. Let us recall that a set A ⊂ X is said to be absorb-
ing in X (we express this by writing 0 ∈ coreX A) if for any h ∈ X there is t > 0 with
th ∈ A.

Theorem 16.8 ([24], Theorem 3.7). Let S,T : X ⇒ X∗ be maximal monotone op-
erators. Suppose that

0 ∈ coreX (prX domϕS−prX domϕT ) .

Then:

(1) For any ε ≥ 0 and x ∈ X, Sεx + T εx is w∗-closed;
(2) S + T = S +

ext
T .

The proof is based on the Krein–Shmulian Theorem and the properties of the
enlargements. An analogous result for subdifferentials can be found in [49] and the
case ε = 0 in (1) is proved in [53] with a different (formally, stronger) qualification
condition. A very recent study of qualification conditions of the same nature as
above is contained in the papers [10, 56]. In particular, as it was pointed out to the
author by C. Zălinescu, the condition above is equivalent to the usual interior point
one (the latter concerns also the condition in Theorem 16.26 below). The paper [10]
contains also a weakening to get (1) in the reflexive case.

Since for any proper, lower semicontinuous convex function h : X → R∪{+∞}
and ε > 0 we have domh = Dom(∂εh) ⊂ Dom(∂ ε h) ⊂ prX domϕ∂ h the previous
theorem easily implies the following well known result about exact sum rule under
Robinson–Rockafellar condition.

Corollary 16.9. Let f ,g : X → R∪{+∞} be proper convex lower semicontinuous
functions. If 0 ∈ coreX (dom f −domg), then ∂ f + ∂g = ∂ ( f + g).

16.4 Variational Sum of Maximal Monotone Operators

The concept of variational sum was introduced and studied for the first time by
Attouch et al. in [3]. Originally, it was considered in the setting of Hilbert spaces
but as it was shown later in [39, 40] the notion can be introduced in a natural way
also in the setting of reflexive spaces by preserving its properties. Therefore, in this
section (and in part of the next one) X will be assumed always a reflexive Banach
space. According to a well known renorming theorem of Asplund [1] we may (and
will) suppose that both norms, the norm in X and its dual norm in X∗, are Gâteaux
differentiable away from the origin. Thus, in such a case these norms are strictly
convex, that is, the corresponding unit spheres do not contain line segments. When
needed (see Troyanski [52]) the renorming can be stronger, in order these norms
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to be also locally uniformly rotund in which case they satisfy also the Kadec–Klee
property: if {xn}n≥1 ⊂ X converges weakly to x ∈ X and if ‖xn‖ → ‖x‖, then xn

converges to x strongly (and similarly for the dual norm).
With such norms the duality mapping JX : X → X∗ which is defined by

JX x := {x∗ ∈ X∗ : 〈x∗,x〉= ‖x‖2 = ‖x∗‖2}, x ∈ X ,

is an everywhere defined single-valued mapping which is bijective and norm-to-
weak continuous. When there is no ambiguity (as it is in this section) we will write
simply J instead of JX . It is well known that this mapping is, in fact, the subdiffer-
ential of the convex function (1/2)‖·‖2 and thus it is a maximal monotone operator.
With the chosen norms we obviously have that the duality mapping J∗ of the dual
is J−1. If, in addition, the norms satisfy the Kadec-Klee property then J and J∗ are
norm-to-norm continuous. Let us recall the well known Minty–Rockafellar theorem
(see, e.g., [43]): A monotone operator T : X ⇒ X∗ is maximal monotone if and
only if for any λ > 0 the (maximal monotone) operator T +λ J is surjective. In this
case the inverse operator (T +λJ)−1 is an everywhere defined single-valued strictly
monotone operator which is norm-to-weak continuous.

As the concept of extended sum relies on the notion of enlargement of the oper-
ators involved, the notion of variational sum is based on another regularization of a
given monotone operator: the Yosida regularization. First, let us remind that given
a maximal monotone operator T : X ⇒ X ∗ the resolvent JT

λ of T of order λ > 0 is
the operator which to each x ∈ X assigns the (unique, according to the above cited
result of Rockafellar) solution xλ = JT

λ x to the inclusion

0 ∈ J(xλ − x)+ λTxλ . (16.4)

The resolvent JT
λ is an everywhere defined operator which maps X into Dom(T ).

The Yosida regularization Tλ of T of order λ > 0 is the operator

Tλ x :=
1
λ

J(x− xλ), x ∈ X , (16.5)

which obviously is everywhere defined.
It can be easily seen that for any λ > 0 we have the following properties

JT
λ x = x−λJ−1Tλ x ∀x ∈ X , (16.6)

and

Tλ x ∈ T (JT
λ x) ∀x ∈ X . (16.7)

One can verify that an equivalent purely analytical definition (which avoids the
use of resolvents) of the Yosida regularization is the following one:

Tλ = (T−1 +λJ−1)−1. (16.8)



326 J.P. Revalski

A sum of the type (S−1 + T−1)−1 for given monotone operators S,T : X ⇒ X∗ is
known as the parallel sum of S and T . Therefore, the Yosida regularization of T of
order λ > 0 is the parallel sum of T and (1/λ )J. From this equivalent definition
one easily sees (by using the Minty–Rockafellar result cited above) that the Yosida
regularization Tλ , λ > 0, of a given maximal monotone operator T : X ⇒ X∗ is an
everywhere defined single-valued maximal monotone operator which is norm-to-
weak continuous.

When X is a Hilbert space and we identify X∗ with X , then J is the identity
mapping I and the above definitions take their most known forms: JT

λ = (I +λT )−1

and Tλ = (I− JT
λ )/λ .

Let us now introduce the concept of variational sum. Put I := {(λ ,μ) ∈ R
2 :

λ ,μ ≥ 0,λ + μ �= 0}. The general idea is the following one: given two maximal
monotone operators S,T : X ⇒ X∗ and (λ ,μ)∈I , to consider the operator Sλ +Tμ
(with the convention S0 = S and T0 = T ) and then to pass to an appropriate limit on
λ ,μ . Let us stress the fact that, since (λ ,μ) ∈ I , at least one of the parameters is
different from 0, thus at least one of the operators Sλ or Tμ is everywhere defined
maximal monotone operator and therefore, according to the Rockafellar qualifica-
tion condition the sum Sλ + Tμ will be always a maximal monotone operator.

A convergence that has turned out to be useful when monotone operators are
involved is the Painlevé–Kuratowski convergence – see, e.g., [2]: one identifies the
maximal monotone operators with their graphs in X×X∗, endowed with some usual
product norm, and then considers Painlevé–Kuratowski convergence of these graphs
as closed sets. More formally, let {Cλ ,μ : (λ ,μ)∈I } be a family of maximal mono-
tone operators between X and X∗. Denote by F the filter of all neighborhoods of
the zero in I .

• (x,x∗) ∈ X ×X∗ belongs to the lower limit in the sense of Painlevé–Kuratowski
of the family {Cλ ,μ} along the filter F , which is denoted by liminfF Cλ ,μ , if for
any neighborhood U of (x,x∗) in the product topology in X×X∗ there is F ∈F
so that Gr(Cλ ,μ)∩U �= /0 for each (λ ,μ) ∈ F ;

• (x,x∗) ∈ X ×X∗ belongs to the upper limit in the sense of Painlevé–Kuratowski
of the family {Cλ ,μ} along the filter F , which is denoted by limsupF Cλ ,μ , if for
any neighborhood U of (x,x∗) in the product topology in X ×X∗ and for every
F ∈F there is (λ ,μ) ∈ F with Gr(Cλ ,μ)∩U �= /0;

• The family {Cλ ,μ : (λ ,μ) ∈ I } (graph)-converges to C ⊂ X ×X∗ in the sense
of Painlevé–Kuratowski if C = liminfF Cλ ,μ = limsupF Cλ ,μ . We write in this
case C = limF Cλ ,μ .

One can check that equivalent sequential definitions of the above limits sound
as follows:

• (x,x∗) ∈ liminfF Cλ ,μ iff for any sequence {(λn,μn)}n≥1 ∈ I such that
(λn,μn)→ (0,0) there is a sequence {(xn,x∗n)}n≥1 so that (xn,x∗n) ∈ Gr(Cλn,μn)
for any n≥ 1 and (xn,x∗n)→ (x,x∗): this comes from the fact that a couple (x,x∗)
is in the lower limit of Cλ ,μ exactly when the distances from (x,x∗) to Cλ ,μ go to
zero along the filter F ;
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• (x,x∗) ∈ limsupF Cλ ,μ iff there is a sequence {(λn,μn)}n≥1 ∈ I such that
(λn,μn)→ (0,0) and a sequence {(xn,x∗n)}n≥1 so that (xn,x∗n) ∈ Gr(Cλn,μn) for
any n≥ 1 and (xn,x∗n)→ (x,x∗).

The interest to this convergence for maximal monotone operators is motivated
by the following well known (and easily verifiable) facts: the lower limit of the
family of maximal monotone operators {Cλ ,μ : (λ ,μ) ∈ I } (when it exists) is al-
ways a monotone operator (with closed graph by definition); and, if C is a maximal
monotone operator then C = limF Cλ ,μ if and only if C ⊂ liminfF Cλ ,μ . The latter
follows from the fact that any point of limsupF Cλ ,μ is monotonically related to
liminfF Cλ ,μ .

Now we are ready to give the definition of the variational sum and some of its
basic properties.

Definition 16.10. [3, 39, 40] Let S and T be maximal monotone operators in the
reflexive Banach space X . The variational sum of S and T , denoted by S +

v
T , is the

operator between X and X∗ having the following graph:

S +
v

T := liminf
F

(Sλ + Tμ).

A first list of basic properties which can be derived directly from the definition is
the following one:

Proposition 16.11 (see, e.g., [40, Proposition 4.6]). Let X be a reflexive Banach
space and S,T : X ⇒ X∗ be maximal monotone operators. Then

(1) Dom(S)∩Dom(T )⊂ Dom(S +
v

T )⊂ Dom(S)∩Dom(T );

(2) S +
v

T is a monotone operator with closed graph;

(3) If S +
v

T is maximal then S +
v

T = limF (Sλ + Tμ);

(4) S +
v

T = T+
v

S.

Indeed, (2)–(4) and the second inclusion in (1) are direct consequences from the
definitions and the remarks above. Precisely speaking, the first inclusion in (1) was
proved in [40], provided the norm in X∗ satisfies also the Kadec–Klee property, but
as we will see in Theorem 16.16 it is true without supposing this property.

A couple of remarks are in order here: first of all observe that the definition of the
variational sum at a certain point, takes into account the behavior of the operators
involved also in nearby points, while in the definition of the extended sum this is
not the case. The second remark concerns the comparison with the usual sum: while
in the case of extended sum it is immediately seen that the usual point-wise sum
is included in the extended one, here in the case of variational sum, it is not clear
from the definition whether we obtain, in general, a bigger sum. The question was
resolved in [21] – see below Theorem 16.16.
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When dealing with the variational sum, sometimes we need more workable
equivalent definitions involving solutions to resolvent type inclusions. The follow-
ing one (condition (b) in the next proposition) was mentioned for the first time in
[3] in the Hilbert space setting. The equivalence below relies on a technique, which
originates from the work of Brezis, Crandall, and Pazy [13] and then it was devel-
oped for the case of the variational sum (when we have two perturbed operators) by
Attouch, Baillon and Théra in [3, 4] for the Hilbert space setting. The extension of
this technique to the case of reflexive spaces is in [40] and a further development is
contained in [21].

Proposition 16.12. Let S,T be maximal monotone operators in the reflexive
Banach space X. Then the following are equivalent:

(a) (x,x∗) ∈ Gr(S +
v

T );

(b) For any (λ ,μ) ∈I the (unique) solution xλ ,μ of the inclusion

x∗ ∈ J(xλ ,μ − x)+ Sλxλ ,μ + Tμxλ ,μ (16.9)

converges to x as λ ,μ → 0;

Proof. Since ‖J(xλ ,μ − x)‖ = ‖xλ ,μ − x‖, the implication (b)=⇒(a) is immediate.
The argument that (a) implies (b) was not given explicitly in [3] (only the bound-
edness of the filtered family was obtained). The proof which we give here, uses
an argument from [21, Lemma 3.1], where, in particular, condition (16.10) is also
established. Let us mention that the inclusion (16.9) has solutions for any couple
(x,x∗) ∈ X×X∗.

Lemma 16.13. Let (x,x∗) ∈ X ×X∗ be any couple and suppose that Dom(S +
v

T )

�= /0. Then the solutions of the inclusion (16.9) for (x,x∗) remain bounded as
λ ,μ→ 0. Moreover, for any (y,y∗) ∈Gr(S +

v
T ) and any sequence {xλn,μn}n≥1, with

(λn,μn)→ 0, such that xλn,μn converges weakly to some x̄, we have

1
2
‖y− x‖2 + 〈x∗ − y∗, x̄− y〉 ≥ 1

2
limsup

n
‖xλn,μn − x‖2. (16.10)

The boundedness of the filtered family {xλ ,μ : (λ ,μ) ∈ I } when (λ ,μ)→ (0,0)
was proved in the Hilbert space setting by Attouch et al. in [3] (see the proof of
Theorem 6.1 there) provided Dom(S)∩Dom(T ) �= /0. The same fact in reflexive
spaces for the family {xλ ,μ} of solutions of the variant of (16.9) in which, instead
of the term J(xλ ,μ − x), we consider Jxλ ,μ − Jx, is in [40] (the proof of Theorem
4.12 and Remark 4.8). It can be easily seen that the boundedness of the family of
solutions to (16.9) and the boundedness of the solutions of the latter variant of (16.9)
are equivalent. However, in the absence of the Kadec–Klee property of the norms,
it is better to work with the solutions of (16.9).



16 Regularization Procedures for Monotone Operators: Recent Advances 329

In the proof below we use the reasoning from [21, Lemma 3.1] not because it
allows showing the boundedness of the family above in the (formally) more gen-
eral case when Dom(S +

v
T ) �= /0 (we do not have examples of operators for which

Dom(S)∩Dom(T ) = /0 and Dom(S +
v

T ) �= /0) but more important, it gives in addi-

tion the inequality (16.10) which helps obtaining properties related to the variational
sum, without supposing that the norm in X satisfies the Kadec–Klee property.

Proof of Lemma 16.13. Let (y,y∗) ∈Gr(S +
v

T ) and let U be the open ball in X×X∗

around (y,y∗) with radius 1. By the definition of the variational sum there is F ∈F
such that for any (λ ,μ) ∈ F we have U ∩Gr(Sλ +Tμ) �= /0. For any (λ ,μ) ∈ F take
an arbitrary (yλ ,μ ,y∗λ ,μ) ∈U ∩Gr(Sλ +Tμ). This means y∗λ,μ ∈ Sλ yλ ,μ +Tμyλ ,μ and
thus the monotonicity of Sλ + Tμ and the fact that xλ ,μ is a solution to (16.9) entail
that for any (λ ,μ) ∈ F we have

〈x∗ − J(xλ ,μ− x)− y∗λ ,μ,xλ ,μ − yλ ,μ〉 ≥ 0.

Therefore, for each (λ ,μ) ∈ F the following is true

〈x∗ − y∗λ ,μ ,xλ ,μ − yλ ,μ〉 ≥ 〈J(xλ ,μ − x),xλ ,μ− yλ ,μ〉.

On the other hand, the fact that J is the subdifferential of the function (1/2)‖ · ‖2

allows us to obtain that

〈J(xλ ,μ − x),yλ ,μ− xλ ,μ〉 = 〈J(xλ ,μ − x),yλ ,μ − x− (xλ ,μ− x)〉
≤ 1

2
‖yλ ,μ− x‖2− 1

2
‖xλ ,μ − x‖2

for every (λ ,μ) ∈ F . The latter two inequalities easily yield the next one

1
2
‖yλ ,μ− x‖2 + 〈x∗ − y∗λ ,μ ,xλ ,μ − yλ ,μ〉 ≥

1
2
‖xλ ,μ− x‖2 ∀(λ ,μ) ∈ F. (16.11)

Since for (λ ,μ) ∈ F the families {yλ ,μ} and {y∗λ ,μ} remain bounded then there are

some α,β ≥ 0 satisfying α +β‖xλ ,μ− x‖ ≥ (1/2)‖xλ ,μ− x‖2 for every (λ ,μ) ∈ F
and this shows that the family {xλ ,μ : (λ ,μ)∈I } is bounded when (λ ,μ)→ (0,0).

As to (16.10), take a sequence {(λn,μn)}n≥1 from I which converges to (0,0)
and such that xλn,μn converges weakly to some x̄. Let (y,y∗) ∈ Gr(S +

v
T ). By the

definition of the lower limit, there is a sequence {(yn,y∗n)}n≥1 such that (yn,y∗n) ∈
Gr(Sλn + Tμn) for every n ≥ 1 and (yn,y∗n) → (y,y∗). Since obviously for large
enough n we have (λn,μn) ∈ F , then plugging these yn,y∗n and the corresponding
xλn,μn in the inequality (16.11) above and passing to the limit on n we obtain (16.10).
The proof of the lemma is completed. �
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Now let us come back to the proof of Proposition 16.12. As we mentioned,
we only have to prove that (a)=⇒(b). Let (x,x∗) ∈ Gr(S +

v
T ) and let {xλ ,μ :

(λ ,μ) ∈ I } be the family of solutions to (16.9). To prove that xλ ,μ converges
strongly to x as (λ ,μ) → (0,0), it is enough to show that for every sequence
{(λn,μn)}n≥1 ⊂ I which converges to (0,0), the sequence {xλn,μn}n≥1 has a sub-
sequence which converges strongly to x. Indeed, let {(λn,μn)}n≥1 be a sequence in
I which converges to (0,0). Since according to the above lemma {xλn,μn}n≥1 is
bounded then it has a subsequence (we do not relabel and denote this subsequence
again by {xλn,μn}n≥1) which converges weakly to some x̄. Apply (16.10) with
(y,y∗) = (x,x∗). This gives limsupn ‖xλn,μn − x‖2 ≤ 0 which shows that {xλn,μn}n≥1

converges strongly to x. This completes the proof of Proposition 16.12. �

Another application of (16.10) and the equivalent definitions above is the
following

Corollary 16.14 ([21] Proposition 3.2). Let S,T : X ⇒ X∗ be maximal monotone
operators in the reflexive Banach space X. Then the values of S +

v
T are convex.

We come now to the question of comparison of the variational sum with the
usual one (or the extended one). So far only partial results related to this question

have been known: for example if the operator S + T
G

is maximal then it was known
that it coincides with the variational sum [3, 39, 40]. Or, if either the extended sum
or the variational one was supposed to be maximal, then it contained the other–
[39, 40]. The problem is solved by Garcı́a in [21] where the author showed that in
the setting of reflexive spaces the variational sum contains the extended one (and
hence the usual one). To prove this result we need the following simple, but useful,
lemma (see [32, Lemma 3.1] and [21, Lemma 3.5]):

Lemma 16.15. Let T : X ⇒ X∗ be a maximal monotone operator. Then, for every
λ ,ε ≥ 0, w∗ ∈ T εw and u∗ ∈ Tλ u we have

〈u∗ −w∗,u−w〉+ λ
4
‖w∗‖2 ≥−ε.

Proof. By (16.6) and (16.7) we have u∗ ∈ T (u−λJ−1u∗) (for λ = 0 this is obviously
true) and thus by the definition of the ε-enlargement we obtain

〈u∗ −w∗,u−λJ−1u∗ −w〉 ≥ −ε.

This yields
〈u∗ −w∗,u−w〉 ≥ λ 〈u∗ −w∗,J−1u∗〉− ε

≥ λ (‖u∗‖2−‖w∗‖ ‖u∗‖)− ε

≥−λ
4
‖w∗‖2− ε. �
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Before giving the next result, let us mention that in the setting of reflexive spaces
where the weak and the weak star topology in X∗ are the same, the extended sum of
two monotone operators S,T : X ⇒ X∗ at a point x ∈ X is, in fact, the intersection of
the norm closures of the sets of the type Sεx + T εx, ε > 0, because of the convexity
of the ε-enlargements. The proof of the theorem below differs a bit from the original
one from [21, Theorem 3.6] to be more direct.

Theorem 16.16 ([21] Theorem 3.6). Let S,T : X ⇒ X∗ be maximal monotone op-
erators in the reflexive Banach space X. Then

S +
ext

T (x)⊂ S +
v

T (x) ∀x ∈ X .

Proof. Take an arbitrary couple (x,x∗) from Gr(S +
ext

T ) and let {(λn,μn)}n≥1 be a

sequence from I which converges to (0,0). For any n ≥ 1, let xn be the (unique)
solution of the inclusion (16.9) for the couple (x,x∗). That is, for any n ≥ 1, there
are u∗n ∈ Sλnxn and v∗n ∈ Tμn xn such that

x∗ = J(xn− x)+ u∗n + v∗n ∀n≥ 1. (16.12)

According to the definitions the proof will be completed if we show that the se-
quence {xn}n≥1 converges to x (because in this case obviously u∗n + v∗n → x∗). To
this end, let us take an arbitrary ε > 0 and fix it. By the definition of the extended
sum and the remark before the theorem, there are s∗ε ∈ Sεx and t∗ε ∈ T εx so that
‖x∗ − (s∗ε + t∗ε )‖ < ε. Let us now apply Lemma 16.15 first for the operator S, the
couples (x,s∗ε ), (xn,u∗n), λn and ε and then for the operator T , the couples (x,t∗ε ),
(xn,v∗n), μn and ε . This gives:

〈u∗n− s∗ε ,xn− x〉+ λn

4
‖s∗ε‖2 ≥−ε ∀n≥ 1

and

〈v∗n− t∗ε ,xn− x〉+ μn

4
‖t∗ε ‖2 ≥−ε ∀n ≥ 1,

which after summing up yields

〈(u∗n + v∗n)− (s∗ε + t∗ε ),xn− x〉+ λn

4
‖s∗ε‖2 +

μn

4
‖t∗ε ‖2 ≥−2ε ∀n≥ 1.

According to (16.12), this means that

〈x∗ − J(xn− x)− (s∗ε + t∗ε ),xn− x〉+ λn

4
‖s∗ε‖2 +

μn

4
‖t∗ε ‖2 ≥−2ε ∀n≥ 1.

and since 〈J(xn− x),xn− x〉= ‖xn− x‖2 the latter entails

〈x∗ − (s∗ε + t∗ε ),xn− x〉+ λn

4
‖s∗ε‖2 +

μn

4
‖t∗ε ‖2 ≥ ‖xn− x‖2−2ε ∀n≥ 1.
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Remember now that ε > 0 was fixed, and thus also s∗ε and t∗ε , which do not depend
on n. Therefore, the first conclusion from the last inequality is that the sequence
{xn}n≥1 is bounded. Let M > 0 be an upper bound of {‖xn− x‖}n≥1. Then the last
inequality shows also (after passing to the limit on n) that

Mε ≥ limsup
n
‖xn− x‖2−2ε.

And since ε > 0 was arbitrary this entails that the sequence {xn}n≥1 converges to x.
The proof is completed. �

This result seems in a certain sense natural having in mind the definitions of the
two notions which show that the variational sum takes into account the behavior of
the operators at nearby points of the point of reference, while the extended sum does
not do so.

Some corollaries are in order here. The first one is that the variational sum is
larger than the usual one.

Corollary 16.17. [21] Let S,T : X ⇒ X∗ be maximal monotone operators in the
reflexive Banach space X. Then S + T ⊂ S +

v
T .

Therefore, because the variational sum is always with closed graph, we have

Corollary 16.18. [3,21,39,40] Let S,T : X ⇒ X∗ be maximal monotone operators

in the reflexive Banach space X. If S + T
G

is maximal monotone, then

S + T
G = S +

v
T.

In particular, if S + T is maximal, then S + T = S +
ext

T = S +
v

T .

The fact that S + T
G = S +

v
T provided S + T

G
is maximal was proved for Hilbert

spaces in [3, Theorem 6.1] and for reflexive spaces in [40, Theorem 4.2] (we should
mention that our Theorem 4.2 from [40] was formulated for the operator S + T ,

instead of S + T
G

, but the proof in Theorem 4.2 from [40] shows, in fact more, that

S + T
G = S +

v
T ). However, in our paper [40] we were supposing, in addition, that

the norms satisfy the Kadec–Klee property.
Finally, having in mind also Corollary 16.7 we have the following corollary

from Theorem 16.16 (this was first proved in [3] in the Hilbert space setting; see
also [26]).

Corollary 16.19 ([40], Theorem 5.1, Corollary 5.2). Let f ,g : X → R∪{+∞} be
two proper lower semicontinuous convex functions defined in the reflexive Banach
space X such that dom f ∩domg �= /0. Then

∂ ( f + g) = ∂ f +
ext

∂g = ∂ f +
v

∂g.
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The fact that the variational sum of subdifferentials of convex functions is the
same as the subdifferential of the sum of the functions was used in [3, 4] to study
certain Schrödinger equations related to problems from quantum mechanics.

We finish this section by giving an example (built by using an example from
Phelps [37, p. 29]) which shows that the variational sum, not only is, in general,
strictly larger than the usual point-wise sum (as suggests the previous corollary)
but also that, in general, it is strictly larger than the extended sum as well. This is
an example where the usual point-wise sum and the extended one coincide without
being a maximal monotone operator.

Example 16.20. (See [24, Example 3.11] and [21, Example 3.13]) Let X be the
Hilbert space l2× l2 with the usual scalar product and norm generated by it and
identify X∗ with X . Let Dom(T ) := D×D with

D := {{xn}n∈N ∈ l2 : {2nxn}n∈N ∈ l2},
so that Dom(T ) is a dense linear subspace of X , and let T : Dom(T ) → X be
defined by

T ({xn},{yn}) := ({2nyn},−{2nxn}).

Then T1 := T and T2 :=−T are linear anti-symmetric operators with common (dense
in X) domain Dom(T ) and in addition they are maximal monotone. Moreover, as
it is shown in [24], T1 +

ext
T2 = T1 + T2. On the other hand, having in mind that

the variational sum has closed graph, it follows that Dom(T1 +
v

T2) = l2× l2 and

T1 +
v

T2(x) = 0 for any x ∈ X . That is T1 + T2 = T1 +
ext

T2 ��= T1 +
v

T2.

It remains an open question whether the variational sum of two maximal mono-
tone operators S and T is a maximal monotone operator, provided Dom(S) ∩
Dom(T ) �= /0, or there are counterexamples of this. Apart from the case of subdif-
ferentials, where we know that the variational sum is maximal (Corollary 16.19),
and the case when the usual sum (or its graph closure) is maximal monotone
(Corollary 16.18), the only result related to the latter question which is known is
that, in finite dimensions, if the variational sum has a unique maximal monotone
extension, then they both coincide, i.e., in this case the variational sum is also a
maximal monotone operator [21, Corollary 3.4].

16.5 Precompositions of Maximal Monotone Operators
with Linear Continuous Mappings

In this section, we will discuss another operation on monotone operators that has
been studied from similar points of view as the sum of operators. This operation
is the precomposition of a given maximal monotone operator with a linear and
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continuous mapping. We will see that there exists a sort of equivalence between this
operation and the operation of sum, which extends also to the generalized notions
of sums and compositions.

More precisely, let X be a Banach space, T : X ⇒ X∗ be a maximal monotone
operator and suppose that we have also a linear and continuous operator A : Y → X
defined in another Banach space Y and with values in X . Let A∗ denote as usual
the adjoint of A, i.e. A∗ : X∗ → Y ∗ is given by the relation 〈A∗x∗,y〉 = 〈x∗,Ay〉 for
x∗ ∈X∗ and y∈Y . Then, the point-wise composition A∗TA : Y ⇒Y ∗ is easily seen to
be a monotone operator with domain Dom(A∗TA) = A−1(Dom(T )). Such compo-
sitions can be observed in some partial differential equations in divergence form or
in certain problems arising from mathematical economics (cf. e.g., [31,32,42]). The
composition A∗TA is monotone, but the maximal monotonicity of T is not enough
to assure maximal monotonicity of the composition. We need, as in the case of
sums, qualification conditions (of the same nature as for sums) to have maximality
(cf. e.g. [11, 31, 36, 42, 46]).

It is well known that compositions as above are closely related to sums of op-
erators in the sense that the precompositions could be used to express sums of
operators and vice versa, sums can be used to obtain compositions. To illustrate
this, let T1,T2 : X ⇒ X∗ be two monotone operators and define A : X → X × X
by Ax = (x,x) and T : X × X ⇒ X∗ × X∗ by T (x,y) = T1x× T2y, x,y ∈ X . Then
the operator T is monotone (and maximal if T1,T2 are maximal) and, moreover,
T1 + T2 = A∗TA. This shows how to express sums as precompositions.

Conversely, if we have a monotone operator T : X ⇒ X∗ and a continuous linear
operator A : Y → X , where X and Y are Banach spaces, then let Y ×X be endowed
with some usual product norm and consider the operators S̃A, T̃ : Y ×X ⇒ Y ∗ ×X∗
defined as follows

S̃A := ∂ iGr(A)

T̃ (y,x) := {0}×Tx, for (y,x) ∈ Y ×X . (16.13)

Here, as usual, iGr(A) means the indicator function of (the linear closed space) Gr(A)
in Y ×X . Since iGr(A) is proper convex and lower semicontinuous, the operator S̃A is

maximal monotone with domain Gr(A), and T̃ is (maximal) monotone, provided T
is so, with domain Y ×Dom(T ). The following relations are true:

S̃A(y,Ay) = {(A∗x∗,−x∗) : x∗ ∈ X∗}, ∀y ∈ Y, (16.14)

and that
y∗ ∈ A∗TAy⇐⇒ (y∗,0) ∈ (S̃A + T̃ )(y,Ay), (16.15)

or equivalently

y∗+ A∗x∗ ∈ A∗TAy⇐⇒ (y∗,x∗) ∈ (S̃A + T̃ )(y,Ay). (16.16)

These relations show how to express precompositions via sums.
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Summarizing, we see that there exists a sort of equivalence between these two
operations on monotone operators and therefore, it is not surprising that we can
mutually deduce results related to one of the notions from the corresponding results
for the other. We will see in this section that this kind of equivalence holds also
when the extended notions of sums are involved.

Having in mind which regularization procedures have been used to define the
concepts of generalized sums, the notions of extended composition and variational
composition have natural analogous definitions. We start below again with the ex-
tended composition since it can be given in any Banach space.

16.5.1 Extended Composition of a Linear Mapping
with a Monotone Operator

In this subsection, X and Y are real Banach spaces and the majority of the results
are taken from [24].

The next concept was studied in case of subdifferentials in [20]. A similar, but
different, notion was investigated in [35].

Definition 16.21. [24] The extended composition of a linear continuous mapping
A : Y → X and a monotone operator T : X ⇒ X∗ is the operator (A∗TA)ext : Y ⇒ Y ∗
defined by

(A∗TA)ext(y) := ∩ε>0A∗T εAy
w∗

, y ∈Y.

The extended composition is obviously with w∗-closed and convex images. It ex-
tends the usual point-wise composition and as it is seen below, in the case when T
is maximal monotone, it is also a monotone operator.

Our next result shows that the equivalence from (16.16) (and (16.15)) remains
valid also for the extended notions of sum and compositition. Let us mention that
the operator S̃A is not properly enlargeable, that is S̃ε

A = S̃A for any ε > 0 (see, e.g.,
[24, Proposition 2.3]). Non enlargeable operators are studied also in [14].

Theorem 16.22 ([24] Theorem 4.2). Let T : X ⇒ X∗ be monotone and let A : Y →
X be linear and continuous. Then

(a) For any ε ≥ 0 we have: y∗+ A∗x∗ ∈ A∗T εAy⇐⇒ (y∗,x∗) ∈ (S̃A + T̃ ε )(y,Ay);
(b) y∗+ A∗x∗ ∈ (A∗TA)ext(y)⇐⇒ (y∗,x∗) ∈ (S̃A +

ext
T̃ )(y,Ay).

The proof of this statement consists of an appropriate use of the definitions and
(16.14)–(16.16). The above theorem allows us to derive several properties of the
extended composition from the corresponding ones for extended sums. For example,
a straightforward use of Theorem 16.22 and Proposition 16.5 gives:

Proposition 16.23 ([24] Proposition 4.3). Let T : X ⇒ X∗ be a maximal monotone
operator and A : Y → X be linear and continuous. Then the extended composition
(A∗TA)ext is a monotone operator.
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And the next corollary is immediate.

Corollary 16.24 ([24] Corollary 4.4). Let T : X ⇒ X∗ be a maximal monotone
operator and A : Y → X be linear and continuous. If A∗TA is maximal monotone
then we have A∗TA = (A∗TA)ext. In particular, if A∗TA is maximal monotone, then
we have A∗TA = (A∗TA)ext.

The corresponding version of Corollary 16.7 reads as follows:

Corollary 16.25. [20] Let f : X→R∪{+∞} be a proper convex lower semicontin-
uous function and A : Y→X be a continuous linear operator with R(A)∩dom f �= /0.
Then

∂ ( f ◦A) = (A∗∂ f A)ext.

Proof. Put T := ∂ f . Then, for (y,x) ∈ Y × X , T̃ (y,x) = {0}× ∂ f (x) = ∂F(y,x)
where F : Y ×X → R∪ {+∞} is defined by F(y,x) := f (x), (y,x) ∈ Y ×X . It is
easily seen that

y∗ ∈ ∂ ( f ◦A)(y)⇐⇒ (y∗,0) ∈ ∂ (iGr(A) + F)(y,Ay).

By Corollary 16.7, ∂ (iGr(A) + F) = S̃A +
ext

T̃ . Using this in the equivalence relation

above and also Theorem 16.22, we obtain

y∗ ∈ ∂ ( f ◦A)(y)⇐⇒ (y∗,0) ∈ (S̃A +
ext

T̃ )(y,Ay)⇐⇒ y∗ ∈ (A∗∂ f A)ext(y),

and this completes the proof. �

In the latter result, as it was the case when we considered extended sums, we have
a situation when the usual point-wise composition of a maximal monotone operator
with a continuous linear operator is not necessarily maximal monotone, while their
extended composition is always maximal, without any qualification condition.

If we are interested in qualification conditions under which the usual and the
extended composition coincide, as one can expect, we have a natural analogue of
Theorem 16.8 (see also [10, 56] and the remarks after Theorem 16.8). Namely, the
following result holds:

Theorem 16.26 ([24] Theorem 4.6). Let T : X ⇒ X∗ be a maximal monotone op-
erator and let A : Y → X be linear and continuous. Assume that

0 ∈ coreX(R(A)−prX domϕT ).

Then:

(1) For each ε ≥ 0 and y ∈Y , A∗T εAy is w∗-closed;
(2) A∗TA = (A∗TA)ext.
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The proof uses the corresponding result for sums (Theorem 16.8) and
Theorem 16.22. Here as well, the following well-known result comes as an im-
mediate corollary from the previous theorem and Corollary 16.25.

Corollary 16.27. Let f : X → R∪{+∞} be a proper convex lower semicontinuous
function and let A : Y → X be linear and continuous. If 0 ∈ coreX (R(A)− dom f ),
then A∗∂ f A = ∂ ( f ◦A).

To complete the picture in this subsection, we give two results (whose proofs, al-
though not immediate, we omit) which show that, first, symmetrically, extended
sums can be viewed as extended compositions, as it is the case for the usual
operations; and second, that the maximality is preserved when passing to the corre-
sponding representing operations. Namely, we have first that

Theorem 16.28 ([24] Theorem 4.8). Let T1,T2 : X ⇒ X∗ be maximal monotone.
Define A : X → X×X as Ax := (x,x) and T : X×X ⇒ X∗ ×X∗ as T (x,y) := T1x×
T2y, x,y ∈ X. Then:

(1) For any ε ≥ 0 and x ∈ X, A∗T ε Ax⊂ T ε
1 x + T ε

2 x⊂ A∗T 2εAx;
(2) For any x ∈ X, (T1 +

ext
T2)(x) = (A∗TA)ext(x).

It is seen from this theorem that the maximality of the extended sum is equivalent
to the maximality of its representation as extended composition. As expected, the
situation here again is symmetric: the maximality of the extended composition is
equivalent to the maximality of its representation as extended sum:

Proposition 16.29 ([24] Proposition 4.9). Let T : X ⇒ X∗ be maximal monotone
and let A : Y → X be linear and continuous. Then, (A∗TA)ext is maximal monotone
(as an operator from Y to Y ∗) if and only if S̃A +

ext
T̃ is maximal monotone (as an

operator from Y ×X to Y ∗ ×X∗).

16.5.2 Variational Composition of a Linear Mapping
with a Monotone Operator

In this subsection, we will discuss another way of having a generalized composi-
tion – the variational one. As in the case of variational sum our setting will be a real
reflexive Banach space X for which the norm as well as its dual norm are at least
Gâteaux differentiable (away from the origin). In this case, the duality mapping JX

of X will possess the nice properties from Sect. 16.4. Moreover, given a maximal
monotone operator T : X ⇒ X∗, we will dispose with the corresponding resolvent
JT

λ and Yosida regularization Tλ of order λ > 0 which satisfy the properties listed in
Sect. 16.4.

Now, let us consider another real reflexive Banach space Y and a linear and con-
tinuous operator A : Y → X . As for X , the norms in Y and its dual will be supposed
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Gâteaux differentiable away from the origin (and thus strictly convex). In such a case
the duality mapping JY of Y will share the same properties as JX . Let T : X ⇒ X∗ be
a maximal monotone operator. Then, for any λ > 0 the operator A∗Tλ A : Y → Y ∗ is
not only (single-valued and) monotone but also maximal due to the fact that Tλ is an
everywhere defined single-valued maximal monotone operator (see, e.g., [42, 46]).
Thus, one can use the same idea as for sums and pass to a limit in order to define a
variational notion of the composition of A with T . Namely, endowing Y ×Y ∗ with
some usual product norm, we can give the following definition:

Definition 16.30 ([32] Definition 2.1). Let Y,X be reflexive Banach spaces, A :
Y → X be continuous and linear, and let T : X ⇒ X∗ be maximal monotone. The
variational composition (A∗TA)var : Y ⇒ Y ∗ of A and T is the mapping

(A∗TA)var = liminf
λ↓0

A∗Tλ A,

where the limit is in the sense of graphs.

Precisely speaking, (y,y∗) ∈ liminfλ↓0 A∗Tλ A if and only if for every neighborhood
U of (y,y∗) (in the product topology in Y ×Y ∗) there is λ0 > 0 so that for each
λ ∈ (0,λ0) we have Gr(A∗Tλ A)∩U �= /0. Which in its turn is equivalent to: for
any sequence {λn}n≥1 such that λn ↓ 0 there is a sequence {(yn,y∗n)}n≥1 such that
(yn,y∗n) ∈ Gr(A∗TλnA) for each n≥ 1 and {(yn,y∗n)}n≥1 converges to (y,y∗).

The limsup notion is defined in an obvious way: limsupλ↓0 A∗Tλ A is the operator
whose graph consists of couples (y,y∗) ∈ Y ×Y ∗ such that for any neighborhood
U of (y,y∗) (in the product topology in Y ×Y ∗) and for any λ > 0 there is μ ∈
(0,λ ) with Gr(A∗TμA)∩U �= /0. And this is equivalent to the following sequential
definition: there is a sequence {λn}n≥1 such that λn ↓ 0 and a sequence {(yn,y∗n)}n≥1

such that (yn,y∗n)∈Gr(A∗TλnA) for each n≥ 1 and {(yn,y∗n)}n≥1 converges to (y,y∗).
We write, (A∗TA)var = limλ↓0 A∗Tλ A, when limsupλ↓0 A∗Tλ A = liminfλ↓0 A∗Tλ A.

Most of the following properties are immediate:

Proposition 16.31. [32] Let Y,X be reflexive Banach spaces, A : Y → X be contin-
uous and linear, and let T : X ⇒ X∗ be maximal monotone. Then:

(1) The variational composition (A∗TA)var is a monotone operator with closed
graph;

(2) Dom(A∗TA)⊂ Dom(A∗TA)var;
(3) If (A∗TA)var is a maximal monotone operator, then (A∗TA)var = limλ↓0 A∗Tλ A.

Condition (2) above was shown to be true in [32] provided the norms in X and X∗
satisfy also Kadec-Klee property, but as it is seen from Corollary 16.35 below, we
do not need this additional property in order to have (2).

The following result is proved as Proposition 16.12, using also the corresponding
variant of Lemma 16.13.

Proposition 16.32. Let X and Y be reflexive Banach spaces, T : X ⇒ X∗ be a max-
imal monotone mapping and A : Y → X be a linear continuous operator. Then the
following are equivalent:
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(a) (y,y∗) ∈ (A∗TA)var;
(b) For any λ > 0 the (unique) solution yλ of the inclusion (in fact, equality)

y∗ ∈ JY (yλ − y)+ A∗Tλ Ayλ (16.17)

converges to y as λ → 0;

The analogy between the variational sum of two operators and the variational
composition is not so complete, since the concept of variational sum which we
presented in the previous section involves two independent parameters when reg-
ularizing the operators, while the variational composition uses only one parameter.
But still, there is a kind of analogy and we can use it to derive properties of the
variational composition from known properties of the variational sum.

Namely, given two maximal monotone operators S,T : X ⇒ X∗, between a re-
flexive space X and its dual, we can define a (formally different from the notion
from Sect. 16.4) concept of variational sum by considering non symmetric sums of
the type S+Tλ (or Sλ +T ) for λ > 0 and then passing to the limit. Such asymmetric
sums have been already considered in the papers [3] and [13]. Another possibility is
to consider symmetric sums with the same parameter Sλ + Tλ , λ > 0, and again to
pass to an appropriate limit (as it was done in [32]). It is easily seen that the limits
liminfλ↓0(Sλ + Tλ ) and liminfλ↓0(S + Tλ ), where liminf is understood as above in
the definition of the variational composition, give monotone operators with closed
graphs and according to the definitions both are, in general, larger than the varia-
tional composition S +

v
T .

For some operators all these notions give the same result as the variational sum.
For example if S = ∂ f and T = ∂g are subdifferentials of proper lower semicon-
tinuous convex functions in X such that dom f ∩ domg �= /0 then, according to
Corollary 16.19, the variational sum S +

v
T , and thus also liminfλ↓0(S + Tλ ) and

liminfλ↓0(Sλ + Tλ ) which are monotone and larger than S +
v

T , will be equal to the

subdifferential ∂ ( f +g). Another particular case when all these sums coincide is of

course when S+T (or, more general, when S + T
G

) is a maximal monotone operator
(see Corollary 16.18 above; cf. also [3]).

In some extremal cases we may have different operators obtained by the above
notions. For instance, this is the case in the following example, which was com-
municated to the author by Garcı́a [22]: let X = R, S = ∂ i{−1} and T = ∂ i{1}. We
have Dom(S)∩Dom(T ) = /0 and one can easily check that for λ > 0 we have
Sλ (x) = (x + 1)/λ and Tλ (x) = (x−1)/λ , x ∈ R. It is readily seen that in this case
the usual and the variational sum are the trivial empty operator, while (0,0) is in
the graph of liminfλ↓0(Sλ +Tλ ) (in fact, the latter is maximal monotone with graph
{0}×R). Just to see how different can be the sums in such a degenerate case, let us
mention that in this example the operator liminfλ↓0(S+Tλ ) is with graph {−1}×R

and liminfλ↓0(Sλ +T) with graph {1}×R. We do not dispose with non-degenerate
examples showing that some of the new sums above are strictly bigger than the
variational one.
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The following proposition (given also in [23]) can be proved exactly as
Proposition 16.12 using the corresponding variant of Lemma 16.13. Convergence
of solutions like in (b) were studied first in [13]. Let us mention that the analogous
proposition, concerning liminfλ↓0(Sλ + Tλ ), also holds.

Proposition 16.33. Let S,T be maximal monotone operators in the reflexive
Banach space X. Then the following are equivalent:

(a) (x,x∗) ∈ liminfλ↓0(S + Tλ );
(b) For any λ > 0 the (unique) solution xλ of the inclusion

x∗ ∈ JX (xλ − x)+ Sxλ + Tλ xλ (16.18)

converges to x as λ → 0;

Disposing with the latter concepts, one can see that if we are given two operators
T1,T2 : X ⇒ X∗, and if we consider as above the operator T := T1×T2 : X ×X ⇒
X∗ × X∗ and the linear continuous operator A : X → X × X determined by Ax =
(x,x), x∈X , then (A∗TA)var = liminfλ↓0(T1,λ +T2,λ ) (see [32]). Here, we endow the
product X×X with the usual square norm in order to have Gâteaux differentiability
of the norm in X × X and of the dual norm in X∗ ×X∗. In this case, the duality
mapping for X×X is JX × JX .

Reciprocally, let T : X ⇒ X∗ be a maximal monotone operator and A : Y →X be a
continuous linear mapping. Consider the operators S̃A, T̃ : Y ×X ⇒ Y ∗×X∗ defined
in (16.13). If we equip Y ×X with the usual square product norm, it will be a reflex-
ive Banach space with both Gâteaux differentiable norm and dual norm (the latter is
also the square norm generated by the norms in Y ∗ and X∗). Moreover, the duality
mapping for Y ×X will be JY × JX . In such a case the Yosida regularisation of T̃ is
simply given by T̃λ (y,x) = (0,Tλ x), (y,x) ∈Y×X , λ > 0. This together with (16.14)
readily entail the next proposition (given also in [23]) which shows that the property
from (16.15) concerning point-wise compositions and sums extends also to the case
of the variational composition and a kind of variational sum.

Proposition 16.34. Let X and Y be reflexive Banach spaces, T : X ⇒ X∗ be maximal
monotone and A : Y → X be linear and continuous. Then,

(1) For any λ > 0

y∗ = (A∗Tλ A)(y)⇐⇒ (y∗,0) ∈ (S̃A + T̃λ )(y,Ay)

(2) And therefore,

y∗ ∈ (A∗TA)var(y)⇐⇒ (y∗,0) ∈ liminf
λ↓0

(S̃A + T̃λ)(y,Ay).

A consequence of Proposition 16.34 is another fact that has not been known so
far: whether the variational composition contains the usual one. Knowing already
that this holds for the case of sums and having in mind that liminfλ↓0(S̃ + T̃λ ) is, in
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general, larger than (S̃ +
v

T̃ ), we have the following corollary as a direct consequence

of Theorem 16.22(b), Theorem 16.16 and Proposition 16.34 (the result is contained
also in the manuscript [23]).

Corollary 16.35. Let Y,X be reflexive Banach spaces, A : Y → X be a continu-
ous and linear operator and T : X ⇒ X∗ be a maximal monotone operator. Then,
(A∗TA)ext ⊂ (A∗TA)var. In particular, A∗TA⊂ (A∗TA)var.

And therefore, since (A∗TA)var has always closed graph, we obtain

Corollary 16.36. [32] Let Y,X be reflexive Banach spaces, A : Y → X be a continu-

ous and linear operator and T : X ⇒ X∗ be a maximal monotone operator. If A∗TA
G

is maximal monotone, then A∗TA
G = (A∗TA)var. In particular, if A∗TA is maximal

monotone, then A∗TA = (A∗TA)var.

The next corollary is a consequence of Corollaries 16.25 and 16.35 and gives a
nontrivial case when the variational composition is a maximal monotone operator,
while the usual one is not, in general.

Corollary 16.37. [32] Let Y,X be reflexive Banach spaces, A : Y → X be a con-
tinuous and linear operator and f : X → R ∪ {+∞} be a proper convex lower
semicontinuous function such that R(A)∩dom f �= /0. Then, ∂ ( f ◦A) = (A∗∂ f A)var.

Let us finally mention that the variational composition was used in [32] to study
the solutions of certain partial differential equations in divergence form.
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Chapter 17
Minimizing the Moreau Envelope of Nonsmooth
Convex Functions over the Fixed Point Set
of Certain Quasi-Nonexpansive Mappings

Isao Yamada, Masahiro Yukawa, and Masao Yamagishi

Abstract The first aim of this paper is to present a useful toolbox of quasi-
nonexpansive mappings for convex optimization from the viewpoint of using their
fixed point sets as constraints. Many convex optimization problems have been
solved through elegant translations into fixed point problems. The underlying prin-
ciple is to operate a certain quasi-nonexpansive mapping T iteratively and generate a
convergent sequence to its fixed point. However, such a mapping often has infinitely
many fixed points, meaning that a selection from the fixed point set Fix(T ) should
be of great importance. Nevertheless, most fixed point methods can only return an
“unspecified” point from the fixed point set, which requires many iterations. There-
fore, based on common sense, it seems unrealistic to wish for an “optimal” one from
the fixed point set. Fortunately, considering the collection of quasi-nonexpansive
mappings as a toolbox, we can accomplish this challenging mission simply by the
hybrid steepest descent method, provided that the cost function is smooth and its
derivative is Lipschitz continuous. A question arises: how can we deal with “nons-
mooth” cost functions?

The second aim is to propose a nontrivial integration of the ideas of the hybrid
steepest descent method and the Moreau-Yosida regularization, yielding a use-
ful approach to the challenging problem of nonsmooth convex optimization over
Fix(T ). The key is the use of smoothing of the original nonsmooth cost function
by its Moreau-Yosida regularization whose derivative is always Lipschitz contin-
uous. The field of application of hybrid steepest descent method can be extended
to the minimization of the ideal smooth approximation over Fix(T ). We present
the mathematical ideas of the proposed approach together with its application to a
combinatorial optimization problem: the minimal antenna-subset selection problem
under a highly nonlinear capacity-constraint for efficient multiple input multiple
output (MIMO) communication systems.
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17.1 Introduction

How can we exploit various types of information efficiently in convex optimization?
This has been one of the fundamental questions of paramount importance from both
practical and theoretical viewpoints. We present a new insight into this question
with (1) fixed point characterizations of constraint sets and (2) the Moreau–Yosida
regularization of a nonsmooth convex function. To contrast our contribution with
existing approaches, let us briefly introduce a stream of research developments, in-
cluding classical and state-of-the-art techniques, for treating (multiple) constraints.

17.1.1 Treatments of Constraints in Convex Optimization

A general convex optimization problem is formulated as follows: minimize a con-
vex function f ∈ Γ0(H ) over a closed convex subset C of a real Hilbert space H .
Here, Γ0(H ) stands for the class of all lower semicontinuous convex functions from
H to (−∞,∞] which are not identically equal to +∞. Suppose, for instance, that f
is differentiable with its derivative Lipschitz continuous and PC, the metric projec-
tion onto C (see Fact 17.2(c)), can be computed efficiently. In this special case, we
may use Goldstein’s projected gradient method [72]. However, this classical ap-
proach cannot satisfy the increasing demand for nonsmooth convex optimization
under more general constraints.

A couple of unified approaches covering many existing schemes involve the fol-
lowing formulation [42, 46, 57, 66, 90, 104, 126]: minimize f1 + f2 for fi ∈ Γ0(H ),
i = 1,2. For example, under a certain qualification condition on f1 and f2, the
Douglas–Rachford splitting-type algorithm (see Examples 17.6(c) and 17.12(f))
[42, 57, 90] approximates a minimizer of f1 + f2 with successive use of

proxγ fi : H →H : x �→ arg min
y∈H

{
fi(y)+

1
2γ
‖x− y‖2

}
, (17.1)

which is well-defined as a single valued mapping called the proximity operator
or proximal mapping [46, 98, 99, 109] of index γ ∈ (0,∞) of fi (i = 1,2) (see
Sect. 17.2.1). This approach can handle the problem considered in the previous para-
graph by letting f1 := f and f2 := iC which denotes the indicator function

(∀x ∈H ) iC(x) :=
{

0, if x ∈C;
∞, otherwise.
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In fact, the proximity operator of iC for any γ ∈ (0,∞) coincides with PC. We empha-
size, however, that the approach in [42, 46, 57, 126] practically requires an efficient
scheme to compute the proximity operators, and obtaining such a scheme itself is
often a challenging issue to address for each application individually.

This certainly motivates the recent active studies on computational schemes for
proximity operators of various types of functions in Γ0(H ) [42, 46, 62], which in-
clude the pre-composition of g ∈ Γ0(H ) with a frame synthesis affine operator
[31, 42, 62, 118]. Another development is the extension of the Douglas–Rachford
splitting-type scheme to the case of multiple convex functions [43, 44, 67, 68]; i.e.,
minimize Σm

i=1 fi for m > 2 and fi ∈ Γ0(H ) (i = 1,2, . . . ,m), through the Pierra-
type product-space reformulation [105,106]. This extension enables us to deal with
the case where a constraint set C can be expressed as the intersection of a finite
number of closed convex sets Ci (i ∈ I , assuming that PCi can be computed effi-
ciently). Indeed, we can minimize a nonsmooth convex function f := Σ j∈J f j over
C by applying the extended scheme to Σi∈I iCi + Σ j∈J f j . The use of the expres-
sion C = ∩i∈I Ci shares similarity with the commonly used strategy in the simpler
contexts of the convex feasibility problems (see, e.g., [7, 18, 29, 34, 48]). However,
again, this approach has an obvious limitation, as there are many applications, in-
cluding the one addressed in this work, in which the constraint set C ⊂ H can
hardly be expressed as the intersection of (a finite number of) simple closed convex
sets. The fixed point characterization throws us a rope to escape from the dilemma,
as explained in the following.

17.1.2 Fixed Point Characterizations of Closed Convex Sets

A mapping T : H → H is called quasi-nonexpansive if this mapping has its
nonempty fixed point set Fix(T ) := {x ∈ H | T (x) = x} 	= /0 and ‖T (x)− z‖ ≤
‖x− z‖ (∀x∈H ,∀z ∈ Fix(T )). In this case, the fixed point set Fix(T ) is guaranteed
to be closed convex in H (see Proposition 17.3 in Sect. 17.2.2). In the context of
recent studies on the convex feasibility problems as well as the unified treatment of
certain nonsmooth optimization schemes, many powerful ideas have been found to
deal with a closed convex set C as the fixed point set of an efficiently computable
quasi-nonexpansive mapping [7, 8, 35, 132, 136, 139].

For example, if the set S := arg min
x∈H
{ f1(x)+ f2(x)} is nonempty in the above

context of minimizing f1 + f2 for fi ∈ Γ0(H ), i = 1,2, the set S is a closed convex
set which is usually hard to be expressed as the intersection of (a finite number of)
simple closed convex sets. On the other hand, in a variety of scenarios, the set S can
be expressed as the fixed point set of a nonexpansive mapping [46] or as the image
of a proximity operator of the fixed point set of another nonexpansive mapping [42],
where these nonexpansive mappings can be computed efficiently (see Sect. 17.2.2
for basic ideas to design a mapping that has a desirable fixed point set).
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Another quite useful example is found in the characterization of the nonempty
level set lev≤0(g) := {x ∈ H | g(x) ≤ 0} of g ∈ Γ0(H ) as the fixed point set
of the subgradient projection Tsp(g) relative to g. The subgradient projection op-
erator is firmly quasi-nonexpansive ([127, Lemma 2.8], [8, 136]) and has been
playing important roles as a low complexity approximation of the metric projection
onto lev≤0(g) in many scenarios; e.g., in signal and image processing applications
[37, 41, 140], the metric projection is often hard to compute (see Proposition 17.7
and Example 17.9 for designing better approximations than the subgradient projec-
tion). In [114,115,125,135,140], the subgradient projection was used to elude from
the load for solving large scale systems of equations in an adaptive signal processing
or adaptive online classification problems. In [41], the subgradient projection was
used to suppress the total variation of the restored image.

The idea of dealing with a closed convex set as the fixed point set of a non-
expansive mapping has been applied successfully in creations of many powerful
optimization schemes with the strong support of the innovative discovery of the
Mann iterative process [54, 75, 94], which is an extremely simple algorithm to gen-
erate a (weakly) convergent sequence to a fixed point of a general nonexpansive
mapping. Moreover recent notable extensions, e.g., [39], of the algorithm have
a guarantee of convergence under much weaker conditions than those found in
[54, 75, 94] and applied in the unifications, e.g., in [42, 46]. In short, these previ-
ous studies aim to find an arbitrary point in the fixed point set of a nonexpansive
mapping. The next stage which we should clear is the following: find an optimal
point in some sense in the fixed point set. The following subsection introduces some
existing methods for this problem with a touch of motivation of the current study.

17.1.3 Existing Methods on the Advanced Stage

We now consider the problem of minimizing a convex function over the fixed point
set of a certain quasi-nonexpansive mapping. There seems to be only few types of
algorithms that can deal with this problem in a computationally manageable way.
Among others, the hybrid steepest descent method (HSDM) (see, e.g., [33, 49, 84,
92,101,102,122,130,136–139,151]) has been developed as an algorithm to achieve
such a goal originally by extending a fixed point iteration [6, 36, 78, 89, 129]; the
so-called Halpern-type iteration or anchor method, which is able to find from a
given point the nearest fixed point of a nonexpansive mapping. The HSDM has two
distinguished features. First, it has a mathematical guarantee of convergence to the
solution to the convex optimization over the fixed point set. Second, it only requires
at each iteration simple computation of a gradient descent operator and a quasi-
nonexpansive mapping, of which the fixed point set defines the constraint set of the
optimization problem. Indeed, the method has been applied successfully to signal
and image processing problems (see, e.g., [79, 113, 117, 118, 122, 152]).
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Fig. 17.1 Treatment of constraint sets as fixed point sets of nonlinear mappings

By extending the ideas in [80], another algorithm, which we refer to as the gen-
eralized Haugazeau’s algorithm, was developed for minimizing a strictly convex
function in Γ0(H ) over the fixed point set of a certain quasi-nonexpansive map-
ping [38]. In particular, this algorithm was specialized in a clear way for finding
the nearest fixed point of a certain quasi-nonexpansive mapping [8] and applied
successfully to an image recovery problem [41]. If we focus on the case of a non-
strictly convex function, the generalized Haugazeau’s algorithm is not applicable,
while some convergence theorems of the HSDM suggest its sound applicability
provided that the derivative of the function is Lipschitzian. Due to the Lipschitz-
continuity assumption, however, it still remains an open problem to minimize a
nonsmooth convex function over the fixed point set of a quasi-nonexpansive map-
ping (see Fig. 17.1).

17.1.4 Contributions of This Paper

So far we do not have in general any promising (computationally manageable) algo-
rithm for the solution to the minimization problem of a nonsmooth convex function
over the fixed point set of a quasi-nonexpansive mapping. We therefore present a
nontrivial application of the HSDM to approach the problem. Our attention is to the
notable fact that any function f ∈Γ0(H ) can be approximated with any accuracy by

γ f : H → R : x �→ min
y∈H

{
f (y)+

1
2γ
‖x− y‖2

}

= f
(

proxγ f (x)
)

+
1
2γ

∥
∥
∥x−proxγ f (x)

∥
∥
∥

2
, (17.2)
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which is called the Moreau envelope1 (or the Moreau–Yosida regularization2) of
index γ ∈ (0,∞) of f . The Moreau envelope γ f is a smooth approximation of f with
surprisingly beautiful properties. In particular, the most attractive property for us
is that the Moreau envelope γ f has a Lipschitz continuous gradient over H (see
Sect. 17.3.1). Moreover, if arg min

x∈H
f (x) 	= /0, the set of all global minimizers of f

is equal to that of the Moreau envelope (see Fact 17.2). These distinctive features
suggest that the Moreau–Yosida regularization and the proximity operator are the
keys bridging the gap between the analyses of smooth and nonsmooth convex func-
tions. For example, these features have been utilized to develop efficient algorithms
specialized for unconstrained nonsmooth convex optimization problems (see, e.g.,
[65, 108]). In addition to this direct use, the practical value of the Moreau envelope
has been examined implicitly or explicitly as a smooth relaxation of the absolute
value function in many applications (see Sect. 17.3.1).

In this study, we propose to approach the nonsmooth optimization problem

minimize f (x) subject to x ∈ Fix(T ) (17.3)

by solving its smooth relaxation

minimize γ f (x) subject to x ∈ Fix(T ) (17.4)

with the HSDM. Here, f ∈ Γ0(H ) (which in particular we consider to be nons-
mooth) and T : H →H is a quasi-nonexpansive mapping (Note: The solution sets
for (17.3) and (17.4) are not the same in general although they coincide specially
in the simplest unconstrained case, i.e., Fix(T ) = H ). Thanks to (1) the beautiful
properties of the Moreau envelope and (2) the flexibility in expressing a constraint
set as the fixed point set of a quasi-nonexpansive mapping, the proposed approach
enjoys wide applicability.

The rest of this paper is organized as follows. For readers’ convenience,
Sect. 17.2 presents a short tour in computational convex analysis which contains
(1) elements of convex analysis, (2) the fixed point theory of quasi-nonexpansive
mapping including a basic algorithm to approximate a fixed point of the mapping,
and (3) elements of the variational inequality problems (VIPs). It also introduces
briefly one role of quasi-nonexpansive mapping in signal processing. In Sect. 17.3,
we will introduce the essence of the Moreau–Yosida regularization and the HSDM.
Then we will show how to join the two concepts to approach the minimization
problem of a nonsmooth convex function over the fixed point set of certain quasi-
nonexpansive mappings. In Sect. 17.4, we demonstrate the effectiveness of the
proposed approach in its application to the minimal antenna-subset selection prob-
lem under a highly nonlinear capacity-constraint for efficient multiple input multiple

1 Nice introductions to the Moreau envelope are found, e.g., in [46, 109].
2 As will be seen in (17.23), the derivative ∇γ f is given as the Yosida approximation [142] of the
subdifferential ∂ f of f .
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output (MIMO) communication systems; the convex relaxation of the problem is the
�1 norm minimization under the constraint. Finally, in Sect. 17.5, we conclude this
paper with some remarks on other possible advanced applications of the HSDM.

17.2 A Short Tour in Computational Convex Analysis

17.2.1 Selected Elements of Convex Analysis

In the following, we list minimum notions in convex analysis, which are necessary
for our discussion (see, e.g., [7, 10, 46, 48, 59, 82, 109, 121, 134, 148] for detailed
account on these notions). Let H be a real Hilbert space equipped with an inner
product 〈·, ·〉 and its induced norm ‖ · ‖.
Definition 17.1 (Basics in Convex Analysis).

(a) (Convex set) A set C ⊂ H is called convex if λ x + (1− λ )y ∈ C for every
x,y ∈ C and every λ ∈ [0,1]. If a set C ⊂H is closed as well as convex, it is
called closed convex.

(b) (Convex function, Proper function) A function f : H → (−∞,∞] := R∪{∞} is
called convex if

(∀x,y ∈H ,∀λ ∈ (0,1)) f (λx +(1−λ )y)≤ λ f (x)+ (1−λ ) f (y). (17.5)

In particular, a convex function f : H → (−∞,∞] is called proper if

dom( f ) := {x ∈H | f (x) < ∞} 	= /0.

A function f ∈ Γ0(H ) is called strictly convex if

(x 	= y,λ ∈ (0,1))⇒ f (λx +(1−λ )y) < λ f (x)+ (1−λ ) f (y).

(c) (Lower semicontinuous function) A function f : H → (−∞,∞] is called lower
semicontinuous if the set lev≤α( f ) := {x ∈H | f (x) ≤ α} is closed for every
α ∈ R (Note: If f is continuous over H , f is lower semicontinuous). The set
of all proper lower semicontinuous convex functions is denoted by Γ0(H ).

(d) (Coercivity) A function f ∈ Γ0(H ) is called coercive if

‖x‖→ ∞⇒ f (x)→ ∞.

In this case, the existence of a minimizer of f , i.e., {x� ∈ H | f (x�) ≤
f (x) (∀x ∈H )} 	= /0, is guaranteed.
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Fact 17.2 (Fundamental Tools for Convex Optimization).

(a) (Subgradient, Subdifferential, Legendre–Fenchel conjugate) Given f ∈ Γ0(H ),
the subdifferential of f at x is defined as the set of all subgradients of f at x:

∂ f (x) := {u ∈H | 〈y− x,u〉+ f (x)≤ f (y),∀y ∈H } .

Therefore, 0 ∈ ∂ f (x) ⇔ f (x) = miny∈H f (y). If f is continuous at x ∈ H ,
∂ f (x) is a nonempty closed convex set. Moreover, if f is Gâteaux differentiable3

at x, the subdifferential at x is a singleton as ∂ f (x) = {∇ f (x)} [10,82,134]. The
subdifferential is regarded as a set-valued mapping ∂ f : H → 2H , which is
called bounded if it maps bounded sets to bounded sets [14] (Note: 2H stands
for the collection of all subsets of H ).
Remark that the subdifferential of f at x ∈H can be defined alternatively as
∂ f (x) := {u ∈H | f (x)+ f ∗(u) = 〈x,u〉}, where f ∗ ∈ Γ0(H ) is defined by

(∀u ∈H ) f ∗(u) := sup
x∈H
{〈x,u〉− f (x)}

and it is called the conjugate (also named Legendre–Fenchel conjugate, or
Legendre–Fenchel transform) of f .

(b) (Proximity operator) The proximity operator of index γ ∈ (0,∞) of f ∈ Γ0(H )
is defined (as in (17.1)) by

proxγ f : H →H : x �→ arg min
y∈H

{
f (y)+

1
2γ
‖x− y‖2

}
, (17.6)

where the existence and the uniqueness of the minimizer are guaranteed respec-
tively by the coercivity and the strict convexity of f (·) + 1

2γ ‖x− ·‖2. Equiva-
lently, for every x ∈H , proxγ f (x) is characterized as a unique point satisfying

{proxγ f (x)}= {z ∈H | z+ γ∂ f (z) � x}, (17.7)

3 (Gâteaux and Fréchet derivatives of function) Let U be an open subset of H . Then a func-
tion f : U → R is called Gâteaux differentiable at x ∈ U if there exists a(x) ∈ H such that

limδ→0
f (x+δh)− f (x)

δ = 〈a(x),h〉 (∀h ∈H ). In this case, ∇ f (x) := a(x) is called Gâteaux derivative
(or gradient) of f at x.

On the other hand, a function f : U → R is called Fréchet differentiable over U if for each
u ∈U there exists a(u) ∈H such that

f (u+h) = f (u)+ 〈a(u),h〉+o(‖h‖) for all h ∈H ,

where r(h) = o(‖h‖) means lim
h→0

r(h)/‖h‖ = 0. In this case, ∇ f : U→H defined by ∇ f (u) = a(u)

is called Fréchet derivative of f over U . If f is Fréchet differentiable over U , f is also Gâteaux
differentiable over U and both derivatives coincide. Moreover, if f is Gâteaux differentiable with
continuous derivative ∇ f over U , then f is also Fréchet differentiable over U .
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i.e.,

proxγ f (x) = (I + γ∂ f )−1 (x), (17.8)

which is again equivalent to

(∀y ∈H )
〈

y−proxγ f (x),
x−proxγ f (x)

γ

〉
+ f (proxγ f (x))≤ f (y).

The proximity operator is firmly nonexpansive, i.e., rproxγ f := 2proxγ f − I :
H →H is nonexpansive (see Sect. 17.2.2 for the definition of nonexpansivity
of a mapping):

(∀x,y ∈H ) ‖(2proxγ f − I)x− (2proxγ f − I)y‖ ≤ ‖x− y‖.
Moreover, if arg min

x∈H
f (x) 	= /0, the set of all minimizers of f is equal to that of

the Moreau envelope and also expressed as the fixed point set of proxγ f : H →
H ; i.e.,

arg min
x∈H

f (x) = arg min
x∈H

γ f (x) = Fix
(

proxγ f

)
.

(c) (Metric projection onto closed convex sets) Given a nonempty closed convex set
C ⊂H and any point x ∈H , there exists a unique point PC(x) ∈C satisfying

dC(x) := min
z∈C
‖x− z‖= ‖x−PC(x)‖ .

The mapping H � x �→ PC(x) ∈ C is called the metric projection (or convex
projection) onto C and obviously PC(x) = proxγiC(x) (∀γ ∈ (0,∞),∀x ∈H ),
hence PC is firmly nonexpansive with Fix(PC) = C 	= /0 (see Example 17.6(a)
and Fig. 17.2). Moreover, PC : H →C is characterized by

x� ∈C satisfies 〈x− x�,z− x�〉 ≤ 0 (∀z ∈C) ⇔ x� ∈C satisfies x� = PC(x).
(17.9)

Fig. 17.2 Convex Projection:
Metric projection onto
a closed convex set C
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(d) (Expression of a closed convex set I) Given (possibly infinitely many) closed
convex sets Ci ⊂H (i ∈ I : an index set), their intersection

⋂

i∈I

Ci is again a

closed convex set (Note: This property is a natural nonlinear generalization of
the elementary fact that the intersection of multiple subspaces is again a sub-
space in a vector space).

(e) (Expression of a closed convex set II) Given a function f ∈ Γ0(H ), the set
lev≤0( f ), which is called the (zero-)level set of f , is closed convex. Conversely,
given a closed convex set C ⊂H , there exists a continuous convex function
f : H → R satisfying C = lev≤0( f ). The function dC : H → [0,∞) in (c) is
obviously such an example.

17.2.2 Quasi-Nonexpansive Mappings and Their Fixed Point Sets

Suppose that a mapping T : H →H has at least one fixed point. Then the mapping
T : H →H is called quasi-nonexpansive (or Fejér) [7, 8, 54, 127] if T satisfies for
every x ∈H and every z ∈ Fix(T )

‖T (x)− z‖ ≤ ‖x− z‖. (17.10)

The identity operator I : H → H is also a quasi-nonexpansive mapping which
satisfies of course Fix(I) = H .

We introduce special subclasses of quasi-nonexpansive mappings below (see also
Fig. 17.3). A quasi-nonexpansive mapping T is said to be attracting if T satisfies for
every x 	∈ Fix(T ) and every z ∈ Fix(T )

‖T (x)− z‖< ‖x− z‖.

Fig. 17.3 Quasi-nonexpansive mapping and its subclasses (A nonexpansive mapping is also quasi-
nonexpansive if this mapping has at least one fixed point)
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In particular, an attracting mapping T is called α-strongly attracting if there exists
some α > 0 satisfying for every x ∈H and every z ∈ Fix(T )

α‖x−T (x)‖2 ≤ ‖x− z‖2−‖T(x)− z‖2.

The above inequality offers a lower bound for improvement by T of approximation
accuracy of a point x to all fixed points z of T .

A quasi-nonexpansive mapping T : H → H is said to be α-averaged [4, 7]
if there exist some α ∈ (0,1) and some quasi-nonexpansive mapping N such that
T = (1−α)I + αN. In this case, T satisfies an obvious relation Fix(T ) = Fix(N).
Moreover, T is strongly attracting (see Proposition 17.3(b) below). In particular, if
T is 1

2 -averaged, T is called a firmly quasi-nonexpansive mapping [136] (the class
of firmly quasi-nonexpansive mappings is specially denoted by T [8]).

On the other hand, a mapping T : H →H is called Lipschitz continuous with a
Lipschitz constant κ or shortly κ-Lipschitzian if there exists some κ > 0 satisfying
for every x,y ∈H

‖T (x)−T (y)‖ ≤ κ‖x− y‖.

In particular, if there exists some κ < 1, T is called a contraction (or a strictly con-
tractive) mapping. In this case, the Banach–Picard’s contraction mapping theorem
guarantees the unique existence of the fixed point of T , and it is not hard to see
that T is α-averaged for any α ∈ [ κ+1

2 ,1
)
. If the mapping T is 1-Lipschitzian, T

is called a nonexpansive mapping [7, 70, 71, 121] and in this case, T is also quasi-
nonexpansive if Fix(T ) 	= /0. In contrast to the case of the existence of κ < 1, the
existence of κ = 1 is insufficient to guarantee the existence of a fixed point in view
of the following example: T : R � x �→ x + 1 ∈ R.

The following Proposition 17.3(a) guarantees that the closedness and convex-
ity of the fixed point set of any quasi-nonexpansive mapping. This property is very
fortunate to express a constraint set, in convex optimization, as the fixed point set
of a quasi-nonexpansive mapping. For example, Proposition 17.3(a) together with
Fact 17.2(d),(e) suggests that a closed convex set can be expressed as the intersec-
tion of possibly infinitely many simpler closed convex sets, each of which can be
expressed as the fixed point set of an efficiently computable quasi-nonexpansive
mapping. Moreover, by Proposition 17.3(b), given a quasi-nonexpansive mapping
N : H → H , we can construct a strongly attracting quasi-nonexpansive map-
ping T := (1−α)I + αN (α ∈ (0,1)) with Fix(T ) = Fix(N). Therefore, the quasi-
nonexpansive mapping (or even more specifically the attracting mapping) has a great
deal of potential not only as an computational tool for monotone approximation to
the closed convex set but also as an alternative mathematical expression of the closed
convex set as its fixed point set.
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Proposition 17.3 (Fundamental Properties of Quasi-Nonexpansive Mapping).

(a) Let T : H →H be a quasi-nonexpansive mapping. Then Fix(T ) can be ex-
pressed as (see for example [8, 136]):

Fix(T ) =
⋂

y∈H

{
x ∈H | 〈y−T(y),x〉 ≤ ‖y‖

2−‖T(y)‖2

2

}
.

This tells us that Fix(T ) can be expressed as the intersection of infinitely many
closed half spaces, hence the closedness and convexity of Fix(T ) are guaran-
teed by Fact 17.2(d).

(b) A quasi-nonexpansive mapping T : H → H is α-averaged for some α ∈
(0,1) if and only if T is

(
1−α

α
)
-strongly attracting [136]. Therefore, a quasi-

nonexpansive mapping T is 1
2 -averaged if and only if it is 1-strongly attracting.

In Proposition 17.4 below, (a) and (b) are slight refinement of similar results in
[7, Propositions 2.10 and 2.12 ]. By applying the properties in Proposition 17.4,
we can construct a new quasi-nonexpansive mapping whose fixed point set is the
intersection of the fixed point sets of given multiple quasi-nonexpansive mappings
in Examples 17.6 and 17.9 in Sect. 17.2.3. Note that Proposition 17.4(c) holds even
when Fix(T1)∩Fix(T2) = /0.

Proposition 17.4 (Algebraic Properties of Quasi-Nonexpansive Mapping).

(a) (Convex combination [136]) Suppose that Ti : H →H (i = 1,2) are quasi-
nonexpansive mappings satisfying Fix(T1) ∩ Fix(T2) 	= /0. Then for any w ∈
(0,1), the mapping T := wT1 +(1−w)T2 is quasi-nonexpansive and satisfies
Fix(T ) = Fix(T1)∩Fix(T2). In particular, if each Ti (i = 1,2) is αi(> 0)-strongly

attracting, then T is
(

(α1+1)(α2+1)
(1−w)α1+wα2+1 −1

)
-strongly attracting.

(b) (Composition [136]) Let T1 : H →H be a quasi-nonexpansive mapping and
T2 : H →H an attracting quasi-nonexpansive mapping satisfying Fix(T1)∩
Fix(T2) 	= /0. Then T := T2T1 is quasi-nonexpansive and Fix(T ) = Fix(T1)∩
Fix(T2). In particular, if each Ti (i = 1,2) is αi(> 0)-strongly attracting, then T

is
(

α1α2
α1+α2

)
-strongly attracting.

(c) (Operations for averaged nonexpansive mappings [101,136]) Suppose that each
Ti : H → H (i = 1,2) is αi-averaged nonexpansive for some αi ∈ [0,1).
Then for every w ∈ [0,1], the mapping (1−w)T1 + wT2 is {(1−w)α1 + wα2}-
averaged nonexpansive. Moreover, T1T2 is α-averaged nonexpansive for α :=
α1+α2−2α1α2

1−α1α2
∈ [0,1).

Finally, for intuitive understanding, we explain briefly how the attracting map-
ping is connected in essence with signal processing.

Remark 17.5 (A Role of Attracting Mapping in Signal Processing). Monotone ap-
proximation to an unknown desirable information to be estimated, say estimandum,
is one of the most favorable properties for signal processing algorithms. In partic-
ular, in adaptive filtering or adaptive system identification problems (e.g., adaptive
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Fig. 17.4 What is the best possible strategy for a starving shark? Maximal satisfaction is expected
by approaching monotonically every fish. This is realized by an attracting mapping

channel equalization, adaptive echo cancellation, etc.), the algorithms are required,
at each time, to offer a tentative approximation of an estimandum. By utilizing a
priori knowledge as well as the latest statistical knowledge obtained from observed
data, the algorithm is desired to update the previous estimate to a better one which
is closer to the estimandum. A practical scenario to realize such a monotone approx-
imation is divided into the following two steps: (Step 1) define a set, say a target
set, which is sufficiently small but contains candidates consistent with all available
knowledge on the estimandum, and (Step 2) realize a mapping T which shifts any
point not in the target set strictly closer to every point in the target set and does not
move any point in the target set (see Fig. 17.4). If the estimandum surely belongs
to the target set, the above scenario automatically realizes a monotone approxima-
tion to the estimandum. The mapping satisfying the condition in Step 2 is called
attracting mapping. Obviously, a point does not move by the mapping if and only if
it is already in the target set. Therefore, the target set must be the fixed point set of
the attracting mapping. This observation suggests that a key to realize a successful
signal processing algorithm is how to design an attracting mapping of which the
fixed point set is the target set. On the other hand, as seen in Proposition 17.3(a),
the fixed point set of any attracting mapping is a closed convex set. This simple
but valuable observation tells us that for realizing monotone approximation, the at-
tracting mapping is certainly ideal, and in this case, the target set is ensured to be a
closed convex set. Moreover, if multiple attracting mappings with a common fixed
point are given, we can define in constructive ways a new attracting mapping whose
fixed point set is the intersection of the fixed point sets of the given mappings (see
Proposition 17.4), which is extremely fortunate for the refinement of the target set in
Step 1. Therefore, the attracting mapping has a great deal of potential to be not only
a computational tool for monotone approximation to the closed convex set but also
an alternative mathematical expression of the closed convex set as its fixed point set.
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In [140], it has been clarified that the adaptive filtering algorithms based on
orthogonal projections [81, 112, 128] exploit the above feature of the attracting
mapping implicitly. This discovery leads to a unified scheme called the adaptive pro-
jected subgradient method (APSM) [114, 133, 135]; this scheme is a time-varying
extension of the Polyak’s subgradient algorithm, which was developed for a non-
smooth convex optimization problem with a fixed target value, to the case where
the convex objective itself keeps changing in the whole process. Under this sim-
ple umbrella of the APSM, a unified convergence analysis has been established for
a wide range of adaptive algorithms. Moreover, the APSM has been serving as a
guiding principle to create various powerful adaptive algorithms for acoustic sys-
tems [144, 147], wireless communication systems [25, 26, 146], distributed learning
for diffusion network [27], online learning in Reproducing Kernel Hilbert Spaces
[115, 116, 125], etc. Moreover, a steady-state mean-square performance analysis of
a simplest example of the APSM has been established in [123]; the analysis is based
on the energy conservation argument [112] developed specially for performance
analyses of adaptive filtering algorithms.

17.2.3 Toolbox of Quasi-Nonexpansive Mapping

We list particularly useful quasi-nonexpansive mappings called in this paper design
tool mappings. With the aid of Proposition 17.4, the design tool mappings can be
used as tools to design a new quasi-nonexpansive mapping whose fixed point set is
the intersection of their fixed point sets.

Example 17.6 (Design Tool Mappings).

(a) (Metric projection/Convex projection) Given a nonempty closed convex set C in
H , the metric projection PC : H →C is a firmly nonexpansive mapping with
Fix(PC) = C (see Fact 17.2(c)). The firm nonexpansivity of PC implies that PC

is also a 1-strongly attracting nonexpansive mapping (see Proposition 17.3(b)).
Furthermore, the function ϕ1 : x �→ d2

C(x) := ‖x−PC(x)‖2 is convex and Gâteaux
differentiable over H with its derivative ∇ϕ1(x) = 2(x−PC(x)) (∀x ∈H ).

(b) (Proximal forward–backward splitting operator [46,66,104,126]) Suppose that

S := arg min
x∈H
{ f1(x)+ f2(x)}

is nonempty for f1, f2 ∈ Γ0(H ), where f2 is Gâteaux differentiable on H
with its gradient ∇ f2 : H →H . Then x� ∈H satisfies x� ∈ S if and only if
x� ∈H is a fixed point of the proximal forward–backward splitting operator:
proxμ f1 (I− μ∇ f2) for any μ > 0, i.e., x� = proxμ f1 (I−μ∇ f2)(x�). If in ad-
dition ∇ f2 is κ-Lipschitzian for some κ > 0, the proximal forward–backward
splitting operator proxμ f1 (I− μ∇ f2) with μ ∈ (

0, 2
κ
]

is nonexpansive. More-

over, this operator is 1
2−γ -averaged nonexpansive if μ ∈ (0, 2γ

κ ]⊂ (
0, 2

κ
)
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(Note: (1) The nonexpansivity of the proximal forward–backward splitting
operator with μ ∈ (

0, 2
κ
]

is confirmed by the nonexpansivity of proxμ f1
and the nonexpansivity of I − μ∇ f2 = (1− μ

2
κ
)I + μ

2
κ

(
I− 2

κ ∇ f2
)

[see Fact

17.15 in Sect. 17.2.5]. (2) The averaged nonexpansivity of the operator
with μ ∈ (0, 2γ

κ ] ⊂ (0, 2
κ ) is confirmed by applying Proposition 17.4(c) to

the firm nonexpansivity of proxμ f1 and the γ-averaged nonexpansivity of
I− μ∇ f2 = (1− γ)I + γ(I− μ

γ ∇ f2)). In particular, setting f1 := iC for a closed
convex set C ⊂ H reproduces the characterization of the minimizers of f2

over C by the fixed point set of the 1
2−γ -averaged nonexpansive mapping

PC (I− μ∇ f2) for μ ∈ (0, 2γ
κ ] ⊂ (0, 2

κ ) [20, 40, 139]. This is essentially same as
the fixed point characterization of the VIP as found in Fact 17.14 in Sect. 17.2.5.

(c) (Douglas–Rachford splitting operator [42, 57, 90]) Let f1, f2 ∈ Γ0(H ) satisfy

S := arg min
x∈H
{ f1(x)+ f2(x)} 	= /0.

Under the following qualification condition:

cone(dom( f1)−dom( f2)) :=
⋃

λ>0

{λx | x ∈ dom( f1)−dom( f2)}

is a closed subspace of H , where

dom( f1)−dom( f2) := {x1− x2 ∈H | xi ∈ dom( fi) (i = 1,2)},

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(17.11)

the Douglas–Rachford splitting-type algorithm uses in principle the following
characterization: for any γ ∈ (0,∞)

x� ∈H minimizes f1 + f2 ⇔
⎧
⎨

⎩

x� = proxγ f2(y),

y ∈ Fix
(

rproxγ f1 rproxγ f2

)
,

(17.12)

which means that S can be expressed as the image of proxγ f2 of the fixed
point set of the nonexpansive mapping rproxγ f1 rproxγ f2 (Note: The firm non-
expansivity of proxγ fi , i = 1,2, guarantees the nonexpansivity of rproxγ fi (see
Fact 17.2(b))).

(d) (Subgradient projection) Suppose that a continuous convex function f : H →R

satisfies lev≤0( f ) 	= /0. Let f ′(x) ∈ ∂ f (x) (∀x∈H ) be a selection from the sub-
differential ∂ f (x) (Note: In this paper, we use the notation ∇ f (x) for a Gâteaux
differentiable function f to distinguish from f ′(x) for a nonsmooth one). Then
a mapping Tsp( f ) : H →H defined by

Tsp( f ) : x �→
{

x− f (x)
‖ f ′(x)‖2 f ′(x), if f (x) > 0;

x, otherwise,
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Fig. 17.5 Subgradient
projection as an
approximation of metric
projection (see (17.13) for
the definition of S f (x))

is called a subgradient projection relative to f . For f (x) > 0, Tsp( f )(x) is
given by the metric projection of x onto the closed half-space {y ∈ H |
〈y− x, f ′(x)〉+ f (x) ≤ 0} ⊃ lev≤0( f ). Therefore, Tsp( f ) is a 1-strongly at-
tracting quasi-nonexpansive mapping with Fix(Tsp( f )) = lev≤0( f ) (see, e.g.,
[127, Lemma 2.8], [8] and Fig. 17.5), hence Proposition 17.3(b) implies that
2Tsp( f )− I is quasi-nonexpansive. The metric projection onto a closed convex
set C can also be interpreted as a subgradient projection relative to a continuous
convex function dC : x �→ ‖x−PC(x)‖, i.e., Tsp(dC) = PC. This fact is confirmed by

∂dC(x) =

{
{z ∈H | ‖z‖ ≤ 1,〈z,y− x〉 ≤ 0,∀y ∈C} � 0, if x ∈C;
x−PC(x)
d(x,C) , otherwise.

If we can use more information on the function f ∈ Γ0(H ), we may define other
strongly attracting mappings that realize better approximation to the set lev≤0( f ),
as shown below.

Proposition 17.7 (A Generalization of Subgradient Projection [103]). Let f :
H → R be a continuous convex function with lev≤0( f ) 	= /0 and f ′ : H →H a
selection of the subdifferential ∂ f : H → 2H , i.e., f ′(x) ∈ ∂ f (x), ∀x ∈H . Let
ξ : H → R be a function satisfying ξ (x)≥ f (x),∀x ∈H . Suppose that

Sξ (x) :=
{ {y ∈H | 〈y− x, f ′(x)〉+ξ (x)≤ 0}, if f (x) ≥ 0;

H , otherwise,
(17.13)

satisfies (O-i) Sξ (x) ⊃ lev≤0( f ), and (O-ii) x 	∈ lev≤0( f ) ⇒ x 	∈ Sξ (x). Then the
projection onto Sξ (x), i.e.,

Tdsp,ξ : x �→
{

x− ξ (x)
‖ f ′(x)‖2 f ′(x), if f (x) > 0;

x, otherwise,
(17.14)

is firmly quasi-nonexpansive with Fix(Tdsp,ξ ) = lev≤0( f ).
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Remark 17.8 (Tdsp,ξ as a Deeper Outer Approximation). By the definition of sub-
gradient, S f (x) satisfies the conditions (O-i) and (O-ii) in Proposition 17.7. In
this special case, we have Tdsp, f = Tsp( f ), hence Tdsp,ξ : H → H is a general-
ization of the subgradient projection relative to f . If ξ (x) > f (x) > 0, we have
Sξ (x) � S f (x), i.e., Sξ (x) is a deeper outer approximation (of lev≤0( f ) w.r.t. x) than
S f (x). Several constructions of such ξ (x)(> f (x)) have been discussed for example
in [85, Example 3.4], [103, 141].

Example 17.9 (Deepest Outer Approximation with Available Information).

(a) (Best quadratic lower bound with Lipschitz constant of gradient operator [141])
Suppose that (1) f ∈ Γ0(H ) is Gâteaux differentiable on H with its gradi-
ent ∇ f : H → H which is κ-Lipschitzian over H , and (2) lev≤0( f ) 	= /0
and f (x) ≥ −ρ (∃ρ ≥ 0, ∀x ∈H ). Fix z ∈H \ lev≤0( f ) arbitrarily, and let
g0,z(x) := 〈x− z,∇ f (z)〉+ f (z) (∀x ∈H ). Then the function g1,z : H → R:

g1,z(x) :=

⎧
⎪⎨

⎪⎩

g0,z(x), if a≤ g0,z(x);
1
2
(g0,z(x)−b)2

a−b , if b≤ g0,z(x)≤ a;
−ρ , if g0,z(x)≤ b,

(17.15)

where a := −ρ + ‖∇ f (z)‖2

2κ and b := −ρ − ‖∇ f (z)‖2

2κ , satisfies g0,z(x) ≤ g1,z(x) ≤
f (x) (∀x ∈H ). This implies ξ (y) := g1,z(y)−〈y− z,∇ f (z)〉 ≥ g0,z(y)−〈y−
z,∇ f (z)〉 = f (z) (∀y ∈H ), hence

lev≤0( f ) ⊂ lev≤0(g1,z) = {y ∈H | 〈y− z,∇ f (z)〉+ ξ (z)≤ 0}= Sξ (z)

⊂ {y ∈H | 〈y− z,∇ f (z)〉+ f (z) ≤ 0}= lev≤0(g0,z)
= S f (z). (17.16)

Moreover, g1,z satisfies

(i) g1,z(x)|x=z = f (z) and ∇g1,z(x)|x=z = ∇ f (z),
(ii) f (x) ≥ g1,z(x) ≥ −ρ (∀x ∈ H ) and ‖∇g1,z(x)− ∇g1,z(y)‖ ≤ κ‖x− y‖

(∀x,y ∈H ).

(b) (Deepest outer approximating half-space of level set of a quadratic function
[103]) Suppose that a quadratic function f (x) := ‖Ax−b‖2−ρ (∀x∈H ) satis-
fies lev≤0( f ) 	= /0, where A : H →H ′ is a bounded linear operator (H ′ is a real
Hilbert space whose inner product and its induced norm are also denoted by 〈·, ·〉
and ‖ ·‖ respectively), b ∈H ′ and ρ ∈R. Fix z ∈H \ lev≤0( f ) arbitrarily and

let ξτ(z) := 2
(

f (z)− τ−√
( f (z)− τ)(−τ)

)
for any τ ∈ [−ρ, infy∈H f (y)].

Then Sξτ (z)⊂H satisfies

(i) lev≤0( f )⊂ Sξτ (z) � S f (z) for any τ ∈ [−ρ , infy∈H f (y)],
(ii) S̃ξτmin

(z) ∩ lev≤0( f ) 	= /0 for τmin := miny∈H f (y), where S̃ξτmin
(z) is the

boundary hyperplane of Sξτmin
(z).
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17.2.4 Iterative Approximation of a Fixed Point
of Quasi-Nonexpansive Mapping

By introducing a real number sequence (αn)n≥0 ⊂ [0,1], the algorithm in the
Banach–Picard’s contraction mapping theorem has been extended to

xn+1 := (1−αn)xn + αnT (xn), (17.17)

where T is a quasi-nonexpansive mapping. To guarantee the weak convergence4 of
(xn)n≥0 to a fixed point of T , the demiclosedness of I−T at 0 ∈H is required in
addition to some condition on (αn)n≥0, where, in general, a mapping G : H →H
is said to be demiclosed at y ∈H if weak convergence of a sequence (xn)n≥0 ⊂H
to x∈H and strong convergence of (G(xn))n≥0 to y∈H imply G(x) = y. It is well
known [19] that the mapping I−T is demiclosed at every point y ∈H if T : H →
H is nonexpansive. Moreover, if a continuous convex function f : H →R satisfies
lev≤0( f ) 	= /0 and its subdifferential ∂ f : H → 2H is bounded in the sense of Fact
17.2(a), the mapping I−Tsp( f ) is demiclosed at 0 ∈H (see [127, Lemma 2.9], [8]).

The convergence theorem of the Algorithm (17.17), which is called the Mann
iterative process, is summarized as follows.

Proposition 17.10 (Mann Iterative Process). Let T : H → H be a quasi-
nonexpansive mapping. Then for any initial point x0 ∈ H , the sequence
(xn)n≥0 ⊂H , generated by (17.17), converges weakly to a point in Fix(T ), which
depends on the choices of x0 ∈H and the real number sequence (αn)n≥0 ⊂ [0,1],
under either of the following conditions.

(a) I−T is demiclosed at 0 ∈H and (αn)n≥0 is bounded away from 0 and 1, i.e.,
there exist ε1,ε2 > 0 satisfying (αn)n≥0 ⊂ [ε1,1− ε2] [54].

(b) T is nonexpansive and
∑

n≥0 αn(1−αn) = ∞ [75].

Remark 17.11 (Several Forms of Mann-type Iterates).

(a) The iterative algorithm shown in (17.17) is commonly referred to as “Mann
iterative process” because this has an alternative expression of

xn+1 :=
n∑

j=1

an, ju j and un+1 := T (xn) (17.18)

given in [94] if (an, j)0≤ j≤n,n≥0 ⊂ [0,1] satisfies an+1, j = (1−an+1,n+1)an, j and
αn = an+1,n+1 (n = 0,1,2, . . .).

4 (Strong and weak convergences) A sequence (xn)n≥0 in a real Hilbert space H is said to converge
strongly to a point x∈H if the real number sequence (‖xn−x‖)n≥0 converges to 0, and to converge
weakly to x ∈H if the real number sequence (〈xn − x,y〉)n≥0 converges to 0 for every y ∈H .
If (xn)n≥0 converges strongly to x, then (xn)n≥0 converges weakly to x. The converse is true if
H is finite dimensional, hence in finite dimensional case we do not need to distinguish these
convergences.
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(b) Suppose in particular (1) that T is α-averaged quasi-nonexpansive for some
α ∈ (0,1), i.e., N := T−(1−α)I

α is quasi-nonexpansive, and (2) that I−T is demi-
closed at 0∈H . Then the sequence (xn)∞

n=0⊂H generated by any initial point
x0 ∈H and

xn+1 := T (xn) = (1−α)xn + αN(xn)

converges weakly to a point in Fix(N) = Fix(T ).
(c) If N : H →H is firmly nonexpansive, i.e., T := 2N− I is nonexpansive with

Fix(T ) = Fix(N), the iteration (17.17) can be expressed equivalently as

xn+1 :=
(

1− tn
2

)
xn +

tn
2

(2N− I)(xn) = (1− tn)xn + tnN(xn),

where the conditions for (αn)n≥0 ⊂ [0,1] in Proposition 17.10(a),(b) are
replaced, respectively, by (tn)n≥0 = (2αn)n≥0 ⊂ [2ε1,2 − 2ε2] and

∑
n≥0 tn

(2− tn) = ∞. This is a simplest case of a weak convergence theorem shown in
[39] under much weaker conditions to cope with the numerical errors possibly
unavoidable in the iterative computations.

(d) Suppose that T : R
m→ R

m is continuous as well as attracting (In this case, the
mapping T is said to be paracontractive). Then for any initial point x0 ∈ R

m,
the sequence (xn)n≥0 generated by xn+1 := T (xn) converges to a point in Fix(T )
[60] (Note: This idea has been extended to the case of Bregman distance [28]).

We have found many useful algorithms whose primitive convergence properties
can be examined simply by Proposition 17.10.

Example 17.12 (Mann Iterative Process Found in Applications).

(a) (POCS: Projections onto convex sets [18, 77, 119, 143]) Suppose that Ci ⊂
H (i = 1,2, . . . ,m) are closed convex sets satisfying

m⋂

i=1

Ci 	= /0. Define λi
2 -

averaged nonexpansive mappings Ti : H →H (i = 1,2, . . . ,m), with λi ∈ (0,2),
by Ti := I + λi(PCi − I) =

(
1− λi

2

)
I + λi

2 (2PCi − I), which obviously satisfy

Fix(Ti) = Ci (see Example 17.6(a)). Moreover, by Proposition 17.4 (c) and (b),

T = TmTm−1 · · ·T1 is averaged nonexpansive with Fix(T ) =
m⋂

i=1

Ci 	= /0. Apply-

ing Remark 17.11(b) to T , we verify that the sequence (xn)n≥0 generated by
any x0 ∈H and xn+1 := T (xn) (n = 0,1,2, . . .) converges weakly to a point

in
m⋂

i=1

Ci 	= /0. This scheme is the so-called projections onto convex sets (POCS)

and applicable to convex feasibility problems.
(b) (Proximal forward–backward splitting method [46, 66, 104, 126]) Suppose that

S := arg min
x∈H
{ f1(x)+ f2(x)}
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is nonempty for f1, f2 ∈ Γ0(H ), where f2 is Gâteaux differentiable on H
with its κ-Lipschitzian gradient ∇ f2 : H → H . Then, for any μ ∈ (

0, 2
κ
)
,

the sequence (xn)n≥0 generated by any initial point x0 ∈ H and xn+1 :=
proxμ f1 (I− μ∇ f2)(xn) converges weakly to a point in S. This scheme is the so-
called proximal forward–backward splitting method which can be interpreted as
a direct application of Remark 17.11(b) to Example 17.6(b).

(c) (Projected gradient method [72, 87]) Let C ⊂H be a closed convex set and f :
H → R a Gâteaux differentiable convex function satisfying argminx∈C f (x) 	=
/0. Suppose that the derivative ∇ f : H →H is κ-Lipschitzian over H for some
κ > 0. Then for any μ ∈ (

0, 2
κ
)
, the sequence (xn)n≥0 generated by any initial

point x0 ∈H and xn+1 := PC (xn− μ∇ f (xn)) converges weakly to a point in
argminx∈C f (x). This scheme is the so-called projected gradient method, which
can be interpreted as a direct application of Example 17.12(b) to f1 = iC and
f2 := f .

(d) (PPM: Parallel projection method [34, 40]) Suppose that K ⊂ H and Ci ⊂
H (i = 1,2, . . . ,m) are nonempty closed convex sets possibly having K ∩
(
⋂m

i=1 Ci) = /0. Suppose also that the mean squared distance function: Φms(x) :=
1
2

∑m
i=1 wid2

Ci
(x) has its minimizer over K, i.e., KΦms := argminx∈K Φms(x) 	= /0,

where wi > 0 (i = 1,2, . . . ,m) and
∑m

i=1 wi = 1. Then the sequence (xn)∞
n=0 gen-

erated by any μ ∈ (0,2), any x0 ∈H and

xn+1 := PK

(

(1− μ)xn + μ
∑

i

wiPCi(xn)

)

converges weakly to a point in KΦms . This scheme is the so-called PPM and ap-
plicable to inconsistent convex feasibility problems. The PPM can be interpreted
as a direct application of Example 17.12(c) to f (x) = Φms(x).

(e) (Projected Landweber method [58, 76]/CQ-algorithm [20, 21]) Let Ho be a
real Hilbert space equipped with an inner product 〈·, ·〉o and its induced norm
‖ · ‖o. Suppose that the operator A : H → Ho is linear and bounded, i.e.,

‖A‖ := sup
x∈H \{0}

‖A(x)‖o

‖x‖ < ∞, and that a closed convex set C⊂H and b ∈Ho

satisfy S1 := argmin
x∈C
‖A(x)−b‖2

o 	= /0. Then for any μ ∈ (
0,2‖A‖−2

)
, the se-

quence (xn)n≥0 generated by any point x0 ∈H and

xn+1 := PC (xn− μA∗A(xn)+ μA∗(b))

converges weakly to a point in S1, where A∗ : Ho→H is the adjoint operator
of A [10, 48, 86, 134, 142]. This scheme is the so-called projected Landweber
method and applicable to convexly constrained inverse problems. The pro-
jected Landweber method can be interpreted as a direct application of Example
17.12(c) to f (x) = 1

2‖A(x)−b‖2
o.

On the other hand, for given a pair of closed convex sets C⊂H and Q⊂Ho,
the problem for finding a point x ∈H satisfying x ∈C and A(x) ∈ Q is called



17 Minimizing the Moreau Envelope of Nonsmooth Convex Functions 365

the split feasibility problem (SFP). Since the SFP is reduced to a problem for
finding a point in

S2 := argmin
x∈C
‖PQA(x)−A(x)‖2

o 	= /0,

a direct application of Example 17.12(c) to f (x) = 1
2‖PQA(x)−A(x)‖2

o leads to
the algorithm: xn+1 := PC (xn− μA∗(I−PQ)A(xn)), which generates a weakly
convergent sequence (xn)n≥0 to a point in S2 for any μ ∈ (0,2‖A‖−2

)
and any

point x0 ∈H . This scheme is the so-called CQ-algorithm and applicable to
SFP (Note: The Mann iterative process has been applied to many other types of
inverse problems. For example, an elliptic Cauchy problem was solved in [61]
with Proposition 17.10(b) as a fixed point problem for a nonexpansive affine
operator in a Hilbert space).

(f) (Douglas–Rachford splitting method [42, 57, 90]) Let f1, f2 ∈ Γ0(H ) satisfy

S := arg min
x∈H
{ f1(x)+ f2(x)} 	= /0.

Under the condition (17.11), the sequence (xn)∞
n=0 generated by

xn+1 := (1−αn)xn + αnrproxγ f1rproxγ f2(xn), (17.19)

for any x0 ∈H , any γ ∈ (0,∞) and any (αn)n≥0 ⊂ [0,1] satisfying
∑

n≥0 αn

(1− αn) = ∞, converges weakly to a point in (proxγ f2)
−1(S). The scheme

(17.19) can be interpreted as a direct application of Proposition 17.10(b) to
Example 17.6(c). Moreover, with use of (tn)n≥0 := (2αn)n≥0 ⊂ [0,2] satisfy-
ing

∑
n≥0 tn(2− tn) = ∞, the Scheme (17.19) can be expressed equivalently as

xn+1 := xn + tn
{

proxγ f1

(
2proxγ f2(xn)− xn

)
−proxγ f2(xn)

}
, (17.20)

which is a simplest example of the so-called Douglas–Rachford splitting type
algorithm in [42, Theorem 20]. In particular, if dim(H ) < ∞, the nonexpansiv-
ity of proxγ f2 and the weak convergence of (xn)∞

n=0 by (17.19) [or by (17.20)]
to a point, say

y� ∈ (proxγ f2)
−1(S)(⇔ proxγ f2(y

�) ∈ S),

guarantee

‖proxγ f2(xn)−proxγ f2(y
�)‖ ≤ ‖xn− y�‖→ 0 (n→ ∞).

(g) (Subgradient method [107]) Let f : H → R be a continuous convex function
satisfying lev≤0( f ) 	= /0. Define a sequence (xn)n≥0 ⊂H with any initial point
x0 ∈H and

xn+1 :=

{
xn−λn

f (xn)
‖ f ′(xn)‖2 f ′(xn), if f (xn) > 0;

xn, otherwise,
(17.21)
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where f ′(xn) ∈ ∂ f (xn) for f (xn) > 0, and (λn)n≥0 ∈ (0,2) is bounded away
from 0 and 2. Then the iteration (17.21) can be expressed as

xn+1 =
[(

1− λn

2

)
I +

λn

2
T

]
(xn),

where T := 2Tsp( f )− I. In particular, if the subdifferential ∂ f : H → 2H is
bounded in the sense of Fact 17.2(a), I− T is demiclosed at 0 ∈H (see the
first paragraph of Sect. 17.2.4); hence, Proposition 17.10(a) guarantees the weak
convergence of (xn)∞

n=0 to a point in Fix(T ) = Fix(Tsp( f )) = lev≤0( f ).
This method is very useful for the following convex feasibility problems.

Suppose that continuous convex functions fi : H → R (i = 1,2, . . . ,m) satisfy⋂m
i=1 lev≤0( fi) 	= /0. Then, by defining a single convex function f : H → R sat-

isfying lev≤0( f ) =
⋂m

i=1 lev≤0( fi), for example by f (x) := maxm
i=1 fi(x) or by

f (x) :=
∑m

i=1 wi f +
i (x) with f +

i (x) = max{ fi(x),0} and wi > 0 (i = 1,2, . . . ,m),
we can reformulate the problem of finding a point in the nonempty intersec-
tion of the closed convex sets lev≤0( fi) to the problem of finding a point in
lev≤0( f ). Indeed, if f ′i (xn) ∈ ∂ fi(xn) (i = 1,2, . . . ,m) are available to compute
f ′(xn) ∈ ∂ f (xn) with the well-known calculus rules [82] and ∂ f : H → 2H is
bounded, we can generate a weakly convergent sequence to a point in lev≤0( f )
by applying (17.21) to f .

Moreover, if Plev≤0( fi) : H → lev≤0( fi) (i = 1,2, . . . ,m) are available, an ap-
plication of (17.21) with the aid of Example 17.6(a) to

f (x) :=
1
2

m∑

i=1

wid
2
lev≤0( fi)(x) =

1
2

m∑

i=1

wi‖x−Plev≤0( fi)(x)‖2

leads immediately to a version of the parallel projection algorithm [7,29,34] for
convex feasibility problems.

17.2.5 Monotonicity of Derivatives of Convex Functions,
Variational Inequality Problems

A mapping F : H → H is called (1) monotone over S ⊂ H if 〈F(u)− F(v),
u−v〉≥ 0 for all u,v∈ S. In particular, a mapping F which is monotone over S⊂H
is called (2) paramonotone over S if 〈F(u)−F(v),u− v〉= 0⇔ F(u) = F(v) for all
u,v ∈ S; (3) η-inverse strongly monotone (or firmly monotone) over S if there exists
η > 0 such that 〈F(u)−F(v),u− v〉 ≥ η ‖F(u)−F(v)‖2 for all u,v ∈ S [91]; (4)
η-strongly monotone over S if there exists η > 0 such that 〈F(u)−F(v),u− v〉 ≥
η‖u− v‖2 for all u,v ∈ S [150].

Given F : H → H which is monotone over a nonempty closed convex set
C⊂H , the VIP(F,C) is defined as follows: find u� ∈C such that 〈u−u�,F(u�)〉 ≥ 0
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for all u ∈ C. If a function f ∈ Γ0(H ) is Gâteaux differentiable over an open set
U ⊃ C, then the derivative ∇ f is paramonotone over C [30]. In this case, the so-
lution set of VIP(∇ f ,C) is nothing but the set argminx∈C f (x) provided that it is
nonempty (see, e.g., [59, Proposition II.2.1] and [134, Theorem 7.7]).

The following facts are quite useful for translating a convex optimization prob-
lem into a fixed point problem.

Fact 17.13 (Properties of VIP). [30, 59] Let F : H →H be monotone and con-
tinuous over a nonempty closed convex set C ⊂H . Then

(a) u� is a solution of VIP(F,C) if and only if, for all u ∈C, 〈F(u),u−u�〉 ≥ 0.
(b) Suppose that (1) F is paramonotone over C, (2) u� ∈C is a solution of VIP(F,C)

and (3) u∈C satisfies 〈F(u),u−u�〉= 0. Then u is also a solution of VIP(F,C).

The characterization in (17.9) of the convex projection PC yields at once an alter-
native interpretation of the VIP as a fixed point problem.

Fact 17.14 (VIP as a Fixed Point Problem). Given F : H →H which is mono-
tone over a nonempty closed convex set C, the following three statements are
equivalent.

(a) u� ∈C is a solution of VIP(F,C); i.e.,

〈v−u�,F(u�)〉 ≥ 0 for all v ∈C.

(b) For an arbitrarily fixed μ > 0, u� ∈C satisfies

〈v−u�,(u�−μF(u�))−u�〉 ≤ 0 for all v ∈C.

(c) For an arbitrarily fixed μ > 0,

u� ∈ Fix(PC (I− μF)) . (17.22)

Fact 17.15 (Baillon–Haddad Theorem [3, 9, 56, 73, 91]). Let f ∈ Γ0(H ) be
Gâteaux differentiable with its gradient ∇ f : H →H . Then the following three
statements are equivalent.

(a) ∇ f is κ-Lipschitzian over H .
(b) ∇ f is 1/κ-inverse strongly monotone over H .
(c) I− 2

κ ∇ f : H →H is nonexpansive over H .

Remark 17.16 (On Fact 17.15).

(a) The equivalence of Facts 17.15(b) and (c) is confirmed by a simple algebra.
(b) Fact 17.15(c) guarantees that κ-Lipschitz continuity of ∇ f implies μκ

2 -averaged
nonexpansivity of I− μ∇ f =

(
1− μκ

2

)
I + μκ

2

(
I− 2

κ ∇ f
)

for any μ ∈ (0, 2
κ
)
.
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17.3 Minimizing Moreau Envelope by Hybrid Steepest
Descent Method

17.3.1 Moreau Envelope and Its Derivative

The Moreau envelope has surprisingly nice properties as follows.

Fact 17.17 (Distinctive Properties of Moreau Envelope (see, e.g., [46, 98, 99,
109])). Given a function f ∈ Γ0(H ), the Moreau envelope γ f : H → R of f of
index γ ∈ (0,∞) in (17.2) satisfies the following.

(a) (Lower bound) (∀γ ∈ (0,∞), ∀x ∈H ) f (x)≥ γ f (x).
(b) (Convergence) The function γ f converges pointwise to f on dom( f ) as

γ → 0, i.e.,

lim
γ↓0

γ f (x) = f (x) (∀x ∈ dom( f )).

Moreover, if f is uniformly continuous on a bounded set S ⊂ dom( f ), γ f
converges uniformly to f on S, i.e., lim

γ↓0
sup
x∈S
|γ f (x)− f (x)| = 0. In particu-

lar, if f is continuous on a compact set S ⊂ dom( f ), the Heine’s theorem
[1, Theorem 4.47] guarantees the uniform convergence of γ f to f on S.

(c) (Lipschitz continuity of Fréchet derivative) γ f : H → R is Fréchet differen-
tiable and its derivative is given by

∇γ f (x) =
x−proxγ f (x)

γ
=

x− (I + γ∂ f )−1 (x)
γ

, (17.23)

hence ∇γ f (x) is 1
γ -Lipschitzian (Note: The firm nonexpansivity of I−proxγ f is

guaranteed by the nonexpansivity of 2(I−proxγ f )− I =−rproxγ f ).

The benefits of the Moreau envelope in applied sciences have been examined for
the absolute value function | · | : R→ [0,∞). By a simple algebra, we verify that the
Moreau envelope of the absolute value function is given explicitly by

γ |t| :=
{

1
2γ t2, if |t| ≤ γ ;

|t|− 1
2 γ , otherwise.

(17.24)

As pointed out in [15, 96], this is clearly equal, up to a scaling factor γ , to the so-
called Huber’s M cost function [83]

ρ : R→ R, t �→
{

1
2 t2, if |t| ≤ γ ;
γ|t|− 1

2 γ2, otherwise,
(17.25)
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in the context of robust linear estimation theory. The Huber’s M cost function has
been used in an estimation problem:

find x� ∈ arg min
x∈Rn

m∑

i=1

ρ ((Ax−b)i) , (17.26)

where A ∈ R
m×n represents the underlying linear model, b ∈ R

m is the data vector,
and x ∈ R

n is the parameter vector. A solution to (17.26), often referred to as an
M-estimator, is known as a robust alternative to the least squares (LS) estimator that
is unfortunately sensitive against occurrence of outliers in the ill-conditioned linear
regression systems. Computational algorithms for the problem (17.26) are found,
for example, in [16, 88, 93, 96]. In particular, a computational algorithm was given
in [16] to a convexly constrained version of the problem (17.26) provided that the
metric projection onto the constraint set is possible to compute efficiently.

The Huber’s M cost function has also been used in many inverse problems
[2, 24, 79, 100] as an excellent robust convex penalty function that grows linearly
for t far from zero; hence, it achieves least sensitivity to large outliers of large resid-
ual. We can also observe that the derivative of γ | · | is always 1

γ -Lipschitzian over
R as mentioned in Fact 17.17(c), while the derivative of a straightforward smooth
convex approximation | · |p : R→ [0,∞) for any 1 < p < 2 can never be Lipschitz
continuous over R due to

lim
t↓0

(
p(p−1)t p−2) = ∞.

This means that the Moreau–Yosida regularization offers a unified systematic strat-
egy to realize a beautiful parametrized smooth convex approximation for general
convex functions in Γ0(H ). Nevertheless, the use of the Moreau envelope and the
proximity operator has been very limited for many years in real-world applications.
This is mainly due to the evident computational difficulty in the definition (17.2),
i.e., we have to minimize a possibly nonsmooth convex function f (·)+ 1

2γ ‖x− ·‖2

for each x∈H to obtain the proxγ f (x)∈H . Although this computational difficulty
has never been resolved in general, the effectiveness of the proximity operator has
been confirmed in relatively simple finite dimensional scenarios, where f ∈ Γ0(Rn)
can be expressed in terms of fi ∈ Γ0(R) (i = 1,2, . . . ,n) by

f : R
n→ R : (x1, . . . ,xn) �→

n∑

i=1

fi(xi), (17.27)

hence

proxγ f (x1, . . . ,xn) =
(

proxγ f1(x1), . . . ,proxγ fn(xn)
)

.

In such a case, the computation of proxγ f (x1, . . . ,xn) is reduced to finding the

unique minimizer proxγ fi(xi) of each univariate convex function fi(·)+ 1
2γ |xi− ·|2

(i = 1, . . . ,n).
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Next we list such useful examples including the soft-thresholding operator, which
was developed originally for denoising [53]. Fortunately, the proximity operators of
these examples have closed form expressions (Note: Many other useful formulae on
the proximity operator are found, for example, in [45, 46]).

Example 17.18 (Closed Form Expressions of Some Proximity Operators [46]).

(a) If f ∈ Γ0(R) is defined by

f : x �→
{− ln(x) if x > 0;

∞ if x≤ 0,

we have for any γ ∈ (0,∞)

proxγ f (x) =
1
2

(
x +

√
x2 + 4γ

)
.

(b) Let {ek}n
k=1 be an orthonormal basis of R

n where the standard inner product
is defined. Define a function f ∈ Γ0(Rn) by f : R

n � x �→∑n
k=1 fk(〈x,ek〉) ∈

(−∞,∞], where fk ∈ Γ0(R) satisfies fk(xk) ≥ 0 (∀xk ∈ R) and fk(0) = 0 (k =
1,2, . . . ,n). Then we have

prox f (x) =
n∑

k=1

(
prox fk

(〈x,ek〉)
)

ek (x ∈R
n).

(c) In particular, if we define, as a special example of (b),

f : R
n � x �→

n∑

k=1

ωk|〈x,ek〉| ∈R,

with constant weights ωk > 0 (k = 1,2, . . . ,n), we have

prox f (x) =
n∑

k=1

sgn(〈x,ek〉)max{|〈x,ek〉|−ωk,0}ek (x ∈ R
n).

The proximity operator in Example 17.18(c) is called the soft-thresholding/
shrinkage [51, 53] and has been used widely for example in noise removal prob-
lems and in sparse matrix completion problems [22, 32, 47]. As seen from Example
17.18(c) for n = 1, the derivative of the Moreau envelope γ f (x) of the absolute value
function f (x) = |x| can be computed with lower complexity than the derivative of
fε (x) :=

√
x2 + ε (ε > 0) of which the use as a smooth approximation of f has been

found in the literature.

To compute the proximity operator of f ∈ Γ0(Rn) in more complex cases where
the decomposition of f as in (17.27) is hard, fundamental theorems in convex anal-
ysis have been utilized implicitly or explicitly; e.g., the Fenchel–Rockafeller duality
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theorem [109] was used in [31, 46, 62] to compute the proximity operator of certain
functions such as the total variation function. The following proposition and its
corollary explain directly such strategies.

Proposition 17.19 (Expression of Proximity Operator by Legendre–Fenchel
Transform). Let ϕ ∈ Γ0(Rm), L ∈R

m×n and d ∈ int(S), where

S := L(Rn)−dom(ϕ) := {Lx− y ∈ R
m | x ∈ R

n and y ∈ dom(ϕ)}

and int(S) stands for the interior of S. Define ϕ̃ ∈ Γ0(Rn) by ϕ̃ : x �→ ϕ(Lx− d).
Then for arbitrarily fixed x ∈R

n and γ ∈ (0,∞),

proxγϕ̃ (x) := arg min
z∈Rn

(
ϕ̃(z)+

1
2γ
‖x− z‖2

)
= arg min

z∈Rn

(
ϕ(Lz−d)+

1
2γ
‖x− z‖2

)

can be expressed, with ȳ ∈ arg min
y∈Rm

(
ϕ∗(y)+ 〈d,y〉+ 1

2γ
‖γLty− x‖2

)
, by

proxγϕ̃(x) = x− γLt ȳ,

where Lt ∈R
n×m denotes the transpose of a matrix L and ϕ∗ the (Legendre–Fenchel)

conjugate of ϕ (see Fact 17.2(a)).

Proof. Clearly, φ(z) := 1
2γ ‖x− z‖2 (∀z ∈ R

n) has dom(φ) = R
n, which implies

d ∈ int(S)⇔−d ∈ int(−L(dom(φ))+ dom(ϕ)), where −L(dom(φ))+ dom(ϕ) =
{−L(x)+ y ∈ R

m | x ∈ dom(φ) and y ∈ dom(ϕ)}. It is also obvious that the con-
jugate of φ ∈ Γ0(Rn) is given by φ ∗(u) = 1

2γ (‖γu + x‖2−‖x‖2) (∀u ∈ R
n) with

dom(φ∗) = R
n, which implies

0 ∈ int
(−Lt (dom(ϕ∗))−dom(φ∗)

)

= {−Lt(y)−u | y ∈ dom(ϕ∗) and u ∈ dom(φ∗)}
= R

n. (17.28)

Therefore, by applying the Fenchel-type duality scheme (see for example [109,
Example 11.41]), we deduce

−L∗ȳ ∈ ∂φ(proxγϕ̃ (x)) =
{

∇φ(proxγϕ̃(x))
}

=
{

1
γ

(
proxγϕ̃ (x)− x

)}
,

where

ȳ ∈ arg max
y∈Rm

{〈−d,y〉−ϕ∗(y)−φ∗(−Lt y)
}

= arg min
y∈Rm

{
ϕ∗(y)+ 〈d,y〉+ 1

2γ
(‖− γLty + x‖2−‖x‖2)

}
. �
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Corollary 17.20 (Proximity Operator of Affinely Pre-composed �1-Norm
Function). Let ϕ ∈ Γ0(Rm) be defined by ϕ : (y1, . . . ,ym) �→∑m

i=1 |yi|. Then for any
L ∈ R

m×n and d ∈ R
m, the proximity operator of the function ϕ̃ : x �→ ϕ(Lx−d) of

index γ ∈ (0,∞) is given by proxγϕ : R
n→ R

n,x �→ x− γLt ȳ, where

ȳ ∈ argmin
y∈C

(
〈d,y〉+ 1

2γ
‖γLty− x‖2

)
(17.29)

with
C := {y = (y1, . . . ,ym) ∈ R

m | |yi| ≤ 1 (i = 1, . . . ,m)} . (17.30)

Proof. By dom(ϕ) = R
m, we have S = L(Rn)−dom(ϕ) = R

m and d ∈ int(S) = R
m.

Moreover, by [17, Example 3.26], the conjugate of ϕ is given by ϕ∗= iC. Therefore,
ȳ ∈ R

m in Proposition 17.19 can be characterized by

ȳ ∈ arg min
y∈Rm

(
iC(y)+ 〈d,y〉 +

1
2γ
‖γLty− x‖2

)

= argmin
y∈C

(
〈d,y〉+ 1

2γ
‖γLt y− x‖2

)
. �

The computation of the proximity operator proxγiC = PC is immediate for C in
(17.30), i.e.,

PC : R
m→C, (x1, . . . ,xm) �→ (y1, . . . ,ym) , where yi :=

{
xi if|xi| ≤ 1
xi
|xi| if|xi|> 1

,

(17.31)

which implies that the solution of the smooth minimization problem (17.29) can
be approximated efficiently, for example, by the projected gradient method [72] or
many other improved algorithms (see, e.g., [11, 12]).

17.3.2 Hybrid Steepest Descent Method

As seen in Sect. 17.3.1, minimization of the Moreau–Yosida regularization of a pos-
sibly nonsmooth convex function Φ ∈ Γ0(H ) can be reduced to minimization of a
smooth convex function whose gradient is Lipschitz continuous. In this section, we
consider the following problem for minimizing such a smooth convex function over
the fixed point set of certain quasi-nonexpansive mappings.

Problem 17.21 (Convex Optimization over the Fixed Point Set of Nonlin-
ear Mapping). Let T : H →H be a quasi-nonexpansive mapping whose fixed
point set Fix(T ) = {x ∈ H | T (x) = x} is nonempty. Suppose that Θ ∈ Γ0(H )
is Gâteaux differentiable with the gradient ∇Θ , which is κ-Lipschitzian over
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T (H ) := {T (x) ∈ H | x ∈ H }. Then the problem is: find a point in the
solution set

Ω :=
{

x� ∈ Fix(T ) |Θ(x�) = min
x∈Fix(T )

Θ(x)
}

= {x� ∈ Fix(T ) | 〈x− x�,∇Θ(x�)〉 ≥ 0 (∀x ∈ Fix(T ))} 	= /0. (17.32)

The HSDM (see, e.g., [33, 49, 84, 92, 101, 102, 122, 130, 136–139, 151]) :

un+1 := T (un)−λn+1∇Θ (T (un)) , (17.33)

is an extremely simple algorithmic solution to Problem 17.21, where (λn)n≥1 ⊂
[0,∞) is a slowly decreasing nonnegative sequence. Among many convergence anal-
yses on the algorithm (17.33), we introduce the following simple ones.

Theorem 17.22 (HSDM for Quasi-Nonexpansive Mappings).

I. (Strong convergence for nonexpansive mapping [132, 139]) Let T : H →H
be a nonexpansive mapping with Fix(T ) 	= /0. Suppose that the gradient
∇Θ is κ-Lipschitzian and η-strongly monotone over T (H ), which guar-
antees |Ω |= 1. Then, by using any sequence (λn)n≥1 ⊂ [0,∞) satisfying
(W1) limn→∞ λn = 0, (W2)

∑
n≥1 λn = ∞, (W3)

∑
n≥1 |λn − λn+1| < ∞ [or

(λn)n≥1 ⊂ (0,∞) satisfying (L1) limn→∞ λn = 0, (L2)
∑

n≥1 λn = ∞, (L3)

limn→∞(λn− λn+1)λ−2
n+1 = 0], the sequence (un)n≥0 generated, for arbitrary

u0 ∈H , by (17.33) converges strongly to the uniquely existing point u� ∈Ω in
(17.32).

II. (Nonstrictly convex optimization I [101, 102]) Assume dim(H ) < ∞. Suppose
that (i) T : H → H is an attracting nonexpansive mapping with bounded
Fix(T ) 	= /0, (ii) ∇Θ is κ-Lipschitzian over T (H ). If the following condition
(a) or (b) is fulfilled, then Ω 	= /0 automatically holds and the sequence (un)n≥0

generated by (17.33), for arbitrary u0 ∈H , satisfies lim
n→∞

d (un,Ω) = 0.

(a) The nonnegative sequence (λn)n≥1 in (17.33) satisfies (W1), (W2) and
(λn)n≥1 ∈ �2, i.e.,

∑
n≥1 λ 2

n < ∞.
(b) (i) T is asymptotically shrinking; i.e., there exists R > 0 satisfying

sup
‖u‖≥R

‖T (u)‖
‖u‖ < 1

(In this case, the nonemptiness and boundedness of Fix(T ) automati-
cally hold (see [101])), and

(ii) the nonnegative sequence (λn)n≥1 in (17.33) satisfies (W1) and (W2).
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III. (Nonstrictly convex optimization II [136]) Assume dim(H ) < ∞. Suppose
f : H →R is a continuous convex function with lev≤0( f ) 	= /0. Let f ′ : H →H
be a selection of the subdifferential ∂ f and let f ′ be bounded on any bounded
set. Assume (i) ξ (x) ≥ f (x), ∀x ∈H , and (ii) Sξ (x) (in Proposition 17.7) sat-
isfies (O-i) and (O-ii) for all x ∈H . Let Tα := (1−α)I +αTdsp,ξ , ∀α ∈ (0,2),
where Tdsp,ξ is defined in (17.14). Let K ⊂ H be a bounded closed con-
vex set satisfying K ∩ lev≤0( f ) 	= /0, which implies that T := PKTα satisfies
Fix(T ) = K∩ lev≤0( f ) 	= /0. Suppose that Θ ∈Γ0(H ) is Gâteaux differentiable
over K where the gradient ∇Θ is κ-Lipschitzian. Then Ω 	= /0 automatically
holds and the sequence (un)n≥0 generated by (17.33), for any u0 ∈ H and
α ∈ (0,2), satisfies lim

n→∞
d (un,Ω) = 0 if (λn)n≥1 ⊂ [0,∞) is chosen to satisfy

(W1) and (W2).

The algorithm (17.33) was established originally as a generalization of the fol-
lowing fixed point iteration [6, 78, 89, 129] so-called Halpern-type iteration (or
anchor method):

un+1 := λn+1a +(1−λn+1)T (un), (17.34)

which converges strongly to PFix(T )(a) for a nonexpansive mapping T : H →H
and a ∈H .

Remark 17.23 (Conditions on (λn)n≥1 ⊂ [0,∞) in (17.33)).

(a) (Necessary condition [78]) lim
n→∞

λn = 0 and
∑

n≥1

λn = ∞ are necessary to en-

sure the convergence of (un)n≥0 to a point in Ω . Indeed, in the simple case
of H := R, T (x) := 1 (∀x ∈ R) and Θ (x) = 1

2 x2 (∀x ∈ R), the method (17.33)
is reduced to

un+1 := (1−λn+1)T (un) = 1−λn+1, n = 0,1,2, . . . ,

hence limn→∞ λn = 0 is necessary for limn→∞ un = 1∈ Fix(T ) = {1}. Moreover,
in the case of H := R, T (x) := −x (∀x ∈ R) and Θ (x) = 1

2 x2 (∀x ∈ R), the
method (17.33), for u0 = 1, is reduced to

un+1 := (1−λn+1)T (un) = (−1)n
n∏

i=0

(1−λi+1), n = 0,1,2, . . . ,

from which
∏∞

i=0(1− λi+1) = 0 (⇔∑∞
n=1 λn = ∞ when limn→∞ λn = 0 and

(λn)n≥1 ⊂ [0,1)) is necessary for limn→∞ un = 0 ∈ Fix(T ) = {0}.
(b) (Sufficient condition) For the formula (17.34), the set of conditions (L1)–(L3)

for (λn)n≥1 ⊂ (0,1] was introduced in [89] while (W1)–(W3) for (λn)n≥1 ⊂
[0,1] was introduced in [129]. [Note: λn := 1/nρ for 0 < ρ < 1 is a sim-
ple example of the sequence (λn)n≥1 satisfying (L1)–(L3). The set of condi-
tions (W1)–(W3) allows the case λn = 1

n ]. The condition (L3) was relaxed to

lim
n→∞

λn

λn+1
= 1 in [130], which allows the case λn = 1

n . Moreover, if T is an av-

eraged nonexpansive mapping, it was shown in [84] that the (W1) and (W2)
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for (λn)n≥1 are sufficient to guarantee the strong convergence of (17.33) to the
unique point in Ω under the scenario of Theorem 17.22 I (The sufficiency of
(W1) and (W2) to guarantee the strong convergence of (17.34) to PFix(T )(a) was
shown in [120]).

Remark 17.24 (HSDM as an Extension of the Proximal Forward–Backward
Splitting).

(a) Under the same conditions imposed in Theorem 17.22 I, the sequence vn :=
T (un) (n = 0,1,2, . . .) generated, for any v0 := T (u0) ∈ T (H ), by

vn+1 := T (I−λn+1∇Θ ) (vn), (17.35)

satisfies

0≤ ‖vn−u�‖= ‖T (un)−u�‖ ≤ ‖un−u�‖→ 0 (n→ ∞). (17.36)

The formula (17.35) is regarded as a (partial) generalization of the proximal
forward-backward splitting in Example 17.12(b). Moreover, we can deduce
from (17.35) a generalization [139, Remark 2.17(a)] of an algorithm in [110]
(a version of projected Landweber method [13, 58, 76]) developed for the con-
vexly constrained least-squares problems.

(b) If the strict convexity of Θ ∈Γ0(H ) is assumed additionally in Theorems 17.22
II and III, the solution set becomes a singleton Ω = {u�}. In such a case,
lim
n→∞

d (un,Ω) = 0 in Theorems 17.22 II and III is equivalent to

lim
n→∞
‖un−u�‖= 0,

hence the relation (17.36) is again applicable to the sequence (vn)n≥0 gen-
erated by (17.35), which guarantees the convergence of (vn)n≥0 to u�. In
[64, Theorem 2], a similar algorithm to (17.35) is found specially for T = Tsp( f ).

Clearly, we can apply the HSDM (17.33) in Theorem 17.22 (or its alternative
form (17.35)) to minimization of Θ : H → R : x �→ γΦ(x), which is the Moreau–
Yosida regularization of a possibly nonsmooth convex function Φ ∈ Γ0(H ) of
the index γ > 0, over the fixed point set of a certain quasi-nonexpansive map-
ping T : H →H . In such a scenario, the 1

γ -Lipschitz continuity of the gradient
∇Θ : H →H is guaranteed automatically by Fact 17.17(c), which is the only re-
quirement for ∇Θ in Theorem 17.22 II and III. By applying Propositions 17.3, 17.4,
and 17.7, to various mappings in Examples 17.6 and 17.9, we can design many effi-
ciently computable quasi-nonexpansive mappings as T whose fixed point set Fix(T )
is desirable as the constraint set.
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17.4 Application to Minimal Antenna-Subset Selection Problem
for MIMO Communication Systems

We have proposed a promising approach by an integration of the ideas of the HSDM
and the Moreau–Yosida regularization to the challenging nonsmooth convex op-
timization over the fixed point set of certain quasi-nonexpansive mappings. We
present in this section its nontrivial application to a minimal antenna-subset selec-
tion problem for efficient MIMO systems (Note: The contents of this section have
partially been presented in [145]).

17.4.1 Backgrounds and Motivations

Multiple antenna systems, broadly termed MIMO systems, have given significant
impacts to a wide range of research fields including communications, signal pro-
cessing, and information theory because of its potential to increase the data rate
without additional bandwidth [63, 124]. The gain, however, comes at the price of
hardware and signal processing complexity, power consumption, etc. [95]. One of
the main causes for the complexity-increase is the cost of multiple RF (radio fre-
quency) chains. Antenna selection has been considered as an attractive approach to
reduce the hardware complexity without severely losing the advantages of MIMO
systems (see [55, 69, 97, 111] and references therein). In particular, it has been
shown that the antenna selection retains the diversity degree compared to the full-
complexity system [74, 97]. The complexity reduction is achieved by equipping
fewer RF chains than the antenna elements at the receiver/transmitter, and the same
number of antennas as the RF chains are selected so that the achieved channel
capacity is maximized.

Differently from the prior works, we consider power-limited systems in which
it is desired to consume the minimum amount of power with the designated chan-
nel capacity achieved. At the receiver, for instance, each antenna element requires
a “power-consuming” RF chain that comprises a low noise amplifier, a frequency
down-converter (a mixer), and an analog-to-digital converter. Also, the signal pro-
cessing complexity may seriously increase with the number of antenna elements.5

Therefore, it would be a natural requirement to select the minimal antenna sub-
set that achieves the designated channel capacity; the cardinality of such a subset
depends highly on the channel state, signal-to-noise ratio (SNR), etc. Unfortu-
nately, the problem of minimal antenna-subset selection is regarded as �0-norm6

5 When the multiple antennas are exploited for spatial multiplexing or the space-time trellis codes
are adopted, the complexity increases sometimes exponentially [95].
6 The cardinality of the nonzero components in x := (x1,x2, . . .,xN) ∈ R

N is often denoted by
‖x‖0 ∈ N and called commonly the �0-norm of x (or the Hamming weight of x in Coding Theory)
although ‖ · ‖0 does not satisfy either the conditions for norm or quasinorm.
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minimization under highly nonlinear constraint: hence, it is hard to solve the
problem directly because of its combinatorial nature when the number of antennas
increases.

In this section, we present an alternative algorithmic solution for reaching an
approximate solution by relaxing twice the �0-norm cost function in the original
problem. The first relaxation is the standard �1-relaxation of �0-norm found widely
in the recent approximation techniques for sparse optimization problems. Indeed,
although the first relaxed problem can be handled as a convex optimization, it is still
hard to solve directly due to the nonsmoothness of the new �1-norm cost function
coupled with the highly nonlinear capacity-constraint. Therefore, the second relax-
ation is the Moreau envelope of �1-norm, which is a computationally manageable
cost function under the capacity constraint.

The proposed algorithm is based on an application of Theorem 17.22 III (a ver-
sion of the HSDM for the subgradient projection operator [136]) to the doubly
relaxed problem: minimize the Moreau envelope of the �1-norm subject to the ca-
pacity constraint.

17.4.2 System Model and Problem Statement

For an MIMO system with NT transmit antennas and NR receive antennas, the re-
ceived signal can be represented as

ri :=
√

EsGsi + ni ∈ C
NR . (17.37)

Here, ri represents the ith sample of the signals measured at the NR receive antennas,
si ∈C

NT the ith symbol transmitted from the NT transmit antennas, Es > 0 the aver-
age energy at each receive antenna, G ∈ C

NR×NT the channel matrix whose (p,q)th
component represents the channel characteristics between the pth receive antenna
and the qth transmit antenna, and ni the additive white Gaussian noise with energy
N0/2 per complex dimension. We make the standard assumptions that the channel
has frequency-flat fading and G is perfectly known at the receiver.7 Also, we as-
sume that G is totally unknown at the transmitter, therefore choosing si such that
its covariance matrix is INT/NT [55]; we denote by Im the m×m identity matrix.
In this case, it is known that the channel capacity (mutual information) is given as
follows [63]:

cfull := log2 det

(
INT +

ρ
NT

GHG

)
bps/Hz, (17.38)

where ρ := Es/N0 is the average SNR; (·)H stands for the Hermitian transpose.

7 The channel could be moderately frequency-selective [97, 111].
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We focus on the receive antenna selection. Let c∈ (0,cfull) denote the designated
channel capacity to be ensured. The problem is to select the minimal antenna sub-
set that achieves the capacity c. Let x := [x1,x2, · · · ,xNR ]t ∈ {0,1}NR represent an
antenna subset in such a way that x j = 1 (x j = 0) indicates that the jth antenna is se-
lected (not selected). Then, the channel capacity with the antenna subset represented
by x is given by

c(x) := log2 det

(
INT +

ρ
NT

GHXG

)
bps/Hz, (17.39)

where X := diag(x). The minimal antenna-subset selection problem is thus formu-
lated as follows:

min
x∈{0,1}NR

‖x‖0 s.t. c(x)≥ c, (17.40)

where ‖·‖0 denotes the �0-norm that counts the number of nonzero components.
The problem in (17.40) is mathematically challenging, because it is nonlinearly-
constrained sparse optimization. In general, finding its optimal solution involves
exhaustive search. In the following, we present an efficient algorithmic solution us-
ing convex and differentiable relaxations of the �0 norm.

17.4.3 Convex and Differentiable Relaxations

To alleviate the difficulty in the combinatorial nature of the problem, we reformulate
(17.40) into

min
x∈[0,1]NR

ψ(x) := ‖x‖1 s.t. ϕ(x) := c− c(x)≤ 0, (17.41)

which is ‖·‖1 minimization.8 Because the function c is concave on R
NR
+ [17, 55],

ϕ is convex on R
NR
+ ; R+ denotes the set of all nonnegative real numbers.

Unfortunately, we can still not find any computationally efficient solver for
the reformulated problem in (17.41) because (1) the function ψ is (convex but)
neither smooth nor strictly-convex and (2) the metric projection onto the con-
straint set (i.e., the zero level set of ϕ) is not efficiently computable (For instance,
the generalized Haugazeau’s scheme [38] cannot be applied directly because of
the non-strict-convexity of ψ). Therefore, we reformulate (17.41), in H := R

NR

where the standard inner product and its induced norm are defined, by using the
Moreau-Yosida regularization. Defining ψω : R

NR → R+,x �→ ω ‖x‖1, for an arbi-
trary constant ω > 0 (ψ = ψω |ω=1), our optimization problem to solve is given as
follows:

min
x∈[0,1]NR

γψω (x) s.t. ϕ(x)≤ 0 (γ > 0). (17.42)

8 In recent years, it has been proven both theoretically and experimentally that sparse recovery is
possible in many cases by means of the �1-norm [23, 52].
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17.4.4 Proposed Antenna-Subset Selection Algorithm

The key of the previous subsection is the second relaxation which replaces the non-
smooth ψ by γ ψω(x) having a Lipschitz continuous derivative. Our basic strategy
is the following: (1) compute the solution x� to the problem in (17.42) by HSDM
(Theorem 17.22 III) and (2) choose the antenna subset associated with the indices
of (the minimum number of) the largest components of x� such that the designated
capacity c is achieved. Letting I := {1,2, · · · ,NR}, the proposed algorithm is given
as below.

Algorithm 17.25.

(i) For an initial vector x0 ∈ R
NR , generate (xk)

Q
k=1 recursively by HSDM (Q: the

prespecified number of iterations), and let xQ =: [x(1)
Q ,x(2)

Q , · · · ,x(NR)
Q ]t .

(ii) Compute the arithmetic mean x̄Q of xQ.
(iii) Choose the indices corresponding to the components no smaller than x̄Q as a

temporary antenna subset.
Let J := /0.
for j ∈I

if x( j)
Q ≥ x̄Q

J := J ∪{ j}
end

end
(iv) Choose the minimal antenna subset.

Let xJ ∈ {0,1}NR be the vector representing the antenna
subset J (see Sect. 17.4.2).
if c(xJ ) < c

while c(xJ ) < c

j ∈ argmaxι∈I \J x(ι)
Q

J := J ∪{ j}
end

else
Ĵ := J

while c(x
Ĵ

)≥ c

J := Ĵ

j ∈ argminι∈Ĵ
x(ι)

Q

Ĵ := Ĵ \ { j}
end

end
(v) Output J as the selected antenna subset. �

The following subsection is devoted to explain precisely how to solve the prob-
lem in (17.42) by HSDM.



380 I. Yamada et al.

17.4.5 Optimization by Hybrid Steepest Descent Method

The problem in (17.42) has two constraints: the capacity constraint

x ∈ lev≤0(ϕ) :=
{

x ∈ R
NR : ϕ(x)≤ 0

}

and the box constraint

x ∈K := [0,1]NR =
{

x ∈ R
NR : 0≤ x j ≤ 1, ∀ j ∈I

}
,

where K ∩ lev≤0(ϕ) 	= /0 is confirmed by ϕ(1NR) = c − cfull < 0 for 1NR :=
[1,1, · · · ,1] ∈K .

Note that PK can be computed easily while the computation of Plev≤0(ϕ) is not
a simple task at all. Fortunately, an application of Theorem 17.22 III to Θ := γ ψω ,
f := ϕ and K := K guarantees for any x0 ∈ R

NR that the recursion

xk+1 := (I−λk+1∇γψω )
(

T̂α(xk)
)

, k ≥ 0, (17.43)

with
T̂α := PK

[
(1−α)I +αTsp(ϕ)

]
, α ∈ (0,2), (17.44)

generates a sequence of points converging to a solution to (17.42).

Since ϕ is differentiable on R
NR
+ , its gradient ∇ϕ(x) :=

[
∂ϕ(x)
∂ x1

,
∂ϕ(x)
∂x2

, · · · , ∂ϕ(x)
∂ xNR

]t

is the unique subgradient at any x ∈ R
NR
+ ; i.e., ∂ϕ(x) = {∇ϕ(x)}. Letting GH =:

[g1 g2 · · ·gNR
], we have

INT +
ρ

NT
GHXG = INT +

NR∑

j=1

x j

(
ρ

NT
g jg

H
j

)
, (17.45)

which is positive definite. Therefore, ∀x ∈ R
NR
+ , ∀ j ∈I , we have

∂ϕ(x)
∂x j

=− 1
ln2

tr

[(
INT +

ρ
NT

GHXG

)−1 ρ
NT

gjg
H
j

]

=− ρ
NT ln2

gH
j

(
INT +

ρ
NT

GHXG

)−1

g j, (17.46)

where tr [·] stands for the trace of matrix. Note that, since (INT + ρ
NT

GHXG)−1 is

positive definite, gH
j (INT + ρ

NT
GHXG)−1 gj > 0, ∀ j ∈I , thus ∂ϕ(x)

∂ xj
< 0, ∀ j ∈ I ;

gj 	= 0 is silently assumed without loss of generality.
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Finally, ∇γ ψω(= 1
γ (I−proxγψω )) is computed simply by

proxγψω : R
NR � x �→

NR∑

j=1

sgn(
〈
x,e j

〉
)max{∣∣〈x,e j

〉∣∣− γω ,0}ej, (17.47)

where e j, j = 1,2, · · · ,NR, specially denotes the unit vector that has only one
nonzero element at the jth position.

Remark 17.26 (On the recursion (17.43)). The operator I− λk+1∇γψω in (17.43)

can be written as I + λk+1
γ (proxγψω − I). From (17.47), proxγψω attracts to zero such

components of T̂α(xk) that are not greater than γω . Therefore, I−λk+1∇γψω also
has a similar zero-attracting function, thereby promoting the sparsity. The param-
eters γ and λk+1 should satisfy λk+1/γ ≤ 1 so that all the components of xk+1 are
kept nonnegative. Also γ and ω should satisfy γω < 1 for preventing the situa-
tion where all the components are attracted to zero. We mention that a constant
value for all λks (as shown below) may be used, because the strict convergence
is not necessarily required in the proposed algorithm. The computational com-
plexity of the proposed algorithm is given approximately by QN2

min(2Nmax + N),
where Nmin := min{NR,NT}, Nmax := max{NR,NT}, and N := min{Nmin,Nmax/2}.
Hence, the proposed algorithm is efficient particularly when NT is sufficiently small
compared to NR. Note that there exists no other method available for the minimal
antenna-subset selection problem (17.40).

Remark 17.27 (Equivalent expression of the problem (17.41)). Noting the range
of x, the problem (17.41) can equivalently be formulated as follows:

min
x∈[0,1]NR

ψ̃(x) := 1t
NR

x s.t. ϕ(x)≤ 0. (17.48)

Unfortunately, although the gradient ∇ψ̃(x) = 1NR is surely Lipschitz continuous,
it is not possible, unlike the case of (17.42), to conclude immediately that (17.48)
can be solved by applying Theorem 17.22 III for the following reason. Indeed, the
HSDM recursion for (17.48) is given by

xk+1 := (I−λk+1∇ψ̃(x))(T̂α(xk)) = T̂α(xk)−λk+11NR , k ≥ 0. (17.49)

A simple inspection of (17.49) clarifies that λk+1 should be no smaller than the
minimum component of T̂α(xk) because the function ϕ , which is included in the
operator T̂α , is convex only on R

NR
+ . Therefore, to guarantee the convergence by

Theorem 17.22 III, careful design of the step size parameter λk is required at each
iteration step.
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17.4.6 Numerical Examples

Simulations are performed to show the efficacy of the proposed minimal antenna-
subset selection algorithm. We consider the Rayleigh channel where the elements of
G are independently drawn from a complex zero-mean Gaussian distribution of the
unit variance. In all the simulations, the HSDM parameters are set to α = 1, γ = 1.2,
ω = 0.8, Q = 20, and λk = 1 (∀k = 1,2, · · · ,Q). In our experiments, the proposed
algorithm is insensitive to the choice of the parameters within γω < 1 and λk/γ ≤ 1
(see Remark 17.26). All the simulated points are calculated by averaging over 2000
independent realizations of the channel matrix G.

First, Fig. 17.6 depicts the results for NR = 16, NT = 4, and c = 10,20.
Figure 17.6a describes the average number L̄R of antennas selected by the pro-
posed algorithm. As a reference, we also plot the optimal solution to the original
problem in (17.40); the optimal is computed by computationally exhaustive full
search. It is seen that the results of the proposed algorithm are comparable to the
optimal; this suggests the reasonability of the relaxations introduced in Sect. 17.4.3.
Figure 17.6b describes the ergodic capacity of the proposed algorithm. With LR

denoting the number of antennas selected by the proposed algorithm, we also
plot Cmax(LR), the maximum achievable capacity with the subset of LR antennas,
which is computed by exhaustive search. It is seen that the performance of the
proposed algorithm is approximately the same as Cmax(LR); this is the side effects
of the proposed algorithm. In summary, the results demonstrate that the proposed

Fig. 17.6 Comparisons
with the optimal selection
for NR = 16, NT = 4,
and c = 10,20
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algorithm realizes (1) the near-minimal antenna subset and (2) the near-maximum
capacity achievable with the same number of antennas as selected by the algorithm.

Second, Fig. 17.7 illustrates the results for (a) NR = 16, NT = 16, and c = 20,40
and (b) NR = 64, NT = 16,64, and c = 60. From Figs. 17.6a and 17.7, it is seen that
the number of antennas to be used can significantly be reduced particularly for high
SNR. Moreover, in Fig. 17.7b, we observe no distinct difference between NT = 16
and NT = 64 for SNR higher than 15 dB. Finally, Fig. 17.8 plots L̄R against NR for
SNR= 10 dB, NT = 4, and c = 20. The result shows that an increase of the number
of antenna elements equipped could yield reduction of the number of antennas used.
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17.5 Concluding Remarks

In this paper, we have introduced the essence of the great applicability of the convex
optimization over the fixed point set of quasi-nonexpansive mapping. First, we have
shown that the fixed point characterization gives us the powerful toolbox to address
the problem of finding an “optimal” point from the fixed point set. Second, we have
proposed the integration of the HSDM and the Moreau-Yosida regularization by
highlighting its distinctive properties as a smooth approximation of a nonsmooth
convex function. The novel integration with the gifted toolbox has opened a path
to dealing with the challenging nonsmooth convex optimization problems under the
cumbersome constraint of the fixed point set, which are naturally desired yet have
been unexplored in mathematical sciences and engineerings. We have demonstrated
the effectiveness of the proposed approach in its application to the minimal antenna-
subset selection problem under a highly nonlinear capacity constraint for efficient
MIMO communication systems.

This paper has focused on the nonsmooth convex optimization problems over
the fixed point set. We remark, however, that the HSDM has many other pos-
sible advanced applications. For example, by letting T := rproxγ f1

rproxγiC
for

f1 ∈ Γ0(H ) and a closed convex set C ⊂ H , we have the characterization:
G := argmin

x∈C
f1(x) = {PC(z) | z ∈ Fix(T )} (see Example 17.6(c)). This means that

we can minimize a convex function f2 : C→R over the constraint set G by applying
the HSDM to Θ : H → R : x �→ f2(PC(x)) and T provided that the derivative of Θ
is Lipschitzian.
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for their kind encouragement and invitation of the first author to the dream meeting: The Interdis-
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n-cycliquement monotones. Isr. J. Math. 26, 137–150 (1977)
4. Baillon, J.-B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings

and semigroups in Banach spaces. Houst. J. Math. 4, 1–9 (1978)
5. Barbu, V., Precupanu, Th.: Convexity and Optimization in Banach Spaces, 3rd Ed. D. Reidel

Publishing Company (1986)
6. Bauschke, H.H.: The approximation of fixed points of compositions of nonexpansive map-

pings in Hilbert space. J. Math. Anal. Appl. 202, 150–159 (1996)
7. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility prob-

lems. SIAM Rev. 38, 367–426 (1996)
8. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér monotone

methods in Hilbert space. Math. Oper. Res. 26, 248–264 (2001)



17 Minimizing the Moreau Envelope of Nonsmooth Convex Functions 385

9. Bauschke, H.H., Combettes, P.L.: The Baillon-Haddad theorem revisited. J. Convex Anal. 17,
781–787 (2010)

10. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer (2011)

11. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sciences 2, 183–202 (2009)

12. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image
denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)

13. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. IOP (1998)
14. Borwein, J.M., Fitzpatrick, S., Vanderwerff, J.: Examples of convex functions and classifica-

tions of normed spaces. J. Convex Anal. 1, 61–73 (1994)
15. Bougeard, M.L.: Connection between some statistical estimation criteria, lower-C2 func-

tions and Moreau-Yosida approximates. In: Bulletin International Statistical Institute 47th
session 1, INSEE Paris Press, pp. 159–160 (1989)

16. Bougeard, M.L., Caquineau, C.D.: Parallel proximal decomposition algorithms for robust
estimation. Ann. Oper. Res. 90, 247–270 (1999)

17. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press (2004)
18. Bregman, L.M.: The method of successive projection for finding a common point of convex

sets. Soviet Math. Dokl. 6, 688–692 (1965)
19. Browder, F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces.

Math. Z. 100, 201–225 (1967)
20. Byrne, C.L.: A unified treatment of some iterative algorithms in signal processing and image

reconstruction. Inverse Probl. 20, 103–120 (2004)
21. Byrne, C.L.: Applied Iterative Methods. A K Peters, Ltd., Wellesley, Massachusettes (2007)
22. Cai, J.F., Candés, E.J., Shen, Z.: A singular value thresholding algorithm for matrix comple-

tion. SIAM J. Optim. 20, 1956–1982 (2010)
23. Candés, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process.

Mag. 25, 21–30 (2008)
24. Capel, D., Zisserman, A.: Computer vision applied to super resolution. IEEE Signal Process.

Mag. 20, 75–86 (2003)
25. Cavalcante, R., Yamada, I.: Multiaccess interference suppression in orthogonal space-time

block coded MIMO systems by adaptive projected subgradient method. IEEE Trans. Signal
Process. 56, 1028–1042 (2008)

26. Cavalcante, R., Yamada, I.: A flexible peak-to-average power ratio reduction scheme for
OFDM systems by the adaptive projected subgradient method. IEEE Trans. Signal Process.
57, 1456–1468 (2009)

27. Cavalcante, R., Yamada, I., Mulgrew, B.: An adaptive projected subgradient approach to
learning in diffusion networks. IEEE Trans. Signal Process. 57, 2762–2774 (2009)

28. Censor, Y., Reich, S.: Iterations of paracontractions and firmly nonexpansive operators with
applications to feasibility and optimization. Optimization 37, 323–339 (1996)

29. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithm, and Optimization. Oxford
University Press (1997)

30. Censor, Y., Iusem, A.N., Zenios, S.A.: An interior point method with Bregman functions for
the variational inequality problem with paramonotone operators. Math. Program. 81, 373–400
(1998)

31. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imag-
ing Vis. 20, 89–97 (2004)

32. Chambolle, A., DeVore, R.A., Lee, N.Y., Lucier, B.J.: Nonlinear wavelet image process-
ing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE
Trans. Image Process. 7, 319–335 (1998)

33. Chidume, C.: Geometric Properties of Banach Spaces and Nonlinear Iterations (Chapter 7:
Hybrid steepest descent method for variational inequalities). Lecture Notes in Mathematics
1965, Springer (2009)

34. Combettes, P.L.: Foundation of set theoretic estimation. Proc. IEEE. 81, 182–208 (1993)



386 I. Yamada et al.

35. Combettes, P.L.: Inconsistent signal feasibility problems: least squares solutions in a product
space. IEEE Trans. Signal Process. 42, 2955–2966 (1994)

36. Combettes, P.L.: Construction d’un point fixe commun à une famille de contractions fermes.
C.R. Acad. Sci.Paris Sèr. I Math. 320, 1385–1390 (1995)

37. Combettes, P.L.: Convex set theoretic image recovery by extrapolated iterations of parallel
subgradient projections. IEEE Trans. Image Process. 6, 493–506 (1997)

38. Combettes, P.L.: Strong convergence of block-iterative outer approximation methods for con-
vex optimization. SIAM J. Control Optim. 38, 538–565 (2000)

39. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged
operators. Optimization 53, 475–504 (2004)

40. Combettes, P.L., Bondon, P.: Hard-constrained inconsistent signal feasibility problems. IEEE
Trans. Signal Process. 47, 2460–2468 (1999)

41. Combettes, P.L., Pesquet, J.-C.: Image restoration subject to a total variation constraint. IEEE
Trans. Image Process. 13, 1213–1222 (2004)

42. Combettes, P.L., Pesquet, J.-C.: A Douglas-Rachford splitting approach to nonsmooth convex
variational signal recovery. IEEE J. Sel. Top. Signal Process. 1, 564–574 (2007)

43. Combettes, P.L., Pesquet, J.-C.: A proximal decomposition method for solving convex varia-
tional inverse problems. Inverse Probl. 24 (2008)

44. Combettes, P.L., Pesquet, J.-C.: Split convex minimization algorithm for signal recovery.
Proc. 2009 IEEE ICASSP (Taipei), 685–688 (2009)

45. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In:
H. H. Bauschke, R. Burachik, P. L. Combettes, V. Elser, D. R. Luke, H. Wolkowicz (eds.)
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer (2010)

46. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM
Multiscale Model. Simul. 4, 1168–1200 (2005)

47. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Comm. Pure Appl. Math. 57, 1413–1457 (2004)

48. Deutsch, F., Best Approximation in Inner Product Spaces. Springer, New York (2001)
49. Deutsch, F., Yamada, I.: Minimizing certain convex functions over the intersection of the fixed

point sets of nonexpansive mappings. Numer. Funct. Anal. Optim. 19, 33–56 (1998)
50. Dolidze, Z.O.: Solutions of variational inequalities associated with a class of monotone maps.

Ekonomika i Matem. Metody 18, 925–927 (1982)
51. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)
52. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)
53. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81,

425–455 (1994)
54. Dotson, Jr, W.G.: On the Mann iterative process. Trans. Amer. Math. Soc. 149, 65–73 (1970)
55. Dua, A., Medepalli, K., Paulraj, A.J.: Receive antenna selection in MIMO systems using

convex optimization. IEEE Trans. Wirel. Commun. 5, 2353–2357 (2006)
56. Dunn, J.C.: Convexity, monotonicity, and gradient processes. J. Math. Anal. Appl. 53,

145–158 (1976)
57. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachfold splitting method and proximal point

algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
58. Eicke, B.: Iteration methods for convexly constrained ill-posed problems in Hilbert space.

Numer. Funct. Anal. Optim. 13, 413–429 (1992)
59. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Classics in Applied

Mathematics 28, SIAM (1999)
60. Elsner, L., Koltracht, L., Neumann, M.: Convergence of sequential and asynchronous nonlin-

ear paracontractions. Numer. Math. 62, 305–319 (1992)
61. Engle, H.W., Leitão, A.: A Mann iterative regularization method for elliptic Cauchy problems.

Numer. Funct. Anal. Optim. 22, 861–884 (2001)
62. Fadili, M.J., Starck, J.-L.: Monotone operator splitting for optimization problems in sparse

recovery. Proc. 2009 IEEE ICIP, Cailo (2009)
63. Foschini, G.J., Gans, M.J.: On limits of wireless communications in a fading environment

when using multiple antennas. Wirel. Pers. Commun. 6, 311–335 (1998)



17 Minimizing the Moreau Envelope of Nonsmooth Convex Functions 387

64. Fukushima, M.: A relaxed projection method for variational inequalities. Math. Program. 35,
58–70 (1986)

65. Fukushima, M., Qi, L.: A globally and superlinearly convergent algorithm for nonsmooth
convex minimization. SIAM J. Optim. 6, 1106–1120 (1996)

66. Gabay, D.: Applications of the method of multipliers to variational inequalities. In : M. Fortin
and R. Glowinski (eds.) Augmented Lagrangian Methods: Applications to the solution of
boundary value problems, North-Holland, Amsterdam (1983)

67. Gandy, S., Yamada, I.: Convex optimization techniques for the efficient recovery of a sparsely
corrupted low-rank matrix. Journal of Math-for-Industry 2(2010B-5), 147–156 (2010)

68. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via con-
vex optimization. Inverse Probl. 27(2), 025010 (2011)

69. Gharavi-Alkhansari, M., Gershman, A.B.: Fast antenna subset selection in MIMO systems.
IEEE Trans. Signal Process. 52, 339–347 (2004)

70. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Univ. Press. (1990)
71. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Map-

pings. New York and Basel Dekker (1984)
72. Goldstein, A.A.: Convex programming in Hilbert space. Bull. Amer. Math. Soc. 70, 709–710

(1964)
73. Golshtein, E.G., Tretyakov, N.V.: Modified Lagrangians and Monotone Maps in Optimiza-

tion. Wiley (1996)
74. Gorokhov, A., Gore, D.A., Paulraj, A.J.: Receive antenna selection for MIMO spatial multi-

plexing: theory and algorithms. IEEE Trans. Signal Process. 51, 2796–2807 (2003)
75. Groetsch, C.W.: A note on segmenting Mann iterates. J. Math. Anal. Appl. 40, 369–372

(1972)
76. Groetsch, C.W.: Inverse Problems in Mathematical Sciences. Wiesbaden-Vieweg (1993)
77. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common

point of convex sets. USSR Comput. Maths. Phys. 7, 1–24 (1967)
78. Halpern, B.: Fixed points of nonexpanding maps. Bull. Amer. Math. Soc. 73, 957–961 (1967)
79. Hasegawa, H., Ohtsuka, T., Yamada, I., Sakaniwa, K.: An edge-preserving super-precision

for simultaneous enhancement of spacial and grayscale resolutions. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. E91-A, 673–681 (2008)

80. Haugazeau, Y.: Sur les Inéquations variationnelles et la Minimisation de Fonctionnelles Con-
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Chapter 18
The Brézis-Browder Theorem Revisited
and Properties of Fitzpatrick Functions
of Order n

Liangjin Yao

Abstract In this paper, we study maximal monotonicity of linear relations
(set-valued operators with linear graphs) on reflexive Banach spaces. We provide a
new and simpler proof of a result due to Brézis–Browder which states that a mono-
tone linear relation with closed graph is maximal monotone if and only if its adjoint
is monotone. We also study Fitzpatrick functions and give an explicit formula for
Fitzpatrick functions of order n for monotone symmetric linear relations.
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18.1 Introduction

Monotone operators play important roles in convex analysis and optimization [12,
15, 22, 24–26, 32, 33]. In 1978, Brézis–Browder gave some characterizations of a
monotone operator with closed linear graph [14, Theorem 2] in reflexive Banach
spaces. The Brézis–Browder Theorem states that a monotone linear relation with
closed graph is maximal monotone if and only if its adjoint is monotone if and only
if its adjoint is maximal monotone, which demonstrates the connection between the
monotonicity of a linear relation and that of its adjoint. In this paper, we give a new
and simpler proof of the hard part of the Brézis–Browder Theorem (Theorem 18.5):
a monotone linear relation with closed graph is maximal monotone if its adjoint is
monotone. The proof relies on a recent characterization of maximal monotonicity
due to Simons and Zălinescu. Our proof does not require any renorming.
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We suppose throughout this note that X is a real reflexive Banach space with
norm ‖ · ‖, that X∗ is its continuous dual space with norm ‖ · ‖∗ and dual product
〈·, ·〉. We now introduce some notation. Let A : X ⇒ X∗ be a set-valued operator or
multifunction whose graph is defined by

graA := {(x,x∗) ∈ X×X∗ | x∗ ∈ Ax}.

The inverse operator of A, A−1 : X∗⇒ X , is given by graA−1 := {(x∗,x) ∈ X∗×X |
x∗ ∈ Ax}; the domain of A is domA := {x ∈ X | Ax �= ∅}. The Fitzpatrick function
of A (see [19]) is given by

FA : (x,x∗) �→ sup
(a,a∗)∈graA

(〈x,a∗〉+ 〈a,x∗〉− 〈a,a∗〉). (18.1)

For every n ∈ {2,3, . . .}, the Fitzpatrick function of A of order n (see
[1, Definition 2.2 and Proposition 2.3]) is defined by

FA,n(x,x∗) := sup{
(a1,a∗1),··· ,(an−1,a∗n−1)

}
⊆graA

(

〈x,x∗〉+
(

n−2∑

i=1

〈ai+1−ai,a
∗
i 〉

)

+〈x−an−1,a
∗
n−1〉+ 〈a1− x,x∗〉

)

.

Clearly, FA,2 = FA. We set FA,∞ = supn∈{2,3,···}FA,n.

If Z is a real reflexive Banach space with dual Z∗ and a set S ⊆ Z, we denote S⊥
by S⊥ := {z∗ ∈ Z∗ | 〈z∗,s〉 = 0, ∀s ∈ S}. Then the adjoint of A, denoted by A∗, is
defined by

graA∗ := {(x,x∗) ∈ X×X∗ | (x∗,−x) ∈ (graA)⊥}.
Note that A is said to be a linear relation if graA is a linear subspace of X×X∗. (See
[18] for further information on linear relations.) Recall that A is said to be monotone
if for all (x,x∗),(y,y∗) ∈ graA we have

〈x− y,x∗ − y∗〉 ≥ 0,

and A is maximal monotone if A is monotone and A has no proper monotone ex-
tension (in the sense of graph inclusions). We say (x,x∗) ∈ X×X∗ is monotonically
related to graA if (for every (y,y∗) ∈ graA) 〈x− y,x∗ − y∗〉 ≥ 0. Recently, linear
relations have been become an interesting object and comprehensively studied in
Monotone Operator Theory: see [1–3, 5–10, 23, 29–31]. We can now precisely de-
scribe the Brézis–Browder Theorem. Let A be a monotone linear relation with closed
graph. Then

A is maximal monotone⇔ A∗ is maximal monotone

⇔ A∗ is monotone.
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The original proof of Brézis–Browder Theorem is based on the application of Zorn
Lemma by constructing a series of finite-dimensional subspaces, which is compli-
cated. Our goal of this paper is to give a simpler proof of Brézis–Browder Theorem
and to derive more properties of Fitzpatrick functions of order n. The paper is or-
ganized as follows. The first main result (Theorem 18.5) is proved in Sect. 18.2
providing a new and simpler proof of the Brézis–Browder Theorem. In Sect. 18.3,
some explicit formulas for Fitzpatrick functions are given. Recently, Fitzpatrick
functions of order n [1] have turned out to be a useful tool in the study of n-
cyclic monotonicity (see [1, 3, 4, 13]). Theorem 18.14 gives an explicit formula for
Fitzpatrick functions of order n associated with symmetric linear relations, which
generalizes and simplifies [1, Example 4.4] and [3, Example 6.4].

Our notation is standard. The notation A : X→X∗ means that A is a single-valued
mapping (with full domain) from X to X∗. Given a subset C of X , C is the norm
closure of C. The indicator function ιC : X → ]−∞,+∞] of C is defined by

x �→
{

0, if x ∈C;

+∞, otherwise.
(18.2)

Let x ∈ X and C∗ ⊆ X∗. We write 〈x,C∗〉 := {〈x,c∗〉 | c∗ ∈ C∗}. If 〈x,C∗〉 = {a}
for some constant a ∈ R, then we write 〈x,C∗〉 = a for convenience. For a function
f : X → ]−∞,+∞], dom f = {x ∈ X | f (x) < +∞} and f ∗ : X∗ → [−∞,+∞] : x∗ �→
supx∈X (〈x,x∗〉 − f (x)) is the Fenchel conjugate of f . Recall that f is said to be
proper if dom f �= ∅. If f is convex, ∂ f : X ⇒ X∗ : x �→ {x∗ ∈ X∗ | (∀y ∈ X) 〈y−
x,x∗〉+ f (x) ≤ f (y)} is the subdifferential operator of f . Denote J by the duality
map, i.e., the subdifferential of the function 1

2‖ · ‖2, by [22, Example 2.26],

Jx := {x∗ ∈ X∗ | 〈x∗,x〉= ‖x∗‖∗ · ‖x‖, with ‖x∗‖∗ = ‖x‖}.

18.2 A New Proof of the Brézis–Browder Theorem

Fact 18.1 (Simons). (See [26, Lemma 19.7 and Sect. 22].) Let A : X ⇒ X∗ be
a monotone operator such that graA is convex with graA �= ∅. Then the function

g : X×X∗ → ]−∞,+∞] : (x,x∗) �→ 〈x,x∗〉+ ιgraA(x,x∗) (18.3)

is proper and convex.

Fact 18.2 (Simons-Zălinescu). (See [27, Theorem 1.2] or [25, Theorem 10.6].)
Let A : X ⇒ X∗ be monotone. Then A is maximal monotone if and only if

graA + gra(−J) = X×X∗.
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Remark 18.3. When J and J−1 are single valued, Fact 18.2 yields Rockafellar’s
characterization of maximal monotonicity of A. See [27, Theorem 1.3] and [26,
Theorem 29.5 and Remark 29.7].

Now we state the Brézis–Browder Theorem.

Theorem 18.4 (Brézis–Browder). (See [14, Theorem 2].) Let A : X ⇒ X∗ be a
monotone linear relation with closed graph. Then the following statements are
equivalent. (The hard part is to show (iii)⇒(i)).

(i) A is maximal monotone.
(ii) A∗ is maximal monotone.

(iii) A∗ is monotone.

Proof. (i)⇒(iii): Suppose to the contrary that A∗ is not monotone. Then there exists
(x0,x∗0) ∈ graA∗ such that 〈x0,x∗0〉< 0. Now we have

〈−x0− y,x∗0− y∗〉= 〈−x0,x
∗
0〉+ 〈y,y∗〉+ 〈x0,y

∗〉+ 〈−y,x∗0〉
= 〈−x0,x

∗
0〉+ 〈y,y∗〉> 0, ∀(y,y∗) ∈ graA. (18.4)

Thus, (−x0,x∗0) is monotonically related to graA. By maximal monotonicity of A,
(−x0,x∗0)∈ graA. Then 〈−x0−(−x0),x∗0−x∗0〉= 0, which contradicts (18.4). Hence,
A∗ is monotone.

(iii)⇒(i): See Theorem 18.5 below.
(i)⇔(ii): Apply directly (iii)⇔(i) by using A∗∗ = A (since graA is closed). �

In Theorem 18.5, we provide a new and simpler proof to show the hard part
(iii)⇒(i) in Theorem 18.4. The proof was inspired by that of [33, Theorem 32.L].

Theorem 18.5. Let A : X ⇒ X∗ be a monotone linear relation with closed graph.
Suppose A∗ is monotone. Then A is maximal monotone.

Proof. By Fact 18.2, it suffices to show that X×X∗ ⊆ graA+gra(−J). For this, let
(x,x∗) ∈ X×X∗ and we define g : X×X∗ → ]−∞,+∞] by

(y,y∗) �→ 1
2
‖y∗‖2

∗+
1
2
‖y‖2 + 〈y∗,y〉+ ιgraA(y− x,y∗− x∗).

Since graA is closed, g is lower semicontinuous on X × X∗. Note that (y,y∗) �→
〈y∗,y〉+ ιgraA(y− x,y∗− x∗) = 〈y∗,y〉+ ιgraA+(x,x∗)(y,y∗). By Fact 18.1, g is convex
and coercive. According to [32, Theorem 2.5.1(ii)], g has minimizers. Suppose that
(z,z∗) is a minimizer of g. Then (z− x,z∗ − x∗) ∈ graA, that is,

(x,x∗) ∈ graA +(z,z∗). (18.5)

On the other hand, since (z,z∗) is a minimizer of g, (0,0) ∈ ∂g(z,z∗). By a result
of Rockafellar (see [17, Theorem 2.9.8] and [32, Theorem 3.2.4(ii)]), there exist
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(z∗0,z0)∈ ∂ (ιgra A(·−x, ·−x∗))(z,z∗) = ∂ιgra A(z−x,z∗−x∗)= (graA)⊥, and (v,v∗)∈
X×X∗ with v∗ ∈ Jz,z∗ ∈ Jv such that

(0,0) = (z∗,z)+ (v∗,v)+ (z∗0,z0).

Then (− (z+ v),z∗+ v∗
) ∈ graA∗.

Since A∗ is monotone,

〈z∗+ v∗,z+ v〉= 〈z∗,z〉+ 〈z∗,v〉+ 〈v∗,z〉+ 〈v∗,v〉 ≤ 0. (18.6)

Note that since 〈z∗,v〉= ‖z∗‖2∗ = ‖v‖2, 〈v∗,z〉= ‖v∗‖2∗ = ‖z‖2, by (18.6), we have

1
2
‖z‖2 +

1
2
‖z∗‖2

∗+ 〈z∗,z〉+
1
2
‖v∗‖2

∗+
1
2
‖v‖2 + 〈v,v∗〉 ≤ 0.

Hence, z∗ ∈ −Jz. By (18.5), (x,x∗) ∈ graA + gra(−J). Thus, X × X∗ ⊆ graA +
gra(−J). Hence, A is maximal monotone. �

Remark 18.6. Haraux provides a very simple proof of Theorem 18.5 in Hilbert
spaces in [20, Theorem 10], but the proof could not be adapted to reflexive Banach
spaces.

18.3 Fitzpatrick Functions and Fitzpatrick Functions
of Order n

Now we introduce some properties of monotone linear relations.

Fact 18.7. (See [6].) Assume that A : X ⇒ X∗ is a monotone linear relation. Then
the following hold.

(i) The function domA→ R : y �→ 〈y,Ay〉 is convex.
(ii) domA⊆ (A0)⊥. For every x ∈ (A0)⊥, the function domA→ R : y �→ 〈x,Ay〉 is

linear.

Proof. (i): See [6, Proposition 2.3]. (ii): See [6, Proposition 2.2(i)(iii)]. �

Definition 18.8. Suppose A : X ⇒ X∗ is a linear relation. We say A is symmetric if
graA⊆ graA∗.

By the definition of A∗, we have (∀x,y ∈ domA) 〈x,Ay〉 is single valued and
〈x,Ay〉= 〈y,Ax〉.
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For a monotone linear relation A : X ⇒ X∗ (where A is not necessarily symmet-
ric), it will be convenient to define (as in, e.g., [3])

qA : x ∈ X �→
{

1
2 〈x,Ax〉, if x ∈ domA;

+∞, otherwise.
(18.7)

By Fact 18.7(i), qA is well defined and is at most single-valued and convex. Accord-
ing to the definition of qA, domqA = domA. Moreover, by (0,0) ∈ graA and A is
monotone, we have that qA ≥ 0.

The following generalizes a result of Phelps–Simons (see [23, Theorem 5.1])
from symmetric monotone linear operators to symmetric monotone linear relations.
We write f for the lower semicontinuous hull of f .

Proposition 18.9. Let A : X ⇒ X∗ be a monotone symmetric linear relation. Then

(i) qA is convex, and qA + ιdomA = qA.
(ii) graA⊆ gra∂qA. If A is maximal monotone, then A = ∂qA.

Proof. Let x ∈ domA.

(i): Since A is monotone, qA is convex. Let y ∈ domA. Since A is monotone, by
Fact 18.7(ii),

0≤ 1
2
〈Ax−Ay,x− y〉= 1

2
〈Ay,y〉+ 1

2
〈Ax,x〉− 〈Ax,y〉, (18.8)

we have qA(y)≥ 〈Ax,y〉−qA(x). Take lower semicontinuous hull on y and then
deduce that qA(y)≥ 〈Ax,y〉−qA(x). For y = x, we have qA(x)≥ qA(x). On the
other hand, qA(x)≤ qA(x). Altogether, qA(x) = qA(x). Thus, (i) holds.

(ii): Let y ∈ domA. By (18.8) and (i),

qA(y)≥ qA(x)+ 〈Ax,y− x〉= qA(x)+ 〈Ax,y− x〉. (18.9)

Since domqA ⊆ domqA = domA, by (18.9), qA(z) ≥ qA(x) + 〈Ax,z − x〉, ∀z ∈
domqA. Hence Ax ⊆ ∂qA(x). If A is maximal monotone, A = ∂ qA. Thus (ii)
holds. �

Definition 18.10 (Fitzpatrick family). Let A : X ⇒ X∗ be a maximal monotone op-
erator. The associated Fitzpatrick family FA consists of all functions F : X×X∗ →
]−∞,+∞] that are lower semicontinuous and convex, and that satisfy F ≥ 〈·, ·〉, and
F = 〈·, ·〉 on graA.

Following [21], it will be convenient to set Fᵀ : X∗ ×X → ]−∞,+∞] : (x∗,x) �→
F(x,x∗), when F : X × X∗ → ]−∞,+∞], and similarly for a function defined on
X∗ ×X .

Fact 18.11 (Fitzpatrick). (See [19, Theorem 3.10] or [16, Corollary 4.1].) Let
A : X ⇒ X∗ be a maximal monotone operator. Then for every (x,x∗) ∈ X×X∗,

FA(x,x∗) = min{F(x,x∗) | F ∈FA} and F∗ᵀA (x,x∗) = max{F(x,x∗) | F ∈FA}.
(18.10)
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Proposition 18.12. Let A : X ⇒ X∗ be a maximal monotone and symmetric linear
relation. Then

FA(x,x∗) =
1
2

qA(x)+
1
2
〈x,x∗〉+ 1

2
q∗A(x∗), ∀(x,x∗) ∈ X×X∗.

Proof. Define function k : X×X∗ → ]−∞,+∞] by

(z,z∗) �→ 1
2

qA(z)+
1
2
〈z,z∗〉+ 1

2
q∗A(z∗).

Claim 1. FA = k on domA×X∗.
Let (x,x∗) ∈ X×X∗, and suppose that x ∈ domA. Then

FA(x,x∗) = sup
(y,y∗)∈graA

(
〈x,y∗〉+ 〈y,x∗〉− 〈y,y∗〉

)

= sup
y∈domA

(
〈x,Ay〉+ 〈y,x∗〉−2qA(y)

)

=
1
2

qA(x)+ sup
y∈domA

(
〈Ax,y〉+ 〈y,x∗〉− 1

2
qA(x)−2qA(y)

)

=
1
2

qA(x)+
1
2

sup
y∈domA

(
〈Ax,2y〉+ 〈2y,x∗〉− qA(x)−4qA(y)

)

=
1
2

qA(x)+
1
2

sup
z∈domA

(
〈Ax,z〉+ 〈z,x∗〉− qA(x)−qA(z)

)

=
1
2

qA(x)+
1
2

sup
z∈domA

(
〈z,x∗〉− qA(z− x)

)

=
1
2

qA(x)+
1
2
〈x,x∗〉+ 1

2
sup

z∈domA

(
〈z− x,x∗〉− qA(z− x)

)

=
1
2

qA(x)+
1
2
〈x,x∗〉+ 1

2
q∗A(x∗)

= k(x,x∗) (by Proposition 18.9(i)).

Claim 2. k is convex and proper lower semicontinuous on X×X∗.
Since FA is convex, 1

2 qA + 1
2〈·, ·〉+ 1

2 q∗A is convex on domA× X∗. Now we
show that k is convex. Let {(a,a∗),(b,b∗)} ⊆ domk, and t ∈ ]0,1[. Then we
have {a,b} ⊆ domqA ⊆ domA. Thus, there exist (an),(bn) in domA such that
an → a,bn → b with qA(an)→ qA(a),qA(bn)→ qA(b). Since 1

2 qA + 1
2〈·, ·〉+ 1

2 q∗A
is convex on domA×X∗, we have
(

1
2

qA +
1
2
〈·, ·〉+ 1

2
q∗A

)
(tan +(1− t)bn,ta

∗+(1− t)b∗)

≤ t

(
1
2

qA +
1
2
〈·, ·〉+ 1

2
q∗A

)
(an,a

∗)+ (1− t)
(

1
2

qA +
1
2
〈·, ·〉+ 1

2
q∗A

)
(bn,b

∗).

(18.11)
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Take liminf on both sides of (18.11) to see that

k
(
ta +(1− t)b,ta∗+(1− t)b∗

)≤ tk(a,a∗)+ (1− t)k(b,b∗).

Hence, k is convex on X×X∗. Thus, k is convex and proper lower semicontinuous.

Claim 3. FA = k on X×X∗. To this end, we first observe that

dom∂k∗ = graA−1. (18.12)

We have

(w∗,w) ∈ dom∂k∗ ⇔ (w∗,w) ∈ dom∂ (2k)∗

⇔ (a,a∗) ∈ ∂ (2k)∗(w∗,w), ∃(a,a∗) ∈ X×X∗

⇔ (w∗,w) ∈ ∂ (2k)(a,a∗), ∃(a,a∗) ∈ X×X∗

⇔ (w∗ −a∗,w−a) ∈ ∂ (qA⊕q∗A)(a,a∗), ∃(a,a∗) ∈ X×X∗ (18.13)

⇔ w∗ −a∗ ∈ ∂qA(a), w−a ∈ ∂q∗A(a∗), ∃(a,a∗) ∈ X×X∗

⇔ w∗ −a∗ ∈ ∂qA(a), a∗ ∈ ∂qA(w−a), ∃(a,a∗) ∈ X×X∗

⇔ w∗ −a∗ ∈ Aa, a∗ ∈ A(w−a), ∃(a,a∗) ∈ X×X∗ (18.14)

⇔ (w,w∗) ∈ graA⇔ (w∗,w) ∈ graA−1,

where (18.13) follows from [32, Theorem 3.2.4(vi)(ii)] and (18.14) from
Proposition 18.9(ii).

Next, we observe that

k∗ᵀ(z,z∗) = 〈z,z∗〉, ∀(z,z∗) ∈ graA. (18.15)

Since k(z,z∗)≥ 〈z,z∗〉 and

k(z,z∗) = 〈z,z∗〉 ⇔ qA(z)+ q∗A(z∗) = 〈z,z∗〉 ⇔ z∗ ∈ ∂qA(z) = Az

by Proposition 18.9(ii), Fact 18.11 implies that FA≤ k≤F∗ᵀA . Hence FA≤ k∗ᵀ≤F∗ᵀA .
Then by Fact 18.11, (18.15) holds.

Now using (18.15), (18.12) and a result by Borwein (see [11, Theorem 1] or [32,
Theorem 3.1.4(i)]), we have k = k∗∗ = (k∗+ ιdom∂k∗)∗ = (〈·, ·〉+ ιgraA−1)∗ = FA. �

Fact 18.13 (Recursion). (See [4, Proposition 2.13].) Let A : X ⇒ X∗ be monotone,
and let n ∈ {2,3, . . .}. Then

FA,n+1(x,x∗) = sup
(a,a∗)∈graA

(
FA,n(a,x∗)+ 〈x−a,a∗〉), ∀(x,x∗) ∈ X×X∗.

Theorem 18.14. Let A : X ⇒ X∗ be a maximal monotone and symmetric linear
relation, let n ∈ {2,3, . . .}, and let (x,x∗) ∈ X×X∗. Then

FA,n(x,x∗) =
n−1

n
qA(x)+

n−1
n

q∗A(x∗)+
1
n
〈x,x∗〉, (18.16)
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consequently, FA,n(x,x∗) = 2(n−1)
n FA(x,x∗)+ 2−n

n 〈x,x∗〉. Moreover,

FA,∞ = qA⊕q∗A = 2FA−〈·, ·〉. (18.17)

Proof. Let (x,x∗) ∈ X×X∗. The proof is by induction on n. If n = 2, then the result
follows for Proposition 18.12.

Now assume that (18.16) holds for n≥ 2. Using Fact 18.13, we see that

FA,n+1(x,x∗) = sup
(a,a∗)∈graA

(FA,n(a,x∗)+ 〈x−a,a∗〉)

= sup
(a,a∗)∈graA

(
n−1

n
q∗A(x∗)+

n−1
n

qA(a)+
1
n
〈a,x∗〉+ 〈x−a,a∗〉

)

=
n−1

n
q∗A(x∗)+ sup

(a,a∗)∈graA

(
n−1

2n
〈a,a∗〉+

〈
a,

1
n

x∗
〉

+ 〈x,a∗〉− 〈a,a∗〉
)

,

(18.18)

=
n−1

n
q∗A(x∗)+ sup

(a,a∗)∈graA

(〈
a,

1
n

x∗
〉

+ 〈x,a∗〉− n + 1
2n
〈a,a∗〉

)

=
n−1

n
q∗A(x∗)+

2n
n + 1

sup
(a,a∗)∈graA

(〈
n + 1

2n
a,

1
n

x∗
〉

+
〈

x,
n + 1

2n
a∗

〉

−
〈

n + 1
2n

a,
n + 1

2n
a∗

〉)

=
n−1

n
q∗A(x∗)+

2n
n + 1

sup
(b,b∗)∈graA

(〈
b,

1
n

x∗
〉

+ 〈x,b∗〉− 〈b,b∗〉
)

=
n−1

n
q∗A(x∗)+

2n
n + 1

FA

(
x,

1
n

x∗
)

=
n−1

n
q∗A(x∗)+

n
n + 1

q∗A

(
1
n

x∗
)

+
n

n + 1
qA(x)+

1
n + 1

〈x∗,x〉 (18.19)

=
n−1

n
q∗A(x∗)+

1
(n + 1)n

q∗A(x∗)+
n

n + 1
qA(x)+

1
n + 1

〈x∗,x〉

=
n

n + 1
q∗A(x∗)+

n
n + 1

qA(x)+
1

n + 1
〈x,x∗〉 , (18.20)

which is the result for n + 1, where (18.18) follows from Proposition 18.9(i) and
(18.19) from Proposition 18.12. Thus, by Proposition 18.12,

FA,n(x,x∗) =
2(n−1)

n
FA(x,x∗)+

2−n
n
〈x,x∗〉.

By (18.16), domFA,n = dom(qA⊕q∗A). Now suppose that (x,x∗) ∈ domFA,n.

By qA(x)+ q∗A(x∗)−FA,n(x,x∗) = 1
n

(
qA(x)+ q∗A(x∗)−〈x,x∗〉

)
≥ 0 and

FA,n(x,x∗)→ (qA⊕q∗A)(x,x∗), n→ ∞.

Thus, (18.17) holds. �
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Remark 18.15. Theorem 18.14 generalizes and simplifies [1, Example 4.4] and
[3, Example 6.4]. See Corollary 18.17.

Remark 18.16. Formula Identity (18.16) does not hold for nonsymmetric linear
relations. See [3, Example 2.8] for an example when A is skew linear operator and
(18.16) fails.

Corollary 18.17. Let A : X → X∗ be a maximal monotone and symmetric linear
operator, let n ∈ {2,3, . . .}, and let (x,x∗) ∈ X ×X∗. Then

FA,n(x,x∗) =
n−1

n
qA(x)+

n−1
n

q∗A(x∗)+
1
n
〈x,x∗〉, (18.21)

and,
FA,∞ = qA⊕q∗A. (18.22)

If X is a Hilbert space, then

FId,n(x,x∗) =
n−1

2n
‖x‖2 +

n−1
2n
‖x∗‖2 +

1
n
〈x,x∗〉, (18.23)

and,

FId,∞ =
1
2
‖ · ‖2⊕ 1

2
‖ · ‖2. (18.24)

Definition 18.18. Let F1,F2 : X×X∗ → ]−∞,+∞]. Then the partial inf-convolution
F1�2F2 is the function defined on X×X∗ by

F1�2F2 : (x,x∗) �→ inf
y∗∈X∗

(
F1(x,x∗ − y∗)+ F2(x,y∗)

)
.

Theorem 18.19 (nth order Fitzpatrick function of the sum). Let A,B : X ⇒ X∗
be maximal monotone and symmetric linear relations, and let n ∈ {2,3, · · ·}. Sup-
pose that domA−domB is closed. Then FA+B,n = FA,n�2FB,n. Moreover, FA+B,∞ =
FA,∞�2FB,∞.

Proof. By [28, Theorem 5.5] or [30], A + B is maximal monotone. Hence, A + B is
a maximal monotone and symmetric linear relation. Let (x,x∗) ∈ X ×X∗. Then by
Theorem 18.14,

FA,n�2FB,n(x,x∗)

= inf
y∗∈X∗

(
2(n−1)

n
FA(x,y∗)+

2−n
n
〈x,y∗〉+ 2(n−1)

n
FB(x,x∗ − y∗)

+
2−n

n
〈x,x∗ − y∗〉

)

=
2−n

n
〈x,x∗〉+ inf

y∗∈X∗
2(n−1)

n
(FA(x,y∗)+ FB(x,x∗ − y∗))
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=
2−n

n
〈x,x∗〉+ 2(n−1)

n
FA�2FB(x,x∗)

=
2−n

n
〈x,x∗〉+ 2(n−1)

n
FA+B(x,x∗), (by [6, Theorem 5.10])

= FA+B,n(x,x∗) (by Theorem 18.14).

Similarly, using (18.17), we have FA+B,∞ = FA,∞�2FB,∞. �

Remark 18.20. Theorem 18.19 generalizes [3, Theorem 5.4].
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14. Brézis, H., Browder, F.E.: Linear maximal monotone operators and singular nonlinear integral

equations of Hammerstein type. In: Nonlinear analysis (collection of papers in honor of Erich
H. Rothe), Academic, 31–42 (1978)



402 L. Yao

15. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators.
Springer (2008)

16. Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special
family of enlargements. Set-Valued Anal. 10, 297–316 (2002)

17. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)
18. Cross, R.: Multivalued Linear Operators. Marcel Dekker (1998)
19. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Mini-

conference on Functional Analysis and Optimization (Canberra 1988), Proceedings of the
Centre for Mathematical Analysis 20, 59–65. Australian National University, Canberra,
Australia (1988)

20. Haraux, A.: Nonlinear Evolution Equations – Global Behavior of Solutions. Springer, Berlin
(1981)

21. Penot, J.-P.: The relevance of convex analysis for the study of monotonicity. Nonlinear Anal.
58, 855–871 (2004)

22. Phelps, R.R.: Convex functions, Monotone Operators and Differentiability, 2nd edn. Springer
(1993)

23. Phelps, R.R., Simons, S.: Unbounded linear monotone operators on nonreflexive Banach
spaces. J. Convex Anal. 5, 303–328 (1998)

24. Rockafellar, R.T., Wets, R.J-B.: Variational Analysis. Springer (2004)
25. Simons, S.: Minimax and Monotonicity. Springer (1998)
26. Simons, S.: From Hahn-Banach to Monotonicity. Springer (2008)
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