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Preface

The wisest of the wise may err.
Aeschylus, Fragments

The study of the effect that errors may have on computation started at the very
beginning of the history of computer science. It dates back to the early 1950s,
to the research by von Neumann' and Moore-Shannon? on the design of reliable
Boolean networks built with low-reliability components. Since then the study of
fault-tolerant computing has evolved into a broad discipline, one that encompasses
all aspects of reliable computer design: from the identification of failure dynamics
in integrated circuits to the design of robust software.

The design of reliable computers is much harder than the design of other complex
human-made objects. Citing the IEEE Spectrum,’

[...] Information-processing errors can occur through a failure lasting a billionth of a
second in one of the hundreds of thousands of digital components that switch billions of
times a day.

In fact, it seems rather hopeless to attain high reliability in computer design
by the so-called fault-avoidance techniques, that is, by only relying upon high-
quality thoroughly tested components. Owing to the intrinsic complexity of modern
computers, it is more sensible to focus on software robustness for the detection
and/or correction of errors which will invariably occur as information is being
stored, transferred, and manipulated. This is typically achieved by introducing some
redundancy (in the information) to improve the reliability of the computational
systems, as already suggested in the seminal papers by von Neumann and Moore-
Shannon.

' Automata Studies, Princeton University Press (1956).
23, Franklin Inst. (1956).
3IEEE Spectrum. Oct. 81, p. 41.
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viii Preface

One more reason to prefer fault-tolerance to fault-avoidance techniques is given
by the error statistics in the electronic systems. Typically, failure occurrence in
electronic components follows the so-called bathtub curve. This means that a large
failure rate is more likely for a short initial period known as the burn-in period. After
this, components may experience a small failure rate for the rest of their operational
life. Therefore a small probability of component failure exists during the useful life.
It seems natural to look at error-correcting and error-detecting coding techniques as
the most promising means to provide low-cost error control in computation.

The original scope of the theory of error-correcting codes was the design of
reliable communication systems. It is clear that the problem of reliable computation
differs significantly from the problem of reliable communication: for example,
communication error-control schemes usually assume perfectly reliable comput-
ing and processing at the transmitter and receiver ends. They put fewer severe
restraints on computation time for error correction and obey different statistics
for error occurrence than ruling computer systems. Nevertheless, the fundamental
principles of communication coding theory also are essential to the understanding
and design of error control for reliable computation. Winograd and Cowan* pointed
out that (subject to some assumptions) Shannon’s noisy-channel coding theorem
may be extended to include noisy computation. Thus, computation of logical
functions in the presence of unreliable modules may be thought of as analogous
to communication over a noisy channel of a certain capacity.

In this book we shall be mainly concerned with fault tolerance in the context
of algorithmic search theory. Problems of search, with their wide applicability,
allow us to show fault-tolerant techniques as they apply to many different contexts.
Moreover, search theory is one of the classical fields in the science of the
computation.

As with fault-tolerant techniques, the necessity of efficient search procedures
arose very early in computer science. One can say that the theory of searching starts
with the first computers.

In the early 1950s, while the first fault-tolerant techniques were being devised,
the new availability of larger and larger random-access memories eventually led
to the recognition that searching was an interesting problem in its own right. All
of a sudden memory space was not anymore a problem of scarcity but rather
because of the lack of efficient techniques for making the best use of it. Almost
instantaneously, searching became a flourishing field of research. The first surveys
on search problems had already been published in 1956.

Since these pioneering works, searching has been a very active field of investiga-
tion. As a matter of fact, search procedures can constitute the most time-consuming
parts of software, and the substitution of a good search method for a bad one
then brings a substantial improvement. The entire third volume of Donald Knuth’s
celebrated series The Art of Computer Programming is focused on search and

4Reliable Computation in the Presence of Noise (1963).
3See [29,96,170].
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sorting algorithms. In the introduction of this volume, Knuth makes the following
claim:

Indeed, I believe that virtually every important aspect of programming arises somewhere in
the context of sorting and searching.

Whether every scientific problem can be reduced to a search problem may be a
matter of philosophical debate. Nonetheless, it is undeniable that many problems of
practical importance can be reduced to searching.

The structure of a typical search problem appears more often than one would
expect, in surprisingly diverse scenarios. A search problem can be the task of:
(1) identifying objects within a set via a series of tests (identification); (2) learning
the structure of a given function via sampling (learning); (3) determining the
most concise way of representing a given piece of information so that recovery is
uniquely achievable (encoding); (4) distinguishing patterns on the basis of exact or
approximate examples (classification). Depending on the application at hand, any
one of the above may be the most appropriate or convenient problem formulation.
However, a unified perspective has the advantage that it allows for cross-fertilization
of ideas and methodologies.

Our motivation for studying fault-tolerant computation in the context of search
is twofold: From a more analytical point of view, there exists a large class of
combinatorial problems of practical importance which can be studied in a unified
way under the common concept of search. Moreover, from a more application-
oriented perspective, search problems in their many different facets lie at the heart
of managing large data sets, one of today’s major IT challenges. Current computer
applications handle data sets that are not only larger than ever before but also include
highly complex objects. To tame the data deluge, it is crucial to develop the capacity
for appropriately organizing, storing, and, most importantly, searching through such
a mass of data.

In our excursus on fault-tolerant search algorithms, we shall see that many
methodologies originally thought of and developed in the context of search prob-
lems were proved useful, in some cases even rediscovered, in areas that might appear
far from searching. To disclose such connections and bridge these gaps among
connected fields of research will be another aim of this book.

The book is self-contained and assumes no special knowledge beyond a standard
undergraduate background in basic algorithmics, complexity, combinatorics, and
probability theory. All necessary concepts are introduced and all the results are
proved before they are used, even when one could assume them known. There are
a very limited number of exceptions, where we decided to either omit a detailed
involved proof or delay its presentation with respect to its use, because we preferred
to focus on the broad picture without risking to distract the reader from the main
train of thoughts. Even in these cases, all necessary pointers are always provided.
The bibliographic notes refer the reader to appropriate sources of information for
closing any gap of knowledge necessary for a complete understanding of the proof.

Each chapter is concluded by a set of exercises of varying difficulty. In general,
these exercises are meant to present problems which should allow the reader to
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deepen his/her understanding of the material covered in a chapter. Some of these
exercises are variants, extensions, or particular cases of proofs or algorithms pre-
sented in the text. Some exercises are also used to cover important complementary
results which should have been but eventually were not included due to logistic
constraints.

At the end of each chapter a brief historical account of some fundamental
publications has been included, describing the origins of the main results. The
bibliography at the end of the book includes most of the key articles in the field
and references to other books and survey papers on the subject.

Salerno/Verona, Italy Ferdinando Cicalese
September 2012
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Chapter 1
Prologue: What This Book Is About

For hateful in my eyes, even as the gates of Hades
is that man that hideth one thing in his mind and sayeth another.

Homer, Iliad IX. 312 313

The typical structure of a search problem is defined by a set of objects %, a family
of tests .7 which can be used to acquire information on the elements of % ; a set of
rules Z about the way the tests can be chosen or combined; and some performance
measure ./ . The goal is to provide a strategy to select tests from .7 according to
the given rules %, in order to guarantee the correct identification of some initially
unknown object in %/, and optimize the given performance measure (e.g., worst
case or average number of queries, time or space complexity, etc.).

According to the application at hand, such a model can also represent the process
of learning the structure of a given function via sampling; or determining the most
concise way of representing a given piece of information; or classifying patterns on
the basis of exact or approximate examples.

This book considers search problems in which tests can be erroneous and/or
provide only partially the information expected from performing them. The book
is divided into two parts. In the first part, we introduce the basic concepts and
techniques and show their applications for several variants of the basic model. In the
second part we will deal with more involved models and more advanced topics.

1.1 Part I: The Basic Model

We shall start by looking at one paradigmatic model for fault-tolerant search: the
so-called Ulam-Rényi problem. This can be summarized as follows. How many
questions do we need in order to determine an unknown element x taken from a
finite set % by only asking subset questions when up to a finite number of answers

F. Cicalese, Fault-Tolerant Search Algorithms, Monographs in Theoretical 1
Computer Science. An EATCS Series, DOI 10.1007/978-3-642-17327-1_1,
© Springer-Verlag Berlin Heidelberg 2013



2 1 Prologue: What This Book Is About

can be lies, i.e., untrue. By a subset question we mean one like: does x belong to the
set A (for some A C %)?

Most of the first part of this book will be devoted to analyzing variants of this
simple model, which will allow us to describe the fundamental combinatorial and
algorithmic issues in the design of fault-tolerant search procedures.

The Ulam-Rényi problem models a situation of processing and sending informa-
tion that can be altered by some kind of “noise”. The Questioner’s aim is to find
the most efficient way of recovering information in spite of possible distortions.
One may assume that messages/data get altered with a given (small) probability.
Such a probabilistic setting was studied by Rényi. If the probability of error is
very small, one may alternatively model the situation assuming that there exists
a fixed value e, such that no more than e errors will occur during the entire
transmission/computation. This justifies interest in the version of the game with
a fixed bound on the number of errors.

Non-interactive fault-tolerant search strategies assuming at most e errors are
equivalent to e-error correcting codes. Therefore, optimal Questioner’s strategies
in this version of the game yield the shortest e-error correcting block codes. Finding
such codes is considered to be the main problem of coding theory. We shall discuss
more deeply this correspondence between error-correcting encoding and searching
with unreliable tests in Chap. 3.

In fact, independently of Ulam and Rényi, Berlekamp had considered the
problem of evaluating the size of a shortest, though successful, fault-tolerant search
strategy in the context of block coding for the binary symmetric channel with
noiseless, delayless feedback.

A complete treatment of the research field of fault-tolerant search, even if
restricted to the Ulam-Rényi model, would be beyond the scope of a single book,
due to the vast literature and the wealth of different variations of the basic model
depicted above. Nevertheless, in the first part of this book, we shall do our best to
cover all the basic material on this topic, with particular focus on those results that
cross boundaries of different fields of computer science.

1.1.1 Adaptive vs. Non-adaptive Search

Probably among the first issues to consider when dealing with a search problem
is the one of adaptiveness. In the classical formulation of the Ulam-Rényi game,
one assumes that the search is carried out in a fully adaptive manner, i.e., the ith
question is asked knowing the answer to the previous (i — 1) questions. However,
in many practical situations it is desirable to have search strategies with a small
degree of adaptiveness, that is, search strategies in which all the questions (or at
least many of them) can be prepared in advance, and asked at once. This is the
case, for example, when Questioner and Responder are to communicate over a slow
channel. Also, in medical applications, where preparation of the tests usually means
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rearrangement of the laboratory, it is preferred to have search strategies using at most
two stages of tests, and hence using adaptiveness only once. Complete elimination
of the adaptiveness, that is, a fully non-adaptive search strategy, turns out to be a
main issue in coding theory and in many cases has proved impossible.

In fact, non-adaptive perfect' codes have been the Holy Grail of 30 years
of research on error-correcting codes. Since the discovery of Hamming codes
and subsequently of the Golay codes, the question about the existence and the
construction of perfect codes for an arbitrary number of possible errors has been
a leading one in combinatorial coding theory. Unfortunately, a breakthrough has
eventually come from the non-existence theorems of Tietiviinen® and Zinoviev-
Leontiev, to the effect that, with the only exception of the Golay codes, no perfect
non-adaptive search strategy can exist when the number of allowed lies is greater
than 1.

Two decades later, a celebrated result of Spencer proved that perfect strategies
are in fact asymptotically attainable for every fixed number of possible errors
but at the expense of the maximum degree of adaptiveness. Under the hypothesis
of full adaptiveness and for a small number of errors, algorithmic perfect search
strategies have been provided for arbitrary large search spaces. The actual amount
of interaction necessary to keep the search perfect is not known yet.

We shall consider “the curse of adaptiveness” in Chap.3. We shall describe
several cases in which the full adaptiveness is not a necessary feature of perfect
search strategies when the number of errors is big and the searcher cannot exploit
symmetries of the model. In some cases it will be possible to show that the least
possible amount of adaptiveness is enough to allow the strategy to be perfect,
whatever the number of allowed errors.

1.1.2 Q-ary Search with Lies

A natural generalization of the Ulam-Rényi game is obtained by allowing questions
with g-many possible answers. Non-binary search with lies arises, for instance, in
the particular framework of finding a defective coin with unreliable weighting. This
problem is equivalent to a ternary search with additional constraints.

In Chap. 5, we shall consider the problem of fault-tolerant search under different
variants on the type of questions allowed, e.g., bit queries, alphabetic search, interval
search, and multi-interval search. We shall then discuss the trade-off between the
optimal strategy size and the complexity of query description, which is a critical
issue when one is finally happy with the combinatorics and tries to implement it in
algorithms.

I'This concept will be precisely formalized later.
2SIAM J. Appl. Math. 24 (1973).
3Probl. Contr. Inform. Theory 2 (1973).
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1.1.3 Half-Lies, Erasures and Other Types of Errors

Most of the error-correcting coding techniques are developed under the assumption
of symmetric errors. The errors in magnetic tapes and some of the random access
memories can be considered as symmetric errors. This means that, assuming a
binary representation of the information, the corruption of a 0 into a 1 and of a 1 into
a 0 are both possible. On the other hand, the failures in the memory cells of some
of the LSI single-transistor cell memories and metal-nitride-oxide semiconductor
(MNOS) memories are most likely caused by leakage of charge. Therefore, if the
presence of charge in a cell is represented by 1 and the absence of charge by O,
the errors in these types of memories can be modeled as (1 — 0)-type asymmetric
errors. This is because the charge cannot be created except by a rewrite process;
hence (0 +— 1)-type errors in the memory cells are almost impossible.

Another typical case where the assumption of asymmetry on the types of possible
errors is preferable to the classical assumption of symmetrical errors is in optical
communication systems, where photons may fail to be detected (1 — 0), but the
creation of spurious photons (0 — 1) is impossible.

In Chap. 4 we shall analyze how these different types of error models change the
combinatorics and complexity of the Ulam-Rényi problem.

1.1.4 Heuristics

A complete solution of a given search problem, i.e., the determination of the optimal
solution for all instances, can have a very complex description. In the context of
our Ulam-Rényi model, an example is given by the formulations of the exact, best
possible (minimum-length) strategies given by Pelc, Guzicki, and Deppe for an
arbitrary size of the search space, and for one, two and three lies, respectively. These
results do not seem to give hope for a closed-form formula describing this length in
the general case. This is due to the necessity to list all the particular cases or classes
of particular cases.

Such a situation has left space for research aiming at constructing efficient algo-
rithms which are based on some easy-to-describe heuristics, and whose performance
can be proved to be close to that of the optimal algorithm.

We shall describe some heuristic-based algorithms to solve problems of search-
ing in the presence of errors, while trying to highlight the main ideas and techniques.

1.2 Part II: More Models and Applications

In the second part of the book we shall broaden our perspective and part from the
basic model given by the Ulam-Rényi game. We shall look at different abstractions
of unreliability.
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1.2.1 Erasure Errors, Delays and Time-outs

In Chap. 6 we analyze the case of the so-called erasure-errors. Here, an error is no
longer understood as a mendacious answer, but rather, as a lost or refused answer.

The erasure of an answer may also be thought of as the effect of (software or
hardware) devices whose task is to clear spurious bits from the communication
channel that the Questioner and the Responder are using to exchange information.
Altogether, we assume the existence of a time-out parameter d, which represents
the maximum time the Receiver (the Questioner) is to wait before the sent bit
(an answer) reaches him. After the deadline of d time units has expired, an
undelivered bit is automatically destroyed (as a time-out bit) in order to prevent
desynchronization of the communication channel.

We will present a general correspondence between the problem of finding the
fastest broadcasting protocol over a point-to-point network and the problem of
devising the shortest search strategy in a finite set by using only comparison
questions.

1.2.2 Group Testing

In Chap. 7, we shall switch to the more general search paradigm, known as group
testing, where more than one element has to be identified in the search space, and
a question is answered positively if at least one of the elements searched for is
indicated in the query. We shall be mainly concerned with variants of group testing
in the context of computational biology applications. In this framework, we shall
analyze the effect of errors together with limitations on the test structure. We shall
also touch upon the notion of inhibitory errors, i.e., errors due to the presence in the
search space of elements which prevent a test from disclosing information about the
items searched for.

1.2.3 Memory Faults and Resilient Search

In Chap.8, we shall discuss the effect of random memory faults on search
algorithms. In contrast with the case of the Ulam-Rényi game, here repeating the
same question does not help since repeatedly probing a corrupted location keeps
on resulting in a wrong value. We shall study the maximum number of memory
faults that can be tolerated by an algorithm which reports the correct answer without
significantly diverging in terms of performance with respect to the optimal algorithm
in the absence of faults.
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1.2.4 A Model of Learning

Finally, in Chap. 9 we shall discuss the interplay between fault-tolerant search and
a model of computational learning. Starting with a classical result of Rényi, we
will look at learning in a noisy environment as a search problem. We shall show
how prediction with expert advice can be recast in a “gambling” variant of the
Ulam-Rényi game and provide an optimal solution for both problems. In the reverse
direction, from learning to search, we shall show how a Bayesian learning approach
can be used to find optimal solutions in the search model proposed by Rényi.

1.3 Bibliographic Notes

The first comprehensive surveys of search theory can be considered [184] and [174].
For a recent and more combinatorial-oriented account, see also [6] and [4].

Besides the papers by von Neumann [207], Moore-Shannon [149, 150] and
Winograd [210], cited in the Preface, more results in the field of fault-tolerant
circuits can be found in [179].

The problem of searching in the presence of errors seems to appear for the first
time in a paper of Rényi [183] published in 1961, where the authors describes
the following game: “Two players are playing the game, let us call them A and
B. A thinks of something and B must guess it. B can ask questions which can
be answered by yes or no and he must find out what A had thought from the
answers. [...] itis better to suppose that a given percentage of the answers are wrong
(because A misunderstands the questions or does not know certain facts)”. Here the
model seems to assume random errors, while in later publications, e.g., [182], Rényi
himself reformulated the problem, speaking of a fixed number of lies. In 1969 the
game of the 20 Questions with lies, later introduced by Ulam, was implicitly used
by Berlekamp [22] to study error-correcting codes for the symmetric channel with
feedback. After these seminal papers, to the best of our knowledge the first paper
presenting results for the Ulam-Rényi problem is due to Rivest et al. [185]. A survey
of the literature in the area is [160].

Problems of searching with lies had been also studied by Yaglom and Yaglom
[213], who considered the following one: Determine which city, among A, B, C,
you are in by asking yes/no questions to the people around. The only available
information you have is that inhabitants of A always speak the truth; inhabitants of
B always lie, and inhabitants of C alternate between one lie and one correct answer
(but the nature of the first answer is not known). The same problem is also analyzed
by Picard [174].



Part I
The Ulam-Rényi Game and Its Variants



Chapter 2
Fault-Tolerant Search a la Ulam-Rényi

Are you sitting comfortably? Then I'll begin.
J. S. Lang, Listen with Mother

2.1 Introduction

The problem of efficient search for an unknown element in a finite set S can be
reformulated as a game between two players—one deciding the questions to be
asked, and the other deciding the answering strategy that makes as hard as possible
the first player’s task.

In his autobiography Adventures of a Mathematician,' Stanistav Ulam raised the
following question:

Someone thinks of a number between one and one million (which is just less than 220).
Another person is allowed to ask up to twenty questions, to each of which the first person
is supposed to answer only yes or no. Obviously the number can be guessed by asking
first: Is the number in the first half-million? and then again reduce the reservoir of numbers
in the next question by one-half, and so on. Finally the number is obtained in less than
log, (1,000, 000). Now suppose one were allowed to lie once or twice, then how many
questions would one need to get the right answer? One clearly needs more than n questions
for guessing one of the 2" objects because one does not know when the lie was told. This
problem is not solved in general.

The very same problem was also considered by Alfréd Rényi in his half-fictitious
book A Diary on Information Theory*
...I'made up the following version, which I called “Bar-kochba with lies”. Assume that the

number of questions which can be asked to figure out the “something” being thought of is
fixed and the one who answers is allowed to lie a certain number of times. The questioner,

1p. 281, Scribner’s, New York (1976).
2Gondolat, Budapest (1976).

F. Cicalese, Fault-Tolerant Search Algorithms, Monographs in Theoretical 9
Computer Science. An EATCS Series, DOI 10.1007/978-3-642-17327-1_2,
© Springer-Verlag Berlin Heidelberg 2013
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of course, doesn’t know which answer is true and which is not. Moreover the one answering
is not required to lie as many times as is allowed.

For example, when only two things can be thought of and only one lie is allowed, then
3 questions are needed ...If there are four things to choose from and one lie is allowed,
then five questions are needed. If two or more lies are allowed, then the calculation of the
minimum number of questions is quite complicated ... It does seem to be a very profound
problem ...

In the model depicted by Ulam and Rényi, which we shall call the Ulam-Rényi
problem, it is also assumed that the player who gives the answers is not fully reliable,
or, more pictorially speaking, she is a liar.

Following a consolidated tradition in the area, we shall call the two players Paul
(the Questioner) and Carole (the Respondelr).3 Our basic problem of fault-tolerant
search is then formulated as follows.

2.1.1 The Binary Ulam-Rényi Game

Carole and Paul fix a finite set S = {0, 1, ..., M — 1}, called the search space, and
an integer e > 0; Carole chooses a number x in S and Paul must guess x by asking
questions of the form “does x belong to 7?” where T is an arbitrary subset of S.
Carole’s only possible answers are yes or no. Then what is the minimum number
N (M, e) of questions that Paul has to ask in order to infallibly determine the number
x, assuming that Carole can lie at most e times?

For the case e = 0, classical binary search yields N(M,0) = [log, M, the
smallest integer not smaller than log, M. When lies are allowed to Carole, the
situation is slightly more complicated. Suppose Paul’s first question is 7'. In the
classical case e = 0, if Carole’s answer is “yes” (resp. “no”), Paul will discard all
of S\ T (resp. T') and reduce his search space from S to T (resp. S\ 7). In contrast,
if e > 0, then Paul’s strategy must be more flexible. In particular, a number can be
discarded by Paul if and only if it falsifies more than e of Carole’s answers. All the
numbers which are not consistent with e or less of Carole’s answers are still possible
solutions, because Carole could have chosen one of them and decided to lie as much
as the rule of the game allows her.

Thus, when e > 0 and Paul’s question is 7', Carole’s answer has the following
effect on Paul’s state of knowledge, i.e., on Paul’s subsequent assumptions on the
set of possible solutions.

e Carole’s answer is “yes”. Then Paul’s search shall continue not only over those
elements of the set 7" which falsify up to e answers, but also over those elements
in the complementary set S \ 7" which happened to falsify up to e — 1 answers

3See notes at the end of this chapter for some explanation about these names.
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before the last question 7" was asked (since now they still falsify up to e of the
answers so far).

* Carole’s answer is “no”. Then the search shall continue over those elements of
the set S \ 7 which falsify up to e answers, as well as over those elements of T
which falsified up to e — 1 answers before the last question was asked (and now
falsify up to e of the given answers).

It is clear that for any number x € S, Paul has to take note of the number of
Carole’s answers falsified by x, until x happens to falsify more than e answers, and
Paul can safely assume that it is not Carole’s secret number.

Assume ¢ questions have been answered. For each j = 0,..., e, let L’j denote
the set of elements of S falsifying exactly j answers. Thus, before the first question
is asked, we can write L) = {0,1,...,M — 1}, LY = --- = LY = @. Let T denote

the (¢ + 1)th question. Suppose the answer is “yes” (resp., “no”). Then we can write
foreachj =1,...,e,

Lttt =LinT (resp., L\ T);

2.1
L' = (LN TYU (L \T) (resp., (L \ T) U (L,_; N T)).

At any stage ¢ of the game, we say that (L{, L},..., L) is Paul’s state (of
knowledge). Let x; = |Lf| for each i = 0,1,...,e. Then the state 0 =
(L§. LY, ..., L) is said to be of type (xo, X1, ..., Xc).

We shall be mainly concerned with the problem of minimizing the number of
questions rather than explicitly formulating these questions as subsets of S.* Then,
we can focus on the cardinalities x; rather than on the sets L}, and by abusing
terminology, we call state also the (e + 1)-tuple of integers (xo, . .., X.).

Definition 2.1. A final state is a state (xg, X1, .. ., x.) such that Zj —oXj <1

Final states correspond to ending game conditions. Indeed, Zj’:o x; = 1 means
that only one number in S is consistent with Carole’s answers (but for at most e
lies), so it must be the secret number. On the other hand, the condition Zj —0X; =0
means that no number in S is consistent with Carole’s answers, even when assuming
that up to e of these answers are lies. In other words, this means that Carole has not
been following the rule of the game® and now Paul can realize it, so the game ends.

In the setting where sets are replaced by their cardinalities, a question T is
completely specified once we know the number ¢; of elements in L’j quoted by
T'. Thus a question T shall be denoted by [fo, ..., %], where t; = [T N L’j |.

Suppose that Paul’s state is (xo, ..., X.), and the question § = [ao,...,a.] is
asked. If Carole’s answer is “yes” (resp., “no”), then the resulting state (xé, e xé)
is given by

“We shall consider later this issue and the problem it raises in terms of the complexity of
representing the strategies.

SMore precisely, either she did not choose any number and answered randomly in order to fool
Paul, or she chose a number but she lied more than e times.
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X, =aop (resp., X, = Xo — do)
X =a; +(xj—1—a;j—) @esp,x: =x; —a; +aj—1) j =1 (2.2)
j=4aj j—1 j—1 p.,xj—x] a; aj—1) ) =1...,e.
Given a state 0 = (xo,...,X,) and a question &, the two possible answers to

§ determine two more informative states 07*° and ¢"°. Paul will then adaptively
ask the next question and, depending on Carole’s answers, he will be left in one of
the four possible states g?¢%Y¢%, g¥esn0 gho.ves ghono Proceeding inductively, Paul
can build a labelled binary tree .7, rooted at ¢, as follows: Any node v is mapped to
aquestion 7). The two edges stemming from v are labelled yes and no (the possible
answers given by Carole). The nodes which these edges are incident to are labelled
by the states resulting from the corresponding answer of Carole to 7,,. We say that
7 is Paul’s strategy. We say that the state o has a winning strategy of size t if there
exists a binary tree .7 of height z, rooted at o, whose leaves are final states.

Definition 2.2. A winning n-state is a state ¢ = (xo, X1, ..., X.) such that there
exists a winning strategy of size n for it. We say that (xg, X, . . ., X,) is a borderline
winning n-state if it is a winning n-state but not a winning (n — 1)-state.

Definition 2.3. Let 0 = (xo,...,Xx.) be a state such that x; is even for each i =
0,...,e. Then, the question § = [%0, %‘, e %e] is called an even splitting question
foro.

If o has also odd components, by abuse of terminology, the (¢ + 1)-tuple of
rationals, § = [%0, "‘7‘, e "‘7"], shall be called a pseudo even splitting question. Note
that in this case the two n-tuples of rationals resulting from Carole’s answer to §
via (2.2) need no longer be states, because their components may be non-integral.

However, the dynamic laws given by (2.2) can still be applied without problems.

Definition 2.4. Let 0 = (xg,...,x.) and ¢’ = (yp,..., y.) be two states such
that le{:o xXj > ZI;-:O y; holds for each k = 0, ..., e. Then, we say that o’ is a
substate of o, and we write 0’ < 0.

2.2 The Volume Bound

The following theorem provides a lower bound on the size of winning strategies.

Theorem 2.1 (Volume Bound). Ifo = (X¢, X1,...,X.) is a winning n-state then
e e—i n
35 () <y
i—0 =0 \J

Proof. By hypothesis there exists a strategy 7 of size n rooted in ¢ whose
leaves are states (x,...,x,) with Zj:() x} < 1. Let us relax for the moment
the requirement that states be n-tuples of integers. Replacing all questions in .7
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by pseudo even splitting questions, and formally applying the dynamical rules
(2.2), we will still get a tree rooted in o, of height equal to n, whose leaves are
vectors (y;, . .., y,) (possibly with rational, non-integral components) and such that

320 y} < 1. A simple inductive argument works based on the fact that for any
state and any question the sum of the components of one of the resulting states is
not smaller than the sum of the components of the resulting state when the question
asked is an even splitting.

Xe

Thus, the question to be asked in state (xo, .. ., x,) will be given by ["‘7", Y

)
Let us use the notation a = 1 . By repeated application of (2.2), the ith
component x(] ) of the vector (x(J ) e xé’ ) ) obtained from (%o, X1, ..., X.) after
J questions is given by
) _ ,,G=D 0 _ =
Yo TdX o Yoo =X . (2.3)
xi(]) :ax,-(j_)—i—(l a)x] ), xi():fci 1<i<e.
All vectors (x(()") e xi”) ) obtained after n pseudo even splitting questions have the
following property:
e
3 <. (2.4)

i=0

Foralli =0,...,e,let F;(t) =) 720 xi(j )t/ denote the generating function of the

sequence x() (1) l( ... Stated otherwise, Fi(1) = >, 5¢x l(’)t/ From (2.3)
we get:

Fo(t) = atFy(t) + Xo
Fi(t) = atFi(t) + (1 —a)tFi— () + X 1<ic<e,
or equivalently,

Xo
1—at
Fi(t)=(1—at)” (1 —a)tFi-(1) + &) 1<ic<e.

Fo(t) =

It follows that

O =3 (-0 o v i ZZ( )<1—a>’ QR STLNCE)
j=0

j=0n>0

forall 0 <i < e. Condition (2.4) now becomes
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[1"] (Z F,-(t)) <1 2.6)
i=0

where [¢"] f(¢) denotes the coefficient of the nth power of ¢ in the power series
expansion of f(¢). Recalling thata = %, from (2.5) we see that inequality (2.6) can
be reformulated as

S5 ()

i=0 j=0

To complete the proof it is sufficient to write

)

i=0 j=0 i=0  j=0

The above theorem motivates the following definition.

Definition 2.5. The nth volume, V,(xy, ..., Xx.), of a state (xo, ..., X.) is defined
by

Vi(xo, X1, ..., X.) = Zx,- Z (n)
i=0  j=o \/

The nth volume of a state 0 = (xo,...,X.) = (|Lo|,...,|Le|) counts the
number of answering strategies available to Carole when the state of the game is
o and n questions are still to be asked.

One can conveniently allow Carole to use a malicious answering strategy. Thus,
for instance, x need not be chosen once and for all at the beginning of the game, but
can be suitably changed—provided that the new choice comply with the number e
of allowed lies—so as to make Paul’s task as hard as possible.

For each one of the x; many elements of L;, Carole can still lie up to e —i times.
If she decides to lie precisely j times (j = 0, ..., e —i), she can still choose where
to lie, in (j) ways. One then easily sees that, given the state (xo, . .., x.), the overall
number of ways for Carole to answer coincides with V, (xo, ..., X,).

Intuitively, the Volume Bound says that a winning strategy of Paul’s must be large
enough to accommodate the number of possible answering strategies of Carole’s. It
does not restrict the structure of such a winning strategy.

Trivially, if a state 0 = (xo, X1, . . ., X.) fails to satisfy the condition

Vaxo, X1, ..., xe) <27, 2.7)
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then as an immediate consequence of Theorem 2.1, o cannot be a winning n-state.
Instead of saying that a state o satisfies condition (2.7) we shall henceforth say that
o satisfies the Volume Bound for n questions.

Definition 2.6. The character of a state 0 = (xy, ..., X.) is the smallest integer n
such that o satisfies the Volume Bound for n questions; in symbols,

ch(xo, x1,...,x.) = min{n | V,(xg, x1,...,x.) <2"}.

A strategy . of size g for a state ¢ is said to be perfect if . is winning for o
and g = ch(o).

A perfect strategy .’ which uses the least possible number of questions, as given
by the Volume Bound, is an optimal winning strategy, in the sense that it cannot be
superseded by a shorter winning strategy. On the other hand, we will see several
non-perfect optimal winning strategies.

For all integers M > 0 and e > 0, let us define

Nain(M.e) = min {n | MY (") <ol 2.8)
j

j=0

Then by Theorem 2.1 we immediately have the following lower bound on the size
of the shortest winning strategy for the Ulam-Rényi game with e lies over a search
space of cardinality M :

N(M,e) > Npin(M, e).

Lemma 2.1. Let o and o’ be two states, with o a substate of o’. Then the following
conditions hold:

(a) forallintegersi >0, V;(0) < Vi(0');
(b) ch(o) < ch(a’);
(¢) if o’ is a winning k-state then so is 0.

Proof. Conditions (a) and (b) are immediate consequences of the definitions.
Condition (c¢) follows from a simple restriction of the winning strategy for o’ to
the state 0. In order to simplify the proof we resort to thinking of states as vectors of
subsets of the search space. Modulo some renaming of the elements, we can assume
that the two states 0 = (Lo, ..., L,) and 6’ = (Ly, ..., L)) satisfy UI;‘:o L; C

U]; -0 L’j foreach k = 0,...,e. Then, the winning strategy of size k for ¢’ is also
a winning strategy of size k for . In fact, in the dynamics induced by a sequence
of questions and answers an element x moves rightward through the components of
the state o at the same pace as it does in ¢’. Therefore, if as a result of a sequence
of questions and answers ¢’ is emptied of all but at most one element, so is 0.
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The proof of the following conservation law amounts to a straightforward
verification:

Theorem 2.2. For any state 6 = (X, ..., X.) and question 8, let us denote by o7
and o"° the two states resulting from o after Carole’s answer to §. Then for all
integers n > 0 we have

Vae1(07) + Va1 (0™) = Vi (0).

Corollary 2.1. Suppose 6’ = (yo,...,Ye) is the state resulting from o =
(x0, - .., X.) after an even splitting question. It follows that

(a) If o satisfies the Volume Bound for n questions, then o’ satisfies the Volume
Bound for n — 1 questions.

(b) ch(o’) =ch(o) — 1.

Proof. From Theorem 2.2 we get 2V,_1(yo, ..., Ye) = Vu(Xo, ..., X.). By hypoth-
esis, Vy(xo,....%) < ¢", whence V,_1(yo,....ye) = 3Va(x0,..., %) < 2"7!,
which settles (). Condition (b) immediately follows from (a), by definition of
character.

For later purposes we record the following easy result.

Lemma 2.2. Let 0 = (Ao, Ay,. .., A.), with Uj‘:o Aj = {x,y}. Let i, j be such
that x € A; and 'y € Aj. Then o is a borderline winning (2e — (i + j) + 1)-state.

Proof. Let T be the question “Is X¢ 4,07 €qual to x?”. Let Paul ask 2e — (i + j) + 1
times the question 7. According to whether Carole gives e — j + 1 positive answers
or e —i + 1 negative answers, Paul can safely conclude that the secret number is x
or y respectively. For otherwise, Carole has lied more than she was allowed to.

We now prove that, conversely, 2e — (i + j) 4 1 questions are necessary for Paul
to always find the secret number. Indeed, we have

e—i e e—j )
VZe—i—j(U):Z(Zekl J)"‘Z(Zekl J)

k=0 k=0
Tf2e—i—j\ & [2e—i—j
k=0 k=e—i

2e—i—j . . . .
2e—i— 2e—i — -
= (e l J)+(e l_’)>22‘-’—'—1.
k e—i
k=0

Then the desired result is a direct consequence of Theorem 2.1.

The following theorem yields a lower bound on the size of the smallest winning
strategy in a game with e + 1 lies, given the size of the smallest winning strategy in
a game with e lies.
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Theorem 2.3 (Translation Bound). Let 0 = (xo,..., Xe—1, X.) with Zj’:o xXj >
3. If 0 is a winning m-state and t = (0, X, ..., X.—1) is a borderline winning n-
state (n > 0), thenm > n + 3.

Proof. The proof is by induction on 7.

Induction Base. t is a winning 1-state. The only possibility is 7 = (0,0,...,0,2).
Thus ¢ = (0,0,...,0,2,x,.), with x, > 1. Therefore, V3(c) = x, + 8 > 23 for
all x, > 1, and by Theorem 2.1 ¢ cannot be a winning 3-state. This settles the case
n=1.

Induction Hypothesis. If o is a winning m’-state and 7 is a borderline winning £-state
forsomel <{ <n—1,theni > £ + 3.

Induction Step. Let T be a borderline n-state with n > 1. Suppose (absurdum
hypothesis) that there exists a winning strategy of size n 4+ 2 for 0. Let § =

[ao,ay,...,a.] be the first question in such a strategy. Define the question §' =
(O ag,...,de— l)
Denote by 074 = (x;”,...,x.”") and 6" = (x8°,...,x"°) the two possible

states resulting from Carole’s answer to the question § when Paul’s state of
knowledge is o. Similarly, denote by t7** and 7", the two possible states resulting
from Carole’s answer to the question §' when Paul’s state of knowledge is . It is
not hard to verify that 77 = (0,x;, ..., x,%)) and " = (0, x%, ..., x"%)).

By hypothesis, both 67¢* and 0”0 are winning (n + 1)-states.

Suppose that 3~ _ x;“ > 3and Y% _, x* > 3. Then, by induction hypothesis,
7¢* and t"? are winning (n —2)-states, contradicting the hypothesis that no winning
strategy of size n — 1 exists for 7.

Conversely, suppose that > ¢_,x7“

=0 J < 2. Thus, by hypothesis, we have

> %_ox; = 3. Moreover, either Y{Z x7*" > 2 or Y9 x" > 2, for otherwise
7 and "¢ are final states contradicting the hypothesis that T is not a winning
1-state.

Therefore, we get Z = Ox”” > 3, which, in turn, implies that ¢7¢ =
©,...,1,0,...,1), i.e., T7¢ is a final state. Again, by induction hypothesis, t"*°
isa winning (n —2)-state and we reach the contradiction that  is a winning (n — 1)-
state.

The proof is complete.

2.3 Borderline States Satisfying the Volume Bound with
Equality

From the previous sections we know that the states satisfying the volume bound with
equality are in some sense maximal with respect to the property of being possibly
winning. Such states are somehow the most difficult ones. We also know that a
substate of a state o can be solved by using the winning strategy for o. Suppose
now that we have a list of borderline states of “full” volume for which we know the
perfect winning strategy. If our list is complete, in the sense that every state that is
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Table 2.1 States exactly

attaining the volume bound i j’l i"2 s: s.l_? s'l'i s"f’ - S"720 58
o;,. 4 8 36 152 644 2728 11556
1 4 7 10 13 16 19
0y. 2 6 22 94 398 1686 7142
0 3 6 9 12 15 18
03. 1 4 14 58 246 1042 4414
0 2 5 8 1 14 17
04 1 1 10 36 152 644 2728
0 0 4 7 10 13 16
0s.. 1 0 5 24 94 398 1686

not listed is a substate of one in the list with the same character, then we are done.
Our list basically provides us with all the strategies we need for solving an arbitrary
instance of the Ulam-Rényi problem.

While the existence of such a “universal” list might be hard to believe, the
above idea can be constructively followed to accommodate several interesting and
non-finite cases. In particular, we shall show its implementation in the proof of
Theorem 2.4.

For any number of lies, Table 2.1 displays an infinite sequence of states admitting
a perfect winning strategy. Moreover, any such state o is maximal, in the sense that
V(o) = 2", where n = ch(o).

Let s; ; be the (i, j) entry of Table 2.1, occurring in row i and column j. Let 0; ;
denote the state (s;1,S;2,...,58; ;). Thus o; ; is a state in the game with j — 1 lies.
To signify that o; ; is a winning n-state we place the integer n above the entry s; ,
in the table.

Table 2.1 is constructed as follows: First of all, s;; = 1 and s;, = Oforalli =
5,6,....Foreachi =1,2,3,4,..., the value s; | is the largest possible cardinality
n of a search space where Paul can successfully search by using [log, n] questions
in the game with no lies. The values of s; » are chosen so as to ensure that the state
(si.1, Si2) is a winning n-state, with n = ch(s; 1, 5;2), and there exists a question §
reducing o;, to 0,45 foralli =1,2,3,4,....

The remaining columns of Table 2.1 (j > 3) are given by the following
recurrence:

fori >3, s;j = Si—1,j—1+8i—2,j-1
fori =2, s5; =83, + 51,j-1 2.9)
fori =1, S1,j = S2,j +83,;.

Lemma 2.3. With reference to Table 2.1 we have:

(a) Foreachi = 1,2 and forall j = 1,2,..., there exists a question § for the
state o; ; such that the two states resulting from o; ; coincide with o; 1 ;.

(b) Foralli >3 and j = 1,2,..., there exists a question § for the state o; ; such
that the two resulting states coincide with o; 11, and 0;— j 1, respectively.
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Foreach j = 1,2,..., and i < 2j, the state 0;; is a borderline winning
(3j —i)-state.
Foralli = 1,2,..., and j > i, with the exceptions of sy, S12, and S, the

integer s; ; coincides with

i+2
2(2+J§)f(ﬁ2_1) +1

Foralli =1,2,..., and all integers j > max{3,i}, the state 0; ; satisfies the
recurrence law

Sij = \‘Si,j—l 2+ \/g) + %J

Proof. (d) and (e) are easily proved by using standard techniques for solving
recurrences. We now focus on the proof of (a), (b), and (c).

(a)

(b)

©

Let 0 = o;; and § be an even splitting question, i.e., § = [5;1/2,5:2/2,...,
si,j/2]. Let 07 and 6" be the two resulting states. We shall prove that 07 =
o0 = Oig1,)-
Let 07 = ¢"? = (r1,...,r;). By definition of s; x, we get

$2k/24 835 /2 4 S0k /2= 8535 /2 = Sak i=1,

T = Sik/24S8ik—1/2 = { .
*/ / $34/2 + S1k—1/2+ 834 /2 = S14-1/2 = S3% 1 = 2.

Leto =0, ;.Letd = [r,...,r;], be defined by

. { 0 fork =1,
k= .
Si—2k—1 — Sik—1 + 1 fork =2,...,J.
Let 07 = (uo,u1,...,uj—1) and 6" = (z1,22,...,z;). Thus, recalling

(2.2), we have uy = 0, and for k = 1,2,...,j — 1 it holds that u; =
Tk+1 + Sik — Tk = Si—2k — Sik + 7k + Sik — 1 = s;—2 Hence 0¥ =

6
(0,821, 8i—225 -+, 8i—2,j—1) = Oi—2 j—1.
On the other hand, we have z; = s;1 —r = 1 = s§;41.1, and for k =
2,3,...,jitholdsthatzxy = Sj, —rk +rk—1 = Sik —Si—24k—1+ Sik—1 —Tk—1 +

Tk—1 = Si—1k—1 + Sik—1 = Si+1k. Hence 6"’ = 0;41 ;, as desired.

By induction on j. The claim is easily true for j = 1,2.Let j > 3 andi < 2j.
Then by (a) and (b) there exists a question such that the two resulting states
are either both equal to ;1 ;, or are respectively 07* = 0;_» ;1 and 0"’

%Note that any state (8o, 51, ..., s;) in the game with j lies is the same as the state (0, 5o, 51, ...,5;)
in the game with j + 1 lies.
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Table 2.2 Other states

exactly attaining the volume Lij 1:*1 u7'~2 ul: "'145 u*fg “.6
bound n. 8 64 744 8512 97416
2 6 10 14 18
. 4 36 404 4628 52964
1 5 9 13 17
3. 2 20 220 2516 28796
0 4 8 12 16
7. 1 11 120 1368 15656
0 3 7 11 15
Ts. 1 4 67 744 8512
0 2 6 10 14
T6.- 1 1 35 407 4628
0 0 5 9 13
. 1 0 16 222 2519
0i+1,j. Suppose that 67 = 0"’ = 0,41 ;; hence, a fortiori, i < 2. Then

we have the desired result by induction, since by hypothesis j > 3; hence
i—1<2j.Indeed, 0,1 is a winning (3j —i — 1)-state and a fortiori we have
the desired result for o; ;.

Conversely, let 07 = 0,5 ;-1 and 6"’ = 0711 ;. Again, the desired result
will follow from both 67¢* and 6"° being winning (3j — i — 1)-states.

Indeed, 67 is a winning (3j —i — 1)-state by induction. On the other hand,
if i + 1 < 2j then again an inductive argument shows that ¢"? is a winning
(3j —i — 1)-state. Finally, if i + 1 > 2j + 1, then 0" is a final state; hence it
is also a winning (3j — i — 1)-state. The proof is complete.

As a matter of fact, Table 2.1 is a special case of the following more general
construction. Let + = 3,4,5,..., and for all positive integers i and j define
recursively the quantity a; ; as follows:

ai) = zmax{t—i,O}’ (2.10)
a;p = max{0,2% 7 — 21Ok s 4 1)}, (2.11)
t . P N
aj = Z;‘—zfﬂak'] F 2emr 1y ' L2, =1 for j > 3. (2.12)
Zk=1 aji—f,j—1 1 >1.
The interesting property is that any state «; ; = (a;1,...,a;;) is a winning

(tj — i)-state, with ch(o; ;) = tj — i, and Viij—y(e; ;) = 2%~ In other words,
any state in the table has a perfect winning strategy and is maximal in the previously
defined terms.

Another useful characteristic of such a table is that the increase in the number of
necessary and sufficient questions when translating from the state o; ; to o ;41 is
equal to 7.

Table 2.1 is the one obtained in the particular case ¢t = 3. For later, we also
precisely list the table obtained in the case ¢ = 4, which coincides with Table 2.2.
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2.4 The Solution of the 20 Question Game with Lies

We shall now use the original instance of the problem given by Ulam (M = 2%°) to
show how the tables introduced in the previous section can help analyzing Paul’s
strategies and constructing optimal once. Recall that N(M,e) denotes the size
of the shortest winning strategy for the Ulam-Rényi game over a search space
of cardinality M when up to e answers may be mendacious. We shall prove the
following.

Theorem 2.4. The values of N(2%°,¢e) are given by the following table:

el o 1 2 3 4 5 6 7 8 9 .. e
NQ%e) | 20 25 29 33 37 40 43 46 50 53 ... 3e+26

Forall e > 8, we have N(2%°, ¢) = 3e + 26.

Proof. Starting from the initial state 08(0) = (2%°,0,...,0), and asking 20 even
——

e Zeros

splitting questions, Paul will be in a sequence of states oe(l) AU 03(20) , where

. . (i . i . i .
Ug(’) — (220—1 , l-220—1 , (2) 220—1 e, (j>220—z o (e) 220—1)

foreachi = 1,...,20. In particular, after these initial 20 questions are answered,
and independently of Carole’s answers, Paul’s state is given by

xe = 11,20, R N . (2.13)
2 J e

Clearly, there exists no even splitting question for Paul in such a state. As we
shall see, all he has to do is to reduce the state (2.13) to a substate of some state in
Table 2.1.

We shall argue by cases:

Case 1. e > 8.

Then, by direct inspection, ch(os(o) ) = 50. By the Translation Bound and
Corollary 2.1, for all e > 8 no winning strategy exists for y, using < 6 + 3e
questions. Thus we have only to prove that a winning strategy of size 6 + 3e exists.

We now use quasi even splitting questions in the next six questions. For any
state 0 = (X0, X1,...,X.) the question § = [[3],[F]....,[5]] is said to be
quasi-even splitting. A quasi-even splitting corresponds to an even splitting in the
particular case when all the components of the state o are even.
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As a result, the 64 states obtained after these six quasi-even splitting questions
will be substates of

of = (1,1,5,41,233,1028,3597, 10278, 24411, 48821, .. .).
Let us display the winning 3e-state 03 .4+ in Table 2.1 as follows:
030+1 = (1,4,14,58,246,1042,4414,18698, . ..).

In light of Lemma 2.1, it is sufficient to prove that o is a substate of 03041 for all
e > 8. For e = 8 the claim follows by direct inspection. Proceeding by induction,
and letting a; be the i th component of o, we have q; < s3; foralli =1,2,...,0.
It is not hard to see that for all i > 10,

a; < Lai_l (2+ \/g) + %J

Since each component of of grows at a smaller rate than its corresponding
component in 03 .+, we conclude that

a; < {ai_l 2+ \/g) + %J < {si_l 2+ x/g) + %J =i,

thus settling the present case.
Case 2. e <7.

The cases e = 1,e = 2,e = 3 and e = 4 are settled arguing as for Case 1 in the
light of Table 2.2. More precisely, it is easily checked that foreache = 1, 2, 3, 4, the
state y, is a substate of 73 . in Table 2.2, which is a winning (4e + 1)-state. Thus
we immediately have the desired result that o is a winning (4e + 21)-state. The
cases e = 5, 6,7 will be settled using ad hoc strategies, based on ideas described in
Sect. 2.6.

The proof is complete.

Remark. Ulam’s instance M = 10° can now be settled without much effort. In the
exceptional case e = 4, we have ch(10°,0,0,0,0) = 36 and ch(2%,0,0,0,0) =
37. As a matter of fact, there exists a perfect strategy for the state (106, 0,0,0,0),
whence N(10%,4) = 36. For the remaining values of e one has N(10% ¢) =
N(2%,e), because ch(10°,0,...,0) = ch(2%,0,...,0) and by Lemma 2.1
any winning strategy for (22°,0,...,0) trivially yields a winning strategy for
(10%,0,...,0).
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2.5 Asymptotics for the Ulam-Rényi Problem

In the previous section we presented a family of searching strategies for the original
Ulam instance. The common idea underlying these strategies is summarized in the
following steps:

1. Use even splitting questions for the first 20 questions.

2. Use quasi-even splitting questions until the resulting state of knowledge o is a
substate of some ¢; ; and ch(e; ;) = ch(o).

3. According to Lemma 2.1, transform the perfect strategy for «; ; into a perfect
strategy for 0.

The basic ingredient is a question that splits the volume of the current state as evenly
as possible. Indeed, this is exactly what happens, when even splitting questions are
used. Moreover, the possibility to define questions which exactly split the volume is
one of the main features of the states «; ; in Tables 2.1 and 2.2.

It is natural to wonder whether such a strategy exists for all possible states.
Unfortunately, this is not the case. Consider, for example, the state 0 = (5,0).
We have ch(o) = 5, and V5(0') = 30 < 2°. The question that best splits the volume
of o is [2, 0] (or, equivalently the symmetric question [3, 0]). Now if Carole answers
“no”, the resulting state is 0"’ = (3, 2), and we have V,(0"?) = 17 > 24 soitis
no longer possible to finish the search within four more questions. We conclude that
five questions, although necessary, are not sufficient to guess an unknown number
in a set of cardinality 5 when one of the answers is a lie.

Unlike the cases considered in the previous section, quasi-even splitting ques-
tions are not always effective. So it is generally a hard task to find the best question
for a given state. Equivalently, no general rule exists to determine the length of the
shortest searching strategy for arbitrary cardinality of the search space and number
of lies.

Nonetheless, for any fixed number of lies, e, we can provide asymptotic
conditions on the states of knowledge which allow a perfect winning strategy.

Theorem 2.5. There exist constants K, and Q. (depending on e) having the
following property: for all integers n > Q,, if a state (xo,...,X.) satisfies
Vi(xo,...,x.) < 2" and x, > K, n®, then the state is n-winning.

Proof (Sketch).” Leto = (x¢,X1,...,X.), withch(o) = n.Fori = 0,1,...,e —
1, let a; be chosen as |5 | or [3] on an alternate basis. Then define a, as the

integer minimizing the quantity A = (2a, — x.) + Zj;lo(xi — 2ai)( ). Let
8y = [ag,ai,...,a.l.

The standing hypothesis on X, guarantees the possibility of balanced
volume splitting. In fact, because of the large number of elements whose

weight in the volume is 1, Paul can use them to cope with the possible

n—1
e—j

7In Chap. 4, we provide a stronger result, of which this is a special case.
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unbalance due to the use of quasi-even splitting. Thus, Paul can effectively®
make use of the above rule in defining his questions until the resulting

state is of the form ¢/ = (0,...,0,1,0,...,0,x.). This is a substate of
(0,...,0,1,0,...,0,20) — 37¢_ (")) which is evenly splitted by the

question of type §' = [0,...,0,1,0,...,0,2¢h@)=1 _ Zj‘:o (Ch(”;)_l)].
By recursively applying questions of type &', Paul perfectly gets through to the

end.

This theorem has an immediate consequence on the existence of perfect strategies
for specific instances of the game: Let us fix two integers e, m > 0. Let S be a search
space of cardinality M = 2. Then, up to finitely many exceptional m’s, there exists
a perfect winning strategy for Paul. Stated differently, Paul can win the game over S
with e lies using n questions, with n being the smallest integer satisfying the Volume
Bound. Trivially, no such winning strategy can use less than n questions.

In fact, for all sufficiently large m, starting from the initial state 0 =
(2™,0,...,0) with ch(o) = n, after the first m even splitting questions, the
resulting state is 6’ = (1,m, (). ..., (")) with ch(0’) = n — m, which satisfy the
hypothesis of Theorem 2.5, since it can be shown that ('Z) ~m® > (n—m)°.

2.6 Heuristics for the Ulam-Rényi Problem

Despite its far-reaching generality, the asymptotic result of Theorem 2.5 does not
provide the ultimate solution to the Ulam-Rényi problem. Of practical interest is
also the question of generating the winning strategy for any small instance. Optimal
algorithms are known to find the exact solution of the Ulam-Rényi problem over an
arbitrary search space when the number of allowed lies is small. For the general case
of an arbitrary number of lies, only heuristic-based algorithms have been proposed.
In this section we shall present two such heuristics.

Algorithm 1

Let o = (xo,X1,...,X.), with ch(o) = n. Define § = [ag,ay,...,a.] by recur-
sively choosing a; € {0,1,...,x;} in order to minimize ‘Z;=o (:’l:]l')(xj - Zaj)’,
ie.,

n—1
: = i —2 i .:0,1,..., .
R ,-)% W e

Jj=0

8Here, we mean that on a state o, Paul’s questions 8, will result in two states o”¢* and 6", such
that ch(a”¢*), ch(6"?) < ch(o) — 1.
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This rule slightly refines the strategy depicted in Theorem 2.5 by a component-
wise balancing of the resulting states’ volume.

This heuristic has one main drawback: it does not take into account the translation
bound. In fact, the second heuristic we present is based on this observation and tries
to take into account both the volume and the translation bound.

Algorithm 2

Let o = (xo, x1,...,X.). We will denote by @ (o) the state (0, xo, X1, ..., Xe—1)-

This state is obtained by shifting the components of o one place to the right. This is

also equivalent to translating o into the corresponding state for the game with e — 1

lies. Forany i = 1,2, ..., e, we define ® (o) = @(O' (o)), with ®°(c) = 0.
Let the function ¥ : N¢T! - N be recursively defined by

G (xo. .. x0) = ch(xg, ..., x.) if Zf;oxi <2;
max{¥4 (0, xo, ..., Xe—1) + 3, ch(xo,...,Xx.)} otherwise.
(2.14)
Further, with any state 0 = (xo,...,X.) we associate the vector I'(0) =
(Yo, V1 - - -, Vo) defined by
yi = max {4(0° ' (0)),9(0) — 3(e — i)} fori =0,1,...,e. (2.15)

An immediate property of the vector I' (o) is given by the following lemma.

Lemma 2.4. Let 0 = (xo,X1,...,X.) and I'(0) = (Yo, y1,..-,Ye) be defined as
in formulae (2.14) and (2.15) above. Let j = min{i | Y ; _o Xk > 3}. Then, for any
i > j we have

Yi = Ye —3(e —1i).

Proof. By definition we have y, = ¢4(0). Hence, fori = 0,1,...,e we also have
yi = max{¥(©°7(0)),y. —3(e —i)}. Then we only need to prove y, —3(e —i) >
4(0°7'(0)), or, equivalently y, > 4(O©° ' (0)) + 3(e — i), forall i > j.

Indeed, by hypothesis we have Y, _, x; > 3, forall i > j. Then (2.14) yields

Ve =9(0) 29(0'(0)) +324(0*(0) + 6= -2 4(O(0)) +3(e —1),

which gives the desired result.

Intuitively, y, yields a lower bound for the length of the shortest winning strategy
for o, considering both Volume and Translation Bound. In addition, y,—; stands for
an upper bound on the length of the shortest winning strategy for © (o') provided
that there exists a winning strategy for o with y, questions. This is proved by the
following corollary.
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Corollary 2.2. Let o = (x¢, X1, ..., X.) be a state. Let (yo, V1, ..., V.) = I'(0).

(a) If there exists a winning strategy for o with q questions, then q > Ve,
(b) Ifq = ye, thenforalli = 1,...,e, there exists a winning strategy for @' (o) =
©,...,0,x0,...,Xe—;) with y._; questions.

The following lemma states that in most cases the optimal winning strategy for
o (with respect to the lower bound y,) implicitly behaves like an optimal winning
strategy for the states ©' (') (with respect to the upper bound y,—; ).

Lemma 2.5. Let 0 = (x9,X1,...,X.) be a state. Let (Yo, V1,...,Y.) = I(0).
Let ¥ be a winning strategy for o using exactly y, questions. Moreover, let § =

[ao, a1, ...,a.] be the first question in the winning strategy X and c”*° and 6"° be
the resulting states from a positive and a negative answer to §, respectively. Then,
foralli =1,...,e such that Zj‘_:lo Xj > 3, we have

Vygii_l(@i(oyes)) < 2ve—i—1 gnd Vy‘,ﬂ-—l(@i(om))) < Ve—i—1

Proof. By Zj:o x; = 3, Lemma 2.4 yields y. = y.—; + 3i. Suppose by
contradiction that for some i € {1,...,e}itholdsthat V,, ,_1 (@ (c7¢)) > 2v—i~1,
Then, setting (V4. y{,....v.) = I'(c?*), we have y/_. > yp._;. Let 07 =
(Y0, ..., V) as in (2.2). Thus Zj_:loH y; = 3 and we have y, > y/_, + 3i >
Ye—i + 3i = y.. Therefore, at least y, questions are necessary to reach a final state
from 07¢*. Since y, — 1 questions are left in X, it cannot be a winning strategy.

Symmetrically, we have the proof for the condition on ®' (6?).

The above Lemma 2.5 and Corollary 2.2 formalize the intuition behind our
heuristic. By Corollary 2.2, given a state ¢ = (X, ..., x,) and the corresponding
(e + 1)-tuple (yo,...,y.) = I'(0), the first question 6 = |[ao,...,a.] in any
optimal winning strategy (i.e., one which uses exactly y, questions) must satisfy
the following property:

fori =0,...,e, 07 =(0,...,0,p,...,y;)and 6" = (0,...,0,n,...,n;), the two

states resulting from the state (0, ..., 0, xg, ..., x;) on question §; = (0,...,0,ao,...,a;)
must be both winning (y; — 1)-states; y; and n; are computed according to (2.2).

Thus Paul would seem to be well advised to define the component g; for any
i =0,...,e such that the quantities V,,_; (07 ") and V,,_;(07") are as nearly equal
as possible.

Unfortunately, this is not sufficient, since the choice of a; affects the states criyf_sj
andcri’ﬁfj forj =1,...,e—1.
Letus defineforanyi =0,...,e —land j = 1,...,e — i the pseudo states
O{,',jZ(O, ...»0,y0,... ,y,-,x,-—a,-,O,...,O) ,3,',]'2(0,... ,0,np, ... ,I’li,ai,o,...,()).
N—— N——

Jj—1 Jj=1
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Such states record what is already known about the states a,.yfj and o7} ; as soon

as the component a; has been chosen but the components a; 1, . .., a;+; have not
been chosen yet.

The strategy also tries to take care of the states criyf_sj and o7} ; while deciding
the component a; by requiring that Vy, , . —1(e; ;) < 2vi+;~! and Vi —1(Bij) <
Vi1

This is the best we can do if we decide to choose the components of the question
step by step, without allowing backtracking.

We then define a; as the integer x € {0, 1,...,x;} such that for the question
8; =(0,...,0,a9,ay,...,a;—1,x) the difference

[Vyi=1(07") = Vy=1(07")]

is minimum and forany j = 1,...,e — i it holds that
Vyy—1(eij) < Vit 1 and V)/i+j_1(ﬁi~,j) < ¥+l

Such a strategy corresponds to the one which first aims at being a winning
strategy for the state () =1(0,...,0,%0,...,%;),fori =0,...,e —1 with y;
questions.

Notice that this condition need not hold in general, since Lemma 2.5 only
constrains the states @°¢~* (o) that satisfy le:o x; > 3. However, the heuristic
still yields optimal results in many different cases.

2.6.1 Experimental Validation of the Heuristics

Algorithm 2 was experimentally proved to provide optimal strategies for the Ulam-
Rényi game over a search space of cardinality 2" with e lies, foreachm = 1,...,16

andeache =1,...,9.

The lengths of the corresponding strategies are summarized in Table 2.3. When
tested over the same sample of instances, Algorithm 1 does not give optimal results
for the cases

(m,e) €{(8,5),(8,6),...,(8,9),(11,6),(11,7),(11,8), (11,9), (14, 7), (14, 8), (14, 9)}.

Nonetheless, it is much simpler to implement, and in all the above cases it provides
solutions which differ by at most two questions.

We close this section by mentioning a result obtained by combining the
theoretical techniques of the previous sections and the heuristics. It is known that
for e > 6 and a search space of cardinality M = 2'* the optimal solution requires
exactly 3e 4 17 questions. The proof of this fact relies on the solution of the case
M = 2'* and e = 14 given by Algorithm 2 and the general technique of Sect.2.4
to extend this result to arbitrary value of e > 6.
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Table 2.3 Optimal solution (minimum number of queries) for | S| = 2" and e lies

2 Fault-Tolerant Search a la Ulam-Rényi

m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
e
1 3 5 6 7 9 10 11 12 13 14 15 17 18 19 20 21
2 5 8 9 10 12 13 14 15 17 18 19 20 21 22 24 25
3 7 11 12 13 15 16 17 18 20 21 22 23 25 26 27 28
4 9 14 15 16 18 19 20 21 23 24 25 27 28 29 30 32
5 17 18 19 21 22 23 24 26 27 28 30 31 32 34 35
6 13 20 21 22 24 25 26 27 29 30 31 33 34 35 37 38
7 15 23 24 25 27 28 29 30 32 33 34 36 37 38 40 41
8 17 26 27 28 30 31 32 33 35 36 37 39 40 41 43 44
9 19 29 30 31 33 34 35 36 38 39 40 42 43 44 46 47

The exact value of N(2",e) form = 1,2,..., l6ande =1,..., 9

2.7 Bibliographic Notes

The specific names Paul and Carole were not randomly chosen. The initials P
and C refer to Pusher-Chooser games investigated by Spencer in [196]. Paul may
be considered the great questioner Paul Erdds. Carole may be thought of as her
anagram: Oracle!

The Volume Bound was first proved by Berlekamp [22]. Subsequently, Rivest et
al. [185] re-proved it for the continuous case. Pelc [162] also gave his own proof
of this bound. We included here a novel, induction-free proof, originally presented
in [58], for the more general case of g-ary search. An alternative proof of Volume
Bound can be found in [5].

Different proofs of Theorem 2.3 and Lemma 2.2 can be found in [22], where they
first appeared. Berlekamp’s nth Volume of a state is also defined as the nth weight,
or, more simply, the weight of a state, in most of the later papers on the topic of the
Ulam-Rényi problem.

For e = 1,2,3, the exact value of N(2?°,e) was computed in the papers
[83,157,162]. In the same papers the reader can find the exact value of N (2™, e) for
all integers m > 0, for the cases e = 1, e = 2, e = 3, respectively. Fore = 1,2, 3,
evaluation of N(M,e) for all integers M > 1 can be found in [89, 115, 162],
respectively. Hill et al. [119-121] were the first to give complete solutions for
the Ulam-Rényi problem over a search space of cardinalities 22 and 10°. More
precisely, with respect to the presentation given in this chapter, they settled the
case e = 5 in the light of Berlekamp’s Tables (Figs.9 and 11 of [22]). The use of
infinite tables of winning states was started by Berlekamp [22]. As a matter of fact,
Tables 2.1 and 2.2 first appeared in [22], together with a more general description
also given in this chapter. We have partially deviated from Berlekamp’s original
presentation, and preferred to give our own construction, principally based on the
simplification and correction given in [121] (see also [119, 120]).
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For the details on Theorem 2.5, refer to [198]. Algorithm 1 is presented in [138],
while Algorithm 2 was originally presented in [52].

2.8 Exercises

1. Show that there is no strategy matching the volume bound for the Ulam-Rényi
game with 2 lies over a search space of size 4. In particular, this means that no
winning strategy can exist using at most 7 questions.

2. Show that for any variant of the Ulam-Rényi game with e lies there exists a
strategy using (2e + 1) N *(M) questions, where N *(M) denotes the minimum
number of questions sufficient to win the game for Paul when Carole is not
allowed to lie.

3. Is the Volume Bound still valid for the variant of the game where Carole is
allowed to answer sincerely at most e times?

4. Consider the Ulam-Rényi game with one lie. Suppose that, after having chosen
the secret number, Carole answers each question insincerely with probability
1/2, as long as she still has the possibility to lie.

What is the expected number of questions Paul needs as a function of the
search space size n. What about the case of e > 1 lies?

5. Describe what is in general the best answering strategy for Carole. What is the
space and time complexity of such a strategy?

6. In a variant of the Ulam-Rényi game, Carole wants to finish the game as soon as
possible and Paul wants to continue as long as possible. What is the minimum
length (in terms of number of questions) of such a game, if the number of objects
is 4 and Carole is allowed to lie at most twice?

7. Consider the Ulam-Rényi game with 1 lie over a search space of cardinality 10°.
Assume that the only questions allowed are of the form “Is x in Q?”, where
| Q| < 20. What is now the minimum number of questions that Paul has to ask in
order to identify Carole’s secret number?

8. With reference to the model in the previous exercise, assume now that the search
space has cardinality ¢ and each question cannot be of cardinality larger than
m. Provide upper and lower bounds on the size of a minimum size strategy for
Paul as a function of m.

9. Professor Quick has thought of the following alternative heuristics for solving
any instance of the Ulam-Rényi game where the search space cardinality is of the
form 2"': Ask m even splitting questions and let o be the resulting state. Find the
most appropriate values of ¢, 7, j, such that the state (a1, . ..a;;) from the table
defined in (2.10)—(2.12) is the “closest” superstate of 0. Then, use Lemma 2.1 to
complete the strategy.

Try to analyze this strategy by providing un upper bound on how many more
questions are needed with respect to the character of the original state. Try to
estimate the complexity of the resulting algorithm.



Chapter 3
Adaptive vs. Non-adaptive Search

A liar should have a good memory

Quintilian, Institutes of Oratory

3.1 Coding in a Channel with Noiseless Feedback

Led by Schalkwijk and Kailath, Berlekamp proposed the following model for
information transmission over a noisy channel equipped with a noiseless and
delayless feedback channel of large capacity: Suppose the source must send a
message u from a set .# of M many possible messages. Assume that the channel
can only deliver bits, and that up to e of the bits can be distorted during transmission.
In order to communicate the message to the receiver, the source sends a certain
number n of bits over the noisy channel. In contrast with traditional e-error
correcting codes, these n bits may adaptively depend on the information received
by the source via the feedback channel.

As an equivalent formulation, one may suppose that, after the source has chosen
the message (4, the receiver chooses a subset Q| of .#, and then asks the following
yes-no question over the noiseless feedback channel:

Is your message p an element of Q;?

The source’s answer (one bit) is then sent to the receiver via the noisy channel.
The receiver gets a (possibly distorted) answer, and then adaptively asks the next
question Q,. At each step t adaptively asks the question Q; < ./ knowing the
answers to the preceding questions.

Since the receiver’s questions range over all possible subsets of a space of
cardinality M, one might be led to think that any such question requires M bits
to be sent over the noiseless channel. It turns out, however, that only one feedback
bit suffices for each bit transmitted by the source. This is so because we can safely
assume a cooperative model, where the source knows the receiver’s search strategy

F. Cicalese, Fault-Tolerant Search Algorithms, Monographs in Theoretical 31
Computer Science. An EATCS Series, DOI 10.1007/978-3-642-17327-1_3,
© Springer-Verlag Berlin Heidelberg 2013
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(question selection). Thus, in particular, the first question Q| is known to the source:
the first bit AT € {0, 1} = {no, yes} transmitted via the noisy channel is the answer
to this question. This bit is received as A; where A = 1 — AT or 4 = A}
according to whether distortion occurs or not during its transmission.

Proceeding inductively, let Q;+; be the (i + 1)th question, A7, ; be the answer
as transmitted from the source-end of the noisy channel, and A4, be the (possibly
noisy) answer delivered at the receiver end by the noisy channel, as obtained by the
receiver. Since question O, depends only on the previous answers Ay, ..., 4;, for
the source to know question Q, 4 it is sufficient for it to know the bits 4y, ..., 4;.
By safely sending these bits over the feedback noiseless channel, the receiver allows
the source to know question Q; .

For any given M and e, one can naturally consider the problem of minimizing
the number n of feedback bits—precisely as in the Ulam-Rényi game. As we shall
see, any encoding scheme for Berlekamp’s binary symmetric channel with noiseless
feedback is essentially the same thing as a winning strategy for the Ulam-Rényi
game. In particular, any winning strategy with a minimum number of questions
amounts to a shortest error-correcting code for this sort of channel—and vice versa.

3.2 No Feedback Equals Error-Correcting Codes

Let us suppose that the feedback channel is not available. Then the problem is to
send a message p using the minimum number of bits in such a way that the receiver
can recover w even if up to e of these bits may be distorted during transmission.

This is precisely the main issue of the theory of (binary) error-correcting codes:
Here, source and receiver agree on fixing an injective map ¢ : .#Z +— {0,1}".
To transmit a message i € .#, the source sends X = ¢(u) over the noisy channel.
The original n-tuple of bits x is received as X’ after transmission over the noisy
channel, and in general X' # x, because of distortion. Given the maximum number
e of bits that can be distorted, a careful choice of the map ¢ should allow the receiver
to compute x from x” and then, by inverting c, to recover the original message ji.

Under this representation, one can safely regard the range of ¢ as a set of possible
sequences of answers to suitably chosen yes-no questions in a Ulam-Rényi game
with e lies. More precisely, let

9; ={u € A | theithbit of c(p) is 1}.

From the viewpoint of the source end, computing c () is the same as answering the
questions “Does the message u belong to the set 2;?”, fori = 1,2,...,n.

On the other hand, suppose 2; € .# (i = 1,2,...,n) is an n-tuple of
(predetermined, non-adaptive) questions having the following property: even if up to
e of the answers may be erroneous, from the 7 answers to the 2; the secret number
can always be guessed. Let the map c¢:.#Z + {0,1}" transform each message
W € A into the n-tuple of bits xy, x5, ..., x,, given by x; = 1 or x; = 0 according
to whether u € 2; or u & 2;, respectively.
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Then one can naturally say that the range ¢ (.#) of ¢ is the encoding of the set .#
of messages. Thus, a code is the same as the range of such a map c. Finding shortest
codes amounts to finding shortest questioning strategies. In contrast with the original
Ulam-Rényi game, here the receiver cannot adaptively ask his (¢ + 1)th question in
the light of the previous ¢ answers: all questions must be known in advance to the
source, before any bit is sent.

3.3 Elements of the Theory of Error-Correcting Codes

Since shortest error-correcting codes are the same as solutions of the non-adaptive
case of the Ulam-Rényi problem, for later use we shall collect here all necessary
background material from the theory of error-correcting codes. It is convenient to
relax the assumption that the channel can deliver only binary digits (corresponding
to the assumption that only yes-no answers are allowed).

For arbitrary integers ¢ > 2 andn > O letx,y € {0,1,...,g — 1}". Then the
Hamming distance dy (X,y) is defined by

dH(va) = |{l € {15---7n}|xi #yl}lv

where, as above, |A| denotes the number of elements of A.
The Hamming sphere %, (x) with radius r and center X is the set of elements of
{0,1,...,g — 1}" whose Hamming distance from x is < r; in symbols,

#r(x) ={y€f{0.1.....q - 1}" | du(x,y) = r}.

Foreachx € {0,1,...,g — 1}" we have

EASIEDS (’Z)(q -1 3.1)

i=0

The Hamming weight wy (X) is the number of non-zero digits of x.
When ¢ is clear from the context, by a code we shall mean a g-ary code in the
following sense:

Definition 3.1. A (q-ary) code € of length n is asubset of {0, 1,...,g—1}". When
q = 2 we will call € a binary code. Its elements are called codewords. The set
{0,1,...,q — 1} is called the alphabet of the code €. The minimum distance of €
is given by

8(¢) = min{dpu(x,y) | X,y € €, x # y}.
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We say that € is an (n, M,d) code if € has length n, |¢| = M and
8(%) =d. The minimum weight of € is the minimum of the Hamming weights
of its codewords; in symbols, (%) = min{wg (x) | x € €}.

Let %) and %, be two codes of length n. The minimum distance between €, and
%, is defined by

A(61.62) = min{dy (X.y) | X € 61,y € 6.

By definition, the empty set @ is an (n, 0, d ) g-ary code for all integers n,d > 0
and ¢ > 2. Further, for any code ¥ and integer d > 0, we have the inequality
A(@,%) = d. Similarly, the code consisting of the single codeword 0---0 is an

n times

(n,1,d) g-ary code for all integers d > 0 and ¢ > 2.

Let € be a g-ary code and x be a codeword of 4. Suppose we send X over a noisy
channel. Under the assumption that at most e of the digits of x may be distorted, the
received wordy € {0, 1,...,g—1}" trivially belongs to the Hamming sphere %, (x).

If the Hamming spheres of radius e surrounding the codewords of " are pairwise
disjoint, then for all received y there must exist exactly one x such thaty € %, (x).
Thus at the receiving end it is safe to decode y as x. Indeed, for any z € € such that
z # x, we have dy (z,y) > e + 1.

Therefore, any (n, M, d) code € is capable of correcting e errors if and only if
d > 2e + 1; when this is the case we say that € is an e error-correcting code.

Thus for an e error-correcting code %, the Hamming spheres of radius e centered
in the codewords of 4’ must be pairwise disjoint. Since their union does not exceed
the set {0, 1,...,g — 1}", we immediately have:

Theorem 3.1 (Hamming or Sphere Packing Bound). Let € be an g-ary code of
length n and cardinality |¢’| = M. If € is an e error-correcting code, then

My (”.)(q —1Y =q". (3.2)
j=o \J

Definition 3.2. A g-ary (n, M, d)-code ¢ with minimum distance d = 2e + 1 is
called perfect if for each x € {0, 1,...,g — 1}" there exists exactly one y € € such
that dg (x,y) <e.

Perfect e error-correcting codes are the most peculiar example of perfect
non-adaptive winning strategies for the Ulam-Rényi game. More generally, perfect
strategies for the non-adaptive Ulam-Rényi game over a search space of cardinality
M are the same as e error-correcting codes that minimize n with respect to the
bound in Theorem 3.1. These codes shall be our main concern in the rest of this
section. As of today, however, up to finitely many exceptional values of e and M,
the best known codes are far from matching the lower bound provided in (3.2).
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3.3.1 Linear and Hamming Codes

The alphabet of every code ¥ considered in this subsection shall be assumed to
coincide with a finite field F,, where ¢ = p’, the integer p is prime and r > 1.
We let F' denote the n-dimensional vector space over F,. Thus every code € of
length n satisfies ¢ C FJ.

Recall Definition 3.1:

Definition 3.3. A linear code ¢ of length n is a linear subspace of F,'. If ¢ is
m-dimensional then % is called an [n,m] code. We say for short that € is an
[n,m,d] code if € is an m-dimensional linear code of length n and minimum
distance d.

By an [n,m, d] code we mean an (n, g™, d )-code whose codewords form a vector
subspace of the vector space F'.

Every linear code is specified by a pair of matrices whose effect is to simplify
the encoding and decoding steps of the transmission protocol.

Definition 3.4. A generator matrix G for an [n,m] code € is an m x n matrix
whose rows yield a basis of .

A parity check matrix H of an [n, m] code € is an (n — m) x n matrix such that,
forall x € C, we have H x” = 0.

Let G be a generator matrix of an [n, m] code €. If G is in the form! [I,, | A],
where 1, is the identity (m x m)-matrix, then the matrix H = [-A” | I,_,]is a
parity check matrix for %

Remark. 1t is not hard to prove that for any [n,m,d] code € with parity check
matrix H, the minimum distance d of % is equal to the minimum number of linearly
dependent columns of H. One can now get a procedure to determine the minimum
distance of a linear code, as well as its error-correcting capability.

Let us identify, without loss of generality, the source messages with g-ary vectors
of length m, i.e., with vectors in S = {0, 1,...,¢g — 1}"; it follows that, for each
u € S, its corresponding codeword is given by x = u - G. The map u — x is easily
computable. Hence, if a linear code is available the encoding procedure becomes
very efficient.

We shall now discuss the decoding procedure.

Definition 3.5. If ¥ is a linear code with parity check matrix H, then for each
x € F;! we call H x” the syndrome of x.

By definition, codewords are characterized as having syndrome 0.

'Given an (m X n;) matrix 4; and an (m X n,) matrix A,, we shall denote by [4, | 4] the
(m X (ny + n)) matrix whose first n; columns are those of A, and the remaining ones are those
of A,, in the same order.
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Letx € % be the transmitted codeword andy € {0, 1,...,q—1}" be the received
word. Then e = y —x is the error pattern. On the other hand, at the receiver end, the
syndrome of the received word y is simply given by

Hy' =H((x+e” =He.

Since, by hypothesis, at most e errors have occurred, wy (e) < e.

We now note that for any two vectors e;, e, € {0,1,...,¢ — 1}" of Hamming
weight < e, we have dy (1, ;) < 2e, whence H e/ # H el. Thus, any syndrome
corresponds to a unique error pattern.

Assuming that the number of errors is < e, the decoder must simply compute
the syndrome of the received word y. As we have seen, this amounts to recovering
the error pattern e, from which the decoder can easily obtain the original codeword
x =y — e. For the decoder it is then sufficient to use a look-up table (syndrome
to error pattern) with ¢"~" entries. This results in a significant improvement with
respect to the general case of a code with no structure—where, using a table with
g" entries, one associates with every received vector x € Fj its corresponding
codeword x. In practice, more sophisticated and space-saving techniques are
available.

Definition 3.6. For all integers m > 1,letn = ’II:IT_II, where g is a prime power.
An [n,n — m] code over Fy is called a Hamming code if the columns of its parity
check matrix are pairwise linearly independent vectors (over Fy). Stated differently,

these columns yield a maximal set of pairwise linearly independent vectors.

Remark. The columns of the parity check matrix of a binary Hamming code
(g = 2) precisely exhaust the set of non-zero vectors of F)". Since the minimum
number of linearly dependent columns in the parity matrix of a Hamming code is
3, the minimum distance of a Hamming code is equal to 3. Hence, Hamming codes
are one error-correcting codes. Further, we have the following.

Theorem 3.2. Hamming codes are perfect one error-correcting codes.

Corollary 3.1. Foreachm =1,2,3,..,,

N(@2",1) = Npn(2", 1) = min{n = 0,1,2,... 2" > 2"(n + 1)}.

3.3.2 MDS Codes and the Reed-Solomon Codes

One of the most fascinating notions in coding theory is that of MDS code. In order
to introduce such a class of codes, we will start by proving the following easy result,
generally known as the Singleton Bound.

Theorem 3.3 (Singleton Bound). For all integers ¢ > 2 and n,d > 0, if there
exists an (n, M, d) q-ary code €, then
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M < qn—d-‘rl
Proof. By contradiction, assume that M > ¢"~¢T!; then there must exist two
distinct codewords x, y € ¥ andn —d + lindices | <iy <ip <--- <iy_4q4+1 <n
such that

Xi; = Yi; forall j =1,2,...,n—d + 1.

This implies that d gy (x,y) <n—(n—d + 1) = d — 1, contradicting the hypothesis
that §(¢) = d.

If an (n,M,d) g-ary code satisfies the above bound with equality, i.e.,
M =q"~“*!, then it is called a Maximum Distance Separable (MDS) code.
“Maximum distance” accounts for the fact that such a code 4" has the maximum
possible distance §(€) for the given size M and the given length n. “Separable”
refers to the fact that the codewords of €’ can be separated into message symbols and
check symbols. In fact, for any fixed set of k = n — d + 1 positions, the projection
of the codewords of ¢ over such positions coincides with {0, 1, ..., g — 1}¥.

The following lemma gives a useful combinatorial characterization of the
codewords in an MDS code.

Lemma 3.1. For g a prime power, the number of codewords of Hamming weight w
inan (n,q*,d = n —k + 1) MDS g-ary code is

n w—d (w—1 '
A, = -1 - g
(W)(q );0( )( ; )q

The problem of finding the longest possible MDS code for a given dimension
k =n —d + 1isrelated to a great variety of combinatorial problems. Exercises 6,
7, and 8 will analyze one such relationships with Latin Squares.

The Reed-Solomon Codes. One of the most important and well-studied families
of MDS codes are the Reed-Solomon (RS) codes. An (n,k + 1)-RS code, with
k < n and g > n is defined as follows: Fix n distinct elements oy, ..., ®,, in the
finite field F;,, which exist due to the assumption ¢ > n. Each source message
is uniquely associated with a polynomial over F, of degree at most k. Therefore,

the source message space is identified with Fqk+1, by viewing a source message

u = (u, ..., u;) as the polynomial py = uo + u1x + usx> + -+ - + up x*.

The encoding of u is obtained by evaluating the corresponding polynomial p, in
the n field elements «;, . . ., ¢, that is, by the encoding rule

u = (pu(al)v pu(O{z), EER) pu(an))

Since any pair of distinct polynomials of degree at most k coincide in at most k
points, it follows that the Hamming distance of the code is at least n — k. Therefore,
an (n, k+1)-RS code is an (n, qk“, n — k) code, and, hence, it is an MDS code.
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Due to their strong algebraic structure and the resulting encoding-decoding char-
acteristics, Reed-Solomon codes have found applications both in many theoretical
studies and in a wide range of “real-world” applications, like satellite and wireless
communication, compact disc players, and high-speed modems such ADSL.

3.3.3 Bounds on Codes

As we have seen above, the non-adaptive Ulam-Rényi problem with e lies over
a search space of cardinality M amounts to finding a shortest binary e-error-
correcting code with M many codewords. Thus the non-adaptive Ulam-Rényi
problem is an equivalent reformulation of the following main issue in combinatorial
coding theory: evaluate the maximum number A(n,d) of codewords in a binary
code of length n and minimum distance d.

We shall now recall some of the principal known bounds on A(n, d).

Surprisingly enough, the best known lower bound on A(n, d) is just the most
trivial one:

Theorem 3.4 (Gilbert Bound). For all integersq > 2, n>1, 1 <d <n, there
exists a g-ary (n, M, d)-code € with

whence

926 ()

Proof. Starting with any arbitrary x € {0,1,...,g — 1}", one routinely keeps
adding codewords lying at a distance at least d from all previously added
codewords. The process stops and the desired ¥ is obtained when, for each
z€{0,1,...,qg—1}", there is at least one x € % such thaty € %,;_(x). Thus
the Hamming spheres of radius d — 1 surrounding the codewords of 4" cover the
whole space {0, 1,...,¢q — 1}", whence

d—1
61y (”.)(q —1Y = 4",
j=o \J

as required to complete the proof.

A(n,d) >
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Table 3.1 Bounds on the rate of the best binary codes for large n

Gilbert-Varshamov Sphere Packing-Hamming McEliece et al.

% lower bound upper bound upper bound

0 1 1 1

0.1 0.531 0.714 0.693

0.2 0.278 0.531 0.461

0.3 0.119 0.390 0.250

0.4 0.029 0.278 0.081

0.5 0 0.189 0

By definition, for all integers n and d, the rate of the largest binary code of length
n and minimum distance d is given by

R(n,d) = llong(n,af).
n

Most of the known upper bounds on A(n, d) are expressed in terms of R(n,d)
as a function of d/n. The following theorem gives an upper bound on the largest
size of a binary code of length » and minimum distance d for all sufficiently large
n. The theorem is due to McEliece-Rodemich-Rumsey-Welch [148].

Theorem 3.5 (McEliece, Rodemich, Rumsey, Welch). For all sufficiently large n
andfor0 < d/n <1/2, we have
d 2d
Rin,d)< min 1 +h@?) —h6? + 222 + 250
n n

0<u<l1-2d/n

where h(x) = A (% — %\/1 — x) and 7 (x) denotes the binary entropy function
H(x) = —xlogy, x — (1 — x)log,(1 — x).

In Table 3.1, we list as a function of d/n the rates of the largest binary codes
allowed by the Gilbert, Hamming, and McEliece et al. bounds, respectively.

Evidently, there still exists a significant gap between the best known asymptotic
lower and upper bounds on the size of the largest binary codes.

Moreover, the largest binary code of length n» and minimum distance d as
given by the McEliece et al. bound is far from matching the Hamming bound.
Equivalently, in our terminology, the best known non-adaptive searching strategies
for the Ulam-Rényi game over a search space of cardinality M and e lies are far
from being perfect.

In particular, when there exists an integer n such that M Zj —0 (;’) = 2" we have
the following stronger negative result:
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Theorem 3.6 (Tietiviinen-Zinoviev-Leontiev Theorem). Foreach integere > 1
no non-trivial perfect e-error-correcting code exists except the [23,12,7] binary
Golay code and the ternary [11, 6, 5] Golay code.”

As an interesting example, let M = 278 and e = 2. Then forn = 90

M((;)+n+1) .

By the Tietdvdinen Theorem no non-adaptive perfect strategy exists for solving the
Ulam-Rényi problem with the above parameters. On the other hand, as we shall see
in the next section, least adaptive and a fortiori fully adaptive perfect strategies do
exist.

3.4 Fault-Tolerant g-ary Search and Minimum Feedback

I know a trick worth two of that

W. Shakespeare, Henry IV

Let us consider the case M = 2™, and let the search space S coincide now with the
set of m-bit integers, S = {0, 1,...,2" — 1}. By Theorem 2.1, at least N, (2™, e)
questions are necessary to find the secret number x, € S in the adaptive and, a
fortiori, in the non-adaptive Ulam-Rényi game with e lies.

In the fully adaptive case, Theorem 2.5 (see also the remark following it) shows
that Nmin (2", €) questions are always sufficient, up to finitely many exceptional m’s.
Optimal searching strategies have been explicitly given, respectively for the cases
e = 1,e = 2 and e = 3. Altogether, fully adaptive fault-tolerant search can be
performed in a very satisfactory manner.

In many practical situations, however, it is desirable to have searching strategies
with small degree of adaptiveness—that is, strategies in which most questions
are predetermined, and can be asked in parallel. This is the case, e.g., when the
questioner and the responder are far away from each other and can interact only on
a slow channel.

Minimum feedback is also desirable in all situations when the mere process of
formulating the queries is so costly that the questioner finds it more convenient
to prepare them in advance. For instance, in certain applications of computational
molecular biology, preferably, two-stage searching strategies are used, where the
search is adapted only once.

2Golay codes were introduced by Golay in [113] (see Chap. 20 of [145] for more details).
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In the case where no errors or lies are possible, an optimal, fully non-adaptive
searching strategy—as powerful as the best adaptive one—exists with [log, |.S|]
questions simply amounts to asking [log, |S|] queries about the occurrences of the
bit 1 in the binary expansion of the unknown number x, € S.

For e > 0, in the fully non-adaptive case, finding a perfect strategy (i.e., a
winning strategy of size Nuyin(2”,e)) amounts to finding an e-error correcting
code of length Ny, (2", e) with 2" codewords. By Theorem 3.2, Hamming codes
yield perfect non-adaptive searching strategies (i.e., one-round strategies) with the
smallest possible number Ny, (2™, 1) of questions, for the particular case e = 1.

However, for e > 2, fully non-adaptive searching strategies with exactly
Nmin(2™, €) questions—or equivalently, e error-correcting codes with 2" codewords
of length N, (2™, e)—are rare objects.

A natural question to ask is then: what happens if a small amount of adaptiveness
is allowed to the questioner?

In this section we shall show that for each e, and for all sufficiently large
m, there exist searching strategies using exactly the theoretical minimum number
Nmin(2™, e) of questions in which questions can be submitted in only two rounds.
Specifically, for the questioner to infallibly guess the responder’s secret number
X« € S itis sufficient to ask a first batch of m non-adaptive questions, and then, only
depending on the m-tuple of answers, ask a second mini-batch of s = O(e log(m))
non-adaptive questions.

These strategies are perfect, in that m + s coincides with Ny, (2", e), the number
of questions that are a priori necessary to accommodate all possible answering
strategies if up to e lies are allowed in the answers.

Since the questioner can adapt the strategy only once, we have indeed e
fault-tolerant search strategies with minimum (non-zero) adaptiveness and the least
possible number of tests.

This result will be presented in terms of the natural generalization of the
Ulam-Rényi game obtained by assuming that Paul asks questions allowing Carole
to choose from among ¢ many possible alternative answers. One is then concerned
with fault-tolerant q-ary search.®> The classical Ulam-Rényi problem is clearly the
same as g-ary search with lies and ¢ = 2.

We shall introduce g-ary search and then prove that for any ¢ > 2 and e > 0 and
up to finitely many exceptional sizes of the search space, in the g-ary Ulam-Rényi
game with e lies there exists a search strategy using at most one additional question
with respect to the theoretical minimum number of questions needed, i.e.,

N[l]]

min

(M,e) < N(M,e) < N9 (M, e) + 1,

where N La) (M, e) denotes the minimum integer n such that n, M, e satisfy the

min

Hamming Bound for g-ary codes (3.2) and NW(M,e) denotes the size of the

3This e-fault-tolerant g-ary search corresponds to e error-correcting encoding for the g-ary
symmetric channel with noiseless, delay-less feedback.
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shortest winning strategy for the Ulam-Rényi game with g-ary search and e lies
over the search space {0,1..., M — 1}. We will see that this result holds under
the stronger hypothesis that adaptiveness is used only once. In particular, the lower
bound is always achievable when M = ¢, up to finitely many exceptional m’s.
We will also give exact results for small instances. In doing so, we will analyze
general tools that can be used for dealing with practical instances of the problem.

3.4.1 Fault-Tolerant q-ary search

In the Ulam-Rényi game with g-ary search, Paul and Carole first fix two integers
q > 2and M > 1. The search space S is identified with the set {0, 1,..., M — 1}.
The definition of state and final state are the same as in Sect. 2.1. Typically, a g-ary
question T has the form

Which one of the sets g, 71, ..., T,—1 does x4 belong to?,

where T = (To, T1,...,T;—1) is a g-tuple of (possibly empty) pairwise disjoint
subsets of S whose union is S, and x, stands for the number secretly chosen by
Carole. Whenever Paul’s state of knowledge 0 = (Ao, A1, A2, ..., A.) is clear from
the context, it will be tacitly assumed that a question actually partitions only the set
Ap U A} U --- U A, of surviving elements in o. For the sake of definiteness, the
remaining elements of S can be safely attached to 7,_;.

Carole’s answer is an integer i € {0, 1,...,q — 1} telling Paul that x, belongs
to 7;. Generalizing (2.1), if Paul is in state 0 = (Ag, 41,..., A.) and Carole’s
answer is equal to 7, then Paul’s state becomes

o' =(AoNT, (A\THUMAINT), -+, (Ae \THU (A NT)). (3.3)

In analogy with what we do for the binary case, a g-ary question corresponding
to the partition (7o, ..., T,—1) will be denoted by

005+ -+>Q0¢) * 1 (Ag—10,---.Ag—1¢)]
[(a doe) 1+ (a dg—te)]

where a;; = |T; N A |, meaning that the set T; contains a;; elements from 4. If it
holds that a;; = a;/; for any i # i’ we say that the question is even splitting.

We will often use the shorthand notation [(ag,...,a.) : (g — 1) - (bo,...,b.)]
to mean that the last (g — 1) components (the (e + 1)-tuples) of the question are
identical, i.e., they refer to subsets of § whose intersections with A; have the same
size, for any j.

Let (xo,...,Xx.) be the current state and T = [(ago,...,doe) :
(@g—10,...,a4.)] be the question asked by Paul. If Carole’s answer is “i” for
somei € {0,...,q — 1}, then, according to the rules in (3.3), the resulting new state

iso’ = (x{,...,x,), where
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Xi = ajj +Z’i:1 ag j—1 = djj +()Cj_1 —aij_l)j =1,...,e. (3.4)
ki

The definition of winning g-ary strategies in terms of a labeled g-ary tree is the
natural generalization of that given in Sect. 2.1.

For every integer ¢ > 2 and state o of type (xo, X1,...,X.), the (g-ary) nth
volume of o is defined by

Vi)=Y "aiy (g—1) (") (3.5)
i=0 =0 J

This generalizes Definition 2.5. Accordingly, Theorems 2.1 and 2.2 have the
following g-ary generalization.

Proposition 3.1. Let o be an arbitrary state and T be a question. Define chl?) (o) =
min{n = 0,1,2,... | V(o) < ¢"}. Let 6" be as in (3.3) and (3.4).

(a) For every integer n > 1 we have
q—1
Vi) =Y v ).
i=0

(b) If o has a winning q-ary strategy with n questions then n > chll (0).

(c) Let T = (yo,...,Y.) be a state such that ZI;'=0 yj < ZI;.:Oxj for each
k =0,...,e. For any winning strategy of size n for o there exists a winning
strategy of size n for the state 1.

As an immediate corollary of the above proposition we have

NE(M, e) > N

4 (M, e) = chl”(M,0,....,0)
forall M > 1ande > 0.

Generalizing Definition 2.6 by a perfect g-ary strategy for c we now mean a
winning strategy for o only requiring chld(5) questions. We say that a strategy .¥
for a state o of type (¢, 0, ...,0) is canonical iff . is winning for ¢ and consists
of two batches of non-adaptive questions, where the questions in the first batch ask
for the g-ary digits of x4, and the second batch depends only on the m-tuple of
Carole’s answers to these questions.
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3.4.2 Perfect Strategies and Least Adaptiveness: M = q™

4 (g™, e) = chl (g™, 0,...,0) questions, Paul
adopts a canonical strategy .# as follows: He first non-adaptively asks for the g-ary
expansion of x,—thus using m questions. After receiving Carole’s answers, Paul
fixes a g-ary encoding of the surviving candidates, and then non-adaptively asks
Carole for the updated encoding of x.. With finitely many exceptions m, the success
of Paul’s search is guaranteed by Theorem 3.7 below, which in turns relies on a
multitude of results in the theory of error-correcting codes.

To guess the secret number x, in N, la]

By definition, the first batch of questions of . is given by:

Foreachi =1,2,..., m, let D; = (Djp...., D; 4—1) denote the question “Which is the
ith digit in the g-ary expansion of x4?” Thus a number y € S belongs to D; ; iff the ith
digit of its g-ary expansiony = y; -+ y,, is equal to j.

Letb; € {0,1,...,q — 1} be Carole’s answer to question D;. Let the string b of
q-ary digits be defined by b = b, - - - b,,,. Repeated application of (3.3), beginning
with the initial state 0 = (5,4, ..., ), shows that Paul’s state of knowledge as an
effect of Carole’s answers is an e-tuple o® = (Ao, ..., A,), where A; = {yesS|
dy(y,b) =i}, foreachi =0,...,e.

Thus the state o® has type (1,m(qg — 1),..., ('Z’) (g — 1)¢). Moreover, repeated
application of Proposition 3.1(i) yields ch” (o?) = chl¥!(¢™,0,...,0) — m.

The Non-adaptive Second Batch of Questions

For each m-tuple b € {0,1,...,4 — 1} given by Carole’s answers, we shall
construct a non-adaptive g-ary strategy with ch/(1,m(q — 1), ..., (’Z) g —1°)
questions, and show that the strategy is winning for the state o®.

For this purpose, let us consider the values of chl¥! (1, m(g — 1), ..., (’Z) (g—1)%)
form > 1.

Definition 3.7. Letg > 2 and n > 3 be arbitrary integers. The g-ary critical index

ml? is the largest integer m > 0 such that chl (1, m(g —1), ..., (’Z) (g—1)°) =n.

Lemma 3.2. Letq > 2, e > 1 and n > 2e be arbitrary integers. Then

Jelge [ Jelge
—n—e<ml < +e. (3.6)
{(q—l)J ’ Lq—l J

Proof. By definition, m!%, = max {m | vl (Lmg—=1),....("M) (@G —-1)¢) < q”}.
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The right inequality in (3.2) is a direct consequence of the inequality
Vi (o) >q", where 0 = <l,m*(q—1),...,(m:)(q—1)3) and m* =

L e!_‘fj + e; in fact

q
Vil (0) > V19 (0,...,0, (m )(q— 1)")
e

) (nz*)(q— = (gD et

e!

(o)
q—1
= (61 - l)eT = qn.

Letm = L f({];_!qlf J —n — e. In order to prove the left inequality, we need to show
that

Vn[{ﬁyﬁ (q’ﬁ,O, .. .,0) < q"“ﬁ,

which is equivalent to proving

We have
Z(m”)(q—nf < (q—1>62<’“”)
j=0 J j=0 J

S(q_l)e<n~1+:—|-e)

m+n+e)m+n+e—1)---(m+n+1)
e!

=(q-1°

m+n+e)
f(q_l) T

_ (g1 (Velge
- el q—1

—n—e—}—n—i—e) =q",

which completes the proof.
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The second batch of questions is obtainable from the following lemma, which
formally states the correspondence between non-adaptive winning strategies and
certain special codes.

Lemma 3.3. Fix integers ag,ay,...,a, >0, ¢ >2andn > chl] (ap,ay,...,a.).
Let 0 = (Ao, A1, ..., Ae) be a state of type (ag,ay,...,a.). Then there exists a
non-adaptive winning q-ary strategy for o with n questions if and only if for all
i =0,1,2,...,e—1 there areintegers d; > 2(e —1i) + 1, together with an e-tuple
of g-ary codes I' = {6y, 61,6, ..., Ge—1}, such that each 6; isan (n,a;,d;)

codeand A(6;,6;)>2e— ({0 +j)+1,(forall 0<i<j<e—1)

Proof. We first prove the implication strategy = codes. Let 0 = (Ag, A1, ..., Ae)

be a state of type (ao, ay, - . . , a.) having a non-adaptive winning strategy . with n
questions T; = {T;0.Tj1,....Tjq1}, j = 1,2,...,n and n > ch(o).
Let the map

z€ AgUAUAU---Ud,>27 €{0,1,....q—1}"

send eachz € AgU A U Ay U --- U A, into the n-tuple of digits 27 = zfﬂ .- -zny
arising from the sequence of “true” answers to the questions “Which set among

T;0,Tj1,...,Tj4—1 does zbelong to?”, j = 1,2,...,n. More precisely, for each
j = 1,...,n,zj‘.7 =iiffzeT;;.Let® C {0,1,...,g — 1}" be the range of the
map z 2. We shall first prove that, for every i = 0,...,e — 1 there exists an

integer d; > 2(e —i)+ 1 such thattheset6; = {y” € € | y € A;}isan (n,a,.d;)
code.

Since . is winning, the map z +— z- is one-to-one, whence, in particular,
|6;| = a; forany i = 0,1,2,...,e — 1. Moreover, by definition, the %;’s are
subsets of {0, 1,...,qg — 1}".

7

Claim 1. Fix integers 0 < i < j < e and x,y € S and define
t = (By, By, ..., Be) such that UisgBj = {x,y}and x € B; and y € B;.
Then, for each n < 2e — (i + j), the state T is not a winning n-state.

We prove the statement by contradiction. Suppose that there exists a strategy .
with 2e — (i 4+ j) questions which is winning for 7. Assume first that for each
question T = {7y, T1,...,T;—1} in & it holds that x € Ty, y € Ti. Suppose now
that x, = x, and Carole answers “0” to the first e — j questions and answers “1” to
the following e — i questions. Therefore, by (3.3), the resulting state after Carole’s
answers is T’ = (0,0, ..., {x, y}), contradicting the hypothesis that . is winning.

On the other hand, suppose there exists a question T = {7y, T1, ..., T, } such
that for some i = 0,1,...,g — 1, it holds that {x, y} € T;; then, by assuming
again that Carole answers exactly e — j times by pointing at the set containing x
and for the remaining e — i times she indicates the set containing y, we have that
the resulting state is a superstate of v’. This, again, contradicts the hypothesis and
complete the proof.
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Claim 2. Forany0 <i < j <e—1landforeachy € 4; and 1 € A; we have the
inequality dyy (', h”) > 2e — (i + j) + 1.

For otherwise (absurdum hypothesis), let y € A;,h € A; be a counterexample,
and dpy(y” ,h”) < 2e — (i + j). Writing y* = vy ...y and h’ =

hi” ...h;”, there is no loss of generality in assuming hky = yky, for all
k = 1,....n — (2e — (i + j)). Suppose that the answer to question T} is
“i” where i = hky . Then the state resulting from these answers has the form
o" = (A), A, AL, ..., A), where y € A} and h € A/Jf. Then ¢” is a substate

of the state 7 in the previous claim, which together with Proposition 3.1 (iii) proves
that 2e — (i + j) additional questions will not suffice to find the unknown number.
This contradicts the assumption that .# is a winning strategy.

In conclusion, for alli = 0,1,...,e — 1, %; is an (n,a;,d;) code with d; >
2(e —i)+ 1,and forall j =0,...,i —1,i +1,...,e — 1 we have the desired
inequality A(%;,6;) >2e— (i +j)+ L.

Now we prove the converse implication: strategy < codes.

Let I' = (%0, 61, %>, . .., 6.—1) be an e-tuple of codes satisfying the hypothesis.
The Hamming sphere 9,(X) with radius r and center X is the set of elements of
{0,1,...,g — 1}" whose Hamming distance from x is at most r; in symbols,

By (x)={ye{0,1,....q—1}"|du(x,y) <r}.
Notice that for any x € {0,1,...,g — 1}, and r > 0, we have |%,(x)| =

Yi=o ()@ —D".
Let

e—1
A =) Zewi(®).
i=0x€%;
By hypothesis, for any i, j € {0,1,...,e — 1} and X € %,y € ¢; we have

dy(x,y) > 2e—(i + j)+ 1. It follows that the Hamming spheres %,—; (x), B.—; (y)
are pairwise disjoint and hence

e—1 e—i
A = ai Y (”.)(q —- 1. (3.7)
i=0 =0 Y

Let2 ={0,1,...,q — 1}" \ JZ. Since n > ch[’”(ao,al,az, ...,d.), by definition

of character we have ¢" > Y 7_ a; Zj:o ('j’)(q — 1)/. From (3.7) it follows that

e—1 e—i
121 Zq”—zaiZ(n.)(q—l)f > de. (3.8)
i=0 =0\
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Let o = (A, A1, Aa, ..., A.) be an arbitrary state of type (ag,ai,as,...,a.). Let
us now fix, once and for all, e 4+ 1 one-one maps f;: A; — €; fori =0,1,...,e—1,
and f,: A, — 2. The existence of the map f;, foralli =0, 1,...,e, is ensured by
our assumptions about I", together with (3.8).

Letthemap f: AgUA;UAU---UA, — {0,1,...,q—1}" be defined by cases
as follows:

Jo(y), y € 4o

).yeA
f) = ﬁ@ rea (3.9)

fe(¥), y € 4,

Note that f is one-one. Foreach y € AU A UA,U---UAd,and j =1,...,n
let f(y); be the jth digit of the n-tuple f(y) € {0,1,...,9 — 1}"". We can now
exhibit the questions T; = (T;0,Tj1,...,Tj4—1), j = 1,2,...,n, of our search
strategies:

Foreach j =1,..., n lettheset Tj; € S bedefined by T;; = {z € Uji—g Ak | f(@); =
i }. Intuitively, T; asks “What is the j th digit in the g-ary expansion of f(x4)?”

The answers to questions Ty, ..., T, determine an n-tuple of digits b = by ---b,,.
We shall show that the sequence T}, ..., T, yields an optimal non-adaptive winning
strategy for 0. Let oy = o?', o0y, = o7 ..., 0y = crf”_l. Arguing by cases we
shall show that 0, = (A7, AT...., A}) is a final state.

By (3.3),foralli =0,1,...,e,any z € A.—; that falsifies > i answers does not

survive in 0,—in the sense that z ¢ A5 U AT U --- U A7.

Case 1. b ¢ Uf:o UyeA,- Beo—i (f(y))

Foralli =0,1,...,eandforeach y € 4; wemusthave y ¢ AJUATU---UAJ.
Indeed, the assumption b & Z._;(f(y)) implies dy (f(y),b) > e — i, whence y
falsifies > e —i of the answers to Ty, ..., T,, and y does not survive in o,,. We have
proved that A5 U A7 U--- U A} is empty, and o, is a final state.

Case2. be B._;(f(y)) forsomei € {0,1,...,e}and y € A4;.

Then y € AF U AT U---U A}, because dy (f(y),b) < e —i, whence y falsifies
< e — i answers. Our assumptions about I" ensure that, forall j = 0,1,...,e and
forall y’ € Aj andy # y’,wehaveb & Z,_;(f(»')). Thus,dy (f(y').b) > e—j
and y’ falsifies > ¢ — j of the answers to Ty, ..., T,, whence y’ does not survive
in 0. This shows that for any y" # y, we have y’ ¢ A5 U A} U---U A¥. Therefore,
Aj U AT U - U A7 only contains the element y, and o, is a final state.

According to this result, the second batch of non-adaptive questions will be given
by the family of codes provided in the following lemma.

Lemma 3.4. For any fixed integers k > 0 and e > 1 and for all sufficiently large
integers n, there exists an e-tuple of g-ary codes I' = (%), 61, ..., %.—1) together
with integers d; > 2(e—i)+1 (i =0,1,...,e —1) such that
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(a) Each 6; isan (n + k, (m”e )(q — 1), d;) code;
(b) A(€,€¢;)>2e— (i +j)+ 1 (whenever0 <i < j <e—1).
la)
Proof. Let n’ = n — e? + k. First we prove the existence of an (n’, (mgqjyk)
(g — 1)~ lq 2e + 1) code. From Lemma 3.2, together with the trivial inequality
el < (€+1) , it follows that, for all sufficiently large n

m}[;z]g 1k 1 1 k
o@D < )T -1

fq

)e l(q l)e—lqk

eqe o
s(—" ) Hg — 1) g"
q—1

<
YL (T g -1

since Zii (" +k) (¢ — 1)/ is polynomial in 7.

[q)

The existence of the desired (n’, (mzquk)(q —1)°"'¢*,2e + 1) code now follows
from Theorem 3 4. We have proved that, for all sufficiently large n, there exists an
(n —e 2 4k, (m” )(q 1)¢"'¢¥,2e + 1) code €”. Foreachi = 0,1,...,e —1 let
the e2-tuple a; be defined by

a;, =00...011...100...0.

ie e e2—(i+1)e

Furthermore, let €/ be the code obtained by appending the suffix a; to the
codewords of ¢”'; in symbols,

(gi// — (g/ ®ai-

Trivially, €” is an (n + k, (’"E%Tk)(q — 1) 'g¥.2e + 1) code for all
i =0,1,...,e— 1. Furthermore, we have A(‘to”l-”,%]f’) =2e>2e—(@{+j)+1
whenever 0 < i < j < e—1.Foreachi = 0,1,...,e — 1, pick a subcode
¢ C € with |6 = ('”L‘_k)(q — 1)'¢g*. Then the new e-tuple of codes

= (%, %,-..,%,—1) satisfies both conditions (a) and (), and the proof is
complete.
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The following summarizes the main results of this section, showing the existence
of minimum adaptiveness perfect search strategies for the Ulam-Rényi game with
g-ary questions and e errors when the search space has cardinality ¢ for some
sufficiently large integer m.

Theorem 3.7. Fix an integer e > 0. Then for all sufficiently large integers m there
exists a perfect winning strategy . for the Ulam-Rényi game with q-ary questions
and e lies over the search space of cardinality q™, which uses adaptiveness only
once. More precisely, .7 has exactly size NI%L(qm, e). Therefore,

NG e) = N4 (g™ e).

Proof. Skipping the trivialities, assume e > 1. We know that there exists a batch of
m non-adaptive questions which leads Paul from the initial state to some state o,
of type (1,m(g — 1), ..., (’Z)(q — 1)°). We have that ch(0,,,) = N[E]i]n(q’", e)—m.
Therefore, to complete the proof it is enough to show that there exists a non-adaptive
winning strategy .# for o,, such that the number of questions in .¥ coincides with
Berlekamp’s lower bound chl?! (o) = Nlﬂ(qm, e)—m.

Let n = chl¥(0,,) and k = 0. By definition, n — oo as m — co. Lemmas 3.4

and 3.3 yield a non-adaptive winning strategy with n questions for any state of type

la) la)
(l,m,[,‘{]e(q -1, (mf")(q —1)2,..., (mf")(q — 1)°). By Definition 3.7, m < m,[,l{]é,,

and a fortiori, for all sufficiently large m, a non-adaptive winning strategy with n
questions exists for any state of type (1,m(g — 1), ..., ('Z)(q — 1)¢). The proof is
complete.

Shrinking the First Batch of Questions

In view of the last result, let us now return to Berlekamp’s model in Sect.3.1,
and focus on the asymmetric nature of the communication between the questioner
and responder: The forward questioner-to-responder channel is noiseless, while the
feedback channel is noisy. In the cooperative model, where questioner and responder
have agreed on the searching strategy, and lies are replaced by distortions, the result
of the previous section shows that error-correcting transmission can be achieved via
the following protocol, where m = |log M |:

(a) Send m bits over the noisy responder-to-questioner channel,

(b) Over the noiseless feedback channel, send to the responder the m-tuple of bits,
as actually received by the questioner,

(c) Finally send to the questioner a final tip of N[E]i][] (M, e) — m bits over the noisy
channel.

Since in many concrete situations the noiseless feedback channel is much more
costly than the forward noisy channel, one can reasonably consider the problem of
minimizing the number of feedback bits to be sent during stage (c). The following
problem is especially interesting for us:
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To what extent can one decrease the number of bits sent over the noiseless channel,
while still keeping to a minimum both the total number of questions and the number of
non-adaptive batches of questions?

As we will see, for every fixed integer k > 1 one can always reduce from m to
m — k the number of questions in the first batch (and similarly reduce the number
of feedback bits over the noiseless channel) for all suitably large m.

Fix an integer k > 1 and let m be a sufficiently large integer. Suppose that the
first batch of questions only consists of the first m — k queries of Sect. 3.4.2. Then a
direct computation shows that the resulting state o, = (Ao, A1, ..., A.) is of type

—k —k
(qk,qk(m—k)(q— 1),qk<m2 )(q— 1)2,---,61k<me )(q— 1)“),

and chl¥(c}) = Nr[fiL(q’”, e) —m + k. For the desired perfect two-round strategy,
we must exhibit, for the state oy, a non-adaptive winning strategy with
NIE’iL(qm,e) —m + k questions. For this purpose, we can use again Lemma 3.4
with the appropriate k.

The following corollary implies the existence of minimum adaptiveness perfect

searching strategies with a first batch of m — k, rather than m, questions.

Corollary 3.2. Fix two integers e > 0, and k > 0. Then for all sufficiently large
integers m and for every state oy, of type (¢, (m—k)q*(g—1), ..., (m;k)qk (g—1)°)
there exists a non-adaptive winning strategy . such that the number of questions
in .7 coincides with Berlekamp’s lower bound ch! (o}.) = Nlﬁ]n(q’", e)—m+k.

Proof. We can safely assume e,k > 1. Let n = chl(0;). By definition,
n — oo as m — oo. Lemmas 3.4 and 3.3 yield a non-adaptive winning
strategy with n questions for any state of type (g%, ¢* (m, . — k)(qg — 1), g* (m”-g_k)
(g—1>2....4" (m’“g_k) (g — 1)¢). By Definition 3.7, m < m,[,‘{]e, whence a fortiori,
for all sufficiently large m, a non-adaptive winning strategy with n questions exists
for any state of type (¢*, g*(m —k)(g— 1), 4" (";*) (@ = D2 ....¢" (") (g — 1)°).

3.4.3 Arbitrary Cardinality of the Search Space: Least
Adaptive Quasi-perfect Strategies

The last two results can be extended to the case of search space of arbitrary
cardinality M, not necessarily being a power of g. For the moment, we shall have
to trade generality for optimality. In particular, we shall lose our perfectness and we
shall be able to guarantee the minimum adaptiveness for a strategy that uses at most
one question more than the minimum possible as given by the Hamming Bound.
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More About Perfect Minimally Adaptive Strategies

The following lemma extends the result of the previous section. It implies that for
any e > 1 there are infinitely many values of M (besides M = ¢™) for which
perfect and minimally adaptive search strategies exist.

Lemma 3.5. Fixq > 2, e > 0. Then, for all sufficiently large n, and
la]
o = ((g+1Dg™"0.....0).

there exists a perfect strategy for o using ch(o) = (qu]e + n + 1) questions, asked

in two non-adaptive batches.

Proof. First we prove that chl (o) > m[q] + n + 1. By definition of character, it is
enough to show that the (n + m!%,)th g-ary volume of o exceeds q"+m"»4, that is,

4]
V[‘]] (O’) > qn+m,,g

Fori =0,1,.. m,[{’]e —1,leto; = (a;0,4ai1,...,a;.), where
i j
aij = (q+ g™ i (g—1).

Fori =0,1,.. qu]e —2, the state o; .+ coincides with the one produced by asking
an even splittmg question in the state o;. Hence, by Proposition 3.1 (a) we have

144

(Gl) = q (Gl+1)

+[‘1 +[q

. ’ o ’ : ’ mldl—1
Let us now consider the state 0’ = (ay.a;,...,a,), witha] = (g + 1)( e )
(g—1) fori =0,...,e. It holds that

v (o)) = Z(q+1)( l)m—w ( ) )

>Z<q+1)( (q—l)f( ) — 1y

e lg]
— (g + g -1 Z (’” )(’Z fjl)

-1



3.4 Fault-Tolerant g-ary Search and Minimum Feedback 53

[q]
= (g + g~ 1 (m"j n)

> W(m’[g]e +n—e)

e!
><q+1)<q—1)€(v2q?_2e_l)
e! (-1
>q(1+§)(q—1)e 1 Yelgt '

e! I+2@-1
:qn+1‘

Thus we have the desired result

4] _ _om—10g) — mif—1y,04]
Vil @ =V @0 =V (0, ) = " ()

[

mifle—14n+1 _ m!

my e+n

>4 q

It remains to prove that there exists a g-ary winning strategy of length n +m£f{]e +1
for the state o

In fact, we already implicitly proved that there exists a non-adaptive sequence
of m,[,q]e — 1 questions (the even splitting questions mentioned above) with which,
starting in the state o, Paul ends up into the state o”. In particular, these questions

can be asked non-adaptively as follows:

Foreach j = 1,2,..., quL —1, let 2; = (Do, Dj1,..., D ,—1) denote the question

“What is the jth (g-ary) least significative digit of x4?” Thus, a number y € § belongs to
D;; iff the rightmost jth symbol y; of its g-ary expansiony = y; -y, isequal toi.

Therefore, in order to complete the proof it is enough to show that there exists a
winning strategy for the state ¢’ with n+2 questions. Such a strategy is immediately
obtained by Lemmas 3.4 (setting k = 2 and using the fact that ¢ + 1 < ¢ for any
q > 2) and 3.3. In fact, such a strategy is a non-adaptive one. This concludes the
proof.

We shall also need the following technical results.

Proposition 3.2. Let k > 4¢?; then it holds that

2 () (7 Nz o
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Proof. For k > 4e* we have k? + 3k + 2 > ke? + 2ke + 3e. It follows that
k k+1 — [k +1
> e

With this we get the desired result

(1)) -£

Lemma 3.6. Let Nrﬂ(q e) > 4e?; then it holds that

N[‘I] (@™ e)+1< N[‘I] (qm+l e) < N[Q] q", e) + 2.

min min min

Proof. Letk = N (4™, ¢). By definition it holds that

min

’"Z()(q—l)/<q and mZ( )(4—1)’>q -
(3.10)

From the right inequality in (3.10) we have

”"“Z( )(q 1/ ”"“Z( )(q—l)f>q,

yielding, by Proposition 3.1, Nlﬂ(q’”“, e) >k + 1. Hence,
N[l]] (qm’e) + 1 < N[‘I] (qm+1 e) (311)

min min

From the left inequality in (3.10) we get

m+lz< )(q_l)] <q
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Thus, using Property 3.2,

E( e =E((4) ) ()
:jzi;)(];)(q—l)f+§<</;)+ (k—]i—l)) .

e
k .
< qFD=mED L K" (j.)(q — 1y

=0

Hence,

e [k 42 . e [k .
q “Z( ; )(q—l)’ <q¢"*'+q “Z(j.)(q—l)fqu“-

Jj=0 j=0

yielding N[fi]n(q’"*'l, e) <k+2.

Quasi-perfect Strategies: The Main Theorem

We are now ready to prove that for any e > 1 and up to finitely many exceptional
M, search strategies with at most ngfi]n(M ,€) + 1 questions always exist which use
adaptiveness only once.

Theorem 3.8. For any fixed e > 0 and q > 2 and for all sufficiently large M it
holds that

(M,e) < N9(M,e) < N

min

N[’I]

min

(M,e) + 1.
Proof. Letm = [log, M |. Thus,

N4(g™, e) < N¥(M,e) < N (gt e).

Fix the smallest integer n such thatm < m Lq]e Hence, by definition and Theorem 3.7

we have

N[l]]

min

(g".e) =m+n=NU(g" e).

We shall now argue by cases.
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Case 1. m < mY.. Hence, m + 1 < m".. Definition 3.7 and Theorem 3.7 yield

N[‘I]

min

@ e)=m+1+n=NI@t e).
Thus, we have the desired result

NE(M, e) < N (gt ¢) = Nl (g™, e)+1 = N4

min

(q".e)+1 < NI(M, e)+1.

Case 2. m = m"%,. Thus,m + 1 > m!%}, and by definition we have

i)
Nrmin

@ e)y>m+l+n+1l=m+n+2.
On the other hand, by Lemma 3.6 we have

N[‘I] (qm+l,€) < N[‘I]

min min

" e)+2=m+n+2.

Hence, Nr[fiL(q’”“, e) = n + m + 2. Moreover, by Theorem 3.7, we also have that
NWYl(gm+l ey =m +n + 2.

Recalling that m = mL‘{L, Lemma 3.5 yields
N9(q+ g™ ey =m+n+1=N9(q+1g" " e).

We have the following two subcases, both leading to the desired result.

Subcase 1. ¢™ < M < (q + 1)¢"~". Thus,
NU(M,e) < N(g+ Dg" " =m+n+1=N(g" e)+1< NI (M.e)+1.

min

Subcase 2. (q + 1)g™"' < M < ¢g"*!. Thus,

NE(M,e) < N¥(g" T ey =m+n+2= N9 (g+1)¢" " e)+1 < N9 (M) + 1.

The proof is complete.

3.5 Some Finite Exact Results for the ¢g-ary Adaptive
Ulam-Rényi game

In this section we return to the fully adaptive version of the game and show some
results providing exact estimates on the size of the optimal strategies for special
instances. These results are interesting because they are based on a new recursive
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definition of borderline states for the g-ary variant of the game. Before presenting
a new table of maximal borderline states we show a g-ary generalization of the
translation bound (Theorem 2.3).

The following theorem yields a lower bound on the size of the smallest winning
strategy in a game with e lies in terms of the size of the smallest winning strategy in
a game with e — 1 lies.

Theorem 3.9. If (xo, ..., Xc—1, X.) is a winning m-state and (0, xg, ..., Xe—1) is a
borderline winning n-state then m > n + 2.

Proof. If (xg, ..., Xe—1,Xe) is @ winning m-state then it admits a winning strategy
. of size m. Starting in the state (xo, . . ., X,), after asking the first n — 1 questions
of .7, there exists at least one resulting state, say 7 = ()o,...,Y.), such that
Zf;(l) y; > 2. Indeed were this not the case, the state (0, xo, ..., x.—;) would
be a winning (n — 1)-state, contradicting the hypothesis. Notice that the state
o = (50,.--,5) = (0,...,0,2,0) is a borderline winning 3-state and ZI;-:O 5 <
le{:o yj forany k = 0,...,e. Then, by Proposition 3.1 (c) any winning strategy
for 7 has size at least 3; therefore, the winning strategy . for (xo, ..., X.) has size
at least (n — 1) + 3. Therefore, we conclude thatm > n —14+3 =n + 2.

Note that this is a weaker result than the one in Theorem 2.3 for the binary case.
In fact, under the same hypothesis of Theorem 3.9 above, and up to finitely many
exceptions, in the binary case it holds that m > n 4 3.

An Infinite Sequence of Winning States for g-ary Search

Table 3.2 shows an infinite sequence of winning states for the g-ary Ulam-Rényi
problem. The table is built by generalizing ideas presented in Sect.2.4. Thus,
the states included in such a table are particular cases of states allowing perfect
strategies, since they are maximal with respect to their volume. Indeed, they give us
the basic ingredients to prove the main results of this section.

Let 5; ; be the (i, j) entry of Table 3.2, with s; ; the leftmost upper corner entry,
and let o; ,, denote the state (s; 1,52, --,Si.»). Then the number, say n, above the
entry s; ,, indicates that o; ,, is a winning n-state.

Table 3.2 is constructed as follows. The first two columns set the initial
conditions, and are defined in order to have winning states satisfy the volume bound
with equality for the cases e = 0 and e = 1, respectively. The sequences of 1’s and
0’s from third row on continue endlessly.

The state 0, is the first state to be defined as the non-trivial winning 2-state
satisfying exactly the volume bound. Indeed, from 05, = (1, (¢ — 1)?), the question
[(1,0) : (g —1)-(0,qg —1)] yields the two possible states (1, 0) and (0, ¢), which are
winning 0- and 1-states respectively. Finally, the state o), is the one which yields
077, after an even splitting question.
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The rest of Table 3.2 (which has to be thought of as continuing infinitely) is
completed by means of the following rules: For j > 3

fori >2, 5, = (q—1)si—1j—1

3.12
fori =1, s1; = (g — 1)251,1—1 ( :

Lemma 3.7. Any state in Table 3.2 has a perfect strategy.

Proof. Trivially, the states o; ,, withi > m are final states. Fori < m, let us consider
the state o; ,, which satisfies the volume bound with equality for n questions, where
n = 2m—i. We show that there exists a question which leads to new states satisfying
exactly the volume bound for n — 1 questions.

Let i = 1. For any m, the state o}, satisfies exactly the volume bound for
n = 2m — 1. We show that, by using an even splitting question, we get the state
02.m, wWhich satisfies exactly the volume bound for n’ = 2m — 2 = n — 1 questions.
We prove the claim for any component 1, ;. The claim is obviously true for j = 1,2
by the way we have defined o, 5. Then, for any j > 3, the jth component of the
state resulting from o7 ,,,, by using an even splitting question is 531, i+ q—_lsl, j—1-

q
— =1’ g-1 —
=T Suj s =

Moreover, from (3.12), we have éslqj + ”q;lsu_l
(g —Ds1j—1 =52

For all i > 2, we shall show that there exists a question T such that the two
states resulting from o; ,,, upon asking T, are 0; 4, and 0,1 ,,— (actually the latter

state is (0, 0,1 m—1) = (0,8—1.1,---,Si—1.m—1); recall that the leftmost zeroes in
the vector notation used for the states are meaningless, i.e., the state o;—j ,—; is
equivalent to the state (0, 0;—1,m—1) = (0, 8i—1.1, -, Si—1.m—1))-

Letus define T = [(ay,a2,...,am) : (q—1)- (b1, by, ...b,)] where for any i, a;
and b; are recursively defined as follows:

ap = Si+11, aj = Si+1,; —(q—Dbj—y forj =2,3,....,m,
bl = 0, bj = Si—1,j—1 —(q—2)bj_1 —daj—1 fOI'j = 2,3,...,)’)’!.

It is apparent that the possible states resulting from such a question, are either g, 4,
or 0;_j ;m—1. It remains to prove that T is a feasible question, i.e., it defines a partition
of o; 1.

We prove it, inductively, by showing that s; ; = ax + (¢ — 1)b, for any k. This
is trivially true for k = 1. Suppose that it holds for k = j < m;then, fork = j +1
we get:

aj+1+ (@G —Dbjt1 = sit1;41—(q—1Db; + (g —Dsi—1,; — (g —2)(g — )b,
—(¢ —Da,
= sit+1j+1— (g —Dl(g—=Db; +a;]+ (g — D)si—1;
=(q@—Dsij—(q—Dsij+(q—1si—1;

= Sij+1
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This proves that for any state in the table, satisfying the volume bound with equality
for n questions, there exists a question that leads to a new state which satisfies,
exactly, the volume bound for n — 1 questions. By iterating exactly n times, we
eventually reach a final state. The total number of questions asked is then exactly
equal to the character of the state considered, i.e., n. We have indeed proved that
any state in Table 3.2 has a perfect strategy.

Coping with Many Lies When M = g™
Now we are ready to give some exact estimate of NW(M,e), for e > 3, and
M = q. More precisely, we shall prove that:

o if m < g —1then N¥(g™ e) = m + 2e;
e if g <m < min{g(qg —2),2(q — 1)} then Nll(¢g", e) = (m + 1) + 2e.

We start by giving lower bounds for N19l(g™  e).

Lemma 3.8. Ler g > 1. For any non-negative integer r let f(r,q) = Z; 04’ —
(r+1). Then, f(r,q) <m < f(r+1,q), ifand only if chl¥l (g™, 0) = (m +2) +r.

Proof. The proof is by induction on r.
For r = 0, the desired result follows from solving the system of inequalities:

VW[:I_]’_Z(qm’O) < qm+27
Vil (g™, 0) > ¢" !

which is equivalent to

@ —m+2)qg+@G+1)>0,
qgm >m

Let the lemma be true for any r < k — 1. Then f(k — 1,q) < m < f(k,q) iff
ch(g™ 0) = m +2+k —1 = m + 1 + k, which gives that for m > f(k,q)
we have I/(%]+l)+k(q’”, 0) > ¢ +Y+k Moreover, we have V([Z]HH(,{H)(q’", 0) <
gMTDFTEFD if and only if [(m + 2) + k](g — 1) + 1 < ¢*T2; equivalently,

¢t —[m+2)+klg+[m+1)+k] >0,
which for g > 1 has solution
m<gt gt g+ 1) = flk+1,9).
Therefore, we have proved that for f(k,q) < m < f(k + 1,q) it holds that

chl¥l (g™ 0) = (m + 2) + k, i.e., the statement holds also when r = k, which
concludes the proof.
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Corollary 3.3. Let ¢ > 2 and f(r,q) be defined as in Lemma 3.8. If f(r,q) <
m < f(r+1,q) then N[q](qm,e) >m+r + 2e.

Proof. When e = 1, the conclusion follows straightforwardly from Lemma 3.8 and
Proposition 3.1. By using Theorem 3.9 we have the desired result for e > 1.

Now we can prove the main results of this section.
Theorem 3.10. If M = ¢" and m < q — | then N¥Y(M, e) = m + 2e.

Proof. From Corollary 3.3, by setting r = 0, we get N9(g", e) > i + 2e.
We prove that the converse is also true, i.e., N 9] (@™, e) < m + 2e. If we consider
again the case e = 1 after asking m even splitting questions, the resulting state is
(1, m(g — 1)). Moreover, when m < g — 1, the state (1,m(q — 1)) is a substate of
(1,(q — 1)?) = 02,2, which is a winning 2-state, from Table 3.2. In the case e > 1,
after m even splitting questions the resulting state is

(1, (”f)(q —1), (’Z)(q —1)?, (’Z)(q - 1)3,...) ,

whose components grow at rate less than % (g — 1). Since the components of the
state 05 .+ in Table 3.2 grow at rate not less than (g — 1)?, in the case m < g — 1
and for any number of lies, the state we get after m even splitting questions is always
a substate of 07 .+, which is a winning 2e-state. This concludes the proof.

Theorem3.11. If M = ¢" and ¢ < m < min{q(q — 2),2(q — 1)} then
NY(M, e) = (m + 1) + 2e.

Proof. From Corollary 3.3, by setting r = 1, we get N4I(M,e) > (m + 1) + 2e
when m < ¢?> + g — 2, which satisfies the hypothesis of the theorem since
min{g(q —2),2(¢g = 1)} < ¢* +q —2.

We now prove that N9(M, e) < (m + 1) + 2e. Indeed, the state (g™, 0, ...,0)
after m even splitting questions reduces to

= (1,m(q— 1, (";)(q NI (’Z)(q - 1)6) .

By comparing this state with state o ., in Table 3.2 we note that for the second
component, m(q — 1), we have

m(qg—1) <q(q—1)(g—2) iffm < q(q —2). (3.13)

Furthermore, the components of 01,4 grow at rate r; = (¢ — 1), while the
components of T grow at rate not greater than r, = (g — 1).

Since r; > r, whenever m < 2(q — 1), considering (3.13) it follows that
m < min{g(q —2),2(¢ — 1)} implies that t is a substate of 0},41, which is a
winning (2e + 1)-state. Thus N¥/(M,e) = (m + 1) + 2e.
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As a corollary we obtain the following results when the cardinality of the solution
space, M, is not restricted to being a power of ¢q.

Corollary 3.4. For any non-negative integers M and e and any q > 2, we have

(i) if [log, M| < g — 1 then N¥)(M e) = Tlog, M| + 2e.
(ii) if ¢ — 1 < [log, M| < min{q(q — 2),2(q — 1)} then [log, M| + 2¢ <
N(M,e) < [log, M1+ 1+ 2e.

Proof. (i) Let m = [log, M1; then, by Theorem 3.9 we get N(M,e) >
m + 2e. Moreover, (M, 0, 0) is a substate of (¢, 0,0), and m < g — 1; then,
by Theorem 3.10 we obtain N4I(M, e) < m + 2e, which concludes the proof
of (i).

(it) Letm = [log, M ]; then, qg" ' <M <q", withg —1 < m < min{q(qg — 2),
2(q — 1)}. Then, in view of the monotonicity of N¥!(M, e) with respect to M,
by Theorem 3.11 we have the conclusion.

3.6 Bibliographic Notes

Coding Theory can be thought of as beginning in the late 1940s with the work of
Golay [113], Hamming [116] and Shannon [190, 191]. Although it has its origins
in an engineering problem, the subject has developed by using more and more
sophisticated mathematical techniques. We presented just the material necessary
for understanding the following chapters. For more complete treatment of coding
theory, the reader is referred to, e.g., [145] [205] [23]. More on the origin of
error-correcting coding theory can be found in [200]. It seems that Hamming was
irritated by the fact that his computer kept on stopping when it detected an error.
He correctly decided that if it could detect errors, it should be able to locate them
and then get on with the job!

MBDS codes were for the first time considered in Singleton’s seminal paper [194],
where a connection between orthogonal Latin Squares and MDS codes was also
mentioned (see Exercises 6, 7, 8). See also Chap. 11 of [145] for more. The problem
of finding two orthogonal Latin Squares of order g was considered by Euler, who
claimed it impossible for the case ¢ = 2,6 and all ¢ = 2 (mod 4). This statement
was known as Euler’s conjecture for 177 years, until it was suddenly and completely
disproved by Bose et al. [34]. More on Latin Squares and Orthogonal Latin Squares
can be found in [206].

The RS codes were introduced by Irvin S. Reed and Gustav Solomon in
1960 [181]. Fast decoding procedures with running time O(n?) or even better are
well-known based on the Berlekamp and Massey algorithm [145]. For a detailed
account of several applications of RS codes refer to [209] and [195].
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Theorem 3.6 was independently proved by Tietdvdinen [201] and Zinoviev-
Leontiev [215]. Theorem 3.5 first appeared in [148] and is the most celebrated
result obtained by a technique originally presented by Delsarte [88] for obtaining
upper bounds on codes. For up-to-date tables of the largest known codes refer to
N.J. Sloane’s Web page.

Error-correcting transmission in the presence of a feedback channel was also
considered by Shannon [192] and Dobrushin [93]. Here we followed Berlekamp’s
description, for which we refer the interested reader to [22] (and references therein).

The monographs [6] and [94] also discuss the power of adaptive and non-adaptive
searching strategies and their possible uses in different contexts. In particular, for
application of two-stage strategies in the special context of computational molecular
biology, see [134].

The study of the perfect non-adaptive winning strategy for one lie, as given by
Hamming codes [116], has been further deepened by Pelc [166]. In [166] it is shown
that adaptiveness in this case is irrelevant even under the stronger assumption that
repetition of the same question is forbidden.

The first to consider non-binary search with lies was Pelc [165], in the context
of detecting counterfeit coins with unreliable weightings. This is in fact a g-ary
search in the particular case ¢ = 3. For the general case ¢ > 2, the problem of
g-ary search with e = 1 lies was considered by Malinowski [146] and Aigner
[5], who independently evaluated the size of the shortest searching strategy for a
search space of arbitrary cardinality M > 1. A general asymptotic solution of the
Ulam-Rény game with g-ary questions was given by Muthukrishnan [156], who
generalized Spencer’s results for the binary case. More precisely, Muthukrishnan
[156] proved that, for each e > 1 and for all sufficiently large m, Paul can infallibly
guess an unknown number in a search space of cardinality M = g™, using g-ary
questions with e lies—by asking the theoretical minimum number of questions.
Stated differently, we have that for all integers ¢ > 2, e > 1 and for all sufficiently
large m, Nl (g™, e) = Nr[fiL(q’", e).

An alternative formulation of Lemma 3.4 has been considered and proved
in [216]. In this paper, in disguised form, the problem of finding non-adaptive per-
fect strategies for an arbitrarily chosen state in the Ulam-Rényi game is considered
and partially solved.

3.7 Exercises

1. Provide an inductive proof of the g-ary variant of the volume bound.

2. Show that there exists an n > 1 and states o in the g-ary problem (¢ > 2) that
satisfy the volume bound for n questions without having a winning strategy of
size n.
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3. Prove or disprove the existence of a ¢ > 2 and a state 0 = (xo,...,X,) such
that in the Ulam-Rényi problem with g-ary search ch(o) = ch(o’) + 1 where
0" = (X0,...,Xe—1).

4. Show that the translation bound (i.e., the difference of three questions at least)
does not hold in general in the case of g-ary search, for g > 3.

5. Prove the following bounds on the critical index for the particular case e = 2.
Let n > 3 be an arbitrary integer. Then for all ¢ > 2 we have

V2R | | Y248 a4l
q-—1 - T g1

6. A Latin Square of order n is an n xn matrix such that every row and every column
of it is a permutation of {1,2,...,n}. Two Latin Squares A and B of order n are
said to be orthogonal when for each ordered pair (x, y) € {1,2,...,n}? there is
a unique pair of indices 7, j such that the (7, j) entries of A and B are x and y,
respectively.

Show that an (n,g%,d = r + 1) g-ary code (with n = r + 2) is equivalent to a
set of r pairwise orthogonal Latin Squares of order ¢q.

7. Bose et al. proved the following: Foreachq = 3,4,5,7,8, ..., there exists a pair
of orthogonal Latin Squares of order g. Moreover, for ¢ = 2, 6 there does not
exist any pair of orthogonal Latin Squares of order 7.

Using these results, prove that for any integer ¢ > 3 there exists a (4, g%, 3) g-ary
code if and only if q # 6.

8. Show that forany k > 1, r > 1, ¢ > 2 such that k + r < g — 1, there exists an
(n,q*,d) code withn =k +randd =r + 1.

9. Show that for each m = 1,2,3, ..., it holds that N@ (2", 1) = NZ (2m 1),
i.e., the size of the shortest possible strategy satisfies with equality the Volume
Bound.

What does an optimal strategy look like?



Chapter 4
Weighted Errors over a General Channel

Questions are never indiscreet. Answers sometimes are.

O. Wilde, An Ideal Husband

4.1 Introduction

In this chapter, we will analyze a variant of the Ulam-Rényi problem with g-ary
questions where we assume that Carole’s lies are constrained to patterns agreed
upon in advance and known to Paul. This is the case, e.g., when in the classical
yes-no question game one stipulates that Carole can only lie if the correct answer
to Paul’s question is yes, while she must answer sincerely whenever the correct
answer to Paul’s question is no. This particular variant of the game is also known as
the half-lie game.

More generally, we will allow different types of errors to have different weights
and understand the parameter e as a bound on the total weight of Carole’s answers.
The resulting new model generalizes all the variants seen so far. Under this more
general setting we will show a strong, and somehow surprising, result, namely that
for any choice of the error weights and any constant bound on the (total weight of
the) errors, asymptotically, every possible instance of the problem is solvable by a
perfect strategy that uses adaptiveness only once.

4.2 Two-Batch Search with Weighted Lies

AfunctionI" : 2x2 — Ny = {0, 1,2,...} is given such that I"(i,i) = 0 for each
iand I'(i, j) > Oforeachi # j. We shall also refer to I" as “channel”, a name
suggested by the information-theoretical model of the problem. I" is used to assign
weights to Carole’s answers. These weights, together with a parameter e > 0, are
given and bound the number of Carole’s lies.

F. Cicalese, Fault-Tolerant Search Algorithms, Monographs in Theoretical 65
Computer Science. An EATCS Series, DOI 10.1007/978-3-642-17327-1_4,
© Springer-Verlag Berlin Heidelberg 2013



66 4 Weighted Errors over a General Channel

If Carole answers j to a question whose correct answer is i, then this answer has
individual weight I (i, j). Every correct answer has weight 0. The total weight of
Carole’s answers at the end of the game is not allowed to be larger than the given
parameter e. The lie bound e is known to both players.

We use w to denote the weight of the cheapest possible lie allowed to Carole,
thatis, w =w! =min{I"(i,j):i # j).

We also define the set F of all possible sequences of |e/w] lies, with total
weight not larger than e. Note that these are the longest allowed sequences of lies.
Intuitively, these are the sequences of lies on which Carole has the largest number
of possible alternatives. It turns out that, asymptotically, only the number of such
sequences counts, regardless of the actual structure of the channel.

Formally, F = FT is the set of all [e/w]-tuples ((a1,b1). -+ . (@lepw]+ Dlesw)))
of ordered pairs from 2 x 2 such that for each j = 1,...,|e/w] it holds that
a; #byand YV Iy b)) <e.

In this chapter we shall attack the problem from a different perspective. For any
choice of g, e, I', and n we shall focus on the largest possible M = M(q,e, I',n)
for which it is possible to find an unknown number x € % with n g-ary questions
and maximum lie cost e.

As in the previous chapter, at any stage of the game, when questions
Ti,..., T, have been asked and answers B’ = b;,...,b, have been received
(with b; € 2), Paul’s state of knowledge is represented by an (e + 1)-tuple
o = (Ay, Ay, As, ..., A,) of pairwise disjoint subsets of %/, where for each
i =0,1,2,...,e A;isthesetof elements of % which could possibly coincide with
X, supposing that the sum of the individual weights of Carole’s answers by, ..., b,
equals i. In particular, the initial state oy is given by (%,9,9,...,9). Letk = b,
and assume Paul is in state o,y = (By,..., B.). Then, Paul’s new state o, =
ok, = (C{, ..., CF)resulting from Carole’s answer k to question T, is given by

Cik = U (Bi—F(j,k) N T]) . (41)
{je2::I'(jk)<i}

. b
Carole’s answers by, ..., b, determine a sequence of states oy = 0, 0] = 00‘,

=02 ..., o=d",

A state (Ao, A1, Az, ..., Ae) is final iff the set AgU A U A, U---U A, has at
most one element.

A strategy . with n questions is a g-ary tree of depth n, where each node
v is mapped into a question T,, and the g edges 1o, 71,...,ny—1 generated by
v are labelled O, 1, ...,q — 1, which represent Carole’s possible answers to T,,.
Let» = 7ni,...,1n, be a path in . from the root to a leaf, with respective labels
bi,...,b,, generating nodes vy, ..., v, and associated questions T,,,..., T, . We
say that strategy % is winning for o iff for every path n the state ¢” is final.
A strategy is said to be nonadaptive if all nodes at the same depth of the tree are
mapped into the same question.

The main result of this chapter is summarized in the following.
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Theorem 4.1. Asymptotically with n, we have

M(q,e,T.n) = qn+|_e/wJ/|F|<|_e?WJ) + o(1).

Moreover, we provide optimal search strategies consisting of two batches of non-
adaptive questions.

The following result is a well-known application of Chernoff’s bound.

Lemma 4.1. Let X,,..., X, be independent 0-1 random variables. Let X =
Yo Xiand p =E[X]. For0<§ <1,

Pr(|X — p| > 8p) < 274873,

Definition 4.1. Letn and ¢ > 1 be integers. A sequence s = sy, ..., s, from 2" is
called regular if there exists a number /n < r < n such that for each a € 2 the
number of occurrences of a in s, denoted by #(a), satisfies |#5(a) —n/q| < r.

We say that s is P-wise regular if, dividing s into P parts as evenly as possible
(up to rounding), each part contains at least qlP(l — %) occurrences of each element
in 2.

We will use the following two technical results. The first is an easy consequence
of Lemma 4.1. The second, whose proof is due to Dumitriu and Spencer, shows that
it is enough to consider numbers of the type | (1—8)ag™ |, wherea € (¢7,q" T']NN,
with T being an integer depending only on § and 4.

Lemma 4.2. For any integer ¢ > 1 and real § > 0, there exists no such that for
all integers n > ng the number of sequences in 2" that are not regular is bounded
from above by 6q".

Proof. Fix an integer ¢ € 2. Let X; be the random variable that takes value 1 if

the ith value in the sequence is ¢, and Pr(X; = 1) = 1/q. Then, the number of

sequences that are not regular, because the number of occurrences of ¢ does not

respect the required bound, can be computed as ¢" x Pr(|Y_/_, X; —n/q| > r).
Thus, the desired result directly follows from Lemma 4.1.

Lemma 4.3. Givenq,g.k,8 € (0,1) and given any 0 < a < o’ < ql*/"1 /g, there
exists T € N and ng € N such that for any n > ny, and any M < a—%—, there

(L))
existsa € (q7,q" '] NN, and a nonnegative integer m such that
qn
M <(1-$8aq" <o ———. 4.2)
(I_e/wj)

Proof. Fix T such that o’ (1 —
let us set D =

qr—1+1) > «. For the sake of easing the notation

q—””. Fix ng such that «’D > qT for all n > ny. Now,
(1_8)(|_e/wJ)



68 4 Weighted Errors over a General Channel

leta € [¢7,¢q"™") NN and m be such that ag™ < o’D < (a + 1)¢", which exist
since the intervals (ag™, (a + 1)¢"] have union (g7, 00).
The desired upper bound on (1 — §)ag™ follows from the upper bound on ag™.
Furthermore, from the lower bound

1 1
m_ ] —_ Dg" > (1- 'D > aD,
aq ( a+1)(a+ )q _( qt+1)a o

wehave M <a(1—-68)D < (1 —68)aq™.

4.3 The Lower Bound: The Winning Strategy

In this section we will prove the following lower bound on M(q, e, I, n).

gle/v]

Theorem 4.2. Let M < o —4— ) for some a < T Then, Paul has a strategy

(I_L/wJ

of size n to determine Carole’s secret number in the Ulam-Rényi game over the
channel I" with total weight e, over a search space of cardinality M. Moreover,
Paul’s questions can be asked in two batches of non-adaptive questions.

Let M < a—— o ) for some o < %Fl . There exist «’ and § such that
I_e/wJ
Le/w] / n
4 so > and —— < qn (4.3)
|F| 1-3§ (I_e/w])
Moreover, by Lemma 4.3, there exist m and a such that
m a/ qn
M <aq™ < - “4.4)
1-6 (Le/w])

Note that n — oo implies m — oo. By Lemma 4.2 there exist at least
(1 — §)q™ regular sequences in the space 2™. By Lemma 4.3 there are at most
aq™ (1 — §) elements in the search space %/ . Therefore, Paul can define an injective
function f that maps elements of the search space % to pairs (i, w) such that
i €{l,2,...,a} and w is a regular sequence in 2".

4.3.1 The First Batch of Questions

Let x* be the element chosen by Carole, and f(x*) = (i*, w"), according to the
function fixed by Paul. Paul asks a first batch of m questions, where the i th question
is “What is the i th component of w*?”
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Let w’ be the sequence of Carole’s answers. We can immediately observe that for
each i € 2 the number of occurrences of i in w' is at most m/q + r + |e/w].

For each j = 0,1,...,|e/w] and k = 0,1,2,...,/, let Fk(j) denote
the set of possible sequences of k lies (ai,by),..., (ak,br) with total weight
(Zif:l F(ag,be)) eljw, jw+1,... jw+1)—11n{0,1,....e)
Proposition4.1. Let 0 = (Ao,...,A.) be the state resulting from Carole’s
answers to Paul’s first batch of questions. For j = 0,1,...,|e/w]| — 1 we have

. IF(])I e N\*
(i) —Z|A1w+z|<z q+r+[;J
k=0
1 ¢ |_e/wj| kLé’/WJ)| e k
(ii) ;Z |Ai|SZT(q+V+LWJ)-
i=le/wlw k=0

Proof. For (i) we count the number of distinct sequences of correct answers that can
have led Carole to answer the way she did.

First we notice that in a sequence of Carole’s answers with total weight between
jwand j(w + 1) — 1 there can be at most j lies.

Given 0 < k < j, there are |F k(] ) | possible sequences of k lies
(a1, by1), ..., (ak, by) of total weight between jw and j(w + 1) — 1. Each position
a; can be chosen in at most (% +r+ LfJ) ways, due to the regularity property and
the maximum possible number of deviations from regularity given by the allowed
maximum number of wrong answers.

This gives us at most |Fk(] )|(% +r+ L&J)k mendacious sequences. Finally, we
notice that each distinct sequence appears in this counting once for each possible
permutation of the positions for the a;’s. Hence, we divide by a k! factor.

Summing over all possible k’s we obtain the desired result.

The same argument can be used to prove (ii). In this case we need to set j =
le/w]| and we only take into consideration lie patterns and sequences of answers
with total weight not exceeding e, which might be smaller than (j + 1)w — 1.

An immediate consequence of this proposition is the following Gilbert-like
bound.

Lemma 4.4. There exists an ng such that for all n > no we have the inequality

wle/w]—1 2le/w] n—m ‘ e
= D 14y Z( . )q’ + Y 4l

j=0 i=0 j=wle/w)

where 0 = (Ao, ..., A.) is the state resulting from Carole’s answers to Paul’s first
batch of questions.

Proof. By the above assumption, via (4.4), we have that m = O(g""—"/1¢/]),
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By Proposition 4.1, asymptotically with n (hence also with m) it holds that the
sum of the cardinalities of the sets A1, ..., A,|¢/w)—1 is bounded by

_ |_e/wJ71
0 (m1=1) = 0 (q“’ garo ) = o(@"™) = ¢""(1 - (D).

Moreover, observing that the factor ZizféwJ (":m)qi accompanying |4 | is polyno-
mial in n — m, we can have it absorbed in the above calculation.
With regard to the sets A|.y....,A. we need to be just a little bit

more careful. By Proposition 4.1, the sum of the cardinalities of these sets is

bounded by O(|F|/qL/* 150) "which is bounded by O(¢"~"~1*/*)|F|/a’) =

q" (1 — £2(1)) (by Lemma 4.3).

This result will be the key to prove that, starting from the position reached
after the first m questions, Paul can encode the remaining candidates in order to
successfully finish the game. We have the following.

Theorem 4.3. Let 0 = (Ao, ..., A.) be the state resulting from Carole’s answers
to Paul’s first batch of questions. Then, starting from o, there exists a non-adaptive
winning strategy of size n — m over the channel I' with total weight e.

Proof. As a consequence of the previous lemma, there exists a mapping 6 sending
elements of [ J'"/"1™" 4; one-to-one onto a set 4, € 2" and elements of

S =wle/w) Aj One-to-one onto a set ¥ € 2"~ in such a way that

(a) forallx;,x; € 4, du(x1,x2) > 2|e/w] + 1,
(b) forall x; € 61,%2 € €, du(x1,%2) > |e/w] + 1,

where dy (-, -) is the Hamming distance between g-ary sequences.

The following simple algorithm accomplishes the above task. Start with €] =
¢ = o/ = 0. (1) Pick up an arbitrary element x € 2" \ &/ and add it to .
(2) Add to o the set {y € 2" "\ o | dy(x,y) < 2|e/w]}. Repeat (1) and (2)
until € reaches the desired cardinality. Finally, pick up | | | 4| elements
from 2"~ \ &/ and put them in %,.

Lemma 4.4 guarantees that one can extend %) up to the desired cardinality and
be left with enough elements in 2"~ \ o/ to accommodate the desired set 5.

By construction, it is also clear that 4] and %, satisfy the desired distance
constraints.

e
j=wle/w

4.3.2 The Second Batch of Questions

Paul arbitrarily fixes the map 6. Then, he asks Carole “What is the jth component
of the element of 2"~ onto which the secret number x is mapped by 6?”, for
j=12,...,n—m.
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The constraints on the Hamming distance between any two sequences of length
(n — m) in €] and %, ensure that Paul, independently of Carole’s lies, will be able
to identify x as the numbera € | J;_, 4; of minimum Hamming distance from the
sequence of length (n — m) defined by the answers of Carole.

Notice that, due to the constraints on the lie weight, Carole in this second batch
cannot lie at all if the secret number is one of the elements in Uj —wle/w) Aj-
Alternatively, she cannot lie more than |e/w] times if the secret number is one
of the elements in | J}'/"/ ™" 4

Therefore, if x € Uj —wle/w) Aj» the sequence of her answers will be exactly one
of the sequences in %3. Hence, Paul by inverting 6 will correctly identify the secret
number.

Conversely, if x € |JX/"/™" 4; the sequence of Carole’s answers will not differ
from 6(x) in more than |e/w]| places. For any y € (Ji_,4i, y # x, we have
dy(0(y),0(x)) = 2e+1. Thus, 6(y) differs from the sequence of Carole’s answers
in more than e places, whence, by choosing the a such that 8(a) has minimum
distance from the sequence of length (n — m) of Carole’s answers, Paul correctly
identifies x.

i

4.4 The Upper Bound

We now show that the strategy provided in the previous section is (asymptotically)
best possible in the sense that there is a matching upper bound on M(q, e, I',n),
the largest integer M such that Paul has a strategy of size n to determine Carole’s
secret number in the Ulam-Rényi game over the channel I" with total weight e, over
a search space of cardinality M.

Definition 4.2. Forx € % and 0 <i < e, an (i, x)-path in the strategy of Paul is a
root to leaf path & s.t. the state 0™ = (Ao, ..., A.) satisfies |[4;| = {x}and 4; = 0@
forall j # i. For any x € 7 the (0, x)-path is also referred to as the sincere path
for x, since it describes a play in which Carole’s secret number is x and she always
answers sincerely.

We define the x-bush as the set of all (i, x)-paths, foranyi =0, 1,...,e.

Let . be a winning strategy for Paul with n questions. Fix an element x of
the search space. Let n = 7y, ..., n, be the corresponding (0, x)-path in .%, with
respective labels by, ..., b, generating nodes vy, ..., v, and associated questions
T,....,T,.Foreachi = 1,2,...,n and each j € 2\ {b;}, let J; ; be the
subtree of . rooted at the node reached by the path 7y, ..., 7,1, n; with 7 being
the edge stemming from v; that is labeled j # b;. Foreachi = 1,2,...,n and
for each j # b; such that I'(b;, j) < e, there must exist a (I"(b;, j), x)-path in
. that coincides with 5 in the first i — 1 components and whose ith component
is j. In fact, this is the (only) path that coincides with the outcome of the game,
when Carole chooses the number x and decides to lie (only) at the ith question by
answering j instead of b;.
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Let ¢ = my,...,m, be such a path. Let ¢y, ..., c, be the label of the edges in
7 and v{, e v; be the generating nodes. By definition, & coincides with 5 in the
first i — 1 positions. Let us now concentrate on the remaining part of w. We can
now repeat the argument used for 7. In fact, foreach k =i 4+ 1,i +2,...,n and
each £ # ¢, such that I'(b;, j) + I'(ck,€) < e, the strategy . must include a
(I"(bi, j) + I'(ck, L), x)-path that coincides with 7 in its first kK components and
whose kth edge is labeled £. Of course, now one can repeat the same consideration
on such a path to claim the necessity of some (¢, x)-path with I"(b;, j) 4+ " (bx,£) <
t < e, and so on.

In order to turn the above observation into a practical way to count the paths
in the x-bush for some number x, we need to consider the structure of the paths
involved. In fact, by knowing the labels on the edges of the sincere path one can
count the number of necessary paths to accommodate Carole’s possible strategies
that are based on just one lie, the so called 1-lie-paths. Then, once these paths have
been given, on the basis of their structure one could count the number of paths
necessary to accommodate Carole’s possible strategies that are based on just two
lies, the so called 2-lie-paths, and so on.

This gives us a way to obtain an upper bound on the size of the search space
where Paul can successfully search with a strategy with n questions. In fact, Paul
has to accommodate M bushes (one for each number in the search space) in a tree
with ¢" paths. This is only possible if he can accurately choose the sincere paths so
that there is space for the 1-lie-paths. Then he can fix the paths for the 1-lie-paths
strategies of Carole in order to have space for the paths necessary to accommodate
the resulting possible strategies of Carole including two lies. This must be possible
for all answering strategies of Carole using lies of total weight < e. In other words,
repeating the above way of counting the new strategies, necessarily available to
Carole, must always result in having space in the g” paths in Paul’s strategy.

Conversely, Paul has no way to define a winning strategy of size n if there is no
way for him to choose the sincere paths and the 1-lie-paths, and so on, in such a way
that the necessarily resulting paths are in total at most ¢”.

The key to our upper bound will be to prove that, for all sufficiently large 7, in a

LF|

strategy of size n, almost all bushes include (LJW J)W + o(1) paths. In fact, the
q

number of bushes that might violate this bound is negligible.
In the following we shall identify a path by its associated sequence of labels. We
shall need one more definition.

Definition 4.3. A bush is called regular if for all the paths it consists of the
sequence of labels along each path from a P-wise regular sequence in 2". By
identifying paths with their sequence of labels, we shall also call such paths P-wise
regular paths.

We will now bound the number of bushes that Paul can pack in a tree/strategy of
size n. The main observation is that, asymptotically with n, bushes are almost all
regular. Thus, paths represent plays in which Carole has a lot of freedom in choosing
the position for her lies. In turn, this gives us the possibility to bound the size of a
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bush from below and hence the number of such bushes that can be contained in a
tree with ¢" leaves. We start with the following.

Lemma 4.5. For each € > 0 there exists ng, such that for all n > ny the size
of a regular bush in a winning strategy for Paul with n questions is at least

Proof. Let P be a large integer. Let us think of each path in Paul’s strategy as
divided into P parts, almost evenly. We know that in each of such parts, each label
occurs at least qlP(l - %) times. Assume that Carole accepts to follow the additional

rule!: for each j = 1,2,..., P, the sequence of answers to the questions from
the (jn/P)th one to the ((j + 1)n/P — 1)th one will contain at most one wrong
answer.

Let x be given and let us count the total number of (i, x)-paths, with i €
{wle/w]|,...,e}. These are all and only the paths followed by the game when
Carole uses exactly |e/w| lies. There are | F'| possible sequences of |e/w| lies, such
that the total lie weight is not larger than e. According to the deal above, Carole can
choose the parts in which she will answer incorrectly in (ij J) ways. Finally, in

each of these parts she can place the lie in at least _5 (1 — %) ways, due to the
number of occurrences of each label in each Pth fraction of a P-wise regular path.
Summarizing, there are at least

P n 1\l
(Le/WJ)|F| (7707

paths in the x-bush. For each € there is a large P such that

P Mg L tewl n ﬂ €i-1
(Le/WJ)IFI(qP(l ) ><L&J)( Ty

which completes the proof.
We are now ready to prove the upper bound.

Theorem 4.4. For all € > 0 there exists an integer no such that for all integers
n > no, if Paul has a strategy of size n to determine a number x € % in the q-ary
Rényi-Berlekamp-Ulam game with lies with total weight e over the channel I', then

L] n
_ (¢ a
M_<|F| —i—e) (LZJ)

Notice that, by this rule, we are making life harder for Carole, and we are actually strengthening
our claim.
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Proof. By the previous lemma, it follows that Paul can have at most

qn <q le/w] N E)
(I_e7w]) |F| 2
regular bushes in his strategy.

On the other hand, he cannot have room for more than #% non-regular

()
bushes, since there are at most so many paths that are not P-W%s/ejregular. In fact,
by using for P-wise regular sequences Lemma 4.1 in a way analogous to its use
in Lemma 4.2, one can easily bound from above the number of sequences that are
not P-wise regular by ¢"(!= for some constant ¢ only depending on P and q.

Moreover, for any constant ¢ and for any € > 0 we have q”(l_”) < q q”” ) % for all
Le/w]

sufficiently large n.
Summing up, we have that Paul’s strategy (tree) cannot contain all bushes if

> 4" _ (2= 4 ¢). The proof is now complete.
M (‘1)(@%] )Thp f pl
Le/n]

The proof of Theorem 4.1 now follows directly from Theorems 4.2 and 4.4.

4.5 Other Noise Models: Unidirectional Errors

Another well-studied model of information distortion is given by the so-called
unidirectional errors. Let us first assume that the channel is completely symmetric
and all lies have weight 1. We say that the game is on unidirectional errors if at the
beginning of the game Carole has also to decide the direction of all her lies. More
precisely, if she chooses increasing (decreasing) lies, she agrees to the following:
she decides that when the correct answer to a question is i, she only chooses the lies
among the j’s such that j > i (j < i). This information is kept secret to Paul. In
other words, we can think of Carole and Paul stipulating that the game can be played
over two different channels, one that only includes errors of the type i — j (j > i)
and another that only includes errors of the type i — j (j < i). At the beginning,
Carole can choose the channel she prefers to use, but then she will only use that one.
Her choice is secret to Paul. We expect this assumption to restrict the number of
possible lie patterns that Carole can use. Having tighter bounds for such situations
is important in those applications where engineering constraints may allow us to
assume that errors in the same transmission block only occur in one direction.

By using arguments analogous to the one employed in the previous section, and
assuming the parameter e fixed in advance, one can prove the following very general
result.
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Theorem 4.5. Let I'1, I, ..., I} be channels. For j = 1,...,t, letw; = wli. Let

w = rninfj:l w; and é = |e/w|. Let G; = G"i be defined as

Gi :{((alsbl)v s(aEst)):aj #bj V/?Z E((l],b]) Se}

Jj=1

Let M (n) be the largest size of a search space where Paul can find a secret number
in the variant of the game where Carole is allowed to choose the I'; she wants to
play with, and keep it a secret from Paul.

Then, for all sufficiently large n, we have

-1

U Gi| +oD.

iwi=w

&)

The strategy can be implemented in two batches.

M) =4

4.6 Bibliographic Notes

In [185] the binary game with asymmetric error was introduced. With the notation
used in this chapter, the model of [185] coincides with the case I' = ((1) ¢ —g ! )

For the same type of errors, but for the special case of only one error, i.e., e = 1,
an exact estimate of M(2, 1, I', n) was given in [55], for n sufficiently large. In the
same paper were introduced some of the tools which subsequently led to the solution
of the most general version of the problem: a probabilistic analysis and a new
version of the conservation of the volume. More generally, games with ¢ > 2 and
I'(,j)e{l,e+1}foralli # j were consideredin [97] and for them M (q, e, I, n)
was determined asymptotically with precision o(1) as n goes to infinity.

Concerning strategies with little adaptiveness, it was shown in [54, 61] that
two-batch strategies can be as powerful as the fully adaptive ones for I' =
((1) ¢ _(')_ ! ) Subsequently, in [98] the results of [97] were also obtained with two-
batch strategies.

The special case where the channel satisfies |{(j,k) : I'(j,k) = w,j €
2} =d for all k € 2 and the cardinality of the search space is a power of g,
ie., M = g™, was analyzed in [56], where upper and lower bounds were given.
However, the lower bound of [56] only holds if w is a divisor of e, and in this case
the bounds are tight. This result was later generalized in [2] to the case of arbitrary
search space dimension M and channel I". Finally, the more general result presented
in this chapter first appeared in [3].
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4.7 Exercises

Oe+1

1 0
answers can be lies and any yes answer can be safely assumed to be sincere.

Construct an optimal strategy for the case e = 1 and M = 2%,

2. The model considered in the previous exercise is usually referred to as the half-
lie or half-liar game. Is it correct to say that in the half-lie game answering yes
to a question is the same as answering no to the complementary questions?

3. Consider the ternary (¢ = 3) generalization of the half-lie game defined by the
channel I'(i, j) = e+ 1fori < jand I'(i, j) = 1 fori > j.

For e = 1, 2 and restricted to instances with M = g™, provide an upper and
a lower bound for the size of a shortest strategy for Paul.

4. Provide a proof of Theorem 4.5 for the case when the only lies allowed to Carole
is to answer j < i whenever the correct answer is i and this is known to Paul.

5. What is a good definition of the volume of a state (see Definition 2.5) in the game
with weighted lies considered in this chapter?

6. Carole chooses a number from the set S = {0,1,...,31}. Pauls asks yes/no
questions. The rule is that Paul wins either if he determines Carole’s number or
if he can prove that Carole has lied at least once.

Assuming that Carole is allowed to lie at most e = 2 times, what is the
minimum number of adaptive questions Paul has to ask? What is the minimum
number of questions if they have to be asked non-adaptively?

1. Consider the channel I = ( ), i.e., the case where only negative



Chapter 5
Variations on a Theme of Ulam and Rényi:
More Types of Questions and Lies

This is the sublime and refined point of felicity,
called, the possession of being well deceived;
the serene peaceful state of being a fool among knaves.

J. Swift, A Tale of a Tub

In the search model investigated in the previous chapters, questions are allowed to
be arbitrary subsets of the search space. Such an assumption implies an “expensive”
representation of both the strategies and the states of the game: For a game
over a search space of cardinality M = 2™, one needs M bits for describing
each query and each component of the state. In this chapter, we will analyze the
query complexity of strategies for the Ulam-Rényi game using only interval and
comparison questions, which admit a much more concise representation, and, hence,
are more space conscious, so to say. For example, a comparison question, over a
search space of cardinality M = 2™, can be described with O(m) bits. We will also
discuss an even simpler type of question, namely bit questions, whose representation
requires log m bits.

The above variants study how much the strategy is affected under different
constraints on the expressive power of Paul. In this chapter, we shall also study
variants of the game in which Carole is provided with more freedom in lying, i.e.,
alternative ways of bounding lies are used.

5.1 Comparison-Based Search: The Multiple-Interval
Queries

We have seen in the previous chapters that by allowing subset queries, the
information-theoretic lower bound (aka the Volume Bound) can almost always
be achieved. Here we focus on the problem of simplifying the representation of

F. Cicalese, Fault-Tolerant Search Algorithms, Monographs in Theoretical 77
Computer Science. An EATCS Series, DOI 10.1007/978-3-642-17327-1_5,
© Springer-Verlag Berlin Heidelberg 2013
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the questions. The subset questions have a very expensive representation, which
affects both the formulation of the queries and the updating of the states, which is
also necessary for the questioner to formulate the next question. Comparison and
interval questions have also been considered in the literature. We shall show that
optimal strategies can be implemented by using questions that are expressible as
the union of a constant (dependent on e) number of intervals. In addition one can
analogously bound the size of the representation of the states of the game.

The basic strategies seen in the previous chapters require log M + O (e loglog M)
queries, each of which is an arbitrary subset of the search space, hence it might
require @ (M) bits to be represented. In total, such a strategy uses O(M log M)
bits.

In the strategies we shall present in the next section, each query can be repre-
sented by O(e?) intervals, therefore O(e?log M) bits suffice for the description of
each question. The questioner only needs to send to the responder the sequence of
intervals’ boundaries. This means that the total number of bits the questioner and
the responder exchange reduces to O(e?log> M).

The Ulam-Rényi Game with Multi-interval Questions. In this variant of the
game, the players fix an additional parameter k which determines the maximum
number of intervals in a question. A question is any subset of the search space which
is expressible as the union of at most k intervals. More formally, the set of allowed
questions is the family of sets: .7 = {Uf.‘zl{a,-,a,- +1,....0} |1 <a, <b <
a, < by <--- < ap < b < M}. Such questions will be referred to as k-interval
queries.

The problem we deal with in this chapter is to find shortest strategies only
using k-interval queries. A related problem is to ask for which values of k there
exist optimal strategies for the basic Ulam-Rényi game which are only based on
k-interval queries.

5.2 Query Optimal Multi-interval Search with k = O(e?)

It will be convenient to represent the search problem by a different game involving
moving chips on a board. A chip is one of the numbers in the search space.
In particular, there are M = 2" chips, which are marked by the numbers in the

search space {0, 1,...,2" — 1}. When a chip i is in position j it means that if i is
the number chosen by Carole, then Carole has so far lied j times. Initially all chips
are in position 0. For each i = 0,1, ..., e the set of chips in position i is referred

to as the ith pile. As a convention, we assume that the piles are placed from left to
right in order of increasing index, i.e., with the Oth pile as the leftmost one and the
eth pile as the rightmost one.

The game starts with all the 2™ chips placed in the Oth pile. In each round Paul
selects a set S of chips, corresponding to asking the question whether the secret
number is in S. In particular, we shall restrict S to be the union of (at most) k



5.2 Query Optimal Multi-interval Search with k = O(e?) 79

intervals, for some fixed integer k. Then, either Carole moves the chips in S one
position forward (to the right), or she moves the chips in the complement of S one
position forward. We can imagine that there is a gate at position e and that a chip is
eliminated from the board as soon as it reaches past the gate. Paul’s aim is to reach
the situation in which only one chip is left on the board. Carole’s aim is to keep on
the board as many chips as possible for as long as possible. A nice feature of this
chip game perspective is that it captures more evidently the adversarial nature of
Carole. Here, it is clear that she need not have any particular chip in mind. Rather,
she merely tries to prevent Paul from eliminating M — 1 chips.

We need some more definitions. A pack is a maximal interval of chips in a
pile which is disjoint from the remaining set of chips in the same pile. For each
Jj = 0,...,e, we denote by p; the number of packs in the jth pile. By a round
of the game we understand the sequence of moves comprising a question and its
corresponding answer. For ¢t = 0, 1,2, ... we denote by p; the number of packs in
the jth pile at the end of the 7th round, i.e., after Carole has answered the 7th query.
In general, for every pile attribute that may vary in time, the subscript will denote
the pile, and the superscript the iteration/round.

For j = 0,...,e we let x; denote the number of chips in the jth pile after
¢t rounds, and C! = Zj -0 x;, be the total number of chips on the board after ¢
rounds. We also define P’ = Zj’:o p’; as the total number of packs on the board at
the end of the #th round.

Following the notation used for the Ulam-Rényi game, we say that o' =
(x{), ..., x!) is the state (of the game) after ¢ rounds, and, in particular, the state
0% = (2™,0,...,0) is the initial state. Recall also that, ch(x{,...,x!) = min{q |
V(g ... ,xj,)' < 29) is the character of the state (x{,...,x.), with V,(o") =
> 50X 2=y (1) being the volume of the state 0" = (x{, ..., x}). We also recall
that by the Volume Bound, when the current state is o, Paul cannot win the game
in less than ch(o) rounds. Hence, starting with 0® = (27,0, ...,0), Paul needs at
least Nin (2™, €) = ch(2™,0,...,0) rounds to finish the game.

For t > 1, let S’ denote the tth question asked by Paul. We denote by s} the
number of chips in the 7th question taken from the jth pile.

In order to finish his quest in N, (2", €) rounds, Paul has to guarantee that each
question asked induces a strict decrease of the character of the state of the game. The
following lemma provides a sufficient condition on Paul’s question for attaining the
above character decrease.

Lemma 5.1. Let o be the current state, withq = ch(o). Let S be Paul’s question. If
|Vy=1(0yes) —Vy—1(0no)| < 1then it holds that ch(0yes) < g—1and ch(oyes) < q—1.

Proof. Assume, w.l.o.g., that V,_1(0yes) > V,-1(0n0). Then, from the hypothesis, it
follows that V,_1(0,,) > V,—1(0yes) — 1. By definition of character we have

21 = Vq(a) = Vq—l(oye‘v) - Vq—l(O—m)) = 2Vq—1(0—ye‘v) -1,
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hence, V,—1(040) < V4—1(0yes) < 2¢=1 4 1/2, which together with the integrality
of the volume, implies that for both oy, and o, the (¢ — 1)th volume is not larger
than 29!, hence their character is not larger than ¢ — 1, as desired.

A question which satisfies the hypothesis of Lemma 5.1 will be called balanced.
Paul’s aim will be to ask balanced k-interval-queries, i.e., such that for each
t =1,...,q, the quantity

e
—1
Ayt 8 = [Vai(0lp) = Vas (op D = D (2s;—x;‘1)(eq_j)
Jj=0

is not larger than 1. By Lemma 5.1, this will guarantee the optimality of the strategy
in terms of number of questions asked. We will show that this can be achieved with
k-interval-query satisfying k = O(e?). Moreover, we will also show that the total
number of packs in each intermediate state encountered will be O(e?).

Splitting Evenly the Packs in a Pile. Let us now fix ¢ > 0 and focus on the
(¢ + 1)th round of the game. For some j € {0, 1,...,e}let x; ..., x,, be the packs
in the jth pile, in non-decreasing order of size. Let us denote by 2 the family of
packs in the jth pile, and recall that x} denotes the total number of chips in the jth
pile at this stage of the game.

We will show how to choose the chips from this pile to be included in the next
question, in order to fulfill two requirements: (1) to have a balanced question; and
(2) to avoid that the number of packs in each pile grows above a given threshold.

Let us create from 25 — {y,,} two new families of packs E‘Jj*, 2 where

f%’]ﬂ' = {X1, X3+---» X2[n/2)+1} contains the packs with an odd index and f%’]ﬂ' =
{X2s X4» - -+ X2[n/2]1—2} contains the packs with an even index. Finally we split the
pack x,; into two parts and include one part into E‘Jf and the other into f%’j_ so that
the total number of chips in the two new families differs by at most 1. The following
easy proposition shows that the above splitting is always possible.

Proposition 5.1. For every sequence {z1, 22, . . ., 2, } of non-negative integers such
that z; < z;j for anyi < j, there are two non-negative integers a and b such that
Zw =a+band

311 r41-1
a—i—ZszH - b—i—Zsz <1
k=0 k=1

. 51-1
Proof. Assume first that n is an even number. Let A = Zkzzjo 2k+1 =21tz +
21-1
~++zp—1and B = 21[2:]1 2k =22+ 24 + -+ + zy—2. We have

B§A§B+va
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which implies that z;, = A — B + « for some integer o > 0. Then, the desired
result easily follows by setting b = A — B + [5]. In fact, we have a = [5] and
B+b=B+A-B+|5]>A+[5]-1=A+a—1

. . 21—
Alternatively, when #n is an odd number, we have A = Zkijo Zok+1 = 21 +

3+ -+z3—and B = 21[7:]1_1 Zok = 20 + 24 + -+ - + zy—1. In this case, we have
A<B<A+gz,

which implies that z;, = B — A + « for some integer o« > 0. Then, the desired
result easily follows by setting @ = B — A + [5]. In fact, we have b = [7] and
A+a=A+B-A+1|5]=2B+[5]1-1=B+b—1.

Therefore, for each j = 0,1,...,e — 1, the jth pile, Z7, can be split into two
sub-piles 3?/”j+, B?fj_, in such a way that the resulting sub-piles’ cardinalities differ
by at most one chip. Moreover, each sub-pile contains at most [(p; + 1)/2] packs,
where p; is the number of packs in Z;. We will assume, w.l.0.g., that 3&”j+ includes
a total number of coins which is not smaller than the total number of coins in 3&3‘.
The next query S'*! is determined according to the following procedure which is a
variant of the strategy used to prove Theorem 2.5.

Foreach j =0,1,...,e — 1, in order to decide which one of E‘Jj_ and E‘Jf will
be put into S'*! we use the following alternating rule: Let 0 < j; < jo < --- <
Ji = e —1be the indices for which 2’;~ and E‘Jjj' differ in the number of chips they

contain.! Then, we put in S’ the piles: 25 3&’];’, 27, ... alternating between
the one with fewer and the one with more chips, starting with the one with fewer
chips. For each j ¢ {ji..... j;}, we (arbitrarily) choose to put X]+ into S+,

Notice that for each j = 0,1,...,e — 1, we have that from the jth pile we add
into S+ at most [(p; +1)/2] packs and s}“ chips with |x% /2] < s}“ < [x%/2];
moreover, for each j &€ {ji,..., j;} we have s}“ = x}/2.

We have to take special care when deciding which parts of the eth pile should
contribute to S**1. )

For j =0,1,...,e — 1, let Z; be the part of 2 which has been included into
S'*+1 according to the above rule, then we have that S;H = |5‘5j| is the number of
chips it includes. We define

e—1
—1
imbalance(S'") = E (q ,)(2s}+1 —x%),
e—J

Jj=0

where g = ch(o").

! And they differ by exactly one, as noticed before.
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Notice that imbalance(S'*") is the contribution of the chips already put in
MR (i.e., coming from the piles O, 1, ..., e — 1) to the volume-difference between
the two possible states of the game arising from Carole’s answer.

Paul’s aim now is to choose the chips from the eth pile which will be added to
S™1 in order to rebalance such differences. If he can achieve this, the resulting
S'*1 will correspond to a balanced question which according to Lemma 5.1 will
guarantee the optimality of the strategy in the present round.

Because of the way Paul has selected from the first e piles, the packs already

put in S**!, we have that for each j = 0,1,...,e — 1, (Zs}‘H —xh) e (=11}
and in particular for j* = min{j = 0,...,e — 1 | 2s}+1 — x; # 0}, we have
(2s}+1 — x;) = —1. Therefore, the alternating rule guarantees
. t+1 q—1
0 > imbalance(S'"") > — . 5.1
e

Let Zo = {x1,-... Xp.}> With x,, = [u, w] being the largest pack in the eth pile.
Assume that w — u + 1 > |imbalance(S't")|. This assumption will be shown to
hold in Theorem 5.1.

We first remove from y,, the first |imbalance(S'™")| chips, i.e., the chips in
the interval ¢ = [u, u +imbalance(S'*') — 1]. These chips will be used to balance
the choice made so far. We will say that these chips are used for rebalancing. Let
X;L, = [u+ imbalance(S),w],? be the remaining chips from y, .

Let 2 = 2¢\ {)p.} U {x},} Split 2, into two subfamilies 2, and 2~
following the procedure described before for splitting the other piles. Assume,
w.l.o.g., that 2, contains a pack /' = [u + imbalance(S'™*'), w]. We set 2, =
2\ U [u,w'] and we add it to S+, Since 2, contains at most [(p. + 1)/2]
packs, we have that also .2, contributes to S’*! with at most [(p, 4+ 1)/2] packs.

In words, in the case of the eth pile, we first reserve as many chips as necessary
from the largest pack to rebalance the choices already made with the other piles
and then split the remaining packs as we did for all the other piles. In this process,
we take care to merge the rebalancing chips with one of the packs generated in
the splitting of the pile, so that the overall number of packs added to S’ remains
bounded by [(p. + 1)/2].

Before stating the main result of this section, we need some technical results.

Lemma 5.2. Foranyt > 0, and for each j = 0,...,e, in the tth round, the jth
pile contains at most 2j + 1 packs.

Proof. The proof is by induction on the number of rounds.
The statement is clearly true for the initial state, where the only non-empty pile
is the Oth pile, which contains exactly one pack.

2If w < u + imbalance(S) we take X = 0.
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Assume that the statement is true after # rounds, for some ¢ > 0, i.e., p; <2j+1,
foreach j = 0,...,e. Foreach j = 0,...,e, from the jth pile, the splitting
operation used for choosing the set S'*!, creates two new piles each containing at
most [( p; + 1)/2] packs, which, because of the induction hypothesis, is bounded
by j + 1. Therefore, after the (¢ 4+ 1)th answer, in the jth pile there will be at most
(j + 1) packs, coming from the splitting of the jth pile, plus j packs, coming from
the splitting of the (j — 1)th pile, i.e., at most 2j + 1 packs. This concludes the
induction step and the proof of the lemma.

The following claim provides a useful asymptotic estimate of the character of the
initial state.

Proposition 5.2. For any e > 0 and for all sufficiently large m, it holds that ¢ =
Numin(2™, ) = ch(0°) satisfies the following inequalities.

m+elogm —eloge <q <m + e(l + logm) + log(e + 1). 5.2)

Proof. For the right inequality, setting ¢’ = m + elogm + (e + 1) log(e + 1), it
follows that

/ e /
2 > 2" e (e + 1)2° = 2" (e + 1)2m)° > 2" (e + 1)(q) > (q,),
e — | j
j=0

implying ¢’ > ch(2™,0,...,0) =gq.
Conversely, for the left inequality, we notice that, setting ¢” = m + elogm —

eloge, we have
" e "
20 = (mfey < (1) <3 (7).
e = j

whence ¢” < ch(2™,0,...,0) = g. The proof of the claim is complete.

As a consequence of Proposition 5.2, we can use the asymptotic estimate g ~
m + elogm + O(eloge). In the following, for simplifying the notation we will
disregard floors and ceilings.

Lemmas53. Fort = mm+1,...,m + (e — %)logm, let X;L, be the largest
pack in the eth pile after t rounds in a game where Paul plays each round using
the strategy above, starting from the initial state ¢° = (2,0, ...,0). Then, for all
sufficiently large m, we have |ti(.| > (q_:,_l), where ¢ = Npin(2™, e).

In addition, fort = m + (e — %) logm we have that in o' the first e piles contain
in total at most 1 chip.

Proof. Recall that S'*! denotes Paul’s (¢ + 1)th question. It is not hard to see that
foreacht = 0,...,m — 1, after ¢ rounds, the cardinalities of the piles in the state
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X XL
o' are even and Paul’s strategy guarantees x;-H = L= + £, yielding x}“ =
am=t-l (Hj'l), foreach j =0, ..., e. In particular, after m rounds, the resulting state

18

omz(lm(’;)(’?)(’:)) (5.3)

and we have ch(c™) = g — m.

In general, Paul’s strategy guarantees that for each + > 0, in the ¢ 4+ 1th round,
with state o', whose piles have cardinalities (x{, ..., x}), at least x’_, /2 chips are
moved from the (e — 1)th pile to the eth pile. Moreover, since at most (q_é_l) of
the chips in the eth pile are used for the rebalancing, it follows that at least (x] —
(q_:,_l)) /2 chips from the eth pile remain in the eth pile. More precisely, we have

Xy X, — (q_t_l)

t+1 > e —1.
Yoo 2Tt
Therefore, recalling (5.3), fort =m,m+1...,m + (e — %) logm — 1, we can
bound, for all large m,
t q—m—1
oo (@) (‘%)

X, > zte_m —(t— m)#.

Therefore, for eacht = m,...,m + (e — %) logm, we can estimate the size of

X;L,, the largest pack in the eth pile on the board after the 7th round, by an average
argument and using ¢ —m — 1 < m which follows from Proposition 5.2.

Since, by Lemma 5.2, the eth pile does not contain more than 2e + 1 pack, we
have that (asymptotically with m)

e)¢ ml/4 e
| > x! - %—(q—m)e+l - = — (2elogm) i
Pel T 2e 41~ 2e+1) - 2e+1)

A%

—1
(2elogm)® > (q )
e

which proves the first statement of the lemma.
In order to prove the second statement, we first observe thatfor j = 0,...,e—1,
the number of chips in the jth pile satisfies

xt xt (H.—l)
i+1 Jj—1 J J
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Therefore, fort = m + (e — %) logm,...m + (e — —) logm, we have that for
eachj =0,...,e—1,

t .
1 J =11 1
v = U)oy < mreloem) o m A+ o)
J = pt—m 1 _1

2(6’ 2)logm meé=2

from which it follows that already at the beginning of this phase of the game—when
t=m+(e— %) log m—there is a bounded number of chips in the first e piles. Now,
we use the fact that when we choose the chips to put into the question, from the first
e — 1 piles, we do it using the alternating strategy. As a result, as long as there is
more than one chip in the first e piles, in each round, at least one chip gets moved
fromiits pile, say the jth one, into the next one, namely the (j + 1)th one. Therefore,
since we start with a bounded number of chips and we have ®@(1/4logm) rounds
in this phase, at the end of the phase we are left with at most one non-empty pile
among the first e — 1. Recall that we are arguing asymptotically with m.

The following proposition provides an end-game strategy.

Proposition 5.3. Let o = (xo, ..., Xx.) be a state such that x, > 0 and Y " _ = o x; <
1. Let ch(o) = q. Let P be the total number of packs in the state o. Then, starting in
state o Paul can discover Carole’s secret number asking exactly g many 1-interval-
queries. Moreover, during the whole process, the total number of packs does not
increase, i.e., remains not larger than P.

Proof. We prove the proposition by induction on ¢, the character of the state. If ¢ =
1, the only possibility is Z _0 x; = 0and x, = 2. Then, a question containing
exactly one of the elements in the eth pile is enough to conclude the search.

Now assume that g > 1 and that the statement holds for any state with the same
structure and character < g — 1.

Ity 6. = 0 x; = 0 then the solution is provided by the classical binary search in
the eth pile which can be clearly implemented using 1-interval-queries. Notice also
that the number of intervals needed to represent the new state is never more than the
number of intervals needed to represent g.

Assume now that 3% o X; ; = 0 and let i be the index such that x; = 1. Let ¢ be
the only element in the i th pile.

The critical observation is that @ = Y %2, (7 ) < 217 !, This directly follows

from the assumption on the character of o 1mp1y1ng > =0 (]) < 2% hencee—i < q.
Since the character of o is ¢, we have Zj —0 (]) < V(o) <2% hencee—i < g,
_ e—i 1 -1
anda = ) 72 0(’17 ) <2071,
. e—i (q—1 —1
In addition, we have Zj —0 ( ; ) + x, > 24171,
Choose S to be the largest interval including ¢ and 297! — « other elements from
the eth pile. The above observation guarantees the existence of such an interval.
The possible states arising from such a question satisfy V,—;(0y.s) = 297! and are

Vy—1(0n0) = Vy(0) — Vy—1(0yes) < 29 —2971. Hence, both states have character not
larger than g—1. It is also not hard to say that they both have a structure satisfying the
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hypothesis of the proposition. Therefore, Paul can continue his strategy by induction
hypothesis.

Notice that also in this case the number of intervals necessary to represent the
state is not larger than the initial one.

The previous lemma implies that the eth pile always contains a pack which is
large enough to implement the rebalance. This leads to the following result.

Theorem 5.1. For any e > 1 and for all sufficiently large m in the game played
over the search space {0, ...,2™ — 1} with e lies, there exists a strategy for Paul
which is perfect—i.e., with at most Npnin(2™, e) questions—and uses only multi-
interval questions with at most 32"’# intervals. Moreover, each intermediate state
can be represented by (e + 1)? intervals.

Proof. We need to show that the strategy we have described is feasible and that it
will lead to a final state in the minimum possible number of rounds, Ny, (2™, e).

Let ¢ = Nmin(2™,e). We split the analysis into two parts: Phase 1: the first
m+ (e — }1) log m rounds; Phase 2: the last g —m — (e — %) log m rounds.

Let us first consider Phase 1. We first show that Paul’s strategy is feasible
throughout the whole phase by using an inductive argument.

The critical point in Paul’s strategy is the existence of a pack in the eth pile which
allows rebalancing. This is trivially true in the first m rounds where no rebalancing

actually takes place. In fact, it is not hard to see that for each t = 0, ..., m, after
¢ rounds, the state cardinalities of the piles in the state o satisfy x}; = 2" (;),
for each j = 0,...,e. Therefore, for each t = 1,...,m — 1, we have that each

component of the state after ¢ rounds is even and we have imbalance(S'™') = 0.
Hence, in this phase Paul does not actually need any rebalancing. After m rounds,
the cardinality of the piles in the resulting state 0™ satisfy x7' = (’7), for each
j =0,1,...,e; and we have ch(c™) = g —m.

Assume now that, forsomem <t < m+(e— }1) log m, the strategy is feasible up
to the 7th round. Let y ,, denote the pack of largest size in the eth pile after 7 rounds.
Lemma 5.3 together with (5.1) implies that |y,,| > —imbalance(S). Therefore,
we can complete the (¢ 4 1)th round as well. This completes our inductive argument
and shows the feasibility of the strategy.

Let o’ be the state at the end of Phase 1. We have that ch(c’) = ¢ —m —
(e — }1) log m. This follows from Lemma 5.1 because foreacht = 1,...,m + (e —
%) log m, the question S’ asked by Paul guarantees that |V, (07, —Vy— (0,,)| < 1.

From Lemma 5.3 it also follows that at the end of Phase 1 there is at most one
chip in the first e piles. Therefore, by Proposition 5.3, we have that ch(c’) = g —
m— (e — %) logm additional 1-interval-queries are sufficient for reaching a final
state.

Therefore, in total, Paul reaches a final state after asking exactly ¢ = Nyin (2™, €)
queries, as desired.

Finally, by Lemma 5.2, foreach j = 0, 1, ..., e, the number of packs in the jth
pile is at most 2j + 1. Therefore, the total number of packs on the board is never
greater than
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Y @j+1)=(e+1)

Jj=0

and the amount of packs in each question is bounded by

e e

. e+1 e2+3e¢+2
D+ D/2=)y (j+D = tetl= "
Jj=0 Jj=0 2 2

i.e., the strategy only uses multi-interval questions with the desired number of
intervals.

5.2.1 The Case of Two Lies: A Canonical Representation of
States and 2-Interval Queries

Mundici and Trombetta were the first to consider multi-interval questions. They
focussed on queries of the form “does x satisfy either condition a < x < b or
¢ < x <d7, which they call bicomparisons. Clearly, bicomparisons are the same
as 2-interval-queries.

For the particular case e = 2, Mundici and Trombetta proved that for all m > 1
and m # 2, an unknown m-bit number can always be found by asking Ny,;, (2", 2)
bicomparison questions. Therefore, despite the limitations in Paul’s expressive
power imposed by restriction to 2-interval-queries, for e = 2, the shortest search
strategy has precisely the same number of questions as in the general unrestricted
case (arbitrary yes-no questions), for every size of the search space.

If we assume that all questions are of type: “does x satisfy the conditiona < x <
b?” then no search strategy can exist to find an unknown m-bit number and using
Nmin(2™,2) many such questions.

The Strategy. The core of the method used by Mundici and Trombetta consists
in constructing the queries in such a way that, no matter what the answer, the
search space and more precisely the states of the game evolve through well-defined
patterns. In fact, the authors show that each state arising from 2-interval-queries
questions turns out to possess a simple geometric shape that can be completely
specified by eleven numbers in S. See, for example, Fig.5.1. The top-left shape
describes a possible state of the game. On the abscissa is the search space, and
the shape shows for each element the number of available lies to the responder if
the number is the chosen one. The two segments underneath the shape are meant
to describe a 2-interval-query. And the two shapes below, still on the left, show
the resulting situation, when the question asked is given by the two intervals and
the answer is respectively no (middle shape) and yes (lowest shape). The three
shapes on the right depict the case of a different 2-interval query. With the help
of Fig.5.1 we can describe this result using the analytic tools from the previous
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Pile 0

Pile 2

Pile 0

Pile 2 _l_l_ Yes _l_l_
Pile 0

| | *_rmrha
Pile 1
Pile2 —----——  L—eo ———

Case A Case B

Fig. 5.1 Shapes for states in the Mundici-Trombetta analysis of the bicomparison model

section. To this aim, let 5! denote the largest pack at level 1 (representing the 1st
pile). We distinguish two cases:

 Case A: The only pack at level 2 (Pile 0) is not a neighbor of p'.

We can freely choose one of the other packs in level 1 to be part of the query.
By including the half of the pack at level 2 which is neighbor to it, we have one
of the intervals of the query. By Property 5.1, we can divide p! so that half of
the chips in level 1 are included in the query. Include in the query the half that
does not have a common neighbor with another pack already in the query. This
gives the second interval in the query. Notice that this query does not include any
pack at the level O (Pile 2). But both intervals can be extended so that the query
includes also half of the chips at this level.

s Case B: The only pack at level 2 (Pile 0) and p' are neighbors.

By Fact 5.1, we may divide p' into two packs such that the pack which is a
neighbor to the only one in level 2, together with the pack in level 1 (Pile 1) which
is not a neighbor to it, contain half of the chips at this level. We also include in
the query the half of the only pack at level 2 (Pile 0) that is a neighbor to p'.
As in the previous case, the query has two intervals, but does not include any
chip in level O (Pile 2). But the interval containing the pack at level 1 (Pile 1)
which is not a neighbor of the only pack at level 0 (Pile 2) may be extended in
both directions, so that the query also includes half of the chips at level O (Pile 2).

The analysis given above about the number of packs in the piles suggests that
an analogous pattern might be used for describing the states of the game also in the
case of more than two errors. It is conjectured that the basic shape for the case of
e errors may be like that in Fig.5.2. Note that each level from 0 < i < e — 1 in
this figure has exactly 2i — 1 fragments, thus leaving open the applicability of a
technique like the one described for the case e = 2.
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Fig. 5.2 The canonical shape of a state in the case of e lies

A Possible Generalization of Mundici-Trombetta’s Approach. Let f(e) denote
the minimum number of intervals needed for representing a questions in a strategy
for the e-lie game which uses the minimum possible number of question. Mundici
and Trombetta observed that for e = 2 there is no strategy using only 1-interval-
queries which can attain the lower bound, whilst this is possible with 2-interval-
queries. Therefore f(2) = 2. The results of the previous section show that f(e) <
(e + 1)2, for any e. We have the following conjecture for the general case.

Conjecture 5.1. For any e > 1, it holds that f(e) = 6(e).

The exact determination of f(e) is an interesting open problem together with the
analogous related question regarding the size of the minimum representation of the
states of the game.

5.2.2 About Comparison Questions

A special and probably the most basic example of the Ulam-Rényi game with multi-
interval-questions is the variant where only comparison questions are allowed, that
is, questions in the form “Is the secret number x < a?” for some a € S. In this
case we have only one interval, which is bound to be a prefix of the search space.
Some of the first results on the Ulam-Rényi game were actually provided for this
variant of the problem. For completeness, we are here limiting ourselves to give a
brief account of some of these results.

Let N©™P)(M, e) denote the minimum number of questions to find an unknown
number x in the set § = {0,1,..., M — 1} by using only comparison questions,
when up to e of the answers may be mendacious.

Obviously, N (emp) (7, e) > N(M,e), forall e > 0 and M > 1. Further, for
e = 0, a moment’s reflection shows that N (™P) (M,0) = N(M,0),forall M > 1.

The Ulam-Rényi game with comparison questions was considered for the first
time by Rivest et al. Their solution is based on embedding the search space S =
{0,1,2,..., M — 1} into the half-open real interval ]0, 1], and then looking for a
subset A of ]0, 1] such that A contains the secret number x and |A| < e, for an
arbitrarily chosen 0 < € < 1.
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It turns out that

e
Nuin(M.€) < NC™(M.e) <min {n[2"* > M (" N e) L (54
—\
=0

which is still valid when e is a function of M. From the above result, proceeding as
in Proposition 5.2, one can easily obtain

NC™(M, e) = log, M + e log, log, M + Ofelog, e). (5-5)

Focusing on the case e = 1, and S = {0,1,2,..., M — 1}, Spencer proved the
following:

e Whenever n obeys the inequality % < M, no winning strategy exists using n
comparison questions.
n . . . . .
s It M .f 5712? then there exists a winning strategy for Paul, using » comparison
questions.

From this result it follows that N©™) (M, 1) < N(M,1) + 1 for al M > 1.
Spencer’s result was further refined by Innes, who provided a tighter upper bound,
to the effect that whenever

27 2"
<_—s
T 128n +1

there exists a winning strategy for Paul using exactly n — 2 comparison questions
to search for an unknown number x in the set {0, 1,..., M — 1} when at most one
answer is a lie.

5.3 Linearly Bounded Number of Lies

Up to this point we have always assumed that the maximum number of lies e is
fixed beforehand. As we saw in the previous chapters, this resembles the classical
assumption in the theory of error-correcting codes, that a fixed maximum number e
of bits can be distorted by noise during the transmission of a message.

On the other hand, it might be argued that if the probability of an error is not too
small, then it is less reasonable to assume that the number e of expected noisy bits
is bounded by a constant independent of the number of actually sent bits.

In the Ulam-Rényi problem with linearly bounded numbers of errors, one
assumes the existence of a fixed real value r in the open interval ]0, 1], known to
both Paul and Carole, such that if Paul asks n questions then Carole is allowed to
tell at most | r n | many lies. Thus, after agreeing upon the size M of the search space
and the lie fraction r, Paul announces that he is going to ask at most n questions,
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whence allowing Carole to fix the maximum number of lies that she is allowed to
tell.

Again, we are interested in the minimum number n of sufficient questions
for Paul to infallibly guess Carole’s secret number, for all possible values of the
parameters M and r.

The linearly bounded lie model bears an interesting relationship with the prob-
abilistic model, where the responder lies at random, and an answer is mendacious
with a constant probability p < 1/2. Here, lies are no longer malicious, and p arises
as the result of a probabilistic analysis of the noisy environment.

Spencer and Winkler investigated the linearly bounded lie model for subset or
membership questions, for both the fully adaptive and the fully non-adaptive model.
Their main result is as follows:

Theorem 5.2. [. For non-adaptive search over S = {0,1,..., M — 1} we have:

(a) If r < 1/4, then Paul has a winning strategy with ©(log, M) membership
questions.

(b) If r = 1/4, then Paul has a winning strategy with & (M) membership
questions.

(c) If r > 1/4, then no winning strategy exists for Paul for any M > 9r/(r —
1/4), no matter the number of questions.

2. For fully adaptive search over S = {0,1,..., M — 1} we have

(d) If r < 1/3, then Paul has a winning strategy with ©(log, M) membership
questions.

(e) Ifr = 1/3, then no winning strategy exists for Paul for all M > 5, no matter
the number of questions.

Dhagat et al. investigated the linearly bounded lie model when Paul is allowed to
use more restrictive types of questions. They call bit question a query asking for the
value of a bit in the binary expansion of Carole’s secret number, that is, a question
of the form “Is the i th bit of x equal to 17”.

Their main result is summarized in the following

Theorem 5.3. Let S = {0, 1,..., M —1} be the search space and assume that Paul

can only ask bit questions. Then the following holds:

(a) Paul has a non-adaptive winning strategy with n bit questions iff M <
2L2Lr I:IJJrl J .

(b) Paul has a fully adaptive winning strategy with n bit questions iff M <
PR

Proof. Let us first consider the case of a non-adaptive strategy. Assume that M >

2L2L”7J+‘J. It follows that there are [log M| > LZL”?W

Therefore, whatever the choice of the n questions, there is a bit, say j, such that the
question about j has been asked at most 2| n | times. Suppose Carole answers no

J possible bit questions.
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to all questions about a bit different from ;. Then, she answers yes to exactly half
of the questions about the bit j. This means that Paul collects at most | r 1| answers
about the bit j saying that it is 1 and at most |r n]| saying that it is 0. Since |r 1|
answers of Carole could be lies, there is no way for Paul to discriminate between
the case where the secret number is 0 and the case where the secret number is 2/.
Hence, n questions are not sufficient in this case.

Suppose now that M < 2LWJ Then, it is not hard to see that for each
i =1,...,[log M1], Paul can now ask 2|r n] + 1 questions about bit i. By taking
a majority vote among such answers he can be sure about the value of the bit i and
then identify the value of the secret number chosen by Carole.

We now turn to the fully adaptive case. We shall first prove the necessity of

the condition in (b). Let M > ZL%J, and assume (absurdum hypothesis) that
Paul has a winning strategy with n bit questions. There are [log M| possible bit
questions. Suppose Carole keeps on answering “no” as long as there are still at least
two numbers that are consistent with her answers. Note that for being sure about
the value of a bit of Carole’s secret number, Paul needs at least |r 7] + 1 identical
answers. Therefore, Carole can use the above strategy—keeping ambiguity about at
least one bit of the secret number—for at least ([log M| —1)(|rn|+ 1)+ |rn] >n
questions, which proves the desired result.

We now prove the sufficiency of (b). Let m = [log M. This is the number
of possible different bit questions. Because of the standing hypothesis, we have
n > (|rn] + 1)m + |rn|. We shall show a strategy for Paul to ask no more than
these many questions.

We start observing that while asking questions, Paul has the possibility of
keeping note of the minimum number of lies told by Carole in answering questions
about bit i for each i = 1,...,m. In fact, if Carole has answered both “yes” and
“no” to questions about bit 7, then at least the minimum of the number of “yes” and
“no” answers to these questions about bit 7 must be lies. Let Y (i) and N (i) denote
the number of times Carole has responded, respectively, “yes” and “no” to a question
about bit i. Then, min{Y (i), N(i)} is a lower bound on the number of lies told by
Carole in answering questions about bit i. Moreover, as soon as max{Y (i), N(i)}
becomes larger than |r |, Paul can stop asking questions about the bit i, since he
has enough evidence about its value. Therefore, Paul can proceed as follows: For
eachi = 1,...,m, ask the question about bit i until max{Y (i), N(i)} = |rn] + 1.

The total number of questions asked by Paul is given by

Zmax{Y(i), N@)} +min{Y(@), NG@)} =m([rn] + 1) + Zmin{Y(i), N(@)}.

i=1 i=1

As observed before, Y -, min{Y (i), N(i)} is a lower bound on the total number
of lies told by Carole; therefore, it cannot be larger than |rn |, which proves the
desired result about the number of questions asked by Paul.
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Finally, since for each bit exactly |rn| + 1 identical answers have been collected
by Paul, he has evidence of its value; hence, he has enough information to identify
the secret number of Carole.

Theorem 5.4. Let S = {0,1,..., M — 1} be the search space in the game with
linearly bounded lies where Paul is allowed to use only comparison questions. Then,
the following holds:

(a) Paul has a non-adaptive winning strategy with n comparison questions® iff M <
raggi + L

(b) Paul has a fully adaptive winning strategy using only comparison questions iff
r < 1/3. Moreover, for all r < 1/3 there exists a winning strategy with n
comparison questions, where

8 log, M

Proof. We first present the proof of (b) in the more general case in which Paul
is allowed to ask membership questions, i.e., questions of the type “Is x € S?”
for some subset S C {0,1,....M — 1}. Letr > 1/3 and M > 5, and suppose
(absurdum hypothesis) that Paul has a winning strategy of size n for some value of
n > 1. We shall describe a strategy for Carole that allows her to continue the game
and prevent Paul from identifying the secret number after n questions. Remember
that Carole can choose the secret number as late as she wants, provided that her
choice is consistent with the answers already given and with the rules of the game,
i.e., at most | rn| lies in total.

Recall the definition of the state of knowledge (Lo, L, ...), where L; is the
set of numbers which are candidate to be the secret number assuming that Carole
has lied exactly i times so far. Let (xo, x1,...) denote the type of the state, i.e.,
x; = |L;| for each i > 0. Carole uses the following strategy in answering Paul’s
questions:

1. To the question “Is x € S§7?”, Carole replies yes if |S N Lo| > |Lo|/2 and no
otherwise. This continues as long as |Ly| > 3.

2. Then, as long as there are at least three candidate numbers, i.e., Zi |L;| > 3,
Carole answers yes if and only if |S N, L;| > 2.

3. Once there are only two numbers left as candidate ones, then Carole always
answers as if the secret number was the one for which so far she has lied the
most (breaking ties arbitrarily).

Letzg = 0 and, fori = 1,2, 3, let

3Here, by comparison question is understood a question of the form “Is x < a?”.



94 5 Variations on a Theme of Ulam and Rényi: More Types of Questions and Lies

Zi—1 ifx, , >2
i = s .
min{j > z;—1|x; > 0}  otherwise.

Let ¢(¢) = z1 +z2 + min(z3, |rn] + 1). Itis not hard to see that until the game ends
we have ¢ (¢t + 1) < ¢(¢) + 1. Moreover, because of the assumption n > 5, we have
that the first answer will leave xo > 3, whence ¢ (0) = ¢ (1) = 0. Finally, at the end
of the game, i.e., after n’ < n questions, it must be that X|rn) = land x; = 0, for
eachi < |rn], whence ¢p(n') = 3|rn| + 2.

It follows that n — 1 > 3|rn| + 2, which is impossible since 3|rn| > 3|n/3| >
n — 2. Since we have reached a contradiction, it follows that there cannot be any
winning strategy for Paul if » > 1/3, which concludes the proof.

It remains to prove the existence of a winning strategy for Paul when r < 1/3.
For the sake of the presentation we shall start with a slightly weaker result. Assume
M = 2™ for some m. We shall show that for any r < 1/4, Paul has a winning

strategy of size
2m
n= .
1 —4r

Let I = {0,1,..., M —1}. Paul keeps a sequence of nested intervals, I, ..., [,
such that /, is the current candidate interval to contain the secret number of Carole
and Iy,...,I;—; are the previously trusted intervals. Paul’s search proceeds in
phases. In each phase, he asks a question at the midpoint of the current interval /;.
Then, according to the answer to this question, he asks another question at the
rightmost point of I, or at the leftmost point of /,. If no inconsistency results from
these two questions with respect to the current belief that the secret number is in
I, then Paul sets the new interval ;4 in accordance with the answers received.
Alternatively, if the answers received in this phase are in contrast with the belief that
x € I;, then Paul discards the last two questions and I; altogether, decrementing ¢,
i.e., keeping as the current interval of candidate solutions /;_;.

Let the total number of questions asked by Paul be

Let us consider the situation at the end of the game. Suppose f—nested
by definition—intervals have been kept by Paul. Every time that an interval is
discarded, Paul invalidates four of the questions/answers formulated so far. Of these
answers at least one must be a lie. Let d be the number of times Paul discarded
an interval. Then, we have d < |rn]. Moreover, since for each interval that has
been kept, there have been two questions asked, we have that the total number of
questions can be bounded as

n<2t+4d <2t + 4rn,
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from which we get that

o nd—4r)
- 2

This, together with n = %], implies that r > m. Since every time a new
interval is accepted by Paul the set of candidate solutions halves, it must be | ;| = 1.
Letu = t — (m — 1). It follows that u > 1 counts the number of latest phases in
which the current interval stayed identically equal to I;.

We claim that the secret number is the only one in /;.

If this were not the case, then the last u phases all contained at least one lie.
Therefore, the total number of lies would be at least u + d. Because of the bound
on the total number of lies, we have u + d < rn. Also, considering that for each
newly accepted interval Iy, ..., I,,—; Paul asked two questions, it follows that the
total number of questions asked by Paul can be bounded as

n<2(m-—1)+2u+4d
=2m+4u+d)—2u+1)
<2m+4u+d)—4
<2m + 4rn — 4.
2m

Finally, using the fact that n > =, we get 2m < (1 — 4r)n, leading to the
contradiction

n<2m+4m—-—4<(1—-4r)n+4m—4<n-—4.

Therefore, I,,, must contain the secret number of Carole, proving that Paul’s
strategy is indeed winning.

In order to achieve the bound for r < 1/3, Paul’s strategy must be such that
each interval in the sequence I, . .., I; occurs about [%] times. In this case Paul
discards mostly contradicting triples. He only discards a contradicting 4-tuple if for
at least s — 1 consecutive times he has discarded only contradicting triples. This
allows him to improve the bound to 1/3. |

The bounds in (5.6) were subsequently strengthened by Pedrotti [159], who
proved that*

1
. 8 In2 log, M . 5.7)
3 (1-3r2%1+3r)
. 3(1-3r)
Remarkably enough, (5.7) improves (5.6) by a factor of Tzr

“4Here, In denotes the natural logarithm.
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5.4 Prefix-Bounded Numbers of Lies

A particular case of the linearly bounded lie model is obtained when the fractional
bound on the number of lies is assumed to hold at any point of the game. The
resulting model is known as the prefix-bounded lie model. Here, one assumes that
for a given real value r in the open interval |0, 1[, at any point in the game, when i
answers have been given, no more than | i | lies have been told.

It turns out that in this case the bounds on r for the existence of a winning strategy
for Paul become weaker.

Theorem 5.5. For r > 1/2, no winning strategy exists for Paul when the search
space has size M > 3, no matter how many questions he asks, not even when
membership questions are allowed.

Proof. Assume M = 3. With the first answer Carole can guarantee that at least
two numbers remain as candidate solutions. From the second question on, skipping
trivialities, let us assume that each question separates the two numbers. Then, Carole
always answers as if the secret number were not the one which satisfies the largest
number of answers given so far. Therefore, after the first answer the two numbers
falsify zero answers and there is one lie available to Carole. Henceforth, the two
numbers alternate in increasing the number of answers they falsify. For every two
new questions, each of them has falsified one more answer, but also one more lie is
available to Carole. In conclusion, none of them ever ends up falsifying a number of
answers greater than the number of lies available to Carole. Hence, Paul can never
remain with only one candidate solution and win the game.

In the case of membership questions we have the following complementary
results.

Theorem 5.6. Let the search space be S = {0,1,...,M —1}.

Forr < 1/2, Paul has a winning strategy in the prefix-bounded lie model over S
with ©@(log, M) arbitrary yes-no questions.

Moreover, for any r < 1/2, Paul has a winning strategy in the prefix-bounded lie
model over S, with O(Mk’gZ(ﬁ)) comparison questions.

Proof. We only discuss here the strategy for the case where comparison questions
have to be used. In this case Paul’s strategy is simple. He uses binary search,
repeating each question long enough to guarantee the reliability of the answer. Note
that an answer can be considered true as soon as it has been repeated more than | rt |
times, where 7 is the number of questions asked so far.

A careful analysis shows that Paul can obtain the [log, M| reliable answers he
needs to identify the secret number by asking O((ﬁ)[10g2 M1 _ O (n'"o= ﬁ) =
o(M) questions.

Dhagat et al. observed that the result for comparison questions holds also when
only bit questions are used.
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The bound of Theorem 5.6 was improved by Borgstrom and Kosaraju, whose
results give added evidence to the conjecture that O(log, M) comparison questions
are sufficient for successful search in the set {0, 1, ..., M — 1} in the prefix-bounded
lie model for any value of the error fraction r < 1/2. They also provided an
algorithm whose overall running time is O(log, M). This is a stronger result
than simply proving that O(log, M) questions are sufficient, in that we are here
claiming that O(log, M) steps are sufficient also when considering all the necessary
computation supporting the search, e.g., operations like state update and question
computation.

5.5 Bibliographic Notes

In [185] the Ulam-Rényi problem with comparison questions is considered for the
first time. It is actually debated whether in the original formulation Ulam specifically
referred to comparison searching. Although the analysis of Rivest et al. [185]
is meant to give an asymptotic solution of the problem, the same technique has
been successfully reused by Pedrotti [159] and Sereno [189] to provide results for
finite instances. In particular, identity (5.7), which originally appeared in [159], is
obtained by a refined analysis of the searching algorithm of [185]. Further results
on the probabilistic model can be found in [167] and [159].

The study of fault tolerant search in the linearly bounded lie model and in the
prefix-bounded lie model was originally proposed by Pelc [169] in the non-adaptive
version with arbitrary yes-no questions, formulated as a problem in coding theory.
Pelc [167] was also the first to consider the adaptive prefix-bounded lie model. He
proved that search is possible if and only if r < 1/2 and proposed a questioner
strategy of length O(log, M) whenever p < 1/3. In [167] Pelc also stated the
problem of finding an O(log, M) strategy for the case 1/3 < r < 1/2. The result
we have given in Sect. 8.48.4 is due to Spencer and Winkler [199]. The proof of
Theorem 5.6 is due to Aslam and Dhagat [16]. The same result for the case of bit
questions was proved in [92]. The O(log, M) algorithm for the case of comparison
questions is described in [30].

As pointed out by Yossi Azar, a winning strategy with O(log, M) comparison
questions in the linearly bounded lie model can be obtained using the main result of
[185], despite the fact that paper mainly dealt with fixed numbers of lies.

5.6 Exercises

1. Prove that Conjecture 5.1 holds in the special case e = 1.
2. Show that for e = 0 we have N “™)(M,0) = N(M,0), forall M > 1, and that
the same is not true fore = 1.
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3. Determine the minimum number of comparison questions necessary and suffi-
cient in a game with e = 1 lie on a search space of cardinality 2™.

4. Solve the previous exercise in the case where only 2-stage strategies are allowed.

5. Suppose that Paul decides to use the following strategy: for some fixed # > 1 he
asks ¢ comparison questions following a binary search approach and assuming
that Carole’s answers are correct. Let A = [£, u] be the reservoir of candidates
to be Carole’s secret number, as a result of Carole’s answers. Then Paul asks
questions at £ and u respectively. If both answers confirm that the secret number
isin A then Paul continues with a new set of ¢ questions, otherwise he backtracks
and starts again with the interval he had reached ¢ questions ago.

For the case e = 1, i.e., Carole can lie at most once, analyze the query complexity
of such a strategy as a function of ¢.

6. Consider the variant of the strategy described in the previous example for which
Paul does not verify the interval A after asking ¢ questions, instead he tosses a
fair coin after each question in order to decide with probability 1/2 whether to
verify the present interval of candidate solutions.

What is the expected number of questions required by such a strategy?



Part 11
Other Models



Chapter 6
Delays and Time Outs

Better to remain silent and be thought a fool
than to speak out and remove all doubt

A. Lincoln

In this chapter we study the effect of delay on the efficiency of search procedures.
In the models we are going to analyze, the delay itself is a source of uncertainty
for the searching procedure. A classical assumption in the theory of search is that
the information obtained by the execution of a test is available right after the test
has been made, that is, a “yes/no” answer is immediately received after the question
has been posed, and this knowledge can be used in the formulation of successive
questions. However, there are situations in which the time when the test is performed
and the time when its outcome is available are decoupled. This may be due to several
reasons: the execution of the test may be time-consuming, or tests and responses
may be transmitted over a slow channel, etc. Regardless of the possible presence of
errors, this delay is already a source of unreliability on the information available to
the algorithm.

The questioner-responder game formulation of the model is as follows': the two
players first agree on some integer n and a search space S = {1,2,...,n}, and
then the responder secretly chooses a number x in S. The questioner has to find out
x by using comparison questions only, that is, questions of the form “Is x < a?”
for some a € S. At any time instant i = 1,2,..., the questioner has to ask a
certain (variable) number of questions in parallel, to which the responder answers
with some delay. In general, each question might be answered with its own specific
delay. The problem is to determine the minimum total number of questions that are

'In the first part of this chapter we shall explicitly avoid using the names Paul and Carole for the
participants in the game. In fact, we want to make such a distinction in order to clarify that here
answers are reliable and we are not in the Ulam-Rényi setting.

F. Cicalese, Fault-Tolerant Search Algorithms, Monographs in Theoretical 101
Computer Science. An EATCS Series, DOI 10.1007/978-3-642-17327-1_6,
© Springer-Verlag Berlin Heidelberg 2013
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necessary and sufficient to locate x. Note that some answers may be answered after
they have already become obsolete.

We shall first analyze two instances of this rather general model of search with
delayed—but reliable—answers. Then, we shall extend the model and analyze
a variant with faulty information in which errors are not mendacious answers
but rather lost answers. Finally, we shall also discuss in which sense “delayed
search strategies” and broadcast of messages in networks with link latency can be
considered isomorphic problems.

6.1 Search with Fixed Batches of Questions and Variable
Delay in Answers

In our first problem we consider the following scenario: At the beginning of the
game the questioner submits a batch of k questions in parallel to the responder. The
responder chooses one question from among the k& and provides an answer to it.
We can assume that the k questions are put in a buffer of size k. Once an answer
to a question is received, the questioner replaces the answered question with a new
one. Notice that a single answer from the responder can provide a legitimate answer
to more than one of the questions which have been put in the buffer. To see how this
can happen, suppose that the two questions “Is x < ¢;?” and “Is x < ¢;?7” (with
qi =< q;) are both in the buffer and the responder answers “yes” to the former one.
It is clear that she has also indirectly answered the latter question. Therefore, the
questioner can find it time-saving to substitute both questions in the buffer with two
new ones instead of waiting for the second predictable answer.

Summarizing, we can assume that in our game there are always exactly k
unanswered questions in the buffer® at any time instant, from which the responder
chooses as she wishes the one to which she provides an answer. Therefore, there
exists an unpredictable though finite delay from the time the questioner formulates a
question and puts it into the buffer, and the time this question is chosen and answered
by the responder, although at any time instant the responder has to immediately
answer the question she has chosen from the buffer.

We want to evaluate, for all k > 1 and n > 1, the least number of comparison
questions necessary and sufficient to correctly guess an unknown number x chosen
fromtheset S = {1,2,...,n}. We call this problem the (n, k)-game and we say that
a winning strategy of size ¢ exists for the (n, k)-game if ¢ questions are sufficient to
locate the secret number x for any possible choice of x and any possible sequence of
delays in answering the questions. We remark that also questions which have been

2Unless the questioner does not need to formulate new questions in a specific time instant, since
he can deduce the unknown number x from the last received answers, and the game ends.
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formulated and whose evaluations have been stopped must be taken into account
when computing the overall number of questions used by a given strategy.’

For any k an odd integer or k € {2, 4}, and for all ¢ > 0, it is possible to exactly
evaluate the maximum » such that there exists a winning strategy of size ¢ for the
(n, k)-game.

The critical index defined below will play a key role in determining such a bound.

Definition 6.1. Forallk =1,2,3,... and¢ =0, 1,2, ... the tth critical index for
k is defined by

t+1 if ¢ < k,
[k] [k]
N ey ¥V e

The rest of this section is devoted to the proof of the following theorem.

Theorem 6.1. Let K= {2b—1|b =1,2,3,...}U{2,4}. Fix two integers k € K
andt > 0, and let n be the size of the largest search space such that there exists a
winning strategy of size t for the (n, k)-game. Then

otherwise. (6.1)

n=nN".

The Upper Bound. For all fixed integers k > 1 and ¢ > 0, we shall first prove an
upper bound on the value of n such that there exists a winning strategy of size ¢ for
the (n, k)-game. We shall find it convenient to prove our result on the search space
S ={1,2,...,n} or any translation of it, that is, {¢ + 1,a + 2,...,a + n}, with a
being any integer. Also, we remark that this upper bound holds for any value of k,
not only for those considered in the hypothesis of Theorem 6.1.

Lemma 6.1. Fix two integers k > 1 and t > 0. For all integers n > 1 and a
if there exists a winning strategy for the (n,k)-game over the search space {a +
l,a+2,...,a+ n}, then

n <N

Proof. We argue by induction on .

Induction Basis. 0 <t < k. By definition, all the questions are asked in parallel
(hence, non-adaptively). Recall that in this case, by Definition 6.1 we have N,[k] =
t +1.Letn >t + 2 and suppose (absurdum hypothesis) that there exists a winning
strategy with ¢ questions to search in the set S = {a + 1,a +2,...a + n}. Because

30ur analysis works also for the variant of the problem in which questions cannot be substituted
before the corresponding answer has been given. Indeed, in a worst-case scenario, each time there
is a useless question which is waiting for an answer, it will be the first to be considered next by the
responder.
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t < n — 2, there must exist at least one i € {1,2,...,n — 1} such that the question
“Is x < a + i 7’ has not been asked.

Suppose that the secret number is x = a + i, and let £ be the maximum j such
that the question “Is x < a + j?” is answered “no”, meaning that x > a + £ + 1.
Hence, £ < i — 1. Accordingly, let u be the minimum j such that the question “Is
x < a+ j? is answered “yes”’, meaning that x < a + u* Wehave u > i + 1.
Therefore, u > £ + 2 and forthe set T = {yla+ ¢ + 1 < y < a + u}, we have
|T| > 2. Note that T is the set of the candidate solutions for the secret number
x after that all the questions have been answered. Since T' contains more than one
element, the strategy cannot be winning. Therefore, by contradiction we get the
desired resultn <t + 1.

Induction Hypothesis. Fix some positive integer u and let us assume that for all
integers ¢ < u — 1 and a, if there exists a winning strategy of size ¢ for the (1, k)-

game over the search space {a + 1,a +2,...,a + n}, thenn < Nt[k].
Induction Step. Fix an integer a and lett = u. Let {&; = “Isx < ¢;?” | i = 1,
2,...,k} be the set of the first k questions asked in a winning strategy of size ¢ for

the (n, k)-game over the search space {a + 1,a + 2,...,a + n}. Without loss of
generality, let ¢; < ¢;4+1 foralli =1,2,...,k — 1. Suppose the adversary chooses
to answer 2 first, where s = LI%J

Assume first that the answer to question &, = “Is x < ¢,?” is “yes”. Then
the unknown number x € {a + 1,a + 2,...,q,}. Since the strategy is winning,
the remaining questions/answers must be sufficient to locate the secret number x
intheset S’ = {a+1,a+2,...,q,}. In other words, the remaining questions must
be sufficient to win the (¢, —a, k)-game over the set S’. Let’s count how many more
questions will be actually used by the questioner.

Under the standing hypothesis, x < ¢; < ¢s+1 < -+ < qk. Then the (already
asked) questions, “Is x < gs+177, ..., “Isx < ¢x?” will bring no further information
to the questioner. Therefore, only s — 1 of the already asked questions will contribute
to locating x in S’. Including the ¢ — k questions which are still to be asked, all
together the questioner is left with

(t—k)+(s—1)=t—((k+1)—VT+1D=t—[¥—‘

questions to win the (g, — a, k)-game over S’.
Since the strategy is winning, by induction hypothesis we immediately have

gs—a <N

Py (6.2)

“If no such j exists we can safely assume u = n.
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Suppose now that the answer to the question 2; = “Is x < ¢;7” is “no”, i.e.,
xeS” ={qs+1,q95+2,...,a+n}. Because the strategy is winning, the remaining
questions/answers are sufficient to win the (@ + n — ¢y, k)-game over the set S”.
In perfect symmetry with the previous case, the questions “Is x < ¢?7”, ..., “Is
x < ¢s—17” will not bring any additional information to the questioner, since under
the standing hypothesis we have x > ¢g; > ¢g;—; > -+ > q,. Therefore, there are
t — k questions yet to be asked and k — s already asked questions whose answers
are still effective for locating x in S”. All together there are

k+1
(t—k)+(k—s)=t—s=t—\;TJ,
questions to win the (a + n — gy, k)-game over S”. Because the strategy is winning,
by inductive hypothesis we have

a+n—gq <N (6.3)

il
Summing up (6.2) and (6.3), and recalling Definition 6.1, we have

(%]

n=a+n—q;,+q;,—a<N"
=[]

k k
+Nf[_][% — N,

which concludes the proof.

The Lower Bound: Preparatory Material. The following lemma proves that for
the particular case of ¢t < k, the upper bound provided by Lemma 6.1 is tight.

Lemma 6.2. Fix an integer a. Then for all integers k > 1 andt = 1,2,...,k,
there exists a winning strategy of size t for the (N,[k], k)-game over the search space
S={a+ 1,a+2,...,a+Nt[k]}.

Proof. Recall that for ¢ < k, we have N,[k] = t + 1. Hence, the secret number is
chosen from the set S = {a + 1,a + 2,...,a + t + 1}. Then, it is not hard to see
that the ¢ questions 2; = “Isx <a +i ?” fori = 1,2,...,t are sufficient to win
the (t 4+ 1, k)-game over S. Indeed, these questions constitute an exhaustive search
onS.

We notice the following useful fact.

Fact 6.2 Fix integers a,n,k, withn,k > 0. Let . be a strategy of size t for the
(n, k)-game over the search space S ={a + 1,a +2,...,a + n}.

Define the map 5 :z € S\{a+n} v+ 2a+n—z € S and let .#" be the
strategy defined as follows:

1. for any question 2 = “Is x < b?” in .7, the question 2/ = “Is x < f(b)?”
isin %,

2. if the question 2; in 7 is asked immediately after the question 2; has been
answered “yes” (resp. “no”), then in %' the question Qlf is asked immediately

after the question Qif has been answered “no” (resp. “yes”).
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We have that if .7 is a winning strategy of size t then .’ is also a winning strategy
of size t for the (n, k)-game over the search space S.

Remark 6.1. Fact 6.2 simply points out that for any winning strategy . there exists
another equivalent (in terms of number of questions) winning strategy .’ whose
questions are symmetrical to those of the original strategy .7

The next lemma is a key tool to obtain most of the bounds in this section.
Essentially, we will show that in order to provide an (optimal) winning strategy
of size ¢ for an (n, k)-game, it is sufficient to provide a winning strategy of size ¢
against a much less powerful adversary. More precisely, we shall consider a variant
of the (n,k)-game in which the answering strategy of the responder is limited
according to the following rule.

H: Let{2;, =“Isx < ¢;?7” |i = 1,...,k} be the set of questions in the buffer
which have been asked and not answered yet at some time instant. Let ¢; > ¢+
fori = 1,2,...,k — 1. Then, the responder either answers “yes” to the question
2, or answers “no” to the question Zy.

Hereafter, the variant of the game in which the H rule holds will be referred to as
the game with limited responder. Conversely, the original (n, k)-game will be called
the unrestricted (n, k)-game.

Lemma 6.3. Fix integers a and k > 1 and n > k. Let t be the size of a winning
strategy -/ (m) for the (n,k)-game with limited responder over the search space
{a+1,a+2,...,a + n}. Then, from the strategy .#(u) it is possible to construct
a winning strategy . of size t' <t for the unrestricted (n, k)-game over the search
space{a+ l,a+2,...,a + n}.

Proof. We define a state of the game as the set of numbers in the search space that
satisfy all the given answers together with the set of questions which have been
asked and not answered yet.

The strategy . for the unrestricted (n, k)-game is defined over the states of the
game produced by any possible play of the game with limited responder when the
questioning strategy is .7 ). More precisely:

 The first k questions of . coincide with the first k questions of .7 ().

* Let o be a state in the game with limited responder, where the questioner plays
according to the strategy (). Let {2, = “Isx < ¢;?7” | i = 1,...,k} be
the set of associated standing questions. Assume, without loss of generality, that
qi > qiy foralli =1,2,...,k—1.

Suppose that in the unrestricted game the responder chooses the question 2;
and answers “yes” to it. Let

W={¥V=“Isx<w?|i=1,...,r}

be the set of questions asked by the questioner in the game with limited responder
from the instant when the state is o to the instant when the question 2; is
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answered, assuming that the responder repeatedly answers “yes” to the rightmost
question.’ Then, the next questions in .7 to be asked by the questioner (after the
“yes” answer to 2 ) are given by the set

W ={#=“Isx <w;7eW|w <gq;}.
Conversely, suppose that the responder answers “no” to the question 2;. Let
W={¥#=“Isx<w?|i=1,...,r}

be the set of questions asked by the questioner in the game with limited responder
from the instant when the state is o to the instant when the responder answers
“no” to 2;, assuming that the responder repeatedly answers “no” to the leftmost
question. Then, the next questions in .# to be asked by the questioner are given
by the set

W ={#=“Isx <w;7eW|w >q;}

It follows that any state which is attainable in the game when the questioner
follows the strategy . is a state which is also attainable in the game with limited
responder when the questioner uses the strategy . x).

Let o be a state of the game attained when the questioner plays according to ..
Let t be the new state after the responder has answered and the questioner has made
r new questions. By definition, the state t is also attained in the game with limited
responder when the questioner uses the strategy .#( . Moreover, in the latter case,
the number of new questions made by the questioner while moving from o to 7 is
at least r. This is so because the set of questions which are asked by the strategy .
are defined to be a subset of the questions asked according to .#{) when translating
fromo to 7.

It turns out that following . the questioner concludes the search using at most
t questions. Indeed, after any new set of questions the set of numbers satisfying all
the given answers strictly decreases. Thus, the strategy . eventually leads to a final
state, that is, a state such that only one number satisfies all the answers and, trivially,
it is the secret number. Moreover, any state o attained with d questions following
& is also attained in the game with limited responder following the strategy .#(#
by asking > d questions. Since .#() is a winning strategy of size ¢, any final state
is attained with at most ¢ questions. Hence, in the game with no restrictions on the
responder’s strategy and played by the questioner according to the strategy .%, any
final state is attained with at most ¢ questions.

5By the rightmost (resp. leftmost) question ina set {2 =“Is x < 7?7’ |i = 1,...,k} we mean
the question %, such that z, > z; (resp z, < z;)foralli # r.
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The Lower Bound: Two and Four... We now consider the particular cases k = 2
and k = 4. Note that by Definition 6.1, for the particular case k = 2, the ¢th critical

index of k coincides with the (r + 1)th Fibonacci number, i.e., N,[Z] =1t 4+ 1 for
t =0,1,and N,[Z] = Nt[i]l + Nr[ilz for all # > 2. The following result proves that an
optimal strategy for the (n, 2)-game corresponds to a Fibonacci search.

Theorem 6.3. Fix two integers a and t > 0. Let ny be the largest integer n such
that there exists a winning strategy of size t for the (n,2)-game played over the
search space {a + 1,a +2,...,a + n}. Then, ny = N,[z].

Proof. By Lemma 6.1 we have n, < N,[Z].

In order to prove N,[z] < n«, we shall show that for any ¢ and a there exists a
winning strategy of size ¢ for the (&, [2], 2)-game over the search space {a +1,a +2,
...,a+ N ,[2]} which starts with the two questions

1= “Isx <a+ Nt[f]l Vi and D= “Isx <a+ Nt[ﬁ]z?”.

The proof is by induction on .
Induction Basis. t < 2. Straightforwardly by Lemma 6.2.

Induction Hypothesis. For all integers a and for each t = 0,1,...,u — 1, there
exists a winning strategy of size ¢ for the (N,m, 2)-game over the search space {a +
1,....,a+ Ntm}, which starts with the questions “Is x < a + Nt[i]l?” and “Is x <
a+ NZr.

Induction Step. Lett = u. Suppose that the questions 2 and 2,, above, have been
asked.

Assume for the moment that 2; is the first question to be answered. We now
argue by cases.

Case 1. 2 is answered “yes”. Thenx € $'" = {a + l,a + 2,...,a + NI[E]I}.
By inductive hypothesis there exists a winning strategy of size # — 1 to locate a
secret number in S’ which starts with the questions “Is x < a + Nr[ilz?” and “Is
x <a+ Nt[i ?”. Note that the former question is exactly the question 2, which

has been already asked. Therefore, it suffices to ask 23 = “Is x < a + Nt[i]:,,?” to
find the secret number with an overall number of ¢ questions (including 2).

Case 2. 2, is answered “no”. Thenx € §” = {a—i—N,[i]l +1, a—}—Nt[i]l +2,...,a+
N1, Recalling Definition 6.1 we have [S”| = N — NP = NP By induction
hypothesis there exists a winning strategy of size ¢ — 2 to locate the secret number
x in S”. All together, including the two questions 2| and .2, we have proved that
t questions suffice to find x in S also in this case.

There are two remaining cases arising when the question 2, is answered before
. . . 2
question 2;. According to whether the answer is “yes” or “no”, we have x < Nt[_]2
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or x > N, [ ]2 and the proof is perfectly symmetrical to Case 2 and Case I,
respectively.

Fibonacci-like search is also optimal for the case k = 4, as shown by the
following theorem.

Theorem 6.4. Fix two integers a andt = 0,1,2,.... Let ny be the largest integer
such that there exists a winning strategy of size t for the (n«, 4)-game over the search
space S ={a+ 1,a+2,...,a+n«}. Thenny, = N,[4].

Proof. By Lemma 6.1 we have ny, < Nt[4]. Moreover, by Lemma 6.2 we have the
desired result forany r = 1,2, 3, 4.

It remains to prove n, > N,[4], when ¢t > 5. We shall prove that, for any choice of
integers @ and ¢t > 4, there exists a winning strategy of size ¢ for the (N,[4], 4)-game
with limited responder over the space S = {a+1,a+2,...,a+ Nt[4]} which starts
with the four questions 2; = “Is x < a + Nt[i],- ?” fori = 1,2,3,4. The desired
result then follows by Lemma 6.3.

The proof is by induction on ¢. The induction basis (t = 4) is given by
Lemma 6.2.

In order to prove the induction step, let # > 5 and suppose that fori = 1,2,3,4
the question &; = “Isx <a + N, el ;7 has been asked. Since we are considering
the game with limited responder, we shall assume that the responder either answers
“yes” to the question 2, or answers “no” to the question 2.

Case 1. The first received answer is “yes” to the question 2. Then x € S’ =
{a+1,a+2,.. a+N[4]l}

By induction hypothes1s there exists a winning strategy of size # — 1 to find a

secret number in S”. Such a strategy starts with the questions “Is x < a + Nt[i]z?”,
LIsx <a+ Nt[i]s?”.

As a matter of fact, for r = 2,3, 4, the question “Is x < a + N,[i]r 7 has been
already asked. Therefore, it suffices to ask questions 25 = “Is x < a + Nt[i]s?” in
order to match the induction hypothesis and ensure finding x in S’ with # — 1 more
questions.

A fortiori, we have a winning strategy with ¢ questions for the (N,[4], 4)-game
since one question had already been asked, namely the question 2;.

Case 2. The first received answer is “no” to the question 24. Hence x € §” =
{a + Nf[ﬂ +1,...,a+ N,[4]}. By Definition 6.1 we have

| S//l — Nt[4] _ N[[i]4 — N[4] + Nt[4]3 N[[i]4 — N[4] + Nt[4] < N[4] Nt[i]4 — Nt[i]l'
Therefore, lettinga’ = a + N,[4] N we have

t—1°

S"CT ={a'+1,d +2,....d + N¥}.
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By induction hypothesis and Fact 6.2, there exists a winning strategy of size r — 1
to guess the secret number x in the set 7. Such a strategy starts with the questions

e “Isx<a + NI - N
e “Isx<a + N9 - N[‘” ”,
« “Isx <a' + N - N[4] ”,
e “Isx<da +N¥ - N}ﬂs?”.
By Definition 6.1 we have

c N N e N NE N
c d + N -NY =a+ N - N[4] =a+NY,
.2 +N[41 _ N —at NF_ N

t—’

t—
.« a+ N,[‘” N[4] =a+ N9 - NY =a+ N9

Thus, the first two and the fourth of the above questions exactly coincide with
questions 23, 2, and 2, respectively (which have already been asked).
Therefore, the desired result follows by induction hypothesis upon asking the
question “Is x < a + Nt[4] - Nt[i]ﬂ”.
The proof is complete.

The Lower Bound for Odd k. Here, we shall prove a converse of Lemma 6.1
for the case of k an arbitrary odd integer. The following lemma gives an explicit
evaluation of the critical index which was introduced in Definition 6.1.

Lemma 6.4. Fix an integer b > 1 and let k = 2b — 1. For all integers t > b, we
have

NH =2 + b +1),
wherer =t mod b and h = =L — 1.

)
Proof. By inductionont¢.Lett =b,b + 1,...,2b — 1. Then, we have

t—r

r=tmodb=t—->b and h = 5

—1=0.

Recalling Definition 6.1, we immediately have
h — 200 _ _ _ A
2°"r+b+1)=2°t-b+b+1)=t+1=N,",

as desired.
Now, for some fixed u > 2b — 1, suppose the claim to be true for all t < u — 1,
with the intent of proving it for ¢ = u. By Definition 6.1 we have

NI —oN® — 2 oh(p 4 41, (6.4)

where r = (u—b) mod b and h = ”_Z_" —1.
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Fig. 6.1 The distribution of the first k& questions in a normal strategy (r = 3)

Letru:umodb:(u—b)modb:randhu=%—1:“‘2—_’—1+1=
h + 1; then by (6.4) we have

N =2 o+ r+1) =2"b +r +1),

as desired.

Definition 6.2. Fix integersn > 1 and b > 1, and let k = 20 — 1. For all integers
a and ¢t = min{i | Ni[k] > n}, we say that a strategy for the (n, k)-game over
the search space {a + 1,a + 2,...,a + n} is normal if the first k questions, viz.
9, = “Isx <q;7 fori =1,2,...,k, are defined by

a+NY fori =1,2,....b
4= Kk ©>
a+ N —N_,,  fori=b+1,b+2,...,2b—1.

Fact 6.5 With reference to the above definition, the first k questions of a normal
strategy split the space {a + 1,a +2,...,a + N,[k]} into the 2b intervals, .%; =
{i + 1, qi +2,...,qi—1} (i = 1,2,...,2b), which are distributed according to

a central symmetry®; i.e., letting r = t mod b and h = 5 — 1, it holds that

(see Fig. 6.1 for an example)

2" fori=1,2,...,r+1
| I =32 fori=r+2,r+3,....2b—1—1,
2" fori =2b—r,2b—r+1,...,2b.

Lemma 6.5. Fix an integer b > 1. Let k = 2b — 1. For all integers a and t > k,
there exists a normal winning strategy (g of size t for the (Nt[k], k)-game with
limited responder over the set {a + 1,a +2,...,a + Nt[k]}.

Proof. The proof is by induction on ¢.

Induction Basis. t = k. Straightforwardly by Lemma 6.2.

SFor sake of definiteness, we let g = a + N,[k], G = a.
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Induction Hypothesis. For all integers a there exists a normal winning strategy of
size t — 1 for the (Nt[f]l, k)-game with limited responder over the search space S’ =

{a + 1,a+2,...,a+Nt[f]l}.

Induction Step. We shall show a normal winning strategy .#(x for the (N,[k], k)-

game with limited responder over the search space {a + 1,a +2,...,a + N,[k]}.
Let{2; =“Isx <¢;?7”|i = 1,...,k} be the set of the first k questions in the
strategy -#(), where

a+NM i=12....b

a+NFO-NB, b 1b42,.. 21

qi =

Hence, the strategy is normal.
By Fact 6.5 we also have that

fqa =2 =23+ 1,2b—r2b—r+1,2b—1 ©6)
T Vg =2 i = r 2,0 43, 20— — 1, :
where
l‘_
r=tmodb and h= br_l’

Recall that under the standing hypothesis (H) the only possible answer is either
“yes” to the question 2; or “no” to the question Z.

We first consider the case that the responder answers “yes” to the question
D =Isx <q1?””.Thus,x € S’'={a+1,a+2,...,a+ Nt[f]l}.

Letg* =a+2"(r +1) = 2" = gy, — 271, #1)’s next question will be
Qe =“Ts x < g* 7.

Therefore, after the first answer has been given and a new question has been
formulated, the set of standing questions is given by

Q={2, =“Isx <q;7|i =2,...,k} U{2"}.

By the induction hypothesis there exists a normal winning strategy of size t — 1 for

the (Nt[f]l, k)-game with limited responder over the search space S’. Such a strategy
starts with the questions

W={¥/=“Isx <w;?|i=12,...,k},
where

a+nN¥ i=1,2,....b

a+NB —NB L i=b+1 b2, 261

w; =
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By Fact 6.5 we have

wisg =2 =23 ... r+1,2b—r,2b—r,+1,2b—1

.= 6.7
" wimg =2V = 42 +3,...,2b—1, — 1, ©7
where
r— 1- w
rw=t—1modb and hszr—l.
We shall prove that
qi = Wi— i:2,3,...,2b—r—1 (68)
qi = w; i=2b—r,2b—r+1,...,2b—1 (6.9)
q* = w1, (6.10)

that is, Q = W. Recall that by induction hypothesis  — 1 questions, including the
ones in Q, suffice to complete the search in the set S’. Thus, by counting also the
already answered question 2, it follows that ¢ questions are sufficient to find the
secret number in the (N,[k], k)-game over the set S, as desired.

In order to prove Q = W, we distinguish two cases.

Casel. r =0.Then h = t/b — 1 and, by (6.6), we have ¢; = g;—; — 2"~ for all
i =2,3,...,2b — 1. On the other hand, we have

r =@ —1)modb = (tmodb)—1modb=(r—1)moddb=5b-—1
and

G=D-0G=b L,y

hy, =
b b

By (6.7)and r,, = b — 1, we have that for alli =2,3,...,2b —1
Wi = Wj—1 — 2’“" = Wj_1 — 2h_1.

Therefore, w; = a + Nt[f]z = ¢, immediately implies the equalities (6.8) and (6.9).
Moreover, equality (6.10) follows from

h—1 1

* h—
q" = qop—r—1—2" = w2 —2"" = wy.

Case 2. r # 0. Therefore, we get

_e=D-rm _@=D-or4l

rw=(modb)—1modb=r—1, hy, b 5

1=h.
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Thus,
(i) fori =2,3,...,b,wehaveq; =a + Nt[f]i =a+ N([tkll)_(l._l) = Wi_1,
@) fori =b+1,...,2b—r — 1, from (6.6) and (6.7) we have
— h—1(: — hw_l 7 —
g =qp—=2"(1—=b)=wp_1 =2 (-1 —=bB-1]=w-_,
(iii) fori =2b—r,2b—r +1,...,2b — 1, using (6.6) we have

4 = qop—r—1 = 2" —2b+r + 1)
= w2 — 2" —2b+71 +1) (bY gap—r—1 = Wap—r—2)
= w3 —2"G+1=2b4r,+1) (byr=r,+landh =h,)
= Wapp,—1 — 2"
2" 41 =2b4r, + 1) (by wap—r,—3 = Wap—r,—1 —2™)
= Wap—pyo1 = 2" = 2b 41, + 1)
= Wi,
V) ¢ =qur1—=2""" = w0 = 2" =y 3 =2 =y

= W2p—r—1-
(i) and (ii) imply (6.8), (iii) implies (6.9) and finally (iv) implies (6.10). Hence,
Q = W. This completes the proof for the case where the responder answers “yes”
to question 2.

Suppose now that the responder answers “no” to the question 2. Then, upon
asking the question 2"° = “Is x < ¢,+1 + 2h=19” it turns out that the new set of
questions, namely

{Zi=“Tsx <q?”|i=12,.... k-1, U{2"},
coincides with the set of questions
2Z={Z%="Isx<z?7|i=12,...,k},
where

@+ NP Ny 4 NH i=12....b

Zi =
@+ N9 —NEY+ NS NS i =b b2, 20— 1.

By inductive hypothesis, these are the starting questions of a winning strategy for
the (Nt[f]l, k)-game over the search space {a’ +1,...,a" + Nt[f]l}, where a’ = a +
N, t[k] —-N t[f]l. The proof is analogous to the one given in the analysis of the case where
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the responder answers “yes” to the question 2. Therefore,  —1 questions, including
the one in Z, suffice to complete the search. Taking into account the question Z,
which has been already answered, again we conclude that ¢ questions suffice to
successfully complete the search in the space {@ + 1,...,a + Nt[k]}, as desired.

Summarizing the above discussions, we have the following:

Corollary 6.1. Fix an integer b > 1 and let k = 2b — 1. For all integers a and
t > 0, there exists a normal winning strategy . of size t for the (N,[k], k)-game
over the search space {a + 1,a +2,...,a + N,[k]}.

Proof. Straightforwardly by Lemmas 6.2, 6.5 and 6.3.

Proof of Theorem 6.1. By Lemma 6.1, Theorems 6.3 and 6.4, and Corollary 6.1.
[ |

6.2 Search with Variable Batches and Delays

We now consider another variant of the general problem of searching with parallel
questions and delayed answers outlined in the introduction. Here, two sequences
of non-negative integers, kK = kiky---k, and d = d;d,---d;, are given. The
questioner has to guess the secret number x by asking comparison questions to the
responder according to the following rule: At timei (i = 1,2,...), the questioner
has to ask exactly k; questions and the answers to these questions will be only given
by the responder before time” i + d; + 1 but after time i + d;. This constitutes the
(n,k, d)-game, and we say that the questioner has a winning strategy of size ¢ if ¢
questions are sufficient to find the secret number x for any choice of x € S.

For any integer ¢ and any pair of sequences k and d, we shall exactly evaluate
the largest value of n such that there exists a searching strategy for the (n,k, d)-
game which allows us to find the secret number with at most ¢ batches of questions.
Indeed, since the number of questions that are to be asked at any time is fixed, the
problem of determining the least number of questions necessary and sufficient to
guess an unknown number is the same as that of determining the least integer ¢ such
that after the 7th batch of questions has been asked the questioner has only to wait
for the remaining answers and then is able to identify the secret number.

By a strategy (of the questioner) we understand an algorithm that produces the
first k1 questions to be asked at time 1, and then, forany i = 2,3, ..., outputs the k;
questions to be asked at time i, having as input the answers given by the responder
at times j = 1,2,...,i — 1, For any strategy .%, the size of . is the maximum
number of questions asked by a questioner using . to find the secret number, where
the maximum is computed over all possible choices of x.

7We require that Zﬁ=l k; > n so that the questioner can always find x by asking n questions,
namely, “Is x < j?’for j = 1,2,...n.
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Since forany i = 1,2, ..., the number of questions to be asked at time i is fixed
in advance, we shall first consider the following problem: For any # and sequences
of batch sizes k and delays d, evaluate the largest value of n such that there exists a
strategy . of size th=1 k j, which allows the questioner to successfully complete
the search in ¢ time units. We shall also say that . is a strategy of (time) length t
for the (n, k, d)-game.

Definition 6.3. Lets = s;5, ---5;, be any sequence of ¢ non-negative integers.
Then

1 is the length of s and is denoted by £(s),

e forany 1 <i < j <1, sj._;denotes the subsequence s; s;+1 ---s;. For j <1,
i1 =9,

» for any sequence r = r rp---ry,, we denote by r o s the sequence obtained by
appending the sequence s to the sequence r in formulaero s = ry ---r, s -+ - 5.

Given the sequences k = k;---k, andd = d; - - - d;, it turns out that the largest
value of n such that there exists a strategy of length ¢+ = (k) = £(d) for the
(n,k, d)-game is given by the formula

1 ifd=0
Ak, d) = ) (6.11)
A (k[2...t]7 d[z...z]) + k1A (k[gg1 +2..4]s d[d1+2...t]) otherwise.

We first prove the following lower bound on the size of the largest search space,
where it is possible to guess an unknown number by using ¢ batches of questions.

Lemma 6.6. For any integert > 0 and for all sequences of non-negative integers
k and d such that £(K) = £(d) = t, there exists a strategy of length t for the
(A(k,d),k, d)-game over the search space S = {1,2,..., A(k,d)} or any transla-
tion of it.

Proof. By induction on ¢ = £(k) = £(d). The claim is trivial for t = 0.

Let # > 0 and let the claim be true for all sequences of size u < ¢ — 1. For any
sequences of batch sizes and delays k’ and d’ such that £(k’) = {(d) = u < ¢,
let us denote by #(k’,d’, S’) a strategy of length u for the (A(k’,d’),k’, d’)-game
over some search space S/, which is a translation of the set {1,2, ..., A(k’,d’)}. Let
w = A (K¢, +2..4], ¢, +2..17) and

g = Ak, d)—iw fori =1,2,...,k,
Recall that k; questions have to be asked at time 1. Let .% be the strategy defined as
follows:

e Attime 1 the strategy .& asks questions “Is x < ¢;?” fori = 1,2,...,kj.
e Forj =2,3,...,d, + 1, the strategy .” keeps on asking questions according to
the strategy ' (Kp...).dp.., U), where U = {1,2,..., A(Kp. ;. dp..,)}. More
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precisely, the batch of questions asked by .# at time j is the one asked by
y(k[zmt], d[2...t]» U) attime j — 1.

e Forj =d;+2,d;+3,...,the behavior of . depends on the answers given to
the first k| questions which have become available, namely:

— If the answer to the question “Is x < g, ?” is “yes”, then .” keeps on asking
questions following the strategy (K4}, dp2..1, U). At time j (foreach j =
di+2,d,+3,...) the batch of questions asked by strategy .7 is given by the
batch of questions asked at time j — 1 by the strategy (K.}, dp2..p, U).

— Conversely, suppose that there exists an index i € {1,2,...,k;}, such that
the answer to the question “Is x < ¢;?” is “no” and the answer to the
question “Is x < ¢;—?” is “yes”.® Then, . continues by following the
strategy - (Kig, +2...1, dja,+2..4, V), where V. = {q; + 1,¢; +2,...,q9i—1}.
More precisely, in this case the batch of questions asked by .¥ at time j will
coincide with the batch of questions asked in . (K(g,42..1], djg, +2..17, V) at
time j —d; — 1.

We shall now show that the strategy . successfully completes the search. We
shall argue according to the different possible outcomes of the first k; questions
considered in the definition of .7

If the answer to the question “Is x < g4, ?” is “yes”, then .% keeps on asking
questions following the strategy . (Kp. ], dp..11, U). Since

g, = A, d) —ky - A (Kigy 2.4, Qg 42..17) = A (Kp..o. dp.g) S

we have that x € {1, 2,...,A (kpm,], d[z___t])} = U. The desired result now follows
by induction hypothesis, since . (kp. ], dp2...1, U) is a strategy of size ¢ — 1 for the
(A (k[z___t], d[z,“,]) JKp. g, d[z,“,])-game over the set U.

Conversely, suppose that there exists an index i € {1,2,...,k}, such that the
answer to the question “Is x < ¢;?” is “no” and the answer to the question “Is
x < q;—17" is “yes”. Therefore, x € {¢; + 1,¢q; +2,...¢;—1} = V, and we have
that

VI =gi-1 —qi = A (K, +2..40 diag +2..1]) -

Recall that (induction hypothesis) (K4, +2...1], dja, +2..1, V) is a strategy of length
t —dy — 1 for the (A (K@, +2..4, Qg +2..11) - Kiay 2.7 dja, +2...])-game over the set
V. Since in this case the questions asked by .# coincide with those asked by
L (Kigy+2..1- dig, +2..17, V'), we have that . will successfully identify x within the
remaining ¢ — d; — 1 time units as desired.

8For sake of definiteness we can safely assume that g = A(k,d) and there exists an implicit
question “Is x < g(?” whose corresponding answer is trivially “yes”.
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We shall now prove an upper bound on the size of the largest search space where
it is possible to locate an unknown number by using # batches of questions. We shall
need the following two easy lemmas.

Lemma 6.7. Fix an integer t > 0 and two sequences of integers kK = ki ka---k,
andd =d; d,---d,. Lett = minlfl‘ff{i +di+1tand j =min{i | i+d;+1 = f}
Let the sequences of integers k' = k| k) ---k; andd’ = d| d; - --d] be defined by

ki i=1, i—2 i=1,
ki=Skioy, i=2,....] di=3di_1—1 i=2,...,]
ki i>;, d; l>j~

Then,

(i) Ak,d) = AK,d).
(ii) For any integer n > 0 and for any strategy . of length t for the (n,k, d)-game
there exists a strategy of length t for the (n,kK’,d")-game.

Proof. In order to prove the statement (i ), we have

J
! n __ ! / i ! !
AK',d) = ZkiA(k[i+di'+l...r]’ [i+d,.’+1...r]) + A(k[f+1...r]’ d[f+1...r])
i=1

J
! /! / ’ /! !
= klA(k[?...r]’ d[?...r]) + ZkiA(k[i+d,~'+l...t]’ d[i+d,.’+1...r])
i=2

/ /
+A(k[f+1...t]’d[f+1...t])

= ka(k[i+d;+1...r]v d[}+d;+1...r])

J
+ Z ki VARG —1)tdi—+1..0]> A=)+ di—y +1...4])
i=2

FAKG Ly A
= A(k, d).

We shall now prove statement (i7). Let .7 be the strategy for the (n, k, d)-game.
We define a new strategy .’ as follows. In ./ the questions asked at time 1 are
exactly those asked at time j in the strategy .. Fori = 2,..., j , the questions
asked at time i in the strategy .’ are exactly those asked at time i — 1 in the strategy
.Fori > j the questions asked at time i in .7 are those asked at time 7 in .. It is
not hard to see that . is a strategy of length ¢ for the (n,k’, d’)-game. Indeed, we
have only changed the time of the questions asked in that part of the game where all
the questions are asked non-adaptively. The rest of the strategy, with all the causal
dependencies among questions and answers, has been kept unaltered.
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Lemma 6.8. Fix an integer t > 0 and two sequences of integers K = ki ky---k;
andd = dydy---d; such thatdy + 2 < i +d; + 1 foreachi = 1,2...,t. Let
F={i|2<i<d +1landi+d; +1=d,+2}. Let the sequences of integers
K = k{ k) ---k] be defined by

k1+ZjEij i=1
ki=10 ieF

k; otherwise.

Then,

(i) Alk.d) = A(K'.d).
(ii) Forany integers n > 0 and for any strategy .# of length t for the (n, Kk, d)-game
there exists a strategy ./’ of length t for the (n,K', d)-game.

Proof. In order to prove the statement (i ), we have:

A, d) = Ak, . dp.gg) + kAR, 4o did 42..01)

di+1
= Ay, 1207 Qg 2.0 + Z ki AKG 4 g 4101 D+ di1..01)
i=1
idF
= AR 421, g +2..07) + K1 AKlg, 4o diay +2..1)
di+1
+ Z ki AKji g 1.0 i dy+1..0))
i=2
idF
= Ak, +2..1), A, +2..1) + k1 AKay +2...07, djg, +2..1)
di+1
Z ki A(Kji+d;+1...07 Aji+-d;+1..41)
i =2
ieF
di+1
+ Z ki AKji+d;+1...07> Aji+-d; +1...17)
i=2
igF
— Ak, d).
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With the aim of proving statement (i7), let . be a strategy for the (1, k, d)-game.
Let 25 be the set of questions asked at time 7 in the strategy .. The strategy .% !
is defined by stipulating that the questions 25/ asked at time i are given by

, 25V U Uier 257 i =1
24D =19 i€eF

20 otherwise.

Therefore, the strategy .’ coincides with strategy . but for the fact that the
questioner asks at time 1 all the questions that in the strategy . were the first to be
answered by the responder (and precisely at time d; + 2). Since this change does
not modify the dependencies between the questions and the received answers, the
new strategy .’ behaves exactly as the strategy .7

Lemma 6.9. Fix an integer t > 0 and two sequences of non-negative integers k
and d such that £(K) = €(d) = t. Let (K, d) be a searching strategy of length t
for the (n,k, d)-game over the search space S = {1,2,...,n} (or any translation
of it). Then,

n < Ak, d).

Proof. By induction on ¢. The claim is trivially true for t = 0.

Let ¢ > 0 and assume the claim true for all sequences k’ and d’ of length £(k’) =
L(d) <t

Let7 = min;<;<,{i + d; + 1} denote the time when the first batch of answers
is received. Hence, the first th_:ll k; questions are asked from scratch, before that
any information is available from the responder’s answers.

By Lemmas 6.7 and 6.8 we may safely assume that the answers received at time
7 are all and only those given to the k; questions asked at time 1.

Foralli = 1,2,....¢,let“Is x < ¢"?, ..., “Is x < ¢

asked at time i. We can safely assume that qi(j) < ql.(j/) foralll < j < j' <k;.

We also tacitly assume that, for all i = 1,2,3...,¢, there are two additional

i(o)?” and “IS X S qi(ki"l‘l)?n’

be the questions

implicit questions asked at time, i, namely, “Is x < ¢

with qi(o) = 0and g~

; = n, which are respectively answered “no” and “yes”.
These (virtual) side conditions will turn out to be useful to the analysis.

According to the answers given to the first batch of questions there exists exactly
oneindex j € {1,2,...,k; + 1} such that

- - A
X €9 ={Q§J )+1,q§’ )+2,...,q§1)}.

The index j is exactly identified by the fact that the question “Is x < q%j )y

3 ”» 3 3 _1 9
been answered “yes” and the question “Is x < qi’ )9

has
has been answered “no”.
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Foralli =2,3,...,1 +dy,let ri(’ ) , be the number of questions in the i th batch
(at time 7) asking “Is x < a?”, witha € J; \ {qi”}. These are all and the only
questions which have been already asked and are still meaningful to the overall
searching strategy when the questioner realizes that x € .#;. By definition, we have

ki+1 }
Y>or <k fori=2.....d +]1.
=1

Letr¥) =0 réj ) réj ) r;{ il. Since after the first answers have been already given
the rest of the strategy includes only # — 1 batches, by inductive hypothesis we have

that
|75] < A(l'g,?,dlﬂ] o K4 +2..1]5 d[2...t]) , (6.12)

where the right-hand side is an upper bound (by inductive hypothesis) for the size of
the largest search space in which it is possible to guess an unknown number with the
remaining meaningful questions, including the ones that have been already asked in
the first 7 — 1 = d; + 1 batches. Repeating forall j = 1,...,k; + 1 and summing
up, we have:

ki1
n = Z |71
j=1
ki1
< Z A(rg?.dﬁl] ° k[d1+z...t],d[z...t])
j=1
ki1
= Z (A(l'g,?,dﬁl] oK, +2...r],d[3...t]) + rz(j)A(k[d2+3...r], d[d2+3...t]))
j=1
kil fdi+1
= Z (Z ri(j)A(k[d,~+i+1...t],d[dl-+i+1...t]) + A(Kia, 2.4, d[d1+2...t]))
j=1 \i=2
di+1 ki+1
= (k1 + DA(Kig, 2.1, Ay +2..47) + Z AR, +i+1..4 Qg +i+1..17) Z rim
i=2 j=1
di+1
< (ki + DA(Kig, 42,47, Qg 42..7) + Z ki A(Kpa, +i+1..47, Qg +i+1..11)
i=2

di+1
= A(Kig, 2.1, Qg +2..07) + Z ki A(Kig, +i+1..7 Aid, +i+1..11)

i=1
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= [A (K, +2..7- digy +2..47) + kd1+1A(k[d,,l+1+d1+2...t], d[dd1+1+d1+2...t])]

dy
+ Z ki A(Kig, +i+1..7 dig; +i+1..1])
i=1
d
= A(Kig, 1.4, Qg +1..07) + ZkiA(k[di+i+l...t]s dig, +i+1..1))
i=1

= Ak, d).

The following theorem rephrases the main results of this section in terms of the
size of the optimal strategy for the (n, k, d)-game.

Theorem 6.6. Letk = ki1 ky ... andd = di d, ... be two (possibly infinite, but
then infinitely often nonzero) sequences of non-negative integers. For alln > 1, let

t =min{i | A(kp.ip, dpp..ip) = n}
and
Kk = min {j |1 <j <k and A(k[l...t—l] oj.di.n) = ”} :

Let g be the size of the shortest strategy to guess a number in the set S =
{1,2,...,n} when exactly k; questions are asked at time i and their answers are
only available before time i + d; + 1. Then,

1—1
q=K+ ij.
j=1

6.3 Lost Answers and Delays

In the search problem we shall consider in this section, errors are no longer
mendacious answers, but rather lost answers.

In terms of Berlekamp’s error-correcting transmission with a feedback channel,
this new setting corresponds to the case where the feedback channel is only used to
acknowledge the receipt (or the non-receipt) of the source bits. Any bit delivered to
the receiver is taken to be correct, but some of the bits may be lost or erased during
transmission. Moreover, in the model considered in this chapter, the channel might
be much slower in delivering bits than is the source to produce them. Therefore,
we assume that the (positive or negative) acknowledgement of the ith bit reaches
the source only after the (i + d)th bit has been sent, where d represent the delay
introduced by the channel.
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Loss or erasure of an answer can be the effect of (software or hardware)
devices whose task is to clear spurious bits from the channel. Altogether, we may
assume that the quantity d represents the maximum time the receiver is to wait
before the sent bit reaches him. After the deadline of d time units has expired, an
undelivered bit is automatically destroyed (as a time-out bit) in order to prevent
de-synchronization of the communication channel.

As a variant of the Ulam-Rényi game, the problem of searching with delays and
cancellations is formally stated as follows: Paul and Carole now agree on three
integers d,c > 0 and M > 1, the latter denoting as usual the cardinality of the

search space S = {1,2,..., M}. Then Carole chooses a number x in S, and Paul
has to identify x by only using comparison questions, e.g., “is x < a?”, for some
a € S.Foreachi = 1,2,..., Paul must ask a question precisely at time i. This is

his i th question. On the other hand, Carole’s answer to the i th question is delivered
to Paul during the open interval |i +d,i +d + 1[. Thus, in general, Paul asks his ith
question when the answers to his previous d questions are still pending. Trivially, if
t is the overall number of questions asked by Paul, then, foreachi = 0,1,...,d —1,
when Carole answers the (¢ — i)th question, only i questions are pending. A dual
remark applies to the first d questions.

The parameter ¢ represents an upper bound on the number of possible erasures
or losses of information for Paul. In game terms, we allow Carole not to answer up
to ¢ many questions—or equivalently, up to ¢ answers may be lost.

The problem is then to find the (minimum) number of questions sufficient for
Paul to guess the secret number x.

If the total number of questions asked by Paul is ¢, then we say that Paul wins
the (M, d, c)-game with ¢t questions. Notice that the game actually ends at time
t+d+1.

Remark 6.2. The problem of coping with lost answers in the classical setting (i.e.,
when there is no delay between questions and answers) is trivial—for there is no
better strategy than repeating all unanswered questions. Analogously, if arbitrary
yes-no questions are permitted, then even assuming delayed answers, an optimal
strategy is given by asking for the binary encoding of the secret number and
repeating all unanswered questions.

The results of this section are given for a dual counterpart of the above problem.
We shall be interested in determining Ag) () defined as the largest integer M such
that Paul wins the (M, d, ¢)-game with ¢ questions. We shall start looking at the
case ¢ € {0, 1}.

Let us define the following quantity.

Definition 6.4. For any integer /,d > 0 and ¢ € {0, 1}, let
|45 +1 ift <d+1

B (1) = (6.13)
BOU-1)+ BVt —d—-1)ift >d+2.
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We shall prove that for all integers ¢ > 0, d > 0 and for each ¢ = 0, 1, we have
A1) = BY (). (6.14)

The following proposition provides some technical properties of Bc(f) (t) which
will be used for obtaining (6.14). Here we limit ourselves to state such properties
without proving them. The complete proofs are deferred to Lemmas 6.11,6.12,6.13
at the end of this section.

Proposition 6.1. Fix two non-negative integers d and t. Then, the following
inequalities hold

1. B @) < BVt —1);
2. BV < BP(t+1) - B +1);
3. ift>d+3andforanyj =1,..., L%J, we have

BYt—-1-))+B 0t —-1-(d—-j)<BPt-1)+B @ —d-1.

The Upper Bound. We are now ready to prove that Bg(f) (¢) is an upper bound on
the maximum size of the search space in which Paul can win with ¢ questions.

Theorem 6.7. For all integerst > 0 and d > 0 and for eachc = 0, 1,
AY @) < BY ().

Proof. We argue by induction on 7.

Induction Base. 0 <t < d + 1. In this case the whole questioning is non-adaptive.
Recall that B;C) ) = LC’?J + 1. We shall show that no strategy using ¢ questions
can exist to search for an unknown number in a set of cardinality LC’?J +2 =
B (1) + 1; hence, A (t) < B (1).

The argument is by contradiction. Suppose that there exists a strategy with ¢
questions to search in the set S = {1,2, ... LHI_IJ + 2}. Then, for at least one i € S
the question “Is x < i?” has been asked at most ¢ times. If ¢ = 0, it is easy to
see that all the other queries are not enough to discriminate between the case where
the secret number is i and the case where the secret number is i + 1. Analogously,
if ¢ = 1 and the answer to the only occurrence of the question “Is x < i?” is
cancelled, we have the same situation and the questioner cannot guess whether the
secret number is i or i + 1. Hence, the strategy is not winning, contradicting the

hypothesis. Therefore, it must be Aﬁf) < H7l+1= B:f) (2), as desired.

Inductive Hypothesis. Aﬁf)(i) < Bc(f) (i) foralli <t.

Induction Step. Assume that there exists a strategy to win the (Af;) (t),d, c)-game
with ¢ questions, and let “is x < ¢;?” be the first question in this strategy.
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Let j be the number of queries, among the pending ones, which ask “Is x < a?”,
for some a > ¢qy, and J denote the set of such j questions.

If the answer to the first question says that x < g, (i.e., a positive answer is
received), then the answers to the questions in J will not provide any additional
information since x < ¢; implies x < a for any a > ¢y, i.e., all the questions in J
will be obviously answered positively.

Therefore, t — 1 — j of the remaining questions (including the pending ones
and the ones still to be asked) must be sufficient to identify the secret number in
the set {1,2,...,¢;}. Thus, the set {1,2,...,q;} is not larger than the largest set
which allows a successful searching strategy with # — 1 — j questions, i.e., ¢; <
AP —1- ).

Conversely, suppose now that the answer to the first question is “no”. Then, by
hypothesis, only j of the pending queries are useful, that is, exactly those in the set
J.Hence, theset {g; +1, ..., Af;) ()} is not larger than the largest set which allows
a successful searching strategy with 1 — 1 — d + j questions, i.e, Aﬁf) (t) —q <
AV —1-d + ).

Finally, since for ¢ = 1 the answer to the first question may also be cancelled,
we have Afil)(t) < Afjo) (¢ — 1). Therefore,’

A9 ) < min§ max {4V —-1-j)+ 400 -1-d +j)},A§f‘”(z—1)}

0<j<l4]

d

<min{ max (B¢ —1-j)+BYc—-1-d+ ), B "t -1)
0<j=<l9]

(by inductive hypothesis)

— min {Bj;"(z — )+ B4 —-1-d).BY (- 1)}
(by (3) in Proposition 6.1)

= min {BY (0, B{ ™" = D} = B ).

The Lower Bound. We shall give an algorithm for successfully searching in a
space of cardinality B;C) (t), with ¢ questions.

Theorem 6.8. For all integers d > 0, t > 0 and for each ¢ = 0, 1, we have
AP (0) = BY ().

Proof. We shall show that ¢ questions suffice to search successfully in the set § =
{1,2,..., B (1)}

9Here, we assume for sake of definiteness that B;C) ) = A;ﬁl) (t) = oo forallt,d > 0.
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For¢t < d + 1itis enough to ask ¢ + 1 times for any number 1,2, ..., LC’?J.
Since no more than ¢ answers can be erased, for eachi = 1,..., LC’?J, there
will be at least one answer to the question “Is x < i?”. These answers provides
sufficient information to identify an unknown number in the set S (recall that

B (1) = I d) + D

Now fix # > d + 2 and assume that for any ¢’ < ¢ the claim is true, i.e., there
exists a strategy of size ¢’ to identify the unknown number in a set of cardinality
BY (1.

We show a strategy with ¢ queries to search in a set of size B:f) (). Ask the first
d + 1 questions, respectively, at points B((;) =1, B((;) t-2),..., B;C)(t —d-1).

* If the answer to the first question is “no”, then the unknown number belongs to
the set {BY (1 = 1)+ 1, B (t = 1) +2,..., BY (1)}, which is of size B\ (r) —
B;C) t-1) = B((;) (t — d — 1). Then, the inductive argument shows that the
remaining ¢ — d — 1 questions suffice to complete the search successfully.

 If the answer to the first question is “yes”, then ask the d + 2th question at point
Bg(f) (t —d —2). Thus, we are in the same situation as we were before the answer.
In fact, we are now to search in an interval of size B((;) (t—1) with t — 1 questions.
Again the desired result follows by induction.

*  We have settled the case ¢ = 0. The following only accounts for the case ¢ = 1.

 If the answer to the first question gets cancelled, then our strategy asks the d +2th
question at point Bg(ll) t—-2)+ BC(JO) (t —d —2). In other words, we start to search
the set {B;l) t-2)+1,..., B;l) (z)} by using the strategy for a set of cardinality
Bg(lo) (t — d — 1) with no cancellation. This accounts for the case in which the
second answer is “no”. If this is the case, then the unknown number is indeed in
the set {B (1 —2) + 1, Bt —=2) +2,..., B (1)}, of size BV (1 —d — 1) +
Bg(ll)(t —d-2)< Bg(lo) (t —d — 1) (by (2) in Proposition 6.1), and we have the
desired result by induction.

Conversely suppose that the second answer is “yes”. Then there are t —d — 2
questions left and we know that the secret number is in the set {1,2,..., Bg(ll)

(t — 2)}. Remember that there are d — 1 useful pending questions at points Bg(ll)
t-=3),..., B;l)(t —d — 1), and the dth pending question is a useless one at
point B((io) t—d-2)+ B;l) (t — 2). Our strategy consists of continuing to ask
questions at points Bg(lo) (t—d—3), BC(JO) (t —d —4),... until a “no” answer is
received. If the “no” answer is given to one of the pending questions, say the
one asked at point B((il)(t —2—1i) (forsomei € {1,2,...,d — 1}), then the
secret number belongs to the set {Bc(ll)(t —-2—-i)+1,..., Bc(ll)(t —-2—i+1)}

of size B((il) (t —d —2 —1). Since no more cancellations are allowed and, by (1)

in Proposition 6.1, B((il)(t —d—-2-1i) < B((io) (t —d — 3 — i), the remaining

t —d — 3 — i questions are sufficient to successfully identify the secret number.
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If the “no” answer is not given to any of the first d pending queries, i.e., the
secret number belongs to the set {1,2,..., Bg(ll)(t — d — 1)}, then because of
B;l) t—-d-1) < B;O) (t —d — 2) (by (1) in Proposition 6.1), the remaining
questions are sufficient to successfully identify the secret number in a set of
cardinality Bg(lo) (t — d — 2) (with no cancellation), and a fortiori we can succeed
with the remaining search space of size B;l) (t—d-1).

Theorems 6.7 and 6.8, together with Definition 6.4 gives the exact estimate of
A4 (1) for ¢ € {0, 1}.

Theorem 6.9. Forallt >0, d >0 andc € {0, 1}, the following holds:

|47 +1 ifr <d+1

A0 -1+ AV —d -1)ifr>d +2.

A9 ) = (6.15)

The following corollary provides an asymptotic estimate of Af;) based on the
solution of the recurrence in (6.15).

Corollary 6.2. Let ¢y be the largest (positive) real root of x4+! = x¢ + 1. Then,
forallt >0, d >0 and c € {0, 1}, we have AE;)(Z) € O(¢p)), and
log,, (n + 1) + O(1)

questions are necessary and sufficient to win the (n, d, c)-game.

6.3.1 Extensions and Generalizations

It is possible to give an alternative formulation of the recurrence (6.13) that seems
to be more suitable for generalizations to the case of an arbitrary (fixed) number of
cancellations (¢ > 2).

Definition 6.5. For all integers d,¢,c¢ > 0 let

for t <0

n(C) !
B,(t) = (6.16)

Y G.d) otherwise,
where
e fori=1,...,c+1,
J
BY @ —d—i+ )=y GOy .
k=1

G.d) = ,min

<j<i-1
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e fori >c+2,

J
(c) : p(c—Jj) : : (c)
G, (t,d):orsnjlgc B, J(t—d—l-i—])—kElGi_k(t,d) .

For ¢ = 0,1, and for all d,¢ > 0, it holds that Aﬁf)(t) = éc(f) (t). Moreover, we
have the following:

Conjecture 6.1. If ¢ < d then l?;c)(t) = Af;)(t).

The more difficult part in proving this conjecture is to show that 1;’6(16) (¢) is the
right lower bound. For the inequality B\ (1) < A (1) we sketch the proof in the

following lemma, providing a winning strategy for the (é((;) (t),d, c)-game with ¢
questions. It is an open question whether the converse inequality holds.

Lemma 6.10. For all integersd > 0, 0 < ¢ < d andt > 0, we have lg’l(ic)(t) <
A9 ).

Sketch of the proof. We outline a winning searching strategy for the (l;’:f) (t),d,c)-
game with ¢t questions. We shall omit most of the technical details and limit
ourselves to describing the main ideas. The argument will be by induction on .
Fori = 1,2,..., let us identify the question “Is x < ¢;?” with the integer ¢;.
We also say that Q asks the ith question at g;.
Forl1 <i <d + 1, we set

g =By 1 - 6.

Jj=1

Ift <d + 1 we have

GO d) = Lfori =1+ (c+1)j, j=01,....[Z5]
! 0 otherwise.
Hence, the strategy asks ¢ + 1 times “Is x < i?” foreachi = 1,2,..., LC’?J,
so to be able to search successfully in the set {1,2,..., LC"‘?J + 1}. It is not hard

to see that, in fact, in this case our strategy is optimal in the sense that é;c) t) =

|5 ]+1=45).
Ift > d + 1, when the first answer is received the strategy proceeds as follows:

3

1. if the answer is “yes” then our strategy asks the d + 2nd question at point
qi+2 = qd+1 — G((;_)H(t, d). Then we are in the same situation as before and

the correctness of our strategy follows by induction;
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2. if the answer is “no” then the set of possible solutions reduces to S’ = {q; + 1,
...,l?l(;)(t)}, and by |S'| = ch)(t, d) < gc(f)(t — d — 1) we can complete the
search with the remaining t — d — 1 questions, by inductive hypothesis;

3. if the first answer is not delivered, the d + 2th question is asked in S” = {g, + 1,
cee l?;c) (1)}, by recursively applying the same strategy in such a set.

We have to analyze three possible cases according to how the second question
is answered.

If the second answer is “no” then the set of candidates to be the secret number
becomes S” = {g» +1,..., E;C)(t)}. We have |S"| = ch)(t, d)+ Géc)(t, d) <
E;C_l)(t — d — 1) by the definition of Géc)(t, d). Thus, by induction, we can
complete the search in the set S” with t — d — 1 questions. Indeed we already
correctly asked the d + 2th question in order to accommodate such situation.

If the second answer is “yes”, then, the d + 2th question (the one we have
already asked in S”) becomes useless. However, and in analogy with what we
have said in points (1) and (2) above, the pending questions allow us to complete
the search if the following i — 1 answers are “yes” and, next, a “no” answer
is received, that is, the reservoir of possible solutions reduces the interval I; =
{gi+1 + 1,...,q;} for some i = 2,3,...,d. Indeed, by definition, we have
;| = G,(t,d) < B (t —d — (i +1)) < BY V(¢ —1—d — (i +1)); hence, a
fortiori, the original pending questions are effective in the present situation, now
that up to ¢ — 1 of the remaining questions can be lost. Then our strategy asks the
d + 3rd question in order to cover the set {1,2,...,¢s+1} with the remaining
t—d —2 questions. This is, in fact, attainable by ﬁg(f) (t—d—1) < B;C_l) (t—d-2).

Finally, if the second answer is lost, then we can recurse on the above
reasoning to prove that the search can be completed correctly.

6.3.2 The Proof of Proposition 6.1

Lemma 6.11. For all integers d > 0 and t > 0 we have
BV (1) < BVt —1).

Proof. For 0 <t < d + 1, we have B;l)(t) = L%J +1=<t= B;O)(t —1). Let
t>d+1land B\ (i) < B (i —1) forall i <t. Then,

BV @) = BP -1+ BV t—d—1) < BV (1—-2)+ BV (1—d-2) = BP(1—1).
Lemma 6.12. For all integers d > 0 and t > 0 we have

BP0 < BY ¢ +1)- BV +1).
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Proof. The proof is by induction on ¢.

Induction Base. By Definition 6.4 we immediately get

Bc(10>(t + 1)—351)(1 +1)=0+2)—- L#J —1> L#J

- L%J +1=BYa),

forallt =0,1,...,d.Fort =d + 1 we have
B¢+ 1) — Bt +1) =B (d +2) - B{(d +2)
=BYd+1)+BY1)-BVw@+1)- B )
=BYd+1+2-BYd+1)—1>1+B")

BV +1) =BV ®.

v

Induction Step. Now suppose that the claim is true forallt <i andi > d + 1. We
shall prove that it also holds for # = i + 1. Indeed,

B¢ +1) - BVt +1)=BPi+2)- BV +2) =

=BPGi+1)-BVi+1)
+BP(+1-ad)- B +1-d)
(by definition, and rearranging terms)

> B (i) + B (i —d)
(by inductive hypothesis)

=B +1) =BV,

which concludes the proof.

Lemma 6.13. For all integersd >0, t >d +3,and j =1,2,..., L%J, we have
Bt —1-j)+BVt—1-d—-j)<BPe-1)+BV1—-d-1).

Proof. Suppose the claim true ford + 3 <t < 2d + 2. Then, for ¢t > 2d + 3, we
have

BYt—1-j)+ Bt —-1-(d-j)=
=BVt -2-j)+BV1-2-d—))
+BV(t—2—d-jn+BY1t-2-2d +))
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<BW@-2)+ BVt -2-d)+ BVt —2—-d)
+B"(t —2-24)
=BVt —-1)+B @ —d-1).

We shall now prove the claim for d + 3 < ¢ < 2d + 2. Arguing by cases, we
shall show that

BPt-1)—-BP(t-1-j)=BVt—1-d—-j)-BLV@t—-d—-1). (6.17)
First we note that under the standing hypothesis on d, ¢, j we have
t—1>t—-1—j>t—-1-(d—-j)>t—-1-d.

Casel. t—1>t—1—j>t—-1—(d—-j)>t—1—d >d + 1. We have
t = 2d + 2, and the desired result follows by

B d+1) - B Qd +1-j) =
=B (2d) + B"(d) - B"2d + 1~ j)
=BY2d-1)+B"@d—-1)+ B @) - B"@2d +1-j)

= ..-(after j steps)

J
=BQd +1-j)+Y B d+1-i)-BQd +1-))

i=1

Pd+1-iy+BPd+1)- B d+1)

J
:ZB
i=1
J

>y B @)+ By @+ 1) - B (@ +1)
i=1
=BVd+1+))-BV@+1).
Case2. t—1>t—-1—j>t—1—-(d—-j)>d+1>t—1—d. We write

t—1—(d—j)=d+1+4k;hence, k < j. Then, expanding j times the term
B:ll) (t — 1) as in the proof of Case 1, we have

J
B -1 - BV —1-j)=> B ¢—-1-d-i)
i=1

j—k j
=Y BY¢-1-d-i+ > BY«-1-d-i)
i=1

i=j—k+1



132 6 Delays and Time Outs

_k
B;1>(z—1—2d+j—i)+[JT1

-

>
1

d+1  d+1—(—k)

BVt —1-2d +j—i)+| —1-1 3 ]

M-

1

k
=Y B ~1-2d+j-i)+Bd+1)
i=1
BV +1-( —k
a d+1—=(—k)
k
=Y B0 —1-2d+j-i)+B C~1-d +j—k)
i=1

BVt -1-d)

=BVt -1-d+j)-BPt-1-4d).

Case3. t—1>t—1—j>d+1>t—1—(d—j)>t—1—d.Proceeding as
before, we have

J
BOG—1)—BY(—1-j)=Y B (—d—1-i)
i=l1
t—1-d+j i—-1-d
=1 ]

2 2
=BYt—-1-d+j)-BP @ —-1-4a).

>j>|

Case4. t—1>d+1>t—-1—j>t—1—(d—j)>t—1—-d.Setk =t—1—-(d+1);
hence,t — 1 — j = (d + 1) — (j — k). Thus, we have

BYe-1)-BYe—-1-))=

k
=B t—1-k+Y B t—1-d-i)-Bt—-1-))

i=1

d 1 t—1—7
BV —1—d—i)+| ;r R

]

Il
AM»

—

B;”(I—l—d—i)—i-Ld-;lj—L(d_'_l);(j_k)

]

—_

Il
AM»
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k .
—k
=Y Bl a—1-d—i)+ |75~

i=1

ik = - —1-d
N A L i

=BY1—-1-(@d-j)-BPw—-1-4a).

]

6.3.3 Broadcast with Latency vs. Search with Delay

We shall now analyze a correspondence between the above search problem with
delays and the problem of broadcasting in the fully connected network with link
latency. We shall start by formally stating what we mean by a broadcasting algorithm
for a point-to-point network with link latency.

Broadcast in the Postal Model

Communication subsystems of parallel and distributed systems and high-speed
networks are commonly modeled as message-passing systems in which any pro-
cessor can submit to the network a point-to-point message destined for any other
processor. The network is responsible for delivering the messages from their sources
to their destinations. Networks which follow this modus operandi are called point-
to-point networks. Models that tend to give an abstract view of these systems
de-emphasize the particular organization of the processors in the system in favor
of a simpler and more robust view of a fully-connected collection of processors.
They typically address issues of data packetization, separation of send and receive,
and communication latencies, which do not appear in traditional “telephone-like”
models.

In the Postal Model, the basic unit of interprocessor communication is a packet.
The model employs a latency parameter A > 1 which measures the ratio between
(a) the time it takes to deliver a message from its source to its destination, and
(b) the time it takes the source of the message to send it. Since the size of packets
in a system is fixed, this ratio is independent of the exact value of the setup time
(b). It is thus assumed that the time it takes the source of the message to complete
a submission round is one unit, and then it is free to start another round while the
submitted message may still be on its way to its target.

Packet-switching networks have different characteristics than local-area net-
works, which are based on a broadcast channel. Using such channels, primitives
of broadcasting feature almost identical performance as point-to-point messages. It
is desirable to get the same speedups in the packet-switching networks. Thus, much
work has been devoted to designing effective collective communication primitives
in point-to-point packet-switching networks.
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Broadcasting is a basic cooperative operation. It is used extensively in appli-
cations, including scientific computations, database transactions, network manage-
ment protocols, and multimedia applications. The broadcast operation is as follows:
Given a message M at a certain processor p of a point-to-point network .4, a
broadcast algorithm on .4 is a schedule of message transmissions by its processors
so that eventually M is known to all of them, and so that there are no redundant
transmissions of M to the same destination. A broadcast protocol is said to be
optimal when it is completed in the shortest possible time.

Broadcast and Comparison Search Are Isomorphic Problems

The following lemma shows in which sense the problem of searching with delayed
comparison questions and the one of broadcasting in the Postal Model can be
considered isomorphic problems.

Lemma 6.14. Let A be a fully connected network of size n with link latency d.
Then, there exists a protocol to complete a broadcast in the network A within t
time units if and only if there exists a searching algorithm to win the (n, d, 0)-game
witht — d questions.

Proof. We show only the direction Broadcast = Search. The other direction can be
proved in a perfectly symmetric way.

A broadcast tree is a rooted spanning tree of the network obtained obtained by
establishing that a node v’ is the child of the node v from which the message is
communicated to v’ for the first time. If the node v’ receives the message for the
first time concurrently from more than one node, the father is arbitrarily chosen
from among the sending nodes.

Let T be a broadcast tree attaining the protocol in the hypothesis. Without loss
of generality, we assume that, at any time, if there exists a node that can broadcast
to an uninformed node, it actually does. Notice that any protocol can be changed in
order to satisfy such an assumption without increasing the overall completion time.

We can transform 7 into a search tree S representing an algorithm to win the
(n,d,0)-game with t —d questions. As a matter of fact any node z of S corresponds
to a sequence of up to d + 1 questions: the first one is the question which is to be
answered next and the remaining ones are the pending queries which have been
already formulated. More precisely, the sequence of questions associated with a
node in S, has generally length d + 1. Let ¢ = ¢t — d be the overall number of
questions to be asked; hence, the height of the search tree S is g. Then, for each
i =0,1,2,...,d — 1 and any node in S at level g — i, the associated sequence
of questions has length i, since there are exactly i more questions to be asked,
all of which have been already formulated. Moreover, let the node y be a left

(resp. right) child of a node z and let [y, ..., y4+1] be the questions in the node
y and [z1,...,Z4+1] the questions associated with z. Then y; = z;4; for each
i = 1,2,...,d. This accounts for the fact that after one answer the pending d

questions are kept unaltered, and only the last pending query can be chosen.
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Fig. 6.2 Broadcast protocol = searching strategy

Our transformation goes as follows (see also Fig. 6.2 for a pictorial representation
ofthecase d =2,t =7,n = 9)'%

» Label the node in 7' by means of a DFS, with edges oriented from the root to the
leaves.

* Associate with any link incident to the node labelled i the question “Is x < i?”.

» Take the first d + 1 links stemming from the root of 7" in order of increasing
broadcasting time and put the corresponding questions [¢y, ..., ¢q+1] into the
root rg of the tree S.

* Recursively, for any node v in S define the two children of v, respectively, the
left child v, and the right child v,, as the new set of questions after the answer
“yes” or “no” to the first question in v. Let “Is x < a?” be the first question in v.

» If the answer is “yes” then the new question to put in vy is the one corresponding
to the first edge (in order of broadcasting time) stemming in 7" from the node a.
If no such edge exists then v, is a leaf in S’ corresponding to the solution x = a.

» Ifthe answer is “no” then the new question to put in v, is the one corresponding to
the first link (not already considered in increasing broadcasting time) stemming

1ONumbers near the edges and nodes of the broadcast tree represent time of, respectively, sending
and receiving information. Numbers inside the nodes are the labels assigned by the DFS.
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from the father of @ in T'. If no such link exists then v, is aleaf in .S corresponding
to the solution x = b, where b is the father of a in 7.

It is not hard to see that, if the number chosen is i and, in the broadcast protocol
node i is reached at time j, then the number i is found within j — d queries.

6.4 Bibliographic Notes

Searching with comparison questions and delayed answers was originally consid-
ered by Ambainis et al. [11], who provided the solution for the problem presented
here and ¢ = 0. The case ¢ = 1 was considered and solved in [59]. For related
research on computation with “delayed information” see also [8, 17, 18, 81]. In
particular the connection between the problem presented in this chapter and the
one considered in [17] was the main motivation for the material in Sect. 6.3.3.

Erasure errors had been previously considered in the non-adaptive setting in the
field of error-correcting coding (see, e.g., [103, 147,172]).

The Postal Model for the point-to-point network was introduced in [17]. In
the same paper Bar-Noy and Kipnis also provided optimal broadcast protocols.
Subsequently, optimal broadcast algorithms for the Postal Model were rediscovered
in a more general setting by Golin and Schuster [114]. The Postal Model is a
particular case of the more general LogP model for parallel computing. The
interested reader is referred to [80,99].

The problem in Sect. 6.1 can be seen as equivalent to the following one [137]:
There are k asynchronous and concurrent processors trying to locate a unit interval
containing the zero of a function f, knowing that f is monotonically increasing
and takes opposite signs at the end points of the search interval.

Each processor evaluates the function f at some point y and will subsequently
“move” left or right, according to whether f(y) > 0 or f(y) < 0. We assume
that processors are connected by a fast channel so that if two processors are busy
evaluating f(x) and f(y), with x < y, and the processor evaluating f in x ends
its job before the other processor evaluates f(y) and discovers that f(x) > 0, then
this information is made immediately available to all processors, in particular also
to the processor working on f(y). As a consequence, this processor can stop its job
(which has become useless) and move itself to another point z to evaluate f.

Kung [137] gave a strategy for the particular case k = 2. In [137] it is also
claimed that the given strategy is optimal in the min-max sense, but, to the best of
our knowledge, the proof has never been published.

For the particular case k = 2, the above problem also corresponds to that of
searching with fixed constant delay d = 1, considered in [11]. Analogously, the
problem in Sect. 6.2 can be considered a full generalization of the one solved in [11],
where the special caseof k =111 --- andd = d d --- is considered for all d > 0.



6.5 Exercises 137
6.5 Exercises

1. Consider the model of search with delayed answers of Sect. 6.1. For k = 6 deter-
mine the minimum value of ¢ such that there exists no winning strategy of size ¢
if the search space has cardinality N,[k].

2. With reference to the model of Sect.6.1 show that for any even integer k > 6
there exists infinitely many values of # such that no winning strategy can exist of
size ¢ for the (N,[k], k)-game.

3. Prove that if one considers the problem of searching with lost answers where
there is no delay between questions and answers, then there is no better strategy
than repeating all unanswered questions.

4. Consider the variant of the model of Sect. 6.3 where arbitrary subset questions
can be asked, i.e., queries are not constrained to be comparison questions. Show
that for any value of the delay parameter d and any value of the bound ¢ on the
number of unanswered questions, the size of an optimal strategy, when the search
space has cardinality M, is [log M| + c.

5. Verify Conjecture 6.1 for the special case d = 3 and ¢ = 2.

6. Try to establish bounds on the size of a non-adaptive strategy for the problem of
search with delayed answers and time-outs.

7. Show that for the case ¢ € {0, 1}, Definition (6.5) and (6.13) are equivalent.



Chapter 7
Group Testing

A thing may happen and be a total lie
another thing may not happen and be truer than the truth

T. O’Brien, The Things They Carried

Group testing is a search model which first appeared in the context of a biomedical
application, in the last years of the Second World War. It became clear that large
amounts of money were spent on testing soldiers who would eventually be found
not to be infected. Finding them healthy was obviously good news, nonetheless,
the large amount of “useless” testing was also considered a waste of public funds
which should be avoided, since the aim of testing the troops was to find the infected
individuals. It was in this context that the Research Division of the U.S. Price
Administration Office proposed a new approach consisting in performing the
analysis not on individual samples, but on mixtures obtained by grouping together
several individual samples.

As in the above seminal application, the principle of group testing relies on
the assumption that in the search space the number of individuals we are trying
to discover, called from now on the positives, is much smaller than the total number
of individuals and on the possibility of using tests whose results, if negative, imply
that all the tested elements are negatives. A negative test on a group then can save
many individual tests.

The efficiency of the approach depends on the design of the group tests. In some
cases, one may want to prepare a set of groups in such a way that a single round
of tests provides enough information to exactly identify all the positives. This is
referred to as non-adaptive group testing. An alternative is approaches where tests
are organized in batches and done in rounds called stages. In these cases, the tests to
be performed in a stage depend on the output of the tests in the previous stages. The
extreme case where each stage comprises exactly one test is referred to as adaptive
group testing.

F. Cicalese, Fault-Tolerant Search Algorithms, Monographs in Theoretical 139
Computer Science. An EATCS Series, DOI 10.1007/978-3-642-17327-1_1,
© Springer-Verlag Berlin Heidelberg 2013
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When optimizing group testing approaches, the main aim is the minimization of
the number of tests needed for identifying the positives. In the practical applications
of group testing a series of limitations have to be taken into account which motivate
the study of variants of the original problem of designing the groups. For instance,
although the adaptive approach usually needs a smaller number of tests, the number
of stages involved is often unacceptable because of the time and cost of preparing the
tests in each single stage. This is especially true when the group testing approach
is applied to physical or chemical tests. In such situations, waiting for the end of
a stage before performing the next stage tests might mean postponing the final
results by hours or even days. On the other hand, tests sometimes cannot be
automatically performed, and their parallelization is limited by the resources of
the laboratory performing them. Anyway, in general, there is a preference for non-
adaptive approaches, and even when adaptive group testing is used, the number of
stages is seldom greater than two.

Another type of constraint that can be imposed by the application is about the
structure of the tests. In some cases, a practical obstacle to the approach is that
groups cannot be chosen to be arbitrarily big. There are applications where the
group size is limited by physicochemical properties. For instance, in the original
application for discovering patients infected with syphilis, in groups with more than
eight samples a single positive sample may be so diluted that the test output is not
anymore accurate. In fact, this is the main reason why the group test approach was
actually not used during the Second World War for identifying syphilis-infected
soldiers. However, the approach found recently its original purpose again, and is
being successfully applied in tests for HIV identification. Actually, with respect to
HIV tests, group testing found even more applications: exploiting the fact that the
output of HIV tests is not binary, but continuous, researchers have devised a new
method based on group testing for estimating the virus prevalence, or the number of
contaminated people, in a population without the necessity of exactly identifying the
positives. This not only saves tests, but also provides important information while
keeping the identity of infected people private.

7.1 Group Testing with Subset Tests

A combinatorial group testing instance is defined by three elements: a finite set U,
representing the individuals to be tested; a set P € O representing the positives,
i.e., the elements in O that we need to identify; and a family 2 of subsets of
O, which represent the tests or queries, we can use to identify the positive set P.
The information provided by performing a test Q € 2 (or, equivalently, asking
the query Q) is the answer to the question “Does Q contain any positive element
from P7”

Assuming the number of possible stages unlimited, we denote by N(n, p) the
minimum number of tests necessary to identify at most p positives from among n
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elements, i.e., when |O| = n and | P| < p. The efficiency of a group testing strategy
is measured in terms of N(n, p).

A lower bound on N(n, p) can be obtained with a simple information theoretic
argument: With up to p positives in a search space of cardinality n, there are at
least (Z) possible sets of positives. The outcome of each test is binary, i.e., it brings

to the questioner up to one bit of information. We need at least log (;) ~p log%
bits to represent all the possible solutions, i.e., the different possible sets of positives.
Therefore, no algorithm that is able to correctly report the set of positives, however
chosen, can use less than this number of questions.

Adaptively, all positive elements can be easily identified using O(p logn) tests:
The strategy consists in performing binary search on O to find the first positive
element, x;. Then, we repeat binary search in O\ {x}, so finding the second positive,
Xx7. We now repeat in O \ {x;, x»}, and so on, until either we have found all the p
positives or the last binary search performed does not report any positive found. For
each positive this procedure uses O(logn) tests, hence a total O(p logn) tests are
sufficient. In fact, it is possible to reduce the number of tests to plogn/p + O(p).

The non-adaptive case requires significantly more tests, with the best known
lower bound being £2(p?log » 11/ p), whilst the best known non-adaptive strategy
needs O(p?logn/p) tests. A proof of this upper bound is presented in the next
section.

We can represent a non-adaptive group testing strategy as a binary matrix, where
the columns represent the elements of the search space and the rows represent the
tests. More precisely, assume w.l.o.g. that the search space is [n], the set of the first
n integers, and P C [n] denotes the set of positives. Map [r] to the indices of the
columns of the matrix and interpret its rows as the indicator vectors of the tests.
In words, a 1 in position (7, j) indicates that the ith test contains the jth element.
Now the vector of the outcomes of the tests is the Boolean sum of those columns
whose index is in P, i.e., their componentwise Boolean OR. Therefore, the group
testing problem can be interpreted as the task of building a Boolean matrix M with
n columns and the minimum possible number of rows such that we can identify a
set of up to p columns of M from their Boolean sum.

7.1.1 The (p,v,n)-SUPER-SELECTOR

Given two vectors X, y € {0, 1}, we denote with x @ y the Boolean sum of x and y,
i.e., their componentwise OR. Given an m X n binary matrix M and an n-bit vector
x, we denote by M © x the m-bit vector obtained by performing the Boolean sum
of the columns of M corresponding to the positions of the 1’s in x. That is, if x
has a 1 in positions, say 3,7, 11, ..., then M © X is obtained by performing the &
of the 3rd, 7th, 11th, ..., column of M. Given aset S C [n], we use M(S) to denote
the submatrix induced by the columns with index in S. Also we use ag to indicate
the Boolean sum of the columns of M (S). Given two n-bit vectors X,y we say that
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X is covered by y if x; < y;, foreachi = 1,...,n. Note that if x is not covered by
y then it means that x has a 1 in a position in which y has a 0.

Definition 7.1. Fix integersn, p,k, withn > p > k. A (p, k,n)-selector is an m x
n binary matrix such that for any subset S of p < n columns, the submatrix M (S)
induced by S contains at least k rows of the identity matrix /,." The parameter m
is the size of the selector.

Definition 7.2. Fix integers n, p, with p < n and an integer vector, v =

(vi,...,vp), such that v; < i, foreachi = 1,..., p. We say that an m x n
binary matrix M is a (p,v,n)-SUPER-SELECTOR if M is a (i, v;, n)-selector for
eachi = 1,..., p. We call m the size of the SUPER-SELECTOR.

The following theorem, whose proof will be given in Sect.7.1.3, provides a
bound on the size of (p, v, n)-SUPER-SELECTOR.

Theorem 7.1. A (p,v,n)-SUPER-SELECTOR of size

3pej ej?

(j—v;+1) log,e
(7.1)

m = O(n%ax kjlog(n/j)), where k; = min
j=l.p

can be constructed in time polynomial in n and exponential in k.
The “identification” capabilities of a SUPER-SELECTOR are as follows.

Lemma 7.1. Let M be a (p,v,n)-SUPER-SELECTOR, V = (vi,...,V,). Let S be
any set of x < v, columns of M. Let as denote the Boolean sum of the columns in
S. Then, from ag it is possible to identify at least v+, of the columns in S, where y
is the number of columns of M which are not in S but are covered by as. Moreover,
y<min{j | x <v;}—x.

Proof. LetT ={b|b & S andb & ag = ag}, i.e., T is the set of columns not in
S but covered by ag. Then, y = |T'|. We first prove the last statement.

Claim. y <min{j | v; > x} — x. Let j* be a value of j achieving the minimum.
The claim is a consequence of M being a (j*, v;+, n)-selector. To see this, assume,
by contradiction, that |T| > j*—x.LetT' C T and |T'U S| = j*. Then, there are
atleast vj= > |§| columns in 77 U S with a 1 in a row where all the other columns
have a 0. Thus, there is at least one column of 77 which has a 1 where all the column
of S have a 0. This contradicts the fact that all the columns of 7' (and hence of T”)
are covered by ag.

Since x + y < j* < p,and M is an (x + y,Vy,,n)-selector, among the
columns of S U T there are at least v, which have a 1 where all the others have

Ithe Boolean matrix with p rows and p columns, where only the entries (i,i) fori = 1,..., p are
1 and all the other entries are 0.



7.1 Group Testing with Subset Tests 143

a 0. Let W be such a set of columns. By an argument analogous to the one used in
the claim we have that W C § and we can identify them. |

Remark 7.1. Notice that if v; > v;_;, foreachi = 2,..., p, then we have a
situation that, at first look, might appear surprising: the larger the number of spurious
elements, i.e., columns not in S but covered by ag, the more information we get on
S, i.e., the more columns of S are identified.

Remark 7.2. The same argument used in the proof above shows that Lemma 7.1
also holds when ag is the componentwise arithmetic sum of the columns in S.

Corollary 7.1. There exists a non-adaptive group testing strategy to identify up to
P positives in a search space of size n which uses O(p*logn/ p) tests.

Proof. ByLemma7.1a(p+1,v,n)-SUPER-SELECTOR, withv = (1,2,..., p+1)
encodes a non-adaptive group testing strategy which identifies up to p positives in
a space of cardinality n. The desired bound on the size of such a super-selector
follows directly from Theorem 7.1.

7.1.2 Approximate Group Testing

In approximate group testing one is interested in strategies with the minimum
number of tests, such that a subset P’ is reported satisfying |P’ \ P| < ep and
|P\ P’| < ey, where P is the set of positives and ey and e are parameters bounding
the maximum number of false positives and false negatives which are tolerated.

Let M be an appropriate (p + e, v, n)-SUPER-SELECTOR, with the components
of vector v defined by v; = i —min{eg, e;} + 1. We can use M to attain approximate
identification in the above sense. Proceeding as before, map [r] to the indices of
the columns of the super-selector and interpret the rows of the super-selector as
the indicator vectors of the tests. Now the vector of the outcomes of the tests is the
Boolean sum ap of those columns whose index is in P. Let P’ be the set of the
indices of the columns covered by ap. We have P C P’ and by Lemma 7.1 also
|P’| < |P|+ eo. Moreover, from Lemma 7.1 we also know that a set of positives
P” C P can be exactly identified, with |P”| > |P| — e;. Therefore, any set P*
with P C P* C P’ satisfies the bounds on the false positives and false negatives.

If we assume that ey and e; are bounded as some fixed fraction of p, then the
strategy provided by the above super-selector is asymptotically best possible since
it uses O(p log %) tests, which matches the following extension of the information
theoretic lower bound provided by Cheraghchi for the case of approximate group
testing.

Theorem 7.2. At least plog’; — p — ey — O(e log ’%) tests are necessary to
report a set P', such that |P' \ P| < eyand |P \ P'| < ey.
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Another nice feature of the above solution is that it guarantees the exact
identification of at least p’ — min{eo, e;} + 1 positives, where p’ < p is the actual
number of positive elements.

7.1.3 Bounds on the Size of a (p, v, n)-SUPER-SELECTOR

In this section we prove the bound on the size of a (p, v, n)-SUPER-SELECTOR as
announced in Theorem 7.1.

The proof relies on the probabilistic method for showing the existence of a matrix
of the size desired. The method of conditional probabilities can then be used for
derandomizing the randomized construction implied by the probabilistic proof.

We use the following two lemmas to prove the existence of two distinct matrices,
each satisfying one of the bounds in the min-expression of (7.1). Then, the desired
super-selector can be obtained by the juxtaposition of these two matrices, one on
top of the other.

Lemma 7.2. There exists a (p,V,n)-SUPER-SELECTOR of size

3pej . )
m= 0 max ———— loe(n .
(j= wr (J —v; + 1) g(n/j)

Proof. Generate the m x n binary matrix M by choosing each entry randomly and
independently, with Pr(M i, j] = 0) = (p — 1)/ p = x. Fix an integer j < p. Fix
S e ([j,]), where ([;f]) denotes the family of all subsets of j elements of [1]. For any
subset R of j —v; + 1 rows of /; let Eg s be the event that the submatrix M(S)
does not contain any of the (j —v; + 1) rows of R. We have

Pr(Ers) = (1—(j —v; + Dx/ 71 (1 — x))" (7.2)

Let Ry,...,R;, t = (j—»{~+l) be all possible subsets of exactly j — v; + 1 rows
J

of the matrix /;, and let Ng be the event that, for some index i € {1,...,t}, the

sub-matrix M(S) does not contain any of the rows of the subset R;. By the union
bound we have

Pr(Ns) = Pr (\/ ER,.,S) < ( J )(1 — (G —v; + D/ 1= x)"

i j—Vj +1
(7.3)

One can see that Ng coincides with the event that the sub-matrix M (S) contains
strictly less than v; rows of /;. To see this, it is enough to observe that if M(S)
contains less than v; rows of /; it means that there is some i such that M (S) does
not contain any of the rows in R;.
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Let Y, denote the event that the matrix M is a (p, v, n)-SUPER-SELECTOR. We
can use again the union bound to estimate the probability of the negated event Yy,.
If M is not a (p, v,n)-SUPER-SELECTOR then there exists an integer j € [p] such
that for some S € ([j.]) the event Ng happens. Therefore,

P
Pr(m)zPr \/ \/ Ns |,

j=1 Se([";])

whence we obtain:

p .
Pr(YM)zl—Z(?)< / )(1—(j—vj+l)xj_l(1—x))m. (7.4)

= Jj—vi+1

Any value of m such that the above probability is positive implies the existence
of a super-selector of size m. If no such super-selector existed then the probability
would be 0.

Since we are interested in the minimum such m, we can conclude that there exists
a(p,v,n)-SUPER-SELECTOR of size m* = argmin,,..; Pr(Ys) > 0. The rest of the
proof will consist in showing that m* satisfies the bound claimed.

Let us focus on the value c¢; such that the j-th summand in (7.4) satisfies the
following inequality

JI\Jj—v,+1

(")( ! )(1—(1'—w+1)xf“(1—X))ijl°g"/jfl/p (7.5)

We shall use the following two inequalities

_G—vjtDejj

(1 _ (j —v; + 1) (1 — x))cjjlog(n/j) < (;) & (1.6)

n J AT R
<nl/2%2e7 7/ 7.7

By (7.6)—(7.7), we have that the left-hand-side of (7.5) can be upper bounded by

Gty —<1—”(’7p7§+1)’) (i)
= ; N

i3 oy gyl
n pe 2232] pe 22e2j it pe

(7.8)
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Therefore, if we take ¢; = we have that (7.8) can be further upper-

3pe
. . . (] _Vj+l)
bounded with n=%/ ¢%/ j2/ which is not larger than 1/ p foralln > 20 andn > p >
j > 0. Therefore, by taking

..... =M G T o @9)

we can have each of the summands in (7.4) smaller than 1/ p, hence guaranteeing
Pr(Yy) > 0. By definition m* < m which concludes the proof. |

The same analysis as above, tailored for the (p, k, n)-selector gives the following
slightly sharper bounds.

Lemma 7.3. Foreach0 <k < p < n, there exists a (p, k, n)-selector of size

2

—1
e n p n
=[log, ——— log—(1+0(1) < —L log— (1+o0(1)).
(gze_H%) p gp( ())_p_kJrl gp( (D)

(7.10)
5 log(n/p) (1 + o(1)).

2

. . e
Moreover, there exists a (p, p, n)-selector of size m = 1 P
08>

We can now combine the last two lemmas to obtain the upper bound on the size
of a SUPER-SELECTOR in Theorem 7.1.

Theorem 7.3. There exists a (p,v,n)-SUPER-SELECTOR of size

3pej ej?

(j—v;+1) log,e

m = 0( rnax kjlog(n/j)). where k; = mln%

Proof. Fix k = max {j | g Cf’fﬂ) > 2}} Let M, be a minimum size (k, k, n)-
selector. In particular this is a (k,< 1,2,...,k >,n)-SUPER-SELECTOR hence a
fortioriitis also a (k, (vi,..., Vi), n)-SUPER-SELECTOR.
Let M> be a minimum size (p, (0,...,0,vg41,...,Vp), n)-SUPER-SELECTOR.
Let M be the binary matrix obtained by pasting together, one on top of the
other, M| and M,. It is not hard to see that M is a (p, v, n)-SUPER-SELECTOR.

By Lemmas 7.3 and 7.2, M satisfies the desired bound. The proof is complete. W

Remark 7.3. Note that, if there exists a constant o such that v; < «j for each
/P < j = p, then the size of the SUPER-SELECTOR is O(p log %), matching the
information theoretic lower bound. Particular cases are given by instances where for
each j, we have v; = f;(;j) for some function f; such that f;(j) = o(j).

More generally, we have the following almost matching lower bound on the
size of a (p, v, n)-SUPER-SELECTOR, which follows from a bound on the size of
(p, k, n)-selectors, whose proof is beyond the scope of this chapter and hence is
omitted here.



7.2 Interval Group Testing 147

Theorem 7.4. The size of a (p,v,n)-SUPER-SELECTOR has to be

o J? log(n/j)
max - .
j=lewp j—vi +1log (j/(j —v; + 1)) + O(1)

Proof. By definition, a (p, v, n)-SUPER-SELECTOR is simultaneously a (v;, j, n)-
selector, for each j = 1,..., p. Therefore, obviously, the size of the SUPER-
SELECTOR is at least as large as the size of the largest (v;, j, n)-selector it includes,
over all j = 1,..., p. The desired result now directly follows from a bound by

Chlebus et al. on the minimum size of selectors [46, Theorem 2], which states that

’ log(n/j)

J
J=vi+l1og(j/(j—v;+D)+01) )°

any (v;, j,n)-selector has size §2 (

Deterministic Construction. By using the method of the conditional expectations
the above result can be derandomized, to obtain a deterministic construction of the
(p, v, n)-SUPER-SELECTOR of Theorem 7.3. The resulting procedure is polynomial
in n but exponential in the second parameter p as recorded in the following
proposition which together with Theorem 7.3 completes the proof of Theorem 7.1.

Proposition 7.1. There exists a deterministic O ( pnPtllog n) construction of the
(p,v,n)-SUPER-SELECTOR given by Theorem 7.3.

7.2 Interval Group Testing

In Interval Group Testing the search space is linearly sorted, and the only tests
allowed are those whose elements define an interval of the search space.

An instance of the problem is given by three non-negative integers n, p, s. The
search space, 0, is the set of the first n positive integers [n] = {1,2,...,n}. The
set of positives P is any arbitrary subset of &, of size at most p. The tests (or
queries) allowed are the intervals [i, j] = {i,i + 1,...,j}, foreach 1 < i <
J =< n. More precisely, each such interval represents the binary test asking “Is
PN{ii+1,...,j} #0?7,forsomel <i <j <n.

We assume that tests are arranged in s stages: in each stage a certain number of
tests is performed non-adaptively, while tests of a given stage can be determined
based on the outcomes of the tests in all previous stages.

We will be interested in bounds for the number N(n, p, s, e), the worst-case
number of tests that are necessary (and sufficient) to successfully identify all
positives in a search space of cardinality n, under the hypothesis that the number of
positives is at most p and s-stage algorithms are used and up to e tests may report
an incorrect answer. For the case where non-adaptive search is used (s = 1) it is
possible to precisely estimate N(n, p, 1, e), for any value of the other parameters.
Then, we will focus on the case where the maximum number of stages is two, which
is the most common case in practical uses of this approach (see Sect.7.3). We will
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Fig. 7.1 A query scheme with five queries dividing the search space into seven pieces

provide several bounds on N(n, p,2,e). A tighter estimate will be given for the
special situation e = 1.

Given an interval = = [i, j], we denote its size by |z, i.e., |[7| = j —i + 1. By
definition each query asks about the intersection of a given interval with the set of
positive elements. Therefore, we identify a query with the interval it specifies. We
say that a query Q = [i, j] covers an element k € [n] if and only if k € [i, j].

A query Q = [i, j] has two boundaries: the left boundary is (i — 1,i), and the
right boundary is (j, j 4+ 1). For the sake of definiteness, we assume that, for any
a € [n], the query [1,a] has left boundary (0, 1), and the query [a, n] has right
boundary (n,n + 1). A multiset of queries 2 defines a set of boundaries Z#(2) =
{(i1, i1+ 1), (iz,in+1),...}, where 0 < iy < ix41 <n.Everyinterval [iy + 1, ix+1]
is called a piece. Because every query has two distinct boundaries, but two queries
may share some boundaries, we have |[Z(2)| <2|2)|.

Let 7 be a piece defined by the set 2 of queries. We define the roof of , denoted
by Z (), the subset

R(n)={0€2:7CQ}.
The definition of the roof of a piece can be extended to a set of pieces & as

#(P) = | ) %)

neEP

Sets of Queries and YES-Sets

Let 2 be a set of interval queries. It should be clear that not all combinations of
positive and negative answers are possible. For instance, let us consider the situation
depicted in Fig. 7.1. Assume p = 1, i.e., at most one positive element is in P. Then,
it cannot happen that the answer to each question is yes: trivially, the queries a,
d, and e are disjoint, and answering yes to all of them would mean that the only
positive element would be at the same time in one of the pieces m; and m7; and in
one of the pieces 74 and 75; and in one of the pieces ¢ and 7.

The point here is that there are sets of answers, like this one, which will never
be received when p = 1. The same happens for the case of at most two positives.
If more than two positives are allowed, this pattern could be observed if the pieces
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m,, 4 and 17 contain at least one positive. Another forbidden combination is the
one where only the query b has a positive answer: since all pieces covered by this
query are also covered by the queries a, ¢, or d, a positive in the interval » would
automatically force another positive answer.

Aset % C 2 of queries such that answering yes to the queries in % and no to all
others corresponds to valid scenarios is called a YES-set for 2. Formally speaking,
a YES-set can be defined as follows:

Definition 7.3. Let 2 be a multiset of queries, and let % C 2. If there is a set of
pieces & such that | 2| < p and |, cp Z(7w) = %/, then & is a YES-set for 2 in
the case for p positives.

A YES-set is called specific if the intersection of all its queries corresponds to a
single piece, and the piece has at most one positive; otherwise, it is called unspecific.
More formally, a YES-set % C 2 is specific if and only if there is a piece 7 of 2,
with | N P| < 1, such that ﬂQE@ 0 =nm.

7.2.1 Non-adaptive Fault-Tolerant Interval Group Testing

In adaptive group testing, there is a basic difference between the last stage and all
the other stages: while the first stage may focus on reducing the search space, the
last stage must point out the positives. In other words, the last stage is non-adaptive
per se. As a result, studying non-adaptive group testing is a prerequisite to studying
any multi-stage adaptive strategy. Therefore, the results in this section will be the
basis for the analysis of the more practical two-batch case.

The following two theorems completely characterize one-stage e-fault-tolerant
interval group testing.

Theorem 7.5. Foralln = 1 and e = 0, it holds that N(n, 1,1,¢) = | 200 |,

Proof. The lower bound directly follows from the following claim.

Claim. Every strategy that correctly identifies the (only) positive or reports P = @
uses a set of questions such that there are at least 2e+1 question boundaries (i, +1)
foreachi =0,1,...,n.

By contradiction, let us consider a strategy such that for some i € [n] there are
b < 2e questions with a boundary (i,i + 1). Let 2 be the set of such questions and
2 the set of all questions in 2 which contain 7. Assume, without loss of generality,
that [ 2| > |2\ 2].

Let the adversary answer

* no to all the questions having empty intersection with {i,i + 1},

* yes to all questions including both i andi + 1,

* yes to exactly [| % |1 questions in 2; and no to the remaining ones in 2,
* yes to all the questions in 2 \ 2.
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Fig. 7.2 An example of the query pattern in the optimal algorithm of Theorem 7.5 for the case
of a search space with an odd number of elements. Here the search space has cardinality 19. The
horizontal bars indicate the interval queries
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Fig. 7.3 An example of the query pattern in the optimal algorithm of Theorem 7.5 for the case of
a search space with an even odd number of elements. Here the search space has cardinality 20. The
horizontal bars indicate the interval queries

A moment’s reflection shows that, due to the possibility of having up to e
erroneous answers, the above set of answers is consistent with both cases when
P ={i}and P = {i + 1}.2 Hence, the given strategy cannot correctly discriminate
among the above possibilities. The claim is proved.

Therefore, any strategy that is able to correctly identify P must use in total at
least (2¢ 4+ 1)(n + 1) boundaries. Then, the desired result follows by observing that
each question can cover at most two boundaries.

We now turn to the upper bound. Direct inspection shows that for n < 3 there
exists an easy strategy with the desired number of questions.

Foreach k > 2, let otk = {[1,2],[2,4],[4,6],...,[2k — 2, 2k], [2k, 2k + 1]}
and oy, = {[2,2k —1].[3.2k = 2], ..., [k. k + 1]}, @} = {[1.k]. [k + 1,2k]},
and o7, = {[1,k]}.

Then, for n > 4, the following strategy attains the desired bound.

If n is odd, the strategy consists of asking 2e + 1 times the questions in .7,.
Figure 7.2 shows the groups of questions found in this algorithm. These amount to
e+ 1)[(n+1)/2] = [(2e + 1)(n + 1)/2] questions which clearly cover 2e + 1
times each boundary (i,i 4+ 1) foreachi =0,1,...,n.

If n is even, let k = n/2. Now, the strategy consists of asking 2e + 1 times the
questions in 7!, plus ¢ + 1 times the questions in <72, plus e times the questions
in <7>. Figure 7.3 shows the groups of questions found in this algorithm. In total, in
this case, the strategy uses 2e + 1)(k—1)+2(e+1)+e = QRe+ 1k +e+1=
[2e 4+ 1)(2k +1)/2] = [(2e + 1)(n + 1)/2], as desired.

For the case of more positives we have the following generalization.

2In particular, for the case i = 0 (respectively, i = n) the ambiguity is whether P contains no
elements or the positive is the element 1 (resp. n).
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Theorem 7.6. For all integersn > 1, p > 2,e > 0, it holds that
N(n,p,1,e) = (2e + n.

Proof. The upper bound is trivially obtained by a strategy made of (2e + 1) copies
of the singleton questions {1}, {2}, ..., {n}.

The lower bound is obtained proceeding in a way analogous to the argument used
in the previous theorem. Here, we argue that every strategy that correctly identifies
P must ask, foreachi = 1,2,...,n — 1, at least 2e + 1 questions with boundary
(i,i 4+ 1) and including 7, and at least 2e + 1 questions with boundary (i,7 + 1)
and including i 4 1. Moreover, it must ask at least 2e 4 1 questions with boundary
(0,1) and 2e + 1 questions with boundary (1, n + 1). Otherwise, assume that there
existsi € {1,2,...,n — 1} such that one of the above 4e + 2 boundaries (i,i + 1)
is missing.

Proceeding as in the proof of the previous theorem, it is possible to define an
answering strategy for the adversary that balances the answers on the two sides of
the boundary so that with the information provided by the answers and given the
possible number of lies, it is not possible to discriminate between the cases P = {i}
and P = {i,i + 1}, or between the cases P = {i + 1} and P = {i,i + 1}.

Alternatively, if some of the above boundaries (0, 1) (resp. (7, n+1)) are missing,
the adversary can answer in such a way that it is not possible to discriminate between
the cases P = @ and P = {1} (resp. P = {n}).

7.2.2 Two-Stage Fault-Tolerant Interval Group Testing

In the previous section, we proved that the number of queries necessary and
sufficient to detect more than one positive in a set of n elements in the presence
of at most e lies is (2e + 1)n. This result shows that group testing does not bring
any advantage when tests are constrained to be intervals of the search space and
have to be asked non-adaptively. In fact, in this case, the optimal strategy implies
exhaustively testing each single element in order to be sure it is a positive. The study
of non-adaptive interval group testing is still useful for understanding the multi-
stage case, which we are going to focus on in the following sections: as explained
above, the last stage in an adaptive strategy is always a non-adaptive strategy.

An Averaging Argument for Lower Bound on Two-Stage Interval Group
Testing

Suppose we want to find up to p positives in a search space & = [n] in two stages.
Let 2 be the multiset of interval queries used in the first stage, and suppose that 2
divides the search space into / pieces. There can be many different YES-sets for 2,
and positives are differently spread over the pieces in each YES-set. The analysis of
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the number of queries needed to uniquely identify the positives in a second stage for
each YES-set gives us the opportunity to look for the YES-sets that force the greatest
number of queries in total. These YES-sets correspond to the worst scenario faced
when using the query scheme 2, and the minimum (over all 2) of the number of
queries forced by such YES-sets corresponds exactly to N(n, p,2,e).

Let % be a YES-set for a query scheme. We define the weight of % as the number
of queries needed to discover the positives in the search space after observing %'.
It is difficult to characterize the heaviest YES-sets for a general query scheme. And
actually we do not need to know what this YES-set looks like. All we need is the
weight of this YES-set, or at least bounds for the number of queries.

Consider a multiset of YES-sets, and let 1 be the average weight of the YES-sets
in this multiset. Because 7 is less than or equal to the maximum weight in the
multiset, it is also a lower bound for the weight of the heaviest YES-set in the
multiset. Obviously, the heavier the YES-sets in this multiset are, the closer the lower
bound is to the real weight of the heaviest YES-set.

Along this line of reasoning, we can use an averaging argument to provide
lower bounds for two-stage interval group testing strategies based on bounds for
the non-adaptive case. In particular, the approach is based on averaging the weight
of a multiset of YES-sets, without the necessity of relying on the knowledge about
the weight of the individual YES-sets. Instead of analyzing all the possible YES-sets
we can concentrate on the individual pieces, and rely on estimating the number
of queries needed in specific YES-set to look for positives inside the pieces in the
second stage.

More formally, suppose that the number of queries needed to reveal the positives
inside a piece 7r; when observing the YES-set %; is given by w(%;, ;) ‘rr |, where
w(%;, ;), the piece weight, is a function of the YES-set and the piece, and |7t il is
the size of the piece. If the total number of pieces in the query scheme is /, we may
express the weight of the YES-set %} as

i
w(#) =Y w(#, 7)) |7

j=1

This means that the average weight in a multiset of k¥ YES-sets is given by

fo:l le:lw(%,nj) ‘nj| B le=1 (‘”/‘|Z§=1W(@i’”j)>
k N k

Suppose now that we know neither the piece sizes nor their individual weights,
but we know that, for each piece, the sum of weights over all YES-sets is not smaller
than a number r, that is, foreach j = 1,...,1

k

Zw(%,nj) >y,

i=1
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Fig. 7.4 A pattern of four queries for exemplifying the averaging argument on YES-sets

Thus, we have that

Py (|”j| Yini W(J‘%’”f))
k

le=1 (|”j|r)
k

We have proved the following lemma which we are going to use for finding lower
bounds in fault-tolerant interval group testing.

Lemma 7.4. Consider a multiset of k—not necessarily distinct—YES-sets, and for
eachi = 1,2,....kand j = 1,2,...4, let w(%;,7;) be the weight of the jth
piece in the YES vector associated to the ith YES-sets. If there exists an r > 0 such
that forall j = 1,2,...,4, it holds that Zf'{=1 w(%, ;) > r, then an adversary
can force at least n queries in the second stage.

The Averaging Argument in Use

We exemplify the use of the average argument by giving a lower bound for the
number of queries used by an algorithm able to find up to two positives using the
queries shown in Fig. 7.4 in the first stage. We analyze two YES-sets: % = {a, b}
and % = {c,d}. By Theorems 7.5 and 7.6, in an error-free scenario, the number of
queries necessary to identify p positives in a search space of size n is not smaller
than %n, if p = 1, and not smaller than n, if p > 2.

We start analyzing 7. Notice that when this YES-set is observed we can have
three situations: (1) both positives are in the piece m,; (2) the two positives are
separated in two of the pieces mj, 7, and m3; (3) one positive is in piece m, and
the other is in the uncovered piece 4. Since each piece that may contain a positive
has to be analyzed in the second stage with a strategy able to find the positives in
any possible case, the piece m, has to be analyzed with a strategy able to find up
to two positives; the pieces 7y, 73 and w4 have to be analyzed with a strategy able
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Fig. 7.5 A multiset of queries with two positive answers (to the queries b and ¢) and three negative
answers (to the queries a, d, and e). The stronger horizontal line represents the search space, while
the thinner lines represent the interval queries. Queries in black have positive answers, whereas the
ones in grey have a negative answer. The projections of the borders in the search space are indicated
by dashed lines and the consequent pieces are labeled 7y, .. ., 9

to find up to one positive; and all other pieces may be ignored in the second stage.
This means that this YES-set forces at least: % |r1| queries in piece 7y, |72| queries
in piece 7y, % |7r3| queries in piece 73 and % |74| queries in piece 74 in the second
stage. Moreover, the weight given from %] to each piece is given by

1 1 1
W(gvﬂl) = E»W(@sz) = I,W(g/l, 7[3) = E,W(@,]‘[4) = Esw(‘@l,ns) = O,
w(#, w6) = 0, w(#, w7) = 0.

Notice that a similar analysis for the YES-set %, gives also the weights
1
w(#@, 1) = 0, w(#4, m2) = 0, w(#4, 13) = 0, w(Ps, m4) = >
1 1
w(%, s) = E,W(‘%,Né) =1, w(%, m) = 3

As aresult, for each piece 7;, it holds that w(#1, 7r;) + w(%, ;) > % Using the
notation of Lemma 7.4, we have k = 2 and r = 0.5; therefore, there is at least one
YES-set that can force at least n = 7 queries in the second stage, given a lower
bound of 4 + 7 queries for algorithms using this pattern of queries.

In this example we analyzed only one set of queries. Later, we will use similar
arguments applied to general query multisets.

YES-sets and Errors

When errors are allowed, YES-sets may represent several different scenarios. As an
example, we consider the set of queries in Fig. 7.5, and estimate the consequences
in terms of pieces which can contain the positives and the questions which are still
necessary, according to the number of possible errors allowed when at most one
positive is present.



7.2 Interval Group Testing 155

In an error-free case, the only piece containing the positive is clearly 4.
However, if one error is allowed, then the answer to either b or ¢ can be wrong.3 If
we assume that the answer to b is wrong, then the positive should be in 7s. This is
so because at most one error is allowed, hence, the only possible situation is that the
positive is in a piece for which only question ¢ is answered positively. Dually, if we
assume that the answer to ¢ is wrong, then the positive must be in 7.

Let us assume that the YES-set represents the set of answers to the first stage of
questions in a two-stage game with at most one error. Since the second stage
must identify the positive, it must be able to accommodate all three above possible
scenarios: (1) There must be enough queries covering 4 in the case that no errors
happened in the first stage, hence, at least %|7r4|; (2) there must be enough queries
covering 3 (resp. 15) to accommodate the case in which one error happened in the
first stage affecting the answer to ¢ (resp. b), namely at least %|7r3| (resp. %|7T5|)-

In conclusion, remembering the averaging argument presented in the previous
section, with this YES-set the pieces w3 and s get weight %, the piece w4 gets
weight %, and all other pieces get weight 0.

The situation becomes more involved and the pieces get more weight when more
errors are allowed. When two errors are allowed, some new scenarios are possible,
and other pieces enter the game. For instance, now both the answer for b and the
answer for d can be wrong, and it becomes possible that the positive is in piece .
The same happens with queries a and ¢, and the piece m,. The hypothesis that only
one error occurred cannot be discarded, so pieces w3 and 715 must be searched with at
least a 1-error-tolerant algorithm. Also the hypothesis that no error occurred cannot
be ignored, and piece w4 must be analyzed with an even heavier 2-error-tolerant
algorithm. Using Theorem 7.5, in total, at least

5 3 1
3 |74 + §(|JT3| + |ms]) + §(|JT2| + |ms])

queries are necessary in the second stage.

When errors are allowed, the number of possible YES-sets increases, and the
simple definition given in Definition 7.3 does not cover all valid sets of answers to
a multiset of queries. As a result, the definition of YES-sets becomes slightly more
complex, as does their analysis.

Definition 7.4. Let 2 be a multiset of queries, and let %" C 2. If there exists a set
of pieces & such that |Z| < p and (Z(ZP?) U )\ (Z(P) N X )| < e, then &

is a YES-set for 2 in the case of p positives and e lies.

In other words, for error-tolerant interval group testing algorithms, a YES-set is
the set of positively answered questions in a valid scenario, which may differ from
the roof of a set of pieces by at most e answers.

3Notice that these are the only answers that may be wrong in the case of at most one positive. In
fact, if another answer was wrong we would have a yes answer to two disjoint interval queries,
which is impossible under the assumption of having at most one positive.
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Definition 7.4 suggests a simple way to construct YES-sets for instances with
up to p positives and up to e errors allowed. We choose a set of pieces &, with
|Z| < p,and let & = Z(Z). A YES-set built in this way is called consistent
(with the set of pieces &?). We may also use the allowed lies when creating YES-sets
by adding (and/or removing) up to e elements to (from) 2. Sets created in this way
are called inconsistent. Notice that the consistency refers to the construction process,
namely to the choice of adding or removing yes answers from the ones which will be
given in the case of a consistent YES-set. Therefore, the same YES-set (as a family
of intervals) might be consistent with respect to a given & and inconsistent if we
assume a different placement of the positives. If two consistent YES-sets <7 and #
differ in at most e elements, then 28 can be constructed by consistently creating <7,
and further transforming .7 into 4.

Bounds for Two-Stage Algorithms with One Positive

The aim of this section is to prove asymptotically tight upper and lower bounds on
the query number of two-stage interval group testing algorithms when up to one
of the answers is a lie. We shall first analyze the case where P contains at most one
positive.

Let my,...,m; be the pieces determined by the intervals of a set of interval
questions 2. Given a YES-set %, we define the weight it assigns to the piece 7;
according to the following scheme:

e A piece 7 gets weight 1/2 if it can contain a positive but, if this was the case
there could not be an error in the next stage, because, due to the other yes’ in the
YES-set, an error must have already happened. This is so, because there is a yes
which indicates that the positive is in some other piece different from .

* A piece  gets weight 3/2 if it can contain a positive and there might be still an
error in the next stage. This is so, because all the other yes’ in the YES-set do not
contrast with the hypothesis that the positive is in the piece .

Here, “can” means that this possibility is consistent with the YES-set.

Recall that w(%) denotes the weighted sum of the lengths of the pieces created
by the interval questions, weighted according to the weights associated with %
In formulas, if w(#/, xr;) is the weight given to the piece x;, we have w(%) =
> ) |7 -

Assume now that 2 is the set of interval questions asked in the first stage
of a two-stage group testing algorithm that finds more than one positive. Using
Theorems 7.5 and 7.6 it follows that if % is the set of intervals in 2 that answer
YES, the number of queries to be asked in the second stage in order to find all the
positives is at least w(%). Indeed, each piece r; that may contain a positive, in
the second stage, will induce an independent interval group testing problem with
universe of size |7 | and such that w(#/, ;) |]T | \ is the correct lower bound for the
number of queries necessary according to Theorems 7.5 and 7.6 in the case of one
error.
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We will use the averaging argument to show that for each possible first stage of
interval questions, 2, there exists a YES-set % such that w(%') > n/|2)|. From this
we will obtain a lower bound of £2(4/n) on N(n,1,2,1).

In the following, when it is necessary to distinguish among different query-sets,
we will explicitly specify the query-set we refer to by a subscript to the notation for
the roof of a piece and the weight of a piece or a YES-set.

Proposition 7.2. Let 2 be a set of interval questions producing a partition of the
search space in which there are pieces a and b such that Z o(a) = %£o(b). Then,
there exists a set of interval questions 2’ of the same cardinality as 2 such that
the following two conditions hold: (i) for each two pieces a’ and b’ in the partition
produced by 2’ it holds that Zo(a') # %o (b'); (ii) for each YES-set %' for 2’
there exists a YES-set % for 2 such that wo (%) = wo(%).

Proof. Let c be any piece between a and b on the line in the partition generated by
the intervals in 2. Intervals in Zo(c) — Za(a) = Za(c) — Z2(b) are entirely
between a and b. We can produce a new set of interval questions 2; by changing
some of the intervals in 2 as follows: For all ¢ in between a and b we move the
intervals in Zg(c) —Z9(a) = Z9(c) — %2 (b) towards b. Then, b shrinks to zero
whereas « is finally extended by the length of b. Let us denote by a’ this elongated
version of a in the partition generated by 2. Note that 2; does not contain the
piece b.

We now note that every YES-set Y} for 2; is obviously also a YES-set for 2.
Moreover since Zg(a) = Z9(b) in 2 the pieces b and a are weighted the same
and in particular the same as the piece @’ in 2. Since a and b are not in the partition
of 2, but they are replaced by a’ whose length equals the sum of the lengths of a
and b we get wa(¥) = wa, (¥).

If for each two pieces @’ and b’ cut by 2, it holds that Zg,(a’) # %o, ('),
then setting 2’ = 2 the proof is completed. Otherwise we can iteratively apply
the same procedure to the newly generated set of interval questions, until the desired
condition is fulfilled. Since at each new step the number of pieces gets smaller the
procedure must terminate and will produce the desired .2’ (see Fig. 7.6).

After these preliminaries we can prove the lower bound. Let 2 be the set of
questions asked in the first stage by a two-stage interval group testing algorithm.
Let ¢ = |2|. By Proposition 7.2 we can assume that for each two pieces 7; and 7,
determined by 2 it holds that Z(r;) # % (7). We also have that the total number
£ of pieces is at most 2¢, since the number of pieces covered by query intervals is at
most 2g — 1 (by a simple inductive argument), and by Proposition 7.2 at most one
piece, 7,, is outside all query intervals (Z(7,) = @).

Lemma 7.5.
N@m,1,2,1) > +/5n.

Proof. With reference to the averaging argument and Lemma 7.4, we show that we
can achieve on each piece a total weight not smaller than » = 5/2 with not more
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Fig. 7.6 An application of Proposition 7.2. Since in the upper partition we have Z () = %(17)
we move rightward the intervals Iy, I, I3 which are completely between 7, and 7. Note that the
lengths of the pieces m, . .., w6 and their Z(-) do not change. The second and third pictures show
the case Z(my) = Z%(7ms) handled by sliding /5 to the right

than 2¢g YES-sets, where ¢ is the number of queries in the first stage. By Lemma 7.4,
this implies that in the second stage at least i—” queries have to be asked. Therefore,
in total for both stages, the number of questions needed is at least

5
min (q + 4_n) = +/5n.
q

In order to achieve r = 2.5, we create a specific YES-set for each piece which is
created by the g queries in the first stage. Recall that there are at most 2¢ distinct
pieces. This already guarantees weight 3/2 on each piece.

Now let us consider two adjacent pieces, sharing boundary (i,i 4+ 1) of some
query (or queries). One of the following three cases can apply according to whether
(i,i + 1) is the boundary of exactly one query, of exactly two queries, or of at least
three queries.

Case 1. (i,i + 1) is the boundary of exactly one query. This query is the only one
separating the two adjacent pieces. The YES-set created as consistent for the piece
containing i is also an inconsistent YES-set for the case where the positive is in
the piece containing i 4 1. Therefore, it gives weight 1/2 to the piece containing
i + 1, since there is the chance that the query having the boundary (i,i + 1) was an
erTor.
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Therefore, by symmetry, each piece in a pair of neighbors separated by a single
boundary automatically gets an extra weight % from the specific YES-set created for
its neighbour.

Case 2. (i,i + 1) is the boundary of exactly two queries. Therefore, the YES-set
created for one of them indicates precisely the piece containing the positive between
the ones flanking the boundary (i,i + 1). In such a case, we do not get the extra
weight of % for the neighbor. However, when such a case happens, there must be
less than 2¢q pieces defined by the g queries of the first stage. This is so because
there are two boundaries without a piece in between. Therefore, we can create an
unspecific YES-set involving both pieces, separated by the double boundary. More
precisely, the unspecific YES-set is the one that answers yes to all queries including
both pieces and answers the two questions with boundaries (7, i 4+ 1) inconsistently,
i.e., one indicating the piece containing i and one indicating the piece containing
i 4+ 1. This YES-set provides the desired extra weight % to both the adjacent pieces
containing 7 and i + 1, respectively.

Case 3. (i,i + 1) is the boundary of more than two queries. Using the same
argument as in the previous case, we can conclude that the number of pieces
decreases by at least two. Then we may use two new specific YES-sets, one for
each piece in the pair. Hence, each one of the pieces involved gets an extra weight
of % without the necessity of exceeding the total of 2q YES-sets.

In conclusion, by repeated application of the above cases, we are able to extend
the multiset of YES-sets consistent with the single pieces in such a way that each
piece gets at least extra weight % from some additional unspecific YES-sets. As a
result, all the pieces receive total weight at least 2.5 with a multiset of at most 2¢
YES-sets, as desired.

The lower bound in the previous lemma is almost matched by the following
result.

Lemma 7.6.
N(n,1,2,1) < V/5.5n.

Proof. We show a two-stage algorithm that is able to find a positive in a set of n
elements using at most +/5.5n queries. In the first stage we use ¢ queries divided
into two groups, A and B, as shown in Fig.7.7. Let g4 and 0 < r < 1 be two
parameters such that (g4 — 1)(1 + r) + 2 = ¢ and whose value will be defined by
the analysis. The two groups of questions are defined as follows.

Group A consists of g 4 queries which split the search space into 2(g4 — 1) pieces
of the same size, which we denote by 7y, ..., m24,—>. In particular, the queries in
this group are 7y Uy, w2y, —2 and mo; Ump; 41 Ump; 4o foreachi = 1,...,q4—2.
We will refer to the queries in this group as A-queries. Notice that as a result of
the queries in this group, the search space is partitioned into pieces in such a way
that pieces covered by one query alternate with pieces covered by two queries.
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Fig. 7.7 Query multiset used in the first stage of a two-stage strategy. The thicker line represents
the set of objects, whereas all the others represent the a- and b-queries. In this example we have
qga=25andr =1/8

Group B consists of r(g4 — 1) + 1 queries distributed along the same alternating
pattern as the queries in group A, but each of which covers 1/r of the pieces
Ty, ..., Mag,—2, defined by the A-queries. Queries in this group will be also
referred to as B-queries.

In the following, we use the term piece to refer to one of the 2¢g4 — 2 intervals
in which the search space is divided by the A-queries. We will instead use the term
macro-pieces to refer to the 2r(q4 — 1) parts into which the B-queries divide the
search space. Notice that in total in the first stage we haveq = (1 +r)gq + 1 —r
many queries.

We shall split the analysis of the answers to the first stage of queries into several
cases. In order to simplify the description we shall refer to an A-query (resp.
B-query) which has been answered yes as an A-yes (resp. B-yes). Let us first
observe that, because of the full coverage of the search space by both A-queries
and B-queries, it follows that if there is a positive there should be at least one A-yes
and at least one B-yes, unless an error has occurred.

Let a be an A-query. We shall refer to the piece covered by a and not covered
by any other A-query, as a’s private piece. Instead we shall refer to the remaining
pieces of a as a’s shared pieces.

Case 1. All queries in the first stage are answered no. Then the only possibility is
that no positive is present. This is so, because every piece is covered by at least two
queries, therefore, if a positive was present in some piece then at least two of the
answers would be errors, which is not allowed.

Therefore, if no yes answer is provided, no more questions are necessary in the
second stage.

Case 2. There are no A-yes but at least one B-yes. First we notice that all the B-
yes’ must intersect. In fact, if there were two disjoint B-yes, one of them must be
an error and the other a correct answer. Since one B-yes is not an error, it means
that there is a positive, hence there should be also a yes answer to some A-query.
Since all A-query answered no, then also one of these answers is an error. Then,
there would have been in total at least two errors, which is not allowed.

As a consequence, in such a situation, in the second stage it is enough to use the
0-fault tolerant strategy for one positive (see Theorem 7.5) in the interval covered by

the intersecting B-yes. Such an interval has size m, and half of its pieces are
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covered by two A-queries and half of its pieces are covered by exactly one A-query.
Only these latter pieces are possible candidates to contain the positive, because if a
piece shared by two A-queries contained the positive, then both no answers to these
A-queries would be errors which is not possible. This means that (m +1)/2
additional queries are sufficient in the second stage.

Case 3. There is exactly one A-yes. Let a denote this A-query. Clearly, if there is a
positive element, it can only belong to one of the pieces covered by a. For, otherwise,
if the positive was in a piece covered by another A-query, call it b, and not by a,
both the answer to b and to a would be errors, contradicting the assumption of at
most one error. Moreover, if the positive is in one of a’s shared pieces, then there
was an error already.

Therefore, in the second stage, it is enough to use a 1-fault tolerant strategy
in a’s private piece and a O-fault tolerant strategy in both a’s shared pieces. By
Theorem 7.5, it follows that this requires at most 5 queries in the second
stage.

2 2(q

Case 4. There are exactly two A-yes. Let a and b denote these A-queries. It is not
hard to see that, if there is a positive, it can only be in the piece in the intersection
of a and b (in case they intersect at all), or in one of the private pieces of @ and
b. In this latter case, it is also easy to see that there was an error. Notice that any
other piece is either covered by only one of a and b, but also by some other A-query
which answered no; or it is covered by neither a nor b. In both cases, the presence
of a positive in such a piece would mean that there were two errors in the answers.
Therefore, in the second stage, it is enough to use a 1-fault tolerant strategy in
the piece shared by a and b (if it exists) and a O-fault tolerant strategy in the private
pieces of a and b. Like in the previous case, by using Theorem 7.5, we have that

also in this case we need at most 3 33G.=D queries in the second stage.

Case 5. There are exactly three A-yes’. Let a, b, ¢ denote these A-queries. We first
observe that in this case at least two of these A-queries must be non-intersecting,
hence there must be at least one error in the answers.

Moreover, a positive element, if present, could only belong to a piece shared by
two of these queries, for otherwise at least two of them would constitute an error.

It follows that it is enough to use a O-fault tolerant strategy in each of the (at most
two) pieces shared by two of the queries a, b, and c. Hence, in this case it is enough
to ask m queries in the second stage.

The above cases cover all the possible situations since there cannot be more than
three A-yes’. In fact, if this was the case, each piece covered by one of these queries
would be not covered by at least two others. Hence, since the positive should belong
to one of them, there would be, in any case, at least two errors in the answers, which
is impossible by assumption.

Putting together the above cases, we have that the maximum number of queries
asked in the two stages together is given by the following expression (where we are
ignoring lower-order terms):
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Fig. 7.8 A set of two interval queries which partition the search space into 0-, 1- and 2-pieces.
The thicker line represents the search space
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This is minimized when r = 0.1 and ¢ = /501 /44, which yields a total number
of +/5.5n queries. The proof is complete.

More Positives

For the analysis of the cases where more than one positive is present, it is useful to
introduce some additional notation related to the structure of the pieces in which the
search space is partitioned by the first stage of tests.

A boundary B of a piece r is said to be turned to the piece if there is a query Q
such that # C Q and B is also a boundary of Q. A piece is called a 2-piece if both
its boundaries are turned to it. A piece that has only one of its boundaries turned to
it is called a /-piece. If none of the boundaries is turned to the piece, it is called a
O-piece. Figure 7.8 illustrates the definitions given so far.

Recall the definition of the roof of a set of pieces. Consider two pieces m; and
;. If Z(m;) C Z(w;) then the piece m; is called a satellite of piece ;. There are
two simple facts about satellite pieces which will be useful.

Fact 7.7 Every I-piece is a satellite of some 2-piece. Every O-piece b contained in
some query interval is a satellite of two 2-pieces, namely the ones next to both sides
of b. If a O-piece d outside all query intervals exists, then d is a satellite of every
2-piece.

Proof. Consider any 1-piece m. Clearly, 7 is contained in some query interval
I. Suppose that m is not associated with any query interval at its right end, the
other case is symmetric. Let 7’ be the next piece to the right of 7, such that 7’ is
associated with some query interval at its right end. Such a piece 7’ exists, since for
instance I ends somewhere. By the choice of 7/, the left end of 7’ must be the left
end of some query interval, too, hence 7’ is a 2-piece. Moreover, no query interval
includes 7 but not 7', in other words, Z(b) C Z(a). This proves the assertion for
1-pieces. The argument for 0-pieces contained in query intervals is analogous. The
last assertion is trivial, due to Z(d) = 0.
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Fig. 7.9 Queries in the first stage of the algorithm used in the proof of Theorem 7.9.

In the following we use ¢; to denote the number of i -pieces.

Fact 7.8 Consider a stage in which q queries are asked. Let c; be the number of
i-pieces. Then, we have that c; +2c, < 2q, and in particular ¢, < q. Furthermore,
c>1.

Proof. For the first statement, it is enough to observe that every i-piece is by
definition associated with at least i query intervals, but each query interval is
associated with at most two pieces. The second is a direct consequence of the first.
For the third statement, simply observe that a 2-piece is, for example, the rightmost
piece in the query interval with the leftmost right end.

Theorem 7.9.

N(n,2,2,1) <4/n + 1.

Proof. Consider an algorithm where the first stage consists of ¢ queries dividing the
search space into g — 1 pieces of the same size #. The set of queries in the first
stage is:

Q={mmUmmUmns, ..., 75— Umg_1,T4—1}.

Notice that each piece in this stage is covered by two queries (Fig. 7.9).

We can analyze the different possible answering strategies like in the proof of
Lemma 7.6. It is not hard to realize that the worst scenario is when two yes answers
are received to two overlapping queries. In order to compute the total number of
queries necessary in such a case, let ¢« = 7,1 U m; and b = 7; U 7,41 be the
queries which are answered yes.

It is possible that the two positives are both in the piece 7; and in this case no
error was present in the answers. Therefore, by Theorem 7.6, at least (;’T”l queries
should be asked to search for the positives in 7; in the second stage.

Alternatively, the answers are consistent with the case where the positives are one
in 77; and one in 7; +; and the no answered to the question ;4 U ;4> was an error.
Therefore, at least ﬁ additional queries are to be asked for searching for the
possible positive in ;4. This is because, in this case, an error has already occurred
and we can use a O-error tolerant strategy for one positive as by Theorem 7.5.
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Symmetrically, ﬁ queries must be asked for searching in 7r; |, to take care of
the case where the positives are in 77, and 7r; and the no answered to 7;_, U 7
was an error.

Therefore, our algorithm will use in total

4n
min(q+—)—4f+l
4 q

This completes the proof of the upper bound.

The above upper bound can also be extended to the case of more positives. We
have the following result regarding the case of at least three positives.

Theorem 7.10. For p > 3,

Proof. Like in the previous theorem we consider the strategy that in the first stage
asks the set of g queries given by

2={mmUmmUmns, ..., 7y Umg_1,T4-1},

as shown in Fig. 7.9.

It is not hard to see that the worst case for such a first stage is when the adversary
chooses p — 2 disjoint pairs of consecutive questions and answers yes only to these
queries.

Let (r;—1 U m;, m; U ;1) be one such pair. Again, it is possible that 77; contains
two positives even if there were no errors in the first stage. However, it is also
possible that ;_; (resp. m;4+1) contains two positives, if in the first stage there was
one error. Therefore, in the second stage we need to use 3—” queries in 7;, like in

the proof of the previous theorem. However, now we also have to ask 5~ o) _1 3 queries
in each one of the pieces 7;—; and 7,1, since we must take into account the case
that any such pieces contain two positives and there was an error in the first stage.
Therefore, each pair of positive answers induces a total of ;T”l queries in the
second stage.
In total, we need at least queries in the second stage. Optimizing with
respect to g, the total number 0? queries in the two stages is

min (q n %) —2/6n(p—2) +1,

én(p— 2)

providing the upper bound.

Before giving a lower bound for the number of queries needed to successfully
find at most two positives while tolerating at most one error, we define three types
of YES-sets:
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Type 0:  Choose p pieces rq,. .., 7, and define the YES-set as Uf;l%(m). In this
case, since each piece can contain one positive, each piece gets weight %

Type 1:  Choose p — 1 pieces 7y, ..., m,—1 and define the YES-set as Uf;f%(ni).
Notice that in this case, since we have p — 1 base pieces, each can contain
two positives, and therefore gets weight 3. Moreover, for each 2-piece each

corresponding satellite piece gets also a weight of %

Type 2:  Choose p —2 pieces 7y, ..., 7,2 and define the YES-set as Up_zﬁ(ni).

i=1

Notice that in this case both the base pieces and the satellites get a weight of 3.

Lemma 7.7.

N(n,2,2,1) > 2+/3n.

Proof. Let q be the number of queries asked in the first stage by a two-stage interval
group testing algorithm for finding up to two positives. We will show that it is always
possible to get weight at least 3 in each piece using at most ¢ YES-sets. We start with
a simple case where there is only one 2-piece. In this case we build two YES-sets of
type 1, both having the 2-piece as base piece. Notice that this already gives weight
3 to this 2-piece. Since all other pieces are satellites of this 2-piece, all of them also
get automatically a weight of 3, and we are done.

When there is more than one 2-piece, we create for each 2-piece a YES-set of
type 1. As each O-piece is a satellite of at least two 2-pieces, it also gets a weight of
at least 3. The 1-pieces get at least weight %, since each of them is a satellite of a
2-piece. The extra % weight for each 1-piece is obtained by creating some additional
type O YES-sets. For this, we partition the 1-pieces in pairs, and create one YES-set
of type O for each pair, using the 1-pieces as base pieces.

Using ¢ + 2¢; < 2q, where ¢; is the number of i pieces (see Fact 7.8), we have
that ‘7‘ + ¢ < g if ¢; is even, and (Clz_l) + ¢y < t; — 1if ¢y is odd. In both cases,
the number of YES-sets is not greater than g. Therefore, by Lemma 7.4, we need at
least %” queries in the second stage, which gives a lower bound of

3
min (q + _n) = 2+/3n.
q q

The following easy lemma will be used in the lower bound for the case p > 3.

Lemma 7.8. Let x,y be positive integers with x > 2y and x even. In x cells
arranged in a cycle, we can place pebbles from x sets, each with y pebbles, so that
every cell gets y pebbles and every pair of neighboring cells get pebbles from 2y
distinct sets. If x > 2y is odd, at most x + 1 sets are needed to achieve the same.

Proof. Let us first consider the case where x isevenand x > 2y.Fori = 1,...,x,
let C; denote the ith cell and B; denote the ith set of y pebbles.
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We start with the set Bj, and place its y pebbles in every other cell, i.e.,
C1,Cs,...,Cyy—1. Since x > 2y, no neighboring cells receive pebbles from this
set—in particular we do not complete the circle. We proceed similarly with the
set B, but we start one cell later, i.e., with C,, so that the gaps are filled. Thus, a
consecutive set of cells, namely Cj, ..., C,, has one pebble. It is obvious now that
we can fill the cells with pebbles from further pairs of sets in the same way and
achieve perfect balance. Since every pair of neighboring cells got 2y pebbles and
no two from the same set, the requirements are fulfilled.

If x is odd, we proceed as above, but using x — 1 sets of pebbles. At the end of
this procedure, there will be a consecutive block of y cells which has gotonly y — 1
pebbles. We can now add the missing pebble to each of these cells using two further
sets, again without putting pebbles from one set in neighboring cells.

Theorem 7.11. For p > 3,
N(n,p,2,1) =2/3n(p— 1)+ O(p),

—1)2
provided that the number of queries in the first stage is at least 2%.

Proof. Let g be the number of queries asked in the first stage. Again, we rely on the
averaging argument and Lemma 7.4. We show that it is possible to achieve weight
at least 3(p — 1) with no more than ¢ + £ + 1 YES-sets. For doing that, we analyze
three different cases:

Casel. ¢, < p —2. We create g YES-sets of type 2, with all the ¢, 2-pieces as
base pieces. Since all 1-pieces are satellites of some 2-piece, the YES-sets give a
weight at least 3¢ to all the pieces. Since, by assumption, ¢ = w(p), as desired
we have guaranteed weight at least 3(p — 1) to each piece with no more than
q+ % + 1 YES-sets.

Case2. ¢, > p—1landg(p —2) > c(p — 1). We create ¢ YES-sets of type 2,
using (p — 2) many 2-pieces as base pieces for them. This is done in such a way
that every 2-piece appears at least p — 1 times, using the inequality g(p — 2) >
¢2(p —1). A simple construction is obtained by putting the ¢, many 2-pieces in a
circle and constructing each ¢ YES-set by going along the circle and picking up
(p —2) consecutive 2-pieces. The inequality says that we need to scan the whole
circle at least p — 1 times, i.e., each 2-piece appears in at least p — 1 YES-sets.
As a result, the desired weight is reached.

Case3. ¢, > p—1land g(p —2) < c2(p — 1). We create at most ¢, + 1 type
1 YEs-sets with p — 1 many 2-pieces as base pieces in such a way that each 2-
piece appears exactly p — 1 times. By using the previous lemma, since under the
standing hypothesis we have ¢, > 2(p — 1), we can guarantee that each pair of
consecutive 2-pieces (in their natural order on the line closed to a circle) appear
in p — 1 YES-sets.

We have that with at most ¢; + 1 YES-sets we provide weight 3(p — 1) for each
2-piece.
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Let us now focus on the 0-pieces. Consider the cyclic ordering of the 2-pieces,
which consists of their natural order on the line closed to a cycle. Each 0-piece inside
some interval query is also between two (consecutive) 2-pieces and is a satellite of
both of them. Moreover, without loss of generality, we can assume that if there is a
0-piece outside all query intervals, it lies between the first and the last 2-piece in the
cyclic order, and it is a satellite of them.

As a result, since each 0-piece gets weight % from each 2-piece in the pair
surrounding it, we have that with the at most ¢; + 1 YES-sets defined so far, we
also ensure weight at least 3(p — 1) in every O-piece. Moreover, the 1-pieces already
have a weight of at least %(p — 1), since each one of them is a satellite of some
2-piece. It remains to show how to provide an additional weight of 3(p — 1)/2 for
each 1-piece.

We consider two sub-cases according to whether ¢; > p — 1.

If ¢c; > p — 1, we create ‘7‘ YES-sets of type 1, each of them with p — 1 many
1-pieces as base pieces. Notice that this can be done in such a way that every piece
appears at least ”T_l times. Therefore, each 1-piece get the desired 3(p—1)/2 weight
and the total number of YES-sets in this case is ‘7‘ +c+1=<qg+1YES-sets.

Alternatively, if ¢c; < p — 1 we can build "T_l YES-sets of type 2, each with all
1-pieces as base pieces. Since ¢; < ¢, we have that the total number of YES-sets
used, in this case, is upper bounded by g + % + 1.

Putting together all the above cases, we conclude that we can reach weight
3(p — 1) on each piece using at most ¢ + % + 1 YEs-sets. Therefore, the minimum
number of queries needed in the worst case is

min (q + Mﬂ) =24/3n(p —1)+ O(p).

q g+5+1

More Errors

The analytical tools shown so far for the case where at most one error can occur can
be also employed for obtaining more general bounds on the size of two-stage fault-
tolerant interval group testing strategies. We shall limit ourselves to provide some
such results by only sketching the idea of the proofs, referring to the analogous result
in the previous section. The complete proofs are left as an exercise to the reader.

Table 7.1 summarizes the lower and upper bounds on fault-tolerant interval group
testing, which we presented here. The rightmost column shows the ratios between
the lower and upper bound given here. This ratio also provides an estimate on the
approximation that the known algorithm can offer. Exercise 6 provides hints on how
to try and shrink such gaps.

Theorem 7.12.

N(n,2,2,e) >2y/(2e + n.
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Table 7.1 Upper and lower bounds for instances of the interval group testing problem

Parameters Lower Bound Upper Bound ?%
p=1,s=1e>1 ((2e+1;(n+1)" [(2e+1;(n+1)—‘ 1
p=2, s=1 e>1 2e + n (2e + Dn 1
p=1 s5s=2 e=1 +/5n A/5.5n A 1.1

= = = 4
p=2 s=2 e=1 231 40 \/;

—2

p=3,s5s=2 e=1 2/3(p—Dn 2/6(p —2)n +1 2%
p=2 s5s=2 e>1 2 (2e + n 2/(e+1)(2e + 1)n e+ 1
p=3,s5=2e>1 2JRe+D(p—Dn 2/(e+DRe+D(p—Dn Je+1

The instances are presented on the leftmost column, while the ratio upper/lower bound for each
instance is presented in the rightmost columns

Proof. The analysis of YES-sets made in Theorem 7.7 can be repeated. Here pieces
containing a single positive get weight at least 23;' L in the corresponding YES-set,
while pieces containing more than one positive get weight at least 2e + 1. As a
result, we can achieve weight at least 2e + 1 in each piece with at most ¢ YES-sets,

giving a lower bound of

(2e + 1)n

) =24/(2e + n.
q

min (q +
q

Theorem 7.13. For p > 3,

N(n,p.2,e) 2 2/2e + D)(p — Dn + O(p).

. .. . (r—1?
provided that the number of queries in the first stage is at least 2W'

Proof. We can employ the same reasoning as in the corresponding 1-error version
(Theorem 7.10). Let g be the number of queries in the first stage of the algorithm.
We can then show that at least weight (2e 4 1)(p — 1) for each piece can be obtained
using no more than g + % + 1 YES-sets. Therefore the minimum number of queries
needed in the worst case is

min (q n wn) —2J/Ce+ 1)(p=n + 0(p).

g+5+1

Theorem 7.14. For p > 2,

N(n,p.2,e) <2y/(2e + 1)(e+ 1)(p — Dn.

Proof. For this upper bound, we partition the search space into g pieces and create
for each of them (e 4 1) queries covering only the corresponding piece. This means
that we ask g (e + 1) queries in the first stage. Notice that with these questions every
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error can be easily identified in the first stage. Therefore, it is not hard to show that
the worst case occurs when all queries covering (p — 1) pieces answer Yes. In this
case, each one of these p — 1 positive pieces has to be analyzed in the second stage
with an e-error tolerant strategy. Since each piece has size 3, the total of queries is
given by:

mqin (q(e + 1)+ (p—1DQ2e+ l)g) =2(e+1)Q2e+ 1)(p— n.

7.3 Some Typical Applications of Group Testing
in Computational Biology

In a genome research project, even simple tasks, like comparing two genomes,
may involve thousands of tests. Therefore, it is not surprising that group testing
approaches are used for improving the efficiency of tasks like DNA library
screening, physical mapping, gene detection, assembly finishing, and many others.
In biology, typically, non-adaptive group testing procedures are preferred. The
groups are in most cases called pools and the model is referred to as pooling design.

Library Screening. Libraries are sets of clones, which are copies of parts of a
DNA molecule. Very small chemically modified DNA molecules called probes may
bind to clones, helping biologists to identify them. Library screening concerns the
problem of verifying which clones in a library hybridize with at least one probe in
a given set. For this purpose, one can model the problem as pooling clones so that
it is possible to identify up to p positives using the minimum number of tests in a
non-adaptive approach. A positive in this case is a clone (or pool) which hybridizes
with a probe. Probes are small DNA molecules which are chemically labeled, so
that biologists can easily test for their presence.

Protein—Protein Interaction. Because many functions in organisms are controlled
through complex networks of interactions between different kinds of proteins, an
efficient way of identifying pairs of interacting proteins is of great interest to
biologists. A group testing approach using complete bipartite graphs for testing
protein—protein interaction is as follows.

Let K4 p be a complete bipartite graph where each vertex represents a protein,
and each edge an interaction. The proteins on partition A are called baits, and the
ones on partition B are called preys. An edge is called positive if the two proteins
it connects interact; otherwise, it is called negative. Let C € A and D C B. We
say that the test (C, D) is positive if there is a positive edge (¢, d), with ¢ € C
andd € D.

Finding the Borders of Assembly Gaps. A genome can be seen as a set of chro-
mosomes, which are very long strings from the small alphabet ¥ = {A,C, G, T}.
Due to technological limitations, biologists have access only to small substrings of
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the chromosomes, and need to put these small pieces together in order to obtain the
whole genome. When the amount of sequence data obtained in a genome sequencing
project is not sufficient to uncover the whole genome sequence, the result is a set of
large strings corresponding to the uncovered parts of the chromosomes. Therefore,
after a series of sequencing experiments, the chromosomes may be divided into two
kinds of substrings: the parts uncovered by the sequencing data, called contigs, and
the parts for which no sequence information is available, called gaps. By definition,
contigs and gaps alternate in the chromosomes: contigs are flanked by at most two
gaps, which are flanked by at most two contigs.

If a gap is small enough, the extremities of its flanking contigs can be used as
starting points for a reaction called polymerase chain reaction, or simply PCR,
which uses the original DNA molecule of the chromosomes to create many copies
of the gap. These copies can be used to obtain the missing gap sequence, which is
called closing the gap.

The problem is that, since we do not know the strings corresponding to the
chromosomes, we cannot tell which pair of contigs flanks a gap. If we try to perform
a PCR using the extremities of a wrong pair of contigs, we will never get a gap
sequence. A partially known genome with ¢ contigs has 2¢ extremities. Doing
a PCR for each of the (2; ) — ¢ possible pairs of contig extremities is infeasible.
Fortunately, when doing a PCR using many contig extremities, we get some result
only if at least two of the extremities flank a gap. This variant, where many
extremities are used together in a single PCR, is called multiplex PCR, and this
is everything we need for a group testing approach.

Let G be a complete graph where the vertices are contig extremities. The edges
corresponding to the pairs of gap flanking sequences form a hidden matching in G.
Each unsuccessful PCR using many extremities reveals a set of vertices that contain
no edges from the matching, whereas successful PCRs give hints about the location
of the matching edges. By grouping the primers carefully it is then possible to iden-
tify the correct pairs with significantly less testing than in the exhaustive procedure.

Testing with Inhibitors. In real applications, samples can be damaged or contami-
nated, and force the tests including them to always produce a negative result, even in
the presence of positives. Samples that influence test outcomes are called inhibitors
here. In 1997, Farach et al. [104] introduced a variant of the group testing model
where the search space contains three kinds of objects: positives, negatives, and
inhibitors. They introduced a new parameter r, which represents an upper bound for
the number of inhibitors in the search space; and devised a randomized algorithm
able to identify the positives with O((r + p) log n) queries on average, assuming that
r+ p < n.De Bonis and Vaccaro [85] were able to devise an adaptive deterministic
algorithm using O((r> + p)logn) queries. This algorithm could be extended to a
three-stage algorithm that uses O((r> + p?) logn) tests.

De Bonis [86] considers both the model variant where p is the exact number of
positives and the variant where this parameter is an upper bound for the amount of
positives. She showed that any algorithm with any number of stages that finds up
to p positives in the presence of at most r inhibitors is lower bounded by the length

of a superimposed code of size n, which is Q(perzgr logn).
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Interval Group Testing for Identifying Exon-Intron Boundaries. An important
motivation for the study of interval group testing comes from its application to the
problem of determining exon—intron boundaries within a gene. In a very simplified
model, a gene is a collection of disjoint substrings within a long string representing
the DNA molecule. These substrings, called exons, are separated by substrings
called introns. The boundary point between an exon and an intron is called a
splice site, because introns are spliced out between transcription and translation.
Determining the splice sites is an important task, e.g., when searching for mutations
associated with a gene responsible for a disease.

An experimental protocol for determining exons boundaries can be designed
using group testing. This consists of selecting two positions in the cDNA, a copy
of the original genomic DNA from which introns have been spliced out, and
determining whether they are apart the same distance as they were in the original
genomic DNA string. If these distances do not coincide then at least one intron
(and hence a splice site) must be present in the genomic DNA between the two
selected positions. Non-adaptive strategies are desirable in this context in order
to avoid long waiting periods necessary to prepare each experiment. However, as
shown in the previous sections, a totally non-adaptive algorithm needs unreasonably
many queries. Thus, the necessity arises to trade more stages for fewer queries, while
still keeping the number of stages small.

7.4 Bibliographic Notes

The exact place of birth of group testing was the Price Administration of the US
Government, Research Division, Price Statistics Branch. Robert Dorfman published
the first report on the subject; and David Rosenblatt, who worked in the same
research group, claims to have suggested the method’s basic principle. A brief
history of group testing, including briefs of Dorfman and Rosenblatt explaining their
viewpoints about the origin of the approach, can be found in [94]. By any means,
what called the attention of the research group to the subject was the number of
identical clinical tests performed in order to identify a few cases of syphilis among
US troops.

The lower bound on the size of non-adaptive group testing strategies was given
by Dyachckov and Rykov in [100]. An alternative and purely combinatorial proof
was given by Ruszinké in [188]. Explicit construction of group testing strategies
with O(p?logn/p) queries have been provided by Porat and Rothschild in [177]
and by Indyk et al. in [127], where the construction also allows fast decoding.

Selectors were introduced in [87] by De Bonis et al. and used to provide
two-stage group testing strategy achieving the information-theoretic lower bound.
Improved constructions of two-stage group testing procedures are by Cheng and
Du [44] and Cicalese and Vaccaro in [75]. In the latter the authors introduced
superselectors and show how to use them to subsume many analogous combinatorial
structures used in group testing and related areas.
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Group testing variants where one is interested in identifying some approximate
version of the set of positives P, here referred to as approximate group testing,
was considered by Cheraghchi [47], in the context of error-resilient group testing,
by Gilbert et al. [112], in the context of sparse signal recovery, and by Alon and
Hod [10], in the context of monotone encoding. Cheraghchi [47] provided the lower
bound in Theorem 7.2. In the same paper, the author considers the case when some
tests might be erroneous and only focuses on the case of zero false negatives. Alon
and Hod [10] consider the case of zero false positives and obtain O(p log(n/p))
tests procedures, which are in fact optimal for this case. Gilbert et al. [112] allow
both false positives and false negatives but their procedures use O(p log® n) tests.

In [212], interval group testing is proposed for a new experimental protocol
that searches for the exon boundaries. The advantages of this group testing-based
splice site detection approach over sequence-based methods using, for example,
Hidden Markov Models, are that the former method works without expensive
sequencing of genomic DNA and it gives the results directly from experiments,
without relying on inference rules. The work [212] and the book [173] report on
the experimental evaluation on real data, of the algorithm ExonPCR, which finds
exon—intron boundaries within a gene. The authors of [212] only give a simple
asymptotic analysis of their @ (log n)-stage algorithm. They leave open the question
about whether there exist algorithms able to cope with the technical limitations of
the experiments, and particularly with errors. In [64] the first rigorous algorithmic
study of the problem was presented, and for the case s < 2 a precise evaluation of
N(n, p,s) was given. In [62] a sharper asymptotic estimation of N (n, p, s) is found,
which is optimal up to the constant of the main term in the case of large s. The
necessity of dealing with errors in the tests had been already stated in the seminal
papers [173,212] and reaffirmed in the subsequent ones. The first non-trivial results
on this variant of the problem appeared in [63].

Besides the splice site detection problem, group testing with interval tests also
arises in a variety of domains, e.g., detecting holes in a gas pipe [79, 94], finding
faulty links in an electrical or communication network, and data gathering in sensor
networks [123-125].

7.5 Exercises

1. Design an adaptive group testing procedure for identifying up to p positives in a
search space of cardinality n using at most p log % + 2p + 1 tests.

2. Let A be a binary n x m matrix with g and w being non-negative integers such
that:

(i) each column of A contains at least w ones;
(ii) for every pair of columns there are at most g rows where both columns have
a one.

Show that for any d < WT_I the matrix Aisa (d + 1,d + 1, n)-selector.
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3. Show that there exists no adaptive group testing strategy of size 7 for identifying
up to two positives in a search space of cardinality 8 when up to one answer can
be answered mendaciously.

4. Show that if there exists a (d + 1,d + 1, n)-selector of size m then there exists
a non-adaptive group testing strategy of size m to identify up to d defectivesin a
search space of cardinality .

5. Show that any (p, k, n)-selectoris a (p — 1,k — 1, n)-selector.

6. Consider the two-stage interval group testing with p = 3 positives and at
most one error. Show that for this particular case it holds that N(n,3,2,1) =
261 + O(1).

7. One possibility to improve the lower bound in Lemma 7.5 is to consider an
additional empty YES-set. Analyze which are the pieces whose weights get
increased by the presence of such an additional YES-set.

8. Provide a sufficient condition analogous to the one in Exercise 2 under which a
binary matrix is a (p, k, n)-selector.



Chapter 8
Resilient Search

A truth that’s told with bad intent
Beats all the lies you can invent

W. Blake, Auguries of Innocence

In this chapter we analyze a model of fault-tolerant search in which reiterating a
question cannot help the search algorithm because the errors are due to permanent
memory faults. A memory fault occurs if the correct value stored in a memory
location changes because of some failure. The change can occur at any moment in
a dynamic and unpredictable fashion. More failures can also occur simultaneously.
Clearly, if a memory fault affects the result of a query, after this fault has occurred
any instance of the query will produce the same faulty result. This is in sharp
contrast with the situation in the /iar model considered in other parts of this book,
since in that case errors are assumed to be the result of transient faults, due to, e.g.,
ALU failures or transmission noise.

Informally, one says that an algorithm is resilient to memory faults if, despite the
fact that errors may affect the values stored in some memory locations before and
during its execution, the algorithm will provide the correct output with respect to
the set of uncorrupted values.

8.1 The Definition of the Problem and a Lower Bound

An instance of the problem is given by (1) alist X = xy, ..., x,, of n keys (initially)
sorted in increasing order, i.e., x; < x; foreachi < j; (2) akey x.

A resilient searching algorithm is asked to answer whether there exists an index
i* such that x;+ = x, and in the positive case to report such an index.

F. Cicalese, Fault-Tolerant Search Algorithms, Monographs in Theoretical 175
Computer Science. An EATCS Series, DOI 10.1007/978-3-642-17327-1_8,
© Springer-Verlag Berlin Heidelberg 2013
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The operations allowed to the algorithm are comparisons of two types: (a)
comparisons among elements in the list, i.e., “x; < x;?”; (b) comparisons among
the key x and an element of the list, i.e., “x < x;?”, forany i, j.

The first type of comparison might appear strange, since we said that the list
is sorted in increasing order. In fact, we assume that during the execution of the
algorithm up to § memory faults can occur which might change the value of some
keys, thereby affecting the initial sorted order. Thus, questions of type (a) might
be useful for the algorithm to check whether in certain positions the list has been
altered by faults.

We require that the algorithm works as follows:

1. if there is some correct key equal to x, then the algorithm reports that the key we
are searching for is in the list and answers with an index i such that x; = x (this
might also be an occurrence of x due to some memory fault);

2. if there is no key (correct or faulty) equal to x, then the algorithm reports the
absence of x;

3. if the only occurrences of x are due to memory faults, then the algorithm may or
may not report the index of one of these faulty occurrences.

We assume that a resilient algorithm may count on O(1) fully reliable memory
locations, i.e., those cannot be affected by corruptions. It has to be remarked that this
is a minimal necessary assumption. In fact, in the absence of some reliable memory,
no resilient computation can be possible.

We are now going to present a simple lower bound on the number of comparisons
of any resilient search algorithm. A way to read this theorem is that any resilient
search algorithm which is asymptotically optimal in a non-faulty environment
cannot tolerate more than O(logn) memory faults.

Theorem 8.1. Every comparison-based resilient searching algorithm which toler-
ates up to § memory faults performs at least §2(log n+68) comparisons on a sequence
of lengthn > 6.

Proof. Any algorithm, even in the absence of any memory fault, needs at least logn
comparisons. Therefore, it is enough to prove that any algorithm requires £2(§)
comparisons when § = w(logn).

Assume that an algorithm A makes only N < §/2 comparisons.

Let Q be the set of elements mentioned at least once in the comparisons
performed by the algorithm A.

Suppose that each comparison of the type x; < x; is answered yes if and only if
i < j and each comparison of the type x < Xx; is answered yes.

LetY = X\ Q be the set of elements in the sequence X which are not mentioned
in any comparison performed by A. Since each comparison involves at most two
elements of X and there are fewer than §/2 comparisons, clearly ¥ # 0.

It follows that the algorithm A does not have enough information to discriminate
between the following two possible solutions, which are both compatible with the
result of the comparisons and the parameters of the problem:
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1. the item x is smaller than any element in X and in particular it is not in the list
X;

2. the item x is in the list X, and it is one of the elements in Y. In particular, if ¥
only contains elements bigger than any element in Q, then all the elements in O
have been affected by faults and were originally smaller than x.

8.2 Randomized Resilient Search

We first present a randomized algorithm, RANDSEARCH, which performs resilient
search over a list of n elements in expected time O(logn + §), i.e., it can tolerate
up to O(logn) faults while still being able to complete the search in O(logn) time.
In particular, RANDSEARCH attains the lower bound of Theorem §.1.

Algorithm RANDSEARCH(I[1...n],€,r,c,C,$)
Ifr—€>Cé§
Choose h uniformly at random in {£ + (r — €)(1 —¢)/2,.... £+ (r —0)(1 +¢)/2}
If 7[h] = x then return /
else if /[h] < x then RANDSEARCH(/[1...n],¢,h—1,c,C,$)
else RANDSEARCH(I[1...n],h+ 1,r,¢,C,0)
else
Fori ={¢—25,...r +26
If /[i] = x then return i
Ifi </{and /[i] < x then {-witness + =1
Ifi > rand /[i] > x then r-witness + = 1
End For

If {-witness > § and r-witness > § then return NO
Else RANDSEARCH(/([1...n],1,n,¢,C,§)

RANDSEARCH uses two (constant) parameters 0 < ¢ < 1 and C > 1 such that
¢ x C > 1. Informally, the algorithm performs a sort of binary search using as the
splitting element one chosen at random from the central subsequence of /[¢...r]
of length (r — £)c. This way the search is restricted to smaller and smaller sub-
lists. This process continues as long as the size of such sub-list 7[£...r] is “big”
compared to the number of possible faults. Here, big means larger than C x ¢ for
the given parameter C.

As soon as the sub-list becomes “small”, i.e., not larger than C x §, the algorithm
uses exhaustive search to check whether it contains the key searched for. If such an
exhaustive search succeeds then the position in the sub-list where the key is found
is returned. On the other hand, while performing exhaustive search the algorithm
also checks for witnesses flanking the sub-list. This means that 2§ elements are
compared to the given key on both the left and the right of the sub-list to be searched
exhaustively. If at least § + 1 elements are found which are smaller than x in
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I[¢ —24,...,£] it means that if x was in the original list, it would be in a position
h > £, since at most § of the witnesses can be faulty. Analogously, if at least § + 1
elements are found which are bigger than x in /[r, ..., r 4+ 24§] it means that if x was
in the original list, it would be in a position & < r, since at most § of the witnesses
can be faulty. Therefore, if both cases occur and x is not found in I[{,...,r], it
means that x was not originally in 7.

The following result completes the above argument about the correctness of
RANDSEARCH and proves that it achieves the bound of Theorem 8.1

Theorem 8.2. The algorithm RANDSEARCH correctly searches a list of size n in
the presence of up to 8§ memory faults; the expected number of comparisons it
performs is O(logn + §).

Proof. As regards the correctness of the algorithm, it is obvious that whenever
RANDSEARCH reports the presence of the key x in I, it does it correctly.
Alternatively, the observation preceding the statement of the theorem also shows
that RANDSEARCH only reports the absence of the key x if such a key was not
in the original list (before any fault occurred). In fact, the algorithm reports NO
only when there are enough reliable witnesses to identify the segment of the list
I[¢ +1...r —1]in which x could lie—this is the effect of having more than § tests
indicating that x cannotbe in /[1 ... £] and more than § tests indicating that x cannot
bein /[r ...n]—and after exhaustively checking that x isnotin /[¢{ + 1...r —1].
Note that it might be that there is a faulty x somewhere else in the list; nonetheless,
the output of the algorithm is correct with respect to the correct section of the input,
in accordance with the requirements of the model.

We are now ready to prove the bound on the (expected) time complexity of
RANDSEARCH. We need to analyze the number of times the algorithm executes a
random choice. Also, we need to give a bound on the number of times the algorithm
starts over from scratch.

We shall define an iteration of the algorithm as the set of operations between
two consecutive times when the algorithm starts executing random choices over the
initial list /{1 ... n]. We shall prove that the algorithm spends at most O(logn + §)
time within the same iteration. The desired result will then follow from proving that
the expected number of iterations of RANDSEARCH is bounded by a constant.

Let us fix an iteration of the algorithm. Let &y, . .., i, be the randomly generated
indices within such an iteration, i.e., RANDSEARCH performs comparisons between
x and I[h;], fori = 1,...,t, before the algorithm restricts the list of possible
candidate positions for x to be at most C§. Foreachi = 1,...,¢, let{; and r; be the
leftmost and rightmost indices of the sub-list to which the algorithm has restricted
the search before choosing %;. At the beginning, we have £; = £ and r; = r. After
the index h; has been chosen, either /[h;] = x, or the search is restricted to one of
the sub-lists 7[¢; ... h; —1]or I[h; +1...r;]. Since £; + (ri —£;)(1 —¢)/2 < h; <
£i+ (ri —4£;)(14c)/2, the new sub-list will be at most (1 4 ¢)/2 times as big as the
previous one. Since every step reduces the size of the sub-list by a constant factor,
2/(1 + ¢), it follows that ¢ = O(logn). After the tth step, we have r, — £, < C§,
and the algorithm exhaustively searches in the reduced sub-list. Therefore, this adds
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at most O(§) time to the overall time complexity to complete an iteration. We have
shown that each iteration is completed in time O(logn + §).

It remains to show that RANDSEARCH finishes after at most a constant number
of iterations. To see this, let us consider the size of the sub-list before randomly
choosing the last index h,. We have r; — £; > C§. Recall that h; is chosen from
the set {{; + (r; — €)1 —¢)/2,..., & + (rr — £)(1 + ¢)/2}, which is of size
(rs — £;)c > 8Cc. Since there are at most § faulty elements, the probability that /,
is the position of a faulty one is at most 1/Cc.

In general, /; is chosen from a set of cardinality (r;—¢;)c. Foreachi = 1,...,t—
1, we have that (r; —£;) > 2(r;+1—¥i+1)/(1+c¢). And using the fact that (r, —¢;) >
8C, we have that &; is chosen from a set of cardinality (r; — £;)c > (%)t_l §Cec.
In particular, the probability that /; is the position of a faulty element is at most
(59 2

Therefore, the probability that none of /[h],..., I[h] is faulty is not smaller
than

lL[ . 1 +c t—iL N 1_L Z;=1(17erc). 1_L ﬁ>0
blle 2 Cec)] — Cc Cc ’

where the first inequality follows from (1—ab) > (1—x)?, foreacha,b € [0, 1] and
the second inequality follows from > _1(1+‘ Y = YR () = = 2.
-5

1—c

8.3 Optimal Deterministic Resilient Search

We are now going to show how the bound of Theorem 8.1 can be actually matched
deterministically.

Let us call the originally sorted sequence /[0...n — 1]. The basic idea is as
follows: we start performing binary search over a subsequence of equally spaced
non-adjacent elements of /. The binary search is meant to identify a contiguous
subsequence I’ of I which is a candidate for containing an element with the
key we are searching for—if such an element is present at all. Once such a
contiguous subsequence is selected, a verification procedure is run which is meant
to guarantee that the binary search was not fooled by some error. If the verification
phase is passed, then the subsequence I’ is exhaustively searched for x. If the
verification phase is not passed the algorithm backtracks and continues over a
different subsequence with another attempt of binary search.

For the ease of the presentation let us assume that n = m x (58 + 1) for some
integer m. We partition the sequence I into m blocks of 56 + 1 consecutive elements
each. Fori = 0,...,m — 1, the block B; contains the elements /[(56 + 1)(i —
1)...(58 + 1)i — 1]. Moreover, we subdivide B; into three segments. The leftmost
25 elements are denoted by LV;. The rightmost 26 elements are denoted by RV;.
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Fig. 8.1 The data structure for the deterministic optimal resilient search algorithm: The partition
of the sequence into blocks B;’s and sub-blocks LV ;’s, RV;’s and Q;’s, and the sequence Sy
(k = 2) on which the binary search is performed

Finally, the remaining central § + 1 elements are denoted by Q;. The subsequences
LV;, RV;, and Q, are respectively called the ith left verification segment, the ith
right verification segment, and the ith query segment. The reason for such names
will be soon clear. We assume that the elements in the above segments are indexed
from 0. Then, in particular, the i th query segment’s first element is Q;[0] and its last
element is Q;[d].

Fori = 0,...,8 we define the subsequence S;, whose jth element coincides
with the ith element in the query segment Q ;, i.e, S;[j] = Q;[i] = I[(56 +1)j +
25 + i]. See Fig. 8.1 for a pictorial example.

A value k € {0,...,48}, counting the errors detected at any point during the
execution of the algorithm, is stored in safe memory. According to the value of k,
binary search is performed on the sequence Sx. More precisely, in safe memory
are stored also the search key x and two pointers £ and r indicating the indices
in the subsequence Sy such that, according to the comparisons performed so far,
Skll] = x < Sklr].

Also, we may assume that initially £ = —1 and r = m, and that reliably /[j] =
—oo forany j < 0and /[j] = oo forany j > n.

Notice that since distinct elements of S belong to distinct blocks, we can also
think of the pointers £ and r as pointing to two blocks.

Initially, we have k = 0, so we start performing binary search on the sequence
So, with £ = —1 and r = m. At each step we set ¢ = | (£ 4+ r)/2] and compare x
with Sk[gq]. If x is greater than Sk [g], the pointer £ is set to g. In addition, the pointer
r is decremented by 1, and Si[r] is compared to x. If x is smaller than Si[r] then
we continue with binary search by selecting a new index ¢ and proceed as before.
Otherwise, it means that x > Sk [r] and, since by the previous comparisons we have
x < Sk[r + 1], then x belongs to one of the two blocks B, or B,4+;. When such a
situation occurs, as in this case or because £ and r are such that £ = r—1, we execute
the verification procedure, which is meant to verify that the two adjacent blocks have
been correctly identified, or, alternatively, that in the comparisons performed in Sy
at least the output of one comparison was erroneous because of some fault.
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8.3.1 The Verification Procedure

In the verification phase, we compare elements from LV; and RV;; with x in order
to check that the blocks B; and B;4; are correctly identified to contain x. To this
aim, we start with two counters, ¢; and c,, stored in reliable memory and initially
containing the value 1. Also, we set vy = 2(§ — k) and v, = 2k. While 0 <
min{c¢, ¢,} < §—k+1 we perform the following two comparisons: first we compare
x to the element LV;[v,]. According to whether this element is smaller than x or
not, we increase or decrease ¢;. Then, we compare x to the element RV [v,].
According to whether this element is greater than x or not, we increase or decrease
¢, Every decrease of one of the counters is also followed by an increase of k, since
it indicates that at least one corruption has been detected.

If we exit from this loop because min{c;,c,} = & — k + 1, we declare the
verification to have succeeded. Otherwise, if we exit because min{c¢, ¢, } = 0, we
declare the verification to have failed.

In other words, we use ¢, ¢, for measuring our trust in the fact that x is in the
blocks B;, B;+1. Every comparison which increases such counters is a comparison
whose result confirms that x is in the blocks identified so far. Each comparison
which fails indicates that at least one corruption has occurred.

If the verification succeeds, we proceed with an exhaustive search for x in
the blocks B;, B; ;. We return an element whose value is x if we find one, and
otherwise we return false, meaning that no reliable element is equal to x.

If the verification fails, we perform a backtracking of the binary search by
resetting the same situation we had before the last two iterations of binary search.
For this purpose we have to remember for each iteration of the binary search (1) the
direction in which the interval of candidate blocks was restricted and (2) whether
the computation of ¢ needed a rounding. By (1) we mean whether we set £ to ¢ and
decreased r or set 7 to ¢ and increased £. By (2) we mean whether the floor involved
in the computation of ¢ satisfied [ (£ +r)/2] < (£ +r)/2.

The information necessary for the backtracking is stored in two binary vectors, D
(for direction) and R (for rounding), kept in reliable memory. For eachi = 1,...,
we set the ith bit of D to 1 if at the ith iteration of the binary search we set £ = ¢
and r = r — 1. Also, we set the ith bit of R to 1 iff at the ith iteration we had
qg=|1+nr/2l<U+r)/2.

Notice that the choice of updating both £ and r at each iteration guarantees
that the last faulty comparison in a sequence of iterations of the binary search
leading to a verification phase is actually verified within the next two iterations of
the binary search. To see this, let us write £, ¢;, r; to denote the value of £,q,r
at the rth iteration of binary search. Let ¢ be the iteration when the last faulty
comparison occurs before the verification phase. Imagine that originally we had
Silg:] < x, but because of a fault, the corrupted value satisfies Sy[g;] > x.
Then, the algorithm enters the (¢ + 1)th iteration with £, = £, + 1 and
ri+1 = ¢;. In the absence of further faults, we also have Si[¢;+1] < Sklg:] <
x; hence, we continue with binary search in the interval Si[{;+;...r+1]. Then,
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gi+1 = (41 + re+1)/2 < Sklg:] < x, which implies that we proceed with ;,1, =
gi+1 and ;45 = 141 — 1 = ¢, — 1. Assuming that Sy [r;4+1] is not corrupted, we
have that the comparison between S [r;42] and x leads to a verification in the blocks
B,, ., By, .,+1. Under the standing assumptions, such a verification will fail and will
be followed by a backtracking to the situation at time #, which is the last time a
corrupted element was used by the algorithm. Therefore, because of the updates on
both sides, the last corruption affecting binary search is actually verified at most two
iterations later. This also explains the double backtracking.

In order to show that the above algorithm is correct and has the desired com-
plexity, we first show that the value of k exactly counts the number of corruptions
identified. Notice that, whenever the verification fails, at least one corruption has
been found; hence, k has increased and the next iteration of binary search proceeds
on a different Sj sequence.

Lemma 8.1. Every time one of the counters cg,c, is decreased, a corruption
has been detected. In addition, every corruption detected influences exactly one
decrease operation of the counters.

Proof. We shall argue only with respect to ¢;. An analogous argument works for ¢,
as well. Let B; and B;4; be the blocks on which the verification takes place. The
decrease of ¢, follows a comparison between an element y of LV; and x such that
y > x.Lety, ..., y, be the list of elements in LV; which are compared to x in the
verification phase. Let ¢ be the number of indices i such that y; is found to be not
larger than x. We call these the frue comparisons. Let f be the number of indices i
such that y; is found to be larger than x. We call these the false comparisons. Clearly,
at any point after a false comparison we have f < ¢t + 1. This is because as soon
as the number of false comparisons overcomes the number of true comparisons, we
have ¢, = 0 and the verification phase ends with a failure.

Therefore, we can pair distinctly each element y; involved in a false comparison
with an element y; involved in a successive true comparison. We can pair the last
false comparison with the element in Q; which during the binary search was found
to be not larger than x. Now, every such pair implies a corruption, since the element
from the false comparison was originally smaller than the paired element from the
true comparison (recall that our pairing is such that the false comparison element has
an index smaller than that of the true comparison element, and LV; was originally
sorted in increasing order). However, we have that the false comparison element is
now larger than x, which is not smaller than the true comparison element. The proof
of the first statement is complete.

The second statement of the lemma says that no corruption is counted more
than once. For this it is enough to show that every two verification phases on the
same blocks will be based on comparisons performed on disjoint sets of elements.
First we observe that every time a verification phase is executed on the blocks
B;, B;+1, a different element y of Q; has been compared with x and resulted in
y < x. This is because we use a different sequence S after each verification phase
that fails. Moreover, we can show that each element of LV; is involved in at most
one verification phase. In fact, two different verification phases on B;, B;4+; would
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start with two different values of k, say k| < k,. Suppose that in the first one of
these two verification phases the elements LV;[2(§ — k1) ...2(8 — k1) + r] were
analyzed. From the argument in the proof of the first statement of this lemma,
it follows that at least (r 4+ 1)/2 corruptions were detected, i.e., one for each
decrease of ¢;. Hence, ko, > k; + (r + 1)/2, and in the second verification
phase we will perform comparisons with elements of LV;[2(6 — k») ... 24]. Since
2(6 —ky) > 26 — 2k + r + 1, it follows that the sublist of LV; on which the second
verification phase acts is disjoint from the sublist on which we perform comparisons
in the first verification phase. As desired, new decrease operations will follow from
comparisons on elements never considered before, and hence from newly detected
corruptions.

Theorem 8.3. The algorithm correctly reports the presence or absence of x if at
most § values are corrupted and it finishes in time O(logn + §).

Proof. By Lemma 8.1 if « < § faults were detected, there will eventually be a
verification phase which ends with a success, i.e., min{c¢, ¢,} = § —a + 1. Then, the
algorithm proceeds by exhaustively searching for x in the blocks B;, B; ;. We have
to prove two things. If there is a non-corrupted element equal to x then it belongs to
B;, Bi+1. Moreover, if the exhaustive search does not find any element with key x
in B;, B; 1, then no uncorrupted element exists with value x.

We observe that because of the verification phase, we know that at least § —o + 1
elements of LV; were found which are not larger than x and at least § — o + 1
elements of RV;4; were found which are not smaller than x. Since apart from the
detected « faults there could be at most § — « additional faults, it means that at
least one uncorrupted element of LV; and one uncorrupted element from RV;
were considered; hence, any uncorrupted x should belong to the blocks B;, Biyi.
Therefore, if the exhaustive search will not find any element in B;, B;+; of value x,
no such element could have originally been in the list, since, by the last argument,
it would be in B;, B; 1. It follows that the output of the algorithm correctly reports
the presence or absence of uncorrupted x in the list.

Finally, we have to argue about the complexity of the algorithm. Clearly, the
cost of the verification phases is O(§). For this, it is enough to observe that the
cost of each verification phase is linearly proportional to the number of corruptions
detected, which in total cannot exceed §. Moreover, we charge the two backtracking
operations in the binary search to the verification phase which determined them.
Therefore, considering both the verification phases and the binary search, the overall
complexity of the algorithm is O(logn + §), as desired.

8.4 Bibliographic Notes

The faulty memory RAM and the model of resiliency described in this chapter
were introduced by Finocchi and Italiano in [107]. In this seminal paper the authors
provided the §2 (log n+-§) lower bound for the problem of searching in a sorted array.
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The matching randomized upper bound was given in [108]. Finally, the optimal
deterministic algorithm for resilient search, here presented in Sect. 8.3, appeared in
[35]. In the paper [107], Finocchi and Italiano presented lower bounds also for the
problem of resilient sorting, for which matching (hence, optimal) algorithms were
given in [108]. Resilient search trees supporting insertions, deletions and search
operations in O(logn + §2) amortized time were introduced in [109]. Jgrgensen
et al. [129] proposed priority queues supporting insert and delete-min operations
in O(logn + §) amortized time. Finally, in [35], a resilient deterministic dynamic
dictionary was provided which supports searches in O(logn + §) worst-case time,
updates in O(logn + §) amortized time, and range queries in O(logn + § +t) time,
where ¢ is the size of the output. In addition, in [35], a lower bound was proved
to the effect that every resilient dictionary (satisfying some reasonable constraints)
must require §2(logn + §) worst-case time for search operations.

Very recently, Kopelowitz and Talmon [136] gave a linear-time deterministic
algorithm for the selection problem in the faulty memory RAM model. Interestingly,
the running time does not depend on the number of faults. Moreover, the algorithm
does not need to know § explicitly. The authors also provide the first in-place
randomized resilient sorting algorithm with expected running time O (n log n + «§),
where « is the number of faults that occurred during the execution of the algorithm.

8.5 Exercises

1. A trivially §-resilient algorithm can be obtained by storing replicas of each

element and then implementing a memory access to any x via computing the
majority of the values found in the replicas of x.
State exactly how to implement such trivially §-resilient algorithms for the
problems of searching and sorting. Prove the correctness of the statement
and estimate the overheads of such an approach in terms of space and time
requirements

2. Consider the problem of resilient search. Assume that at most one memory fault
is expected during the whole process and design an algorithm which uses not
more than 2[logn| operations.

3. Modify RANDSEARCH to provide an algorithm for finding the minimum element
in a set of n elements with expected time O(n + §).

4. Design an algorithm that receives in input an n-element array X|[1...n] of
distinct values (not necessarily sorted) and an index j. The algorithm, by using
O(n) comparisons among the elements of X, should returns an element y of the
array, different from X[j], and such that if X was sorted y would be not more
than o positions away from the position occupied by X [], where « is the number
of memory faults in the whole procedure.

In other words, denote by X the sorted version of X. Let ]~ be such that X[j] is
in position ]~ ,in X. Then, the algorithm should output any one of the values in
X[j—a...)j—1UX[j+1...aj +¢].



Chapter 9
A Model for Learning

I guess sometimes you have to lie to find the truth

S. Westerfeld

Learning can be thought of as the activity which allows the learner to formulate
the hypothesis likely to agree with previous observations. New observations might
induce the learner to revise previous hypotheses, and thus to modify/improve the
current state of knowledge in order to combine the new and the old observations.
Observations are usually examples and counterexamples provided “randomly” to
the learner. Alternatively, the learner may have the possibility to ask for the
correct classification of an example chosen from a given pool. In many concrete
applications the learning process is affected by noise. In this chapter we shall discuss
several examples of learning in noisy environments, showing their relations to both
Ulam-Rényi games and computational learning theories.

9.1 Computational Learning

We shall briefly describe the components of the basic model introduced by Valiant
as a criterion of correctness for learning concepts from examples and emphasizing
the importance of polynomial learning algorithms. Much of the study in the field of
computational learning can be understood as variations on this theme. A concept is
understood to be a Boolean function over some universe X . Examples are points in
X, which is usually taken to be some set of binary vectors.

An unknown target concept is to be learnt. A particular class C of possible
target concepts is chosen and the learnability of C is investigated in terms of the
number of examples needed by an algorithm to formulate a hypothesis 7 € C which
approximates a chosen target concept ¢ € C with a small probability of error.

F. Cicalese, Fault-Tolerant Search Algorithms, Monographs in Theoretical 185
Computer Science. An EATCS Series, DOI 10.1007/978-3-642-17327-1_09,
© Springer-Verlag Berlin Heidelberg 2013
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More precisely, we say that the algorithm A PAC-identifies concepts from C in
terms of a class of hypothesis H (C € H) with respect to a class of distribution
2 if for every concept ¢ € C, for each distribution D € 2, and for all positive
numbers § and €, when the examples are taken according to the distribution D, the
algorithm halts with a concept # € H such that with probability at least 1 — § the
probability that an example drawn according to D is misclassified by £ is smaller
than €. PAC stands for probably (except for §) approximately (except for €) correct.

If one requires the probability of error to be zero, than we have exact learning.
For example, in an online prediction model, the learning algorithm indefinitely
repeats a cycle of (1) requesting an example, (2) predicting its classification
according to the target concept (i.e., whether c(x) = 0 or ¢(x) = 1), and (3)
receiving the correct classification.

In the absolute mistake bound model of prediction, the worst-case number of mis-
takes in prediction over any sequence of examples must be bounded by a polynomial
in the length of examples and the size of the target concept. A polynomial-
time algorithm in the absolute mistake bound model can be transformed into
a PAC-learning algorithm for the same class of concepts. However, if one-way
functions exist then there are PAC-learnable concept classes that are not predictable
in the absolute mistake bound by a polynomial-time algorithm.

9.2 Predicting from Expert Advice

Let us consider the following simple problem. A learning algorithm is given the task
each day of predicting whether or not it will rain. In order to make this prediction,
the algorithm is given as input the advice of M “experts”. Each day, each expert
predicts “yes” or “no”, and the learning algorithm must use this information to make
its own prediction (the algorithm is given no other information besides the yes/no
bits produced by the experts). After making its prediction, the algorithm, at the
end of the day, is then told whether or not, in fact, it rained. Suppose we make no
assumption about the quality or independence of the experts so that we cannot hope
to achieve any absolute level of quality in our predictions. In that case, a natural goal
is to perform nearly as well as the best expert. We shall call the sequence of events
in which the algorithm (1) receives the prediction of the experts, (2) makes its own
prediction, and then (3) is told the correct answer a trial. We shall show that under
the additional assumption that the maximum number of mistakes made by the best
expert is bounded by e > 0 and such a bound is known to the learning algorithm,
the problem can be recast as a particular variant of the Ulam-Rényi problem.

First of all, let us note that the above problem can be seen as a particular case
of exact learning. The concept to be learnt is the Boolean function corresponding
to the best expert. The class of possible target functions is represented by the set of
experts. It is also assumed that there exists some source of noise which is, however,
bounded to affect at most e of the given examples.

We map the learning problem with M experts and bound e on the maximum
number of mistakes made by the best expert into the Ulam-Rényi problem over
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the search space S = {0, 1,..., M — 1} with e lies. Intuitively, we may think of the
learning problem as that of finding from among the M different experts the best one,
and despite the fact that such an expert can give us up to e wrong predictions, we
cannot recognize her until all the others have wrongly predicted more than e times.
Recall that in the Ulam-Rényi game we cannot claim to know the secret number
until the moment when all the other numbers happen to falsify more than e of the
questions received. The difference with respect to a classical instance of searching
is that, here, we cannot directly determine the tests/questions. On the other hand,
this is not important as long as we are penalized with a mistake only for a wrong
prediction. So the number of questions in a searching strategy here becomes the
number of wrong predictions.

Alternatively, one can turn the problem of prediction in the presence of mistake-
bounded experts into a gambling variant of the Ulam-Rényi problem.

The situation is as follows: Carole chooses a numberx € § = {0,1,..., M —1}.
Then, Carole and Paul start the first round of the gambling-game. At any round
Carole shows Paul aset T C §, meaning that x € T. Paul has to decide whether to
bet (one dollar) or not on Carole’s claim. Once Paul has decided whether to bet on
the claim “x € T or on the opposite one “x & T, Carole tells Paul if he has to pay
or not. The aim of Paul is to find out the secret number and to save as much money
as he can. Carole, on the other hand, tries to make Paul lose money, also by lying in
some rounds. It is agreed that Carole does not lie more than e times.

The problem is to find out how many dollars Paul has to lose before finding the
secret number and, if possible, to devise a strategy for Paul which allows him to lose
no more than the above lower bound.

It turns out that this problem has exactly the same result as the original one.
Indeed, the best Paul can do in any round is to bet or not according to whether the
state resulting from a “yes” answer has a smaller nth volume with respect to the state
resulting from a “no” answer. Here, n + 1 represents the least number of questions
necessary for Paul to find out x starting in the present state, according to the Volume
Bound. On the other hand, Carole’s aim is to prevent Paul from guessing x and
also to make him lose money. Therefore, she has to use balanced questions and then
always say that Paul’s bet is wrong. The necessity to use balanced questions depends
on Paul’s strategy. If an unbalanced question is used, when Paul loses money, he also
gains more information. On the other hand, at any step Paul gains some information,
so Carole has to make Paul lose money in every round, for otherwise she is giving
him information for free. Finally, instances of the classical game (e.g., the case
M = 278, e = 2) forcing even splitting of the volume at any step immediately
yield worst cases in the predictive model where N (M, e) dollars are to be lost by
Paul.!

Thus, we show that there exists a learning strategy making at most N(M, e)
mistakes when advised by M experts, one of whom makes at most e mistakes.

IN(M, e) is the minimum number of questions that Paul has to ask in order to infallibly determine
Carole’s number in a binary Ulam-Rényi game with e lies over a search space of cardinality M .
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Moreover, it is possible to devise situations (choices of M and e and the set of
trials) where N (M, e) errors are the minimum possible.

9.3 Learning in Noisy Environments

9.3.1 Rényi’s Probabilistic Example

We start our excursion from Ulam-Rényi games to computational learning theories
with a probabilistic variant of the Ulam-Rényi problem, considered by Rényi.

Arbitrarily fix an integer M > 2, together with a real number 0 < a < 1.
Let S ={0,1,2,..., M — 1} be the search space and 71, T, ..., Ty be randomly
selected subsets of S. Let x be a fixed unknown element of S. Suppose that we
know the answer to each question “does x belong to 7);?”, and that each answer is
correct with probability 8, with 1/2 < B < 1 a fixed but otherwise arbitrary real
number.

Problem: How large must the integer k be so that we can identify x with probability
> ?
Intuitively speaking, the entropy

H(B) = Blogs 5 + (1= f)logs

measures our uncertainty: the information content of each answer is < 1 — H(f).
Since the amount of information needed to detect x is log, M, we may reasonably
conjecture that k answers to the above random questions will suffice to determine x
onlyifk (1 - H(B)) >log, M, i.e.,

P L ©.1)
1= H(p)

This heuristic argument indeed provides a lower bound which is not too far from

the solution of the above problem. Rényi’s precise estimate [183] shows that the

number k of answers is almost independent of « and has the same rate of growth as

log M . Thus, no matter what the desired “accuracy parameter” « is, the number k

surprisingly agrees with the naive estimate given by (9.1).

9.3.2 Learning with Negative Reinforcement

The worst-case variant of Rényi’s probabilistic example has a distinctly algorithmic
nature, and yields a first, albeit rudimentary, quantification of the effects of
(negative) reinforcement, as follows.
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Carole chooses a number x* € S = {0,1,..., M — 1}. During the ¢th round of
the game, t = 1,2,...,asubset 7; C S is mndomly2 chosen and submitted to Paul,
who must now guess whether x* € T, or x* € T; = S \ 7,. Thus, Paul’s guess
is just a subset T* € {T;, T;}. Then, Carole declares what the correct guess should
have been, thereby confirming or refuting Paul’s guess T*. In the latter case, Paul
must pay a one dollar fee to (his supervisor) Carole.

It is agreed that Carole can mendaciously or erroneously refute Paul’s correct
guess for up to e rounds, while still cashing Paul’s dollar. On the other hand,
whenever Carole confirms Paul’s guess, she is always sincere, and no fee is paid
by Paul.

Paul’s aim is to learn the secret number x* as cheaply as possible. Thus, we
are not concerned with the actual length of the game. Unless we tighten our notion
of “random” set, much as Rényi did in his example, it is in principle possible that
Paul learns the secret number very cheaply, but after a large number of rounds—an
altogether common situation.

Recalling the definition of character given in Chap.2, in Theorem 9.1 and
Proposition 9.1 below we shall prove the following two results:

e For all M and e there is a betting strategy % enabling Paul to infallibly learn
x*, paying a (tuition) fee that even in the worst possible case never exceeds
ch(M, 0, ...,0) dollars (see Definition 2.6).

——
e times

¢ On the other hand, for certain values of M and e, ch(M, 0, ..., 0)—3 dollars may

turn out to be insufficient for Paul to learn x*, whatever strategy he may choose.

For the proof we need a minor adaptation of the notions of state and strategy, as
follows: As the result of Carole’s confirmations and refutations, Paul, starting from
the initial state (M, 0, ...,0), will find himself in a state 0 = (Ao, ..., A.), where
foreveryi =0,...,e, A; € S,and foreachy € S

y € A; iff y agrees with all of Carole’s confirmations, and fails to agree with exactly i
refutations.?

By a betting strategy we mean a function & assigning to each pair (0, T), with
o anon-final* state and T C S, aset T* = B(o,T) € {T, T}.

Theorem 9.1. Fix integerse > 0 and M > 2. Let ¢ = ch(M,O0,...,0). Then, in
the present gambling game with e lies over the search space S = {0,..., M — 1},
there is a betting strategy 9 with the following property.

Whatever Carole’s secret number x* € S, for any random sequence (in the
above sense) T\, T»,... € S, and for any sequence of declarations, say with A €

2Here, by “randomly” we mean that every subset 7' of S occurs as 7; for infinitely many ¢. Thus,
no probabilistic notion is used.

3Thus, y & UA; iff either y falsifies a confirmation, or else y falsifies > e refutations.
“4The definition of final state is unchanged.
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0,...,e} false refutations, Paul following A always learns x* by paying a total
4 . 8 Y y paymng
fee not exceeding q — e + A dollars.

Proof. We prepare some notations and record some easy facts. For any set U C S
with its complementary set U = S \ U, assuming Paul to be in a non-final state
o = (Ao,...,A.), we let

U) _ / !
"W = (4),...,A)
denote Paul’s new state of knowledge in case Carole happens to refute his bet “x* €
U Since Carole is sincere when she confirms Paul’s bet, this refutation does not
have the same effect as Carole confirming the opposite bet “x* € U.” In more detail,
by analogy with (2.1) we can write

Ay = A NU 9.2)
A= (A;NU)U A NU) (=1.....e). '

For every n > 0 we then have the conservation law of Theorem 2.2:
Va0) = Vamr (0" + Vit (0",

By definition of character, it follows that for every state ¢ with ch(o) > 0, there
exists U* € {U, U} such that ch(c"°U")) < ch(o).

Supposing now o to be a non-final state and 7 C S, we are ready to define
(0, T). Since ch(o) > 0, there is a T* € {T, T} such that ch(c”°"™)) < ch(o).
Strategy % prescribes that Paul should bet on 7*.5 Thus, we can write

T* = #(0,T) and ch(c™ ") < ch(o). 9.3)

To conclude the proof, assume for some random sequence 7y, 71, . . ., for some
x* € §, for some sequence of Carole’s declarations, say with A false refutations
(A €10,...,e}), Paul, following 4, learns x* at a price exceeding g —e + A dollars
(absurdum hypothesis.)

Notwithstanding its extreme generality, our present notion of randomness still
ensures that Paul sooner or later does learn x*. Therefore, our absurdum hypothesis
states that Paul learns x* after paying

g—e+A+$6

5If T* also has the property that ch(c”™)) < ch(c), Paul must choose between T* and 7
following some predetermined criterion. A deeper analysis shows that—except in such a trivial
case as e = 0 and M is a power of two—a careful choice of Paul’s priority criterion does result in
his saving further.
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dollars, for some integer § > 0. Upon learning x*, Paul enters a final state ¢,,4 of
the form

Ound = (B, ..., 8,{x*},0,....,0).
S—— N——
A times e—A times

As an immediate consequence of the definition of volume (Definition 2.5), one gets
Ve—/\ (Uend) = 26_1'

Since every confirmation leads Paul from a state p to a state p’ with ch(p’) < ch(p),
it follows that every state T # 0., that Paul has experienced during this game
before entering o,,, is not final and also satisfies the inequality

ch(r) >e—A. 9.4)

Now, the number ¢ — e + A + § of Carole’s refutations coincides with the tuition
fee paid by Paul. These refutations lead Paul from his initial state of character ¢
to a final non-zero state o,,y. Further, by (9.3), Carole’s first g —e + A + 8§ — 1
refutations have led Paul to a state 7 such that ch(t) <e— A1 —3§ + 1 < e — A, thus
contradicting (9.4)

Corollary 9.1. For each e = 0,1,2,..., and all suitably large M, Paul’s tuition

fee to learn Carole’s secret number x* € {0,..., M — 1} with e false refutations
never exceeds log, M + elog,log, M 4 e dollars, provided he follows the above
betting strategy . |

Proof. Setting ¢ = log M + eloglog M + e, we have for all large M :

. M
MZ(?) M(‘He)sg(qw)e
i=0

e

IA

M
—'(logM + eloglog M + 2¢)® < M(2log M)¢ = 29,
e!

Thus, the character of the initial state (M, 0,0, ..., 0) is < g. As shown by the proof
of Theorem 9.1, ¢ dollars are sufficient for Paul to learn the secret number.

Exercises 1 and 2 discusses the actual extent to which the above strategy Z is
“best possible”. Here, we limit ourselves to state the following instructive special
case.

Proposition 9.1. Let e = 2 and M = 278, Then, no matter what Paul’s betting
strategy 9 is, it turns out that 87 = ch(M,0,0) — 3 dollars will not enable him to
infallibly learn Carole’s secret number. In more detail, depending on ¢ there exist

e aninteger A € {0,1,2}
e asequence Ty,..., Tssy) of subsets of S
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* a sequence of 88 + A declarations
o anelementx* € S ={0,....M — 1}

with the following properties:

* all declarations are refutations;
* Paul learns x* precisely after 88 + A rounds, thus paying 88 + A dollars;
* the number of Carole’s false refutations is A.

As a final remark, we notice that—at the expense of overburdening the notation—
Proposition 9.1 can be generalized to any fixed e and infinitely many M whenever
the nth volume of the initial state (M, 0,...,0) is just a little below the value 2", n
being the character of (M, 0, ...,0).

9.3.3 Supervised Learning for Online Prediction

We shall give a simple example of supervised learning and show its essential
equivalence with the example of the previous section (Theorem 9.2 below).

A learning algorithm called Cassandra has the following task: under the super-
vision of a team of expert meteorologists, after a certain, hopefully short, training
stage, Cassandra must become an expert meteorologist.

Oneachdayt =0,1,2,..., Cassandra is expected to predict whether or not the
(t+1)th day will be rainy. Each member i of a supervising team S = {0, 1,..., M —
1} of meteorologists tells Cassandra his individual prediction about day 7+ 1. The bit
by € {0, 1} = {sunny, rainy} records such a prediction. At the end of the (¢ + 1)th
day, Cassandra is told by Jupiter whether her own prediction b, was right. These
daily M + 1 input bits of information must be efficiently recorded and used by
Cassandra to improve her predicting capabilities.

When all supervisors are unable to forecast reliably, Cassandra will hardly
become an expert meteorologist. If precisely one of the M experts is infallible,
in order to become an infallible meteorologist, Cassandra must only identify the
infallible expert. For this purpose, since the predictions made on day ¢ by the M
experts partition them into two subsets, at the end of the (¢ + 1)th day Cassandra
shall simply discard the subset of experts that made a wrong prediction. Initially,
she is just training: her predictions may be considered as mere guesses on who the
infallible expert is. A moment’s reflection shows that, after no more than [log, M ]
wrong guesses, Cassandra will always detect the infallible expert. In concrete
situations one can safely assume that, sooner or later, all experts but one will have
made at least one mistake. Then, Cassandra’s training terminates, and she acquires
the desired predicting capabilities.

As a generalization, let us fix an integer ¢ > 0 and assume that precisely
one of the M experts, denoted by i, is e-fallible, in the sense that, during the
potentially infinite sequence of days ¢ = 0, 1,2, .. ., expert i4 (and only this expert)
is guaranteed to make at most e wrong predictions.
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Problem: What is the minimum number of wrong guesses sufficient for Cassandra
to identify i, and eventually acquire infallible predicting capabilities?°

To solve the problem we shall first give the appropriate notions of state and
strategy.

As the result of Jupiter’s declarations, Cassandra, starting from the initial state
(M,0,...,0), will be in a state 0 = (Ay,...,A.), where forevery j = 0, ..., e,
A; C S is the set of experts given by

expert y is a member of A; iff y agrees with all of Jupiter’s declarations, with exactly j
exceptions.’

By a predicting strategy we mean a function L@ assigning to each pair (o, T),
with 0 anon-final state and 7 C S,aset T* = Z(0,T) € {T,T}.
We are now in a position to answer the above problem.

Theorem 9.2. Fix integers e > 0, M > 2, and g > 0. Let the search space S
be givenby S = {0,1,..., M — 1}. Then, the following conditions are equivalent:

(i) Given that up to e of Carole’s refutations may be mendacious, Paul has a betting
strategy B to find Carole’s secret number x* € S, paying < g dollars.

(ii) Cassandra has a predicting strategy P which, under the supervision of a
team of M experts containing precisely one e-fallible member iy, successfully
identifies i after < g wrong predictions.

Proof. For the proof we first settle the following.

Claim 1. Paul has a betting strategy 2 as in (i) if and only if Paul has a strategy &
to find Carole’s secret number x* € {0,1,..., M — 1}, paying < g dollars, under
the special hypothesis that all of Carole’s declarations are refutations.

The nontrivial direction is from % to %. Let X be the (finite) set of all possible
states in the present game over S with e lies. Let ¥ € X be the set of all possible
states that Paul can reach in a game played according to strategy %, starting from
the initial state (S, @, ..., @) for any possible sequence of sets Ty, ..., T,, under the
standing hypothesis that all of Carole’s declarations are refutations.

For any state T € X ¢ let ||7|| denote the (worst-case) maximum fee paid by Paul
to learn Carole’s secret number, under the assumption that Paul follows strategy %
starting from state 7 and all of Carole’s declarations are refutations. By hypothesis,
llol| < g forall p € Xgp.

6 Again, we are tacitly assuming that sooner or later all experts but one will have made more than e
errors in their predictions. Further, we are not concerned with the duration of the learning process,
but only with its cost, as measured by the number of Cassandra’s wrong predictions.

"Thus, y & U;A; iff y fails to agree with > e of Jupiter’s declarations. Note the difference
between the present notion of state and the one given in Sect. 9.3.2.
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For each state 0 € X' among all states t € ¥4 such that ¢ < t let & be the one
having minimal ||5||.® The existence of & is easily settled, since o is a substate of
the initial state.

Let the betting strategy % : X x powerset(S) — powerset(S) be defined by

B0, T) =BG, T), 9.5)

foralloc €e Yand T C S.

Then, # satisfies the requirements of our claim. For otherwise (absurdum
hypothesis) there exists a sequence 71, ..., T, € S and corresponding declarations
di,...,d,, containing at least g refutations, leading Paul to a non-final state after u
rounds and after having already paid g dollars. Let 7}*, ..., T," record Paul’s bets
following strategy B.Llett) <...< t, list g rounds where Paul’s bet was refuted.’
Foreach: = 1,..., g denote by 0, and o;, Paul’s states before and after his :th
refuted bet. The following verifications are easy:

(a) Oy = 04—1 = 5&—1 and o, = 5tt~

(b) Suppose Paul is in state G,—1 and, following strategy %, bets on T* =
B(61,-1,T)). Call 7, his state after receiving Carole’s refutation. Then, by
definition of %, we have the inequality o, < 7.

© 116411 < I[7]] < |G-l — 1.

(d) Whenevert < w, 0;,—1 < 0,.

(e) Whenever: < w, ||6;,—1|| < |64 |]-

We are then left with a decreasing sequence
g Z lon—1ll > 1164 || = [161-1[] > (160, = ... = |61 1]l > [I67, || = 1

because 0;,, < 0;, is a non-final state). This is impossible and our first claim is
8 8 p
proved.

Claim 2. Cassandra has a predicting strategy 2 as in (ii) if and only if she has
a predicting strategy &2 which identifies such an i, after < g wrong predictions,
under the additional hypothesis that all her predictions are wrong.

The proof of this claim proceeds exactly as the proof of the previous claim. Note
that the information provided by Jupiter’s confirmations of Cassandra’s predictions
is smaller than the information provided by Carole’s confirmations of Paul’s bets.
However, the proof of inequalities (a)-(e) is not affected by such a distinction: as a
matter of fact, any state o’ resulting from a state o after a confirmation, whether in
the first model or in the second model, is always a substate of 0.

8Tf there are several candidates we let & be the first one, according to some fixed lexicographic
order.

9For definiteness, one may take the last g, or the first g, such rounds.
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Having thus settled both claims, we conclude the proof as follows: For the (i) —
(i) direction, we can safely identify the set of expert meteorologists with the search
space S = {0,..., M — 1} in the gambling game of Sect.9.3.2. For each day (=
round)t = 0,1, ..., let

T, = {y € S | expert y predicts rain for day ¢ + 1}.

By our claims we can safely assume that both Paul and Cassandra always receive
refutations to their bets and predictions. From Paul’s betting strategy % one can
define Cassandra’s predicting strategy & as follows: Cassandra, being in state o
over input T;, will output prediction & (o, T;) by just mimicking Paul’s betting
strategy; in symbols,

P0.T) = B0, T) =T/ € {T,. T,

Jupiter’s refutation has precisely the same effect as Carole’s refutation. Notice that
the asymmetry between Carole’s and Jupiter’s confirmations has no longer any
effect, for the trivial reason that there are no confirmations at all. In fact, Paul
and Cassandra will experience the same sequence of states. Cassandra will identify
i« after < g wrong guesses following &, because Paul using % infallibly learns
Carole’s secret number paying < g dollars.

Similarly, for the (ii) — (i) direction, we can safely assume that both Cassandra
and Paul only receive refutations. Letting & = & we then have the desired
conclusion.

Using the betting strategy 2 of Theorem 9.1 we have the following.

Corollary 9.2. In the present instance of supervised learning with a team of M
experts containing a unique e-fallible element, there is a predicting strategy &
allowing Cassandra to learn the art of giving infallible {sunny, rainy} predictions
after a maximum of ch(M, 0, . .., 0) wrong predictions.

As in the case of Paul’s betting strategy 2, a more detailed analysis shows
that, in fact, ch(M, 0, ...,0) — 1 wrong predictions suffice in most nontrivial cases.
Corollary 9.1 gives a useful estimate of the rate of growth of gq.

Thus, under the supervision of a team of M experts containing one e-fallible
member iy, a Turing machine P implementing strategy 2 can acquire infallible
predicting capabilities, by trial, error and emulation, after a two-stage training,
during which at most g = ch(M, 0, ..., 0) wrong predictions are made. During the
first stage, P looks for the e-fallible expert i using 2. As soon as iy is detected,
P becomes ¢’-fallible, where ¢/ = e — A and A is the number of wrong predictions
made by i, so far. The current number of P’s wrong predictions is < g — e + A.
The first stage is over. Afterwards, P will just emulate i, making a maximum of e’
wrong predictions: once the last mistake is made, the second stage also terminates,
and P becomes infallible (together with its supervisor 7).
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Other Learning Models. We can now try to link our examples to other learning
models in the literature, we reformulate the above prediction problem as follows.
For a suitably large fixed integer n, let us assume that the core of meteorological
data about today’s weather—that is sufficient to predict whether tomorrow will be
a sunny or a rainy day—is completely described by some n-bit integer x. Let W =
{0, 1}" be the set of all these exhaustive descriptions. Any x, € W containing all
relevant meteorological data on day ¢ infallibly determines the weather forecast

f«(X;) € {sunny, rainy} = {0, 1}

fordayt +1(t = 1,2,...), where fx: W — {sunny, rainy} is a Boolean function
transforming the set x € W of today’s meteorological data into an infallible
prediction of tomorrow’s weather.

We assume the existence of ateam S = {0, ..., M — 1} of expert meteorologists.
Each i € S is equipped with a Boolean function f;: W — {sunny,rainy}
transforming today’s meteorological data into expert i’s forecast for tomorrow.
Precisely one expert, say iy, is equipped with a function f;, that coincides with
Jf+, up to a maximum number e of input-output discrepancies. In other words,
ez [{ixeW| fx(x) # fi.(®)]].

We must devise an algorithm A which, under the supervision of the experts in S,
learns fi by detecting and emulating i.. On each day ¢, A receives in its input (a
Boolean formula of [log, M ] variables, representing) the set of those experts whose
forecast for day ¢ + 1 is “rainy”. A now makes its own forecast b, € {sunny, rainy},
and at the end of day ¢t + 1, 4 is told whether b; or 1 — b, was the correct forecast.

For each day t+ = 1,2,..., expert i € S, and data x, € W, let f/ denote
the ¢-tuple of forecasts f/ = (fi(x1), fi(X2),..., fi(x;)) € {0,1}'. We say that a
function g: W + {0, 1} belongs to the e-neighborhood E; of expert i iff for all
t = 1,2,3,..., the t-tuple of bits (g(x1), g(x2), ..., g(x;)) differs from £/ for at
most e distinct X’s. In other words, g and f; coincide all over their common domain
W, at up to e many exceptional points.

The existence of a unique e-fallible expert in the team S means that there exists
precisely one i, € S such that f, belongs to the e-neighborhood E;, of ix. The
results of Sect. 9.3.3 yield a tight upper bound for the following.

Problem: Assuming that the target Boolean function fi belongs to the e-
neighborhood E;, of a unique expert ix € S, assuming no two days have exactly
the same weather condition x € W, find an algorithm to learn f, with the minimum
number of wrong predictions.

In the final notes to this chapter, the reader will find more evidence and pointers
to why and to what extent Cassandra’s predicting strategy P of Corollary 9.2 can
be thought of as a device to “computationally learn” a function f in the “hypothesis
space” A = |J;cq Ei.
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The seminal paper for computation learning is Valiant’s [203]. The absolute mistake
bound is defined in [142]. The description and the result given here are mainly based
on [65] and [40], where a different mapping of advised prediction to the Ulam-Rényi
game was presented. For a pleasant introductory reading on learning algorithms see
also [28]. Rényi’s probabilistic model can be found in [183].

The problem of predicting from expert advice, together with its many variants, is
investigated by various authors, under various denominations, including “sequential
compound decision problem” [25, 186], “universal prediction” [105], “universal
coding” [193] and others. Littlestone and Warmuth [143], De Santis et al. [91] and
Vovk [208] were among the first to consider this problem within the computational
learning community (see also [39]).

Our supervised prediction model above is reminiscent of Littlestone’s Mistake
Bound Model ([142]; also see [12]). Here, too, one is interested in understanding a
natural phenomenon described by some unknown function f. While f may be very
complex, our ability to represent f suffers from all sorts of limitations, in time,
space, interest, and expressive power. Considering f as our learning target, we may
assume that input-output pairs

(x1, f(x1)), (X2, f(x2)), ..., (X, f(X))

are provided to us as experimental data about f. Our task is to form a tentative
hypothesis /, about f so that the following two conflicting desiderata are fulfilled:
(i) matching experimental data and (ii) having a simple description. To fix ideas, let
us assume that each x; is an n-bit number, and that f is an n-ary Boolean function.
We are interested in the actual representation of our tentative hypotheses about f
as strings of symbols (say, as Boolean formulas). This yields a convenient tool to
measure the complexity of the target concept to be learned, and is a prerequisite for
the efficient learnability of f, a main issue in the theory of computational learning.

Very much as in the prediction problem of the previous section, in Littlestone’s
Mistake Bound Model, learning is understood as the result of trial and error. The
learning process occurs in several rounds ¢ = 1,2,3,...: During each round an
input value x;, € {0, 1}" is presented to the learning algorithm A. Depending on
what A already knows about f from the past rounds, A must predict the value of
f(x¢), and is penalized whenever its prediction is wrong.

Algorithmic learning with erroneous input data is also considered in the litera-
ture. For the particular case where the target function f to be learned is Boolean,
Valiant [204] investigates malicious errors within the following setup: For some real
number 0 < B < 1, a coin flip with success probability 8 determines whether or not
a pair (x, y) is erroneous. If no error occurs, then it is understood that y = f(x).
On the other hand, the occurrence of an error may indifferently produce both the

cases y = f(x)and y = 1 — f(x).
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Another interesting setup for learning with errors, called classification noise, is
described by Angluin and Laird [14]. As in Valiant’s model, a coin flip with success
probability 8 decides which examples are to be affected by error. In contrast to
Valiant’s model, here an erroneous example always has the form (x, 1 — f(x)). This
sort of error turns out to be more benign than Valiant’s malicious errors.

We close with the following quotation by Blum [28]: “Perhaps one of the key
lessons of this work in comparison to work of a more statistical nature is that one
can remove all statistical assumptions about the data and still achieve extremely
tight bounds (see Freund [110]).”

9.5 Exercises

. Prove Proposition 9.1.

. Consider the betting game in Sect. 9.3.2. Show that for any integer e > 1 there
exist infinitely many integers M such that ch(M,0,...,0) —e — 1 = min{n |
M Zj —0 ('}) < 2"} —e—1 dollars will not enable Paul to infallibly learn Carole’s
secret number.

3. Consider a variant of the Ulam-Rényi game in which the goals of the players are
swapped. Carole’s strategy is to answer each question in order to make the game
finish as early as possible. Conversely, Paul’s aim is to have the game last as long
as possible. For a search space of size M, how long can such a game last at most
(in terms of number of questions asked by Paul) if the rules of the game allow
Carole to lie up to e times?

4. Analyze the relationships between the game of Exercise 3 and the betting game
in Sect. 9.3.2.

5. LetU ={1,...,N},and Ty, ..., Ty be k randomly chosen subsets of U. Provide
a lower bound on k such that for any fixed x, y € U there exists a j such that
xeT;jandy ¢ T;.

6. Let x; < xp < -+ < Xy, be n integers. Let p > 1/2 and € > 0. Given x, the

goal is to determine the index i such that x; < x < x; + 1, or certify that either

X < X]OrX > Xp.

A query consists of comparing x with some x;. With probability 1 — p such a

comparison will give an incorrect result.

Consider a strategy that initially assigns probability 1/n to each candidate x;.

Then, in each round, the index j of the element to compare to x is chosen

according to the current distribution. After each comparison the probabilities are

updated according to the answer received.

Show that such a strategy succeeds with probability 1 — € while using

() ((1 — ) loen ) questions.

DN =

1=H(p)
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